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. . .mercatique solum,
facti de nomine Byrsam,
taurino quantum possent

circumdare tergo.
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Engraving by Mathäus Merian the Elder, 1630 . . . . . . . . . . . . . 1

1.2 Isoperimetric sets in R2 have symmetry. . . . . . . . . . . . . . . . . . 6
1.3 Isoperimetric sets are convex . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Examples of horizontal planes at different points. . . . . . . . . . . . . 14
2.2 Horizontal paths connecting points in H. . . . . . . . . . . . . . . . . . 17
2.3 The conjectured isoperimetric set in H1. . . . . . . . . . . . . . . . . . 24

3.1 Coordinates describing the unicycle. . . . . . . . . . . . . . . . . . . . 43
3.2 The hypercolumn structure of V1. . . . . . . . . . . . . . . . . . . . . 44

7.1 Illustration of Pansu’s approach. . . . . . . . . . . . . . . . . . . . . . 145



Preface

Sub-Riemannian (also known as Carnot–Carathéodory) spaces are spaces whose
metric structure may be viewed as a constrained geometry, where motion is only
possible along a given set of directions, changing from point to point. They play
a central role in the general program of analysis on metric spaces, while simul-
taneously continuing to figure prominently in applications from other scientific
disciplines ranging from robotic control and planning problems to MRI function
to new models of neurobiological visual processing and digital image reconstruc-
tion. The quintessential example of such a space is the so-called (first) Heisenberg
group. For a precise description we refer the reader to Chapter 2; here we merely
remark that this is the simplest instance of a sub-Riemannian space which retains
many features of the general case.

The Euclidean isoperimetric problem is the premier exemplar of a problem in
the geometric theory of the calculus of variations. In Chapter 1 we review the ori-
gins of this celebrated problem and present a spectrum of well-known approaches
to its solution. This discussion serves as motivation and foundation for the remain-
der of this survey, which is devoted to the isoperimetric problem in the Heisenberg
group. First formulated by Pierre Pansu in 1982 (see (8.2) in Chapter 8 for the
precise statement), the isoperimetric problem in the first Heisenberg group is one
of the central questions of sub-Riemannian geometric analysis which has resisted
sustained efforts by numerous research groups over the past twenty-five years.

Our goals, in writing this survey, are twofold. First, we want to describe
the isoperimetric problem in the Heisenberg group, outline recent progress in this
field, and introduce a number of techniques which we think may lead to further
understanding of the problem. In accomplishing this program we simultaneously
provide a concise and detailed introduction to the basics of analysis and geometry
in the setting of the Heisenberg group. Rather than present a general, exhaustive
introduction to the field of subelliptic equations, Carnot–Carathéodory metrics
and sub-Riemannian geometry, as is done (to different extents) in the standard
references [32], [100], [103], [130], [243], [203], [255], and in the forthcoming mono-
graph [114], here we focus on the simplest example of the first Heisenberg group.
This seems to us a good starting point for a novice who wants to learn some basic
techniques and issues in the field without having to face the most general picture
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first. At present there are no elementary or introductory texts in this area; we are
convinced that there is great need for such a text, to motivate young researchers
to work in this area or to clarify to mathematicians working in other fields its
principal features. While most of the material in this survey has appeared else-
where, the approach to the horizontal differential geometry of submanifolds via
Riemannian approximation is original; we hope it may be helpful for those who
wish to further investigate this interesting line of research.

The structure of this survey is as follows:

Chapter 1. We give an abbreviated review of the isoperimetric problem and its
solution in Euclidean space, indicating a few proofs for the sharp isoperimetric
inequality in the plane arising from diverse areas such as complex analysis, differ-
ential geometry, geometric measure theory, nonlinear evolution PDE’s (curvature
flow), and integral geometry.

Chapters 2, 3. We introduce the first Heisenberg group H and describe in detail
its principal metric, analytic and differential geometric features. Our presentation
of the sub-Riemannian structure of H is somewhat nonstandard, as we first in-
troduce an explicit coordinate system and later define the sub-Riemannian metric
by referencing this particular set of coordinates. This “hands-on” approach, while
not in the coordinate-free approach of modern geometry, fits well with our basic
aim as described above.

In Chapter 3 we present a selection of pure and applied mathematical models
which feature aspects of Heisenberg geometry: CR geometry, Gromov hyperbolic
spaces, jet spaces, path planning for nonholonomic motion, and the functional
structure of the mammalian visual cortex.

Chapter 4. We turn from the global metric structure of the Heisenberg group H

to a study of the geometry of submanifolds. We introduce the concept of horizon-
tal mean curvature, which gives a sub-Riemannian analog for the classical notion
of mean curvature. Computations of the sub-Riemannian differential geometric
machinery are facilitated by considering H as a Gromov–Hausdorff limit of Rie-
mannian manifolds. We illustrate this by computing some of the standard machin-
ery of differential geometry in the Riemannian approximants, and identifying the
appropriate sub-Riemannian limits. Typical submanifolds in H contain an excep-
tional set, the so-called characteristic set, where this sub-Riemannian differential
geometric machinery breaks down. In Section 4.4 we work through an extended
analysis of the limiting behavior of fundamental ingredients of sub-Riemannian
submanifold geometry at the characteristic locus. Such an analysis plays a key
role in our later discussion of Pansu’s isoperimetric conjecture (see Chapter 8).

Chapters 5, 6. Weakening the smoothness requirements of differential geome-
try leads to the study of geometric measure theory. We give a broad summary
of some basic tools of geometric measure theory in H: horizontal Sobolev and
BV spaces and the Sobolev embedding theorems, perimeter measure, Hausdorff
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and Minkowski content and measure, area and co-area formulas, and the Pansu–
Rademacher differentiability theorem for Lipschitz functions. This development
culminates in Section 6.4, where we present two derivations of the first variation
formula for perturbations of the horizontal perimeter. These formulas are essen-
tial ingredients in the most recent developments associated with proofs of Pansu’s
conjecture in certain special cases; our presentation of the first variation formula
for the horizontal perimeter is preparatory to our discussion of these developments
in Sections 8.5 and 8.6. We conclude Chapter 6 with a brief overview of Mostow’s
rigidity theorem for cocompact lattices in complex hyperbolic space, emphasizing
the role of quasiconformal functions on the Heisenberg group in the proof and
building on this to summarize some of the essential aspects of the field of sub-
Riemannian geometric function theory which has grown from this application.

Chapters 7, 8. With the above tools in hand, we are prepared to begin our dis-
cussion of the sub-Riemannian isoperimetric problem in the Heisenberg group. In
Chapter 7 we give two proofs for the isoperimetric inequality in H. Neither proof
gives the best constant or identifies the extremal configuration. The first proof re-
lies on the equivalence of the isoperimetric inequality with the geometric Sobolev
inequality. The second is Pansu’s original proof, which relies on an adaptation of
an argument of Croke. Chapter 8 is the heart of the survey. We present Pansu’s
famous conjecture on the isoperimetry extremals, and discuss the current state of
knowledge, including various partial results (requiring a priori regularity and/or
symmetry), and various Euclidean techniques whose natural analogs have been
shown to fail in H.

Chapter 9. In this concluding chapter, we discuss three other analytic “best con-
stant” problems in the Heisenberg group, whose solutions are known.

We envision this survey as being of use to a variety of audiences and in a
variety of ways. Readers who are interested only in obtaining an overview of the
general subject area are invited to read Chapters 2–6. These chapters provide a
concise introduction to the basic analytic and geometric machinery relevant for
the sub-Riemannian metric structure of H. We presuppose a background in Rie-
mannian geometry, PDE and Sobolev spaces (in the Euclidean context), and the
basic theory of Lie groups. For those already fluent in sub-Riemannian geometric
analysis, Chapters 7 and 8 provide an essentially complete description of the cur-
rent state of knowledge regarding Pansu’s conjecture, and present a wide array of
potential avenues for attacks on it and related conjectures. Chapter 9 is essentially
independent of the preceding two chapters and can be read immediately following
Chapter 6.

We have deliberately aimed at a treatment which is neither comprehensive
nor put forth in the most general setting possible, but instead have chosen to
work (almost entirely) in the first Heisenberg group, and present those topics and
results most closely connected with the isoperimetric problem.
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Notable topics which we omit or mention only briefly include:

• The theory of (sub-)Laplacians and the connections between sub-Riemannian
geometry, subelliptic PDE and Hörmander’s “sums of squares” operators.
Similarly, we have very little to say on the subject of potential theory (both
linear and nonlinear), apart from some brief results in Chapter 6 connected
with the Sobolev embedding theorems.

• Carnot groups as tangent cones of general sub-Riemannian manifolds.
• Further extensions of geometric analysis beyond the sub-Riemannian context,

e.g., the emerging theory of “analysis on metric measure spaces”.
• Singular geodesics in the Martinet (and other sub-Riemannian) distributions.
• Further applications of sub-Riemannian geometry in control theory and non-

holonomic mechanics (apart from the discussion in Chapter 3).

These topics are all covered in prior textbooks, which mitigates their omission
here. Singular geodesics in sub-Riemannian geometry play a starring role in Mont-
gomery’s text [203], and the intricacies of the construction of tangent cones on sub-
Riemannian spaces are presented in both [203] and the survey article of Belläıche
[32]. For analysis on metric spaces, the best reference is Heinonen [136]; see also
[137]. For nonlinear potential theory (in the Euclidean setting) the principal ref-
erence is Heinonen–Kilpeläinen–Martio [139]. In addition to the preceding list, we
are also omitting a full discussion of several important recent developments, most
notably:

• Rigidity theorems à la Bernstein for minimal surfaces in the Heisenberg
group.

• The extraordinary developments in rectifiability and geometric measure the-
ory connected with the extension by Franchi, Serapioni and Serra-Cassano
of the structure theorem of de Giorgi to sets of finite perimeter in Carnot
groups.

These topics are still very much the subject of active investigation and it is too
soon to write their definitive story.

In conclusion, we would be remiss in failing to pay homage to the comprehen-
sive treatise by Gromov [130] on the metric geometry of sub-Riemannian spaces,
which provides a wealth of information regarding the structure of these remarkable
spaces. Much of the current development in the area represents the working out
and elaboration of ideas and notions presented in that work.

Remarks on notation and conventions

With only a few exceptions, we have attempted to keep our discussion of references,
citations, etc. limited to the “Further results” and “Notes” sections of each chapter.
In certain cases, particularly when we have used without proof some well-known
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result which can be found in another textbook, we have deviated from this policy.
Despite its size, our reference list still represents only a fraction of the work in this
area, and should be viewed merely as a guide to the existing literature.

Our notation and terminology is for the most part standard. The Euclidean
space of dimension n and its unit sphere are denoted by Rn and Sn−1, respectively.
By Hn

A
we denote the hyperbolic space over the division algebra A (either the

real field R, the complex field C, the quaternionic division algebra K or Cayley’s
octonions O.) We denote by B(x, r) the (open) metric ball with center x and
radius r in any metric space (X, d). We write diam A for the diameter of any
bounded set A ⊂ X , and dist(A, B) for the distance between any two nonempty
sets A, B ⊂ X . If the metric needs to be emphasized we may use a notation of
the form Bd(x, r), diamd A, etc. In the case of the Euclidean metric in Rn, we
write BE(x, r), diamE d, etc. We always reserve the notation 〈·, ·〉 for the standard
Euclidean inner product. An alternate family of inner products, associated to a
family of degenerating Riemannian metrics gL on R3, will be written 〈·, ·〉L. The
latter family of inner products will play an essential role throughout the survey.

We will use both vector notation and complex notation for points in R2,
switching between the two without further discussion. The unit imaginary element
in C will always be written i . For v = (v1, v2) ∈ R2 we write v⊥ = (v2,−v1).

In any dimension n, we write |A| for the Lebesgue measure of a measurable
set A. For any domain Ω ⊂ Rn, we denote by W k,p(Ω) the Sobolev space of
functions on Ω admitting p-integrable distributional derivatives of order at most
k. The surface area measure on a smooth hypersurface S in a Euclidean space Rn

of any dimension will be denoted dσ. Finally, we write

ωn−1 :=
2πn/2

Γ(n/2)

for the surface area σ(Sn−1) of the standard unit sphere Sn−1 in Rn.
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Chapter 1

The Isoperimetric Problem
in Euclidean Space

Figure 1.1: Dido, Queen of Carthage. Engraving by Mathäus
Merian the Elder, 1630. Used with permission of
the Bayerische Staatsbibliothek, München.

Fleeing the vengeance of her brother, Dido lands on the coast of North Africa and
founds the city of Carthage. Within the mythology associated with Virgil’s saga
lies one of the earliest problems in extremal geometric analysis. For the bargain
which Dido agrees to with a local potentate is this: she may have that portion of
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land which she is able to enclose with the hide of a bull. Legend records Dido’s
ingenious and elegant solution: cutting the hide into a series of long thin strips, she
marks out a vast circumference, forming the eventual line of the walls of ancient
Carthage. This problem is a variant of what has become known as the classical
isoperimetric problem.1 In more precise terms it may be formulated as follows:
among all bounded, connected open regions in the plane with a fixed perimeter,
characterize those regions with the maximal volume. Needless to say, Dido’s solu-
tion is correct: the extremal regions are precisely open circular planar discs.

Over the centuries, the isoperimetric problem (in various guises) has served
to motivate substantial mathematical research in numerous areas. Indeed, the
existence of the entire discipline of geometric measure theory can be attributed to
a need to understand the precise setting for the study of classical questions in the
calculus of variations such as the isoperimetric problem or Plateau’s problem (to
determine the surfaces of minimal area spanning a given closed curve in space). A
wide array of techniques for the solution to the isoperimetric problem have been
obtained from various fields:

• Geometric measure theory: The proof of the existence of an isoperimet-
ric profile is based on compactness theorems for the space of functions of
bounded variation. Consequently, a priori solutions are only guaranteed with-
in the class of Caccioppoli sets (see Chapter 2 for a precise definition).

• Differential geometry: (Smooth) isoperimetric solutions are surfaces of con-
stant mean curvature. The classification of such surfaces provides a charac-
terization of isoperimetric profiles.

• PDE: The introduction of dynamic algorithms (curvature flow) provides a
way to smoothly deform a given region so that the isoperimetric ratio

(Perimeter)n/n−1/(Volume)

decreases monotonically. Provided such flows exist for all time (for instance,
for special classes of initial data), the deformed regions converge, in a suitable
sense, to a solution of the isoperimetric problem. The governing equations
for such flows are nonlinear evolution partial differential equations, the most
famous example being the volume constrained mean curvature flow.

• Functional analysis: Another analytic reformulation of the isoperimetric prob-
lem consists in viewing it as a best constant problem for a Sobolev inequality,
relating mean values of a given smooth function with those of its derivatives.

• Geometric function theory: Symmetrization, in broad terms, refers to op-
erations which replace a given mathematical object or region with one ad-
mitting a larger symmetry group. Suitable symmetrization techniques can
be employed, in a similar vein to the previous point, to show that discs are
isoperimetric solutions.

1See also Section 2.3.
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To motivate our main topic (the isoperimetric problem in the Heisenberg group),
we begin by recalling the classical isoperimetric inequality in Euclidean space.

Theorem 1.1. For every Borel set Ω in Rn with finite perimeter P (Ω),

min{|Ω|(n−1)/n, |Rn \ Ω|(n−1)/n} ≤ Ciso(Rn)P (Ω), (1.1)

where
Ciso(Rn) = (n1−1/nω

1/n
n−1)

−1. (1.2)

Equality holds in (1.1) if and only if Ω = B(x, R) for some x ∈ Rn and R > 0.

If Ω is C1 smooth, then one can define the surface measure dσ, and

P (Ω) =
∫

∂Ω

dσ.

For rougher domains one has the notion of perimeter introduced by De Giorgi,

P (Ω) = P (Ω, Rn)
= Var(χΩ, Rn),

(1.3)

where

Var(f) = sup
G∈C∞

0 (Rn,Rn)
|G|≤1

∫
Rn

f

n∑
i=1

∂xiGi dx. (1.4)

Roughly speaking, the isoperimetric problem consists in finding the “best
constant” Ciso(Rn) and classifying the sets Ω such that the inequality in (1.1)
becomes an equality. This problem has two classical, and equivalent, formulations:

• Among all bounded, connected open sets of fixed perimeter L, find one with
maximum volume V .

• Among all bounded, connected open sets with fixed volume V , find one with
minimum perimeter L.

For example, we recall that in R2, if we denote by A the area of an open set
with finite perimeter and by L its perimeter, then

4πA ≤ L2, (1.5)

where equality is achieved only for the disc. This result is classical and admits a
variety of proofs. For the reader’s convenience we recall in brief several elegant
complex analytic proofs of the planar isoperimetric inequality (1.5), for relatively
compact domains Ω ⊂ C with boundary consisting of a single C1 Jordan curve.
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First proof of (1.5). Denoting z = x1 + i x2 and dA = dx1 ∧ dx2 = 1
2 i dz ∧ dz

and using Green’s theorem and Fubini’s theorem together with the fact that the
winding number of ∂Ω about any point in Ω is equal to 1, we find

4πA =
∫

Ω

2π i dz ∧ dz =
∫

Ω

∫
∂Ω

dζ dz ∧ dz

ζ − z
=
∫

∂Ω

∫
∂Ω

ζ − z

ζ − z
dzdζ ≤ L2

as desired. �

Second proof of (1.5). Let D = {z : |z| < 1} and let f : D → Ω be a Riemann
map. Since f ′ �= 0 in D, we may choose an analytic map g =

√
f ′. Then A =∫

D |g(z)|4 dA(z) and L =
∫

∂D |g(z)|2 |dz|. Let g(z) =
∑∞

n=0 anzn. Expanding the
integral representations for A and L and using the orthogonality of the functions
exp( inθ), n ∈ Z, on [0, 2π], we find

A = π

∞∑
k,m=0

k+m∑
l=0

akalamak+m−l

k + m + 1

= π

∞∑
j=0

j∑
k,l=0

akaj−kalaj−l

j + 1

= π

∞∑
j=0

1
j + 1

∣∣∣∣∣
j∑

k=0

akaj−k

∣∣∣∣∣
2

(1.6)

and

L = 2π

∞∑
j=0

|aj |2.

An application of the Cauchy–Schwarz inequality in (1.6) gives

4πA ≤ 4π2
∞∑

j=0

j∑
k=0

|ak|2|aj−k|2 = L2. �

In each of the preceding proofs, the case of equality is easy to analyze.

The interplay between geometric extremal problems (such as the isoperimet-
ric problem) and sharp analytic inequalities is witnessed in the following analytic
proof of the planar isoperimetric inequality. The deep connection between the
isoperimetric inequality and Sobolev–Poincaré inequalities is developed in detail
in Chapters 6, 7 and 9, see especially Section 7.1.

Third proof of (1.5). Let ds denote the element of arc length along a Lipschitz
curve ∂Ω which is the boundary of a domain Ω ⊂ R

2. Let x denote the position
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vector in R2. Without loss of generality we may assume
∫

∂Ω xds = 0. Using the
divergence theorem we obtain

2A =
∫

Ω

div xdA =
∫

∂Ω

〈x, �n〉 ds

≤
∫

∂Ω

|x| ds ≤
√

L

(∫
∂Ω

|x|2 ds

) 1
2

.

Let us recall Wirtinger’s inequality: if f ∈ W 1,2([0, 2π]) satisfies
∫ 2π

0
f(t) dt = 0,

then ∫ 2π

0

|f(t)|2 dt ≤
∫ 2π

0

∣∣∣∣ d

dt
f

∣∣∣∣2 dt, (1.7)

with equality only when f(t) = c1 cos t + c2 sin t. (The Fourier analytic proof of
(1.7) is an easy exercise.) Applying this inequality to the coordinate functions
x1, x2 yields

2A ≤
√

L

(∫
∂Ω

|x|2 ds

)1/2

≤
√

L

[(
L

2π

)2 ∫
∂Ω

∣∣∣∣dx

ds

∣∣∣∣2 ds

]1/2

≤ L2

2π

with equality if and only if Ω is a disc. �

One can also approach the isoperimetric problem in the plane through geo-
metric methods. If the existence of an isoperimetric minimizer is assumed, sym-
metrization arguments may be employed to determine the nature of that mini-
mizer. For example, if Ω is an isoperimetric minimizer, then it must be symmetric
with respect to any line L which cuts it into two pieces of equal area. Suppose this
is not true and there exists L dividing Ω into regions Ω1, Ω2 of equal area. Suppose
that P (Ω1) �= P (Ω2) and, without loss of generality, that P (Ω1) < P (Ω2). Then
form Ω̃ as the union of Ω1 and the reflection of Ω1 over L. The domain Ω̃ has
the same area as Ω but smaller perimeter, violating the assumption that Ω is an
isoperimetric minimizer. See Figure 1.2.

Furthermore, every isoperimetric minimizer is necessarily convex. Indeed, if
Ω is not convex, then we can construct a line tangent to Ω at two points as in
Figure 1.3. By reflecting a portion of the curve over this line, we would create a
new domain Ω̃ with greater area than Ω but the same perimeter. Thus Ω is not
an isoperimetric minimizer.

Carrying out the preceding two operations repeatedly, we eventually deduce
that Ω is convex and that, relative to a suitable coordinate system in R2, the
tangent line is orthogonal to the position vector at every point of differentiability
of ∂Ω. Together with the convexity, this easily implies that ∂Ω is a circle.

One could propose yet another approach to the planar isoperimetric prob-
lem: beginning with any bounded, open, and connected set Ω0 ⊂ C, deform Ω0
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Ω
1

Ω
2

Ω
1

Figure 1.2: Isoperimetric sets in R2 have symmetry.

Figure 1.3: Isoperimetric sets in R2 are convex.

continuously in a flow Ωt, t > 0, so that the Area(Ωt) is constant and the perime-
ter P (Ωt) = Length(∂Ωt) is a decreasing function of t. Provided such a flow is
well defined for all positive times t, one expects that the sets Ωt will converge, as
t → ∞, to the disc of area Area(0). The most efficient way to reduce the length
of the contour is to choose a velocity field �V so that, if the boundary of Ωt is
represented by a curve ct : [0, 1] → R2 and every point on the curve moves with
velocity �V :

c′t = �V (ct), then
d

dt
Length(ct)

is minimal among all choices of �V . More precisely, if the curve ct is C2 then

d

dt
Length(ct)|t=0 =

∫ 1

0

〈c′t, c′′t 〉
|c′t|

= −
∫ 1

0

〈kt�nt, �V (ct)〉,

where kt�nt denotes the time-dependent curvature vector. The obvious choice is
�V (ct) = kt�nt. The resulting PDE is the famous curve shrinking flow equation

c′t = kt�nt. (1.8)
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Solutions of the system (1.8) with initial data given by a smooth embed-
ded curve are defined for all t > 0, remain smooth and embedded, and evolve
asymptotically into a shrinking circle. In particular, the flow (1.8) clearly does not
preserve the area enclosed by the curve. Imposing the area constraint introduces
a non-local perturbation term in (1.8):

c′t =
(

kt −
∫

kt

Length(ct)

)
�nt. (1.9)

A simple computation shows that

d

dt
Area(Ωt)

∣∣∣∣
t=0

=
∫

ct

〈�nt, c
′
t〉 ds = 0.

Any convex, closed embedded curve evolving by (1.9) stays convex and embedded
for all times, and becomes circular asymptotically. Non-convex initial data gives
rise to singularities in the flow and, in view of the non-local term in (1.9), most of
the available techniques to study the flow past singular points cannot be applied. It
is not clear if this asymptotic behavior persists for more general initial data, so this
“geometric flow” approach only gives a partial answer to the isoperimetric problem
in the plane, namely, among all convex, bounded, connected simply connected, open
sets in the plane with fixed area, the one with minimum perimeter is the disc.

An integral geometric proof of the planar isoperimetric inequality. Integral geom-
etry (also known as geometric probability) is the study of the measure-theoretic
properties of random sets of geometric objects. The oldest problem of the subject
is the famous Buffon needle problem. During the twentieth century, the relation
between integral geometry and the theory of Lie groups and homogeneous spaces
was formalized, and the field was further enriched by the reformulation of its
classical concepts and methods in terms of stochastic processes.

To employ the techniques of integral geometry to prove the planar isoperi-
metric inequality (1.5) we introduce a measure d	 = dp dφ on the space L of lines
in R

2 via the parametrization

(p, φ) ∈ R× [0, π] �→ 	 = 	p,φ ∈ L : x cos φ + y sin φ− p = 0.

It is easy to verify that d	 is invariant under the action of Euclidean rigid motions
of R2 on the space L.

As discussed above, it suffices to establish (1.5) for convex sets, so let Ω ⊂ R2

be a convex domain with area A and perimeter L. Fix a reference point (x0, y0) ∈
∂Ω and parameterize ∂Ω by arc length from (x0, y0) in a specific (say, counter-
clockwise) direction.

For 	 = 	p,φ ∈ L, denote by σ = σ(p) the length (possibly zero) of the chord
	p,θ ∩Ω. An easy application of Cavalieri’s principle (e.g., Fubini’s theorem) gives∫
{p:�p,φ∩Ω�=∅} σ dp = A for each φ ∈ [0, π], whence∫

L
σ d	 = πA. (1.10)
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On the other hand, ∫ π

0

σ2 dφ = 2
∫ π

0

∫ σ

0

r dr dφ = 2A (1.11)

since Ω is convex.
A generic line 	 ∈ L which intersects Ω has two points of intersection with

∂Ω. Let (x, y) be one of these points, denote by s the arc length coordinates of
(x, y), denote by θ the angle formed by 	 with the support line to ∂Ω at (x, y)
(note that almost every point in ∂Ω has a unique such support line and that we
will only use the quantity sin θ in computations) and denote by σ the length of
the chord 	∩Ω. For 	i ∈ L, i = 1, 2, denote this data by (xi, yi), si, θi and σi. An
easy calculation gives

2d	i = sin θi dsi dθi (1.12)

(the factor of 2 occurs due to the cardinality of 	i ∩ ∂Ω).
Consider the integral

I :=
∫
L×L

(σ1 sin θ2 − σ2 sin θ1)2

sin θ1 sin θ2
d	1 d	2.

Expanding and using (1.12) gives

I =
1
2
L2

∫ π

0

σ2
1 dθ1

∫ π

0

sin2 θ2 dθ2 − 2
(∫

L
σ d	

)2

.

Using (1.10) and (1.11), we obtain

I =
π

2
L2A− 2π2A2 =

π

2
A(L2 − 4πA).

Since I ≥ 0, we conclude that L2 ≥ 4πA, as desired.
Observe that equality holds in the isoperimetric inequality if and only if

I = 0, or equivalently, if σ/ sin θ is constant over all lines 	 ∈ L intersecting Ω. An
easy geometric argument yields that Ω is a disc in this case.

1.1 Notes

The Euclidean (in particular the two-dimensional) isoperimetric problem has a
long and interesting history. The book by Chavel [59] is a good reference, and
most of the arguments in this chapter can be found there as well. The proof of the
planar isoperimetric inequality via series estimates for the parametrizing Riemann
map is due to Carleman; see Duren [89, Chapter 1]. For Wirtinger’s inequality, see
[134]. Other excellent references for the wide-ranging sphere of work motivated by
the isoperimetric problem are the 1978 survey article of Osserman [216] and the
books of Pólya–Szegö [229], and Bandle [27].
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For applications of the machinery of geometric measure theory to verify
higher regularity of minimizers arising in the calculus of variations, see [95], [125]
and [195]. Key references for the functional analytic approach to variational prob-
lems are [97] and [197]. For symmetrization as an avenue to extremal variational
problems in geometry and analysis, see [245], [17] and [229]. We also point out
that the first proof of the isoperimetric inequality in the generality of Theorem
1.1 is due to De Giorgi [85].

Curvature flow has become an increasingly important topic in recent years
after Perelman’s work on the Ricci flow, with applications to Thurston’s Ge-
ometrization Conjecture and the Poincaré conjecture [225, 226]. The approach to
the Poincaré conjecture through the Ricci flow had been proposed by Hamilton
as early as 1982, see, e.g., [133]. Curve shortening flow was intensively studied in
the 1980s in the celebrated papers [110], [112] and [128]. The higher-dimensional
analogue is the mean curvature flow, studied by Huisken [152].

The integral geometric proof of the planar isoperimetric inequality is a stan-
dard exercise which appears in all of the basic texts on the subject, see, e.g., [237,
Section I.3.4]. The proof is generally attributed to Blaschke.



Chapter 2

The Heisenberg Group and
Sub-Riemannian Geometry

In this chapter we provide a detailed description of the sub-Riemannian geometry
of the first Heisenberg group. We describe its algebraic structure, introduce the
horizontal subbundle (which we think of as constraints) and present the Carnot–
Carathéodory metric as the least time required to travel between two given points
at unit speed along horizontal paths. Subsequently we introduce the notion of
sub-Riemannian metric and show how it arises from degenerating families of Rie-
mannian metrics. For use in later chapters we compute some of the standard
differential geometric apparatus in these Riemannian approximants.

2.1 The first Heisenberg group H

We begin with a matrix model for the first Heisenberg group,1 namely, the follow-
ing subgroup of the group of three by three upper triangular matrices equipped
with the usual matrix product:

H =

⎧⎨⎩
⎛⎝1 x1 x3

0 1 x2

0 0 1

⎞⎠ ∈ GL(3, R) : x1, x2, x3 ∈ R

⎫⎬⎭ . (2.1)

The Heisenberg group H is an analytic Lie group of dimension 3.2 Its Lie algebra h
can be equivalently defined either as the tangent space at the identity, TIH, or as
the set of all left invariant tangent vectors. Clearly h is a three-dimensional vector

1Also known as the polarized Heisenberg group.
2In other words, it is a group which is also an analytic manifold and for which the map (x, y) →
xy−1 is an analytic transformation of H × H into H.
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space and we can identify it by explicitly computing the tangent spaces of H. To
do this, we left translate a fixed element⎛⎝1 u1 u3

0 1 u2

0 0 1

⎞⎠ ,

which we will denote by the triplet (u1, u2, u3), by one parameter families of matri-
ces to form curves in H, and then take derivatives along those curves to determine
the tangent vectors. For example, let

U1 =
d

dε

∣∣∣∣
ε=0

⎛⎝1 ε 0
0 1 0
0 0 1

⎞⎠⎛⎝1 u1 u3

0 1 u2

0 0 1

⎞⎠ =

⎛⎝0 1 u2

0 0 0
0 0 0

⎞⎠ ,

U2 =
d

dε

∣∣∣∣
ε=0

⎛⎝1 0 0
0 1 ε
0 0 1

⎞⎠⎛⎝1 u1 u3

0 1 u2

0 0 1

⎞⎠ =

⎛⎝0 0 0
0 0 1
0 0 0

⎞⎠
and

U3 =
d

dε

∣∣∣∣
ε=0

⎛⎝1 0 ε
0 1 0
0 0 1

⎞⎠⎛⎝1 u1 u3

0 1 u2

0 0 1

⎞⎠ =

⎛⎝0 0 1
0 0 0
0 0 0

⎞⎠ .

The tangent space to H at (u1, u2, u3) is spanned by the left invariant vector fields
{U1, U2, U3}. Computing the Lie brackets of these vector fields, we observe that
[U1, U2] = U1U2 − U2U1 = U3 while all other brackets are zero. We introduce
a system of coordinates (generally known as polarized coordinates or canonical
coordinates of the second kind) by identifying (u1, u2, u3) with the matrix product

exp(u3U3|I) exp(u2U2|I) exp(u1U1|I),

here we have denoted by exp(U) = I + U + 1
2U2 + · · · and by U |I the vector

field U evaluated at the identity. We note explicitly the group law in polarized
coordinates

(u1, u2, u3)(v1, v2, v3) = (u1 + v1, u2 + v2, u3 + v3 + u1v2).

The Heisenberg group H is the unique analytic, nilpotent Lie group whose
background manifold is R3 and whose Lie algebra h has the following properties:

• h = V1 ⊕ V2, where V1 has dimension 2 and V2 has dimension 1, and
• [V1, V1] = V2, [V1, V2] = 0 and [V2, V2] = 0.

The matrix presentation (2.1) is simply one way of realizing this general structure.
We now turn to another, more intrinsic, presentation of H via a different system of
coordinates. First, note that since h is nilpotent the exponential map exp : h→ H
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is a diffeomorphism. Fix an arbitrary basis X1, X2 of V1 and let X3 = [X1, X2] ∈
V2. Recall the form which the Baker–Campbell–Hausdorff formula3 takes in this
(nilpotent step two) setting:

exp−1 (exp(x) exp(y)) = x + y +
1
2
[x, y].

Here we have denoted by x = x1X1 + x2X2 + x3X3 = (x1, x2, x3) a generic point
in h. Using the commutation relation X3 = [X1, X2] we obtain

x + y +
1
2
[x, y] = (x1 + y1)X1 + (x2 + y2)X2 + (x3 + y3)X3

+
1
2

{
x1y1[X1, X1] + (x1y2 − x2y1)[X1, X2] + x2y2[X2, X2]

}
=
(

x1 + y1, x2 + y2, x3 + y3 +
1
2
(x1y2 − x2y1)

)
.

We identify H with C×R by identifying (x1, x2, x3) with exp(x1X1+x2X2+x3X3).
The coordinates (x1, x2, x3) are called canonical coordinates of the first kind or
simply exponential coordinates and we will use the notation4 x = (x1, x2, x3) =
(z, x3) ∈ H, with z = x1 + i x2 ∈ C and x3 ∈ R. Using these coordinates the group
law reads

(z, x3)(w, y3) = (z + w, x3 + y3 −
1
2

Im(zw̄)). (2.2)

In the remainder of this monograph we will almost invariably work with this model
of the Heisenberg group, where the group law is given as in (2.2).5 The group iden-
tity is o = (0, 0, 0) while x−1 = (−x1,−x2,−x3). The group has a homogeneous
structure given by the non-isotropic dilations δs(x) = (sx1, sx2, s

2x3). An isomor-
phism between this latter model of H and the polarized Heisenberg group defined
in (2.1) is obtained by mapping the element exp(x1X1 + x2X2 + x3X3) to the
matrix ⎛⎝1 x1 x3 + 1

2x1x2

0 1 x2

0 0 1

⎞⎠ .

By moving in a left invariant fashion the frame X1, X2 and X3 we obtain the
explicit representation

X1 = ∂x1 −
1
2
x2∂x3 , X2 = ∂x2 +

1
2
x1∂x3 and X3 = ∂x3 . (2.3)

3See, for example, [72] for the statement of the full Baker–Campbell–Hausdorff formula.
4Here and in the following we make a slight abuse of notation and denote by x both the point
in the group and the corresponding point exp−1 x in h.
5With some exceptions, however; note the use of the matrix model (2.1) in the application of
Heisenberg geometry to jet spaces in Section 3.1.
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Indeed, observe that the operation of left translation, Ly(x) = yx, has differential

dLy =
( 1 0 0

0 1 0
− 1

2y2
1
2y1 1

)
. (2.4)

A simple computation yields Xi(xy) = dLyXi(x).
The Haar measure in H is simply the Lebesgue measure in R3. To see this,

observe that the Euclidean volume form dx1 ∧ dx2 ∧ dx3 at the origin is invariant
under pull-back via left translation: (Ly)∗dx1 ∧ dx2 ∧ dx3 = dx1 ∧ dx2 ∧ dx3.
Throughout the paper we will denote the measure of a Borel set Ω ⊂ H as |Ω|.

2.1.1 The horizontal distribution in H

The left invariant frame X1, X2 is a basis for the horizontal fibration H(x) =
Ker[dx3 − 1

2 (x1dx2 − x2dx1)]. Note that

ω = dx3 −
1
2
(x1dx2 − x2dx1) (2.5)

is a contact form in R
3, i.e., ω∧dω = −dx1∧dx2∧dx3.6 According to the Darboux

theorem, modulo local change of variables, ω is the only contact form in R3. See
Figure 2.1 for a picture of the horizontal planes H(x), first along the x1 axis and
second passing through various points in the z-plane.

Figure 2.1: Examples of horizontal planes at different points.

The vector fields X1 and X2 are left invariant, first-order differential opera-
tors, homogeneous of order 1 with respect to the dilations δs. For any C1 function φ

6An equivalent definition of contact form is that dω restricted to Ker(ω) is nondegenerate.
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defined in an open set of H we denote by

∇0φ = X1φX1 + X2φX2 (2.6)

its horizontal gradient.

2.1.2 Higher-dimensional Heisenberg groups Hn

Higher-dimensional analogs of the Heisenberg group are given by the Lie groups
Hn which have as background manifold Cn×R, and whose Lie algebra has a step
two stratification hn = V1 ⊕ V2, where V1 has dimension 2n, V2 has dimension 1,
and [V1, V1] = V2, [V1, V2] = 0 and [V2, V2] = 0. Using exponential coordinates

x = (z1, . . . , zn, x2n+1) = (x1 + i xn+1, . . . , xn + i x2n, x2n+1)

we may express the group law as

xy = (z1 + w1, . . . , zn + wn, x2n+1 + y2n+1 −
1
2

n∑
i=1

Im(znwn)),

where x = (z1, . . . , zn, x2n+1) and y = (w1, . . . , wn, y2n+1). The left invariant
translates of the canonical basis at the identity are given by the vector fields
Xi = ∂/∂xi − 1

2xi+n∂/∂x2n+1, Xi+n = ∂/∂xi+n + 1
2xi∂/∂x2n+1, i = 1, . . . , n,

and X2n+1 = ∂/∂x2n+1. The first 2n vector fields span the horizontal distribution
in H

n; the corresponding homogeneous structure is provided by the parabolic
dilations δs(x) = (sx1, . . . , sx2n, s2x2n+1).

2.1.3 Carnot groups

The Heisenberg groups are a particular example of a wide class of nilpotent, ho-
mogeneous, stratified Lie groups sometimes, referred to as Carnot groups in the
literature. The Lie algebra g of a Carnot group G has a stratification (or grading)
g = V1 ⊕ · · · ⊕ Vr satisfying:

• [V1, Vi] = Vi+1, for i = 1, . . . , r − 1, and
• [Vj , Vr] = 0, j = 1, . . . , r.

Elements in g can be viewed either as tangent vectors to G at the identity element
o, or as left invariant vector fields on G. Following the notation in H, we write Ly

for the operation of left translation by y ∈ G.
Choose a Riemannian metric with respect to which the Vi are mutually or-

thogonal. For i = 1, . . . , r let mi = dim(Vi) and denote by {Xij}, j = 1, . . . , mi

an orthonormal basis of Vi. Canonical coordinates of the second kind are given by

x = (x11, x12, . . . , xrmr )↔ exp(
∑
i,j

xijXij). (2.7)
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A homogeneous structure on G is obtained by defining the dilations [δs(x)]ij =
sixij . The homogeneous dimension of G is

Q =
r∑

i=1

imi.

Observe that the homogeneous dimension of Hn is 2n + 2. We will see the role of
the homogeneous dimension in the metric geometry of G in Section 2.2.3.

The Haar measure on G coincides with the push-forward of the Lebesgue
measure on the Lie algebra g under the exponential map. It is easy to verify that
the Jacobian determinant of the dilation δs : G→ G is constant, equal to sQ.

As with the Heisenberg group, we define the horizontal gradient of a C1

function f : G→ R by

∇0f =
m1∑
j=1

X1jf X1j .

At various points in this survey we will work in this general setting to emphasize
the fact that certain results do not depend on the special structure of H. However,
we make no systematic attempt to present all results in the most general framework
possible.

To conclude this section, we define the notion of a linear map between Carnot
groups.

Definition 2.1. Given two Carnot groups G1, G2 with dilations δ1
s and δ2

s , a map
L : G1 → G2 is a horizontal linear map if L is a group homomorphism which
respects the dilations: L(δ1

sx) = δ2
sL(x).

Example 2.2. Each horizontal linear map L : H → H takes the form L(x) = Ax,
where the matrix A takes the form⎛⎝a b 0

c d 0
0 0 ad− bc

⎞⎠
for some a, b, c, d ∈ R. This is easy to verify from the definition.

2.2 Carnot–Carathéodory distance

2.2.1 CC distance I: Constrained dynamics

Let x and y be points in H. For δ > 0 we define the class C(δ) of absolutely
continuous paths γ : [0, 1]→ R3 with endpoints γ(0) = x and γ(1) = y, so that

γ′(t) = a(t)X1|γ(t) + b(t)X2|γ(t) (2.8)

and
a(t)2 + b(t)2 ≤ δ2 (2.9)



2.2. Carnot–Carathéodory distance 17

for a.e. t ∈ [0, 1]. Paths satisfying (2.8) are called horizontal or Legendrian paths.
Note that (2.8) is equivalent with the statement

ω(γ′) = γ′
3 −

1
2
(γ1γ

′
2 − γ2γ

′
1) = 0 (2.10)

a.e., where ω is the contact form on R
3 given in (2.5) and γ = (γ1, γ2, γ3).

Remark 2.3. Let π : H → C denote the projection π(x) = x1 + i x2. Given any
absolutely continuous planar curve α : [0, 1] → C and a point x = (α(0), h) ∈ H

it is possible to lift α to a Legendrian path γ : [0, 1]→ H starting at x satisfying
π(γ) = α. To accomplish this we let γ1(t) = α1(t), γ2(t) = α2(t) and

γ3(t) = h +
1
2

∫ t

0

(γ1γ
′
2 − γ2γ

′
1)(σ) dσ.

It is easy to see that for any choice of x = (x1, x2, x3) and y = (y1, y2, y3),
the set C(δ) is nonempty for sufficiently large δ.

x1

x 3

x2

Figure 2.2: Horizontal paths connecting points in H.

In Figure 2.2, we illustrate this fact by connecting the origin to the point
(0, 0, 1). First, we travel in the X1 direction; as we begin at the origin, this is simply
travel along the x1 axis. From the point (1, 0, 0), we travel in the X2 direction to
the point

(
1, 1, 1

2

)
. We then travel from this point in the −X1 direction to the

point (0, 1, 1). Finally, we travel in the −X2 direction, arriving at the terminus
(0, 0, 1). The smooth curve illustrated in Figure 2.2 which winds around and up
the x3 axis is a smooth horizontal curve that approximates this approach.

We define the Carnot–Carathéodory (CC) metric

d(x, y) = inf{δ such that C(δ) �= ∅}.
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A dual formulation is

d(x, y) = inf
{

T :
∃γ : [0, T ]→ R3, γ(0) = x, γ(T ) = y,

and γ′ = aX1|γ + bX2|γ with a2 + b2 ≤ 1 a.e.

}
,

that is, d(x, y) is the shortest time that it takes to go from x to y, travelling at unit
speed along horizontal paths. Since the vector fields X1 and X2 are left invariant,
left translates of horizontal curves are still horizontal and it is easy to verify that
d(x, y) = d(y−1x, 0).

Note that if γ is a horizontal curve, then so is its dilation δsγ. In fact, if

γ′(t) =
2∑

i=1

γ′
i(t)Xi|γ(t)

then

(δsγ)′ =
(

sγ′
1, sγ

′
2,

1
2
s2(γ1γ

′
2 − γ2γ

′
1)
)

=
2∑

i=1

sγ′
iXi|δsγ .

Moreover, if γ ∈ C(δ) then δsγ ∈ C(sδ) (observe that the endpoints must be
dilated as well). Consequently

d(δs(x), δs(y)) = sδ(x, y),

in particular, this implies continuity of x �→ d(x, 0).

The Korányi gauge and metric. An equivalent distance on H is defined by the
so-called Korányi metric

dH(x, y) = ||y−1x||H
and Korányi gauge

||x||4H = (x2
1 + x2

2)
2 + 16x2

3. (2.11)

To verify that dH is a metric, one needs to prove the triangle inequality:

dH(x, y) ≤ dH(x, z) + dH(z, y). (2.12)

This can be done by direct computation as we now recall.

Proof of (2.12). By replacing z−1x with x and y−1z with y, it suffices to prove
(2.12) in the case when z = o = (0, 0, 0) is the identity element, i.e., to show that

||xy||H ≤ ||x||H + ||y||H. (2.13)

Writing x = (z, x3) and y = (w, y3) and using the group law (2.2), we find

||xy||4H = |z + w|4 + 16(x3 + y3 −
1
2

Im(zw̄))2

=
∣∣∣∣|z + w|2 + 4 i (x3 + y3 −

1
2

Im(zw̄)
∣∣∣∣2

=
∣∣|z|2 + 4 i x3 + 2zw + |w|2 + 4 i y3

∣∣2
≤
(
||x||2H + 2|z||w|+ ||y||2H

)2 ≤ (||x||H + ||y||H)4. �
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The lack of isotropy of the distance dH follows precisely the lack of isotropy
of the CC metric d. In particular, both behave like the Euclidean distance in
horizontal directions (X1 and X2), and behave like the square root of the Euclidean
distance in the missing direction (X3). Clearly, dH is homogeneous of order 1 with
respect to the dilations (δs): ||δsx||H = s||x||H. Consequently, there exist constants
C1, C2 > 0 so that

C1||x||H ≤ d(x, 0) ≤ C2||x||H
for any x ∈ H. This follows immediately from compactness of the Korányi unit
sphere {x ∈ H : ||x||H = 1} and continuity of x �→ d(x, 0).

The Heisenberg group admits a conformal inversion in the Korányi unit
sphere analogous to the classical Euclidean inversion j(x) = x/|x|2 in Rn. For
x ∈ H \ {o}, let

jH(x) =
(

−z

|z|2 + 4 i x3
,

−x3

|z|4 + 16x2
3

)
. (2.14)

Since ||jH(x)||H = ||x||−1
H

, jH preserves the Korányi unit sphere. The dilation prop-
erty jH(δsx) = δ1/sx is also self-evident. Less obvious is the following Heisenberg
analog of a classical Euclidean inversion relation:

dH(jH(x), jH(y)) =
dH(x, y)
||x||H||y||H

. (2.15)

Proof of (2.15). As in the proof of (2.12), we write x = (z, x3) and y = (w, y3)
and use the group law (2.2) to compute

dH(jH(x), jH(y))4

=

∣∣∣∣∣
∣∣∣∣ z

|z|2 + 4 i x3
− w

|w|2 + 4 i y3

∣∣∣∣2
+4 i

(
x3

|z|4 + 16x2
3

− y3

|w|4 + 16y2
3

+
1
2

Im
(

zw

(|z|2 + 4 i x3)(|w|2 − 4 i y3)

))∣∣∣∣2
=
∣∣∣∣ |z|2 + 4 i x3

|z|4 + 16x2
3

− 2
zw

(|z|2 − 4 i x3)(|w|2 + 4 i y3)
+
|w|2 − 4 i y3

|w|4 + 16y2
3

∣∣∣∣2
=
∣∣∣∣ |w|2 + 4 i y3 − 2zw + |z|2 − 4 i x3

(|z|2 − 4 i x3)(|w|2 + 4 i y3)

∣∣∣∣2 =
dH(x, y)4

||x||4
H
||y||4

H

. �

The relation between the Korányi gauge || · ||H and Korányi inversion jH

will be pursued further in Sections 3.3 and 3.4, where we discuss the connections
between the Heisenberg group, CR geometry, and Gromov hyperbolic geometry.

2.2.2 CC distance II: Sub-Riemannian structure

A sub-Riemannian metric on H is determined by any choice of inner product on
the horizontal subbundle of the Lie algebra. Starting from this datum one may
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define the length of horizontal curves and equip H with the structure of a metric
length space, which turns out to agree with the Carnot–Carathéodory metric. Since
we have already made an arbitrary choice of coordinates to present H, we may
with no loss of generality assume that X1 and X2 form an orthonormal basis of
each horizontal space H(x) relative to this inner product. We extend this inner
product to an inner product defined on the full tangent space, i.e., a Riemannnian
metric, by requiring that the two layers in the stratification of the Lie algebra are
orthogonal and that X1, X2 and X3 form an orthonormal system. We denote this
extended inner product by g1 or 〈·, ·〉1 as dictation by specific situations.

Accordingly, we define the horizontal length of γ to be

LengthH,CC(γ) =
∫ 1

0

√
〈γ′(t), X1|γ(t)〉21 + 〈γ′(t), X2|γ(t)〉21 dt (2.16)

and claim that
d(x, y) = inf

γ
LengthH,CC(γ), (2.17)

where the infimum is taken over all horizontal curves joining x and y. Note that
if π : H → C denotes the projection π(x) = x1 + i x2, dπ : h → C denotes its
differential, and LengthC,Eucl(·) denotes Euclidean length in the plane, then

LengthH,CC(γ) = LengthC,Eucl(π(γ)). (2.18)

To prove (2.17) we fix x, y ∈ H and let d̄ = infγ LengthH,CC(γ). For any δ > d(x, y)
we consider a curve γ ∈ C(δ) and note that

d̄ ≤ LengthC,Eucl(π(γ)) ≤
∫ 1

0

√
a2 + b2 dt ≤ δ

by (2.9). Thus d̄ ≤ d(x, y).
To prove the opposite inequality, let ε > 0 and choose a curve γ : [0, 1]→ H

connecting x and y so that LengthC,Eucl(π(γ)) = d̄ + ε. If we reparametrize γ to
have constant velocity |dπ(γ′)| = d̄ + ε, then γ ∈ C(d̄ + ε). Hence d̄ + ε ≥ d(x, y).
Since ε > 0 was arbitrary, d̄ = d(x, y).

The next lemma shows that the Korányi and CC metrics generate the same
infinitesimal structure.

Lemma 2.4. If γ : [0, 1]→ R is a C1curve and ti = i/n, i = 1, . . . , n, is a partition
of [0, 1], then

lim sup
n→∞

n∑
i=1

dH(γ(ti), γ(ti−1)) =

{
LengthH,CC(γ) if γ is horizontal,
∞ otherwise.
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Proof. Set γ(t) = (γ1(t), γ2(t), γ3(t)), γi = γ(ti) = (γ1
i , γ2

i , γ3
i ), and γ̇j

i =
(dγj/dt)(ti). Then

dH(γ(ti), γ(ti−1)) = ||γ−1
i−1γi||H

=
{[

(γ1
i − γ1

i−1)
2 + (γ2

i − γ2
i−1)

2

]2

+
(

γ3
i − γ3

i−1 −
1
2
[γ1

i (γ2
i − γ2

i−1)− γ2
i (γ1

i − γ1
i−1)]

)2} 1
4

=
1
n

{[ (
γ̇1

i + o(1)
)2

+
(
γ̇2

i + o(1)
)2 ]2

+ n2

(
γ̇3

i −
1
2
[γ1

i (γ̇2
i + o(1))− γ2

i (γ̇1
i + o(1))]

)2} 1
4

.

The proof follows immediately from this derivation together with (2.16), (2.18)
and (2.10). �

2.2.3 CC distance III: Carnot groups

The definition of a Carnot–Carathéodory distance can be extended easily to
higher-dimensional Heisenberg groups and to general Carnot groups. Consider
a Carnot group G with graded Lie algebra g = V1⊕· · ·⊕Vr, homogeneous dimen-
sion Q, and let 〈·, ·〉G be a left invariant inner product on V1. Let {X1,j}m1

j=1 be an
orthonormal basis for V1. If γ : [0, 1] → G is a horizontal path we can, following
(2.16), define

LengthG,CC(γ) =
∫ 1

0

(
m1∑
j=1

〈γ′(t), X1,j |γ(t)〉2G

)1/2

dt. (2.19)

Then the Carnot–Carathéodory distance on G is defined to be

d(x, y) = inf LengthG,CC(γ),

where the infimum is taken over all horizontal paths connecting x to y. Clearly,
d is left invariant, moreover, the maps δs are indeed a family of dilations with
respect to this metric:

d(δsx, δsy) = sd(x, y). (2.20)

These properties of the CC metric imply analogous properties for the resulting
Hausdorff measures Hα, α > 0. Recall that the α-dimensional Hausdorff measure
Hα on a metric space (X, d) is the outer measure defined as

Hα(S) = lim
δ→0

inf
B

∑
i

(diamBi)α,
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where the infimum is taken over all coverings B of the set S by balls Bi with
diameter diamBi < δ. The standard implication

Hα(S) <∞ ⇒ Hα′
(S) = 0 for all α′ > α

ensures the existence of a unique value α0 = α0(S) ∈ [0,∞] with the property
that Hα(S) = 0 for α > α0 and Hα(S) = +∞ for 0 ≤ α < α0. The value α0 is
the Hausdorff dimension of S.

From the left invariance and scaling properties of the CC metric, one easily
deduces corresponding properties for the Hausdorff measures in (G, d):

Hα(LyE) = Hα(E),
Hα(δsE) = sαHα(E),

for all s, α > 0, y ∈ G, and E ⊂ G. In particular, for each α there exists c(α) ∈
[0,∞] so that

Hα(B(x, r)) = c(α)rα

for all x ∈ G and r > 0, where B(x, r) denotes the metric ball with center x and
radius r in (G, d). When 0 < α < Q we have c(α) = +∞, while for α > Q we have
c(α) = 0. In case α = Q,

c(Q) = HQ(B(o, 1)) ∈ (0, +∞).

Thus the Hausdorff dimension of (G, d) is Q; indeed (G, d) is an Ahlfors Q-regular
space andHQ agrees (up to a constant multiplicative factor) with the Haar measure
on G. In particular, for any non-abelian Carnot group G the Hausdorff dimension
strictly exceeds the topological dimension; this gives (G, d) fractal character (in
the sense of the term fractal advocated by Mandelbrot).

The gauge norm (2.11) has several natural extensions to general Carnot
groups. Here we recall one of the more computationally friendly ones:

||x||2r!
G =

r∑
i=1

mi∑
j=1

|xij |
2r!
i , x = (x11, . . . , xrmr) ∈ G. (2.21)

In contrast with the Heisenberg situation, || · ||G is typically only a quasinorm
rather than a true norm: the inequality ||xy||G ≤ ||x||G||y||G must be replaced
by ||xy||G ≤ C||x||G||y||G for some (absolute) constant C < ∞. The latter fact
easily follows from the Baker–Campbell–Hausdorff formula. As was the case in
the Heisenberg group, the gauge quasimetric dG(x, y) = ||y−1x||G and the Carnot–
Carathéodory metric d are comparable.

2.3 Geodesics and bubble sets

In this section we describe the length minimizing curves joining pairs of points in
the Heisenberg group and define the so-called bubble sets which appear in Pansu’s
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conjecture on the isoperimetric profile of H. Without loss of generality, and thanks
to left-invariance of the CC metric, we may assume that the two points are the
origin o = (0, 0, 0) and x = (x1, x2, x3). Let γ : [0, 1] → H denote a Legendrian
curve joining o and x. Let S be the region in the (x1, x2)-plane bounded by π(γ)
and by the segment joining π(x) to the origin, and let γ̃ be the closed curve
obtained by closing π(γ) with the segment. By Stokes’ theorem we have

x3 =
∫ 1

0

γ′
3(t) dt =

1
2

∫ 1

0

(γ1γ
′
2 − γ2γ

′
1)(t) dt

=
1
2

∫
γ̃

x1 dx2 − x2 dx1 =
∫

S

dx1 ∧ dx2 = Area(S).
(2.22)

In view of Remark 2.3 and (2.22) we can rephrase the problem of finding the
Legendrian curve from o to x with minimal length with the following problem:
Find the plane curve from the origin to (x1, x2) with minimum length, subject to
the constraint that the region S delimited by the curve and the segment joining
(0, 0) to (x1, x2) has fixed area. This is one formulation of Dido’s problem, closely
related to the isoperimetric problem, and is solved by choosing the plane curve to
be an arc of a circle.

In conclusion, a length minimizing curve between o and x is the lift of a
circular arc joining the origin in C with (x1, x2), whose convex hull has area x3.
The family of such curves emanating from o is parameterized by e i φ ∈ S1 and
c ∈ R and is given explicitly in the form

γc,φ(s) =
(

e i φ 1− e− i cs

c
,
cs− sin(cs)

2c2

)
; (2.23)

it is length minimizing over any interval of length 2π/|c|. In particular, if c = 0
then γc,φ is a straight line through o in the xy-plane. We call c the curvature of
the geodesic arc γc,φ.

If x = (0, 0, x3) lies on the x3-axis, then the projection of the geodesic in
H joining o to x is a circle of area x3 passing through the origin. Clearly there
are infinitely many such circles, so geodesics are not unique in this case. Choosing
t = cs, R = 1/c and φ = 0 in (2.23) gives the following representation:

γ(t) = (Re iφ(1− e− i t),
1
2
R2(t− sin t)), (2.24)

with 0 ≤ t ≤ 2π and R2 = x3/π.
Rotating such a geodesic about the x3-axis produces a surface of revolution

Σ whose profile curve is given parametrically as

t �→
(

2R sin(t/2),
1
2
R2(t− sin t)

)
.
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Figure 2.3: The conjectured isoperimetric set in H1.

Alternatively, Σ is the boundary of the open set Ω consisting of all points (z, x3) ∈
H such that

R2

(
π

2
− arccos(

|z|
2R

)
)
− |z|

2

√
R2 − |z|

2

4
< |x3|

< R2

(
π

2
+ arccos(

|z|
2R

)
+
|z|
2

√
R2 − |z|

2

4
. (2.25)

To simplify the notation we dilate this ball by a factor of 2 and translate vertically
by −πR2/2. The resulting domains

B(o, R) := {(z, x3) ∈ H : |x3| < fR(|z|)}, (2.26)

fR(r) =
1
4

(
R2 arccos(

r

R
) + r

√
R2 − r2

)
,

are the conjectured extremals for the sub-Riemannian isoperimetric problem in H

and are often called bubble sets. See Figure 2.3 and the introduction to Chapter 8.
For a computation of the horizontal mean curvature of ∂B(o, R), see Section 4.3.
We emphasize that the boundary of the set B(o, R) is C2 but not C3.

2.4 Riemannian approximants to H

The Heisenberg group equipped with the CC metric may be realized as the Gro-
mov–Hausdorff limit of a sequence of Riemannian manifolds (R3, gL), as L→∞.
This Riemannian approximation scheme plays a central role in the development
of sub-Riemannian submanifold geometry and geometric measure theory in this
survey.
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2.4.1 The gL metrics

To describe the Riemannian approximants to H, let L > 0 and define a metric
gL on R3 so that the left invariant basis X1, X2, X3/

√
L of h is orthonormal.7

This family of metrics is essentially obtained as an anisotropic blow-up of the
Riemannian metric g1 defined in Section 2.2.2. We may represent gL explicitly in
exponential coordinates x = (x1, x2, x3) via the positive definite matrix

gL(x) =

⎛⎜⎜⎝
1 + 1

4x2
2L − 1

4x1x2L − 1
2x2L

− 1
4x1x2L 1 + 1

4x2
1L

1
2x1L

− 1
2x2L

1
2x1L L

⎞⎟⎟⎠ . (2.27)

Note that
gL(x) = CT ILC,

where

C =

⎛⎝ 1 0 0
0 1 0

− 1
2x2

1
2x1 1

⎞⎠
is the matrix defining left translation (see (2.4)) and

IL =

⎛⎝1 0 0
0 1 0
0 0 L

⎞⎠ .

Observe that the Riemannian volume element in (H, gL) is√
det gL dx1 ∧ dx2 ∧ dx3 =

√
Ldx1 ∧ dx2 ∧ dx3.

When calculating with the Riemannian metric gL, we will sometimes use
〈·, ·〉L to denote the inner product on vectors.8 In other words, for �a =

∑3
i=1 aiXi

and �b =
∑3

i=1 biXi in TH,

〈�a,�b 〉L = a1b1 + a2b2 + La3b3. (2.28)

As usual, the length of a vector is given as

|�a|L = 〈�a,�a〉1/2
L .

7These metrics also occur as restrictions of the Bergman metric on horospheres in the Siegel
domain

D = {(ξ1, ξ2) ∈ C
2 : Im ξ2 − |ξ1|2 > 0},

to orbits of H. See Section 3.3.
8Recall that we will always reserve the notation 〈·, ·〉 (with no subscript) for the standard Eu-
clidean inner product in any dimension.
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We note that we can recover the sub-Riemannian inner product on H by restricting
〈·, ·〉L to the horizontal directions. Moreover, in the limit as L → ∞, the only
vectors of finite length are those which lie in the horizontal subbundle. We can
capitalize on this observation by looking at the lengths of curves in the Riemannian
approximants. Suppose γ : [0, 1]→ H is a C1 curve and that γ′ = a1X1 + a2X2 +
a3X3. Then

LengthL(γ) =
∫ 1

0

〈γ′(t), γ′(t)〉1/2
L dt

=
∫ 1

0

(a1(t)2 + a2(t)2 + La3(t)2)1/2 dt,

(2.29)

where we have written LengthL = LengthdL
for simplicity. Note that γ has finite

length in the limit as L → ∞ if and only if a3 = 0, i.e., γ is a horizontal curve.
We define dL to be the standard path metric associated to gL.

2.4.2 Levi-Civita connection and curvature in the
Riemannian approximants

In this section, we compute the sectional, Ricci and scalar curvatures of the Heisen-
berg group with respect to gL. To this end, we use the Levi-Civita connection ∇ on
(H, gL). Given vector fields U, V, W on a Riemannian manifold (M, g), the Kozul
identity states

〈∇UV, W 〉L =
1
2
{U〈V, W 〉L + V 〈W, U〉L −W 〈U, V 〉L
− 〈W, [V, U ]〉L − 〈[V, W ], U〉L − 〈V, [U, W ]〉L}

(2.30)

where 〈·, ·〉L is the inner product associated to gL. To make the computation more
clear, we introduce the functions

αijk = 〈X̃i, [X̃j , X̃k]〉L

where X̃i = Xi for i = 1, 2 and X̃3 = L−1/2X3. Note that

〈∇X̃i
X̃j , X̃k〉L = −1

2
(αkji + αijk + αjik) .

As the only nontrivial Lie bracket is [X1, X2] = X3 =
√

LX̃3, we have α312 =
√

L,
α321 = −

√
L, and αijk = 0 for all other triples (i, j, k). Consequently,

∇X̃i
X̃j =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
2X3 if (i, j) = (1, 2),
− 1

2X3 if (i, j) = (2, 1),
−

√
L
2 X2 if (i, j) ∈ {(1, 3), (3, 1)},

√
L
2 X1 if (i, j) ∈ {(2, 3), (3, 2)},

0 otherwise.

(2.31)
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Given a Riemannian manifold (M, g) with Riemannian connection ∇, we
recall that the curvature tensor for M is defined by

R(U, V )W = ∇U∇V W −∇V∇UW −∇[U,V ]W.

We remark that, in the literature, the sign of the curvature tensor is sometimes
reversed. We compute the sectional curvatures of the two-planes spanned by the
basis vectors X̃i and X̃j : Kij = 〈R(X̃i, X̃j)X̃i, X̃j〉L:

K12 = 〈R(X1, X2)X1, X2〉L = 〈∇X1∇X2X1 −∇X2∇X1X1 −∇X3X1, X2〉L

=
〈
∇X1

(
−1

2
X3

)
−∇X2(0) +

L

2
X2, X2

〉
L

=
L

4
+

L

2
=

3L

4
, (2.32)

K13 = 〈R(X1, X̃3)X1, X̃3〉L =
〈
∇X1∇X̃3

X1 −∇X̃3
∇X1X1, X̃3

〉
L

=

〈
∇X1

(
−
√

L

2

)
X2 −∇X̃3

(0), X̃3

〉
L

=

〈
−
√

L

4
X3, X̃3

〉
L

= −L

4
(2.33)

and

K23 = 〈R(X2, X̃3)X2, X̃3〉L =
〈
∇X2∇X̃3

X2 −∇X̃3
∇X2X2, X̃3

〉
L

=

〈
∇X2

√
L

2
X1 −∇X̃3

(0), X̃3

〉
L

=

〈
−
√

L

4
X3, X̃3

〉
L

= −L

4
. (2.34)

In fact, the full Riemannian curvature tensor Rijkl = 〈R(X̃i, X̃j)X̃k, X̃l〉 is

Rijkl =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

3L
4 if (ijkl) = (1212) or (2121),
− 3L

4 if (ijkl) = (1221) or (2112),
−L

4 if (ijkl) = (1313), (3131), (2323) or (3232),
L
4 if (ijkl) = (1331), (3113), (2332) or (3223),
0 otherwise.

Next, the Ricci curvatures Rici = Ki1 + Ki2 + Ki3 are

Ric1 = Ric2 =
L

2
and Ric3 = −L

2
,
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while the scalar curvature σ = Ric1 + Ric2 + Ric3 is

σ =
L

2
.

Observe that the sectional, Ricci and scalar curvatures all diverge as L→∞.

2.4.3 Gromov–Hausdorff convergence

In this section we define the Gromov–Hausdorff distance between two metric spaces
and the corresponding notion of convergence. Recall that for two subsets E1, E2

of a metric space Z, the Hausdorff distance between E1 and E2 is given by

HausZ(E1, E2) = inf{ε > 0|E1 ⊂ (E2)ε, E2 ⊂ (E1)ε}

where (Ei)ε = {z ∈ Z : dist(z, Ei) < ε} is the ε-neighborhood of Ei in (Z, d).

Definition 2.5. Let (X, dX) and (Y, dY ) be metric spaces. The Gromov–Hausdorff
distance between X and Y is given by

dGH(X, Y ) = inf
f,g,Z

HausZ(f(X), g(Y )),

where the infimum is taken over all metric spaces Z and isometric embeddings f
and g of X and Y (respectively) into Z.

Using this metric, we have a notion of convergence:

Definition 2.6. A sequence of compact metric spaces (Xn) Gromov–Hausdorff con-
verges to a compact metric space X if dGH(Xn, X)→ 0 as n→∞.

The notion of convergence in Definition 2.6 is unnatural for noncompact
spaces and limits. For example, we would like to assert that the dilated spheres
(Sn, λdSn) (dSn the geodesic distance on Sn) converge to Rn as λ→∞. However,
according to Definition 2.5, dGH((Sn, λdSn), Rn) = +∞ for all λ > 0. In the general
case we work in the category of proper pointed metric length spaces. Recall that
a metric space (X, d) is proper if all closed balls in X are compact, and length if
the distance between any two points x and y is realized by the infimum of the
lengths of rectifiable paths joining x to y. Note that every proper length space is
in fact geodesic. By a pointed metric space (X, d, x) we mean a metric space (X, d)
equipped with a fixed basepoint x ∈ X .

Definition 2.7. A sequence of proper pointed length spaces (Xn, dn, xn) Gromov–
Hausdorff converges to a proper pointed length space (X, d, x) if the sequence of
closed balls BXn(xn, r) Gromov–Hausdorff converges (in the sense of Definition
2.6) to BX(x, r), uniformly in r.

The following proposition abstracts the key geometric features of the Rie-
mannian approximation scheme for the sub-Riemannian Heisenberg group which
guarantees that the approximating manifolds converge in the Gromov–Hausdorff
sense.
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Proposition 2.8. Let X be a set equipped with a family of metrics (dt)t≥0 generating
a common topology. For K compact in X, let:

ωK(ε) := sup
x,y∈K,t≥0

dt(x, y)− dt+ε(x, y).

Assume:

(i) For each t ≥ 0, (X, dt) is a proper length space.
(ii) For fixed x, y ∈ X, the function t �→ dt(x, y) is non-increasing.
(iii) For each compact set K in X, ωK(ε)→ 0 as ε→ 0.
Then (X, dt) converges, in the sense of pointed Gromov–Hausdorff convergence,

to (X, d0).

Proof of Proposition 2.8. By hypothesis (ii) and the definition of ωK we easily
verify the following additional facts for each compact set K:

(iv) the map ε �→ ωK(ε) is increasing in ε,

(v) ωK is sublinear: ωK(a + b) ≤ ωK(a) + ωK(b) for all a, b ≥ 0,

(vi) if we denote by Bt(x0, R) the closed metric ball with center x0 and radius R
in the metric space (X, dt), t ≥ 0, then

B0(x0, R) ⊂ Bt(x0, R) ⊂ B0(x0, R + ωK(t))

for any x0, R > 0 and t ≥ 0 so that Bt(x0, R) ⊂ K.

From (vi) and (i) we further conclude

(vii) For x0, R and t as in (vi), to each y ∈ Bt(x, 0, R) there corresponds a point
x ∈ B0(x0, R) with dt(x, y) ≤ ωK(t).

We now establish the desired conclusion. Fix a basepoint x0 ∈ X . It suffices to
prove that the compact metric balls Bt(x0, R) converge (in the sense of Definition
2.6) to B0(x0, R), for each R > 0. We restrict attention to t ∈ [0, 1], let K =
B1(x0, R), and equip the space

Z = K × [0, 1]

with the metric

dZ((x, t), (x′, t′)) = dmax{t,t′}(x, x′) + ωK(|t− t′|) + |t− t′|.

We claim that dZ is a metric. If dZ((x, t), (x′, t′)) = 0 then t = t′ and dt(x, x′) = 0,
hence also x = x′ (since dt is a metric).9 Next we verify the triangle inequality.

9We include the term |t− t′| in the definition of dZ for this argument, in order to conclude t = t′;
note that we have no guarantee that ε > 0 ⇒ ωK(ε) > 0.
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Let (x, t), (x′, t′), (x′′, t′′) ∈ Z. If max{t, t′, t′′} �= t′′, then

dZ((x, t), (x′, t′)) = dmax{t,t′,t′′}(x, x′) + ωK(|t− t′|) + |t− t′|
≤ dmax{t,t′′}(x, x′′) + dmax{t′′,t′}(x′′, x′) + ωK(|t− t′′|)

+ ωK(|t′′ − t′|) + |t− t′′|+ |t′′ − t′|
= dZ((x, t), (x′′, t′′)) + dZ((x′′, t′′), (x′, t′))

where we used (ii) and (v) in the middle step. If max{t, t′, t′′} = t′′, then

dZ((x, t), (x′, t′)) = dmax{t,t′}(x, x′) + ωK(|t− t′|) + |t− t′|
≤ dt′′(x, x′) + ωK(t′′ −max{t, t′}) + ωK(|t− t′|) + |t− t′|

by the definition of ωK

≤ dt′′(x, x′′) + dt′′(x′′, x′) + ωK(t′′ − t) + ωK(t′′ − t′) + |t− t′′|+ |t′′ − t′|
= dZ((x, t), (x′′, t′′)) + dZ((x′′, t′′), (x′, t′))

by (iv).
It is clear that the map x �→ (x, t) is an isometric embedding of Bt(x0, R)

into Z. To complete the proof, it suffices to verify that the Hausdorff distance (in
Z) between Bt(x0, R) × {t} and B0(x0, R) × {0} tends to zero as t → 0. In fact,
we claim that

HausZ(Bt(x0, R)× {t}, B0(x0, R)× {0}) ≤ 2ωK(t) + t; (2.35)

the result then follows from assumption (iii).
To see that (2.35) is true: if x ∈ B0(x0, R), then x ∈ Bt(x0, R) and

dZ((x, t), (x, 0)) = ωK(t) + t ≤ 2ωK(t) + t,

while if y ∈ Bt(x0, R) we choose x as in (vii) and conclude

dZ((y, t), (x, 0)) = dt(x, y) + ωK(t) + t ≤ 2ωK(t) + t. �

2.4.4 Carnot–Carathéodory geodesics and
Gromov–Hausdorff convergence

The CC geodesics in the Heisenberg group can be recovered through the approxi-
mation scheme using the geodesics in the Riemannian manifolds (R3, gL). In this
section we sketch two different ways of recovering this result. In the first approach
we find a differential equation whose solutions are the CC geodesics; in the second
approach we compute the gL-geodesics explicitly and show that they converge to
length minimizing curves in (H, d).
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Let γ : [0, 1]→ H be a Lipschitz curve and let ω = dx3 − 1
2 (x1dx2 − x2dx1)

denote the contact form defined in (2.5). We consider the “penalized” energy of γ
given by

EL(γ) =
∫ 1

0

|γ′
1(t)|2 + |γ′

2(t)|2 + L

∣∣∣∣ω(γ′(t))
∣∣
γ(t)

∣∣∣∣2 dt, (2.36)

while the gL-length of γ is

LL(γ) =
∫ 1

0

√
|γ′

1(t)|2 + |γ′
2(t)|2 + L

∣∣∣∣ω(γ′(t))
∣∣
γ(t)

∣∣∣∣2 dt. (2.37)

In our computation we will find minimizing arcs as solutions of the Euler–Lagrange
equations of the energy rather than of the length.

Method I. We substitute for γ a one-parameter family of compactly supported
perturbations {γλ}, where γλ

i (s) = γi(s) + λfi(s), fi ∈ C∞
0 ([0, 1]), i = 1, 2, 3,

and compute the derivative of EL(γλ) with respect to λ at λ = 0 to obtain the
Euler–Lagrange equations for the critical points of the penalized energy:

γ′′
1 = −Lωγ′

2, γ′′
2 = Lωγ′

1, (ω(γ′)|γ)′ = 0. (2.38)

The right-hand side of the first two equations contains L and hence could poten-
tially blow up as L→∞. However, note that ω(γ′)|γ equals a constant depending
only on the initial data γ(0) and γ′(0) by the third equation. If we choose γ(0) = o
and γ′(0) = (h1, h2, aL/L), with h1, h2, aL ∈ R, then ω(γ′(t))|γ(t) = aL/L for all t
and the (2.38) yield

(γ1 + i γ2)′′ = − i aL(γ1 + i γ2)′, (2.39)

with (γ1, γ2)(0) = (0, 0) and (γ′
1, γ

′
2)(0) = (h1, h2). Comparing (2.23) with (2.39)

indicates that solutions to (2.39) corresponding to h2
1 + h2

2 �= 0 (which are arcs of
circles) are projections of length minimizing arcs emanating from the origin with
initial velocity h1X1 + h2X2, parameterized by aL ∈ R. In particular, gL-geodesic
arcs with horizontal initial velocity (aL = 0) are also length minimizing arcs in
(H, d), the horizontal segments. In general, if aL �= 0, the solution of (2.38) may
be not horizontal. However, choosing a sequence aL → a∞ ∈ R as L→∞, one can
easily prove, using energy estimates for the ODE (2.39), that the corresponding
solutions γL of (2.38) converge uniformly to a length minimizing arc in (H, d) as
described in (2.23).

Method II. We can approach the problem differently, and solve (2.38) directly.
Integrating (2.38) we obtain Euler-Lagrange equations for gL-geodesics:

γ′
1 − aLγ2 = b1

L, γ′
2 + aLγ1 = b2

L, and γ′
3 −

1
2

(
γ1γ

′
2 − γ2γ

′
1

)
=

aL

L
, (2.40)

with aL ∈ R and bL = (b1
L, b2

L) ∈ R2 arbitrary. We look for special solutions
γ = (γ1, γ2, γ3) of (2.40) such that γ(0) = o and γ(1) = x, a fixed point in H. To
simplify our notation it is convenient to define m(s) = s− sin s.
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In case aL = 0, all solutions of (2.40) have the form

γ1(s) + i γ2(s) = sb,

γ3(s) = 0
(2.41)

for some b ∈ C.
In case aL �= 0, all solutions of (2.40) have the form

γ1(s) + i γ2(s) = uL

(
e− i aLs − 1

)
,

γ3(s) =
aL

L
s +

1
2
|uL|2m(saL),

(2.42)

for some uL ∈ C.
Next, we impose the endpoint constraint γ(1) = x = (x1, x2, x3) to obtain

the geodesic arcs:

1. If x3 = 0 then there exists a unique geodesic arc, given by (2.41) with the
choice b = (x1, x2). The length is LL(γ) = |b|.

2. If x3 �= 0 and R2 = x2
1 + x2

2 �= 0, then one has a finite number of geodesics
all given by (2.42) with aL a solution to the equation

R2

x3 − aL

L

=
4m′(aL)
m(aL)

. (2.43)

Setting s = 1 in (2.42) we see that uL is completely determined by the choice
of aL. In particular

|uL|2 = 2
x3 − aL

L

m(aL)
. (2.44)

The length is LengthL(γ) = |aL|
√
|uL|2 + 1/L.

3. If x3 �= 0 and R2 = x2
1 + x2

2 = 0 there will be a geodesic arc of the form

γ1(s) = γ2(s) = 0, and γ3(s) = sx3. (2.45)

The length is LengthL(γ) =
√

L|x3|.

Remark 2.9. If L or x3 are sufficiently large there will be shorter arcs joining
o to x, namely, infinitely many more geodesics given by (2.42) with aL = 2kπ,
k = ±1,±2, . . ., sign(aL) = signx3, |aL| < |x3|L and for arbitrary choice of uL.
The length of these arcs is given by

LengthL(γ) = 2

√
kπ(x3 −

2kπ

L
) +

(kπ)2

L
= 2

√
kπ(x3 −

kπ

L
).
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As a result of the above computations, we have the following

Proposition 2.10. Given x ∈ H, any length minimizing horizontal curve γ joining
x to the origin o ∈ H is the uniform limit as L → ∞ of geodesic arcs from o to
x in the Riemannian spaces (R3, gL). The limit arcs are of the form (2.23) and
are given by (2.41) and (2.42) in the limit L → ∞. Moreover, the convergence is
uniform both in x and in the parameter L, in the sense that

lim
ε→0

sup
0<L≤∞,x∈K

dL(o, x) − dL−ε(o, x) = 0

for any compact K ⊂ R3.

We now state the main result of this section.

Theorem 2.11. The sequence of metric spaces (R3, dL) converges to (H, d) in the
pointed Gromov–Hausdorff sense as L→∞.

Theorem 2.11 is an immediate corollary of Proposition 2.8, when we choose
X = R3, d0 the Carnot–Carathéodory metric d on X for the usual Heisenberg
structure, and dt the distance function associated to the Riemannian metric gL,
where L = 1/t.

2.4.5 Riemannian approximants to Hn and Carnot groups

Approximating sequences of Riemannian metrics can be defined also in the higher-
dimensional Heisenberg group and in general Carnot groups.

We recall from Section 2.1.2 the left invariant basis X1, . . . , X2n, X2n+1 for
the Lie algebra of Hn, where the first 2n vector fields span the horizontal bundle
and the final vector field generates the center. For any L > 0 we define Riemannian
metrics gL in R2n+1 so that the set {X̃1, . . . , X̃2n+1} is orthonormal, where we have
let X̃i = Xi for i = 1, . . . , 2n and X̃2n+1 = L−1/2X2n+1. The norm of a tangent
vector �v =

∑2n+1
i=1 viXi is |�v| = 〈�v,�v〉1/2, where 〈�v,�v〉L =

∑2n
i=1 v2

i +Lv2
2n+1. Thus,

the only curves with finite velocity in the limit as L→∞ are the horizontal paths.
A simple extension of the arguments in the previous section yields the ana-

logue of Theorems 2.10 and 2.11 in the Hn, n ≥ 1 setting.
Next we discuss the Riemannian approximation scheme for general Carnot

groups. Let G be a Carnot group of dimension N with Lie algebra g = V1 ⊕ · · · ⊕
Vr, equipped with a background left invariant Riemannian metric which makes
the layers Vi orthogonal. Let {X1, . . . , Xm} denote an orthonormal basis of the
horizontal layer H = V1 and let {Y1, . . . , Yn} denote an orthonormal basis of the
vertical layer V = V2⊕ · · ·⊕Vr. Finally, let d(i) be the index of the layer to which
Yi belongs (so that d(i) ≥ 2). Set Ỹi = L−(d(i)−1)/2Yi.

We now define a family of Riemannian metrics (gL)L>0 in RN so that the
family {X1, . . . , Xm, Ỹ1, . . . , Ỹn} is orthonormal. Note that limL→∞ Ỹi = 0 and
again, the only curves with finite velocity in the limit are the horizontal ones.
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The convergence of geodesic arcs in this more general (higher step) setting
is quite delicate and presents an obstacle which does not appear in the step two
case: the Riemannian geodesics in the approximants may converge to singular
geodesics. This line of investigation goes beyond the scope of this survey and we
refer the reader to the monograph [203] for more details. Nevertheless, the analog
of Theorem 2.11 continues to hold in this setting. Denoting by dL the global
distance function associated to the Riemannian metric gL, we have

Theorem 2.12. The sequence of metric spaces (RN , dL) converges to (G, d) in the
pointed Gromov–Hausdorff sense as L→∞.

2.5 Notes

Notes for Section 2.1. Useful surveys of aspects of analysis and geometry in the
Heisenberg group or on more general Carnot groups include Semmes [241] and
Heinonen [135]. For calculus on Heisenberg manifolds, we recommend Beals and
Greiner [30] and Gaveau [120]. One of the standard references for analysis on the
Heisenberg group is Chapters XII and XIII of Stein’s book on harmonic analy-
sis [243]. Folland [100] has a detailed introduction to the Heisenberg group, its
representations and applications, and among other things discusses polarized co-
ordinates and the matrix model for H.

Notes for Subsection 2.1.3. The notion of sub-Riemannian geometry rests on the
accessibility condition for horizontal paths. By the fundamental theorem of Chow
and Rashevsky, local accessibility is equivalent to the bracket generating condition
for a frame of smooth vector fields X1, . . . , Xm which generate the tangent bundle
of an n-dimensional manifold M :

Rank(Lie[X1, . . . , Xm])(x) = n (2.46)

for every x ∈ M . The analytic form of this condition first appeared in the liter-
ature in 1967 in the celebrated paper of Hörmander [149], who proved that it is
a sufficient condition for hypoellipticity of second order differential operators of
the form L =

∑m
i=1 X2

j . Operators of this form are known as sum of squares or
sub-Laplacians.

Carnot groups arise naturally as ideal boundaries of noncompact rank 1 sym-
metric spaces. For instance, Hn is isomorphic to the nilpotent part of the Iwasawa
decomposition of U(1, n), the isometry group of the complex hyperbolic space of
dimension n. The key role played by Carnot groups10 become evident in the early
1970s with a number of important papers following a circle of ideas outlined by
E.M. Stein in his address at the 1970 International Congress of Mathematicians in

10The name Carnot group is relatively recent, as it emerged in the late 1980s from the papers
of Gromov, Pansu and others. In the work of Stein and his collaborators such groups are known
as nilpotent homogeneous or stratified Lie groups.
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Nice. The homogeneous structure of such groups allows the development of har-
monic analysis [99] which, in turn, plays a central role in the regularity theory of
general Hörmander type operators. In their celebrated article [102] G. Folland and
E.M. Stein use the Heisenberg group as an osculating space for strictly pseudo-
convex CR manifolds in Cn to study properties of singular integral operators and
solve the ∂̄b operator. In the following chapter, we describe in some detail the role
of the Heisenberg group in CR geometry and its natural occurrence in connection
with the Gromov hyperbolic geometry of complex hyperbolic space.

The program of using harmonic analysis in stratified Lie groups as a model
for harmonic analysis in more general sub-Riemannian spaces was developed in
the pathbreaking paper [233], where Rothschild and Stein extended the Folland–
Stein approach to general sub-Riemannian spaces associated to smooth, bracket
generating, sets of vector fields. A central result in the work of Rothschild–Stein
is an approximation scheme that allows one to

• lift a set of bracket generating vector fields to a higher-dimensional space so
that the lifted vectors are free (i.e., the only relations among the vectors and
their commutators up to the step needed to span the whole tangent space,
are those arising from the bracket structure and the Jacobi identity), and

• approximate the sub-Riemannian structure of the lifted vector fields with
an osculating Carnot group structure, with very precise estimates on the
nonlinear remainder terms.

Subanalyticity of real analytic Carnot–Carathéodory metrics on sub-Riemannian
manifolds was recently established in a significant and extremely intricate analysis
by Agrachev and Gauthier [6].

Notes for Section 2.2. For more details on the lifting procedure and Legendrian
paths as discussed in Remark 2.3, see [57], [22] and other references therein.

The metric dH defined by the gauge (2.11) is nowadays associated with the
name of Adam Korányi, who used it extensively in connection with harmonic
analysis and potential theory in the Heisenberg group and more general Carnot
groups of Heisenberg type [166]. The properties of the Korányi gauge and inversion
are mostly due to Korányi and Reimann [168], [169], in particular, the elegant proof
of (2.15) can be found in Section 1 of [169]. See also [75].

As noted in the chapter, while it is easy to write down a variety of homo-
geneous gauges on general Carnot groups such as (2.21) which agree with the
Korányi gauge || · ||H in the Heisenberg setting, the fact that dH defines a metric
is a specific feature of that setting. No simple expressions of Korányi type for
homogeneous metrics in general Carnot groups are known.

We note that in the literature one can find several different gauges of Korányi
type, each designed for a particular application. See, for example, Franchi–Sera-
pioni–Serra-Cassano [106] or Bieske [33]. See the notes to Chapter 9 for more
information.
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Useful references for Hausdorff measure and dimension in metric spaces in-
clude Mattila [196] and Falconer [94]. The study of sub-Riemannian spaces qua
metric spaces, with a focus on the intrinsic metric geometry of subsets, was advo-
cated by Gromov in [130].

Notes for Section 2.3. The description of the CC geodesics in the Heisenberg group
can be found in numerous references, see for example [32], p. 28. The bubble sets
were described by Pansu in his 1982 paper [217].

Notes for Section 2.4. The Riemannian approximation scheme appeared first in
the paper of Korányi [167], who used it to derive explicit expressions for the CC
geodesics. His method is sketched in 2.4.4. Later, the same approach was used by
several authors, see for instance [10] and [21]. Roughly speaking, in this scheme
lies the main idea of our general approach: to define horizontal geometric objects
as limits of horizontal restrictions of classical Riemannian analogs. The situation
for general Carnot groups is rather more complicated than the step two case; the
proof via convergence of geodesics which we gave for Theorem 2.11 encounters
obstacles in the higher step setting due to the possibility of abnormal geodesics.
Theorem 2.12 was proved by Pansu in [218]. In even greater generality, Riemannian
approximations to sub-Riemannian manifolds were studied by Roberto Monti in
his Ph.D. dissertation at the Università di Trento (unpublished).

Gromov’s notion of convergence of metric spaces was introduced in his
groundbreaking paper on groups of polynomial growth [129], see also Chapter
3 of [131]. Proposition 2.7 can be found in [131, Chapter 3] as Propositions 3.7
and 3.13, respectively. A very readable account of the theory of Gromov–Hausdorff
convergence of metric spaces can be found in Chapters 7 and 8 of [47].

The basic ingredients of Riemannian geometry which we use in Subsection
2.4.2 can be found in the standard texts. For the detailed definition and proof of
the existence of the Levi-Civita connection, we refer the reader to [113, Theorem
2.51]. The Kozul identity can be found on p. 55 in [88].

Additional notes. Among the many advantages of the special structure of the
Heisenberg groups Hn are the facts that the center is of dimension 1 and that
the explicit solution of the sub-Laplacian operator L =

∑2n
i=1 X2

i is explicitly
known. In [98], Folland proved that for a specific choice of a constant Cn, the
function Γ(x, y) = Cn||y−1x||2−(2n+2)

H
satisfies the equation LΓ(x, y) = δx(y) in

Hn. (We will prove this in the setting of the first Heisenberg group in Section
5.2.) In 1980, Kaplan [160] introduced a new class of groups, now called H-type
groups, in which a generalization of Folland’s formula holds. In any step two
Carnot group define the linear map J : V2 → End(V1) from the second layer of the
Lie algebra stratification to the endomorphisms of the first layer via the identity
〈J(Y )X, X ′〉 = 〈[X, X ′], Y 〉 for all Y ∈ V2 and X, X ′ ∈ V1. A step two Carnot
group G is called an H-type group (or group of Heisenberg type or Kaplan group)
if the map J is orthogonal, i.e.,

〈J(Y )X, J(Y )X ′〉 = 〈X, X ′〉 |Y |2.
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H-type groups have a rich analytic and algebraic structure. The ideal boundaries
of noncompact, constant negatively curved, symmetric spaces of rank 1 are one-
point compactifications of H-type groups [73]. If we write g = exp(x(g) + y(g))
with x(g) ∈ V1 and y(g) ∈ V2, then the fundamental solution for the sub-Laplacian
in an H-type group G is given in terms of a gauge metric

||g||4G = |x(g)|4 + 16|y(g)|2,

and has the form
ΓG(g, g′) = CG||(g′)−1g||2−Q

G
,

where CG > 0 is a constant depending only on the group G and Q = dimV1 +
2 dimV2 is the homogenous dimension of G. See also [54], [138], [26] for further
results connected with linear and nonlinear potential theory and H-type groups.
There is a rich theory of conformal geometry, including analogs of the Korányi
inversion jH on these groups; for further information, see [118].



Chapter 3

Applications of
Heisenberg Geometry

A very intuitive way to think of the sub-Riemannian Heisenberg group is as a
medium in which motion is only possible along a given set of directions, changing
from point to point. If the constraints are too tight, then it may be impossible
to join any two points with an admissible trajectory, hence one needs to find
conditions on the constraints implying “horizontal accessibility”.

Constrained motion as defined above is studied in depth in control theory
and has numerous applications in engineering (motion of robot arms and wheeled
motion) and biology (models of perceptual completion). It also arises naturally in
other branches of pure mathematics. In this chapter we briefly describe occurrences
of Heisenberg geometry in other areas of pure mathematics (CR geometry, Gromov
hyperbolic geometry of complex hyperbolic space, and jet spaces), as well as in
the engineering and neurobiological applications mentioned above.

3.1 Jet spaces

The Heisenberg group, as well as a large class of other Carnot groups, can be
represented as jet spaces. The concept of jet space gives geometric structure to
the classical framework of Taylor polynomials.

To define the first jet space J1(R, R) we begin by introducing an equivalence
relation in C1(R): two functions f and g are equivalent at a point t ∈ R if f(t) =
g(t) and f ′(t) = g′(t). To stress the role of the basepoint t we will write f ∼t g.
We then define J1(R, R) as the disjoint union of the quotient spaces C1(R)/ ∼t:

J1(R, R) =
∐
t∈R

C1(R, R)/ ∼t . (3.1)
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Let us denote elements of J1(R, R) by jt(f). The space J1(R, R) can be naturally
identified with R3 via the global coordinates

jt(f)←→ x = (x1, x2, x3) = (f ′(t), t, f). (3.2)

Jet spaces are naturally equipped with sub-Riemannian structure. We illustrate
this in the simplest case of the contact structure on J1(R, R). We want to define a
1-form θ which vanishes on all 1-jets t→ jt(f) of C1 functions. The basic relation is

df = f ′(t) dt,

which, in local coordinates, reads

(dx3 − x1 dx2)jt(f) = 0.

The latter suggests the choice θ = dx3− x1 dx2; one immediately verifies that θ is
contact: θ ∧ dθ = dx1 ∧ dx2 ∧ dx3. The horizontal tangent bundle defined by θ is

H1
x = {�v ∈ TxJ1(R, R) | θ(�v) = 0} = span(X1,X2), (3.3)

where X1 = ∂x1 and X2 = ∂x2 + x1∂x3 . Note that

TJ1(R, R) = H1 ⊕ [H1,H1]. (3.4)

Next, we define a group law on J1(R, R) such that H1 and θ are left invariant:

(x1, x2, x3) · (y1, y2, y3) = (x1 + y1, x2 + y2, x3 + y3 + x1y2). (3.5)

Observe that J1(R, R) with this group law is isomorphic with the Heisenberg group
in its matrix model (2.1).

3.2 Applied models

The sub-Riemannian geometry of the Heisenberg group in its incarnation as the
first jet space arises in a variety of physical and biological systems. Such geometries
arise naturally in the study of optimal control and path planning where one is
dealing with vehicles with limited degrees of freedom, such as wheeled vehicles.
Less obviously (and perhaps more surprisingly), this representation is also relevant
to the study of the geometry of the first layer of the mammalian visual cortex
V 1. In this section, we describe the role of contact geometries modeled by the
Heisenberg group in a simple mechanical model of nonholonomic motion, and in
the aforementioned model of the functional structure of the first layer of the visual
cortex.

In the process of describing these examples, we will encounter a new sub-
Riemannian space, the roto-translation group RT which, while distinct from the
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Heisenberg group, is locally approximated by it. We first introduce RT and then
discuss the approximation by H.

The roto-translation group, RT , is the group of Euclidean rotations and
translations of the plane equipped with a particular sub-Riemannian metric. More
precisely, RT is a three-dimensional topological manifold diffeomorphic to R2×S1

with coordinates (x, y, θ). We identify the vector fields

X1 = cos θ
∂

∂x
+ sin θ

∂

∂y
,

X2 =
∂

∂θ

and
X3 = sin θ

∂

∂x
− cos θ

∂

∂y
.

Observe that, similarly to the Heisenberg group, [X1, X2] = X3. However, this
is not the only nontrivial bracket, indeed [X3, X2] = −X1. Note also that ω =
sin θ dx− cos θ dy is a contact form on RT whose kernel is spanned by X1 and X2.

We equip RT with a sub-Riemannian metric using the same construction as
Section 2.2.3. First, we introduce an inner product, 〈·, ·〉RT on the subbundle of
the tangent bundle generated by {X1, X2}. Then, if γ : I →RT is a path in RT
so that γ′ is always in the span of {X1, X2}, we define

LengthRT (γ) =
∫

I

〈γ′(t), γ′(t)〉1/2
RT dt.

The induced sub-Riemannian distance is

dRT (p, q) = inf{LengthRT (γ) : γ(0) = p, γ(1) = q, γ′ ∈ span{X1, X2}}.

WhileRT is certainly distinct from H, we emphasize that, locally, the two are
equivalent. One way to see this is to invoke Darboux’s theorem: any contact form
on a three-dimensional manifold is locally diffeomorphic to the standard contact
form ω in R3 (defined in (2.5)). Another way to see this is to use a weighted Taylor
expansion adapted to the bracket structure to describe the vector fields locally.
We follow the second approach. First, some definitions:

Definition 3.1. In RT , let L1 be the set of linear combinations of {X1, X2} with
smooth coefficients and let L2 = L1 +[L1,L1]. Let Li(p) be the subspace of TpRT
given by the collection of vectors X(p), X ∈ Li.

By the above remarks, L2 = T (RT ) and L2(p) = TpRT .

Definition 3.2. If {x1, x2, x3} are local coordinates at p so that {dx1, dx2, dx3}
form a basis of T ∗

pRT adapted to the flag L1(p) ⊂ L2(p), we define the weight of
xi at p by

weight(xi) = min{i : ∂x1(p) ∈ Li(p)}.
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Moreover, we let
weight(∂xi) = −weight(xi).

This notion of weight captures the bracket structure of RT and formalizes
the intuitive notion that X3 is a second order derivative as it arises as a bracket
of two horizontal vector fields. We note that at (0, 0, 0), the standard coordinates
(x, y, θ) have weights 1, 2 and 1 respectively. Using this weighting, we expand the
vector fields, X1, X2 and X3 at (0, 0, 0):

X1 = ∂x + θ∂y︸ ︷︷ ︸
weight −1

+
(

θ2

2
∂x −

θ3

3!
∂y

)
︸ ︷︷ ︸

weight 1

+ · · · ,

X2 = ∂θ︸︷︷︸
weight −1

and

X3 = ∂y︸︷︷︸
weight −2

−
(

θ∂x +
θ2

2
∂y

)
︸ ︷︷ ︸

weight 0

+ · · · .

Considering only the weight −1 terms in the expansions of X1, X2 and the weight
−2 term in the expansion of X3, we recover the presentation of the Heisenberg
group in its matrix model (2.1). It is in this sense that RT is locally modeled by H

in a neighborhood of (0, 0, 0). A similar computation, left to the reader, provides
the same result in a neighborhood of any point of RT .

We remark that the roto-translation group goes by other names in the liter-
ature, e.g., “group of planar Euclidean rigid motions”.

3.2.1 Nonholonomic path planning

To illustrate the use of the roto-translation group in the context of nonholonomic
path planning and optimal control, we consider the simplest example of a wheeled
vehicle: the unicycle. To model the motion and control of a unicycle in a planar
region, we introduce standard (x, y) coordinates in the plane, together with an
angular variable θ describing the deviation of the wheel from the x-axis. See Figure
3.1.

The state space S = R2 × S1 describes all possible configurations of the
unicycle. If the operator pedals the unicycle forward from a point (x, y, θ) ∈ S
without changing the angle of the wheel, the unicycle follows the parametric path

(x + t cos θ, y + t sin θ, θ).

Taking one derivative in t yields one of the allowable directions of instantaneous
motion:

X1 = cos θ
∂

∂x
+ sin θ

∂

∂y
.
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θ

x

y

Figure 3.1: Coordinates describing the unicycle.

As the operator can change the angle of the wheel at will, another direction of
instantaneous motion is simply

X2 =
∂

∂θ
.

To complete to a basis for TS we add the vector

X3 = sin θ
∂

∂x
− cos θ

∂

∂y
.

Thus, we recover the roto-translation group as a model space for the motion of a
unicycle.

We note that the physical model provides an interpretation of the vector
field X3 since a unicycle cannot move instantaneously in this direction as it is
perpendicular to the axis of the wheel. However, using a combination of angle
rotation and forward motion, the operator can access any position in the plane.
This is reflected mathematically in the bracket relation [X1, X2] = X3.

In this context, sub-Riemannian metric geometry has a close connection with
path planning. To plan an optimally efficient path between two points p, q in the
state space, we must minimize the length of the path connecting p to q while
moving only in allowable directions. In other words, optimal path planning is
equivalent to the geodesic problem with respect to the metric dRT .

3.2.2 Geometry of the visual cortex

Neuralbiological research over the past few decades has greatly clarified the func-
tional mechanisms of the first layer (V1) of the visual cortex. Early research showed
that V1 contains a variety of types of cells, including the so-called “simple cells”.
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They found that simple cells are sensitive to orientation specific brightness gradi-
ents and are associated to a specific retinotopic field (i.e., a region of the retina).
Simple cells are arranged into columns of cells with shared orientation preference
and these columns are further arranged into the so-called “hypercolumns” Each
hypercolumn is a stack of columns of simple cells that are all associated to spe-
cific spatial points on the retina but with with orientation preferences, or “tuning”,
ranging over all possible angles. Figure 3.2 shows a schematic representation of the
hypercolumn structure. In this figure, the circles represent a column of simple cells
and the arrow in each circle represents the orientation tuning of that column. The
“horizontal” direction is one possible direction of motion between retinotopic fields.

V
er

ti
ca

l

Horizontal

Hypercolumn of cells

Figure 3.2: The hypercolumn structure of V1.

Early assumptions – supported by some research – that cortical connectivity
runs mostly vertically along the hypercolumns and is severely restricted in horizon-
tal directions (between hypercolumns), were contradicted by later evidence show-
ing “long range horizontal” connectivity in the cortex. This experimental evidence
demonstrated the properties of a specific geometric structure in the first layer of
the visual cortex associated to intracortical communication. We may mathemat-
ically model this structure of the cortex using a sub-Riemannian structure. The
retinotopic fields are modeled by two spatial directions which we will denote by
(x, y) ∈ R

2. Ignoring the column structure in favor of the hypercolumn structure,
we may describe each hypercolumn using a copy of S1. We model this situation
using the roto-translation group, RT , as R2 × S1 where each point (x, y, θ) rep-
resents a column of cells associated to a point of retinal data (x, y) ∈ R2, all of
which are attuned to the orientation given by the angle θ ∈ S1.

The experimental evidence referred to above shows that horizontal connec-
tions are made between points (x1, y1, θ1) and (x2, y2, θ2) if θ1 = θ2, and that
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there is a stronger probability of connection if the vector (x1, y1)− (x2, y2) is par-
allel to the direction given by θ1 = θ2. These restrictions are described by the
sub-Riemannian structure RT where the horizontal directions are spanned by the
vector fields

X1 = cos θ
∂

∂x
+ sin θ

∂

∂y
and X2 =

∂

∂θ
.

3.3 CR structures

A CR 3-manifold is a real, oriented smooth manifold M of dimension 3, together
with a subbundle T1,0 of the complex tangent bundle T CM satisfying:

(i) dimC T1,0 = 1,

(ii) T1,0 ∩ T 1,0 = {0}, and

(iii) T1,0 is integrable, i.e., if Z1, Z2 are smooth sections of T1,0, then so is [Z1, Z2].

The Heisenberg group H carries a CR structure. To see this we let

Z =
1
2

(
X1 − iX2

)
=

∂

∂z
− i

z

4
∂

∂x3
,

Z =
1
2

(
X1 + iX2

)
=

∂

∂z
+ i

z

4
∂

∂x3
.

Here we have used the standard notation ∂/∂z = 1
2 (∂/∂x1 + i ∂/∂x2) and ∂/∂z =

1
2 (∂/∂x1 − i ∂/∂x2). Set T1,0 = span(Z). Then (i)–(iii) above are immediate. We
also observe the identity [Z, Z] = 1

2 i ∂/∂x3.
In order to obtain a more geometric insight we recall the notion of an embed-

ded CR manifold. Let Ω = {z = (z1, z2) ∈ C2 : φ(z) < 0}, φ ∈ C2(C2), ∇φ �= 0,
define a smooth subset of C2. The tangent space to ∂Ω at p ∈ ∂Ω is given by

Tp∂Ω = {Z ∈ C
2 : Re〈〈∂φ(p), Z〉〉 = 0},

where

∂φ =
(

∂

∂z̄1
φ,

∂

∂z̄2
φ

)
,

and for Z, W ∈ C2, 〈〈Z, W 〉〉 = Z1W̄1+Z2W̄2, denotes the complex scalar product.
The maximal complex, or horizontal, plane at p is given by

Hp∂Ω = {Z ∈ C
2 : 〈〈∂φ(p), Z〉〉 = 0}.

Combining the conditions defining tangential complex lines (Re〈〈∂φ(p), Z〉〉 = 0)
and horizontal complex lines (〈〈∂φ(p), Z〉〉 = 0) we see that the horizontal lines
tangential to ∂Ω are given by Im〈〈∂φ(p), Z〉〉〈〈(∂ − ∂)φ(p), Z〉〉 = 0. Thus, the
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horizontal distribution on ∂Ω is given by the tangential vector fields which are in
the kernel of the form

σ =
∂φ

∂z̄1
dz̄1 +

∂φ

∂z̄2
dz̄2 −

∂φ

∂z1
dz1 −

∂φ

∂z2
dz2.

If Ω is strictly pseudoconvex, i.e., the Levi form

Z �→ L(p, Z) =
2∑

i,j=1

∂2φ(p)
∂zi∂z̄j

ZiZj

is positive definite on Hp∂Ω for all p ∈ ∂Ω, then it is easy to check that Hp∂Ω is
a contact distribution on ∂Ω. In this case a defining contact form is given by σ.

If φ(w) = |w|2 − 1 then Ω is the unit ball and ∂Ω = S3. The Levi form is a
constant multiple of the identity (and hence positive definite), and the horizontal
distribution is given by the kernel of the contact form

σ = w1dw1 − w1dw1 + w2dw2 − w2dw2. (3.6)

The vector fields

W1 = i
(1 + w2)2

1 + w2
(w2∂w1 − w1∂w2)

and

W2 = − i
(1 + w2)2

1 + w2
(w2∂w1 − w1∂w2)

are a basis for HpS3. We want to show that the resulting CR structure on S3 can
be viewed as the one-point compactification of the Heisenberg group H, and that
under this identification, HS3 corresponds to the horizontal distribution HH in
H, and σ corresponds to the contact form ω = dx3 − 1

2 (x1dx2 − x2dx1) in H. In
order to write the exact correspondence between S3 and H, we require a special
stereographic projection π based on the Cayley transform, which we define below
(see 3.11).

First, we recall the definition of the Siegel domain from Section 2.4.1:

D = {(ξ1, ξ2) ∈ C
2 : Im ξ2 − |ξ1|2 > 0}. (3.7)

A defining function for D is φ(ξ) = ξ1ξ1 + 1
2 i (ξ2 − ξ2). The horizontal structure

H∂D is given by the kernel of the contact form

τ = − i ξ1dξ1 + i ξ1dξ1 +
1
2
(dξ2 + dξ2), (3.8)

while the vector fields

Ξ1 = ∂ξ1 + 2 i ξ1∂ξ2 and Ξ2 = ∂ξ1
− 2 i ξ1∂ξ2

are a basis for H∂D.
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Observe that the Heisenberg group acts1 on C2 from the right by holomorphic
affine transformations:

(ξ1, ξ2) · (z, x3) =
(

ξ1 + z, ξ2 + 4x3 + i |z|2 + 2 i ξ1z̄

)
,

for (z, x3) ∈ H and (ξ1, ξ2) ∈ C2. This action preserves D and ∂D, since

Im(ξ2 + 4x3 + i |z|2 + 2 i ξ1z̄)− |ξ1 + z|2 = Im ξ2 + |z|2 + 2 i ξ1z̄)− |ξ1 + z|2

= Im ξ2 − |ξ1|2.

Since this action is simply transitive2 on ∂D, we may identify H with ∂D by
the correspondence

(z, x3) �→ (0, 0) · (z, x3) = (z, 4x3 + i |z|2).

Under this identification the CR structure of H defined above coincides with the
CR structure induced by the Euclidean metric in C2, i.e.,

H(4x3+ i |z|2,z)∂Ω = T1,0(z, t). (3.9)

In order to prove this we observe that the holomorphic subspaces at the origin
coincide as ∂Ω is tangent to the hyperplane ξ0 = 0 there. Next, we remark that
the CR structure on H is left invariant, and the action of H on ∂Ω is holomorphic,
hence preserves the CR structure on ∂Ω. In conclusion, by invariance under left
translation (3.9) holds everywhere.

The Cayley transform

C(w1, w2) =
(

iw1

1 + w2
, i

1− w2

1 + w2

)
(3.10)

maps the unit ball B(0, 1) ⊂ C2 biholomorphically onto the Siegel domain D. With
the help of the Cayley transform we can define a CR generalization of stereographic
projection

π : ∂B(0, 1) \ {(0,−1)} → R
3 (3.11)

as the composition of C and the projection (ξ1, ξ2) �→ (ξ1,
1
4 Re(ξ2)). The stere-

ographic projection π can be extended to a map from ∂B(0, 1) to the one-point
compactification of R3, and the inverse map is given by

w1 =
−2 i z

1 + |z|2 − 4 i x3
and w2 =

1− |z|2 + 4 i x3

1 + |z|2 − 4 i x3
, (3.12)

1This action can be seen as a higher-dimensional analogue of the action of R on the upper
half-plane via translations.
2Simply transitive means that for every two points P, Q ∈ ∂D there exists only one (z, x3) ∈ H

that maps P to Q.



48 Chapter 3. Applications of Heisenberg Geometry

with x3 = Re(ξ2) and z = ξ1. The differential of the Cayley map transforms the
frame W1, W2 for HS3 into the frame Ξ1, Ξ2 generating H∂D, while the pull-back
of the contact form τ in (3.8) is the contact form σ in (3.6) on the sphere S3. The
expression for the Heisenberg inversion jH (see (2.14)) takes a very simple form
when transported via π to ∂B(0, 1), to wit,

π−1 ◦ jH ◦ π(w1, w2) = (−w1,−w2).

3.4 Boundary of complex hyperbolic space

The sub-Riemannian Heisenberg group arises naturally as the boundary at infinity
of the complex hyperbolic space of dimension 2. This fact is a special instance of
a more general construction of sub-Riemannian spaces as boundaries at infinity
of the Gromov hyperbolic spaces obtained from smooth strictly pseudoconvex
domains in Cn equipped with the Bergman or the Kobayashi metric.

3.4.1 Gromov hyperbolic spaces

Let (X, d) be a metric space. For x, y, p ∈ X define the Gromov product (x|y)p =
1
2 (d(x, p) + d(y, p) − d(x, y)). The space (X, d) is δ-Gromov hyperbolic, δ ≥ 0,
relative to the fixed basepoint p ∈ X , if

(x|z)p ≥ min{(x|y)p, (y|z)p} − δ (3.13)

for all x, y, z ∈ X . If a different basepoint is chosen, the space continues to be
hyperbolic, with δ replaced by 2δ.

If (X, d) is a length space, a more familiar (and equivalent) definition can
be given in terms of geodesic triangles. For all x, y, z ∈ X consider the geodesic
triangle with vertices x, y, z and denote by [x, y], [x, z], [y, z] its sides. Then (X, d)
is δ-hyperbolic if

d(u, [x, y] ∪ [x, z]) ≤ δ

for all u ∈ [y, z]. Examples of Gromov hyperbolic spaces include Cartan–Hadamard
manifolds, metric trees, and Cayley graphs of free groups equipped with the word
metric associated to a system of generators. An uninteresting class of examples
are bounded metric spaces, which are trivially δ-hyperbolic with δ equal to the
diameter of the space.

3.4.2 Gromov boundary and visual metric

A ray is an isometric image of [0,∞) in X . Let R be the set of rays from a
fixed basepoint p. We define an equivalence relation in R as follows: ξ ≈ η if
HausX(ξ, η) < ∞. The boundary at infinity3 ∂∞X of a Gromov hyperbolic space
3Also referred to as the Gromov boundary or horizon.
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X is the setR/ ≈. We say that r ∈ R converges at infinity to [r] ∈ ∂∞X and extend
the Gromov product to ∂∞X by letting ([ξ]|[η])p = sup lim inf(xi|yj) where the
supremum is taken over all representatives ξ, η of [ξ], [η] respectively, and (xi), (yj)
are sequences of points on the rays ξ, η respectively which tend to infinity (in the
sense that limi,j→∞(xi|yj) =∞). For the sake of clarity we will consistently abuse
notation by writing (ξ|η)p for ([ξ]|[η])p. It is easy to see that (3.13) continues to
hold for this extended Gromov product, with δ replaced by 2δ.

The boundary at infinity inherits a family of metrics. First, define for all
ε > 0 the distance function

ρε(ξ, η) = exp(−ε(ξ|η)).

This function is not necessarily a metric as it only satisfies a weak version of the
triangle inequality:

ρε(ξ, η) ≤ e2δε max{ρε(ξ, ζ), ρε(ζ, η)}.

Such a distance function is typically known as a quasimetric. There is a standard
method to construct a metric from a quasimetric which we now recall. A chain
between two points ξ, η ∈ ∂∞X is a finite sequence of points z1, . . . , zN in ∂∞X
starting at ξ and ending at η. The length of such a chain is

∑
i ρε(zi, zi−1). We

define dε(ξ, η) to be the infimum of the lengths of all chains joining ξ and η.
One can show that, for sufficiently small ε, the resulting function dε is bi-Lipschitz
equivalent with a metric on ∂∞X . Any metric on ∂∞X which arises in this fashion
is called a visual metric.

We will also need a “parabolic” analog of the visual metric defined above.
We define

(ξ, η)χ,q := lim
p→χ

(
(ξ|η)p − d(p, q)

)
(3.14)

for χ ∈ ∂∞X , ξ, η ∈ ∂∞X \ {χ}, and q ∈ X . A corresponding quasimetric
ρχ,q(ξ, η) = exp

(
(ξ, η)χ,q

)
can be defined. If ρ1 happens to be a distance function

itself, then ρχ,q will be a distance function as well.
Example 3.3. As a simple example, we compute the visual metric on the boundary
at infinity of the real hyperbolic space of dimension 2, H2

R
, in the Poincaré disc

model (D, dh), where dh is the Poincaré distance

dh(z, w) = log

⎛⎝1 +
∣∣∣ z−w
1−zw

∣∣∣
1−

∣∣∣ z−w
1−zw

∣∣∣
⎞⎠ . (3.15)

Clearly, ∂∞H2
R

= S1. This follows from the fact that geodesic rays from the origin
are segments joining the origin to points in S

1. We use the elementary identity

1−
∣∣∣ z−w
1−zw

∣∣∣
(1 − |w|)(1 − |z|) =

1
|1− zw|2

⎛⎝ (1 + |w|)(1 + |z|)
1 +

∣∣∣ z−w
1−zw

∣∣∣
⎞⎠ ,
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to compute the Gromov product in H2
R

as follows:

−(z|w)0 = −1
2

log

⎛⎜⎝ 1+|z|
1−|z| ·

1+|w|
1−|w|

1+| z−w
1−zw |

1−| z−w
1−zw |

⎞⎟⎠
= −1

2
log

⎛⎝(1 + |w|)(1 + |z|)
1 +

∣∣∣ z−w
1−zw

∣∣∣
1−

∣∣∣ z−w
1−zw

∣∣∣
(1− |w|)(1 − |z|)

⎞⎠
= log

⎛⎝ 1 +
∣∣∣ z−w
1−zw

∣∣∣
(1 + |w|)(1 + |z|) · |1− zw|

⎞⎠ .

(3.16)

Observing that |1− zw| → |ξ− η| as z → ξ ∈ S1 and w → η ∈ S1, we immediately
deduce an explicit expression for the metric on the boundary at infinity of the
hyperbolic disc:4

ρ1(ξ, η) = lim
z→ξ∈S1,w→η∈S1

e−(z,w)0 =
1
2
|ξ − η|.

A similar computation shows that the boundary at infinity of the real hyper-
bolic space Hn

R
is the round sphere Sn−1, and that the metric on the boundary is

precisely a multiple of the Euclidean metric on Sn−1.

3.4.3 Complex hyperbolic space H2
C

and its boundary at infinity

The two-dimensional complex hyperbolic space H2
C

can be considered through a
variety of models. We present a few such models, describe the identification of the
Gromov boundary with a one-point compactification of the Heisenberg group, and
relate the associated visual metric with the Korányi gauge.

I The projective model Consider the (2, 1) form

Q(x, y) = x1y1 + x2y2 − x3y3

on C
3. Define the equivalence relation x ≈ y if and only if x = λy for some

λ ∈ C \ {0}. Complex projective space is the quotient CP 2 = C3/ ≈, and
complex hyperbolic space is the subset

H2
C = {[x] ∈ CP 2 : Q(x, x) < 0}.

4Note that in this case ρ1 = exp(−(·|·)0) is already a metric, so the additional step described
above is not necessary. This holds also for the complex hyperbolic spaces – see Section 3.4.5 – and
is a general feature of the class of Gromov hyperbolic spaces satisfying the synthetic curvature
condition CAT(κ) for some κ < 0. See [41] and [43, p. 435] for more details.
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We equip H2
C

with the metric

d([x], [y]) = arc cosh
(

Q(x, y)Q(y, x)
Q(x, x)Q(y, y)

)1/2

, (3.17)

where [x], [y] are equivalence classes in H2
C
.

The metric space (H2
C
, d) is Gromov hyperbolic and its boundary at

infinity coincides with the set {[x] ∈ CP 2 | Q(x, x) = 0}. Topologically, this
is the three-dimensional sphere S

3.

II The parabolic model Instead of constructing H2
C

from the form Q as above,
we now consider

Q′(x, y) = −x1y3 + x2y2 − x1y3.

This form is obtained from Q by a linear change of coordinates and as such
induces the same hyperbolic geometry on {x ∈ CP 2 : Q′(x, x) < 0}, equipped
with the metric analog of (3.17) with Q′ substituting for Q. In nonhomoge-
neous coordinates5 Q′ reads Q′(x, x) = |x2|2−2 Re(x1), whence the parabolic
model of CP 2 is given by the domain{

(x1, x2) ∈ C
2 : Re(x1) >

1
2
|x2|2

}
,

which is clearly (biholomorphically) equivalent to the Siegel domain (3.7).

III The ball model Consider the unit ball B(0, 1) ⊂ C
2 equipped with the dis-

tance function

d(x, y) = arc cosh

(
1− 〈x, y〉√

(1 − |x|2)(1 − |y|2)

)
, (3.18)

where 〈x, y〉 = x1y1 +x2y2. The map (x1, x2) �→ [(x1, x2, 1)] from (B(0, 1), d)
to H2

C
is an isometry which extends to an isometry of B(0, 1) onto H2

C
∪∂∞H2

C
.

3.4.4 The Bergman metric

The ball model for H2
C

also arises when considering the Bergman metric in the
unit ball of C2. The Bergman space associated to a domain Ω ⊂ C2 is

A2(Ω) = {f holomorphic in Ω : ||f ||L2(Ω) <∞}.

The mean value property guarantees that supK |f | ≤ CK ||f ||L2(Ω) for all K ⊂⊂ Ω,
where CK > 0 depends only on K. This estimate implies the continuity of the
evaluation functionals Φz : A2(Ω) → C, z ∈ Ω, defined by Φz(u) = u(z). In view
5We remind the reader that the nonhomogeneous coordinates of [(x1, x2, 1)] ∈ CP 2 are (x1, x2).
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of the Riesz Representation Theorem, there exists a function K(z, ξ) (the Bergman
kernel6) so that f(z) =

∫
Ω

K(z, ξ)f(ξ) d Vol(ξ) for all f ∈ A2(Ω). The Bergman
metric (bij) is the Riemannian metric on Ω given by the quadratic form

bij(z) = ∂zi∂zj log K(z, z) (3.19)

for z ∈ Ω. An important feature of this metric is that it turns biholomorphisms
into isometries: if f : Ω→ Ω′ is biholomorphic, then∑

ij

bij(z)vivj =
∑
ij

bij(f(z))(f∗v)i(f∗v)j

for all v ∈ C2 and z ∈ Ω.

The Bergman kernel K(z, ξ) = 2
π2 (1−〈z, ξ〉)−3 and Bergman metric bij(z) =

3(1 − |z|2)−2
(
(1− |z|2)δij + zizj

)
for Ω = B(0, 1) can be explicitly computed by

using the symmetries of the ball. The corresponding distance function7 is given by

dB(z, w) =
√

3
2

log

(
|1− 〈z, w〉|+

√
|w − z|2 + |〈z, w〉|2 − |z|2|w|2

|1− 〈z, w〉| −
√
|w − z|2 + |〈z, w〉|2 − |z|2|w|2

)
(3.20)

for z, w ∈ B(0, 1). The following computation shows that (3.20) and (3.18) agree
modulo a multiplicative constant:

d(z, w) = log(coshd(z, w) + sinh d(z, w))

= log

(
|1− 〈z, w〉|+

√
|1− 〈z, w〉|2 − (1− |z|2)(1 − |w|2)√
(1− |z|2)(1− |w|2)

)

=
1√
3
dB(z, w).

Using the inverse of the Cayley transform

C−1(ζ1, ζ2) =
(
−2 i ζ1

1− i ζ2
,
1 + i ζ2

1− i ζ2

)
,

and the invariance of the Bergman distance with respect to biholomorphisms
we can present the Bergman distance dD

B explicitly in the Siegel domain D.

6Also known as the reproducing kernel.
7The distance function corresponding to the metric (bij) is obtained by first defining the b-

length of a curve γ : [0, 1] → Ω as Lb(γ) =
∫ 1
0

(bijγ′
iγ

′
j)

1/2 ds and then setting db(z, w) =

inf{Lb(γ)|γ a curve joining z to w}.
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For any ζ, ξ ∈ D,

dD
B (ζ, ξ) = dB

([
−2 i ζ1

1− i ζ2
,
1 + i ζ2

1− i ζ2

]
,

[
−2 i ξ1

1− i ξ2
,
1 + i ξ2

1− i ξ2

])

=
√

3 log

⎛⎜⎜⎝2
∣∣∣ i (ζ2−ξ2)−2ζ1ξ1

1+ i (ζ2−ξ2)+ζ2ξ2

∣∣∣+√
4| i (ζ2−ξ2)−2ζ1ξ1|2+16(Im(ζ2)−|ζ1|2)(Im(ξ2)−|ξ1|2)

| i +ζ2|2| i +ξ2|2

4
√

(Im(ζ2)−|ζ1|2)(Im(ξ2)−|ξ1|2)
| i +ζ2|2| i+ξ2|2

⎞⎟⎟⎠
=
√

3
2

log

⎛⎝ | i (ζ2 − ξ2)− ζ1ξ1|+
√
| i (ζ2 − ξ2)− 2ζ1ξ1|2 + 4h(ζ)h(ξ)

| i (ζ2 − ξ2)− ζ1ξ1| −
√
| i (ζ2 − ξ2)− 2ζ1ξ1|2 + 4h(ζ)h(ξ)

⎞⎠ , (3.21)

where we have let h(ζ) = Im(ζ2)−|ζ1|2 (the height function in the Siegel domain).

3.4.5 Boundary at infinity of H2
C

and the Heisenberg group

In this section we compute the distance function

ρ1(ξ, η) = lim
z→ξ,w→η

exp(−(z|w)0)

on the boundary at infinity ∂∞H2
C

of H2
C
, using the ball model. Note that while

the Bergman and hyperbolic metrics are the same modulo a multiplicative factor,
the corresponding visual metrics on ∂∞H2

C
are only Hölder equivalent, exactly

because of the multiplicative factor.
Our starting point is an evaluation of the Gromov product:

exp(−(z|w)0)=exp
(

1
2
(d(z,w)−d(z,0)−d(w,0))

)

=

(
(|1−〈z,w〉|+

√
|1−〈z,w〉|2−(1−|z|2)(1−|w|2))(1−|z|)(1−|w|)

(|1−〈z,w〉|−
√
|1−〈z,w〉|2−(1−|z|2)(1−|w|2))(1+ |z|)(1+ |w|)

)1/4

=

(
|1−〈z,w〉|+

√
|1−〈z,w〉|2−(1−|z|2)(1−|w|2)
(1+ |z|)(1+ |w|)

)1/2

.

For ξ, η ∈ ∂H2
C

we obtain

ρ1(ξ, η) = lim
z→ξ,w→η

exp(−(z|w)0)

=

√
|1− 〈ξ, η〉|

2

=
1
2

√∣∣|ξ − η|2 − 2 i Im〈ξ, η〉
∣∣.

(3.22)
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Next we want to use the stereographic projection (3.11) to compare ρ1 to
the Korányi metric dH in H. Of course, ρ1 is bounded since S3 is compact, hence
it cannot be globally comparable to dH. However, we will show that it is locally
equivalent to the Korányi metric modulo a fixed positive multiplicative factor. In
view of left invariance it suffices to compare distances from a fixed point, say, the
group identity o = (0, 0, 0) ∈ H.

Since (0, 1) ∈ ∂B(0, 1) is mapped through (3.11) to o, we substitute η = (0, 1)
in (3.22) to obtain

ρ1(x, (0, 1)) =

√
|1− ξ2|

2
. (3.23)

From (3.12) we observe that

ξ2 =
1− |z|2 + 4 i x3

1 + |z|2 − 4 i x3
,

where ξ ∈ ∂B(0, 1) ⊂ C2 is identified with (z, x3) ∈ H via the stereographic
projection. Substituting this expression for ξ2 in (3.23) we obtain

ρ1(ξ, (0, 1)) =
||x||H

((1 + |z|2)2 + 16x2
3)1/4

. (3.24)

Note that in a neighborhood of the origin this expression is comparable with
the Korányi gauge.8 The metric ρ1 is the analog of the standard chordal metric
q(x, y) = |x− y|/

√
(1 + |x|2)(1 + |y|2) in Rn.

Next, we show that if the basepoint p in the evaluation of the Gromov prod-
uct is moved towards a point χ in the boundary at infinity, then the corresponding
rescaled metrics ρχ,q (as defined in (3.14)) will converge exactly to the Korányi
gauge. As this is more easily seen in the Siegel parabolic model, we use the biholo-
morphic invariance to convert (3.22) to

ρ1((z, 4x3 + i |z|2), (0, 0)) =
||x||H

((1 + |z|2)2 + 16x2
3)1/4

. (3.25)

Set p = (0, i s2), q = (0, i ), χ = (0,∞), ξ = (0, 0), and η = (z, 4x3 + i |z|2) in the
definition (3.14).9 In view of (3.21) we have

exp(dD
B ((p, q)) =

√
s2 + 1 +

√
s4 + s2 + 1

s2 + 1−
√

s4 + s2 + 1
≈ 2s (3.26)

for large s. On the other hand, observe that the Gromov product is invariant under
the action of isometries of H2

C
. Using (3.21) it is immediate to check that the

8Compare also the discussion in Section 9.1, specifically, the extremal function in Theorem 9.1.
9Note that when viewed in the ball model, the point at infinity χ corresponds to the south pole
(0,−1) ∈ ∂B(0, 1).
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dilation δs is an isometry of the Siegel domain D equipped with the corresponding
Bergman (or hyperbolic) metric. Using this fact and (3.25), we compute

exp(−(ξ|η)p) = exp
(
− (δs−1(ξ)|δs−1(η))δ

s−1(p)

)
= exp

(
−
((z

s
,
4x3

s2
+ i

|z|2
s2

)
| (0, 0)

)
(0, i )

)
=

(|z|4 + 16x2
3)1/4(

(s2 + |z|2)2 + 16x2
3

)1/4

≈ (|z|4 + 16x2
3)

1/4

s

(3.27)

for s much larger than |z| and |x3|. Combining (3.26) and (3.27) we obtain

ρ(0,∞),(0, i )

(
(z, 4x3 + i |z|2), (0, 0)

)
=

1
2
(|z|4 + 16x2

3)
1/4, (3.28)

where the rescaled distance ρ(0,∞),(0, i ) is defined as in (3.14).

3.5 Further results: geodesics in the
roto-translation space

Geodesics in the roto-translation space RT can be computed explicitly in terms of
Jacobi elliptic functions and elliptic integrals of the second kind. The use of elliptic
functions in the study of geodesics in sub-Riemannian structures associated with
groups of motions of the classical geometries and Euler’s elasticae is well known,
see, for example, Jurdjevic [158], [159]. We give here a detailed derivation of these
explicit expressions in the roto-translation space.

The roto-translation space is equipped with a group law

(x, y, θ)(x′, y′, θ′) = (x + x′ cos θ − y′ sin θ, y + x′ sin θ + y′ cos θ, θ + θ′),

with respect to which the above vector fields X1 and X2 are left invariant (see [68]
for a derivation of this group law). We remark that an explicit description of the
local approximation of the roto-translation group by the Heisenberg group can be
seen in Section 5.5 of [32].

The following theorem provides an explicit description of the normal geo-
desics in (RT , dCC) starting from the origin o = (0, 0, 0).

Theorem 3.4. Let a, b, c ∈ R with |c| ≥ |b| and (a, b) �= (0, 0). Let

r =
√

a2 + b2, R =
√

a2 + c2, and m = r2/R2.
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The curve (x(t), y(t), θ(t)) given by

x(t) =
a

m

(
t− E(Rt + u0|m)− E(u0|m)

R

)
− b

m

(
dn(Rt + u0|m)− dn(u0|m)

R

)
,

y(t) =
b

m

(
t− E(Rt + u0|m)− E(u0|m)

R

)
+

a

m

(
dn(Rt + u0|m)− dn(u0|m)

R

)
,

θ(t) = am(Rt + u0|m)− arctan(a/b),

is a geodesic in RT starting from the origin (0, 0, 0) with initial velocity (a, b, c)
and constant speed

√
a2 + b2 + c2. Here

u0 = F (arctan(a/b)|m),

F (u|m) and E(u|m) are the (incomplete) elliptic integrals of the first and second
kind, respectively, while am(u|m) is the amplitude of the Jacobi elliptic functions
sn(u|m), cn(u|m) and dn(u|m).

If (a, b) = (0, 0) the corresponding geodesic takes the form (x(t), y(t), θ(t)) =
(0, 0, ct).

Let m be a real parameter with 0 ≤ m ≤ 1. The elliptic integrals of the first
and second kind [1, Chapters 16 and 17] are

u = F (ϕ|m) =
∫ ϕ

0

dθ√
1−m sin2 θ

(3.29)

and
E(u|m) =

∫ ϕ

0

√
1−m sin2 θ dθ (3.30)

respectively. The Jacobi elliptic functions sn(u|m) = sin ϕ, cn(u|m) = cosϕ and
dn(u|m) = ∆(ϕ) :=

√
1−m sin2 ϕ are defined in terms of, where ϕ = am(u|m)

denotes the amplitude. It is traditional to drop the parameter m in this notation,
writing snu = sn(u|m), etc.

The Jacobi elliptic functions interpolate between standard elliptic and hy-
perbolic trigonometry, as is made clear in the following table:

m = 0 m = 1
sn u sinu tanhu
cn u cosu sech u
dnu 1 sech u
am u u gd(u)

E(u|m) u tanhu

F (ϕ|m) u gd−1(ϕ)

Here gd(u) = 2 arctan(eu)− π
2 denotes the classical Gudermannian function, and

gd−1(ϕ) = log tan(π
4 + ϕ

2 ) = log(sec ϕ + tan z = ϕ) denotes its inverse.
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Proof of Theorem 3.4. Geodesics in RT may be computed as solutions to the
Hamilton–Jacobi system using the Pontrjagin Maximal Principle [203]. We de-
note points in the cotangent bundle of RT by (p, v), where p = (x, y, θ) and
v = (ξ, η, τ), and let

a = a(p, v) = 〈X1(p), v〉2 + 〈X2(p), v〉2 = (cos θ · ξ + sin θ · η)2 + τ2

be the Hamiltonian. The Hamiltonian equations ṗ = 1
2∇va, v̇ = − 1

2∇pa read

ẋ = cos2 θ · ξ + sin θ cos θ · η, ξ̇ = 0,
ẏ = sin θ cos θ · ξ + sin2 θ · η, η̇ = 0,

θ̇ = τ, τ̇ = (sin θ · ξ − cos θη)(cos θ · ξ + sin θη).

We wish to solve this system with initial conditions (x(0), y(0), θ(0)) = (0, 0, 0)
and (ξ(0), η(0), τ(0)) = (a, b, c). Clearly ξ(t) = a and η(t) = b, and we reduce to
the system

ẋ = a cos2 θ + b sin θ cos θ = cos θ(a cos θ + b sin θ),

ẏ = a sin θ cos θ + b sin2 θ = sin θ(a cos θ + b sin θ),

θ̇ = τ,

τ̇ = (a sin θ − b cos θ)(a cos θ + b sin θ).

Note that aẋ + bẏ = ẋ2 + ẏ2 = (a cos θ + b sin θ)2 and θ̈ = aẏ − bẋ, whence
θ̇ = ay − bx + c.

As the case (a, b) = (0, 0) is trivial we assume (a, b) �= (0, 0). Multiplying the
second order autonomous ODE

θ̈ = (a sin θ − b cos θ)(a cos θ + b sin θ)

by θ̇ and integrating yields

1
2
(θ̇(t)2 − c2) =

∫ θ(t)

0

(a sin θ − b cos θ)(a cos θ + b sin θ) dθ

=
1
2
(
a2 − (a cos θ(t) + b sin θ(t))2

)
so

θ̇ =
√

R2 − r2 cos2(θ − ϕ),

where we have introduced the notation r2 = a2 + b2, ϕ = arctan(b/a) and R2 =
a2 + c2. Thus

t =
∫ θ(t)

0

dθ√
R2 − r2 cos2(θ − ϕ)

,

i.e.,

Rt =
∫ π

2 −ϕ+θ(t)

π
2 −ϕ

dθ√
1−m sin2 θ

,
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where m = r2/R2. From (3.29) we see that

F
(π

2
− ϕ + θ(t)|m

)
= Rt + F

(π

2
− ϕ|m

)
(3.31)

or equivalently

θ(t) = ϕ− π

2
+ am

(
Rt + F

(π

2
− ϕ|m

))
as asserted in the theorem.

Next, we compute x(t) and y(t). Denoting

u0 = F
(π

2
− ϕ|m

)
= F (arctan(a/b)|m) and ut = F

(π

2
− ϕ + θ(t)|m

)
we rewrite (3.31) in the form

ut = Rt + u0.

From the definitions of sn and cn we have snut = cos(ϕ − θ(t)) and cnut =
sin(ϕ− θ(t)), while snu0 = cosϕ = a

r and cnu0 = sinϕ = b
r . Then

cos θ(t) =
a snut + b cn ut

r
and sin θ(t) =

b snut − a cnut

r
,

furthermore a cos θ(t) + b sin θ(t) = r snut. From the ODE we see that

ẋ = a sn2 ut + b snut cn ut = a sn2(Rt + u0) + b sn(Rt + u0) cn(Rt + u0),

ẏ = b sn2 ut − a snut cn ut = b sn2(Rt + u0)− a sn(Rt + u0) cn(Rt + u0).

Integrating using the calculus of the Jacobi elliptic functions we obtain the stated
formulas for x(t) and y(t). �

3.6 Notes

Notes for Section 3.1. Jet spaces play a crucial role in several fields of mathemat-
ics and in applications. A nice description of their relevance for sub-Riemannian
geometry can be found in Montgomery’s book [203] (see Section 6.5 of [203]). The
role of jet spaces in sub-Riemannian geometric function theory was recently in-
vestigated by Warhurst [256], [257], who studied them as examples of non-rigid
Carnot groups, i.e., groups where not all quasiconformal deformations are confor-
mal. Jet spaces are essentially the only known examples of non-rigid spaces, as
they include Euclidean spaces and the Heisenberg groups. (Complexified Heisen-
berg groups are another class of non-rigid groups, although they are more properly
classified as semi-rigid; all contact transformations are in fact holomorphic.) See
[220] and Section 6.5 for more on rigidity.
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Notes for Section 3.2. The local equivalence between the roto-translation goup
and the Heisenberg group relies on the contact Darboux Theorem. This theorem
is discussed in any of a number of sources, for example [4]. The weighted Taylor
approximation of RT by H is described in detail (and in greater generality) in
Bellaiche [32].

Notes for Subsection 3.2.1. As demonstrated in the example, the application of
sub-Riemannian geometry to optimal control primarily involves the geodesic prob-
lem. In this context we would be remiss if we failed to mention a mistake in the
literature which is often confusing for newcomers to the area. At an early stage
in the differential geometric analysis of sub-Riemannian spaces, the analog of the
Hamilton–Jacobi equations for the geodesic problem was derived. On more than
one occasion, a proof was announced for the assertion that geodesics in a wide class
of sub-Riemannian spaces were smooth. A variety of results were built upon this
premise. However, as R. Montgomery first pointed out [201], there are examples
of so-called abnormal geodesics which do not satisfy the geodesic equations. In
the intervening years, various authors have provided numerous examples of abnor-
mal minimizers, even in relatively simple sub-Riemannian spaces. The interested
reader should see, for example, [178, 202].

There is an enormous literature in the study of sub-Riemannian geometries
in the context of optimal control and path planning. While not attempting a
comprehensive listing, we do point out several general references for the interested
reader. One of the first connections between control theory and sub-Riemannian
geometry was made by Brockett [45]. The book of Sontag [242] and the article
of Agrachev [5] are other useful references. Recently, Laumond, Sekhavat and
Lamiraux [175] compiled a nice survey article outlining path planning and control
methods for mobile robots. Sussman [244] and Bloch [36] have written related
surveys, while Bonnard and Chyba [39] have authored a book concerning the role
of singular geodesics in control theory.

Notes for Subsection 3.2.2. The study of the geometry of the roto-translation
group RT as a model for the function of the first layer V1 of the mammalian
visual cortex is still in its infancy.

Early research on the structure and neurowiring of the cortex was done by
Hubel and Weisel [150, 151]. The long range horizontal connectivity was estab-
lished by Gilbert et al in 1996 [124]. The use of the sub-Riemannian contact
geometry of the first jet space J1(R, R) in the study of the neurogeometry of the
visual cortex was proposed by Petitot. Quoting from his survey [227]:

“Jets are feature detectors specialized in the detection of tangents. The
fact that V 1 can be viewed as J1(R, R) explains why V 1 is functionally
relevant for contour integration. On a 2-dimensional manifold R,10 to
determine the direction p of the tangent to a contour at a point a requires

10For the sake of simplicity, the reader is invited to think of R as the retina.
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to compare the values of the curve within a neighborhood of that point.
But the system can access directly this geometrical information as a
single numerical value in the 3-dimensional jet space. This spares a
local computation which would be very expensive in terms of wiring.”

Building on earlier work of Hoffman [148] and Petitot and Tondut [227, 228], Citti
and Sarti [68] showed that the role of V1 in completing missing or occluded im-
age data from the retina can be modeled by solving the sub-Riemannian minimal
surface problem with Dirichlet boundary conditions in RT . In the same paper
the authors introduce a digital impainting algorithm in digital image process-
ing which mimics the way V1 processes data. For more results in this vein see
[67], [238] and [66]. Recent work of Hladky and Pauls [146] discusses the nature
of smooth sub-Riemannian minimal surfaces in the roto-translation space, show-
ing that such surfaces are ruled and providing algorithms for constructing such
surfaces. In a subsequent paper [145], these algorithms are converted to discrete
algorithms suitable for solving occlusion problems for digital image reconstruction.

For an overview of the mathematics of this model see [68, 148, 227, 228] and
for the neurobiological aspects, see, for example, [96, 150, 151, 236, 258].

Notes for Section 3.3. The local approximation of strictly pseudo-convex domains
in Cn with their osculating Heisenberg groups goes back to the work of Folland–
Kohn [101] and Folland–Stein [103]. For a detailed list of references see [243].
Our exposition follows closely the original paper of Korányi and Reimann [168];
note however that our slightly different presentation for the horizontal distribution
adjusts some of the formulas. The results of this section extend mutatis mutandis
to the higher-dimensional Heisenberg groups. See [171] for the details.

Notes for Section 3.4. Our main references for this section are the monographs
[243, Chapter 12] and [43, Chapter II.10], as well as [168]. Another treatment
is contained in [126]. The parabolic version (3.14) of the visual metric on the
boundary of a Gromov hyperbolic space was introduced in Lemma 2.1 of [38]. A
clear exposition of the Bergman metric, including the explicit computation for the
unit ball, can be found in [173, §1.4].

The metric ρ1 on the boundary of H2
C

in (3.22) was first introduced by Mostow
[212, pp. 149–151]; see also [172] for related discussion. The verification that ρ1 is
a metric can be seen in [71] or [168, p. 321]. The proof of the triangle inequality
is similar to the proof of (2.12) for the Korányi gauge, using instead the represen-
tation on the final line in (3.22).

To show that that d([x], [y]) in (3.17) is a metric, we note that the reverse
Schwartz inequality [43, Lemma 10.3] yields Q(x, y)Q(y, x) ≥ Q(x, x)Q(y, y) for
all x, y, with equality if and only if x = y. Thus d([x], [y]) = 0 if and only if
[x] = [y]. The triangle inequality is proved in [43, Corollary 10.9]. The fact that
the metric space (H2

C
, d) is Gromov hyperbolic is shown in [43, Theorem 10.10].

In this context we also would like to recall a related beautiful result of Balogh
and Bonk [21]. Let Ω ⊂ C

2 be a bounded strictly pseudoconvex domain with C2
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boundary, and denote by δΩ the signed distance function from ∂Ω. It can be
shown that δΩ ∈ C2 in a neighborhood of ∂Ω, and as such can be used as a local
defining function for Ω. For sufficiently small ε0, and all z ∈ Ω with δΩ(z) < ε0,
let π(z) ∈ ∂Ω be the closest point in ∂Ω. Let H∂Ω be the horizontal subbundle
of T∂Ω as defined in Section 3.3. We denote by N∂Ω the orthogonal complement
(with respect to the Hermitian norm in C2) of H∂Ω in T∂Ω. Any tangent vector
Z ∈ Tz∂Ω, z ∈ ∂Ω, will have a unique decomposition Z = ZH + ZN with ZH ∈
Hz∂Ω and ZN ∈ Nz∂Ω. Using the Bergman metric (bij) on Ω (see (3.19)), we
introduce the norm |Z|2B =

∑
ij bij(z)ZiZj , for z ∈ Ω and Z ∈ TzΩ. Let

L(z, V ) =
∑
ij

∂2
zizj

δ(z)PiPj

be the Levi form of ∂Ω and define, for all z ∈ ∂Ω and P ∈ Hz∂Ω, the norm
|P |H(z) =

√
L(z, P ). Finally, let dH be the Carnot–Carathéodory distance on ∂Ω

with respect to the horizontal distribution H∂Ω and the norm | · |H . In the case
when Ω = B(0, 1) is the unit ball, the result of Balogh and Bonk (Proposition 1.2
in [21]) reads as follows: For all ε > 0, there exists ε0 > 0, C ≥ 0 such that

(1− C
√

δ(z))
(
|ZN |2
4δ(z)2

+ (1− ε)
L(π(z), ZH)

δ(z)

) 1
2

≤ |Z|B ≤ (1 + C
√

δ(z))
(
|ZN |2
4δ(z)2

+ (1 + ε)
L(π(z), ZH)

δ(z)

) 1
2

(3.32)

for all Z ∈ C2 and z ∈ Ω with δ(z) ≤ ε0. Here the splitting Z = ZH + ZN is
understood to be carried out at the point π(z) ∈ ∂Ω. The same estimate holds
for an arbitrary bounded strictly pseudoconvex C2 domain Ω ⊂ Cn, provided the
Bergman metric is replaced by the Kobayashi metric (a Finsler metric). See also
[58] and other references in [21] for related results in the C∞ category.

The inequalities in (3.32) give a precise description of the asymptoptic behav-
ior of the Bergman (or Kobayashi) metrics with respect to the Levi form (which
in some sense is the infinitesimal Carnot–Carathéodory metric) of ∂Ω as one ap-
proaches the boundary. This result is the starting point for a comparison theorem
between the corresponding (integrated) distances [21, Theorem 1.4]. As a conse-
quence, one finds that any bounded strictly pseudoconvex domain Ω equipped with
the Kobayashi metric becomes Gromov hyperbolic, and the Carnot–Carathéodory
metric dH on ∂Ω is a visual metric for the corresponding Gromov boundary ∂∞Ω.



Chapter 4

Horizontal Geometry
of Submanifolds

This chapter is devoted to the study of the sub-Riemannian geometry of codimen-
sion 1 smooth submanifolds of the Heisenberg group.

In Section 4.1 we show that any two Riemannian extensions of a fixed sub-
Riemannian metric give rise to the same horizontal part of the Levi-Civita con-
nection. This fact is at the basis of our approach as it allows us to define intrinsic
notions of horizontal curvature tensors. In Section 4.2 we explicitly calculate the
basic differential geometric machinery on such submanifolds, relative to the Rie-
mannian metrics gL. We focus in particular on the dependence of this machinery
on the parameter L, which governs how the relevant quantities diverge or degener-
ate in the sub-Riemannnian limit. In Section 4.3 we introduce the sub-Riemannian
notion of horizontal mean curvature as a limit of the corresponding Riemannian
objects. In Section 4.3.2 we propose an equivalent, extrinsic definition of horizon-
tal second fundamental form, and show that in H the horizontal mean curvature
of a surface S can be computed by lifting the classical planar curvature to a Leg-
endrian foliation of S. In all of the preceding discussion we focus our attention
on noncharacteristic points of S, e.g., points x ∈ S where the tangent space TxS
does not coincide with the horizontal plane H(x). In Section 4.4 we show via a few
examples the pathologies that can arise at characteristic points, and present some
crucial results, due to Cheng, Hwang, Malchiodi and Yang, concerning the fine
behavior of the Legendrian foliation in neighborhoods of the characteristic locus.
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4.1 Invariance of the Sub-Riemannian Metric with
respect to Riemannian extensions

One of our main tools in the investigation of sub-Riemannian geometry is the use of
Riemannian completions of the sub-Riemannian inner product on the horizontal
bundle. We do this mainly to exploit properties of the Levi-Civita connection.
For example, in the previous chapter we used the family of metrics, gL, and the
corresponding connections to compute the curvature blow-up of the Riemannian
approximants to H. As we have mentioned before, our approach is to define sub-
Riemannian objects as limits of horizontal objects in (R3, gL). At the heart of this
approach is the fact that the intrinsic horizontal geometry does not change with L.
In general, this will not be the case, as different choices of Riemannian extension
will certainly affect the horizontal component, however, this does not happen for
natural extensions, i.e., extensions in which the different layers of the Lie algebra
stratification are orthogonal.

Proposition 4.1. Let 〈·, ·〉 be a smoothly varying inner product on the horizontal
subbundle H of Hn. Denote by V the vector bundle obtained by left translation of
the center of the group. If g1, g2 are Riemannian metrics in Hn which make H
and V orthogonal and gi|H(·, ·) = 〈·, ·〉, i = 1, 2, then the associated Levi-Civita
connections, ∇1,∇2, to g1, g2 coincide when projected to H. In other words, if
U, V, W are sections of H, then

g1(∇1UV, W ) = g2(∇2UV, W ).

Proof. The Kozul identity (2.30) yields

gi(∇iUV, W ) =
1
2
{Ugi(V, W ) + V gi(W, U)−Wgi(U, V )

− gi(W, [V, U ])− gi([V, W ], U)− gi(V, [U, W ])}.
(4.1)

Consider the first three terms on the right-hand side of (4.1). Since g1 = g2 when
applied to horizontal vectors, these terms are identical for i = 1, 2. Moreover, the
computation of the brackets does not depend on the choice of metric and we claim
that the last three terms do not depend on the choice of extension. For example,
if U =

∑
l ulXl, V =

∑
l vlXl , W =

∑
l wlXl, then

[V, U ] =
∑
l,j

(vlXl(uj)− ulXl(vj))Xj + ulvj [Xj , Xl].

By the bracket generating property of the horizontal layer, [Xj , Xl] ∈ V ; since
moreover H and V are orthogonal for both g1 and g2, we have

gi(W, [V, U ]) =
∑
l,j

wj(vlXl(uj)− ulXl(vj)).

In a similar fashion, the remaining terms in (4.1) do not depend on the choice of
extension. �
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The same result holds for any Carnot group with the same proof. In this
more general setting the statement is as follows:

Proposition 4.2. Let G be a Carnot group, H the subbundle of TM generated by left
translation of the first layer of the grading, V a subbundle of TM complementary to
H, and 〈·, ·〉 a smoothly varying inner product on H. If g1 and g2 are Riemannian
metrics which make H and V orthogonal and gi(·, ·)|H = 〈·, ·〉, i = 1, 2, then the
associated Levi-Civita connections, ∇1, ∇2, coincide when projected to H:

g1(∇1UV, W ) = g2(∇2UV, W )

whenever U, V, W are sections of H.

4.2 The second fundamental form in (R3, gL)

Consider a C2 surface

S =
{

x ∈ R
3 : u(x) = 0

}
, (4.2)

which is regular, i.e., u ∈ C2(R3) has nonvanishing gradient along S. In this
section, we will compute the second fundamental form IIL of S with respect to the
Riemannian metric gL on R3 at points where the horizontal gradient (X1u, X2u)
is nonvanishing. To illustrate the complexity of a direct approach, we compute
here using an explicit orthonormal frame adapted to the submanifold S and the
grading of the Lie algebra. In Section 4.3.1, we will give another derivation via a
more intrinsic approach.

We require additional notation. Let Xi, X̃i, i = 1, 2, 3, be as in Section 2.4.2
and set p = X1u, q = X2u and r = X̃3u. To simplify the upcoming formulas, we
set

l =
√

p2 + q2, lL =
√

p2 + q2 + r2,

and p = p/l, q = q/l, pL = p/lL, qL = q/lL, rL = r/lL. Observe that the
Riemannian normal to S is

νL = pLX1 + qLX2 + rLX̃3,

while the tangent space to S is spanned by the orthonormal basis

e1 = qX1 − pX2, and e2 = rLpX1 + rLqX2 −
l

lL
X̃3. (4.3)

The second fundamental form of S is

IIL =
(
〈∇e1νL, e1〉L 〈∇e1νL, e2〉L
〈∇e2νL, e1〉L 〈∇e2νL, e2〉L

)
,

where ∇ denotes the Levi-Civita connection associated to gL (see Section 2.4.2).
The principal result of this section is the following.
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Theorem 4.3. Let S ⊂ (R3, gL) be a regular C2 surface defined as in (4.2). Relative
to the orthonormal frame {e1, e2} defined in (4.3), the second fundamental form
of S is

IIL =

(
l

lL
(X1p + X2q) − lL

l 〈e1,∇0rL〉L −
√

L
2

− lL
l 〈e1,∇0rL〉L −

√
L
2 − l2

l2L
〈e2,∇0( r

l )〉L + X̃3rL

)
. (4.4)

In particular, the mean curvature HL = Trace IIL of S is

l

lL
(X1p + X2q)−

l2

l2L

〈
e2,∇0

(r

l

)〉
L

+ X̃3rL, (4.5)

while the Gauss curvature KL = det IIL is

l

lL
(X1p + X2q)

(
− l2

l2L

〈
e2,∇0

(r

l

)〉
L

+ X̃3rL

)
−
(

lL
l
〈e1,∇rL〉L +

√
L

2

)2

.

(4.6)

To prove Theorem 4.3, we will compute each of the entries in IIL in turn.

〈∇e1νL, e1〉L = −〈∇e1e1, νL〉L. Using the definition of the connection, the identi-
ties in (2.31) and grouping terms, we have

∇e1e1 = q(X1q X1 −X1p X2 − p∇X1X2)− p(X2q X1 + q∇X2X1 −X2p X2)
= (qX1q − pX2q) X1 − (qX1p)− pX2p) X2.

Since p2 + q2 = 1, we have pXip + qXiq = 0 and −〈∇e1e1, νL〉L simplifies to give
the desired expression.

In Lemma 4.5, we will identify the limit of 〈∇e1νL, e1〉L as L → ∞ as the
sub-Riemannian horizontal mean curvature of S.

〈∇e1νL, e2〉L = −〈∇e1e2, νL〉L. Using the definition of the connection, the identi-
ties in (2.31) and grouping terms, we have

∇e1e2 =q

(
X1(prL)X1 +X1(qrL)X2 +qrL∇X1X2−X1

(
l

lL

)
X̃3−

l

lL
∇X1X̃3

)
−p

(
X2(prL)X1 +prL∇X2X1 +X2(qrL)X2−X2

(
l

lL

)
X̃3−

l

lL
∇X2X̃3

)
=

(
qX1(prL)−pX2(prL)+

pL

√
L

2

)
X1 +

(
qX1(qrL)−pX2(qrL)+

qL

√
L

2

)
X2

+

(
rL

√
L

2
−qX1

(
l

lL

)
+pX2

(
l

lL

))
X̃3.
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Next, we compute the inner product of this with νL. Using the product rule and
the identity qLp = pLq, we obtain

〈∇e1e2, νL〉L = qpL(pX1rL + rLX1p)− ppL(pX2rL + rLX2p)
+ qLq(qX1rL + rLX1q)− pqL(qX2rL + rLX2q)

+
√

L

2

(
p2

L + q2
L + r2

L

)
+ rLpX2

(
l

lL

)
− rLqX1

(
l

lL

)
= qpLpX1rL − p2pLX2rL + qLq2X1rL − pqLqX2rL

+
√

L

2

(
p2

L + q2
L + r2

L

)
+ rLpX2

(
l

lL

)
− rLqX1

(
l

lL

)
.

The identities p2
L + q2

L + r2
L = 1 and p2 + q2 = 1 yield

〈∇e1e2, νL〉L =
l

lL
qX1rL −

l

lL
pX2rL + rLpX2

(
l

lL

)
− rLqX1

(
l

lL

)
+

√
L

2

=
l

lL
〈e1,∇0rL〉L − rL

〈
e1,∇0

(
l

lL

)〉
L

+

√
L

2
. (4.7)

Finally we use the identity (l/lL − lL/l)∇0rL = rL∇0(l/lL) in (4.7).

As the second fundamental form IIL is symmetric, we expect to obtain
〈∇e2νL, e1〉L = 〈∇e1νL, e2〉L. For the sake of completeness we verify the value
of 〈∇e2νL, e1〉 separately.

〈∇e2νL, e1〉L = −〈∇e2e1, νL〉L. Using the definition of the connection, the identi-
ties in (2.31) and grouping terms as in the previous computation, we have

∇e2e1 =

(
prLX1(q) + qrLX2(q)−

l

lL
X̃3(q) +

pL

√
L

2

)
X1

+

(
−prLX1(p)− qrLX2(p) +

l

lL
X̃3(p) +

qL

√
L

2

)
X2 −

rL

√
L

2
X̃3.

Next, we compute the inner product of this with νL. In the X1 and X2 terms, we
use the quotient rule for X̃3p = X̃3(p/l) and X̃3q = X̃3(q/l) and the commutation
relations X̃3p = X1r, X̃3q = X2r. The result is 〈∇e2e1, νL〉L =

pLrL(pX1q + qX2q)− qLrL(pX1p + qX2p) +
qX1r − pX2r − r2

√
L

l2L
+

√
L

2
.

In the penultimate term, use the commutation relation r
√

L = X1q−X2p together
with the product rules for X2p = X2(lLpL), X1q = X1(lLqL) and Xir = Xi(llrL).
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In the first two terms, use the quotient rules for Xip = Xi(
pL

l/lL
) and Xiq =

Xi(
qL

l/lL
). The result is

〈∇e2e1, νL〉L = rL(p2X1qL + p qX2qL − p qX1pL − q2X2pL)

+ qLX1rL − pLX2r1 − rLX1qL + rLX2pL +
√

L

2
.

Using the identities p2 + q2 = 1, rLp = (r/l)pL, rLq = (r/l)qL, p2
L + q2

L + r2
L = 1

and pLXipL + qLXiqL = −rLXirL and grouping terms, we obtain

〈∇e2e1, νL〉L =
(

qL + qL

r2

l2

)
X1rL −

(
pL + pL

r2

l2

)
X2rL +

√
L

2

=
lL
l
〈e1,∇0rL〉L +

√
L

2
.

〈∇e2νL, e2〉L = −〈∇e2e2, νL〉L. Using the definition of connection, the identities in
(2.31) and grouping terms, we have:

∇e2e2 =prL

(
X1(prL)X1 +X1(qrL)X2 +qrL∇X1X2−X1

(
l

lL

)
X̃3−

l

lL
∇X1X̃3

)
+qrL

(
X2(prL)X1 +prL∇X2X1 +X2(qrL)X2−X1

(
l

lL

)
X̃3−

l

lL
∇X2X̃3

)
− l

lL

(
X̃3(prL)X1 +prL∇X̃3

X1 +X̃3(qrL)x2 +qrL∇X̃3
X2−X̃3

(
l

lL

)
X̃3

)
=
(

prLX1(prL)+qrLX2(prL)− l

lL
X̃3(prL)−qLrL

√
L

)
X1

+
(

prLX1(qrL)+qrLX2(qrL)− l

lL
X̃3(qrL)+pLrL

√
L

)
X2

+
(
−prLX1

(
l

lL

)
−qrLX2

(
l

lL

)
+

l

lL
X̃3

(
l

lL

))
X̃3.

Taking the inner product with νL yields

〈∇e2e2, νL〉L = pL

(
prLX1(prL) + qrLX2(prL)− l

lL
X̃3(prL)

)
+ qL

(
prLX1(qrL) + qrLX2(qrL)− l

lL
X̃3(qrL)

)
+ rL

(
−prLX1

(
l

lL

)
− qrLX2

(
l

lL

)
+

l

lL
X̃3

(
l

lL

))
.

To simplify this, first use the product rule for the terms involving Xi(prL) and
Xi(qrL) together with the identities pXip+qXiq = 0, rL∇0( l

lL
) =

(
l

lL
− lL

l

)
∇0rL
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and p2 + q2 = 1. Under these simplifications, terms involving Xi(p) and Xi(q)
cancel and one is left with terms involving components of ∇rL:

〈∇e2e2, νL〉L = pL

(
pL + p

r

l

)
X1(rL) + qL

(
qL + q

r

l

)
X2(rL)− X̃3(rL).

We conclude by rewriting the expression Xi(rL) in terms of Xi

(
r
l

)
.

4.3 Horizontal geometry of hypersurfaces in H

In this section we want to examine the behavior of the second fundamental form
(4.4) and curvatures (4.5), (4.6) as L → ∞. As expected, the horizontal compo-
nents have well-defined limits which are natural candidates for sub-Riemannian
analogs of these classical differential geometric quantities. The vertical components
are unbounded, corresponding to the blow-up of the curvature of (H, gL).

Before initiating this analysis we take a moment to introduce a fundamental
notion in the study of sub-Riemannian submanifold geometry.

Definition 4.4. Let S ⊂ H be a C1 surface defined as in (4.2). The characteristic
set of S is the closed set

Σ(S) = {x ∈ S : ∇0u(x) = 0}. (4.8)

In other words, Σ(S) is the set of points where the tangent space is purely hori-
zontal.

Note that Σ(S) is nowhere dense in S, as follows from the Frobenius inte-
grability theorem. In fact, the surface measure of Σ(S) is equal to zero. For more
precise statements on the size of Σ(S), see the notes to this chapter.

Note that r, rL and X̃3 all converge to zero as L→∞ to zero at rates on the
order of L−1/2. On the other hand, qL → q, pL → p, lL → l, and e2 → 0. Hence
the Riemannian normal νL converges to the so-called horizontal normal

νH =
2∑

i=1

Xiu

|∇0u|
Xi ∈ L∞(S \ Σ(S)) (4.9)

in the complement of the characteristic set. Note that νH is simply the projection
of νL onto the horizontal subbundle. The vectors νH and e1 (see (4.3)) form an
orthonormal frame of the horizontal subbundle.

Direct computation shows that the Gauss curvature KL diverges as L→ ∞
(similarly to the behavior of the sectional, Ricci and scalar curvatures discussed
in Section 2.4.2). Indeed

lim
L→∞

KL

L
= −1

4
.
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This reflects the fact that νL → p X1 + q X2 as L → ∞, i.e., the tangent plane
to S tends, as L → ∞, towards a vertical plane. As (2.33) and (2.34) show, the
curvature of such planes computed with respect to gL equals −L/4.

Surprisingly, while the Gauss curvature does not have a limit as L→∞, the
mean curvature presents a rather different behavior. The following lemma is an
immediate consequence of (4.5).

Lemma 4.5. Let S be a C2 regular surface defined as in (4.2). Then

lim
L→∞

Trace IIL = X1p + X2q (4.10)

at noncharacteristic points.

Definition 4.6. Let S ⊂ H be a C2 regular surface, given as a level set of a function
u. The horizontal mean curvature of S at a noncharacteristic point is1

H0 = X1p + X2q,

where p = p/l, q = q/l, l =
√

p2 + q2, and (p, q) = (X1u, X2u).

We can write the horizontal mean curvature H0 in several ways. First,

H0 =
2∑

i=1

Xi

(
Xiu

|∇0u|

)
. (4.11)

A direct computation shows that the horizontal mean curvature can also be ex-
pressed via the identity

H0 |∇0u| = Lu− L∞u

|∇0u|2
, (4.12)

where Lu = X2
1u + X2

2u is the Heisenberg Laplacian of u and

L∞u =
2∑

i,j=1

XiuXjuXiXju

is the Heisenberg infinite Laplacian of u : H → R. Finally, if u(x) = x3 − f(|z|)
and we let r = |z|, then

H0 = −
1
4r2f ′′ + (f ′)3

r

((f ′)2 + 1
4r2)

3
2
. (4.13)

In Section 6.4 we will see a derivation of the horizontal mean curvature as a
first variation of the perimeter functional among all horizontal perturbations.

1We note that some authors define the mean curvature as 1
2
(X1p + X2q).
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Example 4.7. Both the plane {x3 = 0}, and the saddle surfaces {x3 = ±x1x2
2 }

in H have vanishing horizontal mean curvature away from the characteristic locus
Σ = {o}.
Definition 4.8. A C2 regular surface S ⊂ H is a horizontal minimal surface if it
has vanishing horizontal mean curvature along its noncharacteristic locus.

Lemma 4.5 immediately implies:

Theorem 4.9. Let S ⊂ H be a C2 regular surface and let IIL be its second funda-
mental form computed with respect to gL. If

lim
L→∞

Trace IIL = 0

then S is a horizontal minimal surface.

Example 4.10. The horizontal mean curvature of the Euclidean sphere {(z, x3) :
|z|2 + x2

3 = R2} diverges near the characteristic locus {(0, 0,±R)} at a rate pro-
portional to |z|−1. In fact,

H0 =
2(4 + R2)
|z|(4 + x2

3)3/2
.

A similar phenomenon holds for the Euclidean paraboloid (and sub-Riemannian
cone) Pα = {(z, x3) : x3 = α|z|2}, whose horizontal mean curvature diverges near
the characteristic locus {o} at a rate proportional to |z|−1:

H0 = − 4α√
1 + 16α2

· 1
|z| .

Example 4.11. The horizontal mean curvature of the Korányi sphere {(z, x3) :
|z|4 + 16x2

3 = R4}, on the other hand, tends to zero near the characteristic locus
{(0, 0,±R)} at a rate proportional to |z|. In fact,

H0 =
3|z|
R2

.

Example 4.12. The horizontal mean curvature of the CC sphere ∂Bcc(o, R) =
{x ∈ H : d(x, o) = R} can be computed via (4.13). From (2.23) one easily de-
duces the parametric representation |z| = A(c) := (2/c) sin(cR/2), x3 = B(c) :=
(cR − sin(cR))/(2c2) for ∂Bcc(o, R). With x3 = f(|z|), f = B ◦ A−1, a simple
computation gives

H0 =
1
2
· c/2
sin(cR/2)

· sin(cR)− cR cos(cR)
sin(cR/2)− (cR/2) cos(cR/2)

.

It can be shown that H0 ∼ |z|−1 as x = (z, x3) approaches the x3-axis.
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The following example is crucial in the study of the isoperimetric profile of
H (see Chapter 8).
Example 4.13. Choosing

f(r) = fR(r) = ±1
4
(r
√

R2 − r2 + R2 arccos r/R),

one easily computes that the horizontal mean curvature of the boundaries of the
bubble sets B(o, R) defined in Section 2.3 is equal to the constant 2/R.

4.3.1 Horizontal geometry of hypersurfaces in Hn

In this subsection, we repeat the analysis of the preceding sections for hypersur-
faces in the higher-dimensional Heisenberg groups. Again, we study the limit as
L → ∞ of the horizontal part of the second fundamental form of a hypersurface
S in (Hn, gL). In contrast with the previous section, where we computed very ex-
plicitly using a specific frame, we use here only basic properties of the Levi-Civita
connection to accomplish our analysis.

Let S = {x ∈ Hn : u(x) = 0} be a C2 regular hypersurface. The characteristic
set Σ(S) is defined as before: it consists of all points x ∈ S where the horizontal
space H(x) and the tangent space TxS agree.

Consider left invariant vector fields X̃1, . . . , X̃2n+1 and a Riemannian metric
gL in R2n+1 as in Section 2.4.5. Let |∇Lu|2 =

∑2n+1
i=1 (X̃iu)2 and observe that the

vector

νL =
1

|∇Lu|

2n+1∑
i=1

X̃iuX̃i

is the unit normal to S in (Hn, gL).
As before, we restrict attention to noncharacteristic points. Let

νH := lim
L→∞

νL =
1

|∇0u|

2n∑
i=1

XiuXi.

Then
νL = αLνH + βLX̃2n+1, (4.14)

where αL = 〈νL, νH〉L and βL = 〈νL, X̃2n+1〉L.

Lemma 4.14. limL→∞ αL = 1 and βL = O(1/
√

L) on S \ Σ(S).

Proof. αL = 〈νL, νH〉L = |∇0u|
|∇Lu| and βL = 〈νL, X̃2n+1〉L = X̃2n+1u

|∇Lu| = O(1/
√

L).
�

Set
e2n = βLνH − αLX̃2n+1
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and observe that e2n is unit and orthogonal to νL, hence tangent to S. Choose
horizontal tangent vector fields e1, . . . , e2n−1 so that {e1, . . . , e2n−1, e2n} is an
orthonormal frame of TS. The second fundamental form of S in (Hn, gL) has
entries

IIL
ij = 〈∇eiνL, ej〉L

for i, j = 1, . . . , 2n. In view of (4.14) we can write

IIL
ij = αLhL

ij + βLvL
ij (4.15)

for i, j = 1, . . . , 2n− 1, where

hL
ij = 〈∇eiνH , ej〉L, i, j = 1, . . . , 2n− 1, (4.16)

is the so-called horizontal second fundamental form, and

vL
ij = 〈∇eiX̃2n+1, ej〉L, i, j = 1, . . . , 2n− 1

is its vertical complement.

Remark 4.15. In view of Proposition 4.1 it is clear that the terms hL
ij are actually

independent of L. We therefore omit the superscript L in what follows. Note also
that in general the coefficients vL

ij do not vanish as L→∞.

Proposition 4.16. The matrix (vL
ij) is anti-symmetric.

The proof is an easy consequence of the following elementary lemma.

Lemma 4.17. 〈
∇UV, X̃2n+1

〉
L

= −1
2

〈
[V, U ], X̃2n+1

〉
L

(4.17)

for all orthonormal horizontal vectors U, V .

Proof. (4.17) is a direct consequence of basic properties of the Levi-Civita connec-
tion. Here we present a proof using coordinate frames. Write U =

∑2n
i=1 aiX̃i and

V =
∑2n

i=1 biX̃i. Observe that

[U, X̃2n+1] =
2n∑
l=1

(
al[X̃l, X̃2n+1]− (X̃2n+1al)X̃l

)
= −

2n∑
l=1

(X̃2n+1al)X̃l,

while [V, X̃2n+1] is given by the same expression with bl replacing al. A direct
computation yields

〈[U, X̃2n+1], V 〉L = −
2n∑
l=1

bl(X̃2n+1al) and 〈[V, X̃2n+1], U〉 = −
2n∑
l=1

al(X̃2n+1bl).
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Thus

〈[U, X̃2n+1], V 〉L + 〈[V, X̃2n+1], U〉L = −
2n∑
l=1

(
alX̃2n+1bl + blX̃2n+1al

)
= −X̃2n+1〈U, V 〉L = 0.

The result now follows from the orthogonality of U and V and the Kozul identity.
�

Theorem 4.18. Let S ⊂ Hn be a C2 regular hypersurface. Then

lim
L→∞

IIL
ij =

hij + hji

2
(4.18)

for i, j = 1, . . . , 2n− 1, at noncharacteristic points.

Proof. Since IIL is symmetric, (4.15) and Proposition 4.16 yield

IIL
ij =

IIL
ij + IIL

ji

2
= αL

hij + hji

2
+ βL

vL
ij + vL

ji

2
= αL

hij + hji

2
. (4.19)

(4.18) now follows from (4.19) and Lemma 4.14. �

In other words, the second fundamental form IIL converges as L → ∞ to
the symmetrized horizontal second fundamental form

(II0)∗ = (h∗
ij),

where h∗
ij = 1

2 (hij + hji). It is now natural to introduce some sub-Riemannian
analogs for classical notions of curvature.

Definition 4.19. Let S ⊂ Hn be a C2 regular hypersurface and denote by (II0)∗

its symmetrized horizontal second fundamental form, defined at noncharacteristic
points. The horizontal principal curvatures of S are ki = hii, i = 1, . . . , 2n−1, the
horizontal mean curvature of S is

H0 = Trace(II0)∗ =
2n−1∑
i=1

ki,

and the horizontal Gauss curvature of S is K0 = det(II0)∗.

With this notation in place, we can define the analogue of constant mean
curvature (and hence minimal) surfaces:

Definition 4.20. A C2 regular hypersurface S ⊂ Hn is called a horizontal constant
mean curvature surface (CMC) if H0 is constant along the noncharacteristic locus,
and is called a horizontal minimal surface if H0 = 0 along the noncharacteristic
locus. We will refer to the class of CMC surfaces with horizontal mean curvature
ρ with the notation CMC(ρ).
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Lemma 4.5 extends to Hn as follows:

Corollary 4.21. Let S ⊂ H
n be a C2 regular hypersurface. Then HL → H0 at

noncharacteristic points.

Remark 4.22. Observe that

HL = divgL(νL) =
2n+1∑
i=1

X̃i

(
X̃iu

|∇Lu|

)
. (4.20)

A direct computation shows that

HL |∇Lu| =
2n∑

i,j=1

(
δij −

X̃iuX̃ju

|∇Lu|2

)
X̃iX̃ju.

It is clear that both sides of this equation converge (at all points, characteristic or
not), yielding

lim
L→∞

HL |∇Lu| =
{
H0|∇0u| = Lu− L∞u

|∇0u|2 on S \ Σ(S),
Lu on Σ(S),

(4.21)

where Lu =
∑2n

i=1 X2
i u and L∞u =

∑2n
i,j=1 XiuXjuXiXju denote the sub-La-

placian and infinite sub-Laplacian in Hn, respectively. In view of this consideration
we can extend the function H0|πH(ν1)| from S \ Σ(S) to all of S as a continuous
function. Here we denote by πH the orthogonal projection of Lie algebra vectors
onto the horizontal bundle.

4.3.2 Horizontal second fundamental form and
the Legendrian foliation

In this section we want to give a more extrinsic definition of the horizontal second
fundamental form and relate it to Legendrian foliations.

Let S = {x ∈ Hn : u(x) = 0} be a C2 hypersurface with characteristic set
Σ(S). For every point x ∈ S \ Σ(S) the intersection of the horizontal plane H(x)
with the tangent space TxS defines a (2n−1)-dimensional horizontal tangent space
HxS; we denote by HS the corresponding horizontal tangent subbundle. We recall
that νH denotes the horizontal normal to S, and choose a g1-orthonormal frame
{e1, . . . , e2n−1} for HS. The vectors {e1, . . . , e2n−1, νH} form a g1-orthonormal
frame for HHn|S . For any x ∈ S, let Πi(x) be the 2-plane spanned by the vectors
ei(x) and νH(x), and define the curve γi,x = S ∩ Πi(x) with γi,x(0) = x and
γ′

i,x(0) = ei(x). Note that γ′
i,x is not necessarily horizontal away from zero. Let us

parametrize the horizontal component of γi,x by arc length in the g1-metric, i.e.,
we require that 〈πγ′

i,x, πγ′
i,x〉1 = 1.
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Proposition 4.23. Let S ⊂ Hn be a C2 regular hypersurface and denote by (hij)
its horizontal second fundamental form as defined in (4.16). Then

hij(x) =
〈

d

ds
νH(γi,x(s))

∣∣∣∣
s=0

, ej

〉
1

(4.22)

at noncharacteristic points. In particular,

H0 =
2n−1∑
i=1

ki =
2n−1∑
i=1

〈
d

ds
νH(γi,x(s))

∣∣∣∣
s=0

, ei

〉
1

. (4.23)

This follows immediately from the definition of hij .

In H, HS is a line bundle, and the corresponding flow lines are Legendrian
curves γ1,x = γ = (γ1, γ2, γ3). We call this family of curves the Legendrian foliation
of S. As above we assume that (γ1, γ2) is parameterized by arc length. Since the
metric induced by g1 on HS is the pull-back of the usual Euclidean metric in the
plane, it is easy to see that �n = πνH is a unit normal for the planar curve (γ1, γ2),
and πe1 = (γ′

1, γ
′
2)(0) = i �n. In terms of a defining function u for S,

γ′ = (qX1 − pX2) ◦ γ = (X2uX1 −X1uX2)|∇0u|−1 ◦ γ. (4.24)

The second fundamental form II = (II11) takes a very simple form

II11 =
〈

d

ds
νH(γ1,x(s))

∣∣∣∣
s=0

, γ′
1,x(0)

〉
1

=
〈

(�n ◦ π ◦ γ1,x)′(0), i (�n ◦ π)(x)
〉

= k,

where we have denoted by k the Euclidean curvature of the planar curve γ.
Alternatively, we can follow a more explicit approach: The curvature vector

�k = k i (γ′
1, γ

′
2) of (γ1, γ2) is given by

�k = −(γ′′
1 , γ′′

2 ) = −
((

X2u

|∇0u|
,
−X1u

|∇0u|

)
◦ γ

)′

=
1

|∇0u|

(
(X2uX1 −X1uX2)

(
−X2u

|∇0u|

)
+ (X2uX1 −X1uX2)

(
X1u

|∇0u|

))
◦ γ

=
(X2u)2X1X1u−X1uX2u(X1X2u + X2X1u) + (X1u)2X2X2u

|∇0u|4
(X1u, X2u) ◦ γ

=
(
Lu− L∞u

|∇0u|2

)
(X1u, X2u)
|∇0u|2

◦ γ

= H0πνH ◦ γ.

In conclusion, we have proved the following:

Proposition 4.24. Let S be a C1,1 surface in H, and let γ = (γ1, γ2, γ3) be a curve
in the Legendrian foliation of S \Σ(S). Then the curvature k of γ at (γ1(t), γ2(t))
equals the horizontal mean curvature H0 of S at (γ1(t), γ2(t), γ3(t)).
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Remark 4.25. If we denote by (cos θ(s), sin θ(s)) the value of πνH at the point
corresponding to γ(s), then (γ′

1(s), γ
′
2(s)) = (sin θ(s),− cos θ(s)) and

H0πνH = −(γ′′
1 , γ′′

2 )(s) = −θ′(s)πνH ,

hence H0 = −θ′(s).
Remark 4.26. Proposition 4.24 can be used to give an alternate derivation of the
examples in Section 4.3. For example, the fact that the Legendrian foliation of the
bubble sets B(o, R) consists of horizontal lifts of circles of diameter R guarantees
that the horizontal mean curvature is constantly equal to 2/R.

The Legendrian foliation of the CC sphere ∂Bcc(o, R) = {x = (z, x3) :
d(x, o) = R} can also be explicitly computed. Recalling that ∂Bcc(o, R) is given in
parametric form as |z| = (2/c) sin(cR/2), x3 = (cR − sin(cR))/(2c2), it is simple
to verify that the curve

γθ(s) =
(

2
s

sin(sR/2)e iψ(sR/2)+ i θ, (sR− sin(sR))/(2s2)
)

(where ψ is determined by the condition ψ′(u) = cotu/u − cot2 u), lies on the
surface of the CC sphere ∂Bcc(o, R) and is horizontal. Computing the standard
curvature of the planar projection πγθ at the point πγθ(c) reproduces the formula

H0 =
1
2
· c/2
sin(cR/2)

· sin(cR)− cR cos(cR)
sin(cR/2)− (cR/2) cos(cR/2)

from Example 4.12.
The case of the Heisenberg cone Pα = {(z, x3) : x3 = α|z|2} is also interest-

ing. For fixed y = (w, y3) ∈ Pα with w �= 0, the curve

γy(s) =
(

swe4 i α log s,
1
4
s2y3

)
(4.25)

lies on the surface Pα and is horizontal. Again, the horizontal mean curvature of
Pα, computed in Example 4.10, can be reproduced by computing the curvature
of the projection πγy. This example will resurface in the context of the horizontal
polar coordinate decomposition of H in Section 5.4.

4.4 Analysis at the characteristic set and

fine regularity of surfaces

In this chapter, we have investigated submanifolds in the Heisenberg group using
Riemannian submanifold analysis on a sequence of Riemannian approximants. We
remind the reader that all of the computations up to this point have had a common
assumption: we consider only noncharacteristic points of a smooth submanifold.
This assumption is necessary as a quick perusal of the previous computations shows
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that even if all of the quantities are well defined at characteristic points in the
approximants (which is not necessarily the case), they may degenerate badly in the
limit. However, this is only symptomatic of the true problem: characteristic points
behave like points of low (or no) regularity with respect to the sub-Riemannian
structure. To illustrate this, we will investigate two elementary examples.
Example 4.27. Consider one of the simplest surfaces in the Heisenberg group, the
plane S = {x3 = 0}. The unit horizontal normal to this plane is given by

νH = − x2√
x2

1 + x2
2

X1 +
x1√

x2
1 + x2

2

X2.

Note that νH is not well defined at o and that this point is the only characteristic
point of S.

Considering {X1, X2} as a basis for a two-dimensional vector space, we can
visualize this vector field as a vector field on R2 \ {(0, 0)}. Note that we cannot
define a reasonable value for νH at (0, 0) as the limit does not exist. It is in this
sense that the plane has a non-smooth point with respect to the sub-Riemannian
structure at the origin; its horizontal normal has a nonremovable discontinuity.
We note in passing this vector field has much in common with the (Euclidean)
normal field of the helicoid, {x3 = arctan(x2/x1)}, given by(

−x2

x2
1 + x2

2

,
x1

x2
1 + x2

2

,−1
)

.

Example 4.28. Next, we consider another simple example, the surface S = {x3 =
x1x2

2 }. The unit horizontal normal to this surface is

νH = sign(x2) X1

Here, the characteristic locus is given by x2 = 0 and, again, we observe that the
unit horizontal normal is discontinuous along this line.

We note that this surface has piecewise constant horizontal normal and hence,
from a sub-Riemannian point of view, is analogous to the union of pieces of two
different planes in R3. Thus, in this case, the characteristic locus behaves similarly
to a locus of discontinuity of a surface in R3.

Even from these two simple examples, we see that characteristic points intro-
duce a number of serious pathologies in the study of submanifold geometry. Near
characteristic points a surface S is locally in the form of a so-called “t-graph”
x3 = u(x1, x2). In this section we study the behavior of the horizontal normal and
Legendrian foliation near the characteristic locus for surfaces in H. The descrip-
tions which we obtain will be of key importance in later chapters, see specifically
8.5 for an application to Pansu’s isoperimetric problem.

Without loss of generality we may assume that in a neighborhood of each
characteristic point the surface is a graph over the z-plane:

Gu = {(z, u(z)) : z ∈ Ω} (4.26)

where u is a C2 function defined on an open set Ω ⊂ R
2.
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First we set some notation. For u and Gu as in (4.26) we define the singular
set of u,

Su = {z ∈ Ω : ∇0U(z, ·) = 0} = π(Σ(Gu)), (4.27)

where U(z, x3) = u(z)− x3 and π denotes the projection from H to the z-plane.
For every curve γ = (γ1, γ2, γ3) in the Legendrian foliation of Gu we will call its
projection (γ1, γ2) a characteristic curve. We will denote by

D2
0U =

(
X2

1U X1X2U
X2X1U X2

2U

)
=
(

∂2
x1

u ∂x1,x2u− 1
2

∂x1,x2u + 1
2 ∂2

x2
u

)
the horizontal Hessian of U . Note that this is always a non-zero matrix as the two
entries on the anti-diagonal cannot vanish simultaneously. For each a = (a1, a2) ∈
S1 we set

Fa(z) = a1X1U(z, ·) + a2X2U(z, ·) = a1

(
∂x1u−

x2

2

)
+ a2

(
∂x2u +

x1

2

)
,

and

γa =
{
z ∈ Ω : Fa(z) = 0

}
= Su ∪

{
z ∈ Ω : νH(z, u(z)) ⊥ a

}
, (4.28)

where νH denotes the horizontal normal to Gu. In other words, γa contains all
(projections of) characteristic points plus points at which the Legendrian foliation
is tangent to a. A simple computation shows that

∇Fa = aD2
0U(z, ·). (4.29)

We treat the cases of non-isolated and isolated points in Σ(Gu) separately.

4.4.1 The Legendrian foliation near non-isolated points
of the characteristic locus

First, we treat the case of non-isolated points in the characteristic locus.

Lemma 4.29. Each p ∈ Su has a neighborhood Up such that Su ∩ Up lies in a C1

curve of the form γa for some a ∈ S1. Moreover, if p is not isolated in Su, then
detD2

0U(p, ·) = 0.

Proof. Set A = D2
0U(z, ·). In view of (4.4) there is at most one c ∈ S

1 (modulo
choice of sign) for which cA = 0. From (4.29) we deduce that ∇Fa(p) �= 0. The
implicit function theorem then implies that γa is a C1 curve in a neighborhood
Up of p, proving the first claim.

If p is not isolated in Su, choose {pj} ⊂ Su ⊂ γa with limj→∞ pj = p. Let
γa be parametrized by arc length with γa(0) = p and choose sj ∈ R such that
γa(sj) = pj . By passing to a subsequence if necessary, we may assume that (sj) is
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increasing. Since ∇0U(pj, ·) = 0, the mean value theorem ensures that there exist
numbers s̄j, t̄j in the interval (sj , sj+1) such that

d

ds
X1U(γa(s), ·)

∣∣∣∣
s=s̄j

=
d

ds
X2U(γa(s), ·)

∣∣∣∣
s=t̄j

= 0. (4.30)

Letting j →∞ and using (4.29) and the smoothness assumption on u, we have

γ′
a(0) · A = 0. (4.31)

Since γ′
a(0) is a unit vector, we conclude that det A = 0. �

Remark 4.30. In fact p is a non-isolated characteristic point if and only if D2
0U(p, ·)

has zero determinant.

With additional assumptions on the blow-up of the horizontal mean curvature
near Σ(Gu) one can show that Su is not only contained in a C1 curve, but, near
non-isolated characteristic points, is precisely a C1 curve.

Theorem 4.31 (Cheng–Hwang–Malchiodi–Yang). Let p ∈ Su be (the projection
of) a non-isolated characteristic point. If the horizontal mean curvature H0 of Gu

satisfies
|H0(z, u(z))| = O(dist(p, z)−1)

as z �∈ Su approaches p, then there exists a neighborhood Up of p such that Su∩Up

is exactly a C1 curve γa, for some a ∈ S1.

Proof. By Remark 4.30, det A = 0 for A = D2
0U(p, ·). Since A �= 0 there exists

a unique vector c ∈ S
1 (modulo sign) such that cA = 0. For all distinct a, b ∈

S1 \ {±b}, ∇Fa(p) is a non-zero multiple of ∇Fb(p). By the Implicit Function
Theorem, p has a neighborhood Up containing a pair of C1 curves γa, γb, defined
as in (4.28), both passing through the point p, with a common tangent at p, and
coinciding exactly on Su∩Up. Again we assume that these curves are parameterized
by arc length. Denote by s, t the arc length parameters on γa, γb. Observe that the
distance from p is a monotone increasing function for s, t > 0, and is monotone
decreasing for s, t < 0. The curves γa and γb are formed as the union of disjoint
arcs γa|(s±j , s̃±j ) and γb|(t±j , t̃±j ) in Ω \Su and arcs γa|[s̃+

j , s+
j−1] = γb|[t̃+j , t+j−1] and

γa|[s̃−j , s−j+1] = γb|[t̃−j , t−j+1] in Su. More precisely,2 for s−i < s̃−i < 0, s̃−i ≤ s−i+1,
and 0 < s+

i < s̃+
i ≤ si−1 (and similarly for the t parameter), we have

(γa ∩ U) \ Su =
∞⋃

j=1

γa|(s+
j , s̃+

j ) ∪ γa|(s−j , s̃−j )

and

(γb ∩ U) \ Su =
∞⋃

j=1

γb|(t+j , t̃+j ) ∪ γb|(t−j , t̃−j ).

2One allows for equality s̃±i = s±i±1 in case there are only a finite number of arcs.
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We will consider s, t > 0, the remaining case being dealt with in similar
fashion. For i > 1, set pi = γa(s+

i ) = γb(t+i ) and p̃i = γa(s̃+
i ) = γb(t̃+i ).3

Next we show that γa and γb must meet in a sequence of points converging
to p. If not, the two curves are disjoint in B(p, ε) \ {p} for some ε > 0. Consider a
sequence ri → 0 and the sets Ωi whose boundary is formed by portions of γa, γb

(with s, t > 0) and ∂B(p, ri). Such sets are contained in fan-shaped regions with
vertex p and aperture θi → 0 (since γ′

a(0) = γ′
b(0)). If we denote by �ni the outer

normal to Ωi then∫
∂Ωi

νH · �ni ds =
∫

Ωi

div νH dx1dx2 =
∫

Ωi

H0 dx1dx2 ≤ Cθiri. (4.32)

On the other hand, along γa (resp. γb) the vector νH is constantly equal to νH(a)
(resp. νH(b)), and orthogonal to a (resp. b). The vector �ni converges (in the C1

norm on Ωi) to a vector �n(p) perpendicular to γ′
a(0). Since a �= b, c1 = νH(a) ·�n(p)

and c2 = νH(b) · �n(p) are not equal. Then there exist 0 < δi = o(1) and C > 0
such that the estimate∣∣∣∣∣

∫
∂Ωi

νH · �ni ds

∣∣∣∣∣ ≥ C(|c1 − c2| − δi)ri (4.33)

holds for large i, reaching a contradiction with (4.32) in the limit as i→∞.
Next we show that, although γa and γb intersect in arbitrarily small neigh-

borhoods of p, the sequence {pi} does not converge to p as i→∞. Assuming this
fact temporarily, we conclude the proof. Indeed, since such points mark the arcs
in which γa �⊂ Su, we have Su ∩B(p, ε) ⊃ γa([0, s̄+)) for some s̄+ and some small
ε > 0. This suffices to complete the proof.

Suppose that pi → p. Consider a sequence of regions Ωi surrounded by γa

and γb from pi to p̃i. As in the previous construction, the Ωi are also contained in
fan-shaped regions with vertex p and aperture θi → 0. If we denote as before by
�ni the outer normal to Ωi then we easily obtain the estimate∫

∂Ωi

νH · �ni ds =
∫

Ωi

div νH dx1dx2 =
∫

Ωi

H0 dx1dx2

≤ Cθi

∣∣|pi − p| − |p̃i − p|
∣∣. (4.34)

Arguing as above, and for c1, c2, C, δi defined earlier, we estimate∣∣∣∣∣
∫

∂Ωi

νH · �ni ds

∣∣∣∣∣ ≥ |c1 − c2|
2

∣∣|pi − p| − |p̃i − p|
∣∣ (4.35)

for large i, thus reaching a contradiction with (4.34) in the limit as i→∞. Modulo
the earlier discussion, this completes the proof of Theorem 4.31. �
3In the case i = 1 one may possibly have γa(s+

i ) �= γb(t
+
i ) and we set p1 = γa(s+

1 ) and

p̃1 = γa(s̃+
1 ).
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Next, let γ ⊂ Su be a C1 curve and let p ∈ γ be the projection of a char-
acteristic point. We assume that for ε > 0 sufficiently small the curve γ divides
B(p, ε) in two disjoint, open, connected, noncharacteristic components B±. This
assumption is satisfied if, for instance, the hypotheses of Theorem 4.31 hold.

Lemma 4.32. The limits

νH(p±) = lim
q→p,q∈B±

νH(q)

exist and νH(p+) = −νH(p−).

Proof. Let γ = (γ1, γ2) be parametrized by arclength with γ(0) = 0. Without
loss of generality we may assume (by rotating and translating the plane) that the
point p = (0, 0) and that the x1 axis is transversal to γ: d/dsγ2(0) �= 0. By the
Implicit Function Theorem, γ can be written as a graph (f(x2), x2) in a small
neighborhood of (0, 0). Applying (4.31) with γ in place of γa, we immediately see
that either ∂2

x1
u(0, 0) �= 0 or ∂x1,x2u(0, 0) + 1

2 �= 0.
Assume first that ∂2

x1
u(0, 0) �= 0. For z = (x1, x2) /∈ Su and for some x̄1, x̃1

between x1 and f(x2) the mean value theorem implies that

∂x2u(x1, x2) + x1
2

∂x1u(x1, x2)− x2
2

=
∂x2u(x1, x2) + x1

2 − ∂x2u(f(x2), x2)− f(x2)
2

∂x1u(x1, x2)− x2
2 − ∂x1u(f(x2), x2) + x2

2

=
(x1 − f(x2))

(
∂x1,x2u(x̄1, x2) + 1

2

)
(x1 − f(x2))∂2

x1
u(x̃1, x2)

.

Hence we obtain the existence and equality of the limits

lim
(x1,x2)→(0,0)

(x1,x2)∈B+

∂x2u(x1, x2) + x1
2

∂x1u(x1, x2)− x2
2

= lim
(x1,x2)→(0,0)

(x1,x2)∈B−

∂x2u(x1, x2) + x1
2

∂x1u(x1, x2)− x2
2

=
∂x1∂x2u(0, 0) + 1

2

∂2
x1

u(0, 0)
.

(4.36)

The latter implies the existence of νH(p±) and that these two values may differ
at most by their sign. To establish that the sign difference is −1, we need only
observe that for |x1| sufficiently small, and for some x̄1 between x1 and 0 one has

∂x1u(x1, 0)− x2/2 = ∂2
x1

u(x̄1, 0)x1.

Hence ∂x1u(x1, 0) − x2/2 and ∂2
x1

u(x̄1, 0) have the same sign in one component
(say B+) and opposite sign in the other.

In case ∂x1∂x2u(o) + 1
2 �= 0 we argue as above, using the limit

lim
(x1,x2)→(0,0)

(x1,x2)∈B+

∂x1u(x1, x2)− x2
2

∂x2u(x1, x2) + x1
2

=
∂2

x1
u(0, 0)

∂x1∂x2u(0, 0) + 1
2

as starting point and arrive at the same conclusion. �
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Remark 4.33. Using l’Hopital’s rule in the second variable we obtain that νH(p+)
is parallel to (∂2

x1,x2
u− 1

2 , ∂2
x2

u) provided the latter vector is non-zero.

Lemma 4.32 has an important corollary.

Proposition 4.34. In the hypothesis and notation of Lemma 4.32 there exists a
unique C1 curve γ̃ in a neighborhood of p, passing through p and transversal to γ
such that γ̃ ∩B± are projections of curves in the Legendrian foliation of Gu, i.e.,
characteristic curves.

The curve γ̃ in the previous statement can be decomposed as

γ̃ = {p} ∪ γ̃+ ∪ γ̃−,

where γ̃+ := γ̃∩B+ and γ̃− := γ̃∩B−. We will postpone the proof of Proposition
4.34 and start by observing that the uniqueness of γ̃± and their transversality to
γ follow from the next lemma.

Lemma 4.35. In the hypothesis and the notation of Lemma 4.32,

(i) ν⊥
H(p+)D2

0U(p, ·) = 0, and
(ii) z(D2

0U(p, ·))T = 0 for all non-zero vectors z tangent to γ at p.

Proof. Assume γ(0) = p and γ′(0) = z. Since ∇0U = 0 along γ, differentiating in
s and evaluating at s = 0 yields (ii). On the other hand, from the proof of Lemma
4.32, in particular (4.36), we see νH(p+) is orthogonal to both (∂2

x1
u, ∂2

x1,x2
u + 1

2 )
and (∂2

x1,x2
u − 1

2 , ∂2
x2

u) provided these are not zero. Since these vectors form the
columns of D2

0U(p, ·), (i) follows immediately from the previous observation. �

Observe that ∇0U(p, ·) = (∂x1u + x2
2 , ∂x2u− x1

2 ) = 0 for p ∈ Su, and hence

∂x1u +
x2

2

∣∣∣
q

= ∂2
x1

u(p)∆x +
(
∂2

x1,x2
u(p) +

1
2

)
∆y + o(∆s),

∂x2u−
x1

2

∣∣∣
q

=
(
∂2

x1,x2
u(p)− 1

2

)
∆x + ∂2

x2
u(p)∆y + o(∆s), (4.37)

for q /∈ Su near p, where we have let q−p = (∆x, ∆y) and ∆s =
√

(∆x)2 + (∆y)2.
Let A = D2

0U(p, ·) as before and observe that

A− AT =
(

0 −1
1 0

)
.

We are now ready to present the proof of Proposition 4.34.

Proof. First we show that ν⊥
H(p+) is not tangent to γ at p. If so then Lemma 4.35

would imply νH = ν⊥
H(p+)(A − AT ) = 0 which is a contradiction. In fact, this

argument leads to the identity ∣∣∣ν⊥
H(p+)AT

∣∣∣ = 1. (4.38)
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Next we prove uniqueness of the characteristic curve γ̃+. Assume we have
two distinct characteristic curves γ̃+

1 and γ̃+
2 not intersecting outside of p (which

belongs to their closure) and with common tangent ν⊥
H(p+) at p. With r = ∆s con-

sider the region Ωr surrounded by γ̃+
1 , γ̃+

2 and by ∂Br. Such a region is contained
in fan-shaped regions centered at p with aperture θr → 0. Letting Γr = ∂Ωr ∩∂Br

we note that the arc length |Γr| satisfies

|Γr| ≤ rθr. (4.39)

Following (4.37) we observe that

∇0U = (∆x, ∆y)AT + o(r),

while
(∆x, ∆y) = rν⊥

H(p+) + o(r).

If we denote by �nr the outer normal to ∂Ωr, then

lim
r→0

�nr = lim
r→0

r−1(∆x, ∆y) = ν⊥
H(p+) along Γr.

Observe that �nr ⊥ ν⊥
H along γ1 and γ2. In view of (4.38),

g(r) :=
∫

∂Ωr

(∇0U)⊥ · �nr ds (4.40)

=
∫

Γr

(∇0U)⊥ · �nr ds = −
∫

Γr

|∇0U |ν⊥
H(p+) · �nr ds = (−r + o(r))|Γr |.

On the other hand, the divergence theorem implies

g(r) =
∫

Ωr

div(∇0U)⊥ dx1dx2 = −
∫ r

0

|Γs| ds. (4.41)

From (4.40) and (4.41) we obtain the ODE (g′/g)(r) = (1/r) + o(1/r) whose
solution g(r) = cr2 + o(r2) contradicts (4.39). Thus γ̃+

1 = γ̃+
2 . A similar argument

yields the uniqueness and non-transversality of γ̃−. �

4.4.2 The Legendrian foliation near isolated points
of the characteristic locus

Next, we turn our attention to isolated characteristic points of t-graphs. We will
show that every characteristic curve intersecting a small neighborhood of the pro-
jection of such a point p will reach p in finite time. Moreover, to every tangent
direction a ∈ T(p,u(p))Gu there corresponds one and only one curve of the Legen-
drian foliation tangent to a at p.

For u ∈ C2(Ω) we define the vector field

T (x1, x2) =
(
∂x2u−

x1

2
,−∂x1u−

x1

2

)
= (∇0U)⊥(x1, x2, ·).
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Note that T = 0 on Su and that the projections of curves in the Legendrian
foliation are tangent to T in Ω \ Su. We will also consider the differential of T :

dpT =
(

∂2
x1,x2

u(p)− 1
2 ∂2

x2
u(p)

−∂2
x1

u(p) −∂2
x1,x2

u(p)− 1
2

)
. (4.42)

Lemma 4.36. Assume p ∈ Su is an isolated (projection of a) characteristic point,
and |H0(z, u(z))| = o(dist(p, z)−1). Then

(i) dpT =
(
−1/2 0

0 −1/2

)
, and

(ii) Indexp T = 1.

Proof. For q ∈ Ω\ {p} set q−p = (∆x, ∆y) and ∆s =
√

(∆x)2 + (∆y)2 as before,
and observe that (4.37) holds. Set a = ∂2

x1,x2
u(p)− 1

2 , b = ∂2
x2

u(p), c = ∂2
x1

u(p) and
d = ∂2

x1,x2
u(p)+ 1

2 . Since p is isolated, in view of Remark 4.30, we have bc−ad �= 0.
Next, we recall from (4.12) that

H0 =
1

|∇0U |

(
LU − L∞U

|∇0U |2

)
(4.43)

=
(∂2

x2
u)(∂x1u + x2

2 )2 + (∂2
x1

u)(∂x2u− x1
2 )2 − 2(∂2

x1,x2
u)(∂x1u + x2

2 )(∂x2u− x1
2 )

|∇0U |3
.

Substituting (4.37) in (4.43) we obtain

H0 =

(bc− ad)

(
(∆x, ∆y)

(
c a
d b

)(
∆x
∆y

))
+ o((∆s)2)∣∣∣∣(a b

c d

)(
∆x
∆y

)∣∣∣∣3 + o((∆s)3)

. (4.44)

First, we will show that c = 0. If not, then setting ∆y = 0 in (4.44) gives

H0 =
(bc− ad)c(∆x)2 + o((∆s)2)

(∆x)3(a2 + c2)3/2 + o((∆s)3)
≈ (bc− ad)c

(a2 + c2)3/2
(∆x)−1,

which contradicts the hypothesis |H0| = o(dist(p, x)−1). Setting ∆x = and arguing
in the same fashion gives b = 0. Next, set b = c = 0 in (4.44) to obtain

H0 = −ad
(a + d)∆x∆y + o((∆s)2)

(a2(∆x)2 + d2(∆y)2)3/2 + o((∆s)3)
,

from which we deduce that 2∂2
x1,x2

u(p) = a + d = 0. Thus a = −d and b = c = 0
which gives (i). To conclude the proof we observe that det dpT = 1/4 > 0, whence
Indexp T = 1. �
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Lemma 4.37. With the hypotheses of Lemma 4.36 in force, there exists a neigh-
borhood Up of p such that every characteristic curve γ which intersects Up \ {p}
reaches p in finite time.

Proof. Let q ∈ Ω and use polar coordinates to represent q − p = (∆x, ∆y) =
(∆s)e i φ. Let α, β ∈ R satisfy

ν⊥
H = αe i φ + β i e iφ.

In view of (4.37) and Lemma 4.36(i),

∂x1u +
1
2
x2 =

1
2
∆y + o(∆s),

∂x2u−
1
2
x1 = −1

2
∆x + o(∆s),

ν⊥
H = −

(∆x

∆s
+ o(1),

∆x

∆s
+ o(1)

) (4.45)

as ∆s→ 0. Consequently, α = ν⊥
H · e iφ = −1 + o(1) and β = o(1).

Next, consider a curve γ as in the statement of the lemma, and represent it
in polar coordinates: γ(t) = ∆s(t)e i φ(t). Recalling from Section 4.3.2 the identity
γ′ = −ν⊥

H , we obtain

(∆s)′e iφ + (∆s)φ′ i e iφ = −ν⊥
H = −(1 + o(1))e i φ + o(1) i e iφ.

Thus
(∆s)′ = −1 + o(1) (4.46)

so, in sufficiently small neighborhoods of p, ∆s(t) reaches zero at a finite time
t = T . �

We now combine all of the preceding work to deduce a structure theorem for
the projection of isolated points in the characteristic locus.

Theorem 4.38 (Cheng–Hwang–Malchiodi–Yang). Assume:

(H1) p ∈ Su is an isolated (projection of a) characteristic point;
(H2) the bound |H0(z, u(z))| = o(dist(p, z)−1) holds for z �∈ Su near p;
(H3) for some r0 > 0, ∫ r0

0

sup
z∈∂B(p,r)

|H0(z, u(z))| dr <∞.

Then for all a ∈ S1 there exists a unique C1 curve γa such that

(i) γa is characteristic, i.e., the projection of a curve in the Legendrian
foliation of Gu,

(ii) p lies in the closure of γa,
(iii) limq∈γa,q→p νH(q) exists and is orthogonal to a.

Moreover, as a ranges over all of S1, such curves γa cover Up \ {p} for some
neighborhood Up of p.
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Proof. Let Up be as in Lemma 4.37. Choose δ > 0 sufficiently small so that
B(p, δ) ⊂ Up. For each q ∈ ∂B(p, δ) denote by γ the unique characteristic curve
through q. In view of Lemma 4.37, the curve γ will reach p at a finite time T . Con-
sider a sequence of parameter values tj ↗ T and set qj = γ(tj) so limj→∞ qj = p.
Recall from Remark 4.25 that if νH(γ(t)) = exp( i θ(t)) then

H0(γ(t), u(γ(t)) = −θ′(t). (4.47)

Denote by θj the angle corresponding to qj , i.e., νH(qj , u(qj)) = (cos θj , sin θj).
Using hypothesis (H3) we will show that {θj} is a Cauchy sequence. First, observe
that

θj − θk =
∫ tj

tk

θ′(t) dt =
∫ tj

tk

H0 dt. (4.48)

Recall from (4.46) that (∆s)′(t) = −1 + o(1) for t near T . Consequently, we
can express the parameter t in terms of r = ∆s and estimate t′(r) ≈ 1 in a
neighborhood of p. Using this observation, letting rj = r(tj), rk = r(tk) and in
view of (4.48) we obtain

|θj − θk| ≤
∫ rj

rk

sup
z∈∂B(p,r)

|H0(z, u(z))| |t′(r)| dr → 0 as j, k →∞, (4.49)

thus proving that (θj) is Cauchy. Let us denote by θ(p,q) its limit as j →∞. Now
we can define a map ψ : ∂B(p, δ)→ S1 as follows:

ψ(q) = e i θ(p,q) .

To conclude the proof of the theorem it suffices to show that ψ is a homeomor-
phism.

Step 1 (ψ is continuous): Essentially we need to prove a result of C1 continuity
of solutions of a certain ODE with respect to initial data. Consider a sequence
of points qj ∈ ∂B(p, δ) converging to q ∈ ∂B(p, δ). Denote by θj = θ(p,qj) (resp.
θ̂ = θ(p,q)) and by γj (resp. γ̂) the corresponding characteristic curves joining qj

to p (resp. q to p). We must have that θj → θ(p,q). Let φj be the angle in the polar
coordinate representation of qj−p. Without loss of generality we may assume that
φj is strictly decreasing. Since two curves in the Legendrian foliation cannot cross
in B(p, δ) \ {p}, we also have θj ≥ θj+1 for all j. As a monotone and bounded
from below sequence, (θj) has a limit θ.

We argue by contradiction. If θ �= θ(p,q) then necessarily θ > θ(p,q). In this
case we find two rays emanating from p and forming an angle less than θ − θ(p,q)

such that for j sufficiently large, both γj and γ avoid a “fan-shaped” region Ω̃
surrounded by these two rays and ∂B(p, R) for some R > 0.

For any point p̃ ∈ Ω̃ we consider the unique characteristic curve γ̃ joining p̃
to p. This curve will intersect ∂B(p, δ) at a point q̃. Since γ̃ ∩ Ω̃ does not intersect
any γj , θj > θ̃(p,q̃) and q̃ must lie in the arc between qj and q for all j. Thus q̃ = q
and γ̃ = γ̂ which is a contradiction.
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Step 2 (ψ is surjective): If ψ is not surjective then there exists θ̃ such that e i θ̃ ∈
S1 \ ψ(∂B(p, δ)). Since the latter set is open, we can find a neighborhood Iθ̃ of
θ̃ such that e i Iθ̃ is disjoint from the range of ψ. Arguing as in the proof of the
continuity of ψ, we deduce the existence of a fan-shaped region Ω̃, surrounded
by two rays and a portion of a circle ∂B(p, R), which avoids all characteristic
curves connecting points q ∈ ∂B(p, δ) to p. For any p̃ ∈ Ω̃ we consider the unique
characteristic curve γ̃ through p̃ and let q̃ be its intersection with ∂B(p, δ). Then
clearly we must have e i θ(p,q̃) ∈ e i Iθ̃ ⊂ S1 \ ψ(∂B(p, δ)) which is a contradiction.

Step 3 (ψ is injective): Consider q1, q2 ∈ ∂Bδ distinct such that θ(p,q1) = θ(p,q2).
Denote by γi a characteristic curve joining p to qi. Then the angle between the
tangent vectors of γ1 and γ2 at p is zero. Consider regions Ωr surrounded by γ1,
γ2 and ∂B(p, r). Clearly Ωr is contained in a fan-shaped region with vertex p and
aperture θr → 0. Set Γr = ∂Ωr ∩ ∂B(p, r), then

|Γr| ≤ rθr (4.50)

as before. Let �nr denote the outer normal to ∂Ωr and observe that �nr ⊥ ν⊥
H along

γ1 and γ2. Consequently

g(r) :=
∫

∂Ωr

(∇0U)⊥ · �nr ds =
∫

Γr

(∇0U)⊥ · �nr ds

= −
∫

Γr

(q(s)− p + o(r)) · q(s)− p

r
ds = (−r + o(r))|Γr |.

On the other hand, the divergence theorem implies

g(r) =
∫

Ωr

div(∇0U)⊥ dx1dx2 = −
∫ r

0

|Γs| ds. (4.51)

From (4.4.2) and (4.51) we obtain the ODE

g′

g
=

1
r

+ o
(1

r

)
,

which yields g(r) = cr2 + o(r2) for some c > 0, in contradiction with (4.50).

Step 4 (ψ−1 is continuous): We argue by contradiction. Assume there is a sequence
(qj) ⊂ ∂B(p, δ) converging to q̃ so that

θj := θ(p,qj) → θ := θ(p,q) (4.52)

with q �= q̃ ∈ ∂B(p, δ). Without loss of generality we may assume θj ≥ θj+1 ≥ θ.
Since q �= q̃ we can find q̄ ∈ ∂B(p, δ) such that q �= q̄, q̃ �= q̄ and θj ≥ θ(p,q̄) ≥ θ.
But then, by (4.52) and the injectivity of ψ we must have q̄ = q. With this
contradiction we complete the proof of the theorem. �
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4.5 Further results: intrinsically regular surfaces
and the Rumin complex

Submanifolds in the Heisenberg group (and more general Carnot groups) have also
been studied from an intrinsic point of view. This line of investigation has been
developed in detail beginning with work of Franchi, Serapioni and Serra-Cassano.
These results are somewhat tangential to the theory which we aim to present in
this monograph and so we only give a brief summary here and refer the reader to
the original papers [106], [107], [108], [109] for a more complete description. We
begin with an intrinsic notion of smooth functions on the Heisenberg group.

Definition 4.39. Suppose U ⊂ H is an open set. Denote by C1
H
(U) the vector space

of continuous functions f : U → R so that ∇0f is continuous.

We note that C1
H

is a proper subclass of C1.
Example 4.40. Let f(x1, x2, x3) = x1 − g

(
x2,

x1x2
2 + x3

)
where

g(a, b) =
|a|αb

a4 + b2

for (a, b) �= (0, 0) and g(0, 0) = 0. Then f ∈ C1
H

for 3 < α < 4 but f is not
locally Lipschitz continuous (with respect to the Euclidean metric on R3) and
hence cannot be C1.

Using this, we define the notion of intrinsic hypersurface.

Definition 4.41. S ⊂ H is a codimension 1 intrinsic C1
H
-regular hypersurface if for

any p ∈ S, there exists a neighborhood U ⊂ H of p and f ∈ C1
H
(U) so that

1. S ∩ U = {q ∈ U |f(q) = 0}, and
2. |∇0f(q)| �= 0 for all q ∈ U .

Note that the second condition on f guarantees the absence of characteristic
points on the surface.

Before we can continue our discussion of codimension 1 intrinsic C1
H
-regular

hypersurfaces, we need to introduce the notion of intrinsic graph. In order to do
so, assume that the Lie algebra of H has been split as a direct sum: h = a⊕ b. Let
A = exp(a) and B = exp(b). We use these sets to foliate H by setting Pa(p) = p ·A
and Pb(p) = p ·B for each p ∈ H. We can then define an intrinsic notion of graphs
in H.

Definition 4.42. A set S in H is an intrinsic graph over A along B if, for every
p ∈ A, S ∩ Pa(p) contains at most one point. Equivalently, if there exists φ : U ⊂
B → A so that

S = {p · φ(p)|p ∈ U},
we say that S is the (intrinsic) graph of φ.
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This notion appears in the following extension of the implicit function theo-
rem to this setting.

Theorem 4.43 (Franchi–Serapioni–Serra-Cassano). Let U ⊂ H be an open set,
f ∈ C1

H
(U), and let

S = {p ∈ H : f(p) = 0}.

Suppose that f(0) = 0 and X1f(0) > 0. Then there exists an open neighbor-
hood U0 ⊂ U and open sets A0 ⊂ A = exp(a), B0 ⊂ B = exp(b), where
a = span{X2, X3} and b = span{X1}, so that S ∩ U0 is an intrinsic graph over
A0 along B0. Moreover, the defining function φ of the graph is continuous and
unique.

We now return to our discussion of codimension 1 intrinsic C1
H
-regular hyper-

surfaces. Together with C1 horizontal curves and Legendrian submanifolds, such
hypersurfaces constitute one of the most notable examples of intrinsic regular sub-
manifolds, as introduced in [105]. We explicitly remark that here, ‘intrinsic’ refers
to properties defined only in terms of the group structure of H, or, to be more
precise, of its Lie algebra h. Roughly speaking, a subset S ⊂ H is to be considered
an intrinsic regular submanifold if:

(i) S has, at each point, a tangent ‘plane’ and a transversal ‘plane’,

(ii) the tangent planes depend continuously on the point, and the notion of ‘plane’
is intrinsic to H,

(iii) the tangent and transversal planes are subgroups (or better, cosets of sub-
groups) of H, and H is their direct product,

(iv) the tangent plane to S at a point is a suitable limit of group dilations of S
centered at that point.

In addition to this list, codimension 1 intrinsic C1
H
-regular hypersurfaces enjoy the

following important properties:

Theorem 4.44. Any codimension 1 intrinsic C1
H
-regular hypersurface is locally an

intrinsic graph.

Theorem 4.45. Any codimension 1 intrinsic C1
H
-regular hypersurface has locally

finite intrinsic Hausdorff (Q− 1)-dimensional measure.

Codimension one intrinsic C1
H
-regular hypersurfaces can be very irregular

objects from a Euclidean point of view. Indeed, these surfaces are in general not
Euclidean C1 submanifolds (not even locally), and in fact can be fractal. (See the
notes to the chapter for more discussion.)

For further insight on this phenomenon, we recall in brief Rumin’s construc-
tion of a complex of differential forms in H which plays the role of the De Rham
complex for Euclidean spaces.
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Let us denote by
∧k

h the vector space of k-forms over h and let ω = dx3 −
1
2 (x1dx2−x2dx1) ∈

∧1
h denote the contact form in H (see (2.5)). Define Ik ⊂

∧k
h

as the differential ideal generated by ω:

Ik =

{
η ∈

k∧
h : η = ω ∧ α + dω ∧ β

}
,

and let

J k =

{
η ∈

k∧
h : η ∧ ω = 0, η ∧ dω = 0

}
.

We also introduce, for an open set U ⊂ H, the set Dk
H
(U) of Heisenberg k-

differential forms, i.e., the space of smooth sections, compactly supported in U ,
of

∧k h
Ik when k = 1, or of J k when k = 2, 3. These spaces are endowed with the

natural topology induced by the topology on Dk(U), the space of k-differential
forms in R3. With this machinery in place we assert:

Theorem 4.46 (Rumin). There exists a linear second order differential operator
D : D1

H
(U)→ D2

H
(U) so that the sequence

0→ C∞
0 (U) d→D1

H(U) D→D2
H(U) d→D3

H(U)→ 0 (4.53)

is locally exact and has the same cohomology as the De Rham complex on U . Here
d is the operator induced by the external differentiation from Dk

H
(U) to Dk+1

H
(U)

when k �= 1.

The objects in the Rumin complex (4.53) in dimension k = 1 are quotients
of the usual space of 1-forms, so that their duals are contained in the duals of the
usual 1-forms. In dimensions k = 2, 3, however, the objects of Rumin’s complex
are subspaces of the usual spaces of k-forms, so that their duals include (in some
sense) the duals of the usual k-forms. Since one can think of surfaces as duals of
forms, this is consistent with the above observation that codimension 1 intrinsic
C1

H
-regular hypersurfaces can be very singular sets from the Euclidean point of

view.
We conclude this section by noting that Rumin’s theorem suggests that we

define, by duality, currents of Federer–Fleming type in H, together with boundaries
and (co-)masses. For further details, we refer the interested reader to [105] (see
also [213] and [224]).

4.6 Notes

Notes for Section 4.1. Proposition 4.1 allows us to define a horizontal Levi-Civita
connection associated to the sub-Riemannian metric. We state the following defi-
nition in the setting of general Heisenberg groups H

n.
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Definition 4.47. Let Γ(HHn) denote the set of horizontal vector fields in Hn, and
πH : Γ(THn) → Γ(HHn) the projection of a tangent vector field to its horizon-
tal component. For any extension of the sub-Riemannian metric we consider its
corresponding Levi-Civita connection ∇ and define

∇H : Γ(HH
n)× Γ(HH

n)→ Γ(HH
n)

by letting ∇H
U V := πH∇UV for all horizontal sections U and V .

In view of Proposition 4.1, ∇H is independent of the choice of Rieman-
nian extension. One can easily show that ∇H satisfies the properties of a con-
nection. We note explicitly that ∇H is torsion free in the horizontal direction,
i.e., (id−πH)(∇H

XY −∇H
Y X) = 0 where id−πH denotes projection to the vertical

component of THn. Indeed,

(id−πH)(∇H
XY −∇H

Y X) = (id−πH)πH(∇XY −∇Y X) = 0

since πH is a projection (π2
H = πH).

With this connection at hand one can proceed to define the second fun-
damental form and curvatures in analogy with the Riemannian definition. This
approach has been pursued in [79] and [232]; it yields the same notions which we
have introduced in this chapter.

Notes for Section 4.3. The characteristic set Σ(S) of a C2 regular surface in H is
not large. Derridj [86] showed that its surface measure is zero, while more recently
Balogh [20] proved that the Hausdorff dimension (with respect to either the Eu-
clidean or Carnot–Carathéodory metric) of the characteristic set is at most one.
Balogh also investigated the situation for surfaces of weaker regularity. Among the
results which he obtains in the following:

Theorem 4.48 (Balogh). Let u ∈ C1,1
loc (Ω), where Ω = BR ⊂ R2. Then |Su| = 0,

where Su = {z ∈ Ω : ∇zu(z) + z⊥/2 = 0}.

Note that Su is precisely the projection of the characteristic set of the graph
of u into the z-plane. For extensions of this circle of ideas to more general groups
(and higher codimension hypersurfaces) see Magnani [190], [187].

A version of Theorem 4.9 was proved by Pauls in [221]. In that paper, the
method of analysis via approximating metrics was used to gain W 1,p estimates on
solutions to the minimal surface equation in H.

Example 4.12 is due to Arcozzi and Ferrari [13]. In this paper, among other
things, the authors study the distance function from a surface and compute cur-
vatures of its level sets.

The material in Sections 4.2 and 4.3.1 is original to this survey. The computa-
tion of the second fundamental form of level sets of regular functions u in (Hn, gL)
and the derivation of the horizontal mean and Gauss curvatures are a particular
case of the results in [56] where the general Carnot group case is studied. The
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horizontal second fundamental form is defined as in [51]. See [144] and [56] for
more general definitions and alternative derivations. The observation at the end
of Subsection 4.3.1 regarding the behavior of the horizontal mean curvature at the
characteristic locus is due to Giovanna Citti.

Proposition 4.24 was first proved in [63]. Independent proofs and formulations
appeared also in [68], and [14].

Notes for Subsections 4.4.1 and 4.4.2. All the results in these subsections are first
proved in [63] and are due to Hwang, Cheng, Malchiodi and Yang. In [63], these
techniques have been used to great effect to study minimal surfaces in H and more
in general in pseudo-Hermitian structures.

Notes for Section 4.5. Theorem 4.43 is due to Franchi, Serapioni and Serra-Cas-
sano (see also the independently proved polarized coordinates version in [65], due
to Citti and Manfredini). In their papers, [106], [107], [108], [109], [105], these
authors develop an extensive program aimed at exploration of notions of sub-
Riemannian rectifiability. We note that while we have stated results in H, the
original papers [106] and [105] deal with arbitrary Heisenberg groups, whereas
[107], [108] and [109] deal with two-step Carnot groups and extend some of this
machinary to even more general groups. For additional information, see the notes
to the following chapter. Example 4.40 is taken from Remark 5.9 in [106]. The
regularity of parameterizations of intrinsic hypersurfaces in the Heisenberg group
is the focus of the recent paper [11] of Ambrosio, Serra-Cassano and Vittone.

We have already seen that hypersurfaces in H given as level sets of (Eu-
clidean) smooth functions can be quite badly behaved from a sub-Riemannian
point of view, due to the presence of characteristic points. On the other hand,
C1

H
-regular hypersurfaces, while well-adapted to sub-Riemannian analysis, can be

extremely irregular from a Euclidean point of view. For instance, Kirchheim and
Serra-Cassano [162] provide an example of a C1

H
-regular hypersurface whose Eu-

clidean Hausdorff dimension is 5/2. (By a comparison theorem for Euclidean vs.
sub-Riemannian Hausdorff dimensions due to Balogh, Rickly and Serra-Cassano
[25], the value 5/2 is best possible.) In short, hypersurfaces in a sub-Riemannian
space which are well behaved for sub-Riemannian analysis are not necessarily well
behaved for Riemannian analysis, and vice versa.

The Rumin complex of differential forms was introduced by Rumin in [234].
Theorem 4.46 is taken from that paper. Our presentation of the Rumin complex
in H is a special case of the more general theory developed in [234] in the context
of general contact manifolds.
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Sobolev and BV Spaces

In this chapter we review the definitions of Sobolev spaces, BV functions and
perimeter of a set relative to the sub-Riemannian structure of H. These notions
are crucial for the development of sub-Riemannian geometric measure theory. Our
treatment here is brief, focusing only on those aspects most relevant for the isoperi-
metric problem.

5.1 Sobolev spaces, perimeter measure and

total variation

Let us begin by introducing the sub-Riemannian analog of the classical first-order
Sobolev spaces. For any open set Ω ⊂ H and any p ≥ 1 we define the Sobolev
space S1,p(Ω) to be the set of functions f ∈ Lp(Ω) such that ∇0f exists in the
sense of distributions with |∇0f | ∈ Lp(Ω), and denote the corresponding norm by

||f ||S1,p(Ω) = ||f ||Lp(Ω) + ||∇0f ||Lp(Ω).

We recall that the underlying measure in use here is the Haar measure on H, which
agrees with both the exponential of the Lebesgue measure on h and the Hausdorff
4-measure associated with the Carnot–Carathéodory metric.

Using group convolution f ∗ g(x) =
∫

H
f(xy−1)g(y)dy and following the out-

line of the Euclidean argument1 one can easily verify that S1,p(H) is the closure
of C∞

0 (H) in the norm || · ||S1,p . The local Sobolev space S1,p
loc (Ω) is defined by

replacing Lp with Lp
loc in the above definition.

Next we recall the sub-Riemannian analog of the classical notions of variation
of a function and perimeter of a set. We begin by defining the total variation of an
L1 distribution. Let Ω ⊂ H and denote by F(Ω) the class of R2-valued functions
φ = (φ1, φ2) ∈ C1

0 (Ω, R2) such that |φ| ≤ 1.
1See, for instance, Section 7.2 in [123].
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Definition 5.1. The variation of an L1
loc(Ω) function in an open set Ω ⊂ H is

VarH(f, Ω) = sup
φ∈F(Ω)

∫
Ω

f(x)(X1φ1 + X2φ2)(x) dx. (5.1)

If f is C1, a simple integration by parts implies VarH(f, Ω) =
∫
Ω |∇0f |.

Definition 5.2. The space BV (Ω) of functions with bounded variation in Ω is the
space of all functions f ∈L1(Ω) such that ||f ||BV (Ω) := ||f ||L1(Ω) +VarH(f,Ω)<∞.

Clearly S1,1(Ω) ⊂ BV (Ω).
In the next chapters we will need the following useful approximation result.

Lemma 5.3. Let Ω ⊂ H be an open set, and let X be one of the function spaces S1,p,
p ≥ 1, or BV . For any u ∈ X(Ω) there exists a sequence {uk}k∈N ⊂ C∞(Ω) such
that (i) uk → u in L1(Ω) as k → ∞, and (ii) limk→∞ VarH(uk, Ω) = VarH(u, Ω)
if X = BV , or limk→∞

∫
Ω
|∇0uk −∇0u|p = 0 if X = S1,p.

Definition 5.4. Let E ⊂ H be a measurable set and Ω ⊂ H be an open set. The
(horizontal) perimeter of E in Ω is given by

PH(E, Ω) = VarH(χE , Ω),

where χE denotes the characteristic function of E. Sets with finite perimeter are
called Caccioppoli sets. For Ω = H we let PH(E, H) = PH(E).

The invariance of the perimeter under left translation and the homogeneity
of the perimeter under dilation are easy consequences of the definition, using the
behavior of the vector fields Xi under these operations. We collect the relevant
facts in the following lemma.

Lemma 5.5. For any y ∈ H, s > 0, Ω ⊂ H open and E ⊂ H Caccioppoli,

PH(δsE, δsΩ) = s3PH(E, Ω) and PH(Ly(E), Ly(Ω)) = PH(E, Ω).

Here Ly(x) = yx denotes the operation of left translation by y.

In studying the existence of isoperimetric sets (Theorem 8.3) we will make
use of the following basic result.

Proposition 5.6. The perimeter functional PH is lower semi-continuous with respect
to L1

loc convergence.

The perimeter of smooth sets has a very explicit integral representation in
terms of the underlying Euclidean geometry.

Proposition 5.7. Let E be a C1 set, dσ the surface measure on ∂E, and �n the
outer unit normal. Then

PH(E, Ω) =
∫

∂E∩Ω

( 2∑
i=1

〈Xi, �n〉2
)1/2

dσ(x).
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Proof. Denote by A the 2 × 3 smooth matrix whose rows are the coefficients of
the vector fields Xj =

∑3
i=1 aji∂xi . A simple computation yields

div(AT φ) =
2∑

j=1

3∑
i=1

aji∂xiφj = X1φ1 + X2φ2

for all φ ∈ F(Ω). In view of Definition 5.4 we have

PH(E, Ω) = sup
φ∈F(Ω)

∫
Ω

χE(x)(X1φ + X2φ)(x) dx

= sup
φ∈F(Ω)

∫
Ω∩E

div(AT φ) dx

= sup
φ∈F(Ω)

∫
Ω∩∂E

〈AT φ, �n〉 dσ

= sup
φ∈F(Ω)

∫
Ω∩∂E

〈φ, A�n〉 dσ

=
∫

Ω∩∂E

|A�n| dσ =
∫

Ω∩∂E

( 2∑
i=1

〈Xi, �n〉2
)1/2

dσ.

The proof is concluded. �

Corollary 5.8. If S = {u = 0} is a C1 hypersurface in H which bounds an open
set E = {u < 0}, then

PH(E, Ω) =
∫

S∩Ω

dµ (5.2)

for every domain Ω ⊂ H, where

dµ =
|∇0u|
|∇u| dσ = |πH(ν1)|dσ = |A�n| dσ.

Note that a reparametrization of S will not change its perimeter.
Remark 5.9. In view of Remark 4.22 we can extend H0 from S \ Σ(S) to all of S
as a function in L1(S, dµ). In fact, H0|πH(ν1)| is a continuous function in all of S.
Remark 5.10. Proposition 5.7 and Corollary 5.8 extend to the setting of Lipschitz
surfaces. Note also that the explicit integral representation in Proposition 5.7
extends to the setting of parametric surface patches S which may not bound a
domain; we use the notation PH(S) for the perimeter of such a surface patch
defined as in Proposition 5.7.
Remark 5.11. The definitions of Sobolev space, variation and perimeter measure
extend mutatis mutandis to general Carnot groups, as do the representation for-
mulas in Proposition 5.7 and Corollary 5.8.
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5.1.1 Riemannian perimeter approximation

The representation formula (5.2) can also be obtained via the Riemannian approx-
imation scheme, with the Heisenberg perimeter being in a certain sense the limit
of the Riemannian perimeters. Consider a C1 parameterized surface S = f(D) in
R3, where

f = (f1, f2, f3) : D ⊂ R
2 → R

3. (5.3)

If g : S → R is a continuous function, then we know from elementary calculus that∫
S

g dσ =
∫

D

g ◦ f(u, v)|�n(u, v)| dudv (5.4)

where �n(u, v) = fu × fv(u, v) is the Euclidean normal to S determined by the pa-
rameterization. Consider the sequence of Riemannian metrics gL on R3 introduced
in Section 2.4. Recall that such metrics are characterized by the condition that
X1, X2, and X̃3 form an orthonormal frame. Let CT

L be the 3 × 3 matrix whose
rows are the coefficients of the vector fields X1, X2, and X̃3:

CT
L =

⎛⎝1 0 − 1
2x2

0 1 1
2x1

0 0 L−1/2

⎞⎠ .

Using the frame F = {X1, X2, X̃3} as a coordinate basis we may express the basis
of the tangent bundle of S as

[∂1f ]F =
(

∂1f1, ∂1f2,
√

L

[
∂1f3 −

(∂1f2x1 − ∂1f1x2)
2

])
and

[∂2f ]F =
(

∂2f1, ∂2f2,
√

L

[
∂2f3 −

(∂2f2x1 − ∂2f1x2)
2

])
.

Let νL denote the Riemannian normal to S in (R3, gL):

[νL]X = [∂1f ]F × [∂2f ]F .

Simple computations show that νL =
√

LCT
L�n and

||νL||2L = detG,

where G = (gij) is the 2× 2 matrix with entries gij = 〈∂if, ∂jf〉L. Thus
√

detG = ||νL||L =
√

L|CT
L�n|

and the change of variables formula on (R3, gL) yields∫
S

dσL =
∫

D

||νL||L dudv =
∫

D

√
L|CT

L�n| dudv. (5.5)
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Here dσL denotes the Riemannian surface area element on S induced by the metric
gL on H.

Note that

lim
L→∞

CT
L = lim

L→∞

⎛⎝1 0 − 1
2x2

0 1 1
2x1

0 0 1√
L

⎞⎠ =

⎛⎝1 0 − 1
2x2

0 1 1
2x1

0 0 0

⎞⎠ .

The last matrix is simply the matrix A from the previous discussion with a row
of zeros added. Thus

lim
L→∞

1√
L

∫
S

dσL = lim
L→∞

∫
D

|CT
L�n| dudv =

∫
D

|A�n| dudv.

Using (5.4) we conclude that

lim
L→∞

1√
L

∫
S

dσL =
∫

D

|A�n| dudv =
∫

S

|A�n|
|�n| dσ.

Moreover, if S = {u = 0} is given as a level set, we have |A�n| = |∇0u| and
|�n| = |∇u|, whence

lim
L→∞

1√
L

∫
S

dσL =
∫

S

dµ =
∫

S

|∇0u|
|∇u| dσ, (5.6)

and we conclude that the Riemannian surface measures in S, computed with re-
spect to gL and rescaled by the factor 1/

√
L, tend to the perimeter measure in H

as L→∞.
Example 5.12. We compute the perimeter measure on the boundary Sε of the
Heisenberg ball Bε := {x ∈ H : ||x||H = ε}. We parameterize Sε = f(D), where
f = (f1 + i f2, f3) is given by

(f1 + i f2)(ϕ, θ) = ε
√

cosϕ exp( i θ)

and
f3(ϕ, θ) =

1
4
ε2 sinϕ,

and D = {(ϕ, θ) ∈ R2 : −π/2 < ϕ < π/2, 0 ≤ θ < 2π}. An easy computation gives
|A�n| = |A(fϕ × fθ)| = ε3

√
cosϕ and we conclude

PH(Bε, Ω) =
∫

Sε∩Ω

dµ

=
∫
{(ϕ,θ)∈D:(ε

√
cos ϕ exp( i θ), 14 ε2 sin ϕ)∈Ω}

ε3
√

cosϕdϕdθ.
(5.7)

(Alternatively, we could compute PH(Bε, Ω) via the level set formulation starting
from the representation Bε = {u < 0}, u(x) = ε− ||x||H.)
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5.2 A sub-Riemannian Green’s formula and the
fundamental solution of the Heisenberg Laplacian

Let D be a bounded C1 domain R3 equipped with the approximant metric gL.
Green’s formula in Ω takes the form∫

D

(fLgLg − gLgLf) =
∫

∂D

(fνL(g)− gνL(f))
dσL√

L
(5.8)

for f, g ∈ C1(D), where LgL = X2
1 + X2

2 + X̃3
2

= X2
1 + X2

2 + L−1X2
3 denotes

the Laplacian in (R3, gL). Using (5.6) we conclude the sub-Riemannian Green’s
formula ∫

D

(fLg − gLf) =
∫

∂D

(fνH(g)− gνH(f)) dµ. (5.9)

We now apply the preceding discussion to compute the fundamental solution
for the Heisenberg Laplacian

L = X2
1 + X2

2

in H. Let f ∈ C∞
0 (H). As in Example 5.12 we fix the defining function u(x) =

ε − ||x||H and write Dε = {u < 0} ∩ supp f = {x ∈ supp f : ||x||H > ε} and
Sε = {u = 0} = {x : ||x||H = ε}. To simplify the notation in what follows we write
N(x) = ||x||H for the Heisenberg norm. For later purposes we record the identity
|∇0N(x)| = |z|/N(x), where x = (z, x3).

Choosing g = N−2 in (5.9) and observing that

νH(g) =
〈
∇0g,

−∇0N

|∇0N

〉
1

= 2N−3|∇0N |

on the inner boundary Sε of Dε, we find∫
Dε

fLg − gLf =
∫

Sε

2fN−3|∇0N |+ N−2

〈
∇0f,

−∇0N

|∇0N |

〉
1

dµ. (5.10)

Lemma 5.13. Lg = 0 in H \ {o}.

The proof of this lemma is an easy computation. We thus obtain

−
∫

Dε

N−2Lf =
∫

Sε

2fN−3|∇0N |+ N−2

〈
∇0f,

∇0N

|∇0N |

〉
1

dµ. (5.11)

Lemma 5.14.
∫

Sε
N−2

〈
∇0f, ∇0N

|∇0N |

〉
1

dµ = O(ε).

Indeed, using (5.7) in the desired integral gives∫ π/2

−π/2

∫ 2π

0

ε−2

〈
∇0f,

∇0N

|∇0N |

〉
1

∣∣∣∣
x=(ε

√
cos ϕ exp( i θ), 14 ε2 sin ϕ)

ε3
√

cosϕdϕdθ.



5.3. Embedding theorems for the Sobolev and BV spaces 101

Another use of (5.7) gives
∫

Sε
2N−3|∇0N | dµ = 8π. In the first term on the

right-hand side in (5.11) we add and subtract f(o) and observe that the term∫
Sε

2(f − f(o))N−3|∇0N | = o(1) by uniform continuity of f in Bε. In conclusion,
passing to the limit as ε→ 0 in (5.11), we deduce the identity

−
∫

H

N−2Lf = 8πf(o),

valid for all f ∈ C∞
0 (H). An application of the horizontal integration by parts

formulas ∫
H

(Xif)g = −
∫

H

f(Xig)

converts this into the following singular integral representation formula:

f(o) =
1
8π

∫
H

〈∇0f(y),∇0(N−2)(y)〉1 dy

= − 1
4π

∫
H

〈∇0f(y),∇0N(y)〉1N(y)−3 dy.

(5.12)

In other words,

Theorem 5.15. The function

u(x) = (8π)−1||x||−2
H

is the fundamental solution for the Heisenberg Laplacian L.

An alternate form for (5.12) is

f(x) =
1
8π

∫
H

〈∇0f(y),∇0(N−2)(y−1x)〉1 dy

= − 1
4π

∫
H

〈∇0f(y),∇0N(y−1x)〉1N(y−1x)−3 dy.

(5.13)

(5.13) can be obtained by inserting the test function fx(y) = f(xy−1) in (5.12)
and transforming the integrand via the isometry y �→ xy−1.

5.3 Embedding theorems for the Sobolev

and BV spaces

The basic embedding theorems for the Sobolev spaces S1,p have a form similar to
those in the Euclidean case. The exponent governing the transition to the super-
critical case is the homogeneous dimension of the underlying space. We present
statements of the Sobolev embedding theorems for maps in S1,p(H). For later pur-
poses we also discuss the extension of the geometric Sobolev inequality from S1,1
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to the space BV , local inequalities of Sobolev–Poincaré type, and the compact-
ness of the embedding BV ⊂ L1 on well-behaved domains. Best constants for the
Sobolev inequalities in the Heisenberg group and more general Carnot groups are
discussed in Chapter 9.

Theorem 5.16 (Sobolev embedding theorem in the Heisenberg group). S1,p(H) ↪→
L

4p
4−p (H) for 1 ≤ p < 4 and S1,p(H) ↪→ C0,1−4/p(H) for p > 4.

More precisely, there exist constants Cp(H) <∞ for each p �= 4 so that

||f ||4p/(4−p) ≤ Cp(H)||∇0f ||p
for all f ∈ S1,p(H) if 1 ≤ p < 4, while if p > 4 and f ∈ S1,p(H), then there exists
a representative f̃ of f satisfying the Hölder condition

|f̃(x) − f̃(y)| ≤ Cp(H)d(x, y)1−4/p||∇0f ||p
for all x, y ∈ H. In the borderline case (p = 4), we have an embedding theorem for
an exponentially integrable class (Moser–Trudinger inequality). See Chapter 9.

5.3.1 The geometric case
(Sobolev–Gagliardo–Nirenberg inequality)

We begin by proving Theorem 5.16 in the geometric case p = 1. We need some
preliminary background results. Let B(o, r) ⊂ H be a metric ball,2 and let q > 1.
Recall that the weak Lq space Lq,∗(B(o, r)) consists of all measurable functions
f : B(o, r)→ R for which the quantity

||f ||qLq,∗(B(o,r)) = sup
λ>0

λq |{x ∈ B(o, r) | |f(x)| > λ}|

is finite. (We have denoted here by |A| the Haar measure of A ⊂ H.) We also need
the Hardy–Littlewood maximal operator with respect to Carnot–Carathéodory
metric balls,

Mf(x) = sup
r>0

1
|B(x, r)|

∫
B(x,r)

|f(y)| dy.

Thanks to the fact that H, equipped with the Carnot–Carathéodory metric d, is
homogeneous in the sense of [71],3 we know that f �→ Mf satisfies a weak-type
(1, 1) estimate: there exists C > 0 such that

|{x ∈ H : |Mf(x)| > λ}| ≤ C

λ
||f ||L1(H) (5.14)

for all f ∈ L1(H) and λ > 0.
We begin with the weak-type Sobolev–Gagliardo–Nirenberg inequality.

2By homogeneity we could simply assume r = 1 and then rescale the resulting estimates. Simi-
larly, by translation invariance the same estimates hold for balls centered at any point in H.
3In modern terminology, (H, d) is a doubling metric space. This follows from the Ahlfors 4-
regularity of the metric measure space (H, d,H4). See [136], Chapters 1–3, for more details.
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Proposition 5.17. There exists a constant C > 0, such that∣∣{x ∈ B(o, r) : |f(x)| > λ}
∣∣ ≤ Cλ− 4

3 ||∇0f ||4/3
L1(B(o,r))

for all Lipschitz functions f compactly supported in B(o, r), and for all λ > 0.

Proof. Our starting point is the representation formula (5.13). The equivalence of
the Carnot–Carathéodory metric d and dH and the estimate |∇0N | ≤ 1 yield

|f(x)| ≤ C

∫
H

|∇0f(y)|d(x, y)−3 dy. (5.15)

In view of (5.15), we see that in order to show the theorem we need only prove
that the fractional integration operator

g → I1g(x) =
∫

H

|g(y)|d(x, y)−3 dy,

satisfies a weak-type (1, 4/3) estimate, i.e., there exists a positive constant C such
that ∣∣∣∣{x ∈ B(o, r) : |I1g(x)| > λ}

∣∣∣∣ ≤ Cλ− 4
3 ||g||

4
3
L1(H) (5.16)

for all g ∈ L1(H) with compact support in B(o, r). Following the argument in
[54, Theorem 2.1] or [136, Chapter 3] we set I1g = 0 outside B(o, r) and let
ε = ε(λ, ||g||L1(H)) > 0 be sufficiently small (to be chosen later). We write

I1g = I1
1g + I2

1g,

where
I1
1g(x) =

∫
B(x,ε)

|g(y)|d(x, y)−3 dy

and
I2
1 g(x) =

∫
B(o,1)\B(x,ε)

|g(y)|d(x, y)−3 dy.

A simple dyadic decomposition argument yields the existence of a constant C1 > 0
such that

I1
1 (g) ≤

∞∑
k=0

(2−k−1ε)−3

∫
B(x,2−kε)\B(x,2−k−1ε)

|g(y)| dy

≤ C1

∞∑
k=0

2−kε

(
1

|B(x, 2−kε)|

∫
B(x,2−kε)

|g(y)| dy

)
≤ 2C1εMg(x).

(5.17)

We also have the trivial estimate

I2
1 g(x) ≤ ε−3||g||L1(H). (5.18)
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Next, using (5.14) and (5.17), we have∣∣∣∣{I1g > λ}
∣∣∣∣ ≤ ∣∣∣∣{I1

1g >
λ

2
}
∣∣∣∣+ ∣∣∣∣{I2

1g >
λ

2
}
∣∣∣∣

≤
∣∣∣∣{Mg >

λ

2C1ε
}
∣∣∣∣+ ∣∣∣∣{I2

1g >
λ

2
}
∣∣∣∣

≤ 2C1ε

λ
||g||L1(H) +

∣∣∣∣{I2
1g >

λ

2
}
∣∣∣∣.

To estimate the second term on the right-hand side it suffices to assume

λ > 2r−3||g||L1(H). (5.19)

Indeed, if λ ≤ 2r−3||g||L1(H), then trivially |B(o, r)| ≤ Cλ−4/3||g||4/3
L1(H) and we

obtain the desired estimate |{I1g > λ}| ≤ |B(o, r)| ≤ Cλ−4/3||g||4/3
L1(H). Thus

assume that (5.19) holds, and choose ε = (λ−12||g||L1(H))1/3 < r. By (5.18),
I2
1g(x) < λ/2 whence |{I2

1g > λ
2 }| = 0 and∣∣∣∣{I1g > λ}

∣∣∣∣ ≤ 2C1

λ
||g||L1(H)(λ−12||g||L1)1/3 ≤ Cλ−4/3||g||4/3

L1 .

The proof is concluded. �

An elegant truncation argument due to Maz’ya allows us to pass from the
weak-type inequality to the corresponding strong-type inequality.

Proposition 5.18. There exists a constant C1(H) <∞ so that

||f ||4/3 ≤ C1(H)||∇0f ||1 (5.20)

for all f ∈ S1,1(H).

Proof. It suffices to prove the estimate for nonnegative, smooth, compactly sup-
ported functions f on H. Let f be such a function, choose R > 0 so that B(o, R)
contains the support of f , and write

Aj = {x ∈ B(o, R) : 2j < u(x) ≤ 2j+1}, j ∈ Z.

Writing
fj = max{0, min{f − 2j , 2j}},

we observe that∇0fj is supported on Aj . By the weak-type estimate in Proposition
5.17 and Theorem 5.15,

|Aj+1| ≤ |{fj > 2j−1}|
≤ |{I1(|∇0fj|) > C−12j−1

≤ C

(
2−j

∫
Aj

|∇0fj |
)4/3

= C

(
2−j

∫
Aj

|∇0f |
)4/3
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(note that fj is Lipschitz). Thus∫
H

|f |4/3 =
∑
j∈Z

∫
Aj

|f |4/3 ≤
∑
j∈Z

(2j+1)4/3|Aj |

≤ C
∑
j∈Z

(∫
Aj

|∇0f |
)4/3

≤ C

⎛⎝∑
j∈Z

∫
Aj

|∇0f |

⎞⎠4/3

= C

(∫
H

|∇0f |
)4/3

.

The proof is complete. �

The estimate in Proposition 5.18 holds more generally for elements of the
space BV . Approximating f ∈ BV by C∞

0 functions as in Lemma 5.3 leads to

Proposition 5.19. There exists C > 0 so that ||f ||4/3 ≤ C VarH(f) for all f ∈
BV (H).

5.3.2 The subcritical case

The subcritical case 1 ≤ p < 4 of Theorem 5.16 can be derived from the geometric
case p = 1 by an elementary trick. Again, note that by Lemma 5.3 it suffices to
prove the estimate for f ∈ C∞

0 . We apply the geometric inequality (5.20) to a
suitable power of f , i.e., g = |f |s, to obtain(∫

H

|f |4s/3

)3/4

≤ C1(H)s
∫

H

|f |s−1|∇0f |

≤ C1(H)s
(∫

H

|f |(s−1)q

)1/q

||∇0f ||p,

where q denotes the Hölder conjugate of p. With s = (3p)/(4− p) we have

(s− 1)q =
4s

3
=

4p

4− p

and
||f ||4p/(4−p) ≤ sC1(H)||∇0f ||p,

which proves the estimate with

Cp(H) ≤ 3p

4− p
C1(H). (5.21)
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5.3.3 The supercritical case

We prove the following theorem:

Theorem 5.20. If p > 4, then every element of S1,p(H) has a representative in
C0,1−4/p(H).

To prove this result we will introduce two useful spaces: A function u ∈
L1

loc(H) is in the Morrey space L1,λ(H) if

sup
B(x,R)

R−λ

∫
B(x,R)

|u(y)| dy <∞. (5.22)

Similarly, a function u ∈ L1
loc(H) is in the Campanato space L1,λ(H) if

[u]1,λ = sup
B(x,R)

R−λ

∫
B(x,R)

|u(y)− uB(x,R)| dy <∞. (5.23)

Using the Poincaré inequality (5.38) and Hölder’s inequality, we immediately have

Lemma 5.21. If u ∈ S1,1
loc (H) and |∇0u| ∈ L1,4−λ(H), then u ∈ L1,5−λ(H). If

u ∈ S1,p
loc (H) with p > 4, then u ∈ L1,5− 4

p (H).

In view of the previous lemma, Theorem 5.20 is an immediate corollary of

Proposition 5.22. If 0 < λ < 1, then every element of L1,5−λ(H) has a represen-
tative in C0,1−λ(H).

Proof. Set α = 5− λ. For 0 < r < R we estimate

r4|uB(x,R) − uB(x,r)| = C

∫
B(x,r)

|uB(x,R) − uB(x,r)|

≤ C

[ ∫
B(x,R)

|u(y)− uB(x,R)|dy +
∫

B(x,r)

|u(y)− uB(x,r)|dy

]
≤ CRα[u]1,α,

(5.24)

for some C > 0 not depending on λ.
Choose R > 0 and set Ri = R2−i, i ∈ N. From (5.24), and iterating from i

to j via a telescoping sum argument, we obtain

|uB(x,Ri) − uB(x,Rj)| ≤ C[u]1,αRα−4
i for i < j. (5.25)

In view of (5.25), (uB(x,Ri)) is a Cauchy sequence. Hence ũ(x) := limi→∞ uB(x,Ri)

exists. By Lebesgue’s theorem, ũ is a (Lebesgue) representative of u. Letting j →
∞ in (5.25) yields

|uB(x,Ri) − ũ(x)| ≤ C[u]1,αRα−4
i . (5.26)
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This estimate implies that uB(x,Ri) converges uniformly to ũ(x), hence ũ is con-
tinuous. To prove Hölder continuity we consider x, y ∈ H and set R = d(x, y).
Applying (5.26) again we have

|ũ(x)− ũ(y)| ≤ |ũ(x) − uB(x,2R)|+ |uB(x,2R) − uB(y,2R)|+ |ũ(y)− uB(y,2R)|
≤ CRα−4 + |uB(x,2R) − uB(y,2R)|.

To complete the proof, we observe that an argument similar to the one employed in
the proof of (5.24) yields the desired estimate for the term |uB(x,2R)−uB(y,2R)|. �

5.3.4 Compactness of the embedding BV ⊂ L1 on John domains

We recall the definition of a John domain. A bounded, connected open set Ω in a
metric space (X, d) is a John domain if there exists a point x0 ∈ Ω (the center of
the domain) and a constant δ > 0 such that for any point x ∈ Ω there exists an
arc length parameterized rectifiable path γ : [0, L] → Ω so that (i) γ(0) = x and
γ(L) = x0, and (ii) d(γ(t), X \ Ω) ≥ δt.

In Euclidean spaces every Lipschitz domain is a John domain. In the Heisen-
berg group it is considerably more difficult to verify the John property.

Lemma 5.23. Both Carnot–Carathéodory balls B(x, R) and gauge balls BH(y, R) =
{x ∈ H : dH(x, y) < R} are John domains.

Theorem 5.24 (Garofalo–Nhieu). Let Ω ⊂ H be a John domain. The space BV (Ω)
is compactly embedded in L1(Ω).

The John property enters into play in the proof of Theorem 5.24 in a crucial
way in the following two lemmas. The first is a semi-global version of the Sobolev–
Poincaré embedding of BV in L4/3 from the previous section.

Lemma 5.25. Let Ω ⊂ H be a John domain. There exists a constant C1,Ω > 0 so
that (

1
|Ω|

∫
Ω

|u− uΩ|4/3

)3/4

≤ C1,Ω
diam(Ω)
|Ω| VarH(u, Ω)

for all u ∈ BV (Ω). Here we have denoted by uΩ the average of the function u over
the domain Ω.

For simplicity, in the following we will use the same notation CP to denote
any constant for which the Poincaré–Sobolev and the Poincaré inequality both
hold.

The second lemma is a relative isoperimetric inequality for John domains.
We state it only in the case of metric balls.

Lemma 5.26. Let B ⊂ H be a metric ball. Then there exists a constant C > 0 so
that

min(|A|, |B \A|)3/4 ≤ CPH(A, B)

for any measurable set A ⊂ B.
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Proof of Theorem 5.24. In view of Lemma 5.3 it is sufficient to prove that the set
S = {u ∈ BV (Ω) ∩ C∞(Ω) : ||u||BV ≤ 1} is totally bounded. Let ε > 0 and let
Ωε ⊂ Ω be an open set such that

CP
diam(Ω)
|Ω|1/4

|Ω \ Ωε|1/4 +
|Ω \ Ωε|
|Ω| <

ε

6
, (5.27)

where CP is a Poincaré–Sobolev constant as in Lemma 5.25. For any u ∈ S, using
Lemma 5.25, we have the estimate∫

Ω\Ωε

|u| ≤
∫

Ω\Ωε

|u− uΩ|+ |uΩ||Ω \ Ωε|

≤
(∫

Ω

|u − uΩ|4/3

)3/4

|Ω \ Ωε|1/4 +
|Ω \ Ωε|
|Ω|

∫
Ω

|u|

≤ CP
diam(Ω)
|Ω|1/4

|Ω \ Ωε|1/4 VarH(u, Ω) +
|Ω \ Ωε|
|Ω|

∫
Ω

|u|.

(5.28)

Since u ∈ S, (5.27) and (5.28) yield∫
Ω\Ωε

|u| < ε

6
. (5.29)

Since Ωε is precompact we may use a Vitali-type covering argument. There exists
M positive so that for any sufficiently small δ > 0 one can construct a family of
balls {Bj}, j = 1, . . . , N with the following properties: (i) the diameter of each Bj

is δε, (ii) Ωε ⊂ ∪N
j=1Bj ⊂ Ω, (iii)

∑N
j=1 χCP Bj ≤MχΩ. We choose δ > 0 so that

2CP Mδ <
1
3
. (5.30)

Next, we consider any function v ∈ BV (Ω) ∩ C∞(Ω) and estimate

∫
Ωε

|v| ≤
N∑

j=1

∫
Bj

|v| dx ≤
N∑

j=1

∫
Bj

|v − vBj | dx + |Bj ||vBj |

≤
N∑

j=1

(
CP δε

∫
CP Bj

|∇0v| dx +

∣∣∣∣∣
∫

Bj

v dx

∣∣∣∣∣
)

≤ CP Mδε VarH(v, Ω) +
N∑

j=1

∣∣∣∣∣
∫

Bj

v dx

∣∣∣∣∣
≤ ε

6
VarH(v, Ω) +

N∑
j=1

∣∣∣∣∣
∫

Bj

v dx

∣∣∣∣∣ .

(5.31)
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At this point we define a compact linear operator T : BV (Ω)→ RN as follows:

T (u) =
(∫

B1

u dx, . . . ,

∫
BN

u dx

)
.

By compactness there exist functions u1, . . . , uM ∈ S so that for any u ∈ S,

|Tu− Tuj| =
N∑

k=1

∫
Bk

|u− uj| dx <
ε

3
(5.32)

for some j ∈ {1, . . . , M}. Moreover,

||u− uj ||L1(Ω) ≤
∫

Ωε

|u− uj |dx +
∫

Ω\Ωε

|u− uj |dx = I + II. (5.33)

From (5.31) and (5.32) we have

I ≤ ε

6
VarH(u− uj) +

N∑
k=1

∣∣∣∣∫
Bk

(u− uj) dx

∣∣∣∣
≤ ε

6
(||u||BV (Ω) + ||uj ||BV (Ω)) +

ε

3
≤ 2ε

3
.

(5.34)

For the second term in (5.33) we use (5.29) to estimate

II ≤
∫

Ω\Ωε

|u|dx +
∫

Ω\Ωε

|uj|dx ≤ ε

3
. (5.35)

From (5.33), (5.34) and (5.35) we obtain that S is totally bounded. �

5.4 Further results: Sobolev and Sobolev–Poincaré

embedding theorems and analysis in metric spaces

Sobolev embedding theorem in Carnot groups. Theorem 5.16 holds in general
Carnot groups in the following form:

Theorem 5.27 (Sobolev embedding theorem for Carnot groups). Let G be a Carnot
group of homogeneous dimension Q. Then S1,p(H) ↪→ L

Qp
Q−p (H) for 1 ≤ p < Q

and S1,p(H) ↪→ C0,1−Q/p(H) for p > Q.

The proof which we gave in the case of H works in general as well. The only
difference comes at the beginning of the proof: an explicit fundamental solution for
the Laplacian L is not known in arbitrary groups. However, Folland [99] showed
the existence of such a fundamental solution Γ and the associated estimates

|Γ(x)| ≤ C1d(x, o)2−Q
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and
|∇0Γ(x)| ≤ C2d(x, o)1−Q

for appropriate constants C1, C2 > 0, where d denotes the Carnot–Carathéodory
distance in G and Q is the homogeneous dimension. Then the rest of the proof
proceeds without change starting from (5.15).

Sobolev–Poincaré inequalities and analysis on metric measure spaces. The Sobo-
lev embedding theorem 5.16 refers to functions defined on all of H. It is easy to
see that the estimate ||f ||4/3,B ≤ C||∇0f ||1,B cannot hold for arbitrary smooth
functions f defined only on a ball B ⊂ H (consider the case when f is constant).
An appropriate local analog for Theorem 5.18 is the Poincaré inequality(

1
|C−1B|

∫
C−1B

|f(x)− fB|4/3 dx

)3/4

≤ C rad(B)
(

1
|B|

∫
B

|∇0f(x)| dx

)
(5.36)

for functions f ∈ S1,1(B) defined on a ball B. Here fB = |B|−1
∫

B
f denotes the

average value of f on B, and C−1B denotes the ball concentric with B whose
radius is C−1 times that of B. The constant C is independent of both f and B.

We omit the proof of (5.36) here, but observe that it also follows from the
weak (1, 4/3) estimate for the fractional integral operator I1, together with the
following modified representation estimate:

|f(x)− fB| ≤ C

∫
B

|∇0f(y)|d(x, y)−3 dy (5.37)

valid for x ∈ C−1B and an arbitrary f ∈ C∞(B). See [180] or [136] for further
details.

Hölder’s inequality applied to both sides of (5.36) yields the following family
of Poincaré-type inequalities:

1
|C−1B|

∫
C−1B

|f(x) − fB| dx ≤ C rad(B)
(

1
|B|

∫
B

|∇0f(x)|p dx

)1/p

, (5.38)

1 ≤ p <∞. Inequality (5.38) is the so-called (1, p)-Poincaré inequality which plays
a key role in the abstract development of first-order calculus on metric measure
spaces. See [136] and the notes to this chapter for further discussion.

Horizontal polar coordinates in H. The Heisenberg group H admits a system of
horizontal polar coordinates, whose features parallel in many respects the classical
polar coordinate system in Euclidean space. This family of curves can be used to
give an alternate derivation of the representation formula (5.13).

Theorem 5.28. There exists a family of curves Γ = {γy} in H, parameterized by
points in the twice-punctured Korányi sphere S := {y ∈ H : ||y||H = 1, y3 �= 0},
with the following properties:
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1. each curve γy : (0,∞)→ H is horizontal and satisfies γy(1) = y;
2. the curves γy are adapted to the Korányi norm: ||γy(s)||H = s;
3.

⋃
y∈S γy = {x ∈ H : x3 �= 0};

4. there exists a Borel measure dλ on S so that for all f ∈ L1(H) ∩C0(H), the
following integration formula holds true:∫

H

f(x) dx =
∫

S

∫ ∞

0

f(γy(s)) s3 ds dλ(y). (5.39)

Remark 5.29. If we parameterize S as in Example 5.12, we can write the measure
dλ in the explicit form dλ = dϕdθ. (Note that this differs from the perimeter
measure PH which we computed in Example 5.12.)

Note that the simpler polar coordinate integration formula∫
H

f(x) dx =
∫

S

∫ ∞

0

f(δs(y)) s3 ds dλ(y) (5.40)

also holds for f ∈ L1(H)∩C0(H). Indeed, the change of variables from {s, ϕ, θ} to
{x1, x2, x3} has Jacobian determinant equal to s3. However, (5.40) cannot be used
to establish the representation formula (5.12) since the radial curves s �→ γ̃s(y) =
δs(y) are not horizontal (note that ∂

∂s γ̃s(y) = y1X1 + y2X2 + 2sy3X3).
The curves γy which figure in Theorem 5.28 were already identified in equa-

tion (4.25) as the Legendrian foliation of the Heisenberg cones Pα. For the reader’s
convenience, we restate the definition here:

γy(s) =
(

swe
4 i

y3
|w|2 log s

,
1
4
s2y3

)
, y = (w, y3) ∈ S. (5.41)

Part 1 of Theorem 5.28 is a restatement of the fact that these curves are the
Legendrian foliation of Pα, part 2 is an easy exercise, and part 3 follows from
the fact that H \ {y3 = 0} = ∪α∈RPα. Part 4 follows from a computation of the
Jacobian determinant of the change of variables

Φ :

⎧⎪⎨⎪⎩
x1 = s

√
cosϕ cos(θ + 4 tanϕ log s),

x2 = s
√

cosϕ sin(θ + 4 tanϕ log s),
x3 = s2 sin ϕ

from {s, ϕ, θ} to {x1, x2, x3}. Indeed, JΦ ≡ s3. An easy computation gives

∂

∂s
γy(s)

∣∣∣∣
γs(y)=x

=
1
s
(x1 − 4αx2)X1 +

1
s
(x2 + 4αx1)X2

=
1

s3 cosϕ

(
(x1|z|2 − 4x2x3)X1 + (x2|z|2 + 4x1x3)X2

)
,
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where we used again the fact that |z| = s
√

cosϕ. For each y ∈ S, since cosϕ =
(1 + α2)−1/2 is constant along γy, we find

− cosϕf(o) =
∫ ∞

0

d

ds
f(γy(s)) cosϕds

=
∫ ∞

0

〈∇0f(γy(s)),
∂

∂s
γy(s)〉1 cosϕds

=
∫ ∞

0

(X1f)(γy(s))
x1|z|2 − 4x2x3

s3
+ (X2f)(γy(s))

x2|z|2 + 4x1x3

s3
ds.

Integrating over −π/2 < ϕ < π/2 and 0 ≤ θ ≤ 2π and using (5.39) gives

−4πf(o) =
∫

H

X1f(x)
x1|z|2 − 4x2x3

||x||6
H

+ X2f(x)
x2|z|2 + 4x1x3

||x||6
H

dx. (5.42)

Note that the vector field

x1|z|2 − 4x2x3

||x||3
H

X1 +
x2|z|2 + 4x1x3

||x||3
H

X2

is precisely the horizontal gradient of the Korányi norm. The identity (5.42) may
thus be rewritten in the form

−4πf(o) =
∫

H

〈∇0f,∇0N〉1N−3,

coinciding with (5.13).

5.5 Notes

Notes for Section 5.1. The classical notion of perimeter was introduced by De
Giorgi [84], see also Giusti [125]. A related notion in the sub-Riemannian setting
of the first Heisenberg group was first introduced by Pansu in [217]. The definitions
of perimeter (a la De Giorgi) and BV spaces presented here have been introduced
independently by Capogna, Danielli and Garofalo [53], by Franchi, Gallot and
Wheeden [104] and by Biroli and Mosco [35]. The definitions are meaningful in
the setting of Carnot–Carathéodory spaces associated to families of Hörmander
vector fields and even in more general spaces.

The approximation of horizontal perimeter via perimeters on the Riemannian
approximants in Section 5.1.1 is based on the work of Korányi and Reimann [170].

Franchi, Serapioni and Serra-Cassano [106], [107], [108], [109] have used their
notion of C1

H
-regularity to develop a theory of sub-Riemannian rectifiability for
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Cacciopoli sets. According to the point of view taken in these papers, a set E ⊂ H is
a codimension 1 rectifiable set if there exists a sequence of C1

H
-regular hypersurfaces

{Sj} (see Section 4.5 for the definition) so that

H3
H(E \

⋃
j

Sj) = 0.

The notion of horizontal normal may be extended in a generalized sense to any
Cacciopoli set E ⊂ H: we call νH a generalized outer normal to E if∫

E

X1φ1 + X2φ2 =
∫

∂E

〈νH , φ〉1 dµ

for any φ = (φ1, φ2) ∈ C∞
0 (H, R2). The existence of such νH follows in a standard

way from the Riesz representation theorem. Transposing the Euclidean notion to
the Heisenberg context, one next defines the reduced boundary ∂∗E as the collection
of points x ∈ ∂E for which µ(B(x, r)) > 0 for all r > 0 and

lim
r→0

1
µ(B(x, r))

∫
B(x,r)

νH dµ

exists and has norm 1. Using the Implicit Function Theorem discussed in Section
4.5 and a version of the Whitney extension theorem, Franchi, Serapioni and Serra-
Cassano show the following analog of the celebrated structure theorem of de Giorgi
for sets of finite perimeter:

Theorem 5.30. If E ⊂ H is a Caccioppoli set, then the reduced boundary ∂∗E is
rectifiable.

In addition, they provide a wealth of additional geometric information con-
cerning the reduced boundary. For instance, a key ingredient in the proof is a
blow-up argument which identifies suitable generalized tangent spaces at points of
the reduced boundary with vertical half-planes. Quite recently, Theorem 5.30 has
been used by Cheeger and Kleiner to prove the bi-Lipschitz nonembeddability of
H in L1 [61].

In [109], the authors adapt their machinery in Hn to deal with intrinsic
submanifolds of any dimension and codimension in general Carnot groups and
create an analog of Federer–Fleming currents in this setting. Recently, V. Magnani
[188] has provided a different approach to this problem.

Notes for Section 5.2. Theorem 5.15 is due to Folland [98], and extends to higher-
dimensional Heisenberg groups and more general groups of Heisenberg type. (See
the notes to Chapter 2.) The proof which we give via the horizontal Green’s
formula is due to Korányi and Reimann [170]. The alternate derivation which we
present in Section 5.4, via the horizontal polar coordinate system in H, is in the
spirit of modern analysis on metric spaces, where representation formulas and
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estimates, Poincaré inequalities, etc. are derived abstractly from the existence of
rich families of rectifiable curves in metric spaces. For more information, see [136]
or [240]. The horizontal polar coordinate system in H was introduced by Korányi
and Reimann [170]; the general theory of Carnot groups supporting such a polar
coordinate system was studied by Balogh and Tyson [26].

In general Carnot groups no explicit formula for the corresponding funda-
mental solution of the Laplacian is known, however, Folland [99] established the
existence and basic estimates. For explicit integral representations of the funda-
mental solution to the Laplacian on groups of step two, see Beals, Gaveau and
Greiner [29]. For additional information, see the notes to Chapter 2.

Notes for Section 5.3. The Sobolev embedding theorems (Section 5.3) are standard
tools in PDE and analysis. See [136], [132], [259] for various proofs and discussion.
In the context of vector fields satisfying the Hörmander condition, such embedding
theorems were obtained in the p > 1 case independently by Lu in [180] and [181]
and Capogna-Danielli-Garofalo [52]. Our treatment is taken from [53], but see also
Haj
lasz and Koskela [132], which contains a much more complete and detailed list
of references for work in this area. The subcritical Sobolev embedding theorem
for S1,p, 1 < p < 4, can also be derived as a corollary of a suitable boundedness
theorem for the fractional integration operator I1 on Lp. Indeed, I1 satisfies a
strong-type (p, 4p/(4 − p)) inequality; the proof is similar to that presented here
in the geometric case. This line of argument originates in work of Hedberg; see [3].
The trick to derive the strong-type Sobolev inequality from the corresponding weak
type estimate goes back to work of Maz’ya. See also [136, Chapter 3]. An extensive
theory of representation formulas and embedding theorems in sub-Riemannian
spaces has been developed by Lu and Wheeden; a partial list of references includes
[179, 182–186].

The Poincaré inequality for vector fields satisfying the Hörmander condition
is due to Jerison [155]. Varopoulos [254] has given an elegant, purely elementary,
proof in the context of Carnot groups, see also Proposition 11.17 in [132]. Sobolev–
Poincaré inequalities in this setting were further explored in the papers [54] and
[53]. For a new proof of the Poincaré inequality for Hörmander vector fields, see
Lanconelli and Morbidelli [174], and for a striking generalization to vector fields
with minimal regularity assumptions, see Montanari and Morbidelli [198]. Ax-
iomatic formulations of the Poincaré inequality (5.38) are the starting point for a
rich theory of first-order analysis and Sobolev spaces on metric measure spaces.
This rapidly expanding area dates back to the 1998 paper of Heinonen and Koskela
[141]. See [143], [136] or the forthcoming monograph [142].

The Campanato spaces introduced in the proof of the supercritical case and
the proof of the subelliptic analogue of Campanato’s theorem (5.22) follow closely
the Euclidean counterpart [49, Theorem 5.22] (see also [121, Chapter 3]). With
minimal modifications, all the proofs in this section extend to spaces associated
to systems of smooth vector fields satisfying Hörmander’s finite rank condition.



5.5. Notes 115

Notes for Subsection 5.3.4. Theorem 5.24 is due to Garofalo and Nhieu [116] and
is a cornerstone of the existence theory for isoperimetric profiles which we describe
in Chapter 8.

The geometry of the base domain plays a crucial role in the development of
Sobolev–Poincaré type estimates. In [155], Jerison showed that CC balls satisfy
a chaining property known as the Boman chain condition, which arose in unpub-
lished work of Boman and echoes a Whitney decomposition argument due to Kohn
[164]. After Jerison the Boman chain condition was used by numerous authors to
prove successively more general versions of the Sobolev–Poincaré inequality, to
the extent that domains satisfying this condition are sometimes referred to as PS
(Poincaré–Sobolev) domains. For a detailed account of the developments in this
field, an excellent reference is the monograph of Haj
lasz and Koskela [132]. Despite
the obvious relevance of this geometric property, until recently, even in the simple
setting of the Heisenberg group, the only known examples of sub-Riemannian PS
domains were CC balls and finite unions of CC balls. The equivalence between
John and PS domains was shown in [116] in the Carnot–Carathéodory context,
and in [46] in the general setting of doubling metric spaces. The importance of
this result lies in the fact that it allows the invocation of results from geometric
function theory to construct large classes of John domains. For instance, since any
NTA (non-tangentially accessible), uniform or (ε, δ) domain is John, the results
from [55], [208], [209] and [57] lead to several examples of John domains. The most
general result in this direction is due to Monti and Morbidelli [208] who proved
that every C1,1 domain in any Carnot group of step two is a John domain.



Chapter 6

Geometric Measure Theory and
Geometric Function Theory

In this chapter we introduce some basic notions which are crucial for the develop-
ment of sub-Riemannian geometric measure theory. Our treatment here is brief,
focusing only on those aspects most relevant for the isoperimetric problem. We
review and discuss Pansu’s formulation of the Rademacher differentiation theorem
for Lipschitz functions on the Heisenberg group, and the basic area and co-area
formulas. As an application of the former we sketch the equivalence of horizontal
perimeter and Minkowski 3-content in H. In Section 6.4 we present two derivations
of first variation formulas for the horizontal perimeter: first, away from the char-
acteristic locus, and second, across the characteristic locus. In the final section,
we give a rough outline of Mostow’s rigidity theorem for cocompact lattices in
the complex hyperbolic space H2

C
, emphasizing the appearing of sub-Riemannian

geometric function theory in the asymptotic analysis of boundary maps on the
sphere at infinity.

Sub-Riemannian geometric measure theory is a rapidly expanding discipline.
In this chapter, we have omitted any substantive discussion of numerous important
recent developments, such as the investigations of rectifiability by Ambrosio–Kirch-
heim and Franchi–Serapioni–Serra-Cassano. Our focus throughout is on those top-
ics and results most relevant for submanifold geometry and the sub-Riemannian
isoperimetric problem.

6.1 Area and co-area formulas

The area and co-area formulas are fundamental tools in classical geometric measure
theory. These integral formulas have sub-Riemannian analogs and indeed can be
generalized to much more general metric spaces. To begin, we remind the reader
of the classical area formula (see [95] Section 3.2.1):
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Theorem 6.1 (Euclidean area formula). Let A ⊂ Rn be a measurable set, let f :
A→ Rm be a Lipschitz map, and let m ≥ n. Then,∫

A

J(f)(x) dHn(x) =
∫

Rm

N(f, A, y) dHm(y)

where J(f) is the Jacobian of f , Hn is the n-dimensional Hausdorff measure, and

N(f, A, y) = card{x ∈ A : f(x) = y}.

To generalize Theorem 6.1 to the setting of Carnot groups, we require a notion
of horizontal Jacobian for Lipschitz maps between Carnot groups. We note that
while the co-area formula holds for arbitrary Carnot groups, the reader focused
on understanding the Heisenberg group may wish to assume that Gi ∈ {H, Rn} in
what follows. We begin with a definition of a metric notion of the Jacobian.

Definition 6.2. Let G1, G2 be Carnot groups equipped with sub-Riemannian met-
rics d1, d2 respectively. Let A ⊂ G1 be an HQ measurable set, where Q is the
homogeneous dimension of G1, and let f : A → G2 be Lipschitz with respect to
the sub-Riemannian metrics on G1 and G2. The metric Jacobian of f at x ∈ A is
defined to be

Jm
f (x) = lim inf

r→0

HQ
d2

(f(BA(x, r)))

HQ
d1

(BA(x, r))

where BA(x, r) = {y ∈ A|d1(x, y) ≤ r}.

With this notion we easily recover the following standard integration formula:∫
A

Jm
f (x)dHQ

d1
(x) = HQ

d2
(f(A)). (6.1)

We note that (6.1) trivially yields a property analogous to the Sard theorem,
namely, if Jm

f = 0 a.e. in A, then HQ
d2

(f(A)) = 0.
A key ingredient of the proof of the sub-Riemannian area formula is an

analysis of the set A0 = {x ∈ A : Jm
f (x) = 0}. To better understand this set, we

introduce Pansu’s sub-Riemannian analog for the differential.

Definition 6.3. Let (G1, d1) and (G2, d2) be Carnot groups with homogeneous
structures determined by the dilations δi

s, i = 1, 2. Suppose that f : G1 → G2 is a
measurable map. Then the Pansu differential of f at x is the map

D0f(x) : G1 → G2

defined by
D0f(x)(y) = lim

s→0
δ2
1/sf(x)−1f(xδ1

sy)

whenever the limit exists.



6.1. Area and co-area formulas 119

For a Carnot group G with sub-Riemannian metric dG, we may recognize
the metric tangent space TxG at a point x ∈ G as the pointed Gromov–Hausdorff
limit of the sequence of metric spaces (x−1G, λdG) as λ → ∞. As G is equipped
with a family of homotheties (δs),

(x−1
G, sdG) = (x−1

G, dG ◦ (δs × δs)),

whence (x−1G, dG) and (x−1G, sdG) are isometric via the map δs. Thus the se-
quence above is constant and TxG is isometric to G. From this point of view, we
can think of D0f as a map between tangent spaces. Alternatively, by conjugating
with the exponential map, we can view D0f as a map between the Lie algebras:
(D0f)∗ : g1 → g2.

Pansu’s extension of the Rademacher differentiability theorem to Carnot
groups reads as follows:

Theorem 6.4 (Pansu–Rademacher differentiation theorem). Let G1, G2 be Carnot
groups and let A ⊂ G1 be a measurable set. Let f : A ⊂ G1 → G2 be Lipschitz
with respect to the sub-Riemannian metrics on G1 and G2. Then, for a.e. x ∈ A,
D0f(x) exists and is a horizontal linear map (i.e., a graded homogeneous group
homomorphism, see Definition 2.1) between G1 and G2.

In Section 6.2, we prove a special case of this theorem when G1 = H and
G2 = R.
Example 6.5. Let G1 = G2 = H. The Pansu differential D0f of a Lipschitz map
f = (f1, f2, f3) : H → H, acting on the Lie algebra h and expressed in terms of
the standard basis X1, X2, X3, takes the form⎛⎝X1f1 X1f2 0

X2f1 X2f2 0
0 0 X1f1X2f2 −X1f2X2f1

⎞⎠ .

The next lemma establishes a link between D0f and Jm
f .

Lemma 6.6. Let G1 and G2 be Carnot groups with homogeneous dimensions Q =
Q1 and Q′ = Q2 respectively, with Q′ ≥ Q, and let f : A ⊂ G1 → G2 be Lipschitz.
If D0f(x) is not injective for some x ∈ A, then Jm

f (x) = 0.

Proof. We sketch the main ideas in the proof in the case A = G1. Let P =
D0f(x)(G1) be the image of the entire group under the differential mapping. Since
D0f is not injective at x, the Hausdorff dimension of P is less than or equal to
Q− 1. Moreover, as the Pansu differential exists, we have

d2(D0f(x)(y), δ2
1/sf(x)−1f(xδ1

sy)) = o(1)

as s→ 0. Using left invariance of the metric and the dilation property (2.20), we
find

d2(D0f(x)(y), δ2
1/sf(x)−1f(xδ1

sy)) =
1
s
d2(f(x)δ2

sD0f(x)(y), f(xδ1
sy))
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so
d2(f(x)δ2

sD0f(x)(y), f(xδ1
sy)) = o(s).

Since D0f(x)(δ1
sy) = δ2

sD0f(x)(y), we may rewrite this as

d2(f(x)D0f(x)(y), f(xy)) = o(d1(x, y)).

Consequently, if B(x, r) ⊂ G1 is the metric ball of radius r centered at x, then
its image under f lies in an o(r) neighborhood N of f(x)D0f(x)(B(o, r)) where
o ∈ G1 is the identity element. Since f is Lipschitz,

HQ
d2

(f(A)) ≤ (Lip f)QHQ
d1

(A) (6.2)

for all measurable A ⊂ G1, where

Lip f(x) = lim sup
r→0

sup{d2(f(x), f(y)) : d1(x, y) ≤ r}
r

denotes the pointwise Lipschitz constant of f . Combining (6.2) with the observa-
tion that f(x)D0f(x)(B(o, r)) has Hausdorff dimension less than or equal to Q−1,
it follows from a covering argument that

HQ
d2

(f(B(x, r))) ≤ HQ
d2

(N) = o(rQ) = o(HQ
d1

(B(x, r))).

The result follows from the definition of the metric Jacobian. �

We omit the proof of the following lemma, which is an adaptation of a classical
argument (see 3.2.2 in [95]). For further details, see the notes to this chapter.

Lemma 6.7. Suppose that f : A ⊂ G1 → G2 is a Lipschitz map and let λ > 1.
Let Ã be the set of points of density of A where D0f exists and is injective. Then
there exist Borel sets {Ei} partitioning Ã so that for each i,

• f |Ei is injective,

• there exist injective horizontal linear maps Li so that

1
λ

d2(Li(z), o) ≤ d2(D0f(x)(z), o) ≤ λd2(Li(z), o) (6.3)

for x ∈ Ei and z ∈ G1, where o ∈ G2 is the identity, and

• we have
Lip(f |Ei ◦ Li|−1

Ci
) ≤ λ, Lip(Li|Ei ◦ f |−1

Ei
) ≤ λ. (6.4)

Using this setup and notion of metric Jacobian, we can prove a version of
the area formula for Carnot groups.
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Theorem 6.8 (Sub-Riemannian area formula). Let (G1, d1) and (G2, d2) be Carnot
groups and let A ⊂ G1 be an HQ

d1
measurable set. Let Q = Q1 and Q′ = Q2 be the

Hausdorff dimensions of Gi, i = 1, 2, and assume that Q′ ≥ Q. If f : A → G2 is
Lipschitz, then ∫

A

Jm
f (x) dHQ

d1
(x) =

∫
G2

N(f, A, y) dHQ
d2

(y)

where N(f, A, y) = card{x ∈ A : f(x) = y}.

Proof. Let A0 be the set of points of density of A at which either Jm
f = 0 or

D0f(x) does not exist. Since HQ
d2

(f(A0)) = 0 we may disregard the set A0 in the
proof of the area formula as it makes no contribution to either side of the equation.
By Lemma 6.6, D0f(x) is injective for x ∈ A \A0. Using Lemma 6.7, we find sets
{Ci} partitioning A \A0, with fi = f |Ci injective. Let Jm

i (x) := Jm
fi

(x). Since the
closed balls in a Carnot group form a Vitali relation, we know that

lim
r→0

HQ
d1

(BA∩Ci(x, r))

HQ
d1

(BA(x, r))
= 1 (6.5)

for all i and all points of density x ∈ Ci. A quick calculation using (6.5) shows
that Jm

f = Jm
i at such points:

Jm
i (x) = lim inf

r→0

HQ
d2

(fi(BA∩Ci(x, r)))

HQ
d1

(BA∩Ci(x, r))

≤ lim inf
r→0

HQ
d2

(f(BA(x, r)))

HQ
d1

(BA∩Ci(x, r))

= lim inf
r→0

HQ
d2

(f(BA(x, r)))

HQ
d1

(BA(x, r))
= Jm

f (x).

Similarly,

Jm
f (x) ≤ lim inf

r→0

(
HQ

d2
(f(BA\Ci

(x, r)))

HQ
d1

(BA∩Ci(x, r))
+
HQ

d2
(f(BA∩Ci(x, r)))

HQ
d1

(BA∩Ci(x, r))

)

≤ lim inf
r→0

(
(Lip f)Q

HQ
d1

(BA\Ci
(x, r))

HQ
d1

(BA∩Ci(x, r))
+
HQ

d2
(f(BA∩Ci(x, r)))

HQ
d1

(BA∩Ci(x, r))

)
= Jm

i (x).

Using (6.1) and the fact that the fi are injective, we have∫
Ci

Jm
f (x) dHQ

d1
(x) =

∫
Ci

Jm
i (x) dHQ

d1
(x) =

∫
G2

χf(Ci) dHQ
d2

. (6.6)
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Summing over all i yields∫
A

Jm
f (x) dHQ

d1
(x) =

∫
A\A0

Jm
f (x) dHQ

d1
(x) =

∫
G2

N(f, C, y) dHQ
d2

(y). �

To complete our discussion of the area formula, we note that a more geometric
notion of the Jacobian is equivalent to the metric Jacobian at points of Pansu dif-
ferentiability. Recall the notion of a horizontal linear map between Carnot groups
(Definition 2.1).

Definition 6.9. The horizontal Jacobian of a horizontal linear map φ : G1 → G2 is

JH(φ) =
HQ

d2
(φ(A))

HQ
d1

(A)
,

where A is any measurable subset of G1 of positive finite measure.

We note that a simple covering argument, combined with the homogeneity
and left invariance of the Hausdorff measure, shows that the value of JH(φ) is
independent of the choice of A.

Proposition 6.10. Let f : A ⊂ G1 → G2 be a Lipschitz map. Then Jm
f = JH(D0f)

at point of Pansu differentiability in A.

Proof. Let x be a point of Pansu differentiability for f in A. By Lemma 6.6, we
may assume that D0f(x) is injective; else both sides are zero. Using Lemma 6.7
with a sequence λn → 1, we find sets En containing x as points of density and
horizontal linear maps Ln satisfying (6.3) and (6.4) with λ = λn. Thus

λ−Q
n JH(Ln) = lim

r→0
λ−Q

n

HQ
d2

(Ln(BA(x, r)))

HQ
d1

(BA(x, r))

= lim
r→0

λ−Q
n

HQ
d2

(Ln(BA∩En(x, r)))

HQ
d1

(BA(x, r))
,

since x is a point of density of En and Ln is a horizontal linear map

≤ lim sup
r→0

HQ
d2

(f(BA∩En(x, r)))

HQ
d1

(BA(x, r))
,

by (6.3)

≤ lim sup
r→0

HQ
d2

(f(BA(x, r)))

HQ
d1

(BA(x, r))
= Jm

f (x).



6.2. Pansu–Rademacher theorem 123

Similarly,

Jm
f (x) = lim inf

r→0

HQ
d2

(f(BA(x, r)))

HQ
d1

(BA(x, r))

≤ lim inf
r→0

(
HQ

d2
(f(BA\En

(x, r)))

HQ
d1

(BA(x, r))
+
HQ

d2
(f(BA∩En(x, r)))

HQ
d1

(BA(x, r))

)

≤ lim inf
r→0

(
(Lip f)Q

HQ
d1

(BA\En
(x, r))

HQ
d1

(BA(x, r))
+
HQ

d2
(f(BA∩En(x, r)))

HQ
d1

(BA(x, r))

)
,

since x is a point of density for En

≤ λQ
n lim

r→0

HQ
d2

(Ln(BA∩En(x, r)))

HQ
d1

(BA(x, r))
,

by (6.4) ≤ λQ
n JH(Ln).

After possibly passing to a subsequence, we have JH(Ln) → JH(D0f(x)) and
λn → 1, yielding the claim. �

While the proof is beyond the scope of this survey, there are also sub-
Riemannian analogs of the co-area formula. We present one such result in the
setting of the Heisenberg group.

Theorem 6.11 (Co-area formula). For all f ∈ BV (Ω), Ω ⊂ H, we have

||f ||BV (Ω) =
∫

R

PH(Et, Ω) dt, (6.7)

where Et = {x ∈ Ω : f(x) > t}.

6.2 Pansu–Rademacher theorem

In this section, we prove Pansu’s Rademacher theorem, Theorem 6.4, for real-
valued Lipschitz functions on the Heisenberg group. Our starting point is the
following proposition.

Proposition 6.12. Let Ω ⊂ H be a domain and let f : Ω → R be a Lipschitz
function. Then ∇0f(x) exists a.e. in Ω.

Proof. Consider the case Ω = H (the general case is similar). We may fiber H by
integral curves for the vector field X1. Denote by Lp = {petX1} the integral curve
passing through an arbitrary point p ∈ {(x1, x2, x3) ∈ H : x1 = 0}. Since Lp is a
horizontal line, the map fp : R → R given by fp(t) = f(petX1) is Lipschitz, and
hence is differentiable a.e. Note that f ′

p(t) = X1f(petX1). Thus X1f exists H1-a.e.
on Lp. By Fubini’s theorem, X1f exists a.e. in H. In a similar fashion, we obtain
that X2f exists a.e. �
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At points x ∈ Ω satisfying the conclusion in Proposition 6.12, we define
D0f(x) : H→ R by the formula

D0f(x)(y) = X1f(x)y1 + X2f(x)y2. (6.8)

The fact that D0f is the Pansu differential of f is expressed in the following
theorem.

Theorem 6.13. Let f : Ω→ R be Lipschitz. Then

lim
y→0

f(xy)− f(x)−D0f(x)(y)
d(0, y)

= 0

for a.e. x ∈ Ω.

To begin the proof of Theorem 6.13, we observe that ∇0f ∈ L∞ ⊂ Lp
loc for

all p ≥ 1. Fix an index p > 4. Since (Ω, d) is a homogeneous space, we may apply
the Lebesgue differentiation theorem to conclude

lim
r→0

1
|B(o, r)|

∫
B(o,r)

|∇0f(xy)−∇0f(x)|p dy = 0 (6.9)

for almost every x ∈ Ω. Fix x ∈ Ω so that |∇0f(x)| < ∞ and (6.9) holds true.
Define

g(y) = f(xy)−D0f(x)(y) = f(xy)− 〈∇0f(x), π(y)〉
and observe that

∇0g(y) = ∇0f(xy)−∇0f(x) (6.10)

since the horizontal gradient is left invariant.
For each y ∈ H such that xy ∈ Ω, we have the inequality

|f(xy)− f(x)−D0f(x)(y)| = |g(y)− g(0)|
≤ Cr1−4/p||∇0g||p,B(o,r)

≤ Cr

(
1

|B(o, r)|

∫
B(o,r)

|∇0g|p
)1/p

for r = 2d(0, y) by the supercritical case of the Sobolev embedding theorem. Thus

|f(xy)− f(x)−D0f(x)(y)|
d(0, y)

≤ C

(
1

|B(o, r)|

∫
B(o,r)

|∇0g|p
)1/p

which tends to zero by (6.9) and (6.10). This finishes the proof of Theorem 6.13.

Lemma 6.14. D0f(x) is a group homomorphism from H to R which commutes
with the dilations:

D0f(x)(δsy) = sD0f(x)(y).
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These facts follow immediately from the definition (6.8) and the form for the
group law in the horizontal layer. As a consequence of Theorem 6.13 and Lemma
6.14, we have that

lim
s→0

f(xδsy)− f(x)
s

(6.11)

exists and equals D0f(x)(y) for all y ∈ H and a.e. x ∈ Ω. Thus D0f(x) agrees with
the Pansu differential as defined in Definition 6.3. Observe that ||∇0f ||∞ ≤ L if f
is L-Lipschitz. Indeed, (6.11) implies that

|X1f(x)y1 + X2f(x)y2| = |D0f(x)(y)| ≤ Ld(0, y)

for all y; choosing y = (∇0f(x)/|∇0f(x)|, 0) gives |∇0f(x)| ≤ Ld(0, y) = L.
Example 6.15. For a closed set F ⊂ H, let ρ(x) = dist(x, F ) = inf{d(x, y) : y ∈ F}.
Then ρ : H→ R is a 1-Lipschitz map. We verify the eikonal equation

|∇0ρ| = 1 a.e. in H \ F . (6.12)

The upper bound |∇0ρ(x)| ≤ 1 holds by Proposition 6.12. Moreover,

lim
y→0

ρ(xy)− ρ(x)−D0ρ(x)(y)
d(0, y)

= 0 (6.13)

for a.e. x by Theorem 6.13. Fix such an x in the complement of F . Since F is
closed, there exists p ∈ G which realizes the distance from F to x: d(x, p) =
dist(x, F ) = ρ(x). Let γ : [0, T ] → H be an arc length parameterized geodesic
joining 0 to x−1p. Then xγ is a geodesic from x to p, and

ρ(xγ(t)) = T − t

for all 0 ≤ t ≤ T . Hence

ρ(xγ(t))− ρ(x)
d(x, xγ(t))

=
(T − t)− T

t
= −1

for all such t. Applying (6.13) with y = γ(t) gives

ρ(xγ(t)) − ρ(x) = D0ρ(x)(γ(t)) + o(t)

or
D0ρ(x)(γ(t)) = −t + o(t).

Let π : H → C denote the projection π(y) = y1 + i y2. Since π(γ(t)) �= 0 and
|π(γ(t))| ≤ d(0, γ(t)) = t for 0 < t < T we find

|∇0ρ(x)| ≥ |D0ρ(x)(γ(t))|
|π(γ(t))| ≥ t− o(t)

t
= 1− o(1)

as t→ 0. This finishes the proof of the eikonal equation (6.12).
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6.3 Equivalence of perimeter and Minkowski content

An alternate notion of surface measure in the Heisenberg group is provided by
the Minkowski (3-)content. Conveniently, this notion agrees with the horizontal
perimeter measure, at least for sufficiently smooth sets. We begin with the defini-
tion.

Definition 6.16. Let dist(x, E) := inf{d(x, y) : y ∈ E} be the distance to a bounded
set E ⊂ H and let Eε = {x ∈ H : dist(x, E) < ε} be the ε-neighborhood of E. The
Minkowski (3-)content of ∂E is

M3(∂E) := lim
ε→0

|Eε \ E|
ε

,

provided the limit exists.

Proposition 6.17. PH(E) = M3(∂E) for all bounded open sets E ⊂ H with C2

boundary.

Proof. We denote by M+
3 (∂E), resp. M−

3 (∂E), the quantities

lim sup
ε→0

|Eε \ E|
ε

and lim inf
ε→0

|Eε \ E|
ε

,

and prove the estimates
PH(E) ≤M−

3 (∂E) (6.14)

and
PH(E) ≥M+

3 (∂E) (6.15)

which give the desired conclusion.
The estimate in (6.14) follows directly from the lower semi-continuity of the

perimeter, as we now show. We introduce the signed distance function

ρ(x) =

{
dist(x, ∂E), if x ∈ E,
− dist(x, ∂E), if x ∈ H \ E,

and consider the sequence of normalized Lipschitz truncations

φε(x) =

⎧⎪⎨⎪⎩
1+ρ(x)

2ε , if −ε ≤ ρ(x) ≤ ε,
1, if ρ(x) ≥ ε,
0, if ρ(x) ≤ −ε.

A quick computation gives

||φε||BV =
1
2ε

∫
|ρ|≤ε

|∇0ρ| ≤
|{x ∈ H : −ε < ρ(x) < ε}|

2ε

whence
PH(E) ≤ lim inf

ε→0
||φε||BV ≤M−

3 (∂E)

by Proposition 5.6.
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The proof of (6.15) uses the Riemannian approximants (R3, gL). We denote
by dL, resp. ρL, resp. M±

3,L(∂E), the associated metric on R3, signed distance
function to ∂E, and upper and lower Minkowski 3-contents of ∂E. By an applica-
tion of the Riemannian co-area formula and arguing as in the Euclidean case, we
deduce the identity

M+
3,L(∂E) =

1√
L

∫
∂E

dσL,

where dσL denotes the Riemannian surface area element for the metric gL. Since
ρ ≥ ρL for each L we find

M+
3 (∂E) ≤ lim

L→∞
M+

3,L(∂E) = lim
L→∞

1√
L

∫
∂E

dσL = PH(E)

by (5.6). �

The boundary of a Carnot–Carathéodory ball in H (centered at the origin,
say) is not of class C2 due to the presence of singularities on the x3-axis. However,
the equality of the previous proposition continues to hold for such sets.

Proposition 6.18. PH(B) =M3(∂B) for every CC-ball B ⊂ H.

Proof. We may assume that B = B(o, 1). Note that Bε = B(o, 1 + ε). Combining
the sub-Riemannian co-area formula (6.7) and the eikonal equation (6.12), and
using the scaling properties of the horizontal perimeter, we obtain

|Bε \B| =
∫

Bε\B

|∇0 dist(·, ∂B)| =
∫ ε

0

PH(B(o, 1 + t)) dt

= PH(B)
∫ ε

0

(1 + t)3 dt = PH(B) · (1 + ε)4 − 1
4

whence
M3(∂B) = lim

ε→0

|Bε \B|
ε

= PH(B). �

6.4 First variation of the perimeter

In this section we present two derivations of the first variation formula for the
perimeter of surfaces in H. First we consider parametric representations of the
surface and variations which vanish in a neighborhood of the characteristic set.
Next, we present an argument in which variations over the full surface are allowed.

We start by introducing some useful notation: Let Ω ⊂ H be a bounded region
enclosed by a surface S, and consider variations Ωt and St along a given vector
field Z ∈ C1(H, R3). We say that Ω is perimeter stationary (or area stationary) if
d/dtPH(Ωt) |t=0= 0 for all choices Z. We say that Ω is volume-preserving perimeter
stationary if d/dtPH(Ωt) |t=0= 0 for all Z such that d/dt|Ωt| |t=0= 0. Note that if
Z is tangent to S at every point, then variations along Z do not change S = St,
hence tangential variations always correspond to d/dtPH(Ωt) |t=0= 0.
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6.4.1 Parametric surfaces and noncharacteristic variations

We compute the first variation of the perimeter with respect to the Euclidean
normal �n and then with respect to a horizontal frame. Throughout the section the
emphasis is on explicit computations using the underlying Euclidean structure of
R3. Let Ω ⊂ R2 be a domain, let ε > 0, and let Ξ : Ω × (−ε, ε) → H. We view Ξ
as representing a flow St = Ξ(Ω, t) of noncharacteristic surface patches in H, with
Ξ(Ω, 0) = S. Denote by A the 2 × 3 matrix of coefficients of the horizontal frame
X1, X2. Recall that we have agreed to write PH(St) for the horizontal perimeter
of the surface patch St. Our goal is to evaluate

d

dt
PH(St)

∣∣∣∣
t=0

=
d

dt

∫
St

|A�n| dσ

∣∣∣∣
t=0

=
d

dt

∫
Ω

|A(Ξu × Ξv)| dudv

∣∣∣∣
t=0

=
∫

Ω

1
|AV |

(〈
AV, A

dV

dt

〉
+
〈

AV,

(
dA

dt

)
V

〉)∣∣∣∣
t=0

,

(6.16)

where we have let V = Ξu×Ξv and �n = V/|V |. We want to stress once more that
we are denoting by 〈·, ·〉 and |·| the Euclidean inner product and the corresponding
norm.

To simplify the notation we will always ignore the higher order terms in the
Taylor expansion of Ξ, writing

Ξ(u, v, t) = Ξ(u, v, 0) + t
dΞ
dt

(u, v, 0) =: X(u, v) + tλ�n(u, v, 0).

A simple computation yields V = Xu × Xv + t(Xu × (λ�n)v + (λ�n)u × Xv), and
consequently

dV

dt

∣∣∣∣
t=0

= λ(Xu × �nv + �nu ×Xv) + λvXu × �n + λu�n×Xv.

Recall that �nα = −bβ
αXβ , with bβ

α = bα,γgβ,γ , where bα,γ are the coefficients of the
second fundamental form and {gβ,γ} is the inverse of the Riemannian metric on
S induced by the Euclidean metric in C× R. Since Xu × �nv = −bv

vXu ×Xv, and
�nu ×Xv = −bu

uXu ×Xv,

dV

dt

∣∣∣∣
t=0

= λHXu ×Xv + λvXu × �n + λu�n×Xv, (6.17)

where H = bu
u + bv

v denotes the mean curvature of S.
Since

A|Ξ =
(

1 0 − 1
2Ξ2

0 1 1
2Ξ1

)
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we find
dA

dt

∣∣∣∣
Ξ

=
(

0 0 − 1
2λn2

0 0 1
2λn1

)
, �n = (n1, n2, n3).

Thus
dA

dt
V =

1
2
λV3(−n2, n1), V = (V1, V2, V3). (6.18)

By virtue of (6.16), (6.17) and (6.18) we obtain

d

dt
PH(St)

∣∣∣∣
t=0

=
∫

Ω

1
|AV |

〈
AV, λHA(Xu ×Xv)

+λvA(Xu × �n) + λuA(�n×Xv) +
1
2
λV3(−n2, n1)

〉∣∣∣∣
t=0

dudv. (6.19)

Integrating by parts in u and v gives the following expression for the first variation
of the perimeter:∫

Ω

λ

[
H|AV | −

(
〈AV, A(Xu × �n)〉

|AV |

)
v

+
(
〈AV, A(Xv × �n)〉

|AV |

)
u

+
1
2V3

|AV | 〈AV, (−n2, n1)〉
]

dudv.

(6.20)

In essence, (6.20) is the derivative of the perimeter functional in the direction
Y = λ�n. Since variations along purely tangential directions are zero, then normal
variations represent the complete “gradient” of the perimeter functional.

We now want to generalize the preceding to the case of general perturbations
of the original surface S. Thus consider a variation of the form

Ξ = X + t(aX1 + bX2 + cT ) + o(t),

where X = (x1, x2, x3) is a parameterization of S, X1 = (1, 0,− 1
2x2) and X2 =

(0, 1, 1
2x1) are the standard left invariant basis of the horizontal bundle, and T =

(1
2x2,− 1

2x1, 1) (note that T differs from the standard left invariant vector field
X3 = (0, 0, 1) in the Heisenberg group). In order to compute Ξu × Ξv we need to
calculate

Xα ×X1 =
(
−1

2
x2x2,α,

1
2
x2x1,α + x3,α,−x2,α

)
,

Xα ×X2 =
(
−x3,α +

1
2
x1x2,α, −1

2
x1x1,α, x1,α

)
,

X1,α ×Xβ =
(

1
2
x2,αx2,β , −1

2
x2αx1,β , 0

)
,

X2,α ×Xβ =
(
−1

2
x1,αx2,β ,

1
2
x1,αx1,β , 0

)
,
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Xα × T =
(

x2,α +
1
2
x1x3,α,

1
2
x2x3,α − x1,α, −1

2
x1x1,α −

1
2
x2x2,α

)
,

Xβ × Tα =
(
−1

2
x1,αx3,β ,

1
2
x2,αx3,β , −1

2
x1,αx1,β −

1
2
x2,αx2,β

)
.

Here α, β ∈ {u, v} and we have written xi,α = ∂xi/∂α, etc. These in turn yield

A(Xα ×X1) = (0, ω(Xα)),
A(Xα ×X2) = (−ω(Xα), 0),

A(X1,α ×Xβ) =
1
2
x2,α i zβ,

A(X2,α ×Xβ) = −1
2
x1,α i zβ,

A(Xα ×X3) = i zα,

A(Xβ ×X3,α) = 2ω(Xβ)zα +
1
2
(|z|2)α i zβ, (6.21)

where we have let z = x1 + i x2 and ω(Xα) = x3,α + 1
2 (x2x1,α − x1x2,α).

Thanks to (6.21) we have

A
d

dt
(Ξu × Ξv) = av(0, ω(Xu))− au(0, ω(Xv)) +

1
2
a i (x2uzu − x2vzv)

+ bv(−ω(Xu), 0)− bu(−ω(Xv), 0) +
1
2
b i (x1vzu − x1uzv)

+ c

[
1
2
ω(Xu)zv −

1
2
ω(Xv)zu +

1
2
(|z|2)v i zu −

1
2
(|z|2)u i zv

]
+ cv

[
(1 +

1
4
|z|2) i zu +

1
2
ω(Xu)z

]
− cu

[
(1 +

1
4
|z|2) i zv +

1
2
ω(Xv)z

]
. (6.22)

Set F = {X1, X2} the horizontal, orthonormal frame and express the horizontal
normal νH in this frame as the coordinate vector

[νH ]F =
A(Xu ×Xv)
|A(Xu ×Xv)|

= (ν1
H , ν2

H). (6.23)

Note that
A(Xu ×Xv) = i [ω(Xu)zv − ω(Xv)zu]. (6.24)

Using the latter and (6.22) we have (after several cancellations)〈
[νH ]F ,A

d

ds
(Ξu×Ξv)

〉
=a

(
〈[νH ]F ,(0,ω(Xv))〉u−〈[νH ]F ,(0,ω(Xu))〉v

)
+b

(
〈[νH ]F ,(ω(Xu),0)〉v−〈[νH ]F ,(ω(Xv),0)〉u

)
(6.25)

+c

(
〈∂u[νH ]F ,(1+

1
4
|z|2)izv +

1
2
ω(Xv)z〉−〈∂v[νH ]F ,(1+

1
4
|z|2)izu +

1
2
ω(Xu)z〉

)
.
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On the other hand, (
dA

dt

)
Xu ×Xv =

1
2
V3(−Y2, Y1),

where we have set V = Xu ×Xv and Y = (Y1, Y2, Y3) ∈ R3. We have

(−Y2, Y1) = a(0, 1) + b(−1, 0) +
1
2
cz.

Combining the latter with (6.16) and (6.25) we finally obtain the first variation of
the perimeter:

Variation along X1 (a = 1, b = c = 0):

[ν2
Hω(Xv)]u − [ν2

Hω(Xu)]v +
1
2
V3ν

2
H . (6.26)

Variation along X2 (b = 1, a = c = 0):

[ν1
Hω(Xu)]v − [ν1

Hω(Xv)]u −
1
2
V3ν

1
H . (6.27)

Variation along X3 (c = 1, a = b = 0):〈
∂u[νH ]F ,

(
1 +

1
4
|z|2

)
i zv +

1
2
ω(Xv)z

〉
−
〈

∂v[νH ]F ,

(
1 +

1
4
|z|2

)
i zu +

1
2
ω(Xu)z

〉
+

1
4
V3〈[νH ]F , z〉. (6.28)

At this point we restrict our attention to horizontal variations by setting c =
0. The maximum variation, among horizontal variations, is the one corresponding
to a flow in the direction aX1 + bX2, where the vector (a, b) is chosen according
to (6.26) and (6.27), i.e., is given by(

[ν2
Hω(Xv)]u−[ν2

Hω(Xu)]v+
1
2
V3ν

2
H ; [ν1

Hω(Xu)]v−[ν1
Hω(Xv)]u−

1
2
V3ν

1
H

)
. (6.29)

Inserting these in (6.26) and (6.27) leads to the following

Proposition 6.19. The maximum variation of the perimeter among horizontal vari-
ations and outside the characteristic locus is obtained along the direction aX1 +
bX2, where (a, b) is chosen as in (6.29), and is equal to I + II, where

I =
(

ω(Xu)v − ω(Xv)u −
1
2
V3

)
i [νH ]F

and
II = ω(Xu)∂v( i [νH ]F )− ω(Xv)∂u( i [νH ]F), (6.30)

here [νH ]F is as in (6.23). Moreover, the component corresponding to I is tangent
to the surface.
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Proof. We are only left with the proof of the last statement. Since [νH ]F is a unit
vector, the factors I and II are orthogonal. From

−ν2
HX1 + ν1

HX2 = AT iA(Xu ×Xv)/|A(Xu ×Xv)|

we obtain〈
�n,−ν2

HX1 + ν1
HX2

〉
=
〈

(Xu ×Xv)
|(Xu ×Xv)|

,
AT iA(Xu ×Xv)
|A(Xu ×Xv)|

〉
= 0. �

Remark 6.20. Observe that if we can choose a parametrization of the surface so
that zu and zv are orthonormal and use the fact that V3 = 〈 i zu, zv〉, we can
rewrite I more explicitly in the following form:

I =
[
1
4
〈 i zu, zv〉 −

1
2
V3

]
i [νH ]F = −1

4
V3 i [νH ]F .

Since we just proved that the component of the variation corresponding to I is
horizontal and tangent to the surface, it thus corresponds only to a reparametriza-
tion of the surface. In the following we ignore it and focus on the component II.

Proposition 6.21. The non-tangential component of the maximal horizontal vari-
ation of the perimeter PH occurs along the vector Z = aX1 + bX2, where

(a, b) = 2H0|A(Xu ×Xv)| [νH ]F ,

i.e., Z = 2H0νH |πH(ν1)|1 with πH denoting the (Euclidean) orthogonal projection
on the horizontal bundle.

Proof. To identify II, we consider the Legendrian foliation of the surface. Recall
that this foliation is composed of horizontal curves γ̃ lying on the surface which
are flow lines of the horizontal vector field

i [νH ]F · ∇0 := −ν2
HX1 + ν1

HX2.

Since we are using a parametric representation of the surface S, we consider a
curve γ = (u, v) : [0, L]→ R2, such that γ̃(s) = X (γ(s)) = X (u(s), v(s)).

Note that
d

ds
πzγ̃(s) = zuu′ + zvv

′.

On the other hand, by (6.24), and by the definition of the Legendrian foliation we
also have

d

ds
πz γ̃(s) = i [νH ]F =

ω(Xv)zu − ω(Xu)zv

|ω(Xu)zv − ω(Xv)zu|
.

As a consequence,

u′ =
w(Xv)

|ω(Xu)zv − ω(Xv)zu|
, and v′ = − w(Xu)

|ω(Xu)zv − ω(Xv)zu|
.
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Now, by virtue of Lemma 4.24 we have that the curvature of πz γ̃ is given by
−2H0[νH ]F , hence

−2H0[νH ]F =
d2

ds2
πz γ̃ =

d

ds
( i [νH ]F)(u(s), v(s))

= ( i [νH ]F)uu′ + ( i [νH ]F)vv′

=
( i [νH ]F)uω(Xv)− ( i [νH ]F)vω(Xu)

|A(Xu ×Xv)| (6.31)

=
−II

|A(Xu ×Xv)|
. �

Formula (6.31) provides an explicit representation of the horizontal mean
curvature for noncharacteristic parametric surface.

Proposition 6.22. If S ⊂ H is a C2 surface parametrized by the map X : Ω → H,
then outside the characteristic set Σ(S) one has

H0[νH ]F =
ω(Xu)∂v( i [νH ]F)− ω(Xv)∂u( i [νH ]F )

|A(Xu ×Xv)| , (6.32)

where [νH ]F is given by (6.23) and ω is the contact form.

Remark 6.23. Since tangential variations result in reparametrizations of the sur-
face, which do not modify the perimeter, it is important that we consider only the
normal component of the maximal horizontal variation identified above, i.e.,〈

AT

(
2H0|A(Xu × Xv)| [νH ]F +

1
2
〈 i zu, zv〉 i [νH ]F

)
, �n

〉
= 2H0

|A(Xu ×Xv)|
|Xu ×Xv|

= 2H0|A�n| = 2H0|πH(ν1)|1.

6.4.2 General variations

We present an extension of the first variation formula which allows for variations
across the characteristic locus.

Proposition 6.24. Let S ⊂ H be an oriented C2 immersed surface with g1-Riemann-
ian normal ν1 and horizontal normal νH . Suppose that U is a C1 vector field with
compact support on S, let φt(p) = expp(tU) and let St be the surface φt(S). Then

d

dt
PH(St)

∣∣∣∣
t=0

=
∫

S\Σ(S)

[
u(divS νH)− divS(u(νH)tang)

]
dσ, (6.33)

where u = 〈U, ν1〉1. Moreover, if divS νH ∈ L1(S, dσ), then

d

dt
PH(St)

∣∣∣∣
t=0

=
∫

S

u(divS νH) dσ −
∫

S

divS(u(νH)tang) dσ, (6.34)

where u = 〈U, ν1〉1.
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Here vtang denotes the tangential component of v and dσ denotes the Rie-
mannian surface area element on S. We will denote by NH the g1 projection of
ν1 on the horizontal distribution, NH =

∑2
i=1〈ν1, Xi〉1Xi. Recall that in view of

Corollary 5.8, |NH | = 〈νH , ν1〉1 is the density of the perimeter measure.

Proof. Let dσt be the Riemannian surface area element on the surface St. By abuse
of notation, we will also denote by ν1 an extension of the normal to S to all of H,
so that ν1|St is the Riemannian normal to St. Then

PH(St) =
∫

St

|NH | dσt

=
∫

S

(|NH | ◦ φt)|Jφt | dσ

=
∫

S\Σ(S)

(|NH | ◦ φt)|Jφt | dσ

by the Riemannian co-area formula. The last equality uses the result of Derridj
[86] (later extended by [20] and [189, 190]) according to which the Riemannian
surface measure of Σ(S) is zero.

In the next computation, we use the divergence identity

d

dt
|Jφt |

∣∣∣∣
t=0

= divS U (6.35)

and the standard formula

divS(fV ) = f divS V + Vtang(f) (6.36)

for f : S → R and a C1 vector field V on S. Here, as before, Vtang denotes
the tangential component of V . We will use the notation Vnorm to denote the
(Riemannian) normal component of V . Differentiating with respect to t and using
(6.35) and (6.36) gives

d

dt
PH(St)

∣∣∣∣
t=0

=
∫

S\Σ(S)

(U(|NH |) + |NH | divs U) dσ

=
∫

S\Σ(S)

(Unorm(|NH |) + |NH | divS(Unorm) + divS(|NH |Utang)) dσ

=
∫

S\Σ(S)

(Unorm(|NH |) + |NH | divS(Unorm)) dσ. (6.37)

In the last line, we use the Riemannian divergence formula to conclude that
the integral of the divergence of the compactly supported Lipschitz vector field
|NH |Utang is zero.
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Noting that NH = ν1 − 〈ν1, X3〉1X3 one has

V (|NH |) =〈DV NH , νH〉1
=〈DV NH , νH〉1 + 〈X3, νH〉1V (〈ν1, X3〉1)
=〈DV ν1, νH〉1 − 〈ν1, X3〉1〈DV X3, νH〉1.

Using DUnormν1 = −∇Su, and 〈DUnormX3, νH〉1 = 0, we have

Unorm(|NH |) = 〈DUnormν1, νH〉1 − 〈ν1, X3〉1〈DUnormX3, νH〉1 = −〈∇Su, νH〉1.

Thus the integrand in the last line of (6.37) is

Unorm(|NH |) + |NH | divS(Unorm)
= 〈−∇Su, νH〉1 + |NH | divS Unorm

= −(νH)tang(u) + u|NH | divS ν1

= − divS(u(νH)tang) + u divS((νH)tang) + u divS(|NH |ν1)
= − divS(u(νH)tang) + u divS νH . (6.38)

Noting that
Unorm(|NH |) + |NH | divS(Unorm))

is compactly supported and bounded on S (and hence in L1(S, dσ)), we obtain
(6.33). Under the additional assumption divS νH ∈ L1(S, dσ), we conclude that
divS(u(νH)tang) ∈ L1(S, dσ) as well. Substituting (6.38) into (6.37), we obtain
(6.34), thus concluding the proof. �
Remark 6.25. Through an approximation by Lipschitz vector fields, the hypothe-
ses can be slightly weakened: we may consider compactly supported, bounded
vector fields U on S such that |NH | divS(Unorm) ∈ L1(S), |NH |Utang is Lipschitz
continuous, and divS νH ∈ L1(S, udσ). This observation is important as it allows
us to consider horizontal variations U = aνH , a ∈ C1

0 (S) which correspond to
udσ = adµ; in this case the assumptions are essentially reduced to the require-
ment H0 ∈ L1(S, dµ). In view of (4.21), the latter condition is always true for C2

surfaces.
Remark 6.26. If U is compactly supported in S \Σ(S), then the (6.33) reduces to

d

dt
PH(St)

∣∣∣∣
t=0

=
∫

S

u(divS νH) dσ

with u = 〈U, ν1〉1.

6.5 Mostow’s rigidity theorem for H2
C

The relevance of quasiconformal mappings on the Heisenberg group (and other
Carnot groups) stems in large part from their role in the proof of Mostow’s cele-
brated rigidity theorem for lattices in the complex hyperbolic space H2

C
(and other
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rank 1 symmetric spaces). In this section, we give a brief summary and the main
lines of the proof of Mostow’s theorem in this case, and use this as motivation
to summarize some aspects of the rich theory of quasiconformal maps in H as
developed by Korányi, Reimann, Pansu and others.

As this section is somewhat tangential to the main direction of the text, we
are deliberately more expository and make no attempt to include full details of
all of the proofs. Consequently, we break from our standard convention here and
include references to the literature within the text as well as in the notes.

Recall that SU(1, 2) acts1 on H2
C

with isotropy subgroup U(2); thus H2
C

is
naturally realized as the symmetric space SU(1, 2)/U(2). Let Γ be a lattice in H2

C
,

e.g., a discrete subgroup of the isometry group IsomH2
C

such that the quotient
manifold MΓ := H2

C
/Γ has finite volume. Mostow’s rigidity theorem asserts, in

essence, that the algebraic structure of Γ determines the metric structure of MΓ

in a strong sense:

Theorem 6.27 (Mostow). Let Γ, Γ′ be two lattices in H2
C

with corresponding quo-
tients MΓ = H2

C
/Γ and MΓ′ = H2

C
/Γ′. If Γ and Γ′ are isomorphic, then MΓ and

MΓ′ are isometric, in particular, they are conformally equivalent.

As a point of comparison, note that the corresponding theorem for the real
hyperbolic space H2

R
is false; indeed, the study of Teichmüller space (the moduli

space of marked conformal structures on a Riemann surface S = H2
R
/Γ) is, ac-

cording to one point of view, the study of the failure of Mostow rigidity in this
setting.

To simplify matters, we will only discuss the proof of Theorem 6.27 in the
case of cocompact lattices, e.g., when MΓ is compact. The proof breaks into two
main parts:

I. large scale (e.g., coarse/Gromov hyperbolic) geometry of H2
C
,

II. quasiconformal analysis on ∂∞H2
C
.

Part I. Choose an isomorphism f : Γ → Γ′. Since MΓ and M ′
Γ are compact, we

may find precompact fundamental domains UΓ, UΓ′ ⊂ H2
C

for the action of Γ and
Γ′, respectively. We work with the ball model for H2

C
, using the metric in (3.18).

The map f induces an equivariant map F : H2
C
→ H2

C
which is a quasi-isometry,

that is,
A−1d(p, q)−B ≤ d(F (p), F (q)) ≤ Ad(p, q) + B (6.39)

for all p, q ∈ H2
C

and some (fixed) A, B > 0. The map F can be defined, for
example, by sending an arbitrary point p ∈ H2

C
to f(γ) · 0, where γ ∈ Γ is chosen

1This action can be seen using the projective model H2
C

= {[y] ∈ CP 2 : Q(y, y) < 0}, Q(x, y) =
x1y1 + x2y2 − x3y3, and nonhomogeneous coordinates wi = yi/y3, i = 1, 2; the action of g =
(gij) ∈ SU(1, 2) on (w1, w2) ∈ {w ∈ C2 : |w| < 1} is given by

w′
j =

gj1w1 + gj2w2 + gj3

g31w1 + g32w2 + g33
, j = 1, 2.
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so that γ−1 · p ∈ UΓ. Note that such a map F need not even be continuous,
but is “bi-Lipschitz on large scales”, e.g., for points p, q ∈ H2

C
with d(p, q)� 1. In

particular, geodesic rays in H2
C

(emanating from the origin, say) are taken to quasi-
geodesics (images γ = F ([0, +∞)) by maps F : [0, +∞) → H2

C
satisfying (6.39)

for some A, B). We now state without proof a fundamental feature of Gromov
hyperbolic spaces.

Lemma 6.28 (Stability of quasi-geodesics). Let γ be an (A, B)-quasi-geodesic ray
in a Gromov δ-hyperbolic space X. Then there exists M < ∞ dependending only
on δ, A and B so that γ is contained in the M -neighborhood of a true geodesic ray
γ′ in X. In particular, γ determines a unique point in ∂∞X, namely, the point [γ′].

See, for example, Theorem III.H.1.7 in [43]. Thus ∂∞X can alternately be
described as the space of equivalence classes [γ] of quasi-geodesic rays γ : [0,∞)→
X , with the same equivalence relation as before.

Via Lemma 6.28, we see that F induces a boundary map F∞ : ∂∞H2
C
→

∂∞H2
C
, as follows:

F∞([ξ]) = [F (ξ)].

We equip ∂∞H2
C

with the visual metric ρ1 as in Subsection 3.4.5.

Lemma 6.29. F∞ is a homeomorphism of (∂∞H2
C
, ρ1).

In fact, more is true. A homeomorphism f : X → Y of metric spaces is called
quasiconformal (according to the metric definition) if there exists H <∞ so that

lim sup
r→0

supx′:d(x,x′)≤r d(f(x), f(x′))
infx′′:d(x,x′′)≥r d(f(x), f(x′′))

≤ H (6.40)

for all x ∈ X . Here we denoted the metric in both X and Y by d.

Lemma 6.30. F∞ is a quasiconformal homeomorphism of (∂∞H2
C
, ρ1).

This is a general result about quasi-isometries of δ-hyperbolic spaces which
admits several proofs. Margulis [194] gave an elegant proof using the notion of
geodesic shadows; see also Bourdon [40]. The key point is a comparison of geodesic
shadows in the target with images of geodesic shadows from the source; this com-
parison is mediated via quasi-geodesic shadows in the target through the Stability
Lemma. Observe that the equivariance of F with respect to the actions of Γ, Γ′ on
H2

C
implies a similar property for F∞ with respect to the actions of Γ, Γ′ on the

Gromov boundary.

Part II. In the second half of the proof, regularity and rigidity phenomena for
quasiconformal maps, together with an ergodic theoretic argument, are used to
deduce the following result:

Proposition 6.31. Every (Γ, Γ′)-equivariant quasiconformal map F∞ : ∂∞H2
C
→

∂∞H2
C

is the boundary map associated with the action of an isometry on H2
C
.
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The first step is to verify higher regularity for quasiconformal maps, and con-
firm the equivalence of the metric definition (6.40) with an analytic formulation.

Proposition 6.32. A homeomorphism G : ∂∞H2
C
→ ∂∞H2

C
is quasiconformal (in

the sense of (6.40)) if and only if it is in the local horizontal Sobolev class S1,4
loc , is

almost everywhere Pansu differentiable, and has Pansu differential D0G satisfying
the distortion inequality

||(D0G)(ξ)∗||4 ≤ K det(D0G)(ξ)∗ for a.e. ξ (6.41)

for some absolute constant K <∞. The constants K and H depend quantitatively
on each other.

Here we have extended the notions of the horizontal Sobolev class S1,p and
of Pansu differentiability from the setting of the Heisenberg group to the Gromov
boundary of H2

C
; this is easy to accomplish using the generalized stereographic

projection. For example, membership of G in the local horizontal Sobolev class
S1,4

loc refers to membership of the coordinate functions of the conjugated maps
π ◦ G ◦ π−1 : H → H in S1,4

loc for all generalized stereographic projections π :
∂∞H2

C
→ H.

The condition in Proposition 6.32 is known as the analytic definition for
quasiconformality. Observe that, after projecting to H and writing in terms of the
standard basis X1, X2, X3, the Pansu differential of G takes the form⎛⎝a b 0

c d 0
0 0 ad− bc

⎞⎠ ;

see Example 6.5. The norm of (D0G)(ξ)∗ in (6.41) refers to the maximum induced
stretch in horizontal directions:

||(D0G)(ξ)∗|| = sup
V ∈Hξ∂∞H2

C
:|V |=1

|(D0G)(ξ)∗(V )|.

In our setting, F∞ becomes quasiconformal according to the analytic defini-
tion, and

||(D0F∞)∗||4
det(D0F∞)∗

is essentially bounded on ∂∞H2
C
. The equivariance of F∞ combined with an ergod-

icity theorem of Mautner yields 1-quasiconformality of F∞. In a similar vein as in
the Euclidean case, Liouville’s rigidity theorem holds: every 1-quasiconformal map
of ∂∞H2

C
is in fact conformal, and induced as the boundary map of an isometry of

H2
C
. (See also Theorem 6.33.) This finishes the proof of Proposition 6.31, and also

finishes the proof of Mostow’s Theorem 6.27, once we observe that the resulting
isometry of H2

C
is equivariant and therefore descends to an isometry between the

original manifolds MΓ and M ′
Γ.
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6.5.1 Quasiconformal mappings on H

Quasiconformal maps on H play a crucial role in the above argument. Classically,
quasiconformal maps may be defined in a variety of ways: metrically, geometrically
or analytically. Let us review some of the basic definitions. Let f : U → U ′ be a
homeomorphism between domains in H.

(i) We say that f is metric quasiconformal if (6.40) holds for some constant
H < ∞. This is an infinitesimal condition of uniformly bounded relative
distortion of metric spheres.

(ii) We say that f is (locally) quasisymmetric if there exists an increasing home-
omorphism η : [0,∞)→ [0,∞) so that for each Whitney ball B ⊂ U ,2

d(f(x), f(y))
d(f(x), f(z))

≤ η

(
d(x, y)
d(x, z)

)
(6.42)

for all x, y, z ∈ B, x �= z. This is a local (but not infinitesimal) condition of
uniformly bounded relative distortion of metric triples, the validity of (6.42)
for some η clearly implies the validity of (6.40) with H = η(1).

(iii) We say that f is analytic quasiconformal if its coordinate functions belong
to the local horizontal Sobolev class S1,4

loc , f is Pansu differentiable (in par-
ticular, a contact map), and the Pansu differential (D0f)∗ : h → h verifies
the pointwise distortion inequality

||(D0f)(x)∗||4 ≤ K det(D0G)(x)∗

for a.e. x ∈ U .

Theorem 6.33 (Korányi–Reimann). Conditions (i), (ii) and (iii) are quantitatively
equivalent, for homeomorphisms of domains in H. Moreover, condition (i) with
H = 1 implies condition (iii) with K = 1, and any such conformal map is a
composition of maps of the following types:

• left translations,
• dilations,
• rotations about the x3-axis,
• the Korányi inversion

jH(z, x3) =
(

−z

|z|2 + 4 i x3
,

−x3

|z|4 + 16x2
3

)
(see (2.14)).

All such conformal maps correspond, under generalized stereographic projection,
with the boundary maps associated with the action of the isometry group SU(1, 2)
on H2

C
.

2B is a Whitney ball in U if 2B ⊂ U .
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Korányi and Reimann also conclusively demonstrated the existence of an
extensive supply of nontrivial (e.g., nonconformal) quasiconformal mappings of H

by characterizing the infinitesimal generators of one-parameter flows of smooth
quasiconformal maps.

Theorem 6.34 (Korányi–Reimann). Let p ∈ C∞(H) and assume that X1X1p −
X2X2p, X1X2p + X2X1p ∈ L∞(H). Then the vector field

V = pX3 + (X2p)X1 − (X1p)X2

generates a one-parameter family of smooth quasiconformal maps fs : H → H,
s > 0, as solutions to the Cauchy problem

d

ds
fs = V (fs), f0 = id .

6.6 Notes

The canonical treatment of geometric measure theory remains the comprehensive
tome of Federer [95]; much contemporary work in sub-Riemannian and general
metric space-valued geometric measure theory involves the detailed development
and elaboration of ideas and programs stemming from [95].

Notes for Section 6.1. In this section we closely follow the development of the
area formula by Magnani [190] (but see also [189], and [222] for an equivalent but
different treatment). Magnani’s proof is a simplified version of the proof of an area
formula in a much more general class of metric spaces (see, for example, [161] or
[9]). One can also give a proof of the area formula in Carnot groups analogous
to the classical proof. For the details see [190, pp. 99–100]. Extensive work on
the sub-Riemannian co-area formula has been done by Magnani [190–192]. The
sub-Riemannian analog for the differential introduced in Definition 6.3 bears the
name of Pierre Pansu, who introduced it and proved Theorem 6.4 in his important
work [220]. The Pansu differential and Pansu–Rademacher differentiation theorem
are foundational tools in the modern theory of geometric analysis in the Carnot–
Carathéodory environment.

Notes for Section 6.2. The proof of Theorem 6.13 which we give is due to Calderón;
see also Heinonen [136, Chapter 6]. Pansu’s original paper on the a.e. differentia-
bility of Lipschitz functions on Carnot groups is [220]. For a recent far-reaching
generalization to metric spaces, see Cheeger [60]. Arcozzi and Morbidelli [15], [16]
have given an analytic characterization for bi-Lipschitz self-maps of the Heisen-
berg group using the Pansu derivative, as well as a related stability theorem for
Heisenberg isometries in the spirit of F. John [157]

The eikonal equation for the CC metric was proved by Monti in H [204], and
by Monti and Serra-Cassano in a wide class of CC spaces [211]. Example 6.15 is
also taken from [211].
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Notes for Section 6.3. Proposition is taken from Monti and Serra-Cassano [211],
who work in a much more general setting of Carnot–Carathéodory spaces. For an
even more general perspective, see [7]. Proposition 6.18 is due to Monti [204].

Notes for Section 6.4. Our derivation of the noncharacteristic first variation of
the perimeter is taken from Bonk–Capogna [37]. Alternative derivations of first
variation formulas can be found in [63], [78], [221], [37], [199], [232] and [239].
The general form of the first variation is a result of Ritoré and Rosales [231].
An essential novelty of our discussion, however, is the formulation of an explicit
first variation formula for parameteric surfaces. Such formulas can be used, for
instance, to compute the mean curvature of surfaces represented as graphs over
spheres or other closed manifolds.

Notes for Section 6.5. Mostow’s rigidity theorem inaugurated the study of quasi-
conformal maps in Carnot groups, general Carnot–Carathéodory spaces, and most
recently in metric measure spaces. While we have stated Mostow’s theorem only
in the case of H2

C
, where the boundary quasiconformal analysis resides on the

(one-point compactification of) the Heisenberg group, the original result [212] was
formulated for general rank 1 symmetric spaces. Recall that a complete list of non-
compact, negatively curved, rank 1 symmetric spaces consists of the real, complex
and quaternionic hyperbolic spaces of dimension at least 2:

Hn
R , Hn

C , Hn
K, n ≥ 2

(K denotes the division algebra of quaternions), and the Cayley hyperbolic plane

H2
O.

Mostow’s theorem 6.27 holds in all of these cases except for H2
R
; the essential ob-

struction in the proof involves the absolute continuity in measure of the boundary
quasiconformal (more properly, quasisymmetric) maps, which fails in the case of
maps of S

1 = ∂∞H2
R
. Pansu [220] obtained a stronger rigidity statement in the

quaternionic and Cayley situations. See also [135], especially Section 6.
Korányi and Reimann developed the full theory of quasiconformal maps on

the Heisenberg groups Hn in [168], [171]. The case K = 1 in Theorem 6.33 fol-
lows from their work through a regularity theorem for nonlinear subelliptic PDE
proved in [246] and [50]. Alternative methods to construct quasiconformal maps
in the Heisenberg groups can be found in [57]. The existence of a rich theory of
quasiconformal maps in this specific non-Riemannian setting motivated further
study of quasiconformal function theory in the setting of general metric measure
spaces. The seminal work in this arena is due to Heinonen and Koskela [140], [141],
who further studied the equivalence of definitions of quasiconformality in Theo-
rem 6.33 (in more general Carnot groups and abstract metric measure spaces) and
extended much of the ensuing Euclidean theory to this setting. Further work on
the equivalence of definitions of quasiconformality, including the geometric def-
inition of quasiconformality (which we have not touched on here) was done by
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Tyson [251], [252]. For the most recent summary of these developments, we refer
to Heinonen et al. [143]. Note that the concept of quasisymmetry, for mappings of
metric spaces, was already introduced by Tukia and Väisälä [250] in 1980.

Quasiregular maps are a generalization of quasiconformal maps where the
assumption of injectivity is relaxed. Heinonen and Holopainen [138] developed
nonlinear potential theory and quasiregular maps on Carnot groups.



Chapter 7

The Isoperimetric
Inequality in H

The isoperimetric inequality in H with respect to the horizontal perimeter was
first proved by Pansu. We first state it in the setting of C1 sets.

Theorem 7.1 (Pansu’s isoperimetric theorem in H). There exists a constant C > 0
so that

|E|3/4 ≤ CPH(E) (7.1)

for any bounded open set E ⊂ H with C1 boundary.

In this chapter, we present two very different proofs for this theorem. The
first proof is based on the geometric Sobolev embedding S1,1 ⊂ L4/3 from Chap-
ter 6. The second proof follows Pansu’s original approach and rests on Santaló’s
formula from integral geometry as used by Croke; it gives an explicit (nonsharp)
value for C.

7.1 Equivalence of the isoperimetric and geometric
Sobolev inequalities

We give a quick sketch of the argument which shows that the isoperimetric in-
equality (7.1) is equivalent with the geometric Sobolev inequality (5.20). Suppose
that E ⊂ H is a bounded, open, C1 set, and let R > 0 such that E ⊂ B(o, R).
Choose δ > 0 such that 2δ < dist(Ē, ∂B(o, R)), where dist(·, Ē) represents the
Euclidean distance from Ē. Define the (Euclidean) Lipschitz function

fδ(x) =
(

1− dist(x, Ē)
δ

)+

.
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Applying Proposition 5.17 to fδ we obtain

|E| 34 ≤
∣∣{x ∈ B(o, R) : fδ(x) > t}

∣∣ 3
4

≤ C

t

∫
B(o,R)

|∇0fδ(y)| dy
(7.2)

for each t < 1. Let Aδ be the intersection of B(o, R) with a tubular neighborhood
of E of radius δ. From (7.2) and the co-area formula (see for instance [95, Theorem
3.2.3]), we obtain

|E|3/4 ≤ C

tδ

∫
Aδ

|∇0 dist(y, Ē)| dy;

letting t→ 1 yields

|E|3/4 ≤ C

δ

∫ δ

0

∫
{y∈B(o,R):dist(y,Ē)=s}

|∇0 dist(·, Ē)|
|∇dist(·, Ē)| dHn−1 ds,

where dHn−1 denotes the n−1-dimensional Hausdorff measure with respect to the
background Euclidean metric. The proof of (7.1) is concluded once we let δ → 0
and recall Corollary 5.8.

7.2 Isoperimetric inequalities in Hadamard manifolds

Pansu’s proof of Theorem 7.1 is based on ideas of Croke [74]. In this section, we
sketch the main lines of Croke’s proof of the inequality

Vol(∂Ω) ≥ C Vol(Ω)(n−1)/n, (7.3)

for any domain Ω in a simply connected n-manifold M with non-positive sectional
curvature. Here C denotes a positive constant depending only on n.

We begin by fixing some notation. We denote by UM |∂Ω the unit tangent
bundle of M restricted to ∂Ω. We denote vectors in UM as w = (x, v) where
x ∈ M and v ∈ TxM . For x ∈ ∂Ω, we denote by �n the inward pointing unit
normal to ∂Ω at x. Given a point x ∈ Ω and a vector v ∈ UxΩ, let r �→ γ(x,v)(r)
be the unit speed geodesic starting at x with initial tangent vector v. Finally, let
ξr
x(v) = (γ(x,v)(r), γ′

(x,v)(r)) be the geodesic flow.
Now, for (x, v) ∈ UΩ, we set

l(x, v) = sup{t | γ(x,v)(t) ∈ Ω}.

In other words, l(x, v) is the first time when γ(x,v)(t) exits Ω (see Figure 7.1 for
an illustration). Next, let

l̃(x, v) = sup{t ≤ l(x, v) | γ(x,v) minimizes up to t}.
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x

Ω

l(x,v)
ξ (v)

n

v

An illustration of l(x, v)

Figure 7.1: Illustration of Pansu’s approach.

If we denote by Cut(x, v) the distance from x to the cut locus of x along γ(x,v),
then l̃(x, v) ≤ Cut(x, v). We next define well-behaved subsets of the unit tangent
bundle

ŨM = {(x, v) ∈ UM |l̃(x, v) = l(x, v)}
and

U+∂Ω = {(x, v) ∈ UM |∂Ω|〈〈v, �n〉〉x ≥ 0}
where �n denotes the unit outer normal to ∂Ω in M and 〈〈·, ·〉〉 is the Riemannian
metric on M .

The proof of (7.3) is based on Santaló’s formula: if f : UM → R is an
integrable function, then∫

ŨM|Ω
f(x, v) dx dv =

∫
U+∂Ω

∫ l̃(x,v)

0

f(ξr
x(v))dr〈〈v, �n〉〉(x) dx dv. (7.4)

In particular, for f = 1, we have

ωn−1 Vol(Ω) ≥ Vol(ŨM |Ω) =
∫

U+∂Ω

l̃(x, v)〈〈v, �n〉〉 dv dx (7.5)

where (x, v) ∈ UM |∂Ω and ωn−1 denotes the surface area of Sn−1 ⊂ Rn. If we
define the density F (w, r) for w ∈ UM and 0 ≤ r < Cut(w) by the formula

Vol(M) =
∫

UM(x)

∫ Cut(w)

0

F (w, r) dr dw, (7.6)

then ∫ l

0

∫ l−τ

0

F (ξτ
x(v), z) dz dτ ≥ C(n)

ln+1

πn+1
(7.7)
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for any x ∈ ∂Ω, v ∈ UxM and l ≤ Cut((x, v)), where C(n) = πα(n)
2α(n−1) and α(n)

is the volume of the unit n-sphere. The validity of (7.3) is a consequence of (7.4)
and (7.7), and is sketched in the following chain of inequalities. For any x ∈ ∂Ω,

Vol(Ω)2 =
∫

Ω

∫
UM(x)

∫ Cut((x,v))

0

F ((x, v), r) dr dv dx

≥
∫

Ω

∫
ŨxM

∫ Cut((x,v))

0

F ((x, v), r) dr dv dx

≥
∫

ŨM|Ω

∫ l̃(x,v)

0

F ((x, v), t) dt dx dv,

by the definition of l̃

=
∫

U+∂Ω

∫ l̃(x,v)

0

∫ l̃(ξs
x(v))

0

F (ξs
x(v), t)〈〈v, �n〉〉 dt ds dx dv,

from Santaló’s formula (7.4)

≥
∫

U+∂Ω

[ ∫ l̃(x,v)

0

∫ l̃(x,v)−s

0

F (ξs
x(v), t) dt ds

]
〈〈v, �n〉〉 dx dv,

because l̃(ξs
x(v)) ≥ l̃(x, v)− s

≥ C

∫
U+∂Ω

l̃(x, v)n+1〈〈v, �n〉〉 dx dv,

from (7.7)

≥ C

(∫
U+∂Ω

l̃(x, v)〈〈v, �n〉〉 dx dv

)n+1

(∫
U+∂Ω

〈〈v, �n〉〉 dx dv

)n ,

by Hölder’s inequality. From this calculation and (7.5) we deduce

Vol(Ω)2
(∫

U+∂Ω

〈〈v, �n〉〉 dx dv

)n

≥ C

(∫
ŨM|∂Ω

l̃(x, v)〈〈v, �n〉〉 dx dv

)n+1

= C Vol(ŨM |Ω)n+1 ≥ C Vol(Ω)n+1.

(7.8)

In addition, ∫
U+∂Ω

〈〈v, �n〉〉 dx dv ≤
∫

U+∂Ω

dx dv =
1
2
ωn−1 Vol(∂Ω). (7.9)

The isoperimetric inequality (7.3) is a direct consequence of (7.8) and (7.9).
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7.3 Pansu’s proof of the isoperimetric inequality in H

In this section, we illustrate how Pansu adapts Croke’s argument to the Heisenberg
group. Let Ω ⊂ H be a smooth open set and denote by νH the horizontal normal to
∂Ω as defined in (4.9). For all x ∈ ∂Ω and θ ∈ [0, 2π) denote by e i θ the horizontal
vector field cos θX1(x) + sin θX2(x), and define the first exit time

r(x, θ) = sup{r > 0| exp(te i θ) ∈ Ω}.

The first step in Pansu’s argument consists in proving the following Santaló-type
formula:

2π|Ω| =
∫

∂Ω

∫ 2π

0

r(x, θ)〈e i θ, νH〉1dθdµ(x), (7.10)

where µ is the perimeter measure defined in Corollary 5.8.
For any point x ∈ H we define its canonical section Σx to be the set of

horizontal lines through x. In other words, if sx : R
2 → H denotes the section

sx(a, b) = x exp(aX1 + bY1),

then Σx = sx(R2). In our presentation of the Heisenberg group, Σx is a plane with
(Euclidean) normal vector in the direction (−a/2, b/2,−1) where x = (a, b, c).
Choose polar coordinates (r, θ) in R2 centered at the point z, the projection of x
onto R2. Then we can pull back the perimeter measure dµ through sx to a measure
in R2 given by

s∗x(dµ) =
1
2
r2 dr ∧ dθ. (7.11)

Proposition 7.2. Let D ⊂ R2 be a smooth, bounded open set and let V ⊂ H be a
smooth surface with boundary so(∂D). Then

µ(V ) ≥ µ(so(D)).

Proof. The set so(D) is foliated by horizontal lines, hence has mean curvature zero
at all points. Consequently it is a sub-Riemannian minimal surface (see Section
4.3 for more details) and hence is a critical point for the perimeter variation. A
calibration argument shows that so(D) is a true minimizer. �

Define the open subset of Σx which is visible from the point x:

Px = {x exp(ρe i θ) |x exp(te i θ) ∈ Ω for all 0 < t < ρ }.

We remark that Σx divides ∂Ω in two connected components whose boundaries
coincide with ∂Px.
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We call these components V1 and V2, so that

µ(∂Ω) = µ(V1) + µ(V2). (7.12)

Lemma 7.3. In the notation established above,∫
∂Ω

∫ 2π

0

r(x, θ) dθ dµ(x) = 2
∫

∂Ω

∫
Px

ρ−2 dµ dµ(x).

Proof. Denote by (ρ, φ) the coordinates in Σx ⊂ H induced by the polar coordi-
nates (r, θ) ∈ R2. From the definition of Px and (7.11) we have∫ 2π

0

r(x, θ) dθ =
∫

∂Px

ρdφ =
∫

Px

d(ρdφ)

=
∫

Px

dρ ∧ dφ = 2
∫

Px

1
ρ2

dµ.

An integration over ∂Ω with respect to µ completes the proof. �
Lemma 7.4. In the notation established above,∫

Px

ρ−2 dµ ≤ (3π2)1/3µ(Px)1/3. (7.13)

Proof. To simplify the derivation, we pull back to the plane via the horizontal
section map sx : R2 → Σx. Then (7.13) reads

1
2

∫
D

1
|x| dx ≤ (3π2)1/3

(
1
2

∫
D

|x| dx

)1/3

,

where D = s−1
x (Px), i.e.,∫

D

1
|x| dx ≤ (12π2)1/3

(∫
D

|x| dx

)1/3

. (7.14)

Let B(o, R) be a disc with area |D|. To obtain (7.14), we estimate∫
D

1
|x| dx ≤

∫
B(o,R)

1
|x| dx = 2πR

= (12π2)1/3

(∫
B(o,R)

|x| dx

)1/3

≤ (12π2)1/3

(∫
D

|x| dx

)1/3

by two applications of Lemma 7.5. This completes the proof of Lemma 7.4. �
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Lemma 7.5. If B(o, R) is a ball in Rn with volume |D|, and h : [0,∞)→ [0,∞) is
increasing, then ∫

D

h(|x|) dx ≥
∫

B(o,R)

h(|x|) dx.

If h is decreasing then the inequality is reversed.

Proof. Since |B(o, R) \D| = |D \B(o, R)|, we have∫
D\B(o,R)

h(|x|) dx ≥ h(R)|D \B(o, R)|

= h(R)|B(o, R) \D|

≥
∫

B(o,R)\D

h(|x|) dx.

Now add
∫

D∩B(o,R)
h(|x|) dx to both sides. �

Lemma 7.6. In the notation established above,∫
∂Ω

µ(Px)1/3dµ ≤ 2−1/3µ(∂Ω)4/3.

Proof. From Proposition 7.2 and from (7.12) we see that

2µ(Px) ≤ µ(V1) + µ(V2) = µ(∂Ω).

An integration over ∂Ω with respect to µ completes the proof. �

A proof of the isoperimetric inequality in H can now be obtained from (7.10)
and Lemmata 7.3–7.6 via the following string of estimates:

2π|Ω| =
∫

∂Ω

∫ 2π

0

r(x, θ)〈e i θ, νH〉1 dθ dµ(x)

≤
∫

∂Ω

∫ 2π

0

r(x, θ) dθ dµ(x)

= 2
∫

∂Ω

∫
Px

ρ−2dµdµ

≤ 2(3π2)1/3

∫
∂Ω

µ(Px)1/3 dµ

≤ (12π2)1/3µ(∂Ω)4/3

or
|Ω|3/4

PH(Ω)
≤
(

3
2π

)1/4

. (7.15)
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7.4 Notes

The approach to the isoperimetric inequality via the geometric Sobolev inequal-
ity goes back to the work of Fleming and Rishel [97], see also Maz’ya [197]. The
sub-Riemannian case was proved independently in [53], [104] for Hörmander vec-
tor fields and more general structures, and [35] in the setting of Dirichlet forms.
Pansu’s proof of the isoperimetric inequality appeared in his 1982 paper [217],
see also [219]. For the argument of Croke, see [74]; Santaló’s formula (7.4) can be
found in his textbook on integral geometry [237]. An extension of Santaló’s formula
(7.10) to all Carnot groups can be found in [200]. A different sharp isoperimetric
inequality in Hadamard manifolds (comparing with model space forms) has been
given by Kleiner [163].



Chapter 8

The Isoperimetric Profile of H

This chapter is the core of this survey. We recall the definition of isoperimetric
profile of H and Pansu’s 1982 conjecture. Next we present a proof of the existence
of an isoperimetric profile and describe some of the existing literature on the
isoperimetric problem. Our aim is to reveal the main ideas and outlines of the
proofs of various partial results and sketch some further techniques and methods
which may lead to a solution, in order to guide the reader through the literature
and to give a sense of the larger ideas that are in play.

8.1 Pansu’s conjecture

The isoperimetric constant of the Heisenberg group is the best constant Ciso(H)
for which the isoperimetric inequality

min{|Ω|3/4, |H \ Ω|3/4} ≤ Ciso(H)PH(Ω) (8.1)

holds. In other words,

Ciso(H) = sup
Ω

min{|Ω|3/4, |H \ Ω|3/4}
PH(Ω)

, (8.2)

where the supremum is taken on all Caccioppoli subsets of the Heisenberg group.
In a dual manner we could define the isoperimetric constant of H as the value(

inf{PH(E) : E ⊂ H is a bounded Caccioppoli set and |E| = 1}
)−1

. (8.3)

We also define the isoperimetric profile.

Definition 8.1. An isoperimetric profile for H consists of a family of bounded
Caccioppoli sets Ωprofile = Ωprofile(V ), V > 0, with |Ωprofile(V )| = V and

|Ωprofile|3/4 = Ciso(H)PH(Ωprofile).
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The invariance and scaling properties of the Haar measure and perimeter
measure clearly imply that the sets comprising the isoperimetric profile are closed
under the operations of left translation and group dilation. In [219], Pansu con-
jectured that any set in the isoperimetric profile of H is, up to translation and
dilation, a bubble set B(o, R). Recall from Section 2.3 that B(o, R) is obtained by
rotating around the x3-axis a geodesic joining two points at height ±πR2/2. More
precisely, these cylindrically symmetric surfaces have profile curve

x3 = fR(r) = ±1
4
(r
√

R2 − r2 + R2 arccos r/R).

Setting u(x) = fR(|z|)− x3, x = (z, x3), we easily compute

|B(o, R)| = 4π

∫ R

0

rf(r) dr =
3
16

π2R4 (8.4)

and

PH(B(o, R)) = 2
∫

B(o,R)

|∇0u| = 4π

∫ R

0

r
√

f ′(r)2 + r2/4 dr =
1
2
π2R3,

yielding the following conjecture for the value of the Heisenberg isoperimetric
constant and the isoperimetric profile.

Conjecture 8.2 (Pansu).

Ciso(H) =
|B(o, R)|3/4

PH(B(o, R))
=

33/4

4
√

π
(8.5)

for any R, and equality is obtained if and only if Ω is a bubble set.1

We take this opportunity to reiterate the fact that Pansu’s conjecture is still
unsolved in this generality, although numerous partial results and special cases
have been established over the years.

The isoperimetric problem for Minkowski content may be formulated as fol-
lows: determine the value of

min{M3(∂E) : E ⊂ H is bounded, |E| = 1}. (8.6)

Proposition 6.17 shows that the minima in (8.6) and in (8.3) coincide when the
class of competitors is restricted to sets with C2 boundary. (In Section 8.5 we
sketch an argument verifying Pansu’s conjecture in this category.) As we shall see,
it is not currently known if the isoperimetric profile sets in H have C2 boundary.
However, the expression

inf{M3(∂E) : E ⊂ H is bounded, |E| = 1} (8.7)

is equal to the isoperimetric constant of H.
1Compare the conjectured value for Ciso(H) with the (nonsharp) value obtained in (7.15).
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Overview of the chapter. The first portion of this chapter is devoted to describing
evidence supporting Pansu’s conjecture culminating, in Sections 8.5 and 8.6, with
affirmative answers in the C2, respectively convex, category. It is important to
note that none of the machinery necessary to analyze variational problems of
this sort existed at the time when the conjecture was proposed. The development
of such machinery beginning in the late 1990s was instrumental in laying the
groundwork needed for potential approaches to, and partial results for, this and
related conjectures.

In Section 8.2, we present an important result of Leonardi and Rigot asserting
the existence of an isoperimetric profile in any Carnot group, and demonstrating
weak regularity (i.e., Ahlfors-type regularity and interior and exterior corkscrew
condition, see [176, Definition 2.10]) for the constituent sets. As we saw in Chapter
6, the study of sub-Riemannian geometric measure theory is still in its infancy and,
in particular, there is not sufficient infrastructure to bootstrap further regularity
properties of the solution. This motivates the introduction of a substantial, yet
useful, restriction to the class of C2 surfaces. Under this smoothness assumption,
we show, in Section 8.3, that the isoperimetric sets have constant horizontal mean
curvature and, as a consequence, have particularly nice parametrizations. This
allows for an analysis of the isoperimetric in this class via two different methods.
First, one may use the link to sub-Riemannian constant mean curvature surfaces
to introduce the methods of geometric partial differential equations. Second, the
techniques of Riemannian geometric analysis of constant mean curvature surfaces
may be adapted.

In Section 8.4, we present a result of Danielli, Garofalo and Nhieu showing
the validity of Pansu’s conjecture under an extra symmetry and C1 smoothness
assumption. In Section 8.5, we sketch the proof of a recent ground-breaking result
of Ritoré and Rosales (Theorem 8.23) which allows for the removal of the symme-
try assumption, showing that the isoperimeteric profile in the class of closed C2

surfaces is indeed given by the class of bubble sets. The results in Section 8.5 rest
heavily on the work of Cheng, Hwang, Malchiodi and Yang presented in Sections
4.4.1 and 4.4.2. In Section 8.6 we present a very recent result of Monti and Rickly,
where Pansu’s conjecture is proved with no smoothness assumptions but in the
class of (Euclidean) convex sets. This sequence of results provides strong evidence
for the validity of Pansu’s original conjecture.

In Section 8.7, we present three other possible approaches to the isoperimet-
ric problem which either fail or are in some way incomplete. In Section 8.7.1, we
present an approach based on Riemannian approximation. Using work of Tomter
which classifies cylindrically symmetric constant mean curvature surfaces in the
Riemannian Heisenberg group, one can analyze the evolution of these surfaces in
(R3, gL) as L → ∞. While one recovers the bubble sets as L tends to infinity,
the method is incomplete as it requires finer information concerning the limit-
ing process than is currently available. In Section 8.7.2, we present an analog to
the well-known approach to isoperimetry through the Brunn–Minkowski theorem,
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and discuss the obstruction to implementing such a scheme in the sub-Riemannian
case. Last, in Section 8.7.3, we discuss motion by horizontal mean curvature flow
in H which could potentially be used to understand the isoperimetric profile. The
concluding Section 8.8 discusses two related results: Monti and Morbidelli’s com-
putation of the isoperimetric profile of the Grushin plane, and Ritoré and Rosales’
classification of C2 rotationally symmetric constant mean curvature surfaces in Hn.

8.2 Existence of minimizers

In this section we establish the existence of an isoperimetric profile. Although our
exposition is in the Heisenberg group, the result continues to hold in the setting
of general Carnot groups.

Theorem 8.3 (Leonardi–Rigot). The Heisenberg group H admits an isoperimetric
profile. More precisely, for any V > 0, there exists a bounded set Ω ⊂ H with finite
perimeter so that |Ω| = V and

|Ω|3/4 = Ciso(H)PH(Ω).

The proof of this theorem follows classical lines. One considers a sequence of
sets Ωi ⊂ H with |Ωi| = 1 whose isoperimetric ratios

Ci =
|Ωi|3/4

PH(Ωi)
=

1
PH(Ωi)

converge to Ciso(H) as i → ∞ and examines the existence and properties of a
subconvergent limit. It suffices to show that

(1) the sequence (Ωi) subconverges to a set Ω∞, and
(2) |Ω∞| = 1.

Step (1) requires an extension of some additional techniques from Euclidean
geometric measure theory to the Heisenberg setting, in particular, the following
compactness theorem.

Theorem 8.4 (Garofalo–Nhieu). Let (Ωi) be a sequence of measurable sets so that

sup
i

PH(Ωi) <∞.

Then (Ωi) subconverges in L1
loc(H) to a measurable set Ω∞ with finite perimeter.

Proof. In view of Lemma 5.23, we can apply Theorem 5.24 to either Ω = B(x, R)
or Ω = BH(x, R). If (Ωi) is a sequence of Caccioppoli sets as in the statement of
Theorem 8.4, then the functions fi = χΩi∩Ω lie in BV (Ω) and

||fi||BV (Ω) ≤ |B(x, R)|+ PH(Ωi, Ω) ≤M <∞.
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In view of Theorem 5.24 one can find f∞ ∈ BV (Ω) such that fi → f∞ in L1(Ω).
Considering pointwise convergence, we see that f∞ = χΩ∞ for some set Ω∞ ⊂
Ω. Since f∞ ∈ BV , Ω∞ is of finite perimeter. The lower semi-continuity of the
perimeter functional with respect to L1

loc convergence guarantees that PH(Ω∞) ≤
M . This completes the proof of Theorem 8.4. �

Concentration-compactness. The compactness result of Theorem 8.4 guarantees
the existence of the limit set Ω∞. The bulk of the proof of Theorem 8.3 focuses
on step (2). A “concentration-compactness”argument prevents the possibility that
the sets Ωi become very thin, spread out, and in the limit lose volume at infinity.
Indeed, for each member of the sequence, a fixed amount of volume must lie within
a ball of radius 1.

Lemma 8.5. Let ωH = |B(o, 1)|, and let A be a set with 0 < |A| < ∞ and 0 <
PH(A) < ∞. Assume that m ∈ (0, ωH/2) is such that |A ∩ B(x, 1)| < m for all
x ∈ H. Then there exists a constant c > 0 so that

c

(
|A|

PH(A)

)4

≤ m. (8.8)

Proof. We sketch the proof. Let S be a maximal set of points in H with pairwise
mutual distance at least 1

2 and satisfying |A∩B(x, 1/2)| > 0 for all x ∈ S. By the
maximality of S, we have ∣∣∣∣∣A \ ⋃

x∈S
B(x, 1)

∣∣∣∣∣ = 0.

Then,

|A| ≤
∑
x∈S
|A ∩B(x, 1)|

=
∑
x∈S
|A ∩B(x, 1)| 14 |A ∩B(x, 1)| 34

≤ m
1
4

∑
x∈S
|A ∩B(x, 1)| 34

≤ Cm
1
4

∑
x∈S

PH(A, B(x, 1)).

The third line follows from the hypothesis concerning m and the last line fol-
lows from the relative isoperimetric inequality for balls (Lemma 5.26). Rearranging
the final inequality yields the claim. �

Using this lemma, we sketch the proof of Theorem 8.3. Consider a minimizing
sequence {Ωi} satisfying |Ωi| = 1 and

PH(Ωi) ≤ Ciso(H)−1

(
1 +

1
i

)
. (8.9)
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Lemma 8.5 guarantees that we can pick xi ∈ Ωi so that

|Ωi ∩B(xi, 1)| ≥ m0

for some absolute constant m0 > 0. Indeed, if no such constant existed, then (8.8)
would violate the existence of Ciso(H). Right translating each Ωi by xi, we may
assume that Ωi contains the origin and that

|Ωi ∩B(o, 1)| ≥ m0. (8.10)

Theorem 8.4 assures the existence of Ω∞ and lower semi-continuity of the perime-
ter yields

PH(Ω∞) ≤ lim inf
i→∞

PH(Ωi) ≤ Ciso(H)−1.

The choice of m0 implies

m0 ≤ lim
i→∞

|Ωi ∩B(o, 1)| = |Ω∞ ∩B(o, 1)|

and lower semi-continuity implies

|Ω∞| ≤ lim inf
i→∞

|Ωi| ≤ 1.

Taking all of this together yields

m0 ≤ |Ω∞| ≤ 1.

We claim that Ω∞ is essentially bounded. Indeed, suppose that |Ω∞∩B(o, r)| < 1
for some r ≥ 2; we will show that r ≤ R0 for some absolute constant R0 < ∞.
Then |Ω∞ ∩B(o, R0)| = 1 whence Ω∞ is essentially bounded.

To prove the claim, introduce mi(ρ) = |Ωi ∩ B(o, ρ)| and m∞(ρ) =
|Ω∞ ∩B(o, ρ)|. By assumption, m∞(r) < 1. Using the standard relation between
the (local) perimeter and the rate of change of the (local) volume of a set, we find

mi(ρ)3/4 ≤ Ciso(H)PH(Ωi ∩B(o, ρ)) ≤ Ciso(H) (PH(Ωi, B(o, ρ)) + m′
i(ρ)) (8.11)

and
(1−mi(ρ))3/4 ≤ Ciso(H)

(
PH(Ωi, H \B(o, ρ)) + m′

i(ρ)
)

(8.12)

for almost every ρ > 0. Using (8.9) we deduce

mi(ρ)3/4 + (1 −mi(ρ))3/4 ≤ Ciso(H) (PH(Ωi) + 2m′
i(ρ))

≤ 1 +
1
i

+ 2Ciso(H)m′
i(ρ)

(8.13)

for almost every ρ > 0.
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Let Φ(x) = x3/4 + (1 − x)3/4 − 1 and ε = min{m0, (1 − m∞(r))/2}. For
sufficiently large i and all x ∈ [ε, 1 − ε], we have mi(r) ≤ (1 + m∞(r))/2 and
Φ(x) ≥ 1

i . Since
ε ≤ mi(1) ≤ mi(ρ) ≤ mi(r) ≤ 1− ε

for all such i and all 1 ≤ ρ ≤ r (see (8.10)), we may rewrite the differential
inequality (8.13) in the form

1 ≤ C
m′

i(ρ)
Φ(mi(ρ))− 1

i

, a.e. ρ ∈ [1, r].

Integrating from r/2 to r gives

r

2
≤ C

∫ r

r/2

m′
i(ρ) dρ

Φ(mi(ρ)) − 1
i

= C

∫ mi(r)

mi(r/2)

dx

Φ(x) − 1
i

≤ C

∫ 1−ε

ε

dx

Φ(x) − 1
i

→ C

∫ 1

0

dx

Φ(x)
<∞

as i→∞. The conclusion holds with R0 = 2C
∫ 1

0 Φ(x)−1 dx.
As observed above, this argument shows that the isoperimetry extremals Ω∞

are essentially bounded. To pass from essential boundedness to boundedness re-
quires additional regularity properties, namely, Ahlfors regularity of the boundary.
See the notes to this section for further discussion of these and other properties of
the isoperimetric subsets of H.

8.3 Smooth isoperimetric profiles have constant
horizontal mean curvature

In this section we prove that if the isoperimetric profile of H is C2 smooth, then it
necessarily has constant horizontal mean curvature away from the characteristic
set. The proof is based on the first variation for the perimeter, with an additional
volume constraint.

Proposition 8.6. Let Ω ⊂ H be a bounded open set enclosed by an oriented C2

immersed surface S with g1-Riemannian normal ν1. Denote by dµ the perimeter
measure defined in Corollary 5.8, and by H0 the horizontal mean curvature of S.
If S is volume-preserving and perimeter stationary, then

H0 = (H0)S :=

∫
S H0dµ

PH(S)
in S \ Σ(S). (8.14)

Proof. We use Lagrange multipliers and for fixed V > 0 consider the functional

A(Ω) = PH(S)− b(Ω)
(
|Ω| − V

)
,
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where the Lagrange multiplier b is a function of Ω. Critical points of A(Ω) are
volume-preserving and perimeter stationary. Variations t→ A(Ωt) along a vector
field U = aνH with a ∈ C∞

0 (S \ Σ(S)) give∫
S

(
H0 − b

)
adµ− (|Ω| − V )

∫
S

d

dt
b(Ωt)|t=0 dµ = 0,

and |Ω| = V . From the latter we have∫
S

(
H0 − b

)
adµ = 0 for all a ∈ C∞

0 (S \ Σ(S)).

The fundamental theorem of the calculus of variations [121] guarantees thatH0 = b
is constant in S \ Σ(S), hence completing the proof of (8.14). �

In the proof we have used the following elementary result, stated here for the
reader’s convenience.

Lemma 8.7. If S ⊂ H is a C2 surface enclosing a bounded region Ω, then S is
volume-preserving and perimeter stationary if and only if S is a critical point of
the functional PH(S)−H(|Ω|−V ) for all variations supported in S \Σ(S) and for
some choice of H ∈ R.

Remark 8.8. We give an equivalent way of proving (8.14) based on the first vari-
ation formula (6.34). Using the notation introduced in Section 6.4.2, we consider
variations Ωt = φt(Ω) along a vector field U defined on S. The variation is volume-
preserving if

d

dt
|Ωt|

∣∣∣∣
t=0

=
∫

S

〈U, ν1〉1dσ = 0.

Thus u corresponds to a volume-preserving variation if and only if∫
S

u dσ = 0. (8.15)

As an aside, note that if U = aνH where a ∈ C∞
0 (S \ Σ(S)), then

∫
S

adµ = 0
if and only if the corresponding variation along U is volume-preserving (since
〈aνH , ν1〉1dσ = adµ). Inserting mean zero functions compactly supported away
from the characteristic locus into (6.34) and using the Riemannian divergence
theorem, we find that H0 = divS νH must be constant in S \ S(Σ).

We state without proof a related result which will be used in the following
sections.

Proposition 8.9 (Minkowski formula). There exists a positive constant C > 0 such
that if S ⊂ H is any C2 volume-preserving, perimeter stationary surface enclosing
a bounded region Ω, then PH(S) = CH0|Ω|, where H0 is the (constant) horizontal
mean curvature of S.
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We emphasize that the exact value of the constant C in Proposition 8.9
depends on our choice of metric in H adapted to the specific coordinate system
which we fixed in the beginning. Note also that the Minkowski formula has an
important corollary: The horizontal mean curvature (away from the characteristic
set) of a C2 volume-preserving, perimeter stationary surface, computed with respect
to the inner normal, is strictly positive.

8.3.1 Parametrization of C2 CMC t-graphs in H

The observation that C2 isoperimetric sets must have constant mean curvature in
the sub-Riemannian sense points towards a possible approach to the isoperimetric
problem: the classification of sub-Riemannian constant mean curvature (CMC)
surfaces. As shown in Proposition 4.24, the horizontal curves foliating a constant
mean curvature surface must be lifts of circles. We can parameterize surfaces
of constant mean curvature in the Heisenberg group using this observation. To
ensure the simplest and cleanest presentation, we restrict our attention to C2

CMC(ρ) surfaces in H which are t-graphs, i.e., graphs over the complex plane C.
We note that this is not particularly restrictive as the candidates for solutions to
the isoperimetric problem are graphs over C for most points on the surface.

So assume that S is a CMC(ρ) surface in H given as the graph of a C2 function
over a domain Ω ⊂ C. By the observation in Lemma 4.24, S must be foliated by
horizontal lifts of circles. We can create an adapted parametrization of Ω, using
circles in C as one parameter and picking a second parameter by specifying an arc
length parameterized curve γ which is perpendicular to the foliation by circles at
each point. More precisely, consider the parametrization

F (s, r) =
(

γ1(s) + γ′
1(s)

1 − cos(ρr)
ρ

+ γ′
2(s)

sin(ρr)
ρ

,

γ2(s) + γ′
2(s)

1 − cos(ρr)
ρ

− γ′
1(s)

sin(ρr)
ρ

) (8.16)

of the domain Ω. The curve γ is called a seed curve for S, following earlier nomen-
clature in the setting of minimal surfaces. If we are considering embedded surfaces,
a seed curve is a smooth properly embedded planar curve. A quick inspection shows
that this parametrization is not always a local diffeomorphism:

detDF

=det

⎛⎝γ′
1(s)+γ′′

1 (s)1−cos(ρr)
ρ +γ′′

2 (s) sin(ρr)
ρ γ′

2(s)+γ′′
2 (s)1−cos(ρr)

ρ −γ′′
1 (s) sin(ρr)

ρ

γ′
1(s)sin(ρr)+γ′

2(s)cos(ρr) γ′
2(s)sin(ρr)−γ′

1(s)cos(ρr)

⎞⎠
=−cos(ρr)+κ(s)

sin(ρr)
ρ

, (8.17)



160 Chapter 8. The Isoperimetric Profile of H

where κ is the curvature. In this computation, we take advantage of the facts
that 〈γ′, γ′′〉(s) = 0 and κ(s) = 〈γ′′, (γ′)⊥〉(s). We use also the convention v⊥ =
(v2,−v1) for v = (v1, v2). The parametrization in (8.17) ceases to be a local dif-
feomorphism at

r =
1
ρ

arccot
(

κ(s)
ρ

)
.

We remark that taking the limit as ρ→ 0 yields the locus

r =
1

κ(s)
(8.18)

in the case of sub-Riemannian minimal surfaces.
Next, we lift this parametrization of Ω to a parametrization of S in H:

(F (s, r), h(s, r)).

Recalling that the circles, F (s0, r), must lift to horizontal curves, we investigate
the form that h must take. Computing the derivative yields

Fr(s, r) = (γ′
1(s) sin(ρr) + γ′

2(s) cos(ρr)) X1 + (γ′
2(s) sin(ρr) − γ′

1(s) cos(ρr)) X2

+
(

hr(s, r) −
1
2
〈γ, (γ′)⊥〉(s) sin(ρr) +

1
2
〈γ, γ′〉 cos(ρr) − 1− cos(ρr)

ρ

)
X3.

(8.19)

As F (s0, r) must be a horizontal curve, we have

hr(s, r) =
1
2
〈γ, (γ′)⊥〉(s) sin(ρr) − 1

2
〈γ, γ′〉 cos(ρr) +

1− cos(ρr)
ρ

.

Integrating from 0 to r gives

h(s, r) = h0(s) +
1
2
〈γ, (γ′)⊥〉(s)1− cos(ρr)

ρ
− 1

2
〈γ, γ′〉(s)sin(ρr)

ρ
+

r

ρ
− sin(ρr)

ρ2

(8.20)
with h0(s) = h(s, 0). We note that, taking the limit as ρ→ 0 yields the formula

h(s, r) = h0(s)−
1
2
〈γ, γ′〉(s)r (8.21)

in accordance with the known result for sub-Riemannian minimal surfaces.
Calculating the s derivative yields:

Fs(s, r) =
(

γ′
1(s) + γ′′

1 (s)
1− cos(ρr)

ρ
+ γ′′

2 (s)
sin(ρr)

ρ

)
X1 (8.22)

+
(

γ′
2(s) + γ′′

2 (s)
1− cos(ρr)

ρ
− γ′′

1 (s)
sin(ρr)

ρ

)
X2

+
(

h′
0(s)−

sin(ρr)
ρ

− 1
2
〈γ, (γ′)⊥〉+ 1− cos(ρr)

ρ2
κ(s))

)
X3.
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Note that at a characteristic point both Fs and Fr must be horizontal. Thus the
characteristic locus is {Σ(s, r) = 0}, where

Σ(s, r) = h′
0(s)−

sin(ρr)
ρ

− 1
2
〈γ, (γ′)⊥〉+ 1− cos(ρr)

ρ2
κ(s). (8.23)

We note that, as above, if we take the limit as ρ → 0, we recover the known
formula

h′
0(s)− r − 1

2
〈γ, (γ′)⊥〉+ 1

2
κ(s)r2 = 0 (8.24)

for the characteristic locus of a sub-Riemannian minimal surface.
So far, we have shown that every graphical CMC(ρ) surface has such a

parametrization in a neighborhood of each noncharacteristic point. In fact, the
existence of such parametrizations characterizes CMC(ρ) surfaces. To see this, we
will show that, given a choice of γ ∈ C2 and h0 ∈ C1, a patch of surface parame-
terized by (F (s, r), h(s, r)), (s, r) ∈ Ω, has constant mean curvature. We start by
computing the divergence of νH . From previous calculations,

Fr(s, r) = (γ′
1(s) sin(ρr) + γ′

2(s) cos(ρr)) X1

+ (γ′
2(s) sin(ρr) − γ′

1(s) cos(ρr)) X2

and

Fs(s, r) =
(

γ′
1(s) + γ′′

1 (s)
1 − cos(ρr)

ρ
+ γ′′

2 (s)
sin(ρr)

ρ

)
X1

+
(

γ′
2(s) + γ′′

2 (s)
1 − cos(ρr)

ρ
− γ′′

1 (s)
sin(ρr)

ρ

)
X2 + Σ(s, r)X3.

Computing the Riemannian normal and projecting to the horizontal bundle give
a nonunit horizontal normal vector:

(γ′
2(s) sin(ρr) − γ′

1(s) cos(ρr))Σ(s, r) X1

− (γ′
1(s) sin(ρr) + γ′

2(s) cos(ρr))Σ(s, r) X2.

Normalizing gives the unit horizontal normal:

νH = (γ′
2(s) sin(ρr) − γ′

1(s) cos(ρr)) X1

− (γ′
1(s) sin(ρr) + γ′

2(s) cos(ρr)) X2.

To simplify notation, let

p = (γ′
2(s) sin(ρr)− γ′

1(s) cos(ρr))

and
q = −(γ′

1(s) sin(ρr) + γ′
2(s) cos(ρr)).
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Note that
p2 + q2 = 1. (8.25)

Then

div νH =
∂

∂x1
p +

∂

∂x2
q

= ps

∂s

∂x1
+ pr

∂r

∂x1
+ qs

∂s

∂x2
+ qr

∂r

∂x2

= ps

(F2)r

det DF
− pr

(F2)s

det DF
− qs

(F1)r

det DF
+ qr

(F1)s

det DF

(8.26)

since (x1, x2) = F (s, r). A direct computation shows that

(F2)r = γ′
2(s) sin(ρr)− γ′

1(s) cos(ρr) = p,

(F1)r = γ1(s) sin(ρr) + γ′
2(s) cos(ρr) = −q,

−(F2)s = −γ′
2(s)− γ′′

2 (s)
1− cos(ρr)

ρ
+ γ′′

1 (s)
sin(ρr)

ρ
,

(F1)s = γ′
1(s) + γ′′

1 (s)
1 − cos(ρr)

ρ
+ γ′′

2 (s)
sin(ρr)

ρ
.

(8.27)

Evaluating (8.26) using (8.17), (8.25) and (8.27) gives

div νH =
1

det DF
(psp + ρq(F2)s + qsq + ρp(F1)s)

=
1

det DF
(ρq(F2)s + ρp(F1)s) = ρ.

(8.28)

To summarize, we have the following theorem:

Theorem 8.10. If S ⊂ H is a C2 graph over a set Ω ⊂ R2 with empty characteristic
locus, then S is CMC(ρ) if and only if for each x0 ∈ S, there is a neighborhood of
x0, a seed curve γ(s), and a height function h(s, r), so that

S = (F (Ω), h(Ω)),

where F and h are given in (8.16) and (8.20), respectively.

8.4 Existence and characterization of minimizers
with additional symmetries

In this section we describe some results on the characterization of minimizers for
the isoperimetric ratio in special classes of domains having suitable symmetry
and regularity properties. To set the stage, we introduce the half-spaces H+ =
{(z, x3) ∈ H : x3 > 0} and H− = {(z, x3) ∈ H : x3 < 0} and consider the
collection

E = {E ⊂ H : E satisfies (i) and (ii)},
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where

(i) |E ∩H+| = |E ∩H−|, and
(ii) there exist R > 0, and functions u, v : BR → [0,∞), with u, v ∈ C1(BR) ∩

C(BR), u = v = 0 on ∂BR, and such that

∂E ∩H+ = {(z, x3) ∈ H+ : |z| < R, x3 = u(z)}
and ∂E ∩H− = {(z, x3) ∈ H− : |z| < R, x3 = −v(z)}.

Here, and throughout this section, we write BR = B((0, 0), R) for the ball of radius
R in R2.

Note that the upper and lower portions of a set E ∈ E can be described by
possibly different C1 graphs, and that, besides C1 smoothness, and the fact that
their common domain is a metric ball, no additional assumptions are made on the
functions u and v. The main result in this section characterizes the isoperimetric
sets within the class E .
Theorem 8.11 (Danielli–Garofalo–Nhieu). Let V > 0, and define R > 0 so that
V = |B(o, R)| (see 8.4). Then the variational problem

min
E∈E:|E|=V

PH(E)

has a unique solution in E given by the bubble set B(o, R).

We now present a step-by-step sketch of the proof of Theorem 8.11.

Step 1. First, we state without proof some invariance and symmetry properties of
the horizontal perimeter. Consider the map O : H→ H defined by

O(x1, x2, x3) = (x2, x1,−x3). (8.29)

It is easy to see that O preserves the Lebesgue measure. Noting that the map O
is an isometry of (H, d), it follows that it also preserves the horizontal perimeter:
PH(O(E)) = PH(E) for every piecewise C1 domain E ⊂ H with finite horizontal
perimeter. (Note that the reflection alone (x1, x2, x3) → (x1, x2,−x3) is not an
isometry of H and does not preserve the horizontal perimeter.)

Using a standard contradiction argument, we can establish the following sym-
metry result for isoperimetric sets whose intersection with the hyperplane {x3 = 0}
is a 2-dimensional ball.

Theorem 8.12. Let E ⊂ H be a bounded open set such that ∂E ∩H+ and ∂E ∩H−
are C1 hypersurfaces, and assume that E satisfies the following condition:

E ∩ {x3 = 0} = BR (8.30)

for some R > 0. Suppose E is an isoperimetric set satisfying |E∩H+| = |E∩H−| =
1
2 |E|. Then

PH(E; H+) = PH(E; H−).
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Step 2. We now consider a domain Ω ⊂ R2 and a C1 function u : Ω→ [0,∞). We
assume that E ⊂ H is a C1 domain enclosed by a t-graph, i.e., for which

E ∩H+ = {(z, x3) ∈ H : z ∈ Ω, 0 < x3 < u(z)}.

For z = (x1, x2) ∈ R2, we set z⊥ = (x2,−x1). Indicating by φ(z, x3) = x3 − u(z)
the defining function of E ∩H+, a simple computation gives

|∇0φ| =
√∣∣∣∂x1u +

x2

2

∣∣∣2 +
∣∣∣∂x2u−

x1

2

∣∣∣2 =
∣∣∣∣∇zu +

z⊥

2

∣∣∣∣ . (8.31)

Invoking the representation formula (5.2) for the horizontal perimeter yields

PH(E, H+) =
∫

∂E∩H+

|∇0φ|
|∇φ| dσ,

and keeping in mind that dσ = |∇φ| dx1 dx2, we obtain

PH(E, H+) =
∫

Ω

∣∣∣∣∇zu +
z⊥

2

∣∣∣∣ dx1 dx2 =
∫

Ω

√
|∇zu|2 +

1
4
|z|2 + 〈∇zu, z⊥〉 dx1 dx2.

(8.32)

Next, we introduce the relevant functional class for our problem. The class
of competing functions is defined as follows.

Definition 8.13. We let D denote the set of functions u ∈ C1,1
loc (BR) ∩W 1,1(BR)

for which there exists R > 0 so that u ≥ 0 in BR,

BR =
⋂
{BR+ρ : supp(u) ⊂ BR+ρ}.

We note explicitly that, if u ∈ D and R is as in Definition 8.13, then u = 0
on ∂BR. Furthermore, functions in D may have large zero sets, e.g., the graph of
such a function may touch the hyperplane x3 = 0 in sets of large measure. We
remark that D is not a vector space, nor is it a convex subset of V . We mention
that the requirement u ∈ C1,1

loc (BR) in the definition of the class D, is justified
by the following considerations. When we compute the Euler–Lagrange equation
of the functional (8.32) we need to know that, with Ω = BR, the singular set
Su = {z = (x1, x2) ∈ Ω ⊂ R2 : |∇zu(z) + z⊥

2 | = 0}, which is the projection of
the characteristic set of the graph of u (see (4.27)), has vanishing 2-dimensional
Lebesgue measure. This is guaranteed by Theorem 4.48.

Step 3. Following classical ideas from the calculus of variations, we next introduce
the admissible variations for the problem at hand, see [122] and [248].

Definition 8.14. Given u ∈ D, we say that φ ∈ V , with supp φ ⊆ supp u, is
D-admissible at u if u + λφ ∈ D for all λ ∈ R sufficiently small.

For u ∈ D we let

G[u] =
∫

supp(u)

u(z) dx1 dx2 =
∫

BR

u(z) dx1 dx2. (8.33)
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With (8.32) in mind, we define

J [u] =
∫

supp(u)

√
|∇zu|2 +

1
4
|z|2 + 〈∇zu, z⊥〉 dx1 dx2 (8.34)

for such u. Within the class of C1 graphs over R2, the isoperimetric problem
consists in minimizing the functional J [u] subject to the constraint G[u] = V ,
where V > 0 is given and BR is replaced by an a priori unknown domain Ω. We
emphasize that finding the section of the isoperimetric profile with the hyperplane
{x3 = 0}, i.e., finding the domain Ω, constitutes here part of the problem. Because
of the lack of an obvious symmetrization procedure, this seems a difficult question.
To avoid this obstacle, we restrict the class of domains by requiring that their
section with the hyperplane {x3 = 0} be a ball, i.e., we assume that, given E ∈ E ,
there exists R = R(E) > 0 such that Ω = BR. Under this hypothesis, one can
appeal to Theorem 8.12. The latter implies that it suffices to solve the following
variational problem: given V > 0, find R0 > 0 and uo ∈ D with supp(uo) = BR0

for which the following holds :

J [uo] = min
u∈D

J [u] and G[uo] =
V

2
. (8.35)

Step 4. Next, we reduce (8.35) to an unconstrained problem using an application
of the following standard version of the Lagrange multiplier theorem (see, e.g.,
Proposition 2.3 in [248]).

Proposition 8.15. Let D be a subset of a normed vector space V, and consider func-
tionals F , G1,G2,. . . ,Gk defined on D. Suppose there exist constants λ1, . . . , λk ∈
R, and uo ∈ D, such that uo minimizes

F + λ1 G1 + λ2 G2 + · · ·+ λkGk (8.36)

(uniquely) on D. Then uo minimizes F (uniquely) when restricted to the set

{u ∈ D : Gj [u] = Gj [uo], j = 1, . . . , k}.

The procedure of applying the above proposition when solving a problem of
the type

min
u∈D

F [u]

subject to the constraints G1[u] = V1, . . . ,Gk[u] = Vk, consists of two steps. First,
one shows that constants λ1, . . . , λk and a function uo ∈ D can be found so
that uo solves the Euler–Lagrange equation of (8.36), and uo satisfies G1[uo] =
V1, . . . ,Gk[uo] = Vk. Next, one proves that the solution uo of the Euler–Lagrange
equation is indeed a minimizer of (8.36). If the functional involved possesses ap-
propriate convexity properties, then one can show in addition that such minimizer
uo is unique.
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The constrained variational problem (8.35) is thus equivalent to the follow-
ing one without constraint (provided the parameter λ is appropriately chosen):
minimize the functional

J [u] =
∫

supp(u)

h(z, u(z),∇zu(z)) dx1 dx2

=
∫

supp(u)

{∣∣∣∣∇zu(z) +
z⊥

2

∣∣∣∣ + λu(z)
}

dx1 dx2,

(8.37)

over the set D introduced in Definition 8.13. It is easily recognized that the Euler–
Lagrange equation of (8.37) is

divz

⎡⎣ ∇zu + z⊥
2√

|∇zu|2 + |z|2
4 + 〈∇zu, z⊥〉

⎤⎦ = λ. (8.38)

Step 5. As we pointed out above, solving (8.38) on an arbitrary domain of Ω ⊂ R
2

is a difficult task. However, when Ω is a ball in R2, the equation (8.38) admits
a familiar class of spherically symmetric solutions. We note explicitly that for a
graph x3 = u(z) with spherical symmetry in z, the only characteristic points can
occur at the intersection of the graph with the x3-axis.

Theorem 8.16. Given R > 0, for every λ ∈ [−2/R, 0), equation (8.38) with Dirich-
let condition u = 0 on ∂BR, admits the cylindrically symmetric solution uR,λ ∈ D,
where

uR,λ(z) =
1
λ2

arccos
(

λ|z|
2

)
+
|z|
4λ

√
(4− (λ|z|)2 − CR,λ (8.39)

and

CR,λ =
1
λ2

arccos
(

λR

2

)
+

R

4λ

√
4− (λR)2. (8.40)

Regarding the regularity of the functions uR,λ, it suffices to consider the
upper half of the “normalized” candidate isoperimetric profile Eo ⊂ H, where ∂Eo

is the graph of the function x3 = uo(z), with uo = u1,−2. The characteristic locus
of Eo is {(0, 0,±π

8 )}. Unlike its Euclidean counterpart, the hypersurface So = ∂Eo

is not C∞ at the characteristic points (0, 0,±π
8 ). In fact, it is C2, but not C3, near

its characteristic locus Σ. However, So is C∞ (in fact, real-analytic) away from Σ.

One immediately obtains the following consequence.

Corollary 8.17. Let V > 0 be given, and define R > 0 so that V = |B(o, R)|. Let
λ = −2/R. Then equation (8.38), with the Dirichlet condition u = 0 on ∂BR,
admits the radially symmetric solution uR ∈ D ∩C2(BR), where

uR(z) =
R2

4
arccos

(
|z|
R

)
+
|z|
4

√
R2 − |z|2. (8.41)
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Furthermore, ∫
Ω

uR(z) dx1 dx2 =
1
2
V. (8.42)

At this point, recalling that (8.38) is the Euler–Lagrange equation of the
unconstrained functional (8.37), we deduce the following result.

Theorem 8.18. Let J and G be as in (8.34) and (8.33) respectively. Given V > 0
there exists R = R(V ) > 0 so that the function uo = uR in (8.41) is a critical
point on D of the functional J [u] subject to the constraint G[u] = V/2.

Step 6. Our next objective is to prove that the function uo in (8.41) is, first, a
global minimizer of the variational problem (8.35), and second, the unique global
minimizer. We will need some basic facts from the calculus of variations, which
we now recall.

Definition 8.19. Let V be a normed vector space, and D ⊂ V . Given a functional
F : D → R, u ∈ D, and if φ is D-admissible at u, one calls

δF(u; φ) def= lim
ε→0

F [u + εφ]−F [u]
ε

the Gâteaux derivative of F at u in the direction φ if the limit exists.

Definition 8.20. Let V be a normed vector space, and D ⊂ V . Consider a functional
F : D → R̄. F is said to be convex over D if for every u ∈ D, and every φ ∈ V
such that φ is D-admissible at u, and u + φ ∈ D, one has

F [u + φ]−F [u] ≥ δF(u; φ),

whenever the right-hand side is defined. We say that F is strictly convex if strict
inequality holds in the above inequality except when φ ≡ 0.

We then have the following result.

Theorem 8.21. Suppose F is convex and proper over a nonempty convex subset
D∗ ⊂ V (i.e., F �≡ ∞ over D∗), and suppose that uo ∈ D∗ is such that δF(uo; φ) =
0 for all φ which are D∗-admissible at uo (that is, uo is a critical point of the
functional F), then F has a global minimum in uo. If moreover F is strictly
convex at uo, then uo is the unique element in D∗ satisfying

F [uo] = inf
{
F [v] : v ∈ D∗} .

Our next goal is to adapt the above results to (8.35). Given V > 0 consider
the number R = R(V ) > 0 defined in Corollary 8.17, the corresponding fixed ball
BR, and the normed vector space V(R) = {u ∈ C(BR) : u = 0 on∂BR}. Let D(R)
be the collection of functions u ∈ V(R) with u ≥ 0, u ∈ C2(BR) ∩W 1,1(BR), and

BR =
⋂
{BR+ρ : supp(u) ⊂ BR+ρ}}.
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We note that D(R) is a nonempty convex subset of V(R), and that u = 0 on
∂BR for every u ∈ D(R). Consider the functional (8.37). Given u ∈ D(R) and φ
which is D(R)-admissible at u, in view of Theorem 4.48, we see that J is Gâteaux
differentiable at u in the direction of φ, and

δJ (u; φ) =
∫

B((0,0),R)

{
hu(z, u(z),∇u(z))φ(z) (8.43)

+ 〈∇ph(z, u(z),∇u(z)),∇φ(z)〉
}

dx1dx2

=
∫

BR

{
〈∇zu + z⊥/2,∇zφ〉
|∇zu + z⊥/2| + λφ

}
dx1dx2.

At this point, using an algebraic agument, it is possible to show the existence of a
global minimizer of J . Such global minimizer is indeed provided by the spherically
symmetric function uR in (8.41).

Proposition 8.22. Given V > 0, let R = R(V ) > 0 be as in Corollary 8.17. The
functional J in (8.37) is convex on D(R). As a consequence, the function uR in
(8.41) is a global minimizer of J on D(R).

Finally, the proof of Theorem 8.11 is complete once one shows that uo is the
unique minimizer of the variational problem (8.35). This, in turn, follows from the
fact that for every function φ, not identically zero, which is D(R)-admissible at
uR, the strict inequality

J [uR + φ] > J [uR]

holds.

8.5 The C2 isoperimetric profile in H

In this section we sketch an argument showing that the bubble sets are the isoperi-
metric minimizers in the category of C2 surfaces.

Theorem 8.23 (Ritoré–Rosales). If Ω is an isoperimetric region in H which is
bounded by a C2 smooth surface S, then S is congruent (i.e., equivalent by the
composition of a Heisenberg isometry and a dilation) to the boundary of a bub-
ble set.

In contrast to the previous sections, which are quite analytic or measure
theoretic in spirit, the proof of Theorem 8.23 relies heavily on techniques of differ-
ential geometry. We give a step-by-step outline of the proof and present some of
the main ideas. Note that in the results presented below, only the bare minimum
is shown to illustrate the ideas of the proof (see the notes at the end of the chapter
for detailed references).



8.5. The C2 isoperimetric profile in H 169

Step 1. The starting point is the study of the characteristic set of a C2 isoperi-
metric profile.

Proposition 8.24. Let S ⊂ H be an oriented volume-preserving perimeter station-
ary C2 compact surface enclosing a region Ω. If the characteristic locus Σ(S)
contains a C1 curve C, then the rules of the Legendrian foliation of S meet C
orthogonally.

Proof. Recall that by Proposition 8.6, S is CMC. In view of Section 8.3, CMC
surfaces are ruled by horizontal curves of fixed curvature. To prove the proposition
assume that C is a curve in Σ(S). By Lemma 4.32, C is C1. Let B ⊂ S be such
that B \ C is the union of two open connected sets B±. Let n+ be the inward
pointing normal to B+. Finally, let u : B → R be a mean zero function with
compact support in B so that u|C is supported on C ∩ B. Using this u in (6.33)
and taking into account the assumption that S is perimeter stationary, we have

0 =
∫

B\Σ(S)

u divS νH dσ −
∫

B\Σ(S)

divS(u(νH)tang) dσ

= −
∫

B\Σ(S)

divS(u(νH)tang) dσ

(since divS νH is constant in S \ Σ(S))

= −
∫

B+\Σ(S)

divS(u(νH)tang) dσ −
∫

B−\Σ(S)

divS(u(νH)tang) dσ

=
∫

C

u〈n+, ν+
H〉1 dσ −

∫
C

u〈n+, ν−
H〉1 dσ

(by the divergence theorem)

= 2
∫

C

u〈n+, ν+
H〉1 dσ,

where ν±
H(q) = limp∈B±,p→q νH(p) for q ∈ C, and ν+

H(q) = −ν−
H(q) by Proposition

4.34. Since we may choose u so that u|C is arbitrary, we conclude that 〈n+, ν+
H〉1 =

0 on all of C ∩B. Hence ν+
H is tangent to C in B, so the rules approaching C meet

C orthogonally. �

Step 2. The second step of the proof is to show improved regularity of curves in
the characteristic locus.

Proposition 8.25. Let S ⊂ H be an oriented perimeter stationary C2 compact sur-
face. If the characteristic locus Σ(S) contains a C1 curve C, then C is in fact C2

regular.
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This result follows from Lemma 4.32 and an analysis of the surface using the
seed curve/height function parametrization of Section 8.3.
The regularity of characteristic curves leads to a crucial property of the character-
istic locus of oriented volume-preserving perimeter stationary compact surfaces.

Theorem 8.26. Let S be a complete, oriented C2 immersed volume-preserving
perimeter stationary surface in H with nonvanishing mean curvature. Then any
connected curve in Σ(S) is a geodesic.

This theorem follows from a careful study of the behavior of the rules of the
surface emanating from a characteristic curve to determine when they return to
the characteristic locus. With the observation that the rules meet the characteristic
locus orthogonally, Theorem 8.26 may also be derived from the work in Section
8.3. We sketch the proof and indicate some of the main computations.

Sketch of the proof. By (8.23), we know that, for a given seed curve/height func-
tion pair (γ, h0), the characteristic locus arises when Σ(s, r) = 0. By readjusting
our choice of seed curve and height function, we may assume that Σ(s, 0) = 0, i.e.,
a portion of the characteristic locus occurs at r = 0. The cautious reader will note
that the computations in Section 8.3 are performed away from the characteristic
locus. However, in equation (8.23) we show the behavior of the characteristic locus
if we extend the parametrization to all values of r. It is not hard to see that (8.23)
and the seed curve/height function representation may be used in this context as
well. Note that here we must invoke Proposition 8.25 and assert that curves in the
characteristic locus are C2. In fact, our seed curves must be at least C2. Inspection
of (8.23) leads to the following condition on h0:

h′
0(s) =

1
2
〈γ, (γ′)⊥〉(s).

Consider the case where Σ(S) has another component that contains a C2 smooth
curve. There exists r = r(s) so that this curve is given by (F (s, r(s)), h(s, r(s))),
i.e., Σ(s, r(s)) = 0. Since h′

0(S) = 1
2 〈γ, (γ′)⊥〉(s), we have

Σ(s, r) = − sin(ρr)
ρ

+
1− cos(ρr)

ρ2
κ(s) (8.44)

and hence r(s) is a solution of Σ(s, r) = 0. Next, we wish to use the fact that the
rules meet Σ orthogonally. We first note that

0 = 〈Fs, Fr〉 = sin(ρr(s)) − κ(s)
(1− cos(ρr(s))

ρ

)
using (8.19) and (8.22). Hence, for r = r(s0), Fs(s0, r(s0)) is perpendicular to
Fr(s0, r(s0)). Since

∂sF (s, r(s)) = Fs(s, r(s)) + Fr(s, r(s))r′(s)
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we conclude that the rules meet the characteristic locus orthogonally if and only
if r(s) is constant. Inspection of (8.44) shows that this may only happen if κ(s)
is also constant. Hence the seed curve is a portion of a straight line or a circle
and, as we have arranged that it lifts to a horizontal curve, we conclude that
(F (s, 0), h0(s)) is a Heisenberg geodesic. �

Step 3. By the previous steps, any compact C2 solution to the isoperimetric prob-
lem cannot have a nontrivial curve in its characteristic locus, as any such curve
would be a geodesic which would leave any bounded domain in a finite time. Thus,
the characteristic locus may contain only isolated points. The third and final step
of the proof is to show that if the characteristic locus of the surface contains an
isolated point, then it is congruent to the boundary of a bubble set.

Theorem 8.27. Let S be a complete, connected C2 oriented immersed surface in
H with nonvanishing constant mean curvature. If Σ(S) contains an isolated point,
then S is congruent to the boundary of a bubble set.

Sketch of the proof. The nucleus of the argument is contained in Theorem 4.38,
which indicates that, at each isolated characteristic point p, there are values r > 0
and ρ ∈ R so that

{γp,v,ρ(s) : v ∈ HpS, |v| = 1, s ∈ [0, r)}

is a proper subset of S. Here, γp,v,ρ denotes the sub-Riemannian geodesic passing
through p with tangent v and curvature ρ. Direct computation shows that if r =
π/|ρ|, then the resulting surface is congruent with the boundary of a bubble set.
The theorem follows by analyzing the cases r < π/|ρ| and r > π/|ρ| and using the
structure of the geodesics of the Heisenberg group. �

These facts impose significant constraints on the class of C2 CMC surfaces:

Theorem 8.28. Let S be a compact, connected C2 immersed volume-preserving per-
imeter stationary surface in H. Then S is congruent to the boundary of a bubble set.

Sketch of the proof. From the Minkowski formula (Proposition 8.9) we conclude
that the horizontal mean curvature of S computed with respect to the inner normal
is strictly positive, hence nonvanishing. Next, by compactness we deduce that S
contains at least one characteristic point. If Σ(S) contains a curve C, then Theorem
8.26 implies that C is a complete geodesic; as such geodesics leave any bounded
set in finite time, this would violate the compactness assumption. Thus Σ(S) may
contain only isolated points. By Theorem 8.27, S is congruent to the boundary of
a bubble set. �

Coupled with Theorem 8.3 and the characterization of isoperimetric sets as
CMC surfaces, Theorem 8.28 gives a proof of Theorem 8.23.
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8.6 The convex isoperimetric profile of H

In this section we present a proof of Pansu’s conjecture within the category of
Euclidean convex sets.

Theorem 8.29 (Monti–Rickly). If Ω is a (Euclidean) convex region in H which is
an isoperimetric set, then Ω is congruent to a bubble set.

From the point of view of regularity, the assumption in Theorem 8.29 (Eu-
clidean convexity) is weaker than that in Theorem 8.23 (Euclidean Lipschitz vs.
C2 regularity). The general strategy in the proof of Theorem 8.29 is to show that
patches of ∂Ω can be parameterized by lifts of circles, and then use the convexity
hypothesis to conclude the argument.

For the remainder of this section, convexity always refers to convexity in the
Euclidean sense.

Convex domains in H. Let Ω ⊂ H be a bounded convex open set. A supporting
plane for Ω at p ∈ ∂Ω for Ω is simply a plane Π through p which has empty
intersection with Ω. The notion of supporting plane generalizes the concept of
tangent plane to the setting of non-smooth convex sets.

The characteristic set of a convex domain (with no further regularity assump-
tions) may be defined as the set of p ∈ ∂Ω for which the horizontal plane H(p) at
p is a supporting plane for Ω.

We sketch the proof of Theorem 8.29 in a series of steps.

Step 1. In the first stage, we study the structure of the characteristic locus for
convex domains, proving the following results.

1. Convex and bounded C1 sets have at least one characteristic point, strictly
convex bounded sets have at most two.

2. In general, if Ω is a convex domain containing the origin, then Σ(∂Ω) can be
written as the union of two disjoint components Σ±, separated by the hori-
zontal plane at the origin, each of which is a (possibly degenerate) horizontal
segment.

3. If two geodesic (hence horizontal) arcs with the same curvature H > 0 are
contained in ∂Ω and intersect at p ∈ ∂Ω, then they must coincide in a
neighborhood of p.

Step 2. Assume now that Ω is a convex isoperimetric set in H. Decompose ∂Ω
in four patches, which are graphs over convex planar domains A ⊂ R2 of the
form x3 = f(x1, x2)(for the “top” and “bottom” portions), and x1 = g(x2, x3)
(for the “lateral” portion), with f, g : A→ R convex (hence Lipschitz continuous
with BV derivatives). Recalling (4.27), we denote by Sf the singular set of points
(x1, x2) ∈ A such that (x1, x2, f(x1, x2)) ∈ Σ(∂Ω). In a similar fashion, we define
the singular set Sg.
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Step 3. Use a variational argument similar to the ones described in the previous
sections to derive curvature equations for convex isoperimetric profiles. Additional
difficulties arise in this non-smooth setting, as one needs first to show that for any
compact set K disjoint from Sf or Sg, there exists δ > 0 such that

|∇0(x3 − f(x1, x2))|, |∇0(x1 − g(x2, x3))| > δ (8.45)

a.e. in K. With such an estimate at hand, and in view of Remark 5.10, we may
represent the perimeter of the graph of f in integral form:∫

A

|∇0(x3 − f(x1, x2))|dx1dx2 =
∫

A

∣∣∣−∇f +
1
2
(−x2, x1)

∣∣∣dx1dx2.

If we write P = PH(Ω) and V = |Ω| for the perimeter and measure of Ω, respec-
tively, and consider the portion of ∂Ω arising as the graph of f , we find that f
must satisfy the PDE

divx1,x2

(
−∇f + 1

2 (−x2, x1)
| − ∇f + 1

2 (−x2, x1)|

)
=

3P

4V
, (8.46)

in the distributional sense in A \ Sf . On the other hand, again in view of Remark
5.10, we may represent the perimeter of the graph of g in integral form:∫

A

|∇0(x1 − g(x2, x3))|dx2dx3 =
∫

A

∣∣∣∣∣(1 +
1
2
x2∂x3g,−∂x2g −

1
2
g∂x3g

)∣∣∣∣∣dx2dx3.

If we consider the portion of ∂Ω arising as the graph of g, we find that g must
satisfy the PDE

1
2
g(x2, x3)

∂

∂x3

(
1 + 1

2x2∂x3g(x2, x3)
|∇0(x1 − g(x2, x3))|

)
+ X2

(
−∂x2g − 1

2g∂x3g(x2, x3)
|∇0(x1 − g(x2, x3))|

)
=

3P

4V
,

(8.47)

in the distributional sense in A \ Sg. We will refer to the value 3P/4V as the
curvature of the isoperimetric profile Ω.

Step 4. Next, one realizes that the distributional interpretation of the PDEs (8.46)
and (8.47) is not sufficient to make progress towards the final result. What is
needed is an extra measure of regularity for the solutions, namely, one wants the
PDEs to hold in the weak Sobolev sense rather than in the distributional sense.
Such an improvement in regularity is achieved through the following proposition.

Proposition 8.30. Let A ⊂ R
2 be a bounded open set and let �u = (u1, u2) : A→ R

2

be a vector field whose components u1, u2 are BV functions. Assume that

(i) there exists δ > 0 such that |�u| > δ a.e. in A,
(ii) div �u⊥ ∈ L1(A),
(iii) div(�u/|�u|) ∈ L1(A).
Then �u/|�u| ∈W 1,1(A, R2).
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We apply this proposition to the vector field �u = ∇0(x3 − f(x1, x2)) =
−∇f +1/2(−x2, x1) in any compact set which avoids Sf . Observe that (i) follows
from (8.45). A direct computation yields div �u⊥ = −1, hence (ii) is satisfied.
Assumption (iii) follows from (8.46). We deduce that

∇0(x3 − f(x1, x2))
|∇0(x3 − f(x1, x2))|

=
−∇f + 1

2 (−x2, x1)
| − ∇f + 1

2 (−x2, x1)|
∈W 1,1(A \ Sf , R2).

A similar result holds for the patch given by x1 = g(x2, x3):

∇0(x1 − g(x2, x3))
|∇0(x1 − g(x2, x3))|

∈W 1,1(A \ Sg, R
2). (8.48)

Step 5. The crucial step in the proof of Theorem 8.29 is the study of the Legendrian
foliation of a convex isoperimetric profile. Observe that for any convex function
f : A ⊂ R

2 → R, the vector fields �u = −∇f + 1/2(−x2, x1) and �v = 1/2(x1, x2)−
(−∂x2f, ∂x1f) are in BVloc(A, R2)∩L∞(A). Moreover div�v = −1 ∈ L∞(A). These
facts suffice to apply Ambrosio’s extension [8] of results of DiPerna–Lions [87] on
flows generated by Sobolev vector fields: if �v ∈ BVloc(R2, R2) ∩ L∞(R2, R2) has
bounded divergence, then for any compact set K ⊂ R2 and ρ > 0 there exists
a Lagrangian flow φ : K × [−ρ, ρ] → R2 starting from K and relative to �v, i.e.,
s �→ φ(q, s) solves φ(q, s) = q +

∫ s

0
�v(φ(q, t)) dt for all s ∈ [−ρ, ρ]. The resulting

flow is stable with respect to smooth approximations of �v in the L1 norm.
We apply these results to the convex functions f, g in the graphical patch

representation of a convex isoperimetric profile to obtain:

Theorem 8.31. Let Ω ⊂ H be a convex isoperimetric profile with mean curvature
H. If we locally represent a portion of ∂Ω as a convex graph x3 = f(x1, x2) over a
convex region A ⊂ R2, then for all compact sets K ⊂ A\Sf and open neighborhoods
of K, K ⊂ O ⊂ A \ Sf , there exists a sufficiently small ρ > 0 and a Lagrangian
flow φ : K × [−ρ, ρ] → O relative to �v = 1/2(x1, x2) − (−∂x2f, ∂x1f) such that
for a.e. z ∈ K, the curve s → φ(z, s) is an arc of a circle (oriented clockwise) of
radius 1/H.

The flow φ is regular in the following sense: there exists a constant λ ≥ 1
such that for all measurable sets A ⊂ K and s ∈ [−ρ, ρ] one has

1
λ
|A| ≤ |φ(A, s)| ≤ λ|A|. (8.49)

Note that for each z ∈ K, the vector �v(z) is the projection to C of the horizontal
vector

v1X1 + v2X2 =
(1

2
x1 + ∂x2f,

1
2
x2 − ∂x1f,

−1
2

[x1∂x1f + x2∂x2f ]
)

which is a.e. tangent to ∂Ω in the graphical patch determined by f . Consequently
the Lagrangian flow φ lifts to a geodesic foliation of the coordinate patch, away
from characteristic points.
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Aside: sketch of the proof of Theorem 8.31. The main problem is to compute the
second derivatives of an integral curve of �v and interpret the PDE (8.46) pointwise.
This is not trivial because while �v admits a regular Lagrangian flow (in view of
the prior discussion), it is only in BVloc. On the other hand, we might be tempted
to use integral lines of the normalized vector field �v/|�v| which is in W 1,1, and so
such curves would be twice differentiable a.e. However one cannot directly define
a Lagrangian flow of �v/|�v| since its divergence is only in L1 and not in L∞.

To resolve this problem one first observes that, since �v and its normalization
are parallel, one can find an integral curve for one by reparametrizing integral
curves of the other. In standard fashion, consider a suitable reparametrization of
the flow φ,

γ(s) = φ(z, τ(s)) (8.50)

defined so that γ is an integral curve of the vector field �v/λ and λ : A → R is
a measurable function (to be chosen later) satisfying 0 < c1 ≤ λ ≤ c2, for some
constants c1, c2 > 0.

At this point, we observe that in compact sets outside of Sf we may set
λ = |�v|, and recall that the normalized vector field �w = �v/|�v| is in W 1,1. To
conclude that the integral curves γ of �w defined above through a reparametrization
have second derivatives a.e., we need to use a special chain rule for the composition
of W 1,1 vector fields �w and curves γ defined as in (8.50), namely:

�w ◦ γ ∈ W 1,1

and
d

ds
(�w ◦ γ)(s) = (∇�w ◦ γ)γ′(s) a.e.

Because of our choice of �w and in view of equation (8.46) we immediately obtain

γ′′ = −H(γ′) a.e.

From this ODE we immediately deduce the smoothness of γ and the desired result.
�

An analogous result holds for the graphical patches determined by g.

Step 6. Thanks to the above results and in view of basic extension and uniqueness
arguments, every convex isoperimetric profile Ω ⊂ H with curvature H has bound-
ary ∂Ω foliated by geodesics, which are lifts of circles of radius 1/H and which
have one endpoint in Σ+ and the other in Σ−. The only thing left to show is that
Σ± consist each of a single point (the poles of the bubble set). To prove this we
argue by contradiction and assume without loss of generality that Σ− contains a
horizontal segment of the form {(0, x2, 0) : |x2| < µ} for some µ > 0.

Because of convexity, and from the definition of characteristic points, one
must have

Ω ⊂ H
((

0,
µ

2
, 0
))+

∩H
((

0,−µ

2
, 0
))+

, (8.51)
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where we denote by H(x)+ the component of H\H(x) containing {(0, 0, x3) : x3 >
R} for some sufficiently large R > 0. The right-hand side of (8.51) forms a wedge,
whose edge is in ∂Ω and contains the origin. An elementary computation shows
that any smooth geodesic arc emanating from the origin o must necessarily have
a horizontal tangent at o; the continuity of the tangent then contradicts (8.51).

Step 7. The two points Σ± must both lie on the x3 axis, since otherwise there
would be only one geodesic arc joining them and we know that any curve in the
geodesic foliation joins these two points.

Step 8. In conclusion, ∂Ω is foliated by geodesics, lifts of circles with radius 1/H
touching the origin o, with two isolated characteristic points Σ±. It follows that
Ω is congruent with a bubble set.

8.7 Other approaches

8.7.1 Riemannian approximation approach to the
isoperimetric problem

Pansu’s conjectured extremals can also be recovered by solving the CMC equation
on the Riemannian approximants and taking the limit as L→∞. The derivation
of the cylindrically symmetric constant mean curvature surfaces in (R3, g1) was
given by Tomter [247]. In this section, we reproduce his result in the slightly more
general setting of (R3, gL) and study the sub-Riemannian limit.

The key idea in Tomter’s proof is to utilize the rotational invariance of the
Heisenberg group to reduce the CMC equation on (R3, gL) to a system of ODEs on
the orbit (2-)manifold. This system may be solved explicitly by quadrature, gener-
ating a foliation of (R3, gL) by closed U(1)-invariant surfaces with constant mean
curvature H > 0. We present the derivation of this foliation, together with asymp-
totic formulas describing the volume and surface area of the resulting domains as
series in the curvature parameter H and in the metric parameter L.

Consider the action of the circle group U(1) on R3 given by

e i θ(z, x3) = (e i θz, x3), z = x1 + i x2.

Observe that this action is by isometries on the manifolds (R3, gL), where gL is
the metric defined in Section 2.4. We denote by

ML = (R3, gL)/U(1) = {(r, x3) : r = |z| ≥ 0, x3 ∈ R}
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the orbit manifold, equipped with orbital distance metric2

gL(r, x3) = dr2 +
4L

4 + Lr2
dx2

3. (8.52)

The length of the orbit U(1) · (r, x3) is

Length U(1) · (r, x3) =
∫ 2π

0

〈
∂

∂θ
,

∂

∂θ

〉1/2

dθ,

where θ = arg z = arctan(x2/x1). From the choice of the frame in (R3, gL), we
find

∂

∂θ
= −x2X1 + x1X2 +

1
2

√
Lr2X̃3

so

Length U(1) · (r, x3) =
∫ 2π

0

√
r2 +

1
4
Lr4 dθ = πr

√
4 + Lr2. (8.53)

Our goal is to describe a family of closed U(1)-invariant CMC surfaces in
(R3, gL). Let S be a U(1)-invariant surface in (R3, gL), obtained as the orbit of a
curve γ in ML. We assume that γ = γ(t) is parameterized by arc length. By a
formula from equivariant geometry, the mean curvature of S is

H = kγ ◦ π − ∂ν log LengthU(1) · π, (8.54)

where kγ denotes the curvature of γ in ML, π : (R3, gL) → ML is the quotient
map, and ∂ν is the normal derivative. If we denote by α = α(t) the angle between
∂/∂r and the tangent vector γ̇(t), then (8.54) yields the following criterion for S
to be a CMC surface in (R3, gL).

Lemma 8.32. S has constant mean curvature H if and only if (r(t), x3(t), α(t)) is
a solution to the system

ṙ = cosα, ẋ3 =
1
2

√
4 + Lr2

√
L

sin α, α̇ = H − sin α

r
. (8.55)

Proof. The map
(r, x3)

ι�→ (ϕ(r) cos x3, ϕ(r) sin x3, ψ(r)),

where

ϕ(r) =
2
√

L√
4 + Lr2

and ψ(r) =
∫ r

0

√
1− ϕ′(ρ)2 dρ

2The expression for gL in (8.52) is easy to compute as the inverse of the matrix of inner products
of the gradients of the coordinate functions in ML:

∇r =
x1

r
X1 +

x2

r
X2 and ∇x3 = −1

2
x2X1 +

1

2
x1X2 + L−1/2X̃3.
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is an isometric embedding of ML in R3. Via this embedding, it is straightforward
to compute the curvature of γ:

kγ(r, x3) = α̇− rϕ(r)2 sin α.

The logarithmic normal derivative of the orbital length function is

∂ν(x) log LengthU(1) · π(x) =
(
− sinα

∂

∂r
+

cosα

ϕ(r)
∂

∂x3

)
log(πr

√
4 + Lr2)

= − sinα

(
1
r

+ rϕ(r)2
)

whence

H(x) = (α̇− rϕ(r)2 sin α) + sin α

(
1
r

+ rϕ(r)2
)

= α̇ +
sinα

r
. (8.56)

(8.55) follows from (8.56) and the condition

1 = |γ̇|2 = ṙ2 + ϕ(r)2ẋ3
2 = cos2 α + ϕ(r)2ẋ3

2. �

Observe that
J = J(r, α) = r sin α− 1

2
Hr2

is an invariant of the system (8.55). For a solution curve (r(t), x3(t), α(t)) with
J(r(t), α(t)) = C, we have

sin α =
C

r
+

Hr

2
and

dx3

dr
=

ẋ3

ṙ
=
√

4 + Lr2

2
√

L
tan α = ±

√
4 + Lr2

2
√

L

C/r + Hr/2√
1− (C/r + Hr/2)2

.

In particular, for C = 0 we find

sinα =
Hr

2
,

dx3

dr
= ±Hr

2

√
4 + Lr2

L(4−H2r2)
.

Choosing the negative sign and integrating, we find

x3(r) = −
∫ 2/H

r

Hρ

2

√
4 + Lρ2

L(4−H2ρ2)
dρ.

To evaluate the integral we substitute w = arcsin(K
√

4 + Lρ2), where K =
H/2

√
L + H2, to obtain

x3(r) =
H2 + L

H2L
·
(

arccos

(
H

2

√
4 + Lr2

H2 + L

)
+

H
√

L(4 + Lr2)(4−H2r2)
4(H2 + L)

)
(8.57)

for 0 ≤ r ≤ 2/H .
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Remark 8.33. In the limit as L→∞ we obtain

x3(r) =
1

H2

(
arccos(

Hr

2
) +

Hr
√

4−H2r2

4

)

=
1
4

(
R2 arccos(

r

R
) + r

√
R2 − r2

)
, R =

2
H

,

which agrees with Pansu’s conjectured isoperimetry extremal in the Heisenberg
group with Carnot–Carathéodory metric.

We denote by SHL the closed surface in (R3, gL) obtained as the lift of the
curve γHL ⊂ ML which is given by the graphs of x3 = ±x3(r) for 0 ≤ r ≤ R =
2/H . Denote by VHL the volume of the region bounded by SHL, and by AHL the
surface area of SHL. The parameterized curve

H �→ (AHL, VHL)

yields an upper bound for the isoperimetric constant of (R3, gL) and, for suffi-
ciently large H , coincides with that isoperimetric constant (by unpublished work
of Kleiner). Direct computation gives the volume

VHL = 2π

∫ 2/H

0

∫ x3(r)

0

r
√

4 + Lr2

(
2
√

L√
4 + Lr2

)
dt dr

= 4π
√

L

∫ 2/H

0

rx3(r) dr

=
2π

H3L

(
3L + H2 +

(3L−H2)(L + H2) arctan(
√

L/H)
H
√

L

)

(use the substitution v = K
√

4 + Lr2) and the surface area

AHL = 2π

∫ 2/H

0

r
√

4 + Lr2

(
2√

4−H2r2

)
dr

=
8π

H2

(
1 +

(L + H2) arctan(
√

L/H)
H
√

L

)
.

For fixed L, the series expansions for VHL and AHL in inverse powers of H take
the form

VHL =
32π

3H3
+

64πL

15H5
+ O(H−7),

AHL =
16π

H2
+

16πL

3H4
+ O(H−6),
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while for fixed H , the series expansions for VHL and AHL in inverse powers of
L1/2 take the form

VHL =
3π2
√

L

H4
+

2π2

H2
√

L
+ O(L−3/2),

AHL =
4π2
√

L

H3
+

4π2

H
√

L
+ O(L−1).

From these asymptotic expansions, the failure of this method is evident. As stated
above, for fixed L and sufficiently large H , say, H > H0 the quantities AHL and
VHL yield the isoperimetric constant (and profile) of (R3, gL). However, H0 de-
pends on L and indeed H0 → ∞ as L → ∞. Thus, in essence, two limits must
be computed: one as L → ∞ and the other as H → ∞. To recover the conjec-
tured isoperimetric constant and profile in the sub-Riemannian limit, one must
compute the limits simultaneously with a specific interdependence given by the
manner in which H0 depends on L. Unfortunately, there is currently an insufficient
understanding of this functional dependence to perform this computation.

8.7.2 Failure of the Brunn–Minkowski approach
to isoperimetry in H

In this section we discuss the classical proof of the isoperimetric inequality in
Rn via convex geometry and the Brunn–Minkowski inequality, and describe work
of Monti which demonstrates an essential obstruction to this approach in the
Heisenberg group.

The Brunn–Minkowski inequality in Rn asserts that

|A + B|1/n ≥ |A|1/n + |B|1/n (8.58)

whenever A and B are nonempty measurable sets in Rn. Here A+B = {a+b : a ∈
A, b ∈ B} denotes the Minkowski sum of A and B. There are several approaches
to prove inequality (8.58). Let us recall one of the most well-known arguments.
By approximation, it suffices to prove (8.58) in the case when A and B are closed
rectilinear parallelpipeds. In this case, if A =

∏
j Ij and B =

∏
j Kj are products

of closed intervals, then A + B =
∏

j(Ij + Kj) and (8.58) reduces to∏
j

|Ij + Kj |1/n =
∏
j

(|Ij |+ |Kj |)1/n ≥
∏
j

|Ij |1/n +
∏
j

|Kj |1/n,

which is an immediate consequence of the arithmetic-geometric mean inequality
applied to the collections uj = |Ij |/(|Ij | + |Kj |) and vj = |Kj |/(|Ij | + |Kj|),
j = 1, . . . , n.

The Brunn–Minkowski inequality leads to a quick solution to the isoperimet-
ric problem for the Minkowski content

Mn−1(E) = lim
ε→0
|Eε \ E|/ε
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in Rn. For any E ⊂ Rn, Eε = E + B(o, ε) so

|Eε \ E| = |E + B(o, ε)| − |E|
≥ (|E|1/n + |B(o, ε)|1/n)n − |E|
= (|E|1/n + |B|1/nε)n − |E|
= n|B|1/n|E|1−1/nε + O(ε2).

(8.59)

Thus

lim inf
ε→0

|Eε \ E|
ε

≥ n|B|1/n|E|1−1/n

so
Mn−1(∂E)
|E|(n−1)/n

≥ n|B|1/n =
Mn−1(∂B)
|B|(n−1)/n

whenever Mn−1(∂E) exists.
Monti [205] showed that the corresponding Brunn–Minkowski inequality in

the Heisenberg group,
|A · B|1/4 ≥ |A|1/4 + |B|1/4, (8.60)

A · B = {ab : a ∈ A, b ∈ B} fails to hold. His argument is indirect, using the fact
that Carnot–Carathéodory balls are not solutions to the isoperimetric problem.
Indeed, it can be shown by direct calculation that

PH(B)
|B|3/4

>
PH(B)
|B|3/4

(8.61)

for any CC ball B ⊂ H and any bubble set B. However, the validity of (8.60)
would imply equality in (8.61), by exactly the same argument as given above in
the Euclidean case. Under the assumption that (8.60) holds, one would obtain

M3(∂E)
|E|3/4

≥ M3(∂B)
|B|3/4

=
PH(B)
|B|3/4

(8.62)

for all bounded open sets E ⊂ H. Equations (8.7) and (8.62), taken together,
contradict (8.61).

8.7.3 Horizontal mean curvature flow

This section is of a far more speculative nature than the remainder of the chapter,
and is intended merely to provide a rough sketch of another potential avenue
towards Pansu’s conjecture. The idea is to implement an analog of the Euclidean
mean curvature flow discussed in Chapter 1 in the sub-Riemannian geometry of
H. More precisely, we seek to deform in a continuous fashion a bounded open set
Ω ⊂ H in a flow of bounded sets {Ωt} so that the isoperimetric ratio

PH(Ωt)4/3

|Ωt|
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decreases with time. Among all possible flows which may accomplish this, we
restrict our attention to flows which satisfy the following properties:

(i) the perimeter PH(Ωt) is non-increasing with respect to time, and strictly
decreasing unless ∂Ωt satisfies some curvature conditions (e.g., has constant
mean curvature), and

(ii) the volume |Ωt| is constant in time.

More precisely, we consider the following analog of the mean curvature flow:

∂FN

∂t
= −H0ν

N
H (8.63)

Here F : ∂Ω × [0, T ) → H is a family of immersions, H0 and νH are respectively
the horizontal mean curvature and the horizontal normal defined in Sections 4.3
and 4.3.1, and for any vector V ∈ R3, we let V N denote the projection of V on
the Euclidean unit normal �n to ∂Ω. We remind the reader that the tangential
component of the velocity is not relevant from a geometric point of view since
it will give rise to a reparametrization of the surface and will not contribute to
variation of the perimeter. The nonlinear evolution PDE system (8.63) describes
a flow of the initial surface ∂Ω in which the normal velocity at any point is given
by −H0ν

N
H .

The flow (8.63) does not satisfy condition (ii) above. In order to impose
a volume constraint we argue as in Section 8.3 and perturb equation (8.63) by
subtracting the variation of the volume to obtain

∂FN

∂t
=

(
−H0 +

∫
∂Ωt
H0dµ

PH(Ωt)

)
νN

H . (8.64)

It is easy to check that if {Ωt} evolves according to (8.64), then PH(Ωt) decreases
unless H0 is constant and |Ωt| is constant for all t. Hence (i) and (ii) are satisfied.

The Euclidean analogue of (8.64) has been studied by Gage [111] and Huisken
[153]. One of the main results in these papers states that convex initial surfaces (or
curves) remain convex and converge asymptotically to spheres (or circles). A sub-
Riemannian version of these results would not provide new information regarding
Pansu’s conjecture (as the convex and C2 cases have been already established),
but would provide an analytic approach to the non-smooth, non-convex setting
via appropriate notions of weak solutions.

At the moment there are essentially no results on existence, regularity and
asymptotic behavior of solutions of (8.64). This is primarily due to the lack of an
adequate toolkit of differential geometry for hypersurfaces in the sub-Riemannian
context.

The characteristic locus introduces an additional complication into the anal-
ysis of these flows, not present in the Euclidean case. Both systems (8.63) and
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(8.64) are not well defined at characteristic points, and one needs to find a suit-
able interpretation of the velocity H0ν

N
H along Σ(∂Ωt). To conclude this section,

we propose a possible approach to this latter problem. For simplicity we assume
that Ωt is a sublevel set of a C1 function u(·, t) : H→ R. We use the Riemannian
approximants (R3, gL) to approximate solutions of (8.63) or (8.64) with solutions
of the corresponding Riemannian flows. By the results in Section 4.3.1, the Rie-
mannian velocity field can be rewritten as

( �HL)N = HL|∇Lu|,

where �HL denotes the Riemannian mean curvature vector andHL its length. From
(4.21) we recall that

lim
L→∞

HL|∇Lu| = Lu (8.65)

at characteristic points, where Lu = X2
1u + X2

2u is the sub-Laplacian operator
in H. Consequently, in order to define smooth solutions one could use as normal
velocity the quantity H0ν

N
H at noncharacteristic points, and the quantity Lu at

characteristic points.

8.8 Further results

8.8.1 The isoperimetric problem in the Grushin plane

The Grushin plane is closely connected to the first Heisenberg group, and in this
setting the isoperimetric problem has been recently settled by R. Monti and D.
Morbidelli [207]. In this section we briefly recount their results and sketch the
main ideas of the proof.

The Grushin plane G is the space R2 equipped with the sub-Riemannian
structure arising from the vector fields X1 = ∂x1 and X2 = x1∂x2 , where we have
denoted points of G by x = (x1, x2). For the perimeter measure in G we use the
set function

PG(E) = sup
∫

E

(X1ϕ1 + X2ϕ2) dx1 dx2,

where the supremum is taken over all compactly supported functions

ϕ = (ϕ1, ϕ2) ∈ C1(R2 : R
2)

satisfying ϕ2
1 + ϕ2

2 ≤ 1.

Theorem 8.34 (Monti–Morbidelli). For any measurable set E ⊂ G,

|E| ≤ 1
3
PG(E)3/2. (8.66)
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Moreover, equality holds in (8.66) only for the sets E1(h, R) consisting of all points
(x1, x2) ∈ G for which

|x2 + h| < 1
2
(R2 arccos

(
|x1|
R

)
+ |x1|

√
R2 − x2

1)

and |x1| < R, where h ∈ R and R > 0.

Observe the connection between the conjectured isoperimetric profile of H

and the isoperimetric profile of G given in Theorem 8.34: the bubble set B(o, R)
in H is obtained by rotating the isoperimetry extremal E1(0, R) in G (identified
as the x1x3-plane in H) about the x3-axis.

We sketch the proof of Theorem 8.34 in a sequence of steps.

Step 1. Under the nonlinear change of variables

(x1, x2)
Ψ�→
(

1
2
x1|x1|, x2

)
,

the horizontal perimeter PG(E) of a set E in G coincides with the ordinary perime-
ter P (Ψ(E)) of its image Ψ(E) in R2, and the Lebesgue measure |E| of E coincides
with the weighted measure µ(Ψ(E)) of its image, where dµ(x) = |2x1|−1/2 dx.

Step 2. By computing the effect of suitable symmetrization procedures on the
perimeter and the weighted area using the transformation and measure µ from
Step 1, it can be shown that any isoperimetry extremal in G is necessarily con-
gruent with an extremal which is symmetric and convex with respect to each of
the coordinate axes. Consequently, the boundary of such an extremal is locally
Lipschitz.

Step 3. A compactness argument, together with the lower semi-continuity of the
functional PG, guarantees the existence of minimizers for the functional

E �→ PG(E)3/2

|E| .

(Compare Theorem 8.4.)

Step 4. A variational argument determines the precise character of the minimizers.
Let U be a neighborhood of the point (0, b) ∈ ∂E, b > 0, and write ∂E ∩ U =
{(x1, x2) : x2 = ϕ(x1)} for a suitable Lipschitz function ϕ on an interval I =
(−δ, δ), δ > 0. The resulting Euler–Lagrange equation is

3
2
|E| ϕ′(x1)√

ϕ′(x1)2 + x2
1

+ PG(E)x1 = c (8.67)
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for a.e. x1, |x1| < δ, where c ∈ R is a constant. Since E is symmetric with respect
to x1, ϕ must be even, hence ϕ′ is odd and c = 0. Solving (8.67) for ϕ′(x1) gives

ϕ′(x1) = − λx1|x1|√
1− λ2x2

1

for a.e. x1, |x1| < δ, where λ = 3
2PG(E)/|E|. Then in fact ϕ′ is continuous and an

integration gives

ϕ(x1) =
∫ R

x1

t2

R
√

1− t2/R2
dt = R2

∫ π/2

arcsin |x1/R|
sin2(t) dt

=
1
2
(R2 arccos(|x1|/R) + |x1|

√
R2 − x2

1)

as asserted. Once the extremal domain has been identified, the derivation of the
constant in (8.66) is a simple computation.

8.8.2 The classification of symmetric CMC surfaces in Hn

In this section, we present Ritoré and Rosales’ [232] classification of all cylin-
drically symmetric constant mean curvature surfaces in the higher-dimensional
Heisenberg groups. Assume that S is a C2 hypersurface in Hn which is invariant
under the group of rotations in R2n+1 about the x2n+1-axis. Any such surface
can be generated by rotating a curve in the {x1 ≥ 0} half-plane of the x1x2n+1-
plane, g(t) = (x(t), f(t)), where t varies over an interval I in the x1-axis, around
the x2n+1-axis. We may parametrically realize such a surface as follows. Letting
B = I × Sn−1, the map

φ(t, ω) = (x(t)ω, f(t))

parameterizes the rotationally invariant surface formed by rotating the curve g
about the x2n+1-axis. Computing the unit Riemannian normal yields

((x(t)x′(t)ωn+k−f ′(t)ωk)Xk +(−x(t)x′(t)ωk−f ′(t)ωn+k)Xk+1 +x′(t)X2n+1)√
|g′(t)|2 +x(t)2x′(t)2

.

From this, one can compute the horizontal mean curvature of such a surface,
yielding,

H =
1
2n

x3(x′f ′′ − x′′f ′) + (2n− 1)(f ′)3 + 2(n− 1)x2(x′)2f ′

x(x2(x′)2 + (f ′)2)
3
2

Denoting by σ(t) the angle between g′ and the vertical direction, ∂
∂x2n+1

, the
formula for the mean curvature yields that if the surface of rotation is of constant
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mean curvature, then g(t) satisfies the following system of ordinary differential
equations:

x′ = sin(σ),
f ′ = cos(σ),

σ′ = (2n− 1)
cos3(σ)

x3
+ 2(n− 1)

sin2(σ) cos(σ)
x

− 2nH
(x2 sin2(σ) + cos2(σ))

3
2

x2
,

(8.68)

whenever x > 0. Using Noether’s theorem, the authors compute the first integral
of this system, showing that

E =
x2n−1 cos(σ)√

x2 sin2(σ) + cos2(σ)
−Hx2n

is constant along any solution to the system. E is called the energy of the sys-
tem. Using certain geometric properties of the solutions, Ritoré and Rosales then
classify all cylindrically symmetric constant mean curvature surfaces.

Theorem 8.35. Let g(s) be a complete solution to (8.68) with energy E. Then the
surface, S ⊂ H

n, generated by rotation about the x2n+1-axis, is one of the five
following types:

1. If H = 0 and E = 0, then g(s) is a straight line orthogonal to the x2n+1-axis
and S is a Euclidean hyperplane.

2. If H = 0 and E �= 0, then S is an embedded surface of catenoidal type.
3. If H �= 0 and E = 0, then S is a compact hypersurface homeomorphic to the

sphere.3

4. If EH > 0, then g(s) is a periodic graph over the x2n+1-axis. S is a cylinder
or an embedded hypersurface of unduloid type.

5. If EH < 0, then g(s) is a locally convex curve and S is a nodoid type hyper-
surface with self-intersections.

8.9 Notes

In the last decade, there has been an explosion of research on analogs of the mini-
mal and constant mean curvature equations and associated variational problems in
the setting of Carnot–Carathéodory spaces. While some of the work most closely
related to the isoperimetric problem is covered in this chapter, we point out that
there is a wealth of other material that is beyond the scope of this discussion. For
the study of minimal surfaces in the Heisenberg groups, see [28, 80, 82, 83, 117, 221,
223, 231, 232]. For the roto-translation group, see [68, 146]. For three-dimensional

3For n = 1, these are precisely the bubble sets B(o, R).
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pseudo-hermitian manifolds (which include both the Heisenberg groups and the
roto-translation group), see [63, 64]. For general Carnot groups, see [56, 78]. For
general sub-Riemannian spaces, see [116, 144, 147].

Notes for Section 8.1. Pansu’s conjecture was first posed in [217] and [219]. The ob-
servation regarding the equivalence with the isoperimetric problem for Minkowski
content is due to Monti and Serra-Cassano [211].

Notes for Section 8.2. Theorem 8.3 is due to Leonardi and Rigot [176], who estab-
lished existence results in the general class of Carnot groups. Their proof is based
on Garofalo and Nhieu’s Theorem 8.4 and on several results established in [116].
In that paper the setting is Carnot–Carathéodory metrics generated by special
systems of Lipschitz vector fields. We have presented a simplified proof valid in
the Heisenberg group. Section 8.2 contains the concentration-compactness argu-
ment of Leonardi and Rigot (Lemma 8.5) as well as their ingenious method for
demonstrating the (essential) boundedness of the isoperimetric sets. The relation
between perimeter and rate of change of the volume used in (8.11) and (8.12) was
proved by Ambrosio in [7, Lemma 3.5].

We note that Leonardi and Rigot also investigate some properties of isoperi-
metric sets Ω, showing that such sets are Ahlfors regular and satisfy a synthetic
regularity condition known as Condition B. Moreover, in the setting of the Heisen-
berg group, such sets are also domains of isoperimetry, that is, a relative isoperi-
metric inequality of the form

min{|S|3/4, |Ω \ S|3/4} ≤ CPH(S, Ω)

holds for all sets S ⊂ Ω and a suitable constant C < ∞. As a consequence,
isoperimetric sets are connected. As discussion of these facts would take us away
from the main points of this survey, we refer the interested reader to the original
paper [176].

Notes for Section 8.3. The results in this section were independently proved by
many authors. Our presentation loosely follows the one in [231].

If, in addition to the hypotheses in Proposition 8.6, we also assume that
H0 ∈ L1(S, dσ) with respect to the surface measure, then we rule out the possibility
that H0 is a distribution with mass supported on Σ(S). In this case, we may easily
deduce that∫

S

u(divS νH) dσ =
∫

S\Σ(S)

u(divS νH) dσ = H0

∫
S

u dσ = 0 (8.69)

for all volume-preserving C1 vector fields U with compact support on S, where
u = 〈U, ν1〉1.

Notes for Subsection 8.3.1. The derivation in this section is an original contribu-
tion of this survey and represents a generalization of techniques in [117], where
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the minimal surface case was considered. Formulas (8.18), (8.21) and (8.24) can
be found in [117]. Lemma 8.7 and Proposition 8.9 are proved in [231], where the
corollary is pointed out as well. Both [37], and [231, 232] contain (different) proofs
of Theorem 8.6.

Notes for Section 8.4. Theorems 8.11 and 8.36 are proved by Danielli, Garofalo
and Nhieu in [81]. These results continue to hold, appropriately reformulated, in
any Heisenberg group H

n.
One immediate consequence of Theorem 8.11 is the following isoperimetric

inequality.

Theorem 8.36. Let E be as in Section 8.4, and denote by Ẽ the class of sets of the
form Lyδλ(E) for some E ∈ E, λ > 0 and y ∈ H. Then

|E|3/4 ≤ Ciso(H)PH(E) (8.70)

for all E ∈ Ẽ, where Ciso(H) = 33/4/(4
√

π), with equality if and only if E =
LyB(o, R) for some R > 0 and y ∈ H.

In the interesting work [177], Leonardi and Masnou show, among other things,
that such uo is a critical point (but not the unique minimizer) of the horizontal
perimeter, when the class of competitors is restricted to C2 domains with defining
function x3 = ±f(|z|). The same result has been also noted in [232]. We also want
to point out related results in a recent preprint by Ritoré [230], which considers
the analog of the bubble sets in higher-dimensional Heisenberg groups and proves
a sharp isoperimetric inequality yielding the isoperimetric profile of Hn within the
class of C1 sets contained in a cylinder with axis along the center of the group.

Theorem 4.48, which plays a role in the derivation in this section, is a result of
Balogh, see Theorem 3.1 in [20]. It is worthwhile noting that the result of Theorem
4.48 fails if C1,1

loc is replaced by C1,α
loc for any α < 1; examples to this effect are also

given in [20].
Unfortunately, effective symmetrization procedures in the Heisenberg group

(and other Carnot groups) are noticeably lacking. An approach to symmetrization
via polarization has been developed in the classical space forms, see Baernstein
[18] or Brock–Solynin [44]. Simply put, this program seeks to realize certain well-
studied symmetrization procedures (such as Steiner symmetrization) as limits of
sequences of polarizations, i.e., reflective symmetrizations in hyperplanes. Prelim-
inary attempts to generalize this program to the Heisenberg setting encounter
significant obstructions; polarizations in vertical hyperplanes (the obvious candi-
dates for producing cylindrical symmetry) are not well behaved. Ultimately, this
stems from the fact that reflections in such planes are not isometries of the CC
metric. (Compare the discussion following the definition of reflection in (8.29).)

Notes for Sections 8.5 and 8.6. The brief sketches of Theorems 8.23 and 8.29 are
based on the more complete arguments given by Ritoré and Rosales [231] and
Monti and Rickly [210], respectively. In comparing the proof of Theorem 8.23
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with the proof of [231, Theorem 4.16] the reader will notice a slight difference.
Our argument incorporates ideas from the proof of Theorem 5.3 in that paper;
this choice is motivated by the need for consistency throughout this monograph.
We would also like to note that the results in [231] are more general than those
presented here. Proposition 8.24 is also proved in [64, Theorem 6.3] for t-graphs.

Notes for Section 8.7. The case L = 1 of the argument in Subsection 8.7.1 is
due to Tomter [247]. Our presentation is based in part on unpublished notes on
Tomter’s work by Manfredi and Gong [127]. Subsection 8.7.2 summarizes the work
by Monti in [205]. The classical Brunn–Minkowski inequality is a staple of con-
vex geometry and can be found in many textbooks, see for example Ball [19] or
Burago–Zalgaller [48].

Subsection 8.7.3 is based on some preliminary results by Bonk and Capogna
[37] and Capogna and Citti [51]. In particular, regarding the PDE (8.63), compar-
ison principles for (8.63) have been established in [37] for classical solutions and
in [51] for weak viscosity solutions. (See also [34] for other comparison theorems
for viscosity solutions of nonlinear parabolic equations in H

n.). Coupled with the
existence of explicit self-similar solutions, used as barriers, these comparison prin-
ciples imply that any bounded surface evolving according to (8.63) will shrink to a
point in a finite time. Citti has observed that (8.65) allows a way to define smooth
flows even at characteristic points. Alternatively, one can define a notion of weak
solutions for (8.63) using the concept of viscosity solutions, following an idea of
Evans–Spruck [90], [91], [92], [93] and Chen–Giga–Goto [62].

In the Riemannian case, both for (8.63) and (8.64) weak solutions can be
defined using Brakke’s method of currents, see [42]. In the sub-Riemannian setting
the geometric measure theoretic machinery needed to set up and study this kind
of solutions has yet to be fully developed.

Notes for Subsection 8.8.1. Theorem 8.34 is a special case of a theorem of Monti
and Morbidelli [207], who consider a one-parameter family of Grushin-type spaces.
Fixing α ≥ 0, let Gα be the sub-Riemannian structure arising from the vector fields
X1,α = ∂x1 and X2,α = x1|x1|α−1∂x2 on R

2. Let

PGα(E) = sup
∫

E

(X1,αϕ1 + X2,αϕ2) dx1 dx2

be the corresponding perimeter measure, where once again the supremum is
taken over all pairs of compactly supported C1 functions ϕ1, ϕ2 on R2 satisfying
supR2(ϕ2

1 + ϕ2
2) ≤ 1. Theorem 1.1 of [207] asserts that

|E| ≤ Ciso(Gα)PGα(E)(2+α)/(1+α) (8.71)

for all measurable sets E ⊂ R2 with finite measure, where

Ciso(Gα) =
1 + α

2 + α

(
2
∫ π

0

sinα t dt

)−1/(1+α)

.

The case of equality can also be characterized; see (1.3) in [207].
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Further results relating isoperimetric-type problems in G1 and H can be
found in [12], while the isoperimetric problem in the sub-Riemannian S3 sphere
has been addressed in [154].

Notes for Subsection 8.8.2. The results of this section are taken from the manu-
script of Ritoré and Rosales [232]. Ni [214] has given another derivation of the
cylindrically symmetric constant mean curvature surfaces in the Heisenberg groups
by using the Riemannian approximation scheme.



Chapter 9

Best Constants for Other
Geometric Inequalities
on the Heisenberg Group

As the point of departure for this final chapter, we return to the equivalence of the
isoperimetric inequality with the geometric (L1-) Sobolev inequality. As shown in
Section 7.1, the best constant for the isoperimetric inequality agrees with the best
constant for the geometric (L1-) Sobolev inequality. Recall that in the context of
the Heisenberg group, the Lp-Sobolev inequalities take the form

||u||4p/(4−p) ≤ Cp(H)||∇0u||p, u ∈ C∞
0 (H). (9.1)

In this chapter we discuss sharp constants for other analytic/geometric inequalities
in the Heisenberg group and the Grushin plane. These include the Lp-Sobolev
inequality (9.1) in the case p = 2, the Trudinger inequality (9.14), which serves as
a natural substitute for (9.1) in the limiting case p = 4, and the Hardy inequality
(9.24), a weighted inequality of Sobolev type on the domain H \ {o}.

9.1 L2-Sobolev embedding theorem

In this section, we present a proof of the following theorem of Jerison and Lee
[156].

Theorem 9.1 (Jerison–Lee). The inequality

||u||4 ≤ π−1/2||∇0u||2 (9.2)

holds for all u ∈ C∞
0 (H), with equality if u is a translate or multiple of u0(z, x3) =

2√
π
((1 + |z|2)2 + 16x2

3)
−1/2.
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For simplicity, we present here a partial proof of Theorem 9.1, valid in the
restricted class of first-layer radially symmetric functions. By this terminology we
mean those functions u : H → R which satisfy u(z, x3) = U(|z|, x3) for some
U : [0,∞)× R→ R.

Denote by

Λ = inf
{∫

H

|∇0u|2 :
u ∈ C∞

0 (H) is first-layer radially symmetric∫
H

u4 = 1

}
(9.3)

the best constant in the dual formulation of the Sobolev inequality (9.2). The
Euler–Lagrange equation associated to this variational problem is

Lu = −Λu3. (9.4)

We note that if u is an entire solution to (9.4), then the translates u ◦ lp, p ∈ H

and dilates λu ◦ δs, λ > 0, are also solutions to (9.4). To prove Theorem 9.1 for
first-layer radially symmetric functions, it thus suffices to establish the following
proposition.

Proposition 9.2. Λ = π and the only nontrivial positive entire first-layer radially
symmetric solutions are vertical translates and dilates of the extremal function u0

in Theorem 9.1.

Let u : H → (0,∞) be an entire solution to (9.4). We begin by rewriting
(9.4) in terms of Φ = F (u) = (4Λ)−1u−2. From the identity LΦ = F ′′(u)|∇0u|2 +
F ′(u)Lu we see that (9.4) takes the form

LΦ =
3
2
|∇0Φ|2

Φ
+

1
2
.

We will classify the first-layer radially symmetric solutions to this equation. Thus
let

Φ(z, x3) = φ(|z|, x3)

for some function φ : [0,∞)×R→ (0,∞). Setting r = |z| and t = x3 we calculate

|∇0Φ|2 = φ2
r +

1
4
r2φ2

t , LΦ = φrr +
1
r
φr +

1
4
r2φtt.

Thus φ must solve the PDE

φrr +
1
r
φr +

1
4
r2φtt =

3
2

φ2
r + 1

4r2φ2
t

φ
+

1
2
.

The substitutions x = t and y = 1
4r2 result in the PDE

 φ =
3
2
|∇φ|2

φ
− φy

y
+

1
2y

, (9.5)

for which we seek solutions φ(x, y) in the Poincaré half-plane Ω = {(x, y) : y > 0}.
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Following the method in [119], we employ Weinberger’s technique of P-
functions to solve (9.5). To simplify the notation in what follows, we introduce
the auxiliary function ψ = φ − 1

2y and denote its gradient by ∇ψ = (v, w) =

(φx, φy − 1
2 ). Let P = |∇φ|2 − w = |∇ψ|2 + 1

4 and A = |∇φ|2
φ . In this notation,

(9.5) reads

 ψ =
3
2
A− w

y
. (9.6)

Observe that
 P = 2(||Hessψ||22 + 〈∇ψ,∇ ψ〉), (9.7)

where ||Hessψ||2 denotes the L2 norm of the Hessian of ψ. We next introduce the
function h = y/φ2 and the vector field

V = (F, G) = ∇P −A∇ψ.

Our goal is to prove the following divergence formula:

Proposition 9.3. div(hV ) = h[2||Hessψ||22 − ( ψ)2 + 3( ψ −A)2].

Note that the term 2||Hessφ||22 − ( φ)2 in the preceding formula is nonneg-
ative; thus the right-hand side is the sum of two nonnegative terms.

To prove Proposition 9.3, we will break up the computation in a series of
lemmas.

Lemma 9.4. 〈V,∇φ〉 = φ〈∇A,∇ψ〉.

This is an easy consequence of the identity P + w = φA.

Lemma 9.5. 〈V,∇h〉 = G
φ2 − 2h〈∇A,∇ψ〉.

This follows from Lemma 9.4 and the definition of h.

Lemma 9.6. 2〈∇ψ,∇ ψ〉 = 3〈∇A,∇ψ〉 − Py

y + 2w2

y2 .

This follows from the PDE (9.6) and a short computation.
The verification of the divergence identity in Proposition 9.3 is now an easy

calculation:

div(hV ) = h P − hA ψ − h〈∇A,∇ψ〉+ 〈∇h, V 〉

= 2h||Hessψ||22 − h
Py

y
+ 2h

w2

y2
+

G

φ2
− hA ψ

= h

(
2||Hessψ||22 −A

w

y
+ 2

w2

y2
−A ψ

)
= h

(
2||Hessψ||22 − ( ψ)2 + 3( ψ −A)2

)
.

In the second line here we used Lemmas 9.5 and 9.6 and (9.7), while in the third
line we used the definitions G = Py − Aψy = Py − Aw and h = y/φ2. The final
line follows from another application of (9.6).
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Integrating this divergence formula over ΩR = Ω ∩B(o, R) gives∫
Ω∩∂B(o,R)

h(F dx + Gdy) =
∫

ΩR

h[2||Hessψ||22 − ( ψ)2 + 3( ψ −A)2] dxdy

where we have used the fact that h = 0 on ∂Ω. The (easy) growth estimates
ψ(x, y) ≈ |(x, y)|2, |∇ψ(x, y)| = O(|(x, y)|), and ||Hessψ||2 = O(1) imply that

lim
R→∞

∣∣∣∣∣
∫

Ω∩∂B(o,R)

h(F dx + Gdy)

∣∣∣∣∣ = 0.

Thus ∫
Ω

h[2||Hessψ||22 − ( ψ)2 + 3( ψ −A)2] dxdy = 0

i.e.,

2||Hessψ||2 = ( ψ)2, and  ψ =  φ = A =
|∇φ|2

φ
.

The first identity yields ψxy = 0 and ψxx = ψyy, whence

φ(x, y) = ψ(x, y) +
1
2
y = c2(x2 + y2) + d1x + d2y + f.

Then the second identity yields 4c2f = d2
1 + d2

2, so

φ(x, y) =
(

cx +
d1

2c

)2

+
(

cy +
d2

2c

)2

.

However, since φ must solve (9.5), we see that d2 = 1
2 . Substituting x = t = x3

and y = r2

4 = |z|2
4 gives

Φ(z, x3) =
(

cx3 +
d1

2c

)2

+
1
16

(
c|z|2 +

1
c

)2

.

After a suitable vertical translation and dilation, we obtain

Φ0(z, x3) =
1
16

(
(1 + |z|2)2 + 16x2

3

)
and

u0 = (4ΛΦ0)−1/2 =
2√
Λ

(
(1 + |z|2)2 + 16x2

3

)−1/2
.

The value Λ = π is easily evaluated from the normalization condition ||u0||4 = 1.
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9.2 Moser–Trudinger inequality

The borderline case in the Lp-Sobolev inequality

||f ||Lnp/(n−p)(Rn) ≤ Cp(Rn)||∇f ||Lp(Rn) (9.8)

occurs when p = n is the dimension of the ambient space. Passing to the limit as
p→ n in (9.8) suggests that the Ln norm of the gradient of f should control the
L∞ norm of f . However, this conjecture is false: there exist unbounded functions
in dimensions n ≥ 2 with (locally) n-integrable gradient. (For a simple example,
consider f(x) = log log |x|.) A natural substitute for the Sobolev inequality in
this borderline case is Trudinger’s inequality, which asserts the local exponential
integrability of W 1,n functions. More precisely, there exist constants β ≥ 1, A > 0
and C0 <∞ depending only on n so that

1
|Ω|

∫
Ω

exp

(
A

(
|f |

||∇f ||n,Ω

)β
)
≤ C0 (9.9)

for all domains Ω ⊂ Rn of finite measure and all nonconstant functions f ∈
C∞

0 (Ω). Note that the lack of good scaling properties for the Orlicz functional
Φ(t) = exp(Atβ) which occurs in (9.9) precludes the possibility of writing (9.9) as
an inequality between norms as in (9.8).

Let us give an elementary argument showing the validity of (9.9) for β = 1
with some positive constant A. First, expand the exponential in a power series:

exp
(

A
|f(x)|
||∇f ||n,Ω

)
=

∞∑
m=0

1
m!

Am |f(x)|m
||∇f ||mLn(Ω)

(9.10)

for x ∈ Ω. For each m ∈ N, define an exponent pm so that

m =
npm

n− pm
. (9.11)

We make use of the simple estimate

Cp(Rn) ≤ (n− 1)p
n− p

C1(Rn) (9.12)

(compare 5.21). Integrating (9.10) over Ω and using (9.11) gives

1
|Ω|

∫
Ω

exp
(

A
|f |

||∇f ||n,Ω

)
≤

∞∑
m=0

1
m!

Am

∫
Ω |f |npm/(n−pm)

|Ω| ||∇f ||npm/(n−pm)
Ln(Ω)

.

Extending f by zero in R
n \Ω and applying the Sobolev inequality (9.8) together
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with (9.11) and the estimate in (9.12), we obtain

1
|Ω|

∫
Ω

exp
(

A
|f |

||∇f ||n,Ω

)
≤

∞∑
m=0

1
m!

Am 1
|Ω|

∫
Ω |f |npm/(n−pm)

||∇f ||npm/(n−pm)
n,Ω

≤
∞∑

m=0

1
m!

(ACpm (Rn))m

≤
∞∑

m=0

1
m!

(A
(n− 1)pm

n− pm
C1(Rn))m

=
∞∑

m=0

1
m!

(A
n− 1

n
mC1(Rn))m.

By Stirling’s formula, the summand is approximately

(Aen−1
n C1(Rn))m

√
2πm

for large m, which shows that the series converges whenever A < (en−1
n C1(Rn))−1.

With some more work the estimate (9.12) can be improved to

Cp(Rn) ≤ c(n)
(n− p)1−1/p

which allows the preceding argument to be carried out with β = n/(n − 1). (In
fact, the best constant in the Lp-Sobolev inequality on Rn for 1 ≤ p < n has been
computed by Talenti; see the Notes to this chapter for more details.) By using
suitable truncations of the logarithmic potential f(x) = log 1/|x| in Ω = B(0, 1),
it is easy to see that β cannot be chosen greater than n/(n− 1).

Henceforth, we refer to inequality (9.9) with β = n/(n − 1) as Trudinger’s
inequality. With the value of the optimal exponent β resolved, attention naturally
shifts to the coefficient A. By the best coefficient we mean the supremum A(Rn)
of those values A so that (9.9) holds for all Ω and f . One may also ask whether
the inequality persists or not in the critical case A = A(Rn).

The preceding power series argument clearly does not realize the optimal
coefficient. The first computation of the best coefficient in Trudinger’s inequality
was given by Moser, who showed that

A(Rn) = nω
1/(n−1)
n−1

and that (9.9) holds with A = A(Rn). The logarithmic potential mentioned above
also shows that no larger value for A is admissible. In this sharp form (with the best
possible exponent β and coefficient A), we refer to (9.9) as the Moser–Trudinger
inequality.
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In this section, we sketch the proof of the sharp Moser–Trudinger inequal-
ity in the first Heisenberg group H, giving the best exponent and coefficient for
exponential integrability of S1,4(H) functions. This result is due to Cohn and Lu.

Theorem 9.7 (Cohn–Lu). For

A = A(H) = 4π2/3, (9.13)

the inequality
1
|Ω|

∫
Ω

exp
(

A(H)
|f |

||∇0f ||4,Ω

)4/3

≤ C0 (9.14)

holds with an absolute constant C0, for all domains Ω ⊂ H of finite measure and
all nonconstant functions f ∈ C∞

0 (Ω). Moreover, the expression in (9.14) admits
no uniform upper bound over such Ω and f for any A > A(H).

We begin the proof of Theorem 9.7 by observing that the fundamental solu-
tion to the conformally invariant 4-Laplace operator

L4u = X1(|∇0u|2X1u) + X2(|∇0u|2X2u)

takes the form
Γ4 = − 1

π2
· log

1
N

,

where, as before, N(x) = ||x||H denotes the Korányi norm. This can be proved by
an adaptation of the argument we used in Section 5.2 for the standard (2-)Laplace
operator. Integrating by parts yields the sharp representation formula

f(o) = − 1
π2

∫
H

|∇0N |2
N3

〈∇0N,∇0f〉1,

valid for compactly supported smooth functions f on H. By precomposition with
a group translation, we obtain

f(x) =
1
π2

∫
H

|∇0N(y)|2
N(y)3

〈∇0N(y),∇0f(xy−1)〉1 dy (9.15)

for all f ∈ C∞
0 (H) and all x ∈ H. Thus

|f | ≤ 1
π2

K ∗ |∇0f |, (9.16)

where ∗ denotes convolution and

K =
|∇0N |3

N3
. (9.17)

The estimate (9.16) reduces the problem from an optimal embedding inequality
for the first-order Sobolev space S1,4(H) to an optimal embedding inequality for
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convolutions with the potential K in the Lebesgue space L4(H). More precisely,
we see that (9.14) would follow if we could prove the implication∫

Ω

F 4 ≤ 1 ⇒ 1
|Ω|

∫
Ω

exp
(

4
π2

(K ∗ F )4/3

)
≤ C0 (9.18)

for all Ω ⊂ H of finite measure and all non-zero, nonnegative F ∈ C∞
0 (Ω).

The proof of (9.18) uses an argument of Adams involving O’Neil’s Lemma on
rearrangements of convolutions. For a nonnegative function F on H we consider
the non-increasing rearrangement

F ∗(t) = |{s > 0 : |{x ∈ H : F (x) > s}| ≤ t}|.

As with any rearrangement, we have the identity∫
H

u ◦ F =
∫ ∞

0

u ◦ F ∗(t) dt (9.19)

for any measurable u : [0,∞) → [0,∞). An elementary computation using (9.17)
gives

K∗(t) = (
π

2
)3/2t−3/4.

Recast in terms of the rearrangements of F and K, (9.18) reads∫ |Ω|

0

F ∗(t) ≤ 1 ⇒ 1
|Ω|

∫ |Ω|

0

exp
(

4
π2

(K ∗ F )(t)4/3

)
≤ C0. (9.20)

An application of O’Neil’s Lemma [259, Chapter 1]:

(h ∗ g)∗(t) ≤ 1
t

∫ t

0

h∗(s) ds

∫ t

0

g∗(s) ds +
∫ ∞

t

h∗(s)g∗(s) ds

with h = K and g = |∇0f | shows that (9.20) follows in turn from∫ |Ω|

0

F ∗(t) ≤ 1

⇒ 1
|Ω|

∫ |Ω|

0

exp

⎛⎝(∫ t

0

F ∗(s) ds +
(

2
π

)3/2 ∫ ∞

t

s−3/4F ∗(s) ds

)4/3
⎞⎠ ≤ C0.

(9.21)

After an ingenious change of variables t = |Ω|e−τ , (9.21) reduces to a lemma of
Adams [2]. Similarly to the Euclidean case, suitable truncations of the logarithmic
potential f(x) = log 1/||x||H in Ω = {x ∈ H : ||x||H < 1} show that no larger value
for A can be chosen.
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9.3 Hardy inequality

The classical Hardy inequalityasserts that∫
Rn

|u(x)|2
|x|2 dx ≤

(
2

n− 2

)2 ∫
Rn

|∇u(x)|2 dx (9.22)

for all u ∈ C∞
0 (Rn \ {0}) and n ≥ 3, where the constant

(
2

n−2

)2

is best possi-
ble. Inequality (9.22) plays a key role in the analysis of the inhomogeneous heat
equation {

ut − u = λ|x|−2u, x ∈ R
n, 0 < t < T,

u(x, 0) = u0(x),
(9.23)

where u0 ∈ L2(Rn) is positive and λ ∈ R. Indeed, (9.23) has a solution if and only
if λ ≤ ( 2

n−2 )2. To conclude this chapter, we state an analog of (9.22) in the first
Heisenberg group.

Theorem 9.8. For u ∈ C∞
0 (H \ {o}), the inequality∫

H

|z|2u(z, x3)2

||(z, x3)||4H
dz dx3 ≤

∫
H

|∇0u(z, x3)|2 dz dx3 (9.24)

holds. Moreover, (9.24) is sharp in the following sense:

sup
u

∫
H
|z|2||(z, x3)||−4

H u(z, x3)2 dz dx3∫
H
|∇0u(z, x3)|2 dz dx3

= 1,

where the supremum is taken over all u ∈ C∞
0 (H \ {o}).

Proof. As in the preceding section, we denote by N the Korányi norm. Set u =
N−1v. Then

|∇0u|2 = N−4|∇0N |2v2 − 2N−3〈∇0N,∇0v〉1 + N−2|∇0v|2. (9.25)

Since |∇0N | = |z|/N , we find∫
H

|∇0u|2 =
∫

H

|z|2N−6v2 − 2
∫

H

N−3v〈∇0N,∇0v〉1 +
∫

H

N−2|∇0v|2

=
∫

H

|z|2N−6v2 +
1
2

∫
H

〈∇0(N−2),∇0(v2)〉1 +
∫

H

N−2|∇0v|2

by integrating (9.25) over H. Integrating by parts in the middle term and using
Theorem 5.15 gives∫

H

|∇0u|2 ≥
∫

H

|z|2N−6v2 =
∫

H

|z|2N−4u2.

(Recall that u, hence also v, was compactly supported in the complement of o.)
To see that the inequality is sharp, consider suitable (smooth) approximations to
the functions uε := N−1χ{ε<N<1/ε}, ε > 0. �
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9.4 Notes

Notes for Section 9.1. The best constant in the Sobolev inequality (9.8) was com-
puted by Talenti [245] and Aubin [17]. For each 1 ≤ p < n, the inequality (9.8)
holds for all f ∈ C∞

0 (Rn) with

Cp(Rn) =
(

1
n

)(n−p)/np
((

p− 1
n− p

)n/q Γ(n)
Γ(n/p)Γ(1 + n/q)ωn−1

)1/n

(9.26)

if 1 < p < n, or

C1(Rn) =
1

n(n−1)/nω
1/n
n−1

.

Here Γ denotes the Gamma function, ωn−1 is the surface area of the unit sphere
in Rn, and q = p/(p − 1) is the Hölder conjugate. Moreover, equality is attained
in (9.8) only for functions of the form f(x) = (a + b|x|q)−n/p for suitable a, b > 0.

The L2-Sobolev inequality is of interest in view of its connection with the
classical Yamabe problem, which asks which metrics on a compact Riemannian
manifold are conformally equivalent with a metric of constant scalar curvature. In
the CR analog of this problem, the usual (Hermitian) scalar curvature is replaced
by the (pseudo-Hermitian) Webster–Tanaka curvature. Jerison and Lee show that
the only contact forms on S3 ⊂ C2 with constant Webster curvature are the images
of the standard contact form θ̂ = i

2 (∂−∂)|z|2 under CR automorphisms of S3. For
a fixed p0 ∈ S3, H is CR equivalent with S3 \ {p0} via the Cayley transform. (See
Section 3.3.) Under this transform, θ̂ is taken to 2u2

JL(dx3 − 1
2x1 dx2 + 1

2x2 dx1),
where

uJL(z, x3) = ((1 + |z|2)2 + 16x2
3)

−1/2. (9.27)

The images of the conformal factor uJL under left translations and dilations of the
Heisenberg group are precisely the minimizers for the L2-Sobolev inequality on H.
In this way, Jerison and Lee [156] were led to a proof of Theorem 9.1. Garofalo
and Vassilev [119] studied conformal geometry and the analog of the CR Yamabe
problem in groups of Heisenberg type, and obtained an extension of Theorem 9.1
in that setting for first-layer radially symmetric functions. The proof of Theorem
9.1 which we gave is a slightly simplified version of that of Garofalo and Vassilev,
restricted to the setting of H.

We stress the fact that the extremal uJL is not a function of the Korányi
gauge. Similarly, the bubble sets B(o, R) do not admit implicit representations in
terms of this gauge. On the other hand, the extremals for Trudinger’s inequality
on H are expressed in terms of this gauge. This highlights an essential difficulty
in determining the sharp Lp Sobolev inequalities on H, not present in the Eu-
clidean case: the qualitative characteristics of the extremal functions necessarily
vary with p.
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Monti and Morbidelli’s solution to the isoperimetric problem on the Grushin
spaces Gα yields the sharp constant in the L1 Sobolev inequality. Indeed, for each
α ≥ 0, the inequality∫

R2
|f |(2+a)/(1+a) ≤ Ciso(Gα)

(∫
R2

√
f2

x + |x|2αf2
y

)(1+α)/(2+α)

holds for all f ∈ C∞
0 (R2), and is sharp. In particular, the sharp L1 Sobolev

inequality on the Grushin plane G = G1 is given by∫
R2
|f |3/2 ≤ 1

3

(∫
R2

√
f2

x + |x|2f2
y

)2/3

.

The sharp L2 Sobolev inequality on the Grushin plane was obtained by Beckner
[31] in the form (∫

R2
|f |6

)1/6

≤ π−1/3

(∫
R2

(f2
x + 4x2f2

y )
)1/2

(9.28)

for all f ∈ C∞
0 (R2). Beckner’s proof relies on a scaling transformation which

recasts (9.28) as a Sobolev inequality on the hyperbolic plane SL(2, R)/SO(2). We
also point out the recent paper by Monti [206] where symmetrization techniques
are used to prove sharp Sobolev inequalities in Grushin spaces.

Notes for Section 9.2. The proof of (9.9) via power series is due to Trudinger [249].
The technique works in great generality, see Saloff-Coste [235] for general Carnot
groups, Danielli [77] for the general Hörmander vector fields, and Haj
lasz and
Koskela [132] for general metric spaces, using the notion of upper gradient.

Cohn and Lu were the first to obtain best constants in Moser–Trudinger-
type inequalities in non-abelian Carnot groups. Theorem 9.7 is the n = 1 case
of their paper [69] on Moser–Trudinger inequalities in the Heisenberg groups H

n.
The use of the conformally invariant 4-sub-Laplacian in the proof of Theorem
9.7 which we give is inspired by the approach in Balogh, Manfredi and Tyson
[24], where the sharp Moser–Trudinger inequality is obtained in arbitrary Carnot
groups. The technique employed is similar to that of Cohn and Lu, but begins
with a general representation formula arising from the fundamental solution to the
Q-sub-Laplacian. The nonlinear potential theory of the conformally invariant Q-
sub-Laplace equation on Carnot groups of homogeneous dimension Q was studied
by Balogh, Holopainen and Tyson in [23], where applications to the regularity of
quasiconformal maps were obtained. For explicit computations of the best constant
in the Moser–Trudinger inequality in H-type groups, see Cohn–Lu [70] and Balogh–
Tyson [26].

Note that on all non-abelian groups (including the Heisenberg group),
Adams’ technique (developed in [2]) is at present the only viable method to find
the sharp form of the Trudinger inequality; Moser’s original approach encounters
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serious difficulties due to a lack of information regarding the behavior of horizon-
tal energy norms under symmetrization. Manfredi and Vera de Serio [193] have
shown that radial symmetrization in non-abelian Carnot groups is substantially
less well-behaved than its Euclidean counterpart.

In [253], sharp Young’s inequalities for weighted convolution operators on
Carnot groups are developed and applied to the study of sharp weighted Moser–
Trudinger inequalities for first-layer symmetric functions in the Heisenberg group.
By passing to a suitable quotient, these estimates imply some sharp weighted
Moser–Trudinger inequalities for x1-symmetric functions on the Grushin plane.
However, the class of admissible weights for the result in [253] does not cover the
original (unweighted) case, which is still open.

Notes for Section 9.3. The Hardy inequality in the Heisenberg group is due to
Garofalo and Lanconelli [115]. Niu, Zhang and Wang [215] found an Lp analog of
Theorem 9.8, while Kombe [165] generalized Theorem 9.8 in a different direction,
including more general Korányi radial weights in the integrals and extending the
result to more general classes of Carnot groups. For Hardy-type inequalities in the
setting of the Grushin plane, see D’Ambrosio [76].
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opérateurs sous-elliptiques. C. R. Acad. Sci. Paris Sér. I Math. 314, 13
(1992), 987–990.

[78] Danielli, D., Garofalo, N., and Nhieu, D.-M. Minimal surfaces,
surfaces of constant mean curvature and isoperimetry in Carnot groups.
Preprint, 2001.

[79] Danielli, D., Garofalo, N., and Nhieu, D.-M. Sub-Riemannian cal-
culus on hypersurfaces in Carnot groups. Preprint, 2006.

[80] Danielli, D., Garofalo, N., and Nhieu, D.-M. A notable family of en-
tire intrinsic minimal graphs in the Heisenberg group which are not perimeter
minimizing. Amer. J. Math. (to appear).

[81] Danielli, D., Garofalo, N., and Nhieu, D.-M. A partial solution of
the isoperimetric problem for the Heisenberg group. Forum Mathematicum
(to appear).

[82] Danielli, D., Garofalo, N., Nhieu, D.-M., and Pauls, S.D. Instabil-
ity of graphical strips and a positive answer to the Bernstein problem in the
Heisenberg group. Preprint, 2006.

[83] Danielli, D., Garofalo, N., Nhieu, D.-M., and Pauls, S.D. Stable c2

complete embedded noncharacteristic h-minimal surfaces in the Heisenberg
group are vertical planes. Preprint, 2006.

[84] De Giorgi, E. Su una teoria generale della misura (r− 1)-dimensionale in
uno spazio ad r dimensioni. (Italian.) Ann. Mat. Pura Appl. 4, 36 (1954),
191–213.
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[168] Korányi, A., and Reimann, H.M. Quasiconformal mappings on the

Heisenberg group. Invent. Math. 80 (1985), 309–338.
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tor fields and the Poincaré inequality. Ann. Inst. Fourier (Grenoble) 54, 2
(2004), 431–452.

[199] Montefalcone, F. PhD thesis, University of Bologna, 2004.

[200] Montefalcone, F. Some relations among volume, intrinsic perimeter and
one-dimensional restrictions of BV functions in Carnot groups. Ann. Sc.
Norm. Super. Pisa Cl. Sci. (5) 4, 1 (2005), 79–128.

[201] Montgomery, R. Abnormal minimizers. SIAM J. Control Optim. 32, 6
(1994), 1605–1620.

[202] Montgomery, R. Survey of singular geodesics. In [32], 1996, pp. 325–339.

[203] Montgomery, R. A tour of subriemannian geometries, their geodesics and
applications. No. 91 in Mathematical Surveys and Monographs. American
Mathematical Society, 2002.

[204] Monti, R. Some properties of Carnot-Carathéodory balls in the Heisenberg
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of (RN , dL) to (G, d), 34

Gromov–Hausdorff distance, 28
Grushin plane, 183

Hardy inequality for, 202
isoperimetric inequality in, 184
sharp Sobolev inequalities for, 201
Trudinger inequality for, 202

Gudermannian function, 56

H-type groups, 36
Hörmander rank condition, 34
Haar measure

in Carnot groups, 16
in the Heisenberg group, 14

Hardy inequality, 199
in the Grushin plane, 202
in the Heisenberg group, 199

Hardy–Littlewood maximal
operator, 102

Hausdorff dimension, 22
Hausdorff distance, 28
Hausdorff measure, 21
Heisenberg group

definition of, 12
dilations on, 13
geodesics, 23
geodesics in, 30
group law, 13
Haar measure, 14
higher-dimensional, 15
horizontal distribution, 14
horizontal frame bundle for, 13
horizontal gradient, 15
matrix model for, 11
one-point compactification of, 46
Pansu–Rademacher

differentiation theorem on, 123

Heisenberg reflection, 163
homogeneous dimension, 16
homogeneous structure, 16
horizon, 48
horizontal connection, 91
horizontal constant mean curvature

surface, 74
horizontal distribution

in the Heisenberg group, 14
horizontal frame bundle

in Hn, 15
in the Heisenberg group, 13

horizontal Gauss curvature, 74
horizontal gradient, 15

in Carnot groups, 16
horizontal Hessian, 79
horizontal Jacobian, 122
horizontal length, 20
horizontal linear map, 16
horizontal mean curvature, 70, 74

in parametric form, 133
horizontal minimal surface, 74
horizontal normal, 69
horizontal path, 17
horizontal principal curvatures, 74
horizontal second fundamental form,

73
symmetrized, 74

hyperbolic space
complex two-dimensional, 50
real two-dimensional, 49

implicit function theorem, 90
infinite sub-Laplacian, 70, 75
integral geometry, 7
intrinsic graph, 89
intrinsic regular hypersurface, 89
isoperimetric constant

of Euclidean space, 3
of the Grushin plane, 201
of the Heisenberg group, 151

isoperimetric inequality
equivalence with the geometric

Sobolev inequality, 143
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in Euclidean space, 3
in Hadamard manifolds, 144
in the Grushin plane, 184
in the Heisenberg group, 151

isoperimetric problem, 2
isoperimetric profile

existence of, 154
of the Heisenberg group,

conjectured, 151
isoperimetric ratio, 2
Iwasawa decomposition, 34

Jacobi elliptic function, 56
Jacobian

horizontal, 122
jet spaces, 39

and neurogeometry, 60
John domain, 107

Korányi gauge, 18
Korányi inversion, 19, 139
Korányi metric, 18
Korányi sphere

horizontal mean curvature of, 71
Korányi–Reimann quasiconformal

flow theorem, 140
Kozul identity, 26

lattice, 136
left translation

in Carnot groups, 15
in the Heisenberg group, 14

Legendrian foliation, 76
near isolated characteristic

points, 84
near non-isolated characteristic

points, 80
Legendrian path, 17
length space, 28
Levi form, 46
Levi-Civita connection, 26, 64
Liouville rigidity theorem, 138
local Sobolev space, 95

mammalian visual cortex, 44
mean curvature flow, 9, 182
metric Jacobian, 118
metric space

doubling, 102
length, 28
pointed, 28
proper, 28

minimal surface, 74
Minkowski content, 126
Minkowski formula, 158
Minkowski sum, 180
Morrey space, 106
Mostow rigidity theorem, 136

neurogeometry, 44
non-increasing rearrangement, 198
nonhomogeneous coordinates, 51

O’Neil’s Lemma, 198
one-point compactification

of the Heisenberg group, 46
optimal control, 42

P-functions, 193
Pansu differential, 118, 125
Pansu’s conjecture, 152
Pansu–Rademacher theorem, 119

on the Heisenberg group, 123
path planning, 42
perimeter, 3

first variation of, 127, 133
horizontal, 96
volume constrained, first

variation of, 157
Plateau’s problem, 2
Poincaré disc model, 49
Poincaré distance, 49
Poincaré inequality, 110

(1, p)-, 110
Poincaré–Sobolev domains, 115
pointed metric space, 28
pointwise Lipschitz constant, 120
polarized coordinates, 12
polarized Heisenberg group, 11
proper metric space, 28
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quasi-geodesic stability lemma, 137
quasiconformal

analytic definition, 138
metric definition, 137

quasiconformal maps
on the Heisenberg group, 139

quasisymmetric map, 139

radially symmetric function, 192
rank one symmetric space, 141
reflection

in H, 163
reproducing kernel, 52
reverse Schwartz inequality, 60
Riemannian approximations, 25

in Carnot groups, 33
Riesz representation theorem, 52
roto-translation group, 40, 44
Rumin differential complex, 91
Rumin’s theorem, 91

Santaló’s formula, 145
second fundamental form in

(R3, gL), 65
Siegel domain, 25, 46
singular set

of a C2 function, 79
Sobolev embedding theorem

on Carnot groups, 109
Sobolev inequality

L1-, in the Grushin plane, 201
L2-, in the Grushin plane, 201
L2-, in the Heisenberg group, 191
geometric case, 102
in Euclidean space, best

constants for, 200
subcritical case, 105
supercritical case, 106

Sobolev space
in Euclidean space, xv
in the Heisenberg group, 95

stereographic projection, 47
Stirling’s formula, 196
stratification, 15
strictly pseudoconvex domain, 46

sub-Laplacian, 34, 70, 75
sub-Riemannian metric, 17, 19
sub-Riemannian space, xi
submanifold notation in Riemannian

approximants (R3, gL), 65
sum of squares operators, 34
supporting plane, 172
surface area

of Sn−1, xv
symmetrization, 2
symmetrized horizontal second

fundamental form, 74

t-graph surfaces, 78
Teichmüller theory, 136
Trudinger inequality, 195

in Carnot groups, 201
in the Grushin plane, 202
in the Heisenberg group, 197

unicycles, 42

V1, 44
variation of a function, 96
variations

volume-preserving and perimeter
stationary, 127

Virgil, 1
visual cortex, 44

and jet spaces, 60
visual metric, 49
volume constrained mean curvature

flow, 182

weak Lq space, 102
Webster–Tanaka curvature, 200
Weinberger’s technique, 193
Whitney ball, 139
Whitney decomposition, 115
Wirtinger’s inequality, 5

Yamabe problem, 200




