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Supervisor’s Foreword

Land use and land cover change are two subjects that have triggered a large
number of research activities and resulted in a wealth of different approaches to
detect past change and also to predict future development. Among the most
prominent methods are those that use remote sensing and image analysis combined
with various statistical and analytical procedures. They all require a series of data
over longer periods, appropriate land use maps, and related information. It is not
always easy to acquire or access these data due to a simple lack of data or
administrative access restrictions. It is therefore imperative to make use of satellite
data and other easier accessible data of reasonable resolution.

Many large cities face pressing problems with—sometimes uncontrolled—
growth and sprawl, in particular when their expansion is limited by natural and
other conditions. Tehran is one of these cities whose expansion is a fact, but which
also experiences severe topographic constraints by its location at the foothills of
the Alborz Mountains. Tehran is a very dynamic city which grew rapidly over the
last decades. Being an Iranian it was therefore very logical for Dr. Jamal Jokar
Arsanjani to choose the capital of his home country as a study area and at the same
time a city that has to cope with all the problems of urban sprawl.

The original focus of Dr. Jokar Arsanjani’s work is on agent-based modeling to
predict land cover change for the Tehran area. This alone would already have been
an interesting endeavor worth investigating. However, a real value of the work lies
also in the extensive application and comparison of traditional methods to predict
land cover change. These methods are cellular automata, Markov chain model,
cellular automata Markov model, and the hybrid logistic regression model. In his
thesis all these methods have been applied to the Tehran area to analyze and
predict land cover change. In this respect the work can also serve as a text
explaining the different approaches in their theoretical characteristics and practical
applications. It is a particular value that the advantages and disadvantages of these
methods are clearly exposed and explained.

Based on the preliminary findings of the different methods, finally, an agent-
based model was developed that consist of government agents, developer agents,
and resident agents, in order to simulate land cover change. Various parameters
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and behaviors were modeled and programmed in the ArcGIS environment.
Since almost nothing in the real world follows a crisp classification, many tradi-
tional approaches suffer from a lack of adequately representing the real world
situation. Fuzzy logic is one way to introduce uncertainty and vagueness to spatial
analysis. Dr. Jamal Jokar Arsanjani uses fuzzy membership functions for the
relevant factors in his geo-simulation research to represent a more natural behavior
of the agents. This offers a more realistic analysis and provides results that better
suit a real world situation.

The major value of this work is twofold: it shows a detailed comparison of
existing methods for land cover change modeling, and it presents a novel approach
in geo-simulation by applying agent-based modeling in a fuzzy setting. The thesis
has already spawned several journal papers and Dr. Jokar Arsanjani’s approach
opens new perspectives for scientific problems in environmental monitoring,
modeling and change detection.

Vienna, June 2011 Prof. Dr. Wolfgang Kainz
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Chapter 1
General Introduction

1.1 Introduction

Land use/cover change is a complex matter, which is caused by numerous
biophysical, socio-economical and economic factors. An obvious form of land use
change in the suburbs of the metropolis is defined as urban sprawl. There are a
number of techniques to model this issue in order to investigate this topic. These
models have been developed since the 1960s and are increasing in terms of
quantity and popularity. Some of these models suffer from a lack of consideration
of some significant variables. The traditional methods (e.g. Cellular Automata, the
Markov Chain Model, CA-Markov Model, and Logistic Regression Model) have
some inherent weaknesses in consideration of human activity in the environment.
The particular significance of this problem is the fact that humans are the main
actors in the transformation of the environment, and impact upon the suburbs due
to their settlement preferences and lifestyle choices. The main aim of this thesis is
to examine some of those traditional techniques in order to discover their
considerable advantages and disadvantages. These models are compared against
each other to evaluate their functionality.

Benenson and Torrens (2004) the authors of the ‘‘Geosimulation: automata-
based modelling of urban phenomena’’ believe and propose an innovative
approach towards natural phenomena modelling, which they suggest is vastly
turning to geospatial-explicit studies in the field of Geographic Automata System
(GAS) modelling. In this particular research, the main goal is to introduce a new
modelling system as an innovative paradigm in urban complexity by a GIS inte-
grated automata system, the so-called geosimulation method as put forward by
Benenson and Torrens (2004). This concept of geosimulation is based on
geographically-related automata.

Updated and precise GIS and remote sensing databases serve as the primary
information source for geosimulation implementation. Computational implementa-
tion of such geosimulation models is basically performed through object-oriented
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programming. Also, modern system theories provide the paradigmatic basis and
analytical tools for investigating geosimulation models. In recent years, because
of the rapid economic growth of developing countries, research in the phe-
nomenon of urban expansion has increased exponentially. In contrast to
regional models of 1980s, the ‘new wave’ of high-resolution models focuses on
behaviour and transformations of urban objects (Hatna and Benenson 2007).
Historically cities are complex systems and frequently evolve over time. Each
singular activity and behaviour of the elements of this evolutionary system
influences the decisions made by internal and external forces. Thus, each agent
that might affect this system has, perforce, to be investigated for the simulation
process (Crooks 2006). In addition, land use and land cover change modelling
is an important and fast growing scientific field—because land use change is
one of the most significant ways humans influence the surrounding environ-
ment. This issue is so extremely important that scientists have formed an
international organisation known as ‘‘LUCC’’. The main thrust of this organi-
zation is its concern with the International Human Dimensions of Global
Change Program and the International Geosphere Biosphere Program (Ellis and
Pontius 2006; Lambin and Geist 2006; Pontius and Chen 2006).

Three main aims will be followed by this research: firstly, to create, modify and
perform an agent-based modelling approach upon land use and cover change
matter to evaluate the performance of this technique. More importantly this
technique has not been imported into the GIS environment for simulation
purposes. Therefore, the priority of this research is to construct an agent-based
model in the interior of GIS software to present it as a new reliable system for GIS
users. This method is being carried out for several purposes, such as traffic
modelling (Ljubovic 2009), fire propagation (Michopoulos et al. 2004), complex
behaviour modelling, urban growth and pedestrian movement (Kerridge
et al. 2001).

Secondly, the land use and cover change subject was chosen for this agent-
based modelling implementation because of the following motivations:

• The comparing of traditional methods with this proposed method in land use and
land cover changes studies;

• The gathering of the results of each particular model to state an overall
conclusion;

• The evaluation of advantages and disadvantages of each particular model for
resultant improvement or hybrid model creation.

Therefore, the preliminary outcomes will be able to empower agent-based
modelling as an approach to deduce benefits from each model’s strength.

Thirdly, the constructed agent-based model will be able to simulate any
forthcoming changes within a particular time period.
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1.2 Problem Statement

1.2.1 Rapid Urban Expansion of Tehran

In developing countries, the population growth is principally rapid in the urban
areas. Rapid urbanisation is consuming the farming land by urban built-up areas.
Additionally, metropolitan population outside cities has increased faster than
downtown areas in many regions, indicating a significant tendency of the outward
extension of urban areas. Indeed, many cities are quickly growing at their fringes,
swallowing rural areas and farming lands and converting into dense commercial
and industrial areas (Huang et al. 2009).

The metropolis of Tehran, with around 13 million inhabitants (Iranian National
Statistics Center 2006) is surrounded by Alborz Mountains in the north and Dasht-
e Kavir in the south. It is located on a vast mountain slope with an altitude of 900–
1,700 m above sea level. There are many cities remarkably close to Tehran which
form the metropolitan area; the largest one is Karaj city, with more than
one million inhabitants, 40 km away to the west, and the second largest city is
Islamshahr with a population exceeding 300 thousand located 60 km to the south.
These two cities also have their own suburb area. Moreover, there are several small
towns and villages in the vicinity of Tehran in the situation of turning into large
cities and then joining the metropolitan area. Tehran is limited in northern and
eastern parts by high mountains that interrupt the urban expansion in these two
directions.

Tehran has a rapid expansion rate and its sharp population growth in the recent
decades has had many unpleasant impacts on the environment. From 1980 to 2000,
resident population in Tehran nearly doubled. The physical growth of the city is
replacing other land cover classes such as farming and open lands. Nearly 98.7%
of the population of the metropolitan area lived in Tehran city 20 years ago, but
within the recent years, it has decreased down to 67%. Moreover, about 33% of the
population has moved to the suburbs, because of difficulties such as land prices and
traffic and transportation problems. This process is changing urban areas that there
is no significant boundary between urban and suburb areas. This challenges the
urban planners and managers with new affairs on the administrative level. This
growth in the metropolis is expanding and can result in more unsolvable
complexities as other mega cities have faced before (e.g. Mexico City).

The Tehran growth has been becoming a national disaster, therefore massive
immigration towards the city has to be stopped. Furthermore, this matter has
caused remarkable damages in terms of environmental and economic aspects. As a
matter of fact, Tehran province is the centre of accessibility to northern recrea-
tional facilities and its vast population is capable of damaging that area as well as
increasing the speed of change in surroundings. Besides, establishment of Karaj
province in 2010 in the vicinity of Tehran only 35 km away has also its own
consequences that influence the growth rate. Consequently, the vast environmental
damage of this decision cannot be ignored.
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1.2.2 Limitations of Previous Approaches

It is essential for urban planners and land policy makers to focus on the trend of
urban sprawl in the fringe of Tehran and its environmental impacts through the
most reliable technique. Such a simulation will allow them to know about the
probable future changes. Therefore, the direction and quantity of changes will
become clear. So far, several methods about land change modelling have been
performed in the Tehran metropolitan area by means of original and hybrid
Cellular Automata Models, the Markov Chain Model and other artificial intelli-
gence integration.

In recent years, inventive artificial intelligence prototypes for instance,
geosimulation, agent-based modelling in contribution of fuzzy logic research have
reached the capability to improve the quality and accuracy of such models (Rana
and Sharma 2006). Land change researchers have been carrying out different
methods and each one has some strengths and weaknesses which influence their
results. Therefore, it is complex to compare the performance of the various models
because the LUCC models have different fundamental structures. For instance,
some models, such as the Cellular Automata, simulate changes in a binary form
(i.e. between two land categories), whilst other models such as the CA-Markov,
can simulate change among several categories (Pontius and Chen 2006).

On the other hand, some models are static (i.e. non dynamic) and some others
have the capability of producing change probability surfaces for the allocation
process at any time. In addition, a comprehensive comparison between different
models in a particular study area has not been reported. This thesis aims to
implement some models in a particular study area and conclude the advantages of
each particular model. Also, in recent years, there are some software for imple-
menting these approaches in both raster-based and vector-based data, but there is
no valid literature to evaluate their quality and proficiency in the simulation
process. Thus, we will draw a conclusion about them as well.

1.3 Research Hypotheses

In order to simulate the land use and cover changes by the geosimulation scenario
and to compare this approach with traditional methods, the hypotheses of this
research can be identified as follows:

• Geosimulation is a more applicable technique in comparison with other common
techniques for land use change studies and prediction such as CA, Markov
Chain and it is practical to replace it with other methodologies due to its
individual characteristics in parameters modelling.

• Using different aspects of artificial intelligent approaches such as fuzzy logic,
agent-based modelling and neuro-fuzzy systems in designing this simulation
process and also in the prediction of future changes will be innovative.
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1.4 Research Questions

As noted in Sect. 1.3, we intend to design various scenarios by means of traditional
techniques and discover the advantages of each model and their strength to be
utilised for designing agent-based model. Moreover, the land use change assess-
ment process needs to evaluate the happened and probable changes in two different
types of measurement; the quantity of change and the location of change.
Therefore, these two values need to be assessed. Thus, the following research
questions were designed for this study:

• What are the potential limitations of common techniques for LUCC modelling?
Are the MAS/LUCC models able to solve some of these constraints?

• What are the distinctive strengths of MAS/LUCC modelling techniques? How
can these strengths conduct model developers in selecting the most appropriate
modelling technique for their particular research question?

• Are MAS/LUCC model outcomes reliable in geospatially explicit studies?

• Do the agent-based models have the possibility to spatialize each particular
variable in real-world phenomena?

• How can the ABM models be empirically parameterised, verified, and
validated?

• Which type of agent is going to dominate the land change process in the study
area?

1.5 Research Objectives

In order to respond to the aforementioned research questions in Sect. 1.4, multiple
scenarios for land use change modelling have to be designed. These scenarios
comprise implementation of the Cellular Automata Model, the Markov Chain
Model, the Cellular Automata-Markov Model and the Logistic Regression Model.
Therefore, the outcomes of these models can lead this research to discover the
appropriate drivers of change in the study area. The drivers of change can result in
defining different agents and specifying their proper behaviours. These defined
behaviours control each agent particularly and also the external interaction
between all agents.

The main aims of this research in detail are listed below:

• To propose a generic method that can be followed to develop multi-agent sys-
tems in the GIS environments in various types of natural phenomena modelling,

• To design an agent-based modelling prototype based on geographic data and
GIS functions, as well as to promote the capability of GIS environments’
functionality for this matter,
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• To propose an analysis technique to examine the results arising from the geo-
simulation performance in comparison with other methodologies such as CA,
Markov Chains and hybrid models,

• To consider the possibility of integrating GIS functions with ABM functions in
GIS environment and segregate geosimulation from the ABM environments,

• To predict the future changes within a particular period through a customised
scenario.

1.6 Research Approach

In order to achieve the noted objectives in Sect. 1.5, it was intended to discover the
advantages and disadvantages of each existing model and therefore, feed the
strengths of each model to the final ABM scenario. This thesis proposes an
approach to create spatially explicit agent-based models by means of creating
several relevant agents separately to simulate each one’s behaviours indepen-
dently. These agents are taught how to interact with other agents and themselves.
Thus, the appropriate agents responsible for land change will be described by
significant variables associated with each agent. Therefore, the following datasets
were utilised as research materials:

• Satellite images such as Landsat data products from 1986, 1996 and 2006,
• Temporal land use/land cover maps,
• A comprehensive geodatabase of all geospatial variables in the study area

(e.g. urban transportation data, land quality, building block details, demography
statistics, land price data and other relevant data which will be explained
in Chap. 4).

In addition, the research approach comprises ten main steps explained in more
detail in the following chapters:

• Multi-temporal land use mapping
• Implementation of the traditional approaches
• Designing a geosimulation model
• Comparison and evaluation of approaches
• Evaluation of current toolkits and software
• Execution of the designed geosimulation model
• Model evaluation
• Scenario customisation
• Analysis of outcomes from model implementation
• Prediction of future land use change.
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1.7 Organisation of the Thesis

This thesis consists of the following eight chapters as are listed below.
Chapter 1; General Introduction that presents a brief overview of the outlines of

this research such as research hypotheses, research questions, research objectives,
and the proposed approach.

Chapter 2; Literature Review that contains the scientific review of previous
research carried out in the field of multi agent-based modelling approaches. Also,
the role of artificial intelligence, computer modelling agents and GIS knowledge-
based strategies in land use change studies will be discussed.

Chapter 3; Study Area Description brings a detailed description of the study
area. This detailed information comprises a geographical explanation as well as a
socio–economic description. Also, the importance of exploring land use change
trends in the study area will be discussed.

Chapter 4; Data Preparation provides a comprehensive description about
available data, required toolkits and software to run an agent-based model. The
efficiency of several toolkits for this purpose will be evaluated in this chapter.
An appropriate platform will be chosen which has enough capacity to satisfy our
expectations for designing the ABM.

Chapter 5; Implementation of Traditional Techniques presents the traditional
methodologies that have been employed in the field of land use change modelling
(Cellular Automata, Markov Chain Model, CA-Markov Model, and Logistic
Regression). These models will be designed to obtain their outputs in order to
validate them as well as their results. The reasonable results will be taken into
account in order to integrate their scientific background in our ABM.

Chapter 6; Designing and Implementing Multi Agent Geosimulation presents
how the multi-agent simulation was developed. This chapter contains the followed
steps to develop the ABM. The methodology of specifying the predefined agents
with their preferences to settle will be explained.

Chapter 7; Analysis of Results presents how much the appropriate methodology
is successful in achieving satisfactory results. In this chapter, a comparison
between possible approaches and proposed ABM method will be presented.
Additionally, a detailed and comprehensive discussion dealing with different
scenarios considering their results will be presented. Uncertainty of utilised data
and models will be noted.

Chapter 8; Conclusions and Recommendations illustrates an overall conclusion
about the strengths and weaknesses of the implemented models. The original
guidelines arising from this investigation will be depicted as well. This chapter
will conclude the probable future works based on achieved outcomes.
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Chapter 2
Literature Review

2.1 Introduction

In this chapter, it is intended to bring a summary about theoretical and fundamental
fraction of agent-based modelling and how to design it according to the standard
definitions. After this overview, the relationship between land change matter and
the change drivers will be identified in terms of environmental and socio-eco-
nomically investigation. Therefore, the appropriate and the most useful tools to
implement the aim of this research will be depicted. It begins with the definition of
the terms ‘‘land use’’ and ‘‘land cover’’ to outline their differences (Lambin et al.
2007). Land use/cover changes have various causes and consequences (i.e. loss of
biodiversity, climate change, pollution, etc.) in the life cycle, which will be
addressed briefly.

2.2 Land Use/Cover Change

The terms Land use and Land cover are not technically synonymous; hence, we
draw attention to their unique characteristics to differentiate between them. The
terms land use and land cover will be clarified in this chapter. There are different
definitions of land cover and land use among the relevant scientists. Therefore, a
brief explanation about these two terms is provided in this section from the
Encyclopaedia of Earth. In general, the term land use and land cover change
(LULCC) identifies all kinds of human modification of the Earth’s surface. Land
cover refers to the physical and biological cover over the surface of land,
including water, vegetation, bare soil, and/or artificial structures (Ellis and
Pontius 2006).

Land use has a complicated expression with different views compared with the
term land cover. In fact, social scientists and land managers characterise this term
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more general to involve the social and economic purposes. Natural science
researchers classify the term land use in different aspects of human activities upon
lands such as farming, forestry and man-made constructions.

TurnerII et al. (1995) believe Land use involves both the manner in which the
biophysical attributes of the land are manipulated and the intent underlying that
manipulation—the purpose for which the land is used. Lambin et al. (2007) dif-
ferentiate between land cover (i.e. whatever can be observed such as grass,
building) and land use (i.e. the actual use of land types such as grassland for
livestock grazing, residential area). In fact, the term land use/cover will be used
chiefly in this thesis, referring to the land cover and the actual land use.

2.3 Land Use/Cover Change Causes and Consequences

LUCC can occur through the direct and indirect consequences of human activities
to secure essential resources. This may first have occurred by means of burning of
areas to develop the availability of wild game and it accelerated with the birth of
agriculture, resulting in extensive clearing such as deforestation and earth’s ter-
restrial surface management that takes place today (Ellis and Pontius 2006). Land-
use/cover change is known as a complex process which is caused by the mutual
interactions between environmental and social factors at different spatial and
temporal scales (Valbuena et al. 2008; Rindfuss et al. 2004).

More recently, industrial activities and developments, the so-called industri-
alisation, has encouraged the concentration of population within urban areas. This
is called urbanization, which includes depopulation of rural regions along with
intensive farming in the most productive lands and the abandonment of marginal
lands (Ellis and Pontius 2006). Land use changes are increasingly known as the
consequence of actors and factors’ interactions (Bakker and van Doorn 2009).
These conversions and their consequences are obvious around the world and it
has been becoming a disaster around the metropolitan areas in developing
countries.

2.3.1 Loss of Biodiversity

Biodiversity has been diminishing considerably by land change. While lands
change from a primary forested land to a farming type, the loss of forest species
within deforested areas is immediate and huge (Ellis and Pontius 2006). According
to Ellis and Pontius (2006):

The habitat suitability of forests and other ecosystems surrounding those under intensive
use are also impacted by the fragmenting of existing habitat into smaller pieces, which
exposes forest edges to external influences and decreases core habitat area.
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2.3.2 Climate Change

Land use and cover change matters play a significant role in climate change at
different scales such as regional, local and global scales. At global scale, LUCC is
accountable for releasing greenhouse gases to the atmosphere, thus leading to
global warming. LUCC is able to increase the carbon dioxide balance to the
atmosphere by disturbance of terrestrial soils and vegetation. Furthermore, LUCC
undoubtedly plays an essential role in greenhouse gas emissions.

2.3.3 Pollution

Tree harvesting, land clearing and other forms of biomass damage to the envi-
ronment arising from land change are able to increase the pollution percentage of
the environment. Vegetation removal makes soils vulnerable to a massive increase
in windy and water soil erosion forms, particularly on steep topography. When
accompanied by fire, also pollutants to the atmosphere are released. Soil fertility
degradation within time is not the only negative impact; it does not only cause
damage to the land suitability for future farming, but also releases a huge amount
of phosphorus, nitrogen, and sediments to aquatic ecosystems, causing multiple
harmful impacts. All of these issues drive water, soil and air pollution at large
scale. Besides, other agricultural activities such as using herbicides and pesticides
also release toxics to the surface waters, which sometimes remain in the top soil.

2.3.4 Other Impacts

Other environmental impacts of LUCC include the destruction of strato-
spheric ozone by oxide release from agricultural land and altered regional and
local hydrology. Moreover, the most urgent concern for a great part of the human
population and most governments is the long-term supply and production of food
and other fundamentals required in the future Pontius and Chen (2006).

2.4 Driving Forces of the Land Use/Cover Changes

Assessing the driving forces behind LUCC is essential if previous patterns can
explain and be utilised in forecasting future patterns. Land use and cover change
can be caused by multiple driving forces that control some environmental, social
and economic variables. These driving forces can contain any factor which
influences human activities, including local culture, economic and financial
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matters, environmental circumstances (i.e. greenness, land quality, terrain situa-
tion, water availability and accessibility to recreation), current land policy and
development plans, and also interactions between these factors. Therefore, these
drivers have to be found to pursue these controlling variables. The driving forces
will be utilised in order to manage land change.

Investigation of interrelations between the drivers of land change needs a strong
knowledge about methods and effective variables, as well as land policy (Ellis and
Pontius 2006). LUCC is frequently addressed through various selected biophysical
and socioeconomic variables. In order to facilitate simulation, driving factors are
mostly considered exogenous to the land use system (Verburg et al. 2004).
Associations between driving forces and LUCC could be addressed qualitatively
and quantitatively by means of appropriate approaches.

2.5 Land Use/Cover Change Simulation

Spatially-explicit models, which consider social and environmental causes and
consequences, can be the most appropriate form of existing models to simulate
land changes. These approaches are capable of checking relationships between
environmental and social variables. Integration of existing geographical data and
advanced GIS functionality, as well as the ABM functionalities allow this research
to achieve the proposed objectives. Considering this, LUCC can be affected
remarkably by political and economic decisions. However, the traditional models
are not capable of considering all these variables (Ellis and Pontius 2006). These
geospatial models can result in precise outcomes that help land managers and
policymakers towards a better landscape administration and sustainable land
management.

It does not seem simple to compare the performance of the numerous models of
LUCC modelling, because they are created from different fundamental bases. For
instance, the GEOMOD model simulates change between two land categories,
whilst others, such as the Markov chain model and the cellular automata-Markov
model simulate change among several categories. Nonetheless, by developing
multiagent-based systems (MABS) lately, research is improving these methods to
achieve better outcomes. Also, some models use raster data, while others are in
vector format. Even in the case of all researchers using the same model, com-
parison among model performance would still be complicated because researchers
usually focus on one study area and do not make a global use approach (Pontius
and Chen 2006).

Pontius and Chen (2006) believe that,

it is complicated to separate the quality of the model from the complexity of the landscape
and the data.

As an example, if a model does not perform strongly, it does not necessarily
imply that the conceptual foundation of that model is weak, but it could mean that
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the event of land change in that particular study area is complex or the data is
inaccurate. However, if a model performs properly, it is difficult to recognize
whether theoretical basis of that model is strong, or that land change case in the
study area is particularly uncomplicated, or the used data is extremely uncertain.

Perhaps most importantly, there is not yet a global agreement about methods to
determine the performance of LUCC models; therefore, two users who performed
the same model on the same landscape and data situation might evaluate one sim-
ulation execution differently depending on the criteria used for evaluation (Pontius
Jr. and Chen 2006). Land-use change modellers might conclude that the intellectual
basis of the validation of the models has some weaknesses (Kok and Veldkamp
2001; Pontius Jr. et al. 2001; Pontius and Schneider 2001; Pontius et al. 2004).

2.6 Land Use Change Trend

Change in economy and spatial distribution of population can occur through
conversion from one land use to another, for instance, converting farming lands
into residential, industrial, commercial or recreational use. The land owners play a
key role in whatever will take place at the land and, therefore, their decisions
identify the direction and quantity of changes (Ettema et al. 2007).

Therefore, different types of land owners (e.g. farmers, developers, private
individuals, government) decide in a different way according to their type and their
parameters. The owners have to supply the financial investment of land change,
thus, their awareness of the economic situation can control the speed of the
changes. At each time step, the landowner can decide the following decisions:

• Leave the land at current circumstances;
• Develop the land by changing the land usage and exploit it;
• Develop the land by changing the land usage and sell it;
• Sell the land to another owner.

However, the options vary for some owners. For instance, a farmer is not able to
develop his land into a residential area, if he does not have the required investment
power and skills. Moreover, all actions may not be allowed given planning reg-
ulations. Ettema et al. (2007) differentiate between three different types of owners
with preferences: farmers (preferences: exploit, sell or buy), government (prefer-
ences: maintain, sell to farmer, sell to developer or develop and maintain) and
developers (preferences: develop and sell, redevelop and exploit, sell).

Eventually, the decision, which will be most likely made, totally depends on the
expected value of each option to the owner. In case of commercial owners, utility
will match with profitability: the action will be taken that delivers the highest
profit. In case of governmental part, also social benefits might play a significant
role, whereas in the farmers’ case, personal and emotional reasons may influence
their decision. The market price is a valuable index in deciding whether or not to
sell a land with or without developing it (Ettema et al. 2007; Koomen et al. 2007).
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2.7 Predicting Future Land Use Patterns

As an essential part of their profession, land use planners envision and forecast
alternate future land use and activity patterns in order to change the status quo
(Brail and Klosterman 2001). Assessing, forecasting, and evaluating future land
change is a complex set of tasks and, hence, it has to be performed after a deep
scientific knowledge of the extent individuals, characters, as well as consequences
of land transformation have been gathered (Meyer and Turner 1994). A typical
land use planning process requires the landscape planners to realise, classify, and
investigate the current circumstances in order to project future probable devel-
opment patterns, and propose plans based on available information (Brail and
Klosterman 2001). According to Brail and Klosterman (2001), planners usually
approach this task in two ways, a predominant or traditional approach and an
analytical approach. The traditional approach foresees a future land use outcome
and then prioritises present-day policies required to achieve that outcome. The
analytical approach simulates alternate current strategies and compares their
consequences.

A recent pervasive approach to consider and simulate human decisions in
LUCC is the use of multi-agent systems (MAS) (Parker et al. 2003; Matthews
2006; Robinson et al. 2007; Valbuena et al. 2008). MAS are defined as modelling
tools that allow entities to make decisions according to the predefined agents, and
the environment also has a spatial explicit pattern. In fact, agents in the system
might represent groups of people or individuals, etc. (Valbuena et al. 2008; Sawyer
2003; Bonabeau 2002; Crawford et al. 2005). Agents can be designed with dif-
ferent characteristics which will be explained later in this chapter.

2.8 Simulating Sprawl

Urban sprawl is fairly a contemporary theme in urban studies. Torrens (2006a)
noted that;

Suburban sprawl is among the most important urban policy matters facing contemporary
cities.

Spatial simulation is able to support sprawl associated research by means of
what-if experimentation environments. Sprawling cities are being considered as
complex systems and this justifies use of geosimulation to accommodate the
space–time dynamics of numerous interacting entities. Automata are compatible
tools to represent such systems, but they can be improved to capture uniquely
geographical traits of phenomena such as sprawl. Therefore, the development of a
model for the geographic dynamics simulation of urban sprawl is explored
(Torrens 2006a).
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2.9 Approaches to the LUCC Modelling

There are plenty of models concerning land use/cover change modelling. Despite
their differences they basically rely on a limited number of methods and
assumptions. Those models include economic models (Irwin and Geoghegan
2001), spatial interaction, cellular automata (Yang et al. 2008), statistical models
(Veldkamp and Lambin 2001), optimisation techniques (e.g. Ducheyne 2003), rule
based models, multi-agent models (e.g. Torrens 2006b), and microsimulation (e.g.
Timmermans 2003).

This subsection aims to bring an overview of traditional and current LUCC
modelling techniques and eventually, will suggest multi-agent-based systems as a
complementary tool. Briefly, the strengths and weaknesses of some models will be
discussed here. This appraisal is not in-depth and only presents the best methods
which can be complemented by MAS models:

• Equation-Based Models,
• System Models,
• Statistical Techniques,
• Expert Models,
• Evolutionary Models,
• Economic Principles,
• Spatial Interaction,
• Evolutionary Algorithms,
• Genetic Algorithms,
• Optimisation Techniques,
• Cellular Models,
• Hybrid Models,
• Multi-Agent Models,
• Microsimulation.

2.10 Agent-Based Modelling and Geosimulation Terminology

Macal and North (2006) believe that ‘‘There is no universal agreement on the
precise definition of the term ‘agent’, although definitions tend to agree on more
points than they disagree’’. It seems very complicated to extract agent character-
istics from the literature in a consistent and constant perspective, because they are
utilised in different ways (Bonabeau 2002).

Agent-based modelling (ABM) is able to simulate the individual activities by
measuring their behaviour and results over time for developing models of cities
(Crooks 2006). Crooks (2006) explains cities as follows:

Cities are complex systems, with many dynamically changing parameters and large
numbers of discrete actors. The heterogeneous nature of cities, make it difficult to
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generalize localized problems from that of city-wide problems. To understand cities’
problems such as sprawl, congestion and segregation, we need to adapt a bottom-up
approach to urban systems, to research the reasoning on which individual decisions are
made. As cities are highly dynamic, both in space and time and secondly, as cities operate
on a cross scale basis, propagating through urban systems from interactions between
individuals in space to regional scale geographies. For example, it is easier to conceptu-
alize, and model how individual vehicles move around on a road network, where each car
follows a simple set of rules. For instance if there’s a car close ahead, it slows down, if
there’s no car ahead, it speeds up and how this can lead to traffic jams without any obvious
incident.

Human agents are becoming increasingly significant in land use simulation,
despite the fact that traditional environmental and economic models presume one
main agent aiming at optimisation in financial conditions (Bakker and van Doorn
2009; Irwin and Bockstael 2002). A variety of MAS models has been developed
for land use dynamics modelling that will be mentioned in this chapter (and so far,
these models have mostly been performed rule-based (Ligtenberg et al. 2004;
Bousquet and Le Page 2004; Berger 2001; Bakker and van Doorn 2009). Cer-
tainly, it is vital to represent the agents’ intentions and behaviours with respect to
decision making, realistically.

2.10.1 Agents and Agent-Based Models

An agent can be defined according to Russell and Norvig (2009) as follows:

The concept of an agent is meant to be a tool for system analyzing, not an absolute
classification where entities can be defined as agents or non-agents.

For instance, a number of experts take into consideration any sort of inde-
pendent components (e.g. software, individual, etc.) an agent, while some others
believe that a component’s behaviour needs to be adaptive in order to be con-
sidered an agent, where the term agent is reserved for components that can learn
through their environments and change their behaviours accordingly (Macal and
North 2005). Nevertheless, several common features exist for most agents
(Wooldridge and Jennings 1995; Castle and Crooks 2006)—extended and
explained further by Franklin and Graesser (1996), Epstein (2007), and Macal and
North (2005).

Therefore, the following characteristics can be defined according to the defi-
nitions by Benenson and Torrens (2006).

• Autonomy: Agents are independent and autonomous units that are capable of
information processes and exchanging them with other agents to independently
make decisions. They are also capable of being interactive with other agents and
this does not necessarily influence their autonomy (Castle and Crooks 2006;
Smith et al. 2007; Benenson and Torrens 2004).
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• Heterogeneity: Agents can exist and act as groups, but they are constructed
through a bottom-up way and combinations of similar autonomous individuals.

• Mobility: The mobility of agents is particularly a practical characteristic for
spatial simulations. Agents can move around the space within a model.

• Adaptation and Learning: Agents are flexible to be adaptive to produce Com-
plex Adaptive Systems (Holland 1996). Agents can be designed to change their
locations depending on their current state, following their designed memory
(Smith et al. 2007).

• Activity: Agents have to be active since they perform independent impacts in a
Geosimulation. The following active features can be identified:

– Pro-active (i.e. goal-directed): Agents are often considered goal-directed
elements, following goals to be accomplished with respect to their behaviours.
For instance, agents in a geographic environment can be designed to discover
a set of spatial manipulations to achieve an aim within a certain limitation
(e.g. time), while evacuating a building during an urgent situation.

– Reactive (i.e. perceptive): Agents can be developed to have a consciousness of
their surroundings to draw a ‘mental map’ by means of prior knowledge; thus,
providing them with an awareness of other entities, obstacles, or required
destinations within their environment.

– Bounded Rationality: In social sciences, a dominant type of modelling based
on rational-choice paradigm has to exist. Rational-choice models commonly
assume that agents are perfectly rational optimisers with easy access to
gathered information, foresight, and infinite analytical capability. These
agents are therefore able to solve deductively complex mathematical opti-
mization matters.

– Interactive (i.e. communicative): Agents communicate to each other, exten-
sively. For instance, agents can enquire other agents and the environment
within a neighbourhood, searching particular attributes, with the ability to
disregard an input which does not match a desirable threshold.

Agent-based models consist of several interactive agents placed within a
simulation environment. Relationships between the existing agents are formulated,
linking agents to other agents within a system. Relationships can be specified in a
number of ways, from simply reactive (i.e. agents only accomplish events when
activated to do so by external stimulus e.g. behaviour of another agent), to goal-
directed (i.e. seeking a particular purpose). In some cases, the action of predefined
agents can be programmed to occur synchronously (i.e. each particular agent
executes events at each discrete time point), or asynchronously (i.e. agent reactions
are planned by the actions of other agents and/or with reference to a predefined
time) (Showalter and Lu 2009).

According to Castle and Crooks (2006),

Environments define the space in which agents operate, serving to support their interaction
with the environment and other agents. Agents within an environment may be spatially
explicit, meaning agents have a location in geometrical space, although the agent itself
may be static. For example, within a building evacuation model agents would be required
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to have a specific location for them to assess their exit strategy. Conversely, agents within
an environment may be spatially implicit; meaning their location within the environment
is irrelevant. For instance, a model of a computer network does necessarily require each
computer to know the physical location of other computers within the network.

In simulation environments, agent-based models can be used as experimental
media for performing and monitoring agent-based simulations. They can be
pictured as a miniature laboratory, where the characteristics and behaviours of
agents can be transformed and the consequences observed over multiple simula-
tion runs. As a matter of fact, the ability of individual actions simulation upon
various agents and measure the resulting system behaviour and consequences over
time means agent-based models can be employed profitably in order to investigate
processes that operate at various scales. In fact, the roots of ABMs lie within the
individuals’ behaviours simulation and human decision-making (Bonabeau 2002).

Furthermore, Bazghandi and Pouyan (2008) state that

ABM is not the same as object-oriented simulation, although the object-oriented paradigm
provides a suitable medium for the development of agent-based models. Consequently,
ABM systems are invariably object-oriented.

Considering that agent-based models express the behaviours and interactions of
a system’s constituent parts from bottom to top, they are the canonical approach
for modelling emergent phenomena (Bonabeau 2002). Bonabeau (2002) has cat-
egorised a number of conditions that ABMs are practical for capturing emergent
behaviour.

2.11 Characteristics of the Geosimulation Model

Geosimulation differs from cellular automata in one particular respect: individual
automata are basically free to move around, i.e. they are not fixed agents and their
movements do not have to take place cell by cell. This feature has obvious con-
sequences for the representation of spatial systems (Longley and Batty 2003);
therefore, this topic will be explained in detail within this chapter. Figure 2.1
represents a schematic view of characteristics of a multi-agent system.

2.11.1 Management of Spatial Entities

A basic aspect of geosimulation regards the characterisation of spatial entities that
form the building blocks of a simulation model. In fact, urban simulation models
have identified units of urban systems (e.g. real estate, land, individuals, etc.) by
aggregation of geographic zones, tracts, and socioeconomic groups. These collect
units that are spatially modifiable (Openshaw 1983).
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2.11.2 Management of Spatial Relationships

The second aspect of geosimulation relates to the portrayal of spatial relationships
in models. For instance, we can consider this in the framework of geospatial
interactions; their representation in traditional urban simulation has been limited to
flows between aggregate units. Geosimulation models consider interactions as an
outcome of the behaviour of elementary geographic objects. In this way, geosim-
ulation models have the potential to represent spatial interaction of a much wider
spectrum of forms, including traditional and far-distance migration (Crooks 2006).

2.11.3 Management of Time

The third distinctive characteristic of them relates to the action of time in models.
Urban systems convert over time, and diverse phenomena happen at different time
scales. Benenson and Torrens (2004) believe that

Geosimulation models treat time through intuitively justified units such as housing search
cycles. Objects’ temporal behaviour can be considered as either synchronous, when all
objects change simultaneously, or asynchronous, when they change in turn, with each
observing the urban reality as left by the previous one.

2.11.4 Direct Modelling

Disappointment with the appearance of urban simulation as a new field of study in
the 1970s was an expectation of what urban simulation models need to accomplish
in reality (Crooks 2007a, b; Batty 2005). One of the goals of the geosimulation
approach is to move towards the creation of ‘‘tools to think with’’ (Benenson and
Torrens 2004). Benenson and Torrens (2004) note that

Fig. 2.1 A schematic view of a multi-agent system (Benenson and Torrens 2004)
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Realistic descriptions of objects’ behaviour in ways that were not previously obtainable,
either technologically or intellectually, makes these worthwhile and, further, allows for
direct relation between conceptual and real-world modelling. The idea underlying geo-
simulation is that the same model can be applied to abstract real-world phenomena; if
modelled phenomena are an abstraction of real-world phenomena, why should modelled
objects differ from their counterparts in the real world? The Geosimulation approach is
supported by several key developments in the geographical sciences and other fields,
particularly mathematics, computer science, and general system studies. The cornerstone
of the geosimulation approach, however, is the automaton, which has been widely used in
simulation and features prominently in geosimulation toolkits.

2.12 The Basic of Geosimulation Framework: Automata

The description of objects’ behaviour in the geosimulation framework is based on
the idea of automata. Simply stated, an automaton is a processing mechanism with
characteristics that change over time based on its internal characteristics, rules, and
external input. Automata are used to process information input into them from
their environs with the characteristics altering according to rules that govern their
reaction to those inputs. Levy (1992) explains automata as below.

An automaton is a machine that processes information, proceeding logically, inexorably
performing its next action after applying data received from outside itself in light of
instructions programmed within itself.

Automata are a practical concept of ‘‘behaving objects’’ for many causes, but
chiefly because they provide an efficient formal mechanism for representing their
fundamental properties: behaviours, attributes, relationships, environments, and
time.

Formally, a finite automaton A can be represented by means of a finite set of
states S ¼ S1; S2; S3; . . .; SNf g and a set of transition rules T.

A� S ; Tð Þ ð2:1Þ

Transition rules define an automaton’s state, St+1, at time step t ? 1 depending on
its state, StðSt; Stþ1 2 Sf gÞ; and input, It, at time step t:

T : St; Itð Þ ! Stþ 1 ð2:2Þ

2.13 Cellular Automata versus Multi-Agent Systems

Geosimulation requires a geospatial structure for modelling urban systems, one as
formulated on the basis of objects located in space. Ideally, such an approach
allow for simulated geospatial entities to be considered as automata; moreover,
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Cellular Automata and multi-agent systems concepts could ideally be combined by
considering collections of interacting geographic automata. In this section of the
chapter, it is intended to introduce such a framework, which considers geographic
objects, interacting to form geographic automata systems and urban system as a
whole are considered as the products of collective dynamics among multiple
inanimate and animate geographic automata (Benenson and Torrens 2004).
Figure 2.2 represents relation between cell-based GIS, CA modelling and MAS.

2.14 Geographic Automata System

The geographic automata system (GAS) framework joins CA and MAS directly
reflecting a geographic and object-based (more particularly, automata-based) view
of urban systems. This idea was introduced for the first time by (Benenson and
Torrens 2004) as a new paradigm in natural studies for better and more accurate
results.

2.14.1 Definitions of Geographic Automata Systems

There is a distinct class of automata, geographic automata systems (GAS), con-
sisting of geographic automata of various types. In general, the states and tran-
sition rules characterise automata (Benenson and Torrens 2004).

Basically, the G value in GAS can be defined as consisting of seven following
components:

G� K ; S; TS; L; ML; N; RNð Þ ð2:3Þ

Here, K represents a set of types of automata represented in the GAS and three
pairs of symbols denote the other components, each one representing a specific

Fig. 2.2 Relation between cell-based GIS, CA modelling and MAS
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spatial or non-spatial characteristic and the rules identify its dynamics. The first
pair denotes a set of states S, linked with the GAS. G consists of a set of states Sk

of automata for each type of k 2 K: A set of state transition rules TS, determine
how automata positions are supposed to change within time. The second pair
represents location information. L denotes the geo-referencing conventions that
dictate the location of automata in the system and ML denotes the movement rules
for automata, governing changes in their location (Benenson and Torrens 2003).
Hence, changes in location and transitions of states for geographic automata
depend on the automata and also, on input (I), specified by the states of neigh-
bours. The third pair specifies this condition. N denotes the neighbours of the
automata and RN represents the neighbourhood rules that manage how automata
relate to the other automata in their vicinity.

2.14.2 Geographic Automata Types

GAS consists of different types of automata. Two main types of automata can be
distinguished; non-fixed and fixed geographic automata. Fixed geographic auto-
mata stand for objects that do not move over time and thus have close analogies
with CA cells. For instance, in the context of urban systems, a variety of urban
items may be indicated as fixed geographic automata: building footprints, road
networks conjunctions, parks, etc. Fixed geographic automata may be addressed
by any of the transition rules outlined already, except rules of movement, ML.
Non-fixed geographic automata identify entities which move around over time.
The full array of rules for GAS can perform with non-fixed geographic automata,
including movement rules (Benenson and Torrens 2004).

2.14.3 Geographic Automata States and State Transition Rules

A number of state variables S can be assigned to the individual geographic
automata, that comprise a GAS, and these states explain the characteristics of the
automata. Any variable can be employed to derive state values, including variables
of geographic significance. Pointing to the non-fixed automata, location variables
of relevance to the transition rules of the model might be initiated.

In fact, state transition rules are based on geographic automata of all forms of
K. It seems necessarily vital mentioning that, in the framework of the GAS, CA is
artificially closed, simply because cell state transition rules are driven only by cells
(Benenson and Torrens 2004). In contrast, the states of urban infrastructure objects
represented by means of geographic automata totally depend on the surrounding
objects of that infrastructure, but are also driven by mobile geospatial automata
(i.e. agents) that are responsible for controlling object states such as land value or
land-use (O’Sullivan et al. 2003). This is a crucial concept for simulating human-
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driven urban systems that show how individuals interact and are affected by the
environments.

2.14.4 Geographic Automata Spatial Migration Rules

Geo-referencing conventions (L) administrate how geographic automata should be
registered in space. For fixed geographic automata, geo-referencing is a straight-
forward process in most instances; these automata can be geo-referenced by
recording their position coordinates. However, for non-fixed geographic automata,
geo-referencing has to be dynamic and automata may move. Also, their location in
relation to other automata, represented in simulated goals, destinations, opportu-
nities, etc., may be dynamic in space and time (see Fig. 2.3). It is also essential
noting that there are examples in which Georeferencing is dynamic for fixed
geographic automata also, for example, when land parcel objects are sub-divided
during simulation (Benenson and Torrens 2004).

2.14.5 Geographic Automata Neighbours
and Neighbourhood Rules

Another element of GAS that requires explicit explanation is the set of neighbours
of automata, N, and the rule set for determining the change in neighbourhood
relationships between automata, RN. Different type of neighbours is necessary for
the application of transition rules state transition (TS) and movement (ML), which
totally depend on characteristics of geographic automata and their neighbours.

Fig. 2.3 Direct and indirect geo-referencing of fixed and non-fixed GA (Benenson and Torrens
2004)
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In opposition to the static and symmetrical neighbourhoods utilised in usual CA
models, geographical relationships between geospatial automata can change in
space and time, thus, RN rules need to be formulated to account for geographic
automata positions’ neighbours at each time point. Neighbourhood rules for fixed
geographic objects can be defined easily comparatively, because the objects are
static in space.

2.14.6 Types of Simulation Systems for Agent-Based Modelling

Generally, two types of simulation systems can be performed to develop agent-
based models: either toolkits or software. Based on this, toolkits are simulation or
modelling systems that provide a conceptual framework for designing ABMs
which provide required libraries of software functionality that consist of pre-
defined modules, routines and functions distinctively designed for ABM. The
object-oriented prototype allows importing extra functionalities through other
libraries, which are not supplied by the simulation toolkit, developing the capa-
bilities of these toolkits (Crooks et al. 2008). The most interesting part of this
approach is the capability of integration of GIS functionality from ArcGIS soft-
ware libraries with an ABM context.

The development of agent-based models can be significantly facilitated by the
utilisation of simulation and modelling toolkits. In fact, they are able to provide
reliable templates for the design, accomplishment and visualisation of agent-based
models, allowing modellers to concentrate on the content of research, rather than
coding fundamentals required to run a simulation (Tobias and Hofmann 2004).
In particular, the use of toolkits can decrease the burden of modellers challenged
with programming matters of a simulation (e.g. GUI design, data import and
export, visualisation and model representation). It is also crucial to improve the
model’s trustworthiness and efficiency (Smith et al. 2007).

Unsurprisingly, there are limitations of using simulation/modelling systems to
develop agent-based models; for instance, a considerable amount of effort has to
be spent to realise how to design and implement a model (Crooks 2007a, b).

Benenson et al. (2005) and Crooks (2007a, b) note that

toolkit users are accompanied by the fear of discovering that a particular function cannot
be used, will conflict, or is incompatible with another part of the model late in the
development process.

2.15 Current Simulation Systems

Various environments are available in order to develop agent-based models. This
section aims to review an overview of these systems:
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1. Open source such as Swarm, MASON and Repast,
2. Shareware/freeware such as StarLogo, NetLogo and OBEUS,
3. Proprietary systems such as AgentSheets and AnyLogic (Bandini et al. 2009).

The mentioned systems need to fulfil the majority of the following criteria:

• retained and still being improved,
• broad range of users and also supported by strong user communities,
• accompanied by various demonstration models and in some instances the

model’s programming source code made available,
• Capable of developing spatially explicit models and integration with GIS

functionality.

Further information about each system, as well as identifying examples of geo-
spatial models that have been developed will be provided in this section. In this part
of chapter, a brief introduction of all affordable toolkits will be presented in order to
acquire a preliminary knowledge over mentioned prototypes. Certainly, the earliest
and most well-known toolkit was SWARM, although many other toolkits more
recently have been released. There are a variety of toolkits available for ABM at this
time. However, variation between toolkits needs to be considered. For instance, their
purpose, level of development, and modelling capabilities can vary. A review of the
most user-friendly toolkits will be presented throughout this chapter.

2.15.1 ASCAPE

ASCAPE (Agent-Landscape) is one of the earliest toolkits associated with ABMs
which has been developed by the Centre on Social and Economic Dynamics
(CSED), Brookings Institution. ASCAPE is a research toolkit to support agent-
based modelling and simulation. In fact, high-level frameworks support complex
model designs, while end-user tools prepare it for non-programmers to investigate
various aspects of model dynamics. This toolkit is written completely in Java, and
runs on Java-enabled platforms. Models developed by this means can be easily
published to the web for use with common web browsers (Batty and Jiang 1999;
Epstein and Axtell 1996).

2.15.2 StarLogo

According to the StarLogo official website (2008);

StarLogo is a programmable modelling environment for exploring the workings of
decentralized systems–systems that are organized without an organizer, coordinated
without a coordinator. With StarLogo, you can model (and gain insights into) many real-
life phenomena, such as bird flocks, traffic jams, ant colonies, and market economies.
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StarLogo is a particular version of the Logo programming language. Also, it is
practical to create drawings and animations by giving commands to graphics.
It expands this idea by allowing users to control many graphic turtles in parallel.
In addition, StarLogo makes the turtles’ world computationally active; therefore, it
is possible to create the turtles’ environment by code. Turtles and patches can
interact with one another. StarLogo is predominantly well-suited for artificial life
investigations. In decentralised systems, orderly patterns can take place without
centralised control. StarLogo has been developed to facilitate students, as well as
researchers to extend new ways of understanding decentralised systems (Camazine
et al. 2003).

2.15.3 NetLogo

NetLogo is a multi-agent programmable platform developed by the Centre for
Connected Learning and Computer-Based modelling, Northwestern University,
USA (Tisue and Wilensky 2004). NetLogo allows the users to access a large
library of sample models and code examples that help users to start authoring
models. NetLogo is being used by research labs and university lessons in social
and natural sciences.

2.15.4 OBEUS

Object-Based Environment for Urban Simulation (OBEUS) is a software envi-
ronment based on a GAS conceptual core. In fact, OBEUS has been established
according to the basic components of GAS with respect to automata types. These
are accomplished by means of three following root classes:

• Population that contains information regarding the population of objects of a
given type k as a whole;

• Geo-Automata, acting as a container for geographic automata of a given type k;
• Geo-Relationship that facilitates specification of spatial relationships between

geographic automata of the same or different types (Benenson and Torrens
2004).

2.15.5 AgentSheets

AgentSheets is another toolkit for construction of interactive graphical systems.
It is a simulation system that allows modellers with partial coding skill to develop
an agent-based model, because models can be developed through a GUI
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(Repenning et al. 2000). Several demonstration models exist on the system web-
site; for instance, Sustainopolis. The system lacks, however, functionality to
dynamically chart simulation output, and agents are limited to movement within a
2-dimension lattice environment (Crooks 2007a, b).

2.15.6 AnyLogic

AnyLogic allows modifying a simulation model using several methods; system
dynamics, agent based and discrete event (process-centric) modelling. Further-
more, it is also possible to combine different methods in one model. AnyLogic
modelling language is an extension of UML-RT, a set of the best engineering
practices have been verified successfully in the modelling of complex systems
(Anylogic 2006).

2.15.7 SWARM

Swarm is one of the oldest agent-based modelling toolkits. Swarm has been
originally written in Objective-C language, and then exported to Java (Getchell
2008). Nevertheless, the documentation and research papers on Swarm established
many of the foundational concepts and ideas in ABM, and reading over these
materials serves as an excellent introduction to the large and growing field of
agent-based modelling.

2.15.8 MASON

MASON or Multi-Agent Simulator of Neighbourhoods/Networks is another sim-
ulation library in Java, designed to serve as the base class structure for custom Java
simulations. It also includes a model library and suite of 2D and 3D visualisation
tools, and is developed with an emphasis on speed and portability.

2.15.9 NetLogo

NetLogo is another ABM toolkit, which is not open source, and also designed for
educational use, being based on a simple Logo-type language. It was initially
developed in 1999 by Uri Wilensky, and it has been under continuous develop-
ment thereafter, and has a large and broad user community.
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2.15.10 Repast

Repast has been made based on Swarm, but executed in Java. Repast has several
versions available; the current standard Repast version is 3. RepastPy is a sim-
plified version of Repast, and introduced a friendly graphical user interface. Also it
benefits from a subset of Python as its scripting language. RepastPy is faster and
easier to employ than Repast, and is generally recommended as being a good
version for creating prototype models. In fact, the Python scripts generate Java
objects (Getchell 2008).

Repast.NET is another version of Repast based on the .NET runtime. The .NET
runtime is flexible and powerful due to having a large number of functional
libraries for handling nearly anything. It also has a stylish successor language to
Java, C#, as well as the ability to run any language that can be linked to the .NET
platform such as Python, Visual Basic, Ruby, etc. The software project source
codes are not compatible with later versions of Visual Studio. Repast Simphony is
the latest version of Repast, which is combined with the powerful Eclipse inte-
grated development environment, and also automated connectors to additional
tools such as R, VisAD, MATLAB, Weka, and iReport (Getchell 2008).

2.15.11 Agent Analyst Extension

In this section, it is intended to present an overview of the Agent Analyst exten-
sion, which is an agent-based modelling and simulation extension for the ESRI-
ArcGIS. Agent Analyst integrates the functionalities of the Repast simulation
environment with the strengths and flexibilities of ArcObjects and ArcGIS in
spatial analysis. Agent Analyst has the capability to integrate ABMS with GIS.
GIS modellers are able to simulate environment behaviours and processes as
change and movement over time by means of this extension (e.g. simulate land use
and cover changes, predator–prey communications). This can help ABMS mod-
ellers to integrate detailed real-world biophysical data to execute complex spatial
processes, as well as study how behaviour is constrained by space and geography.
In addition, ABMS models can include update GIS data feeds for circumstances
(e.g. fire-fighting, disaster management). This extension allows modellers to cre-
ate, customise, and perform Repast models through the ArcGIS 9.2 geoprocessing
framework, including access through the ArcToolbox, Model Builder, and Arc-
Map. Additionally, the Agent Analyst GUI allows users to create agents, schedule
simulations, establish mappings by ArcGIS layers, and specify the behaviour and
interactions of each agent (Bertelle et al. 2009).
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2.16 Selection of ABM Implementation Toolkit

As it has been stated before, numerous toolkits have been developed in order to
achieve ABM interests. Several software packages are also available for devel-
oping agent-based models that can facilitate the implementation process. For
instance, simulation software often negates the necessity of developing agent-
based models through low-level programming languages (e.g. Java, C++, Visual
Basic, etc.). However, this brings some restrictions for developers to design their
customised framework. As an example, some ABM software may support par-
ticular environments (e.g. either raster or vector), or agent transition rules might be
limited in forms such as Von Neumann or Moore type. Furthermore, modellers
will be constrained to the use of functions provided by the software, particularly
while the toolkit has been written in its own programming engine (e.g. NetLogo)
(Castle and Crooks 2006).

Each model has to be tested in their particular environments and, since the aim
of this dissertation is to run a geosimulation prototype within ArcGIS software, it
was decided to employ GIS functions for this simulation. In other words, it is
intended to code an ABM environment within GIS software. Table 2.1 is a sample
of open source simulation toolkits comparing the specified criteria and their
advantages or disadvantages.

Agents can be designed and parameterised in a variety of ways, depending on
the goals of the MAS (Valbuena et al. 2008; Robinson et al. 2007; Janssen and
Ostrom 2006), for instance, agents can represent governmental regulation, land
developers actions and residents behaviours at different environmental and
financial circumstances (Valbuena et al. 2008; Ligtenberg et al. 2004; Monticino
et al. 2007). As a matter of fact, the decision-making process has to be particularly
parameterised by decision rules. These rules can be defined according to the expert
knowledge or/and other researches’ outcomes. Agent parameterisation with others’
findings is the more frequent approach in MAS (Berger and Schreinemachers
2006; Valbuena et al. 2008). Alternatively, the parameterisation of agents with
expert knowledge and empirical data facilitates understanding the real LUCC
process. Most researches benefit from empirical data to specify and parameterise
agents relying on huge data gathering (e.g. Valbuena et al. 2008; Jepsen et al.
2006; Castella et al. 2005; Huigen 2004; Bousquet et al. 2001).

2.17 Designing a Multi Agent System

In order to design a multi agent system, we will pursue the following stages, which
are mentioned here:
Step 1: Collection and analysis of required input data for multiagents

geosimulation,
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Step 2: Evaluation of existing geosimulation frameworks,
Step 3: Selection of an appropriate platform for geosimulation performance,
Step 4: Consideration of the land change drivers,
Step 5: Classification of agents,
Step 6: Specification of related factors and variables to each particular agent,
Step 7: Agents combination and reflection of agents’ interactions,
Step 8: Creation and performance of multiagents geosimulation,
Step 9: Collection and analysis of the multiagents geosimulation results arising

from the prototype,
Step 10: Verification and validation of multiagents geosimulation results,
Step 11: Report of the multiagents geosimulation’ results,
Step 12: Visualisation of the multiagents geosimulation outcomes.

Figure 2.4 demonstrates a schematic workflow of geosimulation performance.

2.18 Fuzzy Decision Theory in Geographical Entities

Many phenomena exist with a degree of vagueness or uncertainty. Some terrestrial
objects cannot be appropriately expressed with crisp sets. Kainz (2008) states that

In human thinking and language we often use uncertain or vague concepts. Our thinking
and language is not binary, i.e. black and white, zero or one, yes or no. In real life, we add
much more variation to our judgments and classifications. These vague or uncertain
concepts are said to be fuzzy. We encounter fuzziness almost everywhere in our everyday
lives.

Fuzzy set theory was developed by Zadeh (1965) and extended by many
authors, notably by Dubois and Prade (1979), to model uncertainties to allow for a
more general theory of uncertainty than probability theory models. There is often
confusion in the semantics of uncertainty pertaining to probability, interval, fuzzy,
and possibility. GIS applications have seldom, if ever, used possibilistic geo-
graphical analysis. There are many reasons for this. Perhaps the most significant
reason is that fuzzy set theory, as distinguished from possibility theory, is not
always clear. Second, since geographical entities are often fuzzy (boundaries are
gradual or transitional in nature between geographical entities) the use of possible
entities is frequently omitted. Third, since Zadeh (1965) developed possibility
theory via fuzzy set theory, most authors do not make a distinction and consider
possibility distributions the same as fuzzy membership functions (Lodwick 2007).

Fuzzy set theory incorporates some concepts that can be used to overcome
some of the problems described above, modelling some types of uncertainty
associated to geographical information, as well as its heterogeneity. They enable
the development of an alternative data model that integrates characteristics of the
object and the field data models, where the geographical information is represented
with fuzzy geographical entities, which are geographical entities (GE) represented
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Fig. 2.4 Schematic view of multiagents geosimulation implementation
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with surfaces. Using fuzzy geographical entities is an efficient way to represent the
positional uncertainty of geographical entities, or a gradual variation between
them, but their inclusion in geographical information systems requires not only
their construction but also the development of operators capable of processing
them (Lodwick 2007).

2.18.1 Fuzzy Geographical Entities

A geographic entity is characterised by an attribute and a geographical location.
These two components of the geographic entities are intimately related, and
therefore, the errors and uncertainty associated to each of them are also related.
A fuzzy geographic entity (FGE), EA, characterized by attribute ‘‘A’’, is a geo-
graphic entity whose position in the geographical space is defined by the fuzzy set:

EA = {(x, y): (x, y) belongs to the GE characterised by attribute ‘‘A’’}
With a membership function, every location in the space of interest is defined

between 0 and 1. The membership value 1 stands for full membership, and the
membership value 0 represents no membership and values in between correspond to
degree of membership to EA, decreasing from 1 to 0. To model the uncertainty or
errors regarding the positioning of an attribute, two cases may be considered. One is
when the attribute is defined using only a concept such as buildings, forest, or rivers,
and the other case is when the attribute definition is based on measurable quantities.
In the first case, the difficulty to position the attributes on the ground depends on the
details given on its definition and upon the heterogeneity of those attributes in the
region under study. The details used in the attribute definition should be such that it
is clear what the attribute represents, but note that if too many details are given, the
identification of all those details in the ground may complicate the operator’s work,
since it may be difficult to identify, for example, in an aerial photograph, if a hut is
made of wood or brick. So, the attribute definition should be adapted to the methods
and sources of information available to identify the entities.

Whenever the operator has some difficulties in the classification, he may always
assign a degree of uncertainty to the entity. For example, if there is some uncer-
tainty whether a certain entity should be considered a building or not, a degree of
uncertainty may be assigned to it. These degrees of uncertainty are subjective and
only indicative in the sense that some difficulties in the classification were found.
They are assigned to the entity as a whole, since it is an indivisible object. Note
that, in this case, the grade of membership represents uncertainty in the attribute
that should be assigned to the entire region. The outcome of this process is then a
GE with a constant grade of membership to an attribute. These grades of mem-
bership translate degrees of membership to the attribute defining the GE and not
uncertainty on the geographical space. They result from lack of data to assign the
correct attribute or lack of attribute definition. In other situations, the uncertainty is
not in the identification of the attribute corresponding to a certain GE, but in the
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identification of its exact location. In this case, a fuzzy set may be used to express
the entities’ location in the geographical space.

This corresponds to the identification of the core of the fuzzy set and its support,
and therefore all the region between the support and the core belongs to the uncer-
tainty region. If it is possible to differentiate further inside the uncertainty region,
then a-levels may be identified, if not, only an uncertainty region may be used.

This process generates fuzzy geographic entities, which correspond to the ‘‘egg-
yolk’’ approach (Cohn and Gotts 1996). This approach considers that the geographic
entities are formed by three regions: the interior, the frontier, and the exterior, where
the frontier is represented not by lines, but by a region with any dimension or shape,
and that may be considered homogeneous or heterogeneous (see Fig. 2.5). The
‘‘egg-yolk’’ representation is a simplified representation of fuzzy geographic entities
and is convenient when the geographic entities are to be represented using the vector
data structure and to establish neighbourhood relations between geographic entities
with uncertain or fuzzy geographical position (Lodwick 2007).

2.18.2 Processing Fuzzy Geographical Entities

The use of fuzzy geographical entities in GIS environments requires operators
capable of processing this type of entity. The instant approach to process FGEs is
to convert them into crisp entities and use the usual operators to perform the
necessary operations. Since the a-levels of fuzzy sets are crisp sets, the easiest way
to convert fuzzy GEs to crisp GEs is to substitute the entity by one of its a-levels.
By means of this approach, a variety of versions of the FGE may be achieved
according to the needs of each application, selecting different a-levels to represent
it. In this research, we will use fuzzy sets to represent prediction process of land
use classes over time (Lodwick 2007).

Fig. 2.5 Egg-Yolk approach
to represent GEs (Cohn and
Gotts 1996)
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2.19 The Analytical Hierarchy Process Weighting

The analytic hierarchy process (AHP) is a very pervasive and commonly used
application for decision-making matters (De Feo and De Gisi 2010). Indeed, the
AHP was developed by Thomas L. Saaty in the 1970s. The AHP affords a com-
prehensive rational structure in order to solve the decision-making problems, as
well as characterising and quantifying its elements and conduction of the related
elements towards overall goals, plus evaluating alternative solutions (De Feo and
De Gisi 2010; Forman and Selly 2001; Saaty 1977).

In fact, the AHP has special advantages in multi-variable evaluation. It has been
utilised in various research fields, such as natural science, economy and society
(Ramanathan and Ganesh 1995). AHP is also becoming a common tool of eco-
environment quality evaluation, for ecological environment is a large and multi-
layered system (Hill et al. 2005; Klungboonkrong and Taylor 1998; Li et al. 2007;
Yedla and Shrestha 2003). GIS-based AHP is popular because of its strong
capacity to integrate various types of heterogeneous variables and its simplicity to
obtain the weights of appropriate variables. Therefore, this reasoning promotes its
strength in criteria weighting (Hossain and Das 2010; Tiwari et al. 1999).

The AHP method splits a complex multi-criteria decision matter into a hierarchy
and performs on the basis of a pair-wise comparison of the importance of different
criteria and sub-criteria (De Feo and De Gisi 2010; Forman and Selly 2001; Saaty
1977). According to Saaty (1977) the AHP process is based on three main steps.
The first step is to establish a hierarchical structure, where the first hierarchy of a
structure is the goal. The final hierarchy deals with identifying alternatives, while
the middle hierarchy levels appraise certain factors or conditions.

The second step computes the element weights of various hierarchies by means
of three sub-steps. The first sub-step creates the pair-wise comparison matrix, then
a pair-wise comparison is conducted for each element based on an element of the
upper hierarchy that is an evaluation standard. The second sub-step computes the
eigenvalue and eigenvector of the pair-wise comparison matrix. The third sub-
steps execute the consistency test. The difference between the dominant eigen-
value of the pair-wise comparison matrix ðkmaxÞ and the matrix dimension (k) is
used in defining the inconsistency index, II (Hsu et al. 2008; Karamouz et al. 2007;
Saaty 1999):

II ¼ ½ðkmax � kÞ=ðk � 1Þ� ð2:4Þ

Moreover, the inconsistency ratio (IR) is defined as (Hsu et al. 2008; Karamouz
et al. 2007; Saaty 1999):

IR ¼ II=CRI ð2:5Þ

The CRI presents the inconsistency index of the random matrix retrieved by
calculating II for a randomly filled matrix. If IR \10%, then the consistency
criterion is acceptable. Otherwise, the decision-maker has to refine the pair-wise
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comparisons. This procedure goes on until all the pair-wise comparisons satisfy the
consistency criterion. The eigenvector of the pair-wise comparison matrix is used
to estimate the relative weight of different choices. Finally, the third step of the
AHP technique calculates the entire hierarchical weight. In reality, AHP generates
an overall ranking of the solutions using the comparison matrix among the
alternatives and information on the ranking of the criteria. Thus, the option with
the highest eigenvector value is approved to be the first choice (Hsu et al. 2008;
Karamouz et al. 2007; Saaty 1999).

In fact, the strength of AHP is that it allows for the creation of inconsistent
relationships, besides affording the CR index as an indicator of the degree of
consistency or inconsistency (Forman and Selly 2001). Thus, the AHP execution
in this thesis will incorporate an opportunity to let the user define a satisfactory CR
threshold value. In this thesis, it is intended to improve the performance of agent-
based modelling by means of a combination of GIS, AHP and ABM; therefore, all
socio-economic and environmental variables are combined according to their
weights.

2.20 Moran’s Autocorrelation Coefficient Analysis

Moran’s autocorrelation coefficient denoted as Moran’s-I is an extension of
Pearson product-moment correlation coefficient to a univariate series. Recall that
Pearson’s correlation symbolised as q between two variables x and y both of extent
n is:

q ¼
Pn

i¼1 ðxi � �xÞ
Pn

i¼1 ðxi � �xÞ2
Pn

i¼1 ðyi � �yÞ2
h i1=2

ð2:6Þ

Where �x and �y are the sample means of both variables. q measures whether, on
average, xi and yi are associated. For a single variable, for instance x, I will
measure whether xi and xj with i 6¼ j; are associated. Note that with q xi and xj are
not associated since the pairs ðxi; yiÞ are assumed to be independent of each other.

Moran’s I formula is as following:

I ¼ n

s0

Pn
i¼1

Pn
j¼1 xijðxi � �xÞðxj � �xÞ
Pn

i¼1 ðxi� �xÞ2
ð2:7Þ

Where xij is the weight between observation i and j, and s0 is the sum of all xij :

S0 ¼
Xn

i¼1

Xn

j¼1

xij ð2:8Þ

The expected value of I under the null hypothesis of no autocorrelation is not
equivalent to zero but given by I0 ¼ �1=ðn� 1Þ: The expected variance of I0 is
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also known, and so we can make a test of the null hypothesis. If the observed value
of I denoted Î is significantly greater than I0; then values of x are positively auto
correlated, while if Î\I0; this points out negative autocorrelation. This allows
designing one or two-tailed tests in the standard way (Ellingson and Andersen
2002).

2.21 Accuracy Assessment and Uncertainty
in Maps Comparison

Land use/cover change simulation models basically examine land change maps at
two separated periods (t0 and t1) and then, by evaluation of the occurred changes
within these two periods and change factors, an appropriate simulation model is
performed. This performance will predict land change maps for future periods (i.e.
t2). This predicted map at point t2 can be typically compared to a reference map
(i.e. the map of reality) to estimate the model performance. Therefore, in case the
result of this comparison demonstrates a high degree of similarity, then it can be
proved that the model was successful to simulate the changes. Even though, this
result cannot necessarily indicate that the model provided supplementary findings
beyond what the scientist would have predicted without the model. As we
examined in this research, and as some scientists believe for most of the LUCC
models, the agreement between the reference map of t1 and t2 always appears to be
better than the agreement between the predicted map of t2 and its reference map, at
the resolution at which the model was run. Hence, this causes alarm in the LUCC
modelling amongst scientists.

2.21.1 Calibration and Validation

In this section, it is intended to clarify the distinction between two terms of
‘Calibration’ and ‘Validation’. It is better to distinguish between these two terms,
whereas, they will be used after the model execution. Nevertheless, in most of the
read papers, it was complicated to note their distinctions.

Rykiel (1996) noted that

Calibration is the estimation and adjustment of the model parameters and constraints to
improve the agreement between model output and a data set,

whereas validation is

a demonstration that a model within its domain of applicability possesses a satisfactory
range of accuracy consistent with the intended application of the model.

Besides, in some cases, the terms of ‘‘modelled’’ and ‘‘simulated’’ were used in
error. For instance, the word ‘‘modelled’’ means that the model was fitted and the
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term ‘‘simulated’’ indicated that something was predicted. Furthermore, in some
other cases, there is a lack of methodology reflection (Wu and Webster 1998).

These issues lead scientific communities to a misunderstanding of the model’s
certainty. Two separated types of data should be utilised for the calibration and
evaluation processes. There are some ways to break up the calibration data from
the validation data. Separation through time is one of the usual ways. Hence, if the
model aims to predict the change on the landscape after time t1, then any infor-
mation at t1 or before t1 is justifiable to use for calibration. For instance, a usual
calibration method is to carry out statistical regression on the change quantity
between point t0 and t1. The results of the regression are fitted estimates. The fitted
parameters and the regression relationship might be used to extrapolate the change
between point t1 and t2; thus, any information subsequent to time t1 cannot be used
in the calibration process. The validation process compares the predicted map of
time t2 to the reference map of time t2. Separation through space is another general
method to separate calibration information from validation information. In this
scheme, the model uses data from one study site to fit the parameters, and then the
fitted model is applied to a different site to predict change. Distinction between the
calibration process and the validation process can help to guarantee that the model
is not over-fitted (Pontius et al. 2004).

Before implementing the simulation process, it has to compare the resultant
maps arising from modelling execution to ensure the validity of the model. In fact,
there is no universal concord to evaluate the goodness-of-fit of validation (Rykiel
1996). Each particular model comprises a specific purpose, and hence, the criterion
should be related to the purpose. Besides, scale is essential to consider throughout
any comparison of maps, since results might be sensitive to scale and, also, certain
patterns may be evident at only certain scales (Quattrochi and Goodchild 1997;
Kok et al. 2001; Pontius et al. 2004).

2.21.2 Techniques of Validation for Land Change Models

According to the definition of the United States Geological Survey (USGS),
regarding the accuracy of geospatial data;

The closeness of results of observations, computations, or estimates to the true values or
the values accepted as being true.

Nonetheless, the term ‘‘truth’’ has a certain definition. Accuracy assessment is
one of the most imperative and significant steps in remote sensing and map
analysis. GIS and remote sensing outcomes are being used as basic inputs for
local, national, and global decisions; therefore, precise and accurate outputs lead
researches towards correct routes. New users have to be taught about the reli-
ability of the maps which are produced from GIS and remote sensing tasks
(Banko 1998).
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2.21.2.1 Visual Interpretation

A visual interpretation can give the scientists a better general assessment of model
performance. Pure visual comparison is vulnerable to the personal opinion of the
user; therefore, one scientist might believe the results perfect, and another might
identify them poor.

2.21.2.2 Kappa Coefficient

Statistical techniques of results comparison are helpful to discover patterns that the
individual mind ignores and also to facilitate communication between scientists.
The Kappa coefficient was set up to the remote sensing societies in the early 1980s
by Congalton et al. (1983), Congalton and Mead (1983), Cohen (1960) and became
a pervasive measurement index for classification accuracy (Huang et al. 2002).
It was recommended as a standard by Rosenfield and Fitzpatrick-Lins (1986). The
Kappa coefficient measures the overall agreement of a matrix. The ratio of
the summation of diagonal values to the total number of pixel counts in the matrix,
the Kappa coefficient considers non-diagonal elements as well (Rosenfield and
Fitzpatrick-Lins 1986). In fact, the Kappa coefficient computes the fraction of
agreement after elimination of the chance agreement from considerations.
A Kappa of 0 arises while the agreement between actual and reference maps
equals chance agreement, and Kappa increases up to 1(Banko 1998; Lakide 2009).

2.21.2.3 Relative Operating Characteristic

Pontius et al. (2004) have suggested a comparison technique that considers the
agreement between two pairs of maps. The first comparison performs between the
reference map of point t1 and the reference map of time t2. The second comparison
performs between the predicted map of point t2 and the reference map of point t2.
Eventually, the procedure evaluates the first comparison in comparison with the
second comparison.

Swets (1986, 1988) depicts the logic of the ROC, although other researchers in
this field explain how to compute the ROC in the digital maps comparison (Pontius
et al. 2004; Pontius and Batchu 2003). The relative operating characteristic is a
statistical measurement to compare a Boolean variable versus a categorical vari-
able. The ROC is able to compute the accuracy of the prediction at several diverse
threshold levels. For each threshold domain, each cell of probability surface map is
reclassified as either over or under the threshold (Pontius and Batchu 2003).

Pontius and Batchu (2003) believe that the ROC is an outstanding method for
analysing propensity surface values. Moreover, the ROC compares two maps
specification in two separate ways: in terms of location and also quantity. ROC
achieves this by the goodness-of-fit calculation of the validation at various thresh-
olds, thereafter, aggregating the information at all thresholds into one measure of
agreement. Accordingly, this method is purported to have distinct values concerning
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the goodness-of-fit of location versus the goodness-of-fit of quantity; therefore,
modellers will be able to improve the predictive model capability.

2.22 Summary

This chapter started with a brief introduction about the chapter and then introduced
land use and land cover terms (Sect. 2.2) before making the distinction between these
two terms, thereby highlighting the LUCC causes and consequences (Sect. 2.3).
LUCC driving forces (Sect. 2.4) and LUCC simulation (Sect. 2.5) were introduced
thereafter. The typical methodologies for trend evaluation of land use change
was also discussed (Sect. 2.6). Section 2.7 dealt with how to predict the
upcoming land use patterns and Sect. 2.8 with how to simulate urban sprawl.
A comprehensive discussion over the popular and existing approaches in LUCC
studies was presented in Sect. 2.8. A comprehensive explanation of geosimulation
methodology, its terminology and characteristics was also depicted (Sects. 2.10–
2.12). Later, Sects. 2.13, 2.14 argued about the differentiation between cellular
automata and the GAS model. The existing simulation environments were taken into
consideration to pick the optimum system for this research ( Sect. 2.15). The fun-
damentals of a fuzzy decision system, the AHP weighting system, and the Moran
autocorrelation coefficient were explained (Sect. 2.16–2.20). The usual map com-
parison methods were explained in order to evaluate the certainty of output maps.
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Chapter 3
Study Area Description

3.1 Introduction

In this chapter, the aim is to give a brief explanation about the case study which
has been selected to accomplish this research. It has been assumed that Tehran, the
capital of Iran, is an ideal case study area, because it has been seriously afflicted
with urban sprawl. This problem is so great as to be devouring the surrounding
farming lands as well as open lands and, consequently, turning them into urban,
built-up areas. Moreover, this research will integrate affordable spatial explicit
data and non-spatial information in the field of socioeconomic, environmental and
other affiliated variables.

3.2 Case Study Description

It was considered vital to choose an appropriate area in order to implement an
ABM and geosimulation to obtain enhanced and significant outcomes. Hence, it
was reasoned that the Tehran metropolitan area can serve as a match case for this
research, because of the severity and extent of urban expansion in the metropolis.

Tehran, as the capital of Iran, is one of the few capitals in the world which is not
located beside a river or even close to the sea. Mountains predominate and
surround the city from the north and east (Fardi 2010). The selected area for
this research includes Tehran city as well as its suburbs; in other words, approx-
imately a Landsat image coverage of 164/35 row-path lattice. This area covers
approximately 188,000 hectares and is shown in Fig. 3.1.

Within 200 years, decreasing mortality rates and an influx of migrants have
altered Tehran from a 7.5 km2 city of 14,500 residents into a mega-city of almost
ten million people, expanding to an area of 620 km2. It has subsumed flat and open
lands to the east and west and 70 villages on its adjacent mountain slopes. Today’s
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Tehran varies 800 m in elevation from south to north, and the city’s topographical
variation is paralleled by the marked differences in class and the lifestyle of its
inhabitants (Shahshahani 2003).

Tehran province comprises one of 31 provinces in Iran. It covers an extent of
18,910 km2 and is located to the north of the central plateau of country. Tehran
province borders Mazandaran province in the north, Qom province in the south,
Semnan province in the east and Karaj province in the west. The metropolis of
Tehran is the capital of the province as well as of Iran. As of June 2005, this
province includes 13 townships, 43 municipalities, and 1,358 villages. Tehran
metropolis, with an area of around 780 km2, is the most heavily populated and
biggest city in Iran. The population of its municipality has grown from 0.7 million
in 1941 to approximately 7,230,000 in 2005. When including the surrounding
areas and the commuting workforce, the metropolitan area now exceeds 12 million
inhabitants. The population growth rate of Tehran was shown to be 0.6% between
2001 and 2005 (Demography Information 2006).

The metropolitan area of Tehran is surrounded on the northern and eastern sides
by the Alborz Mountains, one of the highest mountain ranges in Iran with peaks
above 5,670 m. Average elevation of the city is around 1,300 m above sea level,
which increases towards the north. The city (the municipality of Tehran) covers an
area of approximately 22 km north–south and around 35 km east–west—embedded
in a 60 by 60 km domain. The city area is divided into 22 municipality districts (Iran
Chamber Society 2001) which is demonstrated in Fig. 3.2.

Fig. 3.1 Geographical extent of the study area, Tehran metropolitan area
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3.3 Geography

According to the Iranian statistics center of 2006 (the latest recorded demo-
graphic data), the province of Tehran consists of 13 counties and has more
than 12.4 million inhabitants. Tehran is the most densely populated state of Iran.
Approximately 86.5% of inhabitants live in urban areas and the remainder reside in
the rural areas of the province (Demography Information 2006). The highest peak
of the province is the Damavand mountain, with an elevation of more than 5,670 m
above sea level, with the Varamin plains being the lowest point of the province, at
around 790 m above sea level. The province includes more than 330 km2 of forests,
and over 12,800 km2 of pasture land. The major rivers of this province are the Karaj
River and the Jajrud River (Iran Chamber Society 2001). Tehran is surrounded by
various mountains such as the Alborz mountains in the north; Savad-Kooh and
Firooz-Kooh are situated in the northeast part; Lavasanat, Qarah Daq, Shemiranat,
Hassan-Abad and the Namak mountains are located in the southern part of the
region. Bibi-Shahr-Banoo and Alqadr are located in the southeast and the heights of
Qasr-e-Firoozeh are located in the eastern part of the province. In terms of envi-
ronmental conditions, the climate of Tehran province is extremely diverse. For
instance, in the southern quarter the climatic conditions are dry and warm, whereas
in the vicinity of the mountains it is semi-humid and cold; the higher region

Fig. 3.2 Arial view of Tehran and its current districts
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experiences extremely cold and long winters. Mid-July to mid-September are the
hottest months of the year when temperatures range between 28 and 30�C; and the
coldest months average 1�C in December and January, although at times it might
reach -15�C in winter (Fitzgerald et al. 2000). As a matter of fact, climate plays an
important role for people settlement and development. Average annual rainfall
precipitation is approximately 200 mm, peaking during the winter season. In
general, this province has a semi-arid, Steppe climate in the south and an alpine
climate in the north (Iran Chamber Society 2001).

3.4 Transportation

The importance of pointing out the issue of transportation is because transport
dimensions in Iran, and specifically in Tehran, show marked differences in
comparison with European models. Urban growth in Tehran area has a close
relationship with its road networks, because the densely used transport system is
extremely reliant on cheap oil prices, affecting people’s mobility habits and other
related matters consistent with urban expansion (Bertaud 2003). As demonstrated
in Fig. 3.3, Tehran is a central connection point between the west and east of the
country, which again exacerbates the intense internal road developments and
prolific external freeways.

Public transportation in Tehran largely consists of taxis, large and small buses,
and the subway system, but using personal vehicles has steadily become more
pervasive due to cheap oil prices—hence, people have become more dependent on
the car. Inconsistencies in the overall public transport system have also played a
part in the shift to using personal transport.

More recently, however, initiatives to improve and expand a more compre-
hensive public transport plan are being implemented. Additionally, recent
government policies towards removing oil subsidies, thus pushing up the cost of
fuel, have made the development of an improved public transport even more
essential.

The Metro Company which operates the subway system is an affiliated division
of Tehran municipality and is responsible for all subway extensions. There are four
subway lines in Tehran, one of which connects the west suburbs (e.g. Karaj) area
to Tehran (Tehran Urban and Suburban Railway Co 2010). In terms of air travel
Tehran has four airports, including two main public airports, such as the Mehrabad
International Airport, Imam Khomeini International Airport, as well as the military
airports at the Ghaleh-Morghi airfield and Doshan-Tapeh airbase.

The metropolis of Tehran benefits from a massive network of highways (around
285 km) and intersections, over-ramps, and ‘spaghetti’ loops (about 180 km);
however, in 2007, around 130 km of highways and 120 km of over-ramps and
intersections were under construction (Tehran Municipality 2010). The centre of
the city also hosts primary government departments such as ministries and
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municipal headquarters (Iran Chamber Society 2001) which adds to the density of
the entire transport network.

3.5 Climate

Based on the Köppen climate classification, Tehran is located in a semi-arid,
continental climate. In general, its climate is described as mild springs, hot and dry
summers, pleasant autumns, and cold winters. This large city has considerable
differences in elevation among a variety of districts. Its weather is usually cooler in
the mountainous north in comparison with the flat southern part of Tehran. The
majority of the annual rainfall occurs from late-autumn to mid-spring. Summer is
typically warm and dry with minimal rain, but relative humidity is frequently low
and the nights tend to be cool. July is the hottest month of the year with an average
minimum temperature of 23�C and average maximum temperatures of 36�C.
January is the coldest month with a mean minimum temperature of -4�C and also,
a mean maximum temperature of 6�C. Compared with other areas in the country
Tehran benefits from a mild climate, but weather conditions can sometimes be
surprisingly harsh. Record high temperature can reach 48�C with lows of -20�C.

Fig. 3.3 Transportation network in the Tehran metropolitan area
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3.6 Demography

Demographically Tehran is essential for this kind of formal research, because of
the significant shift in population from rural to urban living, and the concomitant
growth of built-up accommodation. Therefore, a detailed demographic analysis
will be presented in Chap. 4. Tehran is the economic centre of Iran and also, about
30% of Iran’s public sector employees, and 45% of large industrial companies, are
located in the metropolis.

Almost half of this workforce consists of government, public sector employees.
In recent years, many modern industries, such as automobile manufacturing,
electronic equipment, textiles, armaments, cement, and chemical products have
been developed in the vicinity of Tehran (Iran Chamber Society 2001).

3.7 Pollution

Although it might seem unnecessary to deal with Tehran air pollution within the
scope of this research, it is an issue which is one of the consequences of LUCC in
this area, and is, accordingly, of extreme influence in the city. The city of Tehran
suffers from severe air pollution and is frequently covered with smog, which has a
debilitating effect on the health of the people. It is estimated that around 27 people
die every day through pollution-related diseases. According to local administra-
tors, 3,600 people died in a single month due to the toxicity of the air quality.
Some 80% of the city’s air pollution is a direct result of carbon emissions from
automobile and the rest is due to industrial pollution. In 2007, Iran imposed fuel
rations and price rises, but the plan has achieved little success in reducing the
pollution levels and the proliferation of personal transport.

The air pollution is primarily due to the following reasons:

• Geographical: Tehran is bordered by the massive Alborz mountain range in the
north which prevents the flow of the humid winds coming from the Caspian Sea.
The UV radiations, combined with existing pollutants, considerably raise the
level of the ozone.

• Economic: Most Iranian industries are located on the fringe of Tehran. Many old
cars are still being used which do not meet standard emission regulations.
Additionally, the busiest airport, Mehrabad International Airport, is located in
the city.

• Infrastructure: Tehran has no well-organised public transport network. Buses
and metros are unable to cover every location within the city. Therefore, most
people are forced to either hire taxis or buy and use private cars. This has
created severe traffic congestion and consequently higher rates of pollution.
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3.8 Tehran Spatial Structure

Three main features can illustrate the spatial structures of urban areas:

• the spatial distribution of population in built-up areas;
• land per capita (i.e. the consumption of land per person);
• the concentrated pattern of daily trips within the city (Bertaud 2003).

Latest reports concerning Tehran’s spatial structure demonstrate exceptional
spatial structure for this city: It has a high density structure combined with a
slightly polycentric pattern. The lack of a strong and centralised core, as well as
the spatial dispersion of employment, are generally associated with built-up
density. Tehran’s built-up density, approximately at 146 person/ha, is highly
unusual for a polycentric city. This atypical characteristic cannot be necessarily
negative, although it suggests it would be necessary to find some comparative
solutions that have worked out successfully in other cities with a completely
dissimilar spatial structure. The current irregular spatial structure of Tehran which
is a high-dense city without a dominant Central Business District (CBD) creates
several restrictions. At the central administration level, the alternative of
restricting the population of Tehran to 7.6 million people (population in 2002) has
been discussed. However, this is not a sustainable option since the government has
not been able to control demographic growth (Bertaud 2003).

3.9 Land Consumption Per Person

The area of land consumption per person can be interpreted as the area that a city
requires for its expansion. It is typically measured by its inverse, the density per
person measured in people per hectare of built-up areas. The density in the built-up
areas within the municipal boundary of Tehran is approximately 146 people per
hectare. Compared with the built-up density of other cities in the world, this is a
rather high density ratio (see Fig. 3.4).

However, compared with other large cities of Asia, Tehran’s average density is
almost twice as low as current built-up densities in east Asian metropolitans such
as Seoul. Hence, this comparison shows that the density of Tehran should not be
the main issue (Bertaud 2003). Besides, Tehran has two main types of expansion
which are firstly, to spread the city territory, and secondly, expansion of the third
dimension of the city: i.e. the construction of high rise and middle range housing
neighbourhoods. This has become very common in recent years which afford huge
commercial benefits for land developers.

Bertaud (2003) calculated the evolution of Tehran built-up densities between
1891 and 1996. The recent changes will be considered more accurately in the next
chapter. But Fig. 3.5 demonstrates an overall change pattern during the mentioned
period.
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Fig. 3.4 Comparative average population densities in built-up areas in 48 metropolitan areas
(Bertaud 2003)
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Figure 3.6 expresses the density of Tehran has been diminishing within the
period from 1860 to 2000, stabilising around 1950, and began increasing some-
what between 1970 and 1976, and again stabilising at its present level between
1987 and 1996.

High rise buildings have emerged since 1960 and have multiplied since 1980.
Bertaud (2003) noted that

This increase in building height have resulted in lower density—and not higher densities
as would have been expected—because simultaneously as building were getting taller,
Tehran’s households consumed more floor space per person.

The present mean floor consumption in Tehran is 25.5 m2 per person, similar or
higher than the consumption of a number of cities of Europe. The increase in floor
consumption per person is higher than the increase in floor space density. The
construction of high residential building tends to reduce housing prices and,
therefore, increase floor consumption per household (Bertaud 2003).

3.9.1 Spatial Distribution of Population

The population distribution in Tehran does not match typical patterns with a
decreasing rate toward city borders (Bertaud 2003). Figure 3.7 demonstrates that
the spatial pattern of Tehran metropolis has the capacity to fill up unoccupied and
open spaces.

In the case of the majority of cities, the central business district (i.e. CBD) is
located within the heart of the city’s environs. The intensity of business and retail

Fig. 3.6 Changes in built-up area density between 1891 and 1996 (Bertaud 2003)
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use which distinguish the CBD is absent from central Tehran and also, demon-
strates that the fairly low-density CBD area is more likely due to abandoned lands
and buildings or large institutional holdings (Bertaud 2003).

3.9.2 Pattern of Daily Trips

An awareness of the transportation system would be very helpful in realising the
residents’ behaviour in terms of their proximity to the city centre or their working
areas. Whereas at the moment the transport system costs are still being subsidised
and do not take a big share of people’s lives in comparison with foreign countries,
people can, however, purchase houses far outside the city and commute by public
transport or personal vehicles. On the other hand, whilst the public transportation
system is affordable, traffic jams still plague regular daily trips, which makes it a
difficult dilemma for inhabitants to deal with this issue, i.e. living close to the
centre of the city and paying extra rent, or living outside the main core, beside
freeways and highways with more affordable housings and the option of buying
a car.

Fig. 3.7 Tehran metropolitan area in comparison with other metropolises (Bertaud 2003)
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Destination and origin matrices for vehicular job commuting and shopping trips
explain that districts 6 and 12 comprise the closest districts to a CBD in Tehran.
Also, these two districts serve only 27% of all shopping expeditions, as well as
30% of all job commuting journeys. If jobs were equivalently distributed among
all 23 districts assessed, each district might obtain 5% of all journeys. It has to be
noticed that the matrix shows only vehicular trips and not all trips. Given the high
population density of Tehran, an enormous number of shopping trips take place on
foot to neighbourhood shops and, therefore, the 27% figure of vehicular shopping
trips to the CBD is possibly an overestimate of all the shopping trips undertaken.
A 3D visualisation of the study area, which represents the spatial distribution and
its density, is shown in Fig. 3.8.

3.10 Ancillary Information

A number of urban landscape regulations have been issued since the Islamic
revolution of 1979; in addition, new urban land development policies have been
initiated in Iran, and are regularly updated. These policies have had some major
purposes (e.g. sustainable urban development). Besides, Iran has experienced a
remarkable growth in urban population in recent years, proving that adequate land
supply has become an important concern for urban land development policies. The
effects of centralisation can be seen at different levels of the land development
process (e.g. site selection, design, agreement, the financing process and imple-
mentation). Furthermore, all project agreements have to be permitted by the
Ministry of Housing and Urban Development, where large scale constructions
have to have the approval of this organisation (Azizi 1998).

Fig. 3.8 Spatial distribution of population density in the study area
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Azizi (1998) noted that;

During 1979–85, Iran confronted several problems in urban land development. The dis-
tribution of mass raw land by the ULO (Urban Land Organization) contributed towards
more urban expansion without adequate infrastructure or consideration of environmental
issues, resulting in the development of shanty towns. The trend of rapid population growth
in the last few decades suggests that population growth will be the dominant demographic
characteristic that will affect housing demand in the future. A positive response to both the
extent of housing demand and the need for sustainable development is dependent on the
provision of land and infrastructure, with associated environmental protection and
enhancement.

According to the 2006 demography reports, Tehran, as the capital of Iran and
Tehran Province, has a population of 8,429,807; it is also one of the largest cities
in Western Asia, and according to the city mayor’s website is the 20th largest city
in the world in 2007. As well as being the centre of most Iranian industrial,
chemical and core manufacturing, Tehran is also the most important centre for the
making and selling of carpets and furniture; therefore, the city manages a massive
range of businesses in Iran and nearby countries, for internal consumption and
export. During the twentieth century, Tehran was subject to mass-migration of
people from other parts of Iran, which included a variety of cultures, peoples and
religions. According to statistics from the website of ‘‘City mayors’’ in 2009,
Tehran was the 33rd most expensive city in the world. Moreover, it globally ranks
16th in terms of city population, 56th in terms of the size of GDP, and 29th in
terms of metropolitan population (City Mayors Statistics 2010). Resulting high
inflation rate in the country (which approximately exceeds 17%) can cause to raise
its rank to higher levels and distract this list continuously.

Tehran province is known as the financial centre and the richest province of
Iran, which contributes around 29% of the country’s GDP. Furthermore, it resides
approximately 18% of the country’s population. Tehran Province is the most
industrialised province in Iran; 86.5% of its population houses in urban areas and
13.5 % of its population resides in rural areas. It is considerable that lately some
policies have been taken into account in order to supply some motives to dispatch
people to the other nearby cities and evacuate Tehran’s population due to the risks
of probable earthquakes.

3.11 Summary

This chapter has described the study area, where is Tehran, and its situation
(Sect. 3.2). A brief explanation about the geography of the selected study area and
other affiliated matters to this research such as transportation, climate, demogra-
phy, and pollution were explained (Sects. 3.3–3.7). The spatial structure of Tehran
and the spatial distribution of inhabitants were also discussed (Sects. 3.8 and 3.9).

56 3 Study Area Description



References

Azizi MM (1998) Evaluation of urban land supply policy in Iran. Int J Urban Reg Res
22(1):94–105

Bertaud A (2003) Tehran spatial structure: constraints and opportunities for future development.
Ministry of Housing and Urban Development, Tehran

City Mayors Statistics (2010) The largest cities in the world and their mayors. http://
www.citymayors.com/statistics/largest-cities-mayors-1.html

Fardi GRA (2010) Current situation of air pollution in Tehran with emphasis on district 12.
Institute for global environmental strategies (IGES), First meeting of the kitakyushu initiative
network, Japan

Fitzgerald P, Hickey A, Jenkins MA, Holland T, Andy (2000) Tehran province geography. http://
iguide.travel/Tehran_Province/Geography

Iran Chamber Society (2001) Cities of Iran, provinces of Iran. http://www.iranchamber.com/
provinces/01_tehran/01_tehran.php

Shahshahani S (2003) Tehran: paradox city. IIAS Newsletter N31:15–16
Tehran Urban & Suburban Railway Co (2010) http://www.tehranmetro.com/Default.aspx
Tehran Municipality (2010) Spatial data infrastructure organization center. http://sdi.tehran.ir/

References 57

http://www.citymayors.com/statistics/largest-cities-mayors-1.html
http://www.citymayors.com/statistics/largest-cities-mayors-1.html
http://iguide.travel/Tehran_Province/Geography
http://iguide.travel/Tehran_Province/Geography
http://www.iranchamber.com/provinces/01_tehran/01_tehran.php
http://www.iranchamber.com/provinces/01_tehran/01_tehran.php
http://www.tehranmetro.com/Default.aspx
http://sdi.tehran.ir/


Chapter 4
Data Preparation and Processing

4.1 Introduction

This chapter first comprises an overview about the available data, data charac-
teristics, the source of data and the preparation procedure with explanations. Then,
the trend of change will be analysed by means of temporal mapping through
Landsat images at different times. The amount of urban sprawl will be measured
and predicted for forthcoming years.

4.2 Data Acquisition and Data Collection

In this research, various sorts of data such as multi-spectral and temporal satellite
images, a set of environmental, terrestrial attributes, and socioeconomic data were
gathered. A temporal coverage of Landsat imagery from different sensors was col-
lected. This temporal coverage includes satellite images of MSS, TM, and ETM+

within the past 27 years. These satellite images were acquired through the Earth
Science Data Interface of the Global Land Cover Facility, and also, the Earth
Resources Observation & Science Centre (EROS) of US Geological Survey. A set of
high resolution aerial photos of the study area were gathered in order to check ground
control points. These satellite images were employed to extract land use and land
cover maps. Also, the other collected data included demographic details of Tehran’s
metropolitan area, extracted through the last accomplished available demography
statistics. This sociological information was downloaded from the webpage of the
Iranian statistic centre. Additionally, a geodatabase of environmental and urban
features such as topography, hydrology, building blocks, transport network, farming
land and prepared land use maps was gathered through several sources (e.g. Tehran
GIS centre and other affiliated organisations). These data were stored in different
scales. A brief description of the utilised data is demonstrated in Table 4.1.

J. Jokar Arsanjani, Dynamic Land-Use/Cover Change Simulation: Geosimulation
and Multi Agent-Based Modelling, Springer Theses,
DOI: 10.1007/978-3-642-23705-8_4, � Springer-Verlag Berlin Heidelberg 2012
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4.3 Data Processing

The prepared geodatabase of urban features and environmental elements that were
collected through multiple sources had to be matched in terms of a geodetic reference
system, scale and file format. ESRI Shapefile was chosen as the base file format and
all the data were converted to this format. Topographic data, after preparation and
missed data corrections, were converted to a digital elevation model (DEM). A set of
topographic factors such as slope, aspect, and hillshade was produced, and all the
gathered data were imported into the geodatabase.

Remotely sensed imagery is a generally recognised crucial source for land use
change monitoring. The aforementioned satellite images were collected and stored
on a hard drive in order to do signal processing and remote sensing analysis to
achieve land use/cover maps. Therefore, after a preview of on-hand images and the
removal of cloudy ones, a combination of images were produced for temporal
analysis. A regular set of 10-year stage images of 1986, 1996, 2006 was chosen,
and the gathered demography and socioeconomic data were converted to spatially
explicit data with the aim of compatibility with other geodatabase datasets. The
gathered data were controlled in terms of quality and certainty (e.g. data
georeferencing). However, it should be noted that in this section this procedure is
simply touched upon.

4.4 Temporal Land Use Map Extraction Through
Remote Sensing

The prepared land use maps of 1986, 1996, and 2006 were obtained through the
Tehran GIS centre. After a comparison with the actual situation of Landsat satellite
images, some misclassifications were found in the maps. Hence, it was vital to
update these land use maps with the Landsat images and also the aerial photos to
achieve more accurate land use maps. These maps were classified into six cate-
gories such as open land, agricultural land, water bodies, industrial area, residential
area and public parks.

Table 4.1 A description of the utilized data in detail

Type of dataset Resolution/
scale

Source

Landsat images (MSS, TM, ETM+) 30 m EROS
Geodatabase of existing features (e.g.

transport network, streams, airports,
administrative divisions, etc.)

1:25,000
1:50,000

Statistical centre of Iran, National
Cartographic Centre (NCC), Iranian
Space Agency (ISA)

Land use map 1:50,000 Tehran GIS centre
Digital elevation model 30 m Tehran GIS centre
Demography data 1:50,000 Statistical centre of Iran
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The finalised land use maps were eventually produced by overlaying remote
sensing data, prepared land use maps, implementing various remote sensing tech-
niques. These maps are the source maps of this research which are shown in Figs. 4.1,
4.2 and 4.3. The accuracy assessment process was done through Kappa index calcu-
lation. The accuracy of these maps was significant, since they are intended to be utilised
as the base input files for simulation. Moreover, the six classes mentioned above were
summarized into five categories by combining residential and industrial areas into the
built-up class. This process avoided more possible complications arising from the
discovery of industrialised zones, and reduced the computation process.

4.5 Temporal Mapping and Changes Visualisation

The prepared land use maps are shown in Figs. 4.1, 4.2, and 4.3. These maps
demonstrate the land use pattern of the study area. This temporal mapping
onstrates that Tehran is a centralised city with outward expansion. These maps

Fig. 4.1 Final extracted land use map of 1986
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show that the changes have taken place mainly in north-west towards the south-
eastern part of the border (anti-clockwise). In fact, high mountains in the northern
and eastern parts of the city do not allow for more expansion; however, some
expansion is still taking place.

Finally, the prepared land use maps of 1986, 1996, and 2006 were stored in the
created geodatabase.

4.6 Evaluation of Change Trends

This temporal land cover mapping allows us to track the quantity and location of
changes. The area of each land class was retrieved and imported to Table 4.2. The
quantity of each land category in different years is shown in this table. Obviously,
the trend towards the expansion of built-up areas over agricultural lands and open
lands has been closely monitored; however, a nominal attempt to extend the

Fig. 4.2 Final extracted land use map of 1996
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number of public parks and green leisure areas has been pursued by the
municipality.

The results in Table 4.2 and Fig. 4.4 show that the percentage of built-up areas
has been accelerating from 24 to 28%, up to 32%. This trend has resulted in the
reduction of the farming area and open lands at a rate of 24 and 50%; 22 and 47%;
and 21 and 44%, respectively. Consequently the mass of open lands and

Fig. 4.3 Final extracted land use map of 2006

Table 4.2 Land use type portions during the past 20 years

Land use type Area 1986 (ha) Area 1996 (ha) Area 2006 (ha)

Agricultural land 45,174 41,172 40,005
Built-up 44,772 53,056 59,095
Open land 92,276 87,305 81,741
Public park 4,076 4,744 5,394
Water bodies 102 123 165
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agriculture have suffered on account of urban development. Despite this fast
growing urban sprawl the fact remains that in some districts of Tehran, the height
of buildings generally is not particularly high; however, the potential for vertical
growth in the metropolis remains a real possibility.

Although, this study is not an attempt to measure high-rise built-up develop-
ment, but it is a fact, nonetheless, that the cityscape is becoming higher in con-
struction. This phenomenon is being driven by the growing need for more urban
accommodation and business outlets, which is more affordable for residents and
developers. Yet through this third dimension of vertical urban expansion the
possibilities of further land change occurrence are minimalised. Again, it should be
stressed that this trend towards vertical built-up expansion is not the intention of
this research, but might be of interest to urban managers for future consideration.

According to Table 4.3, significantly about 4,000 ha of agricultural fields and
more than 5,000 ha of open lands were taken over for urban development between
1986 and 1996. This records an increase in the quantity of built-up areas to around
8,300 ha in total. During this 10-year period, between 1996 and 2006, nearly
6,000 ha of agricultural fields and open land areas were converted to built-up
development. This extensive city sprawl is one of the consequences of large
migrations towards this metropolis, to meet the needs of the massive influx of
people. Additionally, during this 20-year period (1986–2006), approximately
10,000 ha of open land area, along with 5,000 ha of agricultural fields, were
converted into built-up areas. This represents an 8% increase in urban built-up
environment at the expense of natural land, revealing a growth in urban devel-
opment from 24% in 1986 to 32% in 2006.
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Fig. 4.4 Measurement of land use change between 1986 and 2006

Table 4.3 Quantification of changes between 1986 and 2006 in terms of hectares

1986 1996 2006 1986–1996 1996–2006 1986–2006

Agricultural land 45,174 41,172 40,005 -4,002 -1,167 -5,169
Built-up 44,772 53,056 59,095 8,284 6,039 14,323
Open land 9,2276 87,305 81,741 -4,971 -5,564 -10,535
Public park 4,076 4,744 5,394 668 650 1,318
Water bodies 102 123 165 21 42 63
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4.7 Measuring Change and Sprawl

The acquisition and conversion of farming land and open land on the fringe of
cities into built-up areas is, by definition, urban sprawl. It is the aim of this thesis
to measure the extent of this phenomenon.

Therefore, in order to predict the extent of this change in these fringe areas,
previous occurred and anticipated values of change need to be taken into account.
In academic terms and according to Torrens and Alberti (2000).

Sprawl is a highly contentious issue—neither its determinants nor its characteristics are
fully understood.

In recent years, researchers have performed conceptual investigations of the
sprawl phenomenon, such as its characteristics, causes, and potential controls.
A variety of methods to provide a better understanding of urban growth have been
discovered by respective experts to measure sprawl. Theoretical discussions on the
subject of sprawl have created a wealth of discussion around the matter. Urban
sprawl is a practical, real world issue of considerable concern. Therefore, the sense
of urgency that prevails with regard to the sprawl problem, creates an extreme
need for more theoretical discussion to improve current methodologies (Torrens
and Alberti 2000).

According to Table 4.2, within 20 years, around 14,000 ha of built-up area
have been constructed by destroying roughly 50,000 ha of farming area, as well as
11,000 ha of open lands, which could have been used to expand green spaces or
farming development.

Although urban expansion brought expectations of more public parks and green
areas, no such increase of parkland has been observed.

An increase in the number of parks and green spaces for the Tehran metropolis,
to especially combat air pollution, would seem of prior importance, thus urban
planners need to take this issue into account. In fact, air pollution accounts for a
number of deaths per year. From a landscape planner’s aspect, a balance between
urban development and the creation of green space should be a priority. However,
it seems the municipality of this metropolis was not able to create new green
spaces within the second period (i.e. 1996–2006).

4.8 Socio-Demographic Changes

Tehran has been confronted with various socio-demographic changes within recent
decades. These changes have been caused mainly by three considerable condi-
tions: first, change in governmental policy over family structure and childbirth
numbers following the 1979 revolution; second, the population lost during the
Iran-Iraq war, which encouraged people to support this loss; and thirdly, the mass
of migration from other cities to Tehran to find work, to study and secure a better
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standard of living. Altogether, these conditions have created significant urban
pressures within Tehran to accommodate these socio-demographic changes.

According to Table 4.4, there are some significant conclusions which can be
deduced as follows:

1. The population of Tehran city has been growing exponentially since 1966.
2. The population of Tehran province, within the country as a whole, has been

increasing, proven by the mass migration towards this province from other
provinces.

3. The population share of Tehran city, as of Tehran province, has been
decreasing significantly, which means the majority of migrants tend to settle in
suburban areas and, moreover, nearby cities have been developing even more
quickly than Tehran (see Fig. 4.5).

4. The overview determines that nearby cities are housing a huge and growing
number of provincial inhabitants, and their proximity to the metropolitan core
is becoming increasingly less, i.e. this trend can cause a continuous homoge-
neous metropolis with many complications.

Table 4.4 Tehran city, province and study area population details

1966 1976 1986 1996 2006

Tehran city population 2,980,041 4,530,223 6,042,584 6,758,845 7,797,520
Study area population 2,981,047 4,580,515 6,257,713 7,024,295 8,154,691
Tehran province population 3,455,537 5,313,143 8,095,124 1,0343,965 13,413,348
Country population 25,788,722 33,708,744 49,445,010 60,055,488 70,472,846
Tehran city share of
province (%)

86.20 85.30 74.60 65.30 58.10

Tehran province share of
country (%)

13.40 15.80 16.40 17.20 19.00
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Fig. 4.5 Population growth in Tehran city in comparison with the metropolitan area

66 4 Data Preparation and Processing



4.9 Measuring Per Capita Construction

Construction per capita is an often reported and commonly compared statistic for
measuring the number of domestic residents in a city. Population density is the
measurement of the number per unit area. It is commonly represented as people
per hectare/square kilometre, which is consequent simply by dividing the total area
population (i.e. those who have settled in a region) by region area. This calculation
implements a straightforward mathematical method which is given in Eq. 4.1.

Construction per capita ðPerson=haÞ ¼Residents population ðPersonÞ
Builtup Area (ha)

ð4:1Þ

Equation 4.1 was executed to obtain this index for the past. The mean value of the
three past periods was used to predict this index for forthcoming periods (see
Table 4.5). Thus, by means of this index, as well as predicted population, the quantity
of developed lands for the future can be determined, which is shown in Sect. 4.10.

4.10 Estimation of Change Demand

The quantity of change demand can be calculated through two possible ways: by
retrieving via the Markov chain model, or through the extrapolation of statistical
demographic data.

• Markov chain model: This model is able to predict the next status of change
according to the previous status; therefore, a transition area matrix is produced
by this model indicating the amount of change between existing categories.
Table 4.6 presents the anticipated amount of change for the forthcoming period,
which is in this example 2016. This matrix indicates that approximately
1,605 ha of agricultural land will be replaced by built-up areas by 2016.
The same table for 2026 has been produced.

• Statistical extrapolation: The other possible method to predict land change
demand is to calculate the index of construction per capita for the future. Then, the
average value of this index can be calculated to input the equation, to incorporate
the predicted population for 2016, 2026 as provided by the Iranian statistic centre.
The index was calculated in Sect. 4.9 for the previous time points (i.e. 1986, 1996,
and 2006). Hence, it is feasible to predict the anticipated amount of change, the

Table 4.5 Population
density per area unit

Year Residents
population (Person)

Occupied
area (ha)

Construction
per capita (Person/ha)

1986 6,257,713 44,772 139.7
1996 7,024,295 53,056 132.4
2006 8,154,691 59,095 138.0
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assumption being to input the average construction per capita index for the next
steps (i.e. 2016, 2026). Therefore, population was statistically predicted to obtain
the expected amount of change. This means that change was quantified by this
technique. In Table 4.7, the estimated amount of resident population in the study
area, and construction per capita index are shown. In fact, the demand of change
for the built-up class alone can be projected through this method, whereas the area
of the other existing classes could not be estimated in this way. Thus, the Markov
model is able to predict quantity of change for each particular land type.

4.11 Summary

In this chapter, the process of preparing the utilised data has been explained and
also, a temporal mapping of land use change in the study area represented. The
quantity of change has been analysed statistically and, therefore, the urban sprawl
accordingly measured. In addition, socio-economic changes within the selected
time periods have been taken into consideration.

As a final point, the forthcoming changes have been estimated through two
different scenarios to be employed in the change allocation process.

Reference

Torrens PM, Alberti M (2000) Measuring Sprawl, CASA Working Papers (27). Centre for
Advanced Spatial Analysis (UCL), London, UK

Table 4.6 Transition areas matrix of the Markov model for 2016 in terms of hectare

Agricultural lands Built-up Open lands Public parks Water bodies

Agricultural lands 37,424 1,605 871 69 9
Built-up 214 58,326 324 206 2
Open lands 1,175 4,702 75,355 448 26
Public parks 10 47 35 5,290 7
Water bodies 4 2 0 1 158

Table 4.7 Statistical
extrapolation of construction
per capita index for 2016 and
2026

Year Residents
population
(Person)

Occupied
area (ha)

Construction
per capita
(Person/ha)

1986 6,257,713 44,772 139.77
1996 7,024,295 53,056 132.39
2006 8,154,691 59,095 137.99
2016 9,940,964 72,711 136.72
2026 11,553,771 84,508 136.72
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Chapter 5
Implementation of Traditional Techniques

5.1 Introduction

The inherent aim here is to implement the traditional and common methodologies
which have been employed to illustrate land use change, and thereafter to simulate
its forthcoming status. In this chapter, the cellular automata model, the Markov
chain model, the CA-Markov model and the logistic regression model will be
designed and executed. Each single model will be evaluated to verify its outcomes.
This will allow us to validate their results and acquire enough assurance of
their performance. Thus, verified models will be chosen in order to integrate
in the ABM.

5.2 Selected Techniques for Implementation

In this part of the chapter, it is intended to review and also execute preferable and
useful methodologies such as cellular automata, Markov chain, cellular automata
Markov, and logistic regression models. The outcomes of these models will be
evaluated and the different results will enable us to compare them to each other.
The strategy of creating different results by means of different techniques will
enable this research to represent various methods upon a specific area. Therefore, a
general flowchart for this section can be presented as in Fig. 5.1.

In Sect. 5.3, we will describe the theoretical background of the aforementioned
models, as well as their implementation, starting with the cellular automata model.

J. Jokar Arsanjani, Dynamic Land-Use/Cover Change Simulation: Geosimulation
and Multi Agent-Based Modelling, Springer Theses,
DOI: 10.1007/978-3-642-23705-8_5, � Springer-Verlag Berlin Heidelberg 2012
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5.3 Cellular Automata Model Scenario

In recent decades, investigations for developing geographical cellular automata in
order to simulate complex systems have been raised. Cellular automata have been
employed to simulate wildfire propagation (Goodchild et al. 1996), population
dynamics (Couclelis 1985), and land use change (Batty and Xie 1994; White and
Engelen 1993).

The cellular automata model is known as CA which is a dynamic model
originally conceived by Ulam and Von Neumann in the 1940s to afford a formal
framework for investigating the behaviour of complex systems (Moreno et al.
2009). CA is also the main framework of agent-based modelling scenarios. Land
use changes simulation using CA is a complicated process, whereas various spatial
variables and factors have to be employed (Li 2008). A critical matter in CA
modelling is defining appropriate transition rules based on training data. In fact,
these transition rules conduct this model. Linear boundaries have been used to

Fig. 5.1 Flowchart of the general strategy for the implementation of the models
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define the rules (see Fig. 5.2). However, land use dynamics or changes, and
many other geographical phenomena, are vastly complex and require nonlinear
boundaries for the rules definition (Moreno et al. 2009). Figure 5.3 demonstrates
the flowchart of implementing the CA Model.

5.3.1 CA Transition Rules

Land use changes on the fringe of cities (i.e. urban sprawl) is the consequence of
both internal and external forces; the internal impact means an area tends to continue
its development if it has begun to develop from a rural to an urban status, particularly
if this natural tendency is supported by development from within the neighbourhood.
The external impact means factors such as the geographical conditions of the area,
socio-economic circumstances and institutional controls, also impact on the process
of development. Physical constraints (e.g. water bodies and steep terrain, etc.)
restrict or slow down the development of urban areas (Fig. 5.4).

Socio-economic factors, such as land availability and demands on available
lands, accessibility to nodes of employment, accessibility to public services and
facilities, such as schools, shops, public transport, and contiguity to existing urban
areas also play key roles in urban development; therefore, they are able to define

Fig. 5.2 Cellular Automata, state transition rules and the Moore neighbourhood notion (Huang
et al. 2004)
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appropriate conditions (Liu 2008). The transition rules are the major inputs in a
CA model. Basically, the aforementioned rules have been defined in linear forms,
using methods such as multi-criteria evaluation (MCE) (Yang et al. 2008).
Transition rules can be defined through a filter file at a variety of kernel sizes, and
various decision rules can make that CA model completely different from other
existing CA models. Whereas these simulated maps are on hand, a training phase
can be utilised by means of these preliminary results and the map of reality. This
training phase helps to realise the appropriate kernel size and transition rules.

5.3.2 Training Process and Calibration of the CA Model

The training process consists of choosing a certain time step for the simulation
through the CA model. Different transition rules and neighbourhood distances can
result in various outcomes; thus, a preliminary evaluation of the obtained results
was carried out to pick the optimum settings. The optimum settings will lead us to
implement this model by coordination of time step and results. Accordingly, after

Fig. 5.3 Flowchart of the implementation procedure of the CA scenario
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implementing the training phase and retrieving calibrated factors, a simulated map
of development of forthcoming years was prepared.

The other key issue to implement a CA model is to estimate an appropriate
iteration number. This enables users to stop the modelling process at accurate
times. Therefore, a training process is applied to the model in order to control the
predefined transition rules. This helps to stop our model at a certain time and
reach a certain amount of change, to better estimate the locations of changes.
A code was written in the Python environment and imported into the ArcGIS
Toolbox. This script has the typical characteristics of a CA model. The code
comprises all cellular automata components, i.e. neighbourhood size and transition
rules. This CA code performs according to a predefined iteration number, and it
stops at a certain time. At each time step, a filter is applied to the entire image
then the output image is reclassified according to the reclassification file, and the
produced output image is then used as an input for the next iteration. The process
goes on until the predefined iteration number is reached.

Results from different settings can be evaluated and compared with the actual
map. This model was implemented to the land use maps of 1986 and 1996 to
achieve the simulated maps of 1996 and 2006, respectively. The simulated maps of
built-up areas at different iteration numbers of 1986, 1996 and 2006 are shown
through Figs. 5.5 and 5.6.

Fig. 5.4 Schematic explanation of automata and different neighbourhood layouts
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The simulated maps of 1996 and 2006 were compared with the maps of reality
of 1996 and 2006; therefore, the optimum transition rules and settings can be
determined. In Table 5.1, the number of iterations and resulted ROC values are
cross compared to pick the optimum iteration number. The determined transition
rules will be chosen as the optimum designed CA model. This model will be
implemented on the map of 2006 in order to simulate built-up map of 2016.

Table 5.1 shows that the maximum ROC value yielded at iteration number
nine, therefore, this amount of iteration and associated transition rules were
employed for the prediction process. The model validation process and resulted
map will be presented in Chap. 7 (see Sect. 7.5.1).

Fig. 5.5 Simulated maps of built-up areas at different iteration numbers from 1986 to 1996
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5.4 The Markov Chain Model Scenario

Markov chain theory is a stochastic process theory that describes how likely one
state is to change to another state. The Markov chain has a key-descriptive
tool which is its transition probability matrix (TPM). Markov chain theory has
been used generally to study water resource systems and simulate precipitation
sequences, particularly to describe and predict lithological transition, plant
succession, and land utilisation change (Li et al. 1999).

Stochastic processes generate sequences of random variablesfXn; n 2 Tg by
probabilistic laws. In Eq. 5.1, index n stands for time. This process is measured
discrete in time and T ¼ f0; 5; 10; . . .g years approximately. This time step is a
reasonable time unit for land use change studies. Therefore, if the stochastic
process considered a Markov process then the sequence of random variables will
be produced by the Markov property, formally (Cabral and Zamyatin 2009):

P Xn þ 1 ¼ ain þ 1jX0 ¼ ai0; . . .;Xin ¼ ain½ � ¼ P Xin þ 1 ¼ ain þ 1jXin ¼ ain½ � ð5:1Þ

Fig. 5.6 Simulated maps of built-up areas at different iteration numbers from 1996 to 2006

5.4 The Markov Chain Model Scenario 75



5.4.1 Markovian Property Test

Land use change in the study area needs to be proved as a Markovian process.
In fact, it must have statistical dependence between Xn ? 1 and Xn; and that
statistical dependence is a first-order Markov process.

PðXn ¼ anjXn�1 ¼ an�1Þ 6¼ PðXn ¼ anÞ � PðXn�1 ¼ an�1Þ ð5:2Þ

P Xn ¼ anjXn�1 ¼ an�1½ � ¼ P Xn ¼ an;Xn�1 ¼ an�1½ �=P Xn�1 ¼ an�1½ � ð5:3Þ

A first-order Markov process is defined as a Markov process that the transition
from one category to any other categories does not necessitate intermediate
transitions to other states. The statistical dependence can be tested in any con-
tingency table demonstrating the land cover changes between Xn and Xn-1.
In this research, this test was performed for land cover changes between
1986–1996 and 1996–2006. To deduce from the association or independence
between the land cover categories within the years from the contingency table, the
random variable, with the chi-square distribution is defined by:

x2 ¼
X

i

X

i

Nij �Mij

� �2
=Mij

� �
ð5:4Þ

Here, N is the contingency matrix showing the land cover change between two
assumed time scales; for instance, either 1986–1996 or 1996–2006 or 1986–2006,
and also, M the contingency matrix with the expected values of change, assuming
the independence hypotheses.

Table 5.1 Comparison of different accuracy assessment indices arising from diverse CA rules

Input file Iteration number Kappa index for
built-up cells

Overall kappa ROC value

1986 (predicted 1996) 2 0.6684 0.6953 0.837
3 0.6684 0.6953 0.837
4 0.7156 0.7000 0.846
5 0.7546 0.6984 0.851
6 0.7877 0.6925 0.854
7 0.8151 0.6830 0.857
8 0.8379 0.6705 0.86
9 0.8562 0.6553 0.861
10 0.8709 0.6382 0.859

1996 (predicted 2006) 3 0.6977 0.6912 0.825
4 0.7475 0.6909 0.834
5 0.7869 0.6838 0.84
6 0.8201 0.6729 0.843
7 0.8488 0.6598 0.847
8 0.8736 0.6447 0.851
9 0.8944 0.6280 0.854
10 0.9116 0.6099 0.852
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x2 basically measures the distance between the actual values of land cover
change and the projected ones, assuming independence hypothesis and accordingly
must be high enough to verify. The same non-parametric test was performed to
assess the Markovian property. Thus, the values have to be compared with the
observed values computed with the Chapman–Kolmogorov equation, supposing
that these variables are generated by a first-order Markov process:

PðXn ¼ anjXm ¼ amÞ ¼ PðX1 ¼ a1jXm ¼ amÞ � PðXn ¼ anjX1 ¼ a1Þ;
m � 1 � n ð5:5Þ

The Chapman–Kolmogorov equation expresses that the probability of transition
between 1986 and 2006 can be projected by multiplying the transition probabilities
matrix 1986–1996 by the transition probabilities matrix 1996–2006.

x2 ¼
X

i

X

j

Nij � oij

� �2
=oij

� �
ð5:6Þ

5.4.2 Execution of the Markov Chain Module

The transition probabilities matrix is calculated by the contingency matrix
displaying the relative frequencies of land change at a certain time period (Cabral
and Zamyatin 2009). The IDRISI MARKOV module inputs a pair of land-cover
images and outputs a transition probability matrix, a matrix of transition areas, as
well as a set of conditional change probability images. A text file records the
probability matrix that each land cover category will change to other categories
under a certain probability value.

Fig. 5.7 Schematic view of the Markov chain model approach
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The transition area matrix is a table which records the amount of pixels that are
anticipated to change from one land cover category to other category according to
a number of time units. The produced results (i.e. matrices) arising from this
implementation were stored for use in further change analyses. This output
determines the estimated quantity of change that can be used for the process of
change allocation. Figure 5.7 presents a schematic view of the implementation of
the Markov chain scenario.

In effect the Markov chain is not a spatially explicit model; therefore the
Markov chain is not an appropriate model to estimate the location of change,
which is the aim of GIS projects. Nevertheless, it is an excellent quantity estimator
(Kamusoko et al. 2009) such that its outcomes can be allocated by means of other
approaches. As is shown in Table 5.2, the probability of converting each land
category to the others can be determined by the Markov chain model.

5.5 Cellular Automata Markov Scenario

This section of the chapter aims, in particular, to depict the cellular automata
Markov model and how this module was executed. The cellular automata Markov
model that has been designed into the IDRISI software (Andes Version) is an
extension of multi criteria evaluation procedure which combines CA and Markov
chain modules. By using the quantity of change which is calculated through the

Table 5.2 Markov transition probabilities matrix between 1986–1996, 1996–2006 and 1986–2006

Agricultural
field

Built-up Open
land

Public
park

Water
body

Probability value of 2006
based on transition
matrix of 1986–1996

Agricultural
field

0.8835 0.0487 0.0615 0.0062 0.0001

Built-up 0.0007 0.9907 0.0054 0.0031 0.0001
Open land 0.0133 0.0689 0.9124 0.0052 0.0001
Public park 0 0.0335 0.0232 0.9428 0.0005
Water body 0.0105 0 0 0 0.9895

Probability value of 2016
based on transition
matrix of 1996–2006

Agricultural
field

0.9361 0.0402 0.0218 0.0017 0.0002

Built-up 0.0036 0.9873 0.0055 0.0035 0
Open land 0.0144 0.0576 0.9223 0.0055 0.0003
Public park 0.0018 0.0088 0.0064 0.9816 0.0013
Water body 0.0211 0.0102 0 0.0066 0.9621

Probability value of 2026
based on transition
matrix of 1986–2006

Agricultural
field

0.8469 0.0936 0.0493 0.0096 0.0005

Built-up 0.0003 0.9885 0.0059 0.0052 0.0001
Open land 0.0188 0.1131 0.8579 0.0099 0.0003
Public park 0 0.0434 0.0198 0.9362 0.0005
Water body 0.0105 0.0009 0 0 0.9886
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Markov chain analysis (i.e. transition area matrix) the cellular automata Markov
model applies a contiguity kernel to ‘grow out’ a land use map to a later time
period; hence, this approach converts the outcomes of the Markov chain model to a
spatially explicit model by integration of CA functionality. The certainty and
accuracy of this module will be examined and demonstrated (see Fig. 5.8).

Some efforts were performed to construct high-resolution regional models by
integration of the Markov and CA approaches (Clark 1990), and investigations in
this area have been growing extensively (Wegener 2001). The Markov cellular
automata model is a robust approach in terms of quantity estimation as well as
spatial and temporal dynamic modelling of land use/cover changes, because GIS
and remote sensing data can be capably incorporated. Biophysical and socioeco-
nomic data could be used, firstly, to define preliminary conditions; secondly, to
parameterise the Markov cellular automata model; thirdly, to analyse transition
probabilities and, finally, to determine the neighbourhood rules with transition
potential maps (Kamusoko et al. 2009). In the cellular automata Markov model,
the Markov chain process manages temporal dynamics among the land use/cover
categories based on transition probabilities, while the spatial dynamics are
controlled by local rules determined either by the cellular automata spatial filter or
transition potential maps (Maguire et al. 2005). In fact, the cellular automata
Markov model begins allocating changes from the nearest cells to each land use
type (Pontius and Malanson 2005).

In this section, the future land use/cover changes (up to 2026) in the study area
were simulated based on the cellular automata Markov model, which combines
Markov chain analysis and cellular automata models in order to change the
essence of the Markov chain to a spatially explicit model.

The spatial resolution of output maps was defined at 30 m in accordance with
Landsat imagery spatial resolution. The original cell size could avoid further
uncertainty by employing reclassification functions. Hence, the quantity and per-
centage of each type of land use maps was calculated for the period of 1986–2006
in accordance with cross tabulation analysis.

5.5.1 Execution of the Cellular Automata Markov Model

Markov chain models have been broadly used to model land use changes including
both urban and rural areas at coarse spatial scales. After preparing land use maps,
transition probability matrices for both time periods were calculated as well as
Markovian conditional probability images in IDRISI software (See Table 5.1).

The first record of Table 5.1 identifies the next 10-year step (i.e. 2006) as a
description of transition probability matrix, where the agricultural areas category
will remain at the same category at 88.35% probability and 4.87% will be
converted to built-up area category. Furthermore, the value of the fourth row
which identifies the probability of converting public parks category to agricultural
land category is zero; in other words, it is not expected to observe any public park
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cell that has been converted to agricultural field cells. Figure 5.9 demonstrates
simulated maps arising from the implementation of the cellular automata Markov
model at different iteration numbers.

The next step requires the need to set up the cellular automata Markov model
for predicting the land use map. Since this module has Markovian property and
CA behaviour, the cellular automata Markov model must be defined for both
properties. Hence, by inputting the land use map of 1986, Markov transition areas
parameters and transition suitability image parameters for Markovian property of
the model were employed, as well as filter contiguity definition and number of
iterations in support of cellular automata behaviour.

As shown in Fig. 5.8, it is aimed to simulate multiple land use maps for
one-time step (e.g. 2006) by defining different transition rules. The simulated maps
will be compared with the actual map, which allows us to evaluate the validity of
this approach. Therefore, the verified model can be used to simulate future years.

Fig. 5.8 Flowchart of the cellular automata Markov simulation process
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Fig. 5.9 Simulated land use map of 2006 from land use map of 1996 at different iteration
numbers
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The land use maps of 1986 and 1996 were input to the cellular automata Markov
model to produce a simulated map of 2006. This implementation requires a
Markovian conditional probability image of 2006 and, also, a transition area matrix
of 2006 to be input. Several types of filter contiguity and a number of iterations were
examined to achieve the optimal kernel size and number of iterations. With the aim of
reaching the optimal parameters, the simulated and actual land use maps of 2006
were crossed to validate the results. One of the setting parameters was to define the
iteration number that will reproduce different maps. This model evaluation process
needs to verify all the simulated maps to compare them with the actual map;
consequently, the most statistically similar map will be selected. The predefined
parameters will be chosen as the proper settings for the next runs.

The produced maps under different transition rules were assessed with different
indices. A diagram of correlation between those maps and the number of iterations
was accordingly drawn (see Fig. 5.10). The kappa indices of location and quantity
for the simulated maps were calculated, and subsequently the most appropriate
iteration number at iteration of 300 was determined with a Kappa standard index
of 0.91. The input transition rules were considered in order to run this approach
and predict future land use maps. This was done based on the transition proba-
bilities matrices of land change (1996–2006) and land change (1986–2006).
Markovian conditional probability images have to be input to derive the simulated
land use maps of 2016 and 2026. Eventually, the simulation process of predicting
the land use maps of 2016 and 2026 was implemented to output the respective
maps. These maps are represented in Chap. 7 (Figs. 7.3, 7.4).

5.5.2 Validation of the Cellular Automata Markov Model

A cross comparison between the simulated maps at different iterations and actual
maps was employed to verify the certainty of the model. The highest value of
accuracy among the resultant maps was chosen, which is approximately 91% for the
kappa index, and 97% for K-Location (Fig. 5.11). Investigation of this model shows
that the cellular automata Markov model is a good estimator for the quantification of
change and continuous-space change modelling. Based on visual analysis, this model

Fig. 5.10 Kappa indices at
different iteration numbers
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produces some diffused-speckle developed cells which do not correspond with the
reality. Besides, this model needs a lot of time to run the simulation process and,
also, to be replicated for a huge number of iterations (e.g. 300, 400). Although the
simulated maps have high Kappa indices the edges of land categories appear wavy
and circular in shape, which do not match with the reality, i.e. they seem unreal.

5.6 The Logistic Regression Model Scenario

The logistic regression analysis has been the most frequently used approach during
the past two decades for predictive modelling by means of variation of inductive
modelling (Verhagen 2007). Empirical estimation and dynamic simulation models
have been used to simulate land use/cover changes. Various types of rule-based
modelling (e.g. cellular automata model) are the most suitable models for incor-
porating spatial interaction effects and handling temporal dynamics. CA models,
however, focus primarily on the simulation of spatial patterns rather than the
interpretation of spatio-temporal processes of urban sprawl. There is a lack of
incorporation between most dynamic simulation models over socioeconomic
variables (Hu and Lo 2007). In this section, another approach by means of the
logistic regression model on urban sprawl will be explained. The aim of executing
this technique was to observe the presumed relationship and interactions
between social, economic and environmental parameters which could drive urban
expansion. As far as it has been realised, this technique has never been published
or even employed upon the study area. Hence, this implementation and its

Fig. 5.11 Dependent variable Y; change to built-up area between 1986 and 1996 (no change:
Y = 0; change Y = 1)
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outcomes could lead to more accurate results in this area of research, and achieve a
better understanding of the interaction between those variables.

5.6.1 An Overview of the Logistic Regression Technique

Regression is a method to discover the coefficients of the empirical relationships
from observations. Linear regression, log-linear regression and logistic regression
are the most used regression approaches (Hu and Lo 2007). In logistic regression,
the dependent variable can be either binary or categorical, and the independent
variables could be a set of categorical and continuous variables. Routine
assumption is not required for the logistic regression model. Hence, logistic
regression is advantageous in comparison with the linear regression or log-linear
regression. It is fundamental to extract the coefficients of independent variables
from the observation of land use conversion, since urbanisation does not frequently
follow typical supposition, and its prominent factors are usually a combination of
continuous and categorical variables (Xie et al. 2005). The general form of logistic
regression is as follows:

y ¼ aþ b1x1 þ b2x2 þ � � � þ bmxm ð5:7Þ

y ¼ loge
P

1� P

� �

¼ log it ðpÞ ð5:8Þ

P ¼ ey

1þ ey
ð5:9Þ

Where x1, x2, …, xm are independent variables, y defines a linear combination
function of the independent variables representing a linear relationship. Moreover,
the b1, b2, …, bm parameters are the regression coefficients to be retrieved.
Function y is known aslog it (P) i.e. the logarithm (base-e) of the odds or likeli-
hood ratio that the dependent variable Z is 1. Probability value (P) strictly
increases while y value goes up. Regression coefficients b1 to bm imply the con-
tribution of each independent variable on the probability value. A positive value
implies that the independent variable helps to increase the probability of land
change and a negative value implies the reverse effect. The statistical method is a
multivariate estimation process which examines the relative significance and
strength of the factors. While employing logistic regression to simulate rural–
urban land transformation, it is crucial to consider the spatial heterogeneity of
spatial data. Spatial statistics such as spatial dependence and spatial sampling
also have to be taken into account to eliminate spatial autocorrelation (Hu and
Lo 2007). Otherwise, unreliable factor estimation or unproductive estimates
(i.e. wrong results) of the hypothesis test will be produced.

There are two basic approaches to assess spatial dependence: firstly, building a
more complex model incorporating an autoregressive structure and, secondly,

84 5 Implementation of Traditional Techniques



designing a spatial sampling plot to enlarge the distance interval between sampled
points. Spatial sampling creates a smaller sample size that loses certain information
and conflicts with the large sample of asymptotic normality of maximum likelihood
method, upon which logistic regression is based on. Nonetheless, it is a reasonable
approach to eliminate spatial auto-correlation, and a reasonable design of spatial
sampling scheme will make an ideal balance between the two sides (Xie et al. 2005).

The logistic regression model is employed to predict a categorical variable from
a set of predictor variables. A discriminated function analysis is generally
employed if all of the predictors are continuous and properly distributed; Logit
analysis is generally utilised if every predictor is categorical. In fact, logistic
regression is often preferred if the predictor variables are a set of categorical and
continuous variables. Besides, they should be properly distributed. The predicted
dependent variable in a Logistic Regression Model is a function of the probability
that a particular theme will be in one of the categories; for instance, the probability
of change upon a specific land use based on a set of scores on the predictor
variables such as proximity to interchange network, and so on (Huang et al. 2009).

LOGISTICREG module in IDRISI Andes performs binomial logistic regression,
in which the input dependent variable must be binary in nature and can have only two
possible values (0, 1). Such regression analysis is usually employed in the estimation
of a model that depicts the relationship between continuous independent variables to
a binary dependent variable. The basic assumption is that the probability of a
dependent variable takes the value of 1 (positive response). The logistic curve and its
value can be calculated with the following formula: (Mahiny and Turner 2003)

Pðy ¼ 1jXÞ ¼ exp
P

BXð Þ
1þ exp

P
BXð Þ ð5:10Þ

Where:
P is the probability of the dependent variable occurrence
X is the independent variables, X ¼ ðx0; x1; x2. . .xkÞ; x0 ¼ 1;
B is the estimated parameters, B ¼ ðb0; b1; b2. . .bkÞ

In order to linearize the above model, as well as remove the 0/1 boundaries for
the original dependent variable which is probability, the following transformation
is usually applied:

P
0

= In p= 1� pð Þð Þ ð5:11Þ

This transformation is referred to as the Logit or logistic transformation. Thus,
after the transformation P0 can theoretically assume any value between plus and
minus infinity (Hill and Lewicki 2007). By performing the Logit transformation on
both sides of the above Logit regression model, we obtain the standard linear
regression model:

In p= 1� pð Þð Þ ¼ b0 þ b1 � x1 þ b2 � x2 þ . . .þ bk � xk þ error term ð5:12Þ
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In fact the Logit transformation of binary data ensures that the dependent
variable will be continuous, and the new dependent variable (Logit transformation
of the probability) is boundless. Furthermore, it ensures that the probability surface
will be continuous within the range from 0 to 1. In general, systematic sampling
and random sampling are two approved sampling methods in logistic regression.
Systematic sampling reduces spatial dependence. On the other hand, random
sampling is capable of representing population, but does not efficiently reduce
spatial dependence, especially local spatial dependence (Huang et al. 2009).

5.6.2 Implementation of the Spatially Explicit Logistic
Regression Model

In this section of this chapter, it is intended to clarify the assumed independent
and dependent variables and the interactions between these variables. Also, a
description over model validation and outputs will be presented and simulated
maps of future years will be demonstrated. Accordingly, we start with the
identification of dependent and independent variables, and then the effective
factors upon the dependent variable will be depicted.

Fig. 5.12 Dependent variable Y; change to built-up area between 1996 and 2006 (no change:
Y = 0; change Y = 0
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5.6.2.1 Identification of the Dependent Variable

The dependent variable in this implementation is the quantity of change from
no-built-up area to built-up area presented as a binary raster lattice where value 1

Fig. 5.13 Dependent variable Y; change to built-up area between 1986 and 2006 (no change:
Y = 0; change Y = 1)

Table 5.3 ROC and adjusted odd ration values for 18 sets of variables

ROC Adjusted odd ratio

Variables set 1 0.8441 20.102
Variables set 2 0.7831 7.6964
Variables set 3 0.844 21.7224
Variables set 4 0.7766 5.2355
Variables set 5 0.6635 3.0513
Variables set 6 0.9223 26.2327
Variables set 7 0.9352 50.3255
Variables set 8 0.9218 26.0128
Variables set 9 0.7167 3.2804
Variables set 10 0.7187 3.4114
Variables set 11 0.8906 16.052
Variables set 12 0.8915 16.5333
Variables set 13 0.8945 15.942
Variables set 14 0.7531 4.7522
Variables set 15 0.8031 11.586
Variables set 16 0.8053 12.0991
Variables set 17 0.8039 11.4385
Variables set 18 0.7392 5.7809
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introduces change on the specific pixels and zero indicates no-change pixels.
Figures 5.11, 5.12, and 5.13 represent the structure of the dependent variable files.

A set of independent variables was imported to the Logistic Regression Model
in order to become self-calibrated, with the support of IDRISI Andes GIS software
(see Table 5.3). A defined mask upon all input data was employed at 30 m
resolution to create equal dimension raster files; however, it was an intensive
computation for the computer hardware.

5.6.2.2 Predictor Variables (Independent Variables)

In this section, the prior produced land use maps for the years 1986, 1996 and 2006
were employed to specify the change over built-up areas between 1986–1996,
1996–2006 and 1986–2006. Logistic regression modelling executes a data-driven
rather than a knowledge-based approach in picking the predictor variables
(Hu and Lo 2007). A set of predictor variables was chosen based on preliminary
investigations over the case study as well as expert knowledge. A review of
effective variables, which was employed in previous similar studies, was a helpful
guide. Statistical evaluation, retrieving ROC values and adjusted odd ratios for
each set of variables were investigated to pick the optimum set (see Table 5.2).
Thus, a calibration process needed to be utilised in order to assure the effectiveness
of the assumed variables. These variables and process of data compilation will be
explained in the next section.

5.6.2.3 Data Compilation

The social variables correspond to the four affordable elements shaping Tehran’s
urban patterns (population density, distance to building blocks, single building
features, farming lands, categorical demography). Other social variables data
were not accessible to be utilised in this approach. Population density is a social
variable which determines per capita population per area unit and is expressed as
persons per hectare. The econometric and biophysical variables correspond to the
eleven affordable elements shaping Tehran’s metropolitan patterns (distance to
CBD; distance to nearby cities; distance to road networks and interchange; open
land features; easting and northing coordinate; digital elevation model; park
features; distance to stream; and slope) (Hu and Lo 2007). A set of independent
variables (X1–X17) was imported to a logistic regression model, supported by
IDRISI Andes software. An input dataset was designed at 30 m resolution due to
compatibility with other available data. Although, a set of other input data, such
as distance to education and administration areas, and distance to factories had
been evaluated as input to the model, because of weak results, this input data
were rejected; hence, these seventeen datasets were imported into the model
(see Table 5.4).
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Spatial correlation may exist between each category of variables so that logistic
regression is able to drop the correlated variables according to the statistical cal-
ibration. This calibration basically checks for multi co-linearity. Model calibration
in this study was done in two steps, including initial calibration and refining,
respectively. All required data were converted to raster format at 30 m resolution.

5.6.3 Calibration of the Logistic Regression Model

The optimum set of variables was picked based on Table 5.2. Each set of variables
had different ROC and adjusted odd ratio, which verified the validity of the model,
and the approach was carried out numerous times. In order to select the optimum
set of variables, it had to reach the highest ROC value. In fact, ROC = 1 indicates
a perfect fit and ROC = 0.5 indicates a random fit. A higher adjusted odds ratio
is expected for a better fit and higher validity. Therefore, the optimum set of
variables is demonstrated in Fig. 5.14.

The logistic regression module was implemented 18 times for 18 sets of
variables in order to reach the highest possible ROC and adjusted odd ratio
values. The highest value of 0.9532 was obtained, which verifies the accuracy of
this model.

Table 5.4 Dependent and independent variables in the logistic regression approach

Variable Denotation Structure of variable

Dependent Y 0—No change to built-up Dichotomous
1—Change to built-up

Independent X1 1—Single building features Binary
0—Non single building features

X2 Proximity to nearby cities (m) Continuous
X3 Proximity to interchange (m) Continuous
X4 1—Farming land features Binary

0—Non farming land features
X5 1—Open land features Binary

0—Non open land features
X6 Proximity to building blocks (m) Continuous
X7 Easting coordinates (m) Continuous
X8 Northing coordinates (m) Continuous
X9 Proximity to CBD (m) Continuous
X10 Proximity to road network (m) Continuous
X11 Digital Elevation Model (m) Continuous
X12 Population density (person/ha) Continuous
X13 Park features Binary
X14 Proximity to stream (m) Continuous
X15 Slope (%) Continuous
X16 Categorical demography Categorical
X17 Proximity to residential districts Continuous
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Fig. 5.14 Raster layers of independent variables represented in binary and continuous values
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Furthermore, the optimum set of variables was incorporated in the model
refining phase in order to correct any spatial autocorrelation that might exist. Thus,
the selected combination had the minimum spatial autocorrelation. In Table 5.4, a
descriptive table of appropriate variables, as well as their structure, is shown.
The dependent variable (i.e. built-up change) and independent variables (X1–X17)
are separated by assigned units in the mentioned table.

The employed data and the input maps are shown in Fig. 5.14. These maps are
the ultimate variables which have been discussed previously.

The model produces an equation that shows the rate of effectiveness of each
particular variable. This equation is presented in the following Eq. 5.13.

Logit (Urban growth 86� 96Þ ¼ � 23:1033 (intercept)

þ 0:000165� Proximity to CBD

þ 0:597356� Categorical demography

� 0:00001� Proximity to nearby cities

� 0:000072� Northing coordinates

þ 0:000236� Population density

� 7:428991� Proximity to residential area

þ 1:367012� Proximity to single buildings

� 0:000061� Easting coordinates

þ 19:776172� Farming lands

� 0:003773� Proximity to building blocks

� 0:001391� DEM

� 0:000044� Proximity to interchange

þ 20:618511� Open lands

þ 18:393214� Proximity to parks

þ 0:000026� Proximityto roads

� 0:047149� Slope

� 0:000013� Proximity to streams

ð5:13Þ

According to Eq. 5.13, some variables which have positive values are more
favourable for development (e.g. proximity to the CBD, categorical demography,
population density, proximity to single buildings, farming lands, open lands,
proximity to parks, and proximity to roads). Where variables return negative
values the attraction for development falls significantly (e.g. proximity to nearby
cities, proximity to streams, northing coordinates, easting coordinates, proximity
to residential area, proximity to building blocks, elevation, slope, and proximity to
interchange). In other words, those pixels which are closer to the CBD area have
more probability of development, and those cells which are in steep slopes have
less probability of change. Importantly, the coefficients explain the intensity of
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influence in the occurrence of development, for example, proximity to parks is a
significant factor in such development.

The output product of the logistic regression model is a probability surface of
dependent variable occurrence, which is in this approach urban development (see
Figs. 5.15 and 5.16). The probability surface shows that each single cell will be
developed with a particular amount of probability. However, this approach is not
able to specify the amount and location of change, but can be integrated with other
techniques to quantify and allocate the quantity of change. Hence, this probability
map will be integrated with the Markov chain model to quantify the extent of the
changes. Thereafter, the obtained quantity of change will be allocated in the entire
map. The allocation process starts from the maximum value of probability working
downward. This process will be explained in Chap. 7.

5.6.4 Validation of the Logistic Regression Model

By means of the prepared probability surface, the quantity of change can be
specified through possible techniques, either the Markov chain model or by
population growth estimation. The Markov chain model has already been
explained in detail. The second method is to employ a footprint of inhabitants to
reach the quantity of change (see Sect. 4.10). In this approach, the amount of
change was determined based on the transition matrix of the Markov chain model
to quantify the changes. The obtained amount was input to the allocation phase. A
code was written in Python to subtract the existing built-up areas before beginning
the allocation of change from the highest probable cell to the lowest probable cell.

Hence, after executing the designed logistic regression approach, a predicted
transition probability surface map, and a residual map indicating the difference

Fig. 5.15 Transition surface maps of study area for 1996
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between the predicted and the observed probability, were achieved. Therefore, a
transition surface map was produced for 2006 onward. The mentioned prediction
surface maps are shown in Figs. 5.15 and 5.16, which can be used for change
specification for upcoming periods (2016, 2026). This task was carried out and is
demonstrated in Chap. 7.

5.6.5 Land Change Prediction

After the process of model validation was undertaken and the qualification of this
model was ensured, land use maps were predicted for 2016 and 2026. Logistic
regression requires updated data for the specific times to establish more accurate
prediction. In other words, the actual road network map for 2016 is required for the
creation of the probability surface at this juncture in time. Therefore, a multi
temporal data set of the study area was gathered.

5.7 Summary

Several traditional techniques were demonstrated within this chapter (e.g. CA,
Markov chain model, CA-Markov model, logistic regression model). Each model
was firstly evaluated and validated and then, once assured of its performance, a
land change map was predicted for two future time steps (i.e. 2016, 2026). Each
model had some advantages and disadvantages which were investigated, and will
be discussed in Chap. 7. The intention was to gather these results in order to
integrate them into the assumed ABM. In the next chapter, we start designing the
ABM model based on results emanating from traditional methodologies as well as
ABM characteristics.

Fig. 5.16 Transition surface maps of study area for 2006
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Chapter 6
Designing and Implementing Multi Agent
Geosimulation

6.1 Introduction

The aim of this section is to bring an overview of the designed steps of ABM
implementation, followed by more in-depth detail. This scenario begins with the
classification of the agents according to their significant influences. The strengths
of traditional methods will be imported into the presumed ABM model to increase
the accuracy of the results, the outcomes of which will be depicted in the next
chapter in order to compare the separate models. It was our intention to design
an ABM within the GIS environments by means of GIS functionalities and
coding environments, but in fact, the ArcGIS software and Python were used to
implement this model.

6.2 Abstract Model of the ABM

In this section, an abstract model of the ABM scenario will be depicted in detail.
Based on domestic land policies in Tehran, it was assumed that three agents are in
control of the issues of land change in the study area. These agents are resident
agents, developer agents, and government agents. According to similar studies
carried out in Chinese cities, these agents interact with each other to develop land
for built-up purposes. For instance, the resident agent has some preferences
for choosing a particular place to live, which can hinge on a couple of factors
(e.g. proximity to some infrastructures and resources as well as natural environ-
ment). Elsewhere, there are some developers in the city perimeter who are more
interested in financial profit from land development. Hence, these developers
look for affordable places where they can earn more money after their initial
investment. In order to have a successful investment, they supply some of the
requirements for settling new inhabitants, in areas which are more popular for

J. Jokar Arsanjani, Dynamic Land-Use/Cover Change Simulation: Geosimulation
and Multi Agent-Based Modelling, Springer Theses,
DOI: 10.1007/978-3-642-23705-8_6, � Springer-Verlag Berlin Heidelberg 2012
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first-time affordable home seekers to rent or buy property. Hence, these two agents
satisfy, to a degree, a mutual interest. Later in this chapter, this interaction will be
covered in more detail.

Also, the aim of this exercise was to establish the optimum weights associated
to each particular variable. Whilst the developer agents decide to utilise land for
property and profit motives, official approval is required for the project in a given
area. If the target location has no constraints for development, then the application
will be approved automatically, otherwise the government agent will refuse the
application. Consequently, in the development process, these three agents are
together involved in whether to allow this change to happen or not. These agents
and their distribution will be discussed further in this chapter.

6.3 Agents Characteristics and Behaviour

Three major types of agents were considered to take all effective variables into
account in this approach. In this model, each agent represents behaviours expected
of that particular agent. Each type of agent has unique features.
For instance, the government agent has the ability to define the proper sites for
development and avoid or reject unsuitable sites for development and, also, the
power to protect specific areas (e.g. national parks). The location of the developer
agent was another concern for modelling, but the primary assumption was to take
into account that each cell at the raster space of the study area is maintaining a set
of agents; i.e. each cell contains a resident, developer and government agent.

Therefore, each agent can act independently and simultaneously and their
interactions can cause the final decision of the mentioned agents. Resident agents
are mobile; however, in this study area, the developer agent is leading the
resident agents where to settle. In other words, whereas the developer agent
affords and constructs new housings and neighbourhoods, it is the resident agent
who selects their favourite locations, based on affordability and other criteria
(e.g. accessibility to required facilities). This issue will be discussed in the
following sections.

It is vital to define the behaviours of the predefined agents appropriately to gain
better results. It would be more robust to label agents’ decision behaviours
geospatially explicit, where each major type of agent could be categorised into
subtypes according to the agents’ properties and characteristics. For instance,
resident agents can be classified into multiple groups based on incomes, household
size and other proper variables. Each collection of residents has unique preferences
of choosing proper sites for settlement. By classification and simplification of this
task, a vast decrease in computation time will be reached. This can help to avoid
any autocorrelation. The defined agents will influence each other in making
decisions. Resident agents decide to live in the suitable sites, where they can gain
their preferences such as accessibility to the road networks, shopping malls, parks,
leisure facilities, public transport, etc.
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Therefore, property developers have to alter their investment policies and plans
according to the residents’ purchasing behaviour. Their simple objective is to earn
profit as much as possible. However, the developers must get the appropriate
approval from the government before any place becomes developed. Government
is the final decision maker who is able to approve the accuracy of site development
by considering the environmental circumstances and internal policies. In fact, if a
lot of buyers exist for selecting the same locations, housing prices will rise up and
developer agents will construct new and intensive housings, therefore the vicinity
of that neighbourhood will be developed. Thus, if the purchase or rent prices
exceeds their affordable threshold, they have to look for other places for residency.

6.4 Spatial Distribution of the Agents

As mentioned previously, five land categories exist in the land use maps:
agricultural lands, built-up areas, open lands, public parks and water bodies.
Each single cell has the potential to be developed, i.e. any pixel of those land
classes can be converted to built-up areas provided the local government issues
permission for development. Hence, we did not exclude any area in the manipu-
lation process. All agents are distributed equally in the entire extent inside the
30 m pixels. This means that in each pixel of the study area, those three agents
coexist. Thus, these agents must collaborate in the model when any change takes
place. This means that if the resident agent and developer agent inside a pixel meet
their common interests, then the government agent acts in a binary form.

6.5 Classification of Agents

In this section of the chapter, it is intended to classify the effective agents in land
change matter in the study area. This classification is made based on charac-
teristics of the change drivers; for instance autonomy, their major effects, and the
importance of their decisions. Therefore, the following agents were created in
order to define their behaviours and interactions. Three main agents were
assumed for the multi-agents simulation: government agents, developer agents,
and resident agents.

6.5.1 Resident Agents

In the study area, two kinds of residents exist: those who are moving into the
metropolitan area from other cities to live and, secondly, current residents
who relocate to the better or inferior places due to their financial situation.
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The behaviours of both residents can influence the type of change and lead the
developer agents. Furthermore, these behaviours can justify the investment plans
for developer agents. These resident agents and their interactions are the main keys
for the formation of urban expansion.

Several variables already were picked for logistic regression implementation.
The effectiveness of these variables was satisfied by the model statistics in
Sect. 5.6. These variables play a key role for resident agents to choose an area for
settlement, which are as listed below;

• Favourite elevation
• Favourite slope
• Accessibility to medical services
• Accessibility to metro stations
• Distance from disposal areas
• Accessibility to orchard areas
• Accessibility to sport centres
• Accessibility to road networks (paved roads, freeways, highways, roads)
• Accessibility to recreation points
• Accessibility to commercial centres
• Distance to railways

In order to consider all possible behaviours of resident agents, multiple factors
were taken into account to maximise the efficiency of the model. A utility function
was designed for resident agents to control all possible variables based on their
effectiveness, i.e. applying each variable based on its impact which will be dis-
cussed in the following notes (see Fig. 6.1). The main purpose is to maximise the
accuracy of the change allocation model. Therefore, a utility function of location
(ij) for resident agent k can be demonstrated as in Eq. 6.1.

Fðk; ijÞ ¼ WeducationBeducation þWelevationBelevation þWslopeBslope

þWmedicalBmedical þWmetroBmetro þWdisposalBdisposal

þWorchardBorchard þWsportBsport þWroadBroad

þWrecreationBrecreation þWcommercialBcommercial

þWrailwayBrailway þ etij

ð6:1Þ

Where Weducation þWelevation þWslope þWmedical þWmetro þWdisposal þWorchardþ
Wsport þWroad þWrecreation þWcommercial þWrailway ¼ 1 and define the weight of
each particular factor and the summation of them is 1. The other parameters denoted
by B (e.g.Brailway) are the abstracted form of some factors which are addressed in
Table 6.1.

The mentioned factors in Table 6.1 were input into the designed function in
order to retrieve their weights. These weights will be retrieved through an AHP
method execution. These variables will be calculated for resident k and location
(ij). Here, etij is a stochastic term. A descriptive table of achieved weights is shown
in Table 6.2 (see Sect. 6.5.1.2).
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Fig. 6.1 Schematic view of the designed geospatial model for the resident agents
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6.5.1.1 Fuzzification of the Factors

Each noted factor has certain thresholds for their favourite and undesired domains.
For instance, areas with elevation less than 1,600 m are the favourable locations
for residency, whereas areas higher than 2,000 m are not affordable for housing.
These areas have some difficulties for settlement due to some meteorological
situations. The areas with elevation in between have a degree of vagueness.
A fuzzification process could help us to define fuzzy sets. Thus, applying fuzzy
membership functions seems to be an innovative tool, which can help to reach
optimum outcomes. Certain thresholds were applied for each particular factor.
A fuzzy membership function for each single variable was applied to classify those
variables’ effectiveness. The fuzzification process allows us to create categorical
variables. This would be helpful in defining rules to allocate specified changes.

The utility function basically affects the location behaviours of resident agents.
In Eq. 6.1, if those variables were manipulated evenly, all the weights could be
assigned with equal values. In other words, each variable in this equation takes an

Table 6.1 Effective factors
in controlling resident agent
preferences for settlement

Factors Denotation

Beducation Accessibility to education centres
Belevation Favourite elevation
Bslope Favourite slope
Bmedical Accessibility to medical services
Bmetro Accessibility to metro stations
Bdisposal Distance from disposal areas
Borchard Accessibility to orchard areas
Bsport Accessibility to sport centres
Broad Accessibility to road networks

(paved, freeways, highways, roads)
Brecreation Accessibility to recreation points
Bcommercial Accessibility to commercial centres
Brailway Distance to railways

Table 6.2 Weights of the
effective factors upon the
resident agent

Variable Weight

Weducation 0.0242
Welevation 0.0125
Wslope 0.1758
Wmedical 0.0435
Wmetro 0.0664
Wdisposal 0.0237
Worchard 0.0573
Wsport 0.0794
Wroads 0.3107
Wrecreation 0.0871
Wcommercial 0.019
Wrailway 0.1004
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approximate value at 0.0833. Because the resident agents have different prefer-
ences in choosing favourite locations for settlement, this can be considered by
implementing appropriate weights in the utility function. Therefore, a higher value
of the weight describes that the variable must be reflected more importantly than
others. In this research, these weights were manipulated by the analytical hierarchy
process (AHP) method (see Table 6.2). In the next part, it will be depicted how
this technique was employed.

6.5.1.2 Implementation of the AHP Technique

The analytic hierarchy process is a well-known methodology for specifying
appropriate weights by cross-comparing all factors against each other with
reproducible preference factors. This basis of this model works principally on
expert knowledge and preferences values. The mentioned variables in Table 6.1
were crossed and compared in paired units. Preferred weights were input according
to the expert knowledge and similar studies, and the gained weights for the
variables were imported to Table 6.2. This table reveals the resultant weights after
satisfying the consistency ratio. Verification of the proper consistency ratio was
obligatory, to ensure this implementation. In fact, it was needed to iterate this
technique until the optimal consistency ratio was obtained. This value should not
exceed 0.1, i.e. lower values verify the accuracy of weighting.

By means of implementing the weighting system as well as applying the
designed formula (6.1) in the ArcGIS Model Builder (Fig. 6.1), a categorical
probability surface was produced. This surface identifies the preferable locations
for settlement by the resident agents. Pixels with higher values indicate more
probable sites for settlement of the resident agents based on their preferences.
Figure 6.2 is the categorical probability surface that has been produced by resident
agents.

6.5.2 Developer Agents

In the study area (i.e. Tehran metropolitan area), developers are the key component
of the agent-based model and play a significant role in influencing residential
development. The developer agents consider the preferences of residents in home
buying as well as the governmental policies in land resources supervision. In other
words, the developer agents can be affected by resident agents’ preferences and
government agents’ restrictions, which can be interpreted as the interaction
between these agents. This interaction influences the developer agents, who are
interested in maximising profit, as to where to invest their funds. This means that
resident agents prefer to select their settlement properties from the developers’
property portfolio. Equally, the developer constructs buildings where they assume
the resident agents prefer to live. The primary factor is to achieve a certain amount
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of profit above market expectations. This criterion was used to conclude
the decision behaviours of developer agents. Equation 6.2 was used in order to
project potential development. Li and Liu (2007) developed this formula in their
investigation in a Chinese case study, which estimates the investment profit of
developer agents.

Dt
profit ¼ Ht

price � Lt
price � Dt

cost ð6:2Þ

Where Dt
profit represents the investment profit, Ht

price is housing price, Lt
price is

land price and Dt
cost is development cost. These prices were calculated in the

domestic currency unit (i.e. Rial). Accordingly, the probability of development by
the developer agents can thus be represented in the following equation (Li and Liu
2007):

Pt
developerðk; ijÞ ¼

Dt
profit � Dtprofit

Dmprofit � Dtprofit

ð6:3Þ

Where Pt
developerðk; ijÞ represents the development probability related to the

developer agents, Dt
profit is a threshold value and Dmprofit is the maximum value of

the investment profit. Developer agents will invest in the site if the estimation is in
favour of the development, according to Eq. 6.2. Therefore, the above mentioned

Fig. 6.2 Probability surface for settlement produced by the resident agents
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formulas were calculated and input into the model. The land price dataset was
produced by gathering data through field work and, additionally, this gathered data
was integrated with other related reports from the national statistic centre.

Given these considerations, the developer agents would prefer to develop
constructions according to Fig. 6.3. Changes will be applied after approving the
application through the government agents; thus, government agents play an
important role in this process. More recently some governmental restrictions have
been approved to stop new constructions in the vicinity of Tehran. Governmental
policies can also act in order to favour both the developer and resident agents’
decisions, or act against their decision. In fact, whereas the prices of farming lands
and open lands are extremely lower than regular land prices, these agents,
nevertheless, prefer to develop land in those cheaper regions, which is more
affordable for both agents (resident and developer). However, the government
agent is ultimately empowered to reject any building applications where the
construction might destroy open lands and green spaces. That is why it was
necessary to define a specific agent, so-called government agent.

However, other governmental policies favour land change; for instance, Karaj
(the biggest city in the metropolitan area after Tehran) was recently promoted
from a city to a province. Whilst this action was taken to shift a portion of the
population to this province, the potential exists for Karaj to become another
mega-city like Tehran.

Fig. 6.3 Probability surface of potential development produced by the developer agents
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6.5.3 Government Agents

Government agents have the right and authority to allow or prohibit construction in
any area which conflicts with, or conforms to, their vision of proper development.
Government agents also have the power to approve or deny any application on a
number of criteria, and can reserve land in public areas for its own use. Moreover,
the government can prohibit any changes from one land cover type to another; for
instance, land change from farming land to built-up areas is not allowed without
governmental permission, which can carry heavy financial penalties.

This consideration does not only concern environmental factors, but also the
interaction between the resident and developer agents. Government agents con-
sider the suitability of any residency and construction, based on the current land
use situation, surrounding environment, transportation supplies, affordable general
facilities, and educational benefits. Existing land use is a key factor in determining
land use conversion. By definition, different land uses have different purposes and
possibilities for land conversion. For instance, no land change is permitted in steep
areas, or within permitted parameters of waterways.

The possibility for land development in water bodies or mountainous areas is
extremely low. Besides, the probability also depends on the pre-planned devel-
opment plans. Thus, an application will only be approved providing no conflict
exist with present planned land usage. The behaviours of government agents can
also be affected by any unexpected behaviours of resident agents and developer
agents (e.g. high migration rate, unexpected population growth, new interchange
expansion, inordinate development applications, due to new policy approval).
On the other hand, government agents must examine the attitude of residents in
terms of affordable places to live, based on their preferences. Although, the pre-
planned map could be entered as the input file, unfortunately accessibility to this
type of data is limited. Hence, it was necessary to achieve it by expert inferences.
According to the above explanation, the following function can be provided.

GAB ¼ F (RSRZ; RNB; HB; ASB; MFRZ; PFRZ; PB; NSS) ð6:4Þ

Significantly, government agents’ behaviour is a function restricted by the com-
ponents in Table 6.3. The terms mentioned (see Table 6.3) describe the denotations

Table 6.3 Denotation of the
terms in government agents’
formulation

Term Denotation

GAB Government agents’ behaviour function
RSRZ River streams risk zone
RNB Roads network buffer
HB Highways buffer
ASB Airports risk buffer
MFRZ Military facilities risk zone
PFRZ Power facilities risk zone
PB Parks buffer
NSS Non suitable slope
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of the above function components, where government agents are supposed to apply
governmental restrictions for development. Also, there are some risk zones that are
identified to avoid any development due to probable natural risks. Therefore, the
prohibited areas by these agents were discovered by expert knowledge.

This agent was geospatially modelled by means of ArcGIS model builder.
These variables have to be taken into consideration as binary type. The schematic
representation of the designed model is shown in Fig. 6.4.

• River Streams Risk Zone

This variable allows the government agent to restrict new construction in the
vicinity of rivers and streams. In order to take this component into account, a
certain buffer distance was implemented to isolate the risk zone from other
unlimited areas. Therefore, any construction application which is located in this
risk zone will be refused by the government agents. Other places outside this area
will be considered safe for construction.

• Roads Network Buffer

It is not allowed to construct any building at a certain buffer distance which
varies depending on the type of road network. A certain buffer distance perma-
nently exists to forbid any construction in the surrounding area of any road net-
works. Thus, the government agent has the authority to prevent any building
construction within this particular distance. For each type of roads, different
thresholds need to be taken into account. For example, no development is allowed

Fig. 6.4 Schematic view of the designed geospatial model for the government agent
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to take place within 30 m of roads. This assumption was executed as another
component of the mentioned model.

• Highways Buffer

Government agents do not permit any construction aside a certain distance to
the highways, therefore, this buffer distance was considered in the designed model.
Some other land use change models do not take account of this tiny variable and
allocate these sites for development, which can decrease the accuracy of the
results. This is one of the advantages of the ABM, which takes into consideration
the smallest components and increases the accuracy of the modelling process.
During the decision-making process by government agents, no land change will be
permitted in the study area.

• Airports Risk Buffer

Government agents do not allow any non-affiliated construction in the vicinity
of airports, which has to take place at a specific distance away from air terminals.
The study area has some public and non-public airports, and this component was
imported into the designed model.

• Military Facilities Risk Zone

The area of Tehran includes several military garrisons and organisations that
have to be set apart from residential construction. Settlement in the proximity of
these military garrisons is not safe for residents and the government agent cannot
allow any construction within these perimeters. Therefore, the developer agents
have to explore other suitable areas for development.

• Power Facilities Risk Zone

Power facilities, such as high voltage transmission lines and other power
instruments, are considered public risk zones and are off limits for residency.
Because settlement in the proximity of these facilities is dangerous, these areas
were excluded from non-risk places in the model.

• Parks Buffer

The government agent cannot allow the developer agent to construct new
housing near parkland. Because parks provide clean air for local residents and
allow for leisure, any construction near parks is forbidden. The government agent
will, therefore, consider a buffer distance from this protected area. This component
of the government agent was also carried out in the designed model.

• Non Suitable Slope

Tehran is surrounded by high and steep mountains in the northern and eastern
part of the city. Therefore, the topography of the study area causes serious concern
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for development and has to be considered for this simulation. Government agents
will not allow construction in steep areas, and because low steep locations can be
used for mixed uses and farming, a high threshold value was implemented in the
model.

6.5.4 The Agent Combination Process

Three agents were provided in the study model, namely developer agents, resident
agents and government agents; also the potential behaviours of those agents were
imported into the model.

Each agent type was modelled separately to consider possible behaviours and
actions. For instance, possible variables which are capable of influencing the
resident agents, and thereafter a potential probability surface for this agent type
were produced. According to the previous definition of agents, agents have internal
interaction between themselves as well as external interaction between other
existing agents.

Thus, in this research the interaction between agents had to be considered in
the agent combination process. This would allow us to reach the appropriate results.
The possible interaction between agents was taken into account, besides which the
change demand factor was also another variable which controls the final outputs.
In other words, the agent combination will result in a potential map of change that has
to be coordinated with the change demand. Change demand was already calculated
by two different techniques which were discussed previously (see Sect. 4.10).

In fact, two different change demand estimation methods were applied:
The Markov model and statistical extrapolation. Therefore, we could estimate the
quantity of impending changes according to these two different scenarios. These
two quantification methods were applied to obtain predicted land use maps of 2016

Fig. 6.5 Schematic view of the designed model for the agent combination process
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and 2026. The potential cells for change were chosen and converted according to
the change demand through a cellular automata function. The CA code begins
allocation of changes from the nearest neighbours in the vicinity of the urban area.
The model does not stop running until it reaches a predefined amount of change,
and then the final change map was produced. The schematic view of the designed
model is represented in Fig. 6.5. The resulted probability map and simulated maps
of 2016 and 2026 will be presented in chapter seven.

6.6 Summary

The methodology for implementing the presumed ABM has been explained in this
chapter. The assumed agents (i.e. resident agents, developer agents, government
agents) were created and their preferences and behaviours projected. The spatial
distribution of those agents was explained, and a weighting system was applied in
the model to differentiate between the effective variables in resident agents. Finally,
a probability surface which demonstrates the potential cells for development was
produced. This probability surface enables us to allocate future changes based on
appropriate scenarios for change demand determination. The possible scenarios to
estimate the quantity of change has already been discussed (i.e. statistical extrap-
olation, Markov chain prediction). Two scenarios for future development were
employed and two different simulated maps were produced. These maps and
scenarios will be depicted in the next chapter.

Reference
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Chapter 7
Analysis of Results

7.1 Introduction

In this chapter, it is intended to present the obtained results arising from different
approaches, from which these results and outcomes will be analysed and
discussed. The discussion will start by analysing all achieved results beginning
with the spatio-temporal analysis of change, and thereafter, each particular model
with the assigned methodology will be depicted. The traditional and recent
methodologies in land use change studies will be challenged.

7.2 Data Gathering and Management

It was crucial to check the accuracy and scale of the employed data in this research
in order to assure whether such data were valid or not. As it was already mentioned
in Chaps. 3 and 4, the used data were categorised into two main categories:

• Gathered data through national geodatabase and domestic organisations.
• Retrieved data through satellite imagery and remote sensing approaches

(e.g. land use maps extraction and correction) (see Chap. 4)

The accuracy of the national geodatabase was already approved by national
organisations, and the data were produced at scales 1:2,000, 1:25,000, and 1:50,000.
Moreover, the temporal socio-economic data such as land price, demography data
were produced by the Iranian Statistic Centre. Additionally, Landsat imagery was
used to correct the prepared land use maps of 1986, 1996, and 2006. Consequently,
overall accuracy of 0.91, 0.88, and 0.90 were obtained for 1986, 1996 and 2006 maps,
respectively. The Kappa Index adjusts the fraction of appropriately categorised cells
by subtracting the estimated contribution of chance agreement. As a result, the
obtained values of the Kappa Index (91, 88, 90%, respectively) are significantly

J. Jokar Arsanjani, Dynamic Land-Use/Cover Change Simulation: Geosimulation
and Multi Agent-Based Modelling, Springer Theses,
DOI: 10.1007/978-3-642-23705-8_7, � Springer-Verlag Berlin Heidelberg 2012
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better than random classification. Thus, the higher values return better and more
accurate results. Hence, the accuracy of extracted land use maps of 1986, 1996 and
2006 were accepted, and given this assurance these maps could be employed in the
modelling process. All gathered data were stored in a local geodatabase for further
tasks and analysis.

7.3 Spatio-Temporal Change Mapping

Land use maps of 1986, 1996 and 2006 were arranged into five main categories as
previously mentioned [i.e. agricultural fields, built-up area, open land, public parks
and water bodies (see Sect. 4.4)]. The basic structure of the metropolitan area of
Tehran shows a centric pattern, surrounded by open lands in north and east, and
agriculture fields in the southern and western parts of the area. Hence, if any
change is going to take place it has to occur in open lands which are preserved
generally by the government, whereas agricultural fields are preserved by the
inhabitants and farmers.

Landowners prefer to convert their farming lands into built-up areas, or their low
height buildings to higher elevated buildings in order to own more apartments. In this
way it is possible for them to benefit financially. Temporal mapping and change trend
analysis prove this fact, although it must be restated that governmental authority
constrains construction and carries financial penalties when laws are breached.

According to Table 4.2, an obvious trend of expanding the built-up areas on
agricultural lands and open lands has taken place. These changes reveal a trend in
favour of increased built-up area expansion, from 24 to 28% between 1986 and
1996 to 32% between 1996 and 2006. This can be interpreted as an 8% increase
within 20 years. Conversely we see a reduction in the farming areas from 24 to
22% between 1986 and 1996 and then to 21% between 1996 and 2006. Altogether
this means that a 3% change has taken place in the total area within 20 years.
Moreover, a decrease over the open lands can be observed from 50 to 47%
between 1986 and 1996 and to 44% between 1996 and 2006.

This obvious and rapid urban growth can be simply defined as urban sprawl.
This is manifested amongst residents and housing developers in the increased
availability of very affordable high-rise properties. Therefore, urban growth is
being channelled in two main directions, through vertical and horizontal expan-
sion. Whilst vertical growth is not the concern of this research, it can be interpreted
as a high rate of population growth.

7.4 Analysis of Socio-Demographic Changes

Moving away from the causes of vast migration to the Tehran metropolis that was
described in the previous chapters, it is intended to analyse the trend of changes
(from a socio-demographic point of view) which have occurred within this 20-year
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period. The socio-demographic changes between 1986 and 2006 can be a good lead
to track forward change. As mentioned in the previous chapter (see Table 4.2),
there are some significant factors to consider:

• The population of Tehran has been increasing rapidly since 1966, with the
likelihood of it continuing to grow.

• The population share of Tehran metropolis, within Tehran province as a whole,
has been decreasing noticeably, which can be interpreted that the majority of
inhabitants prefer to settle in suburban areas.

• The growth rate of nearby cities, within this period, is even higher than Tehran.
• All these factors can alter irrevocably the complexity of the metropolis, thus

causing numerous complications and difficulties for urban managers and
planners.

7.5 Findings Through the Traditional LUCC Modelling
Approaches

Four main well-known methodologies over land use/cover change have been
carried out in this research to make a better comparison between existing
approaches. Having results from different methodologies affords more information
to compare these methodologies and find out their advantages, disadvantages,
weaknesses and strengths. As mentioned previously, the traditional approaches
such as CA, Markov chain, CA Markov, logistic regression and ABM were
executed. In this section, the obtained results will be brought to discussion. Thus,
we will start with the cellular automata approach.

7.5.1 Cellular Automata Scenario Results

Following Fig. 5.3, each step was done according to the flowchart, predefined
values and model validation process into two main steps (e.g. training phase and
simulation phase). The training phase was carried out to compare its outcomes
under different transition rules. The training phase was a useful way to verify the
model validation process. Since different transition rules and kernel sizes caused
different outcomes, it was vital to check the obtained results with reality and apply
the optimum characteristics to the final model. Such a tested model can help to
predict forthcoming changes more accurately, and a cross comparison of kernel
sizes and transition rules (e.g. either Von Neumann or Moore) can be considered as
a part of transition rules. Among 3 9 3, 5 9 5 and 7 9 7 kernel sizes, kernel size
3 9 3 acted more accurately than others, due to its small size and repeating more
iteration. Transition rules definition was another important measurement of the
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model and the results show that the Von Neumann model had closer results to the
reality. In this regular CA model, no other environmental and economic variables
were input and this approach was designed only by defining a variety of transition
rules. Figure 7.1 presents the predicted map of the built-up area for a 10-year
period, which is 2016.

7.5.2 Validation of the CA Approach

Certainty of a model is basically needed when the accuracy of outputs is required.
Certainty of the implemented cellular automata model is typically required when it
was employed to simulate land change. It was aimed to implement this model
under different circumstances in terms of transition rules and the number of iter-
ations, in order to find out which situation could return more accurate outcomes.

Fig. 7.1 Simulated built-up map by the optimal CA approach
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The training phase, which is an evaluation process of achieved outcomes, is an
assessment procedure for determining the accuracy of the results and the model.

Different indices could be used to reach this aim. ROC value was an important
index for this part of the research. The other possible way, according to Li and Liu
(2007), is to compare the simulation patterns between this approach and other
produced results, which will be acted upon at the end of this project. ROC has this
capability to compare maps in two main ways: geospatial and quantity measure-
ment. Automatic calibration techniques have been used to help develop the
exploration for appropriate parameter values of cellular automata model. First, the
simulated maps of 1996, 2006 at different iterations were picked for comparison
with the actual maps of 1996 and 2006. The ROC method acts on different
threshold quantities in a cell-by-cell overlay (see Chap. 2).

The produced ROC values were compared and the maximum value that
satisfied the model was chosen for each period. Then, the optimum settings
(i.e. iteration number and transition rules) were implemented based on the
predesigned transition rules of the 2006 map to reach a simulated map of 2016.
In fact, a visual interpretation was helpful to make a comparison between the
outcomes. Nevertheless, these procedures encounter difficulties in resolving the
calibration problems of CA. The designed CA model was simplistic, which did
not take into account any bio-physical and socio-economic parameters; however,
it could be integrated with those parameters to yield more accurate results
(e.g. SLUETH; CLUEs models). In the next section, the results of the Markov
chain model will be presented.

7.5.3 Outcomes of the Markov Chain Model

As mentioned in Chap. 5, the Markov chain theory is a stochastic process theory
which describes how likely one state is to change to another state. In fact this
module is not spatially explicit; therefore, it is not able to produce geospatial
outcomes. Nonetheless, it can provide and calculate the amount of future changes
based on the previous changes. As the process of change in the study area has
emphasis on built-up areas, this module can predict the expected quantity of
change, as well as the probability of the conversion of each particular cell to other
existing categories. Therefore, the results arising from this model could be used for
change allocation process.

The Markov chain module inputs a pair of land use maps and outputs a tran-
sition probability matrix, a transition areas matrix, as well as a set of conditional
probability images (Oluseyi 2006). Some studies have integrated this module with
other geospatial functions to create geospatial results (e.g. Mousivand et al. 2007).
These matrices were calculated for the years 2016 and 2026. Since Markov chain
has no spatially explicit behaviour to create spatial outputs, only transition area
matrices were stored to use as a quantity estimator for the allocation process.
Table 7.1 demonstrates the predicted quantity of change for 2016 and 2026.

7.5 Findings through the Traditional LUCC Modelling Approaches 113

http://dx.doi.org/10.1007/978-3-642-23705-8_2
http://dx.doi.org/10.1007/978-3-642-23705-8_2
http://dx.doi.org/10.1007/978-3-642-23705-8_5
http://dx.doi.org/10.1007/978-3-642-23705-8_5


7.5.4 The Markov Chain Model Validation

The Markov model is not a spatially explicit model to spatialize the location of
changes; however, this model is able to quantify the amount of change within a
specific period. Although it seems this model cannot afford significant results for
spatial analysis, the outcome of this model can be utilised to allocate the changes
by means of the geospatial-based functions (Mousivand et al. 2007). For instance,
local analysis of change probability and change potential can help to localise the
predicted amount. In this research, the outcome of this implementation will be
combined with other approaches to improve the accuracy of other geospatial
approaches.

7.5.5 Outcomes of Cellular Automata Markov

In the Cellular automata-Markov model, the Markov chain process manages
temporal dynamics among the land use/cover categories based on transition
probabilities, while the spatial dynamics are controlled by local rules deter-
mined either by the cellular automata spatial filter or transition potential maps
(Maguire et al. 2005). This approach was carried out according to the designed
flowchart (see Fig. 5.8), thereafter, land use maps of 2016 and 2026 were
simulated. This model benefits from a combination of the Markov chain model
and the cellular automata model to spatialize the estimated amount of change
from the Markov chain model. Moreover, this module is able to input multi-
class maps, which is useful to simulate conversion between the other existing
categories (i.e. agricultural lands to public parks, open lands to agricultural
lands, etc.). Thus, the final map can be a categorical map of the existing land
use classes.

Table 7.1 Quantification of changes for 2016 and 2026 produced by the Markov chain model in
terms of hectare

Agri lands Built-up Open lands Public parks Water body

2016 Agri lands 37,424 1,605 871 69 9
Built-up 214 58,326 324 206 2
Open lands 1,175 4,702 75,355 448 26
Public parks 10 47 35 5,290 7
Water body 4 2 0 1 158

2026 Agri lands 33,857 3,744 1,972 385 21
Built-up 17 58,398 347 305 7
Open lands 1,537 9,239 70,096 806 28
Public parks 0 234 107 5,046 3
Water body 2 0 0 0 162
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Consequently, validation of the simulated map and the actual land use map
of 2006 was employed to evaluate the model. Therefore, for validation of
cellular automata Markov results, in terms of location and quantity, a diagram
of correlation between different simulated land use maps of 2006 and number of
iterations was drawn. Thus, the Kappa indices of location and quantity were
calculated separately and, subsequently, the most appropriate iteration number at
300 iterations was determined. A Kappa standard index at 0.91 was picked as the
optimum point, which shows a close correlation between the simulated map and
the actual map. As a result, the predefined rules were considered for running the
module for prediction procedure (see Fig. 5.10).

Whereas the training phase of this approach was tested successfully, the
calibrated model was utilised to simulate land use maps for the next 10 and
20 years (i.e. 2016 and 2026). This was done by means of the produced transition
probabilities matrices and Markovian conditional probability images. As a result,
the simulated land use maps of 2016 and 2026 were produced, which are shown in
Figs. 7.2 and 7.3.

Fig. 7.2 Simulated land use map of 2016 with the calibrated CA-Markov model
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According to the simulated land use maps, the situation and percentage of each
type of land use map is illustrated in Fig. 7.4, which demonstrates a 3% increase of
built-up area (i.e. 5,567 ha) and another 3% decrease in open land area. Moreover,
for 2026 it has been predicted there will be a 3% increase of built-up area and a 2%
decrease in open land area.

Fig. 7.3 Simulated land use map of 2026 with the calibrated CA-Markov model
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Fig. 7.4 Predicted percentage of each land category for 2016 and 2026
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7.5.6 Validation of the Cellular Automata Markov Model

The CA Markov model utilised the neighbourhood rule to simulate the conversion
of a land use/cover class near the existing similar land use/cover class (Pontius and
Malanson 2005). For validation of this model, a training phase was accomplished to
compare the output maps with the actual land use map of 2006. The highest value of
overall accuracy at 91% was reached (see Fig. 5.10). Analysis of the simulated land
use map of 2006 reveals that the cellular automata Markov model, generally, is
an excellent estimator in terms of change quantification and continuous-space
modelling. However, the visual interoperation reveals that some diffused-speckle
pixels can be observed. In reality, these speckle noises do not exist. Furthermore,
this model needs to run several times to provide the most accurate results.

7.5.7 Outcomes of the Logistic Regression Model

A set of independent variables was adjusted after statistical assessment of all
environmental and economic variables. As described previously, the change
during a 10-year period was the dependent variable. Several sets of independent
variables were imported to the logistic regression model in order to calibrate this
model by itself, with the support of IDRISI Andes GIS software. A mask over all
input data was employed to create equal dimension raster files. Then the prior
produced land use maps of 1986, 1996 and 2006 were used to specify the change
maps within the 1986–1996, 1996–2006 and 1986–2006 cycles. The statistical
evaluation of the retrieved ROC values and adjusted odd ratios for each set of
combined variables (see Table 5.3) were appreciable tools to determine the best
predictor variables.

Thus, a calibration process was carried out to retrieve the predictor variables.
All available and affordable data were classified into three main classes (i.e. social
variables, econometric and biophysical variables). The existence of spatial cor-
relations was also checked. Model calibration in this study was made as two steps
including initial calibration and refining, respectively. All required data were
converted to raster format at 30 m resolution. In order to pick the optimal variable
set, it has to reach the highest ROC value. In fact ROC = 1 indicates a perfect fit,
while ROC = 0.5 indicates a random fit and values in between have a degree of
membership. Besides, a higher adjusted odds ratio is necessary for a better fit and
greater confidence. The optimum set of variables was chosen. The highest ROC
value at 0.9532 allowed us to pick the appropriate set of variables as the input file,
which was shown in Table 5.2. A predicted change probability surface map and a
residual map, indicating the difference between predicted and observed proba-
bility, were generated.

Therefore, in order to allocate the proper quantity of change according to the
probability surface, two choices could be chosen: either to select the transition area
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matrix obtained by the Markov chain model, or the predicted population and
construction per capita index. The transition matrix arising from the Markov chain
result was picked to quantify the amount of change. Figure 7.5 demonstrates the
produced probability surface that identifies the probability of change for each
particular cell. Obviously, this model has ranked highly the nearest cells to the
developed cells.

Based on the probability surface, as well as the change demand quantity, the
allocation function was exerted on the transition surface map (i.e. Fig. 7.5), in
order to produce the land use maps of 2016 and 2026. This probability surface
enables us to predict future changes at any time. It was intended to produce the
simulated maps for the same years (i.e. 2016, 2026) for the final comparison, thus
2016, 2026 were selected. The simulated land use maps of 2016 and 2026 are
represented in Figs. 7.6 and 7.7.

7.5.8 Validation of Logistic Regression Model

By means of this prepared probability surface, the quantity of change must be
specified through possible techniques—either through the population growth
estimation model or the Markov chain model. In other words, a footprint of

Fig. 7.5 Transition surface map of the study area produced by the logistic regression model for
2006 onward
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population growth over the study area can be modelled through statistical methods
and allocate this resulted quantity of change. The second method is to use a
Markov chain model output, which is a matrix of change amount to allocate that
amount as well as reach the predicted maps. The total amount of change was
determined based on transition matrix of the Markov chain model to quantify the
quantity of change to employ the allocation phase. Consequently, the implemented
model was assessed by the model statistics. Thus, the validated model was
employed to predict land use maps of forthcoming periods. In the next section, the
outcomes of the geosimulation model will be depicted.

7.6 Outcomes of Multi-Agent Simulation

Three major agents (i.e. government agents, property developer agents, resident
agents) were classified to associate the possible behaviours which drive the land
change matter in the study area. All these agents were spatially and equally

Fig. 7.6 Simulated land use map of 2016 with logistic regression model
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distributed in the entire area (see Sect. 6.4) and have instant autonomy and major
effects. Each predefined agent has its own specific behaviour and influence.
In other words, developer agents are motivated to build new housings based on
financial profit, whereas resident agents have preferences based on choice of area
and lifestyle, according to multiple variables. It is significant that the developer
agent has the influence to lead resident agents to choose their properties due to
financial factors. More discussion of each particular agent will be depicted in the
next sections.

7.6.1 Resident Agents

Resident agents make choices about where they want to live, based on desirability
of location, and accessibility community services and communication, such as
accessibility to the road networks, shopping malls, parks, leisure facilities, public

Fig. 7.7 Simulated land use map of 2026 with logistic regression model
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transport, etc. It is obvious that if numerous buyers decide to select the same
location, property prices will rise and the developer agents will construct new
and intensive housing, resulting in neighbourhood overdevelopment. Thus, if
the purchase and rent prices exceed their affordable threshold, the resident
agent will have to look at other districts for accommodation. Therefore,
property developers have to alter their investment policies and plans according
to the residents’ purchasing behaviour—their only objective, as a developer, is
to earn as much profit as possible. However, developers must get the appro-
priate approval from the government before making changes to an area. In this
sense the government is the final decision maker who has the power to approve
the details of site development by considering environmental circumstances and
internal policies.

Therefore, in considering all possible behaviours of resident agents, multiple
factors were taken into account to maximise the efficiency of the model based
on a designed utility function, to optimise the accuracy of the change allocation
model. Detailed information about the utility function was presented in
Sect. 6.5.1.

Fuzzification of existing factors was another approach that has been carried out
to adopt the critical points of each factor in different ways. Thus, applying fuzzy
membership functions seemed to be innovative for this purpose. Certain thresholds
were applied for the proposed factors which were previously mentioned
(See Sect. 6.5.1.1). The other important approach in this research was to weigh
each variable based on its importance; therefore, a higher weight describes that the
variable must be reflected more importantly than others. In this research, these
weights were manipulated by AHP method. The AHP function was exerted to the
entire factors in the ArcGIS environment. It was mandatory to ensure the value of
the consistency ratio, because it should not exceed 0.1, which verifies the accuracy
of weighting (see Table 6.2).

The extracted weights were issued in the overlay process in ArcGIS Model
Builder. Therefore, a categorical probability surface was produced that identifies
the preferable locations for residency by resident agents. The resulted probability
surface map (see Fig. 6.2) demonstrates the most preferable area for settlement by
resident agents with regard to environmental and economic situations and demo-
graphic circumstances.

7.6.2 Developer Agents

Developer agents are the key component of the agent based model and play a
significant role in influencing residential development. The developer agents
consider the preferences of residents in home buying as well as governmental
restrictions in land development. In other words, the developer agents can be
affected by resident agents’ preferences and government agents’ decisions. This
means the interaction between these agents, with regard to the conduct of the
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developer agents on where to invest their resources in order to reach maximum
benefits, is crucial. Therefore, this criterion was fundamental to the conclusions
of the behaviours and decisions of the developer agents. Additionally, some
equations were defined to reflect the development potential that was mentioned in
the previous chapter. The economic viewpoint of decision making was modelled
by importing a land price dataset. Some functions were exerted in the behaviour
the defining process, which were explained in Sect. 6.5.2. A surface of develop-
ment probability was produced by running the predesigned module, which is
shown in Fig. 7.8.

Figure 7.8 represents the preferred sites for development in the study area by
the developer agents. Obviously developers prefer to choose farming lands and
open lands because of bigger profit potential; however, investment in high price
sites carries a lower financial risk, since the price of land is already high and a
return on investment is more assured. Moreover, many people want to settle in
these areas due to neighbourhood facilities.

Eventually, it is the government agents who will apply their decisions on the
received applications for construction and decide what is built and where.

7.6.3 Government Agents

Challenges between resident agents and developer agents are not the ultimate step
of the final decision to be made for development. As mentioned, government
agents are the final decision-makers who can either approve the development

Fig. 7.8 Probability surface of potential development produced by the developer agents in 3D
visualisation
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applications or reject them. This means that because the government agents
have the final decision, based on unpredictable factors, mapping consistency of
this issue can be problematic in the model. For example, this agent is not only
concerned with environmental factors, but also by resident agents’ and developer
agents’ interaction. The government agent also considers the suitability of any
residency and construction based on the current land use status, surrounding
environment, transportation access, affordable general facilities, and educational
benefits. Apropos, a function was designed to yield the government agent output.
In fact, the government agents’ behaviour is a function restricted by those
components mentioned in Sect. 6.5.3. A binary map produced by the government
agents is shown in Fig. 7.9.

Figure 7.9 presents a binary surface that can be updated by latest policies issued
by the government. This map demonstrates where any development application
can be approved or rejected. It was not possible to gather any map from any source
to indicate restricted places for development; however, we needed to take some
variables into consideration to achieve this map.

Fig. 7.9 Binary map produced by government agents
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7.6.4 Combination of the Agents and Their Interactions

Each agent makes its own decision and concludes its output, but the final outcome
is an amalgam of all agent interaction and possible choices, and is central to
obtaining accuracy. Thus, in this part the interaction between these agents had to
be combined to reach their ultimate decision in land development.

Accordingly, some actions and decisions will come into conflict with other
agents’ choices. Hence, an overlay function comprising some rules was pre-
meditated to output the decisions. The overlay function was coded to run the
module until it reaches the change demand value. Consequently, the agent
combination procedure produced a categorical potential map of change; there-
fore, we should allocate the probable changes by means of that potential surface.
The change demand was already calculated by two different techniques, which
were discussed in Sect. 4.10. In fact, two diverse change demand estimation
methods were applied (i.e. the Markov chain model and statistical extrapolation).
Therefore, we could estimate the forthcoming changes according to these two
scenarios. These two quantification methods were applied to obtain predicted
land use maps of 2016 and 2026. Therefore, two scenarios in this agent-based
model were planned.

A CA function was coded to allocate the potential cells for change from the
highest to the lowest, respectively. CA methodology begins change allocation
from the nearest neighbours in the vicinity of the urban area. The model keeps
allocating until it reaches a predefined amount of change; therefore, the final
simulated change maps were produced. According to the two change demand
functions, two different simulation scenarios were applied. The simulated
land use maps of 2016 and 2026 through two mentioned scenarios are shown in
Figs. 7.10, 7.11, 7.12, and 7.13. Thus, this combination follows the cellular
automata technique and can be called CA-ABM.

7.7 Validation of the Simulations

Validation of this prediction and simulation model is basically required to assure
the outcomes of model achievement. Validation of a simulation model could be
carried out through a cross comparison between the simulated map and a map of
reality. Obviously, no actual maps of 2016 and 2026 could be provided, therefore,
this technique could not be applied. Thus, there are some issues regarding this
validation process that will be noted below.

• Firstly, comparison of the simulated maps and the actual maps cannot be
possible, because no maps of reality for 2016 and 2026 exist.

• Secondly, all the performed models met our satisfactions statistically
(e.g. AHP), and also the calibration process of those processes verified that the
ABM was being constructed perfectly at every stage.
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• Finally, comparison of the simulated maps produced by the ABM method and
other performed techniques was carried out visually and statistically. This will
be depicted in the next section.

7.8 Comparison of the Employed Models

In the previous section, all the outputs from the implemented methods were
presented one by one, i.e. cellular automata, the Markov chain model,
cellular automata Markov, logistic regression and agent-based modelling. It is
imperative to compare their results to achieve a conclusion in this research.
A descriptive table of the approaches that were carried out is presented in
Table 7.2.

Fig. 7.10 Simulated map of 2016 produced by the designed ABM simulation based on
scenario 1
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7.9 Discussion of the Outcomes

In recent years the world has been confronted with whole new challenges which
have brought a severity of change on an unprecedented scale, such as climatic,
economic and in technological revolution. The impact of globalisation has
resulted in a huge shift in demographics, such as rapid urbanisation and intensive
land-use conflicts in some developing countries. Therefore, simulation and
forecast of urban growth is an important task for urban planners and landscape
preservers to formulate sustainable development strategies. The simulation of
built-up development can provide helpful and valuable information about
future land demands and landscape changes. However, cities are complex
systems that are complicated to characterise by means of mathematical equations
(Li and Liu 2007).

Fig. 7.11 Simulated map of 2016 produced by ABM simulation based on scenario 2

126 7 Analysis of Results



As was shown in the previous sections, the aim of MAS was to consider the
internal and external interactions between autonomous agents and the overall
organisation. This research has focused on various types of land cover change
modelling and has compared the results to assess the strengths and weaknesses of
each particular model. This research has also realised the drivers of change, as well
as which sort of variables has more influence in this study area. It has also dealt
with how to predict their behaviour within a given period. The agent-based
modelling approach that has been carried out is flexible enough to be suitable for
this research (Valbuena et al. 2008).

There is a large and ever increasing amount of research about using
‘‘bottom-up’’ techniques, such as cellular automata (CA) and other customised
methods to simulate urban areas. The major problem in using the CA models is

Fig. 7.12 Simulated map of 2026 by ABM simulation based on scenario 1
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to integrate the human, social and economic factors to incorporate in the
simulation. Table 7.2 summarises the implemented models and deals with
the strengths and weaknesses of each particular model. More discussions and
conclusions will be presented in the next chapter.

7.10 Summary

This chapter began with an introduction which presented the methodology of
analysing the obtained results. The final simulated land use maps and their cer-
tainty were assessed. This assured us that the utilised maps are validated to input
the designated models. Thereafter, the findings through the traditional techniques
were discussed and the validity of those models was tested. Each model was
statistically verified and the multi-agent model was evaluated step by step. Finally,
the developed ABM system results were compared against the traditional

Fig. 7.13 Simulated map of 2026 by ABM simulation based on scenario 2
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approaches, which facilitated the general conclusion over the employed methods.
In Chap. 8, a final conclusion of the results will be presented and the direction of
future works will be drawn. Moreover, the assumed objectives of this thesis will be
evaluated.
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Chapter 8
Conclusions and Recommendations

8.1 General Discussion

This thesis is compiled in eight principal chapters. Chapter 1 reviews the
fundamentals of this research that were supposed to deal within this project
(e.g. problem statement, research questions, research objectives and research
approach). Chapter 2 presents a literature review of previous research work, and
also deals with the theoretical background of related fundamentals.

Chapter 3 depicts a brief description of the selected study area, which is Tehran,
the capital of Iran. This chapter includes more details of geographical character-
istics, as well as the socio-economic conditions in the study area.

Chapter 4 explains the utilised materials and data for this project. A temporal
mapping of land use changes is prepared and visualised. The trend of land use
changes is also discussed within this chapter.

Chapter 5 clarifies various common approaches, which are popularly used
(i.e. CA, the Markov model, the CA-Markov model, and hybrid logistic
regression). These models were theoretically depicted and implemented to achieve
the strengths and weaknesses of each particular model. These traditional models
and their theoretical backgrounds are useful to find out the way to assemble the
multi-agent model. Additionally, certain weaknesses of these traditional
techniques are addressed, based on a lack of dynamics.

Chapter 6 depicts the assumed agent-based model. It begins with the classifi-
cation of effective agents (i.e. resident, developer and government agents).
The possible behaviours of each particular agent is described and modelled.
The methodology of designing this ABM is depicted in detail, after which the
predesigned agents are combined.

Chapter 7 assembles all the outcomes and analyses the achieved results, and the
results of each stage are described and verified. A validation process of all models
is then discussed and validated, and the models are compared with each other.
Ultimately, the ABM model is compared against other alternative methods.
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This chapter clarifies the conclusions and the author’s recommendations;
thereafter, the suggested direction of future work will be explained, along with the
limitations of this thesis.

8.1.1 Strengths and Weaknesses of Each Particular Model

Cellular automata models basically have the strength and capacity to start the
allocation process of change from the nearest neighbour cells to the urban areas
and might satisfy some land change modelling models. According to Tobler’s first
law of geography:

Everything is related to everything else, but near things are more related than distant
things (Johnston 2000).

Thus, urban sprawl most likely will take place alongside previous built-up
areas. In our model nearby pixels to urban areas have more probability to be
developed by individuals; however, it is easily observed via the temporal change
mapping discussed previously.

The implemented cellular automata model was not integrated with any
environmental and demographical parameters. Although the simulated maps were
validated, integration of this model with other relevant parameters could increase
the accuracy of this model. This makes this model very rigid and the modeller has
to stop this process at a certain iteration number.

The Markov chain model is also another modelling approach. In fact, it does not
produce any geographically explicit outputs. This method also does not consider any
environmental and socio-economic variables. It predicts the quantity of change
based on mathematical estimation and previous state of input land use maps.

The cellular automata Markov model is almost a new approach, which inte-
grates both CA and Markov chain models. In fact, it retrieves the quantity of
change from the Markov chain model and spatializes that through a cellular
automata procedure. Nonetheless, it has to be stopped at certain iteration number.
The number of iterations in this approach is large, and, therefore, is a hugely time
consuming approach in comparison with CA or other approaches.

Logistic regression has this capability to be integrated with other techniques.
In order to predict changes it creates a probability surface. This method considers
environmental and socio-economic variables to produce a probability surface of
change. Thereafter, this model was integrated with a Markov model to allocate the
amount of change. This probability surface identifies the probability of change for
each particular cell.

Multi-agent based modelling has the strength to integrate environmental and
socio-economic variables and considers each particular agent which impacts on the
system. Moreover, this approach by means of a ‘‘bottom–up’’ scenario considers
possible variables associated with each single agent. This technique considers each
agent’s behaviour internally. Furthermore, ABM finalises all agents’ interactions
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by combining all agents to find the location of future changes. The previous types
of approaches are not able to reflect exactly the complex interactions between
individuals’ preferences and the environment. The ABM technique can be used to
simulate complex built-up development which involves a variety of residents in
shaping urban morphology. It is crucial to associate appropriate agents’ behaviour
in a more consistent way. This means that individuals are the main actors in this
methodology.

In this research, the characteristics of agents were defined in a spatially explicit
way to reflect various decision-making behaviours. It was aimed to avoid any use
of ABM environments. Agents were classified into the most efficient ones
according to available data. Furthermore, a weighting system was carried out over
the available data to assign appropriate weights, which was helpful in considering
their importance.

One advantage in particular of the ABM, is that it does not consider the
nearest cells as the priority of change. There was a general lack of detailed
social and economic data at a fine spatial scale, which encountered some
difficulties in defining agents’ properties in a more precise way.

8.1.2 Uncertainty Analysis

According to Crosetto and Tarantola (2001):

Uncertainty analysis allows the analyst to assess the uncertainty associated with the model
output as the result of the propagation through the model of errors in input data, and
uncertainty in the model itself (e.g. uncertainty in model parameters, structures,
assumptions and specifications).

In this study, much data and some models were employed. This data is
somewhat erroneous, which needs to be depicted and analysed. For instance, the
socio-economic data for the outskirts of Tehran city was not as reliable as those
data for the city of Tehran. The difficulties in the preparation of the data did
not allow us to reach accurate data; equally there are some doubts in the quality
of the demography and land price layers. This could cause a lot of errors in the
prediction process, besides which, models also have some weaknesses that have
to be addressed. Each model is constructed on some hypothesis and manipu-
lations which might not be necessarily true. In the ABM model, some formulae
were used which might cause some errors. These two kinds of errors will be
illustrated in the following sections.

8.1.3 Model Limitations

Each particular model has its own limitation and constraints. The cellular
automata model is designed to grow out, based on straight rules at certain
iteration numbers. Individually it does not consider environmental conditions;
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however, some applications have used this technique to integrate with envi-
ronmental parameters and drive it manually. This might create some errors in
the results. The designed ABM model was developed by the author of this
thesis, and it is a prototype which needs to be tested for similar cases to correct
its probable bugs.

8.1.4 Data Limitations

In this research, collecting the required data was an important matter and also a
time consuming procedure that took place during a field work period. Meanwhile,
some sort of data, regarding accuracy assessment, was gathered for three separate
time periods.

Data individually were not reliable and the accuracy of data had to satisfy us;
therefore, data checking through data mining, satellite images and hard copy maps
was carried out to increase the reliability of the data. In fact, the accuracy of these
data can be one source of errors. The time scales of the utilised data (i.e. 1986,
1996 and 2006) were not precisely the mentioned times and, thus, this can bring
another source of error to the results and conclusions.

8.2 ABM Method versus Alternatives

In this research, it was aimed to examine the geosimulation approach in
contrast with other prevalent methods. As we discussed previously, regarding
ABM’s advantages and strengths, this approach takes into consideration key
agents in any application and considers all possible actions arising from agents’
behaviours. Nevertheless, awareness of each individual agent needs a compre-
hensive knowledge about those agents as well as qualified data at fine
resolution. Although for this research, the provision of the required data at finer
resolution was not feasible due to some difficulties for data sharing.

In fact, ABM benefits all prevalent methods and brings the advantages of the
previous methods and makes it very organised.

8.3 Conclusions

Recent economic growth has created enormous problems in urban management
matters, where urban expansion occurs without any concern for environmental
impact. Rapid urbanisation and intensive land-use conflicts are occurring at an
alarming rate in some developing countries. Therefore, the simulation and
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prediction of urban growth is imperative for urban planners to formulate
sustainable development strategies. Besides, this helps them to predict land
demands in order to provide enough infrastructures for the inhabitants.

Several approaches were performed to simulate land use change in the study
area, such as CA, the Markov chain model, CA-Markov, logistic regression and
multi-agent simulation. In this part of the chapter, a conclusion about the imple-
mented methodologies, and also the obtained results, will be pointed out, to deal
with optimum methods for LUCC modelling. Therefore, a summary of original
conclusions will be presented later in this chapter.

We begin with the cellular automata approach and its strength and weakness.
In fact, one difficulty with CA models is that in a pure CA model no human and
social factors are incorporated in the simulation. Therefore, this model is not able to
reflect the interactions between individuals and the environment. Some other cus-
tomised CA models, however, do exist, which are able to combine environmental
circumstances and their interactions with the system (e.g. SLEUTH model, CLUEs
model). These models are built based on CA functionality and also incorporate some
biophysical factors. We have concluded that the pure CA model, which does not
take any environmental factors into account, is not a good location estimator for
change prediction. However, the CA functionality, which starts the allocation
process from the nearest cells, is the best way to allocate probable changes.

The Markov chain model is not a spatially explicit model to locate changes;
however, it is a useful method to predict the amount of change. The predicted
amount of change can be utilised in other land change modelling approaches to
allocate it; for instance, in the frame of a CA model, or the logistic regression
model. In this study, the output of the Markov model was used to allocate the
predicted quantity of change through other methods (Kamusoko et al. 2009).

This research represents a significant contribution to land use modelling
excluding integration of biophysical and socio-economic data into a spatially
explicit Markov cellular automata land use simulation model. The strength of
this model is to predict the change map for all existing land categories. In other
words, the input and output files are categorical and do not have to be nec-
essarily binary.

However, the weaknesses of this model are considerable. This model does not
consider any environmental and socio-demographic situations. As a matter of fact,
this model benefits from the output of the Markov chain model and, by means of a
CA function, allocates the quantity of change. Moreover, this model needs to run
for a large number of iterations, which takes much time and computational
resources. Furthermore, this model allocates changes from the nearest cells to the
urban cells.

A spatially explicit type of logistic regression modelling was implemented to
discover and improve our understanding of the demographic, economic and
biophysical circumstances that have driven land use change matter to discover the
most probable sites of urban growth in the Tehran metropolitan area.

Urban expansion occurs essentially around existing urban cells, close to
freeways and major roads, because of in situ infrastructure and excellent land
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market values. However, new areas located farther from existing urban areas might
also have enough potential for development. A strong point of the logistic
regression model is the ability to incorporate economic, demographic and envi-
ronmental situations to produce a probability surface of potential urban growth.
However, a CA function was implemented over the probability surface to allocate
the anticipated amount of expansion in terms of the number of cells. The employed
logistic regression model was spatially explicit.

This research proves that a logistic regression model has strengths relative to
the previously mentioned models. The logistic regression model can not only
comprise biophysical variables, such as SLEUTH (slope, land use, exclusion,
urban extent, transportation, hill shade) in the CA model, but is also able to include
a variety of demographic and econometric variables, which necessarily allows us
to figure out human impacts in forming urban patterns.

Despite the LRM model’s strengths, the logistic regression model suffers from
the same constraints as the previous models in considering other issues, which may
have an effect on urban growth (e.g. individual preferences for settlement, national
and local development policies). Secondly, dissimilar to the CA model, the logistic
regression model is not temporally explicit (Hu and Lo 2007). In fact, the output
propensity surface can only point out where urban expansion might occur, but not
specifically when it will happen. However, we utilised a CA function to overcome
this weakness.

Multi-agent simulation can be designed to simulate complex urban development
that involves a variety of agents playing significant roles. The definition of agents’
behaviours process is an important task that has to be defined carefully. In this work,
the most important agents which play considerable rules were taken into action
(i.e. resident agents, developer agents, and government agents). Each agent was
defined separately and, therefore, their own behaviours in choosing suitable cells for
settlement were considered in a GIS environment. In fact, the multi-agent model has
the capacity to consider all possible actions that can be made by the predefined
agents. Furthermore, the ABM model does not start the allocation process from the
nearest cell next to the city, meaning that the cells which have more propensity for
development, become developed. However, in this study we combined the strengths
of other methodologies to improve the quality of the predictor model. This approach
benefits from cellular automata, Markov chain and logistic regression models.

This thesis has explored the potential for designing a geospatial multi-agent
simulation model. Furthermore, it has successfully examined the proposed
hypothesis and reached the assumed objectives. In fact, we benefited from a
customized ABM model in a GIS environment to avoid using any ABM func-
tionalities out of the GIS environment.

In this thesis, we accomplished the following objectives:

To propose a generic method that can be followed to develop a multi-agent geosimulation
system in GIS environments in various types of natural phenomena modelling:

Our research methodology reveals that GIS environments are capable of
importing ABM functionalities and simulate natural phenomena within the current
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GIS environments. Moreover, our approach is intended to be generic to integrate
the strengths of the existing LUCC modelling methods and design an ABM system
for predicting a system’s behaviour.

To design an agent-based modelling prototype based on geographic data, GIS functions
and promote the capability of GIS environments functionality for this matter:

In this thesis, we implemented several models that are being used for LUCC
modelling. For instance, the cellular automata model, the Markov chain model,
the cellular automata Markov model, the spatial logistic regression model
and, finally, by combing the useful behaviour of each particular model, an
initial version of multi-agent model was developed to simulate urban sprawl in
the study area. This multi-agent model was designed according to the behaviour
of three primary agents (residents, government and developer) and their
interactions.

To propose an analysis technique to examine the results arising from the geosimulation
performance in comparison with other methodologies, such as CA, Markov chains and
hybrid models:

In this research, we studied different accuracy assessment techniques. It was
illustrated that the ROC model is a better way to measure the accuracy of the
outputs of the respective models, in terms of accuracy of quantity and accuracy
of location and overall accuracy. However, some weaknesses still exist in the
validation of outcomes.

To examine, assess and evaluate the existing software and toolkits that have been proposed
to create simulation environment and their flexibility and compatibility due to importing
geospatial data:

We started this work with testing other existing ABM toolkits such as
Anylogic, Repast, agent-based extension, and each one had its own weakness to
import GIS data and other spatial variables into the system. Then, we believed
the best way was to code the ABM system behaviours into a GIS environment
(i.e. ESRI ArcGIS) by means of its programming environment (e.g. Python).
Therefore, this system is completely independent from the aforementioned
toolkits’ functions.

To consider the possibility of integrating GIS functions with ABM functions in a GIS
environment and segregate geosimulation from the ABM environments:

In this thesis, a prototype model was developed without using ABM environ-
ments, but the GIS environments do not comprise all ABM functions, and it has to
be coded by programming modules integrated in GIS software (e.g. Python).

To predict possible future changes within a particular period through the customised
scenario:

The developed ABM system is able to predict upcoming changes at any
requested time and updated data can be imported into the system in order to
improve the quality and accuracy of outcomes. The system settings are available to
modify the system and the data.
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8.4 Directions for Future Works

The intention of this research was to explore the potential of the GIS environments
to import ABM functionalities and create spatially explicit agent-based models
which reflect geometric detail directly in the simulation process in order to
simulate environmental phenomena.

As future tasks, it can be recommended:

• To gather and use detailed data in order to input into the geosimulation prototype
and then take all agents’ behaviours into account and obtain better outcomes.
In other words, by using fine scale data, it is possible to reach better results.

• To use this simulation prototype and develop it by means of finer scale data to be
used for land use change modelling and urban expansion issues.

• To follow up this type of agent-based system to develop new prototypes for other
geospatial phenomena (e.g. hydrological modelling, human-related decision-
making systems).

• To design a national project to simulate all possible behaviours of the existing
agents and utilise the data of the entire metropolitan area, which can help land
managers in better land administration.

8.5 Limitations of the Present Study

As mentioned in Chap. 5, we confronted a number of problems in the data
gathering process, software restrictions for model development, and also weak-
nesses of model validation techniques. In fact, the socio-economic data specified,
in the extent of study area, was not precise. The difficulties arising from the data
gathering process did not allow us to acquire accurate demography and land price
data. Another concern for this thesis was the limitations over finding appropriate
models. In fact, the existing models have their own limitations and constraints.

Moreover, in this research all required data were not available, and the
collection of the required data was also a time consuming procedure. Some of
the utilised data individually were not completely reliable and the accuracy of data
had to satisfy us; therefore, data checking through data mining, satellite images
and hard copy maps was carried out to increase the reliability of the data.
Indeed, the accuracy of these data can, in fact, be one of the sources of error. The
time periods of the utilised data (i.e. 1986, 1996 and 2006) were not exactly the
indicated time and, thus, can create error in the results and conclusions.

8.6 Original Guidelines in the Contributions of the Thesis

This dissertation has investigated a customised approach in order to simulate land use
change. This approach is able to find potential cells for development and allocate
them from the most probable to the least probable. In fact, the structure of cities is also
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an important matter to consider before developing any model in this regard. Indeed, it is
not strictly correct to propose the recommendation of implementing agent-based
modelling for any land change case. In other words, the structure of cities plays a
critical role in selecting an appropriate methodology, i.e. it is better to have knowledge
of temporal changes and analyse it by the pattern of local circumstances than to fit a
model to the local conditions. Knowledge of a city’s structure, as well as temporal
assessment of development, are significant aspects to prescribe a methodology.

8.7 Summary

The last chapter presented a general discussion about this thesis and the tasks
which have been carried out herein, followed by a discussion of the advantages
and disadvantages of each model. The limitations arising from models, data
and methodologies were depicted. The original guidelines which we revealed in
this research were explained in detail, and suggested directions of future works in
this field duly clarified.
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