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We have great pleasure in writing the preface for this book on Analysis and
Design of Plated Structures: Stability, the first of the planned set of two
volumes on plated structures. The inspiration for these books comes from the
recognition of the significant advances that have taken place during the last
few decades. As a result of the research findings, our understanding of the
behaviour of thin-walled structural (or plate) elements has increased
considerably. The improved understanding of the complex stability problems,
in turn, has set new trends and caused major changes in the design codes in
North America, Europe and Australia. Even the design philosophy has seen
a major shift from the permissible stress basis to the concept of limit state;
the Specifications concerned with the design of thin-walled structural elements
are based on the vast amount of fundamental research findings. Research
efforts continue in the field of post-elastic, post-buckling, and ultimate ranges
and the benefit to be derived from the research outcomes depends on their
effective implementation. It is necessary to remove the misconception amongst
the designers and practitioners that solutions for stability problems are fraught
with complexities and hence difficult to use in the design office. The objective
of this book is to explain the current analytical methods, and to provide the
theoretical background to the design specifications for plated structures.

This volume, dedicated to stability of plated structures, contains fifteen
chapters, written by well-known experts who have made significant
contributions in their relevant fields. Each topic is presented with sufficient
introductory material in order to enable an engineering graduate, familiar
with basic understanding of structural analysis and structural stability, to
follow it without any difficulty. The first chapter addresses the lateral, or
flexural-torsional buckling of tapered steel members in bending. Using the
technique of ‘design by buckling analysis’, a design proposal is suggested
that makes use of the elastic buckling curves, and which interfaces with
existing rules for lateral buckling in either the BS5950 or the AS4100 codes.
Elastic buckling of thick plates under variable in-plane loads is dealt with in
Chapter 2. The effects of transverse shear deformation and the higher order
nonlinear terms (curvature terms) on the buckling load are allowed for. Finite
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element formulation for plate stability analysis is given in Chapter 3 in
which a generic total Lagrangian formulation for nonlinear continuum
mechanics is presented to degenerate plate equilibrium equations directly
from the 3D field equations. A meshfree Galerkin method is introduced in
Chapter 4 for the elastic buckling analysis of stiffened plates and stiffened
and un-stiffened corrugated plates. The stiffened plates are modelled as
composite structures that combine the plates and stiffeners by imposing
displacement compatible conditions between them. Chapter 5 deals with
plastic buckling of thick plates under in-plane compressive stresses. Analytical
plastic stability criteria are presented for plates with various plan shapes,
boundary and inplane loading conditions.

Mechanical and thermal buckling of functionally graded ceramic-metal
plates is treated in Chapter 6 whilst Chapter 7 describes a fully nonlinear
thermal postbuckling analysis of laminated plates. Local and interaction
buckling of plated structures in composite steel-concrete construction are
treated in Chapter 8 in which some recommendations on design approaches
are also presented. The possibility of designing lightweight postbuckling
aircraft structures, without compromising on structural integrity, paves the
way for the development of significantly lighter airframes. Experimental and
finite element results presented in Chapter 9 explain the behaviour of this
form of structure. Strength and ductility research findings related to thin-
walled steel members and structures are summarised in Chapter 10. It covers
isolated plates, stub-column segments and cantilever-typed columns, subjected
to compression, bending, combined compression and bending as well as
shear loadings. Both monotonic and cyclic loading conditions have been
considered. An analytical method to predict the behaviour of in-filled columns
is presented in Chapter 11. Effects of local buckling in the side-walls of the
column are accounted for in terms of effective width. In Chapter 12, the
analysis for buckling strength in corrugated webs is presented. Materially
and geometrically nonlinear analysis is formulated to evaluate elasto-plastic
buckling loads. Recent analytical research conducted in the United States on
the influence of curvature induced distortion and warping on the strength
and stability of curved plate girders used in roadway bridge superstructures
is described in Chapter 13. Challenges associated with transporting, lifting,
and erecting are described since construction loads are applied when the
girder is in minimally braced configurations and therefore is most susceptible
to local and global instabilities. Chapter 14 is concerned with the buckling
failure of metal structures generally formed of curved plates. These structures
are typically used in the liquid and bulk material storage industries, pressure
vessels, aerospace vehicles, and in many other contexts. Analysis and design
of pressure vessel closures which surprisingly may sustain buckling failure
under internal pressure followed by a consideration of buckling under external
pressure are the highlights in this chapter. The last chapter examines the

Prefacexvi



various types of elastic buckling which arise in the behaviour of light gauge
steel structural members such as beams and columns. The examination considers
only elastic buckling behaviour and its effects on the stiffness and strength
of thin plates and members.

We are grateful to all the contributors for their willing participation and
for the cooperation they have extended to us in producing this volume. It is
hoped that the book will prove stimulating both to the researchers and practising
engineers.

N. E. Shanmugam
C. M. Wang
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1

1.1 Introduction

The modern use of plated structures means that the cross-sectional and
lengthwise profiles for a given member may be optimised by welding tapered
plates together. Figure 1.1 shows two ways in which a web-tapered member
may be manufactured: the first is by welding two flanges to a tapered web
plate, while the second shows a diagonal cut through the web of a hot-rolled
I-section member, the rotation of the relative portions of the cut member, and
its re-welding to produce a tapered profile. The concept of efficient steel
design with tapered members is not new (Amirikian 1952), and nowadays
web-tapered members of this type find widespread contemporary use in steel
portal-frame structures (Woolcock et al. 1999), since the deeper flanged
portions may be utilised in the high moment regions (at the portal frame
eaves) in order to economise the use of steel. However, because members
with welded plates are relatively slender, their strength is often governed by
lateral (or flexural-torsional) buckling.

Figure 1.2 shows a generic tapered member, which in a mathematical
representation can be thought of as comprising a domain Ω ∈ R 3, where Ω
= Ψ ∪ Λ . The subdomain Ψ ∈ R 2 is the cross-section, which may be
monosymmetric as shown in Fig. 1.2, while the subdomain Λ ∈ R 1 represents
the member length L, which may be expressed as Λ = [0, L], with a cross-
section Ψ(x) being defined as that at a position x ∈ Λ = [0, L]. A conventional
hot-rolled I-section member would be prismatic, in the sense that the cross-
section is constant along the member (dΨ/dx ≡ 0 ∀ x ∈ Λ). At the other
extreme, the cross-section may be monosymmetric, and with both its width
and depth changing along the member, so that dΨ/dx ≠ 0 (x ∈ Λ). In
principle, with automated fabrication techniques, it is conceivable that a
member could be manufactured by tapering its flange widths and web depth
in this way to optimise the member of structure with regard to cost, weight,
overall depth, or the like.

Research work on the lateral buckling of tapered steel members has been

1
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M A  B R A D F O R D,  The University of New South Wales,
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Analysis and design of plated structures2

reasonably plentiful, with Kitipornchai and Trahair (1972) presenting a detailed
review of research in the area prior to 1971. Most of the treatments of the
lateral buckling of tapered members have made recourse to numerical
formulations, as closed-form solutions do not in general exist, even if some
sweeping simplifying assumptions are made. Some research findings can be
found in the work of Lee et al. (1972), Nethercot (1973a,b), Morrell and Lee
(1974), Taylor et al. (1974), Horne and Morris (1977), Horne et al. (1979),
Brown (1981), Nakane (1984), Wekezer (1985), Bradford and Cuk (1988),
Bradford 1988a,b, 1989), Chan (1990), Trahair (1993), Ronagh and Bradford
(1994a,b, 1996, 1999) and Ronagh et al. (2000a,b). Some of the more recent
and rigorous studies have identified some anomalies between solutions for
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1.1 Web-tapered beams: (a) welded tapered beam; (b) tapered beam
fabricated from a universal beam.
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web-tapered I-section members developed by earlier researchers, and the
most profound anomaly was found to be as a result of the omission of an
important term in the formulation of the buckling analysis of web-
tapered members. This issue has been addressed by Ronagh and Bradford
(1994a).

This chapter aims to provide an insight into the lateral buckling of a
tapered steel member under transverse loading. Following a discussion of the
mechanics of the problem from a mathematical standpoint, a simple finite
element beam-type formulation for the problem is then derived, and this
simple model has been shown to agree with the more sophisticated nonlinear
treatment. The chapter then considers how the concept of ‘design by buckling

0 L x

(a)

(b)

1.2 Arbitrary tapered monosymmetric structural member: (a) complete
tapered monosymmetric member; (b) cross-sectional domain Ψ(x)
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analysis’ allows for the easy calculation of the design strength of a tapered
member, which is consistent with national design codes of practice.

1.2 Nonlinear finite element formulation

In a linear stiffness analysis (that will be shown in Section 1.3 to provide
satisfactory solutions for tapered members), the products of displacement
derivatives that arise in the derivation are small in comparison with the
displacement derivatives themselves, and are ignored. Because of this, the
stiffness equations are linearised, resulting in a conventional stiffness analysis
in which the stiffness matrix is independent of the buckling displacements.

The 14 degrees of freedom of a finite element are shown in Fig. 1.3. In
this nonlinear analysis, it is necessary to determine the secant stiffness matrix
[Ks] and the tangent stiffness matrix [Kt]. When these are established, the
first and second variations of the total potential can be written respectively
as:

δΠ = {δq}T([Ks]{q} – {Q}) 1.1

δ δ δ2
t = 1

2
{ }[ ]{ }Π q K q 1.2

where δ(·) is the Lagrange operator of simultaneous variations, with total
equilibrium being identified as:

{Q} = [Ks]{q} 1.3

{∆Q} = [Kt]{∆q} 1.4

y

q2

q5 x

q7

q4

q1

q6

q3
z

q9

q12
q14

q11

q8

q13
q10

1.3 Fourteen degrees of freedom nonlinear finite element.
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in which {Q} is the vector of external loads and {∆Q} is the increment of
this load vector, {q} is the displacement vector and {∆q} is the increment in
this vector, with {q} = 〈q1, q2, .. , q14〉T in Fig. 1.3. The tangent and secant
stiffness matrices can be decomposed (Ronagh and Bradford 1999) into the
forms

[Ks] = [K0] + [L1] + [L2] + [M1] + [M2] 1.5

[Kt] = [K0] + [L1] + 2[L2] + 2([M1] + [M1]
T

+ 2([M2] + [M2]
T) + [N] 1.6

where [K0] is the conventional linear stiffness matrix, [L1] is the symmetric
first-order initial stress matrix, [L2] is the symmetric second-order initial
stress matrix, [M1] is the nonsymmetric first-order initial displacement matrix,
[M2] is the non-symmetric second-order initial displacement matrix, and [N]
is a symmetric mixed matrix that contains some coupling terms. The terms
in [L1] can be extracted from the derivation of δΠ, giving:

δΠ δ δ φ δφ[ ]

0
0, 0, 0, 0,

1  =  +  +  , ,L
L

x x x x
p

x xN v v w w
I
A∫ 










+ (  + ) + (  + d0, 0, 0, 0,M v v M w w xy xx xx z xx xxφδ δφ φδ δφ ]
– My0[φ(0)δv0,x(0) + v0,x(0)δφ(0)]

– MyL[φ(L)δv0,x(L) + v0,x(L)δφ(L)]

– Mz0[φ(0)δw0,x(0) + w0,x(0)δφ(0)]

– MyL[φ(L)δw0,x(L) + w0,x(L)δφ(L)]

+ (Py0ay0 + Pz0az0)φ(0)δφ(0)

+ (PyLayL + PzLazL)φ(L)δφ(L) 1.7

where a comma denotes partial differentiation with respect to the corresponding
coordinates, and in which u0, v0, w0 are the displacements of an arbitrary
point 0 ∈ Ψ (recalling the member domain Ω = Ψ ∪ Λ), and where

  N AE u v w EIx x x p x =  + 1
2

( )  + 1
2

( )  + 1
2

( )0, 0,
2

0,
2

,
2





φ 1.8

M EI w vy y xx xx = – (  – )0, 0, φ 1.9

M EI v wz z xx xx = (  –  )0, 0, φ 1.10

in which (·),x ≡ d(·)/dx and A, Ip, Iy and Iz are properties of the cross-section
Ψ, viz. its area, polar moment of area and principal second moments of area
respectively. In a similar fashion, [L2] can be extracted from δΠ, producing
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δΠ φδφ φ δ[ ]

0
0,

2
0,

2  =  + 1
2

 L
L

y xx xxM w w∫ 








–  + 1
2

d0,
2

0,M v v xz xx xxφδφ δ δ








– (0) (0) (0) + 1
2

(0) (0)0 0,
2

0,M w wy x xφ δφ φ δ[ ]
– ( ) ( ) ( ) + 1

2
( ) ( )0,

2
0,M w L L L L w LyL x xφ δφ φ δ[ ]

+ (0) (0) (0) + 1
2

(0) (0)0 0,
2

0,M v vz x xφ δφ φ δ[ ]
+ ( ) ( ) ( ) + 1

2
( ) ( )0,

2
0,M v L L L L w Lz L x xφ δφ φ δ[ ] 1.11

in which

M EI w M EI vy y xx z z xx = –        = 0, 0, 1.12

and the first and second-order initial displacement matrices can be extracted
from δΠ, giving

δΠ φ δ[ ]

0
0,

2
0,

2 p
,

2
0,

1  = 1
2

( )  + 1
2

( )  + 1
2

( )M
L

x x x xAE v w
I
A

u∫ 









+ ( )  – ( ) d0, 0, 0, 0,EI w v EI v w xz xx xx y xx xxφ δ φ δ 



1.13

δΠ φ δ φ δ[ ]

0
0,

2
0, 0,

2
0,

2  = – 1
2

 – 1
2

M
L

z xx xx z xx xxEI v v EI w w∫ {
+ 1

2
( ) dt ,

3
,EI xx xφ δφ } 1.14

in which

I y z A
I
AA

p
t

2 2
2

 = 1
2

(  + )d  –  
( )∫








1.15

with y and z being measured from the arbitrary point 0 ∈ Ψ. Finally, the
terms that lead to the matrix [N] can be extracted from the second variation
of the potential δ2Π, leading to the formulation
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δ Π2 [ ]

0
 = 1

2
N

L

∫

×

AE v v AE w w

AE v w v w EI

EI v v

EI w w

x x x x

x x x x x x

x x x x

x x x x

( ) ( )  + ( ) ( )

+ 2 ( )( ) + ( ) ( )

+ 2 ( )( )

+2 ( )( ) +

0
2

0
2

o
2

0
2

0, 0, 0, 0, c ,
2

,
2

p , 0, 0, 0,

p , 0, , 0,

δ δ

δ δ φ δφ

φ δφ δ

φ δφ δ  ( (  –  ) ( )

+ (  –  ) ( )  + { ( )

+ ( ) }( + 2 ( ) 

+ 2 ( )

2
0,

2

2
0,

2
0,

2

0,
2 2

0, 0,

0, 0,

EI EI v

EI EI w EI w

EI v EI v v

EI w w

y z xx

z y xx z xx

y xx y xx xx

z xx xx

φ δ

φ δ

δφ) φ δ δφ

φ δ δφ



































dx

1.16

in which

I
I
A

y z A
p

A
c

2
2 2 2 = 1

2
3( )

 –  (  + ) d∫







1.17

The expressions given above may be used to assemble the matrices in Eqs.
(1.5) and (1.6) for implementation into the nonlinear incremental stiffness
relationships, and many standard algorithms have been developed as solution
strategies. It is worth noting that Eqs. (1.7) and (1.11) contain boundary
terms, whose importance has been discussed by Ronagh and Bradford (1994a).
These boundary matrices are applicable only in rare cases, but Ronagh and
Bradford (1994a) argued that their omission can lead to erroneous results,
particularly in the much-cited early finite element formulation of Barsoum
and Gallagher (1970). Trahair (1993) also has made note of the effect of the
boundary terms in his text.

Although the nonlinear finite element technique described in this section
is applicable to a large number of elastic analyses of thin-walled open section
members, its formulation is somewhat difficult and tedious. Because of this,
a linearised formulation, based on a more heuristic structural approach in
deference to the mathematical one described above, is developed in the
following section. Ronagh et al. (2000a,b) have shown that the linearised
formulation produces good results for the buckling of tapered beams when
compared with the nonlinear formulation.

1.3 Linear finite element formulation

In the present formulation, the assumption is made that the in-plane and out-
of-plane (buckling) deformations are uncoupled in Eqs. (1.1) and (1.2). When
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this is done, Eq. (1.1) can be written in the linearised form:

[Ks]i {q}i = {Q}i 1.18

where the subscript (⋅)i denotes the in-plane value, and this equation may be
solved routinely as in the familiar stiffness method of analysis to determine
the in-plane actions within the member. The vector of out-of-plane (buckling)
displacements {w} is shown for a cross-section in Fig. 1.4, and the usual
Vlasov assumption is made that the cross-section does not deform during
buckling. Hence {w} ∈ Λ, and has the form:

{ } = w
w

φ








1.19

φ

u w    

h
2

    

h
2

(a)

(b)

  ′φ1 φ1 1 2
u1

    ′u1
    ′u2 u2

φ2   ′φ2

1.4 Deformations of linear element: (a) deformations in the cross-sectional
plane; (b) nodal displacements.

which can be written in finite element terminology as

{w} = [M(x)]{α}b 1.20

where [M(x)] is a cubic interpolation matrix, and {α}b is a vector of kernel
buckling (out-of-plane) degrees of freedom. If the vector of structural buckling
degrees of freedom is:

{q}b = 〈w(0), w(L), w,x(0), w,x(L), φ(0), φ(L), φ,x(0), φ,x(L)〉T 1.21
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then writing

[ ( )] = 
0 0 0 0

0 0 0 0 1

2 3

2 3
M x

L L L Lξ ξ ξ

ξ ξ ξ













1.22

in which ξ = x/L, leads to Eq. (1.20) becoming

{w} = [M(x)] 

1/ 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

–3/ 3/ 2 –1 0 0 0 0

2/ –2/ 1 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 –3 3 –2 –

0 0 0 0 2 –2

{ }b

L

L L –

L L

L

L L

L L

q



































              = [M(x)][A]{q}b 1.23

The buckling of the cross-section at x ∈ Λ shown in Fig. 1.4 can be thought
of as two flanges that undergo membrane and bending deformations during
buckling, and a web that undergoes only flexural action during buckling. The
resistance to the flange membrane actions is provided by the flange minor
axis second moments of area Iy1 and Iy2 and to flexural actions by the Saint
Venant torsion constants J1 and J2. The resistance of the web to flexural
action is provided by its second moment of area about its mid-plane, which
is considered negligible and ignored in comparison to Iy1 and Iy2, and by its
Saint Venant torsion constant Jw. The increase in strain energy from the
prebuckled configuration due to out-of-plane buckling can then be written
by modifying the formulation in Trahair (1993) as:

U EI w EI w
L

y xx y xx = 1
2

[ ( )  + ( )
0

1 1,
2

2 2,
2∫

+ (  +  + )( ) ]d1 2 ,
2GJ GJ GJ xw xφ 1.24

in which

1.25

where h is the distance between the flange centroids. The substitution of Eq.
(1.25) into Eq. (1.24) produces:
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U
L

 = 1
2 0∫

×

(  + )( )  + ( ) (  + )( )

+
4

(  + )  + 2 (  –  )( )

+ (  –  )( ) + 

1 2 ,
2

,
2

1 2 ,
2

2

1 2 ,
2

, 1 2 , ,

1 2 , ,

EI EI w h EI EI

h EI EI h EI EI w

h EI EI w

y y xx x y y x

y y xx x y y xx x

y y xx xx

φ

φ φ

φ

)(

hhhh EI EI

GJ

x

x y y x xx

x

, 1 2 , ,

,
2

( + )( ) 

+ ( )

d
φ φ

φ

























1.26

and when the appropriate substitutions for w, φ and its derivatives are made,
Eq. (1.26) becomes

U q k q = 1
2

{ } [ ] { }b
T

b b 1.27

where [k]b is a linear buckling stiffness matrix presented explicitly by Bradford
and Cuk (1988), and is independent of the buckling deformations.

The kinematics of the buckling displacements may be established using a
general theory based on geometric algebra set out by Bradford and Pi (2004)
for an arbitrary member curved in space. For a centroidal axis system (with
the coordinate – y  being that of the web mid-height at which the angle of
twist is taken), then each fibre F (F ∈ Ω) of area δA ∈ Ψ and length δx ∈ Λ
deflects laterally and becomes inclined to its original position. The web mid-
height O displaces laterally by w to a new position O*, and a general point
P ∈ Ψ on the cross-section displaces laterally by w to O*, and then rotates
through an angle φ to the position P*. The coordinates of P are (z, y) and
those of P* are [z + w – (y + y )φ, y + zφ]. The displacements in the z and y
directions are therefore [w – (y + y )φ, zφ], as shown in Fig. 1.5(a), leading
to the rotations of the fibre F through P* being

θ φ φy x xx
w y y w y y = d

d
[  –  (  + ) ] =  –  (  + ), , 1.28

θ φ φz xx
z z = d

d
[ ] = , 1.29

When a fibre of length δx rotates through an angle θ, there is an axial
shortening δ∆ given by

δ∆ = δx – δx cos θ 1.30

so that, to order 0(θ3) accuracy,

δ∆ θ δ = 1
2

( )2 x 1.31
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At a buckling load factor of λ, the fibre with an axial force λN shortens
owing to the buckling kinematics and so work is done. The axial force on the
fibre F is (λN/A)δA, and so the work done by the axial force over a length dx
is:

d  = 1
2

 + 1
2

d2 2V
N
A

A xN
y z

λ δ θ θ



 1.32

If this expression is now integrated over the whole domain of the element Ω,

Mid-height
      O(0, – )y       O* ( ,  )w y

zCentroid C

zφ
φ

P (z, y) (z + u, y )

y – (y +     )y φ
y

P* (z + y – (y +     )y φ, y + zφ)

(a)

v

vb

u = φ = 0
(prebuckled) u, φ = 0

(prebuckled)
(b)

1.5 Buckling displacements of linear element: (a) axis system and
longitudinal fibre displacement; (b) buckling displacement vb.
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and use is made of the centroidal properties for the cross-sectional domain Ψ
that

A A
z

A
yy A y A I z A I∫ ∫ ∫d  = 0;   d  = ;   d  = 2 2 1.33

then the work done by the axial force λN during buckling can be obtained by
integrating Eq. (1.32) to produce

V N w yw r y xN
L

x x x x = 1
2

[( )  –  2  + (  + )( ) ]d
0

,
2

, , 0
2 2

,
2∫ λ φ φ 1.34

in which r0 is the polar radius of gyration.
The applied major axis bending moment λMz causes the monosymmetric

section to twist and, when coupled with shears, causes an additional buckling
deflection vb in the plane of symmetry. The moment creates a longitudinal
bending stress given by

λσ λ
b  = 

– M y
I

z

z
1.35

and the work done by this stress on the fibre F is

d  = 
– 1

2
 + 1

2
d2 2V

M y
I

A xM z

z
y z

λ δ θ θ



 1.36

which when integrated produces

V M x M w xM
L

z z x

L

z x x = – 1
2

( ) d  + d
0

,
2

0
, ,∫ ∫λ β φ λ φ 1.37

in which the monosymmetry parameter βz is given by

β z
z AI

yz y A y = 1 (  + )d  + 22 3∫
= 1 (  –  )

12
 + (  –  )  + 

(  –  )
4

2
3

2 2
2 2

3

I
h y

B T
h y B T

h y t

z















–
12

 +  + 
4

 + 21
3

1
1 1

2
3

y
B T

B T y
y t

y













1.38

The work done by the moments and shears when the line of action of these
through 0 displaces by the buckling deformation vb shown in Fig. 1.5(b) is:

V V v V L v LB
L

 = [ (0) (0) + ( ) ( )
0

b b∫ λ

  – M(0)vb,x(0) – M(L)vb,x(L)]dx 1.39
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Noting from elementary statics that the shear force Vy = dMz/dx, Eq. (1.39)
can be integrated by parts to produce:

V M v xB
L

z xx = – d
0

b,∫ λ 1.40

By neglecting higher-order terms and considering the fibre curvature diagram
in Fig. 1.6, the curvature vb,xx can be written as (Trahair 1993):

vb,xx = φw,xx 1.41

δx

2

1 3
Curvature (v,xx)B = u,xx tanφ

≈ u,xxφ

δx

δx

y
1

2

Curvature u,xx/cosφ ≈ u,xx

3

φ
z

1

2

3

Curvature u,xx

1.6 Fibre curvature diagram.

so that the work done by the moments and shears becomes:

V M w xB
L

z xx = – d
0

,∫ λ φ 1.42

The total work done by the axial forces, shear forces and bending moments
can be found by combining Eqs. (1.34), (1.37) and (1.42) to produce:

V N w yw r y x
L

x x x = 1
2

[( )  – 2  + (  + )( ) ]d
0

,
2

, 0
2 2

,
2λ φ φ∫

– 1
2

[ ( )  + 2 ]d
0

,
2

,λ β φ φ
L

z z x xxM w x∫ 1.43
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When the appropriate substitutions for w, φ and its derivatives are made,
Eq. (1.43) becomes

V q g q = 1
2

{ } [ ] { }b
T

b bλ 1.44

where [g]b is a buckling stability matrix presented explicitly by Bradford and
Cuk (1988) that is independent of the buckling displacements.

Following standard finite element practice, the global stiffness and stability
matrices [K]b and [S]b may be assembled from the element contributions [k]b

and [g]b. The buckling displacements {Q}b that are assembled from the
element buckling displacements are infinitesimal, and because of this the
change in potential at the point of buckling is considered in an equilibrium
configuration. If Π denotes the total potential, the change in the potential dΠ
due to the infinitesimal buckling displacements {Q}b that defines equilibrium
at the point of buckling becomes:

δΠ λ = 1
2

{ } ([ ]  – [ ] ){ }b
T

b b bQ K G Q 1.45

Invoking the stability criterion in this equation that δ2Π = δ(δΠ) = 0 for any
arbitrary variation δ{Q}b gives

δ Π δ λ δ2
b
T

b b b b = { } ([ ]  –  [ ] ){ }  = 0    { }Q K G Q Q∀ 1.46

which leads to the familiar linear buckling eigenproblem stated as

([K]b – λ[G]b){Q}b = {0} 1.47

Equation (1.47) may be solved using a standard library package to produce
the buckling load factor or eigenvalue λ, and the buckled (eigenvector)
shapes {Q}b.

1.4 Elastic buckling curves

The linear eigenvalue finite element technique developed in the previous
section has been used to calculate the elastic critical loads or moments of
tapered doubly symmetric I-beams. These solutions may be used in design,
as discussed in the following section. Solutions are given for a beam with
flange or web taper with concentrated end-moments, and for a beam with
flange or web taper acted upon by a uniformly distributed load.

The differential equations for buckling derived by Kitipornchai and Trahair
(1972) are essentially generic in nature and indicate that the beam parameter
K is an independent variable, where

K
L

EI
GJ

w
 = 

0

π 





1.48
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in which L is the length of the beam, and where the subscript in (⋅)0 indicates
the value of (⋅) at the largest section. Because the beam parameter K is an
independent variable, only one cross-section with a depth d = 200 mm, flange
width B = 50 mm, flange thickness T = 3 mm and web thickness t = 2 mm was
used to calculate K for the parameter study. Other geometries and beam
lengths that produced the same value of K were tried as well, and it was
found that these had negligible effect on the buckling solution, indicating the
accuracy of the inference of Kitipornchai and Trahair’s equations. The value
of the beam parameter K may be interpreted as a measure of the slenderness
of the beam, with small values of K indicating slender beams, while stocky
beams are represented by large values of the beam parameter K. Ten elements
were used in the finite element studies.

The lateral buckling of a simply supported beam with end-moments M
and βM shown in Fig. 1.1(a) has been studied, and plots of the dimensionless
critical moment γM given by

γ M
0

0

 = 
( )

M L

EI GJ
b

y

1.49

are given in Figs 1.7(a)–(e) for moment gradients β = –1.0, –0.5, 0, 0.5 and
1.0. In these figures, the solid lines are for αf = 1 with αw varying (i.e. web-
tapered beams with constant flange width), whilst the dashed lines are for αw
= 1 with αf varying (i.e. flange tapered beams with constant web depth). It
can be seen from the figures that while the reductions in gM due to increasing
flange taper are quite large, those due to increasing web taper are much less.
Also of interest is the observation that for stocky beams, the elastic critical
moment is higher for the β = 0.5 loading case than for the β = 1.0 loading
case (the latter case has been shown in Trahair and Bradford (1998) to be the
safest loading condition for uniform beams), and that this trend increases as
the taper parameters af and aw decrease.

The lateral buckling of a tapered beam loaded by a uniformly distributed
load w shown in Fig. 1.8 has also been studied using the linear finite element
approach. For this beam, the distributed load is assumed to act at a distance
a below the web mid-height. For an isolated simply supported beam, the
end-moment parameter β is zero, and values of the dimensionless elastic
critical load

γ w

3

0

 = 
( )

wL

EI GJy
1.50

are shown in Figs 1.9(a) to (c) as functions of the beam parameter K and the
dimensionless load height parameter ε given by

ε = wa
L

EI
GJ

1.51
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1.7 Tapered beam with end moments (a) β = –1, (b) β = –0.5, (c) β = 0,
(d) β = 0.5, (e) β = 1.
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1.7 Continued.

On the other hand, for ‘continuous’ beams with the end-moment parameter
β being taken as unity, the corresponding plots of the dimensionless elastic
critical load are also shown in Figs 1.10(a)–(c). In both Figs 1.9 and 1.10, the
solid are for αf = 1 with αw varying, while the dashed lines are for αw = 1
with αf varying. The dimensionless parametric representations in Eqs. (1.49)
to (1.51) appear in the generic equations of Kitipornchai and Trahair (1972).
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It can be seen from Figs 1.9 and 1.10 that placing the load above the web
mid-height (ε < 0) results in a significant destabilising effect and reduces the
buckling load, while placing the load below the web mid-height (ε > 0) tends
to stabilise the beam against lateral buckling. The reduction in the dimensionless
buckling load γw below that for the corresponding uniform beam, expressed
as a ratio, is shown in Fig. 1.11 for the beam with β = 0 loaded at the
centroid. The figure demonstrates that increasing the degree of flange taper
reduces the ratio of the resistance of the tapered beam to that of the
corresponding uniform beam. The reduction in the lateral buckling resistance
for web-tapered beams is less dramatic, however, with web tapering having
little effect for the more slender beams. In all cases, the reduction in the
lateral buckling resistance below that of the corresponding uniform beam
increases as the beam parameter K increases and the beam becomes more
stocky.

1.5 Design strengths

1.5.1 Codified rules

The limit states British BS5950 (British Standards Institution 2000) and
Australian AS4100 (Standards Australia 1998) steel structures standards provide
guidance for the calculation of the strength of tapered beams. In BS5950, the
equivalent slenderness used is

λ λLT R uv = (1.5 – 5 )f wβ 1.52

αwd, af B
βwL2/12

A

A w

Elevation

L

Plan

  a A–A

βwL2/12 αwd, αf B

d, B

1.8 Tapered beam with a uniformly distributed load.
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1.9 Buckling curves for a simply supported beam with a uniformly
distributed load: (a) load height parameter ε = –0.5; (b) ε = 0; (c) ε = 0.5.
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1.10 Buckling curves for a continuous beam with a uniformly distributed
load: (a) load height parameter ε = – 0.5, (b) ε = 0; (c) ε = –0.5.

in which Rf is the ratio of the flange areas at the points of minimum and
maximum moment, respectively, and where

u S
I
I

A hx
y

x
s = 4 1 – (2 2 2

1/4














1.53
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v
x

 = 1 + 0.05
2 –1/4

λ
















1.54

λ = EL
ry

1.55

x h
A
J

 = 0.566 s

1/2



 1.56

βw
e

 = 
Z
S

x

x
1.57

in which LE is the effective length, hs is the distance between the flange shear
centres, Zex is the effective section modulus and Sx is the plastic section
modulus. These equations are based on the elastic critical moment for a
tapered beam being expressed as:

M
EM

pL y
E

2
P

T
2 = 

π
λ 1.58

in which MP (= Sx py) is the plastic moment and py is the yield stress.
In the slightly different method of AS4100, non-uniform beams can be

designed using the properties of the most critical cross-section, which is
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1.10 Continued.
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where the ratio of the design bending moment to the section capacity is
greatest. The elastic buckling moment is then reduced by multiplying it by
the factor:

α st
r m
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d
d
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in which Afm and Afc are the flange areas at the minimum and critical cross-
sections respectively, dm and dc are the section depths at the minimum and
critical cross-sections, and where Lr is taken as 0.5L for a tapered beam.

1.5.2 Design recommendation

The method of ‘design by buckling analysis’ (Trahair and Bradford, 1998;
Trahair et al. 2001) makes use of the elastic buckling curves in Section 1.4,
which were derived on the basis of an accurate finite element analysis, and
allows these to be used to predict accurate design strengths. These curves

1.11 Reduction in elastic buckling load due to tapering.
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can be used to calculate the elastic lateral buckling moment Mob at the
critical cross-section, defined again as the cross-section where the ratio of
the design bending moment to the section capacity is greatest. The critical
moment Mob includes the effects of off-shear centre loading and of nonuniform
bending moment distribution. The elastic critical moment Mobo is obtained
again from the figures for the same beam, but with shear centre loading, and
the moment distribution factor αm is determined from:

α m
obo

oo
 = 

M
M 1.60

where the elastic critical moment Moo is that for the same beam under uniform
bending. Using the lateral buckling strength design equations of the AS4100,
the design strength Mb is then calculated from the elastic buckling moment
ME given by:

M
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E
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m
 = α 1.61

by using

Mb = αmαsMs 1.62

where the slenderness reduction factor is:

α s
s

E

2 1/2

s

E
 = 0.6  + 3  – 

M
M

M
M






























1.63

in which Ms is the section capacity taken as Zex py.

For the design proposal to be applicable to the methodology of the British
BS5950, the value of ME determined from Eq. 1.61 can be used to determine
the design strength Mb from:
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in which

φ
η

B
s LT E

 = 
 + (  + 1)

2
M M

1.65

with a suggested Perry coefficient for fabricated sections (whose strengths
tend to be lower than those of hot-rolled sections) of
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1.6 Concluding remarks

This chapter has addressed the issue of the lateral or flexural-torsional buckling
of tapered steel members in bending. General formulations of the solution do
not exist in closed form, and hence recourse must be made to numerical
solutions. A general nonlinear method of finite element analysis was first
described, and this technique is applicable to a wide range of stability problems
with flexural members of open cross-section. Because of the complexity of
the nonlinear formulation, a linearised finite element was then developed in
which the out-of-plane infinitesimal buckling deformations were uncoupled
from the prebuckling deformations. This latter formulation leads to a linear
eigenproblem, with the eigenvalue representing the buckling load factor.
Based on the linear finite element analytical technique, a suite of design
curves was presented for the elastic buckling of tapered members of doubly
symmetric I-section.

Both the British BS5950 and the Australian AS4100 steel structures standards
provide guidance for the design of tapered steel members, based on the limit
state of inelastic lateral buckling. However, both design codes account for
the elastic lateral buckling using simplistic prescriptive equations. Because
of this, this chapter has described a technique, based on the concept of
‘design by buckling analysis’, in which the elastic buckling curves derived
from the finite element formulation may be converted into design strengths.
This concept uses the equations within both codes that relate the strength of
the member to its plastic moment of resistance, and to its elastic buckling
load, and the recommendation affords a simple yet accurate alternative to the
design of tapered steel members.
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2.1 Introduction

Plate elements are used in civil, mechanical, aeronautical and marine
engineering structures. Consideration of buckling loads for such plates is
essential to ensure an efficient and reliable design. The classical Kirchhoff
thin plate theory (CPT) is usually used to carry out stability analysis of
rectangular plates. CPT assumptions are satisfactory for computation of
buckling load for truly thin plates, but they can lead to inaccuracy when the
ratio of thickness to the dimensions of the plate is relatively large. This is
because that the effect of the transverse shear deformation, which is not
considered in the Kirchhoff theory, becomes significant in thick plates. A
number of shear deformation plate theories were derived. The simplest one
is the First Order shear deformation Plate Theory (FOPT), commonly referred
to as Mindlin plate theory. It extends the kinematic assumptions of the CPT
by releasing the restriction on the angle of shearing deformations (Reddy
1999, Wang et al. 2000).

Many researchers used several analytical and numerical methods to study
the stability of rectangular thick plates according to FOPT (Hermann and
Armenakas 1960, Dawe and Roufael 1982, Wang et al. 1994, Kitipornchai
et al. 1993, Shufrin and Eisenberger 2005). In shear flexible plate buckling
analysis, moment terms due to cross-sectional rotations arise when one
considers second order strains in the potential energy formulation of the in-
plane loads. These terms were introduced by Sun (1972, 1973) and later on
also by Dawe and Craig (1986), Whitney (1987) and Bert and Malik (1997).
The same terms are sometimes called curvature terms, and also as rotatory
moments resembling the same type of contribution as in the vibration analysis
of shear deformable plates where rotary inertia terms arise because of the
cross-section rotations. Many of the previous studies dealt with composite
plates and found that the inclusion of the curvature terms reduces the buckling
load by several per cent, depending on the boundary conditions of the plate.
Bert and Malik (1997) considered plates with two opposite edges simply
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supported, and the other two with other possible restraint conditions, and
concluded that the reduction of the buckling load due to the curvature term
effects are small, and do not justify their inclusion at the cost of substantial
increase in the computational cost. Bert and Malik (1999) extended the
formulation also to Reddy’s (1984) higher-order plate theory but did not
present numerical results for the effect of the curvature terms on magnitude
of the buckling load.

Variable in-plane forces in the buckling analysis of rectangular plates
have been recently studied by several authors. All these studies were made
on the basis of the classical thin plate theory. Kang and Leissa (2001) presented
the results for buckling factors of SS-F-SS-F plate loaded by unidirectional
in-plane moment. Later on, Leissa and Kang (2002) extended their solution
to SS-C-SS-C plate under the same loading type. For these cases, the stability
equation for the thin plate theory assumption can be separated in the two
directions as a multiplication of two one-variable functions and the solution
was obtained exactly. Kang and Shim (2004) extended the solution for plates
with two opposite edges simply supported and any boundary conditions on
the other two edges. Romeo and Ferrero (2001) presented results for anisotropic
rectangular plates with bidirectional in-plane moment loading. They solved
the buckling equation by using the Rayleigh–Ritz method, assuming beam
vibration modes in the two directions and minimizing the total energy of the
plate. Their results are approximate. Bert and Devarakonda (2003) solved for
the buckling factors of rectangular plates with nonlinear in-plane stress
distribution. They presented solution for the in-plane prebuckling stress
distributions in series form. They solved the thin plate buckling equation
only for simply supported plate. Azhari et al. (2000) used the spline finite
strip method and, by adding bubble functions, were able to improve on the
buckling analysis results of plates. They presented approximate solutions for
two combinations of boundary conditions only. Grimm and Gerdeen (1975)
used the extended Kantorovich method to solve the thin plate buckling equations
for unidirectional in-plane moment loading. They used numerical integration
for the solution in each step of the procedure and obtained approximate
solutions for the cases they solved.

In this chapter, we present highly accurate solutions for the stability problems
of plates under linearly varying in-plane loads, in one and two directions,
considering the transverse shear effects and the higher-order nonlinear curvature
strain terms. The principle of minimum of potential energy is adopted in the
derivation of the governing equations and the boundary conditions for Mindlin
FOPT. The solution is based on the extended Kantorovich method presented
by Kerr (1969) and applied to plate buckling by Eisenberger and Alexandrov
(2003) and Shufrin and Eisenberger (2005). According to this approach, the
solution is assumed to be separable in the directions of plate edges. Then, the
solution in one direction, y for example, is specified a priori, and the solution
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in the x direction is determined by solving a set of coupled ordinary differential
equations with variable coefficients derived from the associated variational
process with appropriate boundary conditions. Next, the obtained solution is
used as the known function, while the solution in the second direction is
determined by another Kantorovich solution process. These iterations are
repeated until the acceptable convergence is achieved. For the solution in
one direction, the exact element method for stability analysis of variable
cross-section members is used as presented by Eisenberger (1991). The stiffness
matrix including the effect of in-plane forces is derived. The buckling load
is found as a value of the load that leads to singularity of the structure
stiffness matrix. Stability of rectangular thick plates is analysed by varying
the plate-aspect ratios, and the thickness-to-width ratios. Various combinations
of boundary conditions are considered. The results obtained by both neglecting
and including the effect of higher-order nonlinear curvature strain terms, are
compared with those from the classical thin plate theory and with published
results. Many new results are presented.

2.2 Buckling of rectangular plates

2.2.1 Basic equations

According to the Mindlin plate theory the assumptions for the displacement
field are:

u (x, y, z) = zψx(x, y) 2.1a

v (x, y, z) = zψy(x, y) 2.1b

w (x, y, z) = w0(x, y) 2.1c

where ( u , v , w ) are the displacement components along the (x, y, z) coordinate
directions, respectively, w0 is the transverse deflection of a point on the
middle plane and ψx and ψy denote the rotations around the x and y axes.
Then, the strain energy of the out-of-plane deflections of the plate is (Reddy
1999):
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where D = Eh3/ [12(1–ν2)] is the bending rigidity of the plate, G = E/ [2(1 +
ν)] is the shear modulus, E denotes Young’s modulus of elasticity, and ν is
Poisson’s ratio. The shear correction factor k is introduced in order to
compensate for the discrepancy between the true parabolic distribution of
transverse shear stresses and the constant state that result from the kinematic
assumptions of this theory. The potential energy of the in-plane loads in the
prebuckling state V is:
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where the underlined expressions are the higher-order nonlinear strain terms
and µ is scalar indicator. If µ = 0′, the higher-order ‘curvature’ terms are
neglected, while if µ = 1, their influence is included.

2.2.2 The Kantorovich procedure

According to the Kantorovich solution procedure (Kerr 1969), the solution is
assumed as

w0(x, y) = w(x)W(y) 2.4a

ψx(x, y) = f (x)F(y) 2.4b

ψy(x, y) = φ (x)Φ(y) 2.4c

For the sake of convenience, the following symbols are used in the subsequent
derivations: lower case letters indicate the functions of the x-direction only
and the upper case letters mean functions in the y-direction. In the extended
Kantorovich method, the functions in the y-direction are assumed known.
Hence, the substitution of the assumed solution into the energy functional
will result in a set of coupled ordinary differential equations after variation
as shown below. The in-plane axial forces are taken as (see Fig. 2.1):

Nx(y) = Nx0P(y) = Nx0 1 –  α x
y

y
L







2.5a

Ny(x) = Nx0q(x) = Ny0 1 –  α y
x

x
L





 2.5b

where αx and αy are the factors of load variation (see Fig. 2.2).
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2.1 Plate subjected to bidirectional in-plane loading.
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2.2 Three types of load variation.

2.2.3 Derivation of buckling equations

The substitution of the assumed displacements and their derivatives and the
in-plane load distributions in the energy functional for the plate,

Π = U – V 2.6

and the integration in the y direction yield
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where the coefficients S1 through S18 are defined as:
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According to the principle of minimum energy, the first variation of the
functional should be equal to zero. Thus,
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The integration by parts leads to the following system of coupled differential
equations:
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[(S9 – Nx0S13)w,xx + S8 f,x – S11φ – S12w + Ny0S14qw]δw = 0 2.10a

[(  –  )1 0 15 ,S N S fx xxµ – S8w, x + (S3 – S5)φ,x – (S4 – S7)f

+ ]  = 00 17µ δN S q f fy 2.10b

[(  –  )6 0 16 ,S N Sx xxµ φ  + (S5 – S3)f,x – S11w – (S2 + S10)φ

+ ]  = 00 18µ φ δφN S qy 2.10c

and the natural boundary conditions are:

Q = (S8 f + S9w,x – Nx0S13w,x)δw Lx|0 2.11a

M S f S N S f fx x x
Lx

b 1 , 3 0 15 , 0 = (  +  –  )  |φ µ δ 2.11b

M S f S N Sx x x
Lx

t 5 6 , 0 16 , 0 = (  +  –  )  |φ µ φ δφ 2.11c

2.2.4 The solution procedure

For solution, we use the following dimensionless coordinates: ξ = x /Lx and
η = y/Ly. Now we assume the solution of the system Eqs. (2.10a–c) as three
infinite power series of the following form:

w w
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Also the load variation is described as polynomials:

q qy k k
k = 1 –   =  

=0

1

α ξ ξΣ 2.13

where the polynomial coefficients are defined as follows:

q0 = 1; q1 = –αy 2.14

For solution, we have to find the appropriate coefficients of the polynomials
in Eqs. (2.12a–c). By calculating all the derivatives and then substituting
them back into Eqs. (2.10a–c), we obtain
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The recurrence formulas for calculating wi+2, fi+2, φi+2 in Eqs. (2.15a–c) as
a function of the first two terms of each series can be obtained in the following
form (Eisenberger 1991, 1995; Eisenberger and Alexandrov 2003):
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The terms for wi+2, fi+2 and φi+2 tend to 0 as i→ ∞ . Now we have all terms
except the first two of each series, which should be found using the boundary
conditions (Shufrin and Eisenberger 2005; Eisenberger and Alexandrov 2003).
For the FOPT formulation, the degrees of freedom are the lateral displacement
and two rotations about the x and y axes at both ends of the strip element.
According to Eqs. (2.12a–c) we can easily find the first three terms at the left
end (ξ = 0):
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The terms w1, f1 and φ1 should be found as follows: all coefficients with
index i > 1 are linearly dependent on the first two terms of each series, which
can be written as
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The C coefficients are functions of the flexural rigidity and the in-plane
forces that can be expressed using the recurrence Eqs. (2.16a–c). For example,
when w0 = 1, w1 = f0 = f1 = φ0 = φ1 = 0, the value of C1

1 is equal to w(1) and
can be calculated using the recurrences. In general we can calculate all the
C coefficients as follows:

C w wk i i
1

=0
= (1) =  Σ

∞

C f fk i i
2

=0
= (1) =  Σ

∞
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Ck i i
3

=0
= (1) =  φ φΣ

∞

when the conditions for the first six terms are:
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Now, based on the boundary condition at ξ = 0 and ξ = 1, we can find the
yet unknown three terms by solving the following matrix equation:
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Based on above solution technique and using the finite element approach,
the six basic shapes can be found with the following boundary conditions:
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w(0) = 1, w(1) = f (0) = f (1) = φ (0) = φ (1) = 0 2.22a

w(1) = 1, w(0) = f (0) = f (1) = φ (0) = φ (1) = 0 2.22b

f (0) = 1, w(0) = f (1) = f (1) = φ (0) = φ (1) = 0 2.22c

f (1) = 1, w(0) = w(1) = f (0) = φ (0) = φ (1) = 0 2.22d

φ (0) = 1, w(0) = w(1) = f (0) = f (1) = φ (1) = 0 2.22e

φ (1) = 1, w(0) = w(1) = f (0) = f (1) = φ (0) = 0 2.22f

The calculated shapes are the ‘exact’ solution for the system of differential
equations Eqs. (2.10a–c). The word ‘exact’ means ‘as exact as one can get on
a digital computer’. This is so since the calculation of the series is stopped
according to a preset criterion so that the values of last six terms are less then
an arbitrary small tolerance value.

The terms of the stiffness matrix are the holding actions at the ends of the
strip element due to a unit displacement in the desired direction when all
other degrees of freedom are restrained. Then according to the conditions
(2.11a–c), with transformations to the dimensionless coordinates we have
for the columns of the axial force dependent transverse stiffness matrix the
following expressions:

S i S f S w
L

N S w
L

i i

x
x

i

x
M 8

( )
9

( )
, 0 13

( )
, =0(1, ) = – +  1 – 1

ξ ξ ξ




 2.23a

S i S f
L

S N S f
L

i

x

i
x

i

x
M 1

( )
, 3

( )
0 15

( )
, =0(2, ) = – 1 + – 1

ξ ξ ξφ µ



 2.23b

S i S f S
L

N S
L

i i

x
x

i

x
M 5

( )
6

( )
, 0 16

( )
, =0(3, ) = – + 1 – 1φ µ φξ ξ ξ





 2.23c

S i S f S w
L

N S w
L

i i

x
x

i

x
M 8

( )
9

( )
, 0 13

( )
, =1(4, ) = + 1 – 1

ξ ξ ξ




 2.23d

S i S f
L

S N S f
L

i

x

i
x

i

x
M 1

( )
, 3

( )
0 15

( )
, =1(5, ) = 1  + – 1

ξ ξ ξφ µ



 2.23e

S i S f S
L

N S
L

i i

x
x

i

x
M 5

( )
6

( )
, 0 16

( )
, =1(6, ) = + 1 – 1φ µ φξ ξ ξ





 2.23f

where w(i)
,f 

(i) and φ(i) the shapes are calculated with the boundary conditions
Eqs. (2.22a–f).

The buckling load for the plate is found as the in-plane force that causes
the determinant of the corresponding stiffness matrix to become zero. The
vector of the nodal displacements is an eigenvector of the matrix, which
corresponds to critical value. Hence, the general displacements are determinated
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by multiplying the basic shape functions by the nodal displacement, which
is appropriate to each of them (Shufrin and Eisenberger 2005).

2.3 Numerical examples and discussion

The stability of rectangular thick plates with variable in-plane loading is
studied using the proposed method. In all calculations, Poisson’s ratio ν is
taken as 0.3 and the shear correction factor k = 5/(6 – ν) is adopted. For
convenience of notation, the plates are described by a four-letter symbol
defining the boundary conditions at their edges starting from x = 0 to x = Lx,
y = 0, y = Ly consequently. For example, SFCC denotes a plate with a simply
supported edge at x = 0, free at x = Lx and clamped at y = 0 and y = Ly. The
buckling loads are presented by using dimensionless value λ as: N0x =
λπ 2 D Ly/ 2 ; N0y = β N0x, where β is the factor of biaxial compression. The
buckling modes are defined by two integers that indicate the number of half-
waves in the x and y directions, respectively. Three types of in-plane edge
loading variations are considered (see Fig. 2.2): (1) α = 0, constant loading,
(2) α = 1, triangular loading, and (3) α = 2, pure in-plane moment loading.
The aspect ratio of the plate is defined as γ = Lx/Ly.

Verifications of the results of the current derivation are made only with
results from the classical thin plate theory. In Table 2.1, a comparison is
made with published results for thin plates with unidirectional loading with
αx = 1 and αx = 2. The results for cases in which two opposite edges are
simply supported given by Leissa and Kang (2002) and Kang and Shim
(2004) are exact, and the results of the current approach are the same. For the
other cases, one can see that the values obtained here are lower than the
reference values as these are upper bounds to the exact result.

In Table 2.2 buckling loads for square plates are given for several thickness
ratios. Results for four loading combinations are presented. The thickness
ratio is varied, and as the thickness is reduced, convergence to the results for
thin plates (CPT) can be observed. Five combinations of boundary conditions
are presented: in three cases, two opposite edges are simply supported, and
for these the results are the exact values, and for the other two the results
have very small relative errors. The loading cases considered are unidirectional
combination of compressive force and in-plane moment, and bidirectional
combination of compressive force and in-plane moment, with β = Ny/Nx, and
the loading direction as shown in Fig. 2.3. All the results given in this Table
are for the case where the high-order curvature terms are not considered
(µ = 0).

The effect of the higher-order curvature terms on the buckling load is
presented in Table 2.3. Results are shown for three different length-to-width
ratios, unidirectional and bidirectional in-plane moments, and five combinations
of boundary conditions for the plate. Results are given including and neglecting
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the curvature terms. One can see that the results for the model including the
curvature effects are lower for all cases in the table, with up to 8% difference.
This is a significant difference and cannot be neglected, as was implied by
Bert and Malik (1997) for composite plates.

In Tables 2.4–2.6 results are given for buckling load factors for plates
with several combinations of geometric dimensions, seven types of boundary
condition combinations and with three types of loading distribution (see Fig.
2.2) in both x and y directions. All these results include the effect of the
curvature terms. The values are exact for plates for which two opposite edges
at constant x coordinate are simply supported. All other values are very good
upper bound approximations for the true load factors.

In Fig. 2.4, the variations of the buckling factors for a unidirectional in-
plane moment with respect to the plate aspect ratio for three types of boundary
conditions are shown. The behaviour resembles that of plates loaded by
constant in-plane forces, but with a more rapid convergence to constant
values independent of the aspect ratio.

In Figs 2.5–2.9, the influence of the higher-order nonlinear strain terms
on the buckling factor as a function of the plate thickness ratio is shown for
several types of combined unidirectional and bidirectional in-plane loadings.

Table 2.1 Comparison for buckling load parameter λ*π2 for rectangular thin
plates, (β = 0, µ = 0, ν = 0.3)

αx BC γ Reference λ∗π2

1.0 SSCC 0.5 Present 145.2
Leissa and Kang (2002) 145.2

0.7 Present 134.6
Leissa and Kang (2002) 134.6

1.4 Present 134.6
Leissa and Kang (2002) 134.6

CCCC 1.0 Present 193.3791
Azhari et al. (2000) 194.4312

2.0 SSCC 1.0 Present 391.5
Leissa and Kang (2002) 391.5

1.2 Present 400.4
Leissa and Kang (2002) 400.4

SSSS 1.0 Present 251.9547
Timoshenko and Gere (1961) 252.6619

SSCF 1.0 Present 391.43
Kang and Shim (2004) 391.44

SSFF 0.5 Present 69.78
Kang and Shim (2004) 69.78

SSFS 1.0 Present 25.962
Kang and Shim (2004) 25.962

SSSF 2.0 Present 235.44
Kang and Shim (2004) 235.44



Table 2.2 Buckling load parameter λ for square plates, γ = 1, µ = 0, ν = 0.3

h/Ly αx αy λ αx αy λ αx αy λ αx αy λ
(β = 0) (β = 0) (β = 1) (β = 1)

SSSS
CPT 2 – 25.5283 1 – 7.8120 2 0 3.8068 2 2 13.7636
0.005 2 – 25.5161 1 – 7.8109 2 0 3.8062 2 2 13.7602
0.01 2 – 25.4793 1 – 7.8076 2 0 3.8044 2 2 13.7431
0.05 2 – 24.3571 1 – 7.7045 2 0 3.7481 2 2 13.2661
0.1 2 – 21.4086 1 – 7.3991 2 0 3.5801 2 2 11.9320
0.15 2 – 17.8109 1 – 6.9402 2 0 3.3247 2 2 10.1298
0.2 2 – 14.4145 1 – 6.3852 2 0 3.0114 2 2 8.2266

SSCC
CPT 2 – 39.6719 1 – 14.7124 2 0 6.6049 2 2 21.4902
0.005 2 – 39.6339 1 – 14.7042 2 0 6.6026 2 2 21.4859
0.01 2 – 39.5131 1 – 14.6798 2 0 6.5960 2 2 21.4337
0.05 2 – 36.2903 1 – 13.9548 2 0 6.3913 2 2 20.1591
0.1 2 – 29.1478 1 – 12.1526 2 0 5.8269 2 2 16.9203
0.15 2 – 20.8065 1 – 10.0708 2 0 5.0743 2 2 13.1309
0.2 2 – 14.1835 1 – 8.1695 2 0 4.2839 2 2 9.6667

SSFF
CPT 2 – 2.6072 1 – 1.6420 2 0 1.3987 2 2 2.5890
0.005 2 – 2.6033 1 – 1.6409 2 0 1.3947 2 2 2.5855
0.01 2 – 2.5990 1 – 1.6394 2 0 1.3904 2 2 2.5807
0.05 2 – 2.5509 1 – 1.6208 2 0 1.3489 2 2 2.5318
0.1 2 – 2.4606 1 – 1.5791 2 0 1.2818 2 2 2.4396
0.15 2 – 2.3437 1 – 1.5201 2 0 1.2028 2 2 2.3202
0.2 2 – 2.2086 1 – 1.4477 2 0 1.1172 2 2 2.1820



CCCC
CPT 2 – 48.3512 1 – 19.5934 2 0 9.4925 2 2 31.3773
0.005 2 – 48.2922 1 – 19.5830 2 0 9.4874 2 2 31.3574
0.01 2 – 48.1168 1 – 19.5515 2 0 9.4723 2 2 31.2608
0.05 2 – 43.1760 1 – 18.6013 2 0 9.0165 2 2 28.7043
0.1 2 – 32.6262 1 – 16.4712 2 0 7.8420 2 2 22.6695
0.15 2 – 21.8110 1 – 12.7583 2 0 6.4319 2 2 16.2138
0.2 2 – 12.8994 1 – 9.7004 2 0 5.1199 2 2 10.0512

CCFF
CPT 2 – 7.2877 1 – 5.6945 2 0 3.1018 2 2 7.1597
0.005 2 – 7.2786 1 – 5.6898 2 0 3.0909 2 2 7.1507
0.01 2 – 7.2655 1 – 5.6820 2 0 3.0778 2 2 7.1359
0.05 2 – 7.0239 1 – 5.5134 2 0 2.9082 2 2 6.8823
0.1 2 – 6.4478 1 – 5.0842 2 0 2.5885 2 2 6.2795
0.15 2 – 5.7063 1 – 4.5158 2 0 2.2342 2 2 5.5011
0.2 2 – 4.9334 1 – 3.9131 2 0 1.9037 2 2 4.6844

Table 2.2 Continued

h/Ly αx αy λ αx αy λ αx αy λ αx αy λ
(β = 0) (β = 0) (β = 1) (β = 1)
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Ny = βNx

Nx

Ny = βNx

Nx

2.3 Plate subjected to in-plane moments acting in the both directions.

Several combinations of boundary conditions are shown. In all cases, the
influence of the curvature terms is increasing as the plate relative thickness
is increased. The relative percentage difference is seen to be as high as 8%
for h/Ly = 0.2.

Figures 2.10 and 2.11 show the buckling modes and buckling factors for
plates loaded by unidirectional in-plane moment as a function of the plate-
aspect ratio for CCSS and FFSS plates, respectively. For CCSS plate with
γ = 0.7, the buckling mode has two half-waves in both the x and y directions,
as the aspect ratio is increased, the buckling factor is reduced and the number
of half waves in the y direction changes to one. For the FFSS plate the
buckling factor increases as γ increases, and for higher aspect ratios becomes
almost constant. The mode changes dramatically as the aspect ratio is raised,
from almost rigid body rotation for γ = 0.7 to the case where most of the
deflections take place at the far ends of the plates, where the loads are
applied, and the central region of the plate almost does not deform.

Figures 2.12 to 2.15 present the effect of the ratio of the bidirectional in-
plane moments on the buckling shape and buckling factor for square plates
with eight different combinations of boundary conditions. Buckling factors
are given for µ = 0 and µ = 1. The modes are identical for both cases. The two
cases in Fig. 2.12, and the first case in Fig. 2.13, are completely symmetric
and the reversal of the in-plane moment in the y-direction yields the same
buckling factors, and mirror image of the buckling shape. This is not the case
for the other five combinations of boundary conditions shown. In these, the
reversal of loading direction results in significant changes in the buckling
factor as the bidirectionally compressed sub-region of the plate is bounded
by different edge restraints for the different cases. The buckling shape changes



Table 2.3 Buckling load parameter λ for rectangular plate: study for higher-order nonlinear strain terms effect

γ h/Ly β αx αy µ Boundary conditions

SSSS CCCC SSCC SSFF CCFF

1 0.1 1 1 0 0 2.51825 6.0189 4.34453 1.14868 2.51689
1 2.4810 5.82457 4.22716 1.13698 2.46446

2 0 0 3.58005 7.84203 5.82695 1.2818 2.58853
1 3.51881 7.55481 5.64308 1.269 2.53705

1 1 0 3.72449 8.92214 6.53345 1.39992 3.71763
1 3.66787 8.62955 6.3645 1.38645 3.62354

2 2 0 11.932 22.6695 16.9203 2.43965 6.27946
1 11.513 21.4644 16.1643 2.41546 6.09162

0.15 1 0 0 0 1.78484 3.95233 2.98475 0.86783 2.04036
1 1.73356 3.74182 2.85847 0.85215 1.96429

1 1 0 3.49215 7.60144 5.71372 1.33704 3.25837
1 3.38795 7.18978 5.4584 1.31001 3.11238

2 2 0 10.1298 16.2138 13.1309 2.32023 5.50112
1 9.52887 15.0861 12.2587 2.27235 5.21371

1.5 0.1 0 0 – 0 4.03967 7.03177 6.12258 0.41052 1.66077
1 3.96116 6.82377 6.0052 0.40903 1.63875

1 – 0 7.76204 13.4502 12.1526 0.75841 2.64939
1 7.60484 13.0453 11.7755 0.75548 2.61111

2 – 0 21.4793 30.6152 29.1492 1.51473 3.73918
1 20.8502 29.0182 27.3123 1.50792 3.68338

1 0 0 0 1.39063 3.67716 3.37153 0.40291 0.96702
1 1.37548 3.5801 3.2895 0.40134 0.95793

1 0 0 1.64216 4.3237 3.86322 0.54082 1.08776
1 1.62422 4.20459 3.76205 0.53828 1.07915

2 0 0 1.99809 5.13176 4.49639 0.5922 1.18763
1 1.97596 4.9835 4.36802 0.5899 1.17903



2 2 0 8.12658 16.6497 12.8802 1.48054 3.50938
1 7.93816 15.9436 12.402 1.47334 3.45536

2 0.1 1 1 0 0 1.34358 3.90484 3.73483 0.3126 0.54216
1 1.33076 3.80108 3.63733 0.31176 0.54003

1 1 0 2.24453 6.06614 5.31704 0.40789 0.93047
1 2.22124 5.90137 5.17708 0.40688 0.92516

2 0 0 1.51006 4.32579 4.08306 0.33358 0.58381
1 1.4956 4.20608 3.97061 0.33291 0.58215

2 2 0 5.74768 13.0956 10.4383 1.04777 2.25152
1 5.65872 12.6413 10.0962 1.04461 2.23105

Table 2.3 Continued

γ h/Ly β αx αy µ Boundary conditions

SSSS CCCC SSCC SSFF CCFF
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significantly, and in some cases two half-waves arise in the y-direction.
Results are shown only for five values of β, in the range –1 to 1, and for
higher values, and intermediate values, one should expect many types of
transition in the buckling factors variation tendency, and the shapes of the
buckling mode. These are not covered in this chapter.

Table 2.4 Buckling load factor λ for rectangular plates subjected to biaxial compression,
(αx = 0, µ = 1, ν = 0.3)

BC γ h/Ly Buckling load parameter λ

β = 0 β = 1, β = 1, β = 1,
αy = 0 αy = 1 αy = 2

SSSS 1.0 0.10 3.7411 1.8706 2.4810 3.5188
2.0 3.7411 1.1980 1.8419 2.5238
3.0 3.7411 1.0698 1.6021 2.0829
1.0 0.15 3.4671 1.7336 2.2968 3.2128
1.5 3.5819 1.2993 1.9227 2.7038
1.0 0.20 3.1521 1.5760 2.0850 2.8602
1.5 3.1700 1.2076 1.7775 2.4272

SSFF 1.0 0.10 0.9163 0.8915 0.9068 0.9163
1.0 0.15 0.8787 0.8521 0.8688 0.8787
1.0 0.20 0.8324 0.8046 0.8224 0.8324

SSCC 1.0 0.10 6.2392 3.3132 4.4607 5.4919
1.5 6.0052 3.2895 4.1513 4.8155
1.0 0.15 5.1272 2.8585 3.8161 4.5736
1.5 5.0793 2.8570 3.5510 4.0747
1.0 0.20 4.1528 2.4168 3.1938 3.7371

CCCC 1.0 0.10 8.1213 4.4495 5.8246 7.5548
2.0 6.4468 3.4310 4.5546 5.5191
3.0 6.1236 3.3633 4.1952 4.8818
1.0 0.15 6.5300 3.7418 4.8605 6.0568
2.0 5.3232 2.9814 3.8958 4.6401
3.0 5.1096 2.9146 3.6077 4.1535

CCFF 1.0 0.10 3.4595 2.3032 3.1974 3.4594
1.5 1.6387 0.9579 1.4730 1.6387
1.0 0.15 3.0192 1.9643 2.7385 3.0192
1.5 1.5279 0.8687 1.3367 1.5279
1.0 0.20 2.5781 1.6464 2.3012 2.5781
1.5 1.3992 0.7748 1.3820 1.3992

CFCF 1.0 0.10 0.9237 0.5604 0.8571 1.2028
1.0 0.15 0.8692 0.5336 0.8102 1.1150
1.0 0.20 0.8100 0.5049 0.7590 1.0214

SFSF 1.0 0.10 0.3784 0.1960 0.3093 0.6469
1.0 0.15 0.3665 0.1902 0.2998 0.6229
1.0 0.20 0.3543 0.1841 0.2901 0.5976
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2.4 Concluding remarks

Buckling equations for shear deformable plates, including the effect of the
higher-order nonlinear strains on the potential energy of the in-plane loads,
were derived. The solution was performed using the extended Kantorovich
method which yields an exact solution for several cases of boundary conditions
and highly accurate results for other cases. The buckling behaviour of

Table 2.5 Buckling load factor λ for rectangular plates subjected to biaxial compression,
(αx = 1, µ = 1, ν = 0.3)

BC γ h/Ly Buckling load parameter λ

β = 0   β = 1,   β = 1, β  = 1,
αy = 0 αy = 1 αy = 2

SSSS 1.0 0.10 7.2870 2.4810 3.6679 6.1425
1.5 7.6048 1.6242 2.6499 4.4951
2.0 7.2870 1.3308 2.2212 3.5586
1.0 0.15 6.7342 2.2968 3.3879 5.5199
1.5 6.8472 1.5341 2.4942 4.1196
1.0 0.20 6.1021 2.0850 3.0667 4.8293
1.5 6.0308 1.4255 2.3072 3.6929

SSFF 1.0 0.10 1.5654 1.1370 1.3865 1.5648
1.0 0.15 1.4924 1.0618 1.3100 1.4916
1.0 0.20 1.4048 0.9794 1.2221 1.4039

SSCC 1.0 0.10 11.7755 4.2272 6.3645 9.0909
2.0 0.10 11.2666 3.6373 5.1771 6.5323
1.0 0.15 9.5634 3.6470 5.4584 7.5418
2.0 0.15 9.5634 3.1659 4.4738 5.5851
1.0 0.20 7.6562 3.0844 4.5831 6.1172

CCCC 1.0 0.10 15.7082 5.8246 8.6295 13.0190
2.0 12.3110 3.8011 5.9014 8.2427
3.0 11.7743 3.6040 5.1482 6.6647
1.0 0.15 11.9270 4.8605 7.1898 10.2752
2.0 10.0551 3.3038 5.0834 6.9544
3.0 9.6791 3.1421 4.4573 5.7077

CCFF 1.0 0.10 4.9386 2.4645 3.6235 4.9098
1.5 2.6111 1.0791 1.6994 2.5927
1.0 0.15 4.2863 2.0965 3.1124 4.2515
1.5 2.4230 0.9790 1.5510 2.4009
1.0 0.20 3.6443 1.7618 2.6271 3.6032
1.5 2.2090 0.8738 1.3915 2.1823

CFCF 1.0 0.10 3.7233 0.8571 2.7887 5.3638
1.0 0.15 3.4253 0.8102 2.6425 4.7477
1.0 0.20 3.0964 0.7590 2.4823 4.1430

SFSF 1.0 0.10 1.3848 0.3093 0.7539 3.6805
1.0 0.15 1.3377 0.2998 0.7303 3.4372
1.0 0.20 1.2876 0.2901 0.7053 3.1646
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rectangular plates loaded by unidirectional and bidirectional in-plane linearly
varying forces was presented for many combinations of boundary conditions
and loading combinations. Several conclusions can be drawn for the extensive
number of buckling factors presented here:

• The shear deformations have significant effect on the stability of plates
and must be included in the derivation of the buckling equations.

Table 2.6 Buckling load factor λ for rectangular plates subjected to biaxial compression,
(αx = 2, µ = 1, ν = 0.3)

BC γ h/Ly Buckling load parameter λ

β = 0   β = 1,   β = 1, β = 1,
αy = 0 αy = 1 α = 2

SSSS 1.0 0.10 20.5441 3.5188 6.1425 11.5130
1.5 20.8502 1.9760 3.7131 7.9382
3.0 20.1788 1.1884 2.0639 3.5411
1.0 0.15 16.6866 3.2128 5.5199 9.5289
1.5 16.6866 1.8646 3.4837 7.0002
1.0 0.20 13.3230 2.8602 4.8293 7.6207
1.5 13.3230 1.7304 3.2084 5.9629

SSFF 1.0 0.10 2.4369 1.2690 1.7243 2.4155
1.0 0.15 2.2967 1.1782 1.6115 2.2723
1.0 0.20 2.1376 1.0808 1.4879 2.1097

SSCC 1.0 0.10 27.6905 5.6431 10.0243 16.1643
1.5 27.3123 4.3680 7.6910 12.4020
1.0 0.15 19.4654 4.8038 8.3555 12.2587
1.5 19.6347 3.7822 6.5957 9.9857
1.0 0.20 13.2338 3.9927 6.7689 8.9825

CCCC 1.0 0.10 30.9791 7.5548 13.0190 21.4644
2.0 28.2922 4.2061 7.4079 12.6413
3.0 27.7529 3.7719 6.0159 9.0099
1.0 0.15 20.3214 6.0568 10.2752 15.0861
2.0 19.7485 3.6456 6.3565 10.1739
3.0 19.5897 3.2858 5.2045 7.6348

CCFF 1.0 0.10 6.2573 2.5371 3.8977 6.0916
1.5 3.6834 1.1790 1.9044 3.4554
1.0 0.15 5.4098 2.1566 3.3354 5.2137
1.5 3.3973 1.0706 1.7387 3.1467
1.0 0.20 4.5896 1.8125 2.8103 4.3593
1.5 3.0820 0.9569 1.5621 2.8066

CFCF 1.0 0.10 14.6783 1.2028 5.3638 20.3422
1.0 0.15 10.8640 1.1150 4.7477 14.5932
1.0 0.20 8.0877 1.0214 4.1430 10.7531

SFSF 1.0 0.10 10.8505 0.6469 3.6805 11.1633
1.0 0.15 9.0164 0.6229 3.4372 9.4216
1.0 0.20 7.2739 0.5976 3.1646 7.6123



Analysis and design of plated structures46

• The effect of the nonlinear strain terms on the buckling factor should also
be incorporated in all cases, as it results in significant reduction of the
buckling factors for many cases. This effect increases as the plate thickness
ratio increases.

• The variation of the in-plane forces, and the combination of loading in
two directions result in complex mode shapes of buckling, and of the
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2.4 Buckling load parameters λ for rectangular plates subjected to in-
plane moments: study for aspect ratio effect (h/Ly = 0.1, β = 0, αx = 2,
µ = 1, ν = 0.3).

2.5 Influence of higher-order nonlinear strain terms on buckling load
parameter for square plates with different boundary conditions:
percentage difference µ = 0 to µ = 1. (γ = 1, β = 0, αx = 0, ν = 0.3).
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buckling factors which should be further studied and organized in a simple
and straightforward fashion so it can be easily used in design. The results
presented here may serve as indicators in many cases, and also for
comparison by other numerical methods.
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2.6 Influence of higher-order nonlinear strain terms on buckling load
parameter for square plates with different boundary conditions:
percentage difference µ = 0 to µ = 1 (γ = 1, β = 0, αx = 1, ν = 0.3).

2.7 Influence of higher-order nonlinear strain terms on buckling load
parameter for square plates with different boundary conditions:
percentage difference µ = 0 to µ = 1 (γ = 1, β = 0, αx = 2, ν = 0.3).
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2.8 Influence of higher-order nonlinear strain terms on buckling load
parameter for square plates with different boundary conditions:
percentage difference µ = 0 to µ = 1 (γ = 1, β = 1, αx = 2, αy = 0,
ν = 0.3).

2.9 Influence of higher-order nonlinear strain terms on buckling load
parameter for square plates with different boundary conditions:
percentage difference µ = 0 to µ = 1 (γ = 1, β = 1, αx = 2, αy = 2,
ν = 0.3).
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γ = 0.7; λ = 27.7401 γ = 1.3; λ = 23.0976 γ = 2.0; λ = 21.6044

γ = 2.5; λ = 21.1309 γ = 3.0; λ = 20.8779

2.10 Buckling shapes for CCSS plate loaded by in-plane moments in
x-direction αx = 2, h/Ly = 0.1, β = 0, µ = 1.

γ = 0.5; λ = 7.9741 γ = 0.8; λ = 10.6224 γ = 1.0; λ = 10.4883

γ = 2.0; λ = 10.8855
γ = 3.0; λ = 10.8747

γ = 1.5; λ = 10.8182

2.11 Buckling shapes for FFSS plate loaded by in-plane moments in
x-direction αx = 2, h/Ly = 0.1, β = 0, µ = 1.
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2.12 Buckling load parameters λ and modes for square plates subjected to in-plane moments in both directions,
αx = 2, αy = 2, h/Ly = 0.1, λ0 for µ = 0 and λ1 for µ = 1.
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β = 1.0
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β = 0.5
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β = 0
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λ1 = 24.8303

β = –0.5
λ0 = 21.6232
λ1 = 20.6123
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λ1 = 11.5134

2.13 Buckling load parameters λ and modes for square plates subjected to in-plane moments in both directions,
αx = 2, αy = 2, h/Ly = 0.1, λ0 for µ = 0 and λ1 for µ = 1.
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2.14 Buckling load parameters λ and modes for square plates subjected to in-plane moments in both directions,
αx = 2, αy = 2, h/Ly = 0.1, λ0 for µ = 0 and λ1 for µ = 1.



2.15 Buckling load parameters λ and modes for square plates subjected to in-plane moments in both directions,
αx = 2, αy = 2, h/Ly = 0.1, λ0 for µ = 0 and λ1 for µ = 1.

FCCC

FSCC

β = 1.0
λ0 = 6.2925
λ1 = 6.1035

β = 0.5
λ0 = 11.1911
λ1 = 10.8243

β = 0
λ0 = 15.0425
λ1 = 14.6789

β = –0.5
λ0 = 17.7983
λ1 = 17.5961

β = –1.0
λ0 = 20.3111
λ1 = 20.3426

λ0 = 6.2881
λ1 = 6.0996

λ0 = 11.1819
λ1 = 10.8163

λ0 = 15.0397
λ1 = 14.6758

λ0 = 17.7781
λ1 = 17.5765

λ0 = 16.9150
λ1 = 16.1617



Analysis and design of plated structures54

2.5 References

Azhari, A., Hoshdar, S. and Bradford, M.A. (2000), On the use of bubble functions in the
local buckling analysis of plate structures by the spline finite strip method. International
Journal for Numerical Methods in Engineering, 48(4), 583–593.

Bert, C.W. and Devarakonda, K.K. (2003), Buckling of rectangular plates subjected to
nonlinearly distributed in-plane loading. International Journal of Solids and Structures,
40(16), 4097–4106.

Bert, C.W. and Malik, M. (1997), On the buckling characteristics symmetrically laminated
cross-ply plates. Mechanics of Composite Materials and Structures, 4(1), 39–67.

Bert, C.W. and Malik, M. (1999), Buckling analysis of thick laminated plates: higher-
order theory with rotatory moments. Journal of Thermoplastic Composite Materials,
12, 336–350.

Dawe, D.J. and Craig, T.J. (1986), The vibration and stability of symmetrically-laminated
composite rectangular plates subjected to in-plane stresses. Composite Structures,
5(2), 281–307.

Dawe, D.J. and Roufael, O.L. (1982), Buckling of rectangular Mindlin plates. Computer
and Structures, 15, 461–471.

Eisenberger, M. (1991), Buckling loads for variable cross-section members with variable
axial forces. International Journal of Solids and Structures, 27(2), 135–143.

Eisenberger, M. and Alexandrov, A. (2003), Buckling loads of variable thickness thin
isotropic plates. Thin-Walled Structures, 41, 871–889.

Eisenberger, M. (1995), Dynamic stiffness matrix for variable cross-section Timoshenko
beams. Communications in Numerical Methods in Engineering, 11(6), 507–513.

Grimm, T.R. and Gerdeen, J.C. (1975), Instability analysis of thin rectangular plates
using the Kantorovich method. Trans. ASME, Journal of Applied Mechanics, 42, 110–
114.

Hermann, G and Armenakas, A.E. (1960), Vibrations and stability of plates under initial
stress. Proc. ASCE, Journal of Engineering Mechanics Division, 86, 65–94.

Kang, J.H. and Leissa, A.W. (2001), Vibration and buckling of SS-F-SS-F rectangular
plates loaded by in-plane moments. International Journal of Structural Stability and
Dynamics, 1, 527–543.

Kang, J.H. and Shim, H.J. (2004), Exact solutions for the free vibrations of rectangular
plates having in-plane moments acting on two opposite simply supported edges. Journal
of Sound and Vibration, 273 (4–5), 933–948.

Kerr, A.D. (1969), An extended Kantorovich method for the solution of eigenvalue problem.
International Journal of Solids and Structures, 15, 559–572.

Kitipornchai, S., Xiang, Y., Wang, C.M. and Liew, K.M. (1993), Buckling of thick skew
plates. International Journal for Numerical Method in Engineering, 36, 1299–1310.

Leissa, A.W. and Kang, J.H. (2002), Exact solutions for vibration and buckling of SS-C-
SS-C rectangular plate loaded by linearly varying in-plane stresses. International
Journal of Mechanical Sciences, 44, 1925–1945.

Reddy, J.N. (1984), A simple higher order theory for laminated composite plates. Trans.
ASME, Journal of Applied Mechanics, 51(4), 745–752.

Reddy, J.N. (1999), Theory and Analysis of Elastic Plates. Taylor & Francis, Philadelphia,
PA.

Romeo, G. and Ferrero, G. (2001), Analytical/experimental behavior of anisotropic
rectangular plates under linearly varying combined loads. AIAA Journal, 39(5), 932–
941.



Buckling of plates with variable in-plane forces 55

Shufrin, I. and Eisenberger, M. (2005), Stability and vibration of shear deformable plates
– first order and higher order analyses. International Journal of Solids and Structures,
42(3–4), 1225–1251.

Sun, C.T. (1972), On the equations for a Timoshenko beam under initial stress. Trans.
ASME, Journal of Applied Mechanics, 39(1), 282–285.

Sun, C.T. (1973), Incremental deformations in orthotropic laminated plates under initial
stress. Trans. ASME, Journal of Applied Mechanics, 40(1), 193–200.

Timoshenko, S.P. and Gere, J.M. (1961), Theory of Elastic Stability. McGraw-Hill, New
York.

Wang, C.M., Xiang, Y., Kitipornchai, S. and Liew, K.M. (1994), Buckling solutions for
Mindlin plates of various shapes. Engineering Structures, 16(2), 119–127.

Wang, C.M., Reddy, J.N. and Lee, K.H. (2000), Shear Deformable Beams and Plates;
Relationships with Classical Solution, Elsevier, Amsterdam.

Whitney, J.M. (1987), Curvature effects in the Buckling of symmetrically-laminated
rectangular plates with transverse shear deformation. Composite Structures, 8(2), 85–
103.



56

3
Finite element formulation for plate stability

analysis

W  K A N O K - N U K U L C H A I,
Asian Institute of Technology, Thailand

3.1 Introduction

Structural stability is an important issue in the design of many types of civil,
mechanical, and aeronautical structures. This is especially true for structures
having one or two dimensions that are small in relation to the rest, such as
beam-columns, plates and shells. These structures are susceptible to lateral
instability commonly idealized as an elastic buckling. Structural instability,
in the form of bifurcation or a snap-through phenomenon, can be rigorously
identified by tracing the nonlinear load-displacement paths of the structure.
This procedure normally requires extensive amounts of computing time and
resources. Practical consideration usually favors a linearized system for
determining the critical instability at the bifurcation point. This simply requires
solving an eigenvalue problem, considering finite displacement for the
components in the transverse direction.

Enormous effort has been directed toward the developments of plate finite
elements to serve as the basis for plate instability analysis. In the early days,
most developments of plate elements were based on the classical thin plate
theory, in which C1 continuity of the displacement field must be enforced.
The earlier C1-continuity plate elements were developed by Bell (1969) and
Butlin and Ford (1970). However, the need for higher-order derivatives makes
these elements cumbersome in imposing the essential boundary conditions.
By relaxing this continuity requirement, nonconforming plate elements were
proposed by Melosh (1963) and Bazeley et al. (1965). In addition, Wemper
et al. (1968) and Stricklin et al. (1969) proposed a ‘discrete Kirchhoff hypo-
thesis’ approach, by imposing zero shear strains only at selected discrete points.

The first published work on stability analysis of plates using the finite
element method was authored by Kapur and Hartz (1966), based on the
nonconforming 12 degrees-of-freedom rectangular plate element developed
by Melosh (1963). Their nonconforming plate element gives a lower bound
to the corresponding analytical solution. Anderson et al. (1968) presented a
similar application based on nonconforming triangular plate element proposed



Finite element formulation for plate stability analysis 57

earlier by Bazeley et al. (1965). Later on, Carson and Newton (1969) solved
plate instability problems using a fully conforming 16 degrees-of-freedom
rectangular plate element. This conforming plate element provides an upper
bound solution that is superior in accuracy to the solution obtained by the
nonconforming plate element.

In the 1970s, researchers recognized that more versatile plate elements
can be developed in the framework of the Reissner–Mindlin theory of thick
plates. By considering the plate transverse shear deformation, the plate rotation
field is basically separated from the transverse displacement field, leading to
a simple C0-continuity requirement for the shape functions representing both
the displacement and the rotation fields. However, such thick plate elements
can exhibit a so-called shear locking phenomenon when the plate becomes
relatively thin due to the excessive zero-shear constraint that is similar to the
Kirchhoff hypothesis. The first explanation of the shear locking effect was
made by Hughes et al. (1977), pointing out the over-constraint at the thin
plate limit of two incompatible shape functions, representing the rotation
and the corresponding slope. In their simple bilinear thick plate element, the
shear locking constraint is alleviated by using a reduced integration scheme
for the shear energy term, as earlier introduced by Zienkiewicz et al. (1971).
The simplicity of the element lends itself to a concise and efficient computer
implementation. It was further shown by Kanok-Nukulchai (1979) and Kanok-
Nukulchai et al. (1981) that this type of plate element, as well as similar
shell elements, can be directly degenerated from the 3D field equations.
Since then, the Reissner–Mindlin thick plate theory was widely adopted in
plate element formulations by several researchers such as Hughes and
Rezduyarm (1981), Crisfield (1984) and Bathe and Dvorkin (1985).

With particular application to plate stability analysis, a nine-noded thick
plate element with enhanced shear interpolation was employed by Hinton
et al. (1988). Smith (1995) introduced a p-version of the finite element
method for problems of plate buckling with the inclusion of transverse shear
deformation. In theory, a thick plate buckles earlier than a thin plate of the
same dimension and boundary conditions. Thus, for the purposes of
conservative design, the inclusion of shear deformation may be important.

Numerical analysis of plate stability requires mathematical formulation
of elastic and geometric stiffness matrices of the plate element. In the subsequent
section, for simplicity, the bilinear degenerated plate/shell element concept
proposed by Hughes et al. (1977), Kanok-Nukulchai (1979) and Kanok-
Nukulchai et al. (1981) will be selected to illustrate the formulation of the
standard eigenvalue problem to solve for its elastic stability limit. In addition,
an axisymmetric annular thick plate element, following the work of Ng
(1995), will be used to demonstrate the solution procedure for a tapered
circular thick plate with allowance for pre-buckling deformation.
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3.2 The formulation

The tangent stiffness at any deformation state in the equilibrium path consists
basically of two distinctive terms, namely, the material stiffness and the
geometric stiffness. The condition of the tangent stiffness carries some
implication on the stability condition of the system. At any specific point in
the equilibrium path, if the tangent stiffness matrix is singular, a large magnitude
of displacement can emerge even with a small disturbance of load, thus
implying the instability condition. The section below will derive a standard
expression for the tangent stiffness matrix associated with a finite element in
the framework of the total Lagrangian formulation (see Kanok-Nukulchai
et al. (1981)).

As shown in Fig. 3.1, two sets of Cartesian coordinates are used consistently:
the spatial coordinate system x and the material coordinate system X. The
spatial coordinate system x is used to describe the motion of all continuum
particles in space while the material coordinate system X describes the material
framework at a reference configuration B0.

The motion of a particle P can then be expressed in terms of the displacement
vector u from its reference position in configuration B0 as

xj(X, t) = δjJXJ + uj(X, t) 3.1

in which δjJ is the Cartesian shifter between x and X systems and d is the
position vector of the origin of X. Throughout this formulation, lower case
and upper case subscripts are used to differentiate between the components

Current configuration

Initial
configuration

x3

x2

Spatial coordinate

X1

X2XX3

B0

P(X)

x1

x

Material coordinate

BN
BN+1

3.1 Motion of a continuum
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associated with x and X respectively. The subscript 0 following B refers to
the initial undeformed configuration. In what follows, the total Lagrangian
mode of description will be used with the initial undeformed configuration
B0 together with its corresponding boundary ∂B0 being regarded as the reference
configuration.

Initially, the total potential energy for finite elasticity can be expressed
with respect to the domain of the reference configuration as

π ρ δ
δ

( ) = 1
2

  –   –  
0 0 0

0E u b u TS E dV dV dSKL KL
B

I I
B

I I
B∫ ∫ ∫ 3.2

in which b and T are respectively the body force and the traction, u is the
displacement vector, ρ0 is the mass density, all with respect to the reference
configuration, of which B0 and δB0 are respectively the domain and the
domain boundary. In the same equation, the Green strain tensor E is defined
as

E F FIJ kI kJ I J= 1
2

 ( – )δ 3.3

in which F is the deformation gradient associated with the motion from B0

to B, and the second Piola-Kirchhoff stress tensor S, which together with E
defines the material constitution in the form

SIJ = DIJKLEKL 3.4

where D is the fourth-order elasticity tensor. By assuming that the motion is
sufficiently smooth for differentiation, F can be obtained by the following
equation

FjJ
j

J
jJ j J

x

X
u=  = + ,

∂
∂ δ 3.5

In view of Eqs (3.3)-(3.5), the first variation of Eq. (3.2), δπ, can be derived.
By forcing δπ = 0 and applying integration by parts with Green’s Theorem,
one can obtain the local balance of linear momentum governing any particle
in B0 in the Lagrangian mode as

(SIJFjJ),I + ρ0bj = 0 3.6

The traction boundary condition associated with boundary surface ∂B0 is
defined as follows

nISIJFjJ – T̂j  = 0 3.7

where n is the unit normal vector of ∂B0. By using the Galerkin weighted
residual method, the equation of linear momentum, Eq. (3.6), and boundary
condition, Eq. (3.7), can be combined to construct Galerkin’s weak form of
the problem as
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G S F dV b dVIJ jJ I j j j
BB

( , ) = –  ( )  –  , 0
00

u η η ρ η∫∫
+ ( – )

0

η η
δ

I I J jJ j j
B

S F T dAˆ∫ 3.8

where η denotes a weight field over B0. In the Galerkin method, η belongs
to the same function space as the displacement field and satisfies the
homogeneous essential boundary conditions.

Applying the Gauss–Green theorem to the first integral of Eq. (3.8) leads
to its canonical form. As long as both u and η are continuous over the whole
domain, the Galerkin function can be written as an accumulation of individual

element contributions, i.e., G(u, η) = Σ
e

 Ge(u, η) where the canonical form
of a typical Ge associated with Eq. (3.8) can be expressed as

G S F dV b dVe
IJ jJ j I j j

BB ee
( , ) =  –  , 0

00

u η η ρ η∫∫
– 

0

T̂ dAj j
Be

η
∂∫ 3.9

The displacement field and the weight field of a particle P(X) can be represented
as

u X X U X( ) =  ( )           
=1

a
0Σ ∈

a

n
a eN B 3.10

η( ) =  ( )           
=1

a
0X X H XΣ ∈

a

n
a eN B 3.11

where Na is an interpolation function associated with node a of the element,
Ha denotes the same element nodal values of η, and n is the number of nodes
in the element.

The substitution of Eqs. (3.10) and (3.11) into Eq. (3.9) yields

G H K Re
j
b

j
b

j
b( , ) = ( –  )U H 3.12

in which the mass matrix, the internal force vector and the generalized force
vector are, respectively, expressed by

K S F N dVj
b

IJ jJ ,I
b

Be
= 

0
∫ 3.13

and

K T N dA b N dVj
b

j
b

B
j

b

Be e
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0 0

0
ˆ

∂∫ ∫ ρ 3.14
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Observe that the superscripts refer to a node number while the subscripts
refer to a spatial basis. By assembling all individual element contributions,
one obtains

G(U, H) = HT[K(U) – R] = 0 3.15

Since H, a term that can be identified with the virtual displacement in the
virtual work principle, can be arbitrary, Eq. (3.15) reduces to a system of
discretized equations of motion in terms of variables U as

K(U) – R = 0 3.16

The solution of this nonlinear system of equations by the Newton–Raphson
technique requires the linearization of the nonlinear term, K(U), with respect
to U. Thus, linearizing Eq. (3.16) with respect to U leads to

DK U U R K U( ) = –  ( )n
m

n
m

n n
m∆ 3.17

where DK U( )n
m  denotes the tangent stiffness matrix about a trial displacement

Un
m  (assumed at the mth iteration for Un, which is the solution corresponding

to the nth load step) and ∆Un
m  is the iterative increment of the displacement.

It is convenient to express the tangent stiffness DK U( )n
m  in its componential

form as
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The substitution of Eq. (3.13) into Eq. (3.18) leads to
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For an isoparametric element, the same interpolation functions are used to
describe the geometry and the displacement field. Thus, the geometry is
expressed as

x X X x X( ) =  ( )           
=1 0Σ ∈

a

n
a a eN B 3.20

From Eqs. (3.1) and (3.20), the deformation gradient F in the continuum can
be evaluated from

F N UjJ jJ J
b

j
a= + ,δ 3.21

In view of the definition of the Green strain tensor, i.e. EIJ = 1
2

 (FkIFkJ – δIJ),

and the chain rule ∂
∂

∂
∂

∂
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I J

KL

KL

i
a =  , one can obtain DK as
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Note that the first term on the right-hand side of Eq. (3.22) constitutes an
elastic tangent stiffness including the effect of finite displacement, and the
other term represents the effect of initial stresses.

So far, the formulation is valid for any material constitution. Focusing on
the isotropic, linear elastic materials, the constitutive model for this type of
material takes the form

D
S

EIJKL
I J

KL
= 

∂
∂

3.23

in which the fourth order elasticity tensor CIJKL can be expressed in terms of
the two Lame’s constants, λ and µ as

DIJKL = λδIJδKL + µ(δIKδJL + δILδJK) 3.24

Finally, Eqs. (3.13) and (3.22) can be rewritten in a matrix form as

Kb = 
Be

0
∫ FS∇NbdV 3.25

and

DKba = 
Be

0
∫ (Bb)T DBadV + 

Be
0
∫ (∇Nb)TS∇NadV · I 3.26

where ∇Nb = {       },1 ,2 ,3N N Nb b b T , S is the matrix of the second Piola–Kirchhoff
stress tensor, Ba relates the vector of Green strains E = {E11   E22  E33   2E12

2E23   2E31}T to the nodal variables Ua, D is the matrix form of 
∂
∂










S

E
I J

KL

based on the material constitution in Eqs. (3.23) and (3.24), and I is the
identity matrix.

3.3 Elastic stability

Linear elastic buckling is an idealized situation in perfect plate buckling. In
terms of the total potential energy, the first variation of the potential energy
will result in the same equilibrium equation as in Eq. (3.16). The stability
condition requires that the second variation of the potential energy is positive.



Finite element formulation for plate stability analysis 63

Conversely, the instability criterion of the system is given by a negative
value of this second variation. A limit on stability exists when the second
variation is zero. This is sometimes called neutral equilibrium when the
determinant of the tangent stiffness matrix is zero. The diagram showing the
derivation paths towards the instability condition is depicted in Fig. 3.2.

Potential energy (π)

δπ = 0

Equlibrium
(SI,jFjJ),I + ρ0bj = 0

Instability condition

      
K K UM G

0 0+   = 0  λ δ λ[ ] ⇒
δ2π ≤ 0

      
K K U RM G

0 0+   = [ ]

Discretization
[u = ∑ Naua]

Discretization
[u = ∑ Naua]

Weighted Residual
Method

Disretized potential energy

δπ = 0

Nonlinear discretized equilibrium

K(U) – R = 0

↓ linearization

[DKM(U i) + DKG(U i)]∆U i+1 = R – K(U i)]

Small displacement
Bi ≈ B0 → U0 = 0

DK0 = K0

3.2 Diagram showing the formulation of instability condition.

For linear elastic buckling of plate neglecting the pre-buckling deformation,
the plate structure is assumed to deform within a small displacement range
just before the occurrence of the elastic buckling. Hence, the term FiJ in Eq.
(3.21) can be reduced to δiJ. Also since there is no significant difference
between the reference configuration and the deformed configuration, one
does not need to differentiate X and x. Therefore, the tangent stiffness DK
can be reduced to the stiffness matrix evaluated at the initial configuration,
K, which can be simplified in a more familiar form as:

DK U K N d N dV N N dVji
ba

ji
ba

l
b

jlik k
a

i j
B

l
a

lk k
b

Be e
( )  = +0

, , , ,≡ ∫ ∫δ σ 3.27

or

K = KM + KG(σ) 3.28

in which the fourth-order elasticity tensor, dijkl = λδijδkl + µ(δikδjl + δilδjk) and
σ is referred as the initial stress of the system.

As shown in the diagram in Fig. 3.2, the instability criterion is given by
a negative value of the second variation of the potential energy. A limit on
stability exists when this second variation is zero. This limit is sometimes
referred as neutral equilibrium since the configuration can be changed infinitely
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by a small amount of force. One way to ensure stability of the system is the
positive definiteness of the tangent stiffness matrix in Eq. (3.28). This means
that the sign of its determinant must be greater than zero. Numerically, one
can obtain the critical magnitude of σ that can cause singularity to K by
solving the associated eigenvalue problem.

Note that in Eq. (3.28) KG does not explicitly contain the displacement
vector but is proportional to the stress level. Based on the initial stress theory
of Trefftz (1933), the following two-step analysis is required to solve elastic
buckling problems, as depicted in Table 3.1. In the first step, the reference
stress tensor, σo = σ̂ (Uo) can be evaluated for each element from its nodal
displacements Uo as the result of

KMUo = Ro (3.29)

in which Ro is a selected basis for the load vector in the system. In the next
step, the geometric stiffness KG can be formulated based on this stress level,
i.e., σo = σ̂ (Uo) as a result of Ro. The load multiplication factor λ can then
be determined by solving the following system of eigenvalue system, i.e.

[KM + λKG(σσσσσo)] δδδδδU = 0 (3.30)

in which λ and δU represent the eigenvalue and the corresponding eigenvector
of the system. Let λcr be the lowest eigenvalue, then the vector of the critical
buckling load can be obtained as λcrRo. Correspondingly, the eigenvector
represents the corresponding fundamental buckling mode.

In the above process, the material stiffness was formed based on the initial
undeformed configuration. In reality, the structure is undergoing some
deformation before the point of instability occurs. Ziegler (1983) found that

Process Material Geometric Force System Results
Stiffness stiffness

Trefftz’s Approach (W/o prebuckling deformation)

 1 Unstressed [KM] = [KM(B0)] – {R0} [KM]{u} = {R0} ⇒ u → S(u)

 2 Initial stress [KM] = [KM(B0)] [KG] = [KG(B0,S)] – {KM – λKG]{u} = 0 ⇒ λ

Extended Trefftz’s Approach (W prebuckling deformation)

 3 i (initially = 0)
      [ ] = [ ( )]K KM

i
u tB – {λtR0}       [ ]K M

i {ui+1} = {λiR0} ⇒ ui+1→Bi+1,Si+1

 4 i = i + 1
      [ ]=[ ( )]+1

+1K KM
i

M tB  
      [ ]=[ ( , )]+1 +1 +1K K SG

i
G

t iB  – 
      [ – ]{ }=0+1 +1 +1K K uM

i i
G
iλ ⇒ λi+1

5 Convergent? |λt+1 – λt | < 10–8?

NO Not converged

Yes Converged

i=i +1
Go to (3)

λcr = λi+1

⇒ Stop

Table 3.1 Algorithm for buckling analysis including prebuckling inplane
deformation.
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the effect of this pre-buckling deformation may be of the same order of
magnitude as that of shear deformation effect especially in thick plates.
Based on the algorithm shown in Table 3.1, a more realistic buckling load
can be obtained by considering the plate deformation prior to the buckling.
The inclusion the pre-buckling deformation can be handled iteratively in
Steps (3) and (4) as shown in Table 3.1.

3.4 Element implementation

3.4.1 Degenerated plate element

For a simple illustration, the material and the geometric stiffness matrices of
a degenerated plate/shell element based on the works by Hughes et al. (1977),
Kanok-Nukulchai (1979) and Kanok-Nukulchai et al. (1981) will be formulated.
This plate/shell element is a direct degeneration from 3D field equations
using the thick plate assumptions. For instability analysis of plates, all
components of stress tensor are included except the transverse normal stress
component that is negligible due to the plane stress effect. Thus, the initial
configuration of the plate element is in fact a flat shell element that includes
membrane, bending and transverse shear actions.

Plate assumptions

The following assumptions are employed in the development of the degenerated
plate element: (a) the normals to the mid-surface before deformation remain
straight throughout the deformation but do not necessarily remain normal to
the deformed mid-surface; (b) the stress component normal to the plate mid-
surface is negligible.

The first assumption allows the displacement profile along a plate’s director
(normal) to be completely described by the displacement on the mid-surface
and the rotation of the director. The second assumption avoids the unwanted
conditioning that could result from displacement dependency across the plate
thickness.

Geometry and displacement field

The present plate element shown in Fig. 3.3 evolves from a 3-D continuum
element. Two opposite bilinear faces portray the top and the bottom faces of
the plate where as the mean surface between them defines the mid-plane of
the plate. The element consists of eight nodes, four mid-plane nodes and four
relative nodes on the top plane of the plate element. Nodal variables assigned
to each of the mid-plane nodes are three components of displacement while
those assigned to each relative node are three components of relative
displacement with respect to the corresponding mid-plane node.
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In Fig. 3.3 the geometry of a typical plate element is described by a set of
natural coordinates, {r, s, t}, such that a bi-unit cube is uniquely mapped into
the plate element body. The position of a particle in the element body can be
uniquely expressed in terms of the nodal coordinates as

x(r, s, t) = Σ
I =1

8
 NI(r, s, t) xI 3.31

where xI (I = 1,4) denotes the coordinates of a mid-plane node, xI (I = 5,8)
denotes the relative position vector of a relative node with respect to the
corresponding mid-plane node. The interpolation function NI consistent with
Eq. 3.31 can be expressed as

N r s t
r r s s

t r r s s

a

a
I

I I

I I
( , , ) = 

1
4

 (1 + )(1 + )

4
 (1 + )(1 + )

   
for  = 1, 4

for  = 5, 8






3.32

in which rI and sI are the natural coordinates of node I.
The displacement vector at any point (r, s, t) in the element body can be

expressed in the form

u(r, s, t) = Σ
I =1

8

 NI(r, s) uI 3.33

in which uI denotes the absolute displacement vector at node I (I = 1,4) on
the mid-plane and the relative displacement vector at node I (I = 5,8) on the
top face.

x3

x2

x1

t

s

∆u3

u3

∆u2

u2

∆u1

u1

r

h

3.3 Bilinear plate element.
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Stress strain relationship

In the current plate formulation, the elasticity tensor presented by Eq. (3.27)
must be modified to include the effect of the plane stress assumption.
Accordingly, the modified elasticity tensor can be derived as

d d d
d
dklmn klmn kl

mn= – 33
33

3333
3.34

By defining the vector of strains as E = {ε11 ε22 2ε12 2ε23 2ε31}T and the
corresponding vector of stresses as S = {σ11 σ22 σ12 σ23 σ31}T, the stress
strain relationship for a linear isotropic elastic material can be expressed by

S = DE 3.35

where

D = 

 + 2 0 0 0

 + 2 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

λ λ

λ λ µ

µ

κ µ

κ µ

µ























3.36

in which κ is the shear deformation correction factor, i.e. 5/6 for plate
problems, µ is the shear modulus, and λ  is the plane-stress reduced Lame’s
constant, i.e. λ  = νE/(1 – ν2), E is the modulus of elasticity and ν is Poisson’s
ratio.

Implementation

To adopt the reduced integration technique (Hughes et al., 1977), K and DK
must be partitioned into two parts corresponding to the transverse shear
effect and the rest. The stress tensor S is decomposed into two parts as

S S S = + = 

0

0

0 0 0

 + 

0 0

0 0

0

11 12

21 22

13

23

31 32

m s

σ σ

σ σ

σ

σ

σ σ

































3.37

Since there is no coupling terms in D between the shear and the in-plane
strain, the partition of DK into the two effects is straightforward. The matrices
B and D can then be partitioned as
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and

D
D
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=  = 
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In view of Eqs. (3.38) and (3.39), one can show that

K K Kba
m
ba

s
ba=  + 3.40

where the membrane-bending effect is given by

K B D B N S N Im
ba

m
b T

B
m m

a b T
m

a

Be e
dV dV = ( )  + ( )   

0 0
∫ ∫ ∇ ∇ ⋅ 3.41

and the transverse shear effect by

K B D B N S N Is
ba

s
b T

B
s s

a b T
s

a

Be e
dV dV = ( )  + ( )   

0 0
∫ ∫ ∇ ∇ ⋅ 3.42

The full Gaussian quadrature is used to evaluate Km while the reduced one-
point Gaussian quadrature is used to evaluate Ks for the bilinear plate element.
Full details and the background of reduced integration can be referred to
Hughes et al. (1977).

3.4.2 Axisymmetric annular plate element

Stability of circular plate under in-plane compressive radial force uniformly
distributed around the edge will be considered in this application. Due to
axisymmetric nature of this problem, a 3-node axisymmetric annular plate
(flat shell) element (Fig. 3.4) will be developed in polar coordinates under
the framework of the total potential energy in Eq. (3.2).

In polar coordinates, one should be able derive similar expression of the
stiffness matrix as in Eq. (3.27). First the displacement field is defined in
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Z
I

uz uθ

r
ur

ξ = – 1 ξ = + 1

3.4 Three-node axisymmetric annular plate element.

terms of the three degrees of freedom at each of the three nodes along the
mid-plane of the plate as
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Where <       >u u ur
I

z
I I

θ  is nodal vector of radial, transverse and circum-
ferential displacements respectively, NI(ξ) is the shape functions in terms of
a normalized coordinate along the mid-plane of the element in radial direction,
where ξ = [–1, 1]. Placing 3 nodes at ξ = (– 1, 0, 1) respectively, NI(ξ) is
defined as
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The relevant strain vector is defined in terms of the nodal displacements as
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In which Bm
I  is the membrane-bending and Bs

I  the shear part of the B-
matrix. Finally, KM and KG  can be derived from the first variation of the total
potential energy in a similar form as in Eqs. (3.41) and (3.43), i.e.

K B D B B D BM
ba

m
b T

m m
a

B
s
b T

m s
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B
rdr rdr

e e
= ( )  + ( )  ∫ ∫ 3.47

and
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z
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B
m
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e e
= ( )  + ( )  ∫ ∫ 3.48

in which the expressions for Bm and Bs are available in Eq. (3.46), Bz, Dm,
Ds, Sm and Sz are given below:
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and
Sz = [σrrt(r)] 3.53

in which E and ν are Young’s modulus and Poisson’s ratio, respectively, t(r)
is the thickness variable for the case of tapered plates, σrr and σθθ are in-
plane stresses of the plate in the radial and circumferential directions
respectively. The first term of Eq. (3.47) represents membrane-bending part
while the second term the shear part of the material tangent stiffness. As
usual, a reduced integration must be used for the shear part to treat the shear
locking effect. For Eq. (3.48), the first term represents the normal P-delta
effect that is the main cause of the plate instability while the second term is
due to the effect of the nonlinear terms of the in-plane deformation.

3.5 Numerical examples

In this section, some examples of plate buckling problems are presented to
illustrate the validity of the formulation.

3.5.1 Elastic buckling of square plates using
degenerated flat shell elements

The first example illustrates the buckling analysis of square thin plates (Fig.
3.5) under in-plane forces. The analytical solutions for both uniaxial and
biaxial in-plane compressive forces are available in the following expression
(Timoshenko and Gere, 1961)

b
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3.5 A square plate under uniformly applied in-plane compression
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k
P b

D
crit = 

2

2π
3.54

in which k is the buckling load factor, Pcrit is the critical buckling load, b is
the width of plate D = Eh3/12(1 – ν2) is the flexural rigidity of thin plate, h
is the thickness of plate, E and ν are the elastic modulus and Poisson’s ratio
respectively.

This square plate is modeled with a series of meshes, using 4 × 4, 6 × 6,
8 × 8 and 10 × 10 plate elements. The plate is relatively thin with h/b = 0.01.
It is subjected to different loading and boundary conditions and the results are
tabulated in Table 3.2 in comparison with the corresponding analytical results.

Next, the buckling loads of a simply supported square plate under in-
plane compression in one direction are tested using a mesh size of 16 × 16
by varying the plate thickness-to-side aspect ratio. This example will test the
applicability of the thick plate element based on the Mindlin plate theory on
a range of plate thicknesses.

To give some idea of the performance of the degenerated bilinear plate
element, the result will be compared with the case of using 9-node quadrilateral
element with enhanced shear strain proposed by Hinton et al. (1988). Table
3.3 summaries the results of the comparison, against the analytical solutions
from Iyengar’s book (1988). In this situation, it appears that using higher
order element is more efficient for buckling analysis, mainly because the
representation of the buckling mode shape is sensitive to the fineness of the
mesh.

Table 3.2 Coefficient k for simply supported square plate under uniform compression
in the x direction

Case Finite element solution Analytical
(percentage error) solution

4 × 4 6 × 6 8 × 8 10 × 10

Simply supported with 4.368 4.155 4.085 4.053 4.00
uniform compression (9.2%) (3.87%) (2.12%) (1.32%)
in one direction

Simply support with 2.184 2.072 2.042 2.026 2.00
uniform compression (9.20%) (3.85%) (2.10%) (1.30%)
in both directions

Clamped support with 11.04 10.57 10.41 10.26 10.07
uniform compression (9.63%) (4.96%) (3.38%) (1.89%)
in one direction

Clamped support with 5.676 5.582 5.487 5.415 5.33
uniform compression (6.49%) (4.73%) (2.95%) (1.59%)
in both directions
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3.5.2 Elastic buckling of tapered circular plates using
annular plate elements

Investigations of stability of a circular plate under uniform radial compression
was conducted by many researchers, including Ziegler (1983), Raju and Rao
(1986), Wang et al. (1993), Xiang (1993), Hong et al. (1993), Tan (1994) and
Wang et al. (1996). However, only Raju and Rao (1986) and Tan (1994)
considered tapered Mindlin plates. The former studied the post-buckling
plate behavior by using thick plate element in which the displacement field
is represented by cubic-order shape functions along the redial direction. On
the other hand, Tan (1994) investigated the effects of the pre-buckling
deformation on the elastic buckling load of tapered circular plates by applying
the Rayleigh–Ritz procedure to the incremental strain energy functional.

Consider a tapered circular plate that can buckle under uniform radial in-
plane compressive force. The purpose is to evaluate the critical value of this
force and its sensitivity to the variation of plate thickness, the shear deformation
and the inclusion of the in-plane deformation before the buckling state. It is
assumed that the compressive pressure remains constant despite the pre-
buckling in-plane deformation; otherwise the pressure has to be amplified by
a factor as a result of the reduction of the loading area. This modification was
suggested by Xiang et al. (1993) and confirmed by Ng (1995).

In cylindrical co-ordinate system, the thickness of the tapered plates is
allowed to vary linearly in the radial direction as

t r t t t r
Rc e c( ) = + ( + ) 3.55

where tc and te are the values of the plate thickness at the center and at the
outer edge respectively. Based on the algorithm shown in Table 3.3, a more
realistic buckling load of circular plates can be obtained by considering the
in-plane deformation just before the buckling occurs. This can be handled
iteratively in Steps (3) and (4) of Table 3.1.

Table 3.3 Effect of thickness on the buckling of simply supported square plate under
uniform compression in the x direction

References Plate aspect ratio, 
  

h
b

0.01 0.05 0.10 0.20

Analytical solution 4.000 3.911 3.741 3.150

Hinton, et al. (1988) – 3.932 (3.734) 3.128
– 4 × 4 mesh (0.54%) (–0.19%) (–0.70%)

Bilinear plate element 4.013 3.949 3.795 3.176
(16 × 16 mesh) (0.32%) (0.97%) (1.44%) (0.82%)
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To test the convergence characteristic of the annular plate element (Fig.
3.6), a circular plate will be modeled in four cases with 10, 20, 30 and 40
elements for thin and thick plates and with varying taper parameter te/(te +
tc). The results are presented in Table 3.4 for the cases of simply-supported
and clamped plates. The element convergence appears to be confirmed. To
control the error under 10–4, 20 elements are sufficient and shall be used for
modeling moderate tapered plates, i.e. 0.25 ≤ te/(te + tc) ≤ 0.75, while 40
elements are used for those outside this range.

Table 3.4 Comparison of critical load λcr = 12NcrR2(1 – υ2)/    Et c
2  for linearly tapered

circular plate with shear deformation.

Taper t0/R = 0.001 t0/R = 0.25
parameter, No. Clamped Simply Clamped Simply
te/(te + tc) elements supported supported

0.1 10 9.8400 4.9210 7.4022 4.0486
20 9.6709 4.9119 7.2630 4.0336
30 9.6590 4.9100 7.2542 4.0319
40 9.6569 4.9006 7.2521 4.0315

0.25 10 14.4610 5.7396 11.1347 5.0482
15 14.4570 5.7391 11.1314 5.0478
20 14.4564 5.7390 11.1308 5.0477
25 14.4562 5.7390 11.1306 5.0477

0.5 10 14.6822 4.1978 11.6324 3.9051
(uniform) 15 14.6800 4.1978 11.6323 3.9051

20 14.6800 4.1978 11.6323 3.9051
25 14.6800 4.1978 11.6323 3.9051

0.75 10 10.9101 2.8953 8.9322 2.7627
15 10.9112 2.8953 8.9330 2.7627
20 10.9114 2.8953 8.9331 2.7627
25 10.9115 2.8953 8.9331 2.7627

0.9 10 7.0549 2.4789 5.9061 2.3793
20 7.0602 2.4789 5.9065 2.3793
30 7.0615 2.4789 5.9076 2.3793
40 7.0617 2.4789 5.9078 2.3793

λR0

te te

Z

rur

uz uθ

1 annular element

λR0

3.6 A three-node annular thick plate element.
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Table 3.5 Comparison of critical load factors, λcr = 12NcrR2(1 – υ2)/    Et c
2 , for linearly

tapered Kirchhoff plates neglecting shear deformation (tc /R = 0.001).

    

t t
t

c e

c

–  
Jain Turvey Raju and Rao Tan Present

(1972) (1978) (1986) (1994) FE solution

Simply-supported boundary condition

0.500 6.2134 5.3272 5.3271
0.333 4.8275 4.8830 4.8830
0.300 5.0586 4.8008 4.8011 4.8011
0.200 4.5748 4.5744 4.5747
0.100 4.4119 4.3737 4.3738 4.3738

0 4.1605 4.1980 4.1978 4.1978
–0.100 4.0292 4.0432 4.0433 4.0433
–0.200 3.9074 3.9070 3.9070
–0.300 3.7865 3.7876 3.7876 3.7876
–0.333 3.7261 3.7509 3.7509
–0.500 3.6218 3.5873 3.5873

Clamped boundary condition

0.500 17.0404 15.2180 15.2191
0.333 15.1555 15.2675 15.2677
0.300 15.9629 15.2363 15.2354 15.2355
0.200 15.0946 15.0918 15.0918
0.100 15.0756 14.8948 14.9000 14.8998

0 14.3598 14.6800 14.6821 14.6819
–0.100 14.3149 14.4525 14.4507 14.4505
–0.200 14.2131 14.2134 14.2132
–0.300 13.6429 13.9757 13.9774 13.9771
–0.333 13.5469 13.8992 13.8989
–0.500 13.0410 13.5153 13.5149

In comparison with available solutions for the case of thin plates in Table
3.5, the present solution shows good agreement especially with the results
obtained by Tan (1994) and Raju and Rao (1986) for both simple-support
and clamp boundary conditions.

For elastic buckling of tapered circular plates with allowance of shear
deformation, the results of Raju and Rao (1986) and Tan (1994) are compared
with the present solution in Table 3.6. It appears that the three set of results
are almost identical. The close agreement with Raju and Rao (1986) is not a
coincidence. A similar finite element concept was used except that their
shape functions are cubic polynomials, while the illustrative element employs
quadratic polynomials. For Tan (1994), based on incremental strain energy
including shear deformation, the Rayleigh–Ritz procedure was used to solve
the elastic buckling load of tapered circular plates, considering the pre-
buckling deformation as well. It can be seen from the graphs in Figs 3.7 and
3.8 for simply-supported and clamped plates respectively that both the shear
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and the pre-buckling deformation effects will be especially pronounced as
the thickness of the circular plate increases.

3.6 Concluding remarks

In this chapter, the total Lagrangian formulation is presented to establish
typical finite element expressions for the material and the geometric stiffness
matrices required to analyze instability of Mindlin plates. Based on the
rigorous formulation, the nonlinear deformation of the Mindlin plate prior to

Table 3.6 Comparison of critical load factors, λcr = 12NcR
2(1 – υ2)/    Et c

2 , with shear
deformation effect

tc/R
    

t t
t

c e

c

–  
Raju and Rao Tan (1994) Present

(1986)

Simply-supported boundary condition

0.001 –0.2 5.688 5.688 5.688
0 4.198 4.198 4.198
0.2 2.978 2.978 2.978

0.05 –0.2 5.668 5.668 5.668
0 4.185 4.185 4.185
0.2 2.970 2.970 2.970

0.10 –0.2 5.609 5.609 5.609
0 4.148 4.148 4.148
0.2 2.948 2.948 2.948

0.15 –0.2 5.514 5.514 5.514
0 4.087 4.087 4.087
0.2 2.911 2.911 2.911

0.20 –0.2 5.386 5.386 5.386
0 4.006 4.006 4.006
0.2 2.861 2.861 2.861

Clamped boundary condition

0.001 –0.20 20.69 20.69 20.69
0.00 14.68 14.68 14.68
0.20 9.826 9.826 9.824

0.05 –0.20 20.42 20.42 20.42
0.00 14.53 14.53 14.53
0.20 9.745 9.745 9.745

0.10 –0.20 19.66 19.66 19.66
0.00 14.09 14.09 14.09
0.20 9.515 9.515 9.515

0.15 –0.20 18.51 18.51 18.51
0.00 13.42 13.42 13.42
0.20 9.155 9.155 9.155

0.20 –0.20 17.10 17.10 17.10
0.00 12.57 12.57 12.57
0.20 8.694 8.694 8.694
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the elastic buckling limit is automatically included in the element stiffness
matrices. The advantage of the finite element method is its versatility and
power in modeling any shape of thin and thick plates, even plates with non-
uniform thickness. Although only two types of elements are illustrated in
this chapter, the formulation is fully generic and shall be applicable to any
Mindlin plate element.

Elastic buckling of simply-supported circular lates vs aspect ration

Thin plate solution

(a) With shear deformation
(b) With shear and
prebuckling deformations
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3.7 Elastic buckling load factor of simply-supported circular plates
considering effects of the transverse shear deformation and the
prebuckling deformations .

3.8 Elastic buckling load factor of clamped circular plates considering
effects of the transverse shear deformation and the pre-buckling
deformations.

Thin plate solution

(a) With shear deformation
(b) With shear and
prebuckling deformations
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4.1 Introduction

The stability analysis of plate structures is an important part of engineering
practice. Numerous methods (Liew et al. 2002a, Teo and Liew 2002) have
been introduced to solve the buckling problems of plate structures. In this
chapter, a recently developed numerical method, the mesh-free Galerkin
method (Belytschko et al. 1994, Ren et al. 2002, Liew et al. 2004a), will be
employed to analyze the buckling behavior of popular plate structures in
engineering, such as stiffened plates and stiffened and unstiffened corrugated
plates.

A plate that is stiffened by ribs (Fig. 4.1) can achieve greater strength with
relatively less material, which improves its strength to weight ratio and
makes the structure cost-efficient. Eccentrically stiffened plates have been
widely used in all kinds of circumstances, such as bridges, ship hulls or
decks, and aircraft structures. To make full use of the stiffness that is provided
by stiffeners, they are often attached to plates along the main load-carrying
directions. Many studies have analyzed stiffened plates. Early researchers

4
Mesh-free methods for buckling analysis of
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converted the stiffened plate to a single plate of constant thickness, and the
stiffeners were modeled as an additional layer that was attached to the original
plate. This is the so-called orthotropic model (Schade 1940, Guyon 1946).
Another early model is the grillage model (Kendrick 1956). These models
were simple in formulation, but did not achieve satisfying results in solving
generalized stiffened plate problems. To improve this situation, subsequent
researchers considered the stiffened plate as a composite structure that combined
the plate and stiffeners through the imposition of displacement compatible
conditions. Bryan (1891) first used energy criteria to study the stability of
stiffened plates under uniform compression. Timoshenko and Gere (1961)
studied rectangular plates that were stiffened by longitudinal and transverse
ribs, and gave the numerical tables for buckling loads. Cox (1954) and Martin
and Cox (1963) employed the Rayleigh–Ritz method to investigate the initial
buckling of simply supported stiffened plates. To keep the stiffened plate
from buckling locally, Klitchieff (1973) derived an expression to determine
the minimum size of longitudinal stiffeners. Along with the development of
computer techniques, numerical methods such as the finite strip method and
the finite element method have been introduced into the stability analysis.
Turvey (1971) first employed the finite strip method for the stability analysis
of stiffened plates. Yoshida and Maegawa (1979) and Cheung and Delcourt
(1977) also used the finite strip method to study the elastic stability and
vibrations of stiffened plates. Allman (1975), Mukhopadhyay and Mukherjee
(1990), Guo and Harik (1992), Rikards et al. (2001), Barik and Mukhopadhyay
(2002) and Guo et al. (2002) all made contributions to the application of the
finite element method to the stability analysis of stiffened plates. Other
researchers such as Horne and Narayanan (1975, 1977, 1978) and Dowling
and colleagues (Chryssanthopoulos et al. 1991) also had contributions to
buckling analysis of stiffened plates.

Corrugated plates (Fig. 4.2) are another type of plated structure and are
widely used in all branches of engineering practice. The corrugations reinforce
the plates and improve their strength to weight ratio. Because of these
superiorities, corrugated plates are popular in decking, roofing, and sandwich
plate core structures. The precise analysis of corrugated plates involves the

4.2 Sinusoidally and trapezoidally corrugated plates.
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sheets that lie in different planes for trapezoidally corrugated plates, or shell
structures for sinusoidally corrugated plates, both of which require a large
amount of computation and are thus time consuming. The procedure is costly
and unnecessary, because approximate solutions are generally acceptable in
engineering practice. A simple and valid way to obtain an approximate solution
for corrugated plates is to analyze them as orthotropic plates (Seydel 1931,
Easley and McFarland 1969, Nilson and Ammar 1974, Easley 1975, Davies
1976, Luo and Edlund 1996) of uniform thickness and equivalent rigidity
(Fig. 4.3). Compared with a precise analysis, the approximation approach
saves a lot of computation time and effort with little loss of precision. The
key to the success of the approximate solution is the correct estimation of the
equivalent rigidities.

y
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x

y

z
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h

L

x

4.3 Corrugated plate and its equivalent plate.

Seydel (1931) was the first to give the estimated equivalent rigidities for
corrugated plates. Lau (1981) made improvements to the formula for the
developed length l and moment of inertia I of one corrugation. Briassoulis
(1986) compared the existing classical expressions (Easley 1975, Davies
1976) for the equivalent rigidities and derived more precise expressions for
the extensional rigidity and flexural rigidity of sinusoidally corrugated plates
by imposing a constant strain state on the plates. Shimansky and Lele (1995)
derived an analytical model for the initial transverse stiffness of sinusoidally
corrugated plates. They found that for most corrugated plates, the transverse
stiffness is dramatically less than it is for an uncorrugated plate of the same
thickness, and that transverse stiffness is not negligible for thick plates with
a small degree of corrugation. Samanta and Mukhopadhyay (1999) followed
the approach that was adopted by Briassoulis (1986), and derived new
expressions for the extensional rigidity of trapezoidally corrugated plates.
Employing the new expressions, they carried out nonlinear geometric and
free vibration analyses. Semenyuk and Neskhodovskaya (2002) and
Machimdamrong et al. (2004) took into account the transverse shear stresses,
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and gave the equivalent expression of the transverse shear modulus for thick
corrugated plates. Semenyuk and Neskhodovskaya (2002) also presented the
conditions under which a corrugated shell should not be treated as an orthotropic
circular shell. Once the equivalent rigidities have been determined, corrugated
plates can be analyzed as orthotropic plates by either theoretical or numerical
methods. Similarly, stiffened corrugated plates can be considered as stiffened
orthotropic plates.

Owing to advances in computing over the past few decades, numerical
methods, and especially finite element methods (FEMs), have been extensively
applied in industry to solve the problems of stiffened plates and stiffened and
unstiffened corrugated plates. FEMs are convenient, and can be used to solve
large, complex structures with all kinds of boundary conditions. Nevertheless,
FEMs are not perfect. For large deformation and crack propagation problems,
FEMs have difficulty in dealing with the discontinuities that do not coincide
with the original meshlines. Remeshing is inevitable at each step of the
solution procedure, which leads to programming complexity and is time
consuming. For stiffened plate problems, most FEMs need the stiffeners to
be placed along the meshlines, which limits the possible positions in which
the stiffeners can be placed. Once the stiffener position is changed, the plate
needs to be remeshed. Because of these disadvantages, researchers have
been searching for other powerful numerical tools as alternatives to the
FEMs.

In recent years, the meshless (or mesh-free or element-free) methods have
gained considerable attention (Lucy 1977, Belytschko et al. 1994, Chen
et al. 1996, Ren et al. 2002, Ren and Liew 2002, Wang et al. 2002, Liew
et al. 2002b–h, 2003a–c, 2004a–d, Liew and Huang 2003, Zhao et al. 2003,
Chen and Liew 2004, Liew and Chen 2004a–c, Zhao et al. 2004). Unlike the
FEMs, meshless methods construct the approximate solutions for problems
entirely in terms of orderly or scattered points that are distributed on the
domain of the problem structure that is being studied, and no other element
or interrelationship is needed. Meshless methods are thus more applicable
than FEMs to moving boundary problems, crack growth with arbitrary and
complex paths, and phase transformation problems. Without the meshes,
the aforementioned difficulties that are usually encountered by the FEMs
disappear.

The objective of this chapter is to propose a mesh-free Galerkin method
for elastic buckling analysis of the stiffened plates and stiffened and un-
stiffened corrugated plates. The convergence and accuracy of the proposed
method are demonstrated through the solving of several example problems.
Good agreement between the results from the proposed method and those
from other researchers or the ANSYS has been observed.
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4.2 Mesh-free Galerkin method

By employing a moving least-squares approximation, a function v(x) in a
domain Ω can be approximated by vh(x) in the subdomain Ωx and

v q bh

i

m

i i( ) =  ( ) ( ) = ( ) ( )
=1

Tx x x q x b xΣ 4.1

where qi(x) are the monomial basis functions, bi(x) the corresponding
coefficients, h a factor that measures the domain of influence of the nodes,
and m the number of basis functions. The commonly used bases are the
linear basis:

qT = [1, x], in 1D, m = 2; 4.2

qT = [1, x, y], in 2D, m = 3 4.3

and the quadratic basis:

qT = [1, x, x2], in 1D, m = 3 4.4

qT = [1, x, y, x2, xy, y2], in 2D, m = 6. 4.5

We use here the quadratic basis. The unknown coefficients bi(x) are obtained
by the minimization of a weighted discrete L2 norm:

Γ ω =  (  –  )[ ( ) ( ) –  ]
=1

T 2Σ
I

n

I I Ivx x q x b x , 4.6

where ω (  –  )x x I  or ω I ( )x  is the weight function that is associated with
node I, ω I ( ) = 0x  outside Ωx, n is the number of nodes in Ωx that make
the weight function ω I ( ) > 0x , and vI are the nodal parameters. The
minimization of Γ in Eq. (4.6) with respect to b(x) leads to a set of linear
equations:

B(x)b(x) = A(x)v 4.7

where

B x x x q x q x( ) =  (  –  ) ( ) ( )
=1

TΣ
I

n

I I Iω 4.8

  A x x x q x x x q x( ) = [ (  –  ) ( ),  , (  –  ) ( )]ω ωl l n nK 4.9

The coefficients b(x) are then derived from Eq. (4.7)

b(x) = B–1(x)A(x)v 4.10

The substitution of Eq. (4.10) into Eq. (4.1) gives the approximation vh(x),
which may be expressed in a standard form as:

v N vh

I

n

I I( ) =  ( )
=1

x xΣ 4.11
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where the shape function NI(x) is given by:

NI(x) = qT(x)B–1(x)AI(x) 4.12

From Eq. (4.9), we obtain:

A x x x q xI I I( ) = (  –  ) ( )ω 4.13

Thus, Eq. (4.12) can be rewritten as

N I I I( ) = ( ) ( ) ( ) (  –  )T –1x q x B x q x x xω 4.14

4.3 Estimation of equivalent properties

A corrugated plate demonstrates different flexural characteristics along two
perpendicular directions. Therefore, the approximated buckling analysis of a
corrugated plate can be conducted by analyzing a correspondingly equivalent
orthotropic plate. Assume that Young’s modulus and Poisson’s ratio of a
trapezoidally corrugated plate are E and µ, respectively (the dimensions of
one corrugation of such a plate are shown in Fig. 4.4a). The stress–strain
relations of the corresponding equivalent orthotropic plate are
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4.4 One corrugation of the (a) trapezoidally and (b) sinusoidally
corrugated plates.
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4.3.1 Derivation of the equivalent elastic properties of
trapezoidally corrugated plates

A method similar to that introduced by Briassoulis (1986) in deriving the
equivalent properties of sinusoidally corrugated plates is adopted to obtain
new expressions for the equivalent elastic properties of trapezoidally corrugated
plates. By applying a constant curvature w,yy on the cross-section of the
trapezoidally corrugated plate (Fig. 4.5), we have

v
N
EA

y
N b
EA

b
y y

 = d  = 
0∫ 4.16

where Ny is the axial force in the y-direction. This will lead to a non-uniform
moment. Since only a linear analysis is considered, we have

β =  =  = 
Mb
EI

v
z

N b
EAz

y
4.17

where M is the uniform moment that is due to the flexural rigidity of the
sheet. Therefore,

N M A
I

zy  = 4.18

4.5 Cross-section of the trapezoidally corrugated plate.
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where My consists of the uniform moment M and the nonuniform moment
that is due to the axial force Ny.

Over the interval x ∈ [0, c],
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Therefore,
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where

α θ θ θ = 
3 tan 

 +  + 1
3
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3

2 2 3 3F F bw c bw F

–(2F + bw tan θ) tan θ [c2 – (bw + F/tan θ)2]

+ (2F + bw tan θ)2(c – bw – F/tan θ)

For an equivalent orthotropic plate under constant curvature w,yy, the bending
moment My is uniform. Therefore
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B
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by y yy y y =  =  = 
/

,
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4.22

where By is the flexure rigidity in y direction.
From Eqs (4.21) and (4.22), we have

B M
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where h is the thickness of the plate.
For the other properties, we adopt the classical expressions (Easley 1975,

Davies 1976) or the formulae that are given by Briassoulis (1986):
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3

2

3

µ µ µ µ µµ 4.24

Therefore, we can obtain

µ
µ α µ
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y
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y

E
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B
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c h
clh

 =  =  = 
 + 12 (1 –  )

2 2

2 2
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or

µ
α µ

µ µ
α µx y

c h
clh

c h

clh
 = 

 + 12 (1 –  )
 = 

 + 12 (1 –  )

2 2

2 2

2 2

2 2 4.25

As

B
E h

x
x

x y
 = 

12(1 –  )

3

µ µ
we have

E
h

B
E c

lx
x y

x
x y

 = 
12(1 –  )

 = 
(1 –  )

(1 –  )3 2

µ µ µ µ
µ

4.26

E Ey
y

x
x = 

µ
µ 4.27

Eµ = µEx 4.28

As

2  = 
6(1 + )

 = 
12

3 3

B
Eh G h

xy
xy

µ

then G E
xy  = 

2(1 + )µ 4.29

In this chapter, the first order shear deformation theory (FSDT) is employed.
The equivalent transverse shear properties Gxz and Gyz are calculated in the
same way as in the study of Semenyuk and Neskhodovskaya (2002).

4.3.2 Derivation of the equivalent elastic properties of
sinusoidally corrugated plates

For sinusoidally corrugated plates as shown in Fig. 4.4(b) where the corrugation
is defined by z = F sin πx/c, Briassoulis (1986) has deduced the flexural
rigidities as:

 B
Eh c

l
B B B

Eh EhF
x x y = 

12(1 – )
,  = ,  = 

12(1 – )
 + 

2
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3

2

3

2

2

µ
µ

µµ

       B
Eh

xy y = 
12(1 + )

,  = 
3

µ µ µ 4.30

Therefore, we can obtain:
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µ
µ

µ
x

yc

l F
h

 = 

1 + 6(1 –  )2
2

















4.31

The formulae for other elastic properties are the same as those for the
trapezoidally corrugated plate. Thus, we have obtained all of the equivalent
elastic properties for the trapezoidally and sinusoidally corrugated plates.

4.4 Formulation for stiffened and

corrugated plates

Stiffened corrugated plates can be approximated by stiffened orthotropic
plates after the equivalent elastic properties have been derived by the method
described in Section 4.3. Stiffened isotropic plates are special cases of stiffened
orthotropic plates. Therefore, we need only study the buckling behavior of
stiffened orthotropic plates.

The mesh-free model of a stiffened orthotropic plate, shown in Fig. 4.6,
is composed of an orthotropic plate and two stiffeners that are regarded as
beams. The plate and the beams are prescribed with a set of nodes, and the
degrees of freedom (DOF) of every node of the plate are (wp, ϕpx, ϕpy). The
DOF of every node of the x-stiffener are (wsx, ϕsx) and of every node of the
y-stiffener are (wsy, ϕsy). Here, we have neglected the in-plane bending of the
stiffeners that have negligible torsional stiffness. The stiffeners are assumed
to be made from the same material as the original corrugated plate or the
isotropic plates.

Node of plate

Node of
y-stiffener

x Node of
x-stiffener

z

y

4.6 Meshless model of a stiffened orthotropic plate.

4.4.1 Displacements approximation

According to the mesh-free Galerkin method, the displacements of the plate
can be approximated by:
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u x y z z z N x yp px I

n

I pxI( , , ) = –  = –  ( , )
=1

ϕ ϕΣ 4.32

v x y z z z N x yp py I

n

I pyI( , , ) = –  = –  ( , )
=1

ϕ ϕΣ 4.33

w x y N x y wp I

n

I pI( , ) =  ( , )
=1
Σ 4.34

where ϕpxI, ϕpyI, and wpI are the nodal parameters of the plate and n is the
number of nodes of the plate. ϕpxI, ϕpyI are independent of wpI. The displacement
field of the x-stiffener is:

u x z z z xsx sx I

N

xI sxI( , ) = –  = –  ( )
=1

ϕ ϕΣ Φ 4.35

w x x wsx I

N

xI sxI( ) =  ( )
=1
Σ Φ 4.36

where ϕsxI and wsxI are the x-stiffener’s nodal parameters and N is the number
of nodes of the stiffener. The displacement field of the y-stiffener is:

v y z z z ysy sy I

N

yI syI( , ) = –  = –  ( )
=1

ϕ ϕΣ Φ 4.37

w y y wsy I

N

yI syI( ) =  ( )
=1
Σ Φ 4.38

where ϕsyI and wsyI are the y-stiffener’s nodal parameters. The shape functions
NI(x, y), ΦxI(x) and ΦyI(y) are obtained from Eq. (4.14). A cubic spline
function

ω ( ) = 

2
3

 – 4  + 4 ,   1
2

4
3

 – 4  + 4  –  4
3

, 1
2

 <   1

0,  > 1

2 3

2 3s

s s s

s s s s

s

≤

≤











4.39

is used as the weight function. The quadratic basis pT is employed to compute
the shape functions.

4.4.2 Transformation equations

As shown in Fig. 4.7, at every point along the connection line between the
plate and the x-stiffener, we have

[ ]  = [ ]=– /2 = /2ϕ ϕpx z h sx z hp s 4.40
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[ ]  = [ ]=– /2 = /2w wp z h sx z hp s 4.41

where hp is the thickness of the plate and hs is the depth of the x-stiffener.
In view of Eqs (4.40) and (4.41), it can be deduced that

[ϕpx]i = [ϕsx]i 4.42

[wp]i = [wsx]i (i = 1, … , N) 4.43

or

ϕpx(xi, yi) = ϕsx (xi, yi) 4.44

wp(xi, yi) = wsx(xi, yi), (i = 1, … , N) 4.45

where N is the number of nodes of the x-stiffener. According to the mesh-
free Galerkin method, Eqs (4.44) and (4.45) can be rewritten as

Σ Σ
I

n

I i i pxI J

N

xJ i sxJN x y x
=1 =1

 ( , )  =  ( )ϕ ϕΦ 4.46

Σ Σ
I

n

I i i p I J

N

xJ i sxJN x y w x w
=1 =1

 ( , )  =  ( )Φ 4.47

(i = 1, … , N)

or in matrix form

Tpxϕ�pxϕ = Tsxϕ�sxϕ 4.48

y-stiffener
y

x-stiffener

(xi, yi)

x

4.7 Plan of the stiffened plate.



Analysis and design of plated structures92

where

  

Tpx

n

N N N N n N N

N x y N x y N x y

N x y N x y N x y

ϕ  = 

( , ) ( , ) ( , )

( , ) ( , ) ( , )

,

1 1 1 2 1 1 1 1

1 2

K

M M O M

K

















  

δδ px

px

pxn

ϕ

ϕ

ϕ

 = 

1

M

















  

Tsx

x x xN

x N x N xN N

sx

sxl

sxN

x x x

x x x

ϕ ϕ

ϕ

ϕ

 = 

( ) ( ) ( )

( ) ( ) ( )

,  = 

1 1 2 1 1

1 2

Φ Φ Φ

Φ Φ Φ

K

M M O M

K

M

































δδ
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where
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From Eqs (4.48) and (4.49), we obtain:

δδδδδsxϕ = Tspxϕ δδδδδpxϕ 4.50
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where

T T Tspx sx pxϕ ϕ ϕ = –1

δδδδδsxw = Tspxwδδδδδpw 4.51
where

T T Tspxw sxw pw = –1

From Eqs (4.50) and (4.51), we can form the transformation equation:

δδδδδsx = Tspxδδδδδp 4.52

where
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and Tspx is the 3N × 3n matrix that transforms the nodal parameters of the x-
stiffener into the nodal parameters of the plate.

Similarly, we can obtain the transformation equation:

δδδδδsy = Tspyδδδδδp 4.53

for the y-stiffener.

4.4.3 Stability analysis of stiffened plates

By applying the in-plane forces that are shown in Fig. 4.8 to the stiffened
plate, the potential energy of the plate can be expressed as

Π p p p x y x y = 1
2

d d  – 1
2

 d dT T

Ω Ω∫∫ ∫∫ε ε β βD R

+ 
2

 – d d
2
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k

w

x
x y

xz p p
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2

 – d d
2

Ω∫∫ ∂
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G h
k
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y
x y

yz p p
pyϕ 4.54
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where
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and the in-plane load

R = 
R R

R R

x xy

xy y









 4.56

Ry

Rxy

y-stiffener

Plate

x-stiffener
Rx

Ry

Rxy

Rx

4.8 Stiffened plate under in-plane compression.
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k = 5/6 is the shear correction factor. Ex, Eµ, Ey, µx,  µy, Gxy, Gxz, and Gyz are
the equivalent elastic properties of the orthotropic plate that are derived in
Section 4.3. For the stiffened isotropic plate, we simply take

 Ex = Ey = E, Eµ = µE, µx = µy = µ,

Gxy = Gxz = Gyz = G = E/2(1 + µ)

The potential energy of the x-stiffener is:

Π
ϕ
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2 2
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2
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x∫ 





ϕ 4.57

where Isx is the moment of inertia of the x-stiffener, Asx the area of the cross-
section of the x-stiffener, and hsx the depth.

The potential energy of the y-stiffener is

Π
ϕ

sy
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y sy
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2
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sy sy
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k
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y
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ϕ 4.58

where Isy is the moment of inertia of the y-stiffener, Asy is the area of the
cross-section of the y-stiffener, and hsy is the depth.

Therefore, the potential energy of the stiffened plate is

Π = Πp + Πsx + Πsy 4.59

By substitution of Eqs (4.32) to (4.38) into Eq. (4.59), we obtain:

Π = 1
2

 – 1
2

 + 1
2

 – 1
2

T T T Tδ p p p p p p sx sx sx sx sx sxK G K Gδδ δδ δδ δδ δδ δδ δδ

+ 1
2

 – 1
2

T Tδδ δδ δδ δδsy sy sy sy sy syK G 4.60

where

[ ]  = (  +  + )d dT T TK B DB B B B Bp ij bi bj xz xi x j yz yi y j x y
Ω∫∫ α α

       [ ]  = (  + )dT TK B B B Bsx ij
l

sxi sx sx j sx sxsi sxsjEI c x∫
       [ ]  = (  + )dT TK B B B Bsy ij

l
sy sy syj sy sysi sysjEI c y∫ ι
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and
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Bsxi = [0    – Φxi,x    0], Bsxsi = [Φxi,x   – Φxi   0]

Bsyi = [0   0   –Φyi,y]   , Bsysi = [Φyi,y   0   – Φyi]

αxz = Gxzhp /k, αyz = Gyzhp /k, csx = GAsx /k, csy = GAsy /k
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4.61

R = RxNi,xNj,x + RyNi,yNj,y + Rxy (Ni,xNj,y + Ni,yNj,x)

[ ]  = 
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0 0
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x sx
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4.62
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p l
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Φ Φ
4.63

By substituting Eqs (4.52) and (4.53) into Eq. (4.60), we have

  
Π = 1

2
 + 1

2
 + 1

2
T T T T T� � � � � �p p p p spx sx spx p p spy sy spy pK T K T T K T

  
– 1

2
 – 1

2
 – 1

2
T T T T T� � � � � �p p p p spx sx spx p p spy sy spy pG T G T T G T 4.64

or

  
Π = 1

2
 – 1

2
T T� � � �p p p pK G 4.65

where

K K T K T T K T =  +  + T T
p spx sx spx spy sy spy

G G T G T T G T =  +  + T T
p spx sx spx spy sy spy

Invoking δΠ = 0 results in the following equation:

(K – G)�p = 0 4.66

Assume that Rx = a1Ry and Rx = a2Rxy, where a1 and a2 are constants. Then
by extracting Rx from G, we obtain:
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(K – RxG′)�p = 0 4.67

The solution of this eigenvalue problem is the buckling load Rcr. The critical
value of the compressive stress is therefore given by

σ cr
cr

p
 = 

R
h 4.68

where hp is the thickness of the plate.

4.4.4 Enforcement of essential boundary conditions

Owing to lack of Kronecker delta properties in the meshless shape functions,
the imposition of the essential boundary conditions is usually difficult in
meshless methods. Here, we use the following full transformation method
that was introduced by Chen et al. (1996) to enforce the essential boundary
conditions.

The full transformation method

The meshless approximation of u(x) is

u N ui
h

I

N

I iI( ) = ( )
=1

x xΣ 4.69

where the subscript i denotes the ith coordinate direction. NI(x) is the shape
function of node I, and N is the total number of nodes in the domain. Let
˜ xu uiJ i

h
J  ( ),≡  and we have

˜ xu N u uiJ I

N

I J iI I

N

IJ iI   ( )  =  
=1 =1

≡ Σ Σ A 4.70

Equation (4.70) can thus be rewritten as

u uiI K

N

KI iK =  
=1

–1Σ A ˜ 4.71

in which

AIJ = NI(xJ) 4.72

The substitution of Eq. (4.71) into Eq. (4.69) leads to

u N ui
h

I

N

I iI( ) =  ( )
=1

x xΣ

=  ( )
=1 =1

–1Σ Σ
I

N

I K

N

K I iKN ux A ˜
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=  ( )
=1 =1

–1Σ Σ
K

N
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N

I KI iKN ux A ˜

= ( )
=1

Σ
K

N

K iKN u˜ x ˜ 4.73

where

˜ x A xN NK I

N

K I I( ) =  ( )
=1

–1Σ 4.74

Note that ˜ x A x A AN NI J K

N

IK K J K

N

IK K J I J( ) =  ( ) =   = ,
=1

–1
=1

–1Σ Σ δ  and ũiI  ≡

ui
h

I( )x  is the nodal value of ui
h  at node xI.

Meanwhile, uh and δuh satisfy the following boundary conditions:

u N u g Ii
h

I J

N

J I iJ i I gi( ) =  ( )  = ( ),     
=1

x ˜ x ˜ xΣ ∀ ∈ η 4.75

δ δ ηu N u Ii
h

I J

N

J I iJ gi( ) =  ( )  = ,     
=1

x ˜ x ˜Σ 0 ∀ ∈ 4.76

where ηgi denotes a set of node numbers in which the associated nodes are
located on the boundary Γgi, and as ˜ xNI J I J( ) = ,δ  the unknown coefficients
can be directly obtained from:

  ˜ xu g IiI i I gi = ( ),     ∀ ∈ η

δ ũiI  = 0,       ∀ ∈J gi  η 4.77

The introduction of the transformed shape function into the weak form of
the equilibrium equations furnishes the following discretized meshless
formulation:

K̃Ũ F̃ = 4.78

where the transformed matrices are defined as

  K̃ K = –1 –T� � 4.79

  F̃ F = –1� 4.80

  ̃U U = T� 4.81

where K is the stiffness matrix that is obtained by the mesh-free Galerkin
method, and the transformation matrix is

�ij = AijI 4.82

with I being the identity matrix.
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4.5 Validation studies

An example is employed to show the convergence of the proposed method,
and the effects that the domain of influence of the nodes and the order basis
functions have on this convergence.

A simply supported orthotropic square plate under uniaxial in-plane
compression is considered. The elastic moduli of the plate are Ex = 10Ey, Gxy

= Gxz = 0.5Ey, Gyz = 0.2Ey, and µx = 0.25. The side-to-thickness ratio of the
plate is L/h = 0.01. The nondimensionalized buckling load that is obtained
by the proposed method under a different scaling factor dmax and a different
completeness order basis function Nc, as shown in Fig. 4.9, is compared with
the result that is given by Reddy (1999). The nondimensionalized buckling
load is defined as:

R R L D = /( )cr
2 2

22π 4.83

where

D E hy p x y22
3 = /12(1 –  )µ µ

Nc = 2
Nc = 3
Nc = 4
Nc = 5
Reddy (1999)
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4.9 Nondimensionalized buckling load of the orthotropic plate under
different dmax and Nc.

The meshless scheme for the plate is chosen to be 13 × 13 nodes.
Here, a rectangular support is employed, and thus the scaling factors d x

max

and d y
max  are defined as

d
l

h
d

l
h

x x

mx

y y

my
max max =  and  = 4.84
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where lx, ly are the lengths of the rectangular support in x and y directions,
respectively, and hmx and hmy are the distances between two neighboring
nodes in the x and y directions, respectively. For convenience, we choose
d x

max  = d y
max  = dmax. Figure 4.9 shows that for a certain Nc, a larger support

size, denoted by dmax, gives relatively more accurate results. A larger support
size is needed for a higher completeness order (Nc) basis function to achieve
better results.

The study of convergence is implemented by increasing the nodes for the
plate and the scaling factor dmax under certain Nc. Figures 4.10 to 4.13 show
the variations in the nondimensionalized buckling load with a different number
of nodes and dmax under different Nc. The solution by Reddy (1999) is also
included in the figures for comparison. For a certain dmax, the solution converges
when the number of nodes increases. A higher completeness order basis
function needs a larger support size to make the solution converge. Moreover,
a higher completeness order basis function can achieve better convergence
characteristics than a lower completeness order basis function.

dmax = 2
dmax = 3
dmax = 4
dmax = 5
Reddy (1999)
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4.10 Variation of the nondimensionalized buckling load of the
orthotropic plate, Nc = 2.

4.6 Some numerical examples

4.6.1 Simply supported stiffened isotropic plate
under in-plane compression

The buckling behavior of a simply supported stiffened rectangular isotropic
plate under uniaxial in-plane compression (Fig. 4.14) has been studied. A
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stiffener is placed along the centerline of the plate. The plate and the stiffener
are made of the same material, with a Poisson’s ratio of µ = 0.3. The ratio of
the plate thickness to the length is assumed to be 0.01. The buckling coefficient

dmax = 3
dmax = 4
dmax = 5
dmax = 6
Reddy (1999)
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4.11 Variation of the nondimensionalized buckling load of the
orthotropic plate, Nc = 3.
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4.12 Variation of the nondimensionalized buckling load of the
orthotropic plate, Nc = 4.
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k = σcrW
2hp/(π 2D) 4.85

is computed for different plate aspect ratios L /W, where σcr is the critical
stress and

D Eh = /12(1 – )p
3 2µ

Figures 4.15 to 4.19 compare the buckling coefficients that are obtained by
the authors and those of Timoshenko and Gere (1961), where

γ = EIsx/(WD) and δ  = Wsxhsx/(Whp) 4.86

Most results are very close to those that are given by Timoshenko and

dmax = 5
dmax = 6
dmax = 7
dmax = 8
Reddy (1999)
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4.13 Variation of the nondimensionalized buckling load of the
orthotropic plate, Nc = 5.
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4.15 Buckling coefficient of stiffened plates of different aspect ratios
(γ = 5, δ = 0.05).

4.16 Buckling coefficient of stiffened plates of different aspect ratios
(γ = 10, δ = 0.05).
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4.17 Buckling coefficient of stiffened plates of different aspect ratios
(γ = 15, δ = 0.05).

4.18 Buckling coefficient of stiffened plates of different aspect ratios
(γ = 20, δ = 0.05).
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Gere, except when the plate aspect ratio is larger than 2.8 or 3.2, when there
is a slight difference.

4.6.2 Simply supported stiffened isotropic plate with two
stiffeners under in-plane compression

This example is the same as in 4.6.1, except that the plate is stiffened by two
stiffeners that divide the width of the plate into three equal parts (Fig. 4.20).
Figures 4.21 to 4.24 compare the buckling coefficient obtained by the authors
with those by Timoshenko and Gere (1961). The agreement between the two
results is very good.
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4.19 Buckling coefficient of stiffened plates of different aspect ratios
(γ = 25, δ = 0.05).
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4.20 Simply supported stiffened plate with two stiffeners under
in-plane compression.
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4.21 Buckling coefficient of different aspect ratio plates stiffened by
two stiffeners (γ = 10/3, δ = 0.05).
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4.22 Buckling coefficient of different aspect ratio plates stiffened by
two stiffeners (γ = 5, δ = 0.05).
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4.23 Buckling coefficient of different aspect ratio plates stiffened by
two stiffeners (γ = 20/3, δ = 0.05).
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4.24 Buckling coefficient of different aspect ratio plates stiffened by
two stiffeners (γ = 10, δ = 0.05).
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4.6.3 Clamped stiffened square isotropic plate with one
stiffener under in-plane compression

This example is the same as that in Section 4.6.1, except that the plate is
clamped and has the following parameters: L /W = 1, γ = 0.2, δ = 20, hs =
10.483hp, hs/Ws = 2.75, and L/hp = 200. Table 4.1 lists the buckling coefficients
k that are obtained by the authors, Rikards et al. (2001), and Mukhopadhyay
(1989).

Table 4.1 Buckling coefficient of the clamped stiffened plate with single
stiffener

Buckling Rikards Rikards Mukhopadhyay Present
coefficient et al. et al. (2001) (1989) result

(2001) (ANSYS)

k 24.85 23.44 25.46 25.33

4.6.4 Simply supported rectangular stiffened isotropic
plate with two stiffeners under in-plane
compressions

A rectangular isotropic plate (Fig. 4.25) under two direction in-plane
compressions Rx, Ry, is considered (Fig. 4.26). Rx is equal to Ry. The critical

y

y-stiffener

2 2

1

1
x-stiffener

60 m

30 m
x

Section 1–1
0.3 m

5.0 m

0.5 m

0.3 m
Section 2–2

3.0 m

0.5 m

4.25 Stiffened rectangular plate with two stiffeners.
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stress that is obtained by the authors is 13.71 kPa. For comparison, the
problem is also calculated using ANSYS. The result that is given by ANSYS
is 13.43 kPa. When the plate thickness is increased to 1.5 m, the critical
stress that is obtained by the authors is 193.11 kPa. The result that is given
by ANSYS is 196.59 kPa. When the thickness of the plate is increased to
3.0 m, the critical stress that is obtained by the authors is 427.8 kPa. The
result that is given by ANSYS is 456.7 kPa.

4.6.5 Trapezoidally corrugated plate under uniaxial in-
plane compression

A trapezoidally corrugated plate (Figs 4.27 and 4.28) is studied under the
action of uniaxial in-plane compression applied along the y-direction (The
definition of positive y-direction is given in Figs 4.3 and 4.28). The dimensions
of the plate are L = 2 m, W = 2 m, F = 0.008 m, h = 0.02 m, c = 0.1 m, and
θ = 45°, and the plate has 10 corrugations (h is the thickness, and the definitions
of F, c, θ are given in Fig. 4.4a). The elastic properties are E = 30 GPa and
µ = 0.3.

The buckling loads under different boundary conditions are presented in
Table 4.2. In the table, ‘S’ means simply supported, ‘C’ means clamped

Ry

Rx Rx

Ry

4.26 Rectangular stiffened plate under two direction in-plane
compression.
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y
x

4.27 Trapezoidally corrugated plate.

y

W

x

L

4.28 Plan of the trapezoidally corrugated plate.

Table 4.2 Buckling loads of the trapezoidally corrugated plate
under uniaxial in-plane compression

Boundaries Present results ANSYS
(N) (N)

SSSS 296228 283447
SSCS 386110 369277
SSCC 533991 509149
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edge. The boundary condition of the sides of the plate where the in-plane
compression is applied is always simply supported. We also perform a three-
dimensional study for this plate using the FEM software ANSYS. In ANSYS,
the SHELL63 element is employed, and the discretization scheme is shown
in Fig. 4.27 where 24 612 nodes are used.

4.6.6 Stiffened trapezoidally corrugated plate under
uniaxial in-plane compression

The trapezoidally corrugated plate in Section 4.6.5 is attached with a 2 m
long stiffener along the centerline (x = 1). The stiffener is made from the
same material as the plate. The cross-section of the stiffener is rectangular
(width = 0.1 m, height = 0.2 m). The buckling loads obtained by the proposed
method and those from ANSYS analysis under different boundary conditions
are listed in Table 4.3.

4.6.7 Sinusoidally corrugated plate under uniaxial
in-plane compression

A sinusoidally corrugated plate (Fig. 4.29) under uniaxial in-plane compression
applied along the y-direction is considered. The boundary condition of the
sides of the plate where the in-plane compression is applied is always simply
supported. The dimensions of the plate are L = 1.8 m, W = 1.8 m, F = 0.01
m, h = 0.018 m, c = 0.1 m, and the plate has nine corrugations. The elastic
properties are E = 30 GPa and µ = 0.3.

We analyze this problem using both the proposed method and ANSYS.
The buckling loads of the plate obtained by both methods are listed in Table
4.4. As in Section 4.6.5, the SHELL63 element is used to carry out the
analysis in ANSYS. The discretization scheme is shown in Fig. 4.29 where
6723 nodes are adopted.

Table 4.3 Buckling loads of the stiffened trapezoidally corrugated
plate under uniaxial in-plane compression

Boundaries Present results ANSYS
(N) (N)

SSSS 1185890 1149639
SSCS 1277690 1238150
SSCC 1543100 1495596
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4.6.8 Stiffened sinusoidally corrugated plate under
uniaxial in-plane compression

The sinusoidally corrugated plate in Section 4.6.7 is fitted with a 1.8 m long
stiffener along the centerline (x = 0.9). The stiffener is made from the same
material as the plate, and the cross-section of the stiffener is rectangular
(width = 0.05 m, height = 0.1 m).

The buckling loads of the stiffened corrugated plate calculated using the
proposed method and a comparison with the results from the ANSYS analysis
are shown in Table 4.5.

4.7 Concluding remarks

In this chapter, a mesh-free Galerkin method for the buckling analysis of
stiffened plates and stiffened and unstiffened corrugated plates has been
proposed. The corrugated plates were approximated as orthotropic plates,
and the equivalent elastic properties of trapezoidally corrugated plates were

4.29 Sinusoidally corrugated plate.

y
x

Table 4.4 Buckling loads of the sinusoidally corrugated plate
under uniaxial in-plane compression

Boundaries Present results ANSYS
(N) (N)

SSSS 275578 266268
SSCS 358934 348116
SSCC 496084 482091
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derived. The stiffened corrugated plate was analyzed as a stiffened orthotropic
plate, which is a composite structure of an orthotropic plate and stiffeners.
The stiffened isotropic plate can be analyzed as a special case of stiffened
orthotropic plates. The stiffness matrix of the structure was derived by the
superimposition of the strain energy of the orthotropic plate and the stiffeners
after the displacement field of the stiffeners was expressed in terms of the
displacements of the plate. Because the proposed method is mesh-free, it
avoids the difficulties that the mesh-based FEMs encounter. The proposed
method has been verified by applying to several examples, and the results
show good agreement with those obtained using the ANSYS software and
those reported by other researchers.
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5.1 Introduction

Elastic bifurcation buckling behaviour of thin plates has been extensively
studied and well documented in standard texts such as Timoshenko and Gere
(1961), Bulson (1970) and Bazant and Cedolin (1991). When the plate thickness
to length ratio is greater than 1/20, it is necessary to use thick plate theories,
such as the Mindlin (1951) plate theory, in order to predict the buckling load
accurately. Otherwise the buckling load will be overestimated because the
effect of transverse shear deformation becomes significant in these thick
plates. Elastic buckling of Mindlin plates has been investigated by many
researchers (for example, Herrmann and Armenakas 1960, Brunelle 1971,
Kanaka Raju and Venkateswara 1983, Chen and Doong 1984, Dumir 1985,
Hong et al. 1993, Wang et al. 1993, 1994, 1996, Wang 1995).

Although elastic buckling loads are useful as upper bound solutions and
as basic reference parameters for design formulae in codes, they do not
reflect the true buckling load values owing to the presence of inelastic effect,
except when the structures are very slender. To account for the inelastic
effect, various plastic theories have been proposed. These theories may be
categorized under (a) the incremental or flow theory of plasticity (see
Handelman and Prager 1948, Pearson 1950), (b) the deformation theory of
plasticity (see Kaufmann 1936, Illyushin 1947, Stowell 1948, Bijlaard 1949,
El-Ghazaly and Sherbourne 1986), and (c) the slip theory (see Bartdorf
1949, Inoue and Kato 1993). The crucial difference between the first two
commonly used plasticity theories is that the strain in the former theory
depends on the manner in which the state of stress is built up, whereas in the
latter theory the strain that corresponds to a certain state of stress is entirely
independent of the manner in which this state of stress has been reached. The
success of these theories is varied. For example, the deformation theory
gives a better prediction of buckling loads for long, simply supported plates
(e.g. Pride and Heimerl 1949, Dietrich et al. 1978) while the incremental
theory gives better results for cylinders under compression and torsion.

5
Plastic buckling of plates

C  M  W A N G,  National University of Singapore, Singapore
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Accordingly, some researchers (e.g. Shrivastava 1979, Ore and Durban 1989,
Tugcu 1991, Durban and Zuckerman 1999) presented the plastic buckling
loads of plates based on both plasticity theories. There are, however, other
simplified theories such as the one proposed by Bleich (1952). Bleich assumed
a two-moduli plate where the modulus in the direction of stress that is likely
to exceed the proportional limit be taken as the tangent modulus ET while in
the direction where there is little stress, the elastic modulus E be taken.
Furthermore, the factor for the twisting moment curvature relation is arbitrarily
chosen as E ET / . Bleich’s simplified theory seems to give results in close
agreement with large-scale test results obtained by Kollbrunner (1946).

Most studies on plastic buckling analysis of plates, however, adopted the
classical thin plate theory. Durban and Zuckerman (1999) carried out a detailed
parametric study on the elasto-plastic buckling of rectangular plates under
biaxial compression. Apart from confirming that DT furnishes lower buckling
stresses than those computed using IT, they reported the existence of an
optimal loading part for DT model. Betten and Shin (2000) investigated the
influences of aspect ratios, load ratios and hardening factors on the buckling
stresses of rectangular plates subjected to biaxial loads. Moen et al. (1998)
investigated the effect of plastic anisotropy on the elasto-plastic buckling
behaviour of anisotropic aluminium plate elements. Soh et al. (2000) studied
the plastic buckling of a simply supported, rectangular, composite plate
subjected to edge compression. The fibre composite plates considered include
carbon epoxy, glass epoxy and boron aluminium. Their theoretical results
obtained are deemed comparable to experimental test results. Chakrabarty
(2002) demonstrated the influence of plastic anisotropy on the buckling
stress for the plastic buckling of rectangular plates under unidirectional
compression. The buckling stress is shown to be significantly lowered by the
presence of plastic anisotropy when compared with the corresponding isotropic
material. Wang et al. (2004) solved the plastic buckling problem of rectangular
plates subjected to intermediate and end in-plane loads.

The subject of plastic buckling of thick plates is, however, relatively less
studied by researchers. One of the early papers on plastic buckling of thick
plates was written by Shrivastava (1979). He derived closed-form expressions
for the buckling loads of (a) infinitely long, simply supported plates, (b)
simply supported square, plates and (c) infinitely long plates that are simply
supported on three sides and free on one unloaded edge. Wang et al. (2001)
derived analytically the elastic/plastic stability criteria for (a) uniaxially and
equibiaxially loaded rectangular plates with two opposite edges simply
supported while the other two edges may take on any combination of free,
simply supported or clamped boundary condition and (b) uniformly in-plane
loaded circular plates with either simply supported edge or clamped edge.
Wang (2004) treated the plastic buckling of uniformly in-plane loaded, simply
supported, polygonal, thick plates and gave an analytical relationship between
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the plastic buckling load and its corresponding elastic thin plate buckling
load.

In this chapter, the author’s studies on plastic buckling of thick plates are
collated. Considering the two plasticity theories (i.e. the incremental theory
of plasticity with the Prandtl–Reuss constitutive equations and the deformation
theory of plasticity with the Hencky stress–strain relation), the governing
equations for plastic buckling of thick (Mindlin) plates are presented. As
shown herein, these equations can be solved analytically for the plastic buckling
solutions of (a) uniaxially and equibiaxially loaded rectangular plates with
two opposite edges simply supported while the other two edges may take on
any combination of free, simply supported, or clamped boundary condition,
(b) uniformly inplane loaded circular plates with either simply supported
edge or clamped edge, (c) uniformly loaded annular plates with various edge
conditions, and (d) uniformly loaded polygonal plates with simply supported
edges.

5.2 Buckling of rectangular plates

5.2.1 Basic equations

Consider a flat, rectangular plate whose sides are of lengths a and b and of
uniform thickness h as shown in Fig. 5.1. The plate is subjected to in-plane
compressive stresses of magnitudes σ1 and σ2 in the x- and y-directions,
respectively.

y

σ2

b

a

σ1

x

5.1 Rectangular plate under biaxial loads.

According to the Mindlin plate theory and the plasticity theories, the
governing differential equations are given by (Chakrabarty 2000, Wang et al.
2001):
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where φx, φy are the rotation rates about the y and x axes, respectively, w is
the transverse velocity, E is Young’s modulus, κ2 is the shear correction
factor, and the parameters α, β, γ are given by the following:

In the case of the incremental theory (IT):
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In the case of the deformation theory (DT):
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where the ratios of the elastic modulus E to the tangent modulus ET, and the
secant modulus ES at the onset of buckling are expressed by the Ramberg–
Osgood elastoplastic characteristic in the forms of:
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where σ0 is a nominal yield stress, c the hardening index that describes the
shape of the stress–strain relationship with c = ∞ for an elastic–perfectly
plastic response, and k the horizontal distance between the knee of c = ∞
curve and the intersection of the c curve with the σ/σ0 = 1 line as shown in
Fig. 5.2.
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5.2 Ramberg–Osgood stress–strain relation.

The equivalent stress σ , defined on the basis of von Mises yield criterion,
is given by:

c
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σ σ σ σ σ2
1
2

1 2 2
2 =  –   + 5.6

If the tangent modulus and the secant modulus at the point of bifurcation are
made the same as the elastic modulus, i.e. ET = ES = E, then

α γ
ν

 =  = 1
1 – 2 ,   β ν

ν
 = 

1 –  2 5.7a,b

In view of Eqs. (5.7a,b), the governing equations reduce to those equations
for the elastic buckling of Mindlin plates (Brunelle 1971, Wang 1995).

5.2.2 Buckling solutions for simply supported
rectangular plates

For a rectangular plate with simply supported edges as shown in Fig. 5.1, the
boundary conditions are:

w(0, y) = Mxx(0, y) = φy(0, y) = 0 5.8a

w(x, 0) = Myy(x, 0) = φx(x, 0) = 0 5.8b

w(a, y) = Mxx(a, y) = φy(a, y) = 0 5.8c

w(x, b) = Myy(x, b) = φx(x, b)= 0 5.8d

where the bending moment rates are:
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The rates of displacement and rotations that satisfy the foregoing boundary
conditions are given by:
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where C C Cmn
w

mn mn
x y, , φ φ

 are constants and m, n = 1, 2, 3, . . .
The substitution of Eqs (5.10a–c) into Eqs (5.1a–c) results in the following

three equations which may be expressed as:
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The critical plastic buckling stress can be determined by setting the determinant
of the matrix [K] to zero and then solving the characteristic equation for the
lowest positive root.

Figures 5.3 and 5.4 present critical buckling stress factors σchb2/(π2D) for
simply supported, square plates with different thickness to width ratios h/b,
and various values of c and E/σ0. Note that D = Eh3/[12(1 – ν2)] is the
flexural rigidity of the plate. The Poisson ratio ν = 0.3, the shear correction
factor κ2 = 5/6 and the Ramberg–Osgood parameter k = 0.25 have been
assumed for the calculations. The plate is subjected to either a uniaxial in-
plane load or an equibiaxial in-plane load. It can be observed that the buckling
stress factors obtained by the deformation theory are consistently lower than
those obtained by the incremental theory. Generally, the differences of results
of these two theories increase with (a) increasing plate thickness (i.e. h/b
values) as evident from Figs 5.3(a) and 5.3(b), and (b) increasing E/σ0 values
as can be seen from Figs 5.4(a) and 5.4(b). The hardening index c and the
loading configuration (i.e. uniaxial load or equibiaxial loads) also affect the
divergence of results from the two theories. Both theories give somewhat
similar results when the plate is thin, equibiaxially loaded and c value is
large (say 20). Apart from the aforementioned situations, there is a marked
difference in buckling stress factors from the two theories, which could be
tapped when designing experimental tests on plates to establish which one of
the theories gives better estimates of the buckling results for thick plates.

Figure 5.5(a) presents the variations of the buckling stress factors, from
the two theories, with respect to the aspect ratio a/b of uniaxially loaded,
simply supported rectangular plates (having h/b = 0.025) for various c values.
It is worth noting that the kinks, where the number of half-waves switches,
are displaced as a result of transverse shear deformation as well as the
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inelastic characteristics. Figure 5.5(b) shows the buckling stress factor variations
for equibiaxially loaded rectangular plates. In contrast to the uniaxial loaded
plate case, there are no kinks in the variations of the buckling stress factors
with respect to the aspect ratio, indicating that there is no mode switching.
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5.3 Buckling stress factor σchb2/(π2D) versus thickness ratio h/b for
simply supported, square plates subjected to (a) uniaxial load (E/σ0 =
750, ν = 0.3, κ2 = 5/6, k = 0.25); (b) equibiaxial load (E/σ0 = 750,
ν = 0.3, κ2 = 5/6, k = 0.25).
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5.2.3 Buckling solutions for rectangular plates with two
opposite sides simply supported

Next, we consider rectangular plates with two opposite edges simply supported
(edges y = 0 and y = b), while the other edges (edge x = 0 and edge x = a)
may take on any combination of free, simply supported and clamped edges.
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5.4 Buckling stress factor σchb2/(π2D) versus E/σ0 for simply
supported, square plates subjected to (a) uniaxial load (h/b = 0.025,
ν = 0.3, κ2 = 5/6, k = 0.25); (b) equibiaxial load (h/b = 0.025, ν = 0.3,
κ2 = 5/6, k = 0.25).
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The boundary conditions for the two simply supported parallel edges (y = 0
and y = b) are:

w(x, 0) = Myy(x, 0) = φx(x, 0) = 0 5.13a

w(x, b) = Myy(x, b) = φx(x, b) = 0 5.13b
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5.5 Buckling stress factor σchb2/(π2D) versus aspect ratio a/b for
simply supported, rectangular plates subjected to uniaxial load
(E/σ0 = 750, h/b = 0.025, ν = 0.3, κ2 = 5/6, k = 0.25); (b) equibiaxial
load (E/σ0 = 750, h/b = 0.025, ν = 0.3, κ2 = 5/6, k = 0.25).
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and the boundary conditions for the other two edges (x = 0 and x = a) are
given by (Xiang et al. 1996):

Mxx = Myx = 0, Q h w
xx  –   = 01σ ∂

∂    if the edge is free 5.14a

w = Mxx = φy = 0   if the edge is simply supported 5.15

w = φx = φy = 0   if the edge is clamped 5.16

in which
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For such rectangular plates with two opposite sides simply supported, the
Levy-type solution procedure may be used to solve the governing differential
equations (5.1a–c). The velocity fields of the plate may be expressed as
(Xiang et al. 1996):
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5.18

in which fw (x), fx(x) and fy(x) are unknown functions to be determined, and
m = 1, 2, . . , ∞ is the number of half-waves of the buckling mode shape in
the y direction. Equation (5.18) satisfies the simply supported boundary
conditions on edges y = 0 and y = b.

By substituting Eq. (5.18) into Eqs (5.1a–c), the following differential
equation system can be derived:

{�′} = [H]{�} 5.19

where � = [ ]Tf f f f f fw w x x y y′ ′ ′  and �′ is the first derivative of � with respect
to x, the prime (′) represents the derivative with respect to x, and [H] is a
(6 × 6) matrix with the following non-zero elements:

H12 = H34 = H56 = 1 5.20a
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The solution for the system of differential equation (5.19) may be expressed
as

� = e�xc 5.21

where c is constant column vector that can be determined from the boundary
conditions of the plate and eHx is the general matrix solution.

By applying the boundary conditions for the edges parallel to the y axis,
a homogeneous system of equations is obtained:

[K]{c} = {0} 5.22

The buckling stresses σ1 and σ2 are determined by setting the determinant of
[K] to zero. As the buckling stresses are embedded in matrix [H], it cannot
be obtained directly from Eq. (5.22). A numerical iteration procedure was
used for the calculations (see Xiang et al. 1996 for details).

Tables 5.1 to 5.3 present the buckling stress factors of square plates under
uniaxial and equibiaxial loads. In the calculations, κ2 = 5/6 and ν = 0.3 were
assumed. For brevity’s sake, we shall use the letters F for free edge, S for
simply supported edge and C for clamped edge and a four-letter designation
to represent the boundary conditions of the plate. So, for example, a CSFS
plate will have a clamped edge along x = 0, a simply supported edge along
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y = 0, a free edge along x = a and a simply supported edge along y = b. It can
be observed that for very thick plates (h/b = 0.075) and high values of c, the
buckling load factors of the incremental theory do not vary much with respect
to the E/σ0 ratios. In contrast, the corresponding buckling results from the
deformation theory decrease significantly with increasing E/σ0 values for
very thick plates. The buckling factors are much lower when compared with
their thin plate counterparts due to the effect of transverse shear deformation.

5.3 Axisymmetric buckling of circular plates

5.3.1 Basic equations

Consider a circular plate with radius a and uniform thickness h. The plate is
subjected to a uniform in-plane compressive stress of magnitude σ. For
axisymmetric buckling, the governing equations are given by:
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Table 5.1 Buckling stress factors σchb2 /(π2D) for FSFS square plates under (a) uniaxial
load in x direction; (b) equibiaxial load

c E/σ0 h/b = 0.025 h/b = 0.050 h/b = 0.075

IT DT IT DT IT DT

(a)
Elastic – 1.999 1.999 1.946 1.946 1.888 1.888
2 200 1.967 1.872 1.835 1.582 1.683 1.315

300 1.952 1.819 1.794 1.473 1.624 1.188
500 1.925 1.729 1.729 1.316 1.542 1.024

5 200 1.998 1.996 1.805 1.694 1.381 1.115
300 1.994 1.988 1.624 1.424 1.240 0.8580
500 1.965 1.926 1.392 1.060 1.133 0.5995

20 200 1.999 1.999 1.881 1.869 1.136 0.9993
300 1.999 1.999 1.467 1.418 1.104 0.8187
500 1.999 1.999 1.198 0.9164 1.104 0.4725

(b)
Elastic – 0.9280 0.9280 0.9207 0.9207 0.9106 0.9106
2 200 0.9147 0.8992 0.8735 0.8241 0.8195 0.7372

300 0.9083 0.8860 0.8531 0.7882 0.7852 0.6856
500 0.8961 0.8618 0.8173 0.7308 0.7306 0.6119

5 200 0.9279 0.9279 0.9118 0.9074 0.7964 0.7659
300 0.9278 0.9277 0.8821 0.8670 0.6709 0.6314
500 0.9265 0.9257 0.7701 0.7367 0.5072 0.4618

20 200 0.9280 0.9280 0.9207 0.9207 0.8461 0.8428
300 0.9280 0.9280 0.9206 0.9207 0.6217 0.6174
500 0.9280 0.9280 0.7914 0.7877 0.4000 0.3930
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and
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5.3.2 Buckling solutions

The elimination of the derivative of w in Eq. (5.24) by using Eq. (5.23)
yields:
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Table 5.2 Buckling stress factors σchb2/(π2D) for SSFS square plates under (a) uniaxial
load in x direction; (b) equibiaxial load

c E/σ0 h/b = 0.025 h/b = 0.050 h/b = 0.075

IT DT IT DT IT DT

(a)
Elastic – 2.312 2.312 2.245 2.245 2.169 2.169
2 200 2.232 2.132 2.013 1.758 1.797 1.436

300 2.199 2.061 1.943 1.624 1.714 1.288
500 2.143 1.942 1.844 1.437 1.606 1.101

5 200 2.307 2.305 1.926 1.809 1.402 1.143
300 2.292 2.282 1.678 1.482 1.240 0.8736
500 2.199 2.149 1.408 1.085 1.151 0.6074

20 200 2.311 2.311 1.973 1.959 1.150 1.002
300 2.311 2.311 1.479 1.430 1.129 0.6965
500 2.310 2.310 1.215 0.9185 1.129 0.4350

(b)
Elastic – 1.046 1.046 1.032 1.032 1.015 1.015
2 200 1.034 1.010 0.9911 0.9162 0.9364 0.8112

300 1.028 0.9942 0.9726 0.8738 0.9045 0.7521
500 1.017 0.9649 0.9393 0.8070 0.8523 0.6686

5 200 1.046 1.046 1.022 1.013 0.8859 0.8305
300 1.045 1.045 0.9865 0.9569 0.7484 0.6772
500 1.044 1.042 0.8577 0.7976 0.5791 0.4915

20 200 1.046 1.046 1.032 1.032 0.8919 0.8847
300 1.046 1.046 1.031 1.032 0.6465 0.6362
500 1.046 1.046 0.8266 0.8190 0.4306 0.4041
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Equation (5.25) is a Bessel’s differential equation with the general solution:

φ = AJ1(λr) + BY1(λr) 5.27

where A and B are constants, J1(•) and Y1(•) are first order Bessel functions
of the first kind and second kind, respectively. Since from the axisymmetric
condition φ = 0 at the plate centre (i.e. at r = 0), the constant B must vanish
in Eq. (5.27). Thus, Eq. (5.27) reduces to

φ = AJ1(λr) 5.28

Clamped circular plate

For a clamped circular plate, the rotation at the edge must vanish at the edge,
i.e. φ = 0 at r = a. Thus in view of this boundary condition and Eq. (5.28),
the bifurcation criterion is given by:

J1(λa) = 0 5.29

Since λ involves σ/E for any given stress–strain curve, the solution must be
found by an iterative method, such as the false position method.

Table 5.3 Buckling stress factors σchb2/(π2D) for CSFS square plates under (a) uniaxial
load in x direction; (b) equibiaxial load

c E/σ0 h/b = 0.025 h/b = 0.050 h/b = 0.075

IT DT IT DT IT DT

(a)
Elastic – 2.336 2.336 2.268 2.268 2.189 2.189
2 200 2.251 2.150 2.022 1.767 1.801 1.441

300 2.217 2.077 1.950 1.631 1.716 1.292
500 2.157 1.955 1.848 1.442 1.607 1.103

5 200 2.332 2.329 1.931 1.815 1.402 1.144
300 2.315 2.304 1.679 1.483 1.241 0.8737
500 2.215 2.163 1.408 1.085 1.153 0.6074

20 200 2.336 2.336 1.976 1.962 1.151 1.002
300 2.336 2.336 1.479 1.431 1.131 0.6965
500 2.335 2.335 1.216 0.9185 1.131 0.4351

(b)
Elastic – 1.130 1.130 1.112 1.112 1.090 1.090
2 200 1.119 1.089 1.075 0.9807 1.020 0.8622

300 1.114 1.071 1.059 0.9335 0.9913 0.7976
500 1.104 1.038 1.028 0.8597 0.9431 0.7070

5 200 1.130 1.130 1.100 1.086 0.9530 0.8729
300 1.130 1.129 1.062 1.018 0.8101 0.7073
500 1.128 1.125 0.9253 0.8380 0.6381 0.5110

20 200 1.130 1.130 1.112 1.112 0.9207 0.9090
300 1.130 1.130 1.109 1.112 0.6674 0.6489
500 1.130 1.130 0.8514 0.8386 0.4771 0.4109
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Simply supported circular plate

For a simply supported circular plate, the bending moment in the radial
direction must vanish at the edge, i.e. dφ/dr + (βφ)/(αr) = 0 at r = a. Thus,
in view of Eq. (5.28) and noting the fact that ′J r1 ( )λ  = J0(λr) – J1(λr)/(λr),
one obtains the bifurcation criterion as:

λ λ
λ

β
α

aJ a
J a

0

1

( )
( )

 = 1 – 5.30

Since the left-hand side of this equation depends on the value of σ /E, the
critical stress has to be computed iteratively.

Tables 5.4 and 5.5 present the buckling stress factors for simply supported
and clamped circular plates, respectively, for various c values and thickness
to radius ratios h/a. In the calculations, κ2 = 5/6 and ν = 0.3 were assumed.
The elastic buckling stress factors, obtained by setting ET = ES = E, are also
given for comparison purposes and these elastic results check out with those
obtained by Kanaka Raju and Venkateswara Rao (1983) and Hong et al.
(1993).

Table 5.4 Buckling stress factors σcha2/(π2D) for simply supported circular plates

c E/σ0 h/a = 0.025 h/a = 0.050 h/a = 0.075

IT DT IT DT IT DT

Elastic – 0.4250 0.4250 0.4241 0.4241 0.4225 0.4225
2 200 0.4185 0.4181 0.4002 0.3988 0.3756 0.3728

300 0.4153 0.4147 0.3902 0.3881 0.3586 0.3549
500 0.4094 0.4084 0.3726 0.3697 0.3317 0.3270

5 200 0.4250 0.4250 0.4236 0.4236 0.4121 0.4118
300 0.4250 0.4250 0.4217 0.4217 0.3850 0.3843
500 0.4249 0.4249 0.4087 0.4084 0.3160 0.3146

20 200 0.4250 0.4250 0.4241 0.4241 0.4225 0.4225
300 0.4250 0.4250 0.4241 0.4241 0.4222 0.4221
500 0.4250 0.4250 0.4241 0.4241 0.3425 0.3424

Figure 5.6 shows the difference between the buckling results of the two
theories for E/σ0 = 750 for simply supported circular plates. It can be seen
that for simply supported plates, the buckling stress factors decrease with
increasing plate thickness h/a, but may increase or decrease depending on
the values of E/σ0 and c. Both theories of plasticity give more or less similar
buckling stress factors with the incremental theory furnishing slightly higher
results. Figure 5.7 shows the difference between the buckling results of the
two theories for E/σ0 = 750 for clamped circular plates. For clamped plates,
the buckling stress factors decrease with increasing plate thickness h/a, but
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may increase or decrease depending on the values of E/σ0 and c. In contrast
to the simply supported plate case, we see that buckling stress factors of
clamped plates differ significantly using the incremental theory and the
deformation theory.

5.4 Buckling of annular plates

Consider an annular plate with outer radius a, inner radius b and uniform
thickness h. The plate is subjected to a uniform in-plane compressive stress

Table 5.5 Buckling stress factors σcha2/(π2D) for clamped circular plates

c E/σ0 h/a = 0.025 h/a= 0.050 h/a= 0.075

IT DT IT DT IT DT

Elastic – 1.484 1.484 1.472 1.472 1.453 1.453
2 200 1.431 1.409 1.307 1.241 1.176 1.069

300 1.408 1.377 1.252 1.166 1.105 0.9742
500 1.367 1.320 1.168 1.055 1.009 0.8483

5 200 1.483 1.483 1.364 1.348 0.9997 0.9467
300 1.480 1.480 1.203 1.171 0.8168 0.7388
500 1.460 1.456 0.9534 0.8941 0.6443 0.5223

20 200 1.484 1.484 1.471 1.471 0.9316 0.9243
300 1.484 1.484 1.283 1.279 0.6689 0.6500
500 1.484 1.484 0.8550 0.8456 0.5178 0.4112
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of magnitude σ. The governing equations are given by
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where ∇2(•) = ∂2(•)/∂r2 + (1/r)∂(•)/∂r + (1/r2)∂2(•)/∂θ2.
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5.7 Buckling stress factor σcha2/(π2D) versus thickness ratio h/a for
clamped circular plates subjected to uniform in-plane stress
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Following the work of Mindlin and Deresiewicz (1954), the transverse
deflection w and the rotations (φr, φθ) may be expressed in terms of three
potential functions Θ1, Θ2, Θ3 as follows:

w = Θ1 + Θ2 5.32a

φ σ
κ θr r G r r
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In view of Eqs (5.32a–c), Eqs (5.31a–c) may be compactly written as:

∇2Θ1 = 0, (∇2 + λ2) Θ2 = 0, (∇2 + δ2) Θ3 = 0 5.33a–c

where

λ σ
α σ

κ

2
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2
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, δ κ2
2

2 = – 12
h

5.34a,b

The general solutions to Eqs (5.33a–c) are given by

Θ1 = A1rn cos (nθ) + B1 
log 

–

r

r n






 cos (nθ) 5.35a

Θ2 = A2Jn(λr) cos (nθ) + B2Yn(λr) cos (nθ) 5.35b

Θ3 = A3In (δr) sin (nθ) + B3Kn(δr) sin (nθ) 5.35c

where the top form of Eq. (5.35a) is used for n = 0 (axisymmetric buckling)
and the bottom form for n ≠ 0 (asymmetric buckling), n is the number of
nodal diameters, A1, A2, A3, and B1, B2, B3 are unknown constants, Jn(•) and
In(•) are Bessel functions of the first kind and the modified first kind of order
n, respectively, and Yn(•) and Kn(•) are Bessel functions of the second kind
and the modified second kind of order n, respectively.

The boundary conditions are given by

w = 0, Mrr = 0, φθ = 0   for simply supported edge 5.36a–c

w = 0, φr = 0, φθ = 0   for clamped edge 5.37a–c

Mrr = 0, Mrθ = 0, Q h w
rr  –   = 0σ ∂

∂
   for free edge 5.38a–c

where the stress resultants for bending moment Mrr, twisting moment Mrθ
and shear force Qr are given by
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In view of Eqs (5.32a–c), (5.35a–c) and (5.39a–c), a set of homogeneous
equations can be derived by implementing the boundary conditions [Eqs
(5.36a–c) to (5.38a–c)] of the annular plate. These equations can be expressed
in the following matrix form:

[K]6×6 {Φ}6×1 = {0} 5.40

where {Φ}6×1 = [A1  A2  A3  B1  B2  B3]T. The buckling stress factor
σha2/(π2D) is evaluated by setting the determinant of [K]6×6 in Eq. (5.40) to
zero and then solving the characteristic equation for the lowest positive root.

The annular plates with various boundary conditions are denoted by a
two-letter symbol, e.g. CF denotes an annular plate with a clamped C outer
edge and a free F inner edge. The critical buckling stress factors are presented
here for only two types of boundary conditions, SS and CF, because of space
limitations. Figure 5.8 and Table 5.6 present the critical buckling stress
factors σha2/(π2D) for various radii ratios b/a of SS annular plates while
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5.8 Buckling stress factor σha2/(π2D) versus radius ratio b/a for simply
supported annular plates subjected to uniform in-plane stress.
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Fig. 5.9 and Table 5.7 present the buckling stress factors for CF plates. For
the calculations, we have adopted σ0 = 61.4 ksi, E = 10700 ksi, v = 0.32,
c = 20 and k = 0.3485, properties that are associated with a 14S-T6 aluminium
alloy (Shrivastava 1979).

Table 5.6 Buckling stress factors σha2/(π2D) for annular plates with both edges simply
supported

  
h
a

Theories Radius ratio b/a
of ———————————————————————————————
plasticity 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.001 DT 1.789 1.904 2.281 2.961 4.148 6.374 11.217
IT 1.789 1.904 2.281 2.961 4.148 6.374 11.217

0.05 DT 1.751 1.854 2.069 2.224 2.346 2.470 2.606
IT 1.752 1.855 2.073 2.233 2.370 2.570 3.697

0.1 DT 0.621* 0.628 0.640 0.654 0.671 0.690 0.712
IT 0.641 0.664 0.735 0.949 1.331 2.016 3.410

*The buckled mode is asymmetric with the number of nodal diameter n = 1.
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5.9 Buckling stress factor σha2/(π2D) versus radius ratio b/a for CF
annular plates subjected to uniform in-plane stress.

As before, the deformation theory gives results that are consistently lower
than those from the incremental theory. The differences become significant
when the plate thickness or radius ratio increases. The buckling stress factors
of deformation theory do not much vary with respect to radii ratio b/a when
the plate thickness increases. For SS plates, the plates buckle with one nodal
diameter (n = 1) for small values of b/a (i.e. b/a < 0.1) and in an axisymmetric
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form (n = 0) for b/a greater than about 0.1. For the case of CF plates, the
buckling mode is always axisymmetric.

5.5 Buckling of polygonal plates

5.5.1 Basic equations

Consider a polygonal plate of uniform thickness h and simply supported on
all the straight edges. The plate is subjected to a uniform compressive stress
σ (i.e. the applied inplane load is constant all round the plate edges). According
to the Mindlin plate theory, the governing equations for the plastic buckling
of such loaded plates may be expressed as (Wang 2004):

∇2(∇2 + λ)w = 0 5.41

where the plastic buckling stress factor λ is given by:

λ σ
α σ

κ
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5.42

For a straight, simply supported edge, the boundary conditions along the
edge are:

w = 0, M Eh
n snn
n s = 

12
 +  = 0

3
α φ β φ∂
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, φs = 0 5.43a–c

where n and s are, respectively, the normal and tangential directions to the
edge.

5.5.2 Exact relationship between plastic buckling stress
and elastic buckling stress

In view of Eq. (5.1a) and the boundary conditions given by Eqs (5.43a–c),
one can deduce that along a straight, simply supported edge:

Table 5.7 Buckling stress factors σha2/(π2D)  for annular plate with outer edge clamped
and inner edge free

  
h
a

Theories Radius ratio b/a
of ———————————————————————————————
plasticity 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.001 DT 1.325 1.092 1.015 1.089 1.332 1.862 3.073
IT 1.325 1.092 1.015 1.089 1.332 1.862 3.073

0.05 DT 1.313 1.083 1.008 1.080 1.319 1.826 2.263
IT 1.313 1.083 1.008 1.080 1.319 1.827 2.282

0.1 DT 0.610 0.606 0.604 0.611 0.625 0.644 0.668
IT 0.630 0.626 0.629 0.648 0.711 0.911 1.363
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w = 0   and   ∇2w = 0 5.44

The governing plastic buckling Eq. (5.41) and the boundary conditions
given by Eq. (5.44) are of the same mathematical form as those of their
corresponding elastic buckling problem of simply supported, Kirchhoff (or
classical thin) plates of polygonal shape (Irschik 1985, Wang 1995). For the
latter problem, the elastic buckling stress factor λe is given by:

λ σ
e

e = 
h

D
5.45

in which σe is the critical elastic buckling stress and D = Eh3/[12(1 – ν2)] the
flexural rigidity of the plate.

Thus, for the same polygonal plate dimensions, the plastic buckling stress
based on the Mindlin plate theory may be related to its elastic buckling stress
based on the Kirchhoff (or classical thin) plate theory by

λ  = λe ⇒ σ

α ν σ
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5.46

where α and G are given by Eqs (5.2a) and (5.2e) when the incremental
theory of plasticity is adopted and they are given by Eqs (5.3a) and (5.3e)
for the deformation theory of plasticity. The buckling stress relationship
given in Eq. (5.46) is a valuable key relationship for unlocking the critical
plastic buckling stresses of simply supported, polygonal Mindlin plates under
a uniform in-plane compressive stress. To obtain the plastic buckling stresses,
one needs simply to provide the elastic buckling stresses of simply supported,
polygonal Kirchhoff plates. Owing to existing analogies between the buckling
and vibration problems of simply supported, polygonal plates (see Conway
1960), vibration frequencies may be used if there are no buckling solutions
available in the literature. These elastic buckling stresses/vibration frequencies
may be readily obtained from (a) standard textbooks on plate buckling and
vibration such as Bulson (1970) and Leissa (1969), (b) handbooks such as
the Handbook of Structural Stability (1970) produced by the Column Research
Committee of Japan and (c) papers such as Wang et al. (1994) and Wang and
Liew (1994).

Graphical representations of the buckling stress relationship given by Eq.
(5.46) are shown in Figs 5.10 to 5.12 for hardening indices c = 2, 3, 10,
respectively. In generating these curves, various values of E/σ0 = 200, 300,
500, 750, and ν = 0.3 and κ2 = 5/6 have been assumed. By nondimensionalizing
the buckling stresses using h and D, the curves shown in Figs 5.10 to 5.12 are
valid for any polygonal plate shape with simply supported edges! It can be
seen that the plastic buckling stresses computed using the deformation theory
(DT) are lower than the corresponding buckling stresses obtained using the
incremental theory (IT). It is evident that as the plate thickness increases or
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the buckling stress increases (due to the plate shape), the deviation between
the DT and IT results increases and both these plastic buckling results
increasingly diverge from the elastic buckling stress counterpart.
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5.10 Relationship between plastic buckling stress of simply
supported, polygonal Mindlin plates and elastic buckling stress of
corresponding Kirchhoff plates (k = 0.25 and c = 2).
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5.11 Relationship between plastic buckling stress of simply
supported, polygonal Mindlin plates and elastic buckling stress of
corresponding Kirchhoff plates (k = 0.25 and c = 3).
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5.5.3 Plastic buckling stress factors for plates of various
polygonal shapes

Tables 5.8 and 5.9 present some plastic buckling stress factors of simply
supported Mindlin plates of equilateral triangular shape and square shape,
respectively. These results have been calculated from Eq. (5.46) and existing
elastic buckling stress factors of classical thin plates. The critical plastic
buckling stress factors are determined for plates with different thickness to
width ratios h/b, and various values of c and E/σ0. The Poisson ratio ν = 0.3
and the shear correction factor κ2 = 5/6 were used in all calculations.

It can be seen that the buckling stress factors are significantly lower as the
plate thickness increases due to the combined effect of transverse shear
deformation and the inelastic characteristics. Thus, it is crucial that a shear
deformable plate theory is used when dealing with thick plates, otherwise
the buckling load will be grossly overestimated. Moreover, it can be observed
that the buckling stress factors obtained by the deformation theory are
consistently lower than those obtained by the incremental theory.

5.6 Concluding remarks

The elastic/plastic buckling equations for thick plates have been presented.
The Mindlin plate theory was adopted to admit the effect of transverse shear
deformation which becomes significant in thick plates. To capture the more
practical elastic/plastic behaviour, two competing plasticity theories have

5.12 Relationship between plastic buckling stress of simply
supported, polygonal Mindlin plates and elastic buckling stress of
corresponding Kirchhoff plates (k = 0.25 and c = 10).
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Table 5.8 Buckling stress factors σchb2/(π2D) for simply supported, equilateral triangular plates (of side length b) under a uniform in-plane
compressive stress

Elastic buckling E/σ0 h/b = 0.025 h/b = 0.050 h/b = 0.075 h/b = 0.10
factor based on
Kirchhoff plate ————————————————————————————————————————————————
theory

    

σ
π
ehb

D

2

2  =  5.333 IT DT IT DT IT DT IT DT

Elastic buckling     5.283 5.140       4.917     4.636
stress factor
based on Mindlin
plate theory

c = 2 200 4.736 4.517 3.887 3.407 3.272 2.622 2.841 2.082
300 4.548 4.261 3.619 3.053 3.024 2.291 2.632 1.794
500 4.259 3.876 3.281 2.607 2.737 1.902 2.403 1.468

c = 10 200 5.231 5.226 2.453 2.291 1.820 1.160 1.773 0.702
300 4.672 4.642 1.974 1.642 1.813 0.817 1.773 0.492
500 3.398 3.319 1.845 1.063 1.813 0.522 1.773 0.313



Table 5.9 Buckling stress factors σchb2/(π2D) for simply supported square plates under a uniform inplane compressive stress

Elastic buckling E/σ0 h/b = 0.025 h/b = 0.050 h/b = 0.075 h/b = 0.10
factor based on
Kirchhoff plate
theory

    

σ
π
ehb

D

2

2 = 2 IT DT IT DT IT DT IT DT

Elastic buckling  1.993  1.972 1.939   1.893
stress factor
based on Mindlin
plate theory

c = 2 200 1.901 1.863 1.700 1.592 1.504 1.337 1.343 1.131
300 1.862 1.809 1.616 1.480 1.405 1.206 1.244 1.000
500 1.795 1.716 1.495 1.320 1.276 1.037 1.125 0.8412

c = 10 200 1.993 1.993 1.749 1.737 1.031 0.985 0.7371 0.6146
300 1.993 1.993 1.368 1.343 0.8004 0.7094 0.6890 0.4359
500 1.981 1.980 0.9632 0.9076 0.6965 0.4615 0.6865 0.2800
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been considered: the incremental theory of plasticity with the Prandtl–Reuss
constitutive equations and the deformation theory of plasticity with the Hencky
constitutive equations. The stability criteria were derived for uniaxially and
equibiaxially loaded rectangular plates, uniformly radially loaded circular
and annular plates and uniformly loaded polygonal plates. Extensive closed-
form buckling stresses were generated for these plates obeying the Ramberg–
Osgood elastoplastic characteristic. These exact results should be useful as
benchmark analytical results for researchers who are developing plate buckling
software and for checking numerical results.

Generally, plastic buckling stress factors are much reduced from their
elastic counterparts, especially when the plate is thick, E/σ0 and the hardening
index c have large values. The buckling stress factors obtained using the
deformation theory are consistently lower than the corresponding factors of
the incremental theory. The divergence of these two results increases with
increasing plate thickness, E/σ0 and c values. This marked difference in
buckling stress factors observed for thick plates could be exploited when
designing experimental tests on plates to establish which of the two considered
theories of plasticity give better buckling results for thick plates.
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6.1 Introduction

Functionally graded materials (FGMs) are a special kind of composite in
which the material properties vary smoothly and continuously from one
surface to the other. These materials are microscopically inhomogeneous
and are typically made from isotropic components. One of the main advantages
of FGMs is that they mitigate severe stress concentrations and singularities
at intersections between interfaces usually presented in composite laminates
because of their abrupt transitions in material compositions and properties.
Applications of FGMs are extensive, especially in high-temperature
environments such as nuclear reactors, chemical plants and high-speed
spacecrafts.

The term ‘functionally graded materials’ was originated in the mid-1980s
by a group of scientists in Sendai, Japan [1, 2]. Since then, an effort to
develop high-resistant materials using FGMs had been continued. Usually,
FGMs are made from a mixture of ceramic and metal or combinations of
different metals. It is known that these materials withstand high-temperature
gradient environments while maintaining their structural integrity. The ceramic
constituent of the material provides the high-temperature resistance due to
its low thermal conductivity. On the other hand, the ductility of the metal
constituent prevents fracture caused by stresses due to high-temperature
gradient in a very short period of time. Additionally, ceramic–metal FGMs
with continuously varying volume fraction can be easily manufactured.

A review of the technical literature in the last decade shows that most of
research studies in FGMs had more focused on thermal stress analysis and
fracture mechanics (see [3–5]). Limited work has been done to study the
buckling and vibration response of FGM structures. In the following, we
introduce some research works related to the present study. We cite the paper
of Praveen and Reddy [6] who examined the nonlinear thermoelastic response
of functionally graded ceramic–metal plates using a finite element model
based on the first order shear deformation theory (FSDT) with von Kármán

6
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nonlinearity. Further, Reddy and Chin [7] analyzed the dynamic thermoelastic
response of functionally graded cylinders and plates.

Important studies on the subject of thermal stability of composite structures
are available in the literature. Among them we can mention the articles of
Tauchert [8], Huang and Tauchert [9], Meyers and Hyer [10], and Shiau and
Kuo [11]. Mechanical buckling of functionally graded plates was studied by
Feldman and Aboudi [12]. In this work, a method based on a combination of
micromechanical and structural approaches was employed. Javaheri and Eslami
[13] derived the equilibrium and stability equations of FGM plates under
thermal loads, based on the Kirchhoff theory. Closed-form solutions for
thermal buckling were obtained for four types of thermal loads. In a similar
approach, Lanhe [14] obtained analytical solutions using the first-order plate
theory. Shen [15] carried out a postbuckling analysis for FGM panels and
plates subjected to axial compression in thermal environments. Finally, Na
and Kim [16] presented a 3D finite element solution for thermal buckling of
functionally graded plates. In this formulation, material properties were assumed
to be temperature dependent and they vary continuously through the thickness
according to a simple power law.

An assessment of previous research works for FGMs plates indicates that
studies in thermal buckling are scarce and only a few very recent articles
deal with this problem. Our aim in this paper is to present a study of the
buckling of functionally graded ceramic–metal plates under mechanical and
thermal loading. The analysis is performed using the third order and the first
order shear theories. A displacement finite element model to study the problem
is developed using C0-continuity elements. To avoid shear locking, high-
order Lagrange polynomials are employed. Numerical results include
comparisons with previous formulations and solutions for critical temperature
under three different temperature distributions. Finally, the effects of the
volume fraction exponent and relative thickness on the critical buckling load
and critical temperature changes of FGM plates are examined.

6.2 Theoretical formulation

6.2.1 Kinematics and equilibrium equations

The plate is modeled using the equivalent single layer theory [17]. As we
know, this theory predicts the global behavior accurately. The geometry of
the plate is depicted in Fig. 6.1, where the coordinates x and y are taken in
the mid-plane of the plate. The equilibrium equations and kinematics of the
plate are based on the third order plate theory together with the von Kármán
nonlinear strains. Thus, the displacement components are assumed to be of
the following form (see Reddy [18, 19]):
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6.1

where u, v, w denote displacements of the point (x, y, 0) on the mid-plane; ϕ1,
ϕ 2 are rotations with respect to the y and x axes respectively and k is a
constant defined as –4/3h2.

Displacement finite element models based on Eq. 6.1 require C1-continuity
because of the presence of first derivatives of the transverse displacement in
the displacement field (or second order derivatives in the total potential
energy). To relax the continuity in the finite element formulation, we introduce
the following auxiliary variables:
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6.2

Substituting Eq. 6.2 into Eq. 6.1, we obtain:
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6.3

Now it is clear that only C 0-continuity of all variables is required.
The strains of the plate associated with the displacement field given in Eq.

6.3 are:
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ε ε

i i i i

m m m
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are the deformations of the mid-plane (i.e. membrane strains) and
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2, = 3 ψ , k k x5
2

1, = 3 ψ 6.6

are the curvatures (i.e. bending strains). Note that the formulation contains
seven variables and still satisfies the shear boundary conditions on the bottom
and top of the plate.

The static governing equations of the plate are derived from the principle
of virtual work. In the absence of body moments and thermal loading, the
equations are given by (see Reddy [17], Putcha and Reddy [20] and Nayak
et al. [21]):
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where the stress resultants Ni, Mi, Pi, Qi and Ri are defined by
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The variable N  is a nonlinear force resultant that depends on the stress
resultant Ni. It is expressed as
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Note that the nonlinearity is only observed in the third expression of Eq. 6.7.

6.2.2 Functionally graded plates

The FGMs considered here are made from a mixture of ceramics and metals.
The ceramic constituent provides heat and corrosion resistance; meanwhile
the metal constituent provides the strength, toughness and ductility necessary
to prevent fractures due to high-temperature gradient in a short period of
time. In this two-phase functionally graded material, the properties are assumed
to vary through the thickness of the plate. However, material properties are
considered to be temperature independent. The material in the bottom and
top surfaces is metal and ceramic respectively (see Fig. 6.1). We also assume
a rule of mixtures based on the Voigt model [22]. Therefore, the composite
modulus is given by the weighted average of the moduli of the constituents,
namely

E(z) = Ec fc + Em fm 6.10

where the subscripts m and c refer to the metal and ceramic constituencies
and f is the volume fraction of the phase. The volume fractions of the ceramic
fc and metal fm corresponding to the power law are expressed as (see Praveen
and Reddy [6]):

f z
h

n

c  =  + 1
2( ) , fm = 1 – fc 6.11

where n is the volume fraction exponent which takes values greater than or
equal to zero. The value of n equal to zero represents a fully ceramic plate.
Conversely, we have a fully metal plate as n tends to infinity.

Likewise, the coefficient of thermal expansion α is assumed to be of the
form:

α (z) = αc fc + αm fm = αcm fc + αm 6.12

while Poisson’s ratio is taken to be constant, ν(z) = ν0. Here αcm = αc – αm.
Next, we write the constitutive equations of the plate:



Analysis and design of plated structures152

σ
σ
σ

ε
ε
ε

σ
σ

ε
ε

1

2

6

11 12

12 22

66

1

2

6

4

5

44

55

4

5

 = 

( ) ( ) 0

( ) ( ) 0

0 0 ( )

 = 
( ) 0

0 ( )



























































Q z Q z

Q z Q z

Q z
Q z

Q z
6.13

where Qij are the material constants of the plate and are expressed as
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The substitution of Eq. 6.13 into Eq. 6.8 gives:
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where the material stiffness coefficients are given by:
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for (i, j = 1, 2, 6) and (i, j = 4, 5) respectively, and Q Q Qij ij ij
cm c m =  –  .

The thermal stresses are easily incorporated in the formulation. They can
be expressed as:
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where T(x, y, z) is the temperature increment from a reference state, which is
a known function. Finally, we define the thermal stress resultants as:
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(NT, MT, PT) = – 1
(1 –  )ν

× 
– /2

/2

h

h

∫  (Ecm fc + Em)(αcm fc + αm)T(x, y, z)(1, z, z2)dz 6.19

Note that because of the isotropy on each plane of the plate, the thermal
resultants corresponding to the x direction are the same as those of y, and
also the twisting thermal resultants become zero.

6.2.3 Stability analysis

The stability problem of the plate is based on the variational formulation.
This asserts that a static conservative system is in equilibrium if its total
potential energy is a minimum [23]. For the stability analysis, the generalized
displacement field is assumed to be in the incremental form as

U → UF + UI 6.20

where UF denotes a fundamental prebuckling solution and UI denotes the
incremental displacements (arbitrary perturbation of the equilibrium). Such
an increment is called a variation of U. The potential energy increment may
be written in the form:

∆Π Π Π ΠΣ = (  + ) –  ( ) =  1
!
 F I F

=1

4
U U U

n

n

n
δ 6.21

by using Taylor’s expansion.
The necessary condition for Π to be a relative minimum is that its first

variation δΠ vanishes ([24]. Consequently the sign of ∆Π is governed by the
sign of the second variation. Then, the critical load is defined as the smallest
load for which the second variation is no longer positive definite. The limit
of positive-definiteness for a continuous system can be expressed as:

δ [δ 2Π] = 0 6.22

which is known as the Trefftz criterion.
In this approach the fundamental solution (prebuckling state) is considered

as a pure membrane state where bending and rotations are neglected.
Consequently the total solution can be written as:
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where the superscripts ‘0’ and ‘1’ refer to the prebuckling and incremental
states, respectively. By substituting Eq. 6.23 into Eqs 6.5 and 6.6 and then
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computing the second variation of the incremental potential energy in Eq.
6.22, we can distinguish two different parts: one with only incremental terms
and the other with couple terms (incremental and fundamental). Thus

δ (δ 2ΠI) + δ (δ 2ΠFI) = 0 6.24

The second term of Eq. 6.24 can be expressed in terms of the prebuckling
stress resultants as:
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and taking the variation of this equation we arrive at the following expression
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in which Ni
0  denote the stress resultants in the prebuckling state.

Note that Eq. 6.26 comes from the von Kármán nonlinearity included in
the formulation and shown in Eq. 6.5. The resultant stability equations are
similar to those given in Eq. 6.7 in which the stress resultants are referred to
the incremental state ( , , , , )1 1 1 1 1N M P Q Ri i i i i , and N 0  is given by:
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6.2.4 Mechanical and thermal buckling

In this chapter, the buckling analysis is limited to cases in which the stress
resultants in the prebuckling state are constant.

Mechanical load

We assume that the only applied loads are the following in-plane forces:

N N1
0

1 cr = –α ,   N N2
0

2 cr = –α ,   N N6
0

3 cr = –α 6.28

Here, we contemplate three possible cases of mechanical buckling: uniaxial
compression (α1 = 1, α2 = α3 = 0), biaxial compression (α1 = 1, α2 = 1, α3

= 0) and the general case with shear loading (α1 = 1, α2 = 1, α3 = 1).

Thermal load

For this case we should first find the prebuckling stresses. It can be shown
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that for simply supported and fixed boundary conditions the fundamental
solution of the plate is trivial (see Meyers and Hyer [10] and Tauchert [8]).
Nevertheless, it experiences nonzero thermal stresses, namely:

N N1
0

cr
T = ,   N N2

0
cr
T = ,   N6

0  = 0 6.29

where

N E f E f T x y z z
h

h

cr
T

– /2

/2

cm c m cm c m= – 1
(1 – )

( + )( + ) ( , , )dν α α∫
6.30

The following three cases are considered for thermal buckling: uniform
temperature rise, linear temperature change across the thickness and nonlinear
temperature change across the thickness. For the first case the initial temperature
of the plate is assumed to be Ti. Next, the temperature is raised to the final
value Tf such that the plate buckles. Then, the temperature distribution can
be written as:

T(z) = Tf – Ti = Tcr 6.31

For the second case the temperature distribution is expressed as:

T z T z
h

T( ) =  + 1
2

 – cr m( ) 6.32

where Tcr = Tc – Tm. Finally for nonlinear temperature change across the
thickness, the temperature distribution is obtained by solving a simple steady
state heat transfer equation through the thickness of the plate. That is:

– d
d

( )
d ( )

d
 = 0,

(– /2) = ,   ( /2) = m c

z
K z

T z
z

T h T T h T












6.33

where K(z) is the thermal conductivity of the plate, which is expressed as:

K z K f K

K K K

( ) =  + 

=  –  
cm c m

cm c m 6.34

The subscripts m and c refer to the metal and ceramic respectively. The
solution of Eq. 6.33 can be obtained by polynomial series. Taking the first
seven terms of the series [13, 14], the thermal distribution of the plate is
given by:

T z T
T
D jn

K
K

z
hm j

j jn

( ) = +  1
(  + 1)

–  + 1
2

cr

=0

5
cm

m

( +1)

Σ 



 ( ) 6.35

where Tcr = Tc – Tm and
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D
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Kj
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(  + 1)
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5
cm

m
Σ 



 6.36

Thermal distributions given in Eqs 6.31, 6.32 and 6.35 are then substituted
in Eqs 6.30 and 6.29. The problem is reduced to find the smaller eigenvalue
(Ncr or Tcr) that satisfies Eq. 6.24.

6.2.5 Finite element implementation

This section is devoted to the development of a displacement finite element
model based on the principle of virtual work. As we know, the displacement
field requires only C0-continuity in all its variables. The number of variables
to be interpolated in the finite element model is seven for the third order
shear deformation theory (TSDT) and five for the FSDT. The finite element
equations are obtained by discretizing the incremental displacements and
rotations. Consequently:

 u u N x y
j

m

j j =  ( , )
=1
Σ , v v N x y

j

m

j j =  ( , )
=1
Σ , w w N x y

j

m

j j =  ( , )
=1
Σ

 ϕ ϕ1 =1
1 =  ( , )Σ

j

m

j jN x y ,   ϕ ϕ2 =1
2 =  ( , )Σ

j

m

j jN x y

ψ ψ1 =1
1 =  ( , )Σ

j

m

j jN x y ,   ψ ψ2 =1
2 =  ( , )Σ

j

m

j jN x y 6.37

where m is the number of nodes of the element, Nj(x, y) is the Lagrange
interpolation function at the node j and (uj, vj, wj, ϕ ϕ ψ ψj j j j

1 2 1 2, , ,  denote
the nodal values of the displacements. The Lagrange polynomials are given
by:

L

L i p

i k
k i

p
k

i k

i k
k i

p
k

i k

1
=1

+1

2
=1

+1

( ) =  
(  –  )
(  –  )

,

( ) =  
(  –  )
(  –  )

,    = 1, . . . ,  + 1

ξ ξ ξ
ξ ξ

η η η
η η

Π

Π

≠

≠

6.38

where p is the polynomial degree. Finally, the shape functions are of the
form:

N L Lk i j = ( ) ( )1 2ξ η ,   k = (j – 1)(p + 1) + i 6.39

In this paper, a family of high-order Lagrange interpolations is developed.
This kind of element is seen to be free of locking. Basically we use elements
labeled Q25 and Q81 (see Fig. 6.2). Table 6.1 shows the family of high-order
Lagrange elements and the corresponding number of degrees of freedom for
the FSDT and TSDT.
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Substituting the interpolants 6.37 into Eq. 6.24 we obtain the following
matrix equation:

[K]{∆} = λ[Kg]{∆} 6.40

where [K] is the stiffness matrix, λ is the eigenvalue (Ncr or Tcr), and [Kg] is
the geometric stiffness matrix obtained from the variational equation 6.26.
Since we are analyzing the critical mechanical or thermal buckling (i.e. the
smallest eigenvalue), Eq. 6.40 can be solved by the inverse iteration method
which is suitable for positive definite stiffness matrices.

6.3 Numerical results

In this section, some numerical examples obtained with the displacement
finite element formulation for stability problems are presented. The mechanical
and thermal buckling together with the FSDT and TSDT formulations are
evaluated by solving several problems for isotropic, composite and functionally
graded plates.

6.3.1 Comparisons with other formulations

In the present study, Q25 and Q81 elements with five and seven degrees of
freedom per node (for the FSDT and TSDT, respectively) were utilized. The

η

21 22 23 24 25

16 17 18 19 20

11 12 13 14 15

6 7      8 9 10

1 2      3 4 5
Q25 (p = 4)

ξ ξ

η

75 77 79 81

1 3 5 7 9
Q81 (p = 8)

73

55

37

19

41

63

45

27

6.2 Basic p-elements used in the present formulation.

Table 6.1 Number of degrees of freedom per element for different
p levels

Element p level FSDT (DOF) TSDT (DOF)

Q4 1 20 28
Q9 2 45 63
Q25 4 125 175
Q81 8 405 567
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flexibility of these elements (using polynomials of fourth and eighth degree)
mitigates any possible shear locking in the numerical computation. Therefore,
no reduced integration is used in the evaluation of the stiffness coefficients
(i.e. full Gauss integration rule is employed in all examples). Also, regular
meshes of 4 × 4 Q25 and 2 × 2 Q81 elements were chosen after convergence
studies in a full plate.

First, Table 6.2 contains the dimensionless critical loads for uniaxial,
biaxial and biaxial with shear loading for symmetric cross-ply rectangular
plates (0°/90°/0°) with two plate aspect ratios, a/b = 1 and 2 and for side-to-
thickness ratio b/h = 10. Our results are compared with 3D layer-wise FEM
results of Setoodeh and Karami [25] and the analytical solutions based on
FSDT by Xiang et al. [26] (also see Reddy [17]). The following lamina
properties are used in the numerical examples:

E1/E2 = 40,   G13 = G12 = 0.6E2, G23 = 0.5E2, ν12 = 0.25

Table 6.2 Comparison of the dimensionless critical load for symmetric
three cross-ply laminated plates under uniaxial and biaxial compression,
and shear loading (4 × 4 Q25 full integration)

a/b Theory     N cr  = Ncrb2/E2h3

Uniaxial Biaxial Shear

1 LW3D 22.2347 9.9424 8.8184
FSDT 22.3151 10.2024 –
Present TSDT 22.1164 9.9330 8.7369
Present FSDT 22.3151 10.2024 8.9672

2 LW3D 16.4247 3.2694 3.1317
FSDT 16.4340 3.2868 –
Present TSDT 16.2986 3.2597 3.1285
Present FSDT 16.4340 3.2868 3.1579

The simply-supported boundary conditions used are

At x = ± a/2   v = w = ϕ2 = ψ2 = 0

At y = ± b/2   u = w = ϕ1 = ψ1 = 0

The results obtained with the present formulation are in close agreement
with those found in the literature.

Numerical results for the critical loads of antisymmetric cross-ply laminated
square plates (0°/90°) are presented in Tables 6.3 and 6.4. In Table 6.3 we
show results of the uniaxial buckling load in the y direction under different
types of boundary conditions. Again, comparisons are made with the 3D
layer-wise results of Setoodeh and Karamy [25] and the Lévy-type solutions
of Reddy and Khdeir [27]. The material properties are the same as the last
example and the following boundary conditions are used in the analysis
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At x = ± a/2   v = w = ϕ2 = ψ2 = 0 (SS)

At x = ± a/2   u = v = w = ϕ1 = ϕ2 = ψ1 = ψ2 = 0 (CC)

At x = ± a/2 Free (FF)

At y = ± b/2   u = w = ϕ1 = ψ1 = 0 (SS)

A comparison of the present results for critical loads with other formulations
is presented in Table 6.4. A uniaxial compressive load in the x direction was
applied to laminated square plates (ratio a/h = 10) with different degrees of
the orthotropy (material properties given above) and simply supported boundary
conditions. As it was pointed out by Setoodeh, the lower bound of the critical
load corresponds to the 3D solutions of Noor [28]. In both cases a mesh of
2 × 2 Q81 elements was used in the analysis. The present results are in
satisfactory agreement with the corresponding 3D analytical solutions of

Table 6.3 Comparison of the uniaxial critical load for antisymmetric two
cross-ply laminated square plates for various boundary conditions (2 × 2
Q81 full integration)

h/a Theory     N cr  = Ncrb2/E2h3

SSSS SCSC SFSF

0.1 LW3D 11.2560 19.5762 4.7662
TSDT 11.562 21.464 4.940
FSDT 11.353 20.067 4.851
Present TSDT 11.5193 21.0224 4.9185
Present FSDT 11.3526 20.0669 4.8507

0.2 LW3D 8.0732 8.9584 3.4867
TSDT 8.769 11.490 3.905
FSDT 8.277 9.757 3.682
Present TSDT 8.6514 10.7516 3.8449
Present FSDT 8.2773 9.7566 3.6817

Table 6.4 Comparison of the uniaxial critical load for antisymmetric
two cross-ply laminated square plates for various ratios E1/E2 (2 × 2
Q81 full integration)

Theory     N cr  = Ncrb2/E2h3

E1/E2 = 40 E1/E2 = 30 E1/E2 = 20

Noor 10.817 9.3746 7.8196
LW3D 11.2382 9.6995 8.0455
TSDT 11.563 9.8695 8.1151
FSDT 11.353 9.7347 8.0423
Present TSDT 11.5193 9.8454 8.1049
Present FSDT 11.3526 9.7347 8.0423
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Noor [28], the 3D layer-wise FEM results [25] and the analytical Lévy
solutions [27].

The next two examples deal with thermal buckling of isotropic and
functionally graded plates. The critical temperatures of simply supported
and clamped isotropic plates under uniform temperature rise are shown in
Table 6.5. They are verified against the 3D finite element formulation of Na
and Kim [16] and the finite element results of Thangaratnam et al. [29]. The
coefficient of thermal expansion and Poisson’s ratio used here are given by

α = 2 ×106(1/K),   ν = 0.3

Table 6.5 Comparison of the critical temperature for isotropic square plates
subjected to uniform temperature rise (4 × 4 Q25 full integration)

Theory Tcr(K)

Simply supported Clamped

Na and Kim [16] – 167.73
Thangaratnam et al. [29] 63.33 167.70
Present TSDT 63.231 167.503
Present FSDT 63.231 167.502

with a ratio S = a/h = 100. The results show to be in good agreement with the
other numerical solutions. Finally, Table 6.6 contains the critical change of
temperatures for thin and thick FGM plates under nonlinear temperature rise
across the thickness. The results are given for various aspect ratios a/b and
values of volume fraction exponent n. Young’s modulus, the thermal
conductivity, the coefficient of thermal expansion and Poisson’s ratio for
alumina powder (ceramic material) and aluminum are:

Ec = 380 GPa, Kc = 10.4 W/mK, αc = 7.4 × 10–6 (1/°C), νc = 0.3

Em = 70 GPa, Km = 204 W/mK, αm = 23 × 10–6 (1/°C), νm = 0.3

respectively. We consider a temperature rise of Tm = 5 °C in the metal-rich
surface of the plate. The present results are compared with analytical results
of Lanhe [14] using the FSDT and Javaheri and Eslami [13] using the classical
plate theory. It is observed that the critical temperature increases as the plate
aspect ratio increases. For thin plates the present results are in good agreement
with those found in the literature. However, for thick plates (a/h = 10) the
differences are significant with the Javaheri and Eslami [13] formulation.
This is due to the fact that the Javahari and Eslami formulation does not
account for the transverse shear deformation and the shear deformation cannot
be neglected in thick composite plates. We also note a small difference
between the results of the present FSDT and TSDT formulations. The difference
increases with the aspect ratio a/b and for the volume fraction index n that
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is not zero or infinity. This difference is attributed to the fact that the TSDT
includes higher-order stiffness terms that seem to have an effect on the
solution when n ≠ 0 and n ≠ ∞.

6.3.2 Additional parametric studies

Mechanical buckling

The next few examples deal with simply supported FGM plates using the
TSDT. A mesh of 4 × 4 Q25 (full integration) in a full computational domain
is utilized in all subsequent results. We present solutions for buckling of

Table 6.6 Comparison of the critical temperature of FGM plates under nonlinear
temperature rise (4 × 4 Q25 full integration)

n Theory a/b = 1 a/b = 2 a/b = 3 a/b = 4 a/b = 5

Tcr(a/h = 100, Tm = 5°)
0.0 Lanhe [14] 24.1622 75.3952 160.5901 279.5281 431.8769

Javaheri and 24.1982 75.4955 160.9910 280.6848 434.5767
Eslami [13]
Present TSDT 24.1790 75.3752 160.5104 279.2983 431.3415
Present FSDT 24.1790 75.3752 160.5104 279.2981 431.3412

1.0 Lanhe [14] 7.6554 38.6328 90.1801 162.1757 254.4500
Javaheri and 7.6636 38.6838 90.3843 162.7649 255.8247
Eslami [13]
Present TSDT 7.6538 38.6226 90.1395 162.0586 254.1769
Present FSDT 7.6538 38.6226 90.1395 162.0585 254.1768

5.0 Lanhe [14] 4.8699 28.2918 67.2531 121.6415 191.3010
Javaheri and 4.8774 28.3389 67.4414 122.1849 192.5693
Eslami [13]
Present TSDT 4.8665 28.2705 67.1683 121.3975 190.7334
Present FSDT 4.8684 28.2824 67.2155 121.5334 191.0494

Tcr(a/h = 10, Tm = 5°)
0.0 Lanhe [14] 3256.310 7640.640 13853.53 20760.85 27586.74

Javaheri and 3409.821 8539.554 17089.10 29058.47 44447.67
Eslami [13]
Present TSDT 3227.363 7484.611 13337.61 19674.28 25731.38
Present FSDT 3227.248 7483.072 13327.95 19639.08 25641.06

1.0 Lanhe [14] 1976.297 4691.69 8619.42 13141.43 17740.25
Javaheri and 2055.00 5157.03 10327.07 17565.13 26871.21
Eslami [13]
Present TSDT 1961.329 4609.313 8348.69 12530.97 16663.80
Present FSDT 1961.269 4608.498 8343.41 12511.06 16611.01

5.0 Lanhe [14] 1481.30 3478.32 6288.94 9415.58 12481.59
Javaheri and 1553.34 3899.48 7809.73 13284.08 20322.53
Eslami [13]
Present TSDT 1450.99 3317.92 5789.28 8352.37 10707.20
Present FSDT 1467.68 3404.76 6053.10 8897.18 11587.11
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FGM plates under mechanical loads. Two combinations of materials (metal–
ceramic) are used here: aluminum–alumina (with properties given earlier)
and aluminum–zirconia. The material properties of the zirconia are

Ec = 151 GPa,   Kc = 2.09 W/mK, αc = 10 × 10–6(1/°C), νc = 0.3

Figure 6.3 and 6.4 show the dimensionless critical loads of functionally
graded ceramic–metal square plates under uniaxial compression versus the
side-to-thickness ratio S. Curves are plotted for different volume fraction
exponents n. The following dimensionless critical load parameter is employed:

N
N b
E h

cr
cr

2

m
3 = ,   S a

h
 = 
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6.3 Effect of the ratio a/h on the critical buckling load of FGM square
plates under uniaxial compression (aluminum–alumina).

As expected, the critical load increases when the volume fraction exponent
decreases since ceramic has a higher Young’s modulus than metal. It is also
noticed that the critical load tends to asymptotically reach some value when
the ratio S increases. For S equal to 20 we can expect constant dimensionless
critical load.

The effect of the volume fraction exponent on the critical buckling loads
of FGM square plates under uniaxial compression is illustrated in Fig. 6.5
and 6.6 for two different ceramic–metal materials. The present FSDT and
TSDT are compared for ratios S = 5, 10, 100. In all results the FSDT gives
smaller critical loads than the TSDT. The difference between both formulations
increases for FGM plates. However, for fully ceramic or fully metal plates
the difference is negligible.
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Thermal buckling

In the following examples we present results for the critical buckling
temperature of FGM square plates with simply-supported boundary conditions
and aluminum–alumina material. Figure 6.7 contains the buckling temperature
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6.4 Effect of the ratio a/h on the critical buckling load of FGM square
plates under uniaxial compression (aluminum–zirconia).
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6.5 Effect of the volume fraction exponent on the critical buckling
load of FGM square plates under uniaxial compression (aluminum–
alumina).
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under uniform temperature rise versus the ratio S for different values of the
volume fraction exponent n. It is seen that the critical temperature decreases
gradually when the ratio S increases. For values of S greater than 50 we can
expect the same constant response for the critical temperature. Figure 6.8

TSDT (S = 5)

TSDT (S = 10)

TSDT (S = 100)

FSDT (S = 5)

FSDT (S = 10)

FSDT (S = 100)

0 2 4 6 8 10
n

8.0

7.5

7.0

6.5

6.0

5.5

5.0

4.5

4.0

3.5

3.0

    N
cr

6.6 Effect of the volume fraction exponent on the critical buckling
load of FGM square plates under uniaxial compression (aluminum–
zirconia).
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6.7 Effect of the ratio a/h on the critical buckling temperature of FGM
square plates under uniform temperature rise (aluminum–alumina).
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illustrates the effect of the volume fraction exponent on the critical buckling
temperature of FGM plates under uniform temperature rise. Small changes
in the critical temperature are observed for volume fraction exponent n greater
than 2. Again, for thick FGM plates we note slight differences in the results
for the FSDT and TSDT.

Figures 6.9 and 6.10 show the critical buckling temperature of FGM
plates under linear temperature change across the thickness, while Figs 6.11
and 6.12 present the critical temperature under nonlinear temperature change
across the thickness. The temperature rises 5 °C in the metal-rich surface of
the plate. Similarly to the case of the uniform temperature raise, the critical
temperature for values of S greater than 50 decreases very slowly (Figs 6.9
and 6.11). Finally, we note again that thick, homogeneous plates show smaller
differences in the results of the FSDT and TSDT (Figs 6.10 and 6.12) than
for FGM plates.

6.4 Concluding remarks

In the present study, the mechanical and thermal buckling of functionally
graded plates has been examined, using the third-order deformation theory.
The formulation consists of seven independent variables. Results of the first-
order theory also have been included here. The gradation of properties through
the thickness was assumed to be of the power law type, yet, material properties
are considered temperature-independent. Analytical expressions for material
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6.8 Effect of the volume fraction exponent on the critical buckling
temperature of FGM square plates under uniform temperature rise
(aluminum–alumina).
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6.9 Effect of the ratio a/h on the critical buckling temperature of FGM
square plates under linear temperature change across the thickness
(aluminum–alumina).
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6.10 Effect of the volume fraction exponent on the critical buckling
temperature of FGM square plates under linear temperature change
across the thickness (aluminum–alumina).
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6.11 Effect of the ratio a/h on the critical buckling temperature of
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6.12 Effect of the volume fraction exponent on the critical buckling
temperature of FGM square plates under nonlinear temperature
change across the thickness (aluminum–alumina).
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stiffness coefficients of the functionally graded plate were employed. A
displacement finite element model for stability problems was derived with
C° -continuity elements and high-order interpolation degrees. It is known
that these types of element mitigate shear locking observed in shear deformable
theories. Comparison of our results with others found in the literature validates
the present formulation. As expected, it is found that the critical load or
critical temperature of FGM plates lies between that of the fully ceramic and
fully metal plates. It is noticed that the critical temperature change decreases
when the volume fraction exponent n increases. The same response is seen
when the ratio a/h increases. The effect of the shear deformation is significant
(see Table 6.6), especially for thick plates, hence it cannot be neglected.
Finally, differences in the results of the TSDT and FSDT are minor but more
significant for FGM plates than those of homogeneous plates (i.e. fully
ceramic or fully metal plates).
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7.1 Introduction

Designs of airframes for high-speed flight and spacecraft structures have to
consider carefully the effect of the thermal environment on structural and
material behavior. The plate structures are often subjected to severe thermal
environments during launch and re-entry and may have significant and
unavoidable initial geometric imperfections. It is essential to understand
the problems associated with the determination of the buckling and
postbuckling of laminated plates under such environmental conditions
for a better understanding and exploitation of a plate’s load-carrying
capacity.

Thornton has presented his works on thermal buckling of plates and shells
(Thornton 1993) and Noor and Burton (1992) described computational models
for high-temperature, multilayered composite plates and shells. When the
thermal load exceeds the plate’s critical buckling temperature, nonlinear
strain-displacement relations have to be employed. As a result, a set of
nonlinear equations will appear no matter what kind of analysis method is
used. Huang and Tauchert (1988) and Meyers and Hyer (1991) investigated
the thermal buckling and postbuckling response of antisymmetric angle-ply
and symmetric laminated plates, respectively, subjected to uniform temperature
rise using the Rayleigh–Ritz method. They found that as the temperature
increases, the out-of-plane displacements increase even for small deflections.
Singh and Rao (1993) also studied thermal postbuckling response of
antisymmetric cross-ply laminated plates subjected to uniform temperature
rise using the Rayleigh–Ritz method. Chen and Chen (1989) calculated the
thermal postbuckling response of laminated plates subjected to tent-like
temperature field by the finite element method (FEM). Shi et al. (1999)
employed finite elements in modal coordinates to investigate the thermal
postbuckling behavior of laminated plates subjected to uniform temperature
rise. They confirmed that the postbuckling deflection was not given by any
one of the linear buckling modes but by a combination of them. These

7
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studies assumed only perfectly flat initial configurations, and initial
geometric imperfection of the plate was usually not accounted for. Shen and
Lin (1995) provided the thermal postbuckling analysis for antisymmetric
angle-ply and symmetric cross-ply laminated plates subjected to uniform
and one-way parabolic temperature field. An analytical approach using a
mixed Galerkin-perturbation method was employed. Initial imperfections of
the plate were considered in order to study their influence on the thermal
postbuckling response of the plate subjected to thermal loading. This work
was then extended to the case of laminated plates resting on Pasternak-
type and softening nonlinear elastic foundations by Shen and Williams
(1997a,b).

All the above results are for thin plates based on the classical laminated
plate theory, that is, the theory based on the Kirchhoff–Love hypothesis. It is
well known that this is adequate for plates when the thickness to side ratio
is very small. Owing to low transverse shear moduli relative to the in-plane
Young’s moduli, transverse shear deformations are even more pronounced in
composite laminates. Moreover, the lay-up of loaded laminates may play a
much more important role for thick plates than for thin ones. As a result, the
analysis of moderately thick laminated plates requires the use of shear
deformation plate theory. Among those, Bhimaraddi and Chandrashekhara
(1993) investigated the nonlinear response, including postbuckling response,
of antisymmetric angle-ply laminated plates subjected to uniform temperature
rise based on a parabolic shear deformation plate theory. In their analysis,
since the out-of-plane deflection was assumed to have the form as the linear
buckling mode, the solutions cannot produce more accurate results. Shen
(1997a,1999) provided the thermal postbuckling analysis for antisymmetric
angle-ply and symmetric cross-ply laminated plates with or without elastic
foundations subjected to uniform and non-uniform tent-like or two-way
parabolic temperature field based on a higher-order shear deformation plate
theory. Effects of foundation stiffness, thermal load ratio, transverse shear
deformation, plate aspect ratio, total number of plies, fiber orientation, and
initial geometric imperfections were studied parametrically.

In the above studies the boundary conditions are considered to be simply
supported (SSSS) and/or clamped (CCCC). The thermal postbuckling analysis
for antisymmetric angle-ply laminated plates with combined simply supported
and clamped boundary conditions, e.g. CCCS, CSCS, and CSSS, was presented
by Nath and Shukla (2001) using Chebyshev polynomials. Lee and Lee
(1997) gave the numerical analysis of thermal postbuckling and nature vibration
of thermally postbuckled symmetric angle-ply laminated plates subjected to
uniform temperature rise. Ganapathi and Touratier (1997) calculated thermal
postbuckling response of symmetric and antisymmetric, cross-ply and angle-
ply laminated plates subjected to tent-like temperature field. In these last two
analyses, nonlinear finite element equations based on first order shear
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deformation plate theory were formulated. Singh et al. (1994) and Thankam
et al. (2003) observed the existence of secondary instability while investigating
the thermal postbuckling characteristics of unsymmetric laminated plates
using the finite element method based on a parabolic shear deformation plate
theory. However, Leissa (1986) and Qatu and Leissa (1993) have proved that
buckling may always occur for symmetric laminated plates with arbitrary in-
plane loading and boundary conditions. It was also proved that for unsymmetric
cross-ply laminated plates with all four edges simply supported, the bifurcation
buckling did not exist due to the stretching/bending coupling effect. Since
the solutions of Singh and Rao (1993), Ganapathi and Touratier (1997),
Singh et al. (1994), and Thankam et al. (2003) do not satisfy equilibrium
equations, the results given by them for perfect SSSS unsymmetric cross-ply
laminated plates are still questionable.

The postbuckling response of laminated thin plates subjected to combined
mechanical and thermal loading has been reported by Birman and Bert (1993),
Shen and Williams (1996), and Shen et al. (1996). Noor and Peters (1992)
and Noor et al. (1993) calculated buckling loads and postbuckling load-
deflection curves for perfect, symmetrically laminated plates subjected to
combined axial load and a uniform temperature rise. The analysis used a
mixed finite element method and it was based on the first order shear
deformation plate theory. Librescu and Souza (1993) and Librescu et al.
(1995) studied the postbuckling response of imperfect plates, symmetrically
laminated of transversely isotropic material layers, exposed to a stationary
temperature field and in-plane compressive edge loads. An analytical approach
using the Galerkin method and based on the first order or higher-order shear
deformation plate theory was employed. This work is then extended to the
case of laminated plates resting on softening nonlinear elastic foundations
by Lin and Librescu (1998). Argyris and Tenek (1995) calculated the
postbuckling response of imperfect, symmetric laminated plates under the
combined action of both mechanical load and temperature. In the analytical
approach the natural mode method was employed. The postbuckling of
thermally stressed symmetric laminated plates was then examined by Tenek
(2001). It is found that the (0/90)2S symmetric cross-ply laminated plate is
very sensitive to the amount of initial thermal stressing, whereas the (±45/0/
90)S quasi-isotropic laminated plate exhibits less sensitivity to initial thermal
stressing. Shen (1998, 2000a) provided the thermomechanical postbuckling
analysis for antisymmetric angle-ply and symmetric cross-ply laminated plates
with or without elastic foundations subjected to combined action of in-plane
compressive loads and a uniform temperature rise. The two cases of thermal
postbuckling of initially compressed plates and of compressive postbuckling
of initially heated plates were considered and the formulations based on a
higher-order shear deformation plate theory. Then thermal postbuckling analysis
for antisymmetric angle-ply and symmetric cross-ply laminated plates with
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or without elastic foundations subjected to a uniform lateral pressure and
non-uniform tent-like or two-way parabolic temperature field was presented
by Shen (2000b). It is found that in the case of initially pressurized plates,
the thermal deflections deviate greatly from those of a plate without any
lateral pressure, and at higher postbuckling loads the net deflection for preloaded
plates is smaller than that for a plate without any lateral pressure. The
postbuckling analysis for angle-ply and cross-ply laminated plates subjected
to in-plane edge compressive loads and a linear temperature change across
the plate thickness under various boundary conditions was presented by
Shukla and Nath (2001, 2002) using Chebyshev polynomials. The finite
element equation was formulated based on the first order shear deformation
plate theory.

One of the recent advances in material and structural engineering is in the
field of smart structures which incorporates adaptive materials. Oh et al.
(2000, 2001) studied the nonlinear vibration and thermal postbuckling of
piezolaminated plates with fully covered or partially distributed actuators
subjected to thermal and electrical loads. In their analysis, nonlinear finite
element equations based on layerwise displacement theory were formulated.
Shen (2001a,b) presented the postbuckling and thermal postbuckling response
of laminated plates with surface-bonded or embedded piezoelectric layers
subjected to the combined action of mechanical, electric, and thermal loads.
It was concluded that the minus control voltages increase the buckling
temperature and decrease the postbuckled deflection at the same temperature
rise, whereas the plus control voltages decrease the buckling temperature
and induce larger postbuckled deflections. Functionally graded materials
(FGMs) are microscopically inhomogeneous composites usually made from
a mixture of metals and ceramics. Recently, Liew et al. (2003) studied
compressive postbuckling and thermal postbuckling behavior of FGM plates
with two opposite edges clamped and with surface-bonded piezoelectric
actuators subjected to thermo-electro-mechanical loads. They confirmed that
the FGM plates with simply supported edges, even for the FGM hybrid plate
which are not fully clamped, have no bifurcation buckling loads.

In the references cited above, the material properties of the composites
were assumed to be independent of temperature. Chen and Chen (1991)
calculated the thermal postbuckling load-deflection curves for antisymmetric
angle-ply laminated plates having linear variation of mechanical and thermal
properties with temperature. In their analysis, the finite element method was
used based on the classical laminated plate theory. Singh et al. (2001) presented
thermal postbuckling response of symmetric angle-ply laminated plates
subjected to uniform and linearly varying temperature rise through the thickness
by using shear deformable finite element. In Chen and Chen (1991) and
Singh et al. (2001) the results were only for perfect plates. Shen (2001c)
provided thermal postbuckling analysis for perfect and imperfect shear
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deformable laminated plates resting on elastic foundations. Temperature-
dependent thermoelastic properties of the plates were considered and their
effects on the deflection were discussed. The results reveal that the buckling
temperature and thermal postbuckling load-deflection curves are always
decreased by temperature dependency. The effects of hygrothermal condition
on the postbuckling of shear deformable laminated plates were determined
by Shen (2001d). In the analysis the material properties are considered to be
dependent on temperature and moisture, which are given explicitly in terms
of the fiber and matrix properties and the fiber volume ratio.

This chapter describes the thermal buckling and postbuckling of laminated
plates subjected to uniform and/or non-uniform temperature rise or combined
loadings. The material properties are assumed to be temperature dependent.
The governing equations of the plate are based on Reddy’s higher-order
shear deformation plate theory that includes thermal effects. All four edges
of the plate are assumed to be simply supported with no in-plane displacement.
A two-step perturbation technique is employed to determine buckling
temperature and postbuckling equilibrium paths. The initial geometric
imperfection of the plate is taken into account but, for simplicity, its form is
assumed to be the same as the initial buckling mode of the plate.

7.2 Governing equations

Consider a rectangular plate of length a, width b and constant thickness t,
consisting of N plies. Each ply may be made of different materials. The plate
is assumed to be geometrically imperfect, and is subjected to the combined
action of mechanical, thermal, and electrical loads. As usual, the coordinate
system has its origin at the corner of the plate on the mid-plane. Let
U V W,  and  be the plate displacements parallel to a right-hand set of axes
(X, Y, Z), where X is longitudinal and Z is perpendicular to the plate. Ψ Ψx y and 
are the mid-plane rotations of the normal about the Y and X axes, respectively.
Denoting the initial geometric imperfection by W X Y W X Y*( , ), let ( , )  be
the additional deflection and F (X, Y) be the stress function for the stress
resultants defined by N F N Fx yy y xx = ,  = , ,  and N Fxy xy = – ,, where a comma
denotes partial differentiation with respect to the corresponding coordinates.

Reddy (1984a) developed a simple higher-order shear deformation plate
theory, in which the transverse shear strains are assumed to be parabolically
distributed across the plate thickness. The theory is simple in the sense that
it contains the same dependent unknowns as in the first order shear deformation
theory, and no shear correction factors are required. Based on Reddy’s higher-
order shear deformation theory with a von Kármán-type of kinematic
nonlinearity (Reddy 1984b) and including thermal effects, Shen (1997b)
derived a set of general von Kármán-type equations which can be expressed
in terms of a stress function F ,  two rotations Ψx  and Ψy , and a transverse
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displacement W ,  along with the initial geometric imperfection W *. They
are

˜ ˜ ˜ ˜L W L L L Fx y11 12 13 14( ) – ( ) – ( ) + ( ) Ψ Ψ

    – ( ) –  ( ) = (  + *, )15 16
˜ ˜ ˜L N L M L W W FT T 7.1

˜ ˜ ˜ ˜ ˜L F L L L W L Nx y
T

21 22 23 24 25( ) + ( ) + ( ) –  ( ) –  ( )Ψ Ψ

= – 1
2

(  + 2 *, )L̃ W W W 7.2

˜ ˜ ˜L W L Lx y31 32 33( ) + ( ) + ( ) Ψ Ψ

    + ( ) –  ( ) –  ( ) = 034 35 36
˜ ˜ ˜L F L N L ST T 7.3

˜ ˜ ˜ ˜L W L L L Fx y41 42 43 44( ) + ( ) + ( ) + ( )Ψ Ψ

    –  ( ) –  ( ) = 045 46
˜ ˜L N L ST T 7.4

in which all linear operators L̃ij (⋅) and the nonlinear operator L̃  (·) are
defined as in Shen (1997b,1999), and given in detail in Appendix A.

Three cases of thermal loading are considered, i.e.
Case 1, uniform temperature field, defined by:

T(X, Y, Z) = T0 (constant) 7.5a

Case 2, non-uniform tent-like temperature field, defined by:
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Case 3, non-uniform parabolic temperature field, defined by:
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in which T0 and T1 denote the temperature amplitude and gradient,
respectively.

The forces and moments caused by elevated temperature are defined
by:
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where α11 and α22 are the thermal expansion coefficients measured in the
longitudinal and transverse directions, respectively, and Qij  are the transformed
elastic constants, defined by:
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where
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E11, E22, G12, G13, G23, ν12 and ν21 have their usual meanings, and

c = cos θ,   s = sin θ 7.8d



Thermal buckling and postbuckling of laminated plates 177

where θ is the lamination angle with respect to the plate X-axis.
All four edges of the plate are assumed to be simply supported with no in-

plane displacements. The boundary conditions are:
X = 0, a:

W y =  = 0Ψ 7.9a

U  = 0 7.9b

N M Pxy x x = 0,    =  = 0 7.9c

Y = 0, b:

W x =  = 0Ψ 7.9d

V  = 0 7.9e

N M Pxy y y = 0,  =  = 0 7.9f

where Mx  and My  are the bending moments and P Px y and  are the higher-
order moments as defined in Reddy (1984a, b).

The condition expressing the immovability condition, U X a = 0 (on  = 0, )
and V  = 0  (on Y = 0, b), is fulfilled on the average sense as
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In the above equations and what follows, the reduced stiffness matrices
[ ],*Ai j  [ ],[ ], [ ], [ ]* * * *B D E Fi j i j i j i j  and [ ]( ,  = 1, 2, 6)*H i ji j  are functions of
temperature, determined through relationships (Shen 1997b,1999)

A* = A–1, B* = –A–1B, D* = D – BA–1B, E* = –A–1E,

F* = F – EA–1B, H* = H – EA–1E 7.11

where Aij, Bij etc., are the plate stiffnesses, defined in the standard way, i.e.
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7.3 Analytical method and asymptotic solutions

Perturbation technique is a powerful tool for solving nonlinear problems,
e.g. nonlinear bending, postbuckling, and nonlinear vibration of shear
deformable laminated plates (Shen 1997a, 1998, 1999, 2000a,b,c, 2002, 2004,
Huang and Shen 2004, Huang et al. 2004). Before proceeding, it is convenient
first to define the following dimensionless quantities:

x = πX/a, y = πY/b, β = a/b,

(W, W*) = ( , *)/[ ]11
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Let λT = α0Ti, where i = 0 for uniform temperature distribution and i = 1
otherwise, and let

α11 = a11α0, α22 = a22α0 7.14

where α0 is an arbitrary reference value.
In Eq. (7.13), A A B Ex y xy xy

T T T T, ,  and  are defined by:

( , ) = –  ( , ) dT
=1

–1

A A A A Zx y
T

k t

t

x y k
k

k

Σ ∫ 7.15a

( , ) = –  ( , )( ) dT T
=1

3

–1

B E Z Z A Zxy xy k t

t

xy k
k

k

Σ ∫ 7.15b

The nonlinear Eqs. (7.1)–(7.4) may then be written in dimensionless form
as:

L11(W) – L12(Ψx) – L13(Ψy) + γ14L14(F)

= γ14β2L(W + W*, F) 7.16

L21(F) + γ24L22(Ψx) + γ24L23(Ψy) – γ24L24(W)

+  = – 1
2

(  + 2 *, )1 24
2C L W W Wγ β 7.17

L31(W) + L32(Ψx) + L33(Ψy) + γ14L34(F) + C2 = 0 7.18

L41(W) + L42(Ψx) + L43(Ψy) + γ14L44(F) = 0 7.19

where the nondimensional linear operators Lij(⋅) and the nonlinear operator
L(⋅) are defined as in Appendix B.

The boundary conditions expressed by Eq. (7.9) become:
x = 0, π:

W = Ψy = 0 7.20a

δx = 0 7.20b
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F,xy = Mx = Px = 0 7.20c

y = 0, π :

W = Ψx = 0 7.20d

δy = 0 7.20e

F,xy = My = Py = 0 7.20f

in which:
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In Eq. (7.21) and what follows, γijk are defined as in Appendix B.
Now we are in a position to solve Eqs. (7.16)–(7.19) with boundary

conditions (7.20). A two-step perturbation technique is developed, for which
the small perturbation parameter has no physical meaning at the first step,
and is then replaced by a dimensionless deflection at the second step. The
essence of this procedure, in the present case, is to assume that:

W x y w x y F x y f x y
j

j
j j

j
j( , , ) =  ( , ), ( , , ) =  ( , )

=1 =0
ε ε ε εΣ Σ

Ψ Ψx j

j
x j y j

j
yjx y x y x y x y( , , ) =  ( , ), ( , , ) =  ( , )

=1 =1
ε ε ψ ε ε ψΣ Σ 7.22

where ε is a small perturbation parameter and the first term of wj (x, y) is
assumed to have the form:

w x y A mx ny1 11
(1)( , ) =  sin  sin 7.23

and the initial geometric imperfection is assumed to have a similar form:

W x y a*( , , ) = 11
*ε ε  sin mx sin ny = εµA11

(1)  sin mx sin ny 7.24

where µ = /11
*

11
(1)a A  is the imperfection parameter.

Substituting Eq. (7.22) into Eqs. (7.16)–(7.19) and collecting the terms of
the same order of ε , we derive a set of perturbation equations which can be
written, for example, as:

O(ε0): L14(f0) = 0 7.25a

L21(f0) + C1 = 0 7.25b

L34(f0) + C2 = 0 7.25c

L44(f0) = 0 7.25d

O(ε1): L11(w1) – L12(ψx1) – L13(ψy1) + γ14L14(f1)

     = γ14β2L(w1 + W*, f0) 7.26a

L21(f1) + γ24L22(ψx1) + γ24L23(ψy1) – γ24L24(w1) = 0 7.26b

L31(w1) + L32(ψx1) – L33(ψy1) + γ14L34(f1) = 0 7.26c

L41(w1) – L42(ψx1) + L43(ψy1) + γ14L44(f1) = 0 7.26d

O(ε2): L11(w2) – L12(ψx2) – L13(ψy2) + γ14L14(f2)

     = γ14β2[L(w2, f0) + L(w1 + W*, f1)] 7.27a

L21(f2) + γ24L22(ψx2) + γ24L23(ψy2) – γ24L24(w2)

      = – 1
2

(  + 2 *, )24
2

1 1γ β L w W w 7.27b
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L31(w2) + L32(ψx2) – L33(ψy2) + γ14L34( f2) = 0 7.27c

L41(w2) – L42(ψx2) + L43(ψy2) + γ14L44( f2) = 0 7.27d

By using Eqs. (7.23) and (7.24) to solve these perturbation equations of
each order, the amplitudes of the terms wj(x, y), fj(x, y), ψxj(x, y) and ψyj(x,
y) are determined step by step. As a result, up to fourth-order asymptotic
solutions can be obtained:

W A = [ 11
(1)ε sin mx sin ny] + ε3 [ 13

(3)A  sin mx sin 3ny + A31
(3)  sin 3mx sin ny

+ [4
22
(4)ε A  sin 2mx sin 2ny + A24

(4)  sin 2 mx sin 4ny]

+ 42
(4)A  sin 4mx sin 2ny] + O(ε5) 7.28
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Ψx C mx ny C ny = [  cos  sin ] + [  sin 2 ]11
(1) 2

02
(2)ε ε

+ [  cos  sin 3  +  cos 3  sin ]3
13
(3)

31
(3)ε C mx ny C mx ny

+ [  sin 2  +  sin 4  +  cos 2  sin 24
02
(4)

04
(4)

22
(4)ε C ny C ny C mx ny

+  cos 2  sin 4  +  cos 4  sin 2 ] + ( )24
(4)

42
(4) 5C mx ny C mx ny O ε

7.30

Ψ ε εy D mx ny D mx = [  sin  cos ] + [  sin 2 ] 11
(1) 2

20
(2)

+ [  sin  cos 3  +  sin 3  cos ]3
13
(3)

31
(3)ε D mx ny D mx ny

+ [  sin 2  +  sin 4  +  sin 2  cos 24
20
(4)

40
(4)

22
(4)ε D mx D mx D mx ny

+  sin 2  cos 4  +  sin 4  cos 2 ] + ( )24
(4)

42
(4) 5D mx ny D mx ny O ε

7.31

It is mentioned that all coefficients in Eqs. (7.28)–(7.31) are related and
can be expressed in terms of A11

(1)  but, for the sake of brevity, the detailed
expressions are not shown.

Next, upon substitution of Eqs. (7.28)–(7.31) into the boundary conditions
δx = 0 and δy = 0, one has:

  β ε β ε β λ2
00
(0) 2 2

00
(2) 4 2

00
(4)

T 7 +  +  +  =  B B B CL

– 1
8

 + 
 –  

(1 + 2 )( )
2

5
2 2

24
2

5
2 11

(1) 2m n
A

γ β
γ γ

µ ε 7.32a

  b b b00
(0) 2

00
(2) 4

00
(4) +  +  + ε ε L = T 8λ C

– 1
8

 
 + 

 –  
(1 + 2 )( )5

2
24
2 2 2

24
2

5
2 11

(1) 2γ γ β
γ γ

µ ε
m n

A 7.32b

By adding B j
00
( )  and b j

00
( )  (i = 0, 2, 4, … ), one has:
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From Eqs. (7.32) and (7.33), the thermal postbuckling equilibrium path can
be written as

  λ λ λ ε λ εT T T TA A =  + ( )  + ( )  + (0) (2)
11
(1) 2 (1)

11
(1) 4 L 7.34

In Eq. (7.34), ( )11
(1)A ε  is taken as the second perturbation parameter relating

to the dimensionless maximum deflection of the plate. If the maximum
deflection is assumed to be at the point (x, y) = (π /2m, π /2n), from Eq. (7.28)
one has:

  A W Wm m11
(1)

3
3 =  +  + ε Θ L 7.35

Finally, one has:

  λ λ λ λT T T m T mW W =  +  +  + (0) (2) 2 (4) 4 L 7.36

in which λ λT T
(0) (2),  and λT

(4)  are all temperature-dependent and given in
detail in Appendix C.

To obtain numerical results, it is necessary to solve Eq. (7.36) by an
iterative numerical procedure with the following steps:

1. Begin with W t/  = 0.
2. Assume that elastic constants and the thermal expansion coefficients are

constant. The thermal buckling load for the plates of temperature-
independent material is obtained.

3. Use the temperature determined in the previous step, the temperature-
dependent material properties may be decided and the thermal buckling
load is obtained again.

4. Repeat step (3) until the thermal buckling temperature converges.
5. Specify the new value of W t/ ,  and repeat steps (2)–(4) until the thermal

postbuckling temperature converges.

7.4 Thermal postbuckling of antisymmetric

angle-ply laminated plates

Firstly, we consider the thermal postbuckling of simply supported antisymmetric
angle-ply shear deformable laminated plates subjected to non-uniform, tent-
like temperature loading as defined in Eq. (7.5b). For such a plate the following
plate stiffnesses are identically zero, i.e.:

A16 = A26 = D16 = D26 = F16 = F26 = H16 = H26 = 0,

A45 = D45 = F45 = 0

B11 = B22 = B12 = B66 = 0, E11 = E22 = E12 = E66 = 0 7.37

and in Eqs. (7.17), (7.18), (7.21) and (7.29), C1 = C5 = C6 = 0, C2 = ± 2λTβ
[γ14(γ223 γ T1  + γ γ230 2T ) + ]/3γ πT  and C3 = T0/T1 + 1/2.
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The elastic constants and thermal expansion coefficients of each ply are
assumed to be linear functions of temperature change ∆T, but Poisson’s ratio
depends weakly on temperature change and is assumed to be constant:

E11(T ) = E110(1 + E111∆T ), E22(T ) = E220(1 + E221∆T )

G12(T ) = G120(1 + G121∆T ), G13(T ) = G130(1 + G131∆T ),

G23(T ) = G230(1 + G231∆T ) α11(T ) = α110(1 + α111∆T ),

α22(T ) = α220(1 + α221∆T ) 7.38

where E110, E220, G120, G130, G230, α110, α220, E111, E221, G121, G131, G231,
α111, α221 are constants.

Tables 7.1–7.3 show the comparisons of the thermal postbuckling for
antisymmetric angle-ply laminated plates subjected to uniform temperature

Table 7.1 Comparisons of thermal postbuckling response for thin (±45)2T laminated
rectangular plates subjected to a uniform temperature rise (b/t = 100, E11 / E22 = 25,
G12/E22  = G13/E22  = 0.5, G23/E22  = 0.2, ν12 = 0.25 and α22/α11 = 10)

λT/(λT)cr

β = 0.75 β = 1.0 β = 1.5

Thankam Present Thankam Present Thankam Present
et al. et al. et al.
(2003) (2003) (2003)

0.0 1.0 1.0 1.0 1.0 1.0 1.0
0.2 1.042 1.0412 1.039 1.0392 1.043 1.0427
0.4 1.167 1.1649 1.158 1.1570 1.174 1.1713
0.6 1.376 1.3720 1.356 1.3539 1.393 1.3868
0.8 1.670 1.6640 1.635 1.6309 1.702 1.6911
1.0 2.053 2.0426 1.995 1.9892 2.101 2.0866
λT = α22Tcr(b/t)2 12.709 12.649 9.493 9.4584 6.410 6.3939

Table 7.2 Comparisons of postbuckling temperature T(°C) for moderately
thick (±45)2T laminated square plates subjected to a uniform temperature
rise (b/t = 20, E11/E22 =15, G12/E22 = G13/E22 = 0.5, G23/E22 = 0.2, ν12 = 0.25,
α22/α11 =10)

    W t/ Present Ganapathi and Touratier
(1997)

0.0 2050.0 2063.25
0.1 2073.1 2086.22
0.2 2142.7 2155.20
0.3 2258.8 2270.33
0.4 2421.7 2431.85
0.5 2631.7 2638.96
0.6 2889.3 2893.03
0.7 3195.0 3196.05

    W t/



Table 7.3 Comparisons of thermal postbuckling response for thin (±45) 6T laminated square plates subjected to a uniform temperature
rise (b/t = 100, E110 /E220  = 40, G120/E220 = G130/E220 = G230/E220 = 0.5, ν12 = 0.25, α110 = α220 =1.0 × 10–6/°C, E221 = G121 = G131 = G231 = α111

= α222 = 0)

α0T0 × 106

    W t/ E111 = 0 E111 = –0.0005 E111 = –0.001 E111 = –0.002

Present Chen and Present Chen and Present Chen and Present Chen and
Chen (1991) Chen (1991) Chen (1991) Chen (1991)

0.0 158.1825 159.64 158.1459 159.50 158.0851 159.34 157.8599 158.92
0.1 159.4729 160.91 159.4396 160.78 159.3823 160.62 159.1644 160.21
0.2 163.3450 164.72 163.3159 164.60 163.2624 164.46 163.0492 164.07
0.3 169.8015 171.09 169.7696 170.98 169.7112 170.86 169.4775 170.52
0.4 178.8468 180.00 178.7982 179.92 178.7181 179.84 178.4177 179.58
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rise. The thermal postbuckling responses for (±45)2T laminated rectangular
thin plates (b/t = 100) subjected to a uniform temperature rise are calculated
and compared in Table 7.1 with the FEM results of Thankam et al. (2003).
The material properties adopted are: E11/E22 = 25, G12/E22 = G13/E22 = 0.5,
G23/E22 = 0.2, ν12 = 0.25, and α22/α11 = 10. Then the thermal postbuckling
responses for a moderately thick (b/t = 20) (± 45)2T laminated square plate
subjected to a uniform temperature rise are calculated and compared in Table
7.2 with the FEM results of Ganapathi and Touratier (1997). The material
properties adopted are: E11/E22 = 15, G12/E22 = G13/E22 = 0.5, G23/E22 = 0.2,
ν12 = 0.25 and α22/α11 = 10. In addition, the thermal postbuckling responses
for (± 45)6T laminated square thin plates (b/t = 100) with temperature-dependent
thermoelastic properties and subjected to a uniform temperature rise are
calculated and compared in Table 7.3 with the FEM results of Chen and
Chen (1991). The material properties are: E110/E220 = 40, G120/E220 = G130/
E220 = G230/E220 = 0.5, ν12 = 0.25, α110 = α220 = 1.0 × 10–6/°C, E221 = G121

= G131 = G231 = α111 = α221 = 0. Only E11 is assumed to be a function of
temperature and E111 = 0, – 0.0005, –0.001 and –0.002, respectively. These
comparisons show that the results from the present method are in good
agreement with the existing results, thus verifying the reliability and accuracy
of the present method.

Figure 7.1 shows the thermal postbuckling load-deflection curves for a
(± 45)2T shear deformable laminated square plate (b/t = 40) subjected to
nonuniform tent-like temperature loading under two cases of thermoelastic
properties. TD represents both elastic constants and thermal expansion

α 0
T 1

 ×
 1

03

3

2

1

0

Tent-like temperature field
(± 45)2T
β = 1.0, (m, n) = (1, 2)
b/t = 40

1: T0/T1 = 0.5
2: T0 /T1 = 1.0

0.0 0.2 0.4 0.6 0.8 1.0

Dimensionless out-of-plane displacement,     W t/

1: TID

2: TID

1: TD

2: TD

    W t*/  = 0.0

    W t*/  = 0.05

7.1 Effect of material properties on the thermal postbuckling of a
(± 45)2T laminated square plate subjected to tent-like temperature
loading.
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coefficients are temperature-dependent, i.e. E110 /E220 = 40, G120/E220 = G130/
E220 = 0.5, G230 /E220 = 0.2, ν12 = 0.25, α110/α0 = 1, α220/α0 = 10, α0 = 1.0 ×
10–6/°C and E111 = –0.0005, E221 = G121 = G131 = G231 = –0.0002, α111 = α221

= 0.0005. TID represents both elastic constants and thermal expansion
coefficients are temperature-independent. For the TID case, the constants
E111, E221, G121, G131, G231, α111 and α221 are set equal to zero. It can be seen
that the thermal postbuckling equilibrium path becomes significantly lower
when the temperature-dependent properties are taken into account. It can
also be found that the postbuckling strength is decreased by increasing T0/T1.

It is appreciated that in Fig. 7.1 and what follows, W t*/  = 0.05  denotes
the dimensionless maximum initial geometric imperfection of the plate.

7.5 Thermal postbuckling of symmetric cross-ply

laminated plates

Next we consider the thermal postbuckling of simply supported symmetric
cross-ply shear deformable laminated plates subjected to non-uniform parabolic
temperature loading as defined in Eq. (7.5c). For such a plate the following
plate stiffnesses are identical to zero, i.e.

Bij = Eij = 0, A16 = A26 = D16 = D26 = F16 = F26 = H16 = H26 = 0,

A45 = D45 = F45 = 0 7.39

and in Eqs. (7.17), (7.18), (7.21) and (7.29), C1 = – (32/π 2β2)λT [( 24
2

1γ γ T

– )5 2
γ γ T (x/π – x2/π 2) + (  –  )2 15γ γ γT T (y/π – y2/π 2)], C2 = C4 = 0, C3 = T0/

T1 + 16(x/π – x2/π 2)(y/π – y2/π 2). The materials properties are still taken as
linear functions of temperature expressed by Eq. (7.38).

Figures 7.2 and 7.3 show the comparisons of the thermal postbuckling for
symmetric cross-ply laminated plates with temperature-independent properties
and subjected to uniform temperature rise. The thermal postbuckling responses
for a (0/90)2S laminated rectangular thin plate (β = 1.25, b/t = 250) subjected
to a uniform temperature rise are compared in Fig. 7.2 with the FEM results
of Shi et al. (1999). The material properties adopted are: E11 = 155 GPa, E22
= 8.07 GPa, G12 = 4.55 GPa, ν12 = 0.22, α11 = –0.04 × 10–6/°F and α22 = 16.7
× 10–6/°F. Then the thermal postbuckling responses for a moderately thick
(0/90)S laminated square plate (b/t = 40) subjected to a uniform temperature
rise are compared in Fig. 7.3 with the FEM results of Singh et al. (1994). The
material properties adopted are: E11/E22 = 25, G12/E22 = G13/E22 = 0.5, G23/
E22 = 0.2, ν12 = 0.25 and α22/α11 = 10. In addition, the thermal postbuckling
responses for an isotropic shear deformable plate (b/t = 40) subjected to
nonuniform parabolic temperature loading with T0/T1 = 1.0 are compared in
Fig. 7.4 with the finite difference method solutions of Kamiya and Fukui
(1982). Again, good agreement is achieved in each of them.
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Figure 7.5 shows the thermal postbuckling load-deflection curves for a
(0/90)S shear deformable laminated square plate (b/t = 40) subjected to
nonuniform parabolic temperature loading under two cases of thermoelastic
properties as used in Fig. 7.1, and leads to broadly the same conclusions as
Fig. 7.1 does. It can also be found that the (0/90)S plate has a lower buckling

T
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(°
F)

80

60

40

20

0
0.0 0.5 1.0 1.5 2.0

Dimensionless out-of-plane displacement,     W t/

Present
Shi et al. (FEM) (1999)

Uniform temperature field
(0/90)2S
β = 1.25, b/t = 250
(m, n) = (1, 1)
Tcr = 12.25 °F(6.79 °C)

7.2 Comparisons of thermal postbuckling response for a (0/90)2S
laminated thin plate subjected to uniform temperature rise.

0.0 0.2 0.4 0.6 0.8 1.0

Dimensionless out-of-plane displacement,     W t/

Preset (HSDPT)
Singh et al. (FEM) (1994)

T/
T

cr

2.5

2.0

1.5

1.0

0.5

0.0

Uniform temperature field
(0/90)S
β = 1.0, b/t = 40
(m, n) = (1, 1)

7.3 Comparisons of thermal postbuckling response for a (0/90)S shear
deformable laminated plate subjected to uniform temperature rise.
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temperature than (± 45)2T plate does, but its thermal postbuckling response
is stiffer than that of the (± 45)2T plate.

0.0 0.2 0.4 0.6 0.8 1.0

Dimensionless out-of-plane displacement,     W t/

Present (HSDPT)
Kamiya and Fukui (CPT) (1982)

T
(°

C
)

60

40

20

0

Parabolic temperature field
isotropic plate
T0/T1 = 1.0
β = 1.0, b/t = 40
(m, n) = (1, 1)

7.4 Comparisons of thermal postbuckling response for an isotropic
shear deformable plate subjected to non-uniform parabolic
temperature loading.
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(0/90)S
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7.6 Thermal postbuckling of a symmetric cross-ply

laminated plate with piezoelectric layers

We now turn our attention to the thermal postbuckling of shear deformable
laminated plates with piezoelectric actuators subjected to a uniform or
nonuniform parabolic temperature rise combined with electric loads. The
plate is also assumed to have special material symmetries. In such a case, Eq.
(7.39) is still valid, but we need to replace N MT T,  and S T  in Eqs. (7.1)–
(7.4) and (7.10) with equivalent thermo-piezoelectric loads N Mp p,  and
S p ,  which are defined by
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where N M PT T T, ,  and N M PE E E, ,  are the forces, moments, and higher-
order moments caused by the elevated temperature and electric field,
respectively.

For the plate-type piezoelectric material, only the transverse direction
electric field component EZ is dominant, and EZ is defined as EZ z = – , ,Φ
where Φ is the potential field. If the voltage applied to the actuator is in the
thickness only, then

E
V
tz

k = 
p

7.41

where Vk is the applied voltage across the kth ply and tp is the thickness of
the piezoelectric ply.

The forces, moments and higher-order moments caused by electric field
are defined by
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where d31 and d32 are the piezoelectric strain constants of a single ply, and
Qi j  are the transformed elastic constants defined as in Eq. (7.8). It is noted
that from Eqs. (7.6) and (7.42), in the present case, the thermal and electric
forces N xy

T  and Nxy
E ,  the thermal and electric moments and the higher-order

moments are all zero.
In this section graphite/epoxy composite material and PZT-5A are selected

for the substrate orthotropic layers and piezoelectric layers, respectively.
The material properties, as linear functions of temperature, for graphite/
epoxy orthotropic layers of the substrate are: E110 = 150.0 GPa, E220 = 9.0
GPa, G120 = G130 = 7.1 GPa, G230 = 2.5 GPa, ν12 = 0.3, α110 = 1.1 × 10–6 /
oC , α220 = 25.2 × 10–6 /oC, and for PZT-5A piezoelectric layers E110 = E220

= 63.0 GPa, G120 = G130 = G230 = 24.2 GPa, ν12 = 0.3, α110 = α220 = 0.9 ×
10–6 /oC and d310 = d320 = 2.54 × 10–10 m/V; and E111 = –0.0005, E221 = G121
= G131= G231 = –0.0002, α111 = α221 = 0.0005 for both graphite/epoxy
orthotropic layers and piezoelectric layers. Two types of hybrid laminated
plates, Type A and Type B, are configurated. For Type A, two piezoelectric
layers are bonded to the upper and bottom surfaces of the (0/90)2S plate,
referred to as (P/(0/90)2)S. For Type B, two piezoelectric layers are embedded
in the (0/90)2S plate, referred to as (0/P/90/0/90)S. The total thickness of
the plate t = 1.2 mm, whereas the thickness of the piezoelectric layer
tp = 0.1 mm, and all other orthotropic layers are of equal thickness.

Table 7.4 shows the thermal buckling temperature Tcr (in oC) for perfect,
moderately thick, (P/(0/90)2)S and (0/P/90/0/90)S hybrid laminated plates (b/
t = 40) subjected to uniform and nonuniform temperature rises. The control
voltages with the same sign are also applied to the upper and lower piezoelectric
layers, and are referred to as VU and VL. Three electrical loading cases, VU =
VL = –100, 0, +100 V, are considered. Here VU = VL = 0 V implies that the
buckling occurs under a grounding condition. It can be seen that the buckling
temperature of (P/(0/90)2)S and (0/P/90/0/90)S hybrid laminated plates with
temperature-dependent material properties (referred to as TD) is lower than
that of the same plate with temperature-independent material properties
(referred to as TID) under the same loading conditions. It can also be seen
that the control voltage has a significant effect on the thermal buckling loads
for these two hybrid laminated plates.

Figure 7.6 shows the thermal postbuckling load-deflection curves for perfect
and imperfect, (P/(0/90)2)S and (0/P/90/0/90)S hybrid laminated square plates
(b/t = 40) subjected to nonuniform parabolic temperature rise and three sets
of electrical loads under two cases of thermoelastic properties TID and TD.
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The results show that the minus control voltages increase the buckling
temperature and decrease the postbuckled deflection at the same temperature
rise, whereas the plus control voltages decrease the buckling temperature
and induce more large postbuckled deflections. They also confirm that the
temperature-dependent thermoelastic property has a significant effect on
both buckling temperature and postbuckling thermal strength of the hybrid
laminated plate.

7.7 Thermal postbuckling of FGM hybrid

laminated plates

Finally, we consider the thermal postbuckling of FGM hybrid laminated
plates subjected to a uniform temperature rise combined with electric loads.
The substrate FGM layer is made from a mixture of ceramics and metals, the
mixing ratio of which is varied continuously and smoothly in the Z direction,
so that the effective material properties Pf (Young’s modulus Ef or thermal
expansion coefficient αf) can be expressed as:

Pf = PcVc + PmVm 7.44

where Pc and Pm denote the temperature-dependent properties of the ceramic

Table 7.4 Comparisons of buckling temperature T(°C) for (0/90)2S plates with surface-
bonded or embedded piezoelectric actuators under uniform and nonuniform parabolic
temperature rise and three sets of electrical loading conditions (b/t = 40, a/b = 1.0)

VU = VL Uniform Nonuniform parabolic
 temperature temperature rise

rise
T0/T1 = 0.0 T0/T1 = 0.5 T0/T1 = 1.0

(P/0/90)2)S, TID
–100 V 297.8174 490.0772 268.8608 185.2442
0 V 279.4457 459.8408 252.2754 173.8169
+ 100 V 261.0740 429.6093 235.6899 162.3896

(P/(0/90)2)S, TD
–100 V 261.0516 403.1087 238.4538 169.8347
0 V 246.4487 381.3779 225.0090 160.0406
+ 100 V 231.6839 359.3391 211.4259 150.1681

(0/P/90/0/90)S, TID
–100 V 281.3445 462.9654 253.9896 174.9980
0 V 262.9728 432.7339 237.4042 163.5707
+ 100 V 244.6012 402.5025 220.8188 152.1434

(0/P/90/0/90)S, TD
–100 V 246.3166 379.6782 225.0283 160.3572
0 V 231.6571 357.8734 211.5345 150.5326
+ 100 V 216.8325 335.7512 197.8997 140.6284
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and metal, respectively, and Vc and Vm are the ceramic and metal volume
fractions and are related by:

Vc + Vm = 1 7.45

The volume fraction Vm follows a simple power law:
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where the volume fraction index N dictates the material variation profile
through the FGM layer thickness.

It is assumed that the effective Young’s modulus Ef and thermal expansion
coefficient αf of the FGM layer are temperature-dependent, whereas Poisson’s
ratio νf depends weakly on temperature change and is assumed to be a
constant. From Eqs. (7.44)–(7.46), one has:
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It is evident that when Z = t1, Ef = Ec and αf = αc, and when Z = t2, Ef = Em

and αf = αm. Furthermore, Ef and αf are both temperature and position
dependent. Note that for an FGM layer, α11 = α22 = αf is given in detail in
Eq. (7.47b), and Q Qij ij =  in which
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where Ef is also given in detail in Eq. (7.47a), and varies in the thickness
direction.

It has been pointed out by Shen (2002) that the governing differential
equations for an FGM plate are identical in form to those of unsymmetric
cross-ply laminated plates. In such a case, the following plate stiffnesses are
identical to zero, i.e.:

A16 = A26 = D16 = D26 = F16 = F26 = H16 = H26 = 0,

A45 = D45 = F45 = 0, B16 = B26 = E16 = E26 = 0 7.49

It is evident that the governing equations involve the stretching/bending
coupling, as predicted by Bij and Eij. As argued previously, even for an FGM
plate with all four edges simply supported, no bifurcation buckling could
occur. For this reason, we consider here two types of hybrid laminated plate,
referred to as (P/FGM)S and (FGM/P)S, which consist of four plies and are
mid-plane symmetric. In such a case, the stretching/bending coupling is

zero-valued, i.e. Bij = Eij = 0. As a result, ˜ ˜ ˜ ˜L L L L14 15 22 23 =  =  = 

=  =  = 24 34 35
˜ ˜ ˜L L L  = 44L̃  =  = 0,45L̃  and all reduced stiffness matrices are

functions of temperature and position.
In this section, two sets of material mixture for FGMs are considered. One

is silicon nitride and stainless steel, referred to as Si3N4/SUS304, and the
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other is zirconium oxide and titanium alloy, referred to as ZrO2/Ti-6Al-4V.
The material properties Pf, such as Young’s modulus Ef and thermal expansion
coefficient αf, can be expressed as a nonlinear function of temperature as
(Touloukian 1967):

Pf = P0(P–1T –1 + 1 + P1T + P2T
2 + P3T

3) 7.50

in which T = T0 + ∆T, and T0 = 300 K. P0, P–1, P1, P2 and P3 are the
coefficients of temperature T (K) and are unique to the constituent materials.
Typical values for Young’s modulus Ef (in Pa) and thermal expansion coefficient
α f (in /K) of these materials are listed in Table 7.5 (Reddy and Chin 1998).
Poisson’s ratio νf is assumed to be a constant, and νf = 0.28. PZT-5A is
selected for the piezoelectric layers. The material properties of which, as
linear functions of temperature, are: E110 = E220 = 63 GPa, G120 = G130 = G230

= 24.2 GPa, ν12 = 0.3, α110 = α220 = 0.9 × 10–6 /K and d310 = d320 = 2.54 ×
10–10 m/V, and E111 = –0.0005, E221 = G121 = G131= G231 = –0.0002, α111 =
α221 = 0.0005. The thickness of the FGM layer tf = 1 mm whereas the
thickness of the piezoelectric layer tp  = 0.1 mm, so that the total thickness
of the plate t = 2.2 mm.

Table 7.5 Temperature-dependent coefficients for ceramics and metals, from Reddy
and Chin (1998)

Materials P0 P–1 P1 P2 P3

Zirconia Ef 244.27 × 109 0 –1.371 × 10–3 1.214 × 10–6 –3.681 × 10–10

αf 12.766 × 10–6 0 –1.491  × 10–3 1.006 × 10–5 –6.778 × 10–11

Silicon
nitride Ef 348.43  × 109 0 –3.070 × 10–4 2.160 × 10–7 –8.946 × 10–11

αf 5.8723 × 10–6 0 9.095 ×  10–4 0 0

Ti-6Al-4V Ef 122.56 × 109 0 –4.586 × 10–4 0 0
αf 7.5788 × 10–6 0 6.638 × 10–4 –3.147 × 10–6 0

Stainless
steel Ef 201.04 × 109 0 3.079 × 10–4 –6.534 × 10–7 0

αf 12.330 × 10–6 0 8.086 × 10–4 0 0

Tables 7.6 and 7.7 present the thermal buckling loads ∆Tcr (in K) for
perfect, moderately thick, (P/FGM)S and (FGM/P)S hybrid laminated plates
(b/t = 40) with different values of the volume fraction index N (= 0.0, 0.2,
0.5, 1.0, 2.0, and 5.0) subjected to a uniform temperature rise under three
cases of thermoelastic properties. Here, TD represents material properties in
which both substrate FGM layer and piezoelectric layers are temperature
dependent. TD-F represents material properties in which substrate FGM
layer are temperature dependent but material properties of piezoelectric layers
are temperature independent. TID represents material properties in which
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Table 7.6 Comparisons of buckling temperature ∆T(K) for Si3N4/SUS304 plates with
piezoelectric actuators under uniform temperature rise and three sets of electrical
loading conditions (b/t = 40, a/b = 1.0, T0 = 300 K)

VU(=VL) or VM N = 0.0 N =0.2 N = 0.5 N = 1.0 N =2.0 N = 5.0

(P/FGM)S, TID
–200 V 48.5298 55.7882 63.5644 71.6558 79.8093 87.7327
0 V 47.4976 54.7489 62.4959 70.5406 78.6306 86.4724
+ 200 V 46.4655 53.7095 61.4275 69.4254 77.4519 85.2120

(P/FGM)S, TD-F
–200 V 47.1170 53.8840 61.0684 68.4743 75.8671 82.9841
0 V 46.1381 52.9051 60.0696 67.4399 74.7823 81.8335
+ 200 V 45.1582 51.9254 59.0699 66.4046 73.6966 80.6818

(P/FGM)S, TD
–200 V 47.0534 53.8113 60.9842 68.3766 75.7535 82.8524
0 V 46.0886 52.8484 60.0037 67.3633 74.6932 81.7300
+ 200 V 45.1223 51.8841 59.0219 66.3486 73.6313 80.6059

(FGM/P)S, TID
– 200 V 58.3405 67.5093 77.3737 87.7226 98.2747 108.6605
0 V 57.3084 66.4699 76.3052 86.6073 97.0960 107.4002
+ 200 V 56.2762 65.4306 75.2367 85.4921 95.9173 106.1398

(FGM/P)S, TD-F
–200 V 56.2913 64.7211 73.6895 82.9885 92.3550 101.4237
0 V 55.3225 63.7538 72.7041 81.9697 91.2888 100.2963
+ 200 V 54.3527 62.7857 71.7179 80.9501 90.2217 99.1678

(FGM/P)S, TD
–200 V 56.2744 64.7015 73.6665 82.9616 92.3234 101.3862
0 V 55.3211 63.7520 72.7017 81.9667 91.2850 100.2915
+ 200 V 54.3664 62.8012 71.7356 80.9705 90.2451 99.1951

both substrate FGM layer and piezoelectric layers are temperature independent.
The control voltages with the same sign are also applied to the upper, lower
or middle piezoelectric layers, and are referred to as VU, VL, and VM. Three
electrical loading cases VU = VL = –200, 0, + 200 V, are considered.

Two kinds of substrate FGM layers, i.e. Si3N4/SUS304 and ZrO2/Ti-6Al-
4V are considered. It can be seen that, for the hybrid plates with Si3N4/
SUS304 substrate, a fully metallic plate (N = 0) has lowest buckling temperature
and that the buckling temperature increases as the volume fraction index N
increases. It is found that the increase is about +77% for the (P/FGM)S plate,
and about +81% for the (FGM/P)S one, from N = 0 to N = 5, under TD-F and
TD cases. It can also be seen that the buckling temperature of an FGM
hybrid laminated plate with temperature-dependent material properties is
lower than that of the FGM hybrid laminated plate with temperature-
independent material properties, but the thermal buckling loads under TD-F
and TD cases are very close. As a result, the material properties of piezoelectric
layers may be assumed to be independent of the temperature, and the solutions
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Table 7.7 Comparisons of buckling temperature ∆T(K) for ZrO2/Ti-6Al-4V plates with
piezoelectric actuators under uniform temperature rise and three sets of electrical
loading conditions (b/t = 40, a/b =1.0, T0 = 300 K)

VU (= VL) or VM N = 0.0 N =0.2 N = 0.5 N = 1.0 N =2.0 N = 5.0

(P/FGM)S, TID
–200 V 92.3981 80.2041 69.7123 61.0008 53.5606 46.9526
0 V 88.9100 77.5408 67.6177 59.3005 52.1421 45.7423
+ 200 V 85.4219 74.8775 65.5230 57.6002 50.7235 44.5320

(P/FGM)S, TD-F
–200 V 90.2062 73.1978 61.9584 53.7603 47.2333 41.6491
0 V 86.7401 70.8758 60.2205 52.3728 46.0767 40.6543
+ 200 V 83.2799 68.5461 58.4752 50.9792 44.9152 39.6556

(P/FGM)S, TD
–200 V 89.7716 72.9613 61.8082 53.6562 47.1572 41.5915
0 V 86.4080 70.6931 60.1041 52.2920 46.0175 40.6095
+ 200 V 83.0432 68.4146 58.3911 50.9208 44.8724 39.6232

(FGM/P)S, TID
–200 V 102.0487 90.1491 79.4161 70.2522 62.2506 54.9843
0 V 98.5606 87.4859 77.3214 68.5519 60.8321 53.7741
+ 200 V 95.0725 84.8226 75.2268 66.8515 59.4136 52.5638

(FGM/P)S, TD-F
–200 V 98.5558 80.7987 69.0785 60.4969 53.6130 47.6470
0 V 95.1197 78.5290 67.3911 59.1540 52.4951 46.6856
+ 200 V 91.6894 76.2520 65.6965 57.8054 51.3727 45.7204

(FGM/P)S, TD
– 200 V 98.4460 80.7397 69.0412 60.4711 53.5941 47.6327
0 V 95.1069 78.5229 67.3875 59.1518 52.4936 46.6845
+ 200 V 91.7668 76.2961 65.7254 57.8259 51.3879 45.7322

are acceptable. In contrast, it is seen that the buckling temperature of hybrid
plates with ZrO2/Ti-6Al-4V substrate is decreased as the volume fraction
index N increases. It can also be seen that the control voltage has a small
effect on the thermal buckling loads for these two FGM hybrid laminated
plates.

Figure 7.7 shows the thermal postbuckling load-deflection curves for perfect
and imperfect, (P/FGM)S and (FGM/P)S hybrid laminated square plates (b/
t = 40) with Si3N4/SUS304 substrate subjected to uniform temperature rise
and three sets of electrical loads under two cases of thermoelastic properties
TID and TD. It can be seen that the increase of the volume fraction index N
yields an increase of the buckling temperature and thermal postbuckling
strength. The results also confirm that the thermal postbuckling equilibrium
path becomes lower when the temperature-dependent properties are taken
into account. In contrast, the control voltage has a small effect on the buckling
temperature and thermal postbuckling response of FGM hybrid laminated
plates.
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7.8 Concluding remarks

In order to assess the effects of temperature dependency on the thermal
postbuckling behavior of laminated plates, a fully nonlinear thermal
postbuckling analysis has been described. The governing equations are based
on a higher-order shear deformation plate theory that includes thermo-
piezoelectric effects. A two-step perturbation technique is employed to

7.7 Effects of volume fraction index N and material properties on the
thermal postbuckling behavior of Si3N4/SUS304 hybrid laminated
plates subjected to uniform temperature loading: (a) (P/FGM)S plate
(1: VU = VL = – 200 V; 2: VU = VL = 0 V; 3: VU = VL = + 200 V);
(b) (FGM/P)S plate (1: VM = – 200 V; 2: VM = 0 V; 3: VM = + 200 V).
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determine buckling temperature and postbuckling equilibrium paths. Numerical
calculations have been made for (1) fiber-reinforced composite antisymmetric
angle-ply and symmetric cross-ply laminated plates; (2) symmetric cross-
ply laminated plates with surface-bonded or embedded piezoelectric actuators;
and (3) mid-plane symmetric FGM plates with fully covered or embedded
piezoelectric actuators. The results show that in all these cases the plate has
lower buckling temperature and postbuckling load-deflection curves when
the temperature-dependent properties are taken into account. The control
voltage has a significant effect on the thermal buckling and postbuckling
loads for (0/90)2S laminated plates with piezoelectric actuators, but it has a
small effect on the thermal buckling and postbuckling loads for FGM hybrid
laminated plates.

It is hoped that the results reported herein will contribute to a better
understanding of the thermal postbuckling behavior for hybrid laminated
plates with temperature-dependent properties.
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7.11 Appendix A

In Eqs. (7.1)–(7.4) all linear operators L̃i j ( )⋅ and the nonlinear operator L̃( )⋅
are defined by:
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7.12 Appendix B

In Eqs. (7.16)–(7.19) the nondimensional linear operators Lij(·) and the nonlinear
operator L(·) are defined by:
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8.1 Introduction

This chapter is concerned with the behaviour and design of the local and
interaction buckling of plated structures in composite steel–concrete
construction forms with particular reference to composite steel–concrete
beams and columns. The juxtaposition of steel and concrete in structural
members provides an increased resistance of the steel component to local
and interaction buckling, and it is the premise of this chapter to give proper
treatment to this issue. The chapter will confine itself to the consideration of
conventional composite steel–concrete beam construction and square concrete-
filled steel sections with some discussion on thin-walled encased sections.
Localised and interaction buckling can occur in thin-walled plated structures
due to high compressive loads. These compressive loads may be induced by
the actions of axial compression and/or bending moments. Compressive
stresses give rise to instability when the elements and/or members are slender
and unrestrained to cross-section distortion or member out-of-plane movements.
When slender or thin-walled plated structures are used, cross-section instability
may occur. The most common and well-studied form of cross-section instability
is associated with localised buckling. Local buckling, although not being an
overall failure mode, can give rise to a reduced stiffness and strength of an
overall structure. Figure 8.1 illustrates some typical local buckling modes for
composite steel–concrete forms.

Global buckling is associated with an overall member. This form of buckling
involves the member becoming unstable and moving out of plane and is
usually termed flexural buckling. Figure 8.2 illustrates conceptually the
behaviour of a column when it becomes unstable. The member is subjected
to an axial force N and an associated out-of-plane displacement, δ occurs
when instability arises and the column displaces to the position suggested by
the dashed line.

Interaction buckling of a member results when localised buckling occurs
prior to overall instability and a coupled local and global buckling mode

8
Local and interaction buckling of

composite construction members

B  U Y,  University of Wollongong, Australia
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develops. This is thus considered to be a coupled instability and is best
illustrated for a composite column in Fig. 8.3. Here the column has a localised
buckle at the mid-height, together with a flexural buckle which has formed
along the length of the member.

The global buckling load is reduced by the presence of local buckling,
which can be either elastic or inelastic. Generally if local buckling occurs in
the elastic range, a reduced buckling load will ensue. When buckling occurs
in the inelastic range, the stiffness can be reduced and it is generally the

8.1 Local buckling modes of a variety of composite steel–concrete
cross-sections.

Compression

Compression

Tension

Clamped (corner)

Clamped
(web-flange)

L
Sine

squared
curve

b

Free edge or
outstand

L
Sine

squared
curve

Clamped (corner)

N

δ

N

8.2 Global buckling of a member.
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postbuckling response that is affected, rather than the ultimate load. Figure
8.4 illustrates the various responses for a structural column member: (i) the
load-lateral deformation response of a member which bifurcates (perfect
member); (ii) a member that undergoes non-linear global buckling with a
compact cross-section; (iii) a member that suffers from inelastic local buckling
coupled with global buckling; and (iv) load-lateral deformation behaviour of
a column undergoing elastic local buckling coupled with global buckling.

Local
instability

8.3 Interaction buckling of a composite steel–concrete member.

(iii) Inelastic local
buckling

(i) Bifurcation
N

(iv) Elastic
local buckling

(ii) Global
buckling

Lo
ad

, 
N

δ

N

Deformation, δ

8.4 Generalised structural response of a column member subjected
to compressive loads.
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8.2 Forms of composite steel–concrete members

The two forms of composite steel–concrete composite members that will be
considered are (i) conventional steel–concrete composite beams, composed
of a steel joist supporting either a solid concrete or profiled composite slab;
and (ii) square composite columns, either concrete-filled or encased steel
sections.

8.2.1 Composite steel–concrete beams

Conventional steel–concrete beams, employing the use of either hot-rolled
or welded steel sections and made composite with a solid or profiled composite
slab, are generally the structural system of choice for most modern steel-
framed buildings throughout the world. A typical floor system is shown in
Fig. 8.5 for a steel-framed building recently constructed in London. A typical
composite steel–concrete beam cross-section is illustrated in Fig. 8.6 and it
is the local instability of the top flange of these types of cross-sections that
will be considered herein.

8.5 Composite steel–concrete beams, More London, UK.

8.2.2 Composite steel–concrete columns

Composite columns have been used for over 100 years, with steel-encased
sections being incorporated in buildings in the USA during the late nineteenth
century (Uy 1998a). The initial application of composite columns was for
fire rating requirements of the steel section. Later developments saw composite
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action fully utilised for strength and stability. Composite action in columns
utilises the favourable tensile and compressive characteristics of the steel
and concrete respectively. One major benefit of this system has been the
ability to achieve higher steel percentages than conventional reinforced concrete
structures and the steel erection column allows rapid construction of steel
floor systems in steel-framed buildings. Uy (1998a) has presented the practical
applications and design procedures for concrete-filled box sections highlighted
in Fig. 8.7(a), and this chapter will present local buckling studies that are
associated with this form of construction. Furthermore, Tremblay et al. (2000)
considered the effects of noncompact steel sections filled with concrete as
illustrated in Fig. 8.7(b). Once again, local buckling studies are presented in
this chapter to illustrate the benefits of the concrete infill for these applications.

8.6 Typical composite steel–concrete beam section.

(a) (b)

8.7 Concrete-filled rectangular columns: (a) concrete-filled box
sections; (b) concrete-filled wide flange sections.
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8.3 Background to buckling

This section provides a background to buckling. An in-depth treatment of the
classical methods will not be provided, as there have been many such published
articles and monographs on the theoretical background to local and global
stability. Instead, an exposé of the results of local, global and interaction
buckling studies of composite steel–concrete members, which will highlight
the beneficial effects of the presence of concrete in close proximity of thin-
walled steel sections.

8.3.1 Local buckling

There are many comprehensive treatments to the background of local buckling,
including Timoshenko and Gere (1963) and Bazant and Cedolin (1991). For
the foundations of stability, readers are referred to these monographs. We
will actually consider the results of local buckling studies conducted on
composite steel–concrete structures. The local plate buckling results σol, will
be presented in the form of that of Bulson (1970) as detailed in Equation 8.1.
The local buckling stress σol is determined as:

σ π

υ
ol

2

2
2 = 

12(1 –  )

k E
b
t( )

8.1

where k is the elastic local buckling coefficient, E the elastic modulus, υ
Poisson’s ratio and b and t are the plate width and thickness, respectively.
Composite construction members can result in a reduced load-carrying capacity
when localised buckling occurs in the component plates in the member.

Uy and Bradford (1996) developed a finite strip method to investigate the
effects of boundary conditions germane to composite construction. The five
boundary conditions (BC) considered are given below:

• BC1 – four edges clamped
• BC2 – one unloaded edge clamped and one simply supported
• BC3 – both unloaded edges simply supported
• BC4 – one unloaded edge free and one clamped
• BC5 – one unloaded edge free and one simply supported

In particular this chapter is mainly concerned with boundary conditions BC1
and BC4. Boundary condition BC1 is the boundary condition with four
edges clamped which can be used to simulate the behaviour of the component
plates of a square or rectangular concrete-filled steel section. Boundary
condition BC4 is the boundary condition with three edges clamped which
can be used to simulate the flange outstand that is in contact with the concrete
slab in a steel–concrete composite beam. Figure 8.8 provides a summary of
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the local buckling coefficients for various boundary conditions and stress
gradients, where α represents the ratio of the minimum stress (ασol) to the
maximum stress in the plate (σol).

If one were to idealise the component plates of a square hollow section
and a square concrete filled steel section and undertake a plate buckling
analysis on the plates, minimum local buckling coefficients of k = 4.0 and
10.3 would be obtained respectively. Similarly the elastic local buckling
coefficient for a flange outstand increases from 0.425 to 2.0 when the presence
of concrete is included in the stability analysis.

Conceptually, the elastic local buckling stress, σol can be used to determine
an axial load Nol at which this occurs, where

Nol = σolAg 8.2

where Ag is the gross cross-sectional area. However, this is not the maximum
load, merely the load at which local buckling is initiated. The post-local
buckling reserve of strength of the component plates will ensure that a higher
axial load than that suggested in equation 8.2 occurs.

8.8 Buckling coefficients versus stress gradient, α for steel
juxtaposed with concrete (Uy and Bradford, 1996).
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8.3.2 Global buckling

Once again a full treatment will not be given here regarding the theoretical
background to global buckling, as this has been given in other monographs,
such as those presented by Timoshenko and Gere (1963) and Bazant and
Cedolin (1991). Euler in 1744 (Timoshenko and Gere, 1963) developed a
closed-form solution for the buckling load of a simply supported column as
illustrated in Fig. 8.9.

N

δ

N

8.9 Global buckling of a member.

The critical load Ncr is calculated using the expression in equation 8.3:

N EI
L

cr

2

2 = π 8.3

where E is the elastic modulus, I is the second moment of area and L is the
effective length of the column. This critical load does not consider the effects
of residual stresses and geometric imperfections and applies only for perfect
columns. Furthermore, one also needs to consider the strength (squash load)
of the column and any effects due to local buckling which compromise the
strength in equation 8.3 from being reached.

8.3.3 Interaction buckling

The interaction of local and global buckling in steel and steel–concrete
composite structures occurs when either elastic or inelastic local buckling
takes place. The load associated with each of these cases is more specifically
presented in Fig. 8.10 for a column. A generalised expression could be
written so that:

NC = αCNS 8.4
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where αc is a factor to account for slenderness, residual stresses and geometric
imperfections and the squash load, Ns, is calculated as:

Ns = Aeσy 8.5

where Ae is the effective area (a function of the sum of the effective widths,
be, of the component plates) which accounts for local buckling and σy is the
nominal yield stress of the steel material.

Figure 8.10 illustrates the two different buckling loads, Nc1 and Nc2. Nc1

is the buckling load associated with a column which suffers from elastic
local buckling, whereas, Nc2 is the buckling load of a column which suffers
from inelastic local buckling or is compact in cross-section.

8.4 Local buckling of composite steel–concrete

members

This section will consider the local and post-local buckling behaviour of
composite steel–concrete members, and in particular summarise the results
of extensive experimental and analytical studies to determine the slenderness
limits for thin-walled steel sections when the steel is juxtaposed with concrete.

8.4.1 Composite steel–concrete beams

Composite steel–concrete beams subjected to sagging bending can suffer
from local buckling when the plastic neutral axis lies either within the steel
section, or when partial shear connection is used and compressive strains are

Deformation, δ

Load,
N

N

N

δ

NcrNc2

Nc1

N0l

8.10 Interaction buckling of a member.
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therefore developed in the top flange. Figure 8.11 shows a simply supported
composite steel–concrete beam which at failure has formed a local buckle in
the top flange.

8.11 Local buckling of a composite steel–concrete beam (Uy and
Sloane, 1998).

Bradford and Uy (1995) developed an inelastic finite strip method
incorporating the residual stress patterns illustrated in Fig. 8.12 for welded
and hot-rolled sections. The results of this study showed that the current
existing guidelines for slenderness limits of these flanges as suggested by
Eurocode 4 (European Committee for Standardisation, 1992) were conservative.
Bradford and Uy (1995) proposed new slenderness limits based on hot-
rolled and welded sections which are provided in Table 8.1.
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Table 8.1 Table of slenderness limits for compression flanges in
composite steel–concrete composite beams (Bradford and Uy, 1995)

    

b
t

yσ
235

Eurocode 4 Bradford and Uy

Hot-rolled or 20 31
stress-relieved
Welded 18 26

σrt = σy

Flange–
web

junction
σrc = 0.11 σy Welded section

b2
b1

b

σrc = 0.5 σy

σrt = 0.3 σy

Flange–web
junction

b1 b2

b

Hot-rolled section

8.12 Residual stresses of a flange in a composite steel–concrete
beam (Bradford and Uy, 1995).
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8.4.2 Composite steel–concrete columns

This section will consider the local and post-local buckling of composite
steel–concrete columns. Figure 8.13 shows the local buckling modes
experienced in (a) concrete-filled box sections, and (b) concrete-filled wide
flange (I) sections. The behaviour of concrete-filled steel sections from a

(a)

(b)

8.13 Local buckling of a variety of square composite steel–concrete
cross-sections (Uy, 1998b, Uy 2001): (a) concrete-filled box sections;
(b) concrete-filled wide flange (I) section.
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stability perspective is heavily dependent on the local and post-local buckling
of the component plates. Post-local buckling is often predicted using the
effective width concept as for both box sections and outstand sections
illustrated in Fig. 8.14. Effective width models for hot-rolled and fabricated
sections have been modified to incorporate residual stresses and initial
imperfections by Bradford (1985) and Bradford et al. (1987) which was
adopted in the Australian Standard AS 4100-1998 (Standards Australia 1998).
This model which is also present in steel codes in the USA and Europe is of
the form shown in equation 8.6:

b
b
e ol

y
 = β σ

σ 8.6

where β is a parameter used to account for residual stresses and initial geometric
imperfections. This parameter also varies depending on the type of section
and its method of fabrication. Furthermore, the type of boundary condition
also affects the determination of β. Values for this parameter including all
these factors are summarised in Table 8.2. These parameters were thus used
in calibrating the model with the post-local buckling test results of Uy (2001).
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8.14 Effective width concept for various assemblies: (a) box sections;
(b) flange outstands.

The tendon force concept was used for both cases of boundary conditions
to simulate residual stresses as illustrated in Figs 8.15 and 8.16. Results for
various cases of effective widths, be are illustrated in Figs 8.17 and 8.18
respectively, where R represents the level of residual compressive stress as a
function of the yield stress. The benefits of the inclusion of the concrete in
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the assessment of the local stability of steel sections is best evidenced by the
suggested slenderness limits which are summarised in Table 8.3. These limits
have been determined from the results given in Figs 8.17 and 8.18.

Table 8.2 Table of β values

Boundary condition Method of manufacture β

Supported on two longitudinal edges Stress relieved 0.84
Supported on two longitudinal edges Hot-rolled 0.84
Supported on two longitudinal edges Lightly welded (LW) 0.74
Supported on two longitudinal edges Heavily welded (HW) 0.65
Supported on one longitudinal edge Stress relieved 0.91
Supported on one longitudinal edge Hot-rolled 0.91
Supported on one longitudinal edge Lightly welded (LW) 0.86
Supported on one longitudinal edge Heavily welded (HW) 0.80

σrt = σy

σrc = Rσy

σrt = σy

Junction

b1 b2 b1

b

8.15 Residual stress distributions for box sections (Uy, 2001).
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8.5 Interaction buckling of composite

steel–concrete members

Thus far this chapter has considered the local and post-local buckling behaviour
of composite steel–concrete cross-sections. This section will consider the
effects of the coupling of local and global buckling, often termed interaction
buckling.

8.5.1 Composite steel–concrete beams

Composite steel–concrete beams generally are constructed with a steel section,
which is either hot-rolled or welded. In conventional composite steel–concrete
composite beams, headed shear studs as illustrated in Fig. 8.19 are provided

σrt = σy

σ rc = Rσy

b1 b2

b

Flange–web
junction

8.16 Residual stress distributions for I sections (Uy, 2001).
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at fairly close spacing to provide longitudinal shear transfer between the
concrete slab and steel beam. The presence of the headed shear studs generally
at a maximum spacing of 600 mm according to Australian Standard AS2327.1
(Standards Australia, 2003) precludes global buckling from occurring in this
structural form. This is because the presence of the headed shear studs,
generally provides full lateral restraint along the entire length of the beam.
Owing to the unlikelihood of global flexural-torsional buckling from occurring,
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8.17 Post-local buckling comparisons for box sections (Uy, 2001); (a)
hollow box sections; (b) concrete-filled box sections.
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Table 8.3 Table of slenderness limits for composite steel–
concrete columns, (Uy, 2001)
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8.18 Post-local buckling comparisons for I sections (Uy, 2001):
(a) hollow I sections; (b) concrete-filled I sections.
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one does not need to consider interaction buckling in composite steel–concrete
beams.

There may be some special cases when global buckling in the form of
flexural-torsional buckling may occur, which is illustrated in Fig. 8.19. For
composite steel–concrete edge beams which may experience compatibility
torsion, cracking of the concrete slab may occur and thus lateral-torsional
instability may be likely. Lindner (1998) has considered this form of global
instability of composite steel–concrete beams.

8.5.2 Composite steel–concrete columns

From a design context, composite columns can be designed using the EC4 or
AS4100-1998 (European Committee for Standardisation, 1992, Standards
Australia, 1998) method of column curve approach when compact sections
are used (Uy and Liew, 2002), which is illustrated in Fig. 8.20. However, this

8.19 Interaction buckling of a composite beam.
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8.20 Column curves for slender composite columns (Uy and Liew,
2002).
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model has also been shown to be valid by Mursi and Uy (2003) when slender
cross-sections are used. The study showed that curve a is the most suitable
approach to be used for composite columns. Furthermore, the presence of
concrete infill ensured that the growth of imperfections was minimised. A
generalised expression for the capacity of the slender column, Nc can be
given as:

NC = χNs 8.7

where χ is a function of slenderness, residual stresses and geometric
imperfections, where Ns = Aeσy.

As an alternative, Vrcelj and Uy (2002) conducted an extensive parametric
study based on a coupled buckling analysis, which resulted in a design
method being proposed for the strength calculation of a slender concrete-
filled steel box column loaded in compression. To predict the local buckling
strength of the slender concrete-filled steel box column, the following
relationship was proposed on the basis of the parametric analyses undertaken.
The slender column buckling load, Nclb, which incorporates local buckling,
can be represented in the form of equation (8.8) in terms of Nc, which is the
column-buckling load, which ignores the effects of local buckling:

Nclb = αlbNc 8.8

where αlb is the interaction coefficient to account for local buckling and is in
the range:

0 ≤ αlb ≤ 1.0 8.9

This is illustrated in Fig. 8.21 for various yield stresses.

8.21 Parameter αlb versus plate slenderness (Vrcelj and Uy, 2002).
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8.6 Concluding remarks

This chapter has presented a comprehensive overview of local and interaction
buckling in composite steel–concrete beams and concrete-filled steel composite
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columns. Methods have been presented to illustrate how these particular
failure modes can be addressed from a design perspective. Firstly, local and
post-local buckling of cross-sections has been considered. Furthermore, the
effects of member slenderness have been considered and approaches for
addressing interaction buckling have been presented. Finally, suggestions
for design in accordance with European and Australian practice have been
provided. The results and procedures here will become increasingly more
pertinent as structures are being designed and constructed with cross-sections
of a very thin-walled nature. Further research is required to try to implement
the effects of local and interaction buckling in both advanced analysis and
commercial software codes, as this will provide structural engineers with
considerable power to fully optimise building designs. Other approaches
based on a stiffness method of analysis have been developed by Shanmugam
et al. (2002), which could be used in future for inclusion in advanced analysis
methods as outlined by Liew and Uy (2001).
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8.8 Appendix: notation

A cross-sectional area of section
Ae effective area of cross-section
Ag gross cross-sectional area
b plate width
b1 region of component plate subjected to residual tension, σrt

b2 region of component plate subjected to residual compression, σrc

be effective width
E elastic modulus
I second moment of area of section
k local buckling coefficient
L effective length of column
N axial force
Nc critical load including nonlinear materials and geometry
Nc1 buckling load when elastic local buckling occurs
Nc2 buckling load when inelastic local buckling occurs
Ncr critical load (bifurcation)
Nol local buckling load
Npl plastic squash load
Npl.Rd plastic axial design resistance
NRd axial design resistance
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Ns squash load
R ratio of residual stress to nominal yield stress
t plate thickness
α stress gradient parameter (=σminimum/σmaximum)
αc parameter to account for member and cross-section slenderness
αlb parameter to account for local buckling, 0 ≤ αlb ≤ 1.0
β parameter for residual stresses and geometric imperfections
δ out of plane displacement
ν Poisson’s ratio
σ stress
σol local buckling stress
σrc residual compressive stress
σrt residual tensile stress
σy yield stress
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9.1 Introduction

The evolution of lightweight aeronautical structures to their present form is
largely based on early experimental work investigating the behaviour of
thin-walled structures under compression loading. Schuman and Back (1930)
were among the first to demonstrate that metallic plates with supported
unloaded edges were able to carry load beyond initial buckling. Cox (1945)
showed that aluminium panels with attached z-stiffeners also exhibited
postbuckling strength with the ratio of global buckling to local skin buckling
being a function of stiffener spacing. Stein (1959a) investigated the response
of an aluminium plate supported by a series of equally spaced knife-edge
supports, forming skin bays, under uniaxial compression. The phenomenon
of mode-jumping was observed during the testing of this panel where the
skin-bays initially buckled into five half-waves, followed by a mode-shape
change to six half-waves which occurred ‘in a violent manner’, followed by
seven and finally eight half-waves before global collapse. Only the first
mode-jump occurred within the elastic range of the material.

Recent years have shown a steady increase in the replacement of traditional
metallic alloys, in military and civil aerostructures, with laminated carbon–
fibre composite material because of their superior specific strength and stiffness.
While the design of certain metallic structural components allows for buckling
below the design limit load, the same confidence in the design of composite
aerostructures has yet to be widely adopted. There are several inhibiting
factors that have limited the use of postbuckling composite designs in
aerostructures, particularly in the primary structure where the potential for
weight reduction is greatest. Among these is damage tolerance and the
sensitivity to through-thickness stresses. Reducing the extent of mechanical
fasteners by co-curing, co-bonding or secondary bonding the stiffeners to the
skin offers the possibility of significantly lighter structures and lower production
costs. Unfortunately, the low through-thickness strength, coupled with the
potentially high peel and shear stresses at the skin–stiffener interface, may

9
Buckling and postbuckling of stiffened

composite structures

B  G  F A L Z O N,  Imperial College London, UK
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lead to delamination and cause premature failure of the structure. Furthermore,
mode-jumping is an energy-dissipating phenomenon and may release enough
energy, if it occurs at high loading, to cause catastrophic failure by unstable
crack propagation initiating at these relatively weak skin–stiffener interface
regions. Indirect experimental evidence of this occurrence has been reported
by Romeo and Frulla (1994) and Falzon et al. (2000). It is therefore imperative
that reliable analytical and numerical tools are developed that can accurately
predict the behaviour of postbuckling composite stiffened structures.

Large deflection equations for thin isotropic plates were first presented by
Von Kármán (1910) and used for investigating the postbuckling behaviour of
compressively loaded thin plates (see Von Kármán et al., 1932). Koiter (1943)
presented an analysis for infinitely long plates loaded far into the postbuckling
region where the mode-shape half-wavelength was a constantly varying function
of applied loading. Stein (1959b) converted Von Kármán’s equations into an
infinite set of linear differential equations by expanding the displacement
expressions into a power series in terms of an arbitrary parameter and solved,
to a second order approximation, for a simply supported plate. Stein postulated
that the interaction of load versus displacement curves indicated the possibility
of mode-jumping where the buckling half-wave for a given end-displacement
was such that the load was a minimum. Supple (1970) presented a two-mode
analysis of a simply supported postbuckling plate based on a Ritz–Galerkin
energy approximation to explain mode-jumping qualitatively. Nakamura and
Uetani (1979) used higher-order displacement functions to predict mode-
jumping quantitatively using an energy minimisation approach. A similar
approach was used by Stoll (1994) in his investigation of mode-jumping of
high aspect-ratio plates for a range of boundary conditions and loading.
Stein (1959a) presented a theoretical basis for mode-jumping using a three-
element column connected by linear torsional springs and supported laterally
by nonlinear extension springs. The analysis was able to capture many of the
features observed in postbuckling plates undergoing mode-jumping. This
model is essentially a beam on a nonlinear elastic foundation and a variation
of this model has been used more recently by Everall and Hunt (2000) to
investigate the effects of boundary conditions on mode-jumping. Falzon and
Cerini (2004b) have also used this model to demonstrate the effectiveness of
a hybrid (static/dynamic) numerical technique for capturing mode-jumping,
and this work will be discussed later in this chapter.

The analysis of the postbuckling behaviour of laminated plates is more
complicated because of the possible coupling between in-plane extension
and shear, bending and twisting or in-plane deformations and bending. The
development of Von Kármán’s (1910) large deflection equations for anisotropic
plates may be found in the monograph by Lekhnitskii (1968). These equations
are difficult to solve analytically and are usually simplified to the specially
orthotropic case where all couplings disappear. An early study by Yusuff
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(1952) dealt with the postbuckling of simply supported specially orthotropic
plates with initial curvature and loaded in uniaxial compression. Harris (1975)
investigated the stiffness immediately beyond buckling of antisymmetric
laminates. Stein (1983) identified two additional parameters, to those required
for buckling, to characterise the postbuckling response of specially orthotropic
plates for a complete range of dimensions and material properties. Romeo
and Frulla (1994) presented an analysis of symmetric panels under combined
biaxial and shear loading and with combinations of paired simply supported
and clamped boundary conditions on the loaded and unloaded edges. Good
correlation was achieved with their experimental results and with analytical
results by Minguet et al. (1989) who used a ‘line search’ energy minimisation
technique.

Modelling postbuckling stiffened composite structures presents yet another
level of complexity. The analytical and semi-analytical approaches discussed
above give valuable insight into the postbuckling behaviour of plates, yet
despite their considerable complexity they are restricted to basic geometries
and well-defined boundary conditions. Considerable effort has been undertaken
by various researchers to both experimentally observe the response of
postbuckling stiffened composite structures to compressive loading and to
try to predict this behaviour using numerical methods, predominantly the
finite element method. Starnes et al. (1985), Stevens et al. (1995), Kong et
al. (1998), Falzon and Steven (1997), Falzon et al. (2000) and Falzon (2001)
presented combined experimental and finite element investigations into the
postbuckling response and subsequent failure of flat stiffened composite
panels while Knight and Starnes (1988) and Kweon et al. (1995) adopted a
similar approach in their study of the postbuckling and failure of curved
stiffened composite panels. Damage was observed to initiate at a point in the
panel corresponding to either a node-line or an anti-node-line of the buckle
mode.

In this chapter, experimental observations will be presented to highlight
the complex response of postbuckling stiffened composite structures under
uniaxial compression loading. Initial failure sites are identified and their
occurrence discussed. This will lead to a brief survey of current finite element
modelling practices and potential pitfalls. A robust and efficient solution
algorithm implemented by the author and co-workers will be described which
is capable of handling abrupt nonlinear behaviour associated with limit or
bifurcation points. Current finite element modelling approaches to capture
damage initiation and progression in stiffened composite structures are also
presented.

9.2 Experimental observations

The potential for lightweight postbuckling design of stiffened composite
structures has been demonstrated through a number of experimental
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programmes undertaken by the author and co-workers, Falzon and Steven
(1995, 1996, 1997), Falzon et al. (2000), Falzon (2001) and Stevens et al.
(1995, 1997). A selection of panel configurations, incorporating different
lay-up schemes, stiffener cross-sections and stiffener separation, were tested
in uniaxial compression until failure. This type of test primarily simulates
the behaviour of the upper wing surface in flight, lower fuselage sections and
control surfaces. These panels were all made from unidirectional pre-
impregnated carbon–fibre composite laminae and designed to fail at a load
well beyond that required to cause initial local skin-buckling. The loaded
ends were potted in a resin and fibreglass mixture and machined parallel to
ensure a uniform loading and imposing a near-clamped boundary condition.
The panels were placed in a compression-testing hydraulic machine and
loaded quasi-statically under displacement control.

Stiffened postbuckling structures have been shown not to be particularly
imperfection-sensitive, that is, slight geometric imperfections do not lead to
significant reductions in the local, or indeed, global stability loads. This is in
marked contrast to the behaviour of curved or cylindrical shells loaded in
uniaxial compression (Yamaki, 1984) or spherical shells under an external
pressure load (Yamada and Yamada, 1983), which exhibit large reductions in
buckling strength in the presence of comparatively small geometric
imperfections. Indeed, the notion that an optimum stiffened structure is one
with coincident local and global buckling leads to high imperfection-sensitivity.
This may result in a sudden collapse at loads significantly below those
predicted theoretically. A detailed discussion of this phenomenon is given in
the monographs by Singer et al. (1998, 2002).

9.2.1 Hat-stiffened panel

The hat-stiffened panel shown in Fig. 9.1(a) was designed to be highly
postbuckling and incorporated two integrated hat-stiffeners as detailed in Fig
9.1(b). This panel was designed to be representative of lightly loaded thin-
skinned secondary structure which buckles under operational loads. The
shadow Moiré technique (Kobayashi, 1993) was used to qualitatively observe
the out-of-plane displacements where the contours represent constant
displacement. Figure 9.2 shows the Moiré fringe pattern at different loading
stages. The panel had a nominal skin thickness of 1 mm, and initial buckling
of the central skin bay occurred at 9.4 kN. This buckling load was deduced
from back-to-back strain gauges where the buckling point was determined
by noting the change in membrane strain taken as the average of the two
strain gauge readings. The mode-shape contained three half-waves and, upon
additional loading, the crests of these half-waves were observed to flatten
out as evidenced by the strain-gauge results in Fig. 9.3 which show a gradual
reduction in the bending strain beyond a loading of approximately 40 kN.
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9.2 Moiré fringe patterns for hat-stiffened panel at loading; (a) 40 kN,
(b) 66 kN (t = –0.04 s), (c) 66 kN (t = 0.04 s).
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This phenomenon was described by Koiter (1963) and is due to the increasing
membrane stiffness deep in postbuckling. The initial buckling mode shape
was observed to grow gradually with increasing load, confirming that initial
buckling of plated structures is stable.

The central half-wave was observed to extend vertically and a gradual
secondary instability was observed at the skin–stiffener boundaries, leading
to a splitting of this central half-wave as shown in Fig. 9.2(b). A similar
observation was made by Chai (2002) in his study of unilaterally constrained
plates with all edges fully clamped, where this splitting continued until the
central half-wave had transformed to two separate half-waves. The hat-stiffened
panel did not exhibit this complete formation and at a loading of 66 kN, a
dynamic mode-jump to five half-waves was observed. The final mode-shape
is shown in Fig. 9.2(c). The initial location of the strain-gauges in Fig. 9.3
indicates a buckle crest, sometimes referred to as an anti-node line. At the
mode-jump, the bending strains recorded at this location were dramatically
reduced, indicating that this location was close to a newly formed
buckling node-line. The panel failed catastrophically at a loading of 103 kN,
which was nearly 11 times higher than the initial buckling load of the skin-
bay.

Hat stiffened-panels were also tested by Stevens et al. (1997) but no
mode-jumping was reported. Two configurations were tested, one where the
flanges on the stiffeners were untapered and the other where the flanges
were tapered by a single four-ply drop-off. The four bottom plies in a flange
of eight-ply thickness were cut short to achieve the taper by the enveloping
top four plies. By loading the panels at a very slow rate in a hyper-stiff
testing machine, some tests were successfully terminated before catastrophic
collapse to reveal failure initiating at the skin–stiffener interface of a buckling
node-line. These regions correspond to areas of maximum twisting moment
and the geometric discontinuity between the skin and the flange gives rise to
interlaminar shear stresses at the edge of the skin–stiffener interface.

High interlaminar shear stresses initiated delamination failure at the edge
of the skin–stiffener interface which then propagated towards the stiffener
web. A detailed discussion of edge effects in the failure of composite structures
is given by Davies et al. (1986). This interlaminar shear stress may be alleviated
by flange tapering but, surprisingly, in the tests carried out by Stevens et al.
(1997), the panels with tapered flanges failed at a lower loading than those
without tapering, where failure was still observed to initiate at a node-line.
These tests highlighted the local nature of failure initiation and indicated that
the design of the taper may play a significant role in determining failure
initiation in stiffened composite panels.
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9.2.2 I- and J-stiffened panels

Tests on I- and J-stiffened panels by Stevens et al. (1995) revealed failure
initiation in regions corresponding to buckle crests. At these locations, the
twisting moments are a minimum but the direct bending moments are a
maximum. There are two mechanisms that may lead to failure initiation.

Bending moments are induced in the skin–stiffener flange region and the
stiffness discontinuity at the edge of the flange gives rise to peel stresses. In
a buckled configuration, these peel stresses will be tensile on one side of the
stiffener web and compressive on the other. Delamination at the skin–stiffener
interface may initiate at the free edge of the tensile region and propagate
towards the base of the stiffener web. Flange tapering reduces the magnitude
of peel stresses and the panels tested in this programme all had tapered
flanges.

The other possible initial failure mechanism, and the one that was observed,
arises from the constraint applied by the torsional stiffness of the stiffener
cap. As the skin buckled, a bending moment in the stiffener web was generated,
which increased linearly with a maximum occurring at the base of the stiffener
web. This resulted in the formation of cracks at the triangular region underneath
the web and bounded on each side by the stiffener flanges, which propagated
along the tensile skin–stiffener interface as shown in Fig. 9.4. These cracks
were observed to propagate along the stiffener for a length of approximately
one-half of the buckled half-wave and outwards towards the edge with no
further appreciable increases with subsequent loading. The reversal in sign
of the peel stress with each quarter-wave has a stabilising effect on crack
propagation and, with increased loading, other failure initiation sites were
formed before catastrophic failure.

9.4 Micrograph of fractured skin–stiffener interface. Source: (Ricci
1994.)
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9.2.3 Blade-stiffened panel

Two identical blade-stiffened panels, shown in Fig. 9.5, were tested until
failure by Falzon et al. (2000). Four stiffeners were secondary bonded to the
skin using a film adhesive between tapered flanges of the stiffener and the
skin. The stiffeners were not evenly spaced, with the spacing between the
central two stiffeners being twice that of the outer adjacent stiffeners. The
initial buckling load of the first panel was measured at 105 kN while the
second panel buckled at 110 kN. The buckled mode-shape, of four half-
waves, for the three skin-bays is shown in Fig. 9.6(a). The first panel failed
catastrophically at a loading of 573 kN while the second panel was observed
to undergo a sudden mode-jump to five half-waves at a loading of 570 kN as
shown in Fig. 9.6(b). The proximity of the failure load of the first panel to
the load at which the second panel underwent a mode-jump suggests that a
secondary instability in the first panel may have precipitated failure.

A–B

4 mm

538 mm

728 mm

9.5 Blade-stiffened panel.

The second panel was unloaded to allow for the placement of extra strain-
gauges around a stiffener node-line where damage was observed to initiate
from a visual inspection of the failed first panel. Upon reloading, the mode-
jump occurred at 548 kN which was slightly lower than the load recorded for
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the first load cycle. This may be attributed to inevitable matrix cracking
although no significant acoustic emission was detected until final failure.
The absence of acoustic emission indicated that no appreciable damage had
developed in the panel prior to collapse.

It will be recalled that the strain-gauge results in Fig. 9.3 showed a sudden
reduction in bending strain due to the appearance of a buckling node-line.
The inevitable obverse effect of this is that regions within a buckled structure
will jump from a state of relatively low strain to an appreciably higher one.
An example of this is shown in Fig. 9.7 for a pair of strain-gauges mounted
on the stiffener web at a nodal line as shown in Fig. 9.5. The relatively low
torsional stiffness of the I-stiffeners resulted in stable stiffener rotation under
increasing compressive loading. This rotation will be shown to have had a
significant bearing in explaining the failure mechanism associated with this
type of panel. The second panel failed catastrophically at a loading of 601 kN.

The stiffeners, for the most part, remained attached to the skin but mid-
plane delamination at the free-edge of the stiffener web was observed at the
failure locations as shown in Fig. 9.8. This is in contrast to the failure
observed in the I-, J- and hat-stiffened panels where failure initiated at a
skin–stiffener interface. Blade-stiffeners have relatively low torsional stiffness.
Therefore the loading action that initiated failure in the previous panels
could not develop and a different failure initiation mechanism was found
away from the skin–stiffener interface. The stiffener rotation gave rise to
high interlaminar shear stresses τxz on a node-line at the free edge of the
stiffener web (Falzon et al., 2000).

(a) (b)

9.6 Moiré fringe patterns for blade-stiffened panel at loading: (a) 300
kN, (b) 570 kN.
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9.3 Finite element modelling

9.3.1 Linear eigenvalue analysis

A common starting point in the numerical analysis of the buckling of stiffened
composite panels is to perform a linear eigenvalue analysis. The implicit
assumption with this type of analysis is that initial imperfections in the
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9.7 Results of back-to-back strain-gauges mounted on the web of a
blade-stiffener.

9.8 Failure locations in a blade-stiffened panel.
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structure are negligible or, at least, the structure is not imperfection-sensitive.
The applied loading is also assumed to be conservative and a linear function
of displacements. To understand how the buckling load may be obtained
from an eigenvalue analysis, consider the tangential stiffness matrix, Kt, at a
point along an equilibrium path, which is made up of the sum of the material
stiffness matrix, K, and the geometric stiffness matrix Kσ:

Kt = K + Kσ 9.1

Kσ accounts for the effects that membrane forces have on the bending stiffness
of a structure and is formulated independently of K. Now if a structure is
loaded such that compressive membrane forces are generated, it may be
argued that for a permissible deformation mode, Kσ will reduce the overall
stiffness to zero for a given load magnitude. Hence at this instance the
tangential stiffness matrix, Kt is singular. The load at which this occurs is the
buckling load of the structure.

In a finite element analysis, the applied load is usually based on some
design criterion, usually the maximum in-service load that the structure is
likely to experience multiplied by a safety factor. If this load is referred to fext

we usually want to know whether this exceeds the buckling load. By the
linearity assumption, multiplying the applied loading fext by a scaling factor
λ, will result in a corresponding increase in Kσ whose terms are linear functions
of applied load:

fC = λfext ⇒ Kσc = λKσ 9.2

where the subscript C refers to the scaled values. Therefore if fC is the initial
buckling load then the stiffness is singular and may be expressed as:

(K + λKσ) z = 0 9.3

where z corresponds to the deformation, from an initial configuration, when
the overall stiffness becomes singular through the scaling of Kσ by λ. Equation
9.3 is an eigenvalue problem where λ is referred to as the eigenvalue and z
the corresponding eigenvector. The lowest value of λ that satisfies this equation
yields the buckling load when multiplied by the applied loading fext. Hence,
by Eq. 9.2, fC becomes the critical buckling load for the structure. Higher
buckling modes may be found and therefore the eigenvalue problem may be
expressed more generally as:

(K + λiKσ) zi = 0 9.4

In practice, the determination of higher buckling modes is usually less
significant, although the user may, nonetheless, be interested in knowing
whether there are any other eigenvalues clustered around the critical eigenvalue.
This would imply an intertwining of numerous secondary branches whereby
the correct determination of a stable post-secondary instability equilibrium
path cannot be guaranteed (Riks et al., 1996).
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Figure 9.9 shows the buckled mode-shape for the second blade-stiffened
panel, discussed in Section 9.2.3, using a linear eigenvalue analysis. The
predicted initial buckling load was 3.5% higher than that measured
experimentally and the mode shape exhibited the expected four half-waves
in the skin bays. The second eigenvalue corresponded to a load that was
5.4% higher than the experimental buckling load with a mode-shape
corresponding to five half-waves. Despite the proximity of these two eigenvalues
the panel did not undergo a mode-jump from four half-waves to five half-
waves until a loading of over five times the initial buckling load was reached.

9.9 Buckling mode shape for a blade-stiffened panel obtained from a
linear eigenvalue analysis.

9.3.2 Geometrically nonlinear analysis

An eigenvalue analysis will not yield accurate information on the critical
buckling load if geometric imperfections are substantial or the structure is
sensitive to small imperfections. Even though postbuckling flat stiffened
panels are not imperfection sensitive, panels with coincident local and global
buckling loads may exhibit such behaviour. Also, no quantitative information
on the buckled mode-shape can be extracted. A better way forward in the
finite element modelling of the buckling and postbuckling response of plated
structures is to use nonlinear analysis. The use of quasi-static continuation
methods are based on the application of incremental loads or displacements
to capture the nonlinear response of a structure across a specified load history.
The set of equilibrium equations that must be solved at each increment are
given by:
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r(u, λ) = fint – λ fext = 0 9.5

where r(u, λ) is the residual or out-of-balance force vector, u is the vector of
displacements,  fint is the internal force vector given by Ktu, fext is the external
reference load vector and λ is a load scaling parameter.

Newton–Raphson methods

The Newton–Raphson-based solution algorithms are the most widely used
routines for solving standard nonlinear problems and form the backbone of
most commercial nonlinear finite element packages. The reader is referred to
the monograph by Bathe (1996) for the implementation details of these
algorithms. Newton–Raphson schemes are iterative solution schemes and
can be used under either displacement or load control. In the presence of
highly nonlinear behaviour these methods are known to fail. Figure 9.10(a)
shows the potential problems using load control where the load is applied as
a series of fixed load increments while Fig. 9.10(b) shows a similar problem
for displacement control where a set of displacements are prescribed
incrementally. This type of behaviour is sometimes referred to as snap-
through or snap-back behaviour and is analogous to the behaviour observed
in postbuckling stiffened panels undergoing mode-jumping. Hence more
sophisticated numerical procedures are required to reliably capture the response
of these structures.

λfext

C

u
(a)

λfext

u

(b)

9.10 Potential problems in tracing a highly nonlinear equilibrium
path using (a) load control and (b) displacement control.

It is worth making a distinction between a limit point and a bifurcation
point at this stage of the discussion. The nature of such critical points along
an equilibrium path requires different numerical approaches for their
identification and to advance the solution beyond these points. A point along
an equilibrium path where the tangent is normal to the load axis is referred
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to as a limit point. An example of a limit point is shown in Fig. 9.10(a) and
is denoted by C. A simple bifurcation point represents the intersection of two
equilibrium curves, often referred to as the primary and secondary curves for
an initial bifurcation point. At a bifurcation point, the primary curve becomes
unstable and hence the structure will assume a different deformation mode
commensurate with an equilibrium state along the stable secondary path.

The buckling of a perfect structure corresponds to a bifurcation point.
Nonlinear finite element continuation methods cannot traverse such points
without the requirement of extra computational effort (Crisfield, 1997). In
practice, the presence of imperfections within a structure removes a bifurcation
point and only a single equilibrium path exists. This equilibrium path may be
highly nonlinear and hence the need for advanced numerical procedures
capable of traversing limit points. One such group of procedures is collectively
referred to as the arc-length methods.

Arc-length methods

Arc-length methods were first proposed by Riks (1979) and Wempner (1971),
with later modifications proposed by Crisfield (1981). These methods use
both the scaling parameter λ and the displacement vector, u, as constraint
variables. For a finite element model with n degrees-of-freedom, the arc-
length method requires the solution of n + 1 variables and the added constraint
equation is represented in Eq. 9.6:

∆ ∆ ∆ ∆u u f fT 2 2
ext
T

ext
2+ = λ ψ l 9.6

where, with reference to Fig. 9.11, ∆u and ∆λ are the incremental changes in
displacement and load respectively, ∆l is the arc-length and ψ is a scaling
parameter.

Riks’ formulation iterates along a hyperplane orthogonal to the tangent of
length ∆l from a previously converged point along the equilibrium path.
Crisfield’s method iterates along a hypersphere, where the arc-length constraint
is also employed for corrector iterations, and is less likely to fail in the
vicinity of sharp limit points. Crisfield has further shown that the loading
terms have little influence on the solution process and advocated setting
ψ = 0. The iterations within each increment are usually still performed using
a modified Newton–Raphson scheme.

Solving Eqs 9.5 and 9.6 simultaneously is not readily amenable to finite
element analysis since the augmented stiffness matrix will not be symmetric
or banded. Using an approach suggested by Batoz and Dhatt (1979) this
system of equations reduces to a quadratic in δλ which represents an iterative
change in the applied load:

a1δλ2 + a2δλ + a3 = 0 9.7
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The reader is referred to the monograph by Crisfield (1991) for the derivation
of the quadratic coefficients. This implies two possible solutions for the load
increment and the correct choice of δλ, at the predictor stage, is central to
this method’s effectiveness. One possibility is to match the sign of δλ with
the determinant of the stiffness matrix. In practice this is achieved by looking
at the terms of the diagonal matrix D of the factored stiffness matrix Kt =
LDLT where L is a lower unit triangular matrix. If all terms on the diagonal
are positive, this implies the stiffness matrix is positive definite and hence a
positive sign for the load increment is chosen. If a negative diagonal is
encountered, this is equivalent to detecting a negative eigenvalue and implies
that a critical point has been passed. This critical point could be either a limit
point or a bifurcation point, but the arc-length method breaks down in the
vicinity of bifurcation points. It is common practice within a finite element
model to introduce geometric imperfections to remove bifurcation points.
Other schemes for the selection of the correct load increment have also been
proposed by Hellweg and Crisfield (1998), De Souza Neto and Feng (1999)
and Cerini and Falzon (2005), among others.

A finite element model of the second blade-stiffened panel presented in

λfext

Predictor (u1, ∆λ1fext)

δλ1fext

∆l Riks

Crisfield

∆λ2fext

∆λ1fext

λ0fext

δu0 δu1

uu0 ∆u1

∆u2

9.11 Constraint schemes proposed by Riks and Crisfield.
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Section 9.2.3 was developed and an imperfection corresponding to the first
two eigenmodes, and scaled such that the maximum out-of-plane displacement
was 5% of the skin thickness, was added to the pristine geometry. The mode-
jump was predicted to occur at a loading that was 14% lower than the
experimentally observed value. This discrepancy may be attributed to the
introduction of imperfections that bore little resemblance to any imperfections
that existed in the actual test panel. The experimental and finite element
curves are shown in Fig. 9.12. It is noted that the mode-jump is characterised
by a sharp ‘snap-back’. At a loading of 601 kN the solution indicated collapse
of the panel, which was, remarkably, the same as the experimental failure
load recorded for the panel. Figure 9.13 shows the deformed state just before
final failure and the high stiffener-web rotations at the mid-span of the panel
were consistent with the observed failure mechanism leading to the panel’s
catastrophic collapse.
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9.12 Load versus end-displacement curves for the blade-stiffened
panel (arc-length method).

Arc-length methods are shown to be able to capture highly non-linear
behaviour, including mode-jumping in stiffened composite structures, but
they may still run into difficulty in the presence of very sharp snap-backs or
if inappropriate imperfections are added that do not remove all the bifurcation
points that are likely to be encountered. It should not be surprising that
trying to capture transient events using quasi-static continuation techniques
may run into difficulty. Riks et al. (1996) further pointed out that the stable
paths that the structure follows before and after a mode-jump may not be
statically connected by unstable equilibrium paths, so that such methods are
bound to fail.
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Dynamic methods

The presence of transient phenomena in a highly postbuckled panel suggests
that a dynamic solution algorithm might be better suited for analysis. In
general, the static equilibrium equation, Eq. 9.5, is augmented with inertial
and damping forces:

Mü + C u̇ + r(u, λ) = 0 9.8

where M is the mass matrix, C is the damping matrix and ü and u̇ are the
acceleration and velocity vectors respectively. For a given set of initial
conditions the solution process is stepped through time at specified load
increments. Within each load increment the solution is monitored until the
dynamic terms are reduced to within a set tolerance.

Various direct time-integration schemes have been proposed for the solution
of dynamical systems (Hitchings, 1992) and these may be subdivided into
two main groups. The first group is referred to as implicit methods and is
based on satisfying Eq. 9.8 exactly for some time t + ∆t. This implies that
t+∆tu (the displacement at time t + ∆t) requires knowledge of t+∆tü and t+∆t u̇
and the solution is solved iteratively using a predictor-corrector procedure
such as a Newton–Raphson scheme. The tangential stiffness matrix Kt, may
be shown to be augmented by additional terms involving the mass and stiffness
matrices and hence the system can still be equilibrated when Kt is singular.
While this method is unconditionally stable (i.e. ∆t may be large) for well-
behaved problems, it is still susceptible to numerical difficulties for highly
nonlinear problems and hence a small ∆t will usually be required to ensure
convergence. Caputo et al. (2002) used an implicit Newmark scheme in their
study of the postbuckling behaviour of a stiffened panel representative of the
non-pressurised rear fuselage of the ATR 42-72 commuter aircraft.

9.13 Panel deformation at the point of collapse (601 kN).
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The second group is termed explicit methods, where it is assumed that for
a sufficiently small time-step ∆t, only the acceleration changes significantly
and thus t+∆tü is determined from ‘historical’ values only:

t+∆tü = M–1{t+∆tλfext – tCt u̇ – t
t
tK u } 9.9

Standard explicit methods further assume that the mass matrix can be
diagonalised, and by using an appropriate time-stepping scheme, the solution
may be progressed without the need of matrix factorisation. This method,
while being very stable for highly nonlinear problems is conditionally stable
and requires a time-step of the order of the inverse of the maximum resonant
frequency, ωmax, of the structure. Bisagni (2000) undertook a comparative
study of implicit and explicit dynamic schemes in her study of postbuckling
composite shells that exhibit highly nonlinear behaviour. Despite the small
time-step required for stability in an explicit procedure, the computational
time required for this analysis was significantly less than that required for
the implicit dynamic analysis.

In general, to establish static equilibrium, at least one cycle of the
fundamental frequency ωmin, must be completed so that the number of steps
is of the order of ωmax/ωmin during the dynamic phase of the analysis. This
results in a very high number of time steps as these two frequencies are
usually orders of magnitude apart. The damping matrix is often idealised as
proportional (or Rayleigh) damping and is expressed as:

C = αKt + βM 9.10

where α is a constant that controls damping at high frequencies and β is a
constant that controls damping at low frequencies. Because of the large
spread in resonant frequencies of a typical structure, choosing adequate
damping coefficients becomes difficult. Hence the requirement for a large
number of steps is augmented by a very slow rate of convergence.

In the modelling of postbuckling stiffened composite structures undergoing
mode-jumping, we are often only interested in locating a stable post-mode-
jumping equilibrium path without the need of accurately representing the
behaviour during the transient phase. It is therefore not necessary to retain
the actual mass and damping matrices since once a static solution is recovered,
these matrices multiply null acceleration and velocity vectors. It was also
stated earlier that the explicit method assumes a diagonal mass matrix. This
is not strictly necessary although it does improve the computational efficiency.
However, since the interest lies in recovering a static solution, emphasis is
shifted to improving the computational efficiency in achieving this goal, i.e.
by reducing the ratio ωmax/ωmin. If a diagonal M is retained, then some terms
may be selectively scaled, leading to a reduction in ωmax, but typically less
than an order of magnitude, with ωmin remaining largely unaffected. Hence
a more efficient scheme was sought for reducing this frequency ratio.
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These considerations led to the development of a modified explicit dynamic
analysis whereby the diagonal form of M was abandoned and, along with the
damping matrix C, replaced with the tangent stiffness matrix:

K ut
+t t∆ ˙̇  + (αtKt + β K ut )

t ˙  + t tK ut  – t+∆tλfext = 0 9.11

where tKt is the current stiffness matrix and K t  is a previous estimate of the
tangent stiffness matrix. This reduces the difference between ωmax and ωmin

by orders of magnitude. α is usually chosen to critically damp ωmax and β
chosen to critically damp ωmin. Therefore:

t t+
t
–1 = ∆ ˙̇u K [t+∆tλfext – tKt(αt u̇ + tu)] – βt u̇

= K t
–1(qext –   

(
q int ) – βt u̇ 9.12

Once the acceleration has been calculated it may be assumed to vary linearly
between time t and t + ∆t. Integrating this linear expression yields t+∆t u̇ and
integrating again gives t+∆tu. The norm of the out-of-balance force (qext –

  
(
q int ) is then compared with the norm of the load increment. If the ratio
exceeds a specified convergence factor then the next step is computed. If this
ratio is below the convergence factor, the next load increment is applied. K t

is typically computed at the start of each load increment and is updated only
if the out-of-balance norm increases significantly over one or more previous
time steps or, as a check against slow convergence, if more than a specified
number of steps are taken for a given load increment.

A further improvement in computational efficiency was obtained by reducing
the problem to a first-order one and setting the damping matrix equal to the
stiffness matrix K t :

  
t t t t t t+

t
–1 +

ext t t
–1

ext int = (  – ) = (  – )∆ ∆u̇ K f K u K q qλ )
9.13

By assuming that the velocity varies linearly over the time-step, the
displacements may be obtained and convergence checks carried out that are
identical to those for the full second order system. This method allows for
the use of a comparatively large time-step compared to a standard explicit
analysis. In fact, Falzon and Cerini (2004a) have shown that if K t  is updated
at every time-step, the condition for stability is that ∆t should be less than or
equal to unity. In practice, ∆t was limited to less than or equal to 0.2.

The blade-stiffened panel discussed in Section 9.2.3 was modelled using
this first order ‘pseudo-transient’ scheme (Falzon and Hitchings, 2003). The
load versus end-displacement curve is shown in Fig. 9.14. The mode-jump
was predicted to occur at a loading of approximately 517 kN which was 5%
lower than the experimental value and closer than that predicted using the
arc-length method. The solution was also able to accurately capture panel
collapse at a loading of 602 kN.
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Combined quasi-static/pseudo-transient method

The pseudo-transient method provides a robust means of modelling the
structural response of highly nonlinear behaviour and is not susceptible to
the same problems associated with quasi-static continuation methods. In the
absence of highly nonlinear behaviour, continuation methods are very efficient
and thus a numerical scheme which combines the advantages of quasi-static
and transient techniques seems a logical progression in the modelling of
postbuckling stiffened panels. Riks et al. (1996) and Caputo et al. (2002)
have demonstrated this combined scheme using quasi-static and implicit
dynamics procedures and the switching from one solution procedure to the
other was performed interactively using restarting schemes available in most
commercial finite element packages. Falzon and Cerini (2004a) have automated
this procedure within an in-house finite element code using the arc-length
method and the pseudo-transient analysis discussed above.

The arc-length method (or indeed any other non-linear solution method
such as a Newton–Raphson scheme) is used while the response of the panel,
to a given compressive loading, is quasi-static. This behaviour is characterised
by a positive definite tangential stiffness matrix. Using the decomposition of
this stiffness matrix, Kt = LDLT, a positive definite matrix will have all
diagonal terms (pivots) in D greater than zero. When a critical point is
passed, a negative pivot will result. At this stage of the analysis, a ‘bracketing
procedure’ is used to determine the location of the critical point more accurately.
Once this has been located with sufficient accuracy, a load increment which
is just above this point is used to initiate the transient phase of the analysis.
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9.14 Load versus end-displacement curves for the blade-stiffened
panel (pseudo-transient method).
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To prevent the solution from tracking back along the same equilibrium path,
use is made of eigenmode injection. Close to the critical point, the eigenvalue,
λC, will be close to zero and the corresponding eigenvector, νC, is scaled and
used as the displacement increment. It is worth noting that eigenvalue extraction
for large problems is computationally expensive but Fujii and Noguchi (2002)
have shown that λC and νC may be directly extracted from the LDLT

decomposition of Kt:

λC
min
2  

( )
| |

≈ d
l
ii

i

   νC   
| |

≈ l
l
i

i
9.14

where (dii)min is the smallest diagonal entry in D and li is the corresponding
column of (LT)–1.

This transient phase is stepped through pseudo-time until convergence is
reached within a set tolerance and then the solution procedure switches back
to the quasi-static routine. By identifying the critical points directly and
using eigenmode injection, there is no longer the need to introduce initial
imperfections into the geometry to remove bifurcation points as would be
required if the arc-length method was used exclusively. The type of critical
point may also be deduced by noting that for a bifurcation point νC

T
ext  = 0q

and ∂λ/∂s ≠ 0 which represents the differential change in load with respect
to an arc-length parameter, s, where the incremental form of this is given in
Eq. 9.6. A limit point is defined by ∂λ/∂s = 0 and νC

T
ext   0q ≠ . A nondimensional

current stiffness parameter κ, which relates the current stiffness to the initial
stiffness, may also be used to indicate a limit point as κ → 0.

Falzon and Cerini (2004b) demonstrated the numerical efficiency and
robustness of this automated hybrid procedure by comparing the CPU time,
using the different solution techniques discussed in this chapter, in the modelling
of a beam on a nonlinear elastic foundation. The beam was modelled using
two-node truss elements connected with linear rotational springs and supported
at the nodes by extensional springs whose restoring force was proportional
to the cube of their extension. The cubic-spring type of support simulated the
behaviour of a simply supported plate under uniaxial compression and the
model was shown to undergo several mode-jumps with increasing load. A
number of different mesh densities were also investigated. Where convergence
was achieved using the arc-length method, this proved to be the most
computationally efficient (shortest CPU time). This was followed by the
hybrid procedure, the pseudo-transient procedure, the implicit and explicit
schemes. The CPU time for the full explicit method was shown to be orders
of magnitude higher than that for the hybrid procedure.

A finite element model of a uniaxial compression-loaded I-stiffened carbon–
fibre composite panel, which was experimentally tested to failure, was
developed and solved using the automated hybrid procedure. The panel, of
length 790 mm and width 604 mm, was made from T300/914C unidirectional
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9.4 Modelling failure

The experimental observations discussed in Section 9.2 highlighted the
vulnerability of co-cured, co-bonded or secondary-bonded stiffened composite
structures to delamination failure at the skin–stiffener interface. Delamination
results from the relatively weak interface strength to through-thickness and
shear stresses. This problem is exacerbated when the panel is in a postbuckled
state. Hyer and Cohen (1988), Cohen and Hyer (1992) and Kassapoglou and
DiNicola (1992) have investigated the distribution of stresses at the skin–
stiffener interface, and the resulting stress singularities at the edge of this
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9.15 Out-of-plane displacement at the centre of the I-stiffened panel.

prepreg with four equally spaced stiffeners, secondary-bonded onto the skin.
The skin bays were observed to buckle in five half-waves at a loading of
approximately 119 kN and a mode-jump to six half-waves occurred at a
loading of 244 kN. A further mode-jump, where the outer skin bays buckled
into seven half-waves, was observed at a loading of 485 kN. Audible cracks
were heard at loadings above 300 kN, indicating matrix microcracking. The
out-of-plane displacement at the centre of the panel was measured and compared
with that predicted from the finite element model, as shown in Fig. 9.15. As
is evident, the finite element model predicted the initial mode-jump to occur
at a loading of 235 kN which was only 2.8% higher than the experimentally
observed value. The second mode-jump was predicted to occur at a loading
of 552 kN which was 13.8% higher than that observed experimentally. This
discrepancy is due to the considerable extent of matrix microcracking under
this high loading, which reduces the overall stiffness of the panel and was
not accounted for in the finite element modelling.
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interface suggest that the use of stress-based criteria for failure prediction is
inappropriate. The use of fracture mechanics principles to predict delamination
is more suitable and has been the subject of a considerable amount of research
in recent years. A total strain energy release rate (GT), defined as the amount
of energy required to create a crack surface is partitioned into three components:
GI which is the energy release rate associated with an opening mode (tension);
GII is the energy release rate due to sliding (shear) and sometimes GIII is also
considered which is associated with a ‘scissoring’ mode. These are shown
schematically in Fig. 9.16. The implementation of delamination modelling
within a finite element context is primarily achieved through the use of either
the Virtual Crack Closure technique (VCCT) which is based on the presence
of a pre-existing crack or by incorporating interface elements at potential
crack sites which can model both initiation and propagation.

(a) (b) (c)

9.16 Crack extension modes: (a) mode I; (b) mode II; (c) mode III.

9.4.1 The virtual crack closure technique

The VCCT is an extension of a two-step crack closure technique originally
proposed by Irwin (1958). As the name implies, the two-step technique
requires two finite element solutions for predicting the energy release rate
resulting from the growth of a crack, of initial length a, by a predetermined
length ∆a, and is based on the assumption that the energy released in opening
the crack is identical to the work required to close it. The strain energy
release rate, under constant displacement, is given by:

G U
a

 = – ∂
∂

9.15

where U is the total strain energy per unit thickness. For a two-dimensional
configuration, shown in Fig. 9.17(a), G = GI + GII (GIII = 0) and each
component may be expressed as:
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9.17 Crack configurations: (a) 2D; (b) 3D.
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where σzz is the peel stress, τxz is the interlaminar shear stress, w is the
opening displacement and u is the sliding displacement.

This may be extended to three dimensions, Fig. 9.17(b), where G = GI +
GII + GIII and each component is given by:
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where v is the displacement associated with sliding in the y-direction and τyz

the corresponding interlaminar shear stress. These integral equations are
evaluated numerically from the nodal displacements and forces calculated
from finite element analysis.

In a two-step analysis the first finite element solution will yield forces
ahead of the crack front over a distance ∆a, which represents the subsequent
length of crack extension. The crack is then extended over ∆a and a second
finite element analysis will yield the displacements corresponding to the
forces in the previous solution. Rybicki and Kanninen (1977) extended this
method by obtaining sufficient accuracy using a one-step VCCT procedure.
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This method requires a fine mesh around the crack front such that a crack
extension of ∆a does not significantly alter the stress-state of this crack
front. Hence the method requires the crack front to be sufficiently removed
from any edge or change in mesh density such that the stress field is self-
similar across the crack front. In its basic form the VCCT also assumes that
the mesh is symmetric about the crack plane and for three-dimensional problems
the mesh should also be orthogonal to the crack front.

Consider the two-dimensional crack shown in Fig. 9.18 where the crack
is modelled using four-node quadrilateral finite elements. For a sufficiently
small ∆a, it may be assumed that the displacements at A for a crack tip at B
are a good approximation to the displacements at B for a crack tip at node C.
Hence, the energy release rates may be calculated using a single finite element
analysis:
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9.18 Node sequence for a crack modelled with four-node 2D
elements.

Fx1 and Fz1 are the internal forces at node 1, in the x and y directions
respectively, extracted from either the elements above or below the crack
path. Similar expressions for eight-node quadrilateral and three-dimensional
elements may be found in Falzon and Hitchings (2002). Wang et al. (1994,
1995), Wang and Raju (1996), Raju et al. (1993, 1996), Krueger et al. (2000)
and Krueger and O’Brien (2001) used the VCCT in their study of skin–
stiffener debonding for a range of configurations and loading conditions.
These studies have concentrated on characterising the onset of debonding.
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Hitchings et al. (1996) have also used the VCCT coupled with a delamination
criterion for mixed-mode loading and a mesh-moving algorithm to model
crack propagation. A review by Krueger (2004) outlines recent advances in
the development of VCCT for dealing with different sized elements at the
crack front and arbitrarily shaped crack fronts.

9.4.2 Interface elements

Interface elements are decohesion elements, usually of zero thickness or of
a finite thickness representing a resin-rich layer, which are inserted between
composite layers or at well-defined interfaces such as the skin–stiffener
interfaces of a stiffened panel. Unlike the VCCT, interface elements do not
require an initial crack and have the potential of being better suited for
studies involving both crack initiation and propagation. Zero-thickness elements
are characterised by nodes at the top and bottom of coincident surfaces as
shown in Fig. 9.19 for a linear interface element. Delamination is modelled
by introducing a traction law between the two surfaces of the interface
element. A bilinear traction law for mode I and mode II/III is shown in Fig.
9.20 although other forms, such as a polynomial relationship, as used by
Chen et al. (1999), may also be used.

1 4
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5

3

8

76

t = 0

9.19 A linear interface element for 3D analysis.

9.20 Traction laws for interface element for mode I and mode II/mode
III delamination.
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With reference to Fig. 9.20(a), the high initial stiffness, associated with
Mode I, holds the interface together until a critical stress, σ0I is reached,
corresponding to displacement δ0I. With subsequent loading a negative stiffness
represents the accumulation of damage at the interface, representative of
microcracking in the resin. This region of damage is termed a process zone
and makes the precise determination of a crack front problematic. A critical
displacement, δCI, is reached when the accumulated energy per unit area,
represented by the area under the curve, reaches the critical energy release
rate GIC:

GIC
0

CI

( )d
δ

σ δ δ∫ 9.19

For clarity, a crack front, within the context of this formulation, will usually
refer to the line at the edge of the process zone where complete decohesion
has occurred. A high penalty stiffness is also used when the stresses are
compressive to prevent interpenetration of the two surfaces. Figure 9.20(b)
shows similar relationships from modes II and III. A delamination is usually
propagated using an interaction law of the form:
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proposed by Mi et al. (1997) which encompasses both the widely used linear
(α = 2) and quadratic (α = 4) laws. Numerous other criteria have been
proposed but no single criterion has been shown to be equally effective in all
circumstances.

The softening behaviour of interface elements makes the analysis highly
nonlinear which may lead to convergence difficulties using implicit solution
schemes. Hence there still exists some mesh sensitivity associated with the
use of interface elements. Indeed, the non-smooth load/deflection response
resulting from the use of an insufficiently refined mesh gives rise to sharp
‘snap-throughs’ and ‘snap-backs’ similar to those associated with mode-
jumping. In this instance, though, this behaviour is strictly an artefact of the
solution scheme and the density of the mesh used. Sophisticated solution
schemes have been proposed to avoid the need for very fine meshes around
the process zone. Crisfield and Alfano (2002) used an adaptive scheme for
increasing the order of the interpolation functions of the elements around the
process zone. Another scheme was later proposed, Alfano and Crisfield (2003),
whereby the solution was made more robust using local arc-length control
and line-search schemes.

An explicit dynamic analysis, as discussed in Section 9.3.2, could be used
to recover a quasi-static solution for solving delamination problems using
interface elements. This method is conditionally stable and hence the necessary
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small time-steps would make this a computationally expensive option. The
use of pseudo-transient solution schemes should yield an improved robustness
similar to that achieved in modelling mode-jumping. This work is currently
under way by the author and co-workers and will lead the way for the
development of a robust numerical tool capable of modelling postbuckling
panels which may undergo mode-switching and delamination failure at the
skin–stiffener interface.

9.5 Concluding remarks

A unified study into the response of postbuckling stiffened composite structures
under uniaxial compression has been presented. The experimental investigations
showed the abrupt mode-jumps that occur in highly postbuckling structures
and that may initiate damage in vulnerable regions such as the skin–stiffener
interface. These secondary instabilities may also give rise to convergence
difficulties using implicit quasi-static finite element solution schemes. An
automated hybrid quasi-static implicit/pseudo-transient solution scheme was
shown to be robust and computationally efficient in capturing these mode-
jumps.

Experimental observations revealed that failure initiated at the skin–stiffener
interface at either a buckling node-line or an anti-node line. This was shown
to be the result of high interlaminar and peel stresses at these locations.
Local geometric features of the stiffener were shown to have a significant
influence on the distribution and magnitude of these stresses. The relatively
weak through-thickness strength of composite laminates made from
preimpregnated unidirectional carbon–fibre plies made these locations
particularly vulnerable. The use of the virtual crack closure technique and
decohesion interface elements for modelling delamination failure in finite
element analysis were also presented.

This chapter has concentrated on the analysis of stiffened composite
structures made from unidirectional carbon–fibre plies which is the dominant
form of carbon–fibre material used on current and proposed composite
aerostructures because of their superior in-plane mechanical performance.
Woven carbon–fibre fabrics exhibit considerably higher interlaminar fracture
toughness but at the cost of lower mechanical performance in compression
because of the undulation of the fibres. It is worth noting that major research
programmes are currently under way, investigating alternative manufacturing
routes and material systems aimed at reducing the vulnerability of skin–
stiffener interfaces to through-thickness stresses. One possibility is by the
resin infusion of three-dimensional dry carbon–fibre pre-forms of the skin
and stiffeners. Another emerging technology is the use of ‘z-pinning’ where
carbon–fibre pins of an approximate diameter of 0.3 mm and a density of a
few hundred per square centimetre are inserted through the uncured stiffeners
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and skin. These pins are held in a foam carrier and inserted using an ultrasonic
gun.
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10.1 Introduction

Thin-walled steel structures have found wide applications in bridge piers,
suspension or cable-stayed bridge towers and others. Such structures are
vulnerable to damage caused by local and global buckling. The knowledge
of this phenomenon has increased dramatically since the 1960s and has been
well documented in the literature (e.g. Fukumoto 1997 and Galambos 1998).
However, the attention on them has mainly focused on strength issues.
Following the damage in thin-walled structures observed in the 1995
Hyogoken–Nanbu earthquake, the importance of ductility, which plays a
similar or more important role in the structural earthquake-resistance ability,
has been widely recognized and has attracted the attention of researchers.

Extensive studies on strength and ductility have been carried out over the
past few years. In this chapter, empirical equations obtained either from
experiments or from analyses are summarized.

10.2 Component plates

A large number of steel structures are composed of thin-walled plates. A
knowledge of strength and ductility of their component plates is very important
to provide a reliable design of such structures. Through a large deformation
numerical analysis, the authors have extensively surveyed the behavior of
both unstiffened and stiffened plates under either compression (Usami et al.
1995; Usami and Ge 1998) or shear loading (Usami et al. 1999; Kasai et al.
2001).

10.2.1 Plates in compression

Figure 10.1 shows simply supported unstiffened and stiffened plates under
compression. The distribution of residual stresses considered is an ideal
rectangular pattern as shown in Fig. 10.1, which might be induced by the
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welding along the simply supported unloaded edge. The tensile and compressive
residual stresses are assumed to be, respectively, σy and 0.3σy where σy is the
yield stress. In allowing for initial geometrical imperfections, a half-wave
sinusoidal form in both the length and width directions is assumed for
unstiffened plates:

δ δ π π = cos  sin p
x
a

y
b











 10.1

where a = plate length, b = plate width, x and y = coordinates, and δp is the
maximum deflection with a value of b/150. For stiffened plates, following
initial deflection equations including both the global and local distortions
are assumed:
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where n = number of subpanels separated by stiffeners (n = 1 for unstiffened
plates).

To investigate the effect of the loading history on the behavior of plates,
two loading patterns are employed, as shown in Fig. 10.2. The case in Fig.
10.2(a) corresponds to monotonic loading, while Fig. 10.2(b) illustrates the
case of cyclic loading. Here, we stipulate that the compressive displacement
is positive. A two-sided cyclic loading program indicates that the plate is
applied with alternative compression and tension loads. The two-side cyclic
loading program is also simply referred to as cyclic loading in the following
description.
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0
Cycle
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(b)
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0
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10.2 Loading patterns: (a) monotonic loading; (b) cyclic loading (∆ is
the specified displacement and ∆y is the yield displacement).
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A kind of two-surface model (2SM) developed at Nagoya University
(Shen et al. 1995) was adopted to model the material nonlinearity that can
accurately trace the cyclic behavior of steel. The general-purpose FEM program
ABAQUS (1998) and the shell element S4R in its element library are employed
in the analysis.

The main parameter controlling the strength and ductility of unstiffened
and stiffened plates is the plate width–thickness ratio, defined by:

R b
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12(1 –  )

4
 

ν
π

σ
10.5

in which E = Young’s modulus, v = Poisson’s ratio, and t = plate thickness.

For stiffened plates, the stiffener’s slenderness ratio is another key parameter,
defined as:
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y
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Q
a
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where rs = radius of gyration of T-shaped cross-section centered on one
longitudinal stiffener with a width of b/n, and Q = local buckling strength of
plate panels given by:

Q
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R = 1
2

[  –   –  4 ]
f

2
fβ β 10.7

β = 1.33 Rf + 0.868 10.8

Moreover, there is another commonly used parameter γ γc c
*/ , related to the

characteristics of stiffened plate and interdependent with λs . Here, γc is the
relative flexural rigidity of the stiffener and γ c

*  is the optimum value of γc
obtained from linear elastic buckling theory (DIN 4114, 1953). The relative
flexural rigidity, γc, is defined as:

γ c
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10.9
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where EIs = out-of-plane flexural rigidity of the stiffener, and D = out-of-
plane flexural rigidity per unit width of the plate. Equation [10.9] can be
further rewritten as:
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where bs = width of stiffener, ts = thickness of stiffener. On the other hand,
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equations for the optimum value of γc obtained from linear elastic buckling
theory (DIN 4114, 1953) are
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where α = aspect ratio (= a/b) and α0 = limit aspect ratio defined by

α γ0 c
4 = 1 + n 10.13

It should be noted that Eq. [10.12] is concerned with compression loading
and formulae for the optimum stiffener rigidity that are applicable to shear
panels will be given in the next section.

Strength

Empirical strength equations have been developed by Usami (1990, 1993)
for unstiffened plates based on tests and numerical analyses. The equations
are given by:
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f f
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R
R R R

      ≤ 1.0 10.15

These two equations, plotted in Fig. 10.3(a), are compared with the numerical
results through the analytical model presented above. It can be observed that
the empirical formula based on numerical results (i.e. Eq. [10.15]) generally
gives predictions on the safe side compared with those by the empirical
formula based on test results (i.e. Eq. [10.14]). Except for cases with small
width–thickness ratio (Rf < 0.4), the analytical points of both the monotonic
and cyclic cases follow the proposed numerical formula (Eq. [10.15]) very
well. This is because in the case of plates with small width–thickness ratios,
the strain-hardening and cyclic strain-hardening effects result in an increase
in strength, and the ultimate strength is even larger than the squash load.

In Fig. 10.3(b), the computed ultimate strengths of stiffened plates are
compared with the corresponding values obtained using the equation (Usami
1990):

σ
σ

m

y
f= 1.24 – 0.54   1.0R ≤ 10.16
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From this figure, it is observed that the analytical points lie a little below the
strength curve. It should be noted that this strength curve was chosen to
agree with the mean of results of the tests on stiffened plates (Usami 1990).

Ductility

In a paper by Usami et al. (1995), ductility of the plate was defined with the
failure strain, εu, which is at a point corresponding to 95% of the maximum
average strength, σm, after the peak point. This definition seems to be
occasionally inadequate for the results of cyclic analysis because the strength
σu corresponding to the failure strain εu defined in such a way will be larger
than the squash load for thick-walled plates. For this reason, the strength σu

corresponding to εu is adopted as per the following definitions:

σ
σ

σ
σ

u

y

m

y
 = 0.95 10.17

for relatively thin-walled sections without significant cyclic strain-hardening
effect; and

σ
σ

σ
σ

u

y

p

y
 = 0.95 10.18

for relatively thick-walled sections with significant cyclic strain-hardening
effect. Here, σp is the first peak strength before the occurrence of cyclic
strain-hardening effect.

Failure strains of all the unstiffened and stiffened plates analyzed are
plotted against Rf in Fig. 10.4. In the case of unstiffened plates, an empirical
equation proposed by Usami et al. (1995) is also shown in the figure. The
equation is expressed as a function of Rf in the form of:
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10.3 Strength of plates in compression: (a) unstiffened plate;
(b) stiffened plate.
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In the case of stiffened plates, Usami et al. (1995) developed an empirical
equation based on the monotonic results, given as

ε
ε λ

u

y s
1.11

 = 0.145
(  –  0.2)

 + 1.19  20.0≤ 10.20

This equation is expressed as a function of slenderness ratio parameter λs

defined by Eq. [10.6], and effects of other parameters such as Rf, γc/ γ c
*  and

α, which are related to the stiffener’s slenderness ratio parameter, are thought
to have been accounted for. But a further study by Usami and Ge (1998)
showed that this equation overestimates the ductility of plates with small
aspect ratios (e.g. α = 0.5). To accurately account for the effect of aspect
ratio on the failure strains of stiffened plates, a modified parameter ′λs  was
introduced to replace the λs  in Eq. [10.20]. The modified slenderness ratio
parameter is defined as:

′λ
α

λs 5 s = 1  10.21

Figure 10.4(b) illustrates the computed failure strains and predictions by Eq.
10.20 with λs  replaced by ′λs .

In the case of very stocky plates, the ductility capacity obtained from
either the analysis or Eqs [10.19] and [10.20] is extremely high. The allowable
ductility should be limited to 20.0 in order to inhibit excessive localized
strains in the web and to avoid structural damage caused by low-cycle fatigue.

10.2.2 Plates in shear

As is well known, shear deformation might be pre-eminent in connection
panels of steel frames. Therefore the failure strain of the plates in shear can
be considered as one of ductility indices in the analysis of such frame structures.
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10.4 Ductility of plates in compression: (a) unstiffened plate;
(b) stiffened plate.
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In the past decades, although a large number of investigations have been
conducted on web plates in shear, most of them were limited to shear strengths
under monotonic loading (Galambos 1998). For this reason, an effort has
been made recently on the ductility capacity of thin-walled plates in shear
(Usami et al. 1999; Kasai et al. 2001). An analytical model, in which all
edges are simply supported for out-of-plane displacements but kept straight
for in-plane displacements, is developed as shown in Fig. 10.5 for plates
subjected to shear loading. Both the residual stresses and initial deflections,
which are in the same forms as in the case of compressive loading case, were
accounted for.
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Constrained Loading point

10.5 Plates in shear: (a) unstiffened plate; (b) stiffened plate.

The key parameter that affects the shear strength and ductility of plated
structures is the slenderness ratio that is defined as
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in which τy = yield stress in shear (= σy/ 3  based on the von Mises yield
condition), τcr = elastic shear-buckling stress, and ks = buckling coefficient
for shear-buckling stress, which is approximated by the following equation
(Galambos 1998):
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10.23

where αsub is the aspect ratio of subpanels (i.e. nα).
For stiffened plates subjected to shear loading, the optimum rigidity of the

stiffener is another important factor. The optimum rigidity of the stiffener
can be defined in several ways as discussed by Dubas and Gehri (1986).
Most of the definitions intend to achieve the maximum buckling strength of
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a stiffened plate with the smallest stiffener dimensions. For example, formulas
determined in such a way (DIN 4114, 1953) are given by

γ α α α αs
*

sub
2

sub sub
2

sub
3 = 5.4 (–1 + 2  + 2.5  –  ) 10.24

for plates with n = 2 (one longitudinal stiffener) and 0.5 ≤ αsub ≤ 2.0,

γ α αs
*

sub
2

sub = 12.1 (–1 + 4.4 ) 10.25

for plates with n = 3 (two longitudinal stiffeners) and 0.3 ≤ αsub ≤ 1.0.
The optimum can also be defined as the rigidity at which the critical load

of the stiffened plate is equal to the critical load of an individual subpanel.
Based on this definition, Chusilp and Usami (2002a) proposed simplified
formulas for the optimum rigidity of the stiffener, determined numerically
by using the theoretical data of the buckling coefficient. A case of the stiffener
arrangements is designated as LpTq, in which p and q = numbers of longitudinal
and transverse stiffeners, respectively. Approximate formulas for the optimum
rigidity are proposed for plates L1T1, L2T2 and L3T3 as:
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and for the plates L1T0, L2T0 and L3T0 as:

γ α α
α αs

* s
0.6
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0.20  – 0.60/  + 0.52/

n
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10.27

where ns = number of the parallel stiffeners (= n – 1). The above two equations
are applicable for the parameter ranges of ns = 1, 2, or 3 and 0.5 ≤ αsub ≤ 2.0.
For the plates L0T1, L0T2, and L0T3, the approximate formula can be
derived by replacing αsub in Eq. [10.27] with 1/αsub and multiplying the
resulting expression by αsub. For plates with only two longitudinal stiffeners
(i.e. L2T0 plates), Eq. [10.27] becomes:

γ α
α αs

* sub

sub sub
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18.1
0.325 – 0.60/  + 0.52/

10.28

The optimum rigidity determined by Eq. [10.28] will be larger than that by
Eq. [10.25], particularly for plates with large aspect ratios (Chusilp and
Usami 2002a).

Strength

There are many ways to predict the ultimate strength of unstiffened plates in
shear (Galambos 1998). In this section, computed maximum shear strengths,
τu/τy, of the plates analyzed are compared with empirical formulas. The
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following equation is given in a Japanese buckling guideline (Fukumoto
1987):
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Nara et al. (1988) proposed an equation based on the elasto-plastic large-
displacement analysis as:
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R





 ≤    (0.486 ≤ Rτ ≤ 2) 10.30

Figure 10.6(a) shows a comparison between the analytical results (Usami
et al. 1999) and the two equations above as well as Euler curve. From this
figure, it can be seen that the computed results are in good agreement with
the empirical formula by Nara et al. (1988). On the other hand, the maximum
shear strengths are almost the same even for different loading patterns except
for the plates with Rτ ≤ 0.4, and therefore it can be concluded that the effect
of the loading history on the shear strength is insignificant.
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10.6 Strength of plates in shear: (a) unstiffened plate; (b) stiffened
plate.

For stiffened plates, Kasai et al. (2001) proposed a formula similar to Eq.
[10.30]:
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 ≤ 10.31

Comparison between the proposed equation and analyzed results is shown in
Fig. 10.6(b).
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Ductility

Similarly for the plates under compression, the ductility of plates in shear is
defined as the shear strain at a point corresponding to 95% of either the
maximum shear strength when τu/τy ≤ 1.0, or the strength at the first-peak
point when τu/τy > 1.0. Failure strains, γu/γy, of all the analyzed unstiffened
plates are determined in such a way and plotted against Rτ in Fig. 10.7(a)
(Usami et al. 1999). It can be observed that in the range of Rτ ≥ 0.6, failure
strains are almost the same for different plates under an identical loading
case. Values of γu/γy are about 4 for the monotonic loading, and approximately
3 for the two-side cyclic loading. With respect to the distortion capacity of
unreinforced web plates in the beam–column joints under monotonic loading,
a limit value, 4γy, was proposed by Krawinkler and Popov (1982). Obviously,
this fact is supported by the present results. However, it seems more appropriate
to adopt 3γy as its limit value for the use in seismic design considering the
random nature of earthquakes.
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10.7 Ductility of plates in shear: (a) unstiffened plate; (b) stiffened
plate.

For plates with Rτ < 0.6, the failure shear strain is increased as Rτ is
reduced. Also, γu/γy is somewhat affected by the loading history and the
difference is large when Rτ is quite small (e.g. Rτ ≤ 0.4). Here, a lower bound
curve given below is suggested for practical use (Usami et al. 1999):
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This equation is also plotted in Fig. 10.7(a). Clearly, the predictions will be
conservative for the monotonic loading history.

For stiffened plates, Kasai et al. (2001) found that the ductility depends
on not only the width–thickness ratio parameter but also the relative rigidity
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of the stiffener. Figure 10.7(b) shows comparisons of the ductility from the
analysis and corresponding approximate equation given by
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It should be noted that the optimum value of relative rigidity of the stiffener
referenced is the optimum relative flexural rigidity, γ c

* , instead of the one
with respect to shear loading, γ s

* . A relation between γ c
*  (Eq. [10.12]) and

γ s
*  (Eq. [10.28]) is illustrated in Fig. 10.8, and we can find that γ γc c
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10.8 Relation of optimum flexural and shear rigidities.

10.3 Stub-columns

In the analyses of component plates presented above, there is an inherent
assumption that the interactive effects between adjacent component plates of
thin-plated structures at their conjuncts are neglected (Usami et al. 1991).
This negligence has induced the inaccuracy for some structures as mentioned
above. Thus, the attention of researchers has been directed to stub-columns
subjected to either combined action of compression and bending or shear
loading.

10.3.1 Box-shaped stub-columns subjected to combined
compression and bending

Stub-columns of box sections with and without longitudinal stiffeners have
been studied by Zheng et al. (2000a) and Ge et al. (2004). The analytical
models of such stub-columns are shown in Fig. 10.9, which represent a part
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of a long column between the diaphragms. All edges are assumed to be
simply supported. The same residual stress distributions as those of unstiffened
or stiffened plates (Fig. 10.1) are used for the unstiffened and stiffened stub-
columns, respectively. The assumed initial deflection patterns are also similar
to those of the component plates except that for stiffened stub-columns, the
number of local initial deflections along the longitudinal direction should be
determined by checking whether giving the lowest ductility (Zheng et al.
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10.9 Box-shaped stub-columns under combined compression and
bending: (a) unstiffened stub-column; (b) stiffened stub-column
(SS = simply supported edge).
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2000a). This is due to the component plate of a box stub-column having a
different buckling mode from that of isolated plate due to the interaction
effects of adjacent plates at their junctions. The direction of the initial deflections
is assumed inward (or inward at the place with the maximum value of deflection)
for the flange plates, while outward for web plates. Owing to symmetry of
loading and geometry, only a quarter or half of the stub-column is analyzed.
The model of the stub-column is analyzed under a monotonically increasing
bending moment and a constant axial force.

Besides the flange width–thickness ratio Rf and the stiffener slenderness
ratio λs , the magnitude of axial load P is another main parameter for the
behavior of box stub-columns.

Strength

For unstiffened stub-columns, an interaction strength equation has been
proposed through numerical analyses by Ge et al. (1995), as:

M
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P

C C
m

u u

1 2

+ = 1.0









 10.34

with

C1 = 0.271Rf + 0.719 10.35

and

C2 = 1.33/ Rf
0.401 10.36

In Eq. [10.34], Pu and Mu are the ultimate strengths under pure compression
and pure bending respectively. Figure 10.10(a) illustrates this equation
compared with the computed maximum strength (Mm), and a general agreement
can be observed from the figure.

In the case of stiffened stub-columns, Nakai et al. (1985) proposed a
method to predict the maximum strength of stub-columns under compression
and bending based on experimental results. The method was developed by
modifying the fully plastic interaction curve by a factor related to the ultimate
strength of box stub-columns in pure compression. The computed maximum
strengths are compared in Fig. 10.10(b) with the predictions based on the
method of Nakai et al. (1985). It is observed that two groups of results are
basically consistent.

Ductility

Similar to the aforementioned plates, the ductility of the stub-column is
evaluated by using the failure strain εu/εy defined as a point corresponding to
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95% of the maximum strength after the peak at the bending moment versus
average compressive strain curve (Zheng et al. 2000a).

For unstiffened stub-columns, the computed εu/εy versus Rf and P/Py

relations are presented in Fig. 10.11(a), from which it is observed that the
failure strain decreases with the increase of either Rf or P/Py. Considering the
effect of axial load, an equation of failure strain, εu/εy, versus flange width-
thickness ratio parameter, Rf, is fitted as follows:
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The applicable range of this equation is Rf = 0.2~0.8 and P/Py = 0.0~0.5.
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10.10 Strength of box-shaped stub-columns under combined
compression and bending: (a) unstiffened stub-column; (b) stiffened
stub-column.
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As for stiffened stub-columns, the computed failure strains, εu/εy, are
presented in Fig. 10.11(b). An equation of εu/εy versus Rf s

0.18λ , considering
the effect of axial load, is fitted as follows:
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P P ≤ 10.38

For the above equation Rf ranges from 0.2 to 0.7 (this parameter is limited to
0.5 in Japan Road Association 2002), λs  is in a scope from 0.18 to 0.75, and
P/Py is between 0.0 to 0.5. It should be noted that this equation is fitted to
give slightly smaller prediction of failure strains for the cases with small
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10.11 Ductility of box-shaped stub-columns under combined
compression and bending: (a) unstiffened stub-column; (b) stiffened
stub-column.
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values of Rf s
0.18λ . This is for the reason that the numerical results are based

on monotonically loading conditions and when applied to long columns with
small values of Rf s

0.18λ , they are found to yield larger ductility predictions
compared with the cyclic experimental and numerical results (Zheng et al.
2000b).

Some computed results of isolated plates (monotonic) presented above
are also plotted in Fig. 10.11, in the form of εu/εy versus Rf or Rf s

0.18λ . It is
observed that the failure strains of stub-columns subjected to compression
and bending are larger than those of isolated plates under pure compression.
When the axial load approximates the pure compression state, two procedures
will give close predictions. This observation is consistent with the conclusion
drawn by Usami et al. (1991).

It should be noted that for both Eqs. [10.37] and [10.38] the applicable
range of the axial force is up to 0.5Py. However, the axial force variation
may be very large and even close to the squash load of the section in bridge
structures such as steel arch bridges (Usami et al. 2004). For this reason, Ge
et al. (2004) carried out more FEM studies to account for wider range of
axial compression with an upper limit of Py, and proposed the revised ultimate
strain formulas, as shown below:

For unstiffened box sections:
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For stiffened box sections:
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10.3.2 Pipe-shaped stub-columns subjected to
either pure compression or combined
compression and bending

Strength and ductility of pipe-sectioned stub-columns under compression
and bending shown in Fig. 10.12 have been analyzed (Gao et al. 1998a)
using a similar method to that for box stub-columns. Sinusoidal initial
geometrical deflection curve is considered both in the longitudinal and
circumferential directions. The following initial deflection equation is assumed:

w w
m x

L
ny
R

 = sin  sin max
π









 10.41
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where w = outward displacement, wmax = maximum initial deflection, L =
cylinder length, R = radius of the cylinder, x and y = longitudinal and
circumferential coordinates in the local coordinate system, as shown in Fig.
10.12(a). Two constants, m and n, are the numbers of half sine-waves along
the longitudinal and circumferential directions, respectively (see Fig. 10.12b).
The cylinder has been opened out and pulled straight in the figure, where the
two points (namely, A) are coincident at the true circumference. Experimental
measurements conducted by the researchers (Chen and Ross 1977; Ostapenko
1977) gave some basic information on the residual stress distribution. In this
analysis, an idealized form of residual stress distribution due to welding is
assumed, as shown in Fig. 10.12(c).
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10.12 Pipe-shaped stub-columns under combined compression and
bending: (a) pipe-shaped stub-column; (b) initial modes; (c)
distribution of residual stresses.



Analysing the strength and ductility of plated structures 287

Stub-columns of pipe-shaped section subjected to pure compression

It has been found that a single half-wave initial deflection along a cylinder
with different values of L/D would produce a significantly different strength
(Harding 1978). Here, L and D are the length and diameter of the pipe-
sectional stub-column, respectively. In addition, it is well known that the
occurrence of local buckling will be liable for the cylinders with large values
of the radius–thickness ratio parameter Rt, defined by:

R
E

D
tt

y

cr

2 y
 =  = 3(1 –  ) 

2
σ
σ ν

σ
10.42

where t denotes the wall thickness of the column. It is found from the
analysis that for the same value of Rt, there is always a critical value of L/D
which gives the minimum ultimate strength. Based on the computed results,
a critical length that gives the minimum ultimate strength of a pipe-sectioned
stub-column under pure compression is fitted in the form of:

L
D R

 = 0.585 – 0.580
t
0.08    (Rt ≤ 0.50) 10.43

From elastic shell theory (Timoshenko and Gere 1961), the elastic critical
wavelength of half sine-waves into which the shell buckles, for ν = 0.3, is

L D K
Et

D t Dtcr

2
4

2 2

24 = 
4

 = 
48(1 – )

 = 1.22π π
ν

10.44

where K = Et3/[12(1 – ν 2)] is the bending stiffness of the shells. It can be
found that the computed length in each case is almost the same as its elastic
critical wavelength, Lcr, which means that Eq. [10.44] (Timoshenko and
Gere 1961) is also valid in elastoplastic range.

Strength

To obtain the ultimate strength and ductility of the cylinders, cylinders with
Rt varying from 0.03 to 0.5 are analyzed. The cylinder lengths are determined
from Eq. [10.43]. Computed ultimate strength, σm/σy, is plotted against Rt,
as shown in Fig. 10.13. The solid line denotes an empirical equation proposed
by Usami et al. (1990), which represents an average strength curve of test
results, given by:

σ
σ

m

y t
 = 0.80 + 0.025  1.0

R
≤       (0.125 ≤ Rt ≤ 0.50) 10.45

All computed results are a little lower than those obtained by the empirical
equation. The following proposed equation is found to give a satisfactory
accordance to the computed ultimate strengths:
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σ
σ

m

y
t = 1 –  0.43  – 0.03R    (0.03 ≤ Rt ≤ 0.50) 10.46

When Rt = 0.03, we have σm/σy =1.0 and this implies that no local buckling
occurs at this value of Rt.

Ductility

The curve of failure strain versus Rt is plotted in Fig. 10.14. As indicated in
this plot, the ductility behavior of the cylinder is significantly sensitive to Rt

when it is less than 0.1. An equation of the normalized average failure strain
εu/εy versus Rt is fitted as:

Empirical equation
(Usami et al. 1990)
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10.13 Strength of pipe-shaped stub-columns in compression.
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10.14 Ductility of pipe-shaped stub-columns in compression.



Analysing the strength and ductility of plated structures 289

ε
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y t
0.6 = 0.445

(  –  0.03)
 + 1.0  20.0

R
≤    (0.03 ≤ Rt ≤ 0.50) 10.47

To investigate the validity of the proposed equation for different materials,
cylinders made of two different materials (i.e. SS400 and SM490) are analyzed.
For the same small Rt ratios, the cylinder of SM490 steel yields close strength
(Fig. 10.13) but a little large failure strain (Fig. 10.14), compared with that
of SS400 steel. The reason for safe-side predictions of ductility is due to a
difference in the yield plateau and strain hardening assumed for the two
kinds of steel.

Stub-columns of pipe-shaped section subjected to combined
compression and bending

Using the analytical model and method similar to those for box stub-columns,
the pipe-shaped stub-columns under combined compression and bending
were analyzed to probe the relation of strength and ductility to the main
parameters such as Rt and P/Py.

Strength

The ultimate strengths of all the analyzed cylinders are shown in Fig. 10.15.
The ultimate bending moment, Mu, normalized by the fully plastic moment,
Mp, is taken as the ordinate and the radius–thickness ratio, Rt, is adopted as
the abscissa. A general equation accounting for both the effect of the parameter,
Rt, and the axial load, P/Py, on the ultimate strength is found to fit the
analyzed results well:
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10.15 Strength of pipe-shaped stub-columns under combined
compression and bending.
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(0.03 ≤ Rt ≤ 0.50, 0.0 ≤ P/Py ≤ 0.3) 10.48

Ductility

Figure 10.16 shows the curves of Rt versus the computed normalized failure
strains, εu/εy. It is found that when the values of Rt exceed 0.1, the failure
strain decreases rathers slowly with the increase in Rt, and otherwise the
cylinders show high sensitivity to Rt. The relative position of the curves for
the four load cases indicates that the failure strain increases as the axial load
decreases. An equation of failure strains was fitted as follows:
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10.16 Ductility of pipe-shaped stub-columns under combined
compression and bending.

As the same consideration for stub-columns with box sections, Ge et al.
(2004) also carried out more FEM studies to account for wider range of axial
compression with an upper limit of Py, and proposed the revised ultimate
strain formula, as:
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10.3.2 Box-shaped stub-columns subjected to
shear loading

In section 10.2.2, shear strength and ductility of plates were presented and
all concepts underlining those shear models mentioned above were originally
developed for isolated plates. To investigate inelastic behavior of box members,
the emphasis should be placed on the contributions of the flanges to the
shear resistance of the member. Because flanges are generally slender, the
web tension field may not be able to anchor against the flanges effectively.
In this section, the flange contributions to the shear behavior are accounted
for and newly developed approximation formulas are presented for prediction
of strength and ductility of unstiffened and stiffened box sections subjected
to shear loading.

In practice, intermediate diaphragms are usually provided with adequate
strength and stiffness so that the web shear failure is limited within a web
panel divided by the diaphragms. It is, therefore, assumed that the diaphragms
are rigid in the flexural and axial senses. This assumption greatly simplifies
an investigation of the whole member to a portion between the diaphragms,
as shown in Fig. 10.17 (Kasai et al. 2002; Chusilp and Usami 2002b). In the
case of stiffened box sections, both webs and flanges are equally spaced by
two longitudinal stiffeners. The modeled portion has the web width, bw, and
flange width, bf, while the length between the diaphragms, a, is varied by
means of the web aspect ratio, α = a/bw. The use of this simple flange
configuration would yield lower-bound results for other cases of flange

10.17 Box-shaped stub-columns subjected to shear loading:
(a) unstiffened stub-column; (b) stiffened stub-column.
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geometry which varies broadly in practice. Only half of the box section is
considered because of the symmetry. Residual stresses and initial deflections
as for stub-columns in compression and bending are considered. To distinguish
from the isolated web plate model, the present box section model is referred
to as the web-flange model while the former is referred to as the web model
in the following context.

Strength

All the computed strengths from both the monotonic and cyclic analyses are
plotted with the width–thickness ratio parameter of the web in Fig. 10.18. In
the case of unstiffened plates, the results of isolated web plates using the web
model, empirical formula by Nara et al. (1988) for isolated web plates are
also shown in the figure and it can be seen that this equation can also be used
for box sections (Kasai et al. 2002).

For the stiffened box sections, the obtained maximum transverse loads are
compared with the results computed in accordance with ECCS (1990) and
AASHTO (1998). The methods suggested by ECCS and AASHTO are simple
but reflect the shear-resisting mechanism well. According to ECCS, the shear
strength model by Porter et al. (1975) is modified for box girders by neglecting
all flange contributions and simplifying the inclination of the tension field
stresses to one-half of the inclination of the web diagonal. The maximum
shear strength is then calculated from:

τ τ σ θ θ θ τu cr ty
2 d d

d y =  +  sin
2

 cot 
2

 –  cot   



 ≤ 10.51

σ τ θ σ τ θty cr d y
2
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2 2

d = – 3
2

sin 2 +  + 9
4

 sin 2  – 3( ) 10.52

where σty = web membrane stress in the tension field that fulfills the yield
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10.18 Strength of box-shaped stub-columns subjected to shear
loading: (a) unstiffened stub-column; (b) stiffened stub-column.
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condition in addition to the critical shear stress; and θd = tan–1 1
α  = inclination

of the web diagonal. Based on the theories of Basler (1961) and Cooper
(1967), it is suggested in AASHTO that the maximum shear strength be
determined by

τ τ
τ τ

α
τu cr

y cr

s
2 y = + 

3 (  –  )

2 1 + 
  ≤ 10.53

The shear strengths computed from Eqs. [10.51] and [10.53] are limited
to the shear yield strength so as to ignore the effect of the strain hardening.
These shear strength models are valid only if the web’s longitudinal stiffeners
possess sufficient out-of-plane flexural stiffness so that they remain straight
until the maximum load (Cooper 1967; Porter et al. 1975). Comparisons of
the obtained maximum transverse loads and the results predicted by ECCS
and AASHTO indicate that there exists a good agreement between the analysis
and prediction. Considering box girders with slender webs (Rτ ≥ 1.1), ECCS
gives conservative results (12% for Rτ = 1.3) owing to the neglect of the
flange contributions. The AASHTO method results in a greater underestimation
(18% for Rτ = 1.3), despite the fact that Basler’s formula overestimates the
tension field action by representing the case where the tension field fully
develops throughout a web panel instead of a limited band (Gaylord 1963).
The primary reason for this underestimation is that the assumption regarding
the tension field development adopted in AASHTO does not agree with the
actual shear behavior (Cooper 1967). It is observed in the analyses that a
single tension field develops in the web independently of longitudinal stiffeners,
rather than in each individual web subpanel as assumed by Cooper. For
stocky-web box sections having τu ≤ τy (strain hardening being not prominent),
both ECCS and AASHTO produce some overestimations but less than 6%.
From these investigations, the ECCS method seems more appropriate for
practical design because it gives sufficiently accurate predictions and relies
on assumptions that reasonably agree with the actual shear-resisting mechanism
(Chusilp and Usami 2002b).

Ductility

To determine the ductility capacity of steel box sections with unstiffened
webs, one can use the formula derived by Kasai et al. (2002):

γ
γ τ

u

y
4 = 0.142

(  –  0.18)
 + 4.0  20.0

R
≤ 10.54

The predicted results are plotted in Fig. 10.19(a) together with results from
both the monotonic and cyclic analyses. In the figure, the results of the web
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model and the corresponding empirical formula (Eq. [10.32]) are also shown
for comparison. It can be seen that there is greater ductility in the web-flange
model than predicted by the web model. This indicates that although the
contribution of flange on the strength can be ignored, the post-peak strength
is increased owing to the so-called frame function of the flange. On the other
hand, attention should be paid when this equation is applied to sections with
tf/tw < 1.0. In such cases, no increase in ductility due to the effect of flange
can be expected and it is better to use the formula for isolated webs as shown
in Eq. [10.32] that gives lower bound estimates of the ductility capacity.

In the case of stiffened box sections, the parametric study has revealed
that the contributions by stiffened flanges are practically ignored and the
effects of the web stiffener’s rigidity and web aspect ratio are negligible.
Only the web slenderness is necessarily considered in the ductility assessment.
Based on the analysis results, a simple formula is proposed for estimating
the ductility capacity of box sections reinforced with two longitudinal web
stiffeners (Chusilp and Usami 2002b):

γ
γ τ

u

y
6.0 = 0.5  + 2.5  20.0

R
≤ 10.55

The ductility capacity obtained from Eq. [10.55] is plotted with the analysis
results in Fig. 10.19(b). For very stocky webs, the ductility capacity obtained
from the analysis is extremely high. The allowable ductility is also limited to
the value of 20.0 in order to inhibit excessive localized strains in the web and
avoid structural damage caused by low-cycle fatigue.

10.4 Cantilever columns

Cantilever-type steel columns are widely used as bridge piers in the urban
area of Japan. Seismic design of such steel bridge piers is very important for
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10.19 Ductility of box-shaped stub-columns subjected to shear
loading: (a) unstiffened stub-column; (b) stiffened stub-column.
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the urban transportation network, which became much clearer after the 1995
Hyogoken–Nanbu earthquake. The piers are characterized by a relatively
large plate width–thickness ratio, which makes them susceptible to coupled
local and overall instability. As stated by Galambos (1998), the failure of
steel bridge piers in the 1995 Hyogoken–Nanbu earthquake is mainly attributed
to the loss of strength and ductility due to severe local and overall buckling.

A large number of cyclic tests and analyses have been conducted to study
the cyclic behavior of steel box columns. Precise numerical analytical methods
are inevitably of great importance for investigating the inelastic behavior of
such columns in detail. Compared with experiments, an advanced analytical
method is much more economical. To predict accurately the cyclic behavior
of steel structures, a modified two-surface plasticity model (2SM) has been
developed at Nagoya University (Shen et al. 1995) on the basis of a material
model proposed by Dafalias and Popov (1975). The accuracy of the 2SM has
been verified by extensive experimental data, and its validity in predicting
the cyclic behavior of various steel structures has already been established
(e.g. Usami and Ge 1998; Gao et al. 1998b; Ge et al. 2000; Usami et al.
2000). It has been shown that compared to the bilinear isotropic hardening
model (B-IH) and bilinear kinematic hardening model (B-KH), the 2SM can
predict the experimental hysteretic curve with good accuracy.

Cyclic behavior, strength, and ductility of steel columns with pipe or box
sections, as shown in Fig. 10.20, were investigated by Gao et al. (1998b), Ge
et al. (2000), and Usami et al. (2000). Definitions of strength and ductility
of cantilever-type columns are shown in Fig. 10.21. In the figure, Hy is the
yield lateral load and δy is the yield lateral displacement. Here Hy is taken
the smaller of the following two equations (e.g. Ge et al. 2000):
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where My is the yield moment of the cross-section, PE the Euler’s buckling
load of a cantilever column, and Pu the ultimate strength of a centrally
loaded column, which is determined from the following equation adopted in
the Japanese specification for highway bridges (Japan Road Association
2002).
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10.58

The yield displacement, δy, is then calculated from the following equation
neglecting transverse shear deformation:
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10.20 Cantilever-type steel columns with (a) pipe or (b) box sections.
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Although the ductility factor, δm/δy, is physically clear, it does not fully
reflect the cyclic loading characteristics and the plate does not experience
obvious plastic deformation. On the other hand, δ95/δy seems to be a better
choice in that it can accurately account for the effect of cyclic characteristics
and make full use of the strength of steel at the stage of plastic deformation.

10.4.1 Box columns without longitudinal stiffeners

A detailed summary of recent experiments on the strength and ductility of
steel cantilever box columns under cyclic lateral loading with a constant
axial load has been presented by Usami (1996). The local buckling of a
specimen without longitudinal stiffeners occurs first in the flange plates near
the column base immediately after the peak lateral load, and then extends to
the web plates. The buckling mode is found as a half sine-wave shape along
both the column height direction and flange width or web depth direction,
although inwards in flanges and outwards in webs. For most cases, such
buckling is observed in the range of about 0.7b (b is the width of the flange)
or between the transverse diaphragms.

Strength

From the tests, the main parameters controlling the strength of the cantilever-
type columns without stiffeners are found to be the flange width–thickness
ratio parameter, Rf, and column slenderness ratio parameter λ . The empirical
equation proposed by Suzuki and Usami (1995) and Usami (1996) is:

H
H R

max

y f

 = 0.0782
 

 + 1.03
λ

   (S = 0.175) 10.60

This equation is plotted in Fig. 10.22(a) together with experimental data. In
the above equation, S is the standard deviation and λ  is given by:

λ π
σ

 = 2  1 yh
r E

10.61

Here h is the column height and r is the radius of gyration of cross section.
Eq. [10.60] was fitted corresponding to the average curve of the test data (i.e.
the M curve plotted in Fig. 10.22 by the solid line) and the lower bound
curve was also proposed as Eq. [10.60] minus the standard deviation S, as
the M–S curve shown in Fig. 10.22 by the dashed line.
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10.22 Experimental data-based predictions of strength and ductility
of unstiffened box-sectional steel columns.

Ductility

To predict the ductility of cantilever-type columns, the following two empirical
formulas have been proposed (Suzuki and Usami 1995; Usami 1996):

δ
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 = 0.0262
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   (S = 0.850) 10.62

δ
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y
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 + 2.60

P P R
   (S = 1.09) 10.63

Because the effect of axial load on the ductility parameter δm/δy is very small
when the curve is normalized by Hy and δy, and is not taken into consideration
in fitting the equation of δm/δy. On the other hand, the axial load has a great
influence on the postbuckling behavior. Therefore, the effect of axial load is
considered in deriving the equation of the ductility parameter δ95/δy.
Comparisons of the proposed prediction curves and experimental data are
plotted in Figs 10.22(b) and (c).
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10.4.2 Box columns with longitudinal stiffeners

Strength and ductility

Comparison of the analytical results with test results is shown in Fig. 10.23.
The solid circle mark stands for the analysis, and the empty triangular mark
represents the test recently conducted in Japan. Based on the test results,
three empirical formulae of strength and ductility were proposed as follows
(Suzuki and Usami 1995; Usami 1996):
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10.23 Experimental data-based predictions of strength and ductility
of stiffened box-sectional steel columns.



Analysis and design of plated structures300

The applicable restrictions of these curves are

0.3 ≤ Rf ≤ 0.7, 0.25 ≤ λ  ≤ 0.5, P/Py ≤ 0.2, γ γc c
*/  ≥ 3.0 10.67

The above equations are plotted in Fig. 10.23. The solid line in each plot
denotes the fitted equations with average values of test results, while the
dashed line represents the M–S curve. It is observed that for the most part,
the computed results are close to the fitted curves. However, when the value
of Rf λ  becomes very small, the curves will predict higher results, especially
for the ultimate strength (see Fig. 10.23a). Moreover, the influence of the
modified stiffener’s equivalent slenderness ratio parameter ′λs  is not reflected
in the above equations. Therefore, a set of new formulae for both the ultimate
strength and the ductility based on the analytical results was proposed later
by Usami et al. (2000). Incorporating the effect of ′λs  on the ultimate strength
and ductility of the columns, the equations that provide satisfactory predictions
to the computed results are fitted as follows:
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 + 2.31

P P R ′
   (S = 0.64) 10.70

The applicable ranges of the parameters are

0.25 ≤ Rf ≤ 0.56, 0.20 ≤ λ  ≤ 0.5, P/Py ≤ 0.3, γ γc c
*/  ≥ 1.0 10.71

The above fitted equations are plotted in Fig. 10.24. It can be seen that the
curves represent the tendency with the variation of all the main parameters.

10.4.3 Cantilever box columns made of pipe sections

Strength

The computed ultimate strengths of the steel pipe columns, Hmax/Hy are
plotted against a multiplication of the parameters Rt and λ  in Fig. 10.25(a).
The equation that provides a satisfactory fit to the computed ultimate strength
is as follows (Gao et al. 1998b):

H
H R

max

y t
0.8

 = 0.02
(  )

 + 1.10
λ

10.72

As is seen from Fig. 10.25(a), for a constant Rt, the ultimate strength increases
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with the decrease in λ . Likewise, for a constant λ , the strength is improved
as Rt decreases.

Ductility

The computed values of δm/δy and δ95/δy are plotted against integrated factors
of Rt, λ , and/or P/Py in Figs 10.25(a) and (b). The following two equations
are found to fit the discrete data quite well:

δ
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m

y
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0.8
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3( )
 – 2

3R
10.73

δ
δ λ

95

y y
2/3 1/3

t

 = 0.24
(1 + / )P P R

10.74

Eqs. [10.73] and [10.74] indicate that for a given ductility demand, the
critical value of Rt and λ  can be obtained when either of them is determined.
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10.24 Analytical results-based predictions of strength and ductility of
stiffened box-sectional steel columns.
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10.5 Concluding remarks

With the object of providing more information to the seismic design use,
some recent progress in the strength and ductility of thin-walled steel structures
have been reviewed in this chapter. The studies on the isolated plates under
monotonic and cyclic compression or shear, box-shaped stub-columns subjected
to compression and bending, pipe-shaped stub-columns in pure compression
or combined action of compression and bending have been summarized.
Some pertinent empirical equations of strength and ductility are also presented.
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11.1 Introduction

Steel–concrete composite columns are examples of an efficient use of systems
that involve interactive behaviour of structural steel components with concrete.
Recent developments in composite columns make use of both the strength
and fire resistance of concrete, thus providing an economical structural element.
Since 1995, composite columns for high-rise buildings have gained acceptance
as a viable alternative to structural steel or reinforced concrete columns.
Composite columns also offer considerable flexibility for variations in
construction shapes without significant loss of structural efficiency.

Researchers have suggested analytical methods and design procedures for
composite columns, and design codes have been formulated (Shanmugam
and Lakshmi, 2001). Large discrepancies among various design codes exist
in terms of geometric and strength parameters, even when the same design
philosophy is adopted. The disagreement among the results indicates that
more accurate design guidelines are required. Further, with the development
of high-strength concrete and structural steel, there is a need to develop a
good understanding of the fundamental behaviour of slender composite columns
under uniaxial and biaxial bending. A number of theoretical and experimental
studies have been reported in the past. Neogi et al. (1969) conducted a short-
term test on 18 eccentrically loaded circular concrete-filled steel tubular
columns bent into a single curvature with lengths varying from 1.4 m to
3.3 m. A simple design procedure suitable for manual calculation has been
proposed recently (Wang and Moore, 1997). In this method the properties of
the bare steel section are replaced with those of the composite section in
accordance with the recommendations given in BS 5950 for bare steel columns.
Design formulae for composite columns, based on standards given by ISO
for steel structures, with appropriate modifications have been proposed by
Kato (1996). Experiments in which full-scale infilled columns were tested to
failure in the late 1980s and early 1990s (Prion and Boehme, 1989; Rangan
and Joyce, 1992; Shakir-Khalil and Mouli, 1990; Shakir-Khalil and Zeghiche,
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1989), provide extensive data that strengthen our knowledge of the behaviour
of real columns. These experimental results are useful to understand the
elastic and ultimate load behaviour and for developing an appropriate analytical
model.

Local buckling in steel plates influences the flexural and buckling strength
capacities of composite columns. For tubes with concrete infill, the contained
concrete effectively prevents the inward buckling of the steel tube while the
compressive strength of the concrete is in turn increased by the steel tube
that produces a triaxial state of stress. This pattern of local buckling leads to
a higher load-carrying capacity compared with that of a bare steel tube.
Grimault and Janss (1994) proposed an effective area approach to account
for the local buckling effects. Empirical relationships for local buckling
strength of steel tubes filled with concrete by assuming the plate elements to
have all edges clamped were given by Sakai et al. (1985) and Wright (1993).
Ge and Usami (1992) tested short columns with different concrete compressive
strengths. When the columns were filled with high-strength concrete, the
buckling strengths of the columns were lower than those columns filled with
normal strength concrete.

Ge and Usami (1992) also studied local buckling modes of stiffened and
unstiffened infilled columns. The stiffeners contributed largely to the overall
buckling of columns even when stiffener rigidities were small since local
buckling of longitudinal stiffeners is prevented by the presence of concrete.
The buckling mode of a bare steel tube without any restraint as shown in Fig.
11.1(a) is considered to be simply supported on all four edges. Thus, the
plates are able to buckle either inward or outward. Buckling mode of steel
tubes filled with concrete is shown in Fig. 11.1(b). The plate can only buckle
outward since the inward buckling is prevented by the concrete restraint.

L L

(a) (b)

11.1 Buckling modes of steel and composite sections: (a) steel
sections; (b) composite sections.

The behaviour of thin-walled circular steel tubes filled with high-strength
concrete for use in tall buildings formed the basis of an experimental
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investigation by Uy and Das (1997). An empirical reduction factor that accounts
for the effect of infilled concrete prism size and the concrete strength class
was introduced to evaluate the compressive strength of concrete (Bradford,
1996). Research has been directed to investigate the use of high-strength
concrete (Kilpatrick, 1996; Uy and Patil, 1996). Finite element modelling
using the software ABAQUS was developed to examine the ultimate load-
carrying capacity and load-deflection relationship up to and beyond failure
(Shakir-Khalil and Al-Rawdan, 1996). Mirza and Skrabek (1992) examined
the effects of concrete and steel strengths, the cross-sectional dimensions,
the presence of reinforcing bars on the strength of encased composite columns.
Effects of stiffeners in preventing or minimizing local buckling in stiffened
and unstiffened infilled columns were investigated (Ge and Usami, 1992,
1994). Kitada (1998) has shown that the ductility of the composite beam-
columns under large axial compression is small for rectangular cross-section
compared to circular cross-section.

Uy and Bradford (1994, 1996) used the semi-analytical finite strip method
to determine the minimum buckling stress for various boundary conditions.
The method uses the sine-squared function for the longitudinal displacement
and a cubic polynomial for the transverse displacement. The value of the
buckling coefficient k for steel plates restrained by a rigid medium (infilled
concrete) was found to be 10.30, higher than the corresponding value for a
simply supported plate that is equal to 4.0. This result showed that the
strength of steel is greatly enhanced by the presence of concrete. The energy
method was used to determine the plate slenderness of steel plates with
different boundary conditions including steel plates in contact with a rigid
medium (Wright, 1993). Columns designed to resist axial force by concrete
alone can be economized by the use of thin-walled fabricated steel columns
(Bridge and Webb, 1992). Watson and O’Brien (1990) noted that the local
buckling capacity of steel tubes is increased when in contact with concrete.
This was based on the empirical evaluation by Matsui (1993) who tested
composite steel–concrete frames and observed an increase in local buckling
load. Research on thin walled concrete-filled steel box columns has been
undertaken by Bridge et al. (1995), Uy and Bradford (1994, 1996), Uy
(1998) and Uy and Patil (1996). Uy (1998) used the finite strip method to
determine the plate slenderness for simply supported steel plates with and
without residual stresses. It was shown that the plates without residual stresses
have a much larger plate slenderness than those with residual stresses. This
shows that residual stresses reduce significantly the strength of steel plates.

Uy (2000) has also proposed a simple model to predict the strength of
composite columns under axial and combined bending and axial loading.
This model accounts for local buckling in terms of effective width as per the
Australian Standard AS4100. The cross-section analysis is carried out by the
finite strip method. The effect of width to thickness ratio on the strength
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capacity of in-filled composite columns has been highlighted by Bridge and
O’Shea (1995), Uy (1998) and Liang and Uy (1999). In a concrete-filled
steel box column, the compressive strength of the encased concrete may be
increased since concrete is completely encased by the steel tube. This depends
on column wall slenderness, b/t, ratio. In addition to this, steel plates are also
restrained by concrete so that their resistance to local buckling is much
higher than those unrestrained by concrete. For steel–concrete composite
columns, design codes such as Eurocode 4, BS 5950, BS-5400 and ACI-318-
83 do not consider local buckling of slender steel plates. In order to determine
the ultimate strength of a short concrete-filled slender box column, the local
buckling strength of slender steel plates has to be predicted by employing a
theoretical analysis.

This chapter is concerned with a semi-analytical method to predict the
elastic and ultimate load behaviour of square and rectangular steel–concrete
composite columns accounting for local buckling in the case of thin-walled
columns. The nonlinear analysis technique by Yang and Kuo (1994) is used
and the incremental equilibrium equation of slender composite column is
formed based on the updated Lagrangian formulation. The Generalised
Displacement Control (GDC) method is then applied to solve the incremental
equation. The strength analysis is carried out for concentric and eccentric
loads with initial imperfections and the effects of local buckling accounted
for in terms of the effective width (Shanmugam et al., 1989). The proposed
method can model nonuniform compression and can thus consider biaxial
bending and axial compression. The effective width formulae used in the
analysis allows for any magnitude of residual stresses. The column is pin-
ended and subjected to a combined action of axial compression and biaxial
bending. The accuracy of the proposed method is assessed by comparing the
analytical values with the corresponding experimental results. The effects of
key parameters on the ultimate load behaviour of steel–concrete composite
columns are also considered in this chapter.

11.2 Theoretical analysis

11.2.1 Assumptions

The following assumptions have been made in the analysis:

• Constitutive relationships for concrete and steel are known; stress–strain
curves for concrete and steel as shown in Fig. 11.2 are assumed where
effects of strain hardening of steel, shear strain and tensile strength of
concrete, the influence of creep and shrinkage are neglected.

• An adequate bond exists between steel and concrete elements.
• Cross-sections remain plane during various stages of loading resulting in

linear distribution of strain.
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• Maximum amplitude for initial lack of straightness is 0.001 times the
column length.

• Failure occurs when the extreme fibre compressive strain in concrete
reaches a limiting value of 0.003.

11.2.2 Local buckling

In the case of concrete-filled composite columns, slender steel tubes are
subjected to local buckling. It can be assumed that the edges along the
corners are constrained because of the presence of concrete. Therefore, the
component plates in the tube buckle in a similar manner to plates clamped
along the longitudinal edges. Effects of such buckling are accounted for in
terms of an effective width model. The effective width concept has been
established to provide an approximation of the ultimate strength of a thin,
flat plate simply supported on two unloaded edges when it is subjected to
compression. It may also be applicable for plates clamped on all four sides.
This concept is based on the stress redistribution of a steel plate with an
average ultimate stress, σu, as shown in Fig. 11.3(a). The only portion across
the width to resist the loading is the effective width, be, but the centre portion
of the plate does not carry any loading (Fig. 10.3b). A single effective width
equation to account for local buckling and welding residual stresses was
derived by Shanmugam et al. (1989) using Faulkner’s effective width formulae
and the procedures given by Mulligan and Pekoz (1984).

The effective width be for a plate under uniform compression is given by:
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where
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in which ε = uniform compressive strain and k = 10.30. The strength reduction
ratio, Rr, caused by residual stresses is defined as:
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in which ′σ rc  is the compressive residual stress divided by the material yield
stress σy.

The ratio of the tangent modulus to Young’s modulus is given by:

b

fy

Plate
Plate

(a) (b)

Ineffective
region

Average ultimate
stress, σu

be/2 be/2

fy

11.3 (a) Ultimate stress distribution; (b) effective width concept in a
plate under compression.
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When a column cross-section is subjected to biaxial bending in addition
to axial compression, the stresses along the loaded edges of a plate element
become nonuniform as shown in Fig. 11.4. It is known that the compression
flange buckles locally as the columns bend about the major axis. Then, the
ineffective region is excluded from the cross-section as shown in Fig. 11.5.
The effective width in this case is modified as:
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in which α = 1 – σ2/σ1, where σ1 and σ2 are the maximum and minimum
edge stresses. Local buckling of the component plates is thus accounted for
by using the above effective width formulae.

11.2.3 Residual stresses

Residual stresses in welded steel tubes, produced during cooling of the welded
sections, can have a significant influence on the material stress–strain behaviour
of the tubes. The effect of residual stress on the ultimate strength of steel
plates has been shown by Shanmugam et al. (1989) for a hollow steel box
column. Residual stress level of 30% of the yield stress in the compression
zone was found to be a maximum based on the available data. Uy (1998)
showed that residual stresses cause a slight increase in stiffness in the elastic
range, but the ultimate strength is not affected. If a slender steel plate with
residual stress is loaded in compression, then the ultimate stress of the steel
plate will decrease because of additional residual compressive stress. In
other words, the effective width of steel plate should be reduced. An idealised
residual stress pattern as shown in Fig. 11.6 is incorporated in the analysis
through the effective width formula.

σ y

0.3σ y

Residual tension

Residual compression

11.6 Residual stress distribution.

11.2.4 Axial strength capacity

The ultimate compressive strength of a composite cross-section is related to
the design strength of concrete and steel by the relation:
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Nu = Ae fyd + 0.85Ac fcd 11.16

in which Ae represents the effective steel area determined by the effective
width formula, Ac the cross-sectional area of concrete in the axial direction
and fyd and fcd the corresponding design strengths. The reduction in strength
of steel plates caused by residual stresses and local buckling is accounted for
by adopting the total effective steel area calculated from the proposed effective
width formula. The reduction factor for the cylinder compressive strength of
concrete is taken as 0.85.

11.2.5 Cross-section analysis

Moment–curvature–thrust (M-ϕ-P) relationships are important in the analysis
of long column behaviour. A finite slice approach is used herein to compute
the M-ϕ-P relationship numerically in which the concrete and steel areas in
the cross-section are discretised into small areas. In doing so, the effective
steel section is considered in the analysis based on the effective width formulae.
Axial forces are determined by summing up elemental forces and internal
moments by adding the moment due to elemental forces. Effects such as
strain hardening of steel and finite nonzero stresses in concrete below the
neutral axis position are usually considered secondary and are neglected.
The distributions of strain and stress in a typical section of the composite
column are shown in Fig. 11.7. The coordinate system is chosen to pass
through the centroid of the section. The displacements in the column are
assumed to be small, so that the total curvature in the two major bending
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11.7 Typical strain and stress distribution.
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planes denoted as Kx and Ky can be represented in the form of second derivatives
of the displacements as:

K u
x

x  = 
2

2
∂
∂

11.17
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2
∂
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11.18

The resultant strain distribution corresponding to the curvatures Kx, Ky and
the axial compressive strain εo are assumed to be uniformly distributed over
each element of the cross-section when subjected to axial force and moment;
the strain at any position can be expressed as:

ε = εo + Kx y + Kyx 11.19

The resultant stress distribution in each element is obtained by using the
material properties of the corresponding element. Given the axial load and
corner strain εcc, M-ϕ values in each principal direction can be found by
iteration of the neutral axis position to satisfy the force equilibrium equation.
By repeating the procedure for successive increments of extreme fibre strain
εcc until it reaches the crushing strain of the concrete εu, a set of M-ϕ relations
are obtained. εcc is assumed to vary from zero to 0.003 until the moment
value reaches a maximum. The neutral axis angle for each increment of
strain should be kept constant. The M-ϕ relations are computed if agreement
with the applied load is within a tolerance limit. If not, the extreme strain is
altered and the procedure from the previous step is repeated. Thus, the complete
moment–curvature relationship is constructed.

For a column subjected to biaxial loading, moments and curvatures about
principal axes are calculated as follows:

Moment about X axis:

Mx = ∑ (Acσcyc + Asσsys) 11.20

where Ac and As are elemental areas of concrete and steel strips respectively,
σc and σs corresponding stresses, yc and ys, the distances between the centroid
of elemental areas and plastic centroid of the whole cross-section along the
y-direction.

Moment about Y axis:

My = ∑(Acσcxc + Asσsxs) 11.21

in which xc and xs represent the distance between the centroid of the elemental
area and the plastic centroid of the whole cross-section along the x direction.

The curvature about the X and Y axes are, respectively:

Kx = εcc/Y   and   Ky = εcc/X 11.22
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where X and Y are the intercepts of neutral axis on the directions parallel to
breadth and depth, respectively of the cross-section and εcc refers to the
extreme concrete fibre strain (Fig. 11.3). The two moments Mx and My are
related to the resultant moment M as:

M M Mx y
2 2 2 =  + 11.23

Similarly for curvature along both axes, the resultant curvature is given by

K K Kx y
2 2 2 =  + 11.24

where

Kx = K sin α   and   Ky = K cos α 11.25

where α is the angle of inclination of neutral axis with respect to the X-axis.

11.2.6 Column strength analysis

The behaviour of composite columns is highly nonlinear since the M-ϕ-P
relationships vary from section to section along the length of the member. It
is, therefore, essential to adopt a numerical technique in order to simplify the
analysis. The procedure used for the analysis can be summarised as follows:

• The entire column is broken down at the nodal points or nodes along the
length into a number of line elements as shown in Fig. 11.8. Each cross-
section is discretised into a finite element and analysed with the stress
distribution as shown in Fig. 11.7.
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11.8 Column subjected to biaxial loading.
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• Stiffness equations are derived for each element in terms of the nodal
degrees of freedom. This step ensures the equilibrium of individual elements
to be satisfied. The standard stiffness matrix for the space frame element
having nodal forces and moments was used in the analysis. Flexural and
axial rigidities (referred to as EI and EA) in the stiffness matrices are
derived using the slope of the moment–curvature and axial load-shortening
curves, respectively. The slope for each element is obtained by the method
of bisections from the actual curves generated by the cross-sectional analysis.

• By transforming the element stiffness equations from local coordinates to
a common global coordinate system for each element, all the element
equations are assembled to yield the global stiffness equations. This ensures
satisfaction of compatibility and equilibrium conditions for the entire
column at each nodal point.

• By imposing appropriate geometric boundary conditions, the structure
will achieve its kinematic stability, as indicated by the positive definiteness
of the stiffness matrix.

• For a given set of applied loading, the nodal displacements can then be
solved from the structure stiffness equations.

For a typical load-deflection response, the phenomena such as softening,
stiffening, loading and unloading are typified by the occurrence of critical
points such as limit points and snap-back points. Incremental stiffness equations
for each element in the structure can be expressed in a general form as:

[K]{U}={2P} – {1P} 11.26

where
[K] structure stiffness matrix, {U} structure displacement increment vector,
{2P} total loads to be applied on the structure and {1P} external loads applied
to the structure at the beginning of the incremental step.

The GDC method, proposed by Yang and Shieh (1990), is used to solve
the incremental equilibrium equation (Eqn. 11.26) considering its numerical
stability near all types of limit points. With the superscript ‘i’ denoting the
current load increment step and the subscript ‘j’ denoting the current iteration
number, Eq. 26 can be rewritten as:

[ ]{ } = { } –  { }–1 –1K U P Fj
i

j
i

j
i

j
iδ 11.27

where [ ]–1K j
i  is the tangent stiffness matrix formed at the beginning of the

jth iteration based on the known element details at (j – 1)th iteration, { }δU j
i

the iterative displacement vector obtained for the jth iteration, { }Pj
i  the total

external nodal loads applied on the structure at jth iteration, and { }–1Fj
i  the

internal element forces summed at each node of the structure up to the
( j –1)th iteration during the ith load increment.

A generalised stiffness parameter (GSP) is introduced to compute the
iterative parameter until the convergence of incremental equilibrium equation
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is achieved. In GSPi for any load increment, ‘i’ is defined as the ratio of the
norm of the first iterative displacement vector of the first load increment step
to those at the current load increment step:

GSP  = 
{ } { }

{ } { }
1
1 T

1
1

1
–1 T

1

i
i i

U U

U U

δ δ
δ δ

ˆ ˆ

ˆ ˆ
11.28

where { }δU j
i  represents the iterative residual displacement vector at the jth

iteration of the ith load increment and { }δÛ j
i  the iterative tangential

displacement vector at the jth iteration of the ith load increment. For the first
load increment, GSP1 value is equal to one. The first iterative load parameter
of the first load increment, δλ1

1
 is equal to the input value, and for the

subsequent load increments, it can be computed using the known GSPi value
of that particular load increment as:

δλ δλ1 1
1 1/2 = |GSP |i i± 11.29

The iterative load parameter, δλ j
i  for all the subsequent iterations (j > 1)

is computed using the following expression:

δλ
δ δ

δ δj
i

i
j
i

i
j
i

U U

U U
 = –

{ } { }

{ } { }

1
–1 T

1
–1 T

ˆ

ˆ ˆ
11.30

As the GDC method is based on the bounded characteristics of load parameter
and displacement increments, it is able to bypass the limit points without
causing any numerical instability.

11.2.7 Convergence criteria

For each load increment, the equilibrium equation is solved by iterations
until the unbalanced force vector { }–1Rj

i  becomes negligible. This is indirectly
achieved by the following energy criteria:

|{ } { }|

|{ } { { }) |
 < 

T
–1

1
T

1

E

δ

δ δλ
ρ

U R

U P

j
i

j
i

i i ˆ
11.31

in which ρE
 is a user-specified tolerance, usually chosen between 1 × 10–6

and 1 × 10–10. Alternatively, to terminate the iteration for nonconverging and
slow-converging systems, a maximum number of iterations per load step is
also imposed.

The M-ϕ-P and load–axial strain relationship plots are the final outcome
of the cross-section analysis. For every load increment, the M-ϕ-P and load–
axial strain relationship plots are thus used to update the structure stiffness
matrix to ensure the equilibrium. After the stiffness has been modified, the
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solution of Eq. 11.27 (by GDC method) gives the final results for forces and
lateral deformations of the column along its length. The complete solution of
the column analysis results in column strength and deformation which can
be obtained in graphical or numerical forms. The corresponding results for
axial strength, axial shortening and load deformation relationships are presented
and discussed for a number of columns tested by other researchers in the
following sections.

11.3 Numerical results

This section provides some numerical studies using the proposed method. A
number of researchers have carried out tests to failure on tubular columns,
compact or slender, filled with concrete. A few of those columns, results for
which have been reported in the literature, are analysed by using the proposed
method (Lakshmi and Shanmugam, 2000a, b, 2002) and the results presented
in the form of interaction diagrams and load-deflection plots. Parameters
such as concrete and steel strengths, the cross-sectional dimensions of section,
and eccentricity of applied loading are considered.

11.3.1 Columns of compact steel sections

Tests on pin-ended composite columns having steel tubes of compact sections
were carried out by Bridge (1976). Columns were loaded eccentrically about
any axis; parameters such as thickness of the steel tube t, eccentricity e,
length L, and angle at which the line of load is inclined to the horizontal axis
were considered in the study. Shakir-Khalil and Zeghiche (1989) tested 2.76
m long rectangular columns of section 120 × 80 × 5 RHS under biaxial load
applied at eccentricities about major (ex) and minor (ey) axes. Further tests on
rectangular columns (120 × 80 × 5 RHS and 150 × 100 × 5 RHS) of 3 m
length were carried out by Shakir-Khalil and Mouli (1990). Columns tested
by Matsui et al. (1995) were also considered. The columns were of square
cross-sections of 149.8 mm width and 4.27 mm thickness. The steel tube of
yield strength 412 N/mm2 was filled with concrete of compressive strength
31.9 N/mm2. The length of the columns varied from 600 mm to 4.5 m
covering a wide range of column slenderness and, the eccentricities about
both axes varied from zero to a maximum of 125 mm. Simply supported
slender composite columns of 4 m long were tested by Wang (1999). The
rectangular section 120 × 80 × 6.3 of grade S275 tube infilled with concrete
of grade C25/30 was subjected to a load applied at eccentricities about both
axes. All the columns referred above are analysed by the present method and
the predicted results for ultimate load along with the reported experimental
values are summarised in Fig. 11.9.
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11.3.2 Columns of thin-walled steel sections

Five series of short columns (HS1 to HS4, HS7 to HS10, NS1 to NS4, NS7
to NS10 and NS13 to NS16) with a value of b/t ratio ranging from 40 to 100
were tested to failure by Uy (2000). The upper limit for compact plate
slenderness values is less than 40 according to most of the international
codes and, therefore, the results provide valuable data for slender sections.
Dimensions of the test specimens in each of the series were kept the same,
and specimens in a particular series tested under loads applied with different
eccentricities. Details of the test specimens are listed along with the
experimental failure load in Table 11.1 and, the corresponding predicted
values summarised in the table. Comparison between the two values (Nexpt/
Npred) is also given in the table. Npred represents the predicted ultimate strength
based on the proposed method and Nexpt the ultimate strength obtained from
the experiment. It can be seen from the table that, in most cases, the proposed
design model produces conservative predictions of the ultimate strength of
short steel box columns filled with concrete.
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11.9 Experimental and analytical strengths for columns of compact
steel sections.



Table 11.1 Comparison of ultimate strength with test results by Uy (2000)

Series Specimen B L e b/t fc Nexpt Npred Nexpt/
(mm) (mm) (mm) (N/mm2) (kN) (kN) Npred

1 HS1 126 360 0 40 50 1114 1114.0 1.00
HS2 126 360 20 40 50 996 948.6 1.05
HS3 126 360 40 40 50 739 684.3 1.08
HS4 126 360 50 40 50 619 584.0 1.06

2 HS7 156 450 0 50 50 1708 1856.5 0.97
HS8 156 450 25 50 50 1426 1398 1.02
HS9 156 450 50 50 50 1203 1227.6 0.98
HS10 156 450 60 50 50 959 922.4 1.04

3 NS1 186 540 0 60 32 1555 1439.8 1.08
NS2 186 540 37 60 32 1069 1037.9 1.03
NS3 186 540 56 60 32 1133 1180.2 0.96
NS4 186 540 84 60 32 895 836.4 1.07

4 NS7 246 720 0 80 38 3095 3034.0 1.02
NS8 246 720 48 80 38 2255 2068.8 1.09
NS9 246 720 74 80 38 1900 1938.8 0.98
NS10 246 720 100 80 38 1279 1229.8 1.04

5 NS13 306 900 0 100 38 4000 3809.5 1.05
NS14 306 900 0 100 38 4253 3901.8 1.09
NS15 306 900 0 100 38 4495 4162.0 1.08
NS16 306 900 0 100 38 4581 4979.0 0.92
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11.3.3 Axial load-shortening curves

Axial load-shortening curves provide useful information on axial stiffness,
yielding and failure mechanism of columns. They are also capable of monitoring
local buckling behaviour of the steel tube. Load-shortening curves for typical
columns obtained experimentally are presented along with the corresponding
theoretical curves in Figs 11.10 and 11.11. Curves for columns with wall
plate slenderness of 40, somewhat thicker walls, are given in Fig. 11.10 and
those for column wall plate slenderness 80, susceptible to local buckling, in
Fig. 11.11. For columns tested under axial load, the peak load reduced fairly
rapidly, whereas for those columns under bending, the reduction was less
dramatic.
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11.10 Load–axial shortening curves for specimens in series 1 (HS1 to
HS4).

It is observed that the stresses developed on the tensile flange in each
column do not reach the yield strain before failure of columns. This means
that tensile stress failure is not critical in these columns. At the beginning, all
steel plates develop compressive strain due to axial compression force. Before
the peak load is reached, the tension flange develops tensile strain. It is due
to local buckling that reverse tensile stresses only develop near the ultimate
load. This is sometimes known as elastic unloading. It is mainly due to
bending moment caused by eccentricity of load. However, it is found that
tensile strain on the plate does not exceed the steel yield strain.
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Load-axial shortening curves are generated for the thin-walled box columns
infilled with concrete and tested by Bridge et al. (1995). In these tests column
wall plate slenderness, b/t values were varied from 56 to 130. All tubes were
manufactured from mild steel sheet with a measured thickness of 2.142 mm.
The steel tubes having yield stress equal to 282 N/mm2 and Young’s modulus
of 199 400 N/mm2 were filled with concrete of nominal strength 20 N/mm2.
The average residual compressive stress was measured as 50 N/mm2. The
axial stress–strain relationships are shown in Fig. 11.12(a)–(d) for b/t ratios
of 56, 74.7, 93.4 and 130.7, respectively. All steel plates develop compressive
strain due to axial compression. The reverse tensile stresses develop near the
ultimate load due to bending moment caused by eccentricity of load. It
implies that steel can develop full plastic stress before columns fail. In addition,
the load drops suddenly after concrete reaches the crushing strain. When
concrete crushes at ultimate load, it causes stress redistribution in steel. The
results also show that the effect of local buckling is significant as the slenderness
ratio of the steel plate is increased. It is also found that the in-filled columns
have a greater axial capacity and higher stiffness than the hollow steel box
columns.

11.3.4 Eurocode 4

Interaction diagrams for columns tested by Uy (2000) were generated using
the proposed method. For each cross-section, an interaction diagram was
obtained as per Eurocode 4. This approach in Eurocode 4 allows the full
mean compressive strength of the cylinder to be utilised, but local buckling
is ignored by limiting the plate slenderness to within compact plate limits.
The interaction diagrams obtained by using the proposed method are presented

11.11 Load–axial shortening curves for specimens in series 4 (NS7 to
NS10).
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along with those obtained by EC4 in Figs 11.13 and 11.14 for typical columns
shown in Table 11.1. It is obvious from the figures that Eurocode 4 gives a
higher strength for all points. The Eurocode model is found to overestimate
the results since it is based on a rigid plastic analysis that assumes fully
crushed concrete and fully yielded steel. This is particularly true for pure
compression and bending and not on other points of the interaction curve.
But in the present analysis, steel is partially elastic and has not fully yielded
when the concrete has crushed.

11.4 Parametric studies

The proposed method is used to study the influence of key parameters on the
behaviour and ultimate load of steel–concrete composite columns. Each of
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11.12 Comparison of axial shortening curves with bare steel sections
for specimens tested by Bridge et al. (1995): (a) b/t = 56.0;
(b) b/t = 74.7; (c) = 93.4; (d) b/t = 130.7.
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the parameters is studied independently by keeping the rest of the parameters
constant for a particular column. Details of the study are given in this section.
A 3.0 m long composite column made of a steel box section 150 × 100 ×
5 mm with concrete infill was considered. Both the column ends were assumed
to be pinned. Typical values of material and geometrical properties of the
cross-section used in the studies are:

• Young’s modulus E = 2 × 105 N/mm2

• Yield stress fy = 300 N/mm2

• Concrete strength fcu = 40 N/mm2

• Steel tube wall thickness t = 5 mm
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11.13 Comparison of model and Eurocode 4 for series 1.
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• Poisson’s ratio µ = 0.3
• Box cross-section d × b × t = 150 × 100 × 5 mm3

• Cross-section aspect ratio d/b = 1.5
• Plate slenderness of the steel tube b/t = 30
• Residual stress σr = 0.0 σy

• Initial column deflection δ0 = L /1000, L being the
column length.

For each case study, the above values can be varied and, the range of variation
and the values of various parameters for each case are listed in Table 11.2.
Each of the parameters and its effect on the behaviour of in-filled columns is
studied in detail and the results are presented herein.

11.4.1 Axial load

A tensile axial load tends to straighten the column and hence increases its
stiffness. However, when a compressive axial load acts through an initial
curvature, the effect of load is adverse and such a load acting at an eccentricity
causes secondary moments. This in turn increases lateral deflection and
consequently reduces the column stiffness and its stability. Figure 11.15
shows the nondimensionalised biaxial interaction envelope for different axial
load ratios. Mux and Muy in the figure represent the ultimate moment capacity
of the section about major and minor axes, respectively. It can be seen from
the figure that the moment capacity decreases significantly as the axial force
increases. The drop in moment capacity becomes larger as the axial load
increases. The effect of Mx and My are similar as they were nondimensionalised
with respect to ultimate moment capacity about the corresponding principal
axes.

11.4.2 Load eccentricity

Eccentricity can be of any form arising from initial imperfections in the tube
wall, eccentricity of load, initial deflection or curvature, or from residual
stresses that are nonsymmetrical. In all cases, eccentricity would result in
reduction of the ultimate strength. Eccentrically loaded columns deflect laterally
soon after the load application and the stress redistribution begins at an early
stage of loading. The criterion for the analysis is equilibrium of the internal
and external forces and moments. A series of analyses are performed on
rectangular composite columns made of steel tube with a yield strength of
300 N/mm2 and infill concrete having a compressive strength of 40 N/mm2.
All other parameters are kept the same as those for the column considered
under axial load in Section 11.4.1, except for values of the end eccentricity
of the axial load about major axis, which was assigned values equal to 0, 5,



Table 11.2 Parameters and their range of variation

Notations Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8
Axial Eccentricity Initial out-of- Residual Column Plate Concrete Yield strength
load ratio straightness stress slenderness slenderness strength of steel tube

E (N/mm2) 2 × 105 2 × 105 2 × 105 2 × 105 2 × 105 2 × 105 2 × 105 2 × 105

fy (N/mm2) 300 300 300 300 300 300 300 250–355

fcu (N/mm2) 40 40 40 40 40 40 40–60 40

T (mm) 5 5 5 5 5 5 5 5
µ 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
d × b × t (mm) 150 × 100 150 × 100 150 × 100 150 × 100 150 × 100 150 × 100 150 × 100 150 × 100

× 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5
d/b 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
b/t 30 30 30 30 30 30 30 30

σr (N/mm2) 0 0 0 0.0 to 0 0 0 0
0.3 σy

δ0 (mm) L/1000 L/1000 1/5000 to L/1000 L/1000 L/1000 L/1000 L/1000
1/250

Additional Uni- e/D = 0 e = 15 mm ∆0 = 1/5000 e = 15 mm fc = 40 to 60 b/t = 40 e = 15 mm
parameters axial and to 0.4 to 1/250 N/mm2 to 60

biaxial
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10, 15, 20, 25, 30 and 40 mm. End eccentricity is expressed as a nondimensional
parameter known as the eccentricity ratio, e/d, varying from 0 to 0.4 (d being
the depth of the column cross-section in the plane of bending). These values
of eccentricity cover a wide range that could occur in practice. The columns
are assumed to have an initial out-of-straightness with a maximum central
value of L/1000 where L is the column length.

Typical column curves are given in Fig. 11.16. The results show that an
increase in load-eccentricity reduces the load carrying capacity of the column
and the reduction is larger when the eccentricity increases. This is due to the
presence of an end moment as a result of larger eccentricity. The results also
show that larger eccentricity reduces significantly the column stability, with
the instability criterion of failure occurring at lower column slenderness
values as the eccentricity increases.

11.4.3 Initial out-of-straightness

An axially loaded perfectly straight slender column can reach the Euler load.
However, real columns are not perfectly straight because of the initial curvature.
Initial curvature causes the column to bend even at lower level of applied
load and consequently this produces an increase in member stresses. The
greater the initial curvature, the greater will be the bending effect.
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11.15 Interaction diagrams to show the effects of axial load.
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To study the effect of initial imperfections on ultimate strength, in addition
to the basic value of initial central deflection (L /1000), four other values of
L /5000, L /2000, L /500 and L /250 are considered. Values of other parameters
are listed in Table 11.2. The range of initial values chosen gives an even
spread of initial out-of-straightness from almost straight (L /5000) to a relatively
large imperfection (L /250). A series of analyses are performed using different
values of initial central deflection at zero residual stress under uniaxial bending
with a nominal eccentricity of 15 mm. The assumed initial imperfection of
L /1000 in the current analysis is close to the fabrication tolerances in most
design specifications. The results are presented in the form of column curves
in Fig. 11.17, in which the nondimensional column strength (N/Nsq) is plotted
against the relative column slenderness λ*. Column strength is non-
dimensionalised against squash load, Nsq (As fy + Ac fc), and the relative column
slenderness λ* is given by:

λ λ
π* =  = 

 + 
 + 

sq

crit

s y c c

s s c c

N
N

A f A f
E A E A

11.32

As would be expected, the increase in magnitude of initial out-of-straightness
results in the reduction of column strength. It is obvious that the strength of
composite column decreases as the initial out-of-straightness increases.
However, it is worth noting that increasing the initial out-of-straightness of
the column from L /5000 to L /2000 does not alter the column strength
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11.16 Column curves for varying load eccentricities.
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significantly. But increasing the initial out-of-straightness from L /2000 to
L/500 and further below tends to reduce the strength of column by large
value. The effect of initial out-of-straightness of the column on the strength
is not severe for stocky columns. As for the slender columns, the strength
reduces as the initial out-of-straightness increases. The strength reduction
effect caused by initial out-of-straightness on slender columns is not unexpected
since the imperfection is a function of column length.

11.4.4 Residual stresses

Bending rigidity of a column cross-section is reduced by the presence of
residual stresses and, instability occurs at a lower load than that obtained
without residual stresses accounted for. To investigate the effects of residual
stresses, two distinct values of residual stresses (0.15σy to 0.30σy) were
chosen. Two sets of analyses are performed on rectangular composite column
of cross-section 150 × 100 × 5 mm with all other parameters identical as in
the earlier case. The columns are assumed to have initial out-of-straightness
of L/5000, L/2000, L/500 and L/250.

Figure 11.18 shows a typical comparison for column curves for a nominal
initial out-of-straightness of L/1000. The column curves for residual stress of
intensities 0.0σy, 0.15σy and 0.3σy are compared and found that the reduction
in column strength is encountered in the range of relative column slenderness
of 0.75 to 2. It is clear from the figure that residual stresses affect the

P

C
o

lu
m

n
 s

tr
en

g
th

 –
 (

N
/N

sq
)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

Relative slenderness

1/250
1/500
1/1000
1/2000
1/5000
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strength of columns marginally in the range of relative column slenderness
from 0.5 to 1.75, where the column strength is reduced by at least 5% of
squash load. The rate of reduction in load-carrying capacity deceases as the
relative column slenderness increases. The reduction in column strength is
notable in the range of relative slenderness between 0.6 to 1.5. Beyond this
range, the residual stress pattern has little or negligible effect on the column
strength. The effect of residual stress becomes small when the column
slenderness ratio is large.

11.4.5 Column slenderness

An eccentrically loaded column deflects laterally because of moments acting
along its height. For short columns, these deflections are small and do not
affect the strength. Large lateral deflections in slender columns result in
significant secondary moments due to axial load acting through an additional
eccentricity. Hence at a given axial load level, the moment resistance of a
slender column can be much lower than that of a short column. Columns
considered in Section 11.4.1 are analysed to investigate the effect of column
slenderness. All other parameters are kept identical except for the value of
the column slenderness expressed as a ratio between length of the column
and depth of cross-section. Figure 11.19 shows the interaction curves for
different values of column slenderness ratio L/D, 4 to 30, where L is the
unsupported length of the column and D its larger cross-section dimension.
Tests on columns in the past have been restricted to L/D ratio of 30 and
hence this limit was imposed in this study. It is unlikely that columns of
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slenderness greater than 30 would be required for the type of multi-storey
structures envisaged for composite columns. It can be observed from the
figure that the load reduction increases substantially with the increase of
column slenderness. The effect of column slenderness on the maximum load
is evident from these curves. The results indicate that for slender columns,
the failure load is reached before the full load-moment capacity of the section
can be utilised. If the maximum load is defined as the point of instability,
then this behaviour could be considered as overall column instability, as
opposed to the instability for the stocky columns where the full load-moment
capacity of the section can be attained.

11.4.6 Column tube wall slenderness

Plates with larger b/t ratios exhibit local buckling and lower ultimate strength.
In order to determine the effect of local buckling in concrete-filled box
columns, it is essential to analyse columns with different width–thickness
(plate slenderness) ratios. Analysis is carried out on a rectangular composite
column, 3 m long made of steel tube (yield strength of 300 N/mm2) with
concrete infill (compressive strength of 40 N/mm2). A composite column of
cross-section 150 × 100 × 5 mm was subjected to uniaxial eccentricity about
the major axis at a nominal value of 15 mm. Three different values of plate
slenderness ratio, b/t, ranging from 40 to 60 are considered with all other
parameters identical to those given in Section 11.4.1. These values of plate
slenderness cover the range that is commonly encountered in practice. For
those columns with plate slenderness ratios equal to 50 to 70, effect of local
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buckling is taken into consideration. For plate with a b/t ratio of 40, local
buckling does not govern as it falls under the category of compact section.
The columns are assumed to have an initial out-of-straightness with a maximum
central value of L/1000, L being the column length.

The variations of column strength with relative column slenderness are
shown in Fig. 11.20 for composite columns filled with concrete having
compressive strength equal to 40 N/mm2. It can be seen from the figure that
the nondimensional column strength decreases with the relative column
slenderness. The effect of plate slenderness on column strength is obvious.
The difference in column strength is more pronounced when the relative
column slenderness is in the range of 0.5 and 0.8. It is also observed that the
curves for different values of b/t are close to each other at higher column
slenderness. It indicates that the effect of plate slenderness on ultimate strength
of slender columns is not significant.
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11.4.7 Compressive strength of concrete

Figure 11.21 shows the variation of nondimensional column strength, with
compressive strength of concrete infill at different plate slenderness ratios,
b/t. Concrete strengths of 30 to 60 N/mm2 are chosen to investigate its influence
on the ultimate strength and column behaviour. Values of other parameters
involved are listed in Table 11.2. These curves are plotted for a nominal
uniaxial eccentricity of 15 mm about the major axis. It can be observed that
the nondimensional column strength increases gradually with the compressive
strength of concrete. The increase, although not evident, is almost at a constant
rate of about 2% before strength of concrete reaches 55 MPa. The effect of
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plate slenderness on column strength is obvious in the figure as the curves
corresponding to b/t equal to 50 and 60 lie well below the one corresponding
to b/t = 40. When the compressive strength ′fc  exceeds 55 MPa, the
nondimensional column strength increases at a slightly higher rate of 3.5%.

11.4.8 Yield strength of steel tube

Effect of variation in nominal yield strength can be studied from interaction
envelopes as shown in Fig. 11.22. Three different values of yield stress of
steel tube, viz. 250, 300 and 355 N/mm2, are considered in the study. The
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curves are generated for 3 m long composite columns of cross-section 150 ×
100 × 5 mm subjected to uniaxial bending at a nominal eccentricity of
15 mm about the major axis. The compressive strength of concrete infill is
taken as 40 N/mm2 in all three cases. The figure shows that the cross-section
initially sustains increasing magnitude of moment as the axial force increases
from zero, similar to the behaviour seen in reinforced concrete sections. In
this range of applied loading, an infilled composite section will generally
exhibit a ductile failure owing to yielding of the steel tube in tension prior to
crushing of concrete and local buckling of those portions of steel tube in
compression. As the axial force is increased further beyond the point of
maximum moment, an infilled composite section exhibits rapid deterioration
of moment capacity and hence results in brittle failure. From the interaction
curves, it can be noted that the there is a minimal variation in the load–
moment interaction behaviour due to the variation in the yield strength of
steel. Also the ultimate load and moment capacities remain unchanged for a
minimum increase in the yield strength of steel tube.

11.4.9 Column end restraints

Joint flexibility is one of the key factors in any frame design since connections
behave nonlinearly to the applied bending moment. There are no perfectly
pinned or fully rigid connections in practical or real framed structures. The
joint conditions are essential in the second-order inelastic analysis which
considers all non-linearities in a frame design. Thus the effect of end restraint
is an important factor that could affect the behaviour and column strength.

The boundary conditions commonly encountered in practice are fixed –
pinned, fixed–fixed and fixed–free. The effect of restraints can be considered
in the analysis by appropriate modifications in the stiffness matrix. An
identification matrix to distinguish the active (unrestrained) from the non-
active (restrained) degrees of freedom for each element is used herein. The
calculation of deflections in the elastic–plastic range of materials is complex,
and hence computer based numerical procedures are used to obtain the solution.

A rectangular composite column of 3 m long made of steel tube (150 ×
100 × 5 mm) with yield strength of 300 N/mm2 and in-fill concrete with
compressive strength equal to 40 N/mm2 was analysed. The column was
subjected to uniaxial eccentricity about the major axis at a nominal value of
15 mm. The steel tube is compact (b/t = 30) and, therefore, local buckling
does not govern the failure. The columns are assumed to have a nominal
value of L/1000 for initial out-of-straightness. Results were obtained for
columns with four different end conditions, viz. pinned–pinned, fixed–fixed,
fixed–pinned and fixed–free. The results are summarised in the form of
column curves in Fig. 11.23. It is clear from the figure that the columns with
fixed-fixed condition displays significantly higher strength compared to other
boundary conditions.
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11.5 Concluding remarks

An analytical method to predict the inelastic and ultimate load behaviour and
to compute the ultimate strength of steel–concrete composite columns of
square and rectangular cross-sections has been proposed. This approach
eliminates the limitation of the conventional analysis in which a deflection
shape or pattern is usually assumed. Effects of local buckling in column
walls are accounted for in terms of effective width and, in the formula to
compute the effective widths, residual stress effects are also built in. Based
on the results, the moment capacity of columns is found to decrease with the
increase in applied axial load. For the eccentrically loaded columns, load-
carrying capacity is found to drop significantly with increase of eccentricity.
The effect of local buckling has been found to be significant in thin walled
composite columns and should therefore be included in the existing codes of
practice.
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11.7 Appendix: notation

The following symbols are used in this paper:
As, Ac = elemental area of steel and concrete strips respectively

b/t = breadth to thickness ratio
D = depth/diameter of cross-section
ex = eccentricity about major axis
ey = eccentricity about minor axis
Es = elastic modulus of steel
EI = flexural stiffness of cross-section

EA = axial stiffness of cross-section
fy = yield strength of steel tube

fcu = compressive strength of concrete
fyd, fcd = design strengths of structural steel and concrete respectively
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fsd = design strength of steel tube
Fcs = total compressive force in steel tube
Fst = total tensile force in steel tube
Fcc = total compressive force in concrete

{ }–1Fj
i = vector of total internal elemental forces up to (j – 1)th iteration

of ith load increment
GSPi = generalised stiffness parameter at ith load increment

k = buckling coefficient
K = resultant curvature

Kx, Ky = curvature about x- and y-axes respectively
[K] = structure stiffness matrix

[ ]–1K j
i = tangent stiffness matrix formed at the beginning of the jth

iteration of ith load increment
L = length of column

M = bending moment
Mu = ultimate moment of resistance

Mx, My = moment about x- and y-axes respectively
Npl,rd = ultimate load of composite cross-section

Nu = squash load of composite cross-section
P = applied axial load

Pexpt, Ptest = experimental strength of column
Pcal = calculated strength of column by using the proposed analytical

method
{2P} = total load to be applied
{1P} = external load at the beginning of the incremental step
{ }Pj

i = vector of total external nodal loads at jth iteration of ith load
increment

{ }–1Rj
i = vector of unbalanced forces during (j – 1)th iteration of ith

load increment
t = thickness of steel tube

u, v = lateral deflection along x and y directions respectively
{U} = structure displacement vector

xc, xs = distance from centroid of elemental area of concrete and
steel respectively, to plastic centroid of the cross-section
along x direction

X, Y = intercepts of neutral axis with x- and y-axes
yc, ys = distance from centroid of elemental area of concrete and

steel respectively, to plastic centroid of the cross-section
along y direction

α = inclination of neutral axis with x-axis
{ }δU j

i = iterative displacement vector at jth iteration of ith load
increment

{ }δU j
i = iterative residual displacement vector at jth iteration of ith

load increment
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{ }δÛ j
i = iterative tangential displacement vector at jth iteration of ith

load increment;
δλ1

1 = initial load parameter
δλ1

i = iterative load parameter for the jth iteration of ith load
increment

ε = strain at any fibre of cross-section
εcc = extreme concrete fibre strain
εo = strain at plastic centroid of cross-section
εu = crushing strain of concrete
ϕ = curvature

ρE = specified tolerance
σc, σs = stress in concrete and steel respectively
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12.1 Introduction

This chapter describes in two parts the methods for predicting the buckling
strength of corrugated webs. The first part introduces a simple but general
plate model with edges elastically restrained against rotation to represent
generally supported corrugated webs for accurate prediction of their elastic
shear buckling capacities. The corrugated plates are modeled as orthotropic
Mindlin plates. Elastic rotational springs are provided along the boundary
edges of the plate to account for the torsional restraint from adjacent boundary
members. The buckling loads of corrugated plates are predicted using the
Ritz method. The proposed analysis covers the entire range of elastically and
rotationally restrained plates, from simply supported to clamped edges, and
transition curves of plate buckling capacities are presented. In the second
part, material and geometrically nonlinear formulation is presented for
evaluating the elasto-plastic buckling loads in practical problems. In this
formulation, a finite element method is used to represent the folded plate
structure, taking into consideration the elasto-plastic state and finite
deformations. It will be shown that such analysis can predict the buckling
results accurately as evidenced from experimental verifications that test the
specimens into the highly nonlinear regions.

12.2 Elastic buckling of corrugated plates

Prestressed concrete girders with corrugated steel webs (PCGCSW for short),
as shown in Fig. 12.1, is a new concrete–steel composite structural system
that has been recently utilized in superstructures of highway bridges in France
and Japan. The replacement of conventional flat steel webs by corrugated
steel webs provides PCGCSW with a higher shear buckling capacity in the
webs even without providing additional vertical stiffeners (Combault, 1992;
Johnson and Cafolla, 1997; Research Group, 1998). The replacement of
concrete webs by corrugated steel webs reduces the weight of the superstructure
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significantly. In addition, the corrugated webs contribute little to the longitudinal
stiffness of PCGCSW so that the prestressing forces can be easily and precisely
introduced in the concrete flanges. Despite its many advantages over
conventional girders, uncertainties and problems concerning analysis and
design of PCGCSW still persist and require further studies.

In view of the fact that corrugated plates extend three-dimensionally, the
rigorous analysis similarly requires a three-dimensional treatment, demanding
large computer memory and fast computation methods. In this respect, replacing
such a three-dimensional structure by an ideal orthotropic plate may
considerably reduce the computational difficulty. This simplified approach
by approximating the corrugated plate with an orthotropic plate is used in the
subsequent formulation to overcome the three-dimensional problems. To
treat the supporting conditions of the corrugated plates, the Mindlin plate
theory is applied since the boundary conditions can be specified in a more
exact manner when compared with Kirchhoff’s thin plate theory.

In predicting the elastic shear buckling capacity of the plate, a formula
has been derived by Easley (1975) on the basis of Kirchhoff’s thin plate
theory and simply supported conditions. This formula is adopted in the design
manual of prestressed concrete box girders with corrugated steel webs and
was proposed by the Research Group of Composite Structures with Corrugated
Steel Webs of Japan (Research Group, 1998).

Buckling analysis of corrugated plates is, in general, based on the assumption
that the plate is an orthotropic flat plate with an equivalent stiffness (Easley,
1975; Timoshenko and Gere, 1963). To verify the validity of such an
assumption, experiments and numerical analyses seem to be the only solutions
(Easley and McFarland, 1969; Luo and Edlund, 1996; Elgaaly et al, 1996).
By regarding the corrugated plate as an orthotropic plate, a number of analytical
approaches have been proposed that involves considering vibration problems
(Stein and Housner, 1978; Dickinson and Blasio, 1986). Nonclassical edge

Upper concrete
flange Concrete

diaphragm

Corrugated steel web

Lower concrete flange

12.1 Prestressed concrete girder with corrugated steel webs,
PCGCSW.
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conditions were studied by Laura and Luisoni (1978), Laura and Grossi
(1978), Mizusawa and Kajita (1987) and Chang and Chang (1997).

In contrast to the Kirchhoff thin plate theory, the Mindlin plate theory
takes into account the effect of transverse shear deformation which becomes
very important in thick plates (Mindlin, 1951). Dawe and Roufaeil (1980)
studied the vibration of the Mindlin plate by the Ritz method. Marinetti and
Oliveto (1995) derived general solution and stiffness matrices for the vibration
and buckling Mindlin plate problems by making use of sinusoidal functions.
The vibration analysis on Mindlin plates with nonclassical boundary conditions
can be found in the works of Chung et al. (1993), and Saha and Kar (1996).

The aim of this chapter is to make a more precise prediction of the elastic
shear buckling capacity of corrugated plates, especially when their edges are
restrained against rotation. The Mindlin plate theory is adopted to model the
plates. The Ritz method is employed with trigonometric series selected as
the trial functions, as these functions satisfy the geometric boundary conditions.
The elastic shear buckling capacity of the plate is then calculated by a standard
eigenvalue extraction procedure.

12.2.1 Orthotropic rectangular Mindlin plate

The theoretical analysis is based on the assumption that a corrugated web
can be analyzed as a rectangular, orthotropic, and flat plate with uniform
thickness. This assumption was proposed by Easley and McFarland (1969)
with the following conditions:

• The number of repeating corrugations between diaphragms is sufficiently
large and the dimension of the corrugations is small enough;

• The overall buckling behavior is focused rather than the localized buckling
phenomena;

• The buckled patterns do not depend on the local corrugation shapes.

By adopting the Mindlin plate theory, the displacement fields can be
expressed in the following form:

u(x, y, z) = zψx(x, y)

v(x, y, z) = zψy(x, y) 12.1

w(x, y, z) = w0(x, y)

where u(x, y, z), v(x, y, z), w(x, y, z), w0(x, y), ψx and ψy refer to the displacements
along the x-, y-, z-axes and in the middle surface, the rotations in the x- and
y-directions, respectively as shown in Fig. 12.2. By adopting infinitesimal
displacement theory, the cross-sectional rotations of the plate, ψx and ψy,
shearing strains, γxz and γyz, and the displacement of the plate, w0, are related
as follows:
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ψ γx xzx y
w
x

( , ) =  – 0∂
∂

ψ γy yzx y
w
y

( , ) =  – 0∂
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12.2

The relationship between the stress and strain for orthotropic material in
the plane stress condition is given by:

σ = Dε 12.3

where σ and ε represent the stress and the strain in vector forms and are
given respectively by:

σT = [σx σy τxy τxz τyz] 12.4

εT = [εx εy γxy γxz γyz] 12.5

and D is the elastic constitutive matrix given by:
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where Ex and Ey refer to the modulus of elasticity in the x- and y-directions,
respectively; νx refers to Poisson’s ratio, designating the transverse strain in
the y-direction when a unit stress is applied in the x-direction and νy Poisson’s
ratio designating the transverse strain in the x-direction when a unit stress is
applied in the y-direction; Kx and Ky refer to the transverse shear correction
coefficients in the x – z and y – z planes; Gxy, Gxz and Gyz denote the shear
modulus of elasticity in x – y, x – z and y – z planes, respectively.
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h/2 x, ξψy, ψη
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y, η

12.2 Mindlin plate geometry.
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The strain energy U1 stored in the plate can be obtained from the
aforementioned stress–strain relationship and Hooke’s law as:
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where
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and h denotes the plate thickness.
Figure 12.3 shows a general plate elastically restrained against rotations

along the edges. This elastic restraint covers the two extreme cases of edge
conditions, viz. simply supported edge and clamped edge (Chung et al.,
1993). Let kx1, kx2, ky1 and ky2 represent the rotational spring constants in the
x-direction along the edges x = 0 and x = a; in the y-direction along the edges
y = 0 and y = b, respectively. The strain energy stored in the rotational
springs, U2, can be expressed as:
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12.3 A plate with rotational springs.
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The potential energy V1 of the plate due to the in-plane shear load, Nxy, as
shown in Fig. 12.4, is given by:
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12.4 A plate under in-plane shear.

The potential energy of the external loads V2 as shown in Fig. 12.5 is
given by:
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where Mx refers to the bending moment in the x-direction, and Mxy the
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12.5 Notations for stress resultants.
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twisting moment in the x-direction around the x-axis along the y-direction,
respectively.

The total potential energy functional Π of a rectangular orthotropic Mindlin
plate can be written as follows:

Π = U1 + U2 + V1 + V2 12.11

12.2.2 Ritz method

For determining the buckling load, the Ritz method is used. Crucial to this
method is the selection of an admissible trial function. Here we adopt the
trigonometric series that satisfy the following hard-type simply supported
edge conditions (Liew et al., 1998):
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where ξ = x/a and η = y/b, respectively. These series always result in w0 = 0
along all edges and ψξ = 0 on y = 0 and y = b. However ψη ≠ 0 on x = 0 and
x = a. The total potential energy functional Π can be obtained by substituting
Eqs (12.7) to (12.10) into Eq. (12.11):
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where α = a/b.
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For convenience, the following dimensionless parameters of elastically
rotational springs will be defined in the x- and y-directions, respectively:
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The potential energy of the load expressed by Eq. (12.10) vanishes naturally
for the case of hard-type, simply supported edges. By substituting the
trigonometric series given in Eq. (12.12) into the total potential energy, and
after differentiation with respect to the Ritz coefficients Aij, Bij and Cij, the
following equations are obtained:
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The foregoing equations can be rearranged and written in the following
matrix form:
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If m, n, p, q, r and s in Eq. (12.12) are all taken to be equal to n, the size of
the stiffness matrix will be 3n2 × 3n2. The overall elastic shear buckling load
of a plate is then calculated by finding the solution of the eigenvalue problem
given by Eq. (12.18). This can be done through a conventional eigenvalue
extraction procedure.

12.2.3 Equivalent elastic constants for orthotropic plate

In order to carry out an analysis based on the foregoing formulation, a
corrugated plate will be conveniently transformed into an equivalent orthotropic,
shear deformable plate with appropriate structural moduli. Elastic constants
required for this purpose are flexural stiffnesses in two principal directions
Dx and Dy, torsional stiffness Dxy, plate stiffness νxDy + νyDx and transverse
shear stiffnesses in two principal directions, KxhGxz and KyhGyz, respectively.
The evaluation of the elastic constants may be made in reference to Fig. 12.6
which shows the cross-section of a corrugated plate. For convenience, the
directions of the lowest flexural plate stiffness and the highest are designated
by x- and y-directions, respectively as shown in Fig. 12.7.

d bw

hr

b
iw

s

q

t

θ

12.6 Cross-sectional geometry of a corrugated plate.

Flexural stiffness

The equivalent flexural stiffness in the x-direction Dx, and the y-direction Dy,
can be approximated by (Easley and McFarland, 1969; Peterson and Cord,
1960):
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The moment of inertia in the y-direction, in Eq. (12.20), can be calculated by
the following equation:
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Although the plate stiffness (νxDy + νyDx + 2Dxy)/2 is usually neglected
(Peterson and Card, 1960), the term involving Dxy was retained as suggested
by Easley and McFarland (1969). The terms νxDy + νyDx can also be neglected
when Dy >> Dx, which is usually the case for corrugated plates (Easley and
McFarland, 1969).

In design manuals, the equivalent flexural stiffnesses are defined by
(Research Group, 1998):
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Equation (12.19) is used to represent the flexural stiffness of the plate in the
same way as a curved beam, while Eq. (12.22) assumes that the plate is flat
without any corrugation. The flexural stiffness in the y-direction is given
exactly by Eq. (12.20) but may be approximated by Eq. (12.23).
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12.7 A corrugated plate under simple in-plane shear.
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Torsional stiffness

The effective shear modulus of elasticity, Gxy
eff  in the equation must be

considered with respect to the corrugated configuration and the method of
attachment. For a corrugated plate that attaches continuously to the supports,
the shear strain due to uniform in-plane shear load is also uniform throughout
the material (Hussain and Libove, 1976; Rothwell, 1968). In short, the shear
modulus G of material is equal to the ratio of the uniform shear stress, F/(bt),
and the shear strain in the corrugated plate is u0/s as shown in Fig. 12.7,
where s (= 2bw + 2biw ) refers to the developed width of a single corrugation
and u0 refers to the vertical displacement. However, for an equivalent orthotropic
plate, the shear strain in the plate is u0/q. Thus, the effective shear modulus
Gxy

eff  can be defined as G Gq s.xy
eff  = /  The equivalent torsional stiffness Dxy

of the corrugated plate, after substituting the relationship G = E/[2(1 + ν)] of
an isotropic material, can be expressed as:

D s
q

Et
xy  = 

6(1 + )

3

ν 12.24

which is exactly the same as that used by Easley and McFarland (1969).
In the case of a discrete attachment, the effective shear modulus is lower

than that given in Eq. (12.24), depending on the method of attachment (Hussain
and Libove, 1976; Rothwell, 1968).

Transverse shear stiffness

In order to estimate the transverse shear stiffness in the y-direction, KyhGyz,
one wavelength of the corrugated web is simply considered as a simple
beam. Inclined strips of cross-section of a corrugated web were made
presumably at right-angles to the remaining parts with the equivalent cross-
sectional area as shown in Fig. 12.8. The formula for estimating the transverse
shear correction factor for a thin-walled rectangular tube, which is
mathematically equivalent to the transformed section, is (Omidvar, 1998):

tw bw tf

x
z tf

bw/2bw/2

hr

12.8 Transformed cross-section of corrugated web to approximate
transverse shear stiffness.
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where

H1 = 10(1 + 3m)2;

H2 = 12 + 72m + 150m2 + 90m3 + 30n2m (1 + m);

H3 = –2 + 3m + 15m2; H4 = –n2(25m + 15m2);

H5 = –n2(15m + 45m2); H6 = –15m – 45m2
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The thickness h in Ky for the transverse shear stiffness is replaced with the
average thickness tav of the corrugated section, i.e.

t
st
qav  = 12.26

The shear modulus, Gyz, is simply given by the plate shear modulus G. For
the transverse shear stiffness factor in the x-direction, KxhGxz the average
thickness of the corrugated section is used and the shear correction factor,
Kx, is taken as 5/(6 – ν) (Stephen, 1997).

12.2.4 Elastically supported orthotropic Mindlin plates

Folding of flat metal sheets into corrugated sheets is well known to provide
higher shear buckling capacity than the unfolded (flat) ones. This can be
anticipated by considering the formula for global shear buckling capacity of
flat plates that directly relates to the flexural stiffnesses that considerably
increase when the plates are corrugated. The formula for global elastic shear
buckling capacity of the corrugated plates has been derived by Easley (1975),
and is adopted in the design manual for PCGCSW. However, the formula
was based on Kirchhoff’s thin plate theory with simply supported edges.
This raises the question on the feasibility of the application of the formula
for general edge conditions. Therefore, to make a more precise prediction on
the global elastic shear buckling strength of corrugated web plates, we propose
that they be modeled as orthotropic rectangular thick plates (Mindlin plates).
Elastically rotational restraints on their boundary edges are considered and
taken into account in the form of rotational springs. The prediction of the
buckling capacity of such plates is carried out by using the Ritz method. The
general elastic rotationally restraint condition covers the limiting boundary
conditions of the simply supported and clamped edges and, therefore, we
could show the transition curves of plate buckling capacities from the case of
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simply supported to the case of clamped support by viewing the entire range
of rotational restrained condition.

12.2.5 Elastic buckling analysis

Three different simple geometric shapes of corrugated plates are studied.
The wavelength of each corrugated shape, q, is fixed at 125 mm. Equal panel
width is considered, i.e. bw = biw. Only the angle of horizontal inclination θ
is varied at 30, 37 and 45 degrees. The constant thickness t of the plates is
taken to be 2 mm. The relevant dimension parameters, as shown in Fig. 12.6,
are then derived consequently. The material is assumed to be elastic with
Young’s modulus E = 2.06 × 1011 N/m2 and Poisson’s ratio ν = 0.3.

The calculations are made for six different plates with various combinations
of three angles of horizontal inclination θ, with plate dimensions a × b =
1 m × 1 m and a × b = 2 m × 1 m. In each case, only simple or fixed edges
in the x-direction are considered whereas the supported edges in the y-direction
are considered to be restrained by elastically rotational springs and their
stiffnesses vary uniformly from 1.0 to 1010 Nm/m so as to cover the stiffness
range of simply supported to fixed supported cases.

The flexural stiffnesses, Dx and Dy approximated by Eqs (12.19) and
(12.20) will be referred to as Approximate Formula 1, and those by Eqs
(12.22) and (12.23) as Approximate Formula 2. The dimension parameters
and calculated elastic constants of the plates are summarized in Table 12.1.

Table 12.1 Parameters of corrugated plates

Plate parameters Angle of inclination (°)

30 37 45

q [mm] 125
s [mm] 133.97 138.99 146.45
hr [mm] 16.75 20.91 25.89
a Dx [102 N m2/m] 1.2814 1.2351 1.1723
a Dy [104 N m2/m] 2.0715 3.3469 5.4000
b Dx [102 N m2/m] 1.5092 1.5092 1.5092
b Dy [104 N m2/m] 2.0936 3.3698 5.4241
Dxy [103 N m2/m] 2.2646 3.0543 3.2181
Kx 0.8772 0.8772 0.8772
Ky 0.2644 0.3098 0.3463

a Approximate formula 1 [Eqs (12.19) and (12.20)]
b Approximate formula 2 [Eqs (12.22) and (12.23)]

12.2.6 Numerical results and discussion

The computed shear buckling capacities are shown in Figs 12.9 to 12.14.
Note that kx = 0 and kx = ∞ in the figures are associated with simply supported
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and fixed edges in the x-direction, respectively. Two horizontal lines in the
figures show the estimated buckling capacities that are calculated using Easley’s
formula or the design formula adopted by the Research Group (1998). The
upper and lower lines represent predicted buckling capacities of the plates
with fixed and simply supported edges in the y-direction. Easley’s formula is
given by:
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where β is set to be either 1.0 or 1.9 for plates with simply supported or fixed
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12.9 Shear buckling capacity for 1 m × 1 m plate with θ = 30°.

Easley (fixed support)

Easley (simply supported)

Elastic est. 1, kx = 0
Elastic est. 1, kx = ∞
Elastic est. 2, kx = 0
Elastic est. 2, kx = ∞

0 1 2 3 4 5 6 7 8 9 10
Log10 ky (N m/m)

S
h

ea
r 

b
u

ck
lin

g
 c

ap
ac

it
y 

(M
N

)

0.5

0.4

0.3

0.2

0.1

0.0

12.10  Shear buckling capacity for 2 m × 1 m plate with θ = 30°.
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edges in y-direction, respectively and the flexural stiffnesses, Dx and Dy, are
calculated from Approximate Formula 2.

From the figures, it is found that the Ritz analyses yield buckling capacities
in agreement with those calculated by Eq. (12.27) for both simply supported
and fixed edges. For plates with high aspect ratios (i.e. 2 m × 1 m), the Ritz
analyses yield buckling capacities that are lower than those associated with
plates having low aspect ratios (i.e. 1 m × 1 m). This result is expected from
the elementary shear buckling analysis of plates.

The difference in buckling capacities calculated on the basis of Approximate
Formulas 1 and 2 may be considered to be small.
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12.11 Shear buckling capacity for 1 m × 1 m plate with θ  = 37°.
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12.12 Shear buckling capacity for 2 m × 1 m plate with θ = 37°.



Analysis of corrugated web plates in bridge structures 355

12.2.7 Effect of rotational restraint

As can be seen in all Figs 12.9 to 12.14, by increasing the stiffness of
rotational restraint ky, the buckling capacity of the plate increases from the
value associated with a simply supported edge to that of a fixed edge. The
shift in buckling capacity is evident over a specific range of stiffness. On the
other hand, for a given rotational restraint stiffness in the y-direction, no
significant difference is observed in the buckling capacities of plates with
simply supported and with fixed edges in the x-direction. It is clear that the
supported edges in the direction of plate’s lower flexural stiffness (x-direction)
can be neglected when estimating the buckling capacities of corrugated plates.

When the rotational spring constant in the y-direction is made dimensionless
by Eq. (12.14), it is found that there is a specific transition zone of buckling
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12.13 Shear buckling capacity for 1 m × 1 m plate with θ = 45°.
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12.14 Shear buckling capacity for 2 m × 1 m plate with θ = 45°.
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capacity from that of a simple supported edge to a fixed edge. The transition
zone spans over a specific range of rotational stiffness, regardless of the
corrugated shapes and dimensions. The dimensionless rotational spring constant
of approximately 10–2 is found to be the lower bound or equivalent to the
simply supported case. For the upper bound or the fixed support case, the
dimensionless value may be taken as 104 as can be seen from Fig. 12.15.
Therefore, one can fully realize the maximum resistance of corrugated plates
to shear buckling if the dimensionless rotational restraint parameter can be
made to take the value of 104.
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12.15 Non-dimensionalized shear buckling strength vs non-
dimensionalized rotational restraint parameter, Ky.

12.3 Elasto-plastic and finite displacement

analysis of plates

The theory of elasto-plastic and finite displacement analysis of steel plated
structures is formulated under the following assumptions and idealizations
(Komatsu et al., 1975, Kano et al., 1997):

• Material constituting the steel plates is homogeneous and isotropic, and
the elasto-plastic body is isotropic, kinematic, and combined strain hardening
that obeys von Mises’ yield criterion as well as the associated flow rule.

• Kirchhoff’s hypothesis is valid for plate panels.
• Each finite plate element is divided into several layered sub-elements.

Stress and stiffness in each layer changes linearly in the direction
perpendicular to the layer.
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12.3.1 Deformation of plate

Displacement function

Figure 12.16 shows the coordinate axes used for the considered plate. Let
∆u(x, y), ∆v(x, y) and ∆e(x, y) be the displacement increment for the x-, y-
and z-direction of a point (x, y) on the neutral surface of the plate, respectively.
Following Kirchhoff’s hypothesis, the displacement increments of an arbitrary
point in the plate can be expressed as:

∆ ∆ ∆
U x y z u x y z

w x y
x

( , , ) = ( , ) –  
( , )∂
∂

12.28

∆ ∆ ∆
V x y z v x y z

w x y
x

( , , ) = ( , ) – 
( , )∂
∂

12.29

∆W(x, y, z) = ∆w(x, y) 12.30

z

y

x

12.16 Coordinate axes used for plate model.

Relationship between strains and displacements

The strain increments of an arbitrary point in the plate can be represented as
follows:
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Let ∆� = (∆ex   ∆εy   ∆γxy)
T be the incremental strain vector. From Eqs

(12.31)–(12.33), the following equation can be obtained:
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This incremental strain vector can be divided into a linear term and a non-
linear term, namely,

∆� = ∆�L + ∆�NL 12.35

The linear and the non-linear terms are expressed as follows:
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12.3.2 Element stiffness matrix

Suppose the structural system satisfies the equilibrium condition under the
state (n + 1), the following equation can be obtained from the principle of
virtual work:

∫∫∫ δ ∆�T(�(n) + ∆�) dV = δ∆uT P(n+1) 12.38
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where �(n) is the stress at the state n, ∆� the stress increment from the state
n to the state (n + 1), P(n+1) the applied load at the state (n + 1), δ ∆u the
virtual displacement increment, and δ∆� the strain increment corresponding
to the virtual displacement increment.

As described in the previous section, the strain increment ∆� can be
divided into the linear term ∆εL and the non-linear term ∆εNL:

∆� = ∆�L + ∆�NL 12.39

The relationship between the stress increment and the strain increment can
be expressed via the material property matrix D as follows:

∆� = D ∆� = D(∆�L + ∆�NL 12.40

By substituting Eq. (12.40) into Eq. (12.38) and neglecting the terms higher
than third order, the following equation can be obtained:

  ∫∫∫ ∫∫∫δ∆ ∆ δ∆� � � �L
T

L NL
T ( )d  + dD V Vn

+ d  = L
T ( ) T ( +1)∫∫∫ δ ∆ δ ∆� � n nV u P 12.41

The third term on the left side of Eq. (12.41) can be represented with the
inner force F(n) at the state n as follows:

  
δ ∆ δu FT ( )

L
T ( ) = dn n V∫∫∫ � � 12.42

The substitution of Eq. (12.42) into Eq. (12.41) yields:

  ∫∫∫ ∫∫∫δ ∆ ∆ δ∆� � � �L
T

L NL
T ( )d  + dD V Vn

= (  –  )T ( +1) ( )δ ∆u P Fn n 12.43

The linear and the nonlinear strain increments are defined with the nodal
displacement increment ∆u as follows:

∆�L = BL ∆u 12.44

∆�NL = BNL ∆u 12.45

The substitution of Eqs (12.44) and (12.45) into Eq. (12.43) furnishes

δ ∆ ∆u B D B uT
L
T

L d∫∫∫



V

  
+   d  = (  –  )T

NL
T ( ) T ( +1) ( )δ ∆ δ ∆u B u p F∫∫∫ � n n nV 12.46
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By defining the first and the second term of Eq. (12.46) as

∫∫∫



B D B u K uL

T
L d  = V ∆ ∆ 12.47

  ∫∫∫ B K uNL
T ( )

G d  = � n V ∆ 12.48

the equilibrium equation of the structural system is given by

(K + KG)∆u = P(n+1) – F(n) 12.49

where K is the stiffness matrix associated with infinitesimal displacement
and KG is the geometric stiffness matrix.

12.3.3 Constitutive law

Elastic

The relationship between stress and strain in the elastic state is given by:
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Yield criterion

It is known that the yielding of steel does not depend on the isotropic
components of the stress tensor. The von Mises yield criterion is a hypothesis
that defines the occurrence of yielding when the yield function f vanishes,
i.e.

f J y =  –  1
3

 = 02
2σ 12.51

where σy refers to the yield stress in one-dimensional problem and J2 is the
second invariant of stress deviator sij, in which

J s s s si j ij i j i j i j2 =1

3

=1

3
 = 1

2
 = 1

2
  ;Σ Σ

sij =  –  
3

 =  –  
3 =1

3
σ

δ
σ σ

δ
σij

i j
kk i j

i j

k kkΣ 12.52

The repeated indices such as ij and kk represent the implied sum. Indices 1,
2, and 3 designate the coordinates x, y and z in the case of three-dimensional
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Cartesian coordinate system as shown in Fig. 12.16. This implied sum will
be adopted hereafter unless otherwise stated. It is easy to show that:

∂
∂

J
s

ij
i j

2  = σ 12.53

The yield condition given by Eq. (12.51) can also be expressed as:

3  = 2J yσ 12.54

The yield function in a multidimensional problem can also be evaluated by
f Ji j0 2( ) = 3 ,σ  just like the case of a one-dimensional problem. Then the

equivalent stress σ  can be defined by

σ = ( ) = 
3
20

1
2

f s s sij i j i j




 12.55

Plastic flow theory

There are two major ways of describing the stress–strain relationship in the
plastic problem, namely the incremental strain theory (flow theory) and the
total strain theory (deformation theory). In the flow theory, which is path-
dependent, the total strain can be obtained by integrating the infinitesimal
strain increment along the loading path. On the other hand, the latter theory
assumes that there should be a relationship between the plastic strain and the
stress deviator that is independent of the loading path. The method presented
in this section is based on the flow theory.

In the incremental strain theory, by assuming plastic potential g(σij, ξk),
which is a function of the stress σij and a loading path parameter ξk, the
plastic strain increment d pε ij  is given by

d  = dpε λ σij
i j

g∂
∂

12.56

where dλ is a non-negative scalar parameter. Equation (12.56) means that the
plastic strain increment d pε ij  is given as an outward normal vector on the
equipotential surface g = 0. If the loading surface f = 0, is adopted as the
equipotential surface g = 0, Eq. (12.56) can be rewritten as:

d  = dpε λ σi j
i j

f∂
∂

12.57

Equation (12.57) is called the associated flow theory. In the case where the
function f agrees with von Mises’ yield function, it is called the Prandtl–
Reuss theory. We shall treat the steel as a Prandtl-Reuss material.
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The incremental plastic work dWp can be defined by the stress components
σij and the incremental plastic strain components d pε i j  or by the equivalent
stress σ  given by Eq. (12.55) and the incremental equivalent plastic strain
d :pε

d  = d  = dp p pW i j i jσ ε σ ε 12.58

where dε p  is given by

d  = 
2
3

d dp p

1
2

ε ε εp
ij ij





 12.59

Using Eqs (12.51), (12.53) and (12.57), the plastic work increment dWp is
represented as follows:

d  = d  = dp p pW si j i j i j ijσ ε ε

= d  = d  = d  = 2d2
2s
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12.60

Since J2 > 0 in view of Eq. (12.52), the sign of dWp coincides with that of dλ.
The loading and unloading states can, therefore, be judged by the sign of dλ:

dλ > 0 loading (plastic behavior)

dλ = 0 neutral (plastic behavior)

dλ < 0 unloading (elastic behavior)

Hardening rules

In this section, isotropic, kinematic and combined hardening rules will be
described on the basis of the von Mises yield condition. The loading surface
is represented by the translation of the center of the yield surface αij in the
kinematic hardening rule and by the increase in the radius of the yield
surface in the isotropic hardening rule.

Then the loading surface is now given by

f f Hij ij = (  –  ) –  d  = 00
pσ α ε∫ 
 12.61

where f0 is a function composed of stress σij and the motion of the center of
the loading surface αij and H is called the hardening function that is dependent

on the equivalent plastic strain ∫ d pε . In this equation f0(σij – αij) represents

the equivalent stress as follows:
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σ σ α = (  –  )0f i j ij 12.62

By multiplying both sides of Eq. (12.53) by Sij and upon the substitution of
Eq. (12.55) and in consideration of the identity of sij = σij – αij, the following
equation can be obtained:

(  –  )  = 0σ α σ σi j i j
ij

f∂
∂

12.63

In view of Eq. (12.63), the following strain hardening ratios may be
conveniently defined:

• isotropic hardening (H′ = strain hardening ratio)

∂
∂ ′

f
H

ij
ij ij

0 p(d  –  d ) = dσ σ α ε 12.64

• kinematic hardening ( ′Hk  = kinematic hardening ratio)

∂
∂ ′

f
H

i j
i j

0
k

p d  = dσ α ε 12.65

• combined hardening ( ′ ′H H + k  = total strain hardening ratio)

∂
∂ ′ ′

f
H H

i j
ij

0
k

pd  = (  + )dσ σ ε 12.66

The incremental plastic work is expressed as

d  = (  –  )d  = dp p pW ij i j ijσ α ε σ ε 12.67

From the associated flow theory given by Eq. (12.59),

d  = dp 0ε λ σij
ij

f∂
∂ 12.68

By substituting Eq. (12.68) into Eq. (12.67) and using the relationship given
in Eq. (12.63), the following equation can be obtained:

d  = d pλ ε 12.69

Elasto-plastic material matrix

The total strain increment is thought to be the sum of the elastic and the
plastic components in the plastic state:

d  = d  + de pε ε εij ij ij 12.70
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The constitutive law of the elastic body is represented as:

d  = de eσ εi j i jkl klD 12.71

The substitution of Eqs (12.68) and (12.70) into Eq. (12.71) furnishes:

d  = d  –  de e 0σ ε λ σi j ijkl kl i jkl
kl

D D
f∂

∂ 12.72

By substituting Eq. (12.72) into Eq. (12.64) and using the relationship of Eq.
(12.69), one obtains:
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By substituting Eq. (12.65) into Eq. (12.73) and using the relationship of Eq.
(12.69), one gets:
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Finally, by substituting Eq. (12.74) into Eq. (12.72), one obtains:
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Therefore, the elasto-plastic material property matrix Dijkl
ep  can be expressed

as:
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12.3.4 Transformation matrix

Transformation matrix

Figure 12.17 shows the global and local coordinates for corrugated plates.
Let ex, ey, and ez be the unit vectors of the x-, y- and z-axes of the local
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coordinates on a plate element expressed in relation to the global coordinates:
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The global coordinates can be related to the local coordinates as follows.
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where T is the transformation matrix given by:
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Y

12.17 Global and local coordinates.
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12.79

For example, the nodal displacement vector (six degrees of freedom) based
on the global coordinates Un can be expressed using the one based on the
local coordinates un as:

U
T

T
un n = 

0

0









 12.80

The stresses of a plate element based on the global coordinates can be
represented using the ones based on the local coordinates and the transformation
matrix as follows:
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Element stiffness matrix

For a four-node plate element, the relationship between the incremental
nodal force vector ∆ f and the incremental nodal displacement vector ∆u can
be expressed using the element stiffness matrix Ke in the local coordinates
as:

∆ f = Ke ∆u 12.82

Using the expanded transformation matrix L:

L

T T
T T

T T
T T

 = 

  

  

  

  

0

0





















12.83

the relationship between the incremental nodal displacement vector based on
the global coordinates ∆U and the one based on the local coordinates ∆u of
the four-node plate element can be represented as:

∆U = L∆u 12.84

In a similar manner, the incremental nodal force vector based on the global
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coordinates ∆F can be represented using the one based on the local coordinates
∆ f as:

∆F = L∆ f 12.85

By substituting Eqs. (12.82) and (12.84) into Eq. (12.85), the following
equation can be obtained:

∆F = (L KeLT)∆U 12.86

Therefore, the element stiffness matrix K in the global coordinates can be
expressed as:

K = LKeLT 12.87

12.3.5 Parametric study of elasto-plastic and finite
displacement analysis

Shear buckling strength of corrugated steel webs

Figure 12.18 shows the shear buckling strength curve proposed by Research
Group of Composite Structure with Corrugated Steel Web (Research Group,
1998). The inelastic global buckling strength of corrugated steel web is
evaluated as explained below. The elastic global shear buckling strength of
corrugated steel web (Easley, 1975) is expressed in a slightly different form
from that given in Eq. (12.27). This modified form is given by

τ
β

cr,G
e y

1/4 3/4

2 = 
36 EI I

h t
x

12.88

where β is a parameter of end restraint, E Young’s modulus, h the depth of
web, t the thickness of web, and Ix, Iy the moments of inertia per unit length
as follows (see Fig. 12.19):

Easley
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Inelastic buckling
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Elastic buckling
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12.18 Shear buckling strength curve.
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The shear buckling parameter λ s is defined by:

λ τ τs cr, G
e = /y 12.90a

Then the global shear buckling strength is evaluated in terms of λs:
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Figure 12.20 shows the relationship between the ratios t/h and h/d of existing
bridges (marked by circles in the figure). The yielding, inelastic buckling,
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12.19 Shape of corrugation.
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12.20 Yielding, inelastic buckling and elastic buckling regions.
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and elastic buckling regions (SM490, for example) shown in Fig. 12.18 can
be transformed likewise into three regions. It is found that most of the existing
bridges have been designed in the yielding region (where yielding precedes
buckling). But if corrugated steel webs are to be adopted for longer span
prestressed concrete box girders such as those used in cable-stayed bridges
in the near future, the depth of web h may become larger and thus the
corrugated webs may be designed in the inelastic buckling region. Parametric
studies, therefore, are carried out to investigate the validity of the shear
buckling strength curve of Fig. 12.18.

Analytical models

An analytical model is shown in Fig. 12.21, which is a simply supported
beam composed of a corrugated steel web with steel flanges (Watanabe et
al., 2001). The analytical cases are chosen in relation with Table 12.2 so that
not only the yielding zone but also the inelastic buckling zone in Fig. 12.20
can be covered. The wavelength of corrugation of the web is 400 mm. Thickness
of web plate, t, and depth of corrugation, d, are taken as variables. The flange
plates are 180 mm wide and are thick enough against the yielding and local
buckling. The material is assumed to be fully elasto-plastic and the initial
deflections and residual stresses are not considered in the analyses.

P/2 P/2

18
0

19
12

00
192000 2000200

4200

12.21 Analytical model (unit: mm).

Results of parametric analyses

The relationship between the load P and the vertical deflection v, and the
load P and the out-of-plane deflection w for B-series are shown in Figs 12.22
and 12.23, respectively. It is found that the shear strength is considerably
reduced and the nonlinearity can be seen in the early loading level when the
depth of corrugation d becomes smaller.
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Table 12.2 Analytical cases

Case h (mm) t (mm) σy (MPa) d (mm) h/d t/h

A-1 10 120
A-2 15 80
A-3 1200 2.3 245 20 60 0.0019
A-4 30 40
A-5 60 20

B-1 10 120
B-2 15 80
B-3 1200 3.2 245 20 60 0.0027
B-4 30 40
B-5 60 20

C-1 10 120
C-2 15 80
C-3 1200 4.5 245 20 60 0.0038
C-4 30 40
C-5 60 20

D-1 10 120
D-2 15 80
D-3 1200 6.0 245 20 60 0.0060
D-4 30 40
D-5 60 20

E-1 10 120
E-2 15 80
E-3 1200 9.0 245 20 60 0.0075
E-4 30 40
E-5 60 20

Figure 12.24 shows the shear strengths for all analytical cases considered.
The remarkable reduction of shear strength can be seen in a larger region of
h/d. In Fig. 12.25, the results are plotted with the shear strength curve as
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12.22 Relationship between P and v.
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given by Eq. (12.88) and this curve is similar to the elastic portion of the
curves shown in Fig. 12.18 that are obtained from Eq. 12.90b). From this
observation, the shear strength curve of Fig. 12.18 may be thought to be
appropriate in the inelastic buckling region since neither the residual stresses
nor the geometrical imperfections have been considered. If these complicating
effects are taken into account, the strengths may further decrease as predicted
by the proposed shear strength curve.

12.3.6 Experimental study

Experimental tests of corrugated steel web without concrete flanges

Test program

In order to investigate the validity of the modeling and the accuracy of the
nonlinear analysis code used for the elasto-plastic and finite displacement
analyses, experimental verifications were carried out (Watanabe et al., 2001).
Three types of specimens, namely B-3 (d = 20 mm), B-4 (d = 30 mm), and
B-5 (d = 60 mm) as shown in Table 12.2 were tested. Although the shape of
the specimens remains the same but their material properties are slightly
different from the analytical models of the parametric studies. The results of
the material tensile tests are shown in Fig. 12.26 and the material properties
of the specimens in Table 12.3. Because the constitutive law is different from
the one used for the analytical models, the elasto-plastic and finite displacement
analyses are carried out again. In the analyses, the stress–strain curve is
fitted to this result as shown in Fig. 12.26. The residual stress distribution
due to welding of the flange plates to the web is considered in the analyses
but for simplicity the typical distribution is adopted for plate girders as
shown in Fig. 12.27.
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Results of tests

The relationship between the load P and the vertical deflection v for B-3
(d = 20 mm), B-4 (d  = 30 mm), and B-5 (d = 60 mm) are shown in
Fig. 12.28, Fig. 12.29 and Fig. 12.30, respectively. The relationship between

Table 12.3 Material properties of specimens without concrete slabs

Specimen Depth of Young’s Poisson’s Yield stress
corrugation modulus ratio ν σy (MPa)
d (mm) E(MPa)

B-3 20 211,603 0.272 283.37
B-4 30 211,603 0.272 283.37
B-5 60 203,002 0.261 266.26
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12.27 Residual stress distribution.
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the load P and the out-of-plane deflection w for B-5 is shown in Fig. 12.31.
These figures show that the experimental results agree well with the analytical
results. Figure 12.32 shows the experimental and the analytical results of the
shear strength of B-3, B-4, and B-5 as compared with the shear strength
curve of Fig. 12.18. In the case of small depth of corrugation d (B-3: d = 20
mm), there is a difference between the results obtained from the experiment
and from the analysis. This difference in results is due to the severe geometrical
nonlinearity. The shear strength of the test specimens is smaller than the one
obtained from the shear strength curve of Fig. 12.18. The strength curve of
Fig. 12.18 is based on pure shear buckling and it may not be compared
precisely with the results of this study where the test specimens are subjected
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to the combination of shearing force and bending moment. However, it is
found that the effect of the residual stress on the shear strength should not be
ignored.

Experimental verification on corrugated steel web with concrete flanges

Test program

The experimental tests of a simply supported beam composed of a corrugated
steel web with concrete slabs are carried out to investigate the effect of shear
buckling of a corrugated steel web on the ultimate strength of the whole
girder (Watanabe et al., 2002; Kadotani et al., 2002). Three types of specimens,
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namely BC-3 (d = 20 mm), BC-4 (d = 30 mm), and BC-5 (d = 60 mm) as
described in Table 12.4 are provided for the tests. As shown in Fig. 12.33, the
width and the depth of the concrete slabs are 800 and 250 mm, respectively.

Table 12.4 Material properties of specimens with concrete slabs

Corrugated steel web Concrete slab

Specimen Depth Young’s Poisson’s Yield Young’s Poisson’s
of corru- modulus ratio stress modulus ratio
gation E (MPa) ν σy (MPa) E (MPa) ν
d (mm)

BC-3 20 200,000 0.3 297.0 31,000 0.16
BC-4 30 200,000 0.3 297.0 31,000 0.16
BC-5 60 200,000 0.3 297.0 31,000 0.16

There are various kinds of nonlinearity to be considered, such as geometrical
and material nonlinearity of the corrugated steel web, material nonlinearity
of the concrete slabs, nonlinearity due to slippage between steel flanges and
concrete slabs, and so forth. At this stage of study, however, only the geometrical
and material nonlinearities of the corrugated steel web are considered and
the corrugated steel web and the concrete slabs are assumed to be rigidly
connected. In the elasto-plastic and finite displacement analyses, the concrete
slabs are modeled as elastic bodies.
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Results of tests

The relationship between the load P and the vertical deflection v about BC-
3 (d = 20 mm), BC-4 (d  = 30 mm), and BC-5 (d  = 60 mm) is shown in Figs
12.34 to 12.36, respectively. These figures show that the load P increases
even after the occurrence of shear buckling of the corrugated steel web. The
specimens are observed to have sufficient load-carrying capacity and ductility.
The results of the experiments agree well with those obtained by the numerical
analyses. However, the postbuckling behavior cannot be fully followed owing
to the problem of ill-convergence in the numerical computations. Figure
12.37 shows the experimental and the analytical shear strength results of
BC-3, BC-4, and BC-5 as compared with those of B-3, B-4, and B-5 and
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with the shear strength curve of Fig. 12.18. From this figure, it is found that
the shear strength of the corrugated steel web with concrete slabs is about
one and a half as high as the one of the corrugated steel web without concrete
slabs.

12.4 Concluding remarks

The overall elastic buckling capacities of corrugated plates was determined
by modeling the corrugated plates as orthotropic Mindlin plates and minimizing
the energy function using the Ritz method. It is established that the formula
for predicting the global elastic shear buckling capacity that is adopted in the
design manual (Research Group, 1998) yields values comparable with the
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Ritz buckling results. However, this study extends the formula to cover the
more realistic elastically rotational restrained edges.

The influence of elastically rotational restraint on the buckling capacities
of corrugated plates was investigated and it was found that the type of supporting
edges in the direction of plate’s lower flexural stiffness, either that of a
simple or fixed support has little effect on its buckling capacity. On the other
hand, its buckling capacity is greatly affected by the magnitude of rotational
restraint imposed on its supporting edges in the direction of plate’s higher
flexural stiffness. It was also shown that there is a specific range of
dimensionless rotational spring constant in the direction of plate’s higher
flexural stiffness that causes the buckling capacity to vary from that of a
simply supported case to the clamped support case. The rotational spring
constant ranges from approximately 10–2 to 104.

In the past, all of the existing corrugated webs in bridges were designed
only in the plastic zone. Thus, a material and geometrically nonlinear analysis
is formulated to evaluate practical problems of the elasto-plastic buckling
loads. Based on the results of the parametric studies of the elasto-plastic and
finite displacement analyses and experiment test results of simply supported
beams with corrugated steel web, the following conclusions may be drawn:

• Considerably good agreement can be seen between the results of the
experiments and the elasto-plastic and finite displacement analyses.

• The results of the parametric studies show the validity of the shear strength
curve of the corrugated steel web.

• The shear strength of the test specimens may be reduced to some extent
due to residual stresses and geometrical imperfections.
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13.1 Introduction

The use of horizontally curved girders in the design of highway bridges and
interchanges in large urban areas has increased dramatically in recent years.
The need for the smooth dissemination of congested traffic and the limitation
of right-of-way, along with economic and environmental considerations, has
encouraged this trend. Emphasis on aesthetic considerations has also motivated
increased use of curved configurations.

When curved bridge superstructures were first introduced, they were
generally composed of a series of straight girders used as chords. Although
the cost of superstructures using curved girders may be high, the total cost of
the curved girder bridge system has been found to be less than that of the
system employing a series of straight girders for the same bridge since a
substantial portion of the substructure can be eliminated. Also, using continuous
curved girders permits the use of shallower sections as well as a reduction in
the slab overhang of outside girders.

In the early years of modern bridge design, engineers were reluctant to
use curved girders because of the mathematical complexities associated with
design. Curved girders are subjected not only to flexural stresses, but also to
very significant torsional stresses, even under pure gravitational loading. In
addition, deflection, cross-section distortion, and deflection amplification
(large displacement) effects are much more pronounced in curved girder
systems. The inherent rotation characteristics of horizontally curved girders
require that the diaphragms and bracing that are used in straight girder
systems simply to prevent premature lateral buckling become very important
(primary) load-carrying components in curved systems. Over the past two
decades, the availability of digital computers to carry out complex analyses,
along with advancements in fabrication and erection technology, have made
horizontally curved girder superstructures a viable and cost efficient option
for designers.

13
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13.1.1 Origins of curved beam theory

Research prior to the mid-1960s on the behavior of curved girders was
generally limited to theoretical work on the linear elastic static behavior of
isolated curved members. The earliest theoretical work on curved beam theory
is attributed to St. Venant (1843) over 150 years ago. Since then, a number
of other European and Japanese researchers have contributed to the analysis
of curved beams (McManus et al. 1969). These researchers include Timoshenko
(1905), Gottfield (1932), Umanskii (1948), Dabrowski (1964, 1965, 1968),
Vlasov (1961), Shimada and Kuranashi (1966), and others. Comprehensive
presentations of the basic theory of thin walled beams including flexure,
torsion, distortion, and stress distribution is provided in several texts (Vlasov
1961, Dabrowski 1968, Kollbrunner and Basler 1969, Heins 1975, Nakai
and Yoo 1988). Since the mid-1960s an emphasis in curved girder research
in the United States and Japan has been placed on the practical use of curved
beam theory towards the design of horizontally curved bridges.

13.1.2 Design perspective and historical review

Generally speaking, there are two geometric configurations of girders used
in steel superstructure bridges: I-shaped cross-sections and box girders. The
I-girder is an ‘open’ section and is characterized by a low torsional resistance.
The twisting of the I-girder results in significant normal stresses in the
flanges that are in addition to major axis flexural stresses. The strength and
spacing of diaphragms and cross-frames must be carefully designed to manage
these stresses to acceptable levels. Transverse and longitudinal stiffeners
play a significant role in restraining web distortion. The single curved I-
girder is inherently unstable and, at typical bridge girder lengths, is very
flexible and susceptible to large deformation. Extreme care must be taken in
handling and erecting. The box girder behaves as a ‘closed’ section with
generally improved torsional resistance over the I-section, but with its share
of complications in fabrication and erection stages. Internal and external
cross-frames and diaphragms must be carefully designed to reduce cross-
section distortion, but external bracing is often removed after the concrete
deck has cured.

In 1965, US Steel (Highway Structures Design Handbook 1965) published
an approximate procedure called ‘V-load Analysis’ for determining moments
and shears in horizontally curved open-framed highway bridges. It is
theoretically pure with regard to torsion due only to curvature and load
distribution for static equilibrium. The method does not account for lateral
bracing between girders in the plane of the flanges. The accuracy of the
method with regard to live load depends upon the ability of the user to assign
appropriate loads to the girders prior to the V-load analysis. It has been noted
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that the live load distribution factors used in straight bridge design do not
appropriately represent the distribution in curved bridges and researchers
have proposed equations for curved bridge design (US Steel Corp. 1984,
Heins and Jin 1984, Brockenbrough 1986).

In 1969 a comprehensive pooled funds research project, referred to as
CURT (Consortium of University Research Teams), sponsored by 25
participating US state highway departments was initiated under the direction
of the Federal Highway Administration (FHWA) to study the behavior of
curved bridges and to develop design requirements. This work was performed
throughout the 1970s and resulted in the Guide Specifications for Horizontally
Curved Highway Bridges (subsequently referred to as the Guide Specifications),
which was officially adopted in 1980 and has been used in its same basic
form ever since. The Guide Specifications include Working Stress Design
(WSD) provisions and Load Factor Design (LFD) provisions, and deal with
both ‘I’ and ‘box’ shape girder bridge superstructures. Strength formulations
for the web, flanges, and stiffeners are emphasized. Experience indicates
that the strength formulations have been at least adequate in that there have
been no reported failures of these bridges in the US by overload. However,
the Guide Specifications in its original form is disjointed and difficult to use,
and due to a lack of continuity with straight bridge standards, it has never
been adopted as an integral part of the AASHTO Standard Specifications for
Highway Bridges.

There have been changes to the Guide Specifications in the form of Interim
Specifications, resulting from several nationally coordinated research projects.
In 1992, a comprehensive research project administered by the FHWA, the
‘Curved Steel Bridge Research Project’ (subsequently referred to as the
FHWA-CSBRP), was initiated to conduct fundamental research into the
behavior of curved steel flexural members and bridges that would lead to the
development of LRFD specifications for curved bridge design.

The only other bridge design document that specifically addresses curved
bridge design is the Japanese ‘Guidelines for the Design of Horizontally
Curved Girder Bridges’ by the Hanshin Expressway Public Corporation
(Hanshin 1988). Several researchers have demonstrated disparity in the strength
formulations between the Japanese and American curved bridge design guides,
which further emphasizes the need for additional research.

13.2 Stability during construction

Curved girders are susceptible to problems from the beginning. Residual
stresses formed during curved plate girder fabrication can be significantly
greater than those induced to straight plate girders and affect the strength of
the girder. Ensuring proper camber is difficult. Transporting and shipping
girders with significant curvature becomes problematic. Girders must be
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carefully restrained to prevent instability during shipping and overhangs
must be carefully checked. Once at the job site, placing the girders becomes
cumbersome.

13.2.1 Fabricating

Generally there are three methods of fabricating curved steel I-girders: (1)
cut curving, (2) heat curving, and (3) cold curving.

Cut curving

Cut curving involves flame cutting the flanges to the desired curvature from
a standard steel plate. The advantage of this method is that there is no limit
on the radius of curvature that can be obtained. This method of fabrication
involves careful planning for economical cutting of the flange plates to minimize
the amount of scrap generated. In addition, adhering to consistency in plate
thickness and steel grades allows the fabricator to economize by combining
and nesting plates (Grubb et al. 1996). After the individual flange sections
are cut, the required sections that make up the shipping piece are usually
spliced together by full penetration butt welds. The web plates are held to the
required curvature by special fixtures that are tack welded to the flange
plates. After tack welding, automatic welding is used to weld the full length
of the web to the flange. Adjustments to curvature are often made by controlled
application of heat.

Heat curving

Heat curving is an economical and popular method of fabricating curved
steel I-girders and is generally used for longer radii. Heat curving is
accomplished by simultaneously heating one side of the top and bottom
flanges of a fabricated straight I-girder to introduce residual curvature after
cooling. The application of heat can be continuous, strip, or V-type. In
continuous heating, the flange edges are heated along their length. In strip
heating, the flanges are heated in rectangular strips at regular intervals until
the required curvature is attained. In V-type heating, the top and bottom
flanges are heated in truncated triangular or wedge-shaped areas having their
bases along the flange edge and spaced at regular intervals along each flange.

The heat curving operation can be carried out with the web in the vertical
or horizontal position. When the web is in the vertical position, braces or
supports are used such that the tendency of the girder to deflect laterally
during the heat curving process will not cause the girder to overturn. When
the web is in the horizontal position, the girder is supported at the ends and
at the intermediate supports to obtain uniform curvature. Intermediate transverse
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stiffeners can be attached either before or after heat curving. However, the
stiffeners are attached only to the web; welding to the flanges is carried out
after the required curvature has been obtained. Bearing stiffeners are usually
attached after heat curving unless provisions are made for shrinkage of girder
components. Longitudinal stiffeners can be either flame cut or heat curved
and then welded to the girder. Cambering the girders is also required before
heat curving. The girder webs are cut to the required camber, taking into
account the allowance for shrinkage due to cutting, welding, and heat curving.
Once the heat curving operation is completed and the girders have cooled to
a uniform temperature, horizontal curvature and vertical camber are checked.

Cold bending

The third method of imparting curvature to I-girders is to cold-bend a fabricated
straight I-girder into the required curvature. In the cold-curving process, the
straight I-girder is bent plastically to obtain an over-bent curvature and released.
The relaxed configuration results in the required curvature. While heat curving
is currently the most economic method of fabrication, it is a labor-intensive
process that is not exact. Similarly, cut curving is labor intensive in that
handling of curved shapes in the shop is more expensive than handling a
straight girder and usually involves material wastage. In comparison, cold
curving is fast, efficient, and precise, and could be one of the most economical
methods of fabricating a curved I-girder. However, the possibility of fracture
due to localized load effects has raised concerns and has delayed its acceptance
for bridge structures.

Residual stresses

Plate girder fabrication introduces residual stresses and camber loss. This is
particularly true for heat-curved girders. Residual stresses are created whenever
a member is permanently deformed or distorted in a nonuniform manner and
persist in a material or a component under uniform temperature in the absence
of externally applied loads. Very little information is available on the residual
stresses developed in flame cut and welded I-section curved girders (Bradford
et al. 2001). Based on research by Kishima et al. (1969), Culver and Nasir
(1969) suggested a residual stress pattern for welded I-sections. Brockenbrough
(1970) reported that the magnitude and distribution of heat-curved girders
are functions of dimensions and material properties of the straight girder and
the curving procedure.

13.2.2 Transporting

Stability challenges that are exacerbated by curvature can occur while
transporting girders from the fabrication plant to the construction site. Steel
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bridge girders can be transported by highways, railways, waterways, or a
combination of the three, depending on where the bridge is to be constructed.
The weight, height, and width of the girder sections may be limited by the
transporting method chosen. The transporting mode must ensure that the
girders can be delivered to the site without deforming the cross-section and
inducing additional stresses.

The location of splices and the overall geometry of the section can be
designed so that the girder will be easier to maneuver. Proper restraint against
vertical, longitudinal, and transverse movement must be considered. For
straight girders, lateral restraint is provided only at vertical supports, while
curved girders may overhang and additional support may be required to
prevent instability.

13.2.3 Erecting

There is a tendency for bridge engineers to focus on the integrity of the
traffic load-bearing configuration of the bridge and not on the partially
completed structure or the ‘erection stages’ of the job (Weinhold 1997). This
perception is rapidly changing with new specifications that require the design
engineer to investigate the stability of the partially completed structure.

Lifting

Overall stability of single long slender girders during lifting is a major
concern during the construction of highway bridges. Stability is achieved by
adequate lateral bracing of compression flanges. For straight girders, an
approximate determination of the stability of a girder may be made by taking
the ratio of the overall length of the girder to the compression flange width.
A rule of thumb based on experience (Weinhold 1997) indicates that girders
with l/b < 60 will be stable during erection. For 60 < l/b < 80 stability is
questionable, but can be achieved. For l/b > 80, the girder will be unstable
and will require temporary support. Such guidance is not available for curved
girders. Bridge girders are often erected by one crane using one or two pick-
up points, or by using two cranes with one pick-up point each. Lifting of
girders in straight bridge construction presents little difficulty as the center
of gravity coincides with the centroidal axis of beam cross-section. However,
a horizontally curved girder introduces rotation during lifting as the center of
gravity does not coincide with the centroidal axis of beam cross-section.
Depending on the length of the beam, lateral-torsional buckling or significant
nonlinear deflection behavior may occur, thus shifting the center of gravity
and causing rigid body instability.

The calculation of optimum pick points for two lifting points can be
approximated by treating the curved girder as a circular arc in plan and
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assuming that the section is prismatic (Grubb et al. 1996). However, bridge
girders are often nonprismatic, which creates additional problems for locating
the balance points. In practice erectors often ‘weigh’ a piece; the girder may
be lifted a few inches and put down repeatedly until the balance points are
located. For curved girders, this may take several trials. Wire rope slings or
girder clamps are usually used for attaching the free edges of the top flange
at the pick-up points. Owing to the inherent tendency of a curved girder to
twist, high stresses may occur at the attachment locations. These intense
stresses may occur on the inside (concave) or outside (convex) edge of the
girder flange, depending on the direction in which the girder rotates.

The lifting and support mechanism used depends on the length of the
beam. While longer girders necessitate the use of spreader beams, shorter
girders can be lifted with single or double cable slings. In addition, when
inclined cables are used, a component of the cable force in the horizontal
plane that causes minor axis bending must be taken into account. Two parallel
girders can be bolted together by the diaphragms or cross-frames and lifted
as one piece. Lifting of girders in pairs helps resist wind loads and may save
time. Horizontal stiffening trusses can be added to the compression flanges
before lifting. However, the ability to lift two girders at once depends on
crane capacity available at the jobsite.

Erecting and sequencing (site assembly)

Proper erecting and sequencing of curved girders is essential during
construction. The placement sequence of the girders and diaphragms or cross-
frames should be carefully planned so that fit-up problems are minimized.
Diaphragms or cross-frames are bolted between each girder to provide stability
and to control deflection of the girders. The fabricator normally assembles
the bridge components prior to delivery to the jobsite to ensure that fit-up
problems will not occur. Once the girders have been loaded for transporting
and unloaded for placement, camber changes may cause further fit-up problems.
In addition, the configuration of the partially completed structure must be
stable. Unlike straight girders, curved girders depend on adjacent girders for
stability.

Several approaches can be adopted for erecting and stabilizing curved
girders. Grubb et al. (1996) describe three methods for proper erection and
stabilization. In the first method, if the crane capacity is available, paired
erection is desirable. After erecting the first pair of girders, individual girders
can be erected successively and connected to adjacent girders by cross-
frames. This increases the torsional stiffness, thereby adding stability to the
system. A second method of erecting each girder is to use one crane to pick
up the girder and place it, while another crane supports the girder to which
it is connected. While both cranes hold their girders, the diaphragms or
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cross-frames are bolted into place. The addition of the second girder and
cross-bracing between them changes the governing instability mode from
flexural torsional buckling of single girder to flexural buckling of two girders
acting together as a unit. This method requires adequate area for mobilization
of two cranes. A third method is to use temporary false-work towers or bents
to shore the girders, which requires ground space that is often not available.

There are no widely adopted guidelines for erecting curved I-girders and
few researchers have studied the large-scale erection behavior of curved I-
girders. Important recent studies include Linzell (1999), Galambos et al.
(1996), Simpson (2000) and Chavel and Earls (2001). Although several CURT
era researchers studied the behavior of curved girders through experimental
methods, a weakness was that the tests involved only small-scale model
bridges and medium-scale models of individual components under idealized
loading and boundary conditions.

13.3 Cross-frame interval design

In straight girder bridges, the primary function of the cross-frames and
diaphragms is to prevent premature lateral buckling of the girder; therefore
the cross-frame members are designed as secondary members. However, in
curved bridge systems, the cross-frames and diaphragms have the added
responsibility of restraining the rotation of the girder, thereby reducing the
warping stresses in the flanges and reducing the vertical deflection of the
system. The spacing interval between cross-frames, therefore, becomes a
critical design parameter for limiting warping stress and deflection to acceptable
levels. Furthermore, there is growing sentiment in the bridge engineering
community to minimize the number of cross-frames because of cost and
fatigue.

In the curved I-girder bridge system, non-uniform torsion results in warping
normal stresses in the flanges. The combination of vertical major-axis moment
and ‘bimoment’ produces linearly varying normal stresses across the flange.
Lateral flange bending results in peak moments at either the cross-frame
location or at approximately the mid-point between cross-frames, in a manner
similar to a continuous beam subjected to a uniformly distributed load. An
illustration of the variation in lateral flange bending moments along a simply
supported span is shown in Fig. 13.1.

Davidson et al. (1996) investigated the cross-frame spacing requirements
of horizontally curved I-girder bridges. The finite element method was used
to determine dominant parameters and to develop equations for the preliminary
design of the cross-frame spacing needed to achieve a required warping-to-
bending stress ratio (fw/fb). The equation was determined to be of the following
form based on a preliminary design target fw /fb of 0.25:
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where Smax (m) is the design spacing between cross-frames, L (m) is the span
length of the exterior girder, R (m) is the radius of curvature of the exterior
girder, and bf(mm) is the compression flange width, or
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where units are L (ft), R (ft), and bf (in). Using existing bridge designs,
results obtained from Eqs 13.1 and 13.2 were compared to that of a similar
equation developed by Yoo and Littrell (1986) and to that obtained from
using a simple distributed lateral load approximation. The comparisons revealed
a good correlation obtained from Eqs 13.1 and 13.2 and the lateral load
approximation, but the Yoo–Littrell equation resulted in less accurate results.

13.4 Influence of curvature on lateral-torsional

stability

There have been numerous theoretical developments on the buckling and
large displacement of curved beams that involve simplifying assumptions

Cross-frame locations

3-girder system, top flange, outside girder
simple span, L = 100 ft, R = 250 ft d = 60 in.,
tw = 0.5 in., bf = 12 in., tf = 1 in.
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13.1 Effect of cross-frames on lateral bending moments in the
flanges.
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required to derive and solve governing equations. A comprehensive review
and comparison of these theories was presented by Kang (1992) and Kang
and Yoo (1994a,b). There are disparities and disagreements among researchers
and their theories. In addition, most of the analytical results presented thus
far involve the in-plane behavior, such as the buckling of arches, and very
little information of practical use on the lateral-torsional behavior of horizontally
curved beams loaded normal to the plane of curvature has been presented.
Analytical data on the behavior of singly symmetric and nonprismatic sections
and on the effects of the lateral restraints provided by cross-frames and
diaphragms is practically nonexistent. In reality, the influence of cross-frame
spacing and rigidity cannot be excluded from a lateral-torsional buckling
curvature effect definition and the system-wide behavior must be considered.

Nishida et al. (1978) presented work which used the large deflection
theory of curved members to derive the critical elastic moment for a horizontally
curved beam subjected to equal end moments. Note from Eq. 13.3 that the
critical moment approaches that of the straight girder as the radius of curvature
approaches infinity:
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where L = unbraced length, R = radius of curvature, Iy = weak axis moment
of inertia, E = Young’s modulus, G = shear modulus, J = torsional rigidity of
the section, Cw = warping constant, b = flange width, tw = web thickness, and
h = depth between flange centroids.

Kang (1992) demonstrated that a large variation in torsional rigidity ratio
has little effect on the critical load ratio of the lateral buckling of horizontally
curved girders loaded normal to the plane of curvature and that the subtended
angle is the dominating parameter. The results from finite element analyses
were used to form a regression equation for the reduction in lateral-torsional
buckling of the curved girder over that of the straight (Yoo et al. 1996):

y = (1 – γxβ)α 13.4

where y = critical moment ratio (curved/straight), x = subtended angle in
radian, α = 2.152, β = 2.129, and γ = 0.1058.

13.4.1 Effect of curvature on L-T stability of single girders
with end-support conditions

The finite element method was used to model a set of numerical ‘test’ girders
of widely varying dimensions and end-support conditions, including symmetric,
unsymmetric, and nonprismatic girders loaded normal to the plane of curvature.
The subtended angle was varied from 0 to 40 degrees and the critical loads



Analysis and design of plated structures392

were normalized to the critical loads of the straight girder with the same
cross-section dimensions and lengths, thus giving a clear view of the effect
of increasing curvature on the elastic buckling behavior. Figure 13.2 illustrates
the effect of curvature on the elastic lateral-torsional buckling behavior of
single curved girders with end-support conditions only (Davidson 1996).
The dotted lines represent Eqs (13.3) and (13.4). The following trends were
noted:

• The distributed load condition results in a smaller critical load ratio than
end moments.

• Increasing length resulted in little effect on the critical load ratio.
• The critical load ratio trend was not significantly different for the

unsymmetrical cases and the nonprismatic cases.
• There is less than a 10% decrease in critical load for all pinned end cases

with subtended angle up to 40 degrees and less than 1% up to 10 degrees.
• The Nishida (Eq. 13.3) and Yoo (Eq. 13.4) equations bounded all results.

P8 × 48 Pinned-end boundary
conditions (BCs)

L = 1920 in., end moments
L = 1920 in., distributed load
L = 960 in., end moments
L = 960 in., distributed load
L = 480 in., end moments
L = 480 in., distributed load
Yoo’s formulation
Nishida’s formulation
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13.2 Illustration of curvature effects on the lateral-torsional buckling
of simply supported curved beams.

Other boundary conditions including fixed-end conditions, fixed-end conditions
with free warping, and pinned-end conditions where warping was restrained
were analyzed using a curved beam finite element program, CVSTB1,
developed by Kang (1992). Figures 13.3 and 13.4 illustrate that the critical
ratio increases for fixed-end conditions. In research conducted by Pfeiffer
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(1981), the same trends of increasing critical loads were noted for fixed–
fixed boundary conditions and fixed–pinned boundary conditions. This was
attributed to: (1) coupling of the axial deformation and the radial displacement
that exists in curved beams and (2) an effective increase in torsional stiffness
due to curvature, i.e. there is less rotation of the cross-section present in the
curved beam buckling mode shapes than in that of the straight beam.

13.4.2 Effect of curvature on L-T buckling of girders with
intermediate lateral supports

Boundary conditions that simulate the effect of the lateral restraints provided
by the cross-frames in the curved girder system were also considered. As
curvature is increased, the buckling modeshape changes from that of an ‘S’
shape as in the straight girder to that of an ‘M’ shape where the lateral
displacement of the entire compression flange is in the outward radial direction.
For buckling in the ‘S’ shape to occur in horizontally curved girders, the
compression flange must initially displace away from the center of curvature
until sufficient lateral flange moment is reached at the restraints to cause the
compression flange to ‘snap’ through towards the center of curvature. This
‘snap through’ behavior is illustrated in Figs 13.5 and 13.6 using an incremental
geometric nonlinear analysis. This behavior becomes less likely as curvature
is increased and will always occur at loads greater than the critical load of
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13.5 Illustration of incremental displacement of the top flanges with
lateral restraints at 1/4 L.
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the respective straight girder of the same length, boundary conditions, and
cross-section dimensions.

13.5 Effect of curvature on flange plate stability

Plate components of the girder in compression must be proportioned to
prevent premature local instability. Design specifications stipulate width-
thickness ratios for design of the section as ‘compact’ or ‘non-compact,’
where ‘compact’ refers to the ability of the section to reach substantial plastic
strains prior to local instability. The effects of curvature and warping stresses
on elastic flange buckling were investigated analytically by Culver and
Frampton (1970) and on inelastic flange buckling by Culver and Nasir (1971),
Komatsu et al. (1975), and Komatsu and Kitada (1981). Kang and Yoo (1990)
conducted an analytical study that examined the allowable flexural stresses
permitted by the Guide Specifications using finite element modeling of the
whole cross-section. His results indicated that there may be a significant
curvature effect on local buckling. Davidson and Yoo (1996) demonstrated
that there is a reduction in the elastic buckling strength of curved compression
flanges owing to the presence of warping stress gradient across the flange.
The primary factors contributing to the reduction were determined to be the
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13.6 Illustration of incremental lateral displacements with lateral
restraints at 1/4 L.
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warping stress gradient and the rotational resistance provided by the web. An
equation representing the curvature effect was developed.

The Japanese have also conducted analytical research on the local buckling
behavior of curved compression flanges and concluded that the influence of
the stress gradient due to warping cannot be omitted in evaluating the buckling
strength of I-girders with substantial curvature (Komatsu et al. 1975, Komatsu
and Kitada 1981, Nakai et al. 1981, Fujii and Ohmura 1987, Nakai and Yoo
1988). The Japanese suggest approximately 30% increase in the required
curved compression flange thicknesses to eliminate potential local buckling
where warping stress is ‘predominant’ (Komatsu and Kitada 1981, Hanshin
1988, Nakai and Yoo 1988, Japan Road Association 1990).

13.5.1 Elastic stability of centerline stiffened plates with
stress gradient

Many researchers have analyzed the elastic buckling behavior of isolated
plates subjected to a stress gradient, with a recent review provided by Madhavan
and Davidson (2003, 2004). However, practically all of the research was
carried out on plates with boundary conditions only at the edges. When a
stress gradient is present, the solutions that have only edge boundary conditions
are not applicable to the flange plates of I-beams unless the interaction
between the two sides of the plate coupled with the centerline rotational
resistance provided by the web is appropriately considered. The vectorial
addition of major axis bending normal stress with minor axis bending normal
stresses or torsional warping normal stress results in linearly varying
compressive stresses across the width of I-beam flanges as illustrated in Fig.
13.7. The effect of warping normal stress gradient on elastic buckling can be
described by considering the I-beam flange as an isolated plate system with
the web interaction idealized as a boundary condition. Figure 13.8 illustrates
the analytical model of the plate subjected to uniaxial eccentric compression
with the loaded edges simply supported, non-loaded edges free, and rotationally
stiffened along the centerline. The eccentricity of compression is described
in terms of the load eccentricity parameter α. For α > 1, a portion of the
flange is subjected to tension (Fig. 13.9). The rotational stiffness provided
by the web is symbolically represented as the stiffness of a rotational spring
and the symbol ‘Γ ’. A relationship between the rotational resistance provided
by the web plate and the idealized rotational spring will be established.

The effect of stress gradient on buckling capacity is expressed in terms of
critical load ratio (ψ), which is defined as the ratio of elastic critical buckling
capacity of a plate subjected to a stress gradient (α > 0) normalized to that
of uniform compression (α = 0). In terms of application to I-shaped flexural
members, the critical load ratio can be interpreted as the ratio of elastic
critical buckling capacity of the flange plate subjected to combined bending
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and warping or minor axis bending stresses to the flange buckling capacity
due to the major axis bending component of stress at the web–flange
intersection.
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13.7 Longitudinal flange stresses due to biaxial bending and major
axis bending plus warping normal stresses.
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Figure 13.10 shows a plot of critical load ratio versus stress gradient with
increase in rotational stiffness from rotation free (Γ = 0) to rotation fixed
(Γ = ∞) resulting from a Galerkin series solution (Madhavan and Davidson
2004). For the rotation fixed condition, the solution converges to the result
obtained from the classical solution of the clamped/free half plate system.
The behavior of the flange plate with varying rotational stiffness along the
web flange intersection demonstrated a decrease in buckling capacity with
increase in α. While the decrease in buckling capacity is only 2% for the
rotation free condition (simple boundary, Γ = 0), following a convex path,
there is a 45% decrease for rotation restrained condition (clamped boundary,
Γ = ∞) with a concave path. The differences exhibited between the rotation
free condition and the rotation restrained condition demonstrates that, unlike
the flange plates of I-girders subjected to uniform compression, a stress
gradient results in an interaction between the half flange plates on either
sides of the web–flange intersection that is coupled with the rotational resistance
provided by the web.

The relationship between the critical load ratio (ψ), the rotational resistance
at web–flange intersection (Γ ), and the variable eccentric loading (α) can be
written in the following form (Madhavan and Davidson 2005):

ψ α Γ = 1
1 + ( , )f

13.5

where f (α, Γ ) is given by:

f(α, Γ )0<α<1 = (–0.0077Γ 2 + 0.1467Γ + 0.0205)α 13.6

Equation 13.6 is based on the Galerkin solution and is applicable for 0 ≤ α
≤ 1 and Γ ≤ 10.
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13.5.2 Definition of compactness for flanges with stress
gradient

Cross-section classification

In general, structural members are classified as compact, non-compact or
slender. When the slenderness of the cross-section (λ) is less than the compact
section slenderness limit (λp), the sections are referred to as compact sections.
Compact sections are assumed to reach full plastic moment capacity without

N0 (1 + α)

N0

S
im

p
ly

su
p

p
o

rt
ed

Rotational spring

S
im

p
ly

su
p

p
o

rt
ed

N0

Free

N0

N0

N0N0

Free

N0 (1 + α)

N0 (1 – α)

S
im

p
ly

su
p

p
o

rt
ed

Rotational spring

S
im

p
ly

su
p

p
o

rt
ed

N0

Free

N0

Free

N0 (1 – α)

S
im

p
ly

su
p

p
o

rt
ed

Rotational spring

S
im

p
ly

su
p

p
o

rt
ed

N0

Free

N0

Free

2N0 2N0

S
im

p
ly

su
p

p
o

rt
ed

Rotational spring

S
im

p
ly

su
p

p
o

rt
ed

N0

Free

N0

Free

α  = 0

0 < α  < 1

α = 1

α  > 1

13.9 Definition of load eccentricity parameter α.
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local buckling. When the slenderness of the cross-section is between compact
section limit, and non-compact section limit (λ r), the sections are referred to
as non-compact sections. Non-compact sections assume that local buckling
occurs after yielding has initiated, and failure of flanges is due to a combination
of yielding and buckling. Most practical bridge girders are designed in the
inelastic range.

When the slenderness of the cross-section is greater than the noncompact
section limit, the sections are referred as slender cross-sections. In slender
cross-sections, local buckling occurs prior to yielding. Although practical
girders are not designed to fail due to elastic buckling, a theory-based approach
for estimating the capacity of slender flange plates is essential. A linear
transition is typically adopted by connecting the compact section limit and
noncompact section limit. The transition zone takes into account the effect of
residual stresses and moment gradient.

For horizontally curved steel I-girders, it is logical to define an additional
type of section: a compact-flange section. Compact flange sections consist
of a compact flange and a non-compact web, thereby permitting a larger
lateral moment due to curvature to be sustained in combination with a given
vertical moment. That is, a compact flange section considers yielding of the
higher-stressed half of the flange plate while the other side remains elastic.
The slenderness limits are generically illustrated in Fig. 13.11.
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13.10 Reduction in critical load with load eccentricity.
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Non-compact section limit (λ r)

The AASHTO LRFD (2001) standard specifications limit the flange slenderness
of straight girders (bf/2tf) to 12, which is based on a practical upper limit ‘to
ensure the flange will not distort excessively when welded to web’ and to
prevent susceptibility of damage to the flange during construction (AASHTO
2001). White et al. (2001) proposed a non-compact limit for flanges of
bridge I-girders based on AISC (1999):
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where bf is the total flange width (in), tf is the flange thickness (in), Dc is the
depth of the web in compression (in) and FL is the flexural stress corresponding
to the onset of significant inelasticity taken as the smaller of (Fyc – Frs) or
Fyw, and Frs approximates the effect of residual stresses within the compression
flange.

The Guide Specifications define non-compact flanges as flanges that are
permitted to reach the peak yield stress in the flange tip without local buckling.
The limiting width-to-thickness ratio of the flange is given by:
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where fl is the total factored lateral flange bending stress at the section under
consideration (ksi) and fb is the factored average flange stress at the section
under consideration (ksi). Equation 13.8 takes a conservative approach of
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13.11 Slenderness limit definitions for local buckling of curved I-
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considering the peak stress (fb + fl) as uniformly applied stress across the
flange width. The upper limit of 11.5 is based on experimental observations
by Mozer and Culver (1975) and analytical observations by Culver and Nasir
(1969). Experiments carried out by Mozer and Culver (1975) on two heat-
curved and two cut curved I-girders with bf/2tf = 11.5 concluded that this
limit was adequate if both vertical bending and lateral flange bending stresses
are considered and the capacity is limited to initial yielding at the flange tips.
Investigations by Culver and Nasir (1969) also revealed that flange local
buckling begins to have a significant detrimental effect on the strength in the
vicinity of this limit. This ratio was the approximate limit within the AASHTO
straight girder specifications for yield strength of 36 ksi in effect at the time
of Mozer’s research (AASHTO 2003).

For flange plates of a curved I-girder, or a straight I-girder subjected to
lateral and vertical bending, α can be taken as the ratio of lateral bending to
vertical bending stresses. The elastic buckling stress acting in a curved I-
girder flange plate is expressed in terms of the straight girder flange given
by:

(Fcr)cv = (Fcr)st ψ 13.9

ψ can be considered as a reduction in buckling stress due to stress gradient.
The suffix st refers to straight girder and cv refers to curved girder. For
flange plates of straight I-girders, the Euler elastic buckling expression can
be represented as:
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π
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The buckling coefficient kc depends on loading conditions, aspect ratio of
the plate, and rotational resistance provided by the web. For flange plates of
curved I-girders, the critical buckling stress can be expressed as:

( )  = 
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Here kc = 4/(2Dc/tw)0.5 (AASHTO 2001), Dc is the depth of web in compression,
tw is the thickness of web plate.

Following the procedure typically used to establish slenderness (bf/2tf)
limits of a compression plate necessary to prevent local buckling before the
onset of inelasticity (FL):

( )
 = 1   1.0cr cv

L cv
2

F
F λ

≤ 13.12

where
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For design in the elastic range 1/λ2 ≤ 1.0. Hence,
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where ψ is based on Eqs 13.5 and 13.6 above,

ψ
Γ Γ

 = 1
1 + (– 0.0077 + 0.1467  + 0.0205)( / )2

l bf f
13.16

The rotational stiffness parameter Γ represents a rigidity ratio that reflects
the relative rotation resistance provided by the web and the flange given by:

Γ = fr
b
D

13.17

where bf is the flange width, D is the flexural rigidity defined as:

D
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12(1 –  )

f
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13.18

and r is the rotational stiffness provided by the web given by (Culver and
Nasir 1969):

r E t
d

 = 
3(1 –  )2

w
3

wν
13.19

where tw and dw are the thickness and depth of the web. Γ is less than 0.5 for
thin-web plate girders commonly used in bridges and other situations requiring
deep flexural members. Therefore, taking Γ = 0.5, Eq. 13.16 can be reduced
to a simpler form:

ψ = 10
10 + ( / )l bf f

13.20

This represents a theoretical basis for defining the non-compact section
slenderness limit with consideration to a stress gradient across the compression
flange due to torsion or minor axis bending. However, its appropriateness for
bridge specifications has not yet been considered.
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Compact section limit (λp)

A number of researchers have developed equations intended to predict the
reduction in ultimate strength of curved I-girders over that of straight girders
due to the effects of curvature. Thorough summaries have been provided by
Davidson (1996), Simpson (2000), and White et al. (2001). The allowable
normal flange stress in the Guide Specifications for ‘Allowable Stress Design’
are based on the research that Culver (1972) and co-researchers conducted as
part of the CURT project. The ‘Load Factor Design’ portion of the Guide
Specifications is based on research by Galambos (1978) as an extension of
work performed in the CURT project at Carnegie-Mellon University. The
parts of the design equations that represent strength reduction due to curvature
are quite complex and cumbersome. Nakai and co-researchers (Nakai and
Kotoguchi 1983, Nakai et al. 1983) proposed an interaction equation for
limiting the stresses in horizontally curved I-girders based on theoretical and
experimental research in the elastic range. The equations represent interaction
for allowable stress in the compression flange including the presence of
warping and the reduced lateral buckling strength of the girder due to curvature.

In a series of research investigations (Yoo and Pfeiffer 1983, Kang 1992,
Yoo et al. 1996), it was demonstrated that a large variation in the torsional
rigidity has little effect on the critical load ratio (curved/straight) for the
lateral buckling of horizontally curved girders loaded normal to the plane of
curvature and that the subtended angle is the dominating parameter. A curvature
reduction equation was derived from a regression of data resulting from an
elastic finite element investigation using curved beam elements which include
warping (Kang 1992). Although this strength reduction equation was developed
based upon an elastic theory, it was proposed (Yoo et al. 1996) that the
reduction in critical moment of curved girders results from the presence of
the rotational component of the girder behavior and likewise there would be
a similar reduction in ultimate moment capacity. Previous ultimate strength
tests by others on curved I-girders appear to verify this conjecture (Yadlosky
1993, Yoo et al. 1996).

Yoo and Davidson (1997) presented yield interaction equations that were
based on the static equilibrium of the I-shape girder under vertical moment
and lateral flange moments resulting from nonuniform torsion. Equations
were presented for singly symmetric composite and noncomposite I-shapes
for both positive and negative moment. Complete plastification for compact
sections, partial yield penetration for the compact-flange sections, and initial
yield at the flange tip for non-compact sections were considered for a total
of 18 interaction cases. A computer program was created and the reduction
due to curvature was demonstrated for a number of geometry and load
conditions.

Davidson (Davidson 1996, Davidson and Yoo 2000) developed models of
the curved I-girder test frame used in the FHWA-CSBRP to study the
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propagation of yielding in a curved I-girder frame and to relate yield behavior
to ultimate strength predictors developed by others. The test frame consisted
of three full-scale bridge girders spaced at 2.67 m (8.75 ft) with the center
girder of length 27.5 m (90 ft) and radius of curvature of 61 m (200 ft),
connected by cross-frames. A section of the outside girder was designed for
‘test specimens’ of various dimensions. The initial yield and ultimate strength
moments resulting from the finite element investigation were compared to
the yield interaction equations presented by Yoo and Davidson (1997). It was
noted that an excellent correlation results for the ultimate strength of the
doubly symmetric sections, but that the interaction equations result in less
accurate comparisons for singly symmetric sections. Yielding was noted to
propagate simultaneously in the tension and compression flanges for doubly
symmetric sections but propagated only through the compression flange in
the singly symmetric sections (Davidson 1996, Davidson and Yoo 2000). A
good correlation was also noted between the interaction equation for non-
compact sections and My from the finite element results. In general it was
noted that failure is characterized by a gradual distortion of the web and
inelastic buckling of the compression flange. The absence of transverse
stiffeners in one of the specimens was shown to significantly affect behavior.
Since the ultimate strength predictor equations assume that full plastification
of the cross-section occurs, the inaccuracy with respect to singly symmetric
curved sections was attributed to the discrepancy between the assumed and
observed plastic condition at ultimate strength.

The AASHTO LRFD standard specifications define compact flange section
as:

b
t

E
F

f

f y2
  0.382 ≤ 13.21

The Guide Specifications stipulate a compactness limit of 9.0 for Fy = 50 ksi,
which is essentially the same as the straight girder requirement of 9.2 (for E
= 29000 ksi and Fy = 50 ksi, Eq. 13.21 reduces to 9.2). Since the assumed
stress distribution is the same for curved plastic cross-sections as for straight
plastic cross-sections, there is a tendency to consider the straight girder
compactness limit given by Eq. 13.21 as applicable to curved girders. However,
owing to the lateral displacement characteristic of behavior that actually
increases as yielding progresses across the flange(s), the strains may be
much greater in the flange(s) and the web to reach the assumed plastic
configuration. The ability of a compact girder that is subjected to significant
warping or lateral bending to reach the plastic strain distribution assumed for
a ‘plastic moment’ condition has not been demonstrated.

In the plastic range (λ < λp), yielding of the flanges due to lateral bending
in a curved girder will reduce the capacity available for vertical bending. In
the approach by Hall et al. (1999), the lateral bending stress evaluated by the
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one-third rule is employed to estimate the reduced vertical bending capacity
of flanges in the plastic range. The one-third rule was originally developed
as a restriction on the flange capacity predicted by McManus’s (1971) strength
equations, based on the assumption that the flange section is compact. The
term ‘one-third rule’ reflects a reduction of one-third of the lateral bending
stress from the yield stress to account for the available flexural resistance.
Therefore, the limit on flexural strength implied in Fig. 13.11 reflects this
reduction in strength due to lateral bending of the flange.

Compact-flange section limit (λpf)

The compact flange section limit refers to compact flange and a non-compact
web. Since one edge of the curved girder flange is subjected to relatively
higher stress than the other edge, yielding will initiate at the flange tip and
progress towards the web. When compactness is defined based on yielding
of one half of the flange plate as illustrated in Fig. 13.12, the flange is
classified as compact-flange.

13.12 Conceptual representation of compact-flange stress
distribution.

Recently, an approach based on the work by Lay (1965) for determining
the compactness requirement of flanges of I-girder subjected to uniform
compression was extended for defining the compact flange requirements of
a horizontally curved girder (Davidson and Madhavan 2005). Lay’s model is
based on buckling of yielded flanges. The compact-flange limit was expressed
as:

λ
α

λcf p = 
2

 = 2
4 – 

 b
t( ) 





13.22

in which the subscript cf refers to compact flange. The terms in the square
brackets of Eq. 13.22 can be considered as an amplification factor that increases
the b/(2t) ratio with increase in α. When α becomes zero, the compact-flange

Fy Fy

Fy

M = My My ≤ M ≤ Mcf M = Mcf
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requirements reduces to straight girder equations. However the implication
is minimal; the increase in slenderness from compact section to compact
flange section for a value of α = 0.5 is only approximately 7%. Furthermore,
the accuracy and applicability of this approached is still being investigated.

13.6 Effect of curvature on web plate stability and

distortion

13.6.1 Pure bending

The primary role of the webs of I-shaped plate girders in the region of high
moment is to maintain the relative distance between flange plates. Efficient
design of plate girders therefore requires that the flange plates carry most of
the primary moment and that the web be designed as ‘slender’ as structurally
possible. Because of this, web depth thickness limitations, transverse stiffener
spacing and rigidity, and longitudinal stiffener location and rigidity for straight
girders are largely based on buckling considerations.

For straight girders, the buckling behavior of the web plate is easily and
accurately analyzed using simplified boundary and loading conditions.
However, for curved plate girders, the presence of curvature greatly complicates
behavior and design considerations. Curvature induces both warping of the
cross-section and, more importantly for web considerations, transverse
displacement of the web (distortion), and also causes the longitudinal membrane
stresses in the web to become a nonlinear distribution through the web depth.
The web slenderness requirements in the Guide Specifications are based
upon work done as part of the CURT project during the early- and mid-1970s
(Culver et al. 1972a,b,c, 1973). Japanese researchers performed both analytical
and experimental research on the behavior of the curved web panel, resulting
in a formulation for the reduction in strength of the curved plate girder. The
reduction represented in US design guides and that suggested by Japanese
researchers is based solely on the curvature of the panel and represents a
regression of analytical data. Also, the research in which design equations
were based involved aspect ratios of 1.5 or less and was limited to symmetric
sections. Therefore, the applicability of the resulting reduction equations is
limited. A rigorous analysis of behavior and review of relative curved web
behavior research and comparison between US and Japanese design equations
is presented by Davidson et al. (1999a,b, 2000a,b) and Davidson and Yoo
(2002, 2004).

Curved web behavior

An example of the displacement of the doubly symmetric cross-section is
shown in Fig. 13.13. The distortional displacement results in plate bending
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stresses that would not occur in the flat panel under pure vertical bending
moment. Furthermore, as curvature and panel slenderness are increased, the
membrane stress distribution becomes increasingly nonlinear through the
depth of the section (Davidson et al. 1999a).

Elastic buckling

Investigations on the bifurcation buckling load for curved web panels under
pure bending and shear and combined bending and shear were done as early
as 1973 by Abdel-Sayed, but without flange rigidity included in the
mathematical models. Abdel Sayed and others demonstrated that curvature
does not reduce the buckling load of curved web panels. Davidson et al.
(1999a) verified that the critical loads of curved web panels are indeed
higher than flat panels and that the buckled mode shapes for flat and curved
panels were practically identical for curvature within the range of curved
steel bridge girders.

hc

h

Web

bulging δ

Lateral displacement
of the flange

Actual displacement of the cross-section
from finite element results h = 2032 mm
(80 in.), h/tw = 150,
a/h = 2, h/R = 0.0667
30.5 × 610 mm (1.2 × 24 in.) flanges
symmetric model

a = length of the plate–modeled as
distance between transverse stiffeners

13.13 Displacement of the curved plate girder cross-section.
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Analytical model: lateral pressure analogy

The amount of transverse or ‘bulging’ displacement can be approximated by
using a ‘lateral pressure’ analogy (Davidson et al. 1999a). Consider a virtual
width strip, dh, of the curved web panel of thickness t and radius R under
vertical bending stress as shown in Fig. 13.14. Because of the non-collinearity
of the resultant force, P, due to vertical bending moment on the virtual strip,
a lateral ‘virtual’ distributed load results along the unit strip, which, after
considering that the radius is very large with respect to the panel length, can
be viewed as a virtual pressure through the depth of the girder:

q P
R

t
Rc  =  = 

σ
13.23

a

σm

Applied
vertical
bending
moment

dh Virtual pressure qc

Curved web panel

R

Thickness t

h

hc
σ

Thickness t

P dh

R

P = σ (dh) (t )

13.14 Lateral pressure analogy.

Since the distortion of the cross-section results from vertical bending moment
and the transverse displacement of the deformed cross-section will cross the
undeformed vertical axis at the neutral axis, the displacement behavior is
analogous to that of a flat plate of length a, thickness t, and width hc, simply
supported on the bottom edge, with a linearly increasing transverse load as
illustrated in Fig. 13.15. Using this analogy, the displacements and plate
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bending moments can be approximated (Davidson et al. 1999a). For the
maximum ‘bulging’ transverse displacement, the value of α is derived by
considering the fourth (flange) edge of the model as simple support. In
reality, the flange will provide a rotational rigidity between fixed and simple.
For the maximum plate bending stress occurring at the top of the web (flange/
web juncture) the case where the fourth edge is fixed will provide a conservative
value of β. Following this approach, the maximum displacement and bending
stress of the panel, respectively, can then be approximated by:
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where α and β are constants that depend on the location of the displacement
or moment, respectively, and aspect ratio only, hc is the height of the web in
compression, and σm is the stress at the web/flange line resulting from vertical
bending moment.

Geometric nonlinear effects

Significant geometric nonlinearity occurs in the displacement behavior of
curved web panels, which may increase the displacements and stresses
significantly. Geometric nonlinear analyses were conducted to quantify the
amount of amplification in such a way that the amplification may be applied
to the results from the lateral pressure analogy to get a conservative
approximation for the maximum transverse deflection and maximum stresses
(Davidson et al. 1999b). Including deflection amplification effects, using
values of v = 0.3, and a conservative value for β of 0.0667, the web slenderness
for curved girders can be derived based on maximum stress as:
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13.15 Theoretical development for flat panel.

b = hc SS

X

SS/fS/flange

Flat panel

SS

SS

σm

a
Plan view

y
Side view

    
q

t
Rc = 
σ



Interaction of curvature on the stability and design 411

where Rs is the developed curvature reduction factor on D/tw based on stress
considerations:
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where Dc is the depth of the web in compression and tw is the thickness of the
web plate.

13.6.2 Influence of longitudinal stiffeners

The same approach was used for web panels with longitudinal stiffeners
(Davidson et al. 2000b). Web panels with longitudinal stiffeners placed in
the compression region only and in both the compression and tension regions
were considered. The stiffeners were placed on the inside-of-curvature side
only and at the optimum location with respect to the buckling behavior
(0.4Dc). Again, a lateral pressure analogy was used to derive closed-form
solutions for the maximum ‘bulging’ displacement and plate bending stresses,
and nonlinear effects were investigated and quantified. It was noted that the
geometric amplification behavior for one and two longitudinal stiffeners is
considerably less than that demonstrated for no longitudinal stiffeners.

The reduction in vertical moment carrying capacity for the panel with one
or two longitudinal stiffeners was derived by considering the increase in
stress at the flange/web juncture, either top or bottom, where the maximum
stress due to combined membrane and plate bending action will occur. The
curved girder required slenderness, D/tw, can be represented as a reduction
factor on the allowable web slenderness for straight girder design as:
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and
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where the subscripts c and t refer to compression and tension regions. For the
case where one longitudinal stiffener is placed in the compression area, the
larger of Eq. (13.29) and Eq. (13.30) should be used. For the case where a
longitudinal stiffener is placed in the compression and tension regions, Eq.
(13.29) should be used.

13.6.3 Pure shear

The web of a plate girder stiffened by flanges and transverse stiffeners has
considerable post buckling strength due to ‘truss’ or ‘tension field’ action
from the interaction of the buckled web, flanges, and stiffeners. This ability
has been well established and has been used in ASD, LFD, and LRFD format
design codes for straight girders. However, the lack of research on curved
girders has kept tension field action out of curved bridge design approach.

Early analytical work on the elastic stability of stiffened cylindrical shells
subjected to pure shear was conducted by Batdorf (Batdorf 1947, Batdorf et
al. 1947) and then by Stein and co-researchers (Stein and Fralich 1949, Stein
and Yeager 1949). In these works, equilibrium equations were derived assuming
all four edges of the web panel to be simply supported. Equilibrium equations
were solved using the finite difference method. Mariani et al. (1973) later
extended the work of Stein and Yeager to include the case of the curved plate
with multiple stiffeners under pure shear and developed an optimal stiffener
spacing criterion to establish stiffener requirements for curved girder webs.
From the work of these researchers it is generally agreed that the buckling
load of the curved web panel is greater than that of the straight girder with
the same aspect ratio, slenderness ratio, and boundary conditions.

Experimental research on the ultimate and postbuckling reserve strength
of curved girders has been conducted by Mozer et al. (1971) as part of the
CURT project. It was observed from these tests that there is a decrease in the
postbuckling strength with increase in curvature, although the measured
shear strengths are within 10% of the ultimate shear strength by straight
girder theory, which could be considered to be within the range of acceptable
experimental error. Also, the experimental investigation by Mozer et al.
indicated that, in areas of negative bimoment (tending to bend the compression
flange inward), the web behaves more like that of a straight girder and can
carry the ultimate shear strength predicted for a straight girder with similar
proportions.

The Japanese have also conducted a series of experimental tests on the
ultimate strength of web panels under pure shear, pure bending, and their
combinations (Nakai et al. 1984a,b,c, 1985a,b). Their results agree that
curvature has little effect on the elastic critical shear load but that there is
some decrease in ultimate strength. Like the Guide Specifications, the Japanese
design specifications do not recognize postbuckling reserve strength for curved
plate girders due to lack of research in this area (Hanshin 1988).
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Lee and Yoo (1999) studied the bifurcation buckling and ultimate strength
analysis of curved web panels subjected to pure shear using the finite element
method. The analysis revealed that the curved web panels are capable of
developing considerable postbuckling strength after the bifurcation point.
The results also suggested that straight girder equations developed by Lee et
al. (1994) and Lee and Yoo (1999) can be used to effectively predict the
shear strength of curved web panels subjected to pure shear.

Davidson et al. (1996) presented results on the buckling and ultimate
strength of curved web panels in pure shear. The finite element method was
used with combined geometric and material nonlinear solution sequences to
analyze typical plate girder web panels of various curvatures. The aspect
ratios of the panels were also varied to compare the effects of transverse
stiffener spacing for curved panels to that of straight. The results from the
buckling analyses agreed with that of previous research whereas the elastic
critical load of the curved panel was determined to be greater than that of the
comparable flat panel. Furthermore, the finite element analyses revealed no
substantial decrease in ultimate strength of the curved panel with respect to
that of the straight (flat). It was observed that, although distinctive bifurcation
buckling phenomena did not occur, curved web panels are able to sustain
shear loadings beyond the elastic buckling points. It was also observed that
the ultimate strength and behaviors of curved web panels with curvature in
the practical range exhibited no significant differences as compared with
those of straight girder webs.

These conclusions were also demonstrated through recent work by
Shanmugam and co-researchers (Mahendrakumar et al. 2000, Shanmugam
et al. 2003). Furthermore, the work by Shanmugam was extended into a
unique experimental and analytical program that addressed curved web panels
with openings (Shanmugam et al. 2002, Lian and Shanmugam 2003, 2004).

13.6.4 Combined bending and shear

In reality, there will generally be transverse shear present along with the
vertical bending of the bridge girder. However, in the majority of straight
bridge girder situations, the nominal strength in bending is not influenced by
shear, nor is the nominal shear strength influenced by bending. Particularly
in slender webs where ‘bend-buckling’ may occur, the bending stress is
redistributed so that the flanges carry an increased share. The shear strength,
however, is not reduced as a result of ‘bend-buckling’ because most of the
shear strength is from tension field action with only a small contribution
from the portion of the web adjacent to the flange.

Mikami and Furunishi (1981) presented work involving shear along with
bending in Japanese journals and later in the ASCE Journal of Engineering
Mechanics (1984), but this work was limited to cases where the applied
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shear stress equals the applied vertical bending stress at the top of the panels.
From these investigations it was concluded that the presence of shear along
with bending did adversely affect the moment carrying capacity of the beam
but no formulations for design use were presented.

Abdel-Sayed (1973) studied the prebuckling and elastic buckling behavior
of curved web panels under pure bending, pure shear, and combined bending
and shear and showed that, in all cases, the elastic critical load of the curved
panel was greater than that of the comparable flat panel. In this investigation
the lateral and torsional rigidities of the flanges were not considered.

Nakai and co-researchers (Nakai et al. 1984a,b, 1985a) conducted
experimental studies on the buckling and ultimate strength behavior of the
curved I-girder web panels under combined bending and shear. A circular
interaction curve was fitted to the buckling values from the tests and interaction
curves also resulted for the ultimate strength of the curved girders involving
the theoretical nominal strengths for pure shear and pure bending.

Under combined bending and shear, Davidson et al. (2000a) verified that
the elastic buckling load under any combination of shear with vertical bending
stresses resulted in higher critical loads for the curved panel over that of the
straight. It was concluded that the use of design equations presented for pure
bending would result in conservative designs up to V/Vn = 0.6, where V is the
calculated shear force over the web and Vn is the nominal shear resistance
defined for pure shear. Linear-elastic static, buckling, and geometric nonlinear
static solutions were used. The finite element method was used to understand
the overall behavior of the system and to evaluate the applicability of predictor
equations for curved webs subjected to pure bending towards panels subjected
to a combination of bending and shear.

13.7 Concluding remarks

This chapter presented an overview of the influence of curvature on global
stability, flange plate stability, web plate distortion, and ultimate strength
based upon recent analytical research conducted in the US. A brief historical
review of research leading to the AASHTO Guide Specifications for
Horizontally Curved Girders is presented. Challenges associated with
fabricating, transporting, lifting, and erecting were described since curved
plate girders are most vulnerable to local and global instabilities in construction
and transporting configurations. However, the work presented herein focuses
on behavioral challenges and does not necessarily represent formulations
appropriate for future bridge specifications.

Although curvature results in a gradual reduction in elastic lateral-torsional
buckling resistance of simply supported beams, it was demonstrated that the
addition of curvature actually increases the buckling load for beams with
more rigid end conditions and curved girders with intermediate lateral restraints.
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Since cross-frame intervals must be carefully designed to prevent excessive
warping normal stresses in the compression flange and deflection during
construction, there does not appear to be a concern for curvature-related
decrease in lateral-torsional buckling stability once intermediate bracing is
in place. There is, however, concern for torsional instability of unbraced
sections during erection, particularly with the tendency for highly-optimized
designs using increasingly slender girder sections.

The influence of the warping stress gradient on elastic stability of the
compression flange plate was discussed and an approach for integrating
curvature-related reduction into the flange plate slenderness requirement
was presented. Likewise, an overview of strength definitions based on the
ability of plastic strain to progress across the flange plate reflects a problem
that has not been solved. Current dialogue in the US is focused on accepting
the compact flange definition used for straight girder design as applicable
for curved girders, and basing the allowable flexural stress in compact flanges
on subtracting one-third of the stress resulting from lateral flange moments
from the stress allowed for an ultimate strength definition of the flange.

Curvature has a profound effect on the behavior of slender webs of plate
girders. Distortional displacements and stresses induced in the web can be
significant. Furthermore, the behavior is very nonlinear, both in terms of the
relationship between load and distortional displacement, and in terms of the
distribution of normal stresses over the depth of the web. Transverse and
longitudinal stiffeners play an integral role in restraining curvature-induced
distortion. Equations developed to guide an increase in web thickness were
presented. Finally, recent analytical investigation on the effects on curvature
on regions of high shear indicate that there is not enough adverse effect to
warrant curvature-specific criteria, and that post-buckling reserve strength
can be considered.

13.8 Acknowledgement

The assistance of Mahendra Madhavan and Ramy Abdalla, graduate research
assistants in the Department of Civil and Environmental Engineering, University
of Alabama at Birmingham is gratefully acknowledged. The synthesis of
bridge stability research was partially sponsored through the University
Transportation Center for Alabama, US DOT Contract DTR598-G-0028.

13.9 References

AASHTO (2001), AASHTO LRFD Bridge Design Specifications, American Association
of State Highway and Transportation Officials, Washington, DC.

AASHTO (2003), Guide Specifications for Horizontally Curved Highway Bridges, American
Association of State Highway and Transportation Officials, Washington, DC.



Analysis and design of plated structures416

Abdel Sayed, G. (1973), ‘Curved webs under combined shear and normal stresses.’ Journal
of Structural Division, ASCE, 99(ST3), pp. 511–525.

AISC (1999), ‘Load and Resistance Factor Design Specification for Structural Steel
Buildings.’ American Institute of Steel Construction, Chicago, IL.

Batdorf, S.B. (1947), ‘A simplified method of elastic stability analysis for thin cylindrical
shells. II modified equilibrium equation.’ NACA TN No. 1342, National Advisory
Committee for Aeronautics, Washington, DC.

Batdorf, S.B., Stein, M. and Schildcrout, M. (1947), ‘Critical shear stress of curved
rectangular plates.’ NACA TN No. 1342, National Advisory Committee for Aeronautics,
Washington, DC.

Bradford, M.A., Uy, B. and Pi, Y.L. (2001), ‘Behavior of unpropped composite girders
curved in plan under construction loading.’ Engineering Structures, 23, pp. 779–789.

Brockenbrough, R.L. (1970), ‘Criteria for heat curving steel beams and girders.’ Journal
of the Structural Division, ASCE, 96(ST10), pp. 2209–2226.

Brockenbrough, R.L. (1986), ‘Distribution factors for curved I-girder bridges.’ Journal of
Structural Engineering, ASCE, 112(10), pp. 2200–2215.

Chavel, B.W. and Earls, C.J. (2001), ‘Evaluation of erection procedures of the horizontally
curved steel I-girder Ford City bridge.’ Report No. CE/ST 18, Department of Civil and
Environmental Engineering, University of Pittsburgh.

Culver, C.G. (1972), ‘Design Recommendations for Curved Highway Bridges,’ Project
68-32, Commonwealth of Pennsylvania Department of Transportation, June.

Culver, C.G. and Frampton, R.E. (1970), ‘Local instability of horizontally curved members.’
Journal of the Structural Division, ASCE, 96(ST2), pp. 7079–7099.

Culver, C.G. and Nasir, N. (1969), ‘Instability of horizontally curved members, flange
buckling studies.’ Report 68-32, Report submitted to the Pennsylvania Department of
Highways by the Department of Civil Engineering, Carnegie-Mellon University.

Culver, C.G. and Nasir, N. (1971), ‘Inelastic flange buckling of curved plate girders.’
Journal of the Structural Division, ASCE, 97(ST4), pp. 1239–1257.

Culver, C.G., Dym, C. and Brogan, D. (1972a), ‘Bending behaviors of cylindrical web
panels.’ Journal of the Structural Division, ASCE, 98(ST10), pp. 2201–2308.

Culver, C.G., Dym, C. and Brogan, D. (1972b), ‘Instability of horizontally curved members,
bending behaviors of cylindrical web panels.’ Submitted to the Pennsylvania Department
of Highways by the Department of Civil Engineering, Carnegie-Mellon University,
January.

Culver, C.G., Dym, C. and Brogan, D. (1972c), ‘Instability of horizontally curved members,
shear buckling of cylindrical web panels.’ Submitted to the Pennsylvania Department
of Highways by the Department of Civil Engineering, Carnegie-Mellon University,
June.

Culver, C.G., Dym, C.L. and Uddin, T. (1973), ‘Web slenderness requirements for curved
girders.’ Journal of the Structural Division, ASCE, 99(ST3), pp. 417–430.

Dabrowski, R. (1964), ‘The analysis of curved thin walled girders of open sections.’ Der
Stahlbau, 33(12), pp. 364–372, December.

Dabrowski, R. (1965), ‘Warping torsion of curved box girders of non-deformable cross
section.’ Der Stahlbau, 34(5), pp. 135–141, May.

Dabrowski, R. (1968), ‘Curved Thin Walled Girders, Theory and Analysis.’ Translated
from German by Amerongen, C.V. Cement and Concrete Association, Number 144,
Springer Verlag, Berlin, Germany.

Davidson, J.S. (1996), ‘Nominal bending and shear strength of curved steel I-girder
bridges,’ PhD. Dissertation, Auburn University, Auburn Alabama, August.



Interaction of curvature on the stability and design 417

Davidson, J.S. and Madhavan, M. (2005), ‘Flange Compactness Definition for Horizontally
Curved Bridge Girders.’ North American Steel Construction/Structural Stability Research
Council (SSRC), Proceedings of the 2005 Annual Stability Conference, Montreal,
Quebec, Canada, 6–9 April.

Davidson, J.S. and Yoo, C.H. (1996), ‘Local buckling of curved I-girder flanges.’ Journal
of Structural Engineering, ASCE, 122(8), 936–947.

Davidson, J.S. and Yoo, C.H. (2000), ‘Evaluation of strength formulations for horizontally
curved flexural members.’ Journal of Bridge Engineering, ASCE, 5(3), 200–207.

Davidson, J.S. and Yoo, C.H. (2002), ‘Stability of horizontally curved I-girder web panels.’
Proceedings of the 2002 Structural Stability Research Council, Seattle Washington,
24–27, April, pp. 95–118.

Davidson, J.S. and Yoo, C.H. (2004), ‘Analytical model to evaluate the distortion of
curved thin-walled web panels.’ Proceedings of the Fourth International Conference
on Thin-Walled Structures, 22–24, June Loughborough, UK, pp. 215–223.

Davidson, J.S., Keller, M.A. and Yoo, C.H. (1996), ‘Cross-frame spacing and parametric
effects in horizontally curved I-girder bridges.’ Journal of Structural Engineering,
American Society of Civil Engineers, 122(9), pp. 1086–1096.

Davidson, J.S., Ballance, S.R. and Yoo, C.H. (1999), ‘Analytical model of curved I-girder
web panels subjected to bending.’ Journal of Bridge Engineering, ASCE, 4(3), pp.
204–212.

Davidson, J.S., Ballance, S.R. and Yoo, C.H. (1999b), ‘Finite displacement behavior of
curved I-girder web subjected to bending.’ Journal of Bridge Engineering, ASCE,
4(3), pp. 213–220.

Davidson, J.S., Ballance, S.R. and Yoo, C.H. (2000a), ‘Behavior of curved I-girder webs
subjected to combined bending and shear.’ Journal of Bridge Engineering, ASCE,
5(2), pp. 165–170.

Davidson, J.S., Ballance, S.R. and Yoo, C.H. (2000b), ‘Effects of longitudinal stiffeners
on curved I-girder webs.’ Journal of Bridge Engineering, ASCE, 5(2), pp. 171–178.

Fujii, K. and Ohmura, H. (1987), ‘Local buckling and width thickness ratio in flanges of
curved I-girders.’ Proceedings of the Japanese Society of Civil Engineers, Structural
Eng./Earthquake Eng, Japan.

Galambos, T.V. (1978), ‘Tentative load factor design criteria for curved steel bridges,’
Research Report No. 50, Department of Civil Engineering, Washington University, St.
Louis, MO, May, pp. 1–1~C-20.

Galambos, T.V., Hajjar, J.F., Huang, W.H., Pulver, B.E. and Rudie, B.J. (1996), ‘Stresses
in a steel curved girder bridge.’ Report No. MN/RC-96/28, Minnesota Department of
Transportation, St. Paul, Minnesota.

Gottfield, H. (1932), ‘The analysis of spatially curved steel bridges’ (in German), Die
Bautechnik, p. 715.

Grubb, M.A., Yadlosky, J.M. and Duwadi, S.R. (1996), ‘Construction issues in steel
curved bridges.’ Transportation Research Record 1544, TRB, National Research Council,
Washington, DC, pp. 64–70.

Hall, D.H., Grubb, M.A. and Yoo, C.H. (1999), ‘Improved design specifications for
horizontally curved steel girder highway bridges.’ NCHRP Report 424, National
Cooperative Highway Research Program, Washington, DC.

Hanshin (The Hanshin Expressway Public Corporation and Steel Structure Study Committee)
(1988). ‘Guidelines for the Design of Horizontally Curved Girder Bridges (Draft),’
The Hanshin Expressway Public Corporation, October.

Heins, C.P. (1975), Bending and Torsion Design in Structural Members, Lexington Books,
Lexington, MA.



Analysis and design of plated structures418

Heins, C.P. and Jin, J.O. (1984), ‘Live load distribution on braced curved I-girders.’
Journal of Structural Engineering, ASCE, 110(3), pp. 523–530.

Highway Structures Design Handbook (1965), Vol. 1, United States Steel, ADUSS, 88–
1895-01.

Japan Road Association (1990), ‘Specifications for Highway Bridges, Part I: Common
Specifications.’ ‘Part II: Steel Bridge Specifications.’ Maruzen, Tokyo, February.

Kang, Y.J. (1992), ‘Nonlinear theory of thin walled curved beams and finite element
formulation.’ PhD dissertation, Auburn University, Auburn, Alabama.

Kang, Y.J. and Yoo, C.H. (1990), ‘Flexural stress of curved bridge girders.’ Structural
Stability Research Council, 1990 Annual Technical Session, Stability of Bridges, St.
Louis Missouri, 10–11 April.

Kang, Y.J. and Yoo, C.H. (1994a), ‘Thin walled curved beams. I: Formulation of nonlinear
equations.’ Journal of Engineering Mechanics, ASCE, 120(10), pp. 2072–2101.

Kang, Y.J. and Yoo, C.H. (1994b), ‘Thin walled curved beams. II: analytical solutions for
buckling of arches.’ Journal of Engineering Mechanics, ASCE, 120(10), pp. 2072–
2101.

Kishima, Y., Alpsten, G.A. and Tall, L. (1969), ‘Residual stresses in welded shapes of
flame-cut plates in ASTM A572 (50) steel.’ Fritz Engineering Laboratory Report No.
321.2, Lehigh University.

Kollbrunner, C.F. and Basler, K. (1969), Torsion in Structures – An Engineering Approach.
Translated from German by E.C. Glauser with annotations and an appendix by B.G.
Johnston. Springer-Verlag, Berlin, New York.

Komatsu, S. and Kitada, T. (1981), ‘Ultimate strength characteristics of outstanding steel
plate with initial imperfection under compression.’ Proceedings of the Japanese Society
of Civil Engineers, No. 314, pp. 15–27, October (in Japanese).

Komatsu, S., Kitada, T. and Miyazaki, S. (1975), ‘Elastic plastic analysis of compressed
plate with residual stress and initial deflection.’ Proceedings of the Japanese Society
of Civil Engineers, No. 244, pp. 1–14, December (in Japanese).

Lay, M.G. (1965), ‘Flange local buckling in wide flange shapes.’ Journal of the Structural
Division, ASCE, 91(ST6), pp. 95–116.

Lee, S.C. and Yoo, C.H. (1999), ‘Strength of curved I-girder web panels under pure
shear.’ Journal of Structural Engineering, ASCE, 125(8), 847–853.

Lee, S.C., Davidson, J.S. and Yoo, C.H. (1994), ‘Shear buckling coefficients of plate
girder web panels.’ Computers & Structures, 59(5), pp. 789–795.

Lian, V.T. and Shanmugam N.E. (2003), ‘Plate girder curved in plan with circular web
openings.’ Thin-Walled Structures, 41, pp. 245–269.

Lian, V.T. and Shanmugam, N.E. (2004), ‘Design of horizontally curved plate girder
webs containing circular openings.’ Thin-Walled Structures, 42, pp. 719–739.

Linzell, D.G. (1999), ‘Studies of full-scale horizontally curved steel I-girder bridge systems
under self weight.’ PhD Dissertation, School of Civil and Environmental Engineering,
Georgia Institute of Technology.

Madhavan, M. and Davidson, J.S. (2003), ‘Elastic local buckling of curved I-girder
flanges.’ North American Steel Construction/Structural Stability Research Council
(SSRC), Proceedings of the 2003 Annual Stability Conference, Baltimore, Maryland,
pp. 599–617.

Madhavan, M. and Davidson, J.S. (2004), ‘Elastic buckling of plates subjected to uniaxial
eccentric compression.’ Proceedings of the Fourth International Conference on Thin-
Walled Structures, 22–24, June Loughborough, UK, pp. 533–540.

Madhavan, M. and Davidson, J.S. (2005), ‘Elastic buckling of centerline-stiffened plates



Interaction of curvature on the stability and design 419

subjected to a linearly varying stress distribution.’ North American Steel Construction/
Structural Stability Research Council (SSRC), Proceedings of the 2005 Annual Stability
Conference, Montreal, Quebec, Canada, 6–9 April.

Mahendrakumar, M., Shanmugam, N.E. and Thevendran, V. (2000), ‘Behaviour of web
panels curved in plan.’ American Society of Civil Engineers, Proceedings, Structures
Congress 2000, Philadelphia, Pennsylvania.

Mariani, N., Moger, J.D., Dym, C.L. and Culver, C.G. (1973), ‘Transverse stiffener
requirements for curved webs.’ Journal of the Structural Division, ASCE, 99(ST4), pp.
757–771.

McManus, P.F. (1971), ‘Lateral buckling of curved plate girders.’ PhD dissertation, Carnegie
Mellon University, Pittsburgh, Pennsylvania.

McManus, P.F., Nasir, G.A. and Culver, C.G (1969), ‘Horizontally curved girders state-
of-the-art.’ Journal of Structural Engineering, ASCE, 95(ST5), pp. 853–870.

Mikami, I. and Furunishi, K. (1981), ‘Nonlinear behavior of cylindrical web panels under
bending and shear.’ Theoretical and Applied Mechanics, Vol. 29, University of Tokyo
Press, Tokyo, Japan, pp. 65–72.

Mikami, I. and Furunishi, K. (1984), ‘Nonlinear behavior of cylindrical web panels.’
Journal of Engineering Mechanics, ASCE, 110(2), pp. 230–251.

Mozer, J. and Culver, C.G. (1975), ‘Horizontally curved highway bridges, stability of
curved plate girders-P1.’ FHWA, Contract No. FH-11-7389, Washington, DC.

Mozer, J., Ohlson, R. and Culver, C.G. (1971), ‘Horizontally curved highway bridges
stability of curved plate girders.’ Carnegie Mellon University, Report No. P2, Research
Project HPR 2(111), September.

Nakai, H. and Kotoguchi, H. (1983), ‘A study on lateral buckling strength and design aid
for horizontally curved I-girder bridges,’ Proceedings of the Japanese Society of Civil
Engineers, No. 339, December, pp. 195–204.

Nakai, H. and Yoo, C.H. (1988), Analysis and Design of Curved Steel Bridges, McGraw-
Hill Book Co., New York.

Nakai, H., Muramatsu, S., Yoshikawa, N., Kitada, T. and Ohminami, R. (1981), ‘A survey
for web plates of the horizontally curved girder bridges.’ Bridge and Foundation
Engineering, 15, pp. 38–45, May (in Japanese).

Nakai, H., Kitada, T. and Ohminami, R. (1983), ‘Experimental study on bending strength
of horizontally curved girder bridges,’ Proceedings of the Japanese Society of Civil
Engineers, No. 340/I-2, December, pp. 19–28 (in Japanese).

Nakai, H., Kitada, T. and Ohminami, R. (1984a), ‘Experimental study on ultimate strength
of web panels in horizontally curved girder bridges subjected to bending, shear, and
their combinations.’ Proceedings of SSRC 1984, Annual Technical Session and Meeting,
SSRC, San Francisco, pp. 91–102, April.

Nakai, H., Kitada, T., Ohminami, R. and Fukumoto, K. (1984b), ‘Experimental study on
shear strength of horizontally curved plate girders.’ Proceedings of the Japanese Society
of Civil Engineers, No. 350/I 2, October, pp. 281–290 (in Japanese).

Nakai, H., Kitada, T., Ohminami, R. and Fukumoto, K. (1984c), ‘A proposition for
designing transverse stiffeners of horizontally curved girders in ultimate state.’ Memoirs
of the Faculty of Engineering, Osaka City University, Japan, Vol. 25, December, pp.
111–131.

Nakai, H., Kitada, T. and Ohminami, R. (1985a), ‘Experimental study on buckling and
ultimate strength of curved girders subjected to combined loads of bending and shear.’
Proceedings of the Japanese Society of Civil Engineers, No. 356/I3, pp. 445–454,
April (in Japanese).



Analysis and design of plated structures420

Nakai, H., Kitada, T. and Ohminami, R. (1985b), ‘Proposition for designing intermediate
transverse stiffeners in web plate of horizontally curved girders.’ Proceedings of the
Japanese Society of Civil Engineers, No. 362/I4, October, pp. 249–257 (in Japanese).

Nishida, S., Yoshida, H. and Fukumoto, Y. (1978), ‘Large deflection analysis of curved
members with thin walled open cross section.’ 24th Symposium of Structural Engineering,’
February, pp. 77–84 (in Japanese).

Pfeiffer, P.A. (1981), ‘Elastic stability of curved beams.’ Master thesis, Marquette University,
Milwaukee, Wisconsin.

Shanmugam, N.E., Lian, V.T. and Thevendran, V. (2002), ‘Finite element modeling of
plate girders with web openings.’ Thin-Walled Structure 40, pp. 443–464.

Shanmugam, N.E., Mahendrakumar, M. and Thevendran, V. (2003), ‘Ultimate load behaviour
of horizontally curved plate girders.’ Journal of Constructional Steel Research, 59(4),
pp. 509–529.

Shimada, S. and Kuranishi, S. (1966), ‘Formulas for Calculation of Curved Beam,’ (in
Japanese), Gihodo, Tokyo.

Simpson, M.D. (2000), ‘Analytical investigation of curved steel girder behavior.’ PhD
Thesis, Department of Civil Engineering, University of Toronto, Canada.

St. Venant, B. (1843), ‘Mémoire sur le calcul de la resistance et la flexion des pièces
solides a simple ou a double courbure, en prenant simultanement en consideration les
divers efforts auxquels eiles peuvent entre soumises dans tous les sens.’ Comptes
Rendus, l’Academie des Sciences de Paris, 17, pp. 1020–1031 (in French).

Stein, M. and Fralich, R.W. (1949), ‘Critical shear stress of infinitely long, simply supported
plates with transverse stiffeners.’ NACA TN No. 1851, National Advisory Committee
for Aeronautics, Washington, DC.

Stein, M. and Yeager, D.J. (1949), ‘Critical shear stress of a curved rectangular panel with
a central stiffener.’ NACA TN No. 1972, National Advisory Committee for Aeronautics,
Washington, DC.

Timoshenko, S.P. (1905), On the Stability of In Plane Bending of an I-beam. Izvestiya St.
Petersburg Politekhnicheskoqo Instituta, IV–V.

Umanskii, A.A. (1948), Spatial Structures, Moscow (in Russian).
United States Steel Corp. (1984), ‘V-load analysis, an approximate procedure, simplified

and extended for determining moments and shears in designing horizontally curved
open framed highway bridges.’ USS Highway Structures Design Handbook, Volume 1,
Chapter 12, Pittsburgh, PA.

Vlasov, V.Z. (1961), Thin Walled Elastic Beams, 2nd Edition, National Science Foundation,
Washington, DC.

Weinhold, S.A. (1997), ‘Erection engineering for steel bridge superstructures.’ Modern
Steel Construction, Vol. 11 (Web reprint), October.

White, D.W., Zureick, A.H., Phoawanich, N. and Jung, S.K. (2001), ‘Development of
Unified Equations for Design of Curved and Straight Steel Bridge I-Girder,’ Final
Report, prepared for American Iron and Steel Institute Transportation and Infrastructure
Committee, Professional Service Industries, Inc. and Federal Highway Administration,
School of Civil and Environmental Engineering, Georgia Institute of Technology,
Atlanta, Ga.

Yadlosky, J.M. (1993), ‘Curved steel bridge research project, Summary Work Plan (1.0),’
HDR Interim Report (DTFH61-92-C-00136) submitted to the Federal Highway
Administration, HDR Engineering, Inc., Pittsburgh, PA, December.

Yoo, C.H. and Davidson, J.S. (1997), ‘Yield interaction equations for nominal bending
strength of curved I-girders.’ Journal of Bridge Engineering, ASCE, 2(2), pp. 37–44.



Interaction of curvature on the stability and design 421

Yoo, C.H. and Littrell, P.C. (1986), ‘Cross bracing effects in curved stringer bridges.’
Journal of Structural Engineering, ASCE, 112(9), pp. 2127–2140.

Yoo, C.H. and Pfeiffer, P.A. (1983), ‘Elastic stability of curved members,’ Journal of
Structural Engineering, ASCE, 109(12), pp. 2922–2940.

Yoo, C.H., Kang, Y.J. and Davidson, J.S. (1996), ‘Buckling analysis of curved beams by
finite element discretization.’ Journal of Engineering Mechanics, ASCE, 122(8), pp.
762–770.



422

14.1 Introduction

Early work on the stability of singly curved plates under lateral pressure was
based on the Donnell stability equations, modified by Batdorf (1947). While
it is more accurate to apply Flügge’s (1973) equations in coupled form to the
buckling problem for either uniform or variable pressure, the former solutions
remain useful especially in the ‘medium’ range of plates. Almroth (1962)
gave solutions based on the minimum potential energy principle for a centrally
located and variable band of pressure. As the skew in the pressure rises from
zero (uniform pressure) to maximum (cosine variation), the buckling pressure
rises monotonically from that calculated for a uniform pressure distribution.
The rise is most pronounced in long cylinders (40%), reaching 60% in thicker
cylinders. In shorter cylinders, the gain is less pronounced.

Weingarten (1962) solved the Donnell equation modified by Batdorf for
the buckling of cylinders subjected to a lateral pressure varying linearly in
the meridional direction, but uniform circumferentially. Using a harmonic
series formulation and the Galerkin method, he established the homogeneous
system of equations, the determinant of which, when set equal to zero,
yielded the critical pressure. For cylindrical plates that are not very short,
and the linear pressure is replaced by a uniform pressure equal to the mean,
then the maximum error is less than 5%, thus replacing the complex nonuniform
problem by the simpler case of uniform pressure buckling.

While many theoretical analyses in the literature have been performed
within the framework of the Donnell linear stability theory with simple
supports, it is more accurate to apply Flügge’s equations (1973) in coupled
form to the buckling problem for uniform or variable pressure, with classical
or diverse boundary conditions. The differences in the two solutions are
exacerbated as the length of the cylinder increases.

In this chapter, an abridged version is given of theoretical developments
that are given fuller scope in the author’s and others’ publications. Closures
of pressure and other vessels are examined for buckling under internal pressure;
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buckling under uniform and nonuniform external pressure is considered for
classical boundary conditions and for end warping restraint; the susceptibility
of collapse of corrugated curved plates is investigated. Theories are compared
with experimental data, and prototype failures illustrated. Finally, the effect
of differential settlement of the foundation of tank structures is examined for
distortion and buckling.

14.2 Cylindrical structures

14.2.1 Internal pressure

In general, internal pressure does not cause buckling failures in containment
structures, except in the case of junctions between different components
which may incorporate a doubly curved section; a typical example is that of
a cylindrical vessel closed with a spherical cap via a torispherical junction,
or with an ellipsoid of revolution (Fig. 14.1). Membrane theory applied to
the ellipsoid (Fig. 14.2) subjected to internal pressure p shows that the
meridional stress is everywhere tensile, and equals σφ = pa/t at the equator,
where a is the major axis and t the wall thickness; on the other hand the

circumferential stress becomes σθ  = 1 –  
2

2

2

pa
t

a
b





  where b is the minor

axis, and clearly this stress becomes compressive if a2 > 2b2, indicating a
sharply curved closure or knuckle. The compression is also predicted by the
full bending theory or by finite element theory.

b
p

a

14.1 Section of ellipsoid of revolution.

The above compressive stress can lead to buckling failure as has indeed
been observed by Blackler and Ansourian (1988) during the pressurisation
of two stainless steel full-scale tanks with torispherical closures. The measured
meridional displacements are shown in Fig. 14.3. The knuckle suffered
considerable distortion as it moved inwards, while the spherical end translated
almost as a rigid body, the cylinder remaining almost undeformed. Buckle
formation was sudden and accompanied by a low-pitched rumbling sound.
Buckles generally occurred at zones of maximum imperfections, at or adjacent
to meridional weld lines. The sensitivity to geometric imperfections was
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low. Failure was by elastic-plastic buckling, well predicted by the expression
derived by Galletly (1986):

p
F

r D
D t R D

D
0.825

1.5
s

1.15 = 
80( / )

( / ) ( / )γ 14.1

where pD is the allowable internal design pressure for safety factor > 1.5, γ
= 1.0 for crown and segment steel heads and 1.6 for cold spun steel heads,
F is the yield stress, r is the knuckle radius, Rs is the sphere radius and D is
the cylinder diameter.

Teng (2004) also conducted numerous investigations of buckling failures
under internal pressure at junctions between cylinders and cones without
stiffening ring beams, and between cylinders and flat ends. He concluded
that the plastic limit load provides a conservative estimate of failure load
because of the strength reserve of geometric non linearity. While he found
that the buckling of thin shell junctions shows stable postbuckling, he warns
of possible weld fracture at large deformations.

14.2 Axisymmetric curved plate with membrane stress-resultants:
R* = sum of all vertical force components from top of shell to
location φ; r1 = meridional radius of curvature at a point of a shell
(infinite for cylinder and cone); r2 = radius of curvature in plane
perpendicular to meridian plane (the distance between the point on
the shell to the point on the axis of rotation intersected by the
perpendicular to the shell; r0 = radius of parallel circle; r2 = r0/sin φ.
The surface area of the small element is dA = r1r2 sin φ dφ dθ.
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14.2.2 Uniform external pressure

This section deals with buckling under uniform external pressure, examples
of which abound in civil/mechanical engineering, marine, ballistic and
aerospace structures. Earlier work on the stability of cylinders under external
pressure was based on the Donnell stability equations, modified by Batdorf
(1947). While it is more accurate to apply Flügge’s (1973) equations in
coupled form to the buckling problem for either uniform or variable pressure,
the former solutions remain useful especially in the ‘medium’ range of thin
cylinders. The Donnell stability equation for a cylinder of radius R and
thickness t is given in Brush and Almroth (1975):

D w
R

C w
x

p
R

w∇ ∂
∂

∇ ∂
∂

8
2

2

4

4
4

2

2 + 
(1 –  )

 +    = 0
ν

θ
14.2

D Et = 
12(1 –  )

3

2ν

C Et = 
(1 –  )2ν

43
30
9

14.3 Measured meridional shape at internal pressure buckling.
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where w is the radial deflection, x is the meridional direction, θ the
circumferential angle and p is the uniform external pressure. This linear
differential equation with constant coefficients is satisfied by the solution:

w A n x
L

mnm =  sin  sin π θ    n = 1, 2, 3, . . . , m = 1, 2, 3, . . . , 14.3

which also satisfies the end boundary conditions of zero radial deflection,
and zero curvature at x = 0 and x = L, where L is the length of the cylinder.
When minimised with respect to m and n, the critical pressure p for buckling
becomes:
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14.4

The minimum value of p always requires n = 1, so that the buckling mode
has the shape of a single half sine wave encompassing the length of the
cylinder, and m full waves in the circumferential direction. It should be noted
that m is the number of full waves around the circumference. For cylinders
with L2/Rt > 100, i.e. not too ‘short’, Eq. 14.4 is closely approximated by:

p
E

L
R

R
t

cr 2.5 = 
0.92

( )
14.5

and the number of full waves is given by:

m R
L

R
t

 = 2.74 14.6

Blackler and Ansourian (1986a,b) showed that the buckling pressure rises
above the value given by equ. 14.4 if meridional (warping) elastic restraints
exist at either or both ends. The factor cb by which the buckling pressure
rises is given by:

c
n nb =1

2

 = 1.0 +  Σ β 14.7



Buckling failure of structures consisting of curved plates 427

βn
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 ≤ 14.8

where k is the stiffness of the elastic restraint at either end. For infinite
meridional restraint at one end, the buckling pressure rises by a factor of
1.23; this would be the typical situation at the base of a cylindrical silo
attached to a stiff foundation.

The buckling collapse of thin-walled cylinders does not show the high
imperfection sensitivity shown by cylinders under axial compression, but the
effect of imperfections is nevertheless significant. API Bulletin 2U (1987)
specifies an imperfection factor α = 0.8 for fabricated cylinders that meet the
tolerance requirement of 1% of the nominal diameter. ECCS (1988) specifies
α = 0.5 for cylinders that are circular to within 0.5% of the radius measured
from the true centre, a requirement more severe than API. From a number of
tests published in the literature, Blackler and Ansourian (1988) concluded
that in relatively squat cylinders, the imperfection factor remains approximately
constant at 0.7, reducing at low values of the buckling wavenumber m; the
relationship was expressed as:

α = 0.21 + 0.05m ≤ 0.70 14.9

In summary, the collapse pressure of an imperfect cylinder with elastic end
restraints is given by:

pu = cbcspcr 14.10

where cb is given by Eqs 14.7 and 14.8, cs (= α) by Eq. 14.9, and pcr by Eq.
14.5.

14.2.3 Nonuniform external pressure

It is found generally that it is more accurate to apply Flügge’s (1973) equations
in coupled form to the buckling problem under uniform or variable pressure.
In this more refined theory, the in-plane displacements are not neglected
when compared with transverse deflections of the surface. The differences in
the two solutions are exacerbated as the length of the cylinder increases. A
further advantage of the method is that solutions can be obtained for non-
classical edge conditions. The usual assumption of a homogeneous and isotropic
material holds, while the Fourier series representation of the displacement
functions includes a sufficient number of harmonics for results of high accuracy.

Consider a thin, elastic circular cylindrical shell of length L, radius R and
thickness h (Fig. 14.4), compressed by a nonuniform lateral pressure p(θ)
(Figs 14.5 and 14.6). The external load and the stress resultants on a shell
element are given in Fig. 14.7 with their positive directions.

As a membrane prebuckling state is assumed, the stability problem is
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reduced to solving Flügge’s partial differential equations which relate the
small incremental nondimensional displacements u v w, ,  to x  ( u  = u/R, v
= v/R, w  = w/R and x  = x/R) and θ:

L11( u ) + L12( v ) + L13( w ) = 0

L21( u ) + L22( v ) + L23( w ) = 0 14.11

L31( u ) + L32( v ) + L33( w ) = 0

x = 0

x = const

ztw

x, u

θ
θ, v

L

R

h

14.4 Cylinder coordinate system.
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14.5 Fluid pressure distribution and skew factor ρ.
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14.6 Wind and partial (patch) pressure distribution.
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where the linear partial differential operator L11 is:
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Full details are given in Vodenitcharova and Ansourian (1996, 1998). The
longitudinal coordinate is nondimensionalised as x  = x/R; the incremental
displacements are u v,  and w . In a complete cylinder, the incremental
displacements must satisfy circumferential periodicity, and are assumed as
series:

u x U x n
n n( , ) =  cos( ) cos ( )

=0
θ λ θΣ

∞

v x V x n
n n( , ) =  sin ( ) sin ( )

=0
θ λ θΣ

∞
14.13

w x W x n
n n( , ) =  sin ( ) cos ( )

=0
θ λ θΣ

∞

where n is the circumferential wavenumber and λ = mπ /l, l = L/R. Only one
half-sine function is taken meridionally (m = 1). Thus, Eqs 14.11 produce a
system of linear homogeneous algebraic equations in U Vn n,  and Wn  with
variable coefficients, the first of which is:
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14.7 Stress resultants.
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Two cases of circumferential variation are considered: hydrostatic (Tables
14.1–14.4), defined in a horizontal cylinder as a linear variation from crown
to invert; and partial (patch), where a sinusoidal pressure acts over a limited
part of the circumference. In all these cases, since there is circumferential
variation in pressure, all harmonics are coupled, and the algebraic equations
have variable coefficients, whereas in the case of uniform pressure, the
harmonics are uncoupled and the coefficients constant. Thus, the stability
problem is reduced to the determination of the minimum value of pressure at
θ = 0 that results in a nontrivial solution of the homogeneous system 14.4.

Table 14.1 Uniform (pcr) and hydrostatic buckling pressure (pst)
L/R = π/4

R/h Uniform Hydrostatic

pcr/E ncr ρ pst/E ρ pst/E ρ pst/E
× 10–9 × 10–9 × 10–9 × 10–9

100 13 960 9 0.1 14 540 0.3 15 070 0.5 15 440
200 2333 11 2425 2502 2557
300 832.0 13 857.4 882.5 900.3
400 399.7 13 411.2 422.6 430.5
500 225.7 14 232.9 239.0 243.3
600 141.8 15 146.5 150.2 152.8
700 96.29 16 99.01 101.4 103.1
800 68.47 16 70.56 72.23 73.39
900 50.93 17 52.34 53.54 54.39

1000 38.94 17 40.09 40.97 41.60

Table 14.2 Uniform (pcr) and hydrostatic buckling pressure (pst)
L/R = π

R/h Uniform Hydrostatic

pcr/E ncr ρ pst/E ρ pst/E ρ pst/E
× 10–9 × 10–9 × 10–9 × 10–9

100 3001 4 0.1 3258 0.3 3565 0.5 3772
200 528.2 4 568.4 610.1 639.6
300 195.2 5 205.0 217.7 227.3
400 92.4 5 98.84 105.0 109.2
500 53.31 5 56.4 59.61 61.91
600 33.97 5 35.69 37.57 38.96
700 22.73 6 24.16 25.43 26.33
800 16.33 6 17.26 18.14 18.76
900 12.34 6 12.84 13.47 13.91

1000 9.37 6 9.86 10.31 10.66

In the hydrostatic case, the cylinder is horizontal and the fluid pressure
linearly distributed with height (Fig. 14.5); the skew is ρ = [p1/(p0 + p1)] and
the pressure is:
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p p p =  + 
1 –  

cos 0 0
ρ
ρ θ 14.15

where p0 is the pressure at mid-height of the cylinder. ρ = 0 corresponds to
uniform pressure; ρ = 0.5 to zero pressure at the top, and ρ = 1 to p = –p1 at
the top and + p1 at the bottom. The hydrostatic pressure can also be expressed
as:

p a r
r

r

r =   cos ( )
=0

=1

Σ θ  where a p a p0 0 1 0= ,  = 
1 –  
ρ
ρ 14.16

The partial pressure, normal to the surface and linearly distributed with

Table 14.3 Uniform (pcr) and hydrostatic buckling pressure (pst)
L/R = 2π

R/h Uniform Hydrostatic

pcr/E ncr ρ pst/E ρ pst/E ρ pst/E
× 10–9 × 10–9 × 10–9 × 10–9

100 1577.0 4 0.1 1695 0.3 1854 0.5 1995
200 256.4 4 279.6 312.4 336.5
300 96.71 5 103.9 112.6 119.5
400 45.27 5 49.21 54.07 57.36
500 26.11 5 28.20 30.67 32.44
600 17.20 5 18.06 19.34 20.39
700 11.43 6 12.23 13.10 13.77
800 8.04 6 8.67 9.34 9.80
900 5.99 6 6.43 6.93 7.26

1000 4.61 6 4.94 5.30 5.56

Table 14.4 Uniform (pcr) and hydrostatic buckling pressure (pst)
L/R = 4π

R/h Uniform Hydrostatic

pcr/E ncr ρ pst/E ρ pst/E ρ pst/E
× 10–9 × 10–9 × 10–9 × 10–9

100 803.4 4 0.1 881.5 0.3 1011 0.5 1114
200 122.7 4 135.3 159.7 180.5
300 47.39 5 51.69 58.20 63.71
400 24.17 5 26.07 28.60 30.79
500 13.10 5 14.33 16.14 17.43
600 8.10 5 8.87 10.07 10.90
700 5.49 6 6.00 6.77 7.33
800 3.97 6 4.33 4.83 5.21
900 3.03 6 3.27 3.60 3.86

1000 2.40 6 2.54 2.76 2.94
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height above the invert of the cylinder (Fig. 14.6), is expressed in terms of
the maximum pressure pst as:

p p( ) = cos  –  cos 
1 –  cos 

 stθ θ α
α , θ ∈(0, ± α) 14.17

Since p(θ) must be a continuous symmetric function of θ, it is expanded as
an even series:

p
a

a k
k

( ) = 
2

 +  cos ( )0

=1 kθ θΣ
∞

14.18

Solving for the Fourier coefficients, the patch pressure for half-angle α is
(Ansourian, 2004):
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Following the development in Vodenitcharova and Ansourian (1998), highly
accurate results are obtained for the buckling pressure under patch loading
(α = 18.5 – 90°); these are summarised in Tables 14.5–8 and in Fig. 14.8.
The distribution of wind pressure around the circumference is idealised as:

Table 14.5 Wind and patch loading buckling pressure (pst)
L/R = π/4

R/h Wind Patch loading pst/E × 10–9

pressure ——————————————————————
pst/E × 10–9 α = 90° α = 60° α = 36.7° α = 18.5°

100 19 110 16 150 17 220 19 510 26 170
200 3081
300 1069
400 505.7
500 283.6 251.4 263.3 288.9 357.7
600 176.9
700 118.8
900 84.2
800 62.2

1000 47.4 42.8 44.5 48.2 58.6
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p(θ) = qz[–0.5 + 0.4 cos (θ) + 0.8 cos (2θ) + 0.3 cos (3θ)

– 0.1 cos (4θ) – 0.05 cos (5θ)] 14.20

where qz is the free stream gust dynamic wind pressure at wind speed V; this
distribution is also adopted in Australian Standard AS1170.2 ‘Wind forces’
(AS 1989) Results are also summarised in Tables 14.5–8.

14.2.4 Axial compression

Thin-walled cylinders in uniform axial compression fail suddenly by the
formation of diamond-shaped buckles. The failure stress is strongly affected

Table 14.6 Wind and patch loading buckling pressure (pst)
L/R = π

R/h Wind Partial (patch) loading
pressure pst/E × 10–9

pst/E × 10–9 ——————————————————————
α = 90° α = 60° α = 36.7° α = 18.5°

100 6098 4167 4743 6036 8098
200 962.7 697.0
300 329.5 245.8
400 154.4 117.5
500 85.93 66.34 72.9 86.33 126.9
600 53.28 41.61
700 35.60 28.07
800 25.11 19.96
900 18.47 14.77

1000 14.04 11.30 12.27 14.31 20.23

Table 14.7 Wind and patch loading buckling pressure (pst)
L/R = 2π

R/h Wind Partial (patch) loading
pressure pst/E × 10–9

pst/E × 10–9 ——————————————————————
α = 90° α = 60° α = 36.7° α = 18.5°

100 3953 2288 2706 3628 4288
200 601.7
300 202.4
400 93.79
500 51.73 35.77 40.64 51.09 70.90
600 31.86
700 21.17
800 14.86
900 10.86

1000 8.24 6.04 6.80 8.19 11.99
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by small imperfections and this phenomenon has attracted extensive research
since before 1945 until today, summarised by Rotter (2004). This form of
buckling is delayed by internal pressure, by localisation of the compressive
stress, and by stiffening. In the present context of curved plates, the specific
problem of collapse of corrugated plates as used in silo structures under the
action of drag caused by bulk solid friction is examined (Ansourian and
Glaesle, 2002). For the storage of products from the primary and mining
industries, large-scale silos are often constructed of steel, where the wall
may be either of plain sheet or corrugated. A significant problem is local
failure of the corrugations. This does not necessarily cause catastrophic collapse,
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14.8 Buckling under partial (patch) pressure distribution.

Table 14.8 Wind and patch loading buckling pressure (pst)
L/R = 4π

R/h Wind Partial (patch) loading
pressure pst/E × 10–9

pst/E × 10–9 ——————————————————————
α = 90° α = 60° α = 36.7° α = 18.5°

100 2826 1314 1660 1989 2393
200 410.7
300 134.9
400 61.34
500 33.37 19.91 23.33 31.37 37.66
600 20.34
700 13.41
800 9.36
900 6.81

1000 5.13 3.31 3.83 5.06 6.44
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but may cause lean of the structure and out-of-roundness, effectively requiring
major repair. The vertical load arises primarily through frictional drag of the
bulk solids partly against the wall and partly against itself, exacerbated by
flow overpressures. Failure occurs by yielding at the critical section defined
by a trough of the corrugations under a biaxial stress system including axial,
bending and circumferential stresses; amplification of the vertical moment
arises from additional deflection of the curved shell. The critical axial force
P to cause failure has been derived as:
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c p R

t
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 14.21

where e is the eccentricity of the resultant vertical force relative to the
centroid of the critical section, typically about 30% greater than the half
corrugation depth, ph is the lateral pressure of the bulk material (Ansourian
and Glaesle, 2002).

More refined analysis would include the second order effects of the eccentric
axial force, which amplify the first order moment. A lower bound to this
amplification may be evaluated on the assumption that the corrugation remains
elastic for most of the loading history. On this assumption, the new eccentricity
becomes

e
P L

Et
1 – 

12 (0.7 )2

2 3π
In a typical situation, the amplification is in the order of 10%.

14.3 Experimental behaviour

Considerable experimental effort has been exerted around the world to gain
a clear understanding of the response of cylinders under external pressure. In
this section, thin-walled cylinders are considered in the slenderness regime
close to R/h = 1000, common in silos and tanks. It is clear that the response
of these cylinders depends strongly on the restraint conditions at the two
ends of the cylinder. These restraints are radial, tangential, axial and rotational.
A detailed study of this effect is given in Vodenitcharova and Ansourian
(1996) in the context of the Flügge formulation, and includes numerical data
for many combinations of restraint. The buckling strength of thin cylinders
under uniform or nonuniform pressure is very low when the two ends are
free (wavenumber n = 2), and reaches a maximum when fully clamped at
both ends; while a wide range of strengths is encompassed within the two
extremes, the most significant rise occurs in a ‘free’ cylinder with the addition
of radial restraint at each end; the addition of tangential restraint has an
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almost negligible effect. Of particular significance is the case of nonsymmetric
boundary conditions in which one end of the cylinder has radial and axial
restraint, while the other end is entirely free. This is typically the case of a
tank bolted to the foundations but totally free at the top. Here, the buckling
strength does not reach the ‘full’ restraint value, but is nevertheless high with
a 48-fold increase over the ‘free’ condition. At least one major silo failure is
attributed to such a loss of stiffness by failure of the anchorage of the vertical
stiffeners into the foundation.

Early experiments on cylinders and curved plates led to the erroneous
conclusion that small imperfections had a negligible effect on buckling strength.
It is, however, likely that the strength gain due to additional restraint (e.g.
meridional) over and above the ‘classical’ restraints assumed in calculations,
may have masked the significant imperfection sensitivity that is now generally
accepted. It is now clear that the effect of initial imperfections is significant,
whether the pressure is uniform or not, causing a reduction in initial buckling
pressure of up to 50%.

In the case of slender shells, the experimentally observed response to
incremental external pressure may be described as prebuckling, initial buckling,
general buckling, postbuckling and collapse. The latter stage may be observed
in Fig. 14.9. In the prebuckling phase, displacements remain small although
some nonlinearity may exist due to amplification of initial deformations;
there are no plastic deformations and recovery upon pressure release is
complete. At initial buckling, one or more buckles form in the area of greatest
imperfection, accompanied by large deflections and some plasticity; a deep
rumble caused by vibration of the wall may be heard in the larger specimens.
Buckling is of the snap-through type and gives no warning; upon release and
reload, the same buckles will reappear at slightly reduced pressure. As pressure
rises, the global buckling pattern develops, normally with a lesser number of
lobes than predicted by perfect cylinder bifurcation theory, for example 12
lobes versus 15; this effect is caused by imperfections which govern the
formation of the initial and final buckling pattern, ensuring that several
buckles have longer wavelength than the ‘perfect’ prediction. With maximum
imperfections in the range 5t – 10t, initial buckling is observed in the range
0.4pcr – 0.7pcr, where pcr is the bifurcation pressure of the perfect shell,
computed taking account of the actual edge conditions, while the general
buckling pattern occurs later in the range 0.6pcr – 0.9pcr. The observed
wavenumber is invariably smaller than perfect shell predictions.

Formation of the general buckling pattern does not normally announce
imminent collapse. The post-buckling regime in which the buckling pattern
is strongly amplified and pronounced plasticity develops, ends by a local
plastic torsional failure of the ridge or V-shaped ‘curved beam’ bent in the
meridional direction, at the nodal line of the circumferential buckles (Fig.
14.9, D = 1 m, R/t = 910, L/R = 2). In the absence of fractures of welds or
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other connections in the neighbourhood of the ridge under the high distortions
caused by buckling, the postbuckling range can become significant, and can
raise the collapse load of the shell to a maximum of 1.4pcr (a minimum of
10% is normally available). However, use of this reserve in design is inadvisable
because of the danger of buckles appearing on the shell surface at working
loads.

Tests on horizontal cylinders (Ansourian et al., 1995, Sengupta, 1997)
subjected to hydrostatic external pressure by submersion in a water tank and
additional internal vacuum have shown that the response of the shell is not
unlike that under uniform external pressure in terms of buckling behaviour
and ultimate strength. In contrast to uniform pressure testing, a resultant
force now acts on the cylinder, which therefore must be restrained; the restraint
is normally applied at the end supports where the ‘classical’ boundary restraints
are also applied. Further, the force resultant applies global bending to the
cylinder and the resulting meridional compressive stresses may reduce the
buckling pressure. Tests were carried out on 1 m diameter cylinders in the
slenderness range R/h = 500–900 with L/R = 1.55–2.38. A typical response
is shown in Fig. 14.10. The level of imperfection in the zone of peak buckling

14.9 Cylinder buckling under external pressure. Note torsional failure
of ‘ridge’.
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deformations is of the order of t. The full buckling pattern is of decaying
sinusoidal form (Fig. 14.11) and is developed at 90% of the linear buckling
prediction, but the collapse pressure is slightly higher. The wavenumber is
reduced by 1 from the predicted value of 10. The geometry at the mid-span
section near collapse is shown in Fig. 14.12, while nonlinear analysis predictions
based on the measured initial imperfections is shown in Fig. 14.13. The
experimental global buckling pressure was found to be slightly less than the
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linear ‘perfect’ shell predictions, but a postbuckling reserve existed before
final collapse.

14.4 Prototype failures

Buckling failure of silos and tanks under the action of vacuum or external
pressure typically due to wind is not uncommon. A steel header tank of
diameter 3 m, length 12 m and R/t = 250 imploded through inadequate
venting that allowed a small vacuum to form. Nonlinear finite element analysis
for the combined effects of self-weight, initial imperfections, partial hydrostatic
pressure and uniform external pressure due to vacuum, revealed that failure
could be expected at a vacuum of 22 kPa (2.2 m vacuum head; Fig. 14.14).

14.14 Header tank – finite element prediction.

A steel silo discharging bran failed by buckling under external pressure
when a plug of bulk material slid down with no pressure relief at the top. The
silo was of 4.5 m diameter, 23 m height and 6 m wall thickness. The observed
circumferential buckling wavelength of 2 m is in full agreement with the
predicted number of buckling waves m = 7 in a fully developed buckling
pattern; the level of vacuum required for the observed failure is estimated as
15 kPa. Another silo suffered total implosion when failure of the discharge
hopper created high vacuum as a plug of bulk material slid under gravity.
The failure of these silos and of the header tank above emphasises the
importance of effective venting of these slender structures having limited
buckling capacity.



Buckling failure of structures consisting of curved plates 441

External pressure is also created by wind, causing a risk of buckling
failure. In a bulk solid container, the structure is at especial risk when empty.
A 16.5 m diameter tank 27 m high buckled under wind load during construction.
The failure, characteristic of cylinders under external pressure with no radial
restraint at one end, extended down to a step in wall thickness from 8 to
10 mm. Failure occurred while the top strake was only tack-welded to the
strake below, but attracted full wind pressure. Minimal temporary bracing
would have prevented failure. A group of six 15 m diameter and 15 m high
empty wheat silos failed under wind loading. They were constructed of
vertically corrugated sheeting stiffened vertically by 48 Z-section stringers.
The wind speed at failure was estimated to have been very close to a design
wind speed. The potential buckling strength of the walls was reduced by the
flexibility of the joints in the vertical stringers and by yielding of the
holding-down fittings, leading to partial loss of restraint against radial and
vertical movement. This failure emphasises the importance of the holding
down detail and of the continuity of the vertical stiffeners.

Because of economy, stiffening of corrugated silos has in the past not
always continued to the top of the structure. This fact has had a negative
influence on stability, as several examples of failures have shown (Figs 14.15,
14.16). Owing to compression and exterior eccentricity of the stiffener, the
corrugated sheet immediately above the first bolt translates inwards (Fig.
14.17). It is concluded that the abrupt introduction of stiffening causes very
high local stress in the corrugated sheet. The area around the first bolt therefore
yields and precipitates failure of the sheeting.

14.5 Buckling through differential settlement

Foundations of large steel cylindrical tanks for bulk and fluid storage tend to
be shallow and may consequently suffer differential settlement under load.
These tanks are ductile and are able to tolerate limited settlement without
distress. The measured settlement values when plotted relative to the tilt
plane have an irregular shape that can be expressed as a Fourier series in n
harmonics (Jonaidi and Ansourian, 1998). Several theories have been developed,
ranging from inextensional to membrane and semi-bending theory, but the
finite element method remains paramount for the analysis of shells of variable
thickness, for stiffened shells and for the effects of buckling, large displacements
and plasticity.

Inextensional theory is valid only for open-top tanks subjected to settlements
of low n, and excludes the effects of (1) rigidity of any primary wind girder,
and (2) variation of shell thickness. An analogy is used in this regard where
a part of the shell is considered as a deep beam over the shell height. The
measured settlement values when plotted relative to the tilt plane have an
irregular shape that can be expressed as a Fourier series: by considering the
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14.15 Failure by corrugation collapse.

14.16 Corrugation collapse at end of stiffeners.
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nth component of that series, the differential settlement u at the shell base
(x = 0) is:

u = un cos (nφ) or u = un cos 
ny
r





 14.22

The same pattern is repeated at the top of the shell, but now in the horizontal
plane; where the shell base moves down, the shell top deflects radially out
(Fig. 14.18 and 14.19). Lines AA1 and BB1 rotate due to deep beam action,
and points A1 and B1 approach each other; were A1B1 a straight line, the
movement would be difficult and accompanied with high horizontal membrane
forces; but A1B1 is a circular arc, and the displacement can occur by a
decrease in the radius of curvature of A1B1. To make this movement possible
the adjoining panels must move in, involving inextensional lengthening and
increase in radius of curvature. It follows that primary circumferential bending
occurs in the top layer of the shell rather than membrane compression or
tension. In this theory, mid-section in-plane strains are assumed to be zero,
or εx = εxφ = εφ = 0. For the nth Fourier component, the displacements are:

14.17 Finite element analysis (FEA) of corrugation at end of stiffener.
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u = un cos (nϕ)

v = vn sin (nϕ) 14.23

w = wn cos (nϕ)

Neglect of the circumferential strains results in the relation between radial
deflection and base settlement:

w h
r

n un n = 2 14.24

Therefore, the distortion is proportional to the aspect ratio and the square of
the harmonic number. A shortcoming of this theory is that the solution is
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14.18 Settlement: loading, geometry and boundary conditions.
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independent of the wall thickness, but is satisfactory at n < 4, in the absence
of a primary wind girder. Kamyab and Palmer (1989) gave a better solution
for radial deflection w and vertical membrane force Nx in the presence of the
girder:
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In the above expressions, Iratio is the ratio of circumferential bending rigidity

of the primary wind girder to shell rigidity, or 
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is applicable over a much wider range of n, but not beyond a critical value.
Inaccuracies also arise from the neglect of bending, as may be determined by
comparison with finite element solutions; the typical maximum error for the
range of n considered, is approximately 10–20%.
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14.19 Shell deformation due to settlement.
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Finite element analysis provides the most accurate and general solution,
and is extended to linear buckling and nonlinear response (Jonaidi and
Ansourian 2000). The model consists of one half-wave (n = 2) of a cylindrical
shell, supported along two generators and along two circular edges normal to
the axis (Fig. 14.18), with boundary conditions as shown. In this ‘local’
model, a highly refined mesh was possible, yielding high accuracy.

Linear buckling analyses using highly refined meshes were made for tank
structures of wall slenderness in the range r/t = 300–2000, and geometry
h/r = 0.3–3. Radial and circumferential displacements were restrained at the
base and top, modelling closed-top tanks. Differential settlements at harmonic
n from 2 to 24 were imposed at the base and the first eigenvalue extracted.
For t uniform and low n (< 5), the critical stresses depend on both r/t and
h/r, and the buckling mode is mainly one of shear (Fig. 14.20a). With increasing
height however, local meridional buckling occurs near the base at moderate
n (Fig. 14.21a, n = 6). At higher n, local buckling near the base occurs and
the effect of height disappears, i.e. behaviour is dominated by axial compression.
In the case of tapered shells, buckling occurs at the top of the shell even for
moderate and higher n. The shear buckling mode can be seen even at n = 12
(Fig. 14.21c, Tratio = 5). The thinner area at the top, subjected to shear
stresses caused by circumferential restraint, is more likely to buckle than the
thicker shell at the base under axial compression.

(a) (b)

14.20 Shear buckling for uniform and tapered shells (h/r = 0.7,
r/t = 1000).

Following an analysis of the results and examination of the buckling
modes, it was found that the maximum meridional stresses (σx) at the base
depends on both r/t and h/r; and the buckling mode is one of shear. This
mode is shown in Fig. 14.20(a) for uniform thickness and 14.20(b) for tapered
wall. For n = 2, the best fit is given by:
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While the linear study provided an insight into the dominant modes, a nonlinear
analysis is required for the ultimate response. Geometry parameters of r/t =
1000 and h/r = 1 are chosen, representative of medium/large tanks. The wall
is assumed to have uniform or tapered thickness (Tratio = 3). Under highly
localised displacement (e.g. n = 8), the linear buckling mode is one of shear
in the thinner upper plates, but the nonlinear response is shown in Fig. 14.22

(a) (b) (c)

14.21 Buckling mode for cylinders (h/r = 1, r/t = 1000): (a) n = 6,
uniform thickness, (b) n = 12, tapered thickness, Tratio =3, (c) n = 12,
Tratio = 5.
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14.22 Stresses at base for stepped shell, imperfection amplitude Wt,
n = 8, imperfection affine to buckling mode.
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at several imperfection amplitudes in the range Wt = 0 – 1.5t. The sensitivity
to imperfection is high: the maximum meridional membrane stress at Wt =
1.5t is half the value for the perfect cylinder. This is due to the high meridional
stresses which create a condition closer to cylinders in uniform axial
compression.

Experiments were performed by Jonaidi (1998) to study the effects of
harmonic settlements on open-top and closed-top specimens of uniform and
stepped wall thickness. The specimens were generally of 600 mm diameter
and 200 mm height with four courses of thickness 1.25 mm, 1 mm, 0.75 mm
and 0.5 mm (Fig. 14.23). In a study of the effect of moderately localised
settlement, the harmonic pattern n = 4 was chosen and settlements were
imposed in 0.025 mm increments until large buckling displacements were
observed. The settlement caused large buckling deformations in the upper
parts of the shell. The general deformation was that of a large inward dimple
above the crown of the cosine settlement curve, together with inclined dimples
typical of shear buckling above the nodes of the cosine curve. The lower
parts of the shell were always free of buckles. The ultimate configuration
was well predicted in a nonlinear analysis (Fig. 14.24).

14.23 Upward settlement in Test 6, n = 4, stepped wall thickness,
note large inward deformation at the top

14.6 Concluding remarks

In this chapter, overstressing and buckling failure of slender curved plates
were examined, and abridged developments provided of theories given fuller
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scope in the author’s and others’ publications. Closures of pressure and other
vessels were examined for buckling under internal pressure. Buckling under
uniform and nonuniform external pressure was considered for classical
boundary conditions and for end warping restraint. The susceptibility to
collapse of corrugated curved plates was investigated. Theories were compared
with experimental data, and prototype failures critically examined. Finally,
the effects of differential settlement of the foundation of tank structures on
distortional and plate buckling was studied.
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15.1 Introduction

Light gauge steel structural members, generally manufactured by cold-rolling
from steel sheet or strip material, are extremely common throughout the
world. These members can have substantial advantages over alternative types
of construction due to the limitless variation in cross-sectional shapes that
can be produced and the high strength to weight ratios available from the use
of thin material.

The variation in cross-sectional shapes possible with light gauge steel
members, coupled to the high width to thickness ratios used in the walls of
such members, leads to complexities in the design of these members The
possibilities of local buckling of the component walls and a variety of other
buckling potentialities arise, and must be taken into account in the design
analysis of such members. Over a number of years the various types of
buckling observed in light gauge members have been examined by a substantial
number of investigators and a large number of design specifications have
been developed throughout the world that take into account the different
types of buckling and the interaction that occurs between the different modes.

Light gauge cold-formed steel members have been used in building
construction for over 150 years (Yu 2000), but the growth in structural use
and understanding of the behaviour of structures made this way started during
the second world war and the first design specification for this type of
construction was produced in the USA in 1946 (American Iron and Steel
Institute 1946). The first UK specification was produced in 1961 (BSI 1961),
although a proposed specification due to Shearer-Smith (1951) had been
published some 10 years earlier. The 1970s saw an upsurge in interest in this
field in Europe and in the 1980s new UK codes (1987) and European
Recommendations (ECCS 1987) for design in cold-formed steel were produced
as well as a new American code (1986). This interest has continued since
then, and the first Eurocode dealing with cold-formed steel was published in
1996 (CEN 1996a). Particular types of cold-formed steel structures have
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their own inherent design complexities, and new design specifications have
been produced in the past decade dealing specifically with stainless steel
(CEN 1996b) and storage racking (Federation Européene de la Manutention
2000).

Since about 1980 there has also been a progressive increase in the strength
of steel used in the manufacture of cold-formed sections. Prior to this period
the type of steel most widely used in the construction industry was of about
200 MN/m2 yield strength whereas at the present time many companies are
producing members with about 400 MN/m2 yield strength, and indeed there
has recently been substantial use in Australia of cold-formed tubes of yield
strength 1350 MN/m2.

The major structural advantages of cold-formed steel members lie with
the thinness of the material that can be used, leading to extremely lightweight
construction, and this, combined with the trend towards using higher-strength
steel, promotes the occurrence of failure modes that do not arise, or are rare
in occurrence, in conventional steel structures. Thus the advantages that can
be gained by the use of cold-forming are bought at the expense of the
requirement to use increased sophistication in the design analysis.

Perhaps the major factor that arises in the design of cold-formed steel
members is the susceptibility of these members to a wide variety of buckling
modes. The thin walls of such members are often liable to suffer local buckling
in compression, and this must be taken into account in the design of almost
any cold-formed steel structural member. Local buckling is stable in the
elastic range, and locally buckled members may have substantial postbuckling
strength. However, local buckling does modify the behaviour of a member,
and the effects of local buckling on member behaviour, and its interaction
with other buckling modes, must be considered in design.

Another factor that causes complexity in cold-formed steel design arises
from the fact that cold-formed members, in addition to being thin-walled, are
in most cases open sections, and are extremely flexible and weak in resistance
to torsion. This brings the requirement to ensure that the loading is introduced
to such structures in such a way that torsional behaviour is minimised, and
also introduces the possibility of torsional buckling, torsional-flexural buckling
and lateral torsional buckling in cold-formed members.

Another source of complexity is found in the methods used to connect
cold-formed steel members. In comparison with hot-rolled structures, welding
is used to a much smaller degree, and a plethora of connection types and
methods exists, including the use of bolts, rivets, screws and adhesives,
together with a number of connection types in which the connection is made
by deforming the materials of adjoining members to form the joints.
Connections in cold-formed steel members in the main lack complete rigidity,
and the semi-rigid nature of the connections can have a substantial effect on
the structural behaviour.
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In this chapter, a number of the various modes of buckling observed in
light gauge members will be described and analysed.

15.2 Local buckling in plates and systems of plates

15.2.1 Brief introduction

The first theoretical examination of plate buckling was by Bryan (1891) who
solved the problem of a simply supported plate under uniform compression.
Since then numerous researchers have investigated local instability in plates
under a wide variety of loading and boundary conditions using many different
methods of analysis. There are a number of excellent textbooks which have
described the main results of these investigations, for example those by
Timoshenko and Gere (1961) and Bulson (1970), and the reader is referred
to these for a general study of plate instability.

With regard to plate postbuckling analytical approaches, only the two
methods most often used by the author, namely the ‘semi-energy method’
and the so-called ‘lower bound method’ will be briefly described here, since
these are equally applicable to single plates and systems of plates.

15.2.2 Energy equations

The strain energy stored in a locally buckled elastic plate is given by the
summation of that due to out-of plane bending, V1, and that due to in-plane
deformations, V2. These can be written:
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In the above equations w is the out-of plane deflection of the plate, σx, σy and
τxy  are the membrane stresses in the plate, εx, εy and γxy are the membrane
strains in the plate, ν is Poisson’s ratio and D is the plate flexural rigidity.
The equations are specifically applicable to initially perfect plates but if it is
assumed that the local imperfections have the same form as the deflections,
the imperfect case can be derived rather simply from the results obtained for
the perfect plate. If a number of plates act together to form a structural
member, then the total strain energy is obtained by summing that in the
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individual plates, while of course, ensuring that compatibility conditions are
satisfied where the plates are connected.

In applying either of the analysis methods mentioned, the approach begins
by assuming, for a given end displacement on a plate or member, a form for
the out-of-plane displacements w (and the in-plane displacements v if required).
The in-plane stresses and strains are then determined in terms of the applied
end displacement and the magnitude coefficients of the assumed out-of-
plane displacements from compatibility conditions. The strain energy is then
written in terms of the end displacement and the magnitude coefficients of
the assumed displacements and the Principle of Minimum Potential Energy
is applied to obtain the relationship between the applied end displacement
and the assumed plate displacements.

15.2.3 The lower bound method

As a simple example, consider a flat plate, simply supported on all edges and
subjected to a uniform displacement u in the x direction as shown in Fig.
15.1. Using the ‘lower bound’ approach, the average strain in the x direction
at any position across the plate is determined by computing the change in
length of a compressed and curved element, as detailed in the figure. This
strain is given by
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15.1 Simply supported flat plate under uniform compression.

In the lower bound method, it is assumed that stresses in the y direction and
shear stresses do not exist, so that the membrane stress in the x direction is
given simply by σx = Eεx, where E is the modulus of elasticity. The strain
energy due to the in-plane effects is then simplified as the only contribution
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is from stresses and strains in the x-direction. By substituting this in Eq.
(15.2), V2 may be expressed as:
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The strain energy due to out-of-plane effects, V1, is as given by Eq. (15.1).

If we now assume a form for the deflections, i.e. w A
x
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where A is the magnitude coefficient, and by substituting this into the energy
equations and performing the integrations, we have:
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where ε is the nominal strain in the x direction, equal to u/a.
The Principle of Minimum Potential Energy is now employed by

differentiating the strain energy with respect to A and equating this to zero.
(Note that since ε is a specified value then only minimisation of the strain
energy is required.) By carrying this out and performing some rearrangements,
we obtain:
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Thus the deflection magnitude A is given as ε varies. Knowing this, we can
obtain the average strain and stress at any position across the plate by
substitution into Eq. (15.3), and the total load by integrating the stresses
across the plate. It should perhaps first be mentioned that Eq. (15.6) suggests

that A2 is negative, i.e. A is imaginary, if ε π
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the point at which A begins to have a non-imaginary value, i.e. the buckling
point. At this point A = 0 and
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This is the well-known expression for the local buckling stress of an elastic
plate simply supported on all edges. As the exact deflected form for this case
was used, the exact (according to elastic thin plate theory) value of the
buckling stress arises. Note that the buckling stress is often written as:
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where in this particular case K b
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the case a = b, i.e. a square plate.
By substituting Eq. (15.6) into Eq. (15.3), we can evaluate the strain, and

hence the stress at any point across the plate, i.e.:
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The average stress is therefore equal to the nominal strain times E at the plate
edges and reduces towards the centre. At end displacements substantially
greater than critical, the stress according to Eq. (15.9) becomes tensile. This
occurrence has been observed in testing, but it should be noted that the
solution becomes increasingly inaccurate as the loading progresses beyond
buckling because (a) there are inherent inaccuracies in the lower bound
approach and (b) the buckled shape changes as buckling progresses.

15.2.4 Reduced modulus of elasticity, E*

To complete the example under examination, if we integrate the stresses
across the plate and multiply by the plate thickness, we find that the variation
of load with nominal end displacement is:
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Thus the increase in load per unit end displacement occurs at only one-third
of the prebuckling rate, i.e. the axial stiffness is reduced to one-third of its
prebuckling value. This reduction in stiffness is often described in terms of
a reduced modulus of elasticity, E*. In this case, the reduced stiffness dP/dε
is equal to Etb/3, whereas the prebuckling stiffness is Etb. Thus we have
E*/E = 1/3.

15.2.5 Effective width concept

A method of describing the effects of local buckling that is extremely widely
used in design is the effective width approach. This approach has been known
for a long time in shipbuilding as a rule of thumb design tool but it was first
quantified analytically by von Kármán et al. (1932) and subsequently used,
researched and modified by many researchers, most notably Winter (1947).
This approach recognises that on supported edges of a plate, or at the unbuckled
corners of a section, the stress is not greatly affected by local buckling, while
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at areas far from supported edges the stresses are substantially reduced. The
effective width approach simplifies the stress distribution by considering
that locations near supported edges are completely effective in resisting axial
displacement, and behaves as if no buckling effects were present, while areas
far from the supported edges are completely ineffective and carry no stress.
This is illustrated in Fig. 15.2 in the case of a compressed member. Using
this approach the effective width of a plate, be, is such that the load-end
displacement relationship is as specified by analysis or experimentation.

σ σ

(a) (b)

15.2 Stress system in a compressed strut and effective width
idealisation (a) Stress variation across section; (b) effective width
simplification.

For the example used we have, from Eq. (15.10) for the simple example
case:

P Etb Etb =  –  2
3

(  –  )  = 
3

[  + 2 ]CR CRε ε ε ε ε[ ]
= 

3
[  + 2 ] = CR e

tb tbσ σ σ

∴ b
b
e CR = 1

3
1 + 2

σ
σ







15.11

Thus, the effective width is equal to the full width at the point of buckling,
and reduces thereafter.

15.2.6 Effects of imperfections

So far it has been considered that the plate under examination is perfectly
flat. No plate, however, is perfectly flat and the imperfections occurring in



Analysis and design of plated structures458

plates can have a substantial effect on their behaviour. It is generally considered
that the most serious imperfections have the same form as the local buckles.
If this is assumed to be the case then the governing equations can be modified
with little effort to take the imperfections into account. For a plate with total
deflection magnitude coefficient A and initial imperfection magnitude A0

then, if the imperfect plate is initially stress free, the bending stresses are
proportional to (A – A0) while the changes in membrane stress due to out-of-
plane effects are proportional to (  –  ).2

0
2A A  Thus the terms containing A2 in

V1 can be replaced by (A – A0)
2 and those containing A2 in V2 can be replaced

by (  –  ).2
0
2A A  Equation (15.5) can be rewritten:
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For the imperfect case, the simple relationship between A and ε becomes
more complicated and it is simpler to write ε in terms of A rather than A in
terms of ε. Thus:
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In this case the simplest method of displaying the results is to specify the
deflection magnitude A and evaluate ε and the corresponding stresses and
loads. This hampers the simplicity of the approach but does not lead to any
undue complexity.

15.2.7 The semi-energy method

The semi-energy method was first proposed by Marguerre (1937). This
approach avoids the inaccuracies inherent in the lower bound method by
taking into account the true membrane stress field induced by the out-of-
plane deflections. To do this, the compatibility equation introduced by von
Karman (1910) is used to evaluate the in-plane strain and stress situations
induced by the out-of-plane deflections rather than the simplistic approximation
of the lower bound method. The compatibility equation, for a perfect plate,
is:
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where F is a stress function such that σx = ∂2F/∂y2, σy = ∂2F/∂x2, τxy = ∂2F/
∂x ∂y. This can be solved for a wide variety of plate buckling problems and
does not lead to undue complexity, but does take substantially more effort to
explain. For the purposes of this chapter, it is sufficient to say that if the plate
is simply supported on the loaded edges the stress distributions obtained for
a given end displacement are the same as those given by the lower bound
method plus a periodically varying correction function that ensures the
satisfaction of compatibility condition between out-of-plane and in-plane
displacements. If the exact deflected form is specified for this method, then
the exact solution corresponding to elastic plate theory is obtained. As in the
case of the lower bound method, the presence of imperfections of the same
shape as the local buckles can be easily taken into account by the modification
of the deflection magnitude coefficients in an identical manner.

15.2.8 Behaviour in the advanced elastic postbuckling
range

As buckling progresses, the shape of the local buckles changes and the
stiffness of the plate reduces further. This can be taken into account analytically
in a number of ways, using either the lower bound method or the semi-
energy method, by providing the means for the assumed displaced form to
change as loading progresses. Classically this is carried out by providing a
number of different displacement functions, each with a different magnitude
coefficient, and evaluating the strain energy in terms of all magnitude
coefficients. The application of the Principle of Minimum Potential Energy
with respect to each magnitude coefficient in turn results in a series of
nonlinear equations which are then solved for specified increments of end
displacement to provide the complete solution. For the particular example
considered, the load-end displacement behaviour obtained on this basis is
shown in Fig. 15.3.

15.2.9 Failure of thin steel plates and members

Failure of thin steel plates and members in the presence of local buckling is
usually, although not always, associated with the onset of plasticity. If local
buckling has occurred, then compressed elements of a plate or plate system
generally fail very shortly after yielding occurs. Thus it is generally assumed
in design specifications that plasticity in compression is synonymous with
failure. In members such as beams where tension elements may reach yield
while compression elements are still elastic, then the member may have
substantial post-yield strength and continue to carry increasing load until the
compressed locally buckled elements attain yield.

Even in the case of members that have attained their peak loading, it is
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often desirable to have knowledge of the post-failure behaviour. This is
important, for example, in the case of multiple redundant structures when the
residual capacity of a failed member can postpone the onset of complete
structure failure, or in vehicle energy absorption systems where the absorption
of energy by ‘failed’ members is used to bring the vehicle to a halt. Research
in these fields has resulted in large strides in the knowledge of post-failure
behaviour of a wide variety of structural members and components. However,
these considerations are outside the scope of this chapter, which will be
concerned with behaviour up to failure only.

15.3 Finite strip type analysis

15.3.1 Background

The finite strip method has been used for the analysis of buckling of thin-
walled members for quite a long time now. The formulation of this approach
is generally credited to Cheung (1968), although Wittrick (1968) used a
similar type of approach to deal with buckling and vibration problems. Over
the years, many researchers have used and extended the applicability of this
approach. In considering the finite strip method, it is often stated that this
approach requires substantially less computing power than the parent finite
element method, and this is true, but becoming less important every year as
computing capability increases. Another advantage which could be claimed,
however, is that the processing of the output from the finite strip analysis is
generally much simpler than from the finite element output, and it may well

Load P

PCR

End displacement u

Imperfect plate

Perfectly flat
plate

Initial postbuckling slope

15.3 Load-end displacement path for compressed plate.
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be easier in many cases to examine the findings of the finite strip analysis for
comparison with alternative approaches.

In this chapter, a particular finite strip type approach is briefly outlined,
with some attention being focused on several alternative strip formulations.
The two different postbuckling analysis methods outlined in the previous
section are used in this approach to determine the postbuckling behaviour.
The approach is not new, having been first developed for teaching Masters
students in the mid-1970s, but there have been several extensions carried out
over the years, and much of the postbuckling analysis material incorporated
has not been widely distributed.

15.3.2 Finite strip layout

The thin-walled member under examination may be considered as a series of
thin plates joined along their edges as shown in Fig. 15.4. Figure 15.4(b)
shows a typical finite strip layout in which several strips, denoted by the
dotted lines, are used in each plate element. Figure 15.4(a) shows a somewhat
more ambitious finite strip layout in which one strip is used for each plate
element. In such a case, either lower accuracy of solution results, or greater
complexity of strip is required. When the member is acted upon by some
external loads, the walls will deform. The deformations of the wall consist of
in-plane and out-of-plane deformations. If we consider that the member
undergoes buckling with no change in the applied load during buckling then
the variation of strain energy due to in-plane and out-of-plane deformations
can be evaluated, as can the potential lost by the applied loading, in terms of
the deformation magnitudes. Precisely what deformation magnitudes are
considered depends upon the particular strip formulation. By applying the
Principle of Minimum Potential Energy, the relative magnitudes of the different
deformations can be evaluated together with the minimum buckling condition.

(a) (b)

15.4 Finite strip layouts.

In the approach described here, the in-plane displacements are analysed
on the basis of the simple beam theory which specifies a single value for
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each element, while the out-of-plane displacements are based on plate theory,
with a larger array of variables. For the examination of buckling of members
with simply supported ends, a sine wave describes exactly the buckling
shape for in-plane and out-of-plane effects along a prismatic member with
unvarying axial load and moment. In this chapter, for simplicity, the sine
wave variation along the member will be considered exclusively, although it

should be mentioned that relatively simple trigonometric functions (e.g 
π x
L

sin 
m x

L
π

 for fixed ends and sin
2

 sin 
2

π πx
L

m x
L

 for simply supported–fixed

ends) can also be used to give high accuracy for other standard boundary
conditions (Rhodes and Khong 1988).

The member under examination is considered to be under some combination
of axial force and bending. In some cases, the variation of stresses around
the section prior to buckling is known, e.g. uniformly compressed members,
or can easily be determined, e.g. beams under simple beam theory, while for
other cases the dependency of the stress variation around the cross-section
requires that a separate first order analysis be carried out to establish the
loading situation.

At the point of buckling, for any strip as shown in Fig. 15.5 the analysis
assumes that the in-plane deformations due to buckling can be written as:

v x y v
x

a
( , ) =  sin

π
15.15

where a is the strip length or the buckle half-wavelength.

x

y

V

w1, θ1, κ 1, ψ 1

w2, θ2, κ 2, ψ 2

15.5 Displacements in a finite strip.

The out-of-plane displacements of a strip are written in different forms
for different strips. The four different types of strip used are given below.
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15.3.3 Linear strips

With this type of strip, the displacements vary linearly in the y-direction, i.e.

w x y w b
x

a
( , ) = (  + ) sin 1 1θ η π

15.16

where w1 and θ1 are the displacement and slope at y = 0, b is the strip width
and η = y/b. The boundary conditions for in-plane and out-of-plane
displacements at the junction of adjacent strips are that the slopes of each
strip in the y direction are equal and the displacements of each adjacent edge
in the x and y directions are equal. These last two are generally written in
terms of the in-plane and out-of-plane displacements, v and w.

Examination of Eq. (15.16) suggests that since the slope does not vary
across the strip, and from compatibility thus also sets the slope for the next
and subsequent strips, then the two variables, together with a single in-plane
variable v1, completely describe the deformation system within the member.
This seems, at first thought, rather strange and, at best, unhelpful. Regardless
of how many strips, or indeed how many plate elements, that are in the
member, a total of three unknowns, or three degrees of freedom, results. This
is in essence the classical situation regarding bending and torsion of thin-
walled beams in the absence of any cross-sectional distortion. The approach
here gives an alternative method of deriving the relevant flexural and torsional-
flexural buckling loads, or, if desired, any of the classical cross-sectional
properties. Apart from this, these strips can be used in conjunction with any
of the other strip types to cut down solution time, although this is not a great
problem nowadays.

15.3.4 Cubic strips

With this type of strip, the displacements follow a cubic law around the
cross-section:

w(x, y) = {w1[1 – 3η2 + 2η3] + bθ1[η – 2η2 + η3]

  + [3  –  2 ] + [  –  ]} sin 2
2 3

2
3 2w b

x
a

η η θ η η π
15.17

where w2 and θ2 are the displacement and slope at y = b.
In this case the number of unknowns or degrees of freedom given by n

strips is (2n + 3). This is probably by far the most widely used strip at the
present time. It is not particularly accurate for examination of local buckling
when used as a single strip per plate element, but requires only two or three
strips per plate to give reasonable accuracy under the worst conditions. Perhaps
the main drawback to this formulation is that it does not lend itself easily to
the rigorous postbuckling analysis procedure preferred by the writer, which
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requires satisfaction of stress function boundary conditions which are
substantially different for adjacent strips aligned at the same angle than for
adjacent strips which have substantial variation of angle of orientation.

15.3.5 Quintic strips

The quintic strip utilises polynomial functions of the fifth degree to specify
the cross-strip out-of-plane deflections. As the slopes and displacement on
the strip edges are sufficient to satisfy all the necessary boundary conditions,
the two additional quantities whose magnitudes are specified by the strip
displacement functions are arbitrary. In the functions shown below, the cross-
strip curvatures at edges 1 and 2 are selected, but these do not need to satisfy
continuity or any other consideration when comparing adjacent strips. The
displacements can be written as follows:

w(x, y) = {w1[1 – 10η3 + 15η4 – 6η5] + bθ1[η – 6η3 + 8η4 – 3η5]

+ 0.5b2κ1[η2 – 3η3 + 3η4 – η5] + w2[10η3 – 15η4 + 6η5]

+ bθ2[–4η3 + 7η4 – 3η5]

+ 0.5 [  –  2  + ]} sin 2
2

3 4 5b
x

a
κ η η η π

15.18

where κ1 and κ2 are the curvatures across the strip at y = 0 and y = b,
respectively.

These strips are perfectly suitable for use in evaluating buckling loads
employing a single strip per plate. They also permit accurate assessments of
postbuckling behaviour at loads close to buckling. The one area in which
there is something left to be desired is the postbuckling behaviour predicted
far beyond buckling. This again may well be dependent upon the analysis
method used, but the use of these strips with the perturbation method of plate
analysis introduced initially by Stein (1959) produced less than perfect
predictions for the far-postbuckling range. To improve upon this, septic strips
were developed.

15.3.6 Septic strips

Here two further arbitrary quantities are required and the third derivatives of
w with respect to y at both edges were taken as the arbitrary coefficients,
simply to extend the approach already used for quintic strips. The septic strip
displacements are
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w(x, y) = {w1[1 – 35η4 + 84η5 – 70η6 + 20η7]

+ bθ1[η – 20η4 + 45η5 – 36η6 + 10η7]

+ 0.5b2κ1[η2 – 10η4 + 20η5 – 15η6 + 4η7]

+
6
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3
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where χ1 and χ2 are the third derivatives of w with respect to y at y = 0 and
y = b, respectively.

15.3.7 Generalisation of plate buckling and postbuckling
analysis

In any strip in-plane and out-of-plane deformations may be present and the
simultaneous occurrence of both types of deformations must be taken into
account. In addition, when dealing with loading other than uniform compression
the capability to examine systems of plates subjected to varying axial stress
is required. The finite strip-type method used here is set up to analyse members
in which each strip can be subjected to any combination of uniform and
linearly varying stress across the strip, as indicated in Fig. 15.6.

The analysis procedure is described by Rhodes (1987) and in greater
detail by Khong (1988). The buckling stress is evaluated neglecting the
higher-order effects using standard procedures, and the eigenvector
corresponding to the minimum buckling stress is then used as a single
displacement function in the postbuckling analysis to obtain values for the
reduced axial stiffness and reduced bending stiffnesses. For example, the
reduced axial stiffness immediately after buckling obtained on the basis of
the lower bound method is given by:
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where N is the number of strips, bi and ti are the width and thickness of the
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ith strip and Yi and vi are the in-plane and out-of-plane deformations in the ith
strip obtained from the eigenvector. Similar types of expressions are obtained
in the case of the semi-energy method, with additional terms in the denominator
due to the periodically varying stresses.

It should be mentioned that in the presence of in-plane displacements v
the above equation is obtained from a consideration of two consecutive half
wavelengths, as there can be directionality in the postbuckling behaviour
which cancels out over two half-wavelengths. Thus, strictly speaking, this
equation does not tell the complete story for postbuckling behaviour if the
buckling is not local buckling. However, local buckling is the primary concern
with regard to subsequent interaction with other buckling modes. As will be
discussed at a later stage, buckling modes that involve substantial in-plane
displacement generally promote failure rapidly and the postbuckling strength
is small.

15.4 Comparison of different strip formulations

15.4.1 Local buckling

Some limited buckling analysis results are now shown for illustration of the
prediction capacity of the different strip formulations. In terms of buckling

σ

σ (1 – α1)
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15.6 Variation of applied stresses around a cross-section.
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analysis, the linear strip by itself is incapable of predicting local buckling,
and can be used only for evaluating overall buckling behaviour.

Table 15.1 shows some typical buckling results for simple plate and section
cases. In all cases the nondimensional buckling coefficient, K is quoted. In
the case of sections the buckling coefficient is related in terms of the plate
element labelled ‘1’

Table 15.1 Buckling coefficients for plates and sections for different strip formulations

Member Cubic strips Quintic Septic strip
description strip

Square plate 1 strip K = 4.2583 K = 4.0007 K = 4.0000
simply supported 2 strips K = 4.0086
on all edges 3 strips K = 4.0017
subjected to 4 strips K = 4.0005
uniform 8 strips K = 4.0000
compression

Plate fixed on 1 strip K = ∞ K = 6.981 K = 6.971
unloaded edges 2 strips K = 7.226
and uniformly 4 strips K = 6.991
compressed, 8 strips K = 6.972
with buckle half 16 strips K = 6.971
wavelength varied
to find minimum
buckling coefficient

Plate with 1 strip K = 27.386 K = 24.083 K = 23.891
unloaded edges 2 strips K = 25.444
simply supported 4 strips K = 23.964
subject to in-plane 8 strips K = 23.886
bending with 16 strips K = 23.881
buckle half
wavelength varied
to find minimum
buckling
coefficients

Plain channel 1 strip/element K1 = 2.93 K1 = 2.91 K1 = 2.91
50 × 100 × 1, 2 strips/element K1 = 2.91
uniformly 4 strips/element K1 = 2.91
compressed–
Min K1

Lipped channel 1 strip/element K1 = 7.08 K1 = 5.44 K1 = 5.44
20 × 50 × 100 × 1, 2 strips/element K1 = 5.51
uniform 4 strips/element K1 = 5.44
compression – 8 strips/element K1 = 5.44
Min K1

→1

→1
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For cubic strips, results for different numbers of strips per element are
shown, while for quintic and septic strips a single strip per plate element is
used in all cases. As it can be seen, both quintic and septic strips give
extremely similar results, and these are in turn very similar to the results
obtained for the largest number of cubic strips shown in each case. These
results are, in fact, more or less exact for the problems examined, and the use
of quintic or septic strips is likely to produce results within 1% of the exact
answer for any problem of the type examined. For cubic strips, the accuracy
of a single strip varies from case to case, but in general two strips per
element are required to ensure accuracy better than 5%, and four strips per
element to ensure accuracy better than 1%.

15.4.2 Postbuckling stiffness

Table 15.2 shows the initial reduction in postbuckling stiffness for simply
supported plate elements of various buckle half wavelength to plate width
ratios. The ratios examined cover the practical variation completely. The
results of Cox (1945) are the same as those of a number of other investigators,
and can be looked on as ‘exact’ values of the initial postbuckling stiffness.

Table 15.2 Initial postbuckling stiffnesses of simply supported plates

Buckle length Cubic Quintic Septic Cox (1945)
a/b E*/E E*/E E*/E E*/E

0.8 0.333 0.375 0.376 0.376
0.9 0.333 0.390 0.392 0.392
1.0 0.333 0.407 0.409 0.408
1.1 0.333 0.425 0.427 0.426
1.2 0.333 0.442 0.444 0.443

From the table, it may be seen that the cubic strip employing the lower
bound method, gives a reduction in axial stiffness to one-third of the prebuckling
stiffness, independently of the buckle length. This is the result of using
averaged values, and is actually the same as the result given by the other
methods if the half wavelength is made very small. Both quintic and septic
strips give very similar answers, very close to the exact values. The same
high degree of accuracy results for any plate problems examined by the
quintic or septic strips. In the case of the cubic strips using the lower bound
method, of all the common plate problems, the simply supported plate gives
probably the poorest correlation between the lower bound method and more
rigorous methods.

For other boundary conditions, the disparity between lower bound and
rigorous analysis is generally less than is found for the simply supported
plate. To illustrate this, Table 15.3 shows the buckling coefficients and initial



Table 15.3 Comparison of buckling coefficients and initial postbuckling stiffnesses from cubic (lower bound) and quintic (lower bound (lb) and
semi-energy) strips

Member description One cubic strip Two cubic strips Four cubic strips One quintic strip

Plate fixed–simply Kmin = 6.990 Kmin = 5.482 Kmin = 5.415 Kmin = 5.410
supported on at l/b = 0.69 at l/b = 0.80 at l/b = 0.80 at l/b = 0.80
unloaded edges E*/E = 0.413 E*/E = 0.413 E*/E = 0.396 E*/E = 0.450

E*/E (lb) = 0.396

Plate fixed–fixed Kmin =  ∞ Kmin = 7.226 Kmin = 6.991 K = 6.981
on unloaded edges at l/b = 0.69 at l/b = 0.67 atl/b = 0.66

E*/E = 0.484 E*/E = 0.443 E*/E = 0.489
E*/E(lb) = 0.449

Plate fixed–free on Kmin = 1.344 Kmin = 1.285 Kmin = 1.281 Kmin = 1.281
unloaded edges at l/b = 1.67 at l/b = 1.63 at l/b = 1.63 at l/b = 1.65

E*/E = 0.575 E*/E = 0.544 E*/E = 0.543 E*/E = 0.548
E*/E(lb) = 0.543

Plain channel K1min = 2.934 Kmin = 2.911 Kmin = 2.910 K1 = 2.910
50 × 100 × 1, at l/b1 = 1.33 at l/b1 = 1.33 at l/b1 = 1.33 at l/b1 = 1.33
uniformly E*/E = 0.571 E*/E = 0.556 E*/E = 0.556 E*/E = 0.564
compressed – Min K1 E*/E(lb) = 0.556

Lipped channel K1min = 7.079 K1min = 5.506 K1min = 5.444 K1 = 5.44
20 × 50 × 100 × 1, at l/b1 = 0.69 at l/b1 = 0.79 at l/b1 = 0.80 at l/b1 = 0.80
uniform E*/E = 0.632 E*/E = 0.734 E*/E = 0.728 E*/E = 0.751
compression – Min K1 E*/E(lb) = 0.728

→1

→1
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postbuckling stiffness values for plates with different boundary conditions
on the unloaded edges, and also for the plain and lipped channel sections of
Table 15.1. In these cases quintic strips, one per plate, were used for both
lower bound and semi-energy method analyses and the buckle half-wavelength
to cause minimum buckling stresses was considered in each case. As may be
seen, the difference between the initial postbuckling stiffnesses computed by
the lower bound approach is in general within a few per cent of those computed
using the more rigorous approach.

To illustrate the difference between cubic and quintic strips, and the lower
bound and semi-energy method results graphically, Fig. 15.7 shows the
variations in buckling stresses, axial tangent stiffnesses and flexural tangent
stiffnesses for a hat section strut under compression. There are three distinct
different buckling modes shown in this figure, and these three modes will be
discussed at a later stage. The cubic strip results, using the lower bound
method to evaluate the postbuckling stiffnesses, are shown as solid lines and
the quintic strip results, using the semi-energy method, are shown as lines
with circular markers. Four cubic strips per plate element were used, while
one quintic strip was employed per plate element. As may be observed, only
for very short half-wavelengths, dominated by local buckling, is there any
significant difference in the postbuckling axial stiffness between the lower
bound and the semi-energy methods. The septic strip approach results are
not shown as they are indistinguishable from the quintic strip results.

In the examination of further cases only the cubic strip, with lower bound
analysis, will be used.

15.5 Compression members

15.5.1 Buckling stresses for lipped channel

Figure 15.8 shows the variation of buckling coefficients with buckled half
wavelength for lipped channel struts under pure compression. The channels
are of dimensions 100 mm web, 100 mm flange and 2 mm thick. Five
different lip widths are considered, 10 mm, 20 mm, 30 mm, 40 mm and a
very small lip of 1 mm. The curves show substantial differences for each
case, although they all have common features. With the exception of the
curve for the section with the smallest lips all curves have three areas of
importance, indicating three different buckling modes in each case.

For short buckled half wavelengths, the curves are similar with a minimum
buckling coefficient of approximately 4 at a buckle half-wavelength of around
100 mm. The type of buckling that arises here is purely local buckling of the
plate elements, with no movement of any of the corners.

As the half-wavelength increases, the different lip widths produce widely
varying buckling behaviour with a minimum buckling coefficient approximately
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2 for the smallest lip width and greater than 5 for the largest. This type of
behaviour is now universally termed distortional buckling (see Hancock
1985) and has the buckled form shown in the figure. The width of the lips has
very substantial effects on distortional buckling, as these must bend in-plane
during this type of buckling.

For even longer half-wavelengths the buckling coefficients again reduce
with increasing half-wavelength, but there is not such a great difference
between the coefficients for different lip widths as for the distortional buckling
case. For the longer wavelengths, the buckling mode combines lateral
displacement with twisting, and is termed torsional-flexural buckling.

In the case of the section with 1mm lips, these lips are virtually negligible
and the member behaves as a plain (unlipped) channel. In this case local
buckling and distortional buckling are synonymous. This illustrates the reason
why edge stiffeners such as lips are so important in light gauge members, as
the lack of a lip of any consequence reduces the initial buckling coefficient
from around 4 to less than 0.9 for the case considered,

It may be observed that flexural buckling about the horizontal neutral axis
was not indicated on any of the curves. For this particular shape of section,
flexural buckling would only occur if the member was extremely long. For
open cross-sections, the low torsional rigidity often induces torsional-flexural
buckling with regard to the symmetry axis before purely flexural buckling
about the orthogonal axis, except in the cases of cross-sections in which the
second moment of area about the symmetry axis is substantially greater than
that about the orthogonal axis.

15.5.2 Postbuckling stiffness

The initial postbuckling axial stiffness variation with buckle half-wavelength
is shown in Fig. 15.8b for the cross-section with 10 mm lips. This indicates
that in the range where local buckling occurs, L < 200, the axial tangent
stiffness is reduced by about 60% for this case, in the distortional buckling
range the tangent stiffness is reduced by only 40%, while in the torsional-
flexural buckling the axial stiffness reduces further as the half wavelength
increases.

This suggests that there can be significant postbuckling reserves of strength
for other modes of buckling than local buckling. However this is not the
complete story. Figure 15.8(c) shows the variation in flexural stiffness about
the x – x (horizontal) axis immediately after buckling and, while in this case
the immediate reduction due to local buckling is not very great, the reduction
due to distortional and torsional-flexural buckling is extremely severe, with
the flexural rigidity reducing by 90% or so in this case under distortional
buckling and by even more under torsional-flexural buckling. In addition
these longer half-wavelengths of buckling incur substantial in-plane bending
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effects with consequent large increases in membrane stresses, and to all
intents and purposes significant postbuckling capacity is unlikely to be found
for these modes.

It should also be mentioned that the end conditions, assumed simply
supported by the finite strip formulation used here, are extremely important
in the cases of distortional and torsional-flexural buckling. It has been observed,
e.g. Seah et al. (1991), that in the case of asymmetric stiffeners such as lips,
the postbuckling behaviour is directional for distortional buckling. Although
the buckling stress is unaffected by this, the postbuckling stiffnesses shown
for this mode are not the minimum stiffnesses, but the average of the stiffnesses
that would be obtained if two consecutive half-wavelengths were considered,
as mentioned earlier. This further suggests that potential postbuckling capacity
under nonlocal buckling may be disregarded.

15.5.3 Interaction of modes

For the members with 10 mm and 20 mm wide lips, the minimum distortional
buckling stress is less than the minimum local buckling stress. In such a case
if the member is of sufficient length, distortional buckling will occur at the
stress indicated by the relevant curve. For members with larger lips, however,
the same cannot be said. Local buckling is periodic, and for a long member
under uniform load a number of buckle half-wavelengths occur along the
length as shown in Fig. 15.9(a) for the member with 30 mm lips. Thus local
buckling has occurred prior to distortional buckling. The buckling stresses
were evaluated without taking the presence of local buckling, and its associated
effects on the stress distribution and stiffness of the member, into account;
and any buckling coefficient greater than the minimum local buckling coefficient
is therefore invalid. The interaction of local buckling with the mode under
investigation must be taken into account.

There are existing methods available for dealing with interaction of local
buckling with other specific modes, such as Euler buckling (e.g. Rhodes and
Harvey 1977). However, if the specific mode with which interaction will
occur has not been established (local buckling may even have the effect of
changing the next mode), then this mode must be approached with knowledge
of how local buckling is progressing in the lead up to that mode.

The finite strip type approach used here has the capability of taking account
of the interaction of the first buckling mode with any other mode corresponding
to a higher half-wavelength. To do this, the first minimum is detected and the
postbuckling characteristics are recorded. In the examination of higher
wavelength buckling the stress system is incremented based on the postbuckling
analysis of the first mode and the effects of displacements in the first mode
on the axial and bending stiffnesses of each strip are taken into account when
incrementing the stresses until buckling occurs in the higher mode.
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15.9 (a) Multiple buckle half-wavelengths; (b) interaction curves.
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The buckling coefficients for the member with 30 mm wide lips obtained
by this method are shown in Fig. 15.9(b). The two additional lines indicate
the higher-mode buckling coefficients obtained using the postlocal buckling
analysis, the upper line representing the strains and the lower line representing
the average stresses. In this case the curve representing the strain coefficients
is quite close to the original curve, which did not incorporate local buckling
effects, while the curve representing the average stresses lies significantly
below the original curve, indicating the degree to which the higher mode
buckling is reduced by the local buckling effects.

15.5.4 Intermediately stiffened members

To prevent, or postpone, local buckling, intermediate stiffeners are often
used in light gauge steel members. As in the case of lips or edge stiffeners
these delay local buckling but suffer, albeit at higher loads, from distortional
buckling. This is illustrated in the case of a 1 mm thick lipped channel
section with a web 100 mm wide, flanges 50 mm wide and lips 15 mm wide
incorporating a 10 mm wide stiffener at mid-flange. Figure 15.10 shows the
variation in buckling stresses for this member with variation in half wavelength
for five different stiffener depths: 0, 2 mm, 4 mm, 6 mm and 8 mm.
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15.10 Buckling stresses for lipped channel with intermediately
stiffened web.

As it can be observed, the minimum local buckling coefficient for the
member with no stiffener is just over 5.5. The introduction of a small stiffener,
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2 mm deep more than doubles the local buckling stress, while intermediate
stiffeners of depth 4 mm and greater raise the local buckling coefficient to
about 25, at which point the flat element between stiffener and the web edge
buckles. However, regardless of the stiffener depth there is not a great deal
of difference between the distortional buckling resistance and for any member
of about 500 mm length or greater distortional buckling occurs at a similar
stress, buckling coefficient just over 12, as the distortional buckling is driven
by the flange. Indeed the nonstiffened member shows slightly greater
distortional buckling resistance than the intermediately stiffened members,
according to the figure, although this would be decreased because of the
early local buckling and subsequent interaction.

15.6 Buckling in beams

15.6.1 Plane channel beam

Beams probably make up the bulk of light gauge steel members. In most
cases, such as roof purlins and floor beams, light gauge steel beams are
constrained at their loading points by cladding, flooring, etc. and the effects
of the constraining media should be taken into account in design.

Figure 15.11 shows the behaviour of a 1 mm thick plane channel beam
with 50 mm wide flanges and 100 mm deep web under bending about its
symmetry axis. Three buckling curves are shown here: (1) in which the beam
is unrestrained, (2) in which the tension flange is restrained rotationally and
vertically at its central point and (3) in which the tension flange is restrained
rotationally, vertically and horizontally at its central point.

The first mode of buckling is local buckling. It occurs at the same maximum
bending stress for all three cases, which would be expected. The onset of the
second mode for the beams with restrained flanges occurs at a significantly
higher stress than for the unrestrained beam. As the wavelength increases,
the curve for the beam with restraint only on vertical movement and rotation
of the tension flange centre point during buckling decreases much more than
that for the beam whose tension flange is also restrained horizontally and
that reaches a minimum and increases further as the half-wavelength increases.

This second mode is lateral-torsional buckling, which is akin to torsional-
flexural buckling in columns. This type of buckling was often termed lateral
buckling in the past, see for example Allen and Bulson (1980), when the
lateral movement was the more significant of the buckling displacements for
beams such as hot-rolled I-sections in which the main cause of this phenomenon
was the large difference in bending rigidity of such a beam about its major
and minor axes. In the case of light gauge beams, the torsional aspect is often
the dominant factor in this behaviour and indeed, as we shall see, beams bent
about their minor principal axis can also be subject to lateral-torsional buckling.
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Figure 15.11(b) shows the variation of the postbuckling flexural stiffness
with variation in half-wavelength for the unrestrained beam. This figure
indicates that under local buckling there is only about 25% reduction in
flexural rigidity, but lateral torsional buckling induces a substantially greater
loss in flexural stiffness.
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15.11 Buckling stresses for plain channel beam.
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15.6.2 Lipped channel beam

Figure 15.12(a) shows the variation in maximum stress at buckling with
variation in half-wavelength for a 1 mm thick lipped channel beam with a
web 120 mm deep, flanges 50 mm wide and 10 mm wide lips. Here there are
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15.12 Buckling stresses for lipped channel beam.
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three buckling modes, local buckling, distortional buckling involving the
compression flange and compression lip, and lateral-torsional buckling. For
the lip geometry examined here the minimum stress for distorsional buckling
is substantially less than for local buckling. As in the case of the plane
channel section beam, the same three different degrees of restraint are afforded
to the tension flange, and similar results are attained for the effects of these
restraints. Figure 15.12(b) shows the postbuckling reduction in flexural stiffness
for the most highly restrained case, with similar results to the plain channel
case.

15.6.3 Lipped channel beam bent about an axis
perpendicular to the symmetry axis

Here the lipped channel member examined as a strut in the first example is
considered in bending about a horizontal axis. If the bending direction was
such that the web was in compression, then the only buckling mode that
would be observed is local buckling. However, if bending is such that the lips
are in compression, more interesting features are observed, as may be seen
in Fig. 15.13.

15.13 Lipped channel bent about minor axis to cause lip
compression.
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In this case three different lip widths are illustrated: 2 mm, 20 mm and
40 mm. From the figure, it may be observed that for the wider lips three
modes are seen, with only two for the very small lips. It may also be observed
that the local buckling stress for the member with 20 mm lips is substantially
greater than that for the member with 40 mm lips. This is because local
buckling occurs mainly in the lips, and narrower lips resist buckling much
more strongly than wide lips. The narrow lips offer, however, much lower
resistance to in-plane bending than the wide lips, so that the second mode,
distortional buckling, for the member with narrow lips occurs at a substantially
lower stress than for the member with wide lips. Local buckling and distortional
buckling are synonymous for the member with very small lips.

As the half-wavelength increases, the torsional-flexural buckling load
occurs in all three cases. It is worth noting that the second moment of area
of the cross-section about the x axis is less than that about the y axis for all
three cases, and is indeed not much more than half of that about the y axis for
the member with the smallest lips.

15.7 Future trends in analysis and design

15.7.1 Current design specifications

Design specifications at the present time deal with local buckling and its
effects on beams and compression members using the effective width approach,
with most specifications using a slightly modified version of the effective
width equation originally produced by Winter (1947), i.e.

b
b
e CR CR = 1 –  0.2

σ
σ

σ
σ
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where the effective width of each individual element is determined to obtain
an effective cross-section. The critical stress that causes local buckling in a
plate element depends on the member geometry and varies from section to
section. The British Standard, BS 5950: Part 5 gives graphs and formulae
covering elements in a number of common structural members. For elements
in other cross-sections, either rigorous analysis can be used to determine the
critical stress or, as in the majority of design codes, specific values of the
buckling coefficient are given for elements with different boundary or loading
conditions.

In determining the compressive strength of a member in the absence of
any other type of buckling the general approach is to obtain the effective
widths for each element in turn, with σ set equal to the material yield stress.
In recent design codes, e.g. Eurocode 3: Part 1.3, the use of the effective
width expression and related buckling coefficients has been extended to deal
with a variety of other situations, for example members with elements subjected
to stress gradients.
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Many specifications also require determination of the effective widths
and effective width locations for elements subjected to varying stresses, and
this, compounded by the use of multiple stiffeners and complex cross-sections,
has led to the situation that a great deal of labour can be expended in evaluation
of the effective cross-section.

In the design of columns and beams some specifications, e.g. Eurocode 3,
provide buckling formulae for modes such as Euler buckling, lateral-torsional
buckling, torsional-flexural buckling, distortional buckling based on the full
cross-section. The designer then uses these together with the effective cross-
section approach to evaluate the member capacity. For some situations, for
example in determination of the distortional buckling capacity, iterative
approaches are suggested. This adds to the labour involved and although the
effective width approach models the actual situation well, it is often thought
to be cumbersome.

15.7.2 Direct strength method

This has led to alternative approaches being suggested, such as the direct
strength method, originally proposed by Schafer and Pekoz (1998). This
approach is based on the concept that the evaluation of the initial buckling
load for any cross-section, however complex, can be accomplished easily by
numerical means such as the finite strip method. Having obtained this, the
section capacity can then be directly related to the buckling load by simple
formulae, and the time and labour involved in carrying out subsequent effective
width calculations for multiple plate elements can be avoided. This approach,
which requires substantial testing for validation, has been growing in popularity
in the USA and, more recently, in Australia. This type of approach was
applied in the early years of thin-walled structural analysis in which simple
cross sections, such as angles, cruciforms, H and C sections were tested and
the ultimate load empirically related to the critical load using simple power
laws based on the test results. However, the fact that different laws are
required for different cross-sections does produce simple estimates of the
load capacity of such members, but, as could be expected, the power laws
were different for each particular section. The method does not really take
adequate account of the differences caused by cross-sectional geometry on
postbuckling behaviour, and at best will produce results with a nonspecific
degree of approximation which can only be determined on the basis of tests.
In any case, just as it is relatively easy nowadays to determine buckling loads
using numerical methods, there are a number of programs available to extend
the analysis into the postbuckling range, i.e. to go the whole way by computer
rather than stop after the first hurdle.

This would seem to be the best approach, and finite strip analysis such as
that shown here is ideally suited for such a purpose. In addition to the finite
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strip approach, there are other numerical or seminumerical methods that can
be used to perform complete analysis of light gauge members through the
postbuckling range.

15.7.3 Finite element method

The finite element method, in which a structure is discretised into a large
number of small elements, has grown dramatically in popularity and in
simplicity of use over the last 40 years largely because of the production of
user-friendly computer packages. This trend does not show any sign of abating.
All large manufacturing companies, and many smaller companies, now own
and operate finite element packages. It is likely that in the not too distant
future finite element packages will take over the design analysis of structures
just as today computer packages are widely used for structural layout.

At the present time, for day-to-day design analysis, general finite element
packages may be viewed to some extent as sledgehammers, too big to crack
nuts with, and there are more specifically orientated numerical approaches
used by researchers in this field, such as the finite strip method, that are
particularly suited to the analysis of light gauge steel structural members.

15.7.4 Generalised beam theory

Generalised beam theory provides an alternative to finite strip analysis, and
so it should be mentioned here. This approach was introduced in Germany
by Schardt and the early publications were in German, with the first paper in
English, to the writer’s knowledge, being produced in 1983. Space requirements
prevent any detailed discussion of this approach, and it perhaps suffices to
say that it is similar in applicability, although different in background, to the
finite strip method. A recent review of this method is given by Camotim et
al. (2004).

15.8 Concluding remarks

In this chapter, the analysis of light gauge steel beams and columns using a
finite strip type approach has been presented. The different buckling modes
have been described and the postbuckling behaviour has been examined. It
has been observed that three essentially similar modes of buckling occur in
beams and columns, i.e. local buckling, distortional buckling and torsional-
flexural or lateral-torsional buckling.

The general methods used in design codes have been very briefly described
and the trends in design analysis have been briefly discussed. The complexity
of design with regard to cold-formed steel members and structures has
continually increased as their use has grown. With trends towards more
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slender members, of higher-yield strengths, the complexity will continue to
grow. Modern design specifications have taken substantial steps in providing
analysis methods. The ‘simplified’ design rules are becoming increasingly
complex, and can nowadays involve greater labour than rigorous analysis
using numerical methods.

There are situations in which design codes permit numerical analysis.
Indeed the FEM code for storage racking requires a first level second order
analysis for racking design. The time has perhaps come when design
specifications should incorporate numerical analysis software, or give an
approved list of software for use in design to the code.
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cross-ply laminated plates 158–60
thermal postbuckling of symmetric

plates 188–90
plates with piezoelectric layers

191–3
cross-section analysis 313–15
cross-section classification 399–407
cubic strips 463–4, 467–70

see also finite strip method
CURT project 384
curvature 13

see also curved plate girders
curvature terms 26–7, 36–40, 41–2, 46, 47,

48
curved plate girders 382–421

cross-frame interval design 389–90
design perspective and historical review

383–4
effect of curvature on flange plate

stability 395–407
centreline stiffened plates with stress

gradient 396–9, 400
definition of compactness for flanges

with stress gradient 399–407
effect of curvature on web plate stability

and distortion 407–14
influence of curvature on lateral-

torsional stability 390–5
buckling of girders with intermediate

lateral supports 394–5
single girders with end-support

conditions 391–4
origins of curved beam theory 383
stability during construction 384–9

erecting 387–9
fabricating 385–6
transporting 386–7

curved plates see cylindrical structures
cut curving 385, 386
cyclic loading 271
cylindrical structures 422–50

axial compression 433–5
differential settlement 441–8, 449
experimental behaviour 435–40

internal pressure 423–5
nonuniform external pressure 427–33,

434
prototype failures 440–1, 442, 443
uniform external pressure 425–7

damping 253, 254, 255
deformation theory of plasticity 117–18, 361

annular plates 136, 137, 138
circular plates 132–3, 134
polygonal plates 139–41, 142, 143
rectangular plates 120–2, 123–4, 125,

126, 129, 130, 131
degrees of freedom

displacement finite element model 156–7
nonlinear finite element 4

delamination modelling 258–64
interface elements 262–4
virtual crack closure technique 259–62

‘design by buckling analysis’ method 22–3
design codes

composite steel-concrete columns 231–2
concrete-filled steel box columns 305,

308
curved plate girders 383–4, 395, 401–2,

404, 405, 407, 412
light gauge steel members 451–2,

481–2, 484
tapered steel members 18–22, 23, 24

design strengths 18–23
diamond-shaped buckles 433–5
differential settlement 441–8, 449
dimensionless critical load

ceramic-metal plates 158–60
elastic critical load for tapered steel

members 15–18, 19, 20, 21, 22
dimensionless critical moment 15, 16–17
dimples 448
direct strength method 482–3
‘discrete Kirchhoff hypothesis’ 56
displacement control 249
displacement finite element model 148–57

additional parametric studies 161–5,
166, 167

comparisons with other formulations
157–61

finite element interpretation 156–7
functionally-graded plates 151–3
mechanical and thermal buckling 154–6
stability analysis 153–4

displacement vector 64–5
displacements

approximation for stiffened and
corrugated plates 89–90
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relationship between strains and 357–8
distortional buckling 470–6

interaction with other modes 474–6
lipped channel beams 479–81
postbuckling stiffness 472, 473–4

Donnell stability equations 422, 425–6
ductility 269–304

cantilever columns
made of pipe sections 301–2
with longitudinal stiffeners 299–300
without longitudinal stiffeners 298

plates
in compression 274–5
in shear 279–80

stub-columns
box-shaped subjected to combined

compression and bending 282–5
box-shaped subjected to shear 293–4
pipe-shaped subjected to combined

compression and bending 290–1
pipe-shaped subjected to pure

compression 288–9
dynamic methods for stiffened composite

structures 253–6
combined quasi-static/pseudo-transient

method 256–8

earthquakes 269, 295
Easley’s formula 353–4
eccentricity

cylindrical structures 435
load eccentricity see load eccentricity

eccentricity ratio 326, 327
effective shear modulus 350
effective width

composite columns 226, 229, 230
concrete-filled steel box columns

309–12
light gauge steel members 456–7

design specifications 481–2
eigenmode injection 256–7
eigenvalue analysis, linear 246–8
elastic buckling curves 14–18, 19, 20, 21,

22
‘design by buckling analysis’ 22–3

elastic buckling moment 23
elastic buckling stress, relationship to

plastic buckling stress 138–41
elastic constitutive matrix 343
elastic critical moment 21, 23
elastic critical wavelength 287
elastic local buckling 215–16, 221–2
elastic modulus

rectangular plates 121–2

reduced see reduced elastic modulus
thermal postbuckling of FGM hybrid

laminated plates 193–5, 196
elastic region 367–9, 399–401
elastic stiffness 62–3

derivation of elastic stiffness matrix for
bilinear plate element 63–7

elastic unloading 321
elasticity tensor 62, 65
elasto-plastic and finite displacement

analysis 356–78
constitutive law 360–4
deformation of plate 357–8
element stiffness matrix 358–60, 366–7
experimental study 372–8

webs with concrete flanges 375–8
webs without concrete flanges

372–5
parametric study 367–72
transformation matrix 364–7

elasto-plastic material matrix 363–4
electric loads 191–9

thermal postbuckling of FGM hybrid
laminated plates 193–9

thermal postbuckling of symmetric
cross-ply laminated plates with
piezoelectric layers 191–3

element stiffness matrix 358–60, 366–7
ellipsoid of revolution 423
equivalent elastic properties

corrugated plates 82–3, 85–9
sinusoidally corrugated plates 88–9
trapezoidally corrugated plates

86–8
orthotropic Mindlin plate 348–51

equivalent single layer theory 148
equivalent slenderness 18–21
erection of curved girders 387–9
Euler elastic buckling expression 402
Eurocode 4 (EC 4) 322–3, 324
explicit dynamic analysis 254, 263
external pressure

experimental behaviour of cylindrical
structures 436–40

nonuniform 427–33, 434
prototype failures 440–1
uniform 425–7

fabrication of curved girders 385–6
failure

modelling 258–64
interface elements 262–4
virtual crack closure technique

259–62
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thin steel plates and members 459–60
failure strain 274–5

see also ductility
Federal Highway Administration ‘Curved

Steel Bridge Research Project’
(FHWA-CSBRP) 384

fibre curvature diagram 13
finite element method 81, 83

cylindrical structures 440
differential settlement 441, 446–8,

449
displacement finite element model see

displacement finite element
model

light gauge steel members 483
plate stability analysis 56–70

derivation of elastic and geometric
stiffness matrices 63–7

formulation 58–63
linearisation of internal force vector

61–3
numerical examples 67–9
total Langrangian formulation of

geometrically nonlinear
continuum 58–60

stiffened composite structures 246–58
arc-length methods 250–3, 256
combined quasi-static/pseudo-

transient method 256–8
dynamic methods 253–6
geometrically nonlinear analysis

248–58
linear eigenvalue analysis 246–8
Newton–Raphson methods 249–50

tapered steel members
linear 7–14
nonlinear 4–7

finite slice approach 313–15
finite strip method 81, 307

light gauge steel members 460–81
background 460–1
buckling in beams 477–81
comparison of different strip

formulations 466–70, 471
compression members 470–7
cubic strips 463–4, 467–70
finite strip layout 461–2
generalisation of plate buckling and

postbuckling analysis 465–6
linear strips 463, 466–7
quintic strips 464, 467–70
septic strips 464–5, 467–8

first order shear deformation plate theory
see Mindlin plate theory

fixed-end conditions 392–4
flanges

box-shaped stub-columns subjected to
shear loading 291–4

composite steel-concrete members 218,
225, 226, 228, 230

effect of curvature on flange plate
stability 395–407

centreline stiffened plates with stress
gradient 396–9, 400

definition of compactness for flanges
with stress gradient 399–407

flexural stiffness 87–8, 348–9
flow theory of plasticity see incremental/

flow theory of plasticity
Flügge’s equations 422, 427–9
Fourier series 441–4
fracture mechanics 259
full transformation method 97–8
functionally-graded materials (FGMs)

147–8, 173
thermal postbuckling of FGM hybrid

laminated plates 193–9
see also ceramic-metal plates

Galerkin function 59–60
GDC method 316–17
general buckling 436
generalised beam theory 483
generalised stiffness parameter (GSP)

316–17
geometric stiffness matrix 247

bilinear plate element 62–3
derivation 63–7

geometrically nonlinear continuum 58–60
global buckling

composite steel-concrete members
214–16, 221, 231

curved plates 436
graphite/epoxy composite 192–3, 194
grillage model 81
Guide Specifications for Horizontally

Curved Highway Bridges 384,
401, 404, 405, 407

Hanshin ‘Guidelines for the Design of
Horizontally Curved Girder
Bridges’ 384

hardening rules 362–3
hat section strut 470, 471
hat-stiffened panels 239–42
headed shear studs 228–31
header tank 440
heat curving 385–6
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higher-order shear deformation plate theory
174

horizontal tank immersion tests 437–40
hot-rolled composite steel-concrete beams

223, 224
hybrid laminated plates 193–9
hydrostatic external pressure 430–1,

437–40
Hyogoken–Nanbu earthquake 269, 295

I-shaped cross-sections (I-girders) 383
see also curved plate girders

I-stiffened panels 243, 257–8
immovability condition 177–8
imperfection factor (cylinders) 427
imperfection parameter 181
imperfections

cylindrical structures 427, 433–4, 436
light gauge steel members 457–8

implicit dynamic methods 253–4
incremental/flow theory of plasticity

117–18, 361–2
annular plates 136, 137, 138
circular plates 132–3, 134
polygonal plates 139–41, 142, 143
rectangular plates 120, 123–4, 125, 126,

129, 130, 131
incremental strain vector 358
inelastic local buckling 215–16, 221–2
inelastic region 367–9, 399–401
inextensional theory 441–5
initial buckling 436
initial out-of-straightness 326, 327–9
interaction buckling

composite steel-concrete members
214–16, 221–2, 228–32

beams 228–31
columns 231–2

light gauge steel members 474–6
interaction diagrams 322–3, 324
interface elements 262–4
interlaminar shear stresses 242, 245
intermediate lateral supports 394–5
intermediate stiffeners 476–7
internal force vector 60, 66

linearisation of 61–3
internal pressure 423–5
isolated plates 269–80

in compression 269–75
in shear 275–80

isotropic hardening 362–3

J-stiffened panels 243
joints/connections 452

Kantorovich method 27–8, 29–36
derivation of buckling equations 30–2
solution procedure 32–6

kinematic hardening 362–3
Kirchhoff–Love hypothesis 171
Kirchhoff plate theory (classical thin plate

theory) 26, 56
exact relationship between plastic

buckling stress and elastic
buckling stress 138–41

plastic buckling 118
knuckle 423–4

Lagrange polynomials 156
laminated plates 170–213

analytical method and asymptotic
solutions 178–84

governing equations 174–8
thermal postbuckling of antisymmetric

angle–ply laminated plates 184–8
thermal postbuckling of FGM hybrid

laminated plates 193–9
thermal postbuckling of symmetric

cross-ply laminated plates
188–90

with piezoelectric layers 191–3
lateral flange bending moments 389, 390
lateral pressure analogy 409–10
lateral restraints 394–5
lateral-torsional buckling (lateral buckling)

lipped channel beams 479–80
plane channel beams 477–8
tapered steel members see tapered steel

members
lateral-torsional stability of curved plate

girders 390–5
lifting curved girders 387–8
light gauge steel members 451–85

buckling in beams 477–81
compression members 470–7

buckling stresses for lipped channel
470–3

interaction of modes 474–6
intermediately stiffened members

476–7
postbuckling stiffness 472, 473–4

finite strip type analysis see finite strip
method

future trends in analysis and design
481–3

current design specifications 481–2
direct strength method 482–3
finite element method 483
generalised beam theory 483
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local buckling in plates and systems of
plates 453–60

behaviour in advanced elastic
postbuckling range 459

effective width 456–7
effects of imperfections 457–8
energy equations 453–4
failure 459–60
lower bound method 454–6
reduced modulus of elasticity 456
semi-energy method 458–9

limit points 249–50, 251, 257
linear eigenvalue analysis 246–8
linear finite element analysis

buckling of cylindrical structures 446–7
tapered steel members 7–14

linear momentum 59
linear operators 175, 203–8
linear strips 463, 466–7
linear temperature change 155, 166
linearisation of internal force vector 61–3
lipped channel beams 479–80

bent about an axis perpendicular to the
symmetry axis 480–1

lipped channel struts 470–7
load-axial shortening curves 321–2, 323
load-axial strain relationship 317–18
load control 249
load eccentricity

concrete-filled steel box columns
325–7, 328

curved plate girders 396–9, 400
load-end displacement path 459, 460
load-out-of-plane deflection relationship

369, 371, 373–4, 375
load-vertical deflection relationship 369,

370, 373, 374, 377, 378
local buckling

composite steel-concrete forms 214–16,
219–20, 222–8

beams 222–4
columns 225–8, 229, 230
modes 215

concrete-filled steel box columns 225,
226, 227, 229, 306–7, 309–12

curved girders 395–6
cylindrical structures 446
light gauge steel members 452

beams 477–81
under compression 470–7
finite strip method 466–8
plates and systems of plates 453–60

local buckling coefficient 219–20
local buckling stress 219–20

longitudinal stiffeners
box columns with 299–300
curved web panels 411–12

lower bound method 454–6, 470, 471
effective width concept 456–7
effects of imperfections 457–8

material coordinate system 58
matrix microcracking 258
mechanical loading

ceramic-metal plates 154, 161–3, 164
laminated plates 172

membrane-bending effect 66–7
meridional stresses 423, 425, 446–8
mesh-free methods 80–116

estimation of equivalent properties
85–89

formulation for stiffened and corrugated
plates 89–98

displacements approximation 89–90
enforcement of essential boundary

conditions 97–8
stability analysis of stiffened plates

93–7
transformation equations 90–3

mesh-free Galerkin method 84–5
numerical examples 100–12

clamped stiffened square isotropic
plate with one stiffener under in-
plane compression 108

simply supported stiffened plate under
in-plane compression 100–5

simply supported rectangular
stiffened plate with two stiffeners
under in-plane compressions
108–109

simply supported stiffened plate with
two stiffeners under in-plane
compression 105–7

sinusoidally corrugated plate under
uniaxial in-plane compression
111–12

stiffened sinusoidally corrugated
plate under uniaxial in-plane
compression 112, 113

stiffened trapezoidally corrugated
plate under uniaxial in-plane
compression 111

trapezoidally corrugated plate under
uniaxial in-plane compression
109–11

validation studies 99–100
Mindlin plate theory 26, 28–9, 117, 119–20,

138
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ceramic-metal plates 156, 157–61, 162,
163, 164

elastic buckling of corrugated webs
341–56

elastically supported orthotropic
plates 351–2

equivalent elastic constants 348–51
orthotropic rectangular Mindlin plate

342–6
exact relationship between plastic

buckling stress and elastic
buckling stress 138–41

minimum potential energy, principle of 27,
31, 454, 455, 459, 461

mode-jumping 236, 237, 242, 244–5, 252,
258

Moiré fringe patterns 239, 241, 244, 245
moment-curvature-thrust relationships

313–15, 317–18
moments, work done by 12–14
monotonic loading 271
motion of a continuum 58–60

Newton–Raphson methods 249–50
nodes, number of 90, 91, 97–8, 99–100,

101, 102
non-compact sections 400

section limit 400, 401–3
nonconforming plate element 56–7
nondimensional linear operators 179,

208–11
nonlinear finite element analysis

cylindrical structures 447–8, 449
stiffened composite structures 248–58
tapered steel members 4–7

nonlinear force resultant 151
nonlinear temperature change 155, 160–1,

165, 167
nonuniform external pressure 427–33, 434
nonuniform temperature change see

parabolic temperature loading;
tent-like temperature loading

numerical analysis, design codes and 484

one-third rule 405–6
optimum rigidity of stiffener 276–7, 279–80
orthotropic model 81
orthotropic plates

analysing corrugated plates as 82–3
Mindlin plate theory and elastic

buckling of corrugated webs
342–56

elastically supported 351–2
equivalent elastic constants 348–51

rectangular Mindlin plate 342–6

parabolic temperature loading 175, 212–13
thermal postbuckling of symmetric

cross-ply laminated plates 188–90
with piezoelectric layers 191–3, 194

parametric studies
ceramic-metal plates 161–5

mechanical buckling 161–3
thermal buckling 163–5, 166, 167

elasto-plastic and finite displacement
analysis 367–72

analytical models 369
results 369–72
shear buckling strength of corrugated

steel webs 367–9
partial (patch) buckling pressure 430,

431–3, 434
peel stresses 243
perturbation technique 178–84
piezoelectric actuators 173

thermal postbuckling of symmetric
cross-ply laminated plates with
191–3, 194

pinned-end conditions 392
pipe-shaped stub-columns 285–91

combined compression and bending
289–91

pure compression 287–9
pipe sections, cantilever columns made of

296, 300–2
plane channel beams 477–8
plastic buckling 117–46

annular plates 133–8
circular plates 129–33
exact relationship between plastic

buckling stress and elastic
buckling stress 138–41

polygonal plates 138–41
rectangular plates 119–29, 130, 131

plastic flow theory see incremental/flow
theory of plasticity

plastic region 367–9, 399–401
plasticity

failure and 459
theories 117–18, 119–22, 361

see also deformation theory of
plasticity; incremental/flow
theory of plasticity

plate slenderness see width-to-thickness ratio
plate stiffness 348, 349
Poisson’s ratio 85, 87–9
polygonal plates 138–41

basic equations 138
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exact relationship between plastic
buckling stress and elastic
buckling stress 138–41

plastic buckling stress factors for
polygonal shapes 141, 142, 143

postbuckling
cylindrical structures 436–40
light gauge steel members

under compression 472, 473–4
finite strip method 465–6, 468–70,

471
stiffened composite structures see

stiffened composite structures
potential energy

rectangular orthotropic Mindlin plate
344–6

stability analysis 153
stiffened plates 93–6

Prandtl–Reuss theory 361
prebuckling 436
pressure

internal 423–5
nonuniform external 427–33, 434
uniform external 425–7

prestressed concrete girders with corrugated
steel webs (PCGCSW) 340–1,
351

process zone 263
proportional (Rayleigh) damping 254
prototype failures 440–1, 442, 443
pseudo-transient method 255–6, 263–4

combined quasi-static/pseudo-transient
method 256–8

PZT-5A 192–3, 194

quasi-static continuation methods 248–53
arc-length methods 250–3, 256
combined quasi-static/pseudo-transient

method 256–8
Newton–Raphson methods 249–50

quintic strips 464, 467–70

radial deflection 443, 444–5
radial restraints 435–6
radius ratio 136–8
radius-thickness ratio parameter 287–91
Ramberg–Osgood elastoplastic

characteristic 121–2
Rayleigh (proportional) damping 254
rectangular plates 26–55

buckling 28–36
basic equations 28–9
derivation of buckling equations 30–2
Kantorovich procedure 29–30

solution procedure 32–6
numerical examples 36–44, 45, 46, 47,

48, 49, 50, 51, 52, 53
plastic buckling 119–29, 130, 131

basic equations 119–22
solutions for plates with two

opposite sides simply supported
125–9, 130, 131

solutions for simply supported plates
122–5, 126

reduced elastic modulus 456
postbuckling stiffness of light gauge

steel members 465–6, 468–70,
471

under compression 472, 473–4
reduced integration technique 57, 66
reduced stiffness matrices 178
Reissner–Mindlin theory of thick plates 57

see also Mindlin plate theory
relative column slenderness 328, 329, 332
relative flexural rigidity 272–3
residual stresses

composite steel-concrete beams 223,
224

composite steel-concrete columns 226,
227

concrete-filled steel box columns 307,
310, 312

parametric studies 326, 329–30
corrugated steel webs 372, 373, 375
curved girder fabrication 386
plates in compression 269–71

resonant frequency 254
Ritz method 342, 346–8, 354
rotational restraints

corrugated web plates 344, 347, 351–2
effect of 355–6

cylindrical structures 435–6
rotational stiffness 396–8

scaling factors 99–100, 101, 102
‘scissoring’ crack extension mode 259–64
secant modulus 121–2
secant stiffness matrix 4–5
semi-energy method 458–9, 470, 471
septic strips 464–5, 467–8
sequencing 388–9
settlement, differential 441–8, 449
shadow Moiré technique 239, 241, 244, 245
shape functions 85, 156
shear

box-shaped stub-columns subjected to
shear loading 291–4

component plates in 275–80



Index496

crack extension mode 259–64
curved web panels 412–13

combined bending and shear 413–14
loading of ceramic-metal plates 154, 158
work done by shear forces 12–14

shear buckling
corrugated webs 375–6, 377–8

shear buckling capacities 352–5
shear buckling strength 367–72, 374

cylindrical structures 446
shear correction factor k 29, 36
shear deformation 57, 160
shear deformation plate theory 171

first order see Mindlin plate theory
higher-order 174
third order 156, 157–61, 162, 163, 164

shear locking phenomenon 57
shear modulus 350, 351
silicon nitride 195–9
silos 434–5, 440, 441, 442
sinusoidally corrugated plates 81–2, 85

equivalent elastic properties 88–9
under uniaxial in-plane compression

111–12
stiffened plates 112, 113

site assembly 388–9
skin bays 236
slender column buckling load 232
slender cross-sections 400
slenderness limits 319

composite steel-concrete beams 223,
224

composite steel-concrete columns 227,
230

flanges with stress gradient 399–407
slenderness ratio 272, 275, 276
slip theory of plasticity 117
smart structures 173
snap-through (snap-back) behaviour 249,

252, 263, 394–5, 436
spacecraft 170
spatial coordinate system 58
square plates

finite element analysis 67–9
plastic buckling stress factors 141, 143

stainless steel 195–9
steel

stress-strain relationship 308, 309
yield strength 452

steel-concrete composite members see
composite steel-concrete
members; concrete-filled steel
box columns

steel tube, yield strength of 326, 333–4

stiffened composite structures 236–68
experimental observations 238–46

blade-stiffened panels 244–6
hat-stiffened panels 239–42
I- and J-stiffened panels 243

finite element modelling 246–58
geometrically nonlinear analysis

248–58
linear eigenvalue analysis 246–8

modelling failure 258–64
interface elements 262–4
virtual crack closure technique

259–62
stiffened plates 80–1, 83, 112–13

centreline stiffened plates with stress
gradient 396–9, 400

clamped square plate with one stiffener
under in-plane compression 108

under compression 269–71, 273–4, 275
mesh-free model formulation 89–98

stability analysis 93–7
under shear 276–7, 278, 279–80
simply supported under in-plane

compressions 100–5
with two stiffeners 105–7, 108–9

stiffeners
box-shaped stub-columns with combined

compression and bending 280–1,
282–3, 284–5

under shear 291, 292–3, 294
cantilever box columns with longitudinal

stiffeners 299–300
corrugated silos 441, 442, 443
fabricating curved girders 385–6
and local buckling of composite steel-

concrete columns 306–7
storage tanks 441–8, 449
strain

lower bound method and 454–6
relationship between strains and

displacements 357–8
strain energy 344, 453–4
strain energy release rate 259–64
strain-gauges 239–42, 244–5, 246
strength 269–304

box-shaped columns subjected to shear
loading 292–3

cantilever columns
made of pipe sections 300–1
with longitudinal stiffeners 299–300
without longitudinal stiffeners 297–8

concrete-filled steel box columns
axial strength capacity 312–13
column strength analysis 315–17
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numerical results 318–20
plates

in compression 273–4
in shear 277–8

stub-columns
box-shaped subjected to combined

compression and bending 282,
283

pipe-shaped subjected to combined
compression and bending 289–90

pipe-shaped subjected to pure
compression 287–8

stress gradient
centreline stiffened plates with 396–9,

400
definition of compactness for flanges

with 399–407
stress-strain relationships

bilinear thick plate element 65
for concrete and steel 308, 309
corrugated steel web without concrete

flanges 372
orthotropic rectangular Mindlin plate

343
plastic buckling 121–2
plastic flow theory 361–2

strip heating 385
stub-columns 280–94

box-shaped
combined compression and bending

280–5
shear loading 291–4

pipe-shaped 285–91
combined compression and bending

289–91
pure compression 287–9

symmetric cross-ply laminated plates
188–90

with piezoelectric layers 191–3, 194

tangent modulus 121–2
tangent stiffness matrix 4–5, 61–3

stiffened composite panels 247, 253, 255
tangential restraints 435–6
tank structures 441–8, 449
tapered shells 446–7
tapered steel members 1–25

design strengths 18–23
codified rules 18–22, 23, 24
design recommendation 22–3

elastic buckling curves 14–18, 19, 20,
21, 22

linear finite element formulation 7–14
nonlinear finite element formulation 4–7

tapering of flanges 242
temperature change

linear 155, 165, 166
nonlinear 155, 160–1, 165, 167
parabolic temperature loading see

parabolic temperature loading
tent-like temperature loading see tent-

like temperature loading
uniform see uniform temperature rise
see also thermal buckling; thermal

postbuckling
temporary false-work towers 389
tension crack extension mode 259–64
tent-like temperature loading 175, 212

thermal postbuckling of antisymmetric
angle-ply laminated plates 184–8

thermal buckling 148
ceramic-metal plates 154–6, 163–5, 166,

167
laminated plates see laminated plates

thermal expansion coefficient 151, 193–5,
196

thermal postbuckling 170–213
antisymmetric angle-ply laminated

plates 184–8
FGM hybrid laminated plates 193–9
symmetric cross-ply laminated plates

188–90
with piezoelectric layers 191–3, 194

thermal postbuckling equilibrium path 184
thermal stress resultants 152–3
thick plates 117

Mindlin plate theory see Mindlin plate
theory

plastic buckling see plastic buckling
thickness ratio 117

buckling of rectangular plates 36, 37–40,
46, 47, 48

plastic buckling
annular plates 137–8, 141, 142, 143
circular plates 132–3, 134
rectangular plates 123, 124, 129,

130, 131
thin plate theory see Kirchhoff plate theory
third order shear deformation theory

(TSDT) 156, 157–61, 162, 163,
164

titanium alloy 196–8
torsion 452
torsional-flexural buckling 473–6, 480–1
torsional stiffness 348, 350
total Lagrangian formulation 58–60
total strain theory see deformation theory of

plasticity
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traction laws 262
transformation equations 90–3
transformation matrix 364–7
transition zone 355–6
transportation of curved girders 386–7
transverse shear stiffness 66–7, 348,

350–1
transverse stiffness 82
trapezoidally corrugated plates 81–2

equivalent elastic properties 85, 86–8
under uniaxial in-plane compression

109–11
stiffened plate 111

Trefftz criterion 153
triangular plates 141, 142
two-step crack closure technique 259

uniaxial compression 154, 158–60, 162–3,
164

uniform external pressure 425–7
uniform temperature rise

ceramic-metal plates 155, 160, 163–5
laminated plates 175, 212

thermal postbuckling of
antisymmetric angle-ply plates
185–7

thermal postbuckling of FGM hybrid
plates 193–9

thermal postbuckling of symmetric
cross-ply plates 188, 189
with piezoelectric layers 191–3

V-load analysis 383–4
V-type heating 385
vacuum 440
validation studies 99–100, 101, 102
variable in-plane forces 26–55

buckling of rectangular plates 28–36
basic equations 28–9
derivation of buckling equations

30–2
Kantorovich procedure 29–30
solution procedure 32–6

numerical examples 36–44, 45, 46, 47,
48, 49, 50, 51, 52, 53

venting 440
virtual crack closure technique (VCCT)

259–62

volume fraction
ceramic-metal plates 151, 160–1, 162,

163, 164–5, 166, 167
FGM hybrid laminated plates 194–5,

196–9
Von Kármán equations 174–5, 237

ceramic-metal plates 148, 149, 154
von Mises yield criterion 360–1

web-flange model 291–4
web plate stability and distortion 407–14

combined bending and shear 413–14
curved web behaviour 407–8
elastic buckling 408
geometric nonlinear effects 410–11
influence of longitudinal stiffeners

411–12
lateral pressure analogy 409–10
pure shear 412–13

web slenderness for curved girders 410–12
welded composite steel-concrete beams

223, 224
wide flange sections 218, 225, 226, 228,

230
width-to-thickness ratio (plate slenderness)

272, 307–8
ceramic-metal plates 162, 163, 164–5,

166, 167
compact-flange section limit 406–7
compact section limit 405
concrete-filled steel box columns

319–20, 326, 331–3
effect of curvature on flange plate

stability 395, 401–3, 405, 406–7
non-compact section limit 401–3

wind 441
work done 10–14
woven carbon-fibre fabrics 264

yield criterion 360–1
yield strength

steel 452
steel tube 326, 333–4

yielding region 367–69, 399–401
Young’s modulus see elastic modulus

z-pinning 264
zirconium oxide 196–98
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