Environmental Options: Accounting for Sustainability

### Economy & Environment

#### VOLUME 10

#### Scientific Advisory Board

Scott Barrett, London Business School, London, United Kingdom Klaus Conrad, University of Mannheim, Mannheim, Germany David James, Ecoservices Pty. Ltd., Whale Beach, New South Wales, Australia Bengt J. Kriström, University of Umea, Sweden Raymond Prince, Congressional Budget Office, U.S. Congress, Washington DC, U.S.A. Domenico Siniscalco, ENI-Enrico Mattei, Milano, Italy / University of Torino,

Domenico Siniscalco, ENI-Enrico Mattei, Milano, Italy / University of Torino, Italy

# Environmental Options: Accounting for Sustainability

by

### Kimio Uno

Keio University at Shonan Fujisawa, Fujisawa, Japan



SPRINGER SCIENCE+BUSINESS, MEDIA, B.V.

A C.I.P. Catalogue record for this book is available from the Library of Congress.

ISBN 978-94-010-4040-2 ISBN 978-94-011-0081-6 (eBook) DOI 10.1007/978-94-011-0081-6

Printed on acid-free paper

All Rights Reserved © 1995 Springer Science+Business Media Dordrecht Originally published by Kluwer Academic Publishers in 1995 No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner. To Yoshiko

# Contents

| Li<br>Li | Preface2List of TablesxList of FiguresxiAbbreviationsxx |                                                                  |     |  |
|----------|---------------------------------------------------------|------------------------------------------------------------------|-----|--|
| Ι        | $\mathbf{W}$                                            | hat is at Issue                                                  | 1   |  |
| 1        | Glo                                                     | bal Environment and Governance                                   | 3   |  |
|          | 1.1                                                     | AGENDA21 and beyond                                              | 3   |  |
|          | 1.2                                                     | Technology and society in an environmental accounting $\ldots$ . | 9   |  |
|          | 1.3                                                     | Mapping AGENDA21 in the proposed framework                       | 15  |  |
|          | 1.4                                                     | Virtue of the framework                                          | 21  |  |
| II       | $\mathbf{E}$                                            | nergy and Environment                                            | 25  |  |
| 2        | Env                                                     | vironmental Options                                              | 27  |  |
|          | 2.1                                                     | The background                                                   | 27  |  |
|          | <b>2.2</b>                                              | Policy options for the global community                          | 31  |  |
|          | <b>2.3</b>                                              | Policy issues                                                    | 40  |  |
|          | 2.4                                                     | Policy tools                                                     | 42  |  |
| 3        | Ene                                                     | ergy Demand and Supply                                           | 49  |  |
|          | 3.1                                                     | Energy and $CO_2$ emission                                       | 49  |  |
|          | 3.2                                                     | Energy demand and the economy                                    | 53  |  |
|          | 3.3                                                     | Sources of primary energy                                        | 97  |  |
|          | 3.4                                                     | Policy implications                                              | 99  |  |
| 4        | Life                                                    | estyle and Environment                                           | 109 |  |
|          | 4.1                                                     | Lifestyle as a variable                                          | 109 |  |
|          | 4.2                                                     | Household appliances and energy consumption                      | 111 |  |
|          | 4.3                                                     | The case of automobiles                                          | 117 |  |
|          | 4.4                                                     | Policy implications                                              | 118 |  |

| 5  | Tra  | nsportation                                               | 121 |
|----|------|-----------------------------------------------------------|-----|
|    | 5.1  | Transportation and environment                            | 121 |
|    | 5.2  | Trends in transportation activities                       | 125 |
|    | 5.3  | Technology and policy                                     | 133 |
|    | 5.4  | Further remarks                                           | 137 |
| II | I    | Coping with Environmental Disruption                      | 141 |
| 6  | Poll | lution Prevention Investment                              | 143 |
|    | 6.1  | Quality of life and environmental damage                  | 143 |
|    | 6.2  | Trends in pollution prevention investment                 | 144 |
|    | 6.3  | Pollution prevention capacity                             | 184 |
|    | 6.4  | Improvement in environmental quality                      | 186 |
|    | 6.5  | From environmental accounting to modeling                 | 189 |
|    | 6.6  | Concluding remarks                                        | 196 |
| 7  | Pro  | oduce-Consume-and-Recycle                                 | 199 |
|    | 7.1  | The end of produce-consume-and-forget regime              | 199 |
|    | 7.2  | Sustainability reconsidered                               | 200 |
|    | 7.3  | Sustainability of resource base: accounting for recycling | 205 |
|    | 7.4  | Sustainability of the quality of life                     | 216 |
| 8  | Env  | vironment-Related R&D                                     | 219 |
|    | 8.1  | Limits to growth and technology                           | 219 |
|    | 8.2  | Environment-related R&D                                   | 220 |
|    | 8.3  | Diffusion of new technology                               | 228 |
|    | 8.4  | Pollution prevention technology, some cases               | 233 |
|    | 8.5  | New sources of energy, some cases                         | 237 |
|    | 8.6  | Further remarks                                           | 247 |
| IV | / I  | Natural Environment and the Economy                       | 251 |
| 9  | Lan  | nd Use                                                    | 253 |
|    | 9.1  | Availability of land                                      | 253 |
|    | 9.2  | Environmental impact of changing land use                 | 255 |

|    | 9.3                                                                                                                                                    | Farm land                                  | 265                                                                       |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------|
|    | 9.4                                                                                                                                                    | Forests                                    | 268                                                                       |
|    | 9.5                                                                                                                                                    | Industrial and commercial land             | 272                                                                       |
|    | 9.6                                                                                                                                                    | Residential land                           | 273                                                                       |
|    | 9.7                                                                                                                                                    | Waste disposal sites                       | 276                                                                       |
|    | 9.8                                                                                                                                                    | Road network length and area               | 277                                                                       |
|    | 9.9                                                                                                                                                    | Urbanization                               | 279                                                                       |
| 10 | Res                                                                                                                                                    | ource Endowment and International Linkages | 283                                                                       |
|    | 10.1                                                                                                                                                   | Introduction                               | 283                                                                       |
|    | 10.2                                                                                                                                                   | The case of wood products                  | 284                                                                       |
|    | 10.3                                                                                                                                                   | The case of energy resources               | 289                                                                       |
|    | 10.4                                                                                                                                                   | The case of metals                         | 295                                                                       |
|    | 10.5                                                                                                                                                   | Resource endowment and sustainability      | 299                                                                       |
| v  | Μ                                                                                                                                                      | easuring Quality of Environment            | 301                                                                       |
|    |                                                                                                                                                        |                                            |                                                                           |
| 11 | Con                                                                                                                                                    | aposite Measures of Quality of Life        | 303                                                                       |
| 11 |                                                                                                                                                        | nposite Measures of Quality of Life        |                                                                           |
| 11 | 11.1                                                                                                                                                   | -                                          | 303                                                                       |
| 11 | 11.1<br>11.2                                                                                                                                           | Introduction                               | 303                                                                       |
| 11 | 11.1<br>11.2<br>11.3                                                                                                                                   | Introduction                               | 303<br>305<br>312                                                         |
| 11 | 11.1<br>11.2<br>11.3<br>11.4                                                                                                                           | Introduction                               | 303<br>305<br>312                                                         |
|    | $11.1 \\ 11.2 \\ 11.3 \\ 11.4 \\ 11.5$                                                                                                                 | Introduction                               | 303<br>305<br>312<br>332                                                  |
|    | 11.1<br>11.2<br>11.3<br>11.4<br>11.5<br>Soci                                                                                                           | Introduction                               | 303<br>305<br>312<br>332<br>338<br><b>343</b>                             |
|    | 11.1<br>11.2<br>11.3<br>11.4<br>11.5<br><b>Soci</b><br>12.1                                                                                            | Introduction                               | 303<br>305<br>312<br>332<br>338<br><b>343</b>                             |
|    | 11.1<br>11.2<br>11.3<br>11.4<br>11.5<br><b>Soci</b><br>12.1                                                                                            | Introduction                               | 303<br>305<br>312<br>332<br>338<br><b>343</b>                             |
|    | <ul> <li>11.1</li> <li>11.2</li> <li>11.3</li> <li>11.4</li> <li>11.5</li> <li>Soci</li> <li>12.1</li> <li>12.2</li> </ul>                             | Introduction                               | 303<br>305<br>312<br>332<br>338<br><b>343</b><br>343                      |
|    | <ul> <li>11.1</li> <li>11.2</li> <li>11.3</li> <li>11.4</li> <li>11.5</li> <li>Soci</li> <li>12.1</li> <li>12.2</li> <li>12.3</li> </ul>               | Introduction                               | 303<br>305<br>312<br>332<br>338<br><b>343</b><br>343<br>343<br>349<br>356 |
|    | <ul> <li>11.1</li> <li>11.2</li> <li>11.3</li> <li>11.4</li> <li>11.5</li> <li>Soci</li> <li>12.1</li> <li>12.2</li> <li>12.3</li> <li>12.4</li> </ul> | Introduction                               | 303<br>305<br>312<br>332<br>338<br><b>343</b><br>343<br>343<br>349<br>356 |
| 12 | <ul> <li>11.1</li> <li>11.2</li> <li>11.3</li> <li>11.4</li> <li>11.5</li> <li>Soci</li> <li>12.1</li> <li>12.2</li> <li>12.3</li> <li>12.4</li> </ul> | Introduction                               | 303<br>305<br>312<br>332<br>338<br><b>343</b><br>343<br>349<br>356<br>378 |

## Preface

The concept of sustainability was the consensus reached at the United Nations Conference on Environment and Development held in June 1992. The operational framework to put this concept into policy action is yet to be devised.

This study aims at constructing a systematic statistical framework concerning environment, technology, economy, and society, and carrying out a series of analyses regarding the impact of human activities on environment. Environment (energy consumption, resource use, air and water pollution, land use), technology (conservation of energy and resources, recycling, pollution prevention), economy (industrial structure, input structure, transportation, final demand), and society (employment, income and consumption, diffusion of consumer durables including motor vehicles, lifestyle, value) are all intertwined. It is therefore necessary to develop a statistical system encompassing these areas in order to operationalize the concept of "sustainable growth". The scope of the work includes social and technological variables and is wider than the framework suggested by the UN manual on an integrated environmental economic accounting. In fact, I believe that a wider scope is needed to avoid the pitfall of posing the issue as an alternative between environment and economy. We will have to seek technological progress and changes in lifestyle in order to make our society an environmentally sustainable one.

My approach to the environmental issue has been to seek a common point of reference where information is the basis of individual choice which collectively makes up social choice. This is particularly important in environmental spheres because of externalities involved and intergenerational equity problem in an attempt to achieve sustainability. For this purpose, it is important to provide a picture not only at the aggregate level but also at disaggregated, individual industry level and for various social groups. Equally important, the framework has to allow for international linkages. Environmental issue has a global span whereas our policy machinery is traditionally developed with national constituency.

For this purpose, I have based the analysis on a multisectoral framework with industrial details. The approach maintains the criteria which I have spelled out above. It also maintains consistency with my previous work dealing with sources of growth, service orientation of the economy, and technological change.

There are many attempts dealing with environmental issue, and a question may be asked what my contributions are.

First, this volume is among the early attempts to examine the feasibility of the System for Integrated Environment and Economic Accounting (SEEA) proposed by the United Nations. Whereas the UN's framework is focused on integrating environment and economy, mine is broader in including social and technological factors. It is hoped that the scheme I am proposing will serve as a common yardstick in formulating environmental policies in developed as well as less developed countries and set standards for international comparisons. It should be noted that the development of the System of National Accounts itself points to the inclusion of environmental spheres as an integral part. In the 1993 revision of the SNA, environment is included as a satellite account. The framework adopted here also constitutes an important expansion of inputoutput analysis in environment, material flow, and lifestyle while preserving the theoretical consistency.

Second, pertaining to the policy application of the accounts, there have been attempts to estimate "green GNP". As is widely recognized, conventional macroeconomic performance indicators such as GNP, does measure positive output but fails to take account of negative side effects. "Green GNP" can be conceived of as an effort to arrive at some kind of economy-wide cost-benefit analysis of growth, where cost in this case is represented by environmental degradation. Along this line of thinking, the present study derives measures of economic wellbeing.

Third, the volume introduces Japanese experience in environment-related fields. Japan's experience is unique in that it compresses industrial expansion and urbanization in a short time span of 40 years or so which is fully captured by various statistics, providing a valuable case study in a global context where many societies are about to take off in their industrialization drive. Japan has accumulated a pioneering experience in energy conservation, pollution prevention, and other related fields, while witnessing a radical change in values and lifestyle of the people. In this sense, the Japanese experience goes beyond a case study of a specific country. This study intends to construct a statistical framework pertinent to these aspects and to carry out quantitative analysis of policy scenario leading to sustainable growth.

The book consists of five parts. Part 1 spells out the policy issues to be covered by the statistical framework which is intended to operationalize the concept of sustainability. Part 2 deals with energy. Following a discussion on policy options concerning energy supply, energy use in industry, household, and transportation is examined. Part 3 takes up pollution prevention investment and how it relates to treatment capacity. A need for a shift from produce-consume-and-forget regime to produce-consume-and-recycle regime is suggested. Research and development in pollution prevention and energy fields are then discussed. Part 4 focuses on the changes in land use and international linkages through trade in resources. Part 5 includes a controversial chapter which examines the relation between the quality of life and envionment. It is important to note that the concept of econmic wellbeing defined in this chapter is derived, for the most part, from the System of National Accounts. The final chapter examines a comprehensive statistical framework encompassing environment, economy, technology, and society. This chapter is closely related to the Integrated Environmental and Economic Accounting proposed by the United Nations and satellite accounts on environment contained in the Revised System of National Accounts also by the United Nations. In fact, various topics in previous chapters fit into the comprehensive framework proposed in this chapter.

Finally, I want to mention the assistance of my supporting staff, in particular Keiko Yamahira and Terumitsu Koshimizu.

Part of this research was supported by Grant-in-Aid for Scientific Research entitled "Diffusion of Advanced Technology and Sustainability of the Global Community" (grant number 04210126). This was a project conducted during the 1990-1993 period as one of scientific research on priority areas entitled "Perspectives of Advanced Technology Society" organized by the Research Center for Advanced Science Technology, University of Tokyo under the sponsorship of the Ministry of Education, Science, and Culture. In 1993, this project was supported by Grant-in-Aid for Scientific Research entitled "Analysis of Impacts of Human Activity based on an Integrated Statistical System on Environment, Technology, Economy, and Society" (grant number 05278119) under the priority area "The Man-Earth System" organized by the Institute of Industrial Science, University of Tokyo. The final phase of the project was supported by Keio University Fukuzawa Memorial Fund for Education and Research.

Shonan Fujisawa Campus

May 8, 1994

Kimio Uno

# List of Tables

| 1-1  | The principal greenhouse gases                                                        |
|------|---------------------------------------------------------------------------------------|
| 1-2  | The scope of the SEEA 12                                                              |
| 2-1  | Per capita GNP and population growth $\ldots \ldots \ldots \ldots 30$                 |
| 2-2  | World CO2 emission due to fossil fuel burning                                         |
| 3-1  | Projection of $CO_2$ emission by world                                                |
| 3-2  | $CO_2$ emission in OECD countries                                                     |
| 3-3a | Energy supply and demand, the structure 56                                            |
| 3-3b | Energy supply and demand, energy supply                                               |
| 3-3c | Energy supply and demand, energy demand                                               |
| 3-4  | Projection of energy demand                                                           |
| 3-5  | Projection of energy supply 96                                                        |
| 3-6  | $CO2\ emission\ factors\ \ldots\ \ldots\ \ldots\ \ldots\ \ldots\ \ldots\ \ldots\ 101$ |
| 3-7  | Carbon emissions in Japan 102                                                         |
| 3-8  | Accumulation of irradiated fuel from commercial plants 103                            |
| 4-1  | Household energy consumption                                                          |
| 4-2  | Diffusion rate of consumer durables                                                   |
| 4-3  | The structure of household electricity consumption 116                                |
| 4-4  | Production of passenger cars by engine size 117                                       |
| 4-5  | Growth, wellbeing and energy consumption 118                                          |
| 5-1  | Energy consumption by mode of transportation                                          |
| 5-2  | Index of transportation activities                                                    |
| 5-3  | Number of vehicles                                                                    |
| 5-4  | Traffic volume and fuel consumption                                                   |

| 5-5  | Gasoline lead content in selected countries                        | 134 |
|------|--------------------------------------------------------------------|-----|
| 5-6  | NOX reduction rate of mobile source                                | 135 |
| 5-7  | New car price increase                                             | 136 |
| 6-1  | Pollution abatement investment in selected countries               | 144 |
| 6-2  | Production of pollution prevention equipment by purchasing         |     |
|      | sector                                                             | 148 |
| 6-3  | Production of pollution prevention equipment, time series          | 168 |
| 6-4  | Pollution prevention investment and selected SNA series $\ldots$ . | 176 |
| 6-5  | Heavy oil desulphurization                                         | 178 |
| 6-6  | Flue gas desulphurization                                          | 179 |
| 6-7  | Flue gas nitrogen oxide removal                                    | 180 |
| 6-8  | Recycling of industrial water                                      | 181 |
| 6-9  | Sewerage treatment                                                 | 182 |
| 6-10 | Municipal waste treatment                                          | 183 |
| 6-11 | Industrial waste treatment                                         | 184 |
| 6-12 | Trends in air quality                                              | 186 |
| 6-13 | Trends in water quality                                            | 188 |
| 7-1  | Recycling of used paper, 1988                                      | 207 |
| 7-2  | Consumption of waste paper for paper production                    | 208 |
| 7-3  | Recycling of waste paper in an input-output framework              | 209 |
| 7-4  | Output of scrap iron, time series                                  | 212 |
| 7-5  | Recycling of scrap iron in an input-output framework               | 213 |
| 7-6  | Recycling of waste heat, the case of power generation              | 214 |
| 8-1  | R&D expenditures by purpose                                        | 222 |
| 8-2  | R&D expenditures concerning energy                                 | 224 |
| 8-3  | Energy conservation investment                                     | 228 |
| 8-4  | Alternative energy investment                                      | 230 |
| 9-1  | Land use in selected countries                                     | 254 |
| 9-2  | Gradient and configuration of land area                            | 255 |
| 9-3  | Transformation of land use, annual tables                          | 256 |
| 9-3b | Transformation of land use, total, time series                     | 266 |
| 9-4  | Overview of land use                                               | 268 |

| 9-5   | Farm land                                                             | 270         |
|-------|-----------------------------------------------------------------------|-------------|
| 9-6   | Application of pesticides in selected countries                       | 271         |
| 9-7   | Forest area and resources                                             | 272         |
| 9-8   | Supply of residential land                                            | 274         |
| 9-9   | Land use for land fill                                                | 276         |
| 9-10  | Road network length and area in selected countries                    | 277         |
| 9-11  | Densely inhabited districts                                           | 278         |
| 9-12  | Exposure of population to road traffic noise                          | 280         |
| 10-1  | Import matrix, wood products                                          | 286         |
| 10-2  | World forest resources and production of wood products                | 288         |
| 10-3  | Import matrix, energy resources                                       | 290         |
| 10-4  | World proven reserves and production of crude oil                     | 292         |
| 10-5  | World reserves and production of coal                                 | 294         |
| 10-6  | Import matrix, metals                                                 | 296         |
| 10-7  | World reserves and production of metals                               | 298         |
| 11-1  | Measures of Quality of Life "NNW"                                     | 314         |
| 11-2  | Government final consumption according to purpose                     | 316         |
| 11-3  | Consumption of private nonprofit institutions                         | 316         |
| 11-4  | Adjusted private consumption                                          | 318         |
| 11-5  | Stock of consumer durables and imputed service $\ldots \ldots \ldots$ | <b>3</b> 20 |
| 11-6  | Selected consumer durables owned by households $\ldots \ldots \ldots$ | 320         |
| 11-7  | Stock of social capital and imputed service                           | 322         |
| 11-8  | Value of leisure                                                      | 324         |
| 11-9  | Time budget, adult male, weekdays                                     | 324         |
| 11-1  | 0Automobiles and traffic accidents                                    | 326         |
| 11-1  | 1Loss due to environmental pollution                                  | 328         |
| 11-12 | 2Assets of the nation                                                 | 334         |
| 12-1  | I-O table with environmental aspects, 1990                            | 358         |
| 12-2  | Final demand disaggregated to reflect environmental aspects,          |             |
|       | 1990                                                                  | 369         |
| 12-3  | Import matrix, 1990                                                   | 376         |
| 12-4  | Empirical application of SEEDS(social, economic, and environ-         |             |
|       | mental data set), reconciliation table                                | 380         |

# List of Figures

| 1-1  | Scope of the SEEDS (Social, Economic, and Environmental  |            |
|------|----------------------------------------------------------|------------|
|      | Data Set)                                                | 10         |
| 2-1  | Trends of world population                               | 28         |
| 2-2  | Energy intensity trends by region                        | <b>32</b>  |
| 2-3  | Projection of CO2 emission by region                     | 36         |
| 3-1  | Energy Flow in Japan, 1990                               | 54         |
| 3-2  | Energy consumption per DGP in selected countries         | 82         |
| 3-3  | Energy conservation in industry                          | 84         |
| 3-4  | Fuel efficiency of passenger cars                        | 87         |
| 3-5  | Energy consumption in offices                            | 89         |
| 3-6  | Energy consumption of household durables                 | 91         |
| 3-7  | Insulation of housing                                    | 9 <b>3</b> |
| 3-8  | Sources of Primary Energy                                | 98         |
| 4-1  | Energy consumption by use in selected countries          | 110        |
| 4-2  | Temperature setting of air conditioning                  | 114        |
| 7-1  | Establishing a recycling economy                         | 202        |
| 7-2  | Flow of pulp and resources                               | 206        |
| 7-3  | Flow of used automobiles                                 | 210        |
| 12-1 | Conceptual scheme of Social, Economic, and Environmental |            |
|      | Data Set                                                 | 352        |

# Abbreviations

| ATR: | Advanced | thermal | converter | reactor |
|------|----------|---------|-----------|---------|
|      |          |         |           |         |

| bbl: Ba | rrels |
|---------|-------|
|---------|-------|

- BOD: Biological oxygen demand
- BWR: Boiling water reactor
- C2O: Nitrous oxide
- Cd: Cadmium
- CFC: Chlorofluorocarbons
- CH4: Methane
- CHP: Combined heat and power
- CNG: Compressed natural gas
- CO: Carbon monoxide
- CO2: Carbon dioxide
- COD: Chemical oxygen demand
- Cr: Chromium
- dB: Decibel
- dBA: Decibel A-weighted
- DID: Densely inhabited districts
- EC European Community
- FAO: Food and Agriculture Organization of the United Nations
- FBD: Fluidised bed combustion
- FBR: Fast breeder reactor
- Fe: Iron
- FGD: Flue gas desulphurization
- g: Grams (1g = 0.0353 oz.)

ABBREVIATIONS

| GDP:  | Gross domestic product                                                  |
|-------|-------------------------------------------------------------------------|
| GJ:   | Giga joule                                                              |
| ha:   | Hectares $(1ha = 1km-2)$                                                |
| HC:   | Hydrocarbons                                                            |
| Hg:   | Mercury                                                                 |
| HM:   | Tonnage of heavy metal contained (nuclear spent                         |
|       | fuel)                                                                   |
| IAEA: | International Atomic Energy Agency                                      |
| IEA:  | International Energy Agency                                             |
| IMF:  | International Monetary Fund                                             |
| IPCC: | The Intergovernmental Panel on Climate Change                           |
| kcal: | Kilocalories                                                            |
| kg:   | Kilograms $(1 \text{kg} = 1000 \text{g} = 2.2046 \text{lb.})$           |
| kl:   | Kiloliters $(1kl = 6.29bbl.)$                                           |
| km:   | Kilometers $(1 \text{km} = 0.6214 \text{ml.}0)$                         |
| km2:  | Square kilometers $(1 \text{km}2 = 100 \text{ha} = 0.3861 \text{mi}.2)$ |
| kwh:  | Kilo watt hours                                                         |
| l:    | Liter                                                                   |
| LEQ:  | Equivalent sound level                                                  |
| LNG:  | Liquified natural gas                                                   |
| m2:   | Square meters                                                           |
| m3:   | Cubic meters                                                            |
| mg:   | Milligrammes $(1mg = 10-3g)$                                            |
| MJ:   | Mega joule                                                              |
| Mt:   | Million metric tons                                                     |
| MTOE: | Million tons of oil equivalent                                          |
| Nm3:  | Normal cubic meters                                                     |
| NOX:  | Nitrogen oxides                                                         |
| NO3:  | Nitrates                                                                |
| ODA:  | Official development assistance                                         |
| OECD: | Organisation for Economic Cooperation and                               |
|       | Development                                                             |
| PCBs: | Polychlorinated biphenyls                                               |
| PET:  | Polyethylene terephtalate resin                                         |
| pH:   | Hydrogen power                                                          |
|       |                                                                         |

xxii

#### ABBREVIATIONS

| POM:          | Polycyclic organic matter                    |
|---------------|----------------------------------------------|
| ppbv:         | 1/billion in volume                          |
| ppmv:         | 1/million in volume                          |
| PPP:          | Polluter pays principle                      |
| pptv:         | 1/trillion in volume                         |
| PWR:          | Pressurized water reactor                    |
| SCR:          | Selective catalytic reduction                |
| SOX:          | Sulphur oxides                               |
| st:           | Short tons                                   |
| t:            | Metric tons                                  |
| TFC:          | Total final consumption                      |
| <b>TPER</b> : | Total primary energy requirements            |
| TOE:          | Ton of oil equivalent                        |
| Tons:         | Metric tons                                  |
| UNCED:        | United Nations Conference on Environment and |
|               | Development                                  |
| UNEP:         | United Nations Environment Program           |
| WHO:          | World Health Organization                    |
|               |                                              |

|                  | to kcal (kilo calo   | ries) |                      |                  |                         |  |  |
|------------------|----------------------|-------|----------------------|------------------|-------------------------|--|--|
| Energy source    |                      | Unit  |                      |                  | Heat value (kcal)       |  |  |
| Electricity      |                      | kWh   |                      | (efficiency 38.  | (efficiency 38.1%) 2250 |  |  |
| Petroleum        |                      |       |                      |                  |                         |  |  |
| Crude oil        |                      | I     |                      | 9250             |                         |  |  |
| Benzine          |                      |       | I                    | 8400             |                         |  |  |
| Naphtha          |                      |       | I                    | 8000             |                         |  |  |
| Kerosine         |                      |       | I                    |                  | 8900                    |  |  |
| Jet fuel         |                      |       | I                    |                  | 8700                    |  |  |
| Light oil        |                      |       | I                    | 9200             |                         |  |  |
| Heavy oil A      |                      |       | I                    |                  | 9300                    |  |  |
| Heavy oil B      |                      |       | I                    |                  | 9600                    |  |  |
| Heavy oil C      |                      |       | I                    |                  | 9800                    |  |  |
| LPG              |                      |       | kg                   |                  | 12000                   |  |  |
| Refinery gas     |                      |       | m3                   |                  | 9400                    |  |  |
| Other petroleu   | m products           |       | I                    |                  | 10100                   |  |  |
| Natural gas      |                      |       | m3                   | 9800             |                         |  |  |
| LNG              |                      |       | kg                   |                  | 13000                   |  |  |
|                  | Furnace gas          |       | m3                   |                  | 800                     |  |  |
| Coke oven gas    |                      |       | m3                   |                  | 4800                    |  |  |
| City gas         |                      |       | m3                   |                  | 10000                   |  |  |
| Lignite          | Lignite              |       | kg                   |                  | 4100                    |  |  |
| Charcoal         |                      | kg    |                      | 7000             |                         |  |  |
| Coal             |                      |       |                      |                  |                         |  |  |
| Domestic         |                      | kg    |                      | 5600 - 5800      |                         |  |  |
| Imported cokin   | Imported coking coal |       | kg                   |                  | 7600                    |  |  |
| Imported general |                      | kg    |                      | 6200             |                         |  |  |
| Cokes            |                      | kg    |                      | 7200             |                         |  |  |
| b. Volume        |                      |       |                      |                  |                         |  |  |
| kl               |                      |       | bbl                  |                  | 1000 gal                |  |  |
| 1                |                      | 6.29  |                      | 0.264            |                         |  |  |
| 0.159            |                      | 1     |                      | 0.204            |                         |  |  |
| 3.79             |                      | 2     | 23.8                 | 1                |                         |  |  |
| c. Heat value    |                      |       |                      |                  |                         |  |  |
| MJ               | kwh                  | kcal  | kl                   | TOE              | BTU                     |  |  |
| 1                | 0.278                | 239   | 0.0258               | 0.0239           | 948                     |  |  |
| 3.60             | 1                    | 860   | 0.0930               | 0.0860           | 3412                    |  |  |
| 0.00419          | 0.00116              | 1     | $1.08 \times 10^{7}$ | 10 <sup>-7</sup> | 3.97                    |  |  |
| 0.00415          | 0.00110              | 6     | 1.00 + 10            | 10               | 3.97                    |  |  |

Table A. Conversion tables a. Conversion to kcal (kilo calories)

Note: Converted as 9250kcal per litre, 1 TOE =  $10^7$  cal.

 $9.25 * 10^{6}$ 

107

0.252

 $3.67 * 10^{7}$ 

3.97 \* 10<sup>7</sup>

1

0.925

 $\frac{1}{2.52 * 10}^{-5}$ 

1

1.08

2.72 \* 10<sup>-5</sup>

 $1.08 * 10^{4}$ 

1.16 \* 10<sup>4</sup>

 $2.93 * 10^{-4}$ 

3.87 \* 10<sup>4</sup>

 $4.19 * 10^{4}$ 

0.00155

| Table B. The yen exchange rate |       |        |                               |         | •     |  |
|--------------------------------|-------|--------|-------------------------------|---------|-------|--|
|                                |       |        | (unit: yen per currency unit) |         |       |  |
| Currency                       | US\$  | German | French                        | British | ECU   |  |
| Year                           |       | mark   | franc                         | pound   |       |  |
| 1970                           | 358.1 | 98.20  | 64.78                         | 857.8   |       |  |
| 1971                           | 349.3 | 100.07 | 63.03                         | 850.4   | —     |  |
| 1972                           | 303.2 | 95.08  | 60.04                         | 758.5   |       |  |
| 1973                           | 271.7 | 101.66 | 60.95                         | 666.3   |       |  |
| 1974                           | 292.1 | 112.87 | 60.67                         | 683.2   |       |  |
| 1975                           | 296.8 | 120.63 | 69.24                         | 659.4   |       |  |
| 1976                           | 296.6 | 117.77 | 62.05                         | 535.6   |       |  |
| 1977                           | 268.5 | 115.63 | 54.65                         | 468.7   |       |  |
| 1978                           | 210.4 | 104.77 | 46.63                         | 403.9   | 268.1 |  |
| 1979                           | 219.1 | 119.56 | 51.51                         | 464.9   | 293.0 |  |
| 1980                           | 226.7 | 124.74 | 53.66                         | 527.5   | 315.4 |  |
| 1981                           | 220.5 | 97.58  | 40.58                         | 447.2   | 246.5 |  |
| 1982                           | 249.1 | 102.65 | 37.90                         | 436.0   | 244.4 |  |
| 1983                           | 237.5 | 93.02  | 31.16                         | 360.3   | 211.7 |  |
| 1984                           | 237.5 | 83.46  | 27.18                         | 317.4   | 187.4 |  |
| 1985                           | 238.5 | 81.03  | 26.55                         | 309.2   | 181.8 |  |
| 1986                           | 168.5 | 77.61  | 24.33                         | 247.2   | 165.4 |  |
| 1987                           | 144.6 | 80.47  | 24.06                         | 237.1   | 167.0 |  |
| 1988                           | 128.2 | 72.97  | 21.51                         | 228.3   | 151.7 |  |
| 1989                           | 138.0 | 73.38  | 21.62                         | 226.2   | 152.1 |  |
| 1990                           | 144.8 | 89.61  | 26.59                         | 258.4   | 184.3 |  |
| 1991                           | 134.7 | 81.18  | 23.88                         | 238.4   | 167.1 |  |

Table B. The yen exchange rate

Source: IMF, International Financial Statistics.

## Part I

# What is at Issue

### Chapter 1

# Global Environment and Governance

#### 1.1 AGENDA21 and beyond

The role of the North is indisputable in overcoming the global environmental problem. Industrial development since the 18th century has occurred solely in the North, albeit at varying paces. Rapid industrialization is taking place in the South, but this is a fairly recent phenomenon. Thus, the North is largely responsible for the vast increase in  $CO_2$  emission which resulted, first, from steam engine and iron smelting based on coal and, second, from electric power generation, metallurgy, and automobile transportation. If these remain the key technologies in the global society, environmentally sound development is indeed untenable. But the North also has at its disposal new technology which imposes less of a burden on the global resource base and environment: information technology based on micro-electronics, new materials, and biotechnology are examples. These technologies have emerged in the late 20th century, and they will change the development pattern in the 21st century. It is still true that at a certain stage of economic development, the demand for energy and steel tends to expand very rapidly. But in this field as well, the North has already produced resource-saving technology.

The global community is plagued by wide income differentials, and we have to create a policy scenario which enables us to narrow this gap while

|                          | $CO_2$                                 | $CH_4$ | CFC-11 | CFC-12 | $N_2O$ |
|--------------------------|----------------------------------------|--------|--------|--------|--------|
| Concentration:           | ppmv                                   | ppmv   | pptv   | pptv   | ppbv   |
| pre-industrial           | 280                                    | 0.79   | 0      | 0      | 280    |
| present                  | 353                                    | 1.72   | 280    | 484    | 310    |
| Radiative forcing        |                                        |        |        |        |        |
| per molecule             | 1                                      | 21     | 12400  | 15800  | 206    |
| $(CO_2 \text{ as } 1)$   |                                        |        |        |        |        |
| Lifetime in atmosphere   | 50-200                                 | 10     | 65     | 130    | 150    |
| (year)                   |                                        |        |        |        |        |
| Global warming potential | ······································ |        |        |        |        |
| relative to $CO_2$       |                                        |        |        |        |        |
| 20 years                 | 1                                      | 63     | 4500   | 7100   | 270    |
| 100 years                | 1                                      | 21     | 3500   | 7300   | 290    |
| 500 years                | 1                                      | 9      | 1500   | 4500   | 190    |
| Contribution to          |                                        |        | all (  | CFCs   |        |
| total radiative forcing, | 55                                     | 15     | 2      | 24     | 6      |
| 1980-1990 (%)            |                                        |        |        |        |        |
| Current increase         |                                        |        | all    | CFCs   |        |
| (percent/year)           | 0.5                                    | 0.9    |        | 4      | 0.25   |

Table 1-1 The principal greenhouse gases

Note: The warming effect of an emission of 1 kg of each gas relative to  $CO_2$  based on the present day atmosphere. ppmv=1/million in volume; ppbv=1/billion in volume; pptv=1/trillion in volume.

Source: Data from IPCC Working Group 1.

safeguarding the environment at the regional and global levels.

Discrepancies have widened between convention in macroeconomic accounting and what is relevant to today's society, which is beleaguered by environmental disruption and resource exhaustion. In fact, the whole realm of environmental issue spans such diverse aspects as:

- a. contamination of air, water, and soil;
- b. disposal of industrial and other wastes;
- c. resource depletion;
- d. global warming;
- e. destruction of the ozone layer in the atmosphere;
- f. soil erosion;
- g. deforestation;

- h. endangered species;
- i. urban congestion;
- j. change in land use; and
- k. destruction of scenic beauty, among others.

It is widely recognized that these phenomena are related to economic activities in production, transportation, and consumption. In many cases, economic development invites deterioration of environmental quality in one sense or another. The environmental impact of human activities usually goes unrecorded, whereas an increased level of current production is often used as a measure of socio-economic performance. An accounting system which keeps track of the positive side of economic development while neglecting its negative side is not particularly desirable as it leads to biases in our policy formulation. In order to describe each of these aspects sufficiently, we would need a much wider framework than one which can be adequately dealt with in a single book. I therefore have confined myself to narrower topics, namely (a)(b)(i) and (j), and examined the methodology of establishing linkages between the macroeconomic statistical framework and these increasingly important aspects. Contributing factors to (d) also come within this scope, although global implications cannot be drawn until similar data are made available for the entire world.

It is recognized today that the composition of the earth's atmosphere is a key factor in determining its surface temperature and climate. Solar radiation penetrates the atmosphere and warms the earth, while invisible infrared radiation is emitted by the earth and cools it down. There is increasing concern about the greenhouse effect, in which this radiation is trapped in the atmosphere by trace gases, causing global warming.

Although water vapor is the most important natural greenhouse gas in the atmosphere, man-made additions are believed to have triggered the warming process. These include carbon dioxide  $(CO_2)$ , methane  $(CH_4)$ , nitrous oxide  $(N_2O)$ , and the halocarbons such as chlorofluorocarbons (CFC)s.  $CO_2$  is now seen as contributing 55% to the total radiative force as shown in Table 1-1.  $CO_2$  levels began to rise in the 19th century with the Industrial Revolution, which was realized through greater use of fossil fuels. Methane levels have also been rising since the beginning of the 19th century. There is a feedback mechanism: atmospheric warming brought about by man-made gases increases water evaporation, thus allowing the atmosphere to contain more vapor, and

leading to further warming.

According to an IPCC (the Intergovernmental Panel on Climate Change estimate, the earth's average temperature has risen 0.3 to 0.6 degrees centigrade during the past 100 years, and as a result, the sea level has risen by as much as 10 to 20 cm. It is still being vigorously debated whether this is solely attributable to global warming. However, consensus has been reached in the global community to adopt a 'no-regret' scenario. Rather than wait for scientific understanding of all the factors which may be contributing to these complex phenomena, we had better start adjusting our mode of production and transportation and way of life, which may be resulting in irreversible damage.

In order to avoid global warming, we need to control fossil fuel burning. It would not be practical, however, to put the issue as a choice between growth or no growth, especially when serious income differentials persist in the world.

"Sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs. It contains within it two key concepts:

the concept of 'needs', in particular the essential needs of the world's poor, to which overriding priority should be given; and

the idea of limitations imposed by the state of technology and social organization on the environment's ability to meet present and future needs.

Thus the goals of economic and social development must be defined in terms of sustainability in all countries — developed or developing, market-oriented or centrally planned. Interpretations will vary, but must share certain general features and must flow from a consensus on the basic concept of sustainable development and on a broad strategic framework for achieving it."[The World Commission on Environment and Development, p.43.]

The concept of sustainable development became a central theme at the Earth Summit which took place in Rio de Janeiro in 1992. The world community has accepted the concept as a matter of fact, although policy measures leading to sustainability are far from clearly defined.

The sustainability concept includes a North-South issue, as has been pointed out by the Brundtland report. The South accuses the North, in its industrialization drive since the Industrial Revolution, of using up natural resources and the assimilative capacity of nature, which are the common assets available to human beings. The North accuses the South of destroying the global environment and exhausting natural resources while preoccupied with shortterm economic gains. Centrally planned economies have collapsed, and the East-West confrontation of the Cold War era has been reduced to something resembling the North-South problem.

From a policy point of view, it is imperative to come up with an accurate understanding of the various issues plaguing the world community, such as demographic trend, food production, energy, industrialization, urbanization and lifestyle, poverty and unemployment, capital formation, research and development, international trade and investment, technology transfer, pollution, and global environment, taken individually and, more importantly, as an integral whole. No one can stand outside this vital issue in a world which has become increasingly interdependent.

It is also important to realize that sustainability entails a potential conflict of interest between the present generation and the generations to come. In this respect, both North and South undoubtedly belong to the present generation. They may jointly take advantage of the future generations for their own interest. Future generations will be left with the aftermath of whatever the present generation does today for the sake of betterment of their well-being.

Resource exhaustion in an example. Natural assets (stock) are being transformed into income (flow), part of which is channeled into the formation of tangible capital (stock). On the surface, one type of asset is transformed into another, maintaining the society's portfolio intact. It is also true that endowment of natural resources does not generate income or employment, whereas industrial capital will. But, in the long run, tangible capital stock will wear out or become technologically obsolete. In other words, the formation of tangible capital stock is not necessarily conducive to sustained growth. It must be supplemented by the formation of intangible assets (technology) and human assets (health, education, skill).

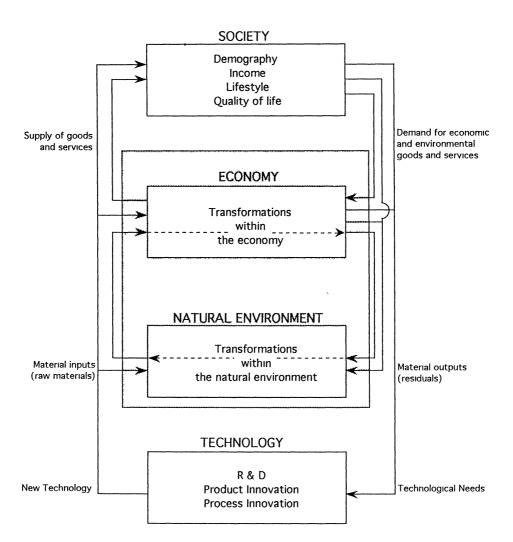
Another example is nuclear energy. Because of the concern today about global warming, a reduction of greenhouse gas emission is being sought. To this end,  $CO_2$  emission has to be contained by restraining fossil fuel burning. Hence, it is concluded, we must increase our dependency on nuclear energy. This will enable both North and South to pursue their immediate policy goals. The other side of the coin is that future generations will inherit nuclear wastes

which will need careful management for a period which exceeds recorded human history. "... The radioisotope plutonium-239, for example, with a half-life of 24,400 years, is dangerous for a quarter of a million years, or 12,000 human generations. And as it decays it becomes uranium-235, its radioactive 'daughter,' which has a half-life of its own of 710,000 years" [Lenssen, 1992, p.50]. The Nuclear Energy Agency observed that "for all reactor types considered the volume of decommissioning waste is about the same order of magnitude as the volume of wastes from their operations during a 25-year period." [Nuclear Energy Agency, 1986, p.34] Although it is true that the amount of decommissioning wastes generated will be small over the next decade, their share of the total wastes will become significant in the future. There are numerous other examples such as the production and consumption of CFCs and other chemicals which generate ozone holes, erosion of soil due to deforestation, etc.

The above observations suggest that the environmental issue poses a real challenge to the governance of the global community in terms of policy agents and policy tools. Is a national government, which is chosen through democratic process but in which future generations are not properly represented, ready to respond to this challenge? Is a national government, which is responsible largely for domestic issues, ready to respond to global concerns? Is the economists' standard tool of cost-benefit analysis, discounting the future income and cost to the present value, still appropriate for this particular challenge? Do we not tend to discount the future rather rapidly? Given the extreme income differentials between the North and the South, how much should we rely on market solutions? Are the market prices still viable indicators of resource allocation where various externalities are involved in international trade of environment resources?

It has been pointed out that the government, caught between the microstandpoint of businesses and pressure groups (small and medium businesses, agriculture, etc.), has become increasingly subject to political constraints. With the liberalization of trade and capital transfer, the influence any one government can exercise on an economy has become limited. Now, the global environmental issue seems to constitute yet another field where the effectiveness of our policy institution is put under strain.

### 1.2 Technology and society in an environmental accounting


Compared with the challenge in front of us, the scope of this book is very modest. But I believe this step is indispensable in describing the environmental issue in operational terms. As it stands today, there is no such framework. It is probably useful to distinguish an accounting aspect of the framework from its use. The accounting framework describes the state of the environment for a particular point in time (environment-related activities within a year, for example). The dynamic change of environment and related activities can be described by time-series comparison of such a framework. One example of indicators which can be derived from the accounting framework would be what is called "Green GNP." The relationship among various variables in the framework can be explained by theory and empirically described by econometric "models." Policy prescription can be arrived at by examining alternative scenarios. The purpose of this book is to suggest one such framework. The relationship among various factors can be formulated as follows:[1]

$$\frac{Z}{A} = \frac{N}{A} \cdot \frac{Y}{N} \cdot \frac{E}{Y} \cdot \frac{Z}{E}$$

where A: geographical area, E: resources (e.g. energy) N: population, Y: income (product), and Z: pollutants.

Thus, environmental limit is definitionally expressed as the multiple of (1) population density, (2) per capita income, (3) resource intensity, and (4) efficiency of resource use.

The follow-up of the Earth Summit at the global, national, and regional levels has to be based on a common framework. The framework should allow aggregation/disaggregation among various aspects of the issue. It should provide a dynamic picture in which the activities today can exert an influence on the future generations. In discussing sustainability, it is essential to have a parallel framework dealing with both monetary and physical magnitudes.



### Figure 1-1 Scope of the SEEDS (Social, Economic, and Environmental Data Set)

Note: The shaded area shows the scope of the UN's Satellite System for Integrated Environmental and Economic Accounting (SEEA). The figure has been adopted from the United Nations [1992] and modified by the present author. One such framework is being proposed by the United Nations. Figure 1-1 presents the scope of the proposed scheme. It consists of establishing linkages between the economy and the natural environment, which is represented by the shaded area in the diagram. The framework, which is called a System of Integrated Environmental and Economic Accounts (SEEA), came out in 1992 in the form of a draft manual, and individual countries are being asked to try it out based on national experiences.[UN Department of Economic and Social Development, 1992]

"Materials/energy balances provide detailed information on the material inputs of an economy delivered by the natural environment, of their transformation and use in economic processes (extraction, conversion, manufacturing, consumption) and their return to the natural environment as residuals (wastes etc.). Their accounting concepts are firmly founded on the first law of thermodynamics stating that matter (mass/energy) is neither created nor destroyed by any physical process. Economic activities can be described as throughputs of materials/energy which do not change mass but which increase unavailable energy (second law of thermodynamics, law of entropy)."[UN Department of Economic and Social Development, 1992, p.115]

A detailed list of the items included in the UN's SEEA is provided in Table 1-2 together with suggested priorities for implementation in developed and developing countries.

The framework consists of three parts:

- (1) Opening stock which describes the state of man-made assets (such as plant and equipment, social facilities, consumer durables, and housing) as well as environmental assets (stock of natural assets such as minerals and forests, the quality of environment including air, water, and soil, and land use).
- (2) Current activities which include investment and consumption in the conventional sense and the use of environmental resources in various respects.
- (3) Closing stock with identical scope as (1) above, with adjustment for losses due to natural disasters, new discoveries, and price fluctuations.

The account covers both monetary and physical spheres as far as possible. It is translated into matrix form, individual entries of which can be further

|     |                                                                         | Physica   | al acc.    | Monetary acc. |            |  |
|-----|-------------------------------------------------------------------------|-----------|------------|---------------|------------|--|
|     | Environmental                                                           | Developed | Developing | Developed     | Developing |  |
|     | issues                                                                  | country   | country    | country       | country    |  |
| 1.  | Use of natural<br>assets (except<br>discharge of<br>residuals).         |           |            |               |            |  |
|     | Depletion of assets                                                     |           |            |               |            |  |
| 1.1 | Biological                                                              | ++        | +++        | ++            | +++        |  |
| 1.2 | Subsoil assets                                                          | ++        | +++        | ++            | +++        |  |
| 1.3 | Water                                                                   | +         | +++        | ++            | +++        |  |
| 1.4 | Degradation of land<br>and landscape<br>Restructuring<br>(urbanization, |           |            |               |            |  |
|     | changes in land<br>use)                                                 | +++       | +++        | ++            | +          |  |
| 1.5 | Agricultural<br>use (soil<br>erosion)                                   | +         | +++        | +             | +++        |  |
| 1.6 | Recreational use                                                        | ++        | +++<br>++  | ++            | +++        |  |
| 2.  | Product flow                                                            |           |            |               |            |  |
| ۷.  | analysis                                                                | +++       | +          | +             | +          |  |
| 3.  | Discharge of<br>residuals                                               |           | I          |               | I          |  |
| 31  | Waste and land                                                          |           |            |               |            |  |
|     | contamination                                                           | +++       | +          | ++            | ++         |  |
| 3.2 | Waste-water                                                             | +++       | ++         | ++            | ++         |  |
| 33  | Air pollution                                                           | +++       | ++         | ++            | ++         |  |
| 4   | Actual environ-<br>mental costs                                         |           |            |               |            |  |
| 4.1 | Environmental protection                                                |           |            |               |            |  |
|     | activities                                                              |           |            | +++           | ++         |  |
| 4.2 | Damage costs                                                            |           |            | ++            | +          |  |

### Table 1-2 The scope of the SEEA

Note: +++ high priority, ++. medium priority, + low priority.

Source: United Nations [1992], p 56f.

disaggregated as the need develops. Environmental and economic changes over time can be described by a time series of such accounts.

In order to better suit the spirit of UNCED AGENDA 21, it is proposed to expand the SEEA in several ways. The framework here is wider in its scope than the ones presented above in explicitly focusing on (1) the social or human aspect and (2) the technology factor in addition to the interaction between (3) the economy and (4) the natural environment.

The human aspect is an important factor in the global environmental crisis, and may also prove important in finding a solution to the problem. This group of variables includes demography, income, lifestyle, and quality of life, among others.

Technology relates to the way in which the economy, environment, and society interact. We should note that technology has been changing over time, sometimes aggravating the environmental impacts of human activities and sometimes alleviating them. It is increasingly important to keep a watchful eye on the direction of technological change. The guiding principle has to be 'no regret' for future generations.

Focus on the human or social aspect has been stressed in AGENDA 21. It has been made clear that the primary objective of the effort should be placed on protecting human life and opening up human options. The proposed framework already spells out the household sector more explicitly than conventional economic accounts, both in terms of monetary and physical measures.

In order to describe the state of human welfare more explicitly, however, we should add another account with regard to the services of housing, consumer durables, and social capital stock (schools, medical facilities, transportation, etc.). Figure 1-1 makes this point. The SEEA is a framework focusing on the interaction between the economy and the natural environment. In contrast, the framework which is proposed here has two additional dimensions, social aspect (demography, income, lifestyle, quality of life, etc.) and technological aspect (research and development, process innovation, product innovation, pollution abatement, energy conservation, technology transfer, etc.).

Environmental damage such as degradation of air, water, and soil, exhaustion of resources, emission of greenhouse gases, etc., will have to be deducted from the total value added. Household production will have to be added in. Such a framework has been tested in some countries including the USA and Japan. Private consumption in the conventional sense will have to be categorized by its purpose, such as education, health, energy, transportation, waste disposal, recreation, etc., and collective consumption will also have to be subdivided in order to provide an overall picture of resource allocation pertinent to the quality of life. Changing "lifestyle" is an important facet of social structure which can be captured in this framework in operational terms. As a matter of fact, this aspect is already included in the current version of the SNA, but its implementation is lagging in most countries. If this is done, then we can start discussing the state of the environment stock, the educational stock and health stock of a nation together with the more conventional housing, consumer durables, and productive capital stock.

The technology aspect is also explicitly included in the framework. It is very important in discussing the environment because existing practice varies drastically among nations, suggesting an enormous potential for improvement based on existing technology alone. New technologies can help in drastically reducing the input of energy and output of pollutants per unit of production, while not curtailing the production potentials and quality of life. This is pertinent to production technology, transportation, pollution prevention, energy transformation from primary to secondary and to final use, among others. Since the accounting framework is close to that of input-output tables as far as its production sphere is concerned, the input structure of a specific industry comes close to describing the production technology of the sector in question. This is also where monetary variables can be compared directly with physical variables.

Policy tools have to be embedded in the framework. It becomes necessary to provide appropriate incentives which reflect the correct value of the environment in order to influence individual decision-making. This may take the form of the carbon tax, subsidies, or anything else deemed appropriate from the theoretical point of view. The proposed framework, just like the existing input-output framework, is capable of incorporating such policy tools because it distinguishes indirect tax and subsidies for individual sectors, in addition to inputs of capital and labor in the production processes. Since the framework is consistent with existing economic accounts, one can derive a fiscal balance (revenues vs. expenditures), trade balance (exports vs. imports), and savinginvestment balance. The sectoral demand-supply gap can also be calculated. This will help identify feasible policy packages and unrealistic ones.

Lastly, the global aspect is encompassed in the framework. This can be achieved by linking country accounts by trade matrices pertinent to environmental issues. Examples are forest products, fossil oil and gas, and mineral resources. Such matrices are readily available from the UNSO. Country accounts will have to distinguish the use of environmental resources from domestic and foreign sources. Economic activities in one country may result in the depletion of environmental resources in others through international trade. Exporting of resources, on the other hand, may enhance income levels in the current period while exhausting future income. In the same vain, the international flow of financial resources in the forms of official development assistance (ODA) and direct foreign investment may be captured and integrated among the sources of financial resources available to a particular country.

### 1.3 Mapping AGENDA21 in the proposed framework

Various issues spelled out in the UNCED AGENDA 21 will have to be fitted into the proposed framework, which is composed of integrated environmentaleconomic accounts, trade matrices, and quality of life accounts. Depending on the issue, more detailed accounts may be needed to provide vivid pictures, but this can be treated as part of the matrix being disaggregated further and would not invalidate the integrity of the conceptual framework. Some missing links will have to be filled by statistical data and/or scientific research.

Data pertinent to individual countries will have to be prepared together with the ones on global resource endowment, etc. There is a large body of published data, although the sources are widely scattered. In some cases data are not readily available, and a temporary solution would be to fit comparable ones from neighboring countries or from industrial averages, etc.

Policy analysis can then be conducted regarding the sustainability of the global environmental resource base and the sustainability of the quality of life, two major issues spelled out in AGENDA 21. This can be done for a single country, for a group of countries (Asia, Africa, Latin America, Middle-East; developed vs. developing), or for the global community as a whole.

Some major items taken up in the UNCED AGENDA 21 are listed be-

low together with their possible treatment in the proposed framework. They constitute the most important research topics as well as being urgent policy issues.

(1) The definition and measurement of sustainable development: The sustainability concept is examined from two perspectives in the proposed framework: the sustainability of the global environmental resources and the sustainability of quality of life. For the former, existing environmental stock or assets are explicitly recognized both in physical and monetary terms. Socioeconomic activities use up environmental assets in various forms, such as energy consumption, degradation of air and water, and transformation of forests and grass land into urban-type uses. Thus, the framework treats man-made assets and natural assets in a consistent manner.

For the latter, household assets (stock of consumer durables and housing) and activities (both marketed and nonmarketed) are included. The services rendered by social capital stock are also recorded. Damages attributable to environmental degradation are measured based on actual damage cost or on imputation and included in the framework. Thus, rather than looking at the level of current consumption alone, the framework describes a multifaceted "quality of life". The methodology has its precedence in such approaches as measures of economic welfare, social indicators, and total consumption of the population.

(2) Integrating the environment and development in decision-making: One of the serious drawbacks of conventional measurement of macroeconomic performance is that it does not recognize the fact that the growth in the current period is sometimes realized through depletion and/or degradation of environmental assets . Such "growth" is not sustainable. The proposed framework avoids pitfalls such as this by explicitly taking into account reproducible tangible wealth (structure and durable equipment), natural resource wealth (the stock of mineral, forest, water, climate assets), human wealth (the stock of skills, knowledge, and health), and reproducible intangible wealth (the stock of technology). Resource allocation such as government expenditures and personal consumption is reclassified according to purpose (education, health care, and research are examples), making some of the items "investment" in a wider sense.

From the point of view of the environment, activities which have been ne-

glected in the conventional economic accounting need to be recognized explicitly. Take, for instance, the household sector which typically accounts for 1/3of total energy consumption and 1/2 of transportation. For this reason alone, housing conditions, the stock of automobiles owned by the household sector (which in a conventional framework appears as a part of current consumption only), and other durable goods warrant a more appropriate treatment. This, incidentally, makes the account more consistent, contributing to more socially sound decision-making.

(3) North-South interaction and sustainable development: The proposed framework is first developed for individual countries which are then linked internationally through trade matrices. The trade matrices reveal importers and exporters of different commodities including, for example, wood products, energy, and metals. Thus, for instance, if the North consumes natural resources which are balanced by imports, the repercussion can be traced across national boundaries. On the side of the exporters, this will generate production and create employment, while the stock of environmental resources will be depleted. There may be other unintended consequences, such as soil erosion, flooding, and damage to biodiversity.

International linkages of the framework will also enable examination of the consequences of economic growth. While this will certainly improve the income levels of the population involved, it will undoubtedly be accompanied by environmental consequences, unless efficiency is increased at the same time. With an explicit inclusion of production technology in the proposed framework (i.e., represented by the input structure similar to the input-output tables), the effect of shifting to a more efficient technology can be demonstrated in a consistent manner. The case for technology transfer can be made more persuasive.

(4) Poverty, demographic dynamics, and sustainability: The framework pertaining to the quality of life can be appropriately disaggregated by income bracket, age bracket, or geographic area (urban-rural, for example), according to the purpose of the analysis. The proposed framework focuses on production spheres, although it is extended to include wealth of various kinds, as we have seen above. The production sphere is disaggregated to industrial sectors and can be linked with industry-occupation matrices, establishing linkages with employment and income generation. On the other hand, the supply of labor can be determined in a demographic model which explains the population pyramid and labor force participation based on various socioeconomic variables. For example, it is generally agreed that a higher income is conducive to a lower fertility rate. It is proposed that government expenditures and private consumption should be classified by purpose such as health care and education, the benefit of which accrues differently according to age bracket. Thus, the framework provides a basis for analysis in tracing economic growth, demographic dynamics, and life styles with repercussions on the environment.

(5) The development of sustainable human settlements: The use of land for various purposes are recorded in the proposed framework together with the transformation for different purposes. The cases in question include forests, farm land, and reclaimed land which are turned into residential area, industrial sites, roads, and other social facilities.

Land and trees are treated in the conventional economic framework as forms of assets and are measured in monetary terms. For sustainable human settlement, land and natural environment have to be assessed from the point of view of habitat and have to be measured in physical terms (land area, for example). Quality of life is treated in items (1) and (2) above. Human settlement is the ultimate goal of our socioeconomic activities and will be the central theme of the proposed framework.

(6) Environment, water, and health: Air, water, and soil are affected by various pollutants, harming human health. Efforts have begun to remove such pollutants by retrofitting plant and equipment or by shifting to new production technology, which can be accommodated in the proposed framework by including capital formation and capital stock (which is the treatment capacity when measured in physical terms) for such purposes. In the case of industrial and household wastes, recycling and/or incineration is a possibility. Use of water can also be treated in the proposed framework.

However, health is a complicated problem to be dealt with within an aggregated framework such as the one presented here.

(7) Biodiversity, biotechnology, and sustainable agriculture: This topic is outside the scope of the proposed framework. The only possibility is to examine production technology in agriculture, especially with regard to its inputs such as fertilizers, pesticides, agricultural machinery, etc., and their biological impact will have to be dealt with separately.

(8) New directions in international environmental governance: With explicit recognition of environmental assets, the proposed scheme will serve as a common frame of reference. The accounts for individual countries will have various environmental assets as well as their consumption for domestic socioeconomic purposes or for export. The framework will thus reveal a sort of trade-off between current income (via production) and future income. International linkages are revealed by trade matrices which record the value and physical quantity of transactions. The price may or may not be "fair" from an environmental perspective, although it may have been established in the market. In other words, the market mechanism is not well suited to accommodate the externalities which characterize environmental spheres. Theoretical prices can be fitted into the proposed framework by replacing the current input structure by a hypothetical one in order to examine interindustry repercussions.

(9) Industrial metabolism: The driving engine of our economies has shifted from agriculture to manufacturing and then to services. Among services, production of knowledge itself has become of ultimate importance. Also gaining importance are the quality-of-life-related activities such as recreation, education, and health care.

It is widely recognized that such socioeconomic change carries with it various environmental implications. If scarce factors tend to dominate the rules of the game, then the industrial North has shifted from the age of capital and energy dominance to an information-oriented one, while the less developed world is passing through the industrialization phase or just entering it. If industrialization is the key to higher income levels, as has been witnessed through historical experience, it is only natural that the less developed South would aim at industrialization.

The only problem is that, if the South succeeds in achieving the level of affluence (and wastefulness) of the North, our planet Earth cannot support it. Given the tremendous income differentials which prevail today, we have to agree that zero growth is not an answer. The fact remains, however, that continuation of the present course of development only aggravates the problem. A transfer of income from the North to the South is only part of the answer. The ultimate solution would have to come through transforming the societies in the North into environmentally compatible ones. It is ironic to see that most affluent economies and most technologically advanced ones have yet to grasp these hard facts. It seems important to start sending correct signals to producers and consumers, ones which reflect the true environmental values accompanying various socioeconomic activities. At the same time, we should not resort to some kind of rigid bureaucratic guidance. It seems important to utilize the market signals which have proved to be so powerful in guiding individual motives. The prices, however, would have to be set to reflect environmentally sound values.

Based on the proposed framework, various policy schemes can be tried, including carbon tax and subsidies to pollution prevention activities. This can be done by inserting hypothetical values in the value-added sphere of the framework, which include subsidies and indirect taxes in addition to returns on labor and capital.

(10) Energy and sustainable development: Some of the energy resources are recorded in the form of subsoil environmental assets, which enter the economic sphere through mining activities and are either consumed domestically or exported. Primary energy sources including fossil fuels, hydro-, nuclear, and nonconventional energy (solar, wind, etc.) are either used directly for various socioeconomic purposes or converted to secondary energy. The entire flow of energy conversion and consumption (industry with sectoral breakdown, transportation by different modes, and various household uses) can be traced within the proposed framework.

Different energy sources have different environmental implications. It is well known that the burning of fossil fuels will result in an output of  $CO_2$ , possibly leading to global warming. Nuclear energy is free from the emission of greenhouse gases but entails a huge cost in processing and disposing of radioactive wastes at the backend. What is more, the environmental impact of radioactive waste is still under serious discussion, to say the least.

One last question is whether to try to cope with the ever growing demand for energy by increasing the supply capacity or to restrain the demand in the first place. New technologies are emerging which are more energy efficient. The cases in question range from production technology to transportation and household appliances.

Also, a case can be made for changing lifestyles as reflected in consumption patterns, time-use patterns, and diffusion of various household durable goods including automobiles.

(11) Critical environmental zones and fragile ecosystems for sustainable development: This item is outside the scope of the proposed framework. The only possibility is to distinguish critical environmental zones within the land use statistics. One such example is recording the transformation of land from farming, forest, and water surface into various urban (residential, industrial, public facilities, leisure facilities, among others) and rural-type (agriculture and forestry) uses. Another possibility would be to utilize Landsat data over time and trace a dynamic process involving urbanization /industrialization and land use. The analysis in this case can entail the spatial dimension of the shift in land use.

### 1.4 Virtue of the framework

The proposed framework, when fully implemented, will have the following characteristics:

(1) It provides a consistent picture linking economy, environment, people, and technology.

(2) Supplementary information, such as industry-occupation matrices, will further provide leads to measure employment impact upon shifting to an alternative growth path.

(3) The time series of such a framework will provide a dynamic picture. It can describe current activities and stock in economic and environmental spheres.

(4) It establishes linkages between monetary variables and physical variables.

(5) One can also derive quality-of-life from the identical framework, without disturbing the integrity of the accounts. This can be further disaggregated by region (urban-rural), income brackets, age brackets, etc.

(6) More specialized in-depth study in various fields can be fitted into a comprehensive framewrok.

(7) It incorporates technological change. It will enable us to examine, for instance, the effect of transferring more efficient or environmentally sound technology into an economy. The cost of such technology transfer can also be identified. (8) It is policy oriented. It is able to describe the impact of policy incentives such as carbon tax on an industrial sector level, on a national level, as well as on a global level. It will also enable us to distinguish resource allocation by social purpose such as pollution abatement, energy conservation, education, health, etc.

(9) It has been developed with an intensive exchange of views within academic circles in economic and social spheres, and theoretical/statistical integrity and feasibility are guaranteed.

(10) The framework is already being implemented in some countries.

In the following chapters, we shall examine various aspects of interaction among the natural environment, economy, quality of life, and technology.

The final chapter contains an integration of the various aspects into a consistent framework. Based on the pieces of information examined in the previous chapters, a reconciliation table is derived for two points in time, namely 1970 and 1990. Existing statistical data are not intended to be a part of such an integrated system, and there remain considerable inconsistencies regarding conceptual definition, coverage of the data, and so on. However, even with these limitations, the prototype fulfills at least two purposes.

One is to demonstrate the feasibility of the proposed integrated framework. In this regard, the prototype will be of instrumental value in showing where the gaps exist with regard to definition, data availability, etc.

Second, the prototype tables based on empirical data are of considerable interest in shedding light on the use of the environment as a resource base and sink, resource allocation aimed at enhancing human aspiration and environmental maintenance, economic and environmental aspects of quality of life, and the roles of technology in moderating the potentially acute collision between economic development and environment.

It is hoped that, with the completion of a similar statistical information system among various members of the international society, it will become possible to establish linkages among them through the international flow of goods, direct investment, and technology so that sustainability of the global community as a whole can be analyzed.

### FOOTNOTES

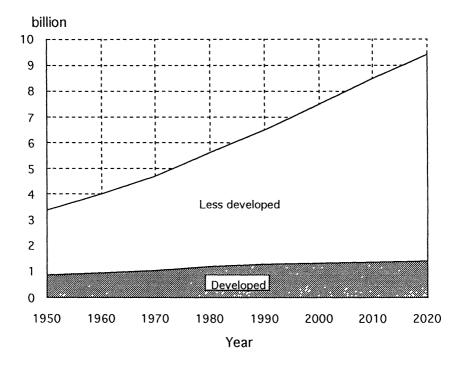
[1] Similar formulation is due to Commoner [1970] who expressed the environmental pollution in terms of three factors including population, per capita production, and pollution factors per unit product.

## Part II

# **Energy and Environment**

## Chapter 2

## **Environmental Options**


#### 2.1 The background

This chapter looks into the policy options available to us that will maintain the quality of the earth's environment intact while permitting economic benefits to grow. We believe growth is needed, especially in those regions where productive capacity is kept low due to insufficient development or serious disruption from economic transition.

Environmental disruption can thus be envisaged as excessive use of environmental capital and is attributable to various causes. We have seen in Chapter 1 that the relation among them can be formulated as follows:

- (1) Population density : Environmental pollution occurs where human habitation is dense. In sparsely populated areas, or when the global population was small, the output of gases, wastes, etc. was absorbed by Mother Nature.
- (2) Environmental pollution accompanied industrialization. Modernization and improvement in the quality of life were made possible through increased industrial production and higher incomes. This process, however, was accompanied by an increased 'production' of unwanted gases, wastes, and polluted water.
- (3) Pollution also depends on the resource intensity of economic activities. In other words, the magnitude of hazardous outputs depends on the industrial structure and pattern of household consumption.

#### Figure 2-1 Trends of World population



Source: United Nations estimate (revised 1990), medium case

(4) Pollution prevention and energy conservation also count. Polluting gases, wastes, and water can be removed by proper provision of pollution prevention facilities A shift to nonpollution processes instead of the conventional mode of production also helps.

The world population today stands at 5.4 billion (estimate for mid-1991), of which 4.1 billion (77%) reside in less developed countries and 1.2 billion (23%) in developed countries. It should be noted that, of the annual population

growth amounting to about 100 million, 95% occurs in less developed areas. In the year 2000, the world population is projected to reach 6.3 billion, of which 5.0 billion will be found in less developed areas and the remaining 1.3 in developed areas. By 2025, it will have increased to 8.5 billion, of which 7.2 billion will be in less developed areas. This amounts to 84% of the world total (Figure 2-1). In many less developed countries, the rate of population growth exceeds 2% per annum, enough to double the population size every 35 years. It is imperative to restrain the growth of population. According to past experience, however, turning points in population growth only occurred as a result of industrial growth, urbanization, higher income, and higher literacy.

As for per capita income, which is the second term in the above formulation, we notice enormous differentials among countries (Table 2-1). No one can deny the imperative need to improve the economic conditions of the major part of the world community. If the catching up does take place, the impact of human activity will certainly exceed what the global environment can accommodate. This is the basic dilemma with which we are confronted.

This brings us to the examination of the third and fourth terms in the above formulation. There are considerable differentials among the countries of the world regarding energy efficiency and emissions of greenhouse gases (GHGs). Table 2-2 makes the point.  $CO_2$  emission per GDP (kg/US\$) ranges from 0.11 recorded for France and Japan to 1.58 in China and 1.78 in Poland. Emission per capita (t/person) ranges from 0.19 for India and 0.52 for China to 5.79 in the USA.

What is more, the differentials seem to be widening over time. Figure 2-2, which depicts the energy intensity of GDP in recent years, shows that the world as a whole has become increasingly energy efficient. In developed countries, the amount of energy (in petroleum equivalent) required to produce 1000 dollars worth of GDP has declined from 0.45 tons in 1970 to 0.33 tons in 1989. In contrast, in developing countries, it has increased from 0.50 tons in 1970 to 0.56 tons in 1989, which is about 1.7 times larger than in the developed world. The situation in the formerly planned economies seems even worse, although evaluation of GDP in world prices is quite difficult.

If the present trend continues, it is estimated that  $CO_2$  emission would amount to 12.4 billion tons of carbon equivalent in the year 2025 as compared with 5.2 billion tons in 1985 (Figure 2-3). Of this total amount in the year

| Country        | GNP per capita      | Population growth, |
|----------------|---------------------|--------------------|
|                | US <b>\$</b> , 1988 | average of '85-'90 |
|                |                     | %                  |
| Mozambique     | 100                 | 2.65               |
| Ethiopia       | 120                 | 2.67               |
| Nigeria        | 290                 | 3.30               |
| China          | 330                 | 1.45               |
| India          | 340                 | 2.07               |
| Pakistan       | 350                 | 3.44               |
| Indonesia      | 440                 | 1.93               |
| Egypt          | 660                 | 2.39               |
| Thailand       | 1,000               | 1.53               |
| Mexico         | 1,760               | 2.20               |
| Poland         | 1,860               | 0.65               |
| Malaysia       | 1,940               | 2.64               |
| Brazil         | 2,160               | 2.07               |
| Hungary        | 2,460               | (-)0.18            |
| Korea          | 3,600               | 0.95               |
| Saudi Arabia   | 6,200               | 3.96               |
| Singapore      | 9,070               | 1.25               |
| Australia      | 12,340              | 1.37               |
| U.K.           | 12,810              | 0.22               |
| Italy          | 13,330              | (-)0.03            |
| France         | 16,090              | 0.35               |
| Denmark        | 18,450              | 0.08               |
| Germany (West) | 18,480              | 0.10               |
| U.S.A.         | 19,840              | 0.81               |
| Japan          | 21,020              | 0.43               |

Table 2-1 Per capita GNP and population growth

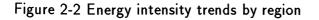
Note: Data from United Nations, World Population Monitoring 1989; World Bank, World Development Report 1989

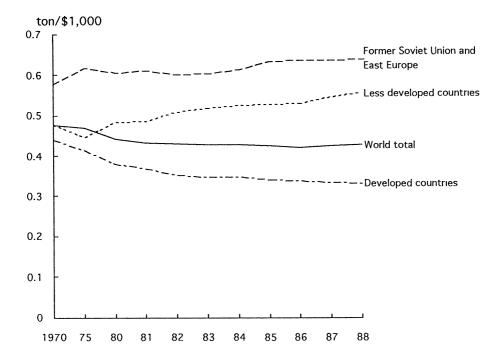
2025, 44% would be attributable to less developed countries, considerably larger than the recent figure of about 26%.

From an egalitarian point of view, which is reflected in the emission per capita, the developed world is consuming too much energy and depriving the less developed world of their chance for growth. From a technological point of view, which is reflected in emission per GDP, overburdening of the global environment is attributable to less efficient technology in the less developed world, especially when we consider the larger growth potentials there. A part of such differentials is attributable to natural factors such as climatic conditions in particular regions. Obviously, in colder regions human habitation requires a much larger energy consumption for heating. But a larger portion is due to different technological practices. As a world community as a whole, we are being pressured to find a way of allowing economic development to take place in a more resource-efficient way.

In order to avoid global warming, we need to control fossil fuel burning. It would not be practical, however, to put the issue as a choice between growth or no growth, especially when serious income differentials persist in the world.

#### 2.2 Policy options for the global community


Choices open to the global community seem to include the following:


- (1) Nuclear option,
- (2) Solar option,
- (3) High-tech option,
- (4) Lifestyle option, and
- (5) Structural option.


In the following, we examine the feasibility of each of them from technical as well as socio-political points of view.

Nuclear option: Faced with a growing demand due to the rapid growth of some of the developing economies, on top of the continued growth of the developed economies, the demand for energy and other resources will continue to grow. Formerly planned economies are now going through a period of restructuring and are suffering from the adjustment they have to go through, but they are expected to start catching up. Although there seems to be room for improvement of efficiency in energy and resource use in these countries, the total demand will continue to grow in the long-run. If we take growing demand for granted and try to cope with the situation from the supply side, we are tempted to try the nuclear option.

Incidentally, this is believed to be the most economical. Japanese data on the cost of electric power generation is as follows [Institute of Energy Economics, 1990, pp.443-444]:







Source: Economic Planning Agency, World Economic White Paper, 1990

|                   | Construction cost | Power generation cost |  |
|-------------------|-------------------|-----------------------|--|
|                   | (per KW)          | (per KWH)             |  |
| Hydro             | <b>¥</b> 640,000  | ¥13                   |  |
| Petroleum thermal | ¥£190,000         | ¥11                   |  |
| Coal thermal      | ¥£230,000         | <b>¥</b> 10           |  |
| LNG thermal       | ¥£200,000         | ¥£10                  |  |
| Nuclear           | ¥€310,000         | <b>¥</b> 9            |  |

In the case of nuclear power, cost increase including fuel fabrication and reprocessing is assumed to rise 0 to 0.1% annually. The cost of decommissioning the nuclear power plant is included in the generation cost and estimated at about 0.2 yen/KWH based on a report by the Nuclear Branch of the Comprehensive Energy Council (Sogo Enerugi Chosakai) in 1985. Decommissioning a plant of the 110,000 KW class is estimated to cost 30 billion yen in 1984 prices.[1]

The fuel cycle of a nuclear power plant consists of three main stages [NEA, 1985, p.20]:

- (1) the so-called front-end which extends from the mining of uranium ore until the delivery of fabricated fuel elements to the reactor site;
- (2) fuel use in the reactor, where fission energy is employed to produce electricity; and
- (3) the so-called back-end, which starts with the shipping of spent fuel to away-from-reactor storage and ends in the final disposal of reprocessing wastes or of the spent fuel itself.

A report by the Nuclear Energy Agency writes, "The cost of the decommissioning option may be a very important factor. At the end of the plant operations, the immediate dismantling of the facility (Stage 3, i.e., removal of all contaminated equipment and structures) would require a much larger expenditure than would be needed to accomplish Stage 1 (i.e., continuing surveillance and maintenance) only. If funds have been set aside for decommissioning during plant operation, then the immediate cost may be less important. The situation is different if the decommissioning has to compete for funds with the owner's other capital needs. Although the prediction of future decommissioning costs involves large uncertainties, plant owners should plan the financing of the chosen decommissioning alternative so that this item does not become a controlling factor." [NEA, 1986, p.19]

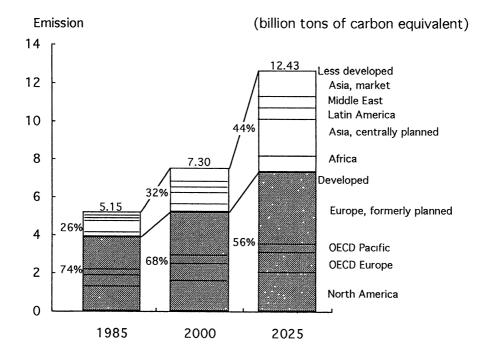
"Decommissioning of power reactor generates significant quantities of lowlevel waste from neutron-activated materials and from the surface contaminated materials. A small amount of intermediate-level waste comes from the reactor and its internals. Considering the total radioactivity of decommissioning waste, it should be noted, however, that more than 90 per cent of the radioactivity in a reactor at shutdown is contained in the spent fuel element which will be removed and generally shipped off-site." Based on estimates from

| Country        | Fossil fuel (share, %) | Emission   | Emission   |
|----------------|------------------------|------------|------------|
|                |                        | per GDP    | per capita |
|                |                        | (kg/US \$) | (t/person) |
| World total    | 5,888.8 (100.0)        |            | 1.15       |
| United States  | 1,426.2 (24.2)         | 0.29       | 5.79       |
| Soviet Union   | 1,101.9 (18.7)         |            | 3.86       |
| China          | 569.7 ( 9.7)           | 1.58       | 0.52       |
| Japan          | 276.1 (4.7)            | 0.11       | 2.25       |
| Germany (West) | 200.1 ( 3.4)           | 0 18       | 3.25       |
| United Kingdom | 168.5 ( 2.9)           | 0 23       | 2.95       |
| India          | 157.5 ( 2.7)           | 0 57       | 0.19       |
| Canada         | 132.4 ( 2.2)           | 0.30       | 5.10       |
| Poland         | 124.4 ( 2 1)           | 1.78       | 3 29       |
| Italy          | 117.5 ( 2.0)           | 0 15       | 2.04       |
| France         | 100 3 (1.7)            | 0.11       | 1.79       |
| Germany (East) | 87.5 (1.5)             |            | 5.25       |
| Netherlands    | 63.9 (1.1)             | 0.30       | 4.33       |
| Korea          | 53.7 (`0.9)            | 0.36       | 1.28       |
| Spain          | 52.5 (`0.9)            | 0.17       | 1 35       |

Table 2-2 World CO2 emission due to fossil fuel burning

Note: Emission data are in terms of carbon. Emission data are estimates for 1988, and may not be accurate due to statistical concepts and the methods of data compilation.Original sources of data are United Nations, etc.

Source: Environment White Paper, 1991, Overview, p 14.


Canada, FRG, Sweden, and the USA, the report writes that "for all reactor types considered the volume of decommissioning waste is about the same order of magnitude as the volume of waste from their operation during a 25-year period." [NEA, 1986, p.34]

"After removal from the reactor, the spent fuel will normally be cooled in ponds at the reactor site and may be transferred for a period to an interim store. After a period of cooling the fuel assemblies may be encapsulated directly or may be disassembled using remote handling techniques so that the fuel pins can be packed together more closely prior to encapsulation. The encapsulated fuel in appropriate containers can be disposed of in a range of ways paralleling those for the vitrified high level waste from reprocessing. The most elaborate plan is that which has been put forward by Sweden, which involves disposal of the containers in deep rock formations. They will be embedded in a buffer material which will prevent any flowing ground water coming into contact with the container." [NEA, 1985, p.34] The time lag from the time of decommissioning of the plant to completion of waste disposal is generally assumed to be 40 years or longer. [NEA, 1985, p.86] Compared with the front-end cost, the back-end cost may amount to about 38% based on data provided by NEA [1985, p.62].

Apart from the fear of nuclear accidents and public resentment, there seems to be large economic cost to be incurred at the back-end.[2] Since the whole process takes quite a long time to complete, inflation may intervene as it did in the past, and if it does, financing of decommissioning may become a managerial headache. A question remains of whether the cost advantage of nuclear energy as presented above is realistic. At the same time, there are great uncertainties involved in the decommissioning of plants, giving rise to a wide ranging cost calculation. In areas where earthquakes and faults abound, disposal of the encapsulated fuel may also pose a serious problem.

We have examined the nuclear option as an alternative to increased fossil fuel burning, and the guiding principle was 'no regret' for the future generation. Judged against this principle, the nuclear option seems to create another source of regret in an attempt to escape from the one involving continued  $CO_2$ emission and global warming.

Solar option: From the "hydrocarbon hill" to the "solar plateau" was the basic scenario in IIASA's prospectus on eco-restructuring.[Ayres and IIASA, 1990] In fact, many people put great hopes in solar energy as a typical case of the soft-energy path. People clearly prefer increased use of renewable energy such as solar. Sunlight will strike the earth at an almost constant rate far into the future, regardless of human activities. Converting sunlight into electricity would not upset the global environment. And such technology is becoming available as the efficiency of photovoltaic cells improves and its cost declines. Solar energy on the earth's surface has a rather low energy intensity of about 1KW per square meter, and its usefulness is limited by climatic conditions. However, it is clean, renewable, and immense. Its use as a heat source is already widespread in heating and cooling. In Japan, there are about 330,000 units of solar system and 4,000,000 units of solar heater for household use. Photovoltaic cells convert solar energy directly into electricity. Around 70% of the cells are currently used for calculators and watches, and the remaining 30% are for electricity generation which is used as the power source for street



#### Figure 2-3 Projection of CO2 emission by region

Note: Data refer to energy-originating emission only. Source: IPCC.

lamps, lighthouses, etc If they become available at a lower cost, the market is expected to spread to various household and social facilities.

The fact remains, however, that solar energy alone will not be able to serve as the alternative to fossil fuels because of its low energy intensity. "The solar plateau" in IIASA's document in reality refers to various nonfossil energy sources.

High-tech option. We need to explore the possibility of technological change, both at the micro-level where energy efficiency is attained through improved

#### ENVIRONMENTAL OPTIONS

production processes and at the macro-level where it is attained through structural changes of the economy. The latter is often termed as a shift from smokestack industry to high-tech and services. Also important is to consider lifestyle options. This aspect pertains to household activities and transportation, often calling for the development of new technologies.

In response to the energy price hike in the early 1970s, industries reacted by improving the efficiency of their energy use. Figure 3-4 in the next chapter shows the case in Japan. In the iron and steel industry, the energy input per unit production has declined to 80.8 percent during 1973 and 1989 (fiscal year). This is attributable to improvement in plant operation, improvement in the production processes, recovery of waste heat and efficient use of energy. Introduction of a continuous casting process, power generation by blast furnace top gas pressure, and dry fire extinguishing of coke are concrete examples. In the case of ethylene production in the petrochemical industry, recovery of waste heat and rationalization of production processes such as high-efficiency compressors were the contributing factors. In cement production, introduction of the new suspension preheater kiln (NSP) and medium-to-low temperature waste heat power generation were the typical improvements. In the paper and pulp sector, introduction of a continuous production process, recovery of waste heat, increased use of recycled paper, and improvement in the production processes convoluted to energy conservation.[3]

More secondly, however, the leading sector of the economy has shifted from heavy industry to services and information. With energy conservation and structural shift in manufacturing on the one hand and higher levels of consumption and transportation activities on the other, a new approach is required to attain economy-wide energy efficiency.

Examples are co-generation (energy efficiency can reach 75% compared ...ith 35% in the conventional method)[4], power generation combined with refuse incinerator, use of heat generated by waste incineration and power stations; recovery of energy from LNG; recovery of waste heat from the subway system, underground power cables, and river water, among others. Better insulation of houses and offices should also help.

Lifestyle option: Quality of life depends on the available stock of consumer durables, housing, and other social stock, rather than the annual purchase of

durables or annual construction of houses. Stock, rather than flow, is also relevant from the point of view of energy consumption. The policy implication seems to be that, with the improved durability of products, people can attain the desired economic well-being, while conserving the energy required for producing them. In the same vain, recycling of wastes contributes to energy saving. This is true of steel, aluminum, plastics, paper, and other resources, the production of which involves a large energy consumption. Rather than focusing on the production phase alone, therefore, we should keep track of the services they render during their life span and recycle them at the end. In many instances, this presupposes the participation of consumers as an important linkage point in the system.

Despite energy efficiency being attained in industry, household activity and transportation seem to be tending toward increased energy requirements. People have more consumer durables requiring energy, have larger houses with air conditioning, and are shifting from public transportation such as railways to automobiles. Higher diffusion rates reflecting increased income levels more than offset the energy saving attained through improved technology. There seems to be no easy way out of the situation in a society which is market- and democracy-oriented. Lowering the room temperature in the winter and tolerating a higher room temperature in the summer, taking fewer showers or baths, turning off the pilot burner of gas water heaters, turning off unused lights, and replacing light bulbs by fluorescent lamps should all help. More fundamental measures, however, would be to provide a social infrastructure which reduces energy wastes. Examples are provision of efficient mass transit; prevention of road traffic congestion; optimal allocation of distribution channels. These improvements will enable us to maintain the levels of quality-of-life, or even improve it, with less resource input.

It is always desirable to change our wasteful lifestyle to one compatible with sustainable development. However, one should not forget that there is another side to the conservation effort. Ayres writes, "Energy is currently used very inefficiently to create final services, as compared to the first stage of energy conversion and distribution. The problem is that energy is lost and wasted at each step in the chain of successive conversions, from crude fuels to intermediates, to finished goods, to final services. Incandescent lights (converting electricity to white light) are only 7% efficient (fluorescent lights are better). Moreover, lighting fixtures are typically deployed very inefficiently (c. 10%) so that the final service (illumination where it is actually needed) is probably less than 1%."[Ayres and IIASA, 1990]

Lifestyle itself is changing. We may call it service orientation. Household expenditure on services is increasing faster than for hardware, reflecting higher income and, presumably, changing values. Although the total energy implication is not known, partly due to difficulties in measuring the indirect energy requirement to provide such services, there is a possibility that service orientation would reduce the total energy requirement.

Structural option: It is sometimes taken for granted that economic growth necessarily involves energy consumption. In economics jargon, the elasticity of demand for energy is believed to be close to unity. According to the Japanese experience in the past fifteen years, the relationship between the two variables is not that simple. Energy efficiency for the economy as a whole has improved considerably in the 1970s and 1980s in Japan. The energy price hike has triggered energy-saving technology, and at the same time, the industrial structure has been shifted to avoid energy consumption.

There is a method, based on input-output tables, to break down changes in total energy consumption into the following five parts:

- (1) due to changes in unit consumption coefficients;
- (2) due to changes in input coefficients which describe the structure of the intermediate inputs in an industry;
- (3) due to changes in the levels of final demand;
- (4) due to changes in final energy consumption; and
- (5) due to the cross-product term.

In a sense, this provides a comprehensive picture including improved energy efficiency in individual sectors (first factor), bundle of industrial sectors (second factor), and pattern of final demand (third factor). Empirical examination of the economic adjustment in Japan which followed the first oil crisis revealed that for the decade as a whole, the usage of energy-saving technology was reflected in lower unit consumption coefficients, and the shifting industrial structure worked toward a lower energy requirement for the economy.[5] In reality, however, there are not many countries where the economic policy can influence the economic structure, apart from expecting individual response of the private sector to a price signal.

#### 2.3 Policy issues

We have precluded the non-growth option in order to cope with the acute poverty which prevails, regrettably, in large portions of the world population. The nuclear option seems to be self-defeating if we want a no-regret strategy. Solar option becomes only feasible after extensive technological development. Thus, it seems we are left with a combination of the high-tech, lifestyle, and structural options.

We have seen that not all countries are following the best technological practice available. This seems to remain true even when we take account of climatic differences and the size of the countries. The implication is that we should implement a policy whereby technological knowledge can be diffused among countries.

Technological differentials have arisen for various reasons, including the following:

- (1) Lack of financial resources to implement capital formation which embodies the best technological practice. Also, where market interest rates tend to be higher, reflecting scarcity of capital or greater country risk, it may not be economically feasible to adopt the best technology.
- (2) Lack of knowledge pertinent to environmentally sound technology.
- (3) Lack of foresight about events such as environmental deterioration and global warming. Sharp discounting of the future, in turn, is often a manifestation of acute poverty at present or major economic disequilibrium accompanying transition of the economy.
- (4) Lack of proper economic incentive which is often attributable to the fact that many environmental issues are not properly valued due to externalities (market failures).

#### ENVIRONMENTAL OPTIONS

- (5) Lack of proper political incentives due to the fact that the cost of the environmental policy has to be borne by a particular industry or a country, whereas its benefit is diffused among the population at large (political failures). In this case, rent is generated by not implementing the policy required to nullify the damage done, and the rent can be exploited by the private firm for higher profits or by the political machinery for economic and political purposes. This may take any form ranging from export drive by a firm to growth promotion by a country.
- (6) In addition, reflecting the stage of economic development, medium-income economies tend to have larger shares of resource-intensive sectors such as the steel and petrochemical industry, resulting in high resource intensity on the aggregate. This may be called the structural factor.

Official development assistance (ODA) in the environmental field is increasing steadily. Also, in carrying out ODA for development purposes, care is being taken not to exert a hazardous effect on the environment of the recipient country, as well as for the world community as a whole. ODA is provided based on a request from the governments of the recipient countries. However, environment-related projects usually do not bear direct and immediate economic benefit and have not enjoyed high priority. If appropriate measures are not taken to prevent environmental harm, permanent damage may be done, or it may turn out to be extremely costly to repair the damage. It is necessary to promote dialogue between the provider and recipient of ODA. Necessary measures include provision for training of personnel who engage in environmental monitoring and consultation, provision of manuals, guidelines, standards, etc. to deal with environmentally sensitive projects, diffusion of technological knowledge through database, among others. In view of the fact that the global environmental issue is closely related to energy strategies, projects aimed at reducing the use of fossil fuel and at improving energy efficiency should also enjoy high priority in ODA.

Equally important is the role of direct foreign investment by the private sector. This is much larger in magnitude than the ODA. During the past decade, some of the less developed countries have 'graduated' from being the recipients of ODA. However, concern for the environment does not have top priority in private investment in less developed countries, just as is the case in the developed world.

"Foreign investment, including investment through multinational enterprises, plays a major role in global economic development and trade, both in OECD economies and in those of the Third World. During the past decade, 60% of the industrial investment in the Third World countries originated outside those countries, and much of this was supplied by multinational enterprises. Multinationals are also responsible for a major part of the growing volume of trade in minerals, manufactures and technology between OECD and the Third World." "Environmentally unsound development confronts many of these countries with difficult trade-offs between the immediate benefits of development and its long-term costs to human health and the environment. Coupled with the lack of effective means to manage resources and the development proposals, the result can be extensive and often irreparable damage to the ecological basis both for the development concerned and for future economic development." [OECD, 1982b, pp.64-65] Similar trade-offs prevail in the restructuring of the formerly planned economies. The problem is now compounded by the fact that, in contrast to the pollution problems in the 1960s and 1970s when the issue was localized and hence covered by a single policy body having a set of consistent laws and regulations, today's issue extends across national boundaries in its geographical span and far into the future in its time span. No single policy body can be responsible for an issue of global implication, but an institutional framework on an international level has yet to be devised.

#### 2.4 Policy tools

Let us turn here to the examination of the policy tools employed in the past in environmental field. In many countries, such a policy has evolved out of necessity, but in retrospect they may be classified as follows.[6]

 Charges: Charges may be considered as a "price" to be paid for pollution. Polluters have to pay for their implicit claim on environmental "services", which thereby enters at least in some part into private cost-benefit calculations. Various types of charges are reported:

*Effluent charges*: charges based on the quantity and/or quality of discharged pollutants.

User charges: payments for collective or public treatment of effluents.

#### ENVIRONMENTAL OPTIONS

*Product charges*: charges on the price of products which are polluting. *Administrative charges*: payments for authority services for control and authorization.

Tax differentiation: provides more favorable prices for environmentally friendly products and vice versa.

(2) Subsidies: Various forms of financial assistance for the purpose of providing incentive for polluters to change their behavior or to comply with imposed environmental standards include the following:

Grants

Soft loans: the interest rates are set below the market rate.

Tax allowances: accelerated depreciation or tax exemptions for antipollution measures.

- (3) Deposit-refund systems
- (4) Market creation: Artificial markets are created where participants buy pollution rights for pollution or where they can sell their rights.

*Emission trading*: if a discharger releases less pollution than is allowed by standards, the firm can sell or trade the differences between its limits and actual discharges to another firm. The latter then has the right to release more than its initial limits.

*Market intervention*: price intervention (price guarantees, etc.) for the purpose of creating a market for, for example, potentially valuable residuals.

Liability insurance: creation of a market in which risks of damage penalties are transferred to insurance companies. Premiums will be lowered for more secure processes, lower damage, fewer wastes, etc., providing incentive for better performance on the side of actual or potential polluters.

(5) Financial enforcement incentives: This may be considered a legal instrument rather than economic.

*Non-compliance fees:* fees imposed when polluters do not comply with certain regulations.

*Performance bonds*: refunding takes place when compliance has been achieved.

Traditional environmental policy relied on the command-and-control form of regulation which specifies standards and requirements in detail. In contrast, these alternative methods are intended to provide incentive through the market mechanism and increase the room for private decision-making. The strength of economic instruments is believed to be as follows.[Boland, 1989; OECD, 1989]

a. Bring about incremental improvements in environmental quality over and above those attainable through direct regulation.
b. Facilitate self-financing pollution control programs.
c. Create additional stimuli for technical progress.
d. Reduce total cost burden on polluters.
e. Provide flexibility in enforcement without sacrificing environmental goals.

In reality, however, their application has been limited. Reporting on the situation in the USA, Boland writes: "Comparatively little use is made of economic instruments in the US. Pollution control policy continues to rely on a 'command and control' philosophy, admitting the possibility of economic incentives only so long as they do not interfere with conventional regulation. Applications that do exist tend to be narrowly circumscribed with respect to geography, environmental media, and potential participants." [Boland, 1989, p.9] A similar situation prevails in the UK. Barett observes: "The United Kingdom has a bevy of environmental regulations, but not one of them makes use of economic incentives." [Barett, 1989, p.1] Japanese environmental policy, which is believed to be successful, consists mainly of the enactment of environmental quality standards, adoption of stringent regulations, and implementation of pollution control programs at regional levels which coordinate private and public efforts with a focus on particular regions. "Environmental standards were to be achieved through various laws which stipulate direct regulatory measures." [Uno, 1987]

Direct regulatory instruments include the following[IEA, 1989a, pp.38-41]:

(1) Environment quality standards: Environmental quality standards are aimed at the protection of human health or of the ecosystem. Indicators of "quality" are defined precisely in operational terms and specify allowable average concentrations over a specific time for a given pollutant in a particular region.

#### ENVIRONMENTAL OPTIONS

- (2) Fuel quality regulations: In the case of fuels, standards are structured around the types of fuels in use (e.g., coal, various types of refined oil products, motor fuels). They are limited by the technical possibilities and the costs of the cleaning process for the different fuels.
- (3) Fuel use regulation: Control of fuel use has been employed as a strategy for air pollution reduction or to respond to general environment concerns.
- (4) Emission standards: Emission standards set a maximum allowable rate of pollution output for each generic type of source (transport, power plant, industry) by type of pollutant.
- (5) Prescriptive technology standards: They provide precise definitions of which type of control technology or method should be applied in a particular instance. Rarely used because of their inherent lack of flexibility.
- (6) Licensing: It is a key component in the siting of new facilities, along with environmental impact assessments. A license can be revoked if the polluters fail to satisfy a certain level.
- (7) Zoning: Geographical restriction of the location of industrial facilities and applies mainly to the siting of stationary sources.
- (8) Safety regulation: It is designed to minimize hazards associated with energy or other activities, both in terms of occupational risks and in terms of risks incurred by the public.

Technological change is a preferred way to do away with environmental pollution and still continue the desired activity without incurring additional economic and ecological costs. Precisely on this point, we have noted above that economic instruments are said to be conducive to innovation. It is interesting to note counterargument on this point. "All regulation imposes a constraint to which industry tries to react in the most efficient fashion, i.e. at the least cost. In many cases, the most economic solution is an innovatory one." [OECD, 1985a, p.34] In Japan, for example, more stringent regulations are imposed for new firms than the existing ones in order to stimulate new technologies. In addition, environmentally sensitive regions opted to establish stricter standards than the national stipulation, forcing business firms to "invent or vanish."

In order to overcome the obstacles and narrow the technological differentials among countries enumerated earlier, we have at our disposal a set of economic instruments and regulations. The pros and cons of both approaches have been debated, but their relative effectiveness, especially in an international context, is not altogether clear. Given the nature of the environmental concerns, which is global as well as regional, the world community is probably getting ready to accept universal rule just as it has agreed in the case of limiting CFC emissions. Given the fact that many of the financial resources and new technologies originate in OECD countries, the responsibility of the developed world seems to be large.

This does not mean that new technologies should be transferred to the rest of the world free of charge. This is detrimental to innovative activities in the private sector. It would be advisable to create a market for such technological knowledge where it can be traded at a market price and its diffusion protected by intellectual property right. Rather than leaving the transaction to private hands, the provider of ODA and international aid agencies should promote the creation and functioning of the technology market and exercise economic instruments as deemed necessary from the policy point of view.

### FOOTNOTES

 The calculation assumes that the operation starts in 1989. The costs of construction and power generation have been calculated for model plants for each energy category as follows.

| Hydro             | 10,000    | to | 40,000 KW       |
|-------------------|-----------|----|-----------------|
| Petroleum thermal | 600,000   | KW | class x 4 units |
| Coal thermal      | 600,000   | KW | class x 4 units |
| LNG thermal       | 600,000   | KW | class x 4 units |
| Nuclear           | 1,100,000 | KW | class x 4 units |

Plant life is assumed to be 40 years for hydro, 15 years for thermal, and 16 years for nuclear, based on figures which are commonly used among OECD countries. Rate of capacity utilization is assumed to be 45% for hydro and 70% for thermal and nuclear. Energy cost reflects the future, petroleum and LNG prices are assumed to increase to \$26-30 per barrel in the year 2000, and the coal price is assumed to rise at an annual rate of 1 to 1.5%. Energy efficiency in thermal plants is assumed to be around

40%.

- [2] An OECD report points out long lead times as a cost factor. "With the fall in fossil fuel prices, particularly since 1985, and expectations for these price levels to continue into the medium term, nuclear power no longer enjoys in some OECD regions undisputed cost advantages over its alternatives for the generation of baseload electricity. Safety concerns following the Three Mile Island and particularly the Chernobyl accidents have produced a climate siting and licensing have become more difficult; lead times and hence interest payments have increased, and the cost of nuclear plants themselves has risen substantially. ... In this uncertain environment, many utilities have, for the time being, been opting out of nuclear expansion on the grounds of risk aversion." [IEA 1990b]
- [3] Energy consumption is found to be sensitive to price levels. Price elasticity of energy consumption was estimated at the disaggregated level, based on the following specification.

ln QECi = b0 + b1 ln VQREALi + b2 ln (PMFUEL/Pi)+ b3 ln QECi(-1)

| where | QECi:           | Energy consumption             |
|-------|-----------------|--------------------------------|
|       | VQREALi:        | Gross output, constant prices  |
|       | <b>PMFUEL</b> : | Import deflator, mineral fuels |
|       | Pi              | Sectoral deflator              |

Empirical data were obtained from the Japanese experience during the mid-1950s to 1980. [uno 1987] According to the result, price elasticity is found to be (-)0.1034 for manufacturing as a whole, (-)0.0714 for transportation, and (-)0.1014 for commercial and home use. It is seen that energy conservation was prompted by higher energy prices.

- [4] In Japan, the co-generation capacity has increased from 61 MW in 1970 to 1372 MW in 1990 for industrial use and 0.3 MW in 1974 to 213 MW in 1990 for commercial use. Refer to *Comprehensive Energy Statistics*, Agency of Natural Resources and Energy [1991], pp.192-193. The capacity of refuse power generation has increased from 10 KWH in 1970 and 34 KWH in 1975 to 342 KWH in 1989.
- [5] Despite the growing size of the Japanese economy and an increase in final energy consumption, which when taken together meant an additional

energy requirement worth about 8835 billion yen (1980 prices), the actual increase remained at 4548 billion yen, or about 1/2 of the would-be level.

[6] OECD [1989], pp.14-16. This source provides a survey of country practices.

## Chapter 3

# Energy Demand and Supply

### **3.1** Energy and $CO_2$ emission

The world consumption of primary energy has been on the increase ever since the Industrial Revolution. The energy consumption in 1860 is estimated to have been less than 100 million tons of oil equivalent, which rose by 1990 to 800 million tons. The increase has been particularly marked since WWII when the sources of primary energy shifted from coal to petroleum. Although hydro and nuclear power are now among the primary sources of energy, about 90% of the total supply is still attributable to fossil fuels.

The developed countries consume 50% of the world's primary energy supply, while constituting only 15% of the world population. The energy consumption of developing countries amounts to 19% and that of formerly planned economies, 32%. Per capita energy consumption in developed countries is 10 times as great as that of developing countries and 3 times that of formerly planned economies.

The demand for energy is expected to increase into the future. Assuming 2.7% annual growth of the world economy, the world primary energy consumption in 2010 will reach 14.5 billion tons of oil equivalent by 2010, or 1.8 times the 1989 level. If the economic growth is accompanied by efficiency gains in energy consumption amounting to 1.2% per annum, energy consumption will

| Region     | Cases | CO2 emission |            |              | Annual | Ratio |
|------------|-------|--------------|------------|--------------|--------|-------|
|            |       | (million     | tons of C) | (%)          | growth | to    |
|            |       | 1989         | 2000       | 2010         | (%)    | 1989  |
| Developed  | 1     | 2996         | 4072       | 5227(42.1)   | 2.7    | 1.7   |
|            | 2     | 2996         | 3598       | 4150(46.3)   | 1.6    | 1.4   |
| Formerly   | 1     | 2160         | 2804       | 3994(34.6)   | 3.0    | 1.8   |
| planned    | 2     | 2160         | 2283       | 2609(18.0)   | 0.9    | 1.2   |
| Developing | 1     | 1166         | 1715       | 2400(23.3)   | 3.5    | 2.1   |
|            | 2     | 1166         | 1570       | 2055(35.7)   | 2.7    | 1.8   |
| World      | 1     | 6322         | 8591       | 11621(100.0) | 2.9    | 1.8   |
| total      | 2     | 6322         | 7451       | 8814(100.0)  | 1.6    | 1.4   |
| Asia       | 1     | 1119         | 1868       | 3164(38.6)   | 51     | 2.8   |
|            | 2     | 1119         | 1473       | 2048(37.3)   | 2.9    | 1.8   |

Table 3-1 Projection of  $CO_2$  emission by world

Notes: Asia includes China but excludes Japan. Case 1 refers to the situation where unit energy input remains at the present level, while in case 2 conservation efforts are made. Case 2 takes account of the shift among primary energy sources in calculating the  $CO_2$  emission. The extent of energy conservation and the composition of primary energy are based on relevant data provided in reports by Working Party 3. The estimation was carried at the Economic Planning Agency based on BP statistics and IPCC reports.

Source: Economic Planning Agency [1991b].

still amount to 11.4 billion tons, or 1.4 times the present level. This directly translates into  $CO_2$  emission. The shares of nonfossil energy such as hydro and nuclear will increase from 12% of the total to 15%; however, at the same time, the share of coal will rise from today's 28% to 30% according to a realistic scenario. Thus, the  $CO_2$  emission in the year 2010 will reach 11.6 billion tons (in terms of carbon) if the technology remains unchanged, which is about 1.8 times the present level. In the energy conservation scenario, it will be 8.8 billion tons, or 1.4 times the present level.

The trends in developing countries are particularly noteworthy because of their high growth potentials. By 2010, it is estimated that the primary energy consumption and  $CO_2$  emission will expand by 2.1 times in a constant technology case and 1.8 times in an energy conservation scenario. The impact on global energy demand will further increase beyond 2010 due to continued economic expansion in the developing countries.

Table 3-1 also reveals the trends in Asia as a whole (which includes China

but excludes Japan), which is the growth center in the global community. During the past decade, primary energy consumption has increased 1.6 times in the area, whereas the world average was 1.2 times. By the year 2010, energy consumption is expected to double. Emission of  $CO_2$  will further increase by 1.8 times during the same period due to a structural shift in energy consumption such as reduction of coal (from 58% to 50% of total supply) and increase in natural gas (from 5% to 11%), hydro and nuclear (from 7% to 11%) power.

The situation in formerly planned economies (including China) is rather confused at present. Assuming that the growth until the year 2000 is modest and that the room for improvement in energy consumption is relatively large (1.7% per annum; for China, 2.5% per annum), the primary energy consumption will rise by a modest margin of 1.2 times. If the economic reform is carried out smoothly, leading to higher growth, the demand for energy may be that much higher.

The Japanese economy has attained the highest level of energy efficiency in the world, which is attributable not only to individual energy-related technology but also to comprehensive system design including production facilities and production management. This implies that the transfer of energy-efficient technology will require a lot of money and time. Considerable energy savings will be realized if the Japanese practice is transferred to other countries. According to an estimate by the Economic Planning Agency, energy consumption and  $CO_2$  emission can be reduced by 20% in developed countries and as much as 50% in developing countries and formerly planned economies.[1] The amount of capital required is 50 to 150 trillion yen in developing countries and formerly planned economies in order to replace the existing capacity in 1989. Total requirement until the year 2010 will be 100 to 300 trillion yen if one includes the financing of capacity expansion during the period. The net amount will be smaller if an economic benefit of cost reduction is taken into account. In any event, considering the rather limited financial resources available in these areas, it seems imperative to transfer technology and money in order to achieve energy conservation on a global scale.

Japanese consumption of primary energy in the world amounts to 5% of the world total, as is shown in Table 3-2. Her consumption of petroleum amounts to 7.3% of the world total. This results in  $CO_2$  emission which is estimated to be 4.5% of the world total. Considering the fact that her GDP is around 15%

|             | Primary | $\frac{OECD}{CO_2}$ | GDP      | Population |
|-------------|---------|---------------------|----------|------------|
|             | energy  | emission            |          |            |
|             | (MTOE)  | (mil.ton C)         | (mil.\$) | (thousand) |
| USA         | 1943.4  | 1480.0              | 5392200  | 248777     |
| Japan       | 404.6   | 280.2               | 2977725  | 123116     |
| Germany     | 271.6   | 281.9               | 1487958  | 78665      |
| France      | 219.0   | 110.8               | 1190837  | 56160      |
| Italy       | 153.5   | 117 3               | 1090755  | 57525      |
| UK          | 211.3   | 164.0               | 975455   | 57236      |
| Canada      | 219.6   | 135.5               | 570039   | 26248      |
| Spain       | 86.4    | 63.2                | 491240   | 38888      |
| Australia   | 85.5    | 76.3                | 296315   | 16807      |
| Netherlands | 65.1    | 53.5                | 279138   | 14849      |
| Sweden      | 48.1    | 21.4                | 228102   | 8493       |
| Switzerland | 23.5    | 12.1                | 224878   | 6723       |
| Belgium     | 47.3    | 33.6                | 192392   | 9938       |
| Austria     | 23.8    | 17.0                | 157378   | 7624       |
| Finland     | 29.0    | 18.4                | 137234   | 4964       |
| Denmark     | 17.9    | 16.2                | 130950   | 5132       |
| Turkey      | 49.6    | 43.8                | 108409   | 55255      |
| Norway      | 22.8    | 10.6                | 105822   | 4227       |
| Greece      | 22.0    | 22 7                | 65956    | 10033      |
| Portugal    | 16.1    | 13.0                | 59678    | 10337      |
| New Zealand | 12.9    | 7.9                 | 42768    | 3343       |
| Ireland     | 9.8     | 8.1                 | 42468    | 3515       |
| Luxembourg  | 3.4     | 2.7                 | 8723     | 378        |
| Iceland     | 1.3     | 0.6                 | 5856     | 253        |
| EEC         | 1123.4  | 887.0               | 6015550  | 342656     |
| OECD        | 3987.3  | 2998.6              | 16262279 | 848486     |
| World       | 7815.7  | 6255.9              | n.a.     | 5292200    |

Table 3-2  $CO_2$  emission in OECD countries

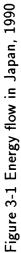
Note: Data refer to 1989 except GDP figures which refer to 1990. World total of  $CO_2$  emission refers to 1988. Countries are listed in the order of GDP size.

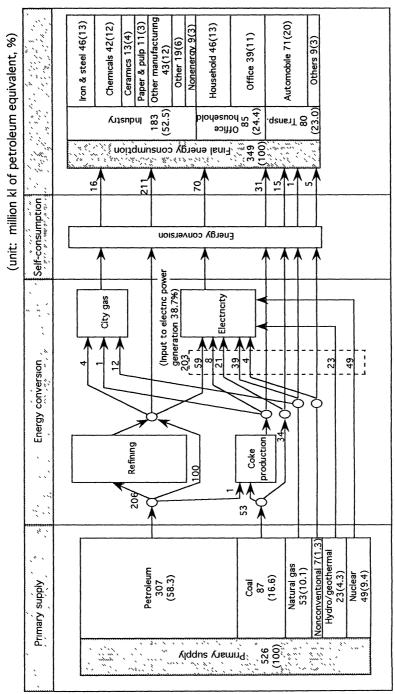
Source. Primary energy supply and CO<sub>2</sub> emission data are from OECD [1991b] GDP data are from OECD, National Accounts.

of the world, we can say that Japan has a lenient socio-economic structure as far as energy is concerned.

For example, the US GDP is about 1.8 times larger than Japan while consuming 4.8 times more energy and emitting 5.3 times more  $CO_2$ . The German GDP is about 50% of Japan, but energy consumption is about 67%, and  $CO_2$  emission is just about the same. Such comparisons only provide a rough picture. The relative size of GDP itself cannot be defined with any precision.[2] Energy consumption reflects various factors such as the industrial structure, geographical span, and natural climate, and may not directly reflect the efficiency in energy use. The composition of the primary energy sources has to do with  $CO_2$  emission. Nevertheless, the fact remains that Japan represents a significant share of the world economy and that she has attained considerable energy efficiency.

This makes Japan's performance in  $CO_2$  emission relatively good. Japan's  $CO_2$  emission per GDP stood at 0.09 T-C/\$1000 compared with the OECD average of 0.18, and  $CO_2$  emission per person stood at 2.27 T-C/person compared with the OECD average of 3.53.[3]


We thought that we had put the pollution problem behind us. We have contained air pollution, water contamination, and waste disposal by removing lead from gasoline, prohibiting the use of heavy metals in production processes and final products, removing the sulphur content from crude oil and from fume gas, increased the provision of sewerage and water purification plants, among others.


But global warming is a relatively new concern to which a proper response has yet to be devised, and Japan is no exception. Considering the internationally agreed policy target of restraining the  $CO_2$  emission in the year 2000 to the current level, energy efficiency and reduction of greenhouse gases is a big challenge. It is in this context that we take up the Japanese experience.

#### **3.2** Energy demand and the economy

The Japanese energy scene is detailed in Table 3-3a, which shows the energy matrix identifying sources of primary energy, energy conversion, and final consumption at five-year intervals. Among the sources, one can identify coal, petroleum, natural gas, hydro, and nuclear. Nonconventional sources such as solar, waste incineration, etc. are also listed. Table 3-3b shows the annual series of total energy supply and demand in the same format but without identifying sources of energy. The data are expressed in physical terms rather than value.

Figure 3-1, which is expressed in terms of petroleum equivalent, provides an overview of the energy flow from primary supply to final consumption.





Source: MITI, Energy '92.

#### ENERGY DEMAND AND SUPPLY

Let us start by looking at the demand side. After the first oil crisis, the demand for energy has been stable in Japan, reflecting energy conservation measures, structural change of the industry from heavy industry to high tech and services, stagnant economic activity due to appreciation of the yen, among others. Higher relative prices of energy also had a role to play.[4] The energy consumption had remained almost constant during 1973 and 1986. In contrast, from 1987 onwards, energy consumption began to increase, reflecting economic recovery. According to Table 3-3b which shows the time series data on energy, the final consumption showed an increase of 4.8% in 1987, 5.7% in 1988, 3.5% in 1989, and 3.8% in 1990.

In most industrialized countries, the share of industry use stands at around 34% (33.8% in USA, 34.6% in FRG., 31.3% in UK, and 34.7% in France), whereas the Japanese figure has traditionally been higher (according to Table 3-3a, 49.8% in 1990). Note that IEA statistics give lower figures than Japanese statistics. The rest is equally divided into domestic use (24.4%) and transportation (23.0%).

Let us move from the snapshot of the recent year to the time trend by looking at the energy consumption per unit GDP. Energy demand is induced by economic activity, but energy efficiency can and actually does change over time, reflecting technological progress and the shifting structure of the economy. Figure 3-2 depicts the ratio (energy consumption/GDP) for selected countries. We see clearly that the energy efficiency of the economy as a whole has been improving since the mid-1970s. The pace may have slowed down more recently, apparently reflecting a relative cheapening of energy. Still, the energy efficiency of the Japanese economy is one of the best among the industrialized eonomies, as noted earlier. It is interesting to see that the energy intensity of the economy has been on the increase in the 1960s and early 1970s in some countries, including Japan. This was the time when the industrialization drive led to rapid growth of heavy industry. Subsequently, the economy has shifted to electronics and services.[5]

Industrial growth is seen to inevitably accompany in proportion an increased consumption of energy and raw materials. Some of the ex-LDCs are now entering the phase of rapid industrialization, and if the past pattern is repeated, it will certainly lead to resource exhaustion. In some developed marked economies, however, the demand for energy has levelled off despite

| Supply and demand sectors                | Sector Code                           | Coal   | Cokes |
|------------------------------------------|---------------------------------------|--------|-------|
|                                          |                                       |        |       |
| Primary energy:                          |                                       |        |       |
| 1. Domestic production                   |                                       | 24946  | -     |
| 2. Imports                               |                                       | 38564  | 62    |
| 3. Total supply of primary energy        | 00                                    | 63509  | 62    |
| 4. Exports                               |                                       | - 7    | -69   |
| 5. Changes in stock                      |                                       | -311   | -18   |
| 6. Total supply for domestic use         |                                       | 63191  | -25   |
| Energy conversion:                       |                                       |        |       |
| 7. Electric power companies              | 70-                                   | -10916 | -1386 |
| 8. Electric power for own use            | 70-                                   | -186   | -1170 |
| 9. Heat supply companies                 | 70-                                   | -      | -     |
| 10. City gas                             | 70-                                   | -      | -1936 |
| 11 Cokes production                      | 27-                                   | -46907 | 40268 |
| 12. Petroleum refinery                   | 27-                                   | -      | -     |
| 13. Petrochemical industry               | 26-                                   | -      | -     |
| 14. Others                               |                                       | -      | -     |
| 15. Own consumption and loss             |                                       | - 572  | -3301 |
| 16. Statistical discrepancy              |                                       | - 1451 | -2059 |
| Final energy consumption:                |                                       |        |       |
| 17. Total                                |                                       | 3159   | 30390 |
| 18. Industrial sector total              |                                       | 1629   | 28580 |
| 19. Agriculture, forestry, and fisheries | 01&                                   | -      | -     |
| 20. Mining                               | 10&                                   | 91     | -     |
| 21. Construction                         | 15                                    | -      | -     |
| 22. Manufacturing total                  | 0M                                    | 1538   | 28580 |
| 23. Food processing                      | 18                                    | 148    | 12    |
| 24. Textiles                             | 20&-                                  | 47     | -     |
| 25. Paper and pulp                       | 24                                    | 217    | -     |
| 26. Chemicals                            | 26-                                   | 228    | 522   |
| 27. Nonmetallic mineral products         | 30                                    | 352    | 298   |
| 28. Iron and steel                       | 31                                    | 297    | 27158 |
| 29. Nonferrous metals                    | 32                                    | 61     | 415   |
| 30. Machinery                            | 34&=34+35+36+37                       | 63     | 138   |
| 31. Other manufacturing                  | 38&&                                  | 126    | 36    |
| 32. Domestic sector total                | · · · · · · · · · · · · · · · · · · · | 1207   | 1061  |
| 33. Household                            | 0F                                    | 756    | 987   |
| 34. Business                             | 75                                    | 451    | 74    |
| 35. Transportation sector total          | 60T                                   | 323    | 749   |
| 36. Non-energy use                       |                                       | -      | -     |

Source: Resource and Energy Agency, Comprehensive Energy Statistics

|     |         |           |          |         |          | (unit: 10 |           |
|-----|---------|-----------|----------|---------|----------|-----------|-----------|
|     | Crude   | Petroleum |          |         |          |           |           |
|     | oil     |           | Gasoline | Naphtha | Jet fuel | Kerosene  | Light oil |
|     |         |           |          |         |          | <u>_</u>  |           |
| 1.  | 847     | 14        | -        | -       | -        | -         | -         |
| 2.  | 192580  | 36452     | 2        | 5356    | 284      | 158       | 257       |
| 3.  | 193427  | 36466     | 2        | 5356    | 284      | 158       | 257       |
| 4.  | -       | -18137    | -59      | -3      | -1560    | -122      | -316      |
| 5   | -973    | -3518     | -18      | -247    | -30      | -1167     | -299      |
| 6.  | 192454  | 14811     | -75      | 5106    | -1306    | -1131     | -358      |
| 7.  | -6805   | -33917    | -        | -       | -        | -         | -66       |
| 8.  | -       | -7239     | -        | -       | -        | -         | -         |
| 9.  | -       | -         | -        | -       | -        | -         | -         |
| 10. | -1211   | -1879     | -        | -1283   | -        | -         | -         |
| 11. | -       | -1227     | -        | -       | -        | -         | -         |
| 12  | -182392 | 178490    | 17857    | 18140   | 2273     | 15648     | 11611     |
| 13. | -       | 385       | -        | 192     | -        | -         | -         |
| 14. | -       | -         | -        | -       | -        | -         | -         |
| 15. | -       | -8108     | -107     | -133    | -        | -53       | -45       |
| 16. | -1479   | -36       | -24      | -2276   | 55       | -1464     | -235      |
| 17. | 566     | 141280    | 17651    | 19748   | 1022     | 13000     | 10906     |
| 18. | 566     | 82755     | 393      | 19748   |          | 4431      | 2792      |
| 19. | _       | 6463      | -        |         | -        | 1734      | 440       |
| 20. | -       | 554       | -        | -       | -        | 84        | 142       |
| 21. | -       | 2834      | -        | -       | -        | 681       | 1344      |
| 22. | 566     | 72904     | 393      | 19748   | -        | 1932      | 866       |
| 23. | -       | 3053      | -        | -       | -        | 18        | -         |
| 24. | -       | 4576      | -        | -       | -        | 54        | -         |
| 25. | -       | 4422      | -        | -       | -        | 88        | -         |
| 26. | 566     | 29864     | -        | 19707   | -        | 342       | -         |
| 27  | -       | 10259     | -        | -       | -        | 194       | -         |
| 28. | -       | 10944     | -        | -       | -        | 306       | -         |
| 29. | -       | 1415      | -        | -       | -        | 91        | -         |
| 30. | -       | 2860      | -        | -       | -        | 914       | -         |
| 31. | -       | 5512      | 393      | 41      | -        | -75       | 866       |
| 32. | -       | 20259     |          | -       |          | 8569      | 80        |
| 33. | -       | 8403      | -        | -       | -        | 5717      | -         |
| 34. | -       | 11856     | -        | -       | -        | 2852      | 80        |
| 35. | -       | 32228     | 17258    | -       | 1022     |           | 8035      |
| 36. | -       | 6038      | -        | -       |          | -         | -         |

(unit: 10\*\*10 kcal)

|          |        |      | Natural | City     | Hydro  | Nuclear | Geo-    |
|----------|--------|------|---------|----------|--------|---------|---------|
|          | Heavy  | LPG  | . gas   | gas      |        |         | thermal |
|          | oil    |      | and LNG |          |        | <u></u> |         |
| 1.       | _      | 14   | 2702    | -        | 17894  | 1054    | 66      |
| 2.       | 24769  | 3419 | 1269    | -        |        | -       | -       |
| 3.       | 24769  | 3433 | 3970    | -        | 17894  | 1054    | 66      |
| 4.       | -15481 | -51  | -       | -        | -      | -       | -       |
| 5.       | -1355  | -284 | -4      | -        | -      | -       | -       |
| 6.       | 7933   | 3097 | 3967    | -        | 17894  | 1054    | 66      |
| 7.       | -33851 | _    | -991    | _        | -16634 | -1054   | -19     |
| 7.<br>8. | -7144  | -    | -212    | -        | -10034 | -1034   | -37     |
| 9.       |        | _    | -212    |          | -1200  |         | -57     |
| 10.      | _      | -211 | -783    | 5191     | _      | _       | _       |
| 11.      | _      |      | -       |          | _      | _       | _       |
| 12.      | 103852 | 4193 | -       | _        | -      | _       | _       |
| 13.      | 100052 | -150 | _       | _        | _      | _       | _       |
| 14.      | _      | _    | _       | _        | _      | _       | _       |
| 15.      | -4998  | -523 | -69     | -619     | _      | _       | _       |
| 16.      | -1391  | 1167 | -137    | -1       | -0     | _       | _       |
| 10.      |        |      |         | <u> </u> |        |         |         |
| 17.      | 64400  | 7723 | 1774    | 4571     | -      | -       | 9       |
| 18.      | 51959  | 2641 | 1749    | 486      | -      | -       | 4       |
| 19.      | 4289   | -    | -       | -        | -      | -       | 4       |
| 20.      | 328    | -    | -       | -        | -      | -       | -       |
| 21       | 809    | -    | -       | -        | -      | -       | -       |
| 22.      | 46532  | 2641 | 1749    | 486      | -      | -       | -       |
| 23.      | 3035   | -    | -       | 72       | -      | -       | -       |
| 24.      | 4522   | -    | -       | 32       | -      | -       | -       |
| 25.      | 4335   | -    | -       | 0        | -      | -       | -       |
| 26.      | 8583   | 1232 | 1341    | 42       | -      | -       | -       |
| 27       | 9726   | 27   | -       | 61       | -      | -       | -       |
| 28.      | 10579  | -    | -       | 60       | -      | -       | -       |
| 29.      | 1324   | -    | -       | 29       | -      | -       | -       |
| 30.      | 1946   | -    | -       | 126      | -      | -       | -       |
| 31.      | 2484   | 1382 | 408     | 63       | -      | -       | -       |
| 32.      | 8187   | 3423 | 25      | 4085     | -      | -       | 5       |
| 33.      | -      | 2686 | -       | 2943     | -      | -       | -       |
| 34.      | 8187   | 737  | 25      | 1142     | -      | -       | 5       |
| 35.      | 4254   | 1659 | -       | -        | -      | -       | -       |
| 36.      | -      | -    | _       | <u> </u> |        | -       | -       |

|            |          |             |                         |          | (unit: 10**10 kcal) |        |        |
|------------|----------|-------------|-------------------------|----------|---------------------|--------|--------|
| -          | Nonconve | entional ei |                         |          | Elect-              | Heat   | Total  |
|            |          | Solar       | Waste in-<br>cineration | Others   | ricity              | supply |        |
| l.         | 3260     | -           | 10                      | 3250     | -                   | -      | 50782  |
| 2.         | -        | -           | -                       | -        | -                   | -      | 268926 |
| 3.         | 3260     | -           | 10                      | 3250     | -                   | -      | 319708 |
| <b>I</b> . | -        | -           | -                       | -        | -                   | -      | -18213 |
| 5.         | -        | -           | -                       | -        | -                   | -      | -4823  |
| <u>.</u>   | 3260     | _           | 10                      | 3250     | -                   | -      | 296672 |
| 7.         | -3       | -           | - 3                     | -        | 26058               | -      | -45667 |
| 3.         | -690     | -           | - 7                     | -683     | 4468                | -      | -6327  |
| Э.         | -        | -           | -                       | -        | -                   | -      | -      |
| ).         | -        | -           | -                       | -        | -                   | -      | -619   |
| 1.         | -        | -           | -                       | -        | -                   | -      | -7865  |
| 2.         | -        | -           | -                       | -        | -                   | -      | -3902  |
| 3.         | -        | -           | -                       | -        | -                   | -      | 385    |
| 4.         | -        | -           | -                       | -        | -                   | -      | -      |
| 5.         | -        | -           | -                       | -        | -3617               | -      | -16286 |
| 6          |          | -           | -                       | -        | _                   | -      | -5164  |
| 7.         | 2567     | -           | -                       | 2567     | 26910               | -      | 211226 |
| <u>8.</u>  | 1906     | -           | _                       | 1906     | 18576               | -      | 136251 |
| 9.         | -        | -           | -                       | -        | 87                  | -      | 6554   |
| 0.         | -        | -           | -                       | -        | 167                 | -      | 812    |
| 1.         | -        | -           | -                       | -        | 214                 | -      | 3048   |
| 2.         | 1906     | -           | -                       | 1906     | 18108               | -      | 125837 |
| 3.         | -        | -           | -                       | -        | 675                 | -      | 3960   |
| 4.         | -        | -           | -                       | -        | 799                 | -      | 5454   |
| 5.         | 1906     | -           | -                       | 1906     | 1503                | -      | 8049   |
| 6.         | -        | -           | -                       | -        | 4292                | -      | 36854  |
| 7.         | -        | -           | -                       | -        | 1102                | -      | 12073  |
| 8.         | -        | -           | -                       | -        | 4624                | -      | 43082  |
| 9.         | -        | -           | -                       | -        | 1900                | -      | 3819   |
| 0.         | -        | -           | -                       | -        | 1406                | -      | 4593   |
| 1.         | -        | -           | -                       | -        | 1808                | -      | 7953   |
| 2.         | 661      |             | -                       | 661      | 7360                | -      | 34664  |
| 3.         | 661      | -           | -                       | 661      | 4579                | -      | 18329  |
| 4.         | -        | -           | -                       | -        | 2782                | -      | 16335  |
| 5.         | -        | -           | -                       | <u> </u> | 973                 | -      | 34273  |
| 6.         |          |             | _                       |          | -                   | -      | 6038   |

| Supply and demand sectors                | Sector Code     | Coal   | Cokes    |
|------------------------------------------|-----------------|--------|----------|
|                                          |                 |        |          |
| Primary energy:                          |                 | 10750  |          |
| 1. Domestic production                   |                 | 12758  | -        |
| 2. Imports                               | 00              | 47195  | 40       |
| 3. Total supply of primary energy        | 00              | 59953  | 40       |
| 4. Exports                               |                 | -23    | -387     |
| 5. Changes in stock                      |                 | 253    | -35      |
| 6. Total supply for domestic use         |                 | 60184  | -381     |
| Energy conversion:                       |                 |        |          |
| 7. Electric power companies              | 70-             | -4031  | -3259    |
| 8 Electric power for own use             | 70-             | -      | 52 -1276 |
| 9. Heat supply companies                 | 70-             | -      | 19 -     |
| 10. City gas                             | 70-             | -      | -1756    |
| 11. Cokes production                     | 27-             | -52703 | 45261    |
| 12 Petroleum refinery                    | 27-             | -      | -        |
| 13 Petrochemical industry                | 26-             | -      | -        |
| 14. Others                               |                 | -      | -        |
| 15. Own consumption and loss             |                 | -279   | -3755    |
| 16 Statistical discrepancy               |                 | -1458  | -1290    |
| Final energy consumption:                |                 |        |          |
| 17. Total                                |                 | 1642   | 33545    |
| 18 Industrial sector total               |                 | 1342   | 33167    |
| 19. Agriculture, forestry, and fisheries | 01&             | -      | -        |
| 20. Mining                               | 10&             | -      | -        |
| 21 Construction                          | 15              | -      | -        |
| 22 Manufacturing total                   | 0M              | 1342   | 33167    |
| 23. Food processing                      | 18              | -      | -        |
| 24. Textiles                             | 20&-            | -      | -        |
| 25. Paper and pulp                       | 24              | 34     | -        |
| 26. Chemicals                            | 26-             | 146    | 227      |
| 27. Nonmetallic mineral products         | 30              | 241    | 211      |
| 28. Iron and steel                       | 31              | 209    | 32378    |
| 29. Nonferrous metals                    | 32              | 162    | 219      |
| 30. Machinery                            | 34&=34+35+36+37 | 83     | 94       |
| 31. Other manufacturing                  | 38&&            | 466    | 38       |
| 32 Domestic sector total                 |                 | 280    | 377      |
| 33. Household                            | 0F              | 163    | 340      |
| 34. Business                             | 75              | 117    | 37       |
| 35. Transportation sector total          | 60T             | 20     | -        |
| 36 Non-energy use                        |                 |        |          |
|                                          |                 |        |          |

|     | Crude   | Petroleum | products |         |          | (unit: 10 |           |
|-----|---------|-----------|----------|---------|----------|-----------|-----------|
|     | oil     |           | Gasoline | Naphtha | Jet fuel | Kerosene  | Light oil |
|     |         |           |          |         |          |           |           |
| 1.  | 650     | 26        | -        | -       | -        | -         | -         |
| 2.  | 244284  | 23682     | -        | 4751    | 441      | -         | 15        |
| 3.  | 244934  | 23708     | -        | 4751    | 441      | -         | 15        |
| 4.  | -       | -22090    | -        | -86     | -1588    | -0        | -36       |
| 5.  | -1380   | 925       | -59      | 227     | 24       | 72        | 87        |
| 6.  | 243554  | 2543      | -59      | 4892    | -1123    | 72        | 66        |
| 7.  | -21874  | 37230     | -        | -1951   | -        | _         | -         |
| 8.  | -       | 8689      | -        | -       | -        | -         | -         |
| 9.  | -       | -45       | -        | -       | -        | -33       | -         |
| 10. | -59     | -3524     | -        | -2293   | -        | -         | -         |
| 11. | -       | -1207     | -        | -       | -        | -         | -         |
| 12. | -221717 | 219027    | 24557    | 21722   | 2907     | 19426     | 15102     |
| 13. | -       | 556       | -        | 278     | -        | -         | -         |
| 14. | -       | -         | -        | -       | -        | -         | -         |
| 15. | -51     | -11466    | -118     | -466    | -        | -73       | -34       |
| 16. | 233     | 8506      | -21      | 545     | 7        | 333       | -303      |
| 17. | 86      | 168472    | 24360    | 22726   | 1791     | 19726     | 14830     |
| 18. | 86      | 87727     | 368      | 22726   | -        | 4879      | 3645      |
| 19. | -       | 7053      | -        | -       | -        | 1029      | 506       |
| 20. | -       | 498       | -        | -       | -        | 47        | 161       |
| 21. | -       | 2963      | -        | -       | -        | 333       | 1803      |
| 22. | 86      | 77213     | 368      | 22726   | -        | 3471      | 1174      |
| 23. | -       | 3646      | -        | -       | -        | 18        | -         |
| 24. | -       | 5602      | -        | -       | -        | 21        | -         |
| 25. | -       | 4709      | -        | -       | -        | 66        | -         |
| 26. | 86      | 29530     | -        | 20721   | -        | 237       | -         |
| 27. | -       | 10360     | -        | -       | -        | 132       | -         |
| 28. | -       | 11007     | -        | -       | -        | 444       | -         |
| 29. | -       | 1051      | -        | -       | -        | 48        | -         |
| 30. | -       | 1625      | -        | -       | -        | 477       | -         |
| 31. | -       | 9683      | 368      | 2005    | -        | 2027      | 1174      |
| 32. | -       | 29382     |          | -       | -        | 14847     | 139       |
| 33. | -       | 12226     | -        | -       | -        | 7568      | -         |
| 34. | -       | 17156     |          | -       | -        | 7279      | 139       |
| 35. | -       | 45079     | 23992    | -       | 1791     | -         | 11046     |
| 36. | -       | 6285      | -        | -       | -        | -         | -         |

(unit: 10\*\*10 kcal)

|                      |           |       | Natural | City | Hydro  | Nuclear | Geo-    |
|----------------------|-----------|-------|---------|------|--------|---------|---------|
|                      | Heavy     | LPG   | •       | gas  |        |         | thermal |
|                      | oil       |       | and LNG |      |        |         |         |
| 1.                   |           | 26    | 2681    |      | 19237  | 5653    | 96      |
| 2.                   | -<br>9924 | 7031  | 6550    | -    | 19231  | 5055    | 50      |
| 2.<br>3.             | 9924      | 7057  | 9231    | _    | 19237  | 5653    | 96      |
| 4.                   | -20109    | -11   | 5251    | _    | 19231  | 3033    | 50      |
| <del>т</del> .<br>5. | 489       | 31    | -5      | _    | _      | _       | _       |
| 6.                   | -9696     | 7078  | 9226    | _    | 19237  | 5653    | 96      |
| <u> </u>             |           |       |         |      | 15201  |         |         |
| 7.                   | -35279    | -     | -4556   | -    | -17980 | -5648   | -30     |
| 8.                   | -8533     | -     | -138    | -    | -1256  | -5      | -53     |
| 9.                   | -12       | -     | -       | -43  | -      | -       | -       |
| 10.                  | -         | -675  | -2696   | 7860 | -      | -       | -       |
| 11.                  | -         | -     | -       | -    | -      | -       | -       |
| 12.                  | 123777    | 5316  | -       | -    | -      | -       | -       |
| 13.                  | -         | -     | -       | -    | -      | -       | -       |
| 14.                  | -         | -     | -       | -    | -      | -       | -       |
| 15.                  | -5593     | -1017 | -806    | -747 | -      | -       | -       |
| 16.                  | 1765      | 1254  | 442     | -0   | -      | -       | -       |
| 17.                  | 66429     | 11956 | 1471    | 7070 | -      | -       | 13      |
| 18.                  | 51381     | 4359  | 1470    | 892  | -      | -       | 6       |
| 19.                  | 5517      | -     | -       | _    | -      | -       | 6       |
| 20.                  | 290       | -     | -       | -    | -      | -       | -       |
| 21.                  | 827       | -     | -       | -    | -      | -       | -       |
| 22.                  | 44746     | 4359  | 1470    | 892  | -      | -       | -       |
| 23.                  | 3628      | -     | -       | 105  | -      | -       | -       |
| 24.                  | 5581      | -     | -       | 32   | -      | -       | -       |
| 25.                  | 4643      | -     | -       | 1    | -      | -       | -       |
| 26.                  | 7198      | 1374  | 1087    | 56   | -      | -       | -       |
| 27.                  | 9864      | 31    | -       | 77   | -      | -       | -       |
| 28.                  | 9476      | 1073  | -       | 140  | -      | -       | -       |
| 29.                  | 916       | 87    | -       | 70   | -      | -       | -       |
| 30.                  | 1148      | -     | -       | 233  | -      | -       | -       |
| 31.                  | 2292      | 1794  | 383     | 178  | -      | -       | -       |
| 32.                  | 8762      | 5633  | 1       | 6178 | -      | -       | 8       |
| 33.                  | -         | 4658  | -       | 4544 | -      | -       | -       |
| 34.                  | 8762      | 976   | 1       | 1634 | -      | -       | 8       |
| 35.                  | 6286      | 1964  | -       | -    | -      | -       | -       |
| 36.                  | -         | -     | -       | -    | -      | -       | -       |

| (unit: 10**10 kcal) |        |        |        | Nonconventional energy  |       |          |     |  |  |
|---------------------|--------|--------|--------|-------------------------|-------|----------|-----|--|--|
| Total               | Heat   | Elect- |        |                         |       | Nonconve |     |  |  |
|                     | supply | ricity | Others | Waste in-<br>cineration | Solar | <u></u>  |     |  |  |
| 44473               | -      | -      | 3202   | 34                      | 136   | 3372     | 1.  |  |  |
| 321752              | -      | -      | -      | -                       | -     | -        | 2.  |  |  |
| 366224              | -      | -      | 3202   | 34                      | 136   | 3372     | 3.  |  |  |
| -22500              | -      | -      | -      | -                       | -     | -        | 4.  |  |  |
| -241                | -      | -      | -      | -                       | -     | -        | 5.  |  |  |
| 343483              | -      |        | 3202   | 34                      | 136   | 3372     | 6.  |  |  |
| -59079              | -      | 35539  | -      | -10                     | -     | -10      | 7.  |  |  |
| -6934               | -      | 5312   | -753   | -25                     | -     | -778     | 8.  |  |  |
| -42                 | 67     | -2     | -      | -                       | -     | -        | 9.  |  |  |
| -176                | -      | -      | -      | -                       | -     | -        | 10. |  |  |
| -8649               | -      | -      | -      | -                       | -     | -        | 11. |  |  |
| -2690               | -      | -      | -      | -                       | -     | -        | 12. |  |  |
| 556                 | -      | -      | -      | -                       | -     | -        | 13. |  |  |
| -                   | -      | -      | -      | -                       | -     | -        | 14. |  |  |
| -21822              | -      | -4719  | -      | -                       | -     | -        | 15. |  |  |
| 6435                | -10    | 0      | 13     | -                       | -     | 13       | 16. |  |  |
| 251083              | 57     | 36130  | 2462   | -                       | 136   | 2597     | 17. |  |  |
| 148940              | -      | 22135  | 2114   |                         |       | 2114     | 18. |  |  |
| 7166                | -      | 107    | -      | -                       | -     | -        | 19. |  |  |
| 643                 | -      | 145    | -      | -                       | -     | -        | 20. |  |  |
| 3048                | -      | 85     | -      | -                       | -     | -        | 21. |  |  |
| 138083              | -      | 21798  | 2114   | -                       | -     | 2114     | 22. |  |  |
| 4640                | -      | 889    | -      | -                       | -     | -        | 23. |  |  |
| 6494                | -      | 859    | -      | -                       | -     | -        | 24. |  |  |
| 8663                | -      | 1805   | 2114   | -                       | -     | 2114     | 25. |  |  |
| 35346               | -      | 4213   | -      | -                       | -     | -        | 26. |  |  |
| 12192               | -      | 1303   | -      | -                       | -     | -        | 27. |  |  |
| 49698               | -      | 5964   | -      | -                       | -     | -        | 28. |  |  |
| 3889                | -      | 2387   | -      | -                       | -     | -        | 29. |  |  |
| 3818                | -      | 1783   | -      | -                       | -     | -        | 30. |  |  |
| 13344               | -      | 2594   | -      | -                       | -     | -        | 31. |  |  |
| 49563               | 57     | 12798  | 347    | -                       | 136   | 483      | 32. |  |  |
| 25574               | 11     | 7808   | 347    | -                       | 136   | 483      | 33. |  |  |
| 23989               | 46     | 4990   | -      | -                       | -     | -        | 34. |  |  |
| 46295               | -      | 1197   | -      | -                       | -     | -        | 35. |  |  |
| 6285                | -      |        | -      |                         | -     | -        | 36. |  |  |

| Primary energy:       1       Domestic production       13181         1. Domestic production       13181       -         2. Imports       54146       -         3. Total supply of primary energy       00       67327       -         4. Exports       -53       -1489         5. Changes in stock       1128       -3         6. Total supply for domestic use       68402       -1492         Energy conversion:       -       -         7. Electric power companies       70-       -5533       -3684         8. Electric power for own use       70-       -160       -1693         9. Heat supply companies       70-       -21       -         10. City gas       70-       -       -1348         11. Cokes production       27-       -55332       45398         12. Petroleum refinery       27-       -       -         13. Own consumption and loss       -171       -3675       -         15. Own consumption:       -       -       -         17. Total       6282       33665       -         18. Industrial sector total       5973       32930         19. Agriculture, forestry, and fisheries       01&       -       - |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Domestic production       13181         2. Imports       54146         3. Total supply of primary energy       00       67327         4. Exports       -53       -1489         5. Changes in stock       1128       -3         6. Total supply for domestic use       68402       -1492         Energy conversion:       -       -         7. Electric power companies       70-       -5533       -3684         8. Electric power for own use       70-       -160       -1693         9. Heat supply companies       70-       -       -1348         11. Cokes production       27-       -       -         12. Petroleum refinery       27-       -       -         13. Petrochemical industry       26-       -       -         14. Others       -       -       -       -         15. Own consumption and loss       -171       -3675       -       -         16. Statistical discrepancy       -2702       158       -       -       -         17. Total       6282       33665       -       -       -       -       -         17. Total       6282       33665       -       -       -       -                                 |
| 2. Imports       54146         3. Total supply of primary energy       00       67327         4. Exports       -53       -1489         5. Changes in stock       1128       -3         6. Total supply for domestic use       68402       -1492         Energy conversion:       70-       -5533       -3684         8. Electric power companies       70-       -5533       -3684         8. Electric power for own use       70-       -160       -1693         9. Heat supply companies       70-       -1348         10. City gas       70-       -1348         11. Cokes production       27-       -53532       45398         12. Petroleum refinery       27-       -       -         13. Petrochemical industry       26-       -       -         14. Others       -       -       -         15. Own consumption and loss       -1711       -3675       -3665         16. Statistical discrepancy       -2702       158         Final energy consumption:       17       -       -         17. Total       6282       33665       -       -         18. Industrial sector total       5973       32930       -       -     <      |
| 3. Total supply of primary energy       00       67327       -         4. Exports       -53       -1489         5. Changes in stock       1128       -33         6. Total supply for domestic use       68402       -1492         Energy conversion:       70-       -5533       -3684         8. Electric power companies       70-       -160       -1693         9. Heat supply companies       70-       -21       -         10. City gas       70-       -21       -         11. Cokes production       27-       -53532       45398         12. Petroleum refinery       27-       -       -         13. Petrochemical industry       26-       -       -         14. Others       -       -       -       -         15. Own consumption and loss       -171       -3675       -3665         16. Statistical discrepancy       -2702       158       -         Final energy consumption:       -       -       -         17. Total       6282       33665       -       -         18. Industrial sector total       5973       32930       -       -         19. Agriculture, forestry, and fisheries       01&       -             |
| 4. Exports       -53       -1489         5. Changes in stock       1128       -3         6. Total supply for domestic use       68402       -1492         Energy conversion:       70-       -5533       -3684         8. Electric power companies       70-       -160       -1693         9. Heat supply companies       70-       -21       -         10. City gas       70-       -21       -         11. Cokes production       27-       -53532       45398         11. Cokes production       27-       -53532       45398         12. Petroleum refinery       27-       -       -         13. Petrochemical industry       26-       -       -         14. Others       -       -       -       -         15. Own consumption and loss       -171       -3675       -3665         16. Statistical discrepancy       -2702       158       -       -         17. Total       6282       33665       -       -       -         20. Mining       10&       -       -       -       -         21. Construction       15       -       -       -       -         21. Construction       15                                            |
| 4. Exports       -53       -1489         5. Changes in stock       1128       -3         6. Total supply for domestic use       68402       -1492         Energy conversion:       70-       -5533       -3684         8. Electric power companies       70-       -160       -1693         9. Heat supply companies       70-       -21       -         10. City gas       70-       -21       -         11. Cokes production       27-       -53532       45398         11. Cokes production       27-       -53532       45398         12. Petroleum refinery       27-       -       -         13. Petrochemical industry       26-       -       -         14. Others       -       -       -       -         15. Own consumption and loss       -171       -3675       -3665         16. Statistical discrepancy       -2702       158       -       -         17. Total       6282       33665       -       -       -         20. Mining       10&       -       -       -       -         21. Construction       15       -       -       -       -         21. Construction       15                                            |
| 6. Total supply for domestic use       68402       -1492         Energy conversion:       70-       -5533       -3684         8. Electric power companies       70-       -160       -1693         9. Heat supply companies       70-       - 21       -         10. City gas       70-       - 21       -         11. Cokes production       27-       -53532       45398         12. Petroleum refinery       27-       -       -         13. Petrochemical industry       26-       -       -         14. Others       -       -       -         15. Own consumption and loss       -1711       -3675       -         16. Statistical discrepancy       -2702       158         Final energy consumption:       -       -       -         17. Total       6282       33665       -         18. Industrial sector total       5973       32930       -         19. Agriculture, forestry, and fisheries       01&       -       -         20. Mining       10&       -       -       -         21. Construction       15       -       -       -         22. Manufacturing total       0M       5973       32930       <                |
| 6. Total supply for domestic use       68402       -1492         Energy conversion:       70-       -5533       -3684         8. Electric power companies       70-       -160       -1693         9. Heat supply companies       70-       - 21       -         10. City gas       70-       - 21       -         11. Cokes production       27-       -53532       45398         12. Petroleum refinery       27-       -       -         13. Petrochemical industry       26-       -       -         14. Others       -       -       -         15. Own consumption and loss       -1711       -3675       -         16. Statistical discrepancy       -2702       158         Final energy consumption:       -       -       -         17. Total       6282       33665       -         18. Industrial sector total       5973       32930       -         19. Agriculture, forestry, and fisheries       01&       -       -         20. Mining       10&       -       -       -         21. Construction       15       -       -       -         22. Manufacturing total       0M       5973       32930       <                |
| 7. Electric power companies       70-       -5533       -3684         8. Electric power for own use       70-       -160       -1693         9. Heat supply companies       70-       - 21       -         10. City gas       70-       - 21       -         11. Cokes production       27-       -53532       45398         12. Petroleum refinery       27-       -       -         13. Petrochemical industry       26-       -       -         14. Others       -       -       -         15. Own consumption and loss       -171       -3675         16. Statistical discrepancy       -2702       158         Final energy consumption:       -       -         17. Total       6282       33665         18. Industrial sector total       5973       32930         19. Agriculture, forestry, and fisheries       01&       -         20. Mining       10&       -       -         21. Construction       15       -       -         22. Manufacturing total       0M       5973       32930         23. Food processing       18       -       -         24. Textiles       20&-       -       -                                  |
| 8. Electric power for own use       70-       -160       -1693         9. Heat supply companies       70-       - 21       -         10. City gas       70-       - 1348       -       -         11. Cokes production       27-       -53532       45398         12. Petroleum refinery       27-       -       -         13. Petrochemical industry       26-       -       -         14. Others       -       -       -       -         15. Own consumption and loss       -171       -3675       -       -         16. Statistical discrepancy       -2702       158       -       -       -         17. Total       6282       33665       -       -       -       -         17. Total       6282       33665       -       -       -       -       -         19. Agriculture, forestry, and fisheries       01&       -       -       -       -       -         20. Mining       10&       -       -       -       -       -       -         21. Construction       15       -       -       -       -       -       -       -       -       -       -       -       -                                                               |
| 9. Heat supply companies       70-       - 21         10. City gas       70-       - 1348         11. Cokes production       27-       -53532       45398         12. Petroleum refinery       27-       -       -         13. Petrochemical industry       26-       -       -         14. Others       -       -       -         15. Own consumption and loss       -171       -3675         16. Statistical discrepancy       -2702       158         Final energy consumption:       -       -         17. Total       6282       33665         18. Industrial sector total       5973       32930         19. Agriculture, forestry, and fisheries       01&       -         20. Mining       10&       -       -         21. Construction       15       -       -         22. Manufacturing total       0M       5973       32930         23. Food processing       18       -       -         24. Textiles       20&-       -       -         25. Paper and pulp       24       112       -                                                                                                                                       |
| 10. City gas       70-       -1348         11. Cokes production       27-       -53532       45398         12. Petroleum refinery       27-       -       -         13. Petrochemical industry       26-       -       -         14. Others       -       -       -         15. Own consumption and loss       -171       -3675       -         16. Statistical discrepancy       -2702       158         Final energy consumption:       -       -       -         17. Total       6282       33665       32930         19. Agriculture, forestry, and fisheries       01&       -       -         20. Mining       10&       -       -       -         21. Construction       15       -       -       -         22. Manufacturing total       0M       5973       32930         23. Food processing       18       -       -       -         24. Textiles       20&-       -       -       -         25. Paper and pulp       24       112       -       -                                                                                                                                                                             |
| 11. Cokes production       27-       -53532       45398         12. Petroleum refinery       27-       -       -         13. Petrochemical industry       26-       -       -         14. Others       -       -       -         15. Own consumption and loss       -171       -3675       -         16. Statistical discrepancy       -2702       158         Final energy consumption:       -       -       -         17. Total       6282       33665       -       -         18. Industrial sector total       5973       32930       -       -         19. Agriculture, forestry, and fisheries       01&       -       -       -         20. Mining       10&       -       -       -       -         21. Construction       15       -       -       -       -         22. Manufacturing total       0M       5973       32930       32930       -       -       -         23. Food processing       18       -       -       -       -       -       -         24. Textiles       20&-       -       -       -       -       -       -         25. Paper and pulp       24                                                       |
| 12. Petroleum refinery       27-       -         13. Petrochemical industry       26-       -         14. Others       -       -         15. Own consumption and loss       -171       -3675         16. Statistical discrepancy       -2702       158         Final energy consumption:       -       -         17. Total       6282       33665         18. Industrial sector total       5973       32930         19. Agriculture, forestry, and fisheries       01&       -         20. Mining       10&       -         21. Construction       15       -         22. Manufacturing total       0M       5973       32930         23. Food processing       18       -       -         24. Textiles       20&-       -       -         25. Paper and pulp       24       112       -                                                                                                                                                                                                                                                                                                                                                 |
| 13. Petrochemical industry       26-       -         14. Others       -       -         15. Own consumption and loss       -171       -3675         16. Statistical discrepancy       -2702       158         Final energy consumption:       -       -         17. Total       6282       33665         18. Industrial sector total       5973       32930         19. Agriculture, forestry, and fisheries       01&       -         20. Mining       10&       -         21. Construction       15       -         22. Manufacturing total       0M       5973       32930         23. Food processing       18       -       -         24. Textiles       20&-       -       -         25. Paper and pulp       24       112       -                                                                                                                                                                                                                                                                                                                                                                                                  |
| 14. Others       -       -         15. Own consumption and loss       -171       -3675         16. Statistical discrepancy       -2702       158         Final energy consumption:       -       -         17. Total       6282       33665         18. Industrial sector total       5973       32930         19. Agriculture, forestry, and fisheries       01&       -         20. Mining       10&       -         21. Construction       15       -         22. Manufacturing total       0M       5973       32930         23. Food processing       18       -       -         24. Textiles       20&-       -       -         25. Paper and pulp       24       112       -                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 15. Own consumption and loss       -171       -3675         16. Statistical discrepancy       -2702       158         Final energy consumption:       -2702       158         17. Total       6282       33665         18. Industrial sector total       5973       32930         19. Agriculture, forestry, and fisheries       01&       -         20. Mining       10&       -         21. Construction       15       -         22. Manufacturing total       0M       5973       32930         23. Food processing       18       -       -         24. Textiles       20&-       -       -         25. Paper and pulp       24       112       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 16. Statistical discrepancy       -2702       158         Final energy consumption:       17. Total       6282       33665         17. Total       6282       33665         18. Industrial sector total       5973       32930         19. Agriculture, forestry, and fisheries       01&       -         20. Mining       10&       -         21. Construction       15       -         22. Manufacturing total       0M       5973       32930         23. Food processing       18       -       -         24. Textiles       20&-       -       -         25. Paper and pulp       24       112       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 16. Statistical discrepancy       -2702       158         Final energy consumption:       17. Total       6282       33665         17. Total       6282       33665         18. Industrial sector total       5973       32930         19. Agriculture, forestry, and fisheries       01&       -         20. Mining       10&       -         21. Construction       15       -         22. Manufacturing total       0M       5973       32930         23. Food processing       18       -       -         24. Textiles       20&-       -       -         25. Paper and pulp       24       112       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 17. Total       6282       33665         18. Industrial sector total       5973       32930         19. Agriculture, forestry, and fisheries       01&       -         20. Mining       10&       -         21. Construction       15       -         22. Manufacturing total       0M       5973       32930         23. Food processing       18       -       -         24. Textiles       20&-       -       -         25. Paper and pulp       24       112       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 18. Industrial sector total       5973       32930         19. Agriculture, forestry, and fisheries       01&       -       -         20. Mining       10&       -       -         21. Construction       15       -       -         22. Manufacturing total       0M       5973       32930         23. Food processing       18       -       -         24. Textiles       20&-       -       -         25. Paper and pulp       24       112       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 19. Agriculture, forestry, and fisheries       01& -       -         20. Mining       10& -       -         21. Construction       15       -         22. Manufacturing total       0M       5973       32930         23. Food processing       18       -       -         24. Textiles       20&-       -       -         25. Paper and pulp       24       112       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 20. Mining       10& -       -         21. Construction       15       -         22. Manufacturing total       0M       5973       32930         23. Food processing       18       -       -         24. Textiles       20&-       -       -         25. Paper and pulp       24       112       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 21. Construction       15       -         22. Manufacturing total       0M       5973       32930         23. Food processing       18       -       -         24. Textiles       20&-       -       -         25. Paper and pulp       24       112       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 22. Manufacturing total       0M       5973       32930         23. Food processing       18       -       -         24. Textiles       20&-       -       -         25. Paper and pulp       24       112       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 23. Food processing       18       -       -         24. Textiles       20&-       -       -         25. Paper and pulp       24       112       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 24. Textiles         20&-         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                 |
| 25. Paper and pulp 24 112 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 26. Chemicals 26- 164 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 27 Nonmetallic mineral products 30 4337 214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 28. Iron and steel 31 253 32057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 29. Nonferrous metals 32 213 224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 30. Machinery 34&=34+35+36+37 28 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 31. Other manufacturing 38&& 867 126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 32. Domestic sector total 309 735                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 33. Household 0F 67 241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 34. Business 75 242 494                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 35. Transportation sector total 60T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 36. Non-energy use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

|            | Crude   | Petroleum | products |           |          | (unit: 10 | 20 ((021) |
|------------|---------|-----------|----------|-----------|----------|-----------|-----------|
|            | oil     |           |          | Naphtha   | Jet fuel | Kerosene  | Light oil |
| 1.         | 448     | 17        | _        |           | _        |           |           |
| 2.         | 230952  | 31019     | _        | 5329      | 377      | - 253     | - 295     |
| 2.<br>3.   | 231400  | 31036     | -        | 5329      | 377      | 253       | 295       |
| 4.         | -       | -16043    | _        |           | -1911    | - 255     | -172      |
| 5.         | -290    | -151      | -64      | 126       | 56       | 221       | -40       |
| 6.         | 231110  | 14841     | -64      | 5455      | -1478    | 474       | 84        |
| 7.         | -14910  | -37071    |          | 1101      |          |           | 110       |
| 8.         | -14910  | -7986     | -        | -1101     | -        | -         | -112      |
| 9.         | _       | -7980     | -        | -         | -        | -26       | -         |
| 10.        | -0      | -3583     |          | -<br>1399 | -        | -20       | -         |
| 11.        | -0      | -1082     |          | -1333     |          | _         | -         |
| 12.        | -212210 | 209805    | 29065    | 16756     | 3921     | 21069     | 19791     |
| 13.        | -982    | 982       | -        | 727       |          | 21005     | 15751     |
| 14.        | -       | -         | -        | -         | -        | -         | _         |
| 15.        | -48     | -11867    | -100     | -624      | -        | -91       | -39       |
| 16.        | -2894   | 3152      | 115      | -232      | 138      | -396      | -89       |
| 17.        | 66      | 167142    | 29016    | 19582     | 2581     | 21029     | 19635     |
| 18.        | 66      | 76975     | 103      | 19582     | 2301     | 6050      | 4969      |
| 10.<br>19. | -       | 8478      | - 105    | 19302     | -        | 1468      | 1158      |
| 20.        | -       | 459       | -        | -         | _        | 60        | 232       |
| 21.        | -       | 3831      | _        | -         | _        | 648       | 2513      |
| 22         | 66      | 64207     | 103      | 9582      | -        | 3874      | 1066      |
| 23.        | -       | 3239      | -        | -         | -        | -         | -         |
| 24.        | -       | 3932      | -        | -         | -        | 30        | -         |
| 25.        | -       | 3881      | -        | -         | -        | 23        | -         |
| 26.        | 66      | 27021     | -        | 18499     | -        | 193       | -         |
| 27.        | -       | 6962      | -        | -         | -        | 114       | -         |
| 28.        | -       | 5596      | -        | -         | -        | 432       | -         |
| 29.        | -       | 1407      | -        | -         | -        | 144       | -         |
| 30.        | -       | 1587      | -        | -         | -        | 444       | -         |
| 31.        | -       | 10581     | 103      | 1082      | -        | 2493      | 1066      |
| 32.        | -       | 29557     | -        | -         | -        | 14980     | 65        |
| 33.        | -       | 13630     | -        | -         | -        | 8565      | -         |
| 34.        | -       | 15927     | -        | -         | -        | 6414      | 65        |
| 35         | -       | 53693     | 28913    | -         | 2581     | -         | 14602     |
| 36.        | -       | 6917      | -        | -         | -        | -         | -         |

(unit: 10\*\*10 kcal)

|      |        |       | Natural | City  | Hydro  | Nuclear | Geo-    |
|------|--------|-------|---------|-------|--------|---------|---------|
|      | Heavy  | LPG   | . gas   | gas   |        |         | thermal |
|      | oil    |       | and LNG |       |        |         |         |
| 1    |        | 17    | 0050    |       | 00401  | 10500   | 200     |
| 1.   | -      | 17    | 2350    | -     | 20481  | 18583   | 290     |
| 2.   | 10781  | 11982 | 21814   | -     | -      | 10502   | -       |
| 3.   | 10781  | 11999 | 24164   | -     | 20481  | 18583   | 290     |
| 4.   | -13548 | -5    | - 0     | -     | -      | -       | -       |
| 5.   | -84    | -298  | -       | -     | -      | -       | -       |
| 6.   | -2851  | 11696 | 24165   | -     | 20481  | 18583   | 290     |
| 7.   | -34975 | -883  | -17446  | -     | -19177 | -18452  | -198    |
| 8.   | -7821  | -     | -142    | -     | -1305  | -131    | -51     |
| 9.   | -24    | -     |         | -70   | -      | -       | -       |
| 10.  |        | -1673 | -5090   | 10065 | -      | -       | -       |
| 11.  | -      | -     | -       |       | -      | -       | -       |
| 12.  | 104412 | 4950  | -       | -     | -      | -       | -       |
| 13   | -      | -     | -       | -     | -      | -       | -       |
| 14.  | -      | -     | -       | -     | -      | -       | -       |
| 15   | -4545  | -1043 | -593    | -737  | -      | -       | -       |
| 16.  | -416   | 556   | 102     | -0    | 0      | -0      | -       |
|      |        |       |         |       |        |         |         |
| _17. | 53780  | 13602 | 996     | 9257  | -      | -       | 41      |
| 18.  | 39530  | 5743  | 974     | 1448  | -      | -       | 17      |
| 19.  | 5852   | -     | -       | -     | -      | -       | 17      |
| 20.  | 167    | -     | -       | -     | -      | -       | -       |
| 21.  | 670    | -     | -       | -     | -      | -       | -       |
| 22.  | 32840  | 5743  | 974     | 1448  | -      | -       | -       |
| 23.  | 3239   | -     | -       | 188   | -      | -       | -       |
| 24.  | 3902   | -     | -       | 48    | -      | -       | -       |
| 25.  | 3858   | -     | -       | -     | -      | -       | -       |
| 26.  | 6271   | 2058  | 731     | 371   | -      | -       | -       |
| 27   | 6529   | 36    | -       | 97    | -      | -       | -       |
| 28.  | 4354   | 801   | 147     | 207   | -      | -       | -       |
| 29.  | 1101   | 163   | -       | 113   | -      | -       | -       |
| 30.  | 1144   | -     | -       | 275   | -      | -       | -       |
| 31.  | 2443   | 2685  | 96      | 149   | -      | -       | -       |
| 32.  | 8405   | 6107  | 21      | 7809  | -      | -       | 23      |
| 33.  | -      | 5065  | -       | 5649  | -      | -       | -       |
| 34   | 8405   | 1043  | 21      | 2160  | -      |         | 23      |
| 35.  | 5845   | 1752  |         | -     | -      | -       | -       |
| 36.  | -      | -     | -       | -     | -      | -       | -       |

|     |           | <b>.</b> . |                         |        | 0**10 kcal) |        |        |
|-----|-----------|------------|-------------------------|--------|-------------|--------|--------|
|     | Nonconven |            |                         |        | Elect-      | Heat   | Total  |
|     |           | Solar      | Waste in-<br>cineration | Others | ricity      | supply |        |
| 1.  | 3918      | 370        | 107                     | 3440   | -           | -      | 59267  |
| 2.  | -         | -          | -                       | -      | -           | -      | 337931 |
| 3.  | 3918      | 370        | 107                     | 3440   | -           | -      | 397198 |
| 4.  | -         | -          | -                       | -      | -           | -      | -17585 |
| 5.  | -         | -          | -                       | -      | -           | -      | 685    |
| 6.  | 3918      | 370        | 107                     | 3440   | -           | -      | 380298 |
| 7.  | -31       | -          | -31                     | -      | 43999       | -      | -72502 |
| 8.  | -1390     | -          | -76                     | -1313  | 5459        | -      | -7399  |
| 9.  | -         | -          | -                       | -      | -8          | 121    | -28    |
| 10. | -         | -          | -                       | -      | -           | -      | 44     |
| 11. | -         | -          | -                       | -      | -           | -      | -9216  |
| 12  | -         | -          | -                       | -      | -           | -      | -2405  |
| 13. | -         | -          | -                       | -      | -           | -      | -      |
| 14. | -         | -          | -                       | -      | -           | -      | -      |
| 15. | -         | -          | -                       | -      | -5425       | -      | -22516 |
| 16. | 469       | -          | -                       | 469    | 0           | -19    | -1735  |
| 17. | 2967      | 370        | -                       | 2597   | 44024       | 102    | 264541 |
| 18. | 2398      | -          | -                       | 2398   | 25320       | -      | 146102 |
| 19. | -         | -          | -                       | -      | 104         | -      | 8599   |
| 20. | -         | -          | -                       | -      | 143         | -      | 602    |
| 21. | -         | -          | -                       | -      | 91          | -      | 3922   |
| 22. | 2398      | -          | -                       | 2398   | 24982       | -      | 132978 |
| 23. | -         | -          | -                       | -      | 1134        | -      | 4561   |
| 24. | -         | -          | -                       | -      | 911         | -      | 4891   |
| 25. | 2398      | -          | -                       | 2398   | 2081        | -      | 8472   |
| 26. | -         | -          | -                       | -      | 4041        | -      | 32645  |
| 27. | -         | -          | -                       | -      | 1748        | -      | 13357  |
| 28. | -         | -          | -                       | -      | 6506        | -      | 44766  |
| 29. | -         | -          | -                       | -      | 2454        | -      | 4411   |
| 30. | -         | -          | -                       | -      | 2704        | -      | 4653   |
| 31. | -         | -          |                         | -      | 3404        | -      | 15222  |
| 32. | 568       | 370        | -                       | 198    | 17395       | 102    | 56519  |
| 33. | 564       | 365        | -                       | 198    | 10313       | 23     | 30486  |
| 34. | 5         | 5          | -                       | -      | 7082        | 79     | 26034  |
| 35. | -         | -          | -                       | -      | 1309        | -      | 55003  |
| 36. | -         | -          | -                       | -      | -           | -      | 6917   |

| Supply and demand sectors                | Sector Code     | Coal   | Cokes |
|------------------------------------------|-----------------|--------|-------|
|                                          |                 |        |       |
| Primary energy:                          |                 |        |       |
| 1. Domestic production                   |                 | 10975  | -     |
| 2. Imports                               |                 | 67836  | -     |
| 3. Total supply of primary energy        | 00              | 78810  | -     |
| 4. Exports                               |                 | - 1    | -1647 |
| 5. Changes in stock                      |                 | -196   | 27    |
| 6. Total supply for domestic use         |                 | 78613  | -1620 |
| Energy conversion:                       |                 |        |       |
| 7. Electric power companies              | 70-             | -13622 | -5108 |
| 8. Electric power for own use            | 70-             | -1034  | -2115 |
| 9. Heat supply companies                 | 70-             | -24    | -     |
| 10. City gas                             | 70-             | -      | -1133 |
| 11. Cokes production                     | 27-             | -54217 | 46990 |
| 12. Petroleum refinery                   | 27-             | -      | -     |
| 13. Petrochemical industry               | 26-             | -      | -     |
| 14. Others                               |                 | -      | -     |
| 15. Own consumption and loss             |                 | -178   | -4107 |
| 16. Statistical discrepancy              |                 | 301    | -1761 |
| Final energy consumption:                |                 |        |       |
| 17. Total                                |                 | 9839   | 31147 |
| 18 Industrial sector total               |                 | 9637   | 30144 |
| 19. Agriculture, forestry, and fisheries | 01&             | -      | -     |
| 20 Mining                                | 10&             | -      | 3     |
| 21. Construction                         | 15              | -      | -     |
| 22. Manufacturing total                  | 0M              | 9637   | 30141 |
| 23. Food processing                      | 18              | -      | -     |
| 24. Textiles                             | 20&-            | 5      | -     |
| 25. Paper and pulp                       | 24              | 528    | -     |
| 26. Chemicals                            | 26-             | 1242   | 380   |
| 27. Nonmetallic mineral products         | 30              | 5359   | 382   |
| 28. Iron and steel                       | 31              | 1476   | 28470 |
| 29. Nonferrous metals                    | 32              | 178    | 226   |
| 30. Machinery                            | 34&=34+35+36+37 | 0      | 501   |
| 31. Other manufacturing                  | 38&&            | 849    | 183   |
| 32. Domestic sector total                |                 | 202    | 1002  |
| 33. Household                            | 0F              | 43     | 147   |
| 34. Business                             | 75              | 159    | 855   |
| 35. Transportation sector total          | 60T             |        |       |
| 36. Non-energy use                       |                 | _      |       |
|                                          |                 |        |       |

|            | Crude   | Petroleum       | products |         |          | (unit: 10 |           |
|------------|---------|-----------------|----------|---------|----------|-----------|-----------|
|            | oil     |                 | Gasoline | Naphtha | Jet fuel | Kerosene  | Light oil |
|            |         |                 |          |         |          |           |           |
| 1.         | 619     | 15              | _        | _       | -        | -         | -         |
| 2.         | 181810  | 45597           | 445      | 11809   | 2047     | 899       | 219       |
| 3.         | 182429  | 45612           | 445      | 11809   | 2047     | 899       | 219       |
| <b>4</b> . | -       | -11427          | -        | -       | -3132    | -6        | -173      |
| 5.         | 1468    | -177            | 175      | -161    | -17      | 63        | -131      |
| 6.         | 183897  | 34008           | 620      | 11648   | -1102    | 956       | -85       |
| 7          | 10107   | 01000           |          | -290    |          |           | -140      |
| 7.<br>8.   | -12137  | -21820<br>-6438 | -        | -290    | -        | -         | -140      |
| о.<br>9.   | -       | -0438<br>-42    | _        | -355    | _        | -15       | _         |
| 9.<br>10.  | -       | -3155           | _        | -384    | -        | -         | -         |
| 10.        | -       | -554            | _        | - 00    | -        | -         | -         |
| 12.        | -167036 | 165116          | 30307    | 8641    | 3710     | 22117     | 23708     |
| 13.        | -1917   | 1917            | -        | 1725    | -        |           |           |
| 14.        | -       | -               | _        |         | -        | -         | -         |
| 15.        | -28     | -9366           | -123     | -250    | -        | -90       | -99       |
| 16.        | -2766   | 2443            | 22       | -999    |          |           |           |
| 17.        | 13      | 162109          | 30826    | 19755   | 2659     | 22508     | 23575     |
| 18.        | 13      | 66124           | 55       | 19755   | -        | 6386      | 6296      |
| 19.        | -       | 8355            | -        | -       | -        | 1761      | 1470      |
| 20.        | -       | 306             | -        | -       | -        | 35        | 198       |
| 21.        | -       | 4260            | -        | -       | -        | 949       | 2687      |
| 22.        | 13      | 55203           | 59       | 19755   | -        | 3641      | 1941      |
| 23.        | -       | 2502            | -        | -       | -        | -         | -         |
| 24.        | -       | 3069            | -        | -       | -        | 22        | 0         |
| 25.        | -       | 2719            | -        | -       | -        | 28        | 2         |
| 26.        | 13      | 25574           | -        | 19024   | -        | 232       | 2         |
| 27.        | -       | 3273            | -        | -       | -        | 95        | 12        |
| 28.        | -       | 2593            | -        | -       | -        | 284       | 36        |
| 29.        | -       | 1104            | -        | -       | -        | 151       | 4         |
| 30.        | -       | 1987            | -        | -       | -        | 411       | 52        |
| 31.        | -       | 10383           | 59       | 731     | -        | 2418      | 1833      |
| 32.        | -       | 31199           | -        | -       | -        | 16123     | 28        |
| 33.        | -       | 16678           | -        | -       | -        | 10959     | -         |
| 34.        | -       | 14521           | -        | -       | -        | 5164      | 28        |
| 35.        | -       | 57478           | 30768    | -       | 2659     | -         | 17251     |
| 36.        | -       | 7308            | -        | -       | -        | -         | -         |

(unit: 10\*\*10 kcal)

|     |        |       | Natural | City  | Hydro   | Nuclear      |         |
|-----|--------|-------|---------|-------|---------|--------------|---------|
|     | Heavy  | LPG   | •       | gas   |         |              | thermal |
|     | oil    |       | and LNG |       |         |              |         |
| 1.  | _      | 15    | 2328    | _     | 19081   | 35905        | 398     |
| 2.  | 12800  | 14154 | 35885   | _     | - 15001 | -            |         |
| 3.  | 12800  | 14169 | 38213   | _     | 19081   | 35905        | 398     |
| 4.  | -7836  | -36   | -       | _     | -       | -            | -       |
| 5.  | 158    | -286  | 2       | -     | _       | -            | -       |
| 6.  | 5122   | 13848 | 38215   | -     | 19081   | 35905        | 398     |
|     |        |       |         |       |         |              |         |
| 7.  | -20658 | -731  | -28812  | -     | -17867  | -35771       | -283    |
| 8.  | -5347  | -50   | -143    | -     | -1214   | -134         | -53     |
| 9.  | -23    | -5    | -       | -98   | -       | -            | -       |
| 10. | -      | -2386 | -8086   | 12726 | -       | -            | -       |
| 11. | -      | -     | -       | -     | -       | -            | -       |
| 12. | 60953  | 5134  | -       | -     | -       | -            | -       |
| 13. | -      | -     | -       | -     | -       | -            | -       |
| 14. | -      | -     | -       | -     | -       | -            | -       |
| 15. | -2804  | -334  | -601    | -752  | -       | -            | -       |
| 16. | 490    | -58   | 343     | -1    | -       | -            | -       |
| 17. | 37734  | 15416 | 916     | 11875 | -       | -            | 61      |
| 18. | 24688  | 6612  | 898     | 2309  | -       | -            | 26      |
| 19. | 5123   | -     | -       | -     | -       | -            | 26      |
| 20. | 73     | -     | -       | -     | -       | -            | -       |
| 21. | 624    | -     | -       | -     | -       | -            | -       |
| 22. | 18868  | 6612  | 898     | 2309  | -       | -            | -       |
| 23. | 2502   | -     | -       | 334   | -       | -            | -       |
| 24. | 2930   | 100   | -       | 70    | -       | -            | -       |
| 25. | 2566   | 48    | -       | 57    | -       | -            | -       |
| 26. | 3516   | 2580  | 627     | 275   | -       | -            | -       |
| 27. | 2385   | 227   | -       | 221   | -       | -            | -       |
| 28. | 1767   | 495   | 187     | 426   | -       | -            | -       |
| 29. | 710    | 193   | -       | 102   | -       | -            | -       |
| 30. | 1133   | 390   | -       | 791   | -       | -            | -       |
| 31. | 1359   | 2579  | 85      | 33    | -       | -            | -       |
| 32. | 8266   | 6782  | 18      | 9566  | -       | -            | 35      |
| 33. | -      | 5719  | -       | 6743  | -       | -            | -       |
| 34. | 8266   | 1063  | 18      | 2823  | -       | -            | 35      |
| 35. | 4779   | 2022  | -       | -     | -       | <del>-</del> | -       |
| 36. | -      | _     | -       | -     | -       | -            | -       |

|        | (unit: 10* |        |        |                         |       |           |     |
|--------|------------|--------|--------|-------------------------|-------|-----------|-----|
| Total  | Heat       | Elect- |        |                         |       | Nonconven | _   |
|        | supply     | ricity | Others | Wasté in-<br>cineration | Solar |           |     |
| 74195  | -          | -      | 3770   | 227                     | 878   | 4875      | 1.  |
| 331127 | -          | -      | -      | -                       | -     | -         | 2.  |
| 405323 | -          | -      | 3770   | 227                     | 878   | 4875      | 3.  |
| -13076 | -          | -      | -      | -                       | -     | -         | 4.  |
| 1123   | -          | -      | -      | -                       | -     | -         | 5.  |
| 393370 | -          | -      | 3770   | 227                     | 878   | 4875      | 6.  |
| -84100 | -          | 51401  | -      | -81                     | -     | -81       | 7.  |
| -7510  | -          | 5850   | -2084  | -146                    | -     | -2229     | 8.  |
| -15    | 164        | -13    | -      | -                       | -     | -         | 9.  |
| 353    | -          | -      | -      | -                       | -     | -         | 10. |
| -7780  | -          | -      | -      | -                       | -     | -         | 11. |
| -1920  | -          | -      | -      | -                       | -     | -         | 12. |
| -      | -          | -      | -      | -                       | -     | -         | 13. |
| -      | -          | -      | -      | -                       | -     | -         | 14. |
| -21440 | -          | -6408  | -      | -                       | -     | -         | 15. |
| -406   | -26        | _      | 1060   | -                       | _     | 1060      | 16. |
| 270552 | 138        | 50830  | 2747   | -                       | 878   | 3624      | 17. |
| 138526 | -          | 26767  | 2607   | -                       | -     | 2607      | 18. |
| 8606   | -          | 225    | -      | -                       | -     | -         | 19. |
| 514    | -          | 205    | -      | -                       | -     | -         | 20. |
| 4348   | -          | 88     | -      | -                       | -     | -         | 21. |
| 125058 | -          | 26249  | 2607   | -                       | -     | 2607      | 22. |
| 4212   | -          | 1376   | -      | -                       | -     | -         | 23. |
| 4105   | -          | 918    | 43     | -                       | -     | 43        | 24. |
| 7991   | -          | 2175   | 2512   | -                       | -     | 2512      | 25. |
| 32372  | -          | 4220   | 41     | -                       | -     | 41        | 26. |
| 10947  | -          | 1713   | -      | -                       | -     | -         | 27. |
| 39431  | -          | 6280   | -      | -                       | -     | -         | 28. |
| 3137   | -          | 1516   | 11     | -                       | -     | 11        | 29. |
| 7244   | -          | 3966   | -      | -                       | -     | -         | 30. |
| 15619  | -          | 4086   | -      | -                       | -     | -         | 31. |
| 65838  | 138        | 22661  | 139    | _                       | 878   | 1017      | 32. |
| 37313  | 28         | 12693  | 139    | -                       | 842   | 981       | 33. |
| 28525  | 109        | 9968   | -      | -                       | 36    | 36        | 34. |
| 58880  | -          | 1402   | -      |                         | -     | -         | 35. |
| 7308   | -          | -      | -      |                         | -     | -         | 36. |

| Supply and demand sectors                | Sector Code                           | Coal     | Cokes |
|------------------------------------------|---------------------------------------|----------|-------|
| Primary energy:                          |                                       | <u> </u> |       |
| 1. Domestic production                   |                                       | 6149     | -     |
| 2. Imports                               |                                       | 74605    | -     |
| 3. Total supply of primary energy        | 00                                    | 80754    | -     |
| 4. Exports                               |                                       | -        | -1192 |
| 5. Changes in stock                      |                                       | 952      | -48   |
| 6. Total supply for domestic use         |                                       | 81706    | -1241 |
| Energy conversion:                       |                                       |          |       |
| 7. Electric power companies              | 70-                                   | -16533   | -4636 |
| 8. Electric power for own use            | 70-                                   | -2892    | -2667 |
| 9. Heat supply companies                 | 70-                                   | -18      |       |
| 10. City gas                             | 70-                                   | -        | 463   |
| 11. Cokes production                     | 27-                                   | -49465   | 42818 |
| 12. Petroleum refinery                   | 27-                                   | -        |       |
| 13. Petrochemical industry               | 26-                                   | -        | -     |
| 14. Others                               |                                       | -        | -     |
| 15. Own consumption and loss             |                                       | -80      | -3645 |
| 16. Statistical discrepancy              |                                       | 957      | -1894 |
| Final energy consumption:                | · · · · · · · · · · · · · · · · · · · |          |       |
| 17. Total                                |                                       | 13675    | 28273 |
| 18. Industrial sector total              |                                       | 13619    | 27499 |
| 19. Agriculture, forestry, and fisheries | 01&                                   | -        | -     |
| 20. Mining                               | 10&                                   | -        | -     |
| 21. Construction                         | 15                                    | -        | -     |
| 22. Manufacturing total                  | 0M                                    | 13619    | 27499 |
| 23. Food processing                      | 18                                    | -        | -     |
| 24. Textiles                             | 20&-                                  | 19       | -     |
| 25. Paper and pulp                       | 24                                    | 1099     | -     |
| 26. Chemicals                            | 26-                                   | 1031     | 259   |
| 27. Nonmetallic mineral products         | 30                                    | 5819     | 469   |
| 28. Iron and steel                       | 31                                    | 5161     | 25899 |
| 29. Nonferrous metals                    | 32                                    | 101      | 212   |
| 30. Machinery                            | 34&=34+35+36+37                       | 128      | 330   |
| 31. Other manufacturing                  | 38&&                                  | 260      | 329   |
| 32. Domestic sector total                |                                       | 56       | 774   |
| 33. Household                            | 0F                                    | 12       | 73    |
| 34. Business                             | 75                                    | 44       | 701   |
| 35. Transportation sector total          | 60T                                   | -        | -     |
| 36. Non-energy use                       |                                       |          |       |

|     | Crude   | Petroleur | n products |         |          | (unit: 10 |           |
|-----|---------|-----------|------------|---------|----------|-----------|-----------|
|     | oil     |           | Gasoline   | Naphtha | Jet fuel | Kerosene  | Light oil |
| 1.  | 604     | 8         |            |         |          |           |           |
| 2.  | 219737  | 63187     | 1786       | 16867   | 3847     | 3376      | 4588      |
| 3.  | 220341  | 63195     | 1786       | 16867   | 3847     | 3376      | 4588      |
| 4.  | -       | -14518    | -41        | -367    | -4672    | -441      | -618      |
| 5.  | -4591   | -557      | -231       | 15      | -1       | 255       | -258      |
| 6.  | 215751  | 48120     | 1514       | 16515   | -827     | 3189      | 3721      |
| 7.  | -20685  | -24665    | -          | -121    | _        | _         | -142      |
| 8.  | -       | -9635     | -          | -696    | -        | _         | -1+2      |
| 9.  | -       | -63       | -          | -       | -        | -         | 38 -      |
| 10. | -       | -3408     | -          | -235    | -        | -         | -         |
| 11. | -       | 798       | -          | -       | -        | -         | -         |
| 12. | -190088 | 187763    | 36101      | 9467    | 4093     | 21115     | 30821     |
| 13. | -4339   | 4339      | -          | 4155    | -        | -         | -         |
| 14. | -       | -         | -          | -       | -        | -         | -         |
| 15. | -24     | -9713     | -125       | -123    | -        | -80       | -114      |
| 16. | -598    | 3643      | 128        | -3252   | -13      | -460      | 211       |
| 17. | 17      | 195584    | 37617      | 25710   | 3254     | 23725     | 34488     |
| 18. | 17      | 79587     | 98         | 25710   | -        | 8874      | 8427      |
| 19. | -       | 11612     | -          | -       | -        | 2918      | 2702      |
| 20. | -       | 398       | -          | -       | -        | 34        | 221       |
| 21. | -       | 5392      | -          | -       | -        | 1236      | 3424      |
| 22. | 17      | 62185     | 98         | 25710   | -        | 4685      | 2080      |
| 23. | -       | 2543      | -          | -       | -        | -         | -         |
| 24. | -       | 2274      | -          | -       | -        | 18        | 1         |
| 25. | -       | 3041      | -          | -       | -        | 31        | 2         |
| 26. | 17      | 31726     | -          | 25558   | -        | 276       | 2         |
| 27. | -       | 3429      | -          | -       | -        | 109       | 17        |
| 28. | -       | 3292      | -          | -       | -        | 344       | 28        |
| 29. | -       | 1880      | -          | -       | -        | 184       | 4         |
| 30. | -       | 2007      | -          | -       | -        | 423       | 76        |
| 31. | -       | 11992     | 98         | 152     | -        | 3302      | 1950      |
| 32. | -       | 34550     | -          | -       | -        | 14851     | 76        |
| 33. | -       | 17360     | -          | -       | -        | 10925     | -         |
| 34. | -       | 17191     | -          | -       | -        | 3926      | 76        |
| 35. | -       | 72675     | 37519      | -       | 32541    | -         | 25985     |
| 36. | -       | 8773      | -          | -       | -        | -         | -         |

(unit: 10\*\*10 kcal)

|                    |        |           | Natural | City  | Hydro  | Nuclear | Geo-    |
|--------------------|--------|-----------|---------|-------|--------|---------|---------|
|                    | Heavy  | LPG       |         | gas   |        |         | thermal |
|                    | oil    | - <u></u> | and LNG |       |        |         |         |
| 1.                 |        | 8         | 2078    | _     | 20512  | 45511   | 465     |
| 1.<br>2.           | 11886  | 17208     | 47206   |       | 20312  | 45511   | +05     |
| 2.<br>3.           | 11886  | 17216     | 49284   |       | 20512  | 45511   | 465     |
| 4.                 | -8070  | -2        | 45204   |       | 20312  | 45511   | +05     |
| <del>.</del><br>5. | -283   | 12        | -8      | _     | _      | _       | _       |
| 6.                 | 3532   | 17226     | 49276   | _     | 20512  | 45511   | 465     |
| <u> </u>           |        | 11220     | 15210   |       |        |         |         |
| 7.                 | -23332 | -1070     | -36452  | -     | -19211 | -45316  | -329    |
| 8.                 | -7630  | -93       | -37     | -     | -1301  | -196    | -58     |
| 9.                 | -17    | -7        | -       | -154  | -      | -       | -       |
| 10.                | -      | -2804     | -11422  | 15879 | -      | -       | -       |
| 11.                | -      | -         | -       | -     | -      | -       | -       |
| 12.                | 69500  | 5459      | -       | -     | -      | -       | -       |
| 13.                | -      | -         | -       | -     | -      | -       | -       |
| 14.                | -      | -         | -       | -     | -      | -       | -       |
| 15.                | -2036  | -59       | -378    | -468  | -      | -       | -       |
| 16.                | 1299   | -104      | -281    | -0    | -      | -       | -       |
| 17.                | 41316  | 18548     | 705     | 15256 | -      | -       | 78      |
| 18.                | 26318  | 8006      | 616     | 3977  | -      | -       | 34      |
| 19                 | 5991   | -         | -       | -     | -      | -       | 34      |
| 20.                | 144    | -         | -       | -     | -      | -       | -       |
| 21                 | 732    | -         | -       | -     | -      | -       | -       |
| 22.                | 19452  | 8006      | 616     | 3977  | -      | -       | -       |
| 23.                | 2543   | -         | -       | 555   | -      | -       | -       |
| 24.                | 2092   | 136       | -       | 103   | -      | -       | -       |
| 25.                | 2790   | 68        | -       | 215   | -      | -       | -       |
| 26                 | 2586   | 2721      | 514     | 596   | -      | -       | -       |
| 27                 | 2771   | 240       | -       | 256   | -      | -       | -       |
| 28.                | 2097   | 776       | 42      | 789   | -      | -       | -       |
| 29.                | 1404   | 238       | -       | 219   | -      | -       | -       |
| 30.                | 991    | 517       | -       | 1244  | -      | -       | -       |
| 31                 | 2178   | 3310      | 61      | -     | -      | -       | -       |
| 32.                | 11373  | 8250      | 88      | 11279 | -      | -       | 45      |
| 33.                | -      | 6434      | -       | 7764  | -      | -       | -       |
| 34.                | 11373  | 1816      | 88      | 3515  | -      | -       | 45      |
| 35.                | 3625   | 2292      | -       | -     | -      | -       | -       |
| 36.                | -      | -         | -       | -     | -      | -       |         |

|     |          |       |                         |        |        |        | **10 kcal) |
|-----|----------|-------|-------------------------|--------|--------|--------|------------|
|     | Nonconve |       |                         |        | Elect- | Heat   | Total      |
|     | -        | Solar | Waste in-<br>cineration | Others | ricity | supply |            |
| 1.  | 6098     | 1050  | 407                     | 4642   | -      | -      | 81426      |
| 2.  | -        | -     | -                       | -      | -      | -      | 404734     |
| 3.  | 6098     | 1050  | 407                     | 4642   | -      | -      | 486161     |
| 4.  | -        | -     | -                       | -      | -      | -      | -15710     |
| 5.  | -        | -     | -                       | -      | -      | -      | -4252      |
| 6.  | 6098     | 1050  | 407                     | 4642   | -      | -      | 466198     |
| 7.  | -130     | -     | -130                    | -      | 64294  | -      | -103663    |
| 8.  | -3281    | -     | -276                    | -3005  | 8572   | -      | -11494     |
| 9.  | 236      | -     |                         | -      | -29    | 236    | -29        |
| 10. |          | -     | -                       | -      | -      | -      | 586        |
| 11  | -        | -     | -                       | -      | -      | -      | -7445      |
| 12. | -        | -     | -                       | -      | -      | -      | -2324      |
| 13. | -        | -     | -                       | -      | -      | -      | -          |
| 14. | -        | -     | -                       | -      | -      | -      | -          |
| 15  | -        | -     | -                       | -      | -7765  | -      | -22074     |
| 16. | 1300     | -     | -                       | 1300   | -      | -34    | 3093       |
| 17. | 3987     | 1050  | -                       | 2937   | 65072  | 202    | 322848     |
| 18. | 2831     | -     | _                       | 2831   | 32704  | -      | 160883     |
| 19. | -        | -     | -                       | -      | 273    | -      | 11918      |
| 20. | -        | -     | -                       | -      | 218    | -      | 616        |
| 21  | -        | -     | -                       | -      | 122    | -      | 5514       |
| 22. | 2831     | -     | -                       | 2831   | 32091  | -      | 142835     |
| 23. | -        | -     | -                       | -      | 1785   | -      | 4883       |
| 24. | 57       | -     | -                       | 57     | 999    | -      | 3452       |
| 25  | 2692     | -     | -                       | 2692   | 2829   | -      | 9876       |
| 26  | 30       | -     | -                       | 30     | 4976   | -      | 39150      |
| 27. | -        | -     | -                       | -      | 1976   | -      | 11950      |
| 28. | -        | -     | -                       | -      | 6995   | -      | 42178      |
| 29. | 51       | -     | -                       | 51     | 1512   | -      | 3975       |
| 30. | -        | -     | -                       | -      | 5842   | -      | 9551       |
| 31. | -        | -     | -                       | -      | 5178   | -      | 17819      |
| 32. | 1156     | 1050  | -                       | 106    | 30654  | 202    | 78804      |
| 33  | 1117     | 1010  | -                       | 106    | 16353  | 31     | 42708      |
| 34. | 40       | 40    | -                       | -      | 14301  | 171    | 36095      |
| 35. | -        | -     | -                       | -      | 1714   | -      | 74389      |
| 36. | _        | -     | -                       | -      | -      | -      | 8773       |

| Den  | nand sectors                   | Sector | 1955    | 1956  |
|------|--------------------------------|--------|---------|-------|
| _    |                                | code   |         |       |
| Prin | nary energy:                   |        |         |       |
| 1.   | Domestic production            |        |         |       |
| 2.   | Imports                        |        | 13311   | 16920 |
| 3.   | Total supply of primary energy | 00     | 64129   | 71105 |
| Sou  | rces of primary energy:        |        |         |       |
| a.   | Coal                           |        | 30286   | 34143 |
| b.   | Cokes                          |        |         | 12    |
| c.   | Crude oil                      |        | 8949    | 12022 |
| d.   | Petroleum products             |        | 2322    | 2139  |
| е.   | Natural gas and LNG            |        | 244     | 294   |
| g.   | Hydro                          |        | 17465   | 17606 |
| h.   | Nuclear                        |        | <u></u> |       |
| i    | Geothermal                     |        |         |       |
| j.   | Nonconventional energy         |        | 4865    | 4889  |
| j1.  | Solar                          |        |         |       |
| j2.  | Waste incineration             |        |         |       |
| j3.  | Others                         |        | 4865    | 4889  |

#### Table 3-3b Energy supply and demand Energy supply, time series

# Table 3-3c Energy supply and demand

| Energ | gy demand, time series          |        |       |       |
|-------|---------------------------------|--------|-------|-------|
| 17.   | Final consumption total         |        | 41102 | 46440 |
| 18.   | Industrial sector total         |        | 22859 | 26710 |
| 19.   | Agric., forestry, and fisheries | 01&    | 1283  | 1537  |
| 20.   | Mining                          | 10&    | 165   | 232   |
| 21.   | Construction                    | 15     | 97    | 140   |
| 22.   | Manufacturing total             | 0M     | 21314 | 24801 |
| 23.   | Food processing                 | 18     | 1416  | 1522  |
| 24.   | Textiles                        | 20&-   | 1733  | 1949  |
| 25.   | Paper and pulp                  | 24     | 2087  | 2338  |
| 26.   | Chemicals                       | 26-    | 4788  | 5527  |
| 27.   | Nonmetallic mineral products    | 30     | 3060  | 3694  |
| 28.   | Iron and steel                  | 31     | 5485  | 6404  |
| 29.   | Nonferrous metals               | 32     | 855   | 1035  |
| 30.   | Machinery 34&=34+35-            | +36+37 | 897   | 1158  |
| 31.   | Other manufacturing             | 38&&   | 992   | 1172  |
| 32.   | Domestic sector total           |        | 10248 | 10742 |
| 33.   | Household                       | 0F     | 7631  | 7781  |
| 34.   | Business                        | 75     | 2617  | 2962  |
| 35.   | Transportation sector total     | 60T    | 7372  | 8200  |
| 36.   | Non-energy use                  |        | 624   | 787   |

Note Numbers and symbols correspond to those in Table 3-3a.

|             |       |          |          |        |        | (unit: 10* | *10 kcal)   |
|-------------|-------|----------|----------|--------|--------|------------|-------------|
|             | 1957  | 1958     | 1959     | 1960   | 1961   | 1962       | 1963        |
|             |       |          |          |        |        |            |             |
| 1.          | 57106 | 53167    | 54625    | 57064  | 60554  | 56597      | 56886       |
| 2.          | 21673 | 20735    | 31235    | 43746  | 55389  | 64396      | 79678       |
| 3.          | 78779 | 73903    | 85860    | 100810 | 115943 | 120992     | 136564      |
|             |       |          |          |        |        |            |             |
| a.          | 37545 | 32611    | 36207    | 41522  | 44812  | 41799      | 43221       |
| b.          | 30    | 0        |          |        | 142    | 18         | 5           |
| c.          | 14295 | 16227    | 23820    | 31318  | 37535  | 45231      | 59458       |
| d.          | 3295  | 1682     | 3625     | 6611   | 9499   | 11847      | 12326       |
| e.          | 425   | 536      | 700      | 939    | 1366   | 1763       | 2054        |
| g.          | 18138 | 18228    | 16966    | 15780  | 17999  | 15892      | 16585       |
| h.          |       |          |          |        |        |            |             |
| i.          |       | <u> </u> | <u> </u> |        |        |            | <del></del> |
| j.          | 5052  | 4619     | 4543     | 4640   | 4589   | 4444       | 2917        |
| <b>j</b> 1. |       |          |          |        |        |            | —           |
| j2.         |       |          | —        |        | —      |            |             |
| j3.         |       |          |          | 4640   | 4589   | 4444       | 2917        |

| 17. | 49687 | 48846 | 56168 | 65271 | 74125 | 79846 | 88417 |
|-----|-------|-------|-------|-------|-------|-------|-------|
| 18. | 28930 | 27545 | 33514 | 39815 | 45835 | 48353 | 54847 |
| 19. | 1572  | 1554  | 1890  | 1947  | 2058  | 2374  | 2699  |
| 20. | 251   | 244   | 260   | 272   | 332   | 357   | 342   |
| 21. | 184   | 239   | 352   | 486   | 670   | 952   | 1130  |
| 22. | 26923 | 25507 | 31013 | 37111 | 42775 | 44669 | 50676 |
| 23. | 1632  | 1614  | 1747  | 1897  | 2024  | 2281  | 2394  |
| 24. | 2005  | 1842  | 1925  | 2160  | 2243  | 2286  | 2331  |
| 25. | 2580  | 2446  | 3048  | 3580  | 3836  | 3904  | 4276  |
| 26. | 6063  | 5719  | 6916  | 8277  | 9535  | 10348 | 12538 |
| 27. | 4143  | 3742  | 4549  | 5636  | 6097  | 6497  | 7065  |
| 28. | 6944  | 7039  | 8900  | 10839 | 13373 | 13392 | 15462 |
| 29. | 1011  | 815   | 1155  | 1328  | 1446  | 1571  | 1799  |
| 30. | 1246  | 1085  | 1300  | 1576  | 1851  | 2121  | 2391  |
| 31. | 1298  | 1205  | 1473  | 1819  | 2370  | 2269  | 2421  |
| 32. | 11271 | 11159 | 11551 | 12657 | 13791 | 15344 | 15165 |
| 33. | 8211  | 8025  | 8113  | 8801  | 9309  | 10165 | 9415  |
| 34. | 3060  | 3134  | 3438  | 3856  | 4481  | 5179  | 5750  |
| 35. | 8655  | 9204  | 9975  | 11503 | 12836 | 14286 | 16210 |
| 36. | 831   | 937   | 1128  | 1295  | 1664  | 1863  | 2195  |

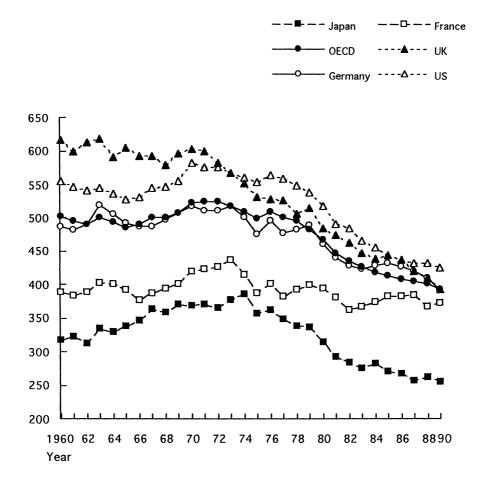
|            | 1964   | 1965   | 1966   | 1967   | 1968   | 1969   | 1970   |
|------------|--------|--------|--------|--------|--------|--------|--------|
| 1.         | 55884  | 56193  | 56315  | 54984  | 55072  | 52832  | 50782  |
| 2.         | 94724  | 112717 | 128838 | 157402 | 188119 | 224693 | 268926 |
| 3.         | 150608 | 168910 | 185153 | 212386 | 243190 | 277526 | 319708 |
|            |        |        |        |        |        |        |        |
| a.         | 44449  | 45619  | 47550  | 53095  | 57284  | 61416  | 63509  |
| b.         | 1      | 35     | 16     | 227    | 107    | 130    | 62     |
| c.         | 70381  | 83103  | 98731  | 118455 | 138847 | 164827 | 193427 |
| d.         | 14792  | 17575  | 15664  | 19600  | 24274  | 27517  | 36466  |
| e.         | 2027   | 2027   | 2112   | 2234   | 2409   | 2847   | 3970   |
| g.         | 16194  | 17938  | 18336  | 15947  | 17096  | 17391  | 17894  |
| ĥ.         |        | 8      | 134    | 145    | 240    | 249    | 1054   |
| i.         | _      |        | 4      | 26     | 50     | 55     | 66     |
| <b>j</b> . | 2764   | 2604   | 2604   | 2657   | 2884   | 3095   | 3260   |
| j1.        |        |        |        |        |        |        |        |
| j2.        |        | 5      | 5      | 5      | 5      | 5      | 10     |
| j3.        | 2764   | 2600   | 2600   | 2652   | 2880   | 3090   | 3250   |

| 17. | 100299 | 108538 | 123604 | 141333 | 158642 | 186387 | 211226 |
|-----|--------|--------|--------|--------|--------|--------|--------|
| 18. | 62920  | 67848  | 77761  | 89668  | 100494 | 119524 | 136251 |
| 19. | 2771   | 3215   | 3892   | 4403   | 4793   | 5413   | 6554   |
| 20. | 474    | 566    | 606    | 477    | 760    | 799    | 812    |
| 21. | 1202   | 1330   | 1744   | 2105   | 2311   | 2635   | 3048   |
| 22. | 58473  | 62738  | 71520  | 82683  | 92631  | 110677 | 125837 |
| 23. | 2776   | 2974   | 3117   | 3363   | 3599   | 3842   | 3960   |
| 24. | 2520   | 2767   | 3588   | 4093   | 4467   | 4828   | 5454   |
| 25. | 4986   | 5205   | 5800   | 6349   | 6523   | 7364   | 8049   |
| 26. | 15002  | 16484  | 18533  | 21392  | 24644  | 30922  | 36854  |
| 27. | 8044   | 7737   | 8628   | 9779   | 10699  | 11355  | 12073  |
| 28. | 17387  | 19210  | 22337  | 26981  | 30482  | 38318  | 43082  |
| 29. | 1814   | 1860   | 2252   | 2599   | 2885   | 3443   | 3819   |
| 30. | 2414   | 2383   | 2726   | 3023   | 3472   | 3989   | 4593   |
| 31. | 3529   | 4119   | 4538   | 5105   | 5860   | 6617   | 7953   |
| 32. | 16988  | 18700  | 21167  | 23679  | 26595  | 31026  | 34664  |
| 33. | 9832   | 10696  | 11442  | 12791  | 14104  | 16570  | 18329  |
| 34. | 7156   | 8004   | 9725   | 10889  | 12491  | 14455  | 16335  |
| 35. | 17665  | 19055  | 21104  | 23944  | 27082  | 30520  | 34273  |
| 36. | 2727   | 2934   | 3571   | 4041   | 4471   | 5319   | 6038   |

|     |        |        |        |        |        | (unit: 10* | *10 kcal) |
|-----|--------|--------|--------|--------|--------|------------|-----------|
|     | 1971   | 1972   | 1973   | 1974   | 1975   | 1976       | 1977      |
|     |        |        |        |        |        |            |           |
| 1.  | 48761  | 46137  | 40846  | 45071  | 44473  | 46970      | 43323     |
| 2.  | 276029 | 300900 | 344563 | 339608 | 321752 | 340362     | 343947    |
| 3.  | 324790 | 347037 | 385409 | 384679 | 366224 | 387333     | 387270    |
|     |        |        |        |        |        |            |           |
| a.  | 55842  | 55872  | 59556  | 63512  | 59953  | 58620      | 55861     |
| b.  | 11     |        | 31     | 179    | 40     | 22         | 2         |
| c.  | 209479 | 230370 | 269140 | 257177 | 244934 | 256954     | 258312    |
| d.  | 31018  | 31644  | 29095  | 29125  | 23708  | 30356      | 31367     |
| e.  | 4002   | 4029   | 5914   | 7684   | 9231   | 10457      | 13860     |
| g.  | 19219  | 19475  | 15772  | 18972  | 19237  | 19514      | 16958     |
| ĥ.  | 1802   | 2133   | 2184   | 4432   | 5653   | 7668       | 7123      |
| i.  | 99     | 65     | 66     | 74     | 96     | 97         | 125       |
| j.  | 3357   | 3448   | 3651   | 3523   | 3372   | 3643       | 3662      |
| j1. |        |        |        |        | 136    | 148        | 169       |
| j2. | 11     | 11     | 20     | 29     | 34     | 56         | 72        |
| j3. | 3345   | 3437   | 3631   | 3494   | 3202   | 3440       | 3421      |

| 17.         | 223535 | 240305 | 265234 | 257723 | 251083 | 266319 | 265244 |
|-------------|--------|--------|--------|--------|--------|--------|--------|
| 18.         | 141647 | 150169 | 165663 | 158585 | 148940 | 157532 | 153406 |
| 19.         | 6652   | 6925   | 7634   | 7240   | 7166   | 7732   | 8141   |
| <b>20</b> . | 742    | 634    | 626    | 679    | 643    | 651    | 605    |
| 21.         | 3018   | 3637   | 3780   | 3270   | 3048   | 3109   | 3205   |
| 22.         | 131235 | 138974 | 153624 | 147395 | 138083 | 146040 | 141455 |
| 23.         | 4066   | 4320   | 4666   | 4641   | 4640   | 4699   | 4629   |
| 24.         | 5830   | 6175   | 6535   | 6405   | 6494   | 6646   | 6105   |
| 25.         | 8355   | 9047   | 9890   | 9225   | 8663   | 8856   | 8620   |
| 26.         | 38217  | 39855  | 41330  | 38307  | 35346  | 38580  | 38755  |
| 27.         | 12569  | 13624  | 14676  | 13252  | 12192  | 12909  | 13019  |
| 28.         | 44491  | 46553  | 54494  | 53587  | 49698  | 50647  | 46490  |
| 29.         | 3850   | 4191   | 4692   | 4350   | 3889   | 4080   | 4168   |
| 30.         | 4571   | 4628   | 5007   | 4383   | 3818   | 4226   | 4193   |
| 31.         | 9287   | 10581  | 12333  | 13244  | 13344  | 15397  | 15476  |
| 32.         | 38688  | 48276  | 48030  | 48281  | 49563  | 53929  | 54439  |
| 33.         | 19788  | 21542  | 23591  | 24377  | 25574  | 28098  | 28529  |
| 34.         | 18899  | 21734  | 24439  | 23904  | 23989  | 25831  | 25911  |
| 35.         | 36493  | 39454  | 43425  | 44127  | 46295  | 48617  | 50509  |
| 36.         | 6708   | 7406   | 8116   | 6885   | 6285   | 6242   | 6889   |

|     | 1978   | 1979   | 1980   | 1981   | 1982   | 1983   | 1984   |
|-----|--------|--------|--------|--------|--------|--------|--------|
| 1.  | 48484  | 53965  | 59267  | 59040  | 60532  | 63909  | 65893  |
| 2.  | 337970 | 357170 | 337931 | 323128 | 303764 | 319631 | 337174 |
| 3.  | 386453 | 411134 | 397198 | 382168 | 364296 | 383540 | 403067 |
|     |        |        |        |        |        |        |        |
| a.  | 51379  | 56677  | 67327  | 70406  | 67538  | 68921  | 75771  |
| b.  |        |        |        |        |        |        |        |
| c.  | 251353 | 257644 | 231400 | 212416 | 191543 | 196582 | 196771 |
| d.  | 32052  | 36340  | 31036  | 31036  | 33459  | 39187  | 41790  |
| e.  | 18012  | 21484  | 24164  | 24259  | 25238  | 28924  | 36962  |
| g.  | 16469  | 18878  | 20481  | 20085  | 18686  | 19403  | 16419  |
| ĥ.  | 13346  | 15838  | 18583  | 19760  | 23047  | 25715  | 30210  |
| i   | 188    | 279    | 290    | 294    | 312    | 369    | 374    |
| j.  | 3655   | 3994   | 3918   | 3913   | 4172   | 4438   | 4772   |
| j1. | 185    | 213    | 370    | 492    | 605    | 718    | 809    |
| j2. | 74     | 76     | 107    | 116    | 137    | 168    | 210    |
| j3. | 3396   | 3705   | 3440   | 3304   | 3430   | 3552   | 3753   |


| 17. | 273313 | 279578 | 264541 | 257041 | 248815 | 260308 | 267406 |
|-----|--------|--------|--------|--------|--------|--------|--------|
| 18. | 155066 | 157913 | 146102 | 138765 | 130073 | 132378 | 139003 |
| 19. | 9078   | 9021   | 8599   | 8343   | 7599   | 8443   | 8832   |
| 20. | 587    | 599    | 602    | 552    | 520    | 520    | 521    |
| 21. | 3553   | 3744   | 3922   | 3754   | 3673   | 4013   | 4465   |
| 22. | 141848 | 144549 | 132978 | 126116 | 118280 | 119403 | 125185 |
| 23. | 4608   | 4620   | 4561   | 5075   | 4487   | 4462   | 4386   |
| 24. | 6209   | 5300   | 4891   | 5848   | 5554   | 5190   | 4254   |
| 25. | 9023   | 9502   | 8472   | 7985   | 7859   | 8029   | 8226   |
| 26. | 39717  | 39649  | 32645  | 29440  | 28351  | 28907  | 31670  |
| 27. | 14210  | 14389  | 13357  | 12466  | 11362  | 11425  | 11433  |
| 28. | 44354  | 46743  | 44766  | 41607  | 38090  | 38077  | 40255  |
| 29. | 4279   | 4606   | 4411   | 3562   | 2991   | 2946   | 3137   |
| 30. | 4409   | 4454   | 4653   | 5789   | 5675   | 6250   | 6767   |
| 31. | 15039  | 15288  | 15222  | 14343  | 13911  | 14116  | 15057  |
| 32. | 57163  | 58488  | 56519  | 57213  | 57477  | 63677  | 63467  |
| 33. | 30409  | 31917  | 30486  | 31802  | 31649  | 35609  | 35643  |
| 34. | 26753  | 26572  | 26034  | 25412  | 25828  | 28068  | 27824  |
| 35. | 53638  | 55690  | 55003  | 54312  | 54628  | 57212  | 57483  |
| 36. | 7447   | 7487   | 6917   | 6752   | 6638   | 7041   | 7453   |
|     |        |        |        |        |        |        |        |

|             |        |        |                                       |        | (un    | it: 10**10 kca | al) |
|-------------|--------|--------|---------------------------------------|--------|--------|----------------|-----|
|             | 1985   | 1986   | 1987                                  | 1988   | 1989   | 1990           |     |
|             |        |        | · · · · · · · · · · · · · · · · · · · |        |        |                |     |
| 1.          | 74195  | 73307  | 76241                                 | 77108  | 78004  | 81426          |     |
| 2.          | 331127 | 328909 | 346135                                | 368259 | 383725 | 404734         |     |
| 3.          | 405323 | 402217 | 422377                                | 445366 | 461729 | 486161         |     |
| a.          | 78810  | 73285  | 76125                                 | 80539  | 79670  | 80754          |     |
| b.          |        |        |                                       | _      |        |                |     |
| с.          | 182429 | 173554 | 174089                                | 184926 | 195144 | 220341         |     |
| d.          | 45612  | 53987  | 66228                                 | 70479  | 72285  | 63195          |     |
| e.          | 38213  | 39592  | 40861                                 | 42593  | 46158  | 49284          |     |
| g.          | 19081  | 18532  | 17148                                 | 20709  | 21119  | 20512          |     |
| ĥ           | 38905  | 37869  | 42246                                 | 40198  | 41146  | 45511          |     |
| <b>i</b> .  | 398    | 376    | 378                                   | 349    | 368    | 465            |     |
| <b>j</b> .  | 4875   | 5022   | 5303                                  | 5573   | 5839   | 6098           |     |
| j1          | 878    | 935    | 979                                   | 1009   | 1030   | 1050           |     |
| j2.         | 227    | 274    | 274                                   | 325    | 342    | 407            |     |
| <b>j</b> 3. | 3770   | 3813   | 4050                                  | 4239   | 4466   | 4642           |     |

| 17. | 270552 | 271583 | 284536 | 300545 | 311102 | 322848 |  |
|-----|--------|--------|--------|--------|--------|--------|--|
| 18. | 138526 | 136212 | 142981 | 151754 | 156023 | 160883 |  |
| 19. | 8606   | 9302   | 9796   | 10439  | 10834  | 11918  |  |
| 20. | 514    | 523    | 537    | 549    | 605    | 616    |  |
| 21. | 4348   | 4616   | 4851   | 5009   | 5095   | 5514   |  |
| 22. | 125058 | 121772 | 127797 | 135758 | 139490 | 142835 |  |
| 23. | 4212   | 4177   | 4450   | 4813   | 4749   | 4883   |  |
| 24. | 4105   | 4100   | 4199   | 4325   | 4034   | 3452   |  |
| 25. | 7991   | 8226   | 8911   | 9978   | 9963   | 9876   |  |
| 26. | 32372  | 32885  | 34919  | 36371  | 38018  | 39150  |  |
| 27. | 10947  | 10386  | 10633  | 11723  | 12141  | 11950  |  |
| 28. | 39431  | 36621  | 38530  | 40328  | 41448  | 42178  |  |
| 29. | 3137   | 3128   | 2834   | 2915   | 3223   | 3975   |  |
| 30. | 7244   | 7171   | 7571   | 8302   | 8751   | 9551   |  |
| 31. | 15619  | 15079  | 15750  | 17006  | 17163  | 17819  |  |
| 32. | 65838  | 66517  | 70007  | 73805  | 75444  | 78804  |  |
| 33. | 37313  | 37571  | 39981  | 41186  | 41881  | 42708  |  |
| 34. | 28525  | 28946  | 30026  | 32619  | 33563  | 36095  |  |
| 35. | 58880  | 60952  | 63427  | 66665  | 71226  | 74389  |  |
| 36. | 7308   | 7901   | 8121   | 8321   | 8410   | 8773   |  |
|     |        |        |        |        |        |        |  |

### Figure 3-2 Energy consumption per GDP in selected countries

(unit: TOE / million US\$, 1985 prices)

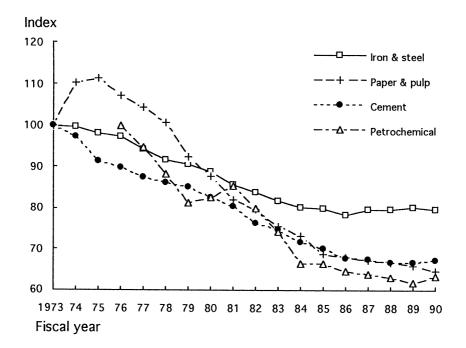


Source: OECD, Energy Balances.

continued economic growth. Such was the case also in Japan.

In this section we shall examine the technological change.

In the field of energy conservation, there were new developments in heat pumps, heat exchangers, waste heat recovery, energy storage, municipal solid waste systems, combined heat and power (CHP), and district heating (DH). New building design, building materials, and insulation materials have also been put into practical use. More energy-efficient engines and electric motors have appeared. Microelectronic sensor technologies have enabled us to control energy consumption precisely to meet actual requirements. We discuss this according to the end-use categories.


Energy conservation in industry: Energy consumption for industry amounts to about 50% of the total demand, making energy conservation in industry a matter of the utmost importance in an effort to conserve energy and reduce  $CO_2$  emission. Price hikes of energy prompted the industrial sector to conserve energy by introducing energy-efficient production processes. As a result, energy consumption per unit production has shown remarkable improvement in the past. Figure 3-4 shows the trends in unit energy requirement (defined as physical weights of output/energy input in physical terms) in major energy-consuming sectors including iron and steel, paper and pulp, cement, and petrochemicals, which comprise about 70% of the energy requirement in manufacturing.

More recently, however, due to the relative cheapening of energy, the conservation effort has been relaxed somewhat, and even a reversal trend is seen such as a shift toward high-value added products with lower fuel efficiency.

Based on their previous study, IEA [1987, p.156, pp.236-237] lists the following technologies as important developments in the industrial use of energy:

- \* Energy-efficient production systems;
- \* Heat recovery systems (e.g. heat pumps);
- \* Recycling of energy-intensive products.

Regarding process heat, waste heat recovery is often economical, involving all types of fuels including oil, gas, and coal. It is especially true where heavy industries are concentrated. As for water heat, improved boiler designs and controls are currently economical for industrial and commercial use. Improved controls and insulation can be retrofitted to existing systems.



### Figure 3-3 Energy conservation in industry

- Note: For petrochemical industry, base year is fiscal 1977. The figures for iron and steel are adjusted to conform to the production condition in fiscal 1973. Other figures are apparent ratios (energy consumption/production).
- Source: Original calculation conducted by the MITI. Reproduced here from *Energy* Conservation Handbook.

#### ENERGY DEMAND AND SUPPLY

Electronic control technology has wide applications in all end-use sectors and is economical today. Its energy-saving potential is large for all types of fuel, although it may be more effective where electricity is involved. Some countries, however, lack strong electronics industries, resulting in insufficient information and advisory services.

In steel production, many factors influence the energy intensity such as coke production/importation, the method of refining pig iron, the use/nonuse of scrap, reheating, and various finishing treatments. Iron ore is first reduced to pig iron in a blast furnace using coke as the primary fuel, or is directly reduced to sponge iron. The pig iron from the blast furnace is further purified into steel in a basic oxygen furnace (BOF), an electric arc furnace (EAF), or using the open-hearth method which is the most antiquated, requiring much more energy than does the EAF or the BOF. The EAF can be charged with nearly all scrap, saving on the pig iron input. A BOF process requires approximately 19 gigajoules to produce a metric ton of crude steel. Using the EAF technology, it takes about 8.5 gigajoules [IEA 1991a, p.53]. The crude steel is moulded into ingots or is directly cast into shapes such as beams or bars.

Continuous casting of steel eliminates reheating step of ingots before breaking them down into billets or sheets. The diffusion of continuous casting is reported by IEA as follows:

|                | 1980  | 1988  |
|----------------|-------|-------|
| North America  | 21.1% | 62.5% |
| Europe         | 38.5% | 89.8% |
| Pacific region | 56.2% | 91.9% |
| IEA total      | 38.7% | 77.5% |

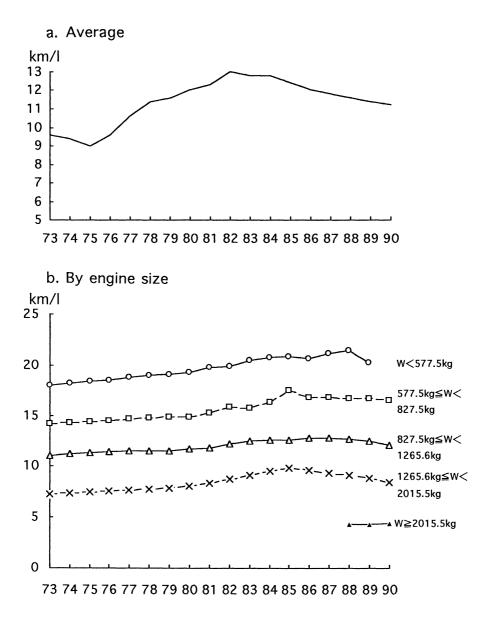
Energy intensity in steel production has thus improved considerably during the 1980s. In North America, it required 25.4 GJ to produce a metric ton of crude steel (excluding the production of coke) in 1980, which was reduced to 21.7 GJ in 1988. In the Pacific, an improvement from 19.5 GJ to 17.6 GJ was observed during the same priod [IEA 1991a, pp.54-55].

In the paper and pulp industry, wood is converted into pulp by a mechanical process or a chemical process, or a combination of both. In IEA countries, chemical processes account for 72%, mechanical processes 23%, and combined methods 5%. Pulp is then bleached, formed into a sheet and dried. The most energy-intensive processes are pulping and drying. Improved energy efficiency

has been achieved through recycling of the steam used in making chemical and thermo-mechanical pulp. In the drying process, which typically consumes 1/2 of the energy requirement, hoods have been used in the production line since the early 1970s to retain the heat.

The use of waste paper reduces the energy requirement as well. Energy intensity per metric ton of paper varies, reflecting the fact that waste pulp can substitute for virgin wood pulp. The input of waste paper in paper production has reached nearly half (48.2%) of the total input in the Pacific. Some figures are cited here from IEA [1991a, p.56] regarding this point.

|                | 1980  | 1986  |
|----------------|-------|-------|
| North America  | 14.4% | 18.1% |
| Europe         | 35.3% | 35.2% |
| Pacific region | 4.9%  | 48.2% |
| IEA total      | 18.5% | 26.7% |


Importation of pulp also contributes to energy efficiency. Thus, the IEA Pacific region was able to produce a metric ton of paper using 8.8 GJ in 1986, whereas in North America it took 19.1 GJ in the same year.

In the cement industry, energy accounts for about half of the total production cost. Clinker is produced in the kiln and is ground into cement. There are two basic ways of producing clinker, namely the wet process and the dry process. In 1980, the wet process required approximately 5.86 GJ per metric ton of clinker, whereas the dry process using a long rotary kiln required about 4.04 GJ per metric ton [IEA 1991a, p.57]. With the introduction of pre-heaters to the kiln feed, which uses exhaust heat, the energy requirement has been reduced to about 3.35 GJ per ton of clinker. The addition of pre-calciner further reduced the energy requirement to 3.14 GJ. These methods were introduced in the 1950s but did not find commercial application until the early 1970s, it was reported.

The Energy Council recommends the introduction of energy-efficient plants and equipment, promotion of effective use of waste heat, and recycling as necessary steps toward continued improvement in energy use. MITI's policies in this regard include:

a. Provision of financial measures for investment in plants and equipment





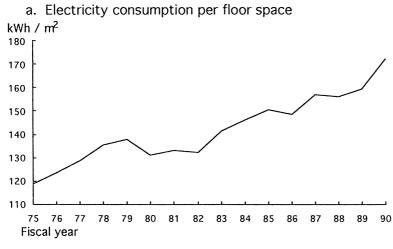
Source: MITI, Energy '92.

aimed at improvement of existing production technology and introduction of new ones.

- b. Utilization of waste heat from factories for industrial purposes outside the factory sites. Office and household use of such hitherto unused energy sources in the local area should also be promoted.
- c. Promotion of recycling of scrap iron, used paper, etc. which contributes to a reduction of the primary energy consumption.
- d. Extending consulting services to medium and small-sized firms aimed at providing information on energy conservation. It is also useful to provide training for energy managers.[MITI, 1991, p.46]

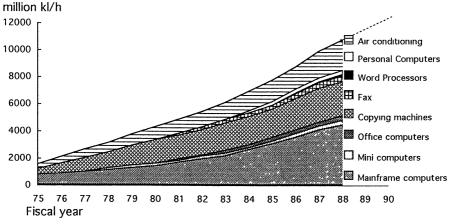
Energy transformation sector: The technological developments in this field include more efficient power plants (e.g. combined cycle, fuel cells) and cogeneration systems.

Combined heat and power supply (CHP) coupled with district heating is described as economical in some situations. Primary energy is used for electricity generation. Availability of sites and connections with the grid are essential for commercial application. For this reason, existing power station sites in favorable locations should be reserved for future CHP use.


According to the Japanese experience, the average energy efficiency of power plants has nearly doubled in the post-WWII period as shown below [Resouces and Energy Agency, 1992]:

| 1953           | 20.7% |
|----------------|-------|
| 1955           | 24.0% |
| 1960           | 31.9% |
| 1965           | 36.5% |
| 1970           | 36.9% |
| 1975           | 37.4% |
| 1976 and after | 38.1% |

This is partly attributable to the diffusion of state-of-the art technology, especially in the earlier years when some of the power plants were obsolete, and the rest is due to genuine technological progress.


The Electricity Utility Law prohibits the sale of surplus electricity by an enterprise. In order to promote cogeneration, the government is now adopting

### Figure 3-5 Energy consumption in offices



Source: MITI, Energy '92.

b. Electricity consumption by equipment type



Source: MITI, Energy '91.

a new policy of allowing transactions between the utility companies and the nonutility producers of electricity.

Transportation sector: Improvement in the fuel efficiency of motor vehicles was observed, much the same as in the case of consumer durables, after the first oil crisis. As can be seen in Figure 3-4, automobiles produced in 1973 were able to travel 9.6 kilometers per liter, which improved to 13.0 kilometers in 1982 (figures are averages for cars produced in the years in question, and are not for identical types of cars). Reflecting the price reduction of fuels, however, the fuel efficiency of the Japanese car fleet has deteriorated somewhat since then. One contributing factor was the consumer demand which tended to shift toward larger, more luxurious cars. But if we look at the fuel efficiency of newly produced passenger vehicles classified by car weight, which is also shown in Figure 3-8, continued improvement was observed within each category. For instance, in the case of cars weighing between 1265 and 2014 kg, the distance travelled using one liter of fuel improved from 7.9 to 9.8 km between 1979 and 1985. This has somewhat deteriorated to 8.5 km in 1990.

One of the reasons for the high fuel efficiency of the Japanese car fleet is the compulsory automobile inspection which comes three years after purchase, and every 2 years thereafter, and every year after 10 years.

A factor which worked counter to fuel efficiency was the abolition of a commodity tax levied on luxuries including large-sized passenger cars. This was considered to be unduly discriminatory against imported cars and was criticized by the trading partners as constituting a nontariff trade barrier. The tax was abolished and integrated to a uniform 3% consumption tax (4.5% with temporary surcharge), which in effect substantially reduced the price of large-sized (hence less fuel-efficient) automobiles.

IEA summarizes the development of internal combustion engines as having a large energy-saving potential, particularly oil. Allowing for the introduction of new designs and rotation of car stock, they anticipate 10 to 15 years of lead time before the full effect is achieved. They identify low gasoline prices as the main impediments in the commercial application of new technologies. More efficient vehicles, such as those with ceramic engines, are also a possibility.

Government standards for higher fuel efficiency can act, often coupled with stricter environmental standards, as the proper stimulus. On this point, OECD [1988b, p.105] writes, "Many technologies which exist today to improve fuel

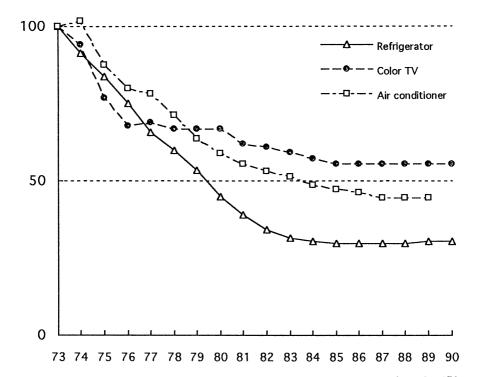
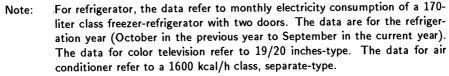
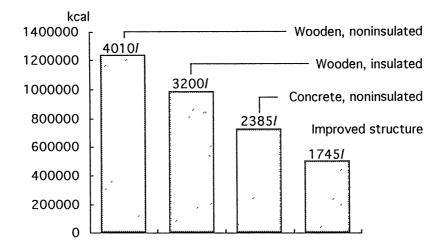




Figure 3-6 Energy consumption of household durables



Source: MITI, Energy '92.


economy—for example, advanced air/fuel management systems such as fuel injection, electronic control of spark timing, advanced choke systems, improved transmission, etc.—can also result in significant exhaust emission benefits. In fact, some of the advances were developed as a direct result of tight emission control requirements." "Current experience indicates that vehicles may achieve very low exhaust emission levels for hydrocarbons, carbon monoxide and nitrogen oxides, alongside good fuel savings. A recent comparison between fuel consumption in IEA countries reveals that there need not be any fuel economy penalties due to more advanced emission control systems used in, for instance, Japan and the United States."

Electric battery vehicles will be entirely oil-saving. The technology is economically feasible now for some delivery vehicles. Wider application for cars and light vans will require 15 to 25 years. The public procurement of electric battery vehicles provides stimulus. Obstacles include the efficiency of the battery which limits driving distance between charges, high vehicle costs due to small market, and competition from increasingly efficient gasoline and diesel vehicles.

Household and commercial sector: In offices, energy efficiency had been improving in the case of air conditioning and elevators. Recently, however, the opposite trend has become apparent owing to such factors as service orientation of the economy, progress of information orientation, and 24-hour operation of business and social activities. The desire for a more comfortable office environment calls for the widespread use of air conditioning, and the progress of office automation (OA) requires equipment such as computers, copying machines, fax machines, word processors, and the like. Energy demand for the business field is described in Figure 3-5.

In Japan, energy efficiency has improved remarkably since the two oil crises in the 1970s, not only in the industrial field but also for consumer durables. Figure 3-6 shows energy consumption for typical consumer durables including refrigerators, television sets, vacuum cleaners and air conditioners. In the case of refrigerators, energy consumption for the identical type of equipment dropped to 1/3 of the 1973 level by 1988. In 1973, a 170-liter class refrigerator consumed 79.6 KWH/month; the 1988 figure stood at 26.0 KWH/month. In the case of color television sets and air conditioners, energy consumption dropped to about 2/3 during the same period. For the former, a 19.2-inch-type TV consumed 140W in 1973, which dropped to 83W by 1988; for the latter, a typical air conditioner consumed 847W of electricity, whereas the 1988 figure was 482W.

With rising real income, people are acquiring more consumer durables and opting for larger equipment. Energy consumption in the household has continued to increase as shown below. It is seen that energy consumption per household has increased nearly 10% in the past five years.[6] IEA [1987] has



### Figure 3-7 Insulation of housing

Note: Data refer to heating load during 4 months (December to March) Source: Data provided by Daiwa House Co.

focused on technological developments such as building design, heating and cooling systems (e.g. district heating, heat pumps), and total energy management system.

The Law Concerning the Rational Use of Energy enacted in 1979 is a basic law providing the basis for government policy in Japan. MITI is responsible for the general energy conservation policy and implementing specific policies for the industrial, residential, and commercial sectors. MITI works with the Ministry of Construction and the Ministry of Transportation in relevant fields.

Heat pump technology is available today, with oil and electricity saving potentials. It is most competitive where the energy requirements are for heating and cooling and where air is the space-heating medium. Its attractiveness is limited to certain countries and regions, however.

One example of total energy management systems involves refuse collection and electric power generation. As to its energy-saving potential, IEA is rather cautious in saying that it is "local and minor, except in large conurbations." The Japanese situation seems to be well fitted for this exceptional condition.

MITI has established efficiency standards for automobiles and air conditioners, and producers are encouraged to achieve the targets.

Concerning building design, IEA suggests higher standards for design and construction and insulation. Building design must vary according to the climatic variations and local building materials and design traditions. Considering the slow rotation of building stock, the total effect will not be felt until after the year 2000.

There seem to be fairly large potentials for energy saving in the residential and commercial sectors. The most energy-efficient technology is not necessarily diffused for practical use. The best available technology will achieve energy savings as listed below compared with stock average [IEA > 1; p.100].

| Residential electricity (U.S., Sweden)           | 78%      |
|--------------------------------------------------|----------|
| Building shell thermal efficiency (U.S., Sweden) | 70 - 74% |
| Oil/gas heating system efficiency (U.S.)         | 26%      |
| Central air conditioning system (U.S.)           | 50%      |
| Refrigerator/freezers (U.S.)                     | 50%      |
| " (Germany, Japan)                               | 20% +    |
| Water heaters (U.S.)                             | 57%      |
| Commercial heating and cooling (U.S., Sweden)    | 75%      |
| Energy use in large office buildings (U.S.)      | 63%      |
| Commercial lighting (U.S.)                       | 50%      |

IEA observes that "investment in energy savings today may be more costeffective than investment in new energy production." A Canadian study conducted in 1984 compares the cost of energy conservation and the cost of energy supply and provides the following data on this point [IEA 1987, p.84]. Figures are in terms of 1983 Canadian dollars needed to conserve or produce energy of barrel of oil equivalent (BOE).

### ENERGY DEMAND AND SUPPLY

|                      |             |            | million kl, %) |
|----------------------|-------------|------------|----------------|
|                      | 1989 actual | 2000       | 2010           |
| Industry             | 178( 52.8)  | 193(49.5)  | 206(47.6)      |
| Manufacturing part   | 151( 44.8)  | 164(41.8)  | 173( 39.9)     |
| Office and household | 82(24.3)    | 110(28.1)  | 134( 30.9)     |
| Transportation       | 77(22.9)    | 87(22.4)   | 93( 21.5)      |
| Final consumption    | 336(100.0)  | 391(100.0) | 434(100.0)     |
| Energy conversion    | 163         | 203        | 223            |
| Total                | 499         | 594        | 657            |

### Table 3-4 Projection of energy demand

Note: Conversion rate into crude oil is 9250 kl/liter.

Source. Energy Council, "Long-term Projection of Energy Demand and Supply."

Energy conservation:

Nuclear electricity

| New housing, super energy-efficient          | \$15 - 30 |
|----------------------------------------------|-----------|
| Existing housing, reduce average consumption |           |
| by 30%                                       | \$13      |
| by 40%                                       | \$28      |
| High efficiency gas furnace                  | \$10 - 13 |
| Steam pipe insulation                        | \$8 - 10  |
| High efficiency commercial lighting          | \$15 - 30 |
| Existing supply of energy:                   |           |
| Electricity                                  | \$35 - 60 |
| Natural gas (export prices)                  | \$15 - 35 |
| Crude oil (at Montreal)                      | \$22      |
| New supply of energy:                        |           |
| Oil sands plant                              | \$35 - 60 |
| Offshore oil                                 | \$30      |
| Offshore natural gas                         | \$35      |

In Japan, new buildings are subject to insulation standards. New buildings with a floor space of more than 2000 square meters are required to submit an energy conservation plan at the time of application for a construction permit [IEA 1992a,p.183].

\$60

|                 |           | 1989 actual  | 2000                                    | 2010                     |
|-----------------|-----------|--------------|-----------------------------------------|--------------------------|
| Nonconventional | (mil. kl) | 6.5(1.3)     | 17.4(3.0)                               | 34.6(5.3)                |
| Hydro           | (bil.kwh) | 88.0(4.6)    | 91.0(3.7)                               | 105.0( <sup>°</sup> 3.7) |
| Geothermal      | (mil. kl) | 0.4(0.1)     | 1.8(0.3)                                | 6.0(`0.9)                |
| Nuclear         | (bil.kwh) | 183.0(8.9)   | 330.0(13.3)                             | 474.0(16.9)              |
| Natural gas     | (mil. kl) | 49.9(10.0)   | 65 0( 10.9 <b>)</b>                     | 80.0( 12.2)              |
| Coal            | (mil. t)  | 113.6( 17.2) | 142.0( <sup>`</sup> 17.5 <sup>`</sup> ) | 142.0( 15.7)             |
| Petroleum       | (bil. kl) | 289.0( 57.9) | 305.0( 51.3)                            | 298.0( 45.3)             |
| Total           | (mil. kl) | 499.0(100.0) | 594.0(100.0)                            | 657 0(100.0)             |

Table 3-5 Projection of energy supply

Note Conversion rate into crude oil is the same as in Table 3-4.

Source: Energy Council, "Long-term Projection of Energy Demand and Supply."

As to the future, the final use of energy for the year 2000 and 2010 is projected in Table 3-4 by the Advisory Committee for Energy affiliated with the Natural Resources and Energy Agency.

Energy demand in industry is expected to exhibit slow growth. Although it is difficult to foresee a drastic conservation effort like the one following the first oil crisis, energy consumption per unit output will exhibit steady improvement through the introduction of energy-conserving production processes. In most industrialized countries, the share of industry use stands at around 34% (33.8%in USA, 34.6% in Germany, 31.3% in UK, and 34.7% in France), whereas the Japanese figure has traditionally been higher.[7] The growth of energy consumption will be higher for office and household use (2.7% per year between 1989 and 2000 and 2.0% between 2000 and 2010). Transportation use will grow at 1.1% till 2000 and 0.7% thereafter. Industry use will grow at a slower pace (0.7% per year through 2010). Thus, the energy consumption pattern will approach that in other countries.

Industry refers here to the primary and secondary sectors except for the production (such as coal mining, petroleum and natural gas extraction, petroleum refining, coke production, etc.) and transformation of energy. Administration and self-consumption are excluded. Non-energy demand such as consumption in the petrochemical industry is included in the manufacturing sector. The household and commerce sector refers to the household sector excluding selftransportation, administration of industry, tertiary sector excluding electricity, gas, and transportation (i.e., included are wholesale and retail trade; finance, insurance, and real estate; communication; public administration; public services; and private services). Transportation demand includes transportation sector and self-transportation by industry and household. Conversion to crude oil is calculated as 9,250 kcal/l.

# 3.3 Sources of primary energy

Lacking an indigenous supply, Japan is at the consuming end of the global energy resource flow. The Japanese energy scene used to be dominated by coal, which was rapidly replaced by petroleum (Figure 3-8). It has placed great hopes on nuclear power, but the question remains whether this option provides the ultimate answer.

The primary energy supply in Japan stood at 499 million kl of petroleum equivalent. Petroleum is the major source of energy in every country, but its share is highest in Japan and Italy, amounting to about 60%. The USA consumes a large amount of natural gas which is available domestically. In Germany and the UK, the share of coal is relatively large, whereas in Canada, hydro-power plays a more important role.

Of the total energy supply, petroleum constituted 58.3% in 1990 (fiscal year)(see Table 3-3a). The long-term trends of petroleum in the total energy supply is shown:

| actual:    | 1953 | 15.3%        |
|------------|------|--------------|
|            | 1955 | 17.6%        |
|            | 1960 | 37.6%        |
|            | 1965 | 59.6%        |
|            | 1970 | 71.9%        |
|            | 1973 | (peak) 77.4% |
|            | 1975 | 73.4%        |
|            | 1980 | 66.1%        |
|            | 1985 | 56.3%        |
|            | 1990 | 58.3%        |
| projected: | 2000 | 51.6%        |
|            | 2010 | 46.0%        |

Earlier, the share of petroleum stood at around 15% (1953 figure), which

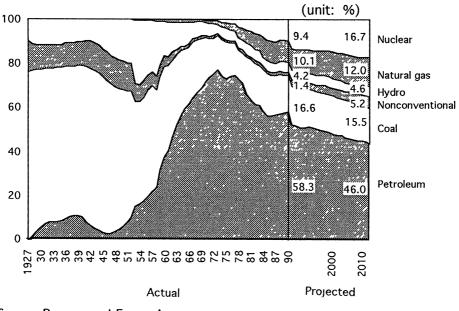



Figure 3-8 Sources of primary energy

Source: Resource and Energy Agency.

started to climb rapidly, replacing coal (which then stood at 47.7%), hydro (29.0%), and fuel wood etc. (7.8%). The peak share was recorded in 1973, the year of the first oil crisis, at 77.4%. The share of oil in recent years stands at around 56 to 58%, showing a slight increase in the face of rapid economic expansion and lower oil prices.

For the future, the projection by the Advisory Committee for Energy expects larger shares for nuclear energy, natural gas, and new sources of energy such as solar (see table 3-5). Still, petroleum will have to provide 45% of the total energy supply in 2010; more so, if we try to be realistic about nuclear options, which entails such problems as (a) public opinion opposed it for various reasons, (b) treatment of radioactive waste, and (c) provision for decommissioning of reactors after use.

### **3.4** Policy implications

Lessons from the Japanese practice seem to be the following:

- (a) Price does matter. The price hike at the time of the two oil crises and the relative reduction in price which followed have had their effect on energy efficiency.
- (b) Technology does change.
- (c) Investment is the key in the diffusion of new technology.
- (d) There are divergent views on the policy tools to induce energy efficiency. Command-and-rule is out of the question. However, there is still room for government-industry interaction through establishing standards. A strategic shift to alternative energy sources is another example. In contrast, there are views which favor a market solution. In between, there is a school which favors energy tax and carbon tax, the effect of which is to alter the relative price of energy as a whole or of fossil fuels which generate  $CO_2$ .

Japan's policy measures in the energy field include the following according to a report in the Environment White Paper [1991]:[8]

(1) Energy conservation:

Systematization:

- (a) Utilization of hitherto underutilized energy sources in the urban environment (such as river water, sewerage water, waste incineration facilities) for heat supply in local areas.
- (b) Heat and electricity supply system based on fuel cells.
- (c) Introduction of a heat pump in improving energy utilization within buildings.
- (d) Recycling of resources such as used paper, etc.

Measures in individual fields:

- (a) Energy-saving production facilities and processes in factories.
- (b) Improved heat insulation in private homes.
- (c) Introduction of energy-efficient devices such as inverter fluorescent lamp.

- (d) Improvement in fuel efficiency of automobiles.
- (e) Improvement in power generation efficiency by the introduction of combined-cycle power generation.
- (2) Petroleum and natural gas: Increased provision of facilities aimed at security of supply.
  - (a) Improvement in competitiveness of the petroleum industry to be achieved through deregulation and improved autonomous business activities.
  - (b) Provision for security of supply including increased storage capacity, development of supply sources both at home and abroad, and emergency measures in order to cope with acute shortages and market disruption.
- (3) Coal: High heat efficiency technologies such as coal gasification and combined cycle power generation technology by pressurized fluidized bed incinerator will be the major target of research and development leading to early utilization in practice.
- (4) Nuclear: Improved safety regulations, development of related technology and safety measures; establishment of nuclear fuel cycle by back-end measures such as proper technology aimed at radioactive waste; and smoothening of development of new sites for nuclear power generation. More open public relations will be required in order to gain support among the population.
- (5) Research and development:
  - (a) Sunshine Project including coal liquefaction, solar energy, geothermal energy, among others.
  - (b) Moonlight Project aimed at developing energy conservation technology.
  - (c)  $CO_2$  fixation and utilization technology.
  - (d) Research into clean coal technology.
- (6) International relations:
  - (a) Increased effort at developing common understanding that a stable supply-and-demand of petroleum in the global market is beneficial

| able 5-0 CO2 emission factors    |           | (unit: Mt carbon/Mtoe) |
|----------------------------------|-----------|------------------------|
|                                  | IEA total | Japan                  |
| Primary energy emission factors: |           |                        |
| Coal                             | 1.09      | 1.10                   |
| Other solid fuels                | 0.89      | 0.89                   |
| Oil                              | 0.84      | 0.84                   |
| Gas                              | 0.64      | 0.64                   |
| Delivered fuel emission factors: |           |                        |
| Coal                             | 1.14      | 1.34                   |
| Other solid fuels                | 0.89      | n.a.                   |
| Oil                              | 0.89      | 0.89                   |
| Gas                              | 0.73      | 0.58a                  |
| Electricity                      | 1.96b     | 1.50c                  |

Table 3-6 CO2 emission factors

Note: a. Due to transformation of coal into gas.

b. From text on p.24 of IEA [1991a].

c. From table on p.208 of the same source.

Source: IEA [1991a], pp.23-24.

to both producing and consuming nations. To this end, intergovernmental exchange of views must be promoted.

- (b) Cooperation in downstream production and distribution channel aimed at tightening of international relations.
- (c) Cooperation in development of new oil fields.

Japan's policy option in essence would be to contain energy demand as much as possible while lowering dependency on oil and shifting toward nonfossil fuels. The statement above is based on the view that an increase in energy demand is inevitable in Japan, accompanying a better quality of life. In the long-run, the report recognizes that the oil price will tend to increase and that the global environment will continue to be a serious policy issue. With this background, the report foresees increased interaction between Japan and the global community in the energy field.

The supply targets of petroleum substitutes are determined at the government level based on the Law concerning the Development and Diffusion of Petroleum Substitute Energy. The latest version was published in October 1990 in conformity with the long-term demand-and-supply projection by the Energy Council in June of that year. The target year is 2010. The goals are in

|                        | 5510115 111 | Supun |      | (unit: N | AT carbon, %)           |
|------------------------|-------------|-------|------|----------|-------------------------|
|                        | Coal        | Oil   | Gas  | Elect-   | Total                   |
|                        |             |       |      | ricity   | (% of total)            |
| TPER                   | 81.0        | 163.0 | 24.1 |          | 268.1(100.0)            |
| Electricity generation | 30.5        | 39.3  | 16.2 |          | 86.0(32.1)              |
| TFC                    | 50.5        | 123.7 | 7.9  | 86.0     | 268.1(100.0)            |
| Industry               | 50.2        | 27.5  | 2.2  | 50.1     | 130.1(48.5)             |
| Iron and steel         | 39.4        | 1.9   | 0.4  | 93       | 51.0(19.2)              |
| Chemical               | 1.5         | 3.2   | 0.3  | 6.5      | 11.5( 4.3)              |
| Non-ferrous            | 0.2         | 0.4   | 0.0  | 1.7      | 2.3( 0.9)               |
| Non-metallic           | 6.4         | 2.9   | 0.0  | 2.2      | 11.6( 4.3)              |
| Transport equipment    | 0.0         | 0.0   | 0.0  | 2.6      | 2.6(1.0)                |
| Machinery              | 0.0         | 0.0   | 0.0  | 3.5      | 3.5(1.3)                |
| Textiles               | 0.0         | 2.4   | 0.0  | 0.9      | 3.3(1.2)                |
| Food products          | 0.0         | 2.2   | 0.0  | 1.3      | 3.5(1.3)                |
| Paper, pulp,& print    | 1.2         | 0.7   | 0.0  | 36       | 5.5(2.1)                |
| Others                 | 1.6         | 13.7  | 1.5  | 18.4     | 35.2(13.1)              |
| Transport              | 0.0         | 57.7  | 0.0  | 23       | 60.0(22.4)              |
| Air                    | 0.0         | 2.5   | 0.0  | 0.0      | 2.5( 0.9)               |
| Road                   | 0.0         | 50.1  | 0.0  | 0 0      | 50.1(18.7)              |
| Rail                   | 0.0         | 1.0   | 0.0  | 2.3      | 3.3(1.2)                |
| Others                 | 0.0         | 4.2   | 0.0  | 0.0      | 4.2(1.6)                |
| Others                 | 0.3         | 38.5  | 5.7  | 33 5     | 78.0(29.1)              |
| Agriculture            | 0.0         | 4.9   | 0.0  | 0.2      | 5.1(1.9)                |
| Commercial/public      | 0.0         | 13.3  | 1.2  | 12.5     | 26.9( <sup>10.1</sup> ) |
| Residential            | 0.3         | 10.6  | 4.4  | 20.9     | 36.2(13.5)              |
| Others                 | 0.0         | 9.7   | 0.0  | 0.0      | 9.7( 3.6)               |

### Table 3-7 Carbon emissions in Japan

The data refer to 1988. Note:

Source: IEA [1991b], p.208

conformity with the Action Plan for the Prevention of Global Warming which was implemented in October 1990. The summary is as follows [MITI, 1991, pp.12-13]:

- (1) Promotion of energy conservation: Contain growth in energy demand which is projected as reflecting qualitative improvement of the people's life.
- (2) Reduction of the shares of petroleum
- (3) This is possible by increased supply of nonfossil fuels such as nuclear in the total energy supply follows.

|               |        | (      | unit: metric tons) |
|---------------|--------|--------|--------------------|
| Country       | 1985   | 1990   | 2000               |
| United States | 12,601 | 21,800 | 40,400             |
| Canada        | 9,121  | 17,700 | 33,900             |
| Soviet Union  | 3,700  | 9,000  | 30,000             |
| France        | 2,900  | 7,300  | 20,000             |
| Japan         | 3,600  | 7,500  | 18,000             |
| Germany       | 1,800  | 3,800  | 8,950              |
| Sweden        | 1,330  | 2,360  | 5,100              |
| Others        | 5,939  | 14,540 | 36,715             |
| Total         | 40,991 | 84,000 | 193,065            |

Table 3-8 Accumulation of irradiated fuel from commercial plants

Note: France and the United Kingdom (included in "other" category) totals do not include 16,500 tons and 25,000 tons, respectively, produced by dual-use military and civilian reactors. Canadian total is proportionately higher due to its use of natural uranium instead of enriched uranium in its CANDU reactor technology.

Source: Worldwatch Institute, State of the World 1992.

| 1973 | 5.6%  |
|------|-------|
| 1989 | 14.8% |
| 2000 | 20.2% |
| 2010 | 26.8% |

In the year 2010, the total energy supply is projected to be equivalent to 657 million kl of petroleum, of which 298 million kl (45.3%) is from petroleum. Nonpetroleum energy amounts will be equivalent to 359 million kl of oil.

The energy sources which need to be developed and distributed include the following:

| Nuclear                   | 30.8%  | (111,000 kl) |
|---------------------------|--------|--------------|
| Coal                      | 28.6%  | (103,000 kl) |
| Natural gas               | 22.2%  | ( 80,000 kl) |
| Hydro                     | 6.9%   | ( 25,000 kl) |
| Geothermal                | 1.7%   | ( 6,000 kl)  |
| Other nonpetroleum energy | 9.7%   | ( 35,000 kl) |
|                           | 100.0% | (360,000 kl) |

One final question involves the consistency between the policy measures described here and the goal of reducing carbon emissions. The current situation of carbon emission in Japan is depicted in Table 3-7.

The United Nations Framework Convention on Climate Change, signed at the Earth Summit in Rio de Janeiro in June 1992, binds participants to cut greenhouse gas emissions to 1990 levels. Japan committed itself in 1990 to contain per capita emission of  $CO_2$  at around the 1990 level after the year 2000 (which is around 2.6 tons).

This target cannot be met without increased dependence on nuclear energy. In order to meet the target, the Japanese government has been aiming at achieving a nuclear power generation capacity of 50.5 MKW by the year 2000. In 2000, Japan was to be generating 330 billion kWH in nuclear plants. It was reported recently that the capacity would remain 45 MKW, generating 300 billion kWH, or about 10% less than the target. The long-term plan already incorporates the maximum amount of energy conservation. Thus, any deficiency in supply would have to come from an increased dependence on thermal plants consuming fossil fuel. This implies that the emission of  $CO_2$ in the year 2000 will exceed the target by 1 to 2%. [Japan Economic Journal, April 6, 1993]

The excess emission is relatively small, so that it may still be possible to absorb it by improving the energy efficiency of coal- and oil-burning power plants by the target year. The situation may even intensify the discussion for the introduction of an environmental tax on fossil fuels.

### FOOTNOTES

 The values for unit energy consumption by industry used in the calculation are presented here. It should be noted that the energy efficiency varies widely among countries. The data for manufacturing refer to 1986 and those for electricity, 1988.

| Manufacturing  |                     |                 |          | Electr | icity   |        |
|----------------|---------------------|-----------------|----------|--------|---------|--------|
|                | (TOE/ton of output) |                 |          | (TOE   | /100 mi | l. WH) |
|                | $\mathbf{Steel}$    | Chemi-          | Non-     | Coal   | Oil     | Gas    |
|                |                     | $\mathbf{cals}$ | metallic |        |         |        |
|                |                     |                 | minerals |        |         |        |
| Former Soviet  | Union an            | d East Eu       | rope:    |        |         |        |
| Former S.U.    | 0.4425              | 10.4993         | 0.3693   | 30.9   | 35.9    | 37.0   |
| Poland         | 0.2860              | 3.0403          | 0.2536   | 37.9   | 45.3    | 45.0   |
| Yugoslavia     | 0.3392              | 2.1157          | 0.1859   | 26.5   | 44.9    | 26.9   |
| Other E.E.     | 0.4413              | 3.0180          | 0.3217   | 46.0   | 50.5    | 55.5   |
| Developing cou | intries:            |                 |          |        |         |        |
| China          | 0.6706              | 24.6219         | 0.2318   | 27.2   | 23.9    | 26.1   |
| India          | 0.4670              | 22.2733         | 0.1131   | 29.2   | 35.8    | 100.3  |
| Brazil         | 0.2047              | 2.7724          | 0.0568   | 31.6   | 27.4    |        |
| Korea          | 0.3136              | 2.2128          | 0.1972   | 23.7   | 22.1    | 23.3   |
| Japan          | 0.1607              | 1.9853          | 0.0801   | 21.5   | 20.2    | 19.2   |

Note: Steel refers to pig iron+ferroalloy+crude steel production; chemical refers to ethylene and plastics production; nonmetallic minerals refers to cement production.

According to an estimate by the Economic Planning Agency,  $CO_2$  emission of the countries listed here would be reduced from 1096.03 million carbon tons to 537.97 million carbon tons, or a reduction of 558.06 million carbon tons if the Japanese level of energy efficiency is attained. Economic Planning Agency [1991b], pp.64-65.

[2] The relative size of Japan's GNP is actually larger than stated here after the 1993 appreciation of the yen. Attempts are sometimes made to adjust by using the currency's purchasing power. I believe that such a practice is useful, for example, in comparing the levels of real consumption. When it comes to capital goods and electronic appliances, however, the Japanese price levels are lower than those among OECD countries, and if one adjusts the entire GDP by average prices for those goods, the Japanese economic size will be that much larger. Rather than resorting to artificial adjustment, which is good for one purpose but not for the other, we have used figures converted by the then-current exchange rate.

- [3] Data are based on Table 3-2 where GDP figures are for 1990 and other data are for 1989.
- [4] For an analysis of energy prices and energy demand, see Uno [1987]. Energy demand elasticity on output is estimated to be 0.608, and price elasticity price (ratio of price of energy/price of the sector in question) is estimated to be (-)0.104. Observation period is from 1956 to 1980. Parameters for individual sectors are also provided.
- [5] See Uno [1989a] for an analysis of the economic structural change and energy demand. The analysis is based on input-output tables for 1970, 1975, and 1980, all in 1980 constant prices so that the effect of changing prices can be removed. It is shown that during the first half of the decade, demand increase attributable to economic expansion (factor 3 in the analysis) and increase in final consumption of energy (factor 4) predominated, whereas in the second half of the decade, energy conservation within every industrial sector (factor 1) played a major role in arresting the energy demand to a considerable extent despite expansion of the economy.
- [6] For details, see "Lifestyle and environment" which is taken up in Chapter 4 of this volume.
- [7] Note that IEA statistics give lower figures than Japanese statistics.
- [8] For official statement, see "Global environmental problem calls for action" in *Environment Whitepaper*, 1991, General discussion, pp.113-156, which is summarized below.

International:

- 1. protection of ozone layer
- 2. prevention of global warming
- 3. strengthening of ODA in environmental field

National:

1. Government policy Action Plan for the Prevention of Global Warming

Section 1. Background and the significance

Section 2. Basic items to be considered in carrying out measures to prevent global warming

106

Section 3. Goals

Section 4. Time schedule

Section 5. Policy measures  $CO_2$  emission prevention Greenhouse gases emission prevention Absorption of  $CO_2$  (reforestation) Scientific research, observation and control Research and development and diffusion of new technology Public relations and awareness Promotion of international cooperation

Section 6. Implementation of the plan

- 2. Local public bodies
- 3. Business circles
- 4. Local residents
- 5. Environmental education

# Chapter 4

# Lifestyle and Environment

# 4.1 Lifestyle as a variable

Although customs and social institutions seem invariable in a particular society, they do change in the long run. The changes are due to rising income, urbanization, service orientation, and new technology and products, among other influencing factors. The changes are sometimes induced by legal stipulation, various public policy, and provision of social infrastructure, but for the most part lifestyle is regarded as something that cannot be manipulated. Lifestyle reflects people's values, attitudes, and personal preferences and it should be honored as such. This has resulted in the neglect of empirical examination of changing lifestyle.

But different lifestyles translate into different industrial structure and different environmental impact. As we see in Figure 4-1, countries exhibit different patterns of energy use. For example, the share of industrial use is relatively high in Japan, whereas the opposite is true in the USA and the UK. In contrast, energy consumption by household is relatively low in Japan. Part of the explanation lies in the relatively modest winter in Japan, which reduces the need for heating fuel.

It should be noted, however, that household energy consumption is increasing and so is energy consumption in the transportaton sector where larger portion is also attributable to household activity.

We now have a consensus that global warming is a real threat, in addition





Source: Environmental Agency, Environment White Paper, 1990, Overview.

to the more or less traditional type of concern over air and water quality. Some limitations on the burning of fossil fuel is the key factor in controlling the quality of the air, preventing resource stock degradation, and arresting global warming. On the other hand, the growth of industrial production and improvement in the standards of living inevitably increase the consumption of energy. Logical conclusion which follows from this seems to be that economic growth would have to be stopped, or its pace slowed down, for the sake of safeguarding environmental quality.

The above argument leaves out two important factors, namely technology

and lifestyle, or implicitly assumes that these two factors are constant over time. If, however, they are variables, especially if they prove to be amenable to policy means of control, we may be able to draw a different conclusion concerning the relation between energy consumption and economic growth. The discussion of lifestyle in this chapter is intended to shed some light on this point.

# 4.2 Household appliances and energy consumption

Let us first of all confirm the trends in household energy consumption. Table 4-1 relates to this point. The aggregate picture for the household sector as a whole can be derived from population size and the energy consumption attributable to household (data from Table 3-3b). It is calculated that per capita energy consumption has increased 3.7 times during 1960 and 1990. During the 15-year period from 1960 to 1975, it increased 2.4 times but the pace has slowed down to an increase of 1.5 times in the subsequent 15 year period from 1975 to 1990. Obviously, this is attributable to slower income growth following the oil crisis.

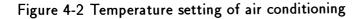
The table provides energy consumption per household. It can be seen that the number of household has grown much faster than the population size per se due to smaller number of persons in a family. Average family size is now less than three persons whereas it used to be about five. Thus, the number of household has more than doubled during the 30 year period from 1960 to 1990. This in itself is a manifestation of changing lifestyle as the economy develops. In addition to the fact that people are having less children now, extended family is more difficult to maintain in the urban area due to higher housing cost and increased mobility of the population. Increased attendance in higher education and increased labor participation of the female population are also contributing factors because universities and employment opportunities are found in urban areas, obliging younger population to be independent.

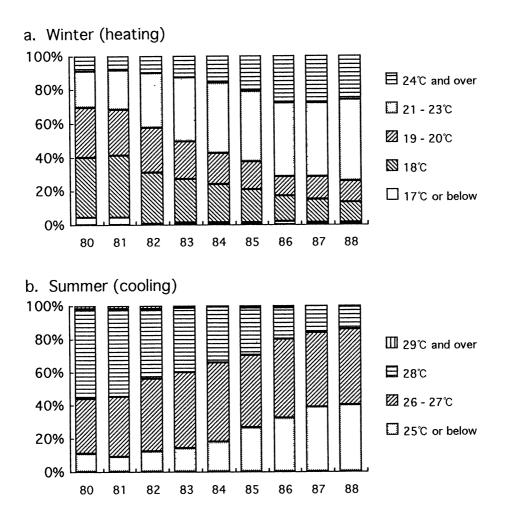
Let us look at table 4-2, which shows the diffusion rate of consumer durables. The changing lifestyle is observed in a shift from traditional Japanese life typified by 'tatami' mat, 'kimono' wardrobe, and 'hibachi' charcoal heating to Western style. Of the items covered by the survey, the ones listed here are

| Table 4-1 | Household  |           |        |              |             |
|-----------|------------|-----------|--------|--------------|-------------|
|           | Population | Persons   | Number | Energy       | Energy      |
|           |            | per       | of     | consumption, | consump-    |
|           |            | house-    | house- | household    | tion per    |
|           | (1000)     | hold      | hold   | sector total | household   |
| 1055      | (1000)     | (persons) | (1000) | (10**10kcal) | (10**6kcal) |
| 1955      | 89276      | 4.97      | 17383  | 7631         | 43.9        |
| 1956      | 90172      |           |        | 7781         |             |
| 1957      | 90928      |           |        | 8211         |             |
| 1958      | 91767      |           |        | 8025         |             |
| 1959      | 92641      |           |        | 8113         |             |
| 1960      | 93419      | 4.54      | 19678  | 8801         | 44.7        |
| 1961      | 94287      |           |        | 9309         |             |
| 1962      | 95181      |           |        | 10165        |             |
| 1963      | 96156      |           |        | 9415         |             |
| 1964      | 97182      |           |        | 9832         |             |
| 1965      | 98275      | 4.05      | 23085  | 10696        | 46.3        |
| 1966      | 99036      |           |        | 11442        |             |
| 1967      | 100196     |           |        | 12791        |             |
| 1968      | 101331     |           |        | 14104        |             |
| 1969      | 102536     |           |        | 16570        |             |
| 1970      | 103720     | 3.41      | 30297  | 18329        | 60.5        |
| 1971      | 105145     |           |        | 19788        |             |
| 1972      | 107595     |           |        | 21542        |             |
| 1973      | 109104     |           |        | 23591        |             |
| 1974      | 110573     | 0.00      | 22526  | 24377        | 75.0        |
| 1975      | 111940     | 3.28      | 33596  | 25574        | 75.8        |
| 1976      | 113089     |           |        | 28098        |             |
| 1977      | 114154     |           |        | 28529        |             |
| 1978      | 115174     |           |        | 30409        |             |
| 1979      | 116133     |           |        | 31917        |             |
| 1980      | 117060     | 3.22      | 35824  | 30486        | 85.1        |
| 1981      | 117902     |           |        | 31802        |             |
| 1982      | 118728     |           |        | 31649        |             |
| 1983      | 119536     |           |        | 35609        |             |
| 1984      | 120305     |           |        | 35643        |             |
| 1985      | 121049     | 3.14      | 37980  | 37313        | 98.2        |
| 1986      | 121672     |           |        | 37571        |             |
| 1987      | 122264     |           |        | 39981        |             |
| 1988      | 122783     |           |        | 41186        |             |
| 1989      | 123255     |           |        | 41881        |             |
| 1990      | 123611     | 2.99      | 40670  | 42708        | 105.0       |

Table 4-1 Household energy consumption

Source: Population and household data are from the Population Census.


related to energy consumption. Even in the past twenty years or so, we have witnessed a rapid diffusion of consumer durables. Compared with traditional items such as carpets, sofa, and beds, the diffusion of energy-related items has been particularly marked. Also among the latter category, we notice a shift toward more energy-consuming items. Examples are the shifts from charcoal 'hibachi' and electric 'kotatsu' heaters to kerosene stoves and now to warmair furnaces. The electric fan has been replaced by air conditioners (some of them are good for heating, too). Gas water heaters are quickly being replaced by electric water heaters. Moreover, many families now possess automobiles. Only 9% of Japanese households possessed automobiles as recently as 1965, but the ratio has reached 80% in 1990. According to a survey reported in Table 11-6 below, 1,090 cars are owned per one thousand family in 1989, which indicates that some families possess more than one car.


Some appliances, such as refrigerators and color television sets, seem to have reached a saturation point as far as the diffusion rate is concerned (although people can begin to have more than one unit in a family). Air conditioners leave much room for diffusion as can be witnessed by the rapid rate of increase even in the recent years. The figure has jumped from 55% in 1985 to 68% in 1990. The diffusion rate is much sharper in higher income brackets, indicating the room for further expansion. The same can be said of new items such as microwave ovens and water heaters (which typically utilize surplus, and hence cheap, electricity during the night).

It is clearly indicated that there is an economic reason (higher income and availability of consumer credit) as well as a technological one (emergence of new products) behind the increased use of consumer durables.

Table 4-3 itemizes the household electricity consumption. The diffusion rates listed here are slightly different from the ones provided in the previous table, but it is interesting to see the contribution of each item to total electricity consumption. Refrigerators has the largest, but declining, share (31% in 1980, 23% in 1990). Television sets also has smaller share now (15% in 1980, 11% in 1990). Lighting use stands at about 18% in 1990 which is slightly smaller than 10 years ago when it stood at 20%. Instead, the contribution of air conditioners (8% in 1980, 16% in 1990) and 'other appliances' (6% in 1980, 15% in 1990) is increasing at a fast pace.

In Japan, energy efficiency of consumer appliances has improved remark-





Note: Agency of Natural Resources and Energy, Survey on Efficient Use of Energy, 1988. Cited here from *Environmental White Paper, 1990*, Overview

|            |             |                |         |         | (uni   | t: percent) |
|------------|-------------|----------------|---------|---------|--------|-------------|
|            | Refrige-    | Color          | Air     | Water   | Micro- | Passen-     |
|            | rators      | televi-        | condi-  | heaters | wave   | ger         |
|            |             | sion           | tioners |         | ovens  | cars        |
|            |             | sets           |         |         |        |             |
| a. Time se | eries       |                |         |         |        |             |
| 1965       | 51.4        | '66 0.3        | 2.0     |         |        | 9.1         |
| 1970       | 89.1        | 26.3           | 5.9     |         |        | 22.1        |
| 1975       | 97.9        | 93.7           | 19.5    |         | 20.8   | 44.0        |
| 1980       | 99.2        | 98.5           | 41.3    |         | 37.4   | 58.5        |
| 1985       | 98.4        | 98.9           | 54.6    | 24.8    | 45.3   | 67.4        |
| 1990       | 98.9        | 99.3           | 68.1    | 37.0    | 75.6   | 79.5        |
| b. Annual  | income grou | p (million yen | ), 1990 |         |        |             |
| -3.0       | 96.7        | 98.5           | 52.1    | 19.9    | 64.3   | 57.7        |
| 3.0-4.0    | 98.0        | 99.0           | 65.2    | 26.9    | 77.0   | 77.8        |
| 4.0-5.5    | 97.8        | 98.9           | 72.2    | 29.7    | 80.5   | 82.2        |
| 5.5-7.5    | 98.5        | 99.3           | 76.6    | 36.2    | 86 6   | 85.6        |
| 7.5-       | 98.6        | 99.6           | 86.4    | 37.6    | 90 9   | 88.6        |

Table 4-2 Diffusion rate of consumer durables

Source: Compiled from Economic Planning Agency, Current Consumption Survey.

ably since the two oil crises in the 1970s. We can see in Figure 3-6 above that the energy consumption for typical consumer durables including refrigerators, television sets, and air conditioners. The improving trend, however has tapered off in the latter half of the 1980s. Actually, the performance in 1990 was not any better than in 1985.

Figure 4-2 indicates that people now want warmer room temperature during the winter and cooler temperature during the summer. Relative cheapening of energy must be behind such trends in addition to higher income levels. People also want to live in larger houses. Based on the number of housing starts and total floor space (Table 9-8), one can calculate average floor space per unit. Starting from less than 60 square meters in 1950s and early 1960s, it reached 68 square meters in 1970 and 94 square meters in 1980. Recent figures are somewhat smaller than this, but this is a cyclical phenomenon reflecting an increase in units for renting which are smaller than owner-occupied ones. On the other hand, better insulation of housing units is a positive factor in energy conservation (Figure 3-7).

We may cite here one interesting estimate by the Energy Conservation Center.[Environmental White Paper, Overview, 1990, p.125] Energy consump-

|                      | Diffusion rate |       |       | Sha   | re in elect | ric   |
|----------------------|----------------|-------|-------|-------|-------------|-------|
|                      |                |       |       | cc    | onsumption  | ı     |
| Year                 | 1980           | 1985  | 1990  | 1980  | 1985        | 1990  |
| Electric appliances: |                |       |       |       |             |       |
| Rice cooker          | 54.9           | 56.6  | 60.1  | 4.1   | 3.6         | 2.8   |
| Refrigerators        | 107.1          | 109.0 | 109.8 | 31 1  | 26.4        | 23.4  |
| "Kotatsu" warmer     | 108.7          | 112.9 | 114.5 | 7.2   | 5.8         | 5.4   |
| Electric fans        | 151.4          | 152.3 | 154.1 | 0.8   | 0.7         | 0.7   |
| Electric blankets    | 92.4           | 98 1  | 99.3  | 17    | 1.5         | 1.4   |
| Room air conditioner | 52.1           | 93.0  | 124.5 | 7.8   | 12 6        | 15.9  |
| Washing machines     | 98.2           | 98.5  | 98.7  | 1.6   | 1.4         | 1.3   |
| Vacuum cleaners      | 96.1           | 97.5  | 98.1  | 4.0   | 35          | 3.2   |
| Microwave ovens      | 33.3           | 45.7  | 58.5  | 1.3   | 1.5         | 1.7   |
| TV sets              |                |       |       | 15.0  | 11.3        | 10.6  |
| of which first color | 97.9           | 98.5  | 98.5  | 13.2  | 9.8         | 8 9   |
| second color         | 36.2           | 55.1  | 69.4  | 13    | 15          | 1.7   |
| Other appliances     |                |       |       | 58    | 13.1        | 15 2  |
| Subtotal             |                |       |       | 80.3  | 81.4        | 82 2  |
| Lighting:            |                |       |       | 19.7  | 18.6        | 17.8  |
| Electricity total    |                |       |       | 100.0 | 100.0       | 100 0 |

Table 4-3 The structure of household electricity consumption

Note The data refer to fiscal year. TV sets for 1980 includes monochrome Air conditioners for 1985 and 1990 include cooler/heater type.

Source: Resources and Energy Agency, Summary Report on Electric Demand and Supply. Cited here from Resources and Energy Agency [1990].

tion per household per year has increased from 7,317 thousand Kcal in 1973 to 9,615 thousand Kcal in 1986. This is an increase amounting to about 31%. Without the improvement in fuel efficiency, it is estimated that energy consumption would have reached 11,325 thousand Kcal. We may say that the difference between the two figures (1,710 thousand Kcal) represents energy conservation due to improved efficiency. On the other hand, if the diffusion rate of consumer durables remained at the 1973 level, and if 1986 energy efficiency is assumed, energy consumption per household in 1986 must have been 7,016 thousand Kcal. The difference between this figure and the 1986 actual (about 2,600 thousand Kcal) is attributable to higher diffusion rates, shift to large-sized products, shift to more sophisticated types, and emergence of new products.

|      |       |                  |              | (unit: 1000)       |
|------|-------|------------------|--------------|--------------------|
|      | Total | Light:           | Small:       | Ordinary:          |
|      |       | 600cc or smaller | 600сс-2000сс | larger than 2000cc |
| 1960 | 165   | 36               | 129          |                    |
| 1965 | 696   | 94               | 599          | 3                  |
| 1970 | 3179  | 749              | 2378         | 52                 |
| 1975 | 4568  | 160              | 4199         | 209                |
| 1980 | 7038  | 196              | 6439         | 403                |
| 1985 | 7647  | 161              | 6991         | 495                |
| 1990 | 9948  | 836              | 7361         | 1751               |

Table 4-4 Production of passenger cars by engine size

Source: Ministru of International Trade and Industry, Current Production Statistics Survey.

### 4.3 The case of automobiles

Table 4-4 reveals that consumers tend to prefer larger cars. Once popular light vehicles with engine displacement of 660 cc or smaller dropped its share in the 1980s. In 1990, the production has recovered considerably. Production of 'small' cars with engine size of less than 2000 cc continued to grow. The most marked change is the very rapid increase of 'ordinary' cars which have engine size of more than 2000 cc. In 1970, the production figure stood only at 52,000; in 1990, it was 1,571,000.

Fuel efficiency of passenger cars has improved. Automobiles produced in 1973 were able to travel 9.6 kilometers per liter, which improved to 13.0 kilometers in 1982 (Figure 3-8). Reflecting the cheapening of fuels, however, fuel efficiency has deteriorated somewhat since then. One contributing factor was the shift in consumer demand to larger, more luxurious cars.

Table 5-2 in the next chapter reveals that motorization proceeded at a rapid pace. In the case of freight transportation, the index (1970 as the base year) has jumped from 15.6 in 1960 and 36.0 in 1965 to 134.7 in 1980 and 154.1 in 1985. For passenger transportation, we have witnessed an explosion from 9.6 in 1960 and 26.4 in 1965 to 181.7 in 1980 and 212.2 in 1985. Non-business motor vehicle transportation recorded even faster growth, jumping from 3.8 in 1960 to 237.4 in 1985. It should be noted that the weight attached to motor vehicle transportation is distinctly larger than that for railways.

|                            | 1955 | 1960 | 1965 |
|----------------------------|------|------|------|
| Gross national expenditure | 25.0 | 37.9 | 58.8 |
| Economic wellbeing (NNW)   | 27.6 | 35.5 | 62.4 |
| Final energy consumption   | 19.5 | 30.9 | 51.4 |

#### Table 4-5 Growth, wellbeing and energy consumption

Source: GNE and NNW figures are from Table 11-1. Final energy consumption data are from Table 3-3.

Moreover, railway transportation exhibited an absolute decline in the case of freight transportation. Passenger railway transportation is still growing, but the pace is much slower than for motor vehicles. The rapid expansion of automobile transportation is consistent with what we have observed for the diffusion rate of passenger cars. It is known that in most countries, about 80% of energy for transportation use is attributable to automobiles. The Japanese case is compared with the OECD total in Table 5-1 in the next chapter.

### 4.4 Policy implications

"The issue is not just numbers of people, but how those numbers relate to available resources." "Human resource development is a crucial requirement not only to build up technical knowledge and capabilities, but also to create new values to help individuals and nations cope with rapidly changing social, environmental, and development realities." [The World Commission on Environment and Development, 1987, p.11] "The challenge is to ensure that these new values are more adequately reflected in the principles and operations of political and economic structures." [WCED 1987, p.28] "Perceived needs are socially and culturally determined, and sustainable development requires the promotion of values that encourage consumption standards that are within the bounds of the ecological possible and to which all can reasonably aspire." [WCED 1987, p.42.]

We may conclude that lifestyle is changing in the direction in which more energy is required. Despite the improved energy efficiency of individual equipment, people are now wanting larger, more luxurious types. Not only that, they tend to possess one or more cars, refrigerators, television sets, air conditioners, etc. per family. They are also willing to purchase new products such

|           |       |       | (unit: index, 1970=100) |       |  |
|-----------|-------|-------|-------------------------|-------|--|
| <br>1970  | 1975  | 1980  | 1985                    | 1990  |  |
| <br>100.0 | 124.2 | 155.6 | 187.6                   | 250.0 |  |
| 100.0     | 149.5 | 181.8 | 213.2                   | 268.2 |  |
| 100.0     | 118.9 | 125.2 | 128.1                   | 152.8 |  |

as microwave ovens, warm-air furnaces, water heaters, audio equipment, and video tape recorders. People now want a warmer room temperature during the winter and cooler temperature during the summer. In homes as well as in offices, new equipment such as PCs, fax machines, and copying machines are widely used. This requires larger floor space. Emission of heat from the equipment also necessitates a larger cooling capacity. People are shifting from public transportation such as railways to automobiles. Despite energy efficiency being attained in industry, household activity and transportation seem to be tending toward increased energy requirement.

There seems to be no easy way out of the situation in a society which is market- and democracy-oriented.

Lifestyle is shifting toward services. Household expenditure on services is increasing faster than for hardware. Although total energy implication is not known, there is a possibility that service orientation would reduce total energy requirement.

Our Common Future calls for changing the quality of growth. "Sustainable development involves more than growth. It requires a change in the content of growth, to make it less material- and energy-intensive and more equitable in its impact." [WCED 1987, p.52] Table 4-5 compares the trends in energy consumption, GNE, and economic well-being as measured in the NNW framework. The methodology is detailed in Chapter 11, but in essence it boils down to modify the concept of GNE by imputing environmental damages (deduction), value of leisure, and the services of household durable goods. The table reveals that, taking 1970 as the base year (=100), energy consumption stood at 153 in 1990, while GNE reached 250. What is of interest here is the trend in NNW which stood at 268 in 1990. The implication is that improvement in economic well-being is being achieved without a parallel input of energy.

There is increasing recognition that production or raised value added does not automatically lead to improved well-being. Indeed, it is too much to ask national income statistics to represent welfare implications because it is geared toward the current market transaction. As such, there are important omissions in the concept of GNE of items which actually improve (or deteriorate) the quality of life. Examples are environmental pollution, increased leisure, the value of household production, and services of social capital stock and consumer durables.

Empirical examination indicates that the growth of such measures lagged behind economic growth, due to the 'cost' of growth such as pollution during the high growth era in the 1950s and 1960s. When proper measures were taken to cope with environmental disruption toward the end of 1960s and early 1970s, this negative effect of growth was removed to a considerable degree. With increased stock of consumer durables (plus increased leisure and other factors), economic well-being kept growing at a faster pace than GNE. Indeed, the quality of life depends on the available stock of cosumer durables, housing, and other social stock, rather than the annual purchase of durables or annual construction of housing. Stock, rather than flow, is also relevant from the point of view of energy consumption. The policy implication seems to be that, with improved durability of products, people can attain a desired economic well-being, while conserving the energy required for producing them. In the same vain, recycling of wastes contributes to energy saving. This is true of steel, aluminum, plastics, paper, and other resources, the production of which involves a large energy demand. Rather than focusing on the production phase alone, therefore, we should keep track of the services they render during their life span and recycling them at the end.

# Chapter 5

# Transportation

### 5.1 Transportation and environment

Transportation activities encompass both industry and household sectors. In the conventional definition of production boundary, some of the transportation services fall outside it. In dealing with the environment, however, one has to tackle the full scope of transportation, and this provides another reason why we have to go beyond the well-established economic account and start compiling an environmental account.

In a typical OECD country, 1/3 of energy consumption is attributable to transportation activities, implying that a large part of  $CO_2$  emission is traceable to traffic sources. This in turn is likely to contribute to global climatic change through increased concentration of  $CO_2$  in the atmosphere.

The total final energy consumption by the tranportation sector is shown in Table 5-1 for Japan and OECD as a whole. It can be seen from the table that, among various means of transportation, road is far more important in terms of energy consumption. The share of road tranport in total stood at 85% in Japan and 82% for OECD total in recent years, and for this reason our discussion in this chapter will focus on problems related to automobiles.

Fossil fuel combustion in the transportation activities also results in emission of air pollutants such as lead (Pb), carbon monoxide (CO), nitrogen oxides  $(NO_X)$ , hydrocarbons (HC) and volatile organic compounds (VOCs), and particulate matter.[OECD, 1988b, pp.48-53]

|       |                | - | -     |       | (1    | unit: MTOE) |
|-------|----------------|---|-------|-------|-------|-------------|
| lodes |                |   | 1970  | 1980  | 1985  | 1990        |
| apan: |                |   |       |       |       |             |
|       | Air transport  |   | 1.0   | 2.5   | 2.5   | 3.0         |
|       | Road transport |   | 24.9  | 43.6  | 48.5  | 60.6        |
|       | Rail transport |   | 3.7   | 2.6   | 2.3   | 2.6         |
|       | Total          |   | 32.9  | 54.2  | 57.5  | 69.6        |
| ECD:  |                |   |       |       |       |             |
|       | Air transport  |   | 69.0  | 87.0  | 96.3  | 118.2       |
|       | Road transport |   | 445.0 | 607.4 | 636 6 | 732.7       |
|       | Rail transport |   | 29.4  | 27.0  | 22.6  | 22.9        |
|       | Total          |   | 562.7 | 741.0 | 774.9 | 895.0       |
|       | Rail transport |   | 29.4  | 27.0  | 22.6  |             |

Table 5-1 Energy consumption by mode of transportation

Source: OECD [1993], p.233.

Lead: Lead is known to cause damage to the kidney, liver, reproduction system, blood formation, basic cellular processes, and brain functions at relatively high levels in humans. Lead intake occcurs by absorption of some ingested lead from the gastrointestinal tract and by absorption of some inhaled lead from the lower respiratory tract. For this reason, children are found to be more susceptible to exposure to lead in dust and soils. It was found that children with high levels of accumulated lead in the body exhibit more behavioral problems, decreased ability to concentrate, and lower IQ. The average blood lead levels are correlated more strongly to gasoline lead than to lead in the air alone. More recently, it was revealed that even at a very low level, lead brings about adverse effects on health. Thus, reducing the lead content of gasoline has received much attention relatively early on in the history of pollution prevention in Japan.

Carbon monoxide: Carbon monoxide is one of the most directly acting toxic substances in high concentration in automobile exhaust gas. It causes adverse health effects with its interference with the absorption of oxygen. It combines with haemoglobin more than 200 times faster than oxygen and restricts the supply of oxygen by the red blood cells to body tissue. Carbon monoxide in the atmosphere is known to lower worker productivity and cause general discomfort. It can affect the central nervous system, thus affecting physical

#### TRANSPORTATION

coordination, vision, and judgement. Carbon monoxide is also known for its synergistic action in conjunction with other air pollutants. The World Health Organisation (WHO) recommends a long-term goal of 10 mg per cubic meters of ambient CO as an eight-hour average.

Nutrogen oxides: Nitrogen oxides reduce gaseous exchange in the blood and increases respiratory symptoms, causing irritation and leading to oedema or emphysema. Most serious adverse effects on human health, especially for people with existing health problems, occur in combination with other air pollutants. The WHO established a maximum of one-hour exposure of 0.10-0.17 ppm as a level to safeguard human health, and exposure at this level should not occur more than once in every month.

Nitrogen oxides also have an adverse effect on vegetation. The effect is compounded when nitrogen oxide and sulphur dioxide are present simultaneously.

Hydrocarbons: Hydrocarbons and other organic compounds are contributing factors in photochemical oxidant formation. It has been revealed also that particular organic compounds (aldehydes, polycyclic aromatic compounds, benzene, or organic acids) have hazardous health effects while others (such as ethene) exert hazardous effects on vegetation.

Particulate matter: Particulate matter or aerosols consist of small solid or liquid particles of various chemical composition suspended in the atmosphere. They are emitted with the exhaust gas of motor vehicles. The wear and tear of tires and brakes and road dust caused by automobile traffic are also contributing factors. Fine particulate matter penetrates into the respiratory system, irritating lung tissue, which results in long-term disorder. Asbestos fibers are emitted from the wear and tear of brake-lining. Asbestos at high concentration is known to induce asbestosis, lung cancer, and other health hazards, although it is believed that the ambient asbestos level attributable to road traffic is generally low. Particulate matter may be toxic in itelf or may carry toxic trace substances on its surface. As in the case of diesel exhaust gas, particulate matter is visible as smoke in some cases. It also reduces visibility by scattering and absorbing light.

*Photochemical oxidants*: Photochemical oxidants are produced by a mixture of various pollutants after they have undergone transformation in the atmosphere. Photochemical oxidants are defined as "compounds with a strong

|          | Total | Freight: |          | Passenger: |          | 1970=100) |
|----------|-------|----------|----------|------------|----------|-----------|
|          |       | Rail-    | Motor    | Rail-      | Motor    | Non       |
|          |       | ways     | vehicles | ways       | vehicles | busines   |
|          |       | -        |          | •          | Total    |           |
| Weights: | 9836  | 31       | 1330     | 336        | 7985     | 7374      |
| 1955     | 11.2  | 67.2     | 7.1      | 44.9       | 4.4      | 1.0       |
| 1956     | 12.5  | 74.1     | 7.8      | 48.2       | 5.6      | 1.4       |
| 1957     | 14.1  | 79.0     | 9.7      | 50.0       | 6.7      | 1.9       |
| 1958     | 14.8  | 72.9     | 11.2     | 52.4       | 7.5      | 2.0       |
| 1959     | 16.3  | 79.2     | 13.2     | 54.8       | 8.1      | 2.        |
| 1960     | 18.7  | 87.4     | 15.6     | 59.7       | 9.6      | 3.        |
| 1961     | 21.3  | 92.5     | 18.7     | 64.0       | 12.0     | 5.        |
| 1962     | 24.3  | 93.1     | 23.9     | 68.7       | 14.1     | 6.        |
| 1963     | 28.2  | 94.1     | 29 4     | 73.0       | 18.1     | 10.       |
| 1964     | 33.6  | 96.1     | 35.8     | 78.1       | 21.8     | 13.       |
| 1965     | 36.0  | 92.0     | 36.0     | 82.2       | 26.4     | 18.       |
| 1966     | 43.5  | 88.7     | 46.0     | 83.1       | 33 2     | 25.       |
| 1967     | 54.1  | 94.2     | 58.1     | 85.9       | 43.6     | 35.       |
| 1968     | 67.7  | 95.4     | 72 9     | 90.0       | 58 3     | 52.       |
| 1969     | 84.4  | 96.2     | 88.7     | 92.4       | 78.6     | 75.       |
| 1970     | 100.0 | 100.0    | 100.0    | 100.0      | 100.0    | 100.      |
| 1971     | 110.0 | 99.4     | 106.5    | 98.9       | 116.8    | 120.      |
| 1972     | 119.1 | 95.7     | 115.7    | 104.9      | 125.7    | 130.      |
| 1973     | 121.5 | 93.7     | 112.3    | 109.2      | 131.0    | 137       |
| 1974     | 114.8 | 87.1     | 99.4     | 109.9      | 127.6    | 135       |
| 1975     | 118.7 | 75.4     | 96.9     | 109.9      | 138.9    | 149       |
| 1976     | 125.2 | 76.2     | 99.5     | 108.6      | 148.1    | 160.      |
| 1977     | 126.4 | 66.4     | 106.2    | 104 5      | 147 8    | 160       |
| 1978     | 137.5 | 64.8     | 115.5    | 104.3      | 161 4    | 176.      |
| 1979     | 150.4 | 69.1     | 128.0    | 104.5      | 176.8    | 194.4     |
| 1980     | 155.0 | 63.6     | 134.7    | 106.2      | 181.7    | 200.3     |
| 1981     | 155.2 | 55.9     | 136.0    | 106.7      | 181 7    | 200.3     |
| 1982     | 163.5 | 51.2     | 141.0    | 106.4      | 193.0    | 214.3     |
| 1983     | 168.3 | 47.5     | 144.9    | 108.4      | 198.8    | 221.      |
| 1984     | 172.1 | 38.5     | 151.1    | 109.6      | 202.6    | 225       |
| 1985     | 179.2 | 36.7     | 154.1    | 111.2      | 212 2    | 237 4     |
| 1986     | 185.2 | 34.8     | 161.2    | 112.9      | 218 9    | 245.0     |
| 1987     | 197.9 | 33.2     | 166.9    | 115 7      | 235.8    | 265.4     |
| 1988     | 210.7 | 39.0     | 184.1    | 121.9      | 255.5    | 306       |
| 1989     | 228.8 | 42.1     | 196.7    | 124.2      | 279.5    | 338.0     |
| 1990     | 241.7 | 45.5     | 205.2    | 130.5      | 287.4    | 349.6     |

Table 5-2 Index of transportation activities

Note: The data refers to domestic transport only, although the weights are calculated including international transport.

Source: Ministry of Transport, General Indexes of Transport Activities.

#### TRANSPORTATION

oxidizing potential formed by chain reactions between unsaturated hydrocarbons and other reactive organic compounds, nitrogen oxides, and oxygen in the presence of the sunlight." [OECD, 1988b,p.52] Ozone  $(O_3)$  is the most prevalent photochemical oxidant. About 1/2 of HC and  $NO_X$  emissions are attributable to transportation activities. The WHO recommends a total oxidant concentration of 0.06 ppm as a best single value estimate of exposure limit. Oxidants cause adverse health effects such as increased susceptibility to infections, pulmonary disease, pulmonary and systemic biochemical changes, impairment of pulmonary functions, and irritation of eye, nose, and throat. Oxidants can cause damage to vegetation, including thin-leaved vegetables, agricultural crops, and forest trees.

Acid deposition: Sulphur and nitrogen oxides can undergo chemical transformation in the atmosphere, and acids and acid salts thus formed return to the earth. Approximately 1/3 of the acidity in rainfall is attributed to NOx emissions which are then transformed into nitric acid. Photochemical oxidants are suspected of playing a key role in the conversion of sulphur and nitrogen oxides into acids. Acid deposition is damaging to ecosystems (forest and aquatic) and corrosive materials.

Traffic noise: Noise and vibration caused by road, rail, and air traffic exert physical effects, physiological effects (directly measurable ones), and psychosociological effects (such as annoyance and other reactions).

Transformation of land use: Expansion of automobile traffic calls for increased provision of road infrastructure. More land has to be taken for infrastructures, often from farm land and forests. Building and improving roads in urban areas also tend to aggravate traffic noise unless strict zoning in land use is put into effect.

## 5.2 Trends in transportation activities

The long-term trends in transportation activities are shown in Table 5-2.[1]The data refer to the value of transportation and not the physical units. The index for the total jumped from 18.7 in 1960 to 100 in 1970, or a fivefold increase. The 1970s have seen much slower growth, the index reaching only 155.0 by 1980. Thus, on the aggregate level, transportation is a reflection of economic growth. Focusing on the modal shift from railways to motor vehicles,

|      | Buses        |           | Passenger ca | rs        | Buses         |           |
|------|--------------|-----------|--------------|-----------|---------------|-----------|
|      | for business |           | for business |           | for private u | se        |
| Year | Vehicles     | Distance  | Vehicles     | Distance  | Vehicles      | Distance  |
|      |              | travelled |              | travelled |               | travelled |
|      | (1000)       | (mil.km)  | (1000)       | (mil.km)  | (1000)        | (mil.km)  |
| 1955 | 33.0         | ( 1227)   | 45.7         | ( 2728)   | 1.6           | ( 20)     |
| 1956 | 37.0         | (1375)    | 50.1         | ( 3513)   | 1.8           | (23)      |
| 1957 | 41.4         | (1542)    | 54.7         | ( 3954)   | 2.1           | (27)      |
| 1958 | 45.4         | ( 1715)   | 58.3         | ( 4115)   | 2.2           | ( 34)     |
| 1959 | 48.7         | (1892)    | 63.2         | ( 4444)   | 2.9           | ( 40)     |
| 1960 | 53.1         | (1946)    | 76.6         | ( 4591)   | 4.2           | ( 48)     |
| 1961 | 58.6         | ( 2144)   | 98.6         | ( 6281)   | 6.3           | ( 62)     |
| 1962 | 62.2         | (2343)    | 106.6        | ( 7755)   | 9.1           | ( 105)    |
| 1963 | 70.2         | (2618)    | 123.4        | ( 8880)   | 13.8          | ( 157)    |
| 1964 | 74.4         | ( 3008)   | 143.9        | (10160)   | 20.9          | ( 318)    |
| 1965 | 77.4         | (3148)    | 151.0        | ( 11721)  | 27.8          | ( 442)    |
| 1966 | 79.6         | ( 3345)   | 161.9        | (13036)   | 37.6          | ( 553)    |
| 1967 | 80.9         | ( 3487)   | 174.9        | (14897)   | 52.1          | ( 790)    |
| 1968 | 83.2         | ( 3581)   | 191.3        | (16412)   | 70.1          | (1126)    |
| 1969 | 84.8         | (3602)    | 206.2        | (18236)   | 90.8          | (1411)    |
| 1970 | 85.9         | ( 3674)   | 217.7        | (19873)   | 105.1         | (1720)    |
| 1971 | 84.1         | ( 3629)   | 226.2        | (20214)   | 112.7         | ( 1749)   |
| 1972 | 83.9         | (3670)    | 226.7        | (19780)   | 121.8         | (1997)    |
| 1973 | 84.4         | (3625)    | 232.6        | (19047)   | 129.3         | (1849)    |
| 1974 | 84.6         | (3576)    | 238.4        | (17153)   | 131.1         | ( 1742)   |
| 1975 | 86.7         | ( 3623)   | 243.3        | (17515)   | 133.1         | (1828)    |
| 1976 | 86.7         | (3695)    | 244.9        | (17898)   | 135.5         | ( 1774)   |
| 1977 | 87.0         | (3730)    | 246.2        | (17950)   | 137.0         | (1993)    |
| 1978 | 87.2         | (3786)    | 248.1        | (18812)   | 139.4         | (2110)    |
| 1979 | 87.6         | ( 3864)   | 249.4        | (19457)   | 140.7         | (2097)    |
| 1980 | 88.4         | (3890)    | 250.5        | (19328)   | 140.9         | (2156)    |
| 1981 | 88.7         | ( 3954)   | 251.1        | (19456)   | 140.8         | (2137)    |
| 1982 | 89.2         | ( 3982)   | 251.4        | (19059)   | 140.4         | (2096)    |
| 1983 | 89.3         | (4026)    | 251.9        | (19277)   | 140.2         | (2138)    |
| 1984 | 89.8         | (4066)    | 252.3        | (19251)   | 140.2         | (2247)    |
| 1985 | 90.0         | ( 4112)   | 253.0        | (19249)   | 141.0         | (2237)    |
| 1986 | 91.0         | ( 4136)   | 253.0        | (19331)   | 141.0         | (2319)    |
| 1987 | 92.0         | ( 4252)   | 255.0        | (19758)   | 143.0         | (2375)    |
| 1988 | 93.0         | ( 4392)   | 256.0        | (19543)   | 146.0         | (2345)    |
| 1989 | 94.0         | (4502)    | 257.0        | (19230)   | 148.0         | ( 2460)   |
| 1990 | 95.0         | ( 4609)   | 256.0        | (19348)   | 151.0         | (2502)    |

Table 5-3 Number of vehicles

Note: Buses include those for route service and for charter. Figures in this table are based on Ministry of Transportation, *Statistical Survey on Motor Vehicle Transport.* 

|      | Passeng  |                  | Light vehicles | Two-wheeled |
|------|----------|------------------|----------------|-------------|
|      | for priv |                  |                | vehicles    |
| Year | Vehicles | Distance         |                |             |
|      |          | travelled        |                | (           |
|      | (1000)   | (mil.km)         | (1000)         | (1000)      |
| 55   | 91.8     | ( 1309)          | 530.9          | 50.6        |
| 56   | 110.9    | ( 1334)          | 643.2          | 53.4        |
| 57   | 142.8    | ( 1820)          | 768.6          | 56.3        |
| 58   | 149.2    | ( 2526)          | 940.3          | 57.3        |
| 59   | 239.4    | ( 2990)          | 1222.7         | 55.2        |
| 60   | 363.7    | ( 4134)          | 1459.7         | 50.0        |
| 61   | 503.7    | ( 5586)          | 1790.0         | 45.8        |
| 62   | 656.3    | ( 7634)          | 2129.4         | 44.4        |
| 63   | 955.7    | ( 12055)         | 2473.9         | 45.0        |
| 64   | 1317.8   | ( 15753)         | 2747.0         | 44.4        |
| 65   | 1726.8   | ( 22281)         | 3057.9         | 48.0        |
| 66   | 2312.9   | ( 30453)         | 3395.6         | 55.3        |
| 67   | 3099.5   | ( 43203)         | 3938.1         | 64.4        |
| 68   | 4100.7   | ( 59795)         | 4566.5         | 76.9        |
| 69   | 5306.1   | ( 78336)         | 5298.4         | 109.7       |
| 70   | 6559.1   | (100709)         | 5968.4         | 171.5       |
| 71   | 7947.0   | (117185)         | 6436.3         | 220.0       |
| 72   | 9738.6   | (126492)         | 6736.5         | 238.1       |
| 73   | 11365.0  | (144964)         | 6654.1         | 261.7       |
| 74   | 12840.3  | (143857)         | 6552.6         | 276.7       |
| 75   | 14578.7  | (158520)         | 5867.3         | 257.2       |
| 76   | 15961.2  | (168184)         | 5953.7         | 277.0       |
| 77   | 17323.1  | (187416)         | 6185.0         | 292.3       |
| 78   | 18937.5  | (201550)         | 6331.9         | 327.5       |
| 79   | 20309.6  | (215550)         | 6749.4         | 383.6       |
| 80   | 21292.9  | (222131)         | 7297.1         | 444.9       |
| 81   | 22263.5  | (227701)         | 8089.4         | 522.2       |
| 82   | 23137.7  | (236908)         | 9036.0         | 617.3       |
| 83   | 24030.6  | (240467)         | 10004.8        | 700.1       |
| 84   | 26785.8  | (245845)         | 11035.8        | 775.6       |
| 85   | 25595.0  | ( 256308)        | 12062.0        | 851.0       |
| 86   | 26435.0  | (265963)         | 13133.0        | 912.0       |
| 87   | 27570.0  | <u>(</u> 288303) | 14223.0        | 974.0       |
| 88   | 28720.0  | <u>(</u> 301953) | 15259.0        | 1016.0      |
| 89   | 30625.0  | <u>(</u> 322144) | 15975.0        | 1046.0      |
| 90   | 32177.0  | (346249)         | 16769.0        | 1000.0      |

Note: After fiscal 1988, distance travelled for passenger cars includes light motor vehicles. Figures for light motor vehicles and two-wheeled cars are from *Motor Vehicles Ownership*.

| b. Frei | ght transportati | on        |              |           |             |           |
|---------|------------------|-----------|--------------|-----------|-------------|-----------|
|         | Trucks           |           | Light trucks |           | Trucks      |           |
|         | for business     |           | for business |           | for private | use       |
|         | Vehicles         | Distance  | Vehicles     | Distance  | Vehicles    | Distance  |
|         |                  | travelled |              | travelled |             | travelled |
| Year    | (1000)           | (mil.km)  | (1000)       | (mil.km)  | (1000)      | (mil.km)  |
| 1955    | 48.2             | ( 1187)   | 43.8         | ( 575)    | 111.8       | ( 1710)   |
| 1956    | 53.5             | ( 1376)   | 53.2         | (729)     | 119.1       | ( 1812)   |
| 1957    | 58.5             | ( 1587)   | 62.0         | (888)     | 127.6       | (2055)    |
| 1958    | 60.6             | ( 1734)   | 70.1         | (1113)    | 131.5       | ( 2236)   |
| 1959    | 67.7             | ( 2050)   | 80.4         | (1300)    | 141.7       | ( 2379)   |
| 1960    | 76.3             | ( 2732)   | 89.8         | (1645)    | 155.2       | ( 3817)   |
| 1961    | 89.3             | ( 3231)   | 97.7         | (1830)    | 182.2       | ( 4026)   |
| 1962    | 99.0             | ( 3844)   | 102.1        | (2026)    | 205.2       | ( 4707)   |
| 1963    | 115.6            | ( 4937)   | 107.6        | (2353)    | 233.9       | ( 6005)   |
| 1964    | 132.4            | ( 5811)   | 109.2        | (2468)    | 256.6       | ( 6666)   |
| 1965    | 143.5            | ( 6080)   | 106.6        | (2385)    | 281.8       | ( 6751)   |
| 1966    | 164.4            | (7557)    | 104.5        | (2454)    | 331.6       | (8517)    |
| 1967    | 191.4            | ( 9189)   | 100.4        | (2512)    | 396.5       | (10569)   |
| 1968    | 217.0            | (10934)   | 96.7         | (2442)    | 454.2       | (13072)   |
| 1969    | 238.8            | (12432)   | 93.2         | (2439)    | 508.8       | (15114)   |
| 1970    | 258.6            | (13175)   | 92.2         | (2417)    | 555.2       | (16285)   |
| 1971    | 277.7            | (13725)   | 91.6         | (2283)    | 594.9       | (16470)   |
| 1972    | 303.0            | (14747)   | 90.2         | (2396)    | 664.5       | (17917)   |
| 1973    | 333.3            | (15722)   | 87.0         | (2234)    | 754.8       | (16802)   |
| 1974    | 345.7            | (15203)   | 86.3         | (2082)    | 797.3       | (16079)   |
| 1975    | 353.0            | (15780)   | 86.0         | (2141)    | 822.4       | (16422)   |
| 1976    | 368.9            | (17269)   | 86.2         | (2202)    | 844.7       | (16774)   |
| 1977    | 385.0            | (19033)   | 86.5         | (2286)    | 877.6       | (17698)   |
| 1978    | 408.2            | (22081)   | 86.0         | (2363)    | 951.1       | (20721)   |
| 1979    | 434.1            | (24234)   | 85.9         | (2388)    | 1019.9      | (22532)   |
| 1980    | 450.7            | (24535)   | 86.6         | (2347)    | 1051.6      | (23155)   |
| 1981    | 464.1            | (25045)   | 88.0         | (2371)    | 1069.1      | (23061)   |
| 1982    | 477.1            | (26108)   | 89.3         | (2447)    | 1076.1      | (22969)   |
| 1983    | 498.0            | (27549)   | 91.0         | (2512)    | 1088.9      | (23680)   |
| 1984    | 524.2            | (30048)   | 92.4         | (2570)    | 1105.5      | (24076)   |
| 1985    | 537.0            | (32055)   | 93.0         | (2627)    | 1120.0      | (24635)   |
| 1986    | 563.0            | ( 34574)  | 91.0         | (2668)    | 1140.0      | (25504)   |
| 1987    | 590.0            | ( 37287)  | 95.0         | (4674)    | 1175.0      | (27161)   |
| 1988    | 632.0            | ( 40755)  | 95.0         | ( 5014)   | 1250.0      | (29191)   |
| 1989    | 675.0            | ( 43667)  | 95.0         | (5193)    | 1334.0      | ( 30602)  |
| 1990    | 713.0            | ( 45839)  | 94.0         | ( 5349)   | 1431.0      | ( 32288)  |

h Eroight transportati

Distance travelled figures include light vehicles starting in 1987. Total trucks Note: and total motor vehicles series are from Motor Vehicle Ownership. Total motor vehicles include special purpose vehicles and heavy special vehicles.

| Total          | Total  | ······································ | Light trucks    |    |
|----------------|--------|----------------------------------------|-----------------|----|
| motor vehicles | trucks |                                        | for private use |    |
|                |        | Distance                               | Vehicles        |    |
|                |        | travelled                              |                 |    |
| (1000)         | (1000) | (mil.km)                               | (1000)          |    |
| 1501.7         | 693.0  | ( 3306)                                | 486.5           | 55 |
| 1775.1         | 809.3  | ( 3692)                                | 580.0           | 56 |
| 2069.1         | 925.3  | ( 4815)                                | 672.8           | 57 |
| 2404.1         | 1032.7 | ( 5734)                                | 765.4           | 58 |
| 2898.4         | 1172.3 | ( 9396)                                | 876.9           | 59 |
| 3403.7         | 1321.6 | ( 9250)                                | 994.2           | 60 |
| 4135.8         | 1543.9 | ( 12386)                               | 1167.7          | 61 |
| 4922.0         | 1782.0 | (14550)                                | 1368.3          | 62 |
| 5937.2         | 2130.6 | ( 19278)                               | 1665.4          | 63 |
| 6984.8         | 2491.5 | (26144)                                | 1984.3          | 64 |
| 8123.0         | 2870.2 | ( 29347)                               | 2328.7          | 65 |
| 9639.3         | 3407.0 | ( 38830)                               | 2796.2          | 66 |
| 11690.7        | 4056.6 | ( 47565)                               | 3355.7          | 67 |
| 14021.9        | 4671.4 | ( 56058)                               | 3887.3          | 68 |
| 16528.5        | 5126.2 | ( 62032)                               | 4265.8          | 69 |
| 18919.0        | 5460.3 | ( 68163)                               | 4530.4          | 70 |
| 21222.7        | 5791.8 | ( 68224)                               | 4802.7          | 71 |
| 23869.1        | 6262.7 | (72595)                                | 5177.3          | 72 |
| 25962.8        | 6720.5 | (71921)                                | 5510.9          | 73 |
| 27870.4        | 7057.9 | ( 66792)                               | 5789.8          | 74 |
| 29143.4        | 7381.0 | (70516)                                | 6079.4          | 75 |
| 31048.1        | 7757.8 | ( 81901)                               | 6415.4          | 76 |
| 32965.0        | 8023.4 | ( 92219)                               | 6630.4          | 77 |
| 35179.5        | 8387.6 | ( 89837)                               | 6894.4          | 78 |
| 37333.2        | 8646.7 | ( 91831)                               | 7053.7          | 79 |
| 38992.0        | 8682.9 | ( 91509)                               | 7036.6          | 80 |
| 40834.0        | 8654.6 | ( 90933)                               | 6974.5          | 81 |
| 42687.4        | 8563.5 | ( <u>89532</u> )                       | 6861.5          | 82 |
| 44558.8        | 8462.0 | ( <u>89280</u> )                       | 6723.0          | 83 |
| 46362.8        | 8382.2 | <u>(</u> 87639)                        | 6596.1          | 84 |
| 48241.0        | 8306.0 | ( 87216)                               | 6600.0          | 85 |
| 50223.0        | 8271.0 | ( 87117)                               | 6476.0          | 86 |
| 52646.0        | 8352.0 | (165024)                               | 6416.0          | 87 |
| 55136.0        | 8549.0 | <u>(</u> 172392)                       | 6443.0          | 88 |
| 57994.0        | 8695.0 | <u>(</u> 172419)                       | 6492.0          | 89 |
| 60499.0        | 8835.0 | (172396)                               | 6510.0          | 90 |

|        |                              | •         |             |           | Fuel consumption |       |
|--------|------------------------------|-----------|-------------|-----------|------------------|-------|
|        | Passenger-km<br>(million km) |           | (million kn | ravelled  | (1000 kl)        |       |
| Year   | Buses                        | Passenger | Buses       | Passenger | Gasoline         | Light |
|        | Dubbo                        | cars      | Ducto       | cars      | Gasonne          | oil   |
| 1955   | 23320                        | 4180      | 1246        | 4038      | 764              | 217   |
|        | 27600                        | 5700      | 1399        | 4852      | 874              | 280   |
|        | 31300                        | 7200      | 1575        | 5774      | 968              | 346   |
|        | 34300                        | 8400      | 1749        | 6641      | 1022             | 394   |
|        | 39200                        | 8800      | 1933        | 7434      | 1320             | 481   |
|        | 43999                        | 11532     | 1994        | 8725      | 1225             | 502   |
|        | 49237                        | 15958     | 2206        | 11867     | 1603             | 586   |
|        | 54399                        | 19622     | 2448        | 15389     | 2017             | 677   |
|        | 62873                        | 26491     | 2775        | 20935     | 2458             | 809   |
|        | 76039                        | 31922     | 3327        | 25913     | 2881             | 1002  |
|        | 80134                        | 40622     | 3590        | 34002     | 3581             | 1067  |
|        | 83933                        | 54595     | 3898        | 43490     | 4382             | 1120  |
|        | 90476                        | 74111     | 4278        | 58100     | 5837             | 1196  |
|        | 95314                        | 103612    | 4707        | 76208     | 7724             | 1259  |
|        | 00192                        | 141869    | 5013        | 96572     | 9529             | 1285  |
| 1970 1 | 02893                        | 181335    | 5394        | 120582    | 11772            | 1323  |
| 1971 1 | 00843                        | 211635    | 5378        | 137400    | 14238            | 1330  |
| 1972 1 | 08211                        | 220346    | 5667        | 146272    | 14504            | 1368  |
| 1973 1 | 11713                        | 225732    | 5474        | 164010    | 16812            | 1357  |
| 1974 1 | 15776                        | 228400    | 5318        | 161010    | 16726            | 1360  |
| 1975 1 | 10063                        | 250804    | 5451        | 176035    | 18237            | 1379  |
|        | 98714                        | 264499    | 5469        | 186083    | 19428            | 1410  |
|        | 04639                        | 263961    | 5723        | 205367    | 21739            | 1438  |
|        | 07009                        | 296044    | 5896        | 220363    | 23554            | 1540  |
|        | 08317                        | 319869    | 5960        | 235007    | 25614            | 1615  |
|        | 10396                        | 321272    | 6046        | 241459    | 26300            | 1666  |
| 1981 1 | 08827                        | 328251    | 6091        | 247156    | 26359            | 1705  |
| 1982 1 | 04836                        | 347219    | 6077        | 255968    | 26985            | 1711  |
|        | 03418                        | 360747    | 6164        | 259744    | 27294            | 1721  |
| 1984 1 | 03064                        | 365631    | 6313        | 265096    | 27275            | 1735  |
| 1985 1 | 05000                        | 384000    | 6352        | 275557    | 27827            | 1740  |
|        | 02000                        | 398000    | 6455        | 285294    | 28688            | 1746  |
|        | 03000                        | 456000    | 6626        | 308062    | 26978            | 3800  |
|        | 07000                        | 501000    | 6737        | 321496    | 27999            | 4083  |
|        | 09000                        | 556000    | 6376        | 341374    | 29658            | 4584  |
| 1990 1 | 10000                        | 576000    | 7112        | 365597    | 31726            | 5222  |

 Table 5-4 Traffic volume and fuel consumption

 a. Passenger transportation

Note:Figures are in terms of fiscal year. Okinawa is not included up to 1974.Source:Ministry of Transport, Statistical Survey on Motor Vehicle Transport.

| (million km)         (1000 kl)           Year         Business         Private         Business         Private         Gasoline         Light of           1955         3700         5800         1762         5016         1629         28           1956         4500         6400         2105         5503         1994         33           1957         5500         7700         2475         6871         2264         44           1958         6300         9100         2847         7970         2504         56           1959         7900         10500         3351         8775         2772         66           1960         9638         11163         4377         13068         2634         92           1961         11700         14900         5060         16412         2928         144           1962         14091         18338         5870         19257         3137         183           1963         18541         23490         7290         25283         3856         227           1964         20222         26993         8279         32810         4773         275           1966         3                                                                                                          | b. Freigh | t transportation | ۱     | <b>D</b> ' |          | <b>.</b>         |           |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------|-------|------------|----------|------------------|-----------|--|
| Year         Business         Private         Business         Private         Gasoline         Light of           1955         3700         5800         1762         5016         1629         28           1956         4500         6400         2105         5503         1994         33           1957         5500         7700         2475         6871         2264         44           1958         6300         9100         2847         7970         2504         506           1959         7900         10500         3351         8775         2772         64           1960         9638         11163         4377         13068         2634         99           1961         11700         14900         5060         16412         2928         144           1962         14091         18338         5870         19257         3137         183           1963         18541         23490         7290         25283         3856         223           1964         20222         26993         8279         32810         4773         277           1965         22385         26006         8465         36098 <td colspan="2">Ton-km</td> <td></td> <td></td> <td>lled</td> <td colspan="3">Fuel consumption</td> | Ton-km    |                  |       |            | lled     | Fuel consumption |           |  |
| useuseuseuseuse1955 $3700$ $5800$ $1762$ $5016$ $1629$ $28$ 1956 $4500$ $6400$ $2105$ $5503$ $1994$ $37$ 1957 $5500$ $7700$ $2475$ $6871$ $2264$ $48$ 1958 $6300$ $9100$ $2847$ $7970$ $2504$ $560$ 1959 $7900$ $10500$ $3351$ $8775$ $2772$ $64$ 1960 $9638$ $11163$ $4377$ $13068$ $2634$ $99$ 1961 $11700$ $14900$ $5060$ $16412$ $2928$ $144$ 1962 $14091$ $18338$ $5870$ $19257$ $3137$ $185$ 1963 $18541$ $23490$ $7290$ $25283$ $3856$ $223$ 1964 $20222$ $26993$ $8279$ $32810$ $4773$ $277$ 1965 $22385$ $26006$ $8465$ $36098$ $4913$ $28$ 1966 $30602$ $34310$ $10012$ $47347$ $5960$ $277$ 1965 $22385$ $61730$ $14871$ $77146$ $8541$ $714$ 1967 $37189$ $43904$ $11701$ $58134$ $6892$ $499$ 1968 $46972$ $54480$ $13376$ $69130$ $7922$ $613$ 1970 $67330$ $68586$ $15592$ $84448$ $9179$ $78$ 1971 $72050$ $70618$ $16007$ $84694$ $9079$ $857$ 1972 $76515$ $77095$ </td <td></td> <td></td> <td></td> <td></td> <td><u>.</u></td> <td><u>\</u></td> <td>1.1.1.1.1</td>                                                                                                                                                                                                                                                             |           |                  |       |            | <u>.</u> | <u>\</u>         | 1.1.1.1.1 |  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Year      |                  |       |            |          | Gasoline         | Light oil |  |
| 19564500 $6400$ 2105 $5503$ $1994$ 331957550077002475 $6871$ 2264441958 $6300$ 91002847797025045019597900105003351 $8775$ 27726419609638111634377130682634971961117001490050601641229281441962140911833858701925731371851963185412349072902528338562231964202222699382793281047732771965223852600684653609849132831966306023431010012473475960277196737189439041170158134689249419684697254480133766913079226131969581356173014871771468541714197067330685861559284448917978197172050706181600784694907985-19727651577095171429051291299001973733676761217956887548990931976727895983019471986759781106197780020630752131910991710525117 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.000</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                  |       |            |          | 1.000            |           |  |
| 1957 $5500$ 7700 $2475$ $6871$ $2264$ $4475$ 1958 $6300$ $9100$ $2847$ $7970$ $2504$ $5675$ 1959 $7900$ $10500$ $3351$ $8775$ $2772$ $66755$ 1960 $9638$ $11163$ $4377$ $13068$ $2634$ $925575$ 1961 $11700$ $14900$ $5060$ $16412$ $2928$ $14455557$ 1962 $14091$ $18338$ $5870$ $19257$ $3137755575757575775757777571963185412349072902528333856557575777755777755777755777755777957196420222226993382793281047733777777777777777777777777777777777$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |                  |       |            |          |                  | 285       |  |
| 1958 $6300$ 910028477970250450195979001050033518775277266196096381116343771306826349219611170014900506016412292814419621409118338587019257313718519631854123490729025283385622319642022226993827932810477327319652238526006846536098491328319663060234310100124734759602731967371894390411701581346892494196846972544801337669130792261319695813561730148717714685417141970673306858615592844489179783197172050706181600784694907985519727651577095171429051291299001973733676761217285828718341924197569247604551792286938868498197672789598301947198675978110619778002063075213191099171052511741978868736919224444110558993613                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |                  |       |            |          |                  | 372       |  |
| 195979001050033518775277264196096381116343771306826349219611170014900506016412292814419621409118338587019257313718519631854123490729025283385622319642022226993827932810477327319652238526006846536098491328319663060234310100124734759602731967371894390411701581346892494196846972544801337669130792261319695813561730148717714685417141970673306858615592844489179783197172050706181600784694907985519727651577095171429051291299001973733676761217956887548990933197472044587261728582871834192419756924760455179228693886849819767278959830194719867597811061977800206307521319109917105251174198010354175360268831146649212 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>484</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |                  |       |            |          |                  | 484       |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                  |       |            |          |                  | 503       |  |
| 1961 $11700$ $14900$ $5060$ $16412$ $2928$ $144$ 1962 $14091$ $18338$ $5870$ $19257$ $3137$ $185$ 1963 $18541$ $23490$ $7290$ $25283$ $3856$ $223$ 1964 $20222$ $26993$ $8279$ $32810$ $4773$ $277$ 1965 $22385$ $26006$ $8465$ $36098$ $4913$ $287$ 1966 $30602$ $34310$ $10012$ $47347$ $5960$ $277$ 1967 $37189$ $43904$ $11701$ $58134$ $6892$ $499$ 1968 $46972$ $54480$ $13376$ $69130$ $7922$ $613$ 1969 $58135$ $61730$ $14871$ $77146$ $8541$ $714$ 1970 $67330$ $68586$ $15592$ $84448$ $9179$ $783$ 1971 $72050$ $70618$ $16007$ $84694$ $9079$ $855$ 1972 $76515$ $77095$ $17142$ $90512$ $9129$ $900$ 1973 $73367$ $67612$ $17956$ $88754$ $8990$ $933$ 1974 $72044$ $58726$ $17285$ $82871$ $8341$ $922$ 1975 $69247$ $60455$ $17922$ $86938$ $8684$ $98$ 1976 $72789$ $59830$ $19471$ $98675$ $9781$ $1066$ 1977 $80020$ $63075$ $21319$ $109917$ $10525$ $1177$ 1978 $86873$ $69192$ $24444$ $110558$ <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>686</td></t<>                                                                                                                                                                                                                                              |           |                  |       |            |          |                  | 686       |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                  |       |            |          |                  | 919       |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                  |       |            |          |                  | 1447      |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                  |       |            |          |                  | 1813      |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                  |       |            |          |                  | 2233      |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                  |       |            |          |                  | 2720      |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                  |       |            |          |                  | 2814      |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                  |       |            |          |                  | 2723      |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                  |       |            |          |                  | 4940      |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                  |       |            |          |                  | 6121      |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                  |       |            |          |                  | 7101      |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                  |       |            |          |                  | 7816      |  |
| 19737336767612179568875489909319747204458726172858287183419219756924760455179228693886849819767278959830194719867597811061977800206307521319109917105251171978868736919224444110558993613419799819074698266221143629651147198010354175360268831146649212152198110827673034274161139948881154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |                  |       |            |          |                  | 8547      |  |
| 19747204458726172858287183419219756924760455179228693886849819767278959830194719867597811061977800206307521319109917105251171978868736919224444110558993613419799819074698266221143629651147198010354175360268831146649212152198110827673034274161139948881154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                  |       |            |          |                  | 9048      |  |
| 19756924760455179228693886849819767278959830194719867597811061977800206307521319109917105251171978868736919224444110558993613419799819074698266221143629651147198010354175360268831146649212152198110827673034274161139948881154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | 73367            |       |            |          |                  | 9390      |  |
| 19767278959830194719867597811061977800206307521319109917105251171978868736919224444110558993613419799819074698266221143629651147198010354175360268831146649212152198110827673034274161139948881154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                  |       |            |          |                  | 9289      |  |
| 1977800206307521319109917105251171978868736919224444110558993613419799819074698266221143629651147198010354175360268831146649212152198110827673034274161139948881154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |                  | 60455 |            |          |                  | 9869      |  |
| 1978868736919224444110558993613419799819074698266221143629651147198010354175360268831146649212152198110827673034274161139948881154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1976      | 72789            |       | 19471      |          |                  | 10672     |  |
| 19799819074698266221143629651147198010354175360268831146649212152198110827673034274161139948881154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1977      | 80020            | 63075 |            | 109917   |                  | 11787     |  |
| 198010354175360268831146649212152198110827673034274161139948881154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1978      | 86873            |       |            |          |                  | 13417     |  |
| 1981 108276 73034 27416 113994 8881 154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1979      | 98190            | 74698 | 26622      | 114362   |                  | 14710     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1980      | 103541           | 75360 | 26883      | 114664   | 9212             | 15226     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1981      | 108276           | 73034 | 27416      | 113994   |                  | 15460     |  |
| 1982 110832 10887 28555 112502 8294 158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1982      | 116832           | 70887 | 28555      | 112502   | 8294             | 15882     |  |
| 1983 124680 68847 30060 112960 7776 166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1983      | 124680           | 68847 | 30060      | 112960   | 7776             | 16688     |  |
| 1984 132028 68786 32617 111716 7064 177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | 132028           | 68786 | 32617      | 111716   | 7064             | 17785     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1985      | 137000           | 69000 | 34682      | 111851   | 6473             | 18669     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |                  |       | 37242      | 112622   | 5995             | 19685     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |                  | 71000 | 41961      | 192186   | 5658             | 21188     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |                  |       | 45769      | 201583   | 5117             | 23179     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |                  |       | 48860      | 203022   | 4602             | 24531     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |                  |       | 51188      | 204684   | 4314             | 25867     |  |

b. Freight transportation

Note: Figures are in terms of fiscal year. Okinawa is not included up to 1974. After fiscal year 1988, figures include light motor vehicles.

Source: Ministry of Transport, Statistical Survey on Motor Vehicle Transport.

the table does not include data on sea and air transport. It is shown that, in the case of freight transport, railways reached a peak in 1970 and have shown a rather steep decline since, reaching about 30% in 1990. Freight transportation by motor vehicles took its place. In the case of passenger transportation by rail, the trend up to 1970 seems more or less similar to that of freight, only that it had exhibited much faster growth. After 1970, it never experienced an absolute decline except for short-term fluctuations reflecting economic slowdowns following the two oil crises. Motor vehicles started to play a major role in passenger transportation by the 1960s, and especially noteworthy is the rapid increase of nonbusiness passenger transport by automobile. In the base year (1970), the share of this category had reached 73.7% of total.

The nature and magnitude of the environmental impact of transportation depend on the stock of motor vehicles in use and the volume of traffic. Let us look at these factors.

Table 5-3 provides an overview of the historical development in the number of motor vehicles in Japan.[2] "Business" in the table refers to commercial transport operators and "private" to company-owned fleets and householdowned cars. The total number of vehicles stood at 60.5 million in 1990, which consisted of 32.2 million passenger cars for private use, 16.8 million light motor vehicles [3], and 8.8 million trucks, among others. Of these, most notable is the passenger car for private use. In 1960, only 363 thousand of them existed; by 1970, this figure already exceeded 6 million and by 1980, 21 million. The growth of stock of passenger cars was not arrested in the 1980s, as can be seen in the 50% increase in passenger cars and more than twofold increase in the stock of light motor vehicles.

Table 5-4 is intended to establish linkages between traffic volume and fuel consumption.[4] Traffic volume is represented by passenger- and ton-km and by the distance travelled. There are several points to be made. First, in the case of passenger transportation, the role of buses has become rather minor. Towards the end of the 1960s, the passenger-km of bus transportation was taken over by passenger cars. Second, for freight transportation, business use is dominant as opposed to private use in terms of ton-km, whereas in terms of distance travelled, the opposite is true. Private use seems to involve smallsized trucks for deliveries. Third, in terms of fuel consumption, we observe an increased consumption of light oil reflecting a shift to diesel-powered vehicles.

#### TRANSPORTATION

The trend is more marked in the case of freight transportation where gasoline consumption has decreased in absolute terms. In fact, as early as 1977, the consumption of gasoline and light oil was nearly equal in proportion, and in 1990, the former has less than halved while the latter has more than doubled.

The trends in stocks of vehicles and traffic volume indicate a considerable slowdown in the last decade compared with the previous years.

### 5.3 Technology and policy

In order to interpret the environmental impact of the stock of motor vehicles, we need information regarding the technological change which affects fuel efficiency and emission of various pollutants and the policy measures intended to influence these factors. They include:

- the progressive introduction of fuel-efficient vehicles, consumer preference for larger cars, and an increase in commercial vehicles in the heavier classes;
- (2) the diffusion of less polluting vehicles in terms of lead (Pb), CO,  $NO_X$ , HC, and noise emissions;
- (3) the increased use of diesel vehicles, which is particularly marked in Japan as well as in Europe. Diesel-powered commercial vehicles account for about 70 to 80 per cent of the total in Japan and Europe but only about 30 per cent in the USA [OECD, 1988b, p.29]; and
- (4) the average life-span of vehicles which tends to be longer for technical reasons such as increased durability and economic reasons such as slower growth of the economy.

Improvement in the network of roads is also a factor affecting fuel efficiency, traffic volume, and wear and tear of the motor vehicles.

Lead emissions have been closely connected to the amount of leaded fuel consumed. Introduction of catalyst converters starting around 1975 made it imperative to make lead-free gasoline available. The three-way catalyst system, which is designed to reduce HC, CO, and  $NO_X$  simultaneously, is known to be sensitive to the use of leaded gasoline, which permanently damages the capability of reducing the emission of pollutants. In Japan, over 95 percent of all gasoline sold was unleaded already in 1983. The lead content of gasoline in

/ •. ·.

|                          |             | (unit: gl)              |
|--------------------------|-------------|-------------------------|
| Country                  | Actual lead | Target maximum lead     |
|                          | content     | content (in effect)     |
| EEC                      | 0.15-0.4    | 0.013(compulsory, 1989) |
| Australia                | 0.4 -0.8    | 0.013(1985)             |
| Austria                  | 0.15        | 0.013                   |
| Canada : unleaded        | 0.013       |                         |
| leaded                   | 0.77        | 0.29                    |
| Finland                  | 0.4         | 0.15                    |
| Japan                    | 0.004       |                         |
| Spain                    | 0.48-0.65   | 0.4 (1986)              |
| Sweden                   | 0.15        | 0.0 (1987)              |
| Switzerland              | 0.15        | 0.013(1986)             |
| United States : unleaded | 0.013       |                         |
| leaded                   | 0.13        | 0.026(1986)             |

Table 5-5 Gasoline lead content in selected countries

Source: OECD [1988b], p.92.

selected countries is presented in Table 5-5.[OECD, 1988b, p.55]

As a result of the reduction of the lead content in gasoline, lead emission from the transport sector has been reduced. For example, an index of lead emission (1975=100) has been reduced to 33 in the USA in 1983, 55 in Canada, 54 in The Netherlands, and 92 in the UK.[OECD, 1988b, p.56]

Carbon monoxide emission has decreased sharply in Japan during the 1970s. In 1982, it was reported that at all, except for one, roadside monitoring stations, the Japanese ambient air quality standard was met (8-hour standard: 20 ppm). The annual average of *CO* concentrations in Tokyo and Osaka decreased by 45 percent between 1973 and 1982, from 1.7 ppm and 1.9 ppm to 0.9 ppm and 1.1 ppm, respectively. See also Table 6-12 on the trend of air quality in Japan. Similar improvement has been achieved in the USA, whereas in Europe no clear trends can be discerned, according to an OECD report. Starting in 1988, new environmental policy measures went into effect regarding car exhaust emissions. The measures were started in 1985 on a voluntary basis and were made mandatory in October 1988. [5]

Nitrogen oxide remained a stubborn problem for a long time, and Japan was no exception. The sequence of regulations concerning  $NO_X$  emission of motor vehicles is listed in Table 5-6. As can be seen from the table, the

|      |                      | (un       | nit: index, no regulation | = 1.00) |
|------|----------------------|-----------|---------------------------|---------|
|      | Passenger cars gasol | ine & LPG | Trucks and buses          |         |
|      |                      |           | (direct injection t       | ype)    |
| 1955 | No regulation        | 1.00      | No regulation             | 1.00    |
| 1960 |                      |           |                           |         |
| 1965 |                      |           |                           |         |
| 1970 |                      |           |                           |         |
| 1971 |                      |           |                           |         |
| 1972 |                      |           |                           |         |
| 1973 | '73 regulation       | 0.71      |                           |         |
| 1974 |                      |           | '74 regulation            | 0.80    |
| 1975 | '75 regulation       | 0.39      | -                         |         |
| 1976 | '76 regulation       | 0.20      |                           |         |
| 1977 | -                    |           | '77 regulation            | 0.68    |
| 1978 | '78 regulation       | 0.08      | -                         |         |
| 1979 | -                    |           | '79 regulation            | 0.56    |
| 1980 |                      |           | -                         |         |
| 1981 |                      |           |                           |         |
| 1982 |                      |           |                           |         |
| 1983 |                      |           | '83 regulation            | 0.49    |
| 1984 |                      |           | -                         |         |
| 1985 |                      |           |                           |         |
| 1986 |                      |           |                           |         |
| 1987 |                      |           |                           |         |
| 1988 |                      |           | '88 regulation            | 0.42    |
| 1989 |                      |           | '89 regulation            | 0.42    |
| 1990 |                      |           | Ŭ                         |         |

Table 5-6 NOX reduction rate of mobile source

Note: Exhaust level prior to environmental regulation is taken as 1.00. The 1976 regulation for passenger car was stipulated as 0.20 for vehicles below 1 ton in EIW (equivalent inertia weight) and 0.27 for vehicles exceeding 1 ton in EIW. Regulation for diesel-powered trucks and buses listed here applies to direct injection type with gross vehicle weight of more than 2.5 tons. Other stipulations apply to direct injection type of lesser weight and for indirect injection type, although the general trend of regulation is more or less the same. The 1988 regulation for diesel applies to vehicles with gross weight of 3.5 tons or less, and the 1989 regulation, to vehicles exceeding 3.5 tons.

Source: Environment Agency, Environment White Paper.

regulation was tightened much more quickly for passenger automobiles using gasoline. By 1978, taking the pre-regulation level as 1.00, the stipulated level was 0.08 for passenger cars, whereas for trucks and buses using diesel engines,

|            |                  | (unit: in 1981 US \$)     |
|------------|------------------|---------------------------|
| Model year | HC/CO/NOX (g/km) | Initial cost increase(\$) |
| 1968-69    | 5.9/50.8/-       | 30                        |
| 1970-71    | 3.9/33/3/-       | 50                        |
| 1972       | 3.0/28.8/-       | 70                        |
| 1973-74    | 3.0/28.0/3.1     | 100                       |
| 1975-76    | 1.5/15.0/3.1     | 150                       |
| 1977-79    | 1.5/15.0/2.0     | 175                       |
| 1980       | 0.41/7.0/2.0     | 225                       |
| 1981       | 0.41/3.4/1.0     | 350                       |

Table 5-7 New car price increases to comply with emission

Source: OECD [1988b], p.106.

the regulation remained at more than 0.50.  $NO_X$  emissions from the transport sector as a whole has been reduced somewhat. Taking 1975 as the base year (=100), it reached 71 in 1980 in Japan. In the USA, it was 103 in 1980 and 99 in 1983; in France and Germany, it increased to 123 and 142 in 1983.[OECD, 1988b, p.56]

As a result, secondary pollutants, such as photochemical pollution, have also decreased in Japan. The average number of days exceeding 0.12 ppm  $O_3$  at roadside monitoring stations decreased from 2.8 in 1975 to 0.3 in 1982. The number of people who reported adverse health effects attributable to photochemical pollution has declined from a peak number of 46,000 in 1975 to about 2,000 or less in early 1980s.

Reduction in HC emissions was also a factor behind this improvement. It is reported that urban  $O_3$  trends are more closely related to HC than to  $NO_X$ concentrations. Between 1977 and 1882, HC emissions were curtailed by 25% in Japan.[OECD, 1988b, p.58]

 $NO_X$  emission contributes to atmospheric acidity, which leads to an increased acid deposition in the soil. No clear time trends can be delineated in this regard because of insufficient data.[OECD, 1988b, p.58]

Tighter exhaust emission control technologies cannot be adopted without cost. Table 5-7 shows the cost estimates based on the US data. No comparable figures are available for Japan. The cost estimates listed here are based on the retail price equivalent of each component in the emission control system used in gasoline-fuelled cars. A cost model was established based on these data which shows new car price increases as a function of various emission standards. The model is used in calculating the initial cost paid by the consumers to comply with the US emission standards. All emission standards are based on the 1975 US test procedure. The cost estimate for 1981 stood at \$350. There are other sources of estimates, which put the cost at \$300 to \$1,000. Extra service cost was estimated at \$10 per year. The cost is arrived at by netting out extra service cost for the new system and the reduced cost due to improved engine oil consumption and spark plug life.[OECD, 1988b, p.106]

### 5.4 Further remarks

One important aspect of road transportation is the provision of roads, which often requires changes in land use with inevitable consequences on the environment. This will be taken up in Chapter 9 where the issue of land use is discussed.

The energy requirement in transportation activities accounts for nearly 1/4 of the total energy demand in Japan (1/3 elsewhere) and directly contributes to the greenhouse gases such as  $CO_2$ , a topic which is taken up in the total energy demand-supply structure in Chapter 3. The diffusion of privately owned cars played an important role in household expenditures and asset formation together with other consumer durables. This aspect is taken up in Chapter 4 in conjunction with lifestyle and again in Chapter 11 as a contributing factor to the quality of life.

Motorization also has negative effects such as automobile accidents, which must be considered when assessing the relation between environment and quality of life.

The energy efficiency of various means of transportation is an important issue in redesigning the socioeconomic system to make it amenable to the environment. As a measure of energy efficiency, we can calculate the unit energy consumption which is defined as energy consumption/traffic volume for each mode of transportation.

Energy consumption can be measured in terms of kcal and traffic volume in passenger-km and ton-km for passenger and freight transportation, respectively. Seen in this context, passenger cars are the least efficient means of transportation, consuming 5 times more energy than railways and 3 times more than buses. For freight transportation, the energy efficiency is markedly good for coastal sea transportation and railways, followed by trucks for business use. Freight transportation by privately owned trucks is the least efficient means, consuming 17 times more per ton-km than coastal sea transportation and railways, and 3 times more than commercial trucks.

However, the shift toward private cars constitutes consumer preference for privacy, comfort, and increased flexibility and cannot be dealt with simply from the point of view of energy efficiency. The increased use of companyowned fleets in freight transportation indicates a changing need for delivery service, which tends toward more timely delivery and probably in small quantities. There has been a major shift from postal package to private delivery service. In industry, there has been a shift toward just-in-time delivery in order to streamline production and logistics. In wholesale and retail trade, sales and delivery are directly linked by computer. Introduction of POS (point of sales) reduces the need for excessive inventory at the sales outlet and increases the efficiency of the trade sector but will demand a more flexible delivery system. The situation is probably different in the case of urban transit: heavy dependence on private cars will lead to traffic congestion, worsening of air and noise pollution, and destruction of the natural environment by increased provision for highways.

These considerations point to the fact that improving fuel efficiency and reducing pollutant emission of individual automobiles are necessary steps but will not provide the ultimate answer to the relation between transportation and the environment.

## FOOTNOTES

[1] Comparable long-term figures for transportation activities are available in input-output tables for the Japanese economy. It should be noted that passenger and freight transportation by privately owned cars has been included in the tables up to the 1985 edition but was omitted thereafter. Thus, 1975-1980-1985 link tables and annual extension tables for the recent period contain discontinuities at this disaggregated level. Details of the transportation sector include those of national railways, passenger other than urban transit; national railway, freight; national railway, urban transit; private lines, passenger; private lines, freight; buses taxis and rental limousines; road freight transportation; delivery services; ocean freight; coastal passenger; coastal freight; harbor transport; international air; domestic air, passenger; domestic air, freight; services using airplanes; warehouse; packing; road-related services; sea transport services, public; sea transport service, business; air transport-related services, national and public; air transport-related services, business; and other transportrelated services.

- [2] Data from the Motor Vehicles Ownership published by the Ministry of Transport. The category motor vehicles owned consists of registered motor vehicles entered in the motor vehicle registration files in accordance with the Road Transport Vehicle Law and light two-wheeled vehicles and light motor vehicles. Registered motor vehicles are classified into buses, trucks, passenger cars, special use vehicles and heavy special vehicles. Special use vehicles refer to vehicles used for special use such as tank lorries, concrete mixers, etc. Heavy special vehicles are those specially built such as road rollers, forklift trucks, etc. Light two-wheeled vehicles and light three- and four-wheeled vehicles are subject to compulsory motor vehicle inspection, whereas light motorcycles (not included in the table) are subject to reporting only.
- [3] Defined in Japan as ones with engines of less than 800 cc and with physical dimensions falling under certain specifications; the definition was altered from time to time. In addition to fuel economy, light motor vehicles were exempt from laws requiring registration of parking place. The taxes for car ownership, as distinct from purchase, are also considerably lower. Commodity tax rates have been equalized recently.
- [4] Statistics on motor vehicle transport volume and fuel consumption are from Statistical Survey on Motor Vehicle Transport. The present survey was organized in April 1960 as one of the designated statistics. Sample size is about 39,000 vehicles for May and October and about 11,000 vehicles for other months. Buses are counted completely. Light motor vehicles were newly covered by the survey from fiscal 1987.

[5] OECD [1988b] reports that in the USA, the ambient air quality standards (8-hour standard : 9 ppm) was met by 35 % of the monitoring stations in 1975 and 70% in 1983. cf. ibid., p.57. For details of legislation governing car exhaust emission in the EC, see pp.89-91, p.129.

## Part III

# Coping with Environmental Disruption

## Chapter 6

# Pollution Prevention Investment

## 6.1 Quality of life and environmental damage

Economic growth is being achieved without a parallel input of energy, and well-being is being enhanced at a faster pace than production. Environmental damage is being contained as far as traditional types of pollution are concerned.

We should not be optimistic, however, because we have witnessed an emergence of new types of environmental concerns. The major issues in the 1960s and 1970s had been deterioration of air and water quality and disposal of wastes. In the 1980s, we were concerned about such diverse topics as global warming, acid rain, ozone hole, toxic chemicals, deforestation, nuclear wastes and disaster, and fossil fuel burning, in addition to more or less traditional issues. The problems promise to be with us throughout the 1990s and into the 21st century.

Environmental concerns encompass quite a large scope of issues. Rather than trying to deal with the whole array of problems, the purpose of this chapter is limited to assessing trends in prevention investment. We will look deeply into pollution prevention investment and its effectiveness. The scope is limited to air pollution, water pollution, and disposition of industrial and household wastes. For these aspects of the problem, we have by now a fairly reliable statistical database on which we can draw some lessons as to the

|      |           |      |         | (unit: inde | x, 1985=100) |
|------|-----------|------|---------|-------------|--------------|
| C    | Japan     | USA  | Germany | France      | Netherlands  |
| 1972 | 178       | 71   | 68      |             |              |
| 1973 | 240       | 86   | 69      |             |              |
| 1974 | 339       | 87   | 68      |             |              |
| 1975 | 341       | 96   | 66      | _           | 85           |
| 1976 | 263       | 97   | 61      |             | 71           |
| 1977 | 132       | 94   | 56      |             | 106          |
| 1978 | 104       | 92   | 51      |             | 82           |
| 1979 | 86        | 95   | 46      |             | 78           |
| 1980 | 86        | 93   | 54      |             | 87           |
| 1981 | 110       | 91   | 57      | 138         | 81           |
| 1982 | 122       | 85   | 67      | 119         | 104          |
| 1983 | 124       | 82   | 68      | 108         | 61           |
| 1984 | 95        | 95   | 63      | 109         | 70           |
| 1985 | =100      | =100 | =100    | =100        | =100         |
| 1986 | 74        | 97   | 129     | 111         | 128          |
| 1987 | <u>68</u> | 102  | 134     | 110         |              |
| 1988 | 81        |      | 138     | _           |              |
| 1989 | 101       |      |         |             |              |
| 1990 | 105       |      |         |             |              |

Table 6-1 Pollution abatement investment in selected countries

Notes: Index based on data expressed in national currencies and in 1985 prices Deflator used refers to price index for gross fixed capital formation. Germany refers to West only Japanese figures for 1988, 1989, and 1990 have been calculated by the present author from the MITI's data on pollution prevention investment by industry (Table 6-4 below), adjusted by deflator on private investment in plant and equipment from SNA.

Source: OECD, OECD Environmental Data 1991.

time lags involved in recognizing the problem, technological development and the diffusion process, the magnitude of economic resources to be diverted for this purpose, and the changes in environmental quality. An effort is made to establish environmental accounting, bridging pollution prevention investment (by industry and pollution category) to improvement in environmental quality.

### 6.2 Trends in pollution prevention investment

The statistical data on pollution prevention investment are rather numerous among the new fields of social concern, where data collection tends to lag in relation to the emergence of the issue. In fact, environmental pollution was the major concern already in the mid-1960s, prompting various public as well as private organizations to start collecting some figures. Table 6-1 reveals the fact that the pollution prevention investment was activated much earlier in Japan compared to other countries. However, the data on new types of environmental concern are only beginning to be collected. Another problem is the lack of a coherent framework within which such data can be fitted.[1] In this chapter, we trace the trends in pollution prevention investment, link it to the treatment capacity of various pollutants, and then to environmental quality.

Table 6-2 represents the production of pollution prevention equipment in Japan classified by the purchasing sectors.[2] This data set is particularly useful for our purpose in that it provides figures for major equipment categories that cope with particular environmental issues. The data can also be used in conjunction with capital formation data, enabling us to know how many real resources are devoted to this purpose.[3] Environmental accounting should include a tabulation of a similar nature, although it may be necessary to add a new pollution category to reflect today's concern. In particular, it seems imperative to add energy conservation effort to the list.[4]

Pollution prevention equipment in the table are classified into the following:

A. Air pollution prevention equipment

- (1) Dust collection
- (2) Heavy oil desulphurization
- (3) Flue gas desulphurization
- (4) Flue gas nitrogen oxide removal
- (5) Exhaust gas treatment
- (6) High stack
- (7) Related equipment
- B. Water pollution prevention equipment
  - (1) Industrial waste water processing
  - (2) Sewerage treatment
  - (3) Toilet water processing
  - (4) Sludge processing

- (5) Sea water pollution prevention
- (6) Related equipment
- C. Waste treatment equipment
  - (1) Household waste processing
  - (2) Industrial waste processing
  - (3) Related equipment
- D. Noise and vibration prevention equipment
  - (1) Noise abatement
  - (2) Vibration prevention
  - (3) Related equipment

Purchasing sectors are divided into private (13 manufacturing sectors and 3 nonmanufacturing), public (local public bodies and others, the latter including public corporations and the central government), and exports. The industrial classification is based on the standard scheme and is amenable to the one adopted for the multisectoral econometric model and input-output framework (although the data here are on a business firm basis, whereas the classification in the input-output tables is on an activity basis).

The table reveals that the largest amount of money is being spent for household waste treatment, in 1990, (29.6% of total value of production of pollution prevention equipment), followed by sewerage treatment (18.9%). On the whole, water pollution prevention is the most expensive in terms of operation (50.0%). The waste treatment and air pollution prevention shares are 19.6% and 29.6%, respectively. Air pollution prevention is almost exclusively the responsibility of the private sector. An exception is dust collection equipment for which local public bodies are also customers in order to purify exhaust air from the incineration of wastes. In the case of water pollution prevention and waste treatment, the private industry is responsible for the treatment of their share, whereas the treatment of sewerage and wastes from household and commercial activities are generally the responsibility of local public bodies. Of the total production of pollution prevention facilities, 70.0% is purchased by the public sector and 26.3% by the private sector in 1990. Exports comprise a small fraction.

#### POLLUTION PREVENTION INVESTMENT

Based on a time-series compilation of such data, one can obtain statistical series on the pollution prevention effort for individual sectors by pollution category. Table 6-3 is a summary for total domestic demand (i.e., excluding exports), divided into private and public sectors.

Table 6-4 compares the data we have used in this paper with those from alternative sources. For private industry, probably the most frequently cited data are those compiled by the Ministry of International Trade and Industry. The MITI figures are based on a survey covering establishments with a capital of 100 million yen (for mining, 50 million yen) or more which are under its jurisdiction, i.e., mining, manufacturing, and electricity and gas. [5] There are some limits in the usefulness of the data, which include the following. First, the survey publishes only for recent years investment data coping with air pollution, water pollution, and industrial wastes, without providing further details. Second, the source does not include the public sector, making it difficult to judge the relative importance of private and public sectors. Third, the survey does not cover small businesses.[6] One clear advantage of this source is that it provides the ratio of pollution prevention investment to total fixed capital formation in individual sectors. This makes it easier to come up with an estimate of total investment for this purpose, coupled with the sectoral capital formation data.[7] We list SNA data on investment in plant and equipment in the private sector for comparison.

As for the public sector, 'administrative investment' data are published annually by the Ministry of Home Affairs. This source identifies public investment in 25 categories, of which environment sanitation and public sewerage more or less correspond to our household waste treatment and sewerage processing, respectively. The survey covers national government as well as cities and towns, adjusted for duplication among them. The business units covered by administrative investment are, in principle, those related to the gross public fixed capital formation in the system of national accounts, with minor exclusions. The amount of investment includes expenditures on the maintenance and repair of facilities, improvement projects including cost of land and compensation, office expenses, and planning and surveys.[Ministry of Home Affairs, various issues] We list SNA data on fixed capital formation in the public sector for comparison. The Economic Planning Agency estimates capital stock in the public sector with similar classification to the administrative

| by purchasing sector                        |                                         |          |       |
|---------------------------------------------|-----------------------------------------|----------|-------|
| a. 1970                                     |                                         |          |       |
| Purchasing sectors:                         | Food                                    | Textiles | Pulp, |
|                                             |                                         |          | paper |
| Sector code                                 | 18                                      | 20&      | 24    |
| A. Air pollution prevention equipment       |                                         |          |       |
| 1. Dust collection                          | 554                                     | 180      | 1344  |
| 2. Heavy oil desulphurization               | 0                                       | 0        | 0     |
| 3. Stack fume desulphurization              | 338                                     | 32       | 12    |
| 4. Stack fume nitrogen oxide removal        | -                                       | -        | -     |
| 5. Exhaust gas treatment                    | 80                                      | 40       | 68    |
| 6. High stack                               | 0                                       | 204      | 0     |
| 7. Related equipment                        | 1                                       | 72       | 17    |
| Subtotal                                    | 973                                     | 528      | 1411  |
| B. Water pollution prevention equipment     |                                         |          |       |
| 1. Industrial water processing              | 3037                                    | 1146     | 5091  |
| 2 Sewerage processing                       | 52                                      | 22       | 19    |
| 3 Toilet water processing                   | 4                                       | 0        | 0     |
| 4. Sludge processing                        | 18                                      | 27       | 263   |
| 5. Sea water pollution prevention           | -                                       | -        | -     |
| 6 Related equipment                         | 252                                     | 10       | 296   |
| Subtotal                                    | 3363                                    | 1205     | 5669  |
| C. Waste treatment equipment                |                                         |          |       |
| 1. Household waste processing               | 34                                      | 0        | 0     |
| 2. Industrial waste processing              |                                         |          |       |
| 3. Small-sized incinerators                 | -                                       | -        | -     |
| 4 Related equipment                         | 0                                       | 0        | 0     |
| Subtotal                                    | 34                                      | 0        | 0     |
| D. Noise and vibration prevention equipment |                                         |          |       |
| 1. Noise abatement                          | 0                                       | 14       | 12    |
| 2. Vibration prevention                     | 1                                       | 1        | 0     |
| 3. Related equipment                        | 0                                       | 0        | 0     |
| Subtotal                                    | 1                                       | 15       | 12    |
| Total                                       | 4371                                    | 1748     | 7122  |
| Percentage                                  | (2.2)                                   | (0 9)    | (37)  |
|                                             | <u>````````````````````````````````</u> |          | `     |

## Table 6-2 Production of pollution prevention equipment by purchasing sector

Note: Samples are 187 firms, of which 155 (82.9 %) responded. The data here refer to the production of pollution prevention equipment only, and do not include construction cost Figures refer to fiscal year

Source: The Japan Association of Industrial Machinery Producers, The Production of Pollution Prevention Equipment.

|    |        |          |        |            | (u     |         | nt prices, r                          | nillion yen)    |
|----|--------|----------|--------|------------|--------|---------|---------------------------------------|-----------------|
|    | Petro- | Petro    | Chemi- | Cera-      | Iron   | Non-    | Machi-                                | Other           |
|    | leum & | chemi-   | cal    | mics       | &      | ferrous | nery                                  | manufact        |
|    | coal   | cal      |        |            | steel  | metals  |                                       |                 |
|    | 27     | (26)     | (26)   | 30         | 31     | 32      | 34&                                   | 38&&            |
| A. |        |          |        |            |        |         |                                       |                 |
| 1. | 471    | 244      | 2133   | 3388       | 10351  | 4940    | 2952                                  | 2315            |
| 2. | 9887   | 3        | 0      | 0          | 0      | 0       | 0                                     | 2               |
| 3. | 724    | 10       | 193    | 4          | 416    | 296     | 0                                     | 2               |
| 4. | -      | -        | -      | -          | -      | -       | -                                     | -               |
| 5. | 1052   | 267      | 568    | 16         | 6129   | 297     | 106                                   | 141             |
| 6. | 2199   | 750      | 1253   | 1300       | 2167   | 107     | 224                                   | 0               |
| 7. | 479    | 115      | 236    | 32         | 932    | 67      | 46                                    | 189             |
|    | 14812  | 1389     | 4383   | 4740       | 19995  | 5704    | 3328                                  | 2649            |
| Β. |        |          |        |            |        |         |                                       |                 |
| 1. | 1902   | 2351     | 3562   | 221        | 4386   | 1316    | 3561                                  | 2783            |
| 2. | 0      | 4        | 0      | 0          | 223    | 0       | 384                                   | 80              |
| 3. | 0      | 0        | 10     | 0          | 0      | 0       | 30                                    | 15              |
| 4. | 0      | 80       | 5      | 489        | 30     | 27      | 337                                   | 89              |
| 5. | -      | -        | -      | -          | -      | -       | -                                     | -               |
| 6. | 283    | 25       | 836    | 23         | 1731   | 81      | 828                                   | 1144            |
|    | 2185   | 2460     | 4413   | 733        | 6370   | 1426    | 5140                                  | 4111            |
| C. |        |          |        |            |        |         |                                       |                 |
| 1. | 0      | 150      | 164    | 0          | 826    | 0       | 9                                     | 53              |
| 2. |        |          |        |            |        |         |                                       |                 |
| 3. | -      | -        | -      | -          | -      | -       | -                                     | -               |
| 4. | 0      | 1        | 0      | 0          | 3000   | 0       | 0                                     | 5               |
|    | 0      | 151      | 164    | 0          | 3826   | 0       | 9                                     | 58              |
| D. |        |          |        |            |        |         |                                       |                 |
| 1. | 24     | 69       | 128    | 5          | 233    | 3       | 72                                    | 0               |
| 2. | 2      | 3        | 9      | 3          | 8      | 0       | 5                                     | 0               |
| 3. | 1      | 2        | 1      | 0          | 0      | 0       | 0                                     | 0               |
|    | 27     | 74       | 138    | 8          | 241    | 3       | 77                                    | 0               |
|    | 17024  | 4074     | 9098   | 5381       | 30432  | 7133    | 8554                                  | 6818            |
|    | (8.8)  | (2.1)    | (4.7)  | (2.8)      | (15.6) | (3.7)   | (4.4)                                 | (3.5)           |
|    |        | <u>`</u> |        | <u>`</u> / | ·····  | `/      | · · · · · · · · · · · · · · · · · · · | <u>````````</u> |

|    | Elect- | Mining | Other | Total   | Local  | Others | Total  | Exports    |
|----|--------|--------|-------|---------|--------|--------|--------|------------|
|    | ricity |        | non-  | private | gov't  |        | public |            |
|    | -      |        | manu. | sector  | •      |        | sector |            |
|    | (70)   | 10&    |       | IP      |        |        | IG     | E          |
| A. |        |        |       |         |        |        |        | •••••••••• |
| 1. | 8348   | 904    | 394   | 38518   | 581    | 399    | 980    | 316        |
| 2. | 0      | 0      | 0     | 9892    | 0      | 0      | 0      | 0          |
| 3. | 1533   | 16     | 13    | 3589    | 29     | 16     | 45     | 0          |
| 4. | -      | -      | -     | -       | -      | -      | -      | -          |
| 5. | 0      | 69     | 23    | 8856    | 61     | 37     | 98     | 345        |
| 6. | 9202   | 250    | 0     | 17653   | 0      | 160    | 160    | 318        |
| 7. | 47     | 47     | 70    | 2350    | 846    | 276    | 1122   | 0          |
|    | 19130  | 1286   | 500   | 80858   | 1517   | 883    | 2405   | 979        |
| В. |        |        |       |         |        |        |        |            |
| 1. | 131    | 178    | 378   | 30043   | 1144   | 141    | 1285   | 266        |
| 2. | 0      | 0      | 3835  | 4619    | 14626  | 2482   | 17108  | 150        |
| 3. | 0      | 0      | 345   | 404     | 10089  | 992    | 11081  | 7          |
| 4. | 60     | 0      | 87    | 1512    | 2672   | 309    | 2981   | 6          |
| 5. | -      | -      | -     | -       | -      | -      | -      | -          |
| 6. | 1552   | 5      | 1104  | 8172    | 8783   | 2181   | 10964  | 0          |
|    | 1743   | 183    | 5749  | 44750   | 37314  | 6105   | 43419  | 429        |
| С. |        |        |       |         |        |        |        |            |
| 1. | 0      | 0      | 3     | 1239    | 15260  | 1261   | 16521  | 106        |
| 2  |        |        |       |         |        |        |        |            |
| 3. | -      | -      | -     | -       | -      | -      | -      | -          |
| 4. | 0      | 0      | 10    | 3016    | 211    | 12     | 223    | 0          |
|    | 0      | 0      | 13    | 4255    | 15471  | 1273   | 16744  | 106        |
| D. |        |        |       |         |        |        |        |            |
| 1. | 9      | 0      | 5     | 574     | 29     | 1      | 30     | 0          |
| 2. | 0      | 2      | 0     | 34      | L      | 0      | 0      | 0          |
| 3. | 0      | 0      | 6     | 10      | 0      | 0      | 0      | 0          |
|    | 9      | 2      | 11    | 618     | 29     | 1      | 30     | 0          |
|    | 20882  | 1471   | 6273  | 130481  | 54331  | 8267   | 62598  | 1514       |
|    | (10.7) | (0.8)  | (3.2) | (67.0)  | (27.9) | (4.3)  | (32.2) | (0.8)      |

|    | Total value | Percent of total | Percent of category |
|----|-------------|------------------|---------------------|
|    | 00          |                  |                     |
| A. |             |                  |                     |
| 1. | 39814       | (20.5)           | (47.3)              |
| 2. | 9892        | ( 5.1)           | (11.7)              |
| 3. | 3634        | ( 1.8)           | ( 4.3)              |
| 4  | -           | ( -)             | ` ( -)              |
| 5. | 9299        | ( 4.8)           | (11.0)              |
| 6. | 13131       | ( 9.3)           | (21.5)              |
| 7. | 3472        | ( 1.8)           | ( 4.6)              |
|    | 84242       | (43.3)           | (100.0)             |
| B. |             |                  |                     |
| 1. | 31594       | (16.2)           | (36.2)              |
| 2. |             |                  |                     |
| 3. | 21877       | (11.2)           | (24 7)              |
| 4. | 11492       | (5.9)            | (13.0)              |
| 5. | 4499        | (2.3)            | (5.1)               |
| 6. | 19136       | (9.8)            | (21 6)              |
|    | 88598       | (45.5)           | (100.0)             |
| C. |             |                  |                     |
| 1. | 17865       | (9.2)            | (84.7)              |
| 2  |             |                  |                     |
| 3. | -           | (-)              | (-)                 |
| 4. | 3239        | (1.7)            | (15.4)              |
|    | 21105       | (10.8)           | (100.0)             |
| D. |             |                  |                     |
| 1. | 604         | ( 0.3)           | (93.2)              |
| 2. | 34          | ( 0.0)           | (5.3)               |
| 3. | 10          | ( 0.0)           | (1.5)               |
|    | 648         | ( 0.3)           | (100.0)             |
|    | 194593      | (100.0)          | -                   |
|    | (100.0)     | -                |                     |

#### b. 1975

| Purchasing sectors:                         | Food  | Textiles | Pulp,<br>paper |
|---------------------------------------------|-------|----------|----------------|
| Sector code                                 | 18    | 20&      | 24             |
| A. Air pollution prevention equipment       |       |          |                |
| 1. Dust collection                          | 399   | 441      | 2029           |
| 2. Heavy oil desulphurization               | 0     | 0        | 0              |
| 3. Stack fume desulphurization              | 1508  | 4407     | 2182           |
| 4. Stack fume nitrogen oxide removal        | 0     | 0        | 0              |
| 5. Exhaust gas treatment                    | 372   | 205      | 259            |
| 6. High stack                               | 0     | 0        | 0              |
| 7. Related equipment                        | 33    | 252      | 147            |
| Subtotal                                    | 2312  | 5305     | 4617           |
| B. Water pollution prevention equipment     |       |          |                |
| 1. Industrial water processing              | 9781  | 4289     | 8714           |
| 2 Sewerage processing                       | 7     | 1        | 0              |
| 3 Toilet water processing                   | 62    | 2        | 0              |
| 4. Sludge processing                        | 1274  | 213      | 2098           |
| 5. Sea water pollution prevention           | 12    | 0        | 0              |
| 6. Related equipment                        | 793   | 365      | 577            |
| Subtotal                                    | 11929 | 4870     | 11389          |
| C. Waste treatment equipment                |       |          |                |
| 1. Household waste processing               | 0     | 0        | 0              |
| 2. Industrial waste processing              | 344   | 22       | 64             |
| 3. Small-sized incinerators                 | -     | -        | -              |
| 4. Related equipment                        | 29    | 1        | 10             |
| Subtotal                                    | 373   | 23       | 74             |
| D. Noise and vibration prevention equipment | ·     |          |                |
| 1. Noise abatement                          | 8     | 12       | 15             |
| 2. Vibration prevention                     | 0     | 0        | 0              |
| 3. Related equipment                        | 0     | 0        | 0              |
| Subtotal                                    | 8     | 12       | 15             |
| Total                                       | 14622 | 10210    | 16095          |
| Percentage                                  | (2.1) | (1.5)    | (2.4)          |

Note: Samples are 224 firms, of which 203 (90.6 %) responded

| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                   |    | (unit current prices, million ye |        |        |       |        |         |        | ion yen) |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------------------------------|--------|--------|-------|--------|---------|--------|----------|
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                   |    | Petro-                           | Petro  | Chemi- | Cera- | Iron   | Non-    | Machi- | Other    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                    |    | leum&                            | chemi- | cal    | mics  | &      | ferrous | nery   | manu-    |
| A.         Image: A = 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1                                                                                                                                                                                                                              |    | coal                             | cal    |        |       | steel  |         |        |          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                    |    | 27                               | (26)   | (26)   | 30    | 31     | 32      | 34&    | 38&&     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                    | Α. |                                  |        |        |       |        |         |        |          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                    | 1. | 1985                             | 1734   | 3601   | 9161  | 32770  | 3393    | 5118   | 4466     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                    | 2. | 79676                            | 0      | 0      | 0     |        | 0       | 0      | 0        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                    | 3. | 2738                             | 4632   | 10855  | 492   | 6512   | 3946    | 33     | 1863     |
|                                                                                                                                                                                                                                                                                          | 4. | 3516                             | 4000   | 800    | 30    | 38     | 0       | 0      | 27       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                    | 5. | 2954                             | 675    | 6941   | 258   | 9242   | 759     | 1273   | 1314     |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                   | 6. | 1297                             | 540    | 202    | 206   | 1175   | 0       | 0      | 0        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                   | 7. | 2713                             | 752    | 1651   |       | 2750   | 173     | 388    | 2418     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                    |    | 94879                            | 12333  | 24050  | 10198 | 52487  | 8271    | 6812   | 10097    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                    | Β. |                                  |        |        |       |        |         |        |          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                    | 1. | 8282                             | 5863   | 14523  | 501   | 15106  | 3322    | 8392   | 5854     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                   | 2. | 1                                | 0      |        | 0     | 0      | 2       | 635    | 672      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                   | 3. | 0                                | 0      | 3      | 0     | 20     | 0       | 149    | 281      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                   | 4. | 140                              |        | 623    | 230   | 725    | 232     | 1006   | 603      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                   | 5. | 0                                |        | 0      | 4     | 0      | 5       | •      | 220      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                    | 6. | 188                              | 265    | 2955   | 21    | 962    | 16      | 1473   | 2554     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                   |    | 8611                             | 6474   | 18163  | 756   | 16813  | 3577    | 11662  | 10184    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                    | С  |                                  |        |        |       |        |         |        |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                   | 1. | 0                                | 0      | 0      | 0     | 0      | 0       | 0      | 124      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                   | 2. | 827                              | 826    | 1169   | 40    | 1519   | 107     | 713    | 1016     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                    | 3. | -                                | -      | -      | -     | -      | -       | -      | -        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                   | 4. | 0                                | 24     | 23     | 0     | 34     | 11      | 153    | 68       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                   |    | 827                              | 850    | 1192   | 40    | 1553   | 118     | 866    | 1208     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                    | D. |                                  |        |        |       |        |         |        |          |
| 3.         0         0         0         0         0         73         0           166         95         20         32         67         2         374         306           104483         19752         43425         11026         70920         11968         19714         21795 | 1  | 166                              | 95     | 20     | 32    | 67     | 2       | 299    | 306      |
| <u>166 95 20 32 67 2 374 306</u><br>104483 19752 43425 11026 70920 11968 19714 21795                                                                                                                                                                                                     | 2. | 0                                | 0      | 0      | 0     | 0      | 0       | 2      | 0        |
| 104483 19752 43425 11026 70920 11968 19714 21795                                                                                                                                                                                                                                         | 3. |                                  | 0      |        |       | 0      |         | 73     | 0        |
|                                                                                                                                                                                                                                                                                          |    | 166                              | 95     | 20     | 32    | 67     | 2       | 374    | 306      |
| (15.3) $(2.9)$ $(6.4)$ $(1.6)$ $(10.4)$ $(1.7)$ $(2.9)$ $(3.2)$                                                                                                                                                                                                                          |    | 104483                           | 19752  | 43425  | 11026 | 70920  | 11968   | 19714  | 21795    |
|                                                                                                                                                                                                                                                                                          |    | (15.3)                           | (2.9)  | (6 4)  | (1.6) | (10.4) | (1.7)   | (2.9)  | (3.2)    |

|    | Elect- | Mining | Other | Total   | Local  | Others | Total  | Exports |
|----|--------|--------|-------|---------|--------|--------|--------|---------|
|    | ricity |        | non-  | private | gov't  |        | public |         |
|    |        |        | manu. | sector  |        |        | sector |         |
|    | (70)   | 10&    |       | IP      |        |        | IG     | E       |
| Α. |        |        |       |         |        |        |        |         |
| 1. | 3957   | 171    | 1516  | 70741   | 4197   | 711    | 4908   | 1492    |
| 2. | 0      | 0      | 0     | 79676   | 0      | 0      | 0      | 0       |
| 3. | 54738  | 0      | 200   | 94106   | 59     | 1017   | 1076   | 22      |
| 4. | 10     | 0      | 50    | 8471    | 0      | 0      | 0      | 0       |
| 5. | 332    | 0      | 92    | 24676   | 3119   | 207    | 3326   | 1538    |
| 6. | 3222   | 0      | 0     | 6651    | 0      | 0      | 0      | 0       |
| 7. | 1912   | 229    | 812   | 14281   | 621    | 875    | 1496   | 4       |
|    | 64171  | 400    | 2670  | 298602  | 7996   | 2810   | 10806  | 3056    |
| Β. |        |        |       | ******  |        |        |        |         |
| 1. | 3601   | 177    | 3681  | 92091   | 2554   | 2199   | 4753   | 4580    |
| 2  | 21     | 0      | 9698  | 11096   | 72177  | 8846   | 81023  | 51      |
| 3. | 0      | 0      | 665   | 1182    | 27172  | 4132   | 31304  | 0       |
| 4. | 280    | 477    | 104   | 8324    | 22816  | 2514   | 25330  | 200     |
| 5. | 58     | 0      | 220   | 548     | 800    | 77     | 877    | 249     |
| 6. | 1385   | 86     | 1109  | 12749   | 18487  | 2522   | 21009  | 701     |
|    | 5343   | 740    | 15477 | 125990  | 144006 | 20290  | 164296 | 5781    |
| С. |        |        |       |         |        |        |        |         |
| 1. | 0      | 0      | 0     | 124     | 59525  | 792    | 60317  | 0       |
| 2. | 811    | 24     | 1665  | 9147    | 1676   | 679    | 2355   | 237     |
| 3. | -      | -      | -     | -       | -      | -      | -      | -       |
| 4. | 20     | 0      | 62    | 435     | 379    | 16     | 395    | 0       |
|    | 831    | 24     | 1727  | 9706    | 61580  | 1487   | 63067  | 237     |
| D. |        |        |       |         |        |        |        |         |
| 1. | 67     | 0      | 232   | 1321    | 35     | 86     | 121    | 1       |
| 2. | 0      | 2      | 0     | 4       | 11     | 0      | 11     | 0       |
| 3. | 0      | 0      | 8     | 81      | 2      | 0      | 2      | 0       |
|    | 67     | 2      | 240   | 1406    | 48     | 86     | 134    | 1       |
|    | 70414  | 1166   | 20114 | 435704  | 213630 | 24673  | 238303 | 9075    |
|    | (10.3) | (0.2)  | (2.9) | (63.8)  | (31.3) | (3.6)  | (34.9) | (1.3)   |

|         | Tota     |         |          |                       |
|---------|----------|---------|----------|-----------------------|
|         | Quantity | Value   | Percent  | Percent               |
|         |          |         | of total | of category           |
|         |          | 00      |          |                       |
| Α.      |          |         |          |                       |
| 1.      | 7392     | 77141   | (11.3)   | (24.7)                |
| 2.      | 20       | 79676   | (11.7)   | (25.5)                |
| 3.      | 189      | 95204   | (13.9)   | (30.5)                |
| 4.      | 11       | 8471    | (1.3)    | (2.7)                 |
| 5.      | 526      | 29540   | (4.3)    | (9.5)                 |
| 6.      | 26       | 6651    | (1.0)    | (2.1)                 |
| 7.      | -        | 15781   | (2.3)    | (5.0)                 |
|         | 8164     | 312464  | (45.8)   | (100.0)               |
| Β.      |          |         |          |                       |
| 1.      | 1702     | 101424  | (14.8)   | (34.3)                |
| 2.      | 1640     | 92170   | (13 5)   | (31.1)                |
| 3.      | 1946     | 32486   | (4.8)    | (11.0)                |
| 4.      | 950      | 33854   | (5.0)    | (11 4)                |
| 5.      | 56       | 1674    | ( 0.2)   | ( 0.6)                |
| 6.      | -        | 34459   | (5.0)    | (11 6)                |
|         | 6294     | 296067  | (43.3)   | (100.0)               |
| С.      |          |         |          | <i>(</i> <b>- - )</b> |
| 1.      | 345      | 60441   | (8.9)    | (82 8)                |
| 2.      | 5856     | 11739   | (1.7)    | (16.1)                |
| 3.      | -        | -       | (-)      | (-)                   |
| 4.      | -        | 830     | (0.1)    | (1.1)                 |
|         | 6201     | 73010   | (10.7)   | (100.0)               |
| D.      |          |         |          | ()                    |
| 1.      | 139      | 1443    | (0.2)    | (93 6)                |
| 2<br>3. | 4        | 15      | (0.0)    | (1.0)                 |
| 3.      | -        | 83      | ( 0.0)   | (5.4)                 |
|         | 143      | 1541    | (02)     | (100.0)               |
|         | 20802    | 683082  | (100.0)  | -                     |
|         |          | (100.0) |          | -                     |

#### c. 1980

| Purchasing sectors:                         | Food  | Textiles | Pulp,<br>paper |
|---------------------------------------------|-------|----------|----------------|
| Sector code                                 | 18    | 20&      | 24             |
| A. Air pollution prevention equipment       |       |          |                |
| 1. Dust collection                          | 839   | 290      | 723            |
| 2. Heavy oil desulphurization               | 0     | 0        | 0              |
| 3. Stack fume desulphurization              | 298   | 49       | 1055           |
| 4. Stack fume nitrogen oxide removal        | 150   | 25       | 0              |
| 5. Exhaust gas treatment                    | 121   | 30       | 117            |
| 6. High stack                               | 26    | 0        | 0              |
| 7. Related equipment                        | 69    | 34       | 303            |
| Subtotal                                    | 1503  | 428      | 2198           |
| B. Water pollution prevention equipment     |       |          |                |
| 1 Industrial water processing               | 6732  | 1098     | 1502           |
| 2. Sewerage processing                      | 226   | 2        | 0              |
| 3. Toilet water processing                  | 16    | 0        | 0              |
| 4. Sludge processing                        | 1174  | 51       | 391            |
| 5. Sea water pollution prevention           | 8     | 0        | 0              |
| 6 Related equipment                         | 314   | 226      | 314            |
| Subtotal                                    | 8470  | 1377     | 2207           |
| C. Waste treatment equipment                |       |          |                |
| 1. Household waste processing               | 0     | 0        | 0              |
| 2. Industrial waste processing              | 228   | 21       | 1204           |
| 3 Small-sized incinerators                  | 122   | 28       | 14             |
| 4. Related equipment                        | 36    | 9        | 0              |
| Subtotal                                    | 386   | 58       | 1218           |
| D. Noise and vibration prevention equipment |       |          |                |
| 1. Noise abatement                          | 21    | 0        | 3              |
| 2. Vibration prevention                     | 0     | 0        | 0              |
| 3. Related equipment                        | 1     | 0        | 1              |
| Subtotal                                    | 22    | 0        | 4              |
| Total                                       | 10381 | 1863     | 5627           |
| Percentage                                  | (1.6) | (0.3)    | (0.9)          |

Note: Samples are 192 firms, of which 173 (90.1 %) responded

| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    | (unit: current prices, million ye |        |        |       |       |         |        | ion yen) |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------------------------------|--------|--------|-------|-------|---------|--------|----------|
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    | Petro-                            | Petro  | Chemi- | Cera- | Iron  | Non-    | Machi- | Other    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    | leum &                            | chemi- | cal    | mics  | &     | ferrous | nery   | manu-    |
| A.         1.         83         750         3078         4318         9272         2325         7437         2910           2.         9604         0         0         0         0         0         0         0         0           3.         2285         33         196         219         2         556         10         35           4.         857         19         227         0         0         0         0         0           5.         7         0         968         279         1880         285         1902         655           6.         100         0         249         0         176         0         103         0           7.         26         56         497         607         1112         204         735         3152           12962         858         5215         5418         12442         3370         10187         6752           B.         1         503         388         3590         879         5066         1078         11010         3859           2.         0         0         49         2         3         0         451 |    |                                   |        |        |       |       |         |        |          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    | 27                                | (26)   | (26)   | 30    | 31    | 32      | 34&    | 38&&     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Α. |                                   |        |        |       |       |         |        |          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1. | 83                                | 750    | 3078   | 4318  | 9272  | 2325    | 7437   | 2910     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    | 9604                              | 0      |        | 0     |       | 0       | 0      | 0        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3. | 2285                              | 33     | 196    | 219   | 2     | 556     | 10     | 35       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4. | 857                               | 19     |        | -     | 0     | -       | 0      | 0        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5. | 7                                 | 0      | 968    | 279   | 1880  | 285     | 1902   | 655      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6. | 100                               | 0      | 249    | 0     | 176   | 0       | 103    | 0        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7. | 26                                | 56     | 497    | 607   | 1112  | 204     |        | 3152     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    | 12962                             | 858    | 5215   | 5418  | 12442 | 3370    | 10187  | 6752     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Β. |                                   |        |        |       |       |         |        |          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1. | 503                               | 388    | 3590   | 879   | 5066  | 1078    | 11010  | 3859     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    | 0                                 | 0      |        |       | 3     | 0       |        | 721      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3. | 0                                 | 0      | 290    | 66    | 0     | 6       | 195    | 164      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    | 195                               | 237    | 886    | 0     |       | 55      | 2041   | 390      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5. |                                   | 6      | 0      | 0     |       | 0       | 63     | 2815     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6. |                                   |        | 620    | 71    |       |         | 466    | 832      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    | 806                               | 855    | 5435   | 1018  | 5889  | 1200    | 18292  | 8781     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | С. |                                   |        |        |       |       |         |        |          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1. | 0                                 | 418    | 0      | 0     | 71    | 0       | 282    | 1        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2. | 1                                 | 55     | 774    | 33    | 337   | 0       | 351    | 1821     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3. | 6                                 |        |        | 14    | 111   | 90      | 162    | 555      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4. |                                   | 38     | 26     | 28    | 0     | 2       | 44     | 308      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    | 7                                 | 537    | 1155   | 75    | 519   | 92      | 839    | 2685     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D. |                                   |        |        |       |       |         |        |          |
| 3.         16         1         3         5         5         7         123         26           17         1         48         24         185         17         1209         812           13792         2251         11853         6535         19035         4679         30527         19030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1. | 1                                 | 0      | 45     | 19    | 176   | 10      | 776    | 777      |
| <u>17</u> <u>1</u> <u>48</u> <u>24</u> <u>185</u> <u>17</u> <u>1209</u> <u>812</u><br><u>13792</u> <u>2251</u> <u>11853</u> <u>6535</u> <u>19035</u> <u>4679</u> <u>30527</u> <u>19030</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    | 0                                 | 0      | 0      | 0     | 4     | 0       | 310    | 9        |
| 13792 2251 11853 6535 19035 4679 30527 19030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3. | 16                                | 1      | 3      |       | 5     | 7       | 123    | 26       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    | 17                                | 1      | 48     | 24    | 185   | 17      | 1209   | 812      |
| (2.1) (0.3) (1.8) (1.0) (2.9) (0.7) (4.7) (2.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    | 13792                             | 2251   | 11853  | 6535  | 19035 | 4679    | 30527  | 19030    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    | (2.1)                             | (0.3)  | (1.8)  | (1.0) | (2.9) | (0.7)   | (4.7)  | (2.9)    |

|    | Elect- | Mining | Other | Total   | Local  | Others | Total  | Exports |
|----|--------|--------|-------|---------|--------|--------|--------|---------|
|    | ricity | winnig | non-  | private | gov't  | Others | public | LAPOILS |
|    | neny   |        | manu. | sector  | govi   |        | sector |         |
|    | (70)   | 10&    | manu. | IP      |        |        | IG     | E       |
|    | (70)   | 1082   |       | IF      |        |        | 10     | E       |
| A. | 11701  | 262    | 1760  | 45040   | 7605   | 1204   | 0000   | C004    |
| 1. | 11701  | 363    | 1760  | 45849   | 7685   | 1304   | 8989   | 6984    |
| 2. | 0      | 0      | 0     | 9604    | 0      | 0      | 0      | 155     |
| 3. | 20637  | 0      | 0     | 25375   | 0      | 0      | 0      | 1053    |
| 4. | 20047  | 0      | 0     | 21325   | 454    | 500    | 954    | 491     |
| 5. | 122    | 0      | 322   | 6688    | 5546   | 444    | 5990   | 10432   |
| 6. | 5295   | 0      | 130   | 6079    | 90     | 0      | 90     | 46      |
| 7. | 905    | 30     | 87    | 7812    | 1172   | 21     | 1193   | 1000    |
|    | 58707  | 393    | 2299  | 122732  | 14947  | 2269   | 17216  | 20161   |
| Β. |        |        |       |         |        |        |        |         |
| 1. | 6831   | 89     | 3131  | 45756   | 4864   | 2517   | 7381   | 15003   |
| 2. | 33     | 19     | 8246  | 13818   | 139829 | 17836  | 157665 | 2789    |
| 3. | 7      | 0      | 684   | 1428    | 48439  | 8185   | 56624  | 82      |
| 4. | 135    | 509    | 1321  | 8039    | 21946  | 1845   | 23791  | 934     |
| 5. | 571    | 0      | 41    | 3573    | 129    | 8      | 137    | 493     |
| 6. | 74     | 0      | 3060  | 6467    | 4434   | 3143   | 7577   | 575     |
|    | 7651   | 617    | 16483 | 79081   | 219641 | 33543  | 253175 | 19876   |
| С. |        |        |       |         |        |        |        |         |
| 1. | 0      | 0      | 0     | 772     | 102101 | 7690   | 109791 | 0       |
| 2. | 1521   | 0      | 4037  | 10383   | 4203   | 1250   | 5453   | 128     |
| 3. | 23     | 0      | 1592  | 3098    | 890    | 266    | 1156   | 0       |
| 4. | 1      | 0      | 1805  | 2297    | 3222   | 17     | 3239   | 67      |
|    | 1545   | 0      | 7434  | 16550   | 110416 | 9223   | 119639 | 195     |
| D. |        |        |       |         |        |        |        |         |
| 1. | 183    | 3      | 232   | 2246    | 271    | 2858   | 3129   | 61      |
| 2. | 0      | 0      | 153   | 476     | 0      | 317    | 317    | 0       |
| 3. | 5      | 10     | 22    | 225     | 30     | 0      | 30     | Ō       |
|    | 188    | 13     | 407   | 2947    | 301    | 3175   | 3476   | 61      |
|    | 68091  | 1023   | 26623 | 221310  | 345305 | 48201  | 393506 | 40293   |
|    | (10.4) | (0.2)  | (4.1) | (33.8)  | (52.7) | (7.4)  | (60.1) | (6.2)   |
|    | (10.7) | (0.2)  | (+.+) | (00.0)  | (32.1) | (1.7)  | (00.1) | (0.2)   |

|    | Total    |         | *        |             |
|----|----------|---------|----------|-------------|
|    | Quantity | Value   | Percent  | Percent     |
|    |          |         | of total | of category |
|    |          | 00      |          |             |
| Α. |          |         |          |             |
| 1. | 12702    | 61822   | (9.4)    | (38.6)      |
| 2. | 8        | 9759    | (1.5)    | (6.1)       |
| 3. | 106      | 26428   | (4.0)    | (16.5)      |
| 4. | 63       | 22770   | (3.5)    | (14.2)      |
| 5. | 472      | 23110   | (3.5)    | (14.4)      |
| 6. | 12       | 6215    | (0.9)    | (3.9)       |
| 7. | -        | 10005   | (1.5)    | (6.2)       |
|    | 13363    | 160109  | (24.4)   | (100.0)     |
| В. |          |         |          |             |
| 1. | 1569     | 68140   | (10.4)   | (19.4)      |
| 2. | 2804     | 174272  | (26.6)   | (49.5)      |
| 3. | 621      | 58134   | (8.9)    | (16.5)      |
| 4. | 750      | 32764   | (5.0)    | ( 9.3)      |
| 5. | 486      | 4203    | ( 0.6)   | (1.2)       |
| 6. | -        | 14619   | (2.2)    | (4.2)       |
|    | 6230     | 352132  | (53.8)   | (100.0)     |
| С. |          |         |          |             |
| 1. | 231      | 110563  | (16.9)   | (81 1)      |
| 2. | 2197     | 15964   | (2.4)    | (11.7)      |
| 3. | 4778     | 4254    | ( 0.6)   | (31)        |
| 4. | -        | 5603    | ( 0.9)   | (4.1)       |
|    | 7206     | 136384  | (20.8)   | (100.0)     |
| D. |          |         |          |             |
| 1. | 2269     | 5436    | ( 0.8)   | (83 8)      |
| 2. | 24       | 793     | ( 0.1)   | (12.2)      |
| 3. | -        | 255     | ( 0.0)   | (3.9)       |
|    | 2293     | 6484    | (1.0)    | (100.0)     |
|    | 29092    | 655109  | (100.0)  | -           |
|    | -        | (100.0) | -        | -           |

| Purchasing sectors:                         | Food  | Textiles | Pulp,<br>paper |
|---------------------------------------------|-------|----------|----------------|
| Sector code                                 | 18    | 20&      | 24             |
| A. Air pollution prevention equipment       |       |          |                |
| 1. Dust collection                          | 850   | 999      | 1612           |
| 2. Heavy oil desulphurization               | 0     | 0        | 0              |
| 3. Stack fume desulphurization              | 13    | 294      | 479            |
| 4. Stack fume nitrogen oxide removal        | 28    | 0        | 0              |
| 5. Exhaust gas treatment                    | 108   | 141      | 67             |
| 6. High stack                               | 0     | 0        | 0              |
| 7. Related equipment                        | 55    | 22       | 295            |
| Subtotal                                    | 1054  | 1456     | 2453           |
| B. Water pollution prevention equipment     |       |          |                |
| 1. Industrial water processing              | 3021  | 762      | 1652           |
| 2. Sewerage processing                      | 2     | 12       | 0              |
| 3. Toilet water processing                  | 0     | 0        | 0              |
| 4. Sludge processing                        | 123   | 10       | 66             |
| 5. Sea water pollution prevention           | 0     | 0        | 0              |
| 6. Related equipment                        | 135   | 27       | 99             |
| Subtotal                                    | 3281  | 811      | 1817           |
| C. Waste treatment equipment                |       |          |                |
| 1. Household waste processing               | 0     | 0        | C              |
| 2. Industrial waste processing              | 8     | 2        | 5              |
| 3. Small-sized incinerators                 | 221   | 83       | 113            |
| 4. Related equipment                        | 1     | 0        | 0              |
| Subtotal                                    | 230   | 85       | 118            |
| D. Noise and vibration prevention equipment |       |          |                |
| 1. Noise abatement                          | 0     | 0        | 6              |
| 2. Vibration prevention                     | 0     | 3        | 0              |
| 3. Related equipment                        | 0     | 0        | C              |
| Subtotal                                    | 0     | 3        | 6              |
| Total                                       | 4565  | 2355     | 4394           |
| Percentage                                  | (0.7) | (0.4)    | (0.7)          |

Note: Samples are 180 firms, of which 165 (81.7 %) responded.

|    | (unit: current prices, million yen |          |          |       |       |          |        | ion yen) |
|----|------------------------------------|----------|----------|-------|-------|----------|--------|----------|
|    | Petro-                             | Petro    | Chemi-   | Cera- | Iron  | Non-     | Machi- | Other    |
|    | leum &                             | chemi-   | cal      | mics  | &     | ferrous  | nery   | manu-    |
|    | coal                               | cal      |          |       | steel | metals   |        | fact.    |
|    | 27                                 | (26)     | (26)     | 30    | 31    | 32       | 34&    | 38&&     |
| Α. |                                    |          |          |       |       |          |        |          |
| 1. | 1025                               | 414      | 3481     | 4022  | 8598  | 1717     | 6526   | 3323     |
| 2. | 433                                | 0        | 0        | 0     | 0     | 0        | 0      | 0        |
| 3. | 774                                | 1805     | 453      | 313   | 371   | 0        | 75     | 0        |
| 4. | 0                                  | 1211     | 263      | 0     | 0     | 0        | 75     | 0        |
| 5. | 195                                | 453      | 2665     | 640   | 3416  | 654      | 801    | 4559     |
| 6. | 0                                  | 0        | 251      | 0     | 0     | 0        | 0      | 1021     |
| 7. | 217                                | 76       | 327      | 131   | 1051  | 21       | 210    | 2668     |
|    | 2644                               | 3959     | 7440     | 5106  | 13435 | 2392     | 7687   | 11571    |
| Β. |                                    |          |          |       |       |          |        |          |
| 1. | 2029                               | 142      | 3276     | 987   | 3822  | 1058     | 16306  | 4420     |
| 2. | 0                                  | 2        | 40       | 18    | 86    | 41       | 361    | 1036     |
| 3. | 0                                  | 0        | 0        | 0     | 0     | 23       | 42     | 3        |
| 4. | 231                                | 9        | 24       | 56    | 343   | 0        | 93     | 543      |
| 5. | 59                                 | 0        | 0        | 0     | 20    | 0        | 4      | 1889     |
| 6. | 53                                 | 81       | 353      | 24    | 90    | 30       | 102    | 758      |
|    | 2372                               | 234      | 3693     | 1085  | 4361  | 1152     | 16908  | 8449     |
| С. |                                    |          |          |       |       |          |        |          |
| 1. | 0                                  | 0        | 2        | 0     | 0     | 0        | 0      | 1        |
| 2. | 0                                  | 0        | 78       | 0     | 69    | 7        | 371    | 549      |
| 3. | 61                                 | 113      | 106      | 35    | 78    | 39       | 301    | 417      |
| 4. | 0                                  | 0        | 13       | 0     | 0     | 0        | 10     | 36       |
|    | 61                                 | 113      | 199      | 35    | 147   | 46       | 682    | 1003     |
| D. |                                    |          |          |       |       |          |        |          |
| 1. | 3                                  | 9        | 51       | 5     | 728   | 1        | 885    | 486      |
| 2. | 0                                  | 16       | 78       | 0     | 0     | 0        | 20     | 43       |
| 3. | 0                                  | 0        | 65       | 12    | 2     | 0        | 89     | 6        |
|    | 3                                  | 25       | 194      | 17    | 730   | 1        | 994    | 535      |
|    | 5080                               | 4331     | 11526    | 6243  | 18673 | 3591     | 26271  | 21558    |
|    | (0.8)                              | (0.7)    | (1.8)    | (0.9) | (2 9) | (0.6)    | (4.0)  | (3.3)    |
|    | <u>`</u>                           | <u>`</u> | <u>`</u> |       |       | <u> </u> |        |          |

|    | Elect- | Mining | Other | Total   | Local  | Others | Total  | Exports |
|----|--------|--------|-------|---------|--------|--------|--------|---------|
|    | ricity | Ū      | non-  | private | gov't  |        | public |         |
|    | -      |        | manu. | sector  | Ū      |        | sector |         |
|    | (70)   | 10&    |       | IP      |        |        | IG     | E       |
| Α. |        |        |       |         |        |        |        |         |
| 1. | 5673   | 427    | 1360  | 40027   | 5299   | 1201   | 6500   | 5160    |
| 2. | 0      | 0      | 0     | 433     | 0      | 0      | 0      | 101     |
| 3. | 33603  | 0      | 0     | 38180   | 0      | 0      | 0      | 672     |
| 4. | 13576  | 0      | 14    | 15167   | 0      | 116    | 116    | 7380    |
| 5. | 36     | 3      | 920   | 14658   | 5897   | 466    | 6363   | 1227    |
| 6. | 2486   | 0      | 195   | 3953    | 101    | 0      | 101    | 75      |
| 7. | 499    | 0      | 312   | 5883    | 338    | 401    | 739    | 946     |
|    | 55873  | 430    | 2801  | 118301  | 11635  | 2184   | 13819  | 15561   |
| Β. |        |        |       |         |        |        |        |         |
| 1. | 5604   | 404    | 1612  | 44895   | 18483  | 3674   | 22157  | 5593    |
| 2. | 58     | 0      | 3438  | 5094    | 119557 | 9533   | 129090 | 1389    |
| 3  | 300    | 0      | 112   | 480     | 22216  | 10280  | 32496  | 74      |
| 4. | 19     | 0      | 14    | 1531    | 45135  | 1308   | 46443  | 1175    |
| 5. | 30     | 0      | 51    | 2053    | 212    | 47     | 259    | 321     |
| 6. | 672    | 66     | 1874  | 4364    | 17630  | 7211   | 24841  | 203     |
|    | 6683   | 470    | 7101  | 58417   | 223233 | 32053  | 255286 | 8755    |
| С. |        |        |       |         |        |        |        |         |
| 1. | 0      | 0      | 0     | 3       | 126723 | 14910  | 141633 | 536     |
| 2. | 18006  | 10     | 193   | 19298   | 338    | 3504   | 3842   | 34      |
| 3. | 124    | 8      | 2501  | 4200    | 893    | 567    | 1460   | 253     |
| 4. | 0      | 0      | 1     | 61      | 7348   | 2      | 7350   | 197     |
|    | 18130  | 18     | 2695  | 23532   | 135302 | 18983  | 154285 | 1020    |
| D. |        |        |       |         |        |        |        |         |
| 1. | 20     | 5      | 29    | 2228    | 611    | 37     | 648    | 74      |
| 2. | 0      | 0      | 0     | 160     | 0      | 0      | 0      | 0       |
| 3. | 0      | 0      | 21    | 195     | 219    | 92     | 311    | 205     |
|    | 20     | 5      | 50    | 2583    | 830    | 129    | 959    | 279     |
|    | 80706  | 923    | 12647 | 202863  | 371000 | 53349  | 424349 | 25615   |
|    | (12.4) | (0.1)  | (1.9) | (31.0)  | (56.8) | (82)   | (65 0) | (4.0)   |
|    |        |        |       |         |        |        |        |         |

|    | Total    |         |          |             |
|----|----------|---------|----------|-------------|
|    | Quantity | Value   | Percent  | Percent     |
|    |          |         | of total | of category |
|    |          | 00      |          |             |
| Α. |          |         |          |             |
| 1. | 17342    | 51687   | (7.9)    | (35.0)      |
| 2. | 2        | 534     | ( 0.0)   | ( 0.4)      |
| 3. | 149      | 38852   | (6.0)    | (26.3)      |
| 4. | 131      | 22663   | (3.5)    | (15.3)      |
| 5. | 1445     | 22248   | (3.4)    | (15.1)      |
| 6. | 29       | 4129    | ( 0.6)   | (2.8)       |
| 7. | -        | 7568    | (1.2)    | (5.1)       |
|    | 19098    | 147681  | (22.6)   | (100.0)     |
| В. |          |         |          |             |
| 1. | 1880     | 72645   | (11.1)   | (22.6)      |
| 2. | 6908     | 135573  | (20.8)   | (42.1)      |
| 3. | 342      | 33050   | (5.1)    | (10.2)      |
| 4. | 592      | 49149   | (75)     | (15 2)      |
| 5. | 210      | 2633    | (0.4)    | (08)        |
| 6. | -        | 29408   | (45)     | (91)        |
|    | 9932     | 322458  | (49.4)   | (100.0)     |
| С. |          |         |          |             |
| 1. | 395      | 142172  | (21.8)   | (79 5)      |
| 2. | 275      | 23174   | (35)     | (13 0)      |
| 3. | 6469     | 5913    | (09)     | (33)        |
| 4  | -        | 7608    | (1.2)    | (4.2)       |
|    | 7139     | 178867  | (27.4)   | (100.0)     |
| D  |          |         |          |             |
| 1. | 1936     | 2950    | ( 0.5)   | (77.2)      |
| 2. | 200      | 160     | (00)     | (42)        |
| 3. | -        | 711     | (0.1)    | (18.6)      |
|    | 2136     | 3821    | ( 0.6)   | (100.0)     |
|    | 38305    | 652827  | (100.0)  | -           |
|    | -        | (100.0) |          |             |

#### e. 1990

| Purchasing sectors:                         | Food  | Textiles                              | Pulp.<br>paper |
|---------------------------------------------|-------|---------------------------------------|----------------|
| Sector code                                 | 18    | 20&                                   | 24             |
| A. Air pollution prevention equipment       |       |                                       |                |
| 1. Dust collection                          | 269   | 502                                   | 1729           |
| 2. Heavy oil desulphurization               | 0     | 0                                     | 0              |
| 3. Stack fume desulphurization              | 0     | 117                                   | 219            |
| 4. Stack fume nitrogen oxide removal        | 0     | 76                                    |                |
| 5. Exhaust gas treatment                    | 193   | 65                                    | 255            |
| 6. High stack                               | 0     | 100                                   | (              |
| 7. Related equipment                        | 112   | 89                                    | 693            |
| Subtotal                                    | 574   | 949                                   | 2896           |
| B. Water pollution prevention equipment     |       | · · · · · · · · · · · · · · · · · · · |                |
| 1. Industrial water processing              | 11238 | 521                                   | 3517           |
| 2. Sewerage processing                      | 23    | 0                                     | (              |
| 3. Toilet water processing                  | 0     | 0                                     | (              |
| 4. Sludge processing                        | 314   | 1                                     | 306            |
| 5. Sea water pollution prevention           | 0     | 0                                     | (              |
| 6. Related equipment                        | 113   | 5                                     | 164            |
| Subtotal                                    | 11688 | 527                                   | 3987           |
| C. Waste treatment equipment                |       |                                       |                |
| 1. Household waste processing               | 31    | 0                                     | (              |
| 2. Industrial waste processing              | 12    | 0                                     | 412            |
| 3. Small-sized incinerators                 | 126   | 111                                   | 69             |
| 4. Related equipment                        | 0     | 0                                     | 71             |
| Subtotal                                    | 169   | 111                                   | 552            |
| D. Noise and vibration prevention equipment |       |                                       |                |
| 1. Noise abatement                          | 4     | 201                                   | 76             |
| 2. Vibration prevention                     | 0     | 0                                     |                |
| 3. Related equipment                        | 0     | 0                                     | 2              |
| Subtotal                                    | 4     | 201                                   | 83             |
| Total                                       | 12435 | 1788                                  | 7518           |
| Percentage                                  | (1.6) | (0.2)                                 | (1.0)          |

Note: Samples are 180 firms, of which 157 (87.2 %) responded

| ion yen) | prices, mill | t: current | (uni  |       |        |        |        |    |
|----------|--------------|------------|-------|-------|--------|--------|--------|----|
| Other    | Machi-       | Non-       | Iron  | Cera- | Chemi- | Petro  | Petro- |    |
| manu-    | nery         | ferrous    | &     | mics  | cal    | chemi- | leum & |    |
| fact.    |              | metals     | steel |       |        | cal    | coal   |    |
| 38&&     | 34&          | 32         | 31    | 30    | (26)   | (26)   | 27     |    |
|          |              |            |       |       |        |        |        | Α. |
| 2083     | 7522         | 2213       | 9906  | 2657  | 1665   | 519    | 115    | 1. |
| 0        | 0            | 0          | 0     | 0     | 0      | 0      | 656    | 2. |
| 0        | 98           | 4          | 0     | 1363  | 2      | 8      | 136    | 3. |
| 520      | 208          | 21         | 148   | 57    | 178    | 14     | 286    | 4. |
| 2943     | 3820         | 2684       | 3146  | 90    | 1289   | 630    | 0      | 5. |
| 2704     | 0            | 0          | 0     | 0     | 0      | 437    | 0      | 6. |
| 139      | 1557         | 90         | 1361  | 109   | 1063   | 13     | 288    | 7. |
| 8389     | 13205        | 5012       | 14561 | 4276  | 4197   | 1621   | 1481   |    |
|          |              |            |       |       |        |        |        | Β. |
| 8817     | 11586        | 1028       | 4631  | 1039  | 4267   | 531    | 535    | 1. |
| 1722     | 215          | 29         | 72    | 4     | 52     | 8      | 0      | 2. |
| 0        | 0            | 0          | 0     | 0     | 0      | 0      | 0      | 3. |
| 79       | 33           | 0          | 2     | 0     | 110    | 0      | 0      | 4. |
| 473      | 0            | 0          | 0     | 0     | 1      | 0      | 0      | 5. |
| 173      | 210          | 13         | 115   | 14    | 128    | 5      | 12     | 6. |
| 11264    | 12044        | 1070       | 4820  | 1057  | 4558   | 544    | 547    |    |
|          |              |            |       |       |        |        |        | С. |
| 1110     | 412          | 0          | 0     | 0     | 0      | 0      | 0      | 1. |
| 747      | 353          | 0          | 0     | 0     | 5      | 37     | 0      | 2. |
| 426      | 310          | 45         | 38    | 56    | 88     | 106    | 28     | 3. |
| 10       | 0            | 0          | 0     | 0     | 0      | 0      | 0      | 4. |
| 2293     | 1075         | 45         | 38    | 56    | 93     | 143    | 28     |    |
|          |              |            |       |       |        |        |        | D. |
| 229      | 801          | 31         | 384   | 8     | 82     | 46     | 17     | 1. |
| 27       | 34           | 0          | 125   | 0     | 10     | 7      | 1      | 2. |
| 4        | 14           | 0          | 68    | 0     | 15     | 0      | 22     | 3. |
| 260      | 849          | 31         | 577   | 8     | 107    | 53     | 40     |    |
| 22206    | 27173        | 6158       | 19996 | 5397  | 8955   | 2361   | 2096   |    |
| (2.8)    | (35)         | (0.8)      | (2.5) | (0.7) | (1.1)  | (0.3)  | (0.3)  |    |

|            | Elect- | Mining  | Other | Total   | Land   | Othons | Tetel  | <b>F</b> |
|------------|--------|---------|-------|---------|--------|--------|--------|----------|
|            | ricity | winning |       |         | Local  | Others | Total  | Exports  |
|            | ricity |         | non-  | private | gov't  |        | public |          |
| ·          | (70)   | 100     | manu. | sector  |        |        | sector |          |
|            | (70)   | 10&     |       | IP      |        |        | IG     | E        |
| Α.         |        |         |       |         |        |        |        |          |
| 1.         | 12605  | 173     | 2423  | 44381   | 8038   | 1327   | 9365   | 4343     |
| 2.         | 0      | 0       | 0     | 656     | 0      | 0      | 0      | 10298    |
| 3.         | 9045   | 494     | 0     | 11486   | 0      | 0      | 0      | 1833     |
| 4.         | 21597  | 0       | 58    | 23163   | 0      | 2026   | 2026   | 3425     |
| 5.         | 61     | 37      | 854   | 16067   | 5723   | 477    | 6200   | 435      |
| 6.         | 3371   | 0       | 0     | 6612    | 288    | 0      | 288    | 0        |
| 7.         | 1069   | 40      | 277   | 6900    | 979    | 5028   | 6007   | 746      |
|            | 47748  | 744     | 3612  | 109265  | 15028  | 8858   | 23886  | 21080    |
| Β.         |        |         |       |         |        |        |        |          |
| 1.         | 6127   | 511     | 1992  | 56340   | 8786   | 2567   | 11353  | 2333     |
| 2.         | 137    | 58      | 12405 | 14725   | 118785 | 12846  | 131631 | 1498     |
| 3.         | 0      | 12      | 44    | 56      | 30176  | 24158  | 54334  | 0        |
| 4.         | 308    | 102     | 301   | 1556    | 75515  | 5858   | 81373  | 1481     |
| 5.         | 0      | 46      | 0     | 520     | 213    | 0      | 213    | 0        |
| 6.         | 2920   | 310     | 136   | 4318    | 23386  | 6900   | 30286  | 58       |
|            | 9492   | 1039    | 14878 | 77515   | 256861 | 52329  | 309190 | 5370     |
| <u>C</u> . |        |         |       |         |        |        |        |          |
| 1.         | 0      | 0       | 61    | 1614    | 183168 | 25990  | 209158 | 1729     |
| 2.         | 5580   | 978     | 692   | 8816    | 595    | 153    | 748    | 840      |
| 3.         | 93     | 25      | 2461  | 3982    | 1288   | 456    | 1744   | 3        |
| 4.         | 82     | 0       | 158   | 321     | 3173   | 78     | 3251   | ů<br>0   |
|            | 5755   | 1003    | 3372  | 14733   | 188224 | 26677  | 214901 | 2572     |
| D.         |        |         |       |         |        | 20011  | 211501 |          |
| 1.         | 874    | 975     | 617   | 4345    | 582    | 696    | 1278   | 73       |
| 2.         | 2      | 0       | 25    | 236     | 0      | 6      | 6      | 13       |
| 3.         | 70     | ů<br>0  | 33    | 228     | 277    | 40     | 317    | 15       |
| •.         | 946    | 975     | 675   | 4809    | 859    | 742    | 1601   | 86       |
|            | 63941  | 3761    | 22537 | 206322  | 460972 | 88606  | 549578 | 29108    |
|            | (8.1)  | (0.5)   | (2.9) | (26.3)  | (58.7) |        |        |          |
|            | (0.1)  | (0.5)   | (2.9) | (20.3)  | (38.1) | (11.3) | (70.0) | (3.7)    |

|    | Total    |         |          |             |  |  |
|----|----------|---------|----------|-------------|--|--|
|    | Quantity | Value   | Percent  | Percent     |  |  |
|    |          |         | of total | of category |  |  |
|    |          | 00      |          |             |  |  |
| Α. |          |         |          |             |  |  |
| 1. | 21133    | 58089   | (7.4)    | (37.7)      |  |  |
| 2. | 4        | 10954   | (1.4)    | (7.1)       |  |  |
| 3. | 87       | 13319   | (1.7)    | (8.6)       |  |  |
| 4. | 167      | 28614   | (3.6)    | (18.5)      |  |  |
| 5. | 873      | 22702   | (2.9)    | (14.7)      |  |  |
| 6. | 12       | 6900    | (09)     | (4.5)       |  |  |
| 7. | -        | 13653   | (1.7)    | (8.9)       |  |  |
|    | 22276    | 154231  | (196)    | (100.0)     |  |  |
| В. |          |         |          |             |  |  |
| 1. | 918      | 70026   | (8.9)    | (17.9)      |  |  |
| 2. | 6169     | 147854  | (18.9)   | (37 7)      |  |  |
| 3. | 673      | 54390   | (6.9)    | (13.9)      |  |  |
| 4. | 773      | 84410   | (10 8)   | (21 5)      |  |  |
| 5. | 1        | 733     | ( 0.1)   | (02)        |  |  |
| 6. | -        | 34662   | (44)     | (88)        |  |  |
|    | 8534     | 392075  | (50.0)   | (100.0)     |  |  |
| С. |          |         |          |             |  |  |
| 1. | 283      | 212501  | (27 1)   | (915)       |  |  |
| 2  | 86       | 10404   | (13)     | (45)        |  |  |
| 3. | 3868     | 5729    | ( 0.7) / | (25)        |  |  |
| 4. | -        | 3572    | (05)     | (15)        |  |  |
|    | 4237     | 232206  | (29 6)   | (100 0)     |  |  |
| D  |          |         |          |             |  |  |
| 1. | 1979     | 5696    | (07)     | (87.7)      |  |  |
| 2. | 147      | 255     | ( 0.0)   | ( 3.9)      |  |  |
| 3. | -        | 545     | (0.1)    | (84)        |  |  |
|    | 2126     | 6496    | ( 0.8)   | (100.0)     |  |  |
|    | 37173    | 785008  | (100.0)  | -           |  |  |
|    | -        | (100.0) | -        | -           |  |  |

| 1969         1970         1971           A. Air pollution prevention equipment         23464         38517         47318           1. Dust collection         23860         9892         14810           3. Stack fume desulphurization         1255         3589         8157           4. Stack fume nitrogen oxide removal         -         -         -           5. Exhaust gas treatment         8424         8856         11242           6. High stack         11179         17653         29042           7. Related equipment         2575         2350         8026           Subtotal         70778         80858         118595           B. Water pollution prevention equipment         -         -         -           1. Industrial water processing         9696         28946         52313           2 Sewerage processing         1547         4619         5008           3. Toilet water processing         59         1512         1869           5. Sea water pollution prevention         -         -         -           6. Related equipment         2703         8172         9521           Subtotal         19889         44750         70626           C. Waste treatment equipment                     | a. Purchased by private sector              | (unit: cu | rrent prices, m | nillion yen) |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------|-----------------|--------------|
| 1. Dust collection       23464       38517       47318         2. Heavy oil desulphurization       23860       9892       14810         3. Stack fume desulphurization       1255       3589       8157         4. Stack fume nitrogen oxide removal       -       -       -         5. Exhaust gas treatment       8424       8856       11242         6. High stack       11179       17653       29042         7. Related equipment       2575       2350       8026         Subtotal       70778       80858       118595         B. Water pollution prevention equipment       -       -       -         1. Industrial water processing       9696       28946       52313         2 Sewerage processing       1547       4619       5008         3. Toilet water processing       1946       404       280         4. Sludge processing       59       1512       1869         5. Sea water pollution prevention       -       -       -         6. Related equipment       2703       8172       9521         Subtotal       19889       44750       70626         C. Waste treatment equipment       14       3016       390         3. Small-size                                                                              |                                             | 1969      | 1970            | 1971         |
| 2. Heavy oil desulphurization       23860       9892       14810         3. Stack fume desulphurization       1255       3589       8157         4. Stack fume nitrogen oxide removal       -       -       -         5. Exhaust gas treatment       8424       8856       11242         6. High stack       11179       17653       29042         7. Related equipment       2575       2350       8026         Subtotal       70778       80858       118595         B. Water pollution prevention equipment       1       Industrial water processing       9696       28946       52313         2 Sewerage processing       1547       4619       5008         3. Toilet water processing       1046       404       280         5. Sea water pollution prevention       -       -       -         6. Related equipment       2703       8172       9521         Subtotal       19889       44750       70626         C. Waste treatment equipment       1       3195       3587         3. Small-sized incinerators       -       -       -         2. Industrial waste processing       537       4255       3585         D. Noise and vibration prevention equipment       14                                                    | A. Air pollution prevention equipment       |           |                 |              |
| 3. Stack fume desulphurization       1255       3589       8157         4. Stack fume nitrogen oxide removal       -       -       -         5. Exhaust gas treatment       8424       8856       11242         6. High stack       11179       17653       29042         7. Related equipment       2575       2350       8026         Subtotal       70778       80858       118595         B. Water pollution prevention equipment       -       -       -         1. Industrial water processing       9696       28946       52313         2 Sewerage processing       1547       4619       5008         3. Toilet water processing       1046       404       280         4. Sludge processing       59       1512       1869         5. Sea water pollution prevention       -       -       -         6. Related equipment       2703       8172       9521         Subtotal       19889       44750       70626         C. Waste treatment equipment       14       3016       390         3. Small-sized incinerators       -       -       -         7. Related equipment       14       3016       390         Subtotal       537 <td>1. Dust collection</td> <td>23464</td> <td>38517</td> <td>47318</td>                 | 1. Dust collection                          | 23464     | 38517           | 47318        |
| 4. Stack fume nitrogen oxide removal       -       -       -         5. Exhaust gas treatment       8424       8856       11242         6. High stack       11179       17653       29042         7. Related equipment       2575       2350       8026         Subtotal       70778       80858       118595         B. Water pollution prevention equipment       -       -       -         1. Industrial water processing       9696       28946       52313         2 Sewerage processing       1547       4619       5008         3. Toilet water processing       1046       404       280         4. Sludge processing       59       1512       1869         5. Sea water pollution prevention       -       -       -         6. Related equipment       2703       8172       9521         Subtotal       19889       44750       70626         C. Waste treatment equipment       -       -       -         1. Household waste processing       523       1239       0         2. Industrial waste processing       -       -       -         3. Small-sized incinerators       -       -       -         3. Small-sized incinerators                                                                                        | 2. Heavy oil desulphurization               | 23860     | 9892            | 14810        |
| 5. Exhaust gas treatment       8424       8856       11242         6. High stack       11179       17653       29042         7. Related equipment       2575       2350       8026         Subtotal       70778       80858       118595         B. Water pollution prevention equipment       70778       80858       118595         J. Toilet water processing       9696       28946       52313         Sewerage processing       59       1512       1869         S. Sea water pollution prevention       -       -       -         G. Related equipment       2703       8172       9521         Subtotal       19889       44750       70626         C. Waste treatment equipment       1       1908       3195         J. Industrial waste processing       523       1239       0         2. Industrial waste processing       -       -       -         J. Small-sized incinerators       -       -       -                                                    | 3. Stack fume desulphurization              | 1255      | 3589            | 8157         |
| 6. High stack       11179       17653       29042         7. Related equipment       2575       2350       8026         Subtotal       70778       80858       118595         B. Water pollution prevention equipment       70778       80858       118595         B. Water pollution prevention equipment       70778       80858       118595         B. Water pollution prevention equipment       70778       80858       52313         2 Sewerage processing       1547       4619       5008         3. Toilet water processing       1046       404       280         4. Sludge processing       59       1512       1869         5. Sea water pollution prevention       -       -       -         6. Related equipment       2703       8172       9521         Subtotal       19889       44750       70626         C. Waste treatment equipment       1       19889       44750       70626         C. Waste treatment equipment       14       3016       390         3. Small-sized incinerators       -       -       -         7       4.8142       3016       390       390         Subtotal       537       4255       3585 <t< td=""><td>4. Stack fume nitrogen oxide removal</td><td>-</td><td>-</td><td>-</td></t<> | 4. Stack fume nitrogen oxide removal        | -         | -               | -            |
| 7. Related equipment       2575       2350       8026         Subtotal       70778       80858       118595         B. Water pollution prevention equipment       1       Industrial water processing       9696       28946       52313         2 Sewerage processing       1547       4619       5008         3. Toilet water processing       1046       404       280         4. Sludge processing       59       1512       1869         5. Sea water pollution prevention       -       -       -         6. Related equipment       2703       8172       9521         Subtotal       19889       44750       70626         C. Waste treatment equipment       1       Household waste processing       523       1239       0         2. Industrial waste processing       523       1239       0       2       1ndustrial waste processing       -       -         3. Small-sized incinerators       -       -       -       -       -       -         4. Related equipment       14       3016       390       Subtotal       537       4255       3585         D. Noise and vibration prevention equipment       -       574       713       2       Vibration prevention                                                    | 5. Exhaust gas treatment                    | 8424      | 8856            | 11242        |
| Subtotal         70778         80858         118595           B. Water pollution prevention equipment         1         Industrial water processing         9696         28946         52313           2 Sewerage processing         1547         4619         5008           3. Toilet water processing         1046         404         280           4. Sludge processing         59         1512         1869           5. Sea water pollution prevention         -         -         -           6. Related equipment         2703         8172         9521           Subtotal         19889         44750         70626           C. Waste treatment equipment         1         Household waste processing         523         1239         0           2. Industrial waste processing         523         1239         0         0         3195         3. Small-sized incinerators         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                      | 6. High stack                               | 11179     | 17653           | 29042        |
| B. Water pollution prevention equipment         1. Industrial water processing       9696       28946       52313         2 Sewerage processing       1547       4619       5008         3. Toilet water processing       1046       404       280         4. Sludge processing       59       1512       1869         5. Sea water pollution prevention       -       -       -         6. Related equipment       2703       8172       9521         Subtotal       19889       44750       70626         C. Waste treatment equipment       1       Household waste processing       523       1239       0         2. Industrial waste processing       523       1239       0       0       2       1045f       390       3195         3. Small-sized incinerators       -       -       -       -       -       -       -       -       4.       Related equipment       14       3016       390       390       Subtotal       537       4255       3585       5.       D. Noise and vibration prevention equipment       -       574       713       2.       Vibration prevention       -       34       28       3.       Related equipment       -       10       6       Su                                                 | 7. Related equipment                        | 2575      | 2350            | 8026         |
| 1. Industrial water processing       9696       28946       52313         2 Sewerage processing       1547       4619       5008         3. Toilet water processing       1046       404       280         4. Sludge processing       59       1512       1869         5. Sea water pollution prevention       -       -       -         6. Related equipment       2703       8172       9521         Subtotal       19889       44750       70626         C. Waste treatment equipment       1       Household waste processing       523       1239       0         2. Industrial waste processing       523       1239       0       0         2. Industrial waste processing       -       -       -       -         3. Small-sized incinerators       -       -       -       -         4. Related equipment       14       3016       390       Subtotal       390         Subtotal       537       4255       3585       5       5         D. Noise and vibration prevention equipment       -       574       713         2. Vibration prevention       -       34       28         3. Related equipment       -       618       747     <                                                                                     | Subtotal                                    | 70778     | 80858           | 118595       |
| 2       Sewerage processing       1547       4619       5008         3. Toilet water processing       1046       404       280         4. Sludge processing       59       1512       1869         5. Sea water pollution prevention       -       -       -         6. Related equipment       2703       8172       9521         Subtotal       19889       44750       70626         C. Waste treatment equipment       1       Household waste processing       523       1239       0         2. Industrial waste processing       523       1239       0       0       2       Industrial waste processing       -       -       -       -       -       -       -       -       -       -       -       -       -       -       3195       3       Small-sized incinerators       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                      | B. Water pollution prevention equipment     |           |                 |              |
| 3. Toilet water processing       1046       404       280         4. Sludge processing       59       1512       1869         5. Sea water pollution prevention       -       -       -         6. Related equipment       2703       8172       9521         Subtotal       19889       44750       70626         C. Waste treatment equipment       19889       44750       70626         C. Waste treatment equipment       1       Household waste processing       523       1239       0         2. Industrial waste processing       523       1239       0       0         3. Small-sized incinerators       -       -       -       -         4. Related equipment       14       3016       390       Subtotal       537       4255       3585         D. Noise and vibration prevention equipment       -       574       713       2. Vibration prevention       -       34       28       3. Related equipment       -       10       6         Subtotal       -       -       10       6       5       747       713         2. Vibration prevention       -       618       747         Total       91205       130481       193553 <td>1. Industrial water processing</td> <td>9696</td> <td>28946</td> <td>52313</td>  | 1. Industrial water processing              | 9696      | 28946           | 52313        |
| 4. Sludge processing       59       1512       1869         5. Sea water pollution prevention       -       -       -         6. Related equipment       2703       8172       9521         Subtotal       19889       44750       70626         C. Waste treatment equipment       1       Household waste processing       523       1239       0         2. Industrial waste processing       523       1239       0       2         3. Small-sized incinerators       -       -       -         4. Related equipment       14       3016       390         Subtotal       537       4255       3585         D. Noise and vibration prevention equipment       -       574       713         2. Vibration prevention       -       34       28         3. Related equipment       -       10       6         Subtotal       -       -       10       6         Subtotal       -       618       747         Total       91205       130481       193553                                                                                                                                                                                                                                                                              | 2 Sewerage processing                       | 1547      | 4619            | 5008         |
| 5. Sea water pollution prevention       -       -       -         6. Related equipment       2703       8172       9521         Subtotal       19889       44750       70626         C. Waste treatment equipment       1       19889       44750       70626         C. Waste treatment equipment       1       Household waste processing       523       1239       0         2. Industrial waste processing       -       -       3195       3.5mall-sized incinerators       -       -       -         3. Small-sized incinerators       -       -       -       -       -       -         4. Related equipment       14       3016       390       Subtotal       537       4255       3585         D. Noise and vibration prevention equipment       -       574       713       2. Vibration prevention       -       34       28       3. Related equipment       -       10       6         Subtotal       -       -       10       6       5       547       747         Total       91205       130481       193553       193553       193553                                                                                                                                                                               | 3. Toilet water processing                  | 1046      | 404             | 280          |
| 6. Related equipment       2703       8172       9521         Subtotal       19889       44750       70626         C. Waste treatment equipment       1       Household waste processing       523       1239       0         2. Industrial waste processing       523       1239       0       0         3. Small-sized incinerators       -       -       3195         3. Small-sized incinerators       -       -       -         4. Related equipment       14       3016       390         Subtotal       537       4255       3585         D. Noise and vibration prevention equipment       -       574       713         2. Vibration prevention       -       34       28         3. Related equipment       -       10       6         Subtotal       -       618       747         Total       91205       130481       193553                                                                                                                                                                                                                                                                                                                                                                                               | 4. Sludge processing                        | 59        | 1512            | 1869         |
| Subtotal         19889         44750         70626           C. Waste treatment equipment         1         Household waste processing         523         1239         0           2. Industrial waste processing         -         -         3195           3. Small-sized incinerators         -         -         -           4. Related equipment         14         3016         390           Subtotal         537         4255         3585           D. Noise and vibration prevention equipment         -         -         574         713           2. Vibration prevention         -         34         28         3. Related equipment         -         10         6           Subtotal         -         -         10         6         5         747           Total         91205         130481         193553         193553                                                                                                                                                                                                                                                                                                                                                                                        | 5. Sea water pollution prevention           | -         | -               | -            |
| C. Waste treatment equipment1. Household waste processing523123902. Industrial waste processing31953. Small-sized incinerators4. Related equipment143016390Subtotal53742553585D. Noise and vibration prevention equipment-5747132. Vibration prevention-34283. Related equipment-106Subtotal-618747Total91205130481193553                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6. Related equipment                        | 2703      | 8172            | 9521         |
| 1. Household waste processing       523       1239       0         2. Industrial waste processing       -       -       3195         3. Small-sized incinerators       -       -       -         4. Related equipment       14       3016       390         Subtotal       537       4255       3585         D. Noise and vibration prevention equipment       -       574       713         2. Vibration prevention       -       34       28         3. Related equipment       -       10       6         Subtotal       -       618       747         Total       91205       130481       193553                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Subtotal                                    | 19889     | 44750           | 70626        |
| 2. Industrial waste processing       -       -       3195         3. Small-sized incinerators       -       -       -         4. Related equipment       14       3016       390         Subtotal       537       4255       3585         D. Noise and vibration prevention equipment       -       574       713         2. Vibration prevention       -       34       28         3. Related equipment       -       10       6         Subtotal       -       618       747         Total       91205       130481       193553                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C. Waste treatment equipment                |           |                 |              |
| 3. Small-sized incinerators       -       -         4. Related equipment       14       3016       390         Subtotal       537       4255       3585         D. Noise and vibration prevention equipment       -       574       713         2. Vibration prevention       -       34       28         3. Related equipment       -       10       6         Subtotal       -       618       747         Total       91205       130481       193553                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1. Household waste processing               | 523       | 1239            | 0            |
| 4. Related equipment       14       3016       390         Subtotal       537       4255       3585         D. Noise and vibration prevention equipment       -       574       713         1. Noise abatement       -       574       713         2. Vibration prevention       -       34       28         3. Related equipment       -       10       6         Subtotal       -       618       747         Total       91205       130481       193553                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2. Industrial waste processing              | -         | -               | 3195         |
| Subtotal         537         4255         3585           D. Noise and vibration prevention equipment         -         574         713           1 Noise abatement         -         574         713           2. Vibration prevention         -         34         28           3. Related equipment         -         10         6           Subtotal         -         618         747           Total         91205         130481         193553                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3. Small-sized incinerators                 | -         | -               | -            |
| D. Noise and vibration prevention equipment1Noise abatement2. Vibration prevention-3. Related equipment-3. Related equipment-618747Total91205130481193553                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4. Related equipment                        | 14        | 3016            | 390          |
| 1 Noise abatement       -       574       713         2. Vibration prevention       -       34       28         3. Related equipment       -       10       6         Subtotal       -       618       747         Total       91205       130481       193553                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Subtotal                                    | 537       | 4255            | 3585         |
| 2. Vibration prevention       -       34       28         3. Related equipment       -       10       6         Subtotal       -       618       747         Total       91205       130481       193553                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D. Noise and vibration prevention equipment |           |                 |              |
| 3. Related equipment       -       10       6         Subtotal       -       618       747         Total       91205       130481       193553                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 Noise abatement                           | -         | 574             | 713          |
| Subtotal         -         618         747           Total         91205         130481         193553                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2. Vibration prevention                     | -         | 34              | 28           |
| Total 91205 130481 193553                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3. Related equipment                        | -         | 10              | 6            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Subtotal                                    | -         | 618             | 747          |
| Share of private sector (%)         63.9         67.1         64.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Total                                       | 91205     | 130481          | 193553       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Share of private sector (%)                 | 63.9      | 67.1            | 64.0         |

Table 6-3 Production of pollution prevention equipment, time seriesa. Purchased by private sector(unit: current prices, million yen)

Note: The data here refer to production of pollution prevention equipment only and do not include construction cost. Figures refer to fiscal year.

Source: Same as Table 6-2a.

| A.         1.       577         2.       277         3.       141         4.       5.         5.       92         6.       8         7.       70         11.       644         2.       44         3.       24         4.       55         6.       55         6.       55         6.       55         6.       55         6.       55         7.       70         1.       644         2.       44         3.       24         4.       55         5.       56         2.       84         3.       4.         84       84         D.       70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1972 197<br>7796 6860<br>7296 3720<br>4705 3613<br>-<br>9262 2923<br>3767 895 | 05 91971<br>09 28792<br>35 145896 | 70741<br>79676<br>94106<br>8471 | 1976<br>65059<br>47562<br>97859<br>5588 | 1977<br>45544<br>4941<br>44853<br>2910 | 1978<br>33134<br>954<br>20410 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------|---------------------------------|-----------------------------------------|----------------------------------------|-------------------------------|
| 1.       577         2.       277         3.       147         4.       5         5.       92         6.       8         7.       70         1212       1212         B.       11.         1.       644         2.       44         3.       24         4.       55         5.       96         6.       55         860       5         7.       70         7.       70         1.       5         6.       55         860       5         7.       70         7.       70         7.       70         7.       70         7.       70         7.       70         80       70         7.       71         7.       70         7.       70         7.       70         7.       70         7.       70         7.       70         7.       70         7.       70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7296 3720<br>1705 3613<br>9262 2923                                           | 09 28792<br>35 145896             | 79676<br>94106<br>8471          | 47562<br>97859                          | 4941<br>44853                          | 954                           |
| 2. 277<br>3. 14<br>4.<br>5. 99<br>6. 8<br>7. 70<br>121<br>B.<br>1. 64<br>2. 44<br>3. 22<br>4. 55<br>5. 6<br>6. 55<br>860<br>C.<br>1. 1<br>2. 8<br>3. 4<br>8.<br>D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7296 3720<br>1705 3613<br>9262 2923                                           | 09 28792<br>35 145896             | 79676<br>94106<br>8471          | 47562<br>97859                          | 4941<br>44853                          | 954                           |
| 3.       14         4.       5.       92         6.       8       7.       70         1211       1211       1211       1211         B.       11.       644       2.       44         3.       24       4.       55       5.       6.       55.       5.       6.       55.       866         C.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1.       1. <td< th=""><th>4705 3613<br/>9262 2923</th><th>35 145896</th><th>94106<br/>8471</th><th>97859</th><th>44853</th><th></th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4705 3613<br>9262 2923                                                        | 35 145896                         | 94106<br>8471                   | 97859                                   | 44853                                  |                               |
| 4.<br>5. 92<br>6. 87<br>7. 70<br>1211<br>B.<br>1. 644<br>2. 44<br>3. 20<br>4. 55<br>5. 5<br>6. 55<br>86<br>C.<br>1. 2. 8<br>3. 4.<br>2. 8<br>5. 8<br>6. 55<br>86<br>C.<br>1. 58<br>7. 70<br>8. 70<br>7. 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9262 2923                                                                     |                                   | 8471                            |                                         |                                        | 20410                         |
| 5. 99<br>6. 88<br>7. 70<br>1211<br>B.<br>1. 64<br>2. 44<br>3. 20<br>4. 55<br>5. 5<br>6. 55<br>86<br>C.<br>1. 5<br>86<br>C.<br>1. 5<br>86<br>C.<br>1. 5<br>86<br>D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               | <br>27 24503                      |                                 | 5588                                    | 2910                                   |                               |
| 6. 8<br>7. 70<br>1211<br>B.<br>1. 644<br>2. 44<br>3. 22<br>4. 55<br>5. 5<br>6. 55<br>860<br>C.<br>1. 1<br>2. 8<br>3.<br>4.<br>2. 8<br>3.<br>4.<br>5<br>5. 5<br>800<br>C.<br>1. 5<br>800<br>C.<br>1. 6<br>800<br>C.<br>1. 6<br>800<br>C.<br>1. 8<br>800<br>C.<br>1. 8<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>80<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C.<br>800<br>C<br>800<br>C<br>800<br>C<br>800<br>C<br>800<br>C<br>800<br>C<br>800<br>C<br>800<br>C<br>800<br>C<br>800<br>C<br>800<br>C<br>800<br>C<br>800<br>C<br>800<br>C<br>800<br>C<br>800<br>C<br>800<br>C<br>800<br>C<br>800<br>C<br>800<br>C<br>800<br>C<br>800<br>C<br>800<br>C<br>800<br>C<br>800<br>C<br>800<br>C<br>800<br>C<br>800<br>C<br>800<br>C<br>800<br>C<br>800<br>C<br>800<br>C<br>800<br>C<br>800<br>C<br>800<br>C<br>800<br>C<br>800<br>C<br>800<br>C<br>800<br>C<br>800<br>C<br>800<br>C<br>800<br>C<br>800<br>C<br>800<br>C<br>800<br>C<br>800<br>C<br>800<br>C<br>800<br>C<br>800<br>C<br>800<br>C<br>800<br>C<br>800<br>C<br>800<br>C<br>80 |                                                                               | 27 24503                          | 04676                           |                                         | 2010                                   | 4337                          |
| 7.       70         1211         B.         1.       64         2.       4         3.       20         4.       55         5.       5         6.       55         86       70         7.       70         1.       1.         2.       8         3.       4.         8.       8         D.       70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3767 89                                                                       |                                   | 24676                           | 23011                                   | 14983                                  | 13013                         |
| 1211       B.       1.     644       2.     44       3.     24       4.     55       5.     56       866       C.       1.       2.     86       3.       4.       8.       D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                               | 58 7684                           | 6651                            | 9610                                    | 3781                                   | 5442                          |
| B.<br>1. 644<br>2. 44<br>3. 24<br>4. 55<br>5. 56<br>866<br>C.<br>1. 56<br>3. 4.<br>8.<br>D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7001 140                                                                      | 15 19625                          | 14281                           | 13445                                   | 10256                                  | 6429                          |
| 1.       64:         2.       4:         3.       2:         4.       5:         5.       5:         6.       5:         86:       6:         C.       1.         2.       8:         3.       4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1827 1941                                                                     | 49 318471                         | 298602                          | 262134                                  | 127268                                 | 83719                         |
| 2. 44<br>3. 24<br>4. 55<br>5. 56<br><u>866</u><br>C. 1. 2. 86<br>3. 4. 87<br>D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                               |                                   |                                 |                                         |                                        |                               |
| 3.       21         4.       5         5.       5         6.       5         860         C.       1         2.       8         3.       4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4364 7564                                                                     | 40 79462                          | 92091                           | 68638                                   | 45662                                  | 41819                         |
| 4. 5<br>5. 6<br>6. 5<br>7<br>7<br>7<br>7<br>8<br>6<br>7<br>8<br>7<br>7<br>8<br>3. 4<br>4. 8<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4588 664                                                                      | 47 14698                          | 11096                           | 12227                                   | 12628                                  | 8142                          |
| 5. 5.<br>6. 55.<br>860<br>C.<br>1. 2. 8.<br>3. 4.<br>D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2812 12                                                                       | 01 956                            | 1182                            | 573                                     | 899                                    | 795                           |
| 6. 55<br>860<br>C.<br>1. 2. 80<br>3.<br>4.<br>D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5795 78                                                                       | 19 10899                          | 8324                            | 7546                                    | 5680                                   | 5913                          |
| 86           C.           1.           2.           3.           4.           8           D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 992 8                                                                         | 76 428                            | 548                             | 2019                                    | 1512                                   | 1205                          |
| C.<br>1.<br>2.<br>8.<br>3.<br>4.<br>D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5462 79                                                                       | 89 9978                           | 12749                           | 10170                                   | 7409                                   | 8052                          |
| 1.<br>2. 8<br>3.<br>4.<br>D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6642 1021                                                                     | 98 117517                         | 25990                           | 101173                                  | 73790                                  | 65926                         |
| 2. 8<br>3.<br>4.<br>D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                               |                                   |                                 |                                         |                                        |                               |
| 3.<br>4.<br>D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 215                                                                           | 48 323                            | 124                             | 89                                      | 48                                     | 0                             |
| 4.<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8499 141                                                                      | 26 12655                          | 9147                            | 11981                                   | 12967                                  | 19374                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                             |                                   | · -                             | -                                       | -                                      | -                             |
| D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 174 6                                                                         | 10 418                            | 435                             | 1016                                    | 2142                                   | 248                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8888 147                                                                      | 84 13396                          | 9706                            | 13086                                   | 15157                                  | 19622                         |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                               | ,                                 |                                 |                                         |                                        |                               |
| 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 863 8                                                                         | 83 1174                           | 1321                            | 1496                                    | 2916                                   | 1913                          |
| 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                             | 6 11                              | . 4                             | 2                                       | 38                                     | 30                            |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 101 1                                                                         | 18 54                             | 81                              | 100                                     | 682                                    | 624                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                             |                                   | 1406                            | 1598                                    | 3636                                   | 2567                          |
| 218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 964 10                                                                        | 00 450000                         | 1053-1                          | 077001                                  | 219851                                 | 171834                        |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                               | 38 450623                         | 435704                          | 377991                                  | 219021                                 | 1.1001                        |

|    | 1979   | 1980   | 1981   | 1982   | 1983   | 1984   | 1985   |
|----|--------|--------|--------|--------|--------|--------|--------|
| A  |        |        |        |        |        |        |        |
| 1. | 36546  | 45849  | 42351  | 36218  | 28542  | 44683  | 40027  |
| 2. | 1089   | 9604   | 3900   | 1844   | 6592   | 2767   | 433    |
| 3  | 10781  | 25375  | 27725  | 35737  | 38714  | 37472  | 38180  |
| 4  | 13041  | 21325  | 32941  | 10638  | 20487  | 20777  | 15167  |
| 5. | 8249   | 6688   | 9992   | 18649  | 9200   | 15050  | 14658  |
| 6. | 4289   | 6079   | 7867   | 6111   | 12666  | 3671   | 3953   |
| 7  | 8412   | 7812   | 5299   | 4863   | 3647   | 3925   | 5883   |
|    | 82407  | 122732 | 130075 | 114060 | 119848 | 128345 | 118301 |
| В. |        |        |        |        |        |        |        |
| 1. | 39979  | 45756  | 35768  | 44033  | 39219  | 55008  | 44895  |
| 2. | 8723   | 13818  | 19238  | 8917   | 11296  | 7376   | 5094   |
| 3  | 454    | 1428   | 11400  | 1924   | 662    | 248    | 480    |
| 4. | 6770   | 8039   | 6787   | 2743   | 5196   | 3185   | 1531   |
| 5. | 2446   | 3573   | 3840   | 3451   | 3734   | 3156   | 2053   |
| 6. | 7189   | 6467   | 10365  | 7850   | 8684   | 4367   | 4364   |
|    | 65561  | 79081  | 87398  | 68918  | 68791  | 73340  | 58417  |
| С  |        |        |        |        |        |        |        |
| 1  | 67     | 772    | 8633   | 479    | 0      | 450    | 3      |
| 2. | 10327  | 10383  | 11298  | 3217   | 8237   | 1913   | 19298  |
| 3. | -      | 3098   | 4030   | 3966   | 4100   | 3914   | 4200   |
| 4. | 182    | 2297   | 372    | 432    | 187    | 5      | 61     |
|    | 10576  | 16550  | 24333  | 8094   | 13024  | 6282   | 23562  |
| D  |        |        |        |        |        |        |        |
| 1  | 2362   | 2246   | 1035   | 3754   | 1596   | 2962   | 2228   |
| 2. | 0      | 476    | 40     | 122    | 8      | 173    | 160    |
| 3  | 218    | 225    | 294    | 524    | 628    | 852    | 195    |
|    | 2580   | 2947   | 1369   | 4400   | 2232   | 3987   | 2583   |
|    | 161124 | 221310 | 243175 | 195472 | 203895 | 211954 | 202863 |
|    | 25 0   | 33 8   | 35.9   | 32 0   | 31 3   | 35 6   | 31.0   |

|    | 1986   | 1987   | 1988   | 1989   | 1990   |
|----|--------|--------|--------|--------|--------|
| A  |        |        |        |        |        |
| 1. | 44753  | 35159  | 25161  | 41476  | 44381  |
| 2. | 249    | 1969   | 840    | 214    | 656    |
| 3. | 29307  | 34979  | 16395  | 14283  | 11486  |
| 4. | 16573  | 10954  | 13904  | 10914  | 23163  |
| 5. | 16990  | 10374  | 11967  | 14759  | 16067  |
| 6. | 6206   | 6152   | 1080   | 97150  | 6612   |
| 7. | 4655   | 3593   | 3063   | 6278   | 6900   |
|    | 118733 | 103180 | 82139  | 95074  | 109265 |
| В. |        |        |        |        |        |
| 1. | 41876  | 33326  | 40608  | 55561  | 56340  |
| 2. | 5767   | 9053   | 9369   | 11943  | 14725  |
| 3. | 68     | 236    | 149    | 354    | 56     |
| 4. | 1977   | 1355   | 1159   | 2107   | 1556   |
| 5. | 864    | 1711   | 406    | 3115   | 520    |
| 6. | 3625   | 5611   | 2536   | 4176   | 4318   |
|    | 54177  | 51292  | 54227  | 77256  | 77515  |
| C. |        |        |        |        |        |
| 1. | 10     | 104    | 43     | 2995   | 1614   |
| 2. | 12019  | 10610  | 17637  | 11510  | 8816   |
| 3  | 3833   | 3577   | 2496   | 3078   | 3982   |
| 4  | 411    | 54     | 177    | 1211   | 321    |
|    | 16273  | 14345  | 20353  | 18794  | 14733  |
| D. |        |        |        |        |        |
| 1. | 2946   | 3811   | 2171   | 3973   | 4345   |
| 2. | 160    | 311    | 0      | 7      | 236    |
| 3. | 107    | 305    | 278    | 149    | 228    |
|    | 3213   | 4427   | 2449   | 4129   | 4809   |
|    | 192396 | 173244 | 159168 | 195253 | 206322 |
|    | 28.8   | 27.8   | 24 7   | 28.6   | 26 3   |

| b. I | Purchased | by | public sector |  |
|------|-----------|----|---------------|--|
|------|-----------|----|---------------|--|

|                       |                         | 1969  | 1970  | 1971   |
|-----------------------|-------------------------|-------|-------|--------|
| A. Air pollution prev | ention equipment        |       |       |        |
| 1. Dust collection    |                         | 1311  | 980   | 2223   |
| 2. Heavy oil desulp   |                         | -     | 0     | 0      |
| 3. Stack fume desu    | Ilphurization           | 3     | 45    | 80     |
| 4. Stack fume nitre   |                         | -     | -     | -      |
| 5. Exhaust gas trea   | atment                  | 420   | 98    | 375    |
| 6. High stack         |                         | 19    | 160   | 463    |
| 7. Related equipme    | ent                     | 773   | 1122  | 365    |
| Subtotal              |                         | 2527  | 2405  | 3506   |
| B. Water pollution p  | prevention equipment    |       |       |        |
| 1. Industrial water   | processing              | 142   | 590   | 2176   |
| 2. Sewerage proces    | sing                    | 12175 | 17108 | 32269  |
| 3. Toilet water pro   | cessing                 | 7550  | 11081 | 12683  |
| 4. Sludge processir   |                         | 2659  | 2981  | 7353   |
| 5. Sea water pollut   | ion prevention          | -     | -     | -      |
| 6. Related equipme    |                         | 8938  | 10964 | 13131  |
| Subtotal              |                         | 31682 | 43419 | 67927  |
| C Waste treatment     | equipment               |       |       |        |
| 1. Household waste    |                         | 12352 | 16520 | 28797  |
| 2. Industrial waste   |                         | -     | -     | 1611   |
| 3. Small-sized incir  | nerators                | -     | -     | -      |
| 4. Related equipme    | ent                     | 1501  | 223   | 494    |
| Subtotal              |                         | 13853 | 16744 | 30902  |
| D. Noise and vibrati  | on prevention equipment |       |       |        |
| 1. Noise abatemen     |                         | -     | 30    | 58     |
| 2. Vibration prever   | ntion                   | -     | 0     | 0      |
| 3. Related equipme    |                         | -     | 0     | 0      |
| Subtotal              |                         | -     | 30    | 58     |
| Total                 |                         | 48062 | 62598 | 102393 |
|                       |                         |       |       |        |

Source: Same as Table 6-1a.

|    |        |        |                                        |        | (unit: curre | nt prices, m | illion yen) |
|----|--------|--------|----------------------------------------|--------|--------------|--------------|-------------|
|    | 1972   | 1973   | 1974                                   | 1975   | 1976         | 1977         | 1978        |
| Α. |        |        |                                        |        |              |              |             |
| 1. | 5597   | 4715   | 6484                                   | 4908   | 8065         | 6164         | 7518        |
| 2. | 0      | 0      | 0                                      | 0      | 0            | 0            | 0           |
| 3. | 82     | 1589   | 817                                    | 1076   | 101          | 48           | 0           |
| 4. | -      | -      | -                                      | -      | 135          | 56           | 0           |
| 5. | 422    | 1121   | 1881                                   | 3326   | 3640         | 3762         | 7202        |
| 6. | 359    | 428    | 0                                      | 0      | 745          | 32           | 110         |
| 7. | 670    | 1212   | 638                                    | 1496   | 1269         | 2615         | 691         |
|    | 7130   | 9065   | 9820                                   | 10806  | 13955        | 12677        | 15521       |
| Β. |        |        | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |        |              |              |             |
| 1. | 6013   | 2401   | 4275                                   | 4753   | 6988         | 6813         | 12489       |
| 2. | 47057  | 58255  | 70670                                  | 81023  | 106268       | 142136       | 168265      |
| 3. | 18599  | 18092  | 30104                                  | 31304  | 32196        | 38044        | 48394       |
| 4. | 8599   | 11508  | 23110                                  | 25330  | 34858        | 30165        | 32486       |
| 5. | 1368   | 144    | 250                                    | 877    | 86           | 760          | 1758        |
| 6. | 16193  | 15125  | 15089                                  | 21009  | 23966        | 26104        | 40026       |
|    | 98888  | 105689 | 143967                                 | 164296 | 204362       | 244022       | 303418      |
| С. |        |        |                                        |        |              |              |             |
| 1. | 42886  | 48418  | 54923                                  | 60317  | 79573        | 84041        | 83703       |
| 2. | 1887   | 2445   | 6614                                   | 2355   | 979          | 2503         | 1736        |
| 3. | -      | -      | -                                      | -      | -            | -            | 0           |
| 4. | 702    | 377    | 1511                                   | 395    | 1248         | 4040         | 12575       |
|    | 45475  | 51240  | 63028                                  | 63067  | 81799        | 90584        | 98014       |
| D. |        |        |                                        |        |              |              |             |
| 1. | 45     | 20     | 5                                      | 121    | 515          | 1022         | 1122        |
| 2. | 0      | 0      | 47                                     | 11     | 40           | 0            | 0           |
| 3. | 0      | 20     | 0                                      | 2      | 9            | 3            | 79          |
|    | 45     | 40     | 52                                     | 134    | 564          | 1025         | 1201        |
|    | 151538 | 166034 | 216867                                 | 238303 | 300680       | 348308       | 418154      |
|    | 40.4   | 34.0   | 52.0                                   | 34.9   | 43.3         | 60.0         | 68 2        |

|    | 1979   | 1980   | 1981   | 1982   | 1983   | 1984   | 1985   |
|----|--------|--------|--------|--------|--------|--------|--------|
| Α. |        |        |        |        |        |        |        |
| 1. | 7916   | 8989   | 5519   | 6435   | 9532   | 6874   | 6500   |
| 2. | 0      | 0      | 0      | 0      | 0      | 0      | -      |
| 3. | 0      | 0      | 0      | 3119   | 35     | 4      | -      |
| 4. | 530    | 954    | 175    | 867    | 3      | 2041   | 116    |
| 5. | 8028   | 5990   | 4189   | 6654   | 5807   | 10426  | 6363   |
| 6. | 367    | 90     | 341    | 585    | 1239   | 100    | 101    |
| 7. | 1429   | 1193   | 1217   | 1974   | 795    | 1124   | 739    |
|    | 18270  | 17216  | 11441  | 19634  | 17411  | 20569  | 13819  |
| В. |        |        |        |        |        |        |        |
| 1. | 17865  | 7381   | 7076   | 6749   | 7224   | 11347  | 22157  |
| 2. | 172614 | 157665 | 150153 | 113690 | 127287 | 121301 | 129090 |
| 3. | 49475  | 56624  | 57092  | 50153  | 48555  | 33948  | 38394  |
| 4. | 38488  | 23791  | 36825  | 41416  | 39229  | 40134  | 46443  |
| 5. | 625    | 137    | 1231   | 2088   | 25     | 143    | 259    |
| 6. | 44410  | 7577   | 16228  | 30516  | 33683  | 27733  | 24841  |
|    | 323477 | 253175 | 268605 | 244612 | 256003 | 234606 | 255286 |
| С. |        |        |        |        |        |        |        |
| 1. | 102600 | 109791 | 103036 | 118943 | 137796 | 89727  | 141633 |
| 2. | 4969   | 5453   | 7304   | 3563   | 2470   | 1774   | 3842   |
| 3. | -      | 1156   | 1574   | 1629   | 1470   | 2751   | 1460   |
| 4. | 1566   | 3239   | 2693   | 6884   | 7240   | 13178  | 7350   |
|    | 109135 | 119639 | 114607 | 131019 | 148976 | 107430 | 154285 |
| D. |        |        |        |        |        |        |        |
| 1. | 878    | 3129   | 3978   | 1151   | 617    | 1481   | 648    |
| 2. | 0      | 317    | 0      | 0      | 0      | 1      | -      |
| 3. | 435    | 30     | 284    | 1062   | 1438   | 1135   | 311    |
|    | 1313   | 3476   | 4262   | 2213   | 2055   | 2617   | 959    |
|    | 452195 | 393506 | 398915 | 397478 | 424445 | 365222 | 424349 |
|    | 70.2   | 60.1   | 58.9   | 65.1   | 65.2   | 61.4   | 65.0   |
|    |        |        |        |        |        |        |        |

|    | 1986   | 1987   | 1988   | 1989   | 1990   |
|----|--------|--------|--------|--------|--------|
| Α. |        |        |        |        |        |
| 1. | 6052   | 5113   | 2738   | 38311  | 9365   |
| 2. | -      | -      | 0      | 0      | 0      |
| 3. | -      | 14     | 21     | 0      | 0      |
| 4. | 150    | 3      | 0      | 0      | 2026   |
| 5. | 4013   | 4528   | 3714   | 6636   | 6200   |
| 6. | 71     | 215    | 385    | 229    | 288    |
| 7. | 1670   | 3407   | 3518   | 243    | 6007   |
|    | 11956  | 13280  | 10376  | 45419  | 23886  |
| Β. |        |        |        |        |        |
| 1. | 9279   | 8364   | 11218  | 8037   | 11353  |
| 2. | 121749 | 134320 | 147056 | 116264 | 131631 |
| 3. | 49208  | 49142  | 40195  | 44889  | 54334  |
| 4. | 53702  | 62038  | 68658  | 70865  | 81373  |
| 5. | 457    | 33     | 0      | 82     | 213    |
| 6. | 23200  | 23377  | 16299  | 22637  | 30286  |
|    | 257595 | 277274 | 283426 | 262774 | 309190 |
| С. |        |        |        |        |        |
| 1  | 131355 | 119496 | 161791 | 150398 | 209158 |
| 2  | 4616   | 1363   | 1787   | 3121   | 748    |
| 3. | 1596   | 1231   | 1369   | 1792   | 1744   |
| 4. | 10592  | 899    | 4856   | 3867   | 3251   |
|    | 148159 | 122989 | 169803 | 159178 | 214901 |
| D. |        |        |        |        |        |
| 1. | 211    | 370    | 910    | 934    | 1278   |
| 2. | -      | -      | 0      | 14     | 6      |
| 3  | 352    | -      | 252    | 360    | 317    |
|    | 563    | 370    | 1162   | 1308   | 1601   |
|    | 418273 | 413913 | 464767 | 468679 | 549578 |
|    | 62.6   | 66.4   | 72.1   | 68.6   | 70.0   |

| a. private | sector        |                         | (unit: billion yen) |
|------------|---------------|-------------------------|---------------------|
|            | Production    | Pollution               | SNA fixed capital   |
|            | of equipment, | prevention              | formation, plant    |
|            | for private   | investment,             | and equipment,      |
| Year       | sector        | industry (%)            | private sector      |
| 1965       |               | 29.7(3.1)               | 5151.4              |
| 1966       |               | 26.8(2.9)               | 6038.6              |
| 1967       |               | 46.2(3.5)               | 7948.4              |
| 1968       |               | 62.4(37)                | 9926.6              |
| 1969       | 91.2          | 106.7(5.0)              | 12569 1             |
| 1970       | 130.5         | 163.7(5.3)              | 15406.3             |
| 1971       | 193.6         | 270.6(6.5)              | 15358.5             |
| 1972       | 218.3         | 323.2( 8.3)             | 16200 8             |
| 1973       | 312.1         | 514 7(10.6)             | 20814 4             |
| 1974       | 450.6         | 917.0(15.6)             | 24660.1             |
| 1975       | 435.7         | 964.5(17.7)             | 24290.5             |
| 1976       | 378.0         | 781.9(13.5)             | 25224.0             |
| 1977       | 219.9         | 405.5( 7.2)             | 26260.6             |
| 1978       | 171.8         | 326.5(5.5)              | 28102.6             |
| 1979       | 161.1         | 290.1(4.5)              | 32937.6             |
| 1980       | 221.3         | 312.8(`3.9)             | 37615.9             |
| 1981       | 243.2         | 403.7(4.8)              | 39744.9             |
| 1982       | 195.5         | 451.6(5.1)              | 40572.5             |
| 1983       | 203.9         | 454.0( <sup>6</sup> .4) | 41163.3             |
| 1984       | 212.0         | 347 5( 4.5)             | 46047.7             |
| 1985       | 202.9         | 366.5( 4.9)             | 51757 9             |
| 1986       | 192.4         | 267 2( 3 6)́            | 53336.5             |
| 1987       | 173.2         | 242.8( 3.6)             | 55917.3             |
| 1988       | 159.2         | 281.5( 4.1)             | 63901.5             |
| 1989       | 195.3         | 276.6( 3.2)́            | 73801.8             |
| 1990       | 206.3         | 340.9( 3.3)             | 83410.0             |

Table 6-4 Pollution prevention investment and selected SNA series

Source: The Japan Association of Industrial Machinery Producers (Table 6-3a above) (sample of about 200 machinery producers), the Ministry of International Trade and Industry Plant and Equipment Investment Plans in Major Industries (sample of about 1,000 corporation with capital of 100 million yen and over under MITI's jurisdiction), and the Economic Planning Agency, Annual Report on National Accounts.

investment, but this is for their internal use only.

The data we have used in this paper relate to machinery only and do not include civil engineering and construction cost, whereas capital formation data compiled by the Ministry of International Trade and Industry (pollution

|      | Production    | Admir  | istrative investme | ent   | SNA fixed                   |
|------|---------------|--------|--------------------|-------|-----------------------------|
|      | of equipment, |        | 6                  | Tatal | capital                     |
| v    | for public    | Sani-  | Sewerage           | Total | formation,<br>public sector |
| Year | sector        | tation | 70                 | 2600  |                             |
| 1965 |               | 44     | 72                 | 2699  | 2782.9                      |
| 1966 |               | 47     | 100                | 25.07 | 3440.1                      |
| 1967 |               | 47     | 109                | 3527  | 3704.6                      |
| 1968 |               | 56     | 142                | 4104  | 4374.5                      |
| 1969 | 48.1          | 68     | 165                | 4847  | 4904.7                      |
| 1970 | 62.6          | 92     | 224                | 5911  | 5890.5                      |
| 1971 | 102.4         | 140    | 371                | 7621  | 7199.5                      |
| 1972 | 151.5         | 199    | 504                | 9321  | 8873.4                      |
| 1973 | 166.0         | 250    | 546                | 10692 | 10830.2                     |
| 1974 | 216 9         | 333    | 625                | 14204 | 12081.0                     |
| 1975 | 238.3         | 377    | 816                | 16514 | 13417.0                     |
| 1976 | 300.7         | 383    | 876                | 17598 | 14556.7                     |
| 1977 | 348.3         | 429    | 1164               | 20868 | 16838.3                     |
| 1978 | 418.2         | 507    | 1447               | 24373 | 20099.1                     |
| 1979 | 452.2         | 521    | 1624               | 26110 | 22005.                      |
| 1980 | 393.5         | 548    | 1848               | 27876 | 22888.3                     |
| 1981 | 398.9         | 578    | 2011               | 28793 | 24278.3                     |
| 1982 | 397.5         | 562    | 2021               | 28762 | 24121.4                     |
| 1983 | 424.5         | 568    | 1896               | 27987 | 23579.                      |
| 1984 | 365.2         | 539    | 1872               | 27640 | 23105.4                     |
| 1985 | 424.3         | 558    | 1989               | 26506 | 21648                       |
| 1986 | 418.3         | 565    | 2206               | 27861 | 22270.                      |
| 1987 | 413.9         | 605    | 2646               | 30412 | 23729.                      |
| 1988 | 464.8         | 642    | 2647               | 31679 | 25046.                      |
| 1989 | 468.7         | 700    | 2751               | 33828 | 25881                       |
| 1990 | 549.5         |        |                    |       | 28104.                      |

Source: The Japan Association of Industrial Machinery Producers (Table 6-3b above), the Ministry of Home Affairs, *Administrative Investment* and the Economic Planning Agency. *Annual Report on National Accounts*.

prevention investment), the Ministry of Home Affairs (administrative investment), and the Economic Planning Agency (SNA) include both machinery and construction.

As for details of supplying sectors of fixed capital formation, one should re-

|      | Number of units | Capacity     | Cumulative    |
|------|-----------------|--------------|---------------|
|      |                 |              | investment    |
| Year | (units)         | (million kl) | (billion yen) |
| 1966 |                 |              | 0.1           |
| 1967 | 1(0,1)          | 2,231        | 12.2          |
| 1968 |                 |              | 31.9          |
| 1969 | 13(11, 2)       | 16,990       | 56.6          |
| 1970 |                 |              | 66.2          |
| 1971 | 20(16, 4)       | 29,555       | 80.8          |
| 1972 |                 |              | 107.8         |
| 1973 | 19(14, 5)       | 49,997       | 141.0         |
| 1974 | 32(26, 6)       | 55,707       | 161.0         |
| 1975 | 39(30, 9)       | 73,957       | 214 4         |
| 1976 | 42(31,11)       | 78,367       | 247.0         |
| 1977 | 42(31,11)       | 80,117       | 250.4         |
| 1978 | 43(32,11)       | 81,290       | 251.0         |
| 1979 | 43(32,11)       | 81,696       | 251.7         |
| 1980 | 56(44,12)       | 83,611       | 257.8         |
| 1981 | 56(44,12)       | 83,611       | 260.2         |
| 1982 | 56(44,12)       | 83,611       | 261.4         |
| 1983 |                 |              | 265.5         |
| 1984 |                 |              | 267 3         |
| 1985 |                 |              | 267.6         |
| 1986 |                 |              | 267.6         |
| 1987 |                 |              | 269.0         |
| 1988 | 41(29,12)       | 74,460       | 269 6         |
| 1989 |                 |              | 269 8         |
| 1990 | 38(26,12)       | 70,810       | 270.2         |

| Table | 6-5 | Heavy  | n oil | desu | In | hurization  |
|-------|-----|--------|-------|------|----|-------------|
| Iavic | 0-5 | IICavy |       | ucsu | ıμ | IIIIIZation |

- Note: Desulphurization capacity data are compiled by the Petroleum Association and refer to annual capacity which is derived from BPSD (barrels per stream day) figure assuming that the facility will be utilized 365 days a year. Figures in parantheses refer to the number of units utilizing indirect and direct desulphurization process, respectively. Cumulative investment series has been derived by the present author from production data on 'heavy oil desulphurization' for the private sector compiled by the Japan Association of Industrial Machinery Producers, converted to 1970 prices. Gross output deflator of the general machinery sector (P34) has been used in the conversion.
- Sources: Environment White Papervarious issues. The Japan Association of Industrial Machinery Producers, The Production of Pollution Prevention Equipment, various issues.

fer to the fixed capital formation matrix compiled every five years, coordinated

|      | Number of units | Capacity            | Cumulative    |
|------|-----------------|---------------------|---------------|
|      |                 |                     | investment    |
| Year | (units)         | (million $Nm^3/h$ ) | (billion yen) |
| 1966 |                 |                     | 03            |
| 1967 |                 |                     | 1.1           |
| 1968 |                 |                     | 32            |
| 1969 |                 |                     | 4 5           |
| 1970 | 102             | 5.4                 | 8.1           |
| 1971 | 183             | 93                  | 16 2          |
| 1972 | 323             | 18.0                | 30 7          |
| 1973 | 543             | 28.8                | 63 0          |
| 1974 | 768             | 42.7                | 164 4         |
| 1975 | 994             | 79.5                | 228.6         |
| 1976 | 1,134           | 103 8               | 295 8         |
| 1977 | 1,192           | 110.5               | 326.1         |
| 1978 | 1,227           | 114.8               | 339 9         |
| 1979 | 1,266           | 117.5               | 347 0         |
| 1980 | 1,329           | 122 0               | 363 1         |
| 1981 | 1,362           | 126.5               | 380 3         |
| 1982 | 1,366           | 127 2               | 402 5         |
| 1983 | 1,405           | 129.1               | 426 9         |
| 1984 | 1,583           | 133 4               | 450 6         |
| 1985 | 1,741           | 154.5               | 474.8         |
| 1986 | 1,758           | 155.0               | 493.9         |
| 1987 | 1,789           | 169.2               | 517 4         |
| 1988 | 1,810           | 176.3               | 528 6         |
| 1989 | 1,843           | 178.8               | 538 4         |
| 1990 | 1,914           | 193.8               | 545 7         |

| Table | 6-6 | Flue | σας | desul | phurization |
|-------|-----|------|-----|-------|-------------|
| Iable | 0-0 | riue | gas | ucsui | phunzation  |

- Note Data on capacity are based on a series of surveys conducted by the Environment Agency The figures up to fiscal 1982 are as of January 1 of the pertinent fiscal year and those from 1983 on are as of March 31 (end of the fiscal year) Cumulative investment series has been derived by the present author from production data on 'stack fume desulphurization' for the private sector compiled by the Japan Association of Industrial Machinery Producers, converted to 1970 prices Gross output deflator of the general machinery sector (P34) has been used in the conversion.
- Sources: Environment Agency Environment White Paper, various issues The Japan Association of Industrial Machinery Producers, The Production of Pollution Prevention Equipment, various issues.

by the Administrative Management Agency.[8] This source provides such data for individual sectors corresponding to the classification scheme of the input-

|      | Number of units | Capacity            | Cumulative<br>investment |
|------|-----------------|---------------------|--------------------------|
| Year | (units)         | (million $Nm^3/h$ ) | (billion yen)            |
| 1972 | 5               | 0.1                 |                          |
| 1973 | 10              | 0.4                 |                          |
| 1974 | 20              | 1.2                 | _                        |
| 1975 | 45              | 4.3                 | 5.8                      |
| 1976 | 71              | 8.2                 | 9.6                      |
| 1977 | 93              | 13.7                | 12.5                     |
| 1978 | 109             | 22.2                | 15.4                     |
| 1979 | 122             | 28.4                | 24.1                     |
| 1980 | 140             | 39.1                | 37.6                     |
| 1981 | 175             | 63.6                | 58 1                     |
| 1982 | 188             | 71.7                | 64.7                     |
| 1983 | 231             | 95.1                | 77.6                     |
| 1984 | 253             | 103 5               | 90.8                     |
| 1985 | 305             | 109.9               | 100.4                    |
| 1986 | 323             | 125.9               | 111.2                    |
| 1987 | 348             | 138.1               | 118.6                    |
| 1988 | 379             | 142.1               | 128.0                    |
| 1989 | 430             | 159.1               | 135.5                    |
| 1990 | 538             | 200.0               | 150.2                    |

Table 6-7 Flue gas nitrogen oxide removal

- Note: Data based on a series of surveys conducted by the Environment Agency. The figures up to fiscal 1982 are as of January 1 of the pertinent fiscal year and those from 1983 on are as of March 31 (end of the fiscal year). Cumulative investment series has been derived by the present author from production data on 'stack fume nitrogen oxide removal' for the private sector compiled by the Japan Association of Industrial Machinery Producers, converted to 1970 prices Gross output deflator of the general machinery sector (P34) has been used in the conversion.
- Sources: Environment White Paper, 1993 edition, Detailed Chapter Volume, p.73. The Japan Association of Industrial Machinery Producers, The Production of Pollution Prevention Equipment.

output tables. One can also refer to converters for fixed capital formation in the private and public sectors in the annual input-output tables in order to know the supplying sectors.

If we can assume that pollution prevention investment is of the same con-

| Table 0-0 | Recycling of ma | ustrial water | (units 1)                  | 000 3 /                                  |
|-----------|-----------------|---------------|----------------------------|------------------------------------------|
| <u></u>   | Industrial      | Plain         | Recycled                   | 0,000 m <sup>3</sup> /day)<br>Cumulative |
|           |                 |               | Recycleu                   | investment                               |
|           | water           | water         | (%)                        |                                          |
| 1004      | total           | 47.755        |                            | (bil. yen)                               |
| 1964      | 66,916          | 47,755        | 15,036(31.5)               |                                          |
| 1965      | 70,524          | 49,162        | 17,826(36 3)               | _                                        |
| 1966      | 76,755          | 53,107        | 21,093(39.7)               | 1.8                                      |
| 1967      | 83,829          | 57,698        | 24,180(41.9)               | 5.9                                      |
| 1968      | 93,306          | 64,738        | 28,907(44.5)               | 11.9                                     |
| 1969      | 106,557         | 74,406        | 35,790(48.1)               | 21.9                                     |
| 1970      | 123,181         | 85,042        | 43,986(51.7)               | 50.8                                     |
| 1971      | 137,502         | 95,247        | 53,310(56.0)               | 102.7                                    |
| 1972      | 143,738         | 101,458       | 58,889(58.0)               | 166.2                                    |
| 1973      | 159,669         | 113,915       | 70,658(62 0)               | 233.8                                    |
| 1974      | 166,454         | 120,040       | 77,790(64.8)               | 289.0                                    |
| 1975      | 166,732         | 121,625       | 81,432(67.0)               | 351.8                                    |
| 1976      | 172,748         | 127,863       | 88,030(68.8)               | 398 9                                    |
| 1977      | 176,882         | 131,707       | 92,947(70.4)               | 429.8                                    |
| 1978      | 176,720         | 132,990       | 95,430(71.8)               | 458.0                                    |
| 1979      | 181,310         | 137,820       | 100,790(73.1)              | 484 5                                    |
| 1980      | 180,190         | 138,850       | 102,225(73.6)              | 513.5                                    |
| 1981      | 176,448         | 137,300       | 101,517(73.9)              | 535.7                                    |
| 1982      | 172,254         | 133,914       | 98,775(73.9 <sup>°</sup> ) | 563.1                                    |
| 1983      | 171,178         | 133,868       | 98,786( <b>73.</b> 7)      | 5878                                     |
| 1984      | 174,976         | 136,884       | 101,938(74.4)              | 622.6                                    |
| 1985      | 175,591         | 137,309       | 102,381(74.5)              | 651.1                                    |
| 1986      | 173,137         | 136,290       | 101,870(74.5)              | 678.4                                    |
| 1987      | 173,738         | 137,303       | 102,869(74.9)              | 700.8                                    |
| 1988      | 176,795         | 139,525       | 105,856(75.8)              | 728 3                                    |
| 1989      | 181,823         | 143,796       | 108,856(75.7)              | 766.5                                    |
| 1990      | 186,300         | 146,763       | 111,461(75.9)              | 802.5                                    |

Table 6-8 Recycling of industrial water

- Note: The data on industrial water refer to establishments with 30 or more employees. The difference between total and plain water is attributable to sea water. Cumulative investment series has been derived by the present author from production data on 'industrial water processing' for the private sector compiled by the Japan Association of Industrial Machinery Producers, converted to 1970 prices. Gross output deflator of the general machinery sector (P34) has been used in the conversion.
- Sources: Ministry of International Trade and Industry, Census of Manufactures. The Japan Association of Industrial Machinery Producers, The Production of Pollution Prevention Equipment.

| <b></b> | Number of treat- | Area under sewer- | Cumulative    |
|---------|------------------|-------------------|---------------|
|         | ment terminals   | age treatment     | investment    |
| Year    | (number)         | (hectares)(%)     | (billion yen) |
| 1965    | n.a.             | 49,686( 4.0)      |               |
| 1966    | n a              | 58,324(47)        | 8.0           |
| 1967    | na               | 66,962(54)        | 15.6          |
| 1968    | n a              | 77,518(62)        | 23 7          |
| 1969    | n a              | 88,466(71)        | 36 3          |
| 1970    | 238              | 99,242(80)        | 53.4          |
| 1971    | n.a.             | 116,752(94)       | 85.3          |
| 1972    | na.              | 134,619(10 8)     | 131.8         |
| 1973    | na               | 154,206(124)      | 183 8         |
| 1974    | n.a              | 170,996(13 7)     | 233.0         |
| 1975    | 341              | 183,966(14 8)     | 288 2         |
| 1976    | na               | 198,211(15 9)     | 361 2         |
| 1977    | n.a              | 214,371(17 2)     | 457 1         |
| 1978    | na               | 235,887(19 0)     | 570 9         |
| 1979    | n a.             | 260,677(20 9)     | 685 2         |
| 1980    | 439              | 283,646(22.8)     | 785.0         |
| 1981    | 463              | 306,636(24 6)     | 878 5         |
| 1982    | 479              | 332,433(26 7)     | 949 0         |
| 1983    | 499              | 360,543(29 0)     | 1029.3        |
| 1984    | 533              | 390,567(31 4)     | 1106 1        |
| 1985    | 568              | 426,627(34 3)     | 1187.9        |
| 1986    | 596              | 461,696(37 0)     | 1266.2        |
| 1987    | 617              | 500,011(40 2)     | 1356 5        |
| 1988    | 648              | 543,889(43 0)     | 1456.3        |
| 1989    | 693              | 592,556(47 6)     | 1536.1        |
| 1990    | 744              | 644,957(51 8)     | 1620 3        |

Table 6-9 Sewerage treatment

Note The percentage of area under sewerage treatment is calculated as the ratio to planned area as of 1989 (1,244,772 hectares) Cumulative investment series has been derived by the present author from production data on 'sewerage processing' for the public sector compiled by the Japan Association of Industrial Machinery Producers, converted to 1970 prices Gross output deflator of the general machinery sector (P34) has been used in the conversion

Source Ministry of Home Affairs, Administrative Investment The Japan Association of Industrial Machinery Producers, The Production of Pollution Prevention Equipment

struct as the fixed capital formation in general, we have the clues for knowing

|      | Total         | Incinerated   | Land fill    | Cumulative    |
|------|---------------|---------------|--------------|---------------|
|      | volume        |               |              | investment    |
| Year | (ton/day)     | (ton/day)(%)  | (ton/day)(%) | (billion yen) |
| 1965 | 44,522        | 16,896(37.9)  | 17,659(39.6) | n.a.          |
| 1966 | 48,340        | 21,899(45.2)  | 16,594(34.3) | n.a.          |
| 1967 | 53,825        | 25,459(47.3)  | 20,292(37.7) | n.a.          |
| 1968 | 62,005        | 29,959(48.3)  | 22,470(36.2) | n.a.          |
| 1969 | 70,115        | 35,758(51.0)  | 24,688(35.3) | 12.8          |
| 1970 | 76,998        | 45,559(55 3)  | 25,715(33.5) | 29.8          |
| 1971 | 83,328        | 37,717(45.3)  | 27,543(33.1) | 57.8          |
| 1972 | 91,757        | 42,604(46.5)  | 30,587(33.3) | 100.2         |
| 1973 | 95,052        | 45,170(47.5)  | 32,003(33 7) | 143.4         |
| 1974 | 84,205        | 45,983(54.6)  | 25,430(30 2) | 181.6         |
| 1975 | 87,167        | 50,380(57.8)  | 24,461(28.1) | 222.7         |
| 1976 | 87,406        | 52,915(60.6)  | 23,529(26.9) | 277 3         |
| 1977 | <u>90,285</u> | 57,140(63 3)  | 23,726(26.3) | 334.0         |
| 1977 | 113,775       | 62,014(58.6)  | 42,216(39.9) | 334.0         |
| 1978 | 118,335       | 65,394(58.9)  | 43,642(39.3) | 390.7         |
| 1979 | 121,904       | 67,887(59.0)  | 44,509(38 7) | 458.6         |
| 1980 | 120,371       | 68,739(60 4)  | 42,139(37 1) | 578.1         |
| 1981 | 116,818       | 71,102(64.5)  | 35,651(32.3) | 592 2         |
| 1982 | 121,857       | 75,264(65.3)  | 37,261(32.3) | 666.1         |
| 1983 | 116,364       | 75,022(67.6)  | 32,841(29.6) | 753.0         |
| 1984 | 117,916       | 77,841(69.1)  | 31,535(28 0) | 809.8         |
| 1985 | 119,041       | 80,370(70 6)  | 30,007(26.4) | 899.5         |
| 1986 | 122,599       | 84,548(71.9)  | 29,008(24.6) | 984.0         |
| 1987 | 126,956       | 89,116(72.6)  | 28,773(23.6) | 1064.4        |
| 1988 | 132,582       | 93,552(72.8)  | 29,613(23 0) | 1174 2        |
| 1989 | 136,912       | 98,424(73 9)  | 28,772(21 6) |               |
| 1990 | 138,196       | 100,482(74.4) | 27,519(20.4) |               |

| Table     | 6-10  | Munici | pal waste  | treatment |
|-----------|-------|--------|------------|-----------|
| 1 4 6 1 4 | ~ ~ ~ |        | pai 114010 |           |

Note: Data compiled by the Environment Agency, *Environment White Paper*, various issues. Cumulative investment series has been derived by the present author from production data on 'household waste' in the public sector in Table 6-3, converted to 1970 prices. Percentages are as against total volume processed excluding the portion which is self-disposed.

the total magnitude, from the portion related to machinery sectors.

|                          |                                       | Total volu | me      |         |  |  |
|--------------------------|---------------------------------------|------------|---------|---------|--|--|
|                          | (1000 tons/year)                      |            |         |         |  |  |
|                          | 1975                                  | 1980       | 1985    | 1990    |  |  |
| Cinder                   | 1,203                                 | 1,797      | 2,409   | 2,678   |  |  |
| Sludge                   | 37,660                                | 88,190     | 112,821 | 171,450 |  |  |
| Oils                     | 2,289                                 | 2,419      | 3,672   | 3,471   |  |  |
| Acids                    | 9,872                                 | 10,219     | 4,320   | 2,674   |  |  |
| Alkalis                  | 14,435                                | 6,090      | 923     | 1,547   |  |  |
| Plastics                 | 1,480                                 | 2,232      | 2,816   | 4,334   |  |  |
| Paper                    | 991                                   | 1,624      | 1,472   | 1,193   |  |  |
| Wood                     | 7,890                                 | 6,628      | 8,058   | 6,573   |  |  |
| Textiles                 | 204                                   | 101        | 98      | 99      |  |  |
| Organic wastes           | 2,596                                 | 4,323      | 2,207   | 3,543   |  |  |
| Rubber                   | 597                                   | 92         | 78      | 94      |  |  |
| Metals                   | 9,985                                 | 13,111     | 8,877   | 8,533   |  |  |
| Glass and ceramics       | 2,870                                 | 2,297      | 3,910   | 5,295   |  |  |
| Smelter residuals        | 60,950                                | 60,561     | 41,649  | 42,507  |  |  |
| Building materials       | 34,144                                | 30,007     | 48,948  | 54,798  |  |  |
| Dusts                    | 8,101                                 | 11,731     | 6,224   | 7,491   |  |  |
| Domestic animal residues | 41,222                                | 49,691     | 62,558  | 77,236  |  |  |
| Others                   |                                       | 1,199      | 1,230   | 1,218   |  |  |
| Total                    | 236,489                               | 292,312    | 312,271 | 394,736 |  |  |
| Cumulative               | · · · · · · · · · · · · · · · · · · · |            |         |         |  |  |
| investment               | 39.2                                  | 82.6       | 110.3   | 150.8   |  |  |
| (bil. yen)               |                                       |            |         |         |  |  |

#### Table 6-11 Industrial waste treatment

Note: Data on industrial waste are compiled by the Ministry of Health and Welfare. Cumulative investment series has been derived by the present author from production data on 'industrial waste processing' for the private sector compiled by the Japan Association of Industrial Machinery Producers, converted to 1970 prices. Gross output deflator of the general machinery sector (P34) has been used in the conversion.

## 6.3 Pollution prevention capacity

Our next task is to examine the build-up of pollution prevention capacity. We focus our attention on the following.

Air:

- (a) Heavy oil desulphurization (Table 6-5)
- (b) Flue gas desulphurization (Table 6-6)

|                          | Percentage recycl | ed   |       |       |
|--------------------------|-------------------|------|-------|-------|
|                          | (percent)         |      |       |       |
|                          | 1979              | 1983 | 1987  | 1990  |
| Cinder                   | 23.3              | 42.9 | 34.2  | 17.5  |
| Sludge                   | 10.5              | 24.8 | 13.6  | 11.5  |
| Oils                     | 24.8              | 24.6 | 28 0  | 24.5  |
| Acids                    | 19.4              | 33.6 | 16.1  | 26.5  |
| Alkalis                  | 19 5              | 28.8 | 24 1  | 8.0   |
| Plastics                 | 25.8              | 24.4 | 26.5  | 31.2  |
| Paper                    | 35.6              | 43.8 | 32.4  | 63 2  |
| Wood                     | 22.3              | 95.1 | 78.6  | 43.3  |
| Textiles                 | 40.2              | 50.6 | 33.3  | 51.1  |
| Organic wastes           | 31.9              | 83.3 | 74.5  | 31 3  |
| Rubber                   | 19.3              | 25.6 | 14.5  | 12.5  |
| Metals                   | 98.7              | 97.5 | 99.5  | 93 0  |
| Glass and ceramics       | 36 5              | 37.9 | 47.9  | 50.8  |
| Smelter residuals        | 81.4              | 75.1 | 87.9  | 84.7  |
| Building materials       | 1.6               | 10.1 | 15.1  | 16.0  |
| Dusts                    | 64 7              | 58.2 | 78 0  |       |
| Domestic animal residues |                   |      |       |       |
| Others                   |                   |      |       |       |
| Total                    | 54.6              | 58.5 | 55 4  | n.a.  |
| Cumulative               |                   |      |       |       |
| investment               | 76.1              | 96.9 | 125.3 | 150.8 |
| (bil. yen)               |                   |      |       |       |

Sources: Environment White Paper, various issues. The Japan Association of Industrial Machinery Producers, The Production of Pollution Prevention Equipment.

(c) Flue gas nitrogen oxides removal (Table 6-7)

Water:

- (e) Industrial waste water processing (Table 6-8)
- (f) Sewerage treatment (Table 6-9)

Waste:

- (g) Municipal waste treatment (Table 6-10)
- (h) Industrial waste treatment (Table 6-11)

We omit detailed discussion for lack of space, and interested readers are referred to the tables.

| Table 0-12 | I rends in air quality |           |            |
|------------|------------------------|-----------|------------|
|            | Sulphur                | Carbon    | Floating   |
|            | dioxide                | monoxide  | particles  |
|            | (ppm)                  | (ppm)     | $(mg/m^3)$ |
| Year       |                        |           |            |
| 1965       | 0.057                  | 3.3       |            |
| 1966       | 0.057                  | 3.2       |            |
| 1967       | 0.059                  | 4 1       |            |
| 1968       | 0.055                  | 4.4       |            |
| 1969       | 0.050                  | 51        |            |
| 1970       | 0 043                  | <u>45</u> |            |
| 1971       | 0.037                  | 60        |            |
| 1972       | 0.031                  | 54        |            |
| 1973       | 0 030                  | 53        |            |
| 1974       | 0.024                  | 50        | 0 059      |
| 1975       | 0 021                  | 4 7       | 0.051      |
| 1976       | 0.020                  | 4.2       | 0.050      |
| 1977       | 0.018                  | 3.7       | 0.047      |
| 1978       | 0.017                  | 3.3       | 0.048      |
| 1979       | 0.016                  | 3.2       | 0 045      |
| 1980       | 0 016                  | 2.9       | 0.043      |
| 1981       | 0.014                  | 29        | 0 043      |
| 1982       | 0.013                  | 2.6       | 0.041      |
| 1983       | 0.012                  | 2.4       | 0 036      |
| 1984       | 0.012                  | 2 5       | 0.041      |
| 1985       | 0 011                  | 2.4       | 0 037      |
| 1986       | 0.010                  | 2 4       | 0 041      |
| 1987       | 0.010                  | 2 4       | 0.041      |
| 1988       | 0 010                  | 2.4       | 0 039      |
| 1989       | 0.011                  | 2.4       | 0.039      |
| 1990       | 0.011                  | 2.3       | 0 042      |

Table 6-12 Trends in air quality

Note:  $SO_2$  levels are the average of 15 general observation stations from which time-series data are available. CO levels relate to the average of 15 auto exhaust gas observation stations Floating particles relate to the average of 40 general observation stations

### 6.4 Improvement in environmental quality

The next question is how to establish a relationship between pollution prevention effort and actual level of environmental quality. This is a difficult question to tackle in our framework. Environmental quality is a concept which inherently focuses on individual regions, and the span of the region is best

|      | Nitrogen monoxide |              | Nitrogen dioxide |              |  |
|------|-------------------|--------------|------------------|--------------|--|
|      | General           | Auto exhaust | General          | Auto exhaust |  |
|      | stations          | stations     | stations         | stations     |  |
| Year | (ppm)             | (ppm)        | (ppm)            | (ppm)        |  |
| 1965 |                   | 0.047        | 0.026            | 0.026        |  |
| 1966 |                   | 0.037        | 0.030            | 0.030        |  |
| 1967 |                   | 0.036        | 0.025            | 0.025        |  |
| 1968 |                   | 0.060        | 0.023            | 0 031        |  |
| 1969 |                   | <u>0.133</u> | <u>0 023</u>     | <u>0 061</u> |  |
| 1970 |                   | 0.022        |                  |              |  |
| 1971 | 0.034             |              | 0.021            | 0 032        |  |
| 1972 | 0.032             |              | 0.020            | 0 034        |  |
| 1973 | 0.030             | 0.103        | 0 025            | 0.037        |  |
| 1974 | 0.029             | 0.096        | 0 027            | 0 040        |  |
| 1975 | 0.027             | 0.089        | 0.026            | 0 040        |  |
| 1976 | 0.027             | 0.093        | 0 027            | 0.042        |  |
| 1977 | 0.023             | 0.083        | 0 026            | 0 042        |  |
| 1978 | 0.024             | 0.080        | 0.028            | 0.043        |  |
| 1979 | 0.023             | 0.078        | 0.028            | 0.042        |  |
| 1980 | 0.022             | 0.075        | 0.027            | 0.043        |  |
| 1981 | 0.022             | 0 074        | 0.026            | 0.042        |  |
| 1982 | 0.023             | 0.069        | 0 025            | 0 042        |  |
| 1983 | 0.021             | 0.070        | 0.025            | 0 040        |  |
| 1984 | 0.021             | 0.069        | 0.025            | 0.038        |  |
| 1985 | 0.021             | 0.073        | 0.024            | 0 037        |  |
| 1986 | 0.023             | 0.073        | 0.026            | 0.039        |  |
| 1987 | 0.024             | 0.071        | 0.028            | 0.041        |  |
| 1988 | 0.023             | 0.072        | 0.028            | 0.042        |  |
| 1989 | 0.023             | 0.068        | 0.028            | 0 042        |  |
| 1990 | 0.023             | 0.068        | 0.028            | 0.041        |  |

For automobile exhaust gas, the data for 1965-1969 refer to Kasumigaseki, Tokyo. *Environment White Paper, 1971.* For general air, the data for 1968 and 1969 refer to the average of 7 observation stations. *Environment White Paper, 1976* 

Source: Environment Agency, Environment White Paper.

defined with reference to people's daily lives. The national average pollution level, for instance, does not mean very much. However, the regional dimension is not explicitly recognized in the framework we are discussing here. With this

|      | Water containing | BOD lev             | COD level,   |            |
|------|------------------|---------------------|--------------|------------|
|      | hazardous        | 8 main urban rivers | Sumida river | Tokyo Bay  |
| Year | materials (%)    | (mg/l)              | (mg/l)       | (mg/l)     |
| 1965 |                  |                     |              |            |
| 1966 |                  | <u>23.5</u>         | <u>16.0</u>  | <u>3.5</u> |
| 1967 |                  |                     |              |            |
| 1968 |                  |                     |              |            |
| 1969 |                  |                     |              | 2.1        |
| 1970 | 1.40             |                     |              | 3.8        |
| 1971 | 0.63             | 16.6                | 13.0         | 5.2        |
| 1972 | 0.28             | 13.6                | 7.5          | 4.7        |
| 1973 | 0.23             | 13.1                | 7.5          | 5.8        |
| 1974 | 0.20             | 10.5                | 5.6          | 4.9        |
| 1975 | 0.17             | 11.1                | 4.9          | 2.7        |
| 1976 | 0.09             | 10.4                | 6.0          | 3.3        |
| 1977 | 80.0             | 11.2                | 3.9          | 3.4        |
| 1978 | 0.07             | 8.8                 | 4 7          | 3.2        |
| 1979 | 0.06             | 8.6                 | 4.8          | <u>3.0</u> |
| 1980 | 0.05             | 8.8                 | 5.1          | 2.7        |
| 1981 | 0.05             | 6.8                 | 3.8          | 2.7        |
| 1982 | 0.03             | 6.8                 | 3.7          | 2.9        |
| 1983 | 0.04             | 6.8                 | 3.7          | 2.7        |
| 1984 | 0.03             | 6.8                 | 4.6          | 2.6        |
| 1985 | 0.02             | 6.8                 | 3.6          | 3.4        |
| 1986 | 0.02             | 6.7                 | 3.8          | 3.1        |
| 1987 | 0.02             | 7.2                 | 31           | 3.6        |
| 1988 | 0.02             | 5.9                 | 2.8          | 3.3        |
| 1989 | 0.01             | 6.0                 | 2.6          | 3.3        |
| 1990 | 0 01             | 5.6                 | 2 7          | 3.3        |

Table 6-13 Trends in water quality

Note: Figures given for hazardous materials refer to the percentage of samples BOD level refers to the average of 8 main urban rivers.

Source: Environment Agency, Environment White Paper.

limit in mind, we have to rely in this paper on observations from selected points.

There are data sets which enables us to handle a detailed regional analysis, such as grid data encompassing the natural environment, land use, population density, production facilities and so forth. In between the aggregate data and grid data, we have a whole set of data from numerous observation points which were put into place as environmental policy developed. One can conceivably come up with some aggregate value based on them, but at the cost of losing some of the observations from earlier years.

As for the air pollution level, we chose to show  $SO_2$ ,  $NO_2$ , CO, and floating particles. The sulphur dioxide data are the average of 15 observation stations engaged in general air quality from which the longest observation period is available. The nitrogen monoxide data are from two sources: one is the average of 22 stations dealing with automobile exhaust gas and the other the average of 29 stations dealing with general air quality. The nitrogen dioxide data are also from two sources: one is the average of the same 15 observation stations as above which deal with the general air quality, and the other is the average of 22 observation stations, which deal with automobile exhaust gas. Carbon monoxide data are from 15 of the stations engaged in the observation of automobile exhaust gas from which the longest time series data are available. Small floating particles data are from 40 stations engaged in general air quality observation.[10]

About one-half of the  $NO_X$  comes from mobile sources, which is not shown in the tables. Passenger vehicles, small-sized and large-sized trucks used to have nearly the same share in  $NO_X$  output in the mid-1970s. Since then, a series of regulations have been implemented. In the case of passenger vehicles (gasoline and LPG), taking the 1973 unregulated level as 100%,  $NO_X$  exhaust has been reduced to 8% in 1978. Likewise,  $NO_X$  exhaust from small-sized trucks (gasoline and LPG) has been reduced to 16% and from large-sized trucks (diesel) to 26%. As a result, while total  $NO_X$  from mobile sources still constitutes about one-half of the total, nearly half of it is attributable to large trucks.[*Environment White Paper*, 1990, General Discussion volume p.129, Detailed volume p.88]

## 6.5 From environmental accounting to modeling

I have suggested earlier that, in dealing with resource allocation by social purpose including environmental protection, it is both practical and useful to distinguish six phases which include the following.[Uno 1989a, pp.181-208]

- (1) Financing account by social purpose
- (2) Expenditure account by social purpose

- (3) Interindustry relation account
- (4) Capital stock account
- (5) Performance account
- (6) Social status account (which is linked to social indicators and subjective evaluation)

The first and the second are usually obtained by rearranging various statistics on the government budget, business investment, production cost, etc. One advantage of rearranging statistics by social purpose is that, compared to the original data where activities are recorded by institutional units, it reveals the activities of various institutions in a particular sphere of social concern. It is useful in distinguishing the role of the public sector, for instance. The finance account reveals who is paying for the particular social objectives, including lending and providing of subsidy. The expenditure account represents spending by business, household, and the government in the form of investment, consumption, or as intermediate input.

The third phase is what we commonly see in national income statistics and input-output tables, and deals with the interindustry repercussion of the expenditure, employment pattern with due consideration given to interindustry relations, etc. We opt not to alter the existing SNA framework which is aimed at recording, as a general rule, market transactions. Imputation of various aspects which do not take place in the market mechanism, such as the value of leisure time, 'true' value of resources consumption, environmental damage, etc. usually swamps market transactions in their magnitude and probably obscures the validity of established core accounts. Rather, the new dimensions should be constructed in the form of a satellite account, as we see below, and used in conjunction with the core account to arrive at some adjusted figures such as the value added adjusted for environmental damage, the measures of economic well-being, GNP including the production of intangibles, etc.

Energy requirement, generation of pollutants (not emission) in the production process, and the like are also closely related to the third phase described here, although this aspect is often expressed in physical terms.

The fourth phase deals with capital stock, both private and public, which is related to a particular social concern. When one shifts attention from current production (economic point of view) to well-being of the population, stock variables become more relevant.

#### POLLUTION PREVENTION INVESTMENT

The fifth phase is what I call performance account. This deals with the 'service' or the 'function' rendered by the capital stock for various social purposes. In our case, a pertinent variable would be pollutants removed or waste treated. In this regard, whereas the capital stock account is in terms of pecuniary unit, the performance account should be in terms of physical unit to describe the capacity of such facilities. Correspondingly, the linkages between variables expressed in money terms, such as value of production, and those espressed in physical units, such as input of resources and pollutants generated, needs to be established. Since these characteristics vary according to the sectors in question, we need proper disaggregation.

The sixth phase is the social status account, which describes the conditions prevailing in various aspects of social life. In our case, this would be environmental quality.

Then comes the problem of constructing a policy model based on the accounts. This is commonly done in the case of phase three, which deals with the production sphere. It is also useful to extend the methodology to other spheres. One advantage of econometric modeling is that it enables us to examine the complex interrelationship among various variables which is not apparent from casual and intuitive observation. It also enables us to experiment with simulation. When policy variables are embedded in the model specification, the effectiveness of policy intervention can also be examined.

It is interesting to see how modeling is done in the environmental field. Let us take a look at some of the modeling attempts.

A. Pollution Subsystem in COSMO (Comprehensive System Model) by the Economic Planning Agency [1973, pp.26-27, 67, 264-372]

COSMO is a large-sized, multisectoral, econometric model constructed for the purpose of dealing with various social concerns which emerged after a long and rather successful industrialization drive. One of the most serious problems the model considered was environmental disruption.

Here we look at the relation between the economy-industry subsystem and the pollution subsystem of the model. The economy-industry subsystem has 14 sectors, whereas the pollution subsystem distinguishes 18 sectors for  $SO_X$ , 20 for BOD, and 29 for industrial wastes. The value of production, the number of workers, and the energy consumption are determined for each sector. The volume of pollutants generated is calculated based on these variables, multiplied by the unit pollutant output coefficients for each pollutant category.

The environmental standards are determined as follows. For  $SO_X$ , the output level is expressed in terms of volume (ton) per year. For BOD, the output per day (ton) is used. Treatment rate (%) is used for industrial wastes. In view of the fact that pollution prevention depends very much on the technical development of pollution prevention equipment, the possible dates for the introduction of new technologies to actual plants have been examined. The stipulation in environmental regulation, in conjunction with new technology, determines the volume of pollutants that has to be removed. This, when multiplied by the unit investment requirement (i.e., investment requirement/unit of pollutant) and the unit pollutant removal cost (i.e., cost/unit of pollutant), determines the amount of investment and the pollution prevention cost. These variables are linked to the economy-industry subsystem with a time lag of one period.

In the economy-industry block, pollution prevention investment becomes a component of investment demand. The pollution prevention cost, on the other hand, affects the real economy via two channels. (1) Based on polluter-pays principle, the cost is internalized through price increases. In this case, the effect will be a sequence of price rises (producer prices—wholesale prices export and import prices), the final result of which would be the reduction in exports and the expansion of imports. (2) The cost is internalized through decreased business profits. The larger the cost, the greater the negative effect on "business mind" in investment decisions. If "business mind" is weakened and the incentive for capital formation is negatively affected, production will then be adversely affected.

B. Environment block in the Environment Agency's econometric model [Environment Agency 1977, pp.76-104]

The model aims at describing the process of environmental pollution and its removal as exactly as possible; at the same time, it intends to reveal the interrelationship between environmental preservation and economic activity. To this end, the model explicitly considers the following: (1) The relationship between economic activity and the output of pollutants. (2) The relationship between the pollution emission targets and the quantity of pollutants to be removed. (3) The relationship between pollutant removal and the required investment (and capital stock) for pollution prevention. (4) The induced final

#### POLLUTION PREVENTION INVESTMENT

demand by pollution prevention investment. (5) The effects of pollution prevention cost on prices and the repercussion of the price hike. (6) The demand curtailment effects of the pollution prevention cost.

The pollutants included in the model are sulphur oxides, nitrogen oxides, water pollutants (COD), industrial wastes, and general wastes.

The structure of the model to satisfy such requirements needs be as follows. (1) The pollutant emission varies by industry; thus, the use of an interindustry model is indispensable in order to describe the economic activities by industry. (2) A price determination mechanism needs to be introduced in the model explicitly so that the effects of pollution prevention cost on prices, which vary from one industry to another, can be analyzed.

The model consists of three main blocks. (1) The supply block determines the supply quantities and supply prices by industry under the constraints of capital stock at the beginning of the period and the available labor force. (2) The demand block determines the demand levels for individual industry by linking the Keynesian-type final demand model and the input structure of the input-output tables. The supply and demand blocks are solved simultaneously in order to obtain the supply quantities and prices. (3) The environment block determines, for the given level of production, the output and emission of pollutants by category. In addition, the required level of pollution prevention investment is calculated. This in turn is fed back to the demand structure through the expansion of effective demand; at the same time, the price change induced by the pollution prevention cost affects the relative prices and the demand structure.

C. The framework of NNW (net national welfare) [Economic Council 1973; Uno 1989b]

Environmental accounting has emerged as an important tool in describing the interaction between human activities and the environment. Rather than focusing on a particular aspect of the environment, this approach attempts to fit various aspects into a statistical accounting framework in a consistent manner, taking the national accounts as a starting point. In Japan there have been attempts to extend the concept of national accounts to an aggregate welfare measure (Net National Welfare, NNW) in line with the framework developed by James Tobin and William Nordhaus [1972] when they suggested MEW (Measures of Economic Welfare). In an effort to obtain a more direct measure of the economic well-being of the population, the NNW framework incorporates the following items (in many cases, they are obtained by appropriately adjusting the concept of SNA): (1) NNW government consumption, (2) NNW personal consumption, (3) flow of services attributable to household-related social overhead capital, (4) flow of services attributable to household durable goods, (5) leisure time, (6) nonmarket activities such as housewive's domestic services, etc., (7) damage due to environmental pollution (deduction), (8) loss due to urbanization (deduction). Investment in plant and equipment, which is an important component of GNP, is excluded from the NNW as a measure of economic well-being on the grounds that it is "intermediate" from the point of view of quality of life. Investment in social overhead, housing, and, for that matter, purchases of consumer durables are also excluded. Instead, flow of services from social capital, housing capital, and stock of consumer durables is imputed and included.

The NNW Measurement Committee write in their report that two methods are conceivable in estimating the social cost of environmental pollution. (a) The direct estimation in money terms of damage caused by the abovestated discharge of polluting factors, such as to health, human life, animals and plants, and properties. (b) The method of estimating expenses necessary for the proper treatment of polluting factors overflowing into the present environment to an assumed "normal physical environmental level." It is a method to estimate expenses necessary to make the external diseconomies internalized.

For lack of sufficient data for the former, which they believed to be the preferred method, they have adopted the alternative. First, they set a base year in which environmental quality is imagined to have been acceptable. The base year taken is generally 1955. Excess emission is estimated, and the removal cost is then calculated.

(1) Air pollution: We can distinguish stationary sources such as factories and power plants and mobile sources, namely automobiles. For the former, the quantity of emission of sulphur oxides by each industry is calculated from the quantities of consumption of crude oil and coal and their sulphur content ratios. Taking 1955 as the base year, the expenses necessary to remove excess sulphur oxides discharge is calculated. In the case of soots and dusts, it is assumed that the total discharge is causing environmental pollution, and the total removal cost is correspondingly equated to damage. For exhaust gas from automobiles, the discharge quantity of carbon monoxide (CO), nitrogen oxide  $(NO_X)$ , and hydrocarbons (HC) is calculated. The base year in this case is 1961, and the cost involved in reducing the actual pollution level to that of 1961 is assumed to represent damage.

(2) Water pollution: The NNW framework takes BOD (biological oxygen demand) as an indicator of water pollution. Taking 1955 as the base year, the cost necessary to remove excess BOD is regarded as the damage attributable to water pollution. The calculation is conducted separately for discharge from industry and from household. The BOD discharge load units are obtained from a special survey. The treatment costs for foods, textiles, pulp, and chemical industries are derived from the tertiary sewerage treatment cost, while the costs for other, less polluting sectors are derived from the secondary sewerage treatment cost. The treatment cost for household discharge refers to secondary treatment of drainage treatment facilities.

(3) Wastes: The environmental damage cause by industrial wastes is estimated based on the unit waste discharge coefficients for 13 items in each industrial sector, which is multiplied by the annual value of production. The figures thus obtained are adjusted by the discharge ratios of industrial wastes into the environment. The ratio is assumed to be as high as 89% in 1965 and 74% in 1970, which has subsequently dropped to 20% in the case of manufacturing sectors and 50% in others. Finally, imputation of the damage is based on the cost of proper treatment for the 13 items and the quantity of improperly discharged wastes.

In the case of household wastes, the total discharge quantity is estimated. Depending on the physical nature of the wastes, the portion being disposed of without adequate treatment is then distinguished. The cost of damage caused by household wastes is then obtained by multiplying it by the unit cost of proper treatment.

It has now become possible to link the framework explained here to the variables generated within a multisectoral industry model, COMPASS (comprehensive model for policy assessment). The model has 25 industrial sectors, with potential output block, demand block, energy consumption block, prices and wages block, and others. The framework presented here forms a part of the COMPASS and an aggregate indicator of the economic well-being of the population. Pollution prevention investment is not 'productive' in the con-

ventional sense in that it does not contribute to the production of 'goods and services' but merely prevents 'bads' from happening. It is particularly costly at the initial stage when the pollution is recognized as a problem and social consensus is reached to improve the situation by enforcing strict environmental standards. At this stage, pollution prevention equipment has to be installed to the existing capital stock in addition to the new facilities. After a while, this stock effect will be eased considerably. At the same time, technological change is induced in the production process or to the final products, and pollution prevention becomes a part of the more or less normal production activity, taking such forms as heat recovery, waste recovery, production of by-products, etc. Sometimes the production process itself is altered into a new method. The entire process of legislative action, technological change, diffusion of new technology, increase in production cost and substitution effect, the stock effect, etc. is so complex that it is difficult to describe in a model framework. Our model treats this aspect in a block where the ratio of pollution prevention investment for the individual industrial sector is treated as an exogenously determined variable. However, pollution prevention effort is not simply a drain of economic resources because it contributes to improving the quality of life. If we can agree that quality of life, which includes flow of consumption as well as benefits derived from capital stock (housing and social overhead capital), as the final objective of economic activity, then pollution prevention effort has direct bearings. This brings us to the environmental accounting which includes both the cost side and benefit side of pollution prevention.

#### 6.6 Concluding remarks

In this chapter, we focused our attention on pollution prevention investment and demonstrated the feasibility of constructing an accounting system which can be used in assessing the effectiveness of environmental policy. This framework is also amenable to the established SNA. The framework leaves the SNA concept intact while providing greater details on the pollution prevention activities, both in monetary and physical terms, within individual sectors to cope with various environmental hazards. The effectiveness of such activities can then be expressed in terms of the reduced damage done to the environment, together with positive aspects of economic activities, and included in an accounting framework which describes various attributes of economic wellbeing.

I may add that a similar framework can be envisaged for energy conservation and recycling of resources.

#### FOOTNOTES

[1] See Uno [1985a, b] for an earlier effort to compile a satellite account on various social concerns including environment. This was preceded by Uno [1978] in which a system of social indicators and simple accounting was introduced, encompassing economic, sociodemographic, and environmental spheres. The expenditures related to environmental aspect and not enumerated here include the following:

a. operating cost of pollution prevention facilities (except where such expenditures are included in the current input for production).

b. the cost of shifting to low-pollution raw materials (such as low-sulphur crude or natural gas)

c. introduction of new (possibly more costly) production methods

d. the cost of research and development (for R&D expenditures by purpose, see Uno [1991e, p.96]

e. the cost of energy conservation, and

f. the benefits of recycling and by-products (such as scrap metals, heat recovery, electric power generation, sulphur, etc.) (this is discussed in Chapter7)

g. the cost of additional equipment for pollution prevention, such as catalyst for automobiles.

- [2] Data compiled by the Japan Association of Industrial Machinery Producers (Nihon Sangyo Kikai Koryokai). Since 1966, the Association has published "The Production of Pollution Prevention Equipment" (Kogai Boshi Sochino Seisan Jissekini Tsuite) based on a survey of the member companies. The 1970 survey covered 187 firms, of which 155 responded; the 1989 survey covered 179 firms, of which 156 responded.
- [3] However, we need to bridge the production figures to capital formation statistics which include construction.

- [4] Empirical data on energy conservation investment, classified by industrial sector, is available in Chapter8. See Ministry of International Trade and Industry, *Plant and Equipment Investment Plans in Major Industries*.
- [5] The survey, which is reported annually in MITI's Plant and Equipment Investment Plans in Major Industries for recent years while in earlier years the data were published separately, started in 1965. Sectoral figures are available based on a scheme unique for the survey up to 1985, which are now based on the standard industrial classification. The survey covers around 1500 establishments. An establishment engaged in various economic activities is listed separately for the respective industrial sectors.
- [6] This point can be supplemented by the Summary of the Trends of Investment in Plant and Equipment by Small Manufacturing Firms by the Small Business Finance Corporation. The ratios of pollution prevention investment to total in individual industrial sectors do not seem to diverge too widely between the two sources, and the use of MITI's sectoral data as the representative one seems to be justified on these grounds.
- [7] The latter is available from the Economic Planning Agency. Formally, this is not a part of the SNA, but consistency with the aggregate data is maintained.
- [8] The fixed capital formation matrices for the past 20 years are introduced in Uno [1991e].
- [9] See Uno [1989a][1990c], pp.195-205, for time-series compilation of final demand converters in standardized 36 sector tables.
- [10] OECD [1977] provides air quality objectives  $(SO_2, \text{ particulates, and } NO_2)$ and automobile emission standards  $(CO, HC, \text{ and } NO_X)$  for Japan and selected countries around 1975. OECD suggests that the tables suggest that "policy objectives are more ambitious in Japan than in many other countries."

## Chapter 7

## Produce-Consume-and-Recycle

# 7.1 The end of produce-consume-and-forget regime

"Sustainable development" is the key word in our effort to restructure our society to make it amenable to global environment. In reality, however, the self-perpetuating expansion of our economy does not seem to automatically induce changes in industrial technology and lifestyle leading to sustainable development.

The Brundtland report wrote in 1987 that "Suitainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs. It contains within it two key concepts: the concept of 'needs', in particular the essential needs of the world's poor, to which overriding priority should be given; and the idea of limitations imposed by the state of technology and social organization on the environment's ability to meet present and future needs." [World Commission on Environment and Development, 1987, p.43] Explicitly referring to sustainable development, the report writes, "Humanity has the ability to make development sustainable—to ensure that it meets the needs of the present without compromising the ability of future generations to meet their own needs. The concept of sustainable development does imply limits—not absolute limits but limitations imposed by the present state of technology and social organization on environmental resources and by the ability of the biosphere to absorb the effects of human activities. But technology and social organization can be both managed and improved to make way for a new era of economic growth." [WCED, 1987, p.8] "But physical sustainability cannot be secured unless development policies pay attention to such considerations as changes in access to resources and in the distribution of costs and benefits." [WCED, 1987, p.43]

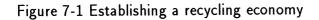
This new concept is not without ambiguity, however, when it comes to the assessment of the divergence of our societies from sustainability and the implementation of policies aimed at correcting it. The need to clarify this new development concept in operational terms has to be stressed. First of all, an accounting system has to be developed which reveals interaction between the environment and the economy. This points to the need for resource accounting that encompasses resource stocks, flow of resources among countries, resource flows within an economic system, and the generation and removal (or emission) of wastes and pollutants, leading to modeling and empirical analysis covering the entire process. Once proper policy tools have been identified, this methodology then can lend itself to the formulation of policy. Second, a new concept to gauge the needs of the population has to be devised. The concept should go beyond the conventional concept of consumption of goods and services and should include the changing quality of the environment and the benefits derived from consumer durables and housing. By explicitly considering the stock, rather than simply focusing on the annual flow of consumption, one can measure the quality of life (or lack of it) in its full span.

The first point corresponds to sustainability of the global eco-system and resource base. The second point relates to the sustainability of the quality of life. The two formulations of sustainable development can be linked to each other within an extended system of input-output framework and policy modeling based on it.

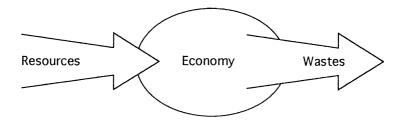
#### 7.2 Sustainability reconsidered

As we have seen in chapter 1, the environmental burden can be broken down into four factors: (1) population size, (2) income per capita, (3) resource use per unit of income, and (4) environmental damage per unit of resource use.

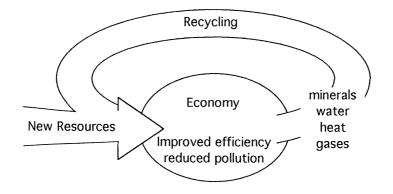
If we allow the population to grow and if we allow people to attain higher incomes while assuming the remaining two factors to be constant, we inevitably reach the conclusion that the global community will soon overload the global commons with resource depletion and environmental degradation.


Thus, attempts by economists and statisticians to define the concept of sustainability in an operational term can be interpreted within this context.

Our purpose in this chapter is to look into the third factor, namely, resource use per unit of income. In particular, we will look into recycling which, if successful, can substantially reduce the environmental burden of our economic and social activities. The economic system up to now has operated on the implicit assumption that an unlimited amount of resources can be made available as soon as the demand for them arises, and that production of disadvantages such as deterioration of air and water quality can be accommodated by Nature (Figure 7-1a). It is recognized that resources are exhaustible and that the uncontrolled emission of hazardous materials, gases, and waste heat has caused environmental problems of global scope. One way of rectifying the situation is to close the resource flow by recycling (Figure 7-1b).


Other logical solutions are apparent from the identity presented above. Arresting the growth of the population is an obvious option, and an important one, although how much can be done based on the conventional tool box of economic policy is rather uncertain, especially when the income level is low and children are important factors in household production. Hopefully, demographers will have a better answer in this regard.

I have looked into the second factor which relates to income levels in Chapter 4. The argument there is that rather than focusing on consumption, which is the current flow of goods and services, we should be concerned with the levels of economic well-being, the latter being defined in terms of services derived from the stock of consumer durables, housing, quality-of-life related social capital, and current consumption net of environmental degradation and urban congestion. In essence, this is a suggestion to focus not on current income and consumption but on quality of life. We return to this point in Chapter 11 below.


Regarding the fourth factor which relates to environmental damage caused



a. Produce-consume-and-forget



b. Produce-consume-and-recycle



#### PRODUCE-CONSUME-AND-RECYCLE

by man, I have shown previously that an increased provision of pollution prevention facilities can actually diminish such damage (Chapter 6). In addition, we should be concerned with technological progress which results in pollution prevention and increased efficiency (Chapter 8). Lifestyle change, often induced by higher income levels and urbanization, is also a factor (Chapter 4). In this chapter, we focus on the sustainability of our socioeconomic system from the point of view of resource flow.

Today's environmental concern extends beyond pollution. We aim at explicitly considering the recycling of various resources. As is depicted in Figure 7-1, we are accustomed to live in a produce-consume-and-forget system. We exploit natural resources without paying attention to whether they are depletable or constitute part of the natural environment on which we depend so heavily, and emit pollutants into the environment without due consideration to the hazards they present not only for health but also to the global ecosystem. In view of the fact that we are now concerned with conservation of the global eco-system, we have to put an end to this way of living. To this end, we should look into the third factor mentioned above and seek ways of reducing our dependence on forest, energy, ferrous and nonferrous metals. We need to develop a conceptual framework which will enable us to keep track of resource use per unit of activity. We need an accounting framework which properly traces the flow of material inputs into our economic system, with particular attention to recycling. If part of waste heat and materials can be recyled and put into effective use, the resource burden can be that much reduced. The ultimate goal would be a produce-consume-and-recycle system.

The analytical framework for the concept of sustainability of the resource base can be formally put forward in an input-output format. I need not elaborate here the input-output analysis itself because it has been widely used among economists and statistical offices the world over. What I find most illuminating in this context is the table which indicates the material flow among industrial sectors in physical terms. Usual input-output tables are formulated in value terms, which is the only common demoninator across various activities. Physical tables correspond to transaction tables in value terms but on the other hand show the transactions in physical terms wherever possible.

The observed changes in input coefficients are attributable to technological change, which is reflected in the industrial composition of inputs as well as factor inputs including capital and labor. Also reflected in shifts in input coefficients over time are the changes in relative prices among industries. A transaction is obtained in value terms as the multiple of price and quantity; however, the price for a particular commodity may differ depending on, for example, whether the transaction is based on large, long-term contracts or small, ad hoc ones. There may not be a uniform price for a particular industrial sector. Transaction tables in physical terms are useful in overcoming this difficulty. For our purpose, which is to establish an analytical framework that enables us to trace material flow within an economic system, the framework can offer a general accounting framework.

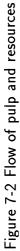
However, it is not possible to compile a complete physical table for the entire economy. The reasons are as follows. First, its construction presupposes that the transactions can be broken down into price times quantity, while in reality, service-related activities comprise more than 50% of the total economy where quantitative measurement is not feasible. Second, even in sectors engaged in physical production, the commodities included tend to be divergent within a single sector, making physical aggregation impossible. This is particularly the case for machinery sectors and 'others'. Third, information to identify output sectors is typically lacking.

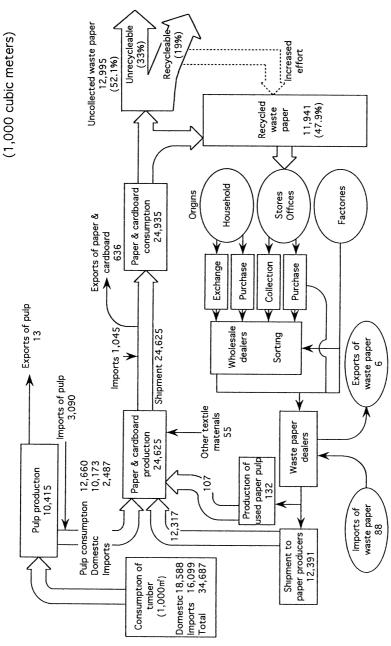
For those reasons, physical tables are not universally available. However, input-output tables compiled in Japan for recent years include partial physical tables covering major raw materials and their products.

There are several different ways of treating the generation of scraps and by-products in transaction tables. In Japan this is based on the methodology suggested by Richard Stone, which is to record them as negative output. Therefore, where one sector produces products (positive output) and scraps and by-products (negative output) simultaneously, which is usually the case, the recorded output is obtained after netting out. To remedy this defect, a table concerning output (generation) and input (use) of scraps and by-products must be compiled. In fact, Japanese transaction tables identify both positive and negative outputs by attaching special codes after the sector codes (i.e., 2 referring to input of scraps, 3 to output of scraps, 4 to input of by-products, and 5 to output of by-products). Physical tables also follow this convention, enabling us to identify the generation of scraps and by-products and their disposal.

#### PRODUCE-CONSUME-AND-RECYCLE

This will serve as the central accounting framework for tracing the material flow within an economic system. Referring to Figure 7-1 which depicts the produce-consume-and-forget and produce-consume-and-recycle systems, the recycling process can be described in this framework. One advantage of this framework is that it is perfectly general in providing an overall physical material flow consistent with the transaction in value terms, allowing aggregation and disaggregation as needed and whenever empirically feasible. Thus, we have a statistical framework which enables us to trace the input of resources, throughput within an economic system, output of waste and pollutants, and recycling into input again to the degree they are actually done.


If this is more or less a picture from the point of view of resource-consuming countries, the logical extension would be to cover the point of view of resourceproducing countries. This can be done by attaching the framework discussed above to international trade matrices concerning resource flow among countries. Within individual resource-producing countries, one can envisage statistics on current production and existing stock (the latter including, for example, distinction such as proven reserves, etc.). New discoveries can also be included in the picture. Another linkage between production and consumption of resources is provided by changing prices, which are endogenously determined within the economic system. One should not forget technological change in resource exploration and extraction as well as that at the consuming end. These factors should be enumerated within the framework of resource accounting.


## 7.3 Sustainability of resource base: accounting for recycling

In this section, we focus our attention on operationalizing the concept of sustainability of our resource base. In particular, we aim at establishing a statistical framework suitable for describing a produce-consume-and-recycle system. We take up the cases of pulp and paper, iron and steel, and energy. The actual state-of-the-art of recycling is described, and the conceptual framework is then applied, taking numerical examples from Japan.

(a) Paper

According to an estimate [Morisawa 1990], 47.9% of paper consumed is





Note. The data refer to 1988.

Source<sup>-</sup> Used Paper Recycling Promotion Center, Annual Statistics on Used Paper

|                                             | Total consumption | Recycled       |
|---------------------------------------------|-------------------|----------------|
|                                             | (1,000 tons)      | (1,000tons)(%) |
| Plain white paper, art paper, and magazines | 11325.0           | 3185.1(28.1)   |
| News paper                                  | 3262.4            | 2948.7(90.4)   |
| Brown paper                                 | 541.6             | 354.3(55.3)    |
| Corrugated cardboard                        | 7414.9            | 5110.0(68.9)   |
| Paper mat                                   | 3093.8            | 588.5(19 0)    |
| Total                                       | 25637.7           | 12186.4(47.5)  |

Table 7-1 Recycling of used paper, 1988

Source: Used Paper Recycling Promotion Center, Used Paper Supply and Demand Statistics.

recycled in Japan (1988 figure). The ratio varies according to the kind of paper as follows (Table 7-1).[Used Paper Recycling Center, 1980]

Figure 7-2 describes the flow chart of paper production and recycling of used paper. In Japan, paper and cardboard production in 1988 stood at 24,936 thousand tons, of which 11,941 thousand tons (47.9%) were collected after consumption. Of the remaining 52.1%, about 19% can be recycled with extra effort, and about 33% is not collectible. Waste paper is classified into industrial waste and household waste. The former refers to waste paper from those establishments which handle large amounts of paper, such as newspaper companies, printing shops, and cardboard box producers, and the latter refers to used paper from households, supermarkets, department stores, etc. Industrial waste paper is collected by contracted specialized dealers who deliver the collected paper to used paper dealers. Household waste paper is collected through "group exchange" (where schoolchildren and local residents engage in collection voluntarily often to financially supplement their activities), tissue paper exchangers (where housewives accumulate waste paper and exchange for tissue paper, toilet paper, paper towels, etc.), or purchasers. The waste paper thus collected is then sorted and delivered to the paper producers.

Time series data are provided in Table 7-2. In 1988, raw material for paper and cardboard production consisted of 50.4% of pulp, 49.4% of waste paper, and 0.2% of other textile materials. In other words, waste paper provides about one-half of the raw material requirement of the paper industry. As shown in Table 7-3, waste paper usage stood at 24.2% for paper production and 82.6% for cardboard production.

|       |                                              |                                                                                                                                                                                |                                                                                                                                                                                                                         | (unit: 1,                                                     | 000 tons)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Paper | production                                   |                                                                                                                                                                                | Cardbo                                                                                                                                                                                                                  | ard production                                                | on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Pulp  | Waste                                        | Total                                                                                                                                                                          | Pulp                                                                                                                                                                                                                    | Waste                                                         | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       | paper                                        |                                                                                                                                                                                |                                                                                                                                                                                                                         | paper                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 8431  | 2831                                         | 11263                                                                                                                                                                          | 1867                                                                                                                                                                                                                    | 6350                                                          | 8217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 8723  | 3029                                         | 11752                                                                                                                                                                          | 1937                                                                                                                                                                                                                    | 6752                                                          | 8689                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 8853  | 3061                                         | 11914                                                                                                                                                                          | 1919                                                                                                                                                                                                                    | 7467                                                          | 9386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 9227  | 3145                                         | 12372                                                                                                                                                                          | 1794                                                                                                                                                                                                                    | 7673                                                          | 9466                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 9725  | 3203                                         | 12928                                                                                                                                                                          | 1888                                                                                                                                                                                                                    | 8481                                                          | 10369                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 10759 | 3427                                         | 14186                                                                                                                                                                          | 1901                                                                                                                                                                                                                    | 8997                                                          | 10898                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       | Pulp<br>8431<br>8723<br>8853<br>9227<br>9725 | Pulp         Waste           paper           8431         2831           8723         3029           8853         3061           9227         3145           9725         3203 | paper           8431         2831         11263           8723         3029         11752           8853         3061         11914           9227         3145         12372           9725         3203         12928 | Pulp         Waste         Total         Pulp           paper | Paper production         Cardboard production           Pulp         Waste         Total         Pulp         Waste           paper         paper         paper         paper           8431         2831         11263         1867         6350           8723         3029         11752         1937         6752           8853         3061         11914         1919         7467           9227         3145         12372         1794         7673           9725         3203         12928         1888         8481 |

Table 7-2 Consumption of waste paper for paper production

Source Japan Paper and Pulp Co, Paper and Pulp Statistics Illustrated.

The use of recycled paper expanded with the development of DIP (de-inking pulp) technology. The DIP processing consists of melting of the sheet paper, dust removal, de-inking, washing, and bleaching.

Compared with the usual production of pulp from wood, pulp production from recycled paper consumes only 1/3 of the energy such as heavy oil and electricity, in addition to conserving forest resources. The increased recycling of paper will thus conserve energy resources and help protect natural forests.[Japan Paper and Pulp Co., 1990]

Table 7-3 shows the recycling of waste paper in an input-output framework. The data refer to 1985. The recycling of waste paper in Table 7-2 amounted to 10,528 thousand tons in 1985. The corresponding figure in Table 7-3 stands at 10,320 thousand tons in quantity terms (205.8 billion yen in value terms). We may say that the correspondence is fairly accurate between the two. The major activity generating waste paper is private consumption, followed by manufacturing activity such as paper production, printing and publishing.

(b) Iron and steel—the case of automobiles [Environment White Paper, 1991]

The automobile industry is one of the leading sectors of the economy and turns out new cars every day. The production of new cars prompts the scrapping of old ones. This means that car disassembling is needed at about the same speed as car assembling. However, whereas new cars are produced by large firms, scrapping is conducted by small firms, and the process is some-

| Output sector                | Value       | Quantity   |
|------------------------------|-------------|------------|
|                              | (bil. yen)  | (1000 ton) |
| Manufacturing total          | (-) 44.341  | (-) 1,748  |
| (24) Pulp and paper          | (-) 22.995  | (-) 906    |
| (25) Printing and publishing | (-) 21.346  | (-) 841    |
| Private consumption          | (-) 150.968 | (-) 5,951  |
| Imports                      | (-) 10.488  | (-) 2,621  |
| Total                        | (-) 205.797 | (-) 10,320 |
| Input sector                 |             |            |
| Manufacturing total          | 205.349     |            |
| (24) Pulp and paper          | 205 349     |            |
| Exports                      | .448        |            |
| Total                        | 205.797     |            |

Table 7-3 Recycling of waste paper in an input-output framework

Note: The group of by-products and scrap corresponds to "pulp" (code 1811-011) Source<sup>•</sup> Management and Coordination Agency, *1985 Input-Output Tables.* 

times disorderly. Disassembly technology is undeveloped, and recycling is faced with a wall of cost (Figure 7-3).

The disassembly process relies heavily on manual work. First, batteries and fuel tanks are removed to prevent any danger of explosion, as well as used tires. Doors, fenders, and the like are theoretically removed for resale in the used parts market, but this is seldom done in reality. Then a machine called a nibbler removes the tires, wheel cover, engine, and radiator. The remaining body is pressed and sent to a shredder, which cuts it into mixed pieces of steel, wiring, plastics, and seat cloth. An electric magnet is used to sort only steel pieces from this mix. Copper, aluminum and other valuables are then selected, usually by manual operation. This leaves a mountain of what is called shredder dust. With the increased use of plastic parts in an automobile, the percentage of shredder dust will tend to increase. Steel pieces are sent to a steel mill where they are melted by electric furnace. Coupled with scrap iron from other sources, about 32% of steel production was attributable to recycled steel in 1990. Through the continuous casting process, melted steel is finally turned into structural materials and steel bars.

How many resources can be obtained when an automobile is scrapped? The case here refers to a 1986 vintage 4-door sedan with displacement capacity of

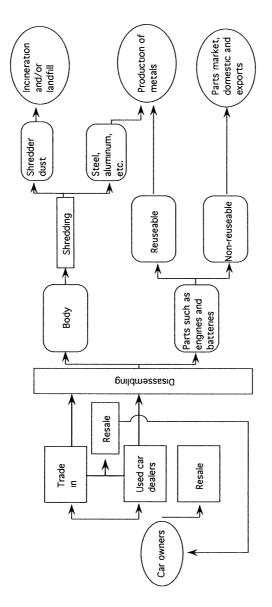





Figure 7-3 Flow of used automobiles

1,500 cc. Steel of course is the main structural material of the body, suspension, and engine and amounts to about 450 kg. This will never be used again to make steel for car production, but it is good enough to produce various steel products such as those for building construction. From the aluminum wheel cap, about 20 kg of aluminum can be recovered. In addition, the engine and transmission contain retrievable amounts of aluminum. Platinum and other rare metals can be recovered from the catalyst converter. The present converters use platinum, rhodium, and sometimes palladium as catalysts to convert the exhaust emission of carbon monoxide and hydrocarbons into less harmful carbon dioxide and water. According to an estimate, catalytic converters consume about 40% of the platinum and 80% of the rhodium produced in the West. Although the amount contained in a car is minimal (about 0.8 g), it is recovered fully because of its high price. Tires are used as an energy source. Rubber produces a heat value close to heavy oil, prompting its use as fuel in industry. Used parts such as engine, doors, alternator, etc., can also be recovered, and sold to used parts dealers. However, many usable parts are disposed of as industrial waste because of difficulty in recovering them and lack of sales channels. The steering wheel, seats, dashboard, window glass, and plastic bumpers, which make up nearly 30% of the total weight of the car, also have to be disposed of as waste. Most of these materials are not suitable for incineration, and land fill is usually the last resort.

The case of automobiles is typical example of the disposal of consumer durables made of steel, plastics, and the like. Although the production process is highly automated, disassembly technology has yet to be developed. At present, they produce various socials cost at the disposal stage, a cost not borne by either the consumers or the producers. And they create a considerable environmental burden, too. It is imperative to develop technology and a logistic system to extend the years of service of these products. It is also highly desirable to establish a recovery channel as well as a disassembly and disposal process.

Table 7-4 lists time series data on the generation of scrap iron obtainable from Japanese input-output tables. Included in the table are final demand items such as private consumption, private investment, and government investment. Scrap iron is also generated in the intermediate production processes, but its output is netted out with input, resulting in a net input. Table 7-5

|      |                     |                    | (unit. billion yen)   |
|------|---------------------|--------------------|-----------------------|
|      | Private consumption | Private investment | Government investment |
| Year |                     |                    |                       |
| 1965 | 3.852               | 60.000             | 13.350                |
| 1970 | 13.000              | 42.817             | 15.600                |
| 1975 | 27.552              | 70.030             | 16.964                |
| 1976 | 13 346              | 45.544             | 13 403                |
| 1977 | 32.943              | 84 866             | 20 760                |
| 1978 | 31 946              | 81 072             | 20 434                |
| 1979 | 38.920              | 99.617             | 23 959                |
| 1980 | 42.469              | 109.093            | 26 426                |
| 1981 | 31.183              | 28.425             | 6 886                 |
| 1982 | 23.548              | 60 490             | 14 653                |
| 1983 | 20.927              | 147.542            | 15.466                |
| 1984 | 34 534              | 125 372            | 15 200                |
| 1985 | 42.609              | 121 999            | 29 675                |
| 1986 | 30.597              | 109.226            | 21 309                |
| 1987 | 29.101              | 129.557            | 20.267                |
| 1988 | 36.273              | 127 698            | 25.289                |
| 1989 | 33.404              | 132.082            | 22.470                |
| 1990 | 32.850              | 130.716            | 21.991                |

Table 7-4 Output of scrap iron, time series

Sources Administrative Management Agency (Management and Coordination Agency since 1985) and the Ministry of International Trade and Industry, *Input-Output Tables*, various issues.

refers to 1985 data and gives a detailed picture of recycling of scrap iron in Japanese input-output tables.[Management and Coordination Agency, 1985 Input-Output Tables, exposition volume, p.220]

#### (c) Energy [Environmental White Paper, 1991]

Increased energy consumption is often regarded as occuring concomitant with the expansion of household and industrial activities, causing a depletion of fossil fuel reserves, air pollution, and global warming. There are only two obvious solutions to the problem, namely, to reduce the loss in energy use and/or to reduce the energy use itself.

At present, only 35% of the total energy supply is used effectively, while the remaining 65% is being directly emitted into the environment as waste heat. For example, in the case of thermal power stations, about 40% of the energy input is transformed into electricity; in the case of a gas oven, about

| Output sector                    | Value (bil. yen) |
|----------------------------------|------------------|
| Manufacturing total              | (-) 446.541      |
| (31) Iron and steel              | (-) 301.654      |
| (33) Fabricated metals           | (-) 44.990       |
| (34) General machinery           | (-) 38 434       |
| (35) Electrical machinery        | (-) 17.709       |
| (36M) Transport equipment, auto  | (-) 27 385       |
| (36S) Transport equipment, other | (-) 13.458       |
| (37) Precision instruments       | (-) 2.235        |
| (38&)Other manufacturing         | (-) 0676         |
| Construction                     | (-) 11 884       |
| Private consumption              | (-) 42 609       |
| Fixed capital formation, public  | (-) 29.675       |
| Fixed capital formation, private | (-) 121 999      |
| Imports                          | (-) 102.252      |
| Total                            | (-) 754.960      |
| Input sector                     |                  |
| Manufacturing total              | 748 729          |
| (26) Chemicals                   | 0.327            |
| (31) Iron and steel              | 748.402          |
| Business and personal services   | 2                |
| Exports                          | 6 229            |
| Total                            | 754 960          |

Table 7-5 Recycling of scrap iron in an input-output framework

Source. Management and Coordination Agency, 1985 Input-Output Tables

50% of the energy input is effectively turned into hot water; and in the case of automobiles, only about 20% of the energy input is actually used in driving, while the rest becomes waste heat. In steel plants about 36% of the energy becomes waste heat, and in cement factories about 20%, while of the energy input for power generation, which comprises 37% of the total energy input of the whole economy, 24% becomes waste. In the case of household use, 7% out of 17% becomes waste. For transportation and industrial use, the ratios are 12% out of 16% and 14% out of 35%, respectively.

Given the compelling concern for preserving the global environment, it is imperative to use all the means possible to reduce such a wasteful energy use. It may be necessary to go beyond the conventional cost consideration and look at the issue from a broader perspective. Possible options include the following.

First, energy conservation has to be promoted alongside the production

|      | (unit: 10**10 Kcal |                    |                 |                 |  |  |
|------|--------------------|--------------------|-----------------|-----------------|--|--|
|      | New source         | Refuse             | Primary energy, | Primary energy, |  |  |
|      | of energy          | power gemeration   | domestic source | total           |  |  |
| Year |                    | proportion         |                 |                 |  |  |
| 1960 | 4640               | 0 ( -)             | 57064           | 100810          |  |  |
| 1965 | 2604               | 5 ( 20)            | 56193           | 168910          |  |  |
| 1970 | 3260               | 10 ( 45)           | 50782           | 319708          |  |  |
| 1971 | 3357               | 11 ( 51)           | 48761           | 324790          |  |  |
| 1972 | 3448               | 11 (51)            | 46137           | 324790          |  |  |
| 1973 | 3651               | 20 ( 89)           | 40846           | 385409          |  |  |
| 1974 | 3523               | 29 (131)           | 45071           | 384679          |  |  |
| 1975 | 3372               | 34 (153)           | 44473           | 366224          |  |  |
| 1976 | 3643               | 56 ( 248)          | 46970           | 387333          |  |  |
| 1977 | 3662               | 72 ( 322)          | 43324           | 387270          |  |  |
| 1978 | 3655               | 74 ( 328)          | 48486           | 386453          |  |  |
| 1979 | 3994               | 76 ( 337)          | 53965           | 411134          |  |  |
| 1980 | 3918               | 107 ( 477)         | 59267           | 397198          |  |  |
| 1981 | 3913               | 116 ( 518)         | 59040           | 382168          |  |  |
| 1982 | 4172               | 137 ( 608)         | 60532           | 364296          |  |  |
| 1983 | 4438               | 168 (747)          | 63909           | 383540          |  |  |
| 1984 | 4772               | 210 ( 931)         | 65893           | 403067          |  |  |
| 1985 | 4875               | 227 (1008)         | 74195           | 405323          |  |  |
| 1986 | 5022               | 274 (1218)         | 73307           | 402217          |  |  |
| 1987 | 5303               | 274 (1218)         | 76241           | 422377          |  |  |
| 1988 | 5573               | 325 (1443)         | 77108           | 445366          |  |  |
| 1989 | 5839               | 342 (1522)         | 78004           | 461729          |  |  |
| 1990 | 6098               | 407 (1807 <u>)</u> | 81426           | 486161          |  |  |

Table 7-6 Recycling of waste heat, the case of power generation

Note: Year refers to fiscal year (from April to March next year). Figures in parentheses are electric power generating capacity in terms of million WH

Source: Compiled from Agency of Natural Resources and Energy, Comprehensive Energy Statistics, and the Institute of Energy Economics, Statistical Material on Energy.

and delivery of energy as a whole. This is not limited to the introduction of energy-saving technology and equipment. Energy supply and demand have to become more efficient, through the introduction of co-generation, combined cycle power generation, and heatpump, among others.[1] Recovery of waste heat from factories and urban facilities is also a possibility. A heat pump is a useful device to recover heat from sewerage, river water, subways, and underground power lines where the temperature is not too different from atmospheric temperature. Rationalization of the urban transportation system and redesign of city structures may also become necessary. Second, promotion of energy-efficient automobiles and consumer durables continues to be an important element, as well as of energy-saving production processes. Insulation of office buildings and private houses needs to be improved, and energy use within offices and homes has to be rationalized. Third, apart from improvements in the energy efficiency of office and household equipment, efforts should be made to use them in an energy-efficient manner. For this purpose, it is necessary to promote the energy consciousness of the population.

We take up a particular case below where heat is recovered from the incineration of refuse and used for power generation. This enables energy to be transmitted to distant places, whereas the direct use of heat is limited to within a particular district. Power generation combined with a refuse incinerator not only enables self-sufficiency in energy of the facility but also the selling of surplus electricity to utility companies. This case is now spreading rapidly among local governments. Starting with large-scale facilities, it has become economically feasible even for small-scale facilities such as those with incineration capacity of 200 tons/day or less. In the case of the Tokyo metropolitan area, for example, electric power generated by this method amounted to 370 million KWH, of which 190 million KWH (52%) were sold to the utility company.

The input-output framework is not suitable for tracing the energy flow throughout the economic system. More useful information, including the input of primary energy and its transformation to electricity, etc. before final consumption, can be found in energy matrices. This framework distinguishes various sources of energy as well as consuming sectors.

The picture for the nation as a whole is shown in Table 7-6. Column 2 refers to refuse power generation, which is expanding fairly rapidly. Although it still constitutes a small fraction of the total primary energy supply, it is increasing at a considerable pace (an increase of about 300% in the past 10 years). According to Table 6-10 in the previous chapter, the output of household waste is increasing steadily, and the portion which is incinerated is increasing at an even faster pace. This substantially reduces the volume of wastes to be disposed of finally. Presumably, only a fraction of this total is used for power generation and other means of heat recovery. The production of electricity using the heat generated at the time of incineration, coupled with the use of that energy for regional heat supply, serves many purposes. This amounts to adding a nonconventional source of energy, which is incineration of wastes. It certainly is a viable way of achieving a produce-consume-and-recycle system.

## 7.4 Sustainability of the quality of life

Production and current income are not final goals of our economic activities. Recognizing the fact that our well-being is derived from a stock of durable goods, housing, and social capital in addition to food and clothing, we should take into account the benefit derived from them. In other words, we should pay more attention to the stock variables. Thus, if these items are built to last longer or designed to be energy-efficient and pollution-free, we can keep the levels of living intact while increasing the chance for achieving sustainability of our resource base. Damage done by environmental deterioration is obviously a negative factor and would have to be deducted.

This proposal can be implemented based on the existing framework of the SNA (System of National Accounts), without replacing it but rather supplementing it. A major addition would be statistics on various stocks and their characteristics as to resource use and output of pollutants and wastes. Pollution prevention facilities are also an indispensable segment of the additional accounts. It is noted that statistical data in physical terms are needed in addition to the ones in monetary terms.

The report of the World Commission on Environment and Development further stimulated discussion.

The message of this chapter is rather straightforward including the following. First, the need to operationalize the concept of sustainable development is pointed out. My suggestion is to distinguish sustainability of the resource base and sustainability of the quality of life.

Second, to take account of the former, one can envisage an accounting framework which encompasses stock of resources, current production of resources, international trade, input into an economic system, interindustry flow of resources and their products, and output of resources and pollutants. For this purpose, statistical data in physical terms are as important as those in monetary terms.

#### PRODUCE-CONSUME-AND-RECYCLE

Third, on the part of the resource-consuming countries, the need to close the resource flow by recycling is suggested. This is termed a shift from today's produce-consume-and-forget system to a produce-consume-and-recycle system which makes our resource base sustainable and thereby helps leave the global ecosystem intact.

Fourth, in order to accommodate the need for economic development in a world plagued by wide income differentials, a new concept of development has to become the policy goal. This is referred to as the sustainability of the quality of life. A statistical framework is suggested to explicitly record the performance of our society in this regard.

Fifth, the two accounting frameworks, one related to sustainability of the resource base and the other to sustainability of the quality of life, can be linked by an input-output framework. In other words, being a general description of interindustry transactions of resource flow and production of goods and services, the input-output framework would provide linkage between the two.

Finally, since the input-output framework provides a snapshot at one point in time, my suggestion is to incorporate structural information obtainable from a time series of input-output tables into a multisectoral econometric model.[2] This way, other supplementary information can also be incorporated into the integrated, inherently dynamic framework. Examples are prices of goods and services (including resources, exchange rate, interest rate, and wage rate), final demand (including consumption, capital formation, and others), resource importation, research and development (which affect not only technology in narrow sense but also the demand for resources and pollution removal), among others. This also paves the way for policy simulation for the various options open to us.

## FOOTNOTES

[1] Energy loss can be reduced by utilizing the heat generated at different temperatures. Co-generation is a plant design which allows the repeated use of heat obtained by fossil fuel burning, by first utilizing hightemperature gas for power generation and recovering heat from the exhaust from fuel burning at the same time. When the demand for electricity and heat is properly combined, total energy effciency can reach as high as 70% to 80%. Mobile power is obtained by the combustion method which drives a piston by high-temperature (1500 degrees C or above), highpressure gas generated at the time of explosive burning of fuel, the gas turbine method which drives a turbine in high-temperature gas (about 1100 degrees C), or the steam turbine method which drives turbines by steam (about 500 degrees C). Compared with the steam turbine method which is generally seen in industrial use today, the former two enable us to utilize high temperature gas. Of the total electric power generation in Japan of 185.1 MW, co-generation stands at 1.135 MW for industrial use and 0.148 MW for commercial and household use. Combined cycle power generation is another method to achieve a higher energy efficiency of about 44%. This compares favorably with the case of conventional thermal power generation, where energy efficiency averages about 37%. This method uses high-temperature gas of about 1100 degrees C to drive a gas turbine for power generation. Exhaust gas then can be utilized for steam which drives another turbine. Heatpump is a technology which recovers waste heat for effective use. It utilizes low-temperature waste heat such as exhaust gas, atmosphere, and sewerage and river water as the heat source, and electricity or gas for driving the pump, thereby obtaining a higher energy output than input. Under ideal conditions, the heat obtained reaches 3.5 times the energy used for driving the pump. It makes use of coolant, which obtains heat under low pressure and releases it under high pressure.

[2] Such a framework already exists. See the multisectoral model named COMPASS (comprehensive model for policy assessment) described in Uno [1987]. Full incorporation of the environmental block and quality of life block remains a task for the future.

## Chapter 8

# Environment-Related R&D

### 8.1 Limits to growth and technology

We have seen in Chapter 2 that environmental issue, which in general terms can be expressed as the output of various pollutants per geographic area, can be formulated as the multiple of four factors, namely:

- (1) population density,
- (2) per capita income,
- (3) resource intensity (i.e., resource requirement per unit output), and
- (4) efficiency of resource use (i.e., emission of pollutants per resource use).

One scenario for the global community would be that, as the population continues to grow at a rapid pace and some of the less developed countries take off in their industrialization drive and start enjoying higher per capita income, the environmental disruption will inevitably worsen. Human beings will be suffocated or fall ill or be buried under environmental waste. Considering the historical fact that industrialization requires energy, steel, etc., human beings will be without resources.[1]

This eventuality is a logical conclusion if we leave out factors (3) and (4) or assume that they would tend to worsen with industrialization, or remain constant at best. In other words, human civilization is doomed if we preclude technological change.

On the other hand, we have a totally different picture if we assume that factors (3) and (4) tend to improve over time, thus counteracting the increased environmental burden stemming from factors (1) and (2). Resource intensity and efficiency of resource use relate to technology. Research and development are precisely directed to this point. The technological frontier is constantly expanding through R&D, which is an organized endeavor with specific purposes in mind, rather than sporadic inventions by individual persons. Price structure is a factor determining the actual selection of technology from various options, as is the mechanism of financing investment and entrepreneurship itself. Diffusion of technology within an economy or across national boundaries is an important topic in itself.

We focus our attention in this chapter on the R&D which has a direct bearing on the environment. In section 2, we examine the data concerning R&D on the environment and energy. In section 3, we look at the research effort in pollution prevention and energy fields based on the Japanese experience. In section 4, we examine the development and diffusion of new technology aimed at pollution abatement. Section 5 is devoted to the discussion on alternative energy, also relying on the Japanese experience. Related to this, energy conservation technology is discussed in Chapter 3 where development in the industrial sector, transportation sector, household and commercial sector, and energy transformation sector is examined. Finally, section 6 takes up some policy issues.

## 8.2 Environment-related R&D

Time series data on R&D expenditures are shown in Table 8-1. Total R&D expenditures in 1990 amounted to 12.089 trillion yen, which is about 2.8% of GNE. (The GNE figures are available in Table 11-1.) The table also provides a breakdown into specific purposes of research including defense, space development, ocean development, information processing, enrivonmental protection, and energy.[2] In 1990, the research expenditures on environment protection stood at 235 billion yen and energy-related research at 913 billion yen, which is 1.9% and 7.6% of total R&D expenditures, respectively.

The total number of researchers numbered 484300 persons in 1990, of which 19800 were engaged in energy-related research. The number of researchers in the environment field is not readily available.

It is shown that R&D for environmental protection purposes increased very rapidly in the early 1970s. In fact, it is calculated that it has jumped from 16.9 billion yen in 1970 to 56.6 billion yen in 1975 in real terms (1970 prices). R&D deflators are estimated based on the price indices for research expenditures including wages and salaries, raw materials, land, buildings, machinery and equipment, and others.[Science and Tehnology White Paper, various issues] The increase was modest between 1975 and around 1977 when the expenditures hovered around 52-54 billion yen. It is increasing rapidly again in recent years, reaching 75 billion yen in 1990. We have shown in chapter 6 that pollution abatement investment also started to take off in the early 1970s in contrast to experiences in other industrialized countries, where it started to increase in the mid-1980s. We may say that, in Japan, both the search for new technology for pollution abatement and diffusion of that new technology in the form of capital formation proceeded simultaneously around 1970.

Energy is also very closely related to the environment as a major source of pollutant emission and as a typical case of depletable resource. Both of these concerns surfaced in the early 1970s and were prompted by deteriorating air pollution and the oil crisis. Statistical information on energy-related R&D, entitled Survey of Research and Development on Energy, was first compiled for 1976 as a supplement to the Survey of Research and Development by the Bureau of Statistics. The number of units enumerated in the survey was about 7100 (5300 companies with capital of one billion yen or more, 950 research institutions, and 860 universities and colleges conducting R&D in the natural sciences.) Survey items included research themes, persons engaged in R&D on energy, and R&D expenditures on energy. Sectoral enumeration is available.

In 1976, energy-related R&D stood at 77 billion yen (1970 prices), already surpassing environmental protection research by nearly 50%. In 1990, it has jumped to 294 billion yen (1970 prices), or an increase of 3.8 times in real terms. During the same period, R&D for environmental protection showed an increase of 1.5 times. It is also noted from Table 8-1 that a bulk of the energy-related research was nuclear (81% in 1976), and the ratio declined to about 44% in 1990.

This, of course, is due to the expansion of research activities in non-nuclear fields. The details of energy-related R&D are shown in Table 8-2. In 1990,

|      | Total R&D    | (R&D      | Defense | Space       |
|------|--------------|-----------|---------|-------------|
|      | expenditures | deflator) |         | development |
| 1970 | 1195328      | (=100.00) | 11065   | 16217       |
| 1971 | 1345919      | (107.06)  | 12305   | 23153       |
| 1972 | 1586708      | (117.36)  | 14096   | 31456       |
| 1973 | 1980896      | (142.74)  | 15575   | 31687       |
| 1974 | 2421367      | (176.52)  | 16156   | 48501       |
| 1975 | 2621827      | ( 190.83) | 16949   | 73132       |
| 1976 | 2941373      | ( 208.01) | 18825   | 79500       |
| 1977 | 3233543      | (219.65)  | 21826   | 69400       |
| 1978 | 3569953      | ( 226 71) | 24272   | 83900       |
| 1979 | 4063627      | ( 244 27) | 27649   | 96300       |
| 1980 | 4683768      | ( 263.74) | 29599   | 92900       |
| 1981 | 5363986      | (272 06)  | 32573   | 107500      |
| 1982 | 5881539      | (278.95)  | 36487   | 119300      |
| 1983 | 6503737      | (280.67)  | 39452   | 116100      |
| 1984 | 7176511      | ( 286.41) | 44607   | 121300      |
| 1985 | 8116399      | ( 286 98) | 58677   | 152000      |
| 1986 | 8414993      | (280.38)  | 66133   | 158700      |
| 1987 | 9016186      | ( 282.10) | 74135   | 171000      |
| 1988 | 9775165      | ( 288 42) | 82700   | 177900      |
| 1989 | 10909335     | ( 300.76) | 93068   | 195200      |
| 1990 | 12089593     | ( 310.51) | 104268  | 195100      |

| Table 8 | 3-1 R&D | expenditures | by | purpose |
|---------|---------|--------------|----|---------|
|---------|---------|--------------|----|---------|

Note. The survey covers business firms (with capital of 100 million yen and over), research institutions, and universities.

total R&D expenditures concerning energy amounted to 914 billion yen. This may be compared with 160 billion yen in 1976. Using the deflator provided in Table 8-1, it is calculated that this is an increase of 3.8 times during the 15-year period.

The effort in earlier years was concentrated on nuclear fields, especially nuclear power plants, nuclear fuel cycle, and nuclear fusion. In the mid-1970s, the picture was very different, with nuclear research dominating energy-related R&D, with a share of 81%. Energy conservation at that time shared a mere 5%. In 1990, the largest item listed in the table was nuclear energy, which shares about 44% of the total R&D expenditures in energy, followed closely by energy conservation with a share of about 40%. In value terms, they stood at 401 billion yen and 370 billion yen, respectively. Of the latter, transportation

|    | (unit: million yen |             |               |        |          |
|----|--------------------|-------------|---------------|--------|----------|
|    | Ocean              | Information | Environmental | Energy | of which |
|    | delopment          | processing  | protection    |        | nuclear  |
| 70 | 5391               | 31251       | 16900         |        |          |
| 71 | 7117               | 41259       | 32732         |        |          |
| 72 | 12627              | 51033       | 51317         |        |          |
| 73 | 11725              | 82236       | 84883         |        |          |
| 74 | 15751              | 88411       | 94358         |        |          |
| 75 | 15547              | 99907       | 108077        |        |          |
| 76 | 18100              | 116400      | 107700        | 160201 | 129954   |
| 77 | 19200              | 116200      | 81400         | 231213 | 170189   |
| 78 | 22400              | 130200      | 135800        | 277321 | 182335   |
| 79 | 27100              | 155900      | 142500        | 364052 | 207525   |
| 80 | 29400              | 162700      | 143600        | 501021 | 235826   |
| 81 | 39300              | 213700      | 150800        | 636200 | 265718   |
| 82 | 40700              | 249800      | 137400        | 677200 | 284300   |
| 83 | 44500              | 289600      | 144100        | 681416 | 314511 · |
| 84 | 37600              | 388200      | 139500        | 712017 | 317378   |
| 85 | 40600              | 449400      | 149900        | 758324 | 348574   |
| 86 | 50700              | 492800      | 151600        | 822590 | 399852   |
| 87 | 61200              | 604700      | 154500        | 852440 | 421165   |
| 88 | 58400              | 744700      | 170400        | 888280 | 449687   |
| 89 | 54400              | 1012600     | 194900        | 906216 | 425957   |
| 90 | 52000              | 1121200     | 234800        | 913970 | 401974   |

Source: Bureau of Statistics, Report on the Survey of Research and Development R&D for defense purpose is from Science and Technology Agency, Science and Technology White Paper. Energy-related R&D is from Table 4-4 below.

was the focal point starting in the early 1980s. This was not so in the 1970s when energy conservation in the industrial field was dominant. Thus, the last 15 years have seen much effort being directed toward energy-efficient technology rather than seeking the practical applicability of nuclear energy.

Research concerning fossil energy has been kept at around 80 billion yen a year throughout the 1980s, after taking off rapidly in the late 1970s. Utilization of natural energy such as solar, bio-mass, and geothermal came to focus in the early 1980s. According to the table, research interest in these fields seems to have receded somewhat in the late 1980s.

Before leaving this section, it should be noted that the larger percentage of environment-related R&D is borne by private industry rather than the

| Energy sources             | 1976   | 1977   | 1978   |
|----------------------------|--------|--------|--------|
| A. Fossil energy           |        |        |        |
| 1. Oil                     | 10791  | 7972   | 10889  |
| 2. Gas                     |        |        |        |
| 3. Coal                    | 1746   | 2827   | 7085   |
| 4. Others                  |        | 156    | 1479   |
| Subtotal                   | 12537  | 10955  | 19453  |
| B. Natural energy          |        |        |        |
| 1. Geothermal              | 1725   | 2550   | 1584   |
| 2. Solar                   | 4244   | 4426   | 6485   |
| 3. Marine                  |        | 314    | 690    |
| 4. Wind                    | 85     | 190    | 482    |
| 5. Biomass                 |        | 1113   | 3002   |
| 6 Others                   | 2052   | 158    | 203    |
| Subtotal                   | 8106   | 8751   | 12445  |
| C Nuclear energy           |        |        |        |
| 1. Power plant technology  | 58669  | 52299  | 46416  |
| 2 Multipurpose utilization | 8718   | 8069   | 6551   |
| 3. Nuclear fuel cycle      | 9832   | 36257  | 46628  |
| 4. Nuclear fusion          | 14185  | 15944  | 26418  |
| 5 Other nuclear            | 26697  | 27555  | 34166  |
| 6 Nuclear ships            | 433    | 278    | 229    |
| 7 Utilization of radiation | 5546   | 16907  | 9370   |
| 8 Radiation protection     | 5844   | 12881  | 12556  |
| Subtotal                   | 129954 | 170189 | 182335 |
| D. Energy conservation     |        |        |        |
| 1 Industrial use           |        | 17169  | 23371  |
| 2 Office and household     |        | 4397   | 7446   |
| 3. Transportation          |        | 8141   | 14638  |
| 4. Conversion and storage  |        | 6000   | 10401  |
| 5 Hydrogen energy          |        | 1680   | 1956   |
| 6. Others                  |        | 2712   | 2181   |
| Subtotal                   | 8028   | 40099  | 59992  |
| E. Other energy            | 1576   | 1218   | 3096   |
| Total                      | 160201 | 231213 | 277321 |

Table 8- 2 R&D expenditures concerning energy

Note: Conversion and storage refers to that of electric power

Source: Bureau of Statistics, Report on the Survey of Research and Development on Energy.

|   |        |        |        | (unit. milli | on yen, curre | nt prices) |
|---|--------|--------|--------|--------------|---------------|------------|
|   | 1979   | 1980   | 1981   | 1982         | 1983          | 1984       |
| A |        |        |        |              |               |            |
| 1 | 18866  | 27551  | 38782  | 47245        | 47456         | 44192      |
| 2 |        | 6333   | 3712   | 3695         | 2948          | 4010       |
| 3 | 12116  | 45859  | 39751  | 35716        | 32703         | 31979      |
| 4 | 886    | 1326   | 1335   | 1133         | 1742          | 1097       |
|   | 31869  | 81069  | 83580  | 87790        | 84848         | 81278      |
| В |        |        |        |              |               |            |
| 1 | 2789   | 5668   | 9107   | 7901         | 7145          | 5653       |
| 2 | 11661  | 20237  | 20087  | 20936        | 19120         | 19918      |
| 3 | 2063   | 1472   | 2062   | 1889         | 1622          | 1577       |
| 4 | 757    | 2007   | 1659   | 1713         | 1008          | 1077       |
| 5 | 4611   | 5580   | 9286   | 7204         | 6598          | 7879       |
| 6 | 368    | 587    | 765    | 700          | 620           | 1069       |
|   | 22250  | 35551  | 42965  | 40343        | 36113         | 37174      |
| С |        |        |        |              |               |            |
| 1 | 67469  | 85296  | 88919  | 93296        | 107291        | 107140     |
| 2 | 6735   | 7047   | 9891   | 9619         | 7217          | 8418       |
| 3 | 34634  | 39325  | 47878  | 48976        | 62505         | 65673      |
| 4 | 39816  | 54349  | 60986  | 75822        | 75902         | 80450      |
| 5 | 35439  | 18486  | 21738  | 20462        | 22263         | 24401      |
| 6 | 220    | 4689   | 6766   | 7128         | 7350          | 473        |
| 7 | 15223  | 18204  | 17510  | 18764        | 21930         | 22709      |
| 8 | 7989   | 8429   | 12030  | 10251        | 10053         | 8114       |
|   | 207525 | 235826 | 265718 | 284318       | 314511        | 317378     |
| D |        |        |        |              |               |            |
| 1 | 30247  | 41879  | 44961  | 51964        | 48904         | 45353      |
| 2 | 24566  | 31185  | 39926  | 21807        | 16887         | 17359      |
| 3 | 25398  | 41197  | 111298 | 141815       | 134198        | 158422     |
| 4 | 9861   | 15042  | 24317  | 26360        | 22327         | 1959       |
| 5 | 2258   | 2989   | 3825   | 3215         | 3229          | 335        |
| 6 | 1435   | 2279   | 1840   | 2509         | 1330          | 6324       |
|   | 93765  | 134571 | 226167 | 247669       | 226875        | 25040      |
| E | 8643   | 14004  | 17733  | 17115        | 19068         | 2578       |
|   | 364052 | 501021 | 636164 | 677235       | 681416        | 71201      |

|   | 1985   | 1986   | 1987   | 1988   | 1989   | 1990   |
|---|--------|--------|--------|--------|--------|--------|
| A |        |        |        |        |        |        |
| 1 | 40369  | 45991  | 31626  | 35071  | 42685  | 43313  |
| 2 | 3805   | 3746   | 3776   | 4186   | 5600   | 6438   |
| 3 | 33824  | 37060  | 27232  | 25823  | 24797  | 36389  |
| 4 | 5642   | 3467   | 3104   | 3252   | 3402   | 3888   |
|   | 83640  | 90265  | 65740  | 68330  | 76484  | 89939  |
| В |        |        |        |        |        |        |
| 1 | 6317   | 5543   | 5829   | 4415   | 4171   | 3701   |
| 2 | 20063  | 16373  | 16138  | 14249  | 14870  | 15906  |
| 3 | 1266   | 1137   | 1187   | 947    | 847    | 744    |
| 4 | 1019   | 908    | 987    | 1076   | 1513   | 1267   |
| 5 | 7863   | 8316   | 8006   | 7137   | 5629   | 5902   |
| 6 | 897    | 838    | 1412   | 837    | 899    | 691    |
|   | 37425  | 33115  | 33559  | 28661  | 27929  | 28210  |
| С |        |        |        |        |        |        |
| 1 | 124265 | 163621 | 162230 | 172669 | 150026 | 139057 |
| 2 | 10287  | 13853  | 14177  | 16793  | 17923  | 17183  |
| 3 | 75089  | 105279 | 122768 | 133098 | 123483 | 107506 |
| 4 | 75248  | 42282  | 42699  | 43454  | 46040  | 50873  |
| 5 | 22333  | 32589  | 33989  | 36334  | 38109  | 35508  |
| 6 | 11106  | 1979   | 2180   | 2152   | 2221   | 2083   |
| 7 | 23631  | 35077  | 22271  | 24804  | 26615  | 31114  |
| 8 | 6617   | 5172   | 20850  | 20381  | 21542  | 18648  |
|   | 348574 | 399852 | 421165 | 449687 | 425957 | 401974 |
| D |        |        |        |        |        |        |
| 1 | 47436  | 42304  | 38640  | 40393  | 67892  | 46286  |
| 2 | 17950  | 22998  | 23471  | 24535  | 29940  | 31215  |
| 3 | 171048 | 181693 | 214729 | 210867 | 230336 | 243775 |
| 4 | 21312  | 22519  | 25411  | 28618  | 35664  | 31873  |
| 5 | 5222   | 5675   | 5779   | 6786   | 7627   | 6823   |
| 6 | 2312   | 2614   | 4709   | 7173   | 6680   | 10001  |
|   | 265277 | 277802 | 312740 | 318372 | 352556 | 369974 |
| E | 23408  | 21557  | 19236  | 23230  | 23291  | 23875  |
|   | 758324 | 822590 | 852440 | 888280 | 906216 | 913970 |
|   |        |        |        |        |        |        |

#### ENVIRONMENT-RELATED R&D

government. Concerning environment protection, R&D expenditures in 1990 were allocated among private and government institutions as follows [Bureau of Statistics, *Report on the Survey of Research and Development*]:

| Private industry               | 171 billion yen |
|--------------------------------|-----------------|
| Private research institutes    | 14              |
| Universities and colleges      | 18              |
| Government research institutes | 31              |
| Total                          | 235             |

An OECD publication [OECD 1992, p.38] states concerning the situation in some selected European countries: "The enterprise sector is already the main source of finance and main performer for environmental R&D, and this role is likely to increase. Yet, there has traditionally been ambivalance both in public attitudes to industry as a source of pollution and in industry's attitude to the environment." Although the situation in Japan is fundamentally similar, the role of the private sector is probably more established and dominant.

Concerning R&D in energy fields, the picture in 1990 was as follows[Bureau of Statistics, *Report on the Survey of Research and Development*, 1992, pp.36-37]:

| Private industry               | 349 billion yen |
|--------------------------------|-----------------|
| Private research institutes    | 261             |
| Universities and colleges      | 42              |
| Government research institutes | 262             |
| Total                          | 914             |

In terms of research personnel in energy fields, the government contributed 3100 out of a total of 19800 in the same year. The dominance of effort by the private sector in this field is merely a reflection of the total R&D scene in Japan. International comparison of R&D in environment-related fields is hampered by the unavailability of comprehensive environmental R&D data. What is collected by the OECD, for example, concerns government R&D, which is included in many OECD publications [OECD 1992, 1993]. But its usefulness is limited by the reason just mentioned.

From an organizational point of view, it is important to recognize the technological interrelation among various lines of activities within a business firm. Diversification of products and technology have occurred around a 'core'

|                        |        |        | 1985    |        | 1986   |
|------------------------|--------|--------|---------|--------|--------|
| Textiles               | [20&]  | 15711  | (26 2)  | 9628   | (19.5) |
| Pulp & paper           | [24]   | 48452  | (19.3)  | 25866  | (13 5) |
| Petrochemicals         | [26]   | 12615  | (116)   | 9781   | ( 6.2) |
| Petroleum refinery     | [27-]  | 9890   | (5.0)   | 13874  | ( 6.2) |
| Nonmetallic minerals   | [30]   | 14504  | (25 4)  | 611    | (56)   |
| Iron & steel products  | [31]   | 92628  | (15.5)  | 115781 | (20 2) |
| Nonferrous metals      | [32]   | 691    | (1.5)   | 11587  | (25 3) |
| General machinery      | [34]   |        | ( —)    |        | ( —)   |
| Electronics            | [35-]  |        | ( — )   |        | ( —)   |
| Electrical machinery   | [35-]  | 3855   | (04)    | 3452   | (11)   |
| Motor vehicles         | [36M]  | 13248  | (2.3)   | 8740   | (12)   |
| Other manufacturing    | [38&&] | 51237  | (°67)   | 27821  | (60)   |
| Manufacturing total    | [0M]   | 262831 | (74)    | 227143 | ( 8.3  |
| Mining                 | [15]   |        | (-)     |        |        |
| Electric power         | [70-]  | 22664  | (13)    | 30176  | (14    |
| Gas                    | [70-]  | 1944   | (°09)   | 1070   | (05    |
| Wholesale and retail   | [40]   | 913    | (`1.0)́ | 984    | ( 5.2  |
| Leasing                |        |        | ( —)    |        | ) — j  |
| Services               | [75]   |        | ( — )   |        | ( —    |
| Nonmanufacturing total |        | 34401  | (Ì1.4)́ | 38820  | (14)   |
| All industry           | [00]   | 297232 | (49)    | 265963 | (49)   |

Table 8-3 Energy conservation investment

Note. Total investment in (a) refers to responding firms Figures in parenthesis are percentage shares in total investment

according to a survey based on a bibliographic database by the Japan Information Center of Science and Technology [JICST 1993]. In this sense, it was simply not a matter of money to promote R&D in different fields including pollution abatement and energy conservation. Business experience in pollution abatement and energy conservation is introduced in Schmidheiny [1992], based on cases from all over the world. A detailed exposition on this point, however, is outside the scope of this paper.

## 8.3 Diffusion of new technology

New technology has to be implemented in new capital stock in order to actually achieve the desired objectives. In this section, we examine the plant and equipment investment for energy conservation, followed by an overview of the introduction of alternative energy sources.

|    |        | 1987    |        | 1988                |        | 1989           |        | 1990   |
|----|--------|---------|--------|---------------------|--------|----------------|--------|--------|
| Te | 9612   | (13.4)  | 7463   | (7.7)               | 3090   | (6.7)          | 13065  | (12.6) |
| Pu | 12696  | (5.3)   | 19223  | (9.0)               | 22748  | (10.9)         | 58894  | (13.7) |
| Ch | 23331  | (8.3)   | 17952  | (6.0)               | 17272  | (6.5)          | 11055  | (3.1)  |
| Pe | 11223  | (4.1)   | 4817   | (1.5)               | 12874  | (33)           | 8957   | (1.8)  |
| No | 8917   | (6.7)   | 7481   | (6.2)               | 9213   | (5.6)          | 12580  | (8.1)  |
| Ir | 108303 | (23.6)  | 42860  | (9.0)               | 37552  | (59)           | 65269  | (10.0) |
| No | 2884   | (36)    | 3044   | ( 3.8)              | 3158   | (5.5)          | 3859   | (44)   |
| Ge | 1365   | (2.4)   | 1892   | (2.2)               | 1765   | ( <u>1.9</u> ) | 5393   | (70)   |
| EI | 714    | (0.3)   | 1065   | (0.9)               | 59     | () 0 3)        | 926    | (08)   |
| EI | 2982   | (12)    | 2722   | ( <sup>1</sup> 1 2) | 1136   | (05)           | 4444   | (09)   |
| Tr | 6849   | (0.9)   | 13548  | (1.9)               | 13664  | (1.4)          | 10138  | (1.0)  |
| Ot | 6872   | (3.7)   | 7688   | ( 3.0)              | 5365   | ( 2.9)         | 10301  | (27)   |
| Ma | 195748 | (6.5)   | 129755 | ( 4.3)              | 127896 | (̀ 3.9)́       | 204911 | ( 4.7) |
| Mi | 283    | (14)    | 51     | (0.3)               | 312    | (16)           | 0      | (00)   |
| EI | 24088  | (10)    | 18673  | (07)                | 15228  | (`0.7)         | 48505  | (18)   |
| Ga | 1224   | (06)    | 1370   | (0.6)               | 1234   | (6.2)          | 336    | (01)   |
| Wh | 207    | (13)    | 1232   | (2.0)               | 0      | (`0.0)         | 1576   | (19)   |
| Le | 7820   | ( 0.8)  | 5885   | (`0.9)́             | 7652   | (1.0)          | 1154   | (0.8)  |
| Bu | 26     | (`0.0)́ | 2419   | (15)                | 4085   | (2.9)          | 1743   | (2.4)  |
| No | 33648  | (`0.9́) | 29630  | () 0 8)             | 28511  | <u>(</u> 09)   | 53314  | (16)   |
| То | 229396 | (3.4)   | 159385 | (2.4)               | 156407 | (2.5)          | 258225 | (34)   |
|    |        |         |        |                     |        | ******         |        | /      |

Source MITI, Plant and Equipment Investment Plans in Major Industries

Empirical figures are available only for recent years when the second oil crisis prompted interest in energy conservation. Starting from less than 200 billion yen in 1979 and about 300 billion yen in 1980, plant and equipment investment for energy conservation reached nearly 450 billion yen in 1981 and 1982. This was precisely when the crude oil price (CIF) approached 55000 yen per kl. The energy conservation investment actually started to decline in the early 1980s as the crude oil price declined to 10000 yen per kl or less. This is a reflection of lower oil prices and, in Japan, appreciation of the yen currency.

Detailed data were made public starting 1985, which are reported in Table 8-3. The data comprise a part of the annual survey conducted by the MITI for the Council of Industrial Structure, with which it is affiliated. In its 1990 edition, the sample was reported to comprise about 2000 major enterprises under the jurisdiction of the MITI, of which some 1120 responded. Of this, 325 enterprises were engaged in investment in energy-related fields.

Where an enterprise was engaged in various activities, individual activities

| Industry                     | Sector code | 1986        |
|------------------------------|-------------|-------------|
| Food processing              | [18]        | <del></del> |
| Textiles                     | [21&]       | 1046        |
| Pulp & paper                 | [24]        | 26855       |
| Petrochemicals               | [26]        | 1046        |
| Petroleum refinery           | [27-]       | 16066       |
| Nonmetallic mineral products | [30]        | 373         |
| Iron and steel products      | [31]        | 8177        |
| Nonferrous metal products    | [32]        | 0           |
| General machinery            | [34]        |             |
| Electronics                  | [35-]       |             |
| Electrical machinery         | [35-]       | 897         |
| Motor vehicles               | [36M]       | 7158        |
| Other manufacturing          | [38&]       | 14124       |
| Mining                       |             |             |
| Leasing                      |             |             |
| Total                        |             | 75196       |

### Table 8-4 Alternative energy investment

#### a. Breakdown by industrial sector

|              |       | 1986   |
|--------------|-------|--------|
| Coal         | 63760 | (84.9) |
| LNG          | 3362  | (4.5)  |
| Hydro        | —     | (-)    |
| Geothermal   | 3079  | (41)   |
| Solar energy | 5     | (0.0)  |
| Wastes       | 756   | (10)   |
| Others       | 4234  | (5.6)  |
| Total        | 75196 | (100)  |

#### b. Breakdown by energy source

Note. Figures in parenthesis are % in total alternatative energy

Source: Same as Table 8-3.

were classified to relevant industrial sectors. The investment figures are enumerated on the basis of progress of construction rather than payments. Energy conservation equipment in the survey refers to the following:

- (1) equipment designed to recover waste energy;
- (2) equipment which is retrofitted to the main facility in order to improve energy efficiency;

|       |       |       | (unit: mil | llion yen, %) |
|-------|-------|-------|------------|---------------|
|       | 1987  | 1988  | 1989       | 1990          |
| Fo    | 4     | 17    | 0          | 0             |
| Te    | 2957  | 1102  | 4331       | 379           |
| Pu    | 15605 | 9318  | 21248      | 20157         |
| Ch    | 11319 | 215   | 6247       | 1956          |
| Pe    | 1337  | 0     | 4100       | 7400          |
| No    | 129   | 223   | 2148       | 4644          |
| lr    | 3069  | 15458 | 17587      | 14373         |
| No    | 190   | 2404  | 627        | 357           |
| Ge    | 92    | 102   | 207        | 272           |
| EI    | 301   | 0     | 115        | 145           |
| El    |       | 820   | 450        | 991           |
| Tr    | 5265  | 360   | 3565       | 3858          |
| Ot    | 163   | 301   | 885        | 6169          |
| Mi    |       | 86    | 414        | 0             |
| Le    | —     | _     | 1256       |               |
| Total | 40431 | 30406 | 63180      | 60701         |

|    |       | 1987   |       | 1988   |       | 1989   |       | 1990   |
|----|-------|--------|-------|--------|-------|--------|-------|--------|
| Co | 25605 | (63.3) | 16138 | (53.1) | 40080 | (63.4) | 30450 | (50 2) |
| LN | 2854  | (7.1)  | 6104  | (20.1) | 3960  | (63)   | 8587  | (14 1) |
| Hy |       | (—)    | 0     | (0.0)  | 1889  | (30)   | 860   | (14)   |
| Ge | 0     | (0.0)  | 0     | (0.0)  | 440   | (0.7)  | 0     | (00)   |
| So | 28    | (0.1)  | 3     | (00)   | 142   | (0.2)  | 142   | (02)   |
| Wa | 5939  | (14.7) | 8128  | (26.7) | 15825 | (25 0) | 20577 | (33.9) |
| Ot | 6003  | (14.8) | 33    | (0.1)  | 844   | (13)   | 85    | (01)   |
| То | 40431 | (100.) | 30406 | (100.) | 63180 | (100.) | 60701 | (100)  |

- (3) equipment which is considerably superior compared with the existing facility in its energy efficiency; and
- (4) improvement of production processes for the purpose of improving energy efficiency.

Those for the production of equipment for energy conservation and facilities to produce energy-efficient products are not included.

According to Table 8-3, 1990 seems to have witnessed a reversal in the decline of energy conservation investment. In the manufacturing industry, it jumped nearly 47% from 128 billion yen in 1989 to 205 billion yen. The ratio to total investment of the reporting firms stood at 4.7%. The survey from

more recent years indicates that the higher level continued in 1991 and 1992. A similar trend was observed for the nonmanufacturing sector (the bulk of which is electric power generation) where it increased from 29 billion yen in 1989 to 53 billion yen in 1990.

The ratio to total investment was 4.7% for manufacturing, 1.6% for nonmanufacturing, and 3.4% for all sectors. The ratio, however, fluctuated rather widely, as can be observed in the table.

We turn now to Table 8-4 which shows the recent trend in investment in order to shift to alternative energy sources. The data are based on a survey entitled "Survey on Plant and Equipment Investment on Petroleum Alternatives" conducted by the MITI, which is also a part of the annual investment survey reported above. The samples are similar to the above survey. Of the 895 enterprises which responded, 84 were engaged in investment in order to shift to nonpetroleum energy.

Petroleum alternatives in the survey refer to furnaces themselves and accompanying pollution prevention facilities, etc. which are needed in the introduction of coal, natural gas, and other alternatives to petroleum. The cases include where an existing heavy oil boiler was converted into using natural gas, etc., and also where new facilities were installed which use nonpetroleum energy sources.[3]

According to the table, the investment for this purpose has fluctuated between 30 to 75 billion yen during the five-year period listed, with no clear trend. The 1990 figure of 61 billion yen is about 1/4 of the energy conservation investment reported in Table 8-3.

Panel (b) of Table 8-4 is interesting in that it shows which energy is being contemplated as an alternative to petroleum in Japanese industry. In 1986, the earliest year for which the data collection is available, coal was practically the only alternative. The share of oil has declined from 85% in 1986 to 50% in 1990. It should be noted that the use of wastes as alternative energy has come to a practical stage, as can be witnessed by the fact that around 30% of investment for alternative energy use is directed to this category in the 1989-1990 period, compared with a mere 1% in 1986. Another major source is LNG.

# 8.4 Pollution prevention technology, some cases

R&D adds to the stock of scientific and engineering knowledge commonly available to the global community. There are economic, institutional, and technological obstacles in the diffusion process. Public acceptance is also an issue, especially concerning nuclear energy and urban waste disposal plants. In this section, we take up some of the key technologies which are in their infancy and at their stages of implementation. We examine pollution prevention technology, energy conservation technology, and the development of new sources of energy.

The performance of an economy used to be, and still is to a considerable degree, measured by the increase in annual flow of value added. GDP is, of course, a concise indicator of the levels of economic activities. Increasing attention is being paid to before and after such a flow, namely, the effect on the stock of resources and the environmental impact. Greater care must be taken to control pollution, minimize waste, and recycle and reuse energy and materials.

Sulphur oxide pollution: In order to meet the emission standards set for each facility as a result of consultation involving local residents, local governments, and the production unit concerned, as well as for the area as a whole as stipulated in the Pollution Control Programs, Japan has relied on heavy oil desulphurization and flue gas desulfurizers.[4]

- For the desulphurization of heavy oil, direct and indirect desulphurizers were installed starting in 1967. Time series data on the installation of desulphurization units are available in Table 6-4. The capacity expansion was complete by 1980. With the desulphurization of heavy oil, coupled with the importation of low sulphur crude oil (with S content less than 1%), the average sulphur contents in heavy oil have been reduced from 2.5% in 1967 to 1.43% in 1974. The 1990 figure stood at 1.02%.
- (2) R&D on flue gas desulphurization (FGD) was initiated by the Ministry of International Trade and Industry in 1966 as a part of its Large Scale Industrial Technology Development Plan, and the operation of practical units started in 1970. Time series data on this account are shown in Table 6-5.

Coal liquefaction and gasification can work as pre-combustion control methods to contain sulphur emission by removing pollutants in the process. In order to remove pollutants during combustion, new types of boilers are used such as atmospheric and pressurized fluidized bed combustion (FBC) systems.

Supplies of by-product gypsum from the FGD process continue to increase, posing a difficult disposal problem.

Nutrogen oxide pollution from stationary sources: The emission standards have been strengthened since 1973. In 1985, controls for small-sized boilers were added. Starting in 1987, gas turbines and diesel engines were also regulated, with implementation starting in 1988 for new facilities and 1990 for existing ones. In 1990, the regulation was extended to cover gas engines and gasoline engines.

- (1) The research effort at reducing nitrogen oxide emission was started in 1975. Existing methods for controlling  $NO_X$  emission during combustion include two-stage combustion, low  $NO_X$  burner, and flue gas recirculation (FGR).
- (2) The post-combustion removal of nitrogen oxides represents the newest technology made available through extensive R&D and has been commercialized in countries such as Japan and Germany for their power plants. A selective catalytic reduction (SCR) system removes 80% to 90% of NO<sub>X</sub> when used in conjunction with combustion modification methods [OECD 1987, p.37]. The diffusion process of flue gas denitrification units in Japan is described in Table 6-6.

NOx reduction from mobile sources: The regulation on  $NO_X$  emission from automobiles has been strengthened, as shown in Table 5-6.  $NO_X$  emission from mobile sources proved to be a very stubborn problem. In Japan, only 6.9 observation stations built to monitor automobile exhaust gas cleared the environmental standards. Nitrogen oxide emission attributed to automobiles amounted to 67% and 47% in Tokyo and Osaka, respectively. The Central Council for Environmental Pollution Control recommended in 1989 short-term (less than 5 years) targets and long-term (less than 10 years) targets for emission reduction, primarily for diesel vehicles. This regulation also applies to the reduction of particulates from diesel engines.

Preferential tax measures are being utilized in order to encourage a shift to

vehicles which satisfy the latest regulation in the introduction of low-pollution vehicles such as electric cars.

Photochemical air pollution: The Environmental Agency and the Meteorological Agency both monitor the weather data, issuing warnings as needed. Factories are directed to reduce their emission level and automobile users are asked not to make unnecessary trips. The control of volatile organic compounds (VOC), which include hydrocarbons (HC), is particularly important since these substances are involved in the formation of photochemical oxidants (ozone). VOC emission often results from the evaporation of hydrocarbons in a variety of locations, requiring vapor recovery methods.

Hydrocarbon: The control technology of hydrocarbon from automobiles has been discussed in chapter 5.

Chlorofluorocarbons (CFCs): In order to prevent depletion of the ozone layer, the global community agreed in the Vienna Convention for the Protection of the Ozone Layer (adopted in 1985 and put into effect in 1988) and the Montreal Protocol on Substances that Deplete the Ozone Layer (adopted in 1987 and put into effect in 1989). This was followed up domestically by the Ozone Layer Protection Law in 1988.[5] The production of five kinds of CFCs and three kind of halons were to be reduced according to the schedule specified in the Montreal Protocol. Covered by the Protocol are CFC 11, 12, 113, 114, and 115 (hereafter referred to as specified CFCs) and halon 1211, 1301, and 2402. The development of technology for the destruction of specified  $CFC_{s}$  is underway.  $CFC_{s}$  have been widely used for cleaning purposes in the semiconductor industry and as a refrigerant in air conditioners. Attempts have been made to encourage the rapid diffusion of emission control and recovery facilities through tax incentives and low-interest loans. In the meantime, participating parties to the Montreal Protocol met in Helsinki, and agreement was reached on a total phaseout of specified CFCs by the end of the century (Helsinki Declaration).[6]

Stipulation in the Montreal Protocol on specified CFCs and halons are cited below.

| Specified CFCs:   | After 1989, 100% or less of 1986 level    |
|-------------------|-------------------------------------------|
|                   | After 1994, 25% or less "                 |
|                   | After 1996, to be abolished.              |
| Specified halons: | After 1992, $100\%$ or less of 1986 level |
|                   | After 1994, to be abolished.              |

In Japan, the production and consumption of specified CFCs have been reduced to about 61% and 55% of the reference point in 1986, respectively.[7]

Water pollution: There has been considerable achievement in improving the water quality in Japan in the past 20 years. We have noted the environmental quality as measured by BOD and COD in Table 6-12 which we need not repeat here. These indicators relate to organic matters contained in the water. As to cadmium and other substances hazardous to human health, the situation has also improved. The ratio of water samples exceeding environmental quality standards has been reduced from 1.4% in 1970 to 0.02% in 1990.[8] Total mercury should not be found in water according to the environmental standards. The ratio of samples containing mercury has been reduced from 1.0% in 1970 to 0% in 1990. In fact, improvement has been achieved within several years after implementing the stringent standards.

According to the Japanese experience, the abatement of water pollution was mainly achieved through purification and recycling within industrial plants and increased provision of sewerage for household and urban water consumption. Stricter environmental standards and their forceful implementation through the regional Pollution Control Programs were also contributing factors. Relevant data are found in Tables 6-7 and 6-8. In both cases, the results have been achieved by implementing the existing technology and/or by incremental improvement thereof rather than waiting for technological breakthrough, as far as the description of the *Environment White Paper* reflects reality. The practice of recycling industrial water is widespread in Japan, as shown in Table 6-7, and this was achieved by shifting to a closed water circulation system.

Wastes: We have examined the disposal of municipal wastes in Table 6-9 and that of industrial wastes in Table 6-10. In the former, the percentage incinerated has been on the increase. We noted in Table 3-3 that the incineration of waste is now contributing a new source of energy. The trend is recapitulated here. 1975 34 10\*\*10 kcal

- 1980 107
- 1985 227
- 1990 407

This now represents 0.5% of the domestic energy supply or 0.08% of the total energy supply including imports.

New technology is involved also in the pipeline facilities for the transport of wastes.

As for industrial waste, a larger amount is now being recycled, as shown in Table 6-10. The total volume recycled has increased, but the percentage recycled has not improved greatly. The responsibility for the treatment of industrial waste rests with the factories involved, but the role played by enterprises specializing in the treatment of industrial waste has become increasingly important.

Recycling technology, information systems to control the flow of industrial wastes, and technology to repair the environmental damage done by the illegal disposition of wastes are some of the examples of technological development in this field. The Ministry of International Trade and Industry has subsidized the Clean Japan Center in order to design a pilot plant for the recycling of industrial waste. The MITI also has a research institute dedicated to this purpose.

In order to facilitate the recycling of raw materials, product design and material are being examined for certain items, including automobiles, air conditioners, television sets, washing machines, and refrigerators. In order to ease the collection of aluminum and steel cans, specific marking is being considered. In the construction industry, the reuse of iron slag, coal ashes, asphalt, concrete, and wood is being promoted.

#### 8.5 New sources of energy, some cases

In a review of government policy among its member countries, IEA [1992a, p.185] summarized the Japanese energy policy as follows: "Japan's energy policy has proved successful in limiting the risks inherent in Japan's vulnerable energy situation and in providing the basis for rapid economic growth. It has been particularly successful in diversifying the sources of energy supply,

developing nuclear energy and promoting efficiency in energy use. Some of this success has been bought at a cost - for example the reliance on high cost nuclear energy and LNG in electricity generation - but this has been the result of deliberate choice arising from Japan's energy situation."

Apart from the endowment of energy resources, which is practically none (excluding nuclear) as can be seen in Table 3-3, Japan is aiming at stabilizing  $CO_2$  emission on a per capita basis in year 2000 at about the 1990 level. The energy strategy to this end includes the promotion of nuclear power, introduction of the renewable energies, promotion of CHP, greater use of natural gas, and promotion of energy efficiency. The effort to arrest global warming tends to re-emphasize nuclear energy in Japan.

Nuclear energy: In 1990, over 80% of government energy R&D was devoted to nuclear energy. Nuclear-related technology has dominated the Japanese research effort, as can be witnessed in Table 8-2. Nuclear power stations are operated by nine privately owned regional utilities, but the Japan Atomic Power Company is responsible for the construction and operation of nuclear plants. This company was established by the utilities and the Electric Power Development Co., which is 70% government-owned.

France is another country in which nuclear power plays a major role in the energy supply. "For economic-political reasons and because of the availability of its own energy resources, France has undertaken a very goal-oriented energy conservation program since the oil crisis of 1973 and has been concentrating on reducing its consumption of oil and coal, and especially on the possibility of developing its nuclear energy" [Balaceanu, Bertrand, and Lacour 1989]. The French energy balance in 2000 will be 8% coal, 33% oil, and 41% nuclear.

Indeed, based on technological and economic considerations (i.e. assuming that current constraints of public acceptability are totally removed), experts from the OECD Nuclear Energy Agency argue that there would be an opportunity for greater penetration of the electricity generation sector by nuclear plants [Gehrisch et al. 1989]. "In the absence of reprocessing, in addition to electricity a significant amount of spent fuel is produced. The unit of measurement is the tonnage of heavy metal contained; by 2000, it is expected that some 150,000 HM will have been produced in the OECD. According to the nuclear capacity curve ... a further 650,000 ton HM would have been added by 2030. ... This would require a storage volume of the order of 260,000 to 130,000 cubic meters and there is no reason to suppose that this amount of storage could not be possible. However this level of unreprocessed spent fuel storage appears to be incompatible with the basic scenario, as the spent fuel will be wanted for reprocessing." "A major factor in deciding on the timing and rate of introduction of fast breeder reactors (FBRs) will be the availability of plutonium to fuel them. By, say, 2020, there will be of the order of 650,000 ton of spent fuel containing about 6,500 tonnes of plutonium in various forms of storage or repository. Depending on how much of the spent fuel is in retrievable storage (and as yet there are no operating final repositories for spent fuel) the majority of this plutonium would be available, after reprocessing, for FBR fuel fabrication."

"The main impediment to FBR introduction would be the availability of freshly reprocessed plutonium. That depends on decisions having been taken well in advance on setting up the necessary plants, including facilities for handling the highly radioactive wastes that are produced. Experts in the relevant subjects have confidence that appropriate technology is already available so from that point of view ... there should be no inherent technical constraint on a fairly widespread introduction of FBRs as from 2020."

"It is recognized, however, that this development would not be undertaken without some hard thinking on matters related to policy on non-proliferation of nuclear weapons, such as trade-in and frequent movements of plutonium between fuel cycle facilities."

At present Japan is probably the only country in the global community which actively maintains the nuclear energy policy along the course described above, although some others, including the USA, former Soviet Union, UK, and France, had extensively sought feasibility along this line earlier. The Japanese government and the nuclear industry selected the village of Rokkasho on the northern tip of mainland Japan for the site of reprocessing, together with radioactive waste storage. The logic for resorting to nuclear in Japan is as follows [MITI 1992, p.118]:

- (1) Compared with crude oil which depends heavily on the Middle East, uranium is available from various suppliers in the world, most notably from politically stable developed countries.
- (2) Nuclear fuels can be stored and transported easily because they are capable of generating a large amount of energy per physical quantity. Stock-

piling is not needed, as in the case of crude oil, because nuclear fuels continue to burn for about 3 years. Coupled with nuclear fuels in the production process, several years worth of fuels can be stored domestically.

- (3) By establishing a nuclear fuel cycle which utilizes plutonium and recovered uranium, Japan will be able to obtain a semi-domestic source of energy.
- (4) It is free of  $CO_2$  emission, which is the cause of global warming. It is also free of  $SO_X$ ,  $NO_X$ , and other air pollutants.
- (5) The cost of electricity for the duration of the operation of the power plant is the lowest (about 9 yen per kW as of 1989) among alternative energy sources.

The Rokkasho plant thus constitutes the backbone in the Japanese nuclear energy policy. The government has defined it as a national project. The plant consists of a uranium enrichment facility, reprocessing facility for irradiated fuel, and low-level waste burial facility. Reprocessing also yields radioisotopes created by splitting uranium atoms, including cesium, iodine, strontium, and technetium, which are referred to as high-level waste. Storage of high-level waste at Rokkasho is planned to be temporary, while its final burial site has not been determined due to public opposition. The Japan Nuclear Fuel Industry Co., jointly owned by electric utilities, is responsible for establishing a nuclear fuel cycle. The construction of the reprocessing facility, which relies on French technology, was started in April 1993 for completion in the year 2000. with a planned budget of more than 840 billion yen (1985 prices).[The Japan Economic Journal (J), Apr. 28, 1993] When complete, Japan will realize a nuclear fuel cycle in which used fuels are reprocessed through chemical procedures that extract fission by-product plutonium to be used in FBRs, thus establishing everlasting cycles. The reprocessing also recovers uranium not consumed in the reactor. The Rokkasho plant will be the largest of its kind in the world, producing 5 tons of plutonium per year from 800 tons of spent fuel. This is equal to spent fuel from 30 one-mega kW-class nuclear power plants. Presently, Japan possesses only a small facility at Tokaimura and is obliged to resort to reprocessing facilities in France and the UK.

Japan constructed an experimental FBR in 1987, which is named "Joyo". A prototype FBR, named "Monju" after a Buddhist goddess, was constructed on Tsuruga Peninsula facing the Japan Sea. Its operation is slated for October 1993. Japan is contemplating the construction of a second prototype FBR starting in the second half of the 1990s, establishing the FBR technology for commercial use. While the Rokkasho plant is capable of reprocessing about 70% of spent fuel, the second plant will enable Japan to treat all the spent fuel on Japanese soil.

There are various scenarios as to the future Japanese nuclear policy. [The Japan Economic Journal (J), Jan.11, 1993] The most optimistic scenario foresees operation of the first commercial FBR around 2030, according to the long-term plan. Replacing obsolete reactors with FBRs, Japan will complete its nuclear fuel cycle. The second scenario foresees a fate similar to that of other leading countries. The USA has stopped development of FBR together with reprocessing on the ground of nuclear nonproliferation. Germany abandoned a nearly complete FBR in 1991 on economic grounds. The UK is also closing down a FBR in 1994 on economic grounds. France, which has been leading FBR development, decided in the summer of 1992 to suspend the reopening of an experimental reactor indefinitely after experiencing some technical difficulties. Japan will have to resort to sea transportation of irradiated fuel and plutonium to and from French and British reprocessing facilities, triggering opposition on an international scale. Ultimately, economic factors, coupled with the fear of nuclear proliferation, will oblige Japan to follow suit, according to the second scenario. The third scenario foresees some delays in establishing the nuclear fuel cycle, although it is unlikely that Japan would abandon the plan. The construction of a commercial FBR will more likely start in the 21st century. It was reported that Japan's Atomic Energy Commission was contemplating to postpone the construction of next FRB till after 2005, delaying the current plan by five years. Commercial use will not start 5 to 10 years after the current target of the year 2030. [The Japan Economic Journal (J), Jan. 6, 1993] In Europe, France and the UK will pursue the production of uranium-plutonium mixed oxide (MOX) for plutonium thermal use in widely used light water reactors rather than the production of plutonium for FBRs.

According to an estimate by IAEA as of December 1992, the world inventory of plutonium is as follows [*The Japan Economic Journal* (J), Jan.6, 1993]:

| Civilian: | Current           | $80  \mathrm{tons}$  |
|-----------|-------------------|----------------------|
|           | Year 2000         | $140  \mathrm{tons}$ |
| Military: | USA               | 90 - 100 tons        |
|           | $\mathbf{Russia}$ | 95 - 120 tons        |

With the end of the cold war, nuclear warheads are being disassembled, leaving behind a huge amount of plutonium, causing a "plutonium glut" in the global community. This has given rise to an argument which calls for reconsideration of achieving the nuclear fuel cycle in Japan, while the USA is leading an effort to develop a new type of reactor fueled with surplus plutonium from the Russian arsenal. Joint plans are already under way to use Russian surplus uranium in commercial reactors.

Plutonium thermal use is widely recognized as technology intermediate to FBRs and the complete nuclear fuel cycle. Japan has developed an advanced thermal converter reactor (ATR) for this purpose. The pilot plant, named "Fugen" after another Buddhist goddess, started operation in 1988. ATRs are capable of burning uranium, enriched uranium, or plutonium.

At any rate, Japan would have to address itself to two serious issues in pursuing its nuclear policy. One is the problem of nuclear waste. Final disposal of high-level waste, consisting of irradiated fuel and/or refuse from reprocessing, reactors from decommissioned nuclear power plants, etc., poses a particularly difficult problem because it remains dangerous for hundreds of thousand, or even millions of years. Second is the international diffusion of nuclear power generation. Japanese experts seem confident that nuclear is now a safe technology for commercial use in Japan. If so, it would be extremely difficult to refuse other countries from having access to nuclear technology, whether on technological or political grounds. The problem is compounded by the first issue. We discussed the policy option on this point in chapter 2.

Renewable energies: The "Sunshine" project of the Agency of Industrial Science and Technology, which was started in 1974, is aimed at new energy technology such as coal liquefaction, solar, wind, and geothermal energy, and the "Moonlight" project, which was started in 1978, aimed at energy efficiency technology. The government hopes to increase the new sources of energy (e.g. solar and wind) from 1.3% of the total energy supply to 5.3% in 2010. The New Energy and Industrial Technology Development Organization (NEDO), which is a joint venture between the government and private sector, is promoting renewable energy research and large scale pilot projects in photovoltaics and geothermal power generation.

MITI [1992] lists the following as new technologies available for practical use:

- (1) Clean coal technology
- (2) Solar energy
- (3) Wind and tidal power generation
- (4) Geothermal
- (5) Methanol
- (6) Fuel cells
- (7) High-efficiency gas turbine

The same source mentions the following as future technology potentials of which are under serious discussion:

- (1) Hydrogen energy
- (2) Biomass
- (3) Superconductivity
- (4) Energy storage

Clean coal technology: Coal is abundant, and its deposits are fairly dispersed around the world. However, emission of pollutants such as  $CO_2$ ,  $SO_X$ , and  $NO_X$  is an obstacle which has to be overcome for extensive use in the future. Difficulty in handling solid fuel is another problem. One notable development in clean coal technology is a fluidized bed combustion boiler which burns crushed coal (about 4 to 6 mm in diameter) in a fluidized bed of preheated lime and sand. The process removes sulphur contained in the coal by reaction with lime, generating gypsum.  $NO_X$  emission is also contained. Small- to medium-sized boilers of this type are in practical use, while largesized ones may be tried for power generation and other industrial purposes. A pressurized type is also under study which will make the design more compact.

Coal handling technology includes coal-water mixture (CWM) fuel, coal cartridge system (CCS), etc. CWM uses a slurry consisting of a very fine powder of coal (70%) and water (30%) mixed with surface-active agents. A coal-oil mixture (COM) has been put to commercial use for the first time in the world by the Tokyo Electric Company in 1984 after 70 billion yens worth of

effort. It is hoped that CWM can be used for diesel engines and gas turbines. CCS uses fine coal in a container for transportation, combustion, and recovery of waste ashes. Its practical feasibility is being investigated.

Research on coal gasification was activated after the oil crisis in Japan, USA, and Germany. The Japanese effort is a part of the Sunshine Project, and focus is placed on high calorie gas for city gas and low calorie gas for power generation, among others. Coal gasification combined-cycle power generation has a higher energy efficiency than the conventional coal-burning power plant and is slated for commercial application in the early 21st century. A study leading to the construction of a pilot plant was started in 1986. According to the study, the current efficiency of about 38% for a pulverized-coal-fired power plant is expected to be improved by 5%. This means a reduction of  $CO_2$  emission of 10% [Sasaki 1989].

Coal liquefaction technology is aimed at obtaining light oil from coal and is also being investigated within the Sunshine Project.

Solar energy: Solar energy is used as a heat source for air conditioning or for power generation. In Japan, there are about 350000 solar systems and 4 million solar water heaters already in place. Photovoltaic power generation uses solar cells in converting solar light into electricity. More efficient solar cells are being developed under the Sunshine Project. One of the project's aims is to reduce the production cost, which stood at around 2300 yen per watt in the early 1980s, to 100 yen per watt by 1990. The production of photovoltaic cells in Japan has increased rapidly [MITI 1992]:

| 1976 | $22 \ \mathrm{kWp}$ |                    | -            |
|------|---------------------|--------------------|--------------|
| 1980 | 291 kWp (of v       | which power genera | tion 67 kWp) |
| 1985 | 9250 kWp (          | "                  | 3431 kWp)    |
| 1990 | 14570 kWp (         | "                  | 5534 kWp)    |
|      |                     |                    |              |

In 1990, about 38% of total production (in terms of capacity) was for power generation and research purposes and the remainder for consumer appliances.

It is reported that MITI's Agency of Industrial Science and Technology is aiming at reducing the cost of photovoltaic power generation to 20 to 30 yen per kWH by the year 2000, equivalent to the cost of electricity at the consuming end today. By 2010 it is intended to reduce the cost further to around 15 yen per kWH, allowing it to be incorporated in the utility service. The efficiency of energy conversion technology remains around 15%; even through mass production current technology does not promise an electricity cost of less than 40 yen per kWH. It is deemed necessary in the medium-range time frame (say, year 2000) to develop the production technology of three types of photovoltaic cells, polycrystal silicon, amorphous silicon, and cadmium-tellurium. At the same time, the integration of photovoltaic cells in building materials will be sought in order to facilitate their installation. In the long-run (year 2010), an energy conversion efficiency of 20 to 40% is sought based on single crystal silicon cells and compound semiconductor cells.

Solar thermal electric power generation uses a large number of reflectors, generating steam, which then turns turbines to produce electricity. A pilot plant having a capacity of 1000 kW was constructed in Japan as part of the Sunshine Project but proved uneconomical under the Japanese climatic conditions.

Windmill power energy: The cost of electricity using wind power is currently around 5 yen per kWH, assuming an average wind speed of 6 m/s. This is competitive, compared with 11 yen in the case of thermal plants and 9 yen in the case of nuclear plants. Electric utilities are purchasing at 17 to 19 yen per kWH under the new scheme which allows transactions between the private power suppliers and the utilities. With this price level, it is calculated that 100 million kW capacity generating 75 billion kWH is economically feasible. This amounts to about 10% of the total electricity generated by 10 utilities in Japan. The existing capacity is only 4000 kW as compared with 1.9 million kW in the USA and 1.1 million kW in Europe. The Sunshine Project aims at developing a 500-kW-type generating system.

Geothermal: There are 10 existing sites with 270000 kW capacity. Geothermal energy is covered by the Sunshine Project. Refer to Table 3-3 for the diffusion of geothermal power generation.

Methanol: Methanol can be produced from a variety of raw materials, including natural gas, tar sands, coal, wood, and others, and can be used for power generation and for vehicle fuel. A methanol power generation plant utilizes methanol as a substitute for coal, petroleum, or LNG. It promises to be clean, with no  $SO_X$  emission and with very little  $NO_X$  emission compared with fossil fuels. However, it is a different story if one looks at the total fuel cycle emissions from the initial resource extraction to end use. One calculation shows the emission of greenhouse gases from alternative fuels as follows [DeLuchi et

|                            | $CO_2$ -equivalent | Changes          |
|----------------------------|--------------------|------------------|
|                            | total emissions    | in emission      |
|                            | (bil. tons/year)   | (% to petroleum) |
| Methanol from biomass      | 0                  | -100%            |
| Double efficiency vehicles | 0.668              | -50%             |
| CNG from natural gas       | 1.081              | -19%             |
| LNG from natural gas       | 1.135              | -15%             |
| Methanol from natural gas  | 1.293              | -3%              |
| Gasoline and diesel        | 1.336              |                  |
| Methanol from coal,        |                    |                  |
| 30% more efficient         | 2.026              | +52%             |
| baseline                   | 2.639              | +98%             |

al. reported in IEA 1990c, p.74]:

In the calculation, all  $CH_4$  emissions as well as  $NO_2$  emissions from power plants are converted to equivalent  $CO_2$  emissions. The report concludes that "It is clear from the use of coal to make any highway fuel would substantially accelerate  $CO_2$  emissions, relative to the base-case use of petroleum. ... Significant reductions in emissions of greenhouse gases can be attained only by greatly increasing vehicle efficiency or by using biomass or nonfossil electricity as the fuel feedstock. In the case of biomass, the net impact will approach zero if  $CO_2$ -absorbing replacement crops are planted to sustain the methanol economy." IEA [1990c, p.9] puts the costs of methanol from gas (US\$ per barrel-gasoline energy equivalent) at \$30-\$67, methanol from coal at \$63-\$109, and from biomass at \$64-\$126 as compared with assumed price of crude oil at \$18 and conventional gasoline at \$27.

*Fuel cells*: This is a process which generates electricity (and water) from hydrogen and oxygen. Technically, phosphoric acid fuel cells are already at the stage of practical use, while economics is the factor which determines the diffusion of this system. Basic research is being performed under the Moonlight Project for molten carbonate fuel-type and solid oxide-type systems. The Japanese technology in this field is believed to be high.

As for phosphoric acid fuel cells, on-site cogeneration systems are being produced commercially for relatively large heat demand (200 kW) in such places as hotels and hospitals. The 5000-kW class fuel cells are under development for regional power and heat supply. On-site installation eliminates the 6% loss normally incurred during the transmission and distribution of electricity. Based on an electrochemical reaction, the power generation efficiency is as high as 40 to 60%; including the utilization of waste heat, the total energy efficiency can reach 80%. "If a 1 million kW natural gas-fired power plant were to be switched to a phosphoric acid fuel cell, which can supply thermal energy, the natural gas consumption and  $CO_2$  emission would be reduced by about 320,000 t/year and about 800,000 t/year, respectively" [Sasaki 1989, p.190].  $NO_X$  emission will also be eliminated.

High-efficiency gas turbines: This also relates to the energy conservation technology in the industrial sector discussed above. A nine-year R&D project was started in 1988 aimed at improving heat efficiency in gas turbines. The average heat efficiency of Japanese power plants has reached around 40% in recent years. In order to improve this further, the turbine inlet temperature will rise from the current 1300 degrees C to 1500 degrees in the coming decade. The Moonlight Project included construction of a pilot plant of 100000 kW capacity and heat-resistant alloys for turbine blades. High-efficiency gas turbine to turn a steam turbine for power generation, is expected to attain a heat efficiency of 55%. Heat-resistant ceramics are being studied for gas turbine high-temperature parts. The Moonlight Project aims at developing a 300-kW class ceramic gas turbine for cogeneration by 1996.

#### 8.6 Further remarks

Last but not least, we have to examine the interaction between technology, R&D policy and the economy. We have seen cases where R&D efforts and the diffusion process through investment are affected by economic variables such as prices. Higher oil prices inducing energy-conserving investment form one example. There are also cases where technological breakthroughs have been prompted by the introduction of new regulations. The widespread use of catalyst converters and less polluting engines are cases in question.

To reduce the quantity of greenhouse gases, the selection of appropriate policy measures has to be sought. Interactions between technology, market mechanisms, and government policy need to be studied in more detail. Especially important seem to be the time lags involved in recognizing the problem, responding via the research effort, and actually implementing the new technology.

An OECD report [OECD 1992] noted a shift away from a narrowly technical focus of environmental research. "So long as environmental questions were considered essentially as specific problems requiring direct solutions, the social aspects of environmental problems generally did not enter the mainstream of environmental thinking." The report identified fields of focus for social science research in the environmental area including technology assessment, social impact assessment, environmental decisions, and public attitudes, among others. In view of the fact that new policy tools are being sought that utilize the market mechanism, such as a carbon tax, in addition to command-and-rule type of regulations, more emphasis will have to placed on the integration of the social sciences into environmental research.

What prompts R&D? There are two factors at work. One is the regulation imposed by the central and local governments in order to make the polluters internalize the social cost. This may be the case for environmental regulation or government research programs in the fields where the market does not function due to bulkiness of the endeavor or due to discounting of the future. The other are the market forces such as the damage cost of environmental disruption and higher prices of energy. It is often the case that new regulations are introduced in response to public opinion calling for government intervention in the automatic solution through the market mechanism. The underlying factor here is the market signal, actual or foreseen. Seen in this way, one should not focus on one factor to the neglect of the other. Two views are often different sides of the same coin.

The OECD [1985a, p.34] discusses whether regulation is a source of innovation. "Regulation, and in particular that concerning the environment, may stimulate innovation through direct or indirect, expected or unexpected mechanism." "All regulation imposes a constraint to which industry tries to react in the most efficient fashion, i.e. at the least cost. In many cases, the most economic solution is an innovative one. In other words, 'the expected' is that industry finds an innovative solution to the regulatory constraints. Regulation is thus a stimulus to this particular form of innovation. ... Moreover, this effort to innovate may stimulate a whole series of peripheral innovations which would not have otherwise appeared - this is 'the unexpected'." The other point of view which stresses market signals in innovative activities can be found in the discussion on the substitutability of energy and capital. In response to a sharp rise in crude oil prices in the 1970s, a number of articles appeared aiming at revealing whether such substitutability existed in reality, and if so, to what extent. Whereas some observers conclude based on their econometric analysis that capital and energy are complementary in the short-run and substitutable in the long-run, others claim that there is no such evidence. Our observation in this chapter on energy substitution investment relates to this point. R&D expenditures for environmental protection and new sources of energy probably can be dealt with along this line, using environmental damage cost and energy saving as a proxy of benefit to be derived from such activities, together with the user cost of capital.

From an analytical point of view, linking technology to economy is not an easy task. One possibility is to focus on individual technology and its diffusion process. In this case, the description tends to be piecemeal and case-oriented. This specialized research is of course very valuable. However, if our purpose is to obtain an overall picture and still not lose sight of industry-specific technology, the use of capital stock vintage model seems to be warranted in view of the fact that the R&D effort is built into capital stock via the flow of investment embodying new technology. This process may be approximated by the average age of capital stock, although this approach lacks specifics concerning technology. A more direct way of incorporating the diffusion process in the analytical framework would be to derive the cumulative sum of such investment flow. We have constructed such a model at the disaggregated level (25 industrial sectors), introduced in [Uno 1987]. The kind of data which we have developed here are well fitted for expanding the model along this line.

#### FOOTNOTES

[1] Meadows, et al. [1972] is a forerunner in explicitly pointing out the "limits to growth". According to their basic scenario, it is assumed that physical, economic, and social relationship which prevailed so far will prevail into the future. They concluded that economic growth would have to come to an end by resource exhaustion and environmental disruption. Their analysis is based on a system dynamics, parameters of which are provided by the model builders rather than by econometric estimation, a point which invited criticism for lacking empirical basis. Another point of focus was the possibility of technological change. Their response to this point was that technological change and new discovery of resources only delay the eventuality and will not provide a true alternative. It should also be noted that economists tend to pay more attention on the price mechanism and substitution among various resources whereas engineers tend to rely on fixed coefficients. A fact remains that the global community is still faced with the problem of sustainability after twenty years of *Limits to Growth*.

- [2] Defense-related R&D correspond to the portion of government science and technology budget which is allocated to the Defense Agency, as listed in *Science and Technology White Paper*.
- [3] MITI, Plant and Equipment Investment Plans in Major Industries, 1990 edition, p.373.
- [4] For the formation of environmental policy in Japan, see Uno [1987], pp.271-310, and annual Environment White Paper, among others. English version of the White Paper is entitled Quality of the Environment in Japan.
- [5] Formal title is "Law concerning the Protection of the Ozone Layer through Control of Specified Substances and Other Measures."
- [6] The Montreal Protocol was further strengthened in 1990 and 1992. According to the revision in 1992, production of specified CFCs will be reduced to less than 25% of the 1986 level by 1994 and will be abolished after 1996. Production of halon will have to be kept less than the 1986 level by 1992 and will be abolished after 1994. In addition, the coverage of the Protocol has been extended considerably.
- [7] Environment White Paper, Detailed Discussion Volume, 1993 edition, p.259.
- [8] The items included are cadmium, cyanogen, organic acid, lead, chrome (sexivalent), arsenic, alkyl mercury, and PCB.

## Part IV

# Natural Environment and the Economy

## Chapter 9

## Land Use

#### 9.1 Availability of land

Land is not reproducible. In other words, despite rapid economic growth and urbanization, the total amount of land available for human habitation remains constant. In Japan, the environmental impact of socioeconomic development has been compounded by the lack of space. The efforts to overcome the limitation posed by land, such as reclamation of the sea and water surface, aggravated the problem. The density of production and human habitatation in Japan is one of the reasons why this country experienced the worst kind of environmental disruption before the other industrialized countries. It is wellknown that the environmental pollution issue was most prominent in Japan toward the end of the 1960s and early 1970s. For this reason, Japan was also the first country to implement the most stringent pollution-prevention measures. Energy efficiency was also attained simultaneously. According to an OECD publication, for example, the annual investment by industry in pollution prevention recorded a peak in 1973 and 1974 in absolute terms whereas, in the United States and most EEC countries this occurred in the mid-1980s and thereafter. Japan also promptly developed technology that reduced the pollution attributable to car exhaust emissions.[1] Land is also a form of asset. This fact is reflected in the System of National Accounts in the sense that the current value of land is listed among other forms of financial assets in addition to tangible ones such as production facilities and housing. In Japan, land has

| (unit: 1000 square km, % |             |             |             |             | e km, %) |
|--------------------------|-------------|-------------|-------------|-------------|----------|
|                          | Arable and  | Grassland   | Forest and  | Other       | Total    |
|                          | permanent   |             | wooded      | areas       |          |
|                          | crop land   |             | land        |             |          |
| Japan                    | 46(12.3)    | 6(1.7)      | 253(67.1)   | 71(18.8)    | 377      |
| United States            | 1899(20.7)  | 2415(26.3)  | 2939(32.1)  | 1914(20.9)  | 9167     |
| EEC                      | 839(35.9)   | 566(24.2)   | 579(24.8)   | 351(15.0)   | 2335     |
| France                   | 191(34.8)   | 116(21 1)   | 152(27 6)   | 91(16 5)    | 550      |
| Germany                  | 124(35.5)   | 57(16.2)    | 104(29.7)   | 65(18.6)    | 350      |
| UK                       | 70(29.0)    | 116(48.0)   | 24(99)      | 32(13.1)    | 241      |
| OECD                     | 4175(13.5)  | 7786(251)   | 10300(33 2) | 8740(28 2)  | 31000    |
| World                    | 11434(10 9) | 26192(25.0) | 37235(35 6) | 29870(28 5) | 104731   |

Table 9-1 Land use in selected countries

Note: Land area figures have been rounded from the original source.

Source. OECD, Environmental Data, 1991.

been traded in the market just as any other form of assets to a greater degree compared with other OECD countries, especially European countries. The rapid expansion of the economy and, to a greater degree, rapid concentration of population meant a sharp rise in land prices, inducing household and industry alike to purchase land as the most secure form of asset. The problem of land being treated as a form of asset is an interesting question in itself, but we focus our attention on the physical aspect of land in this chapter. The peculiarity of Japan in the availability of land is illustrated in Table 9-1 which compares the total land area as well as its breakdown into various uses with OECD countries. The total land area of Japan is about 4% of the USA and about 16% of the EEC. In the main four islands constituting the Japanese archipelago, the size of the GNP is as large as 60% of the USA. It is also noted from Table 9-1 that the area of forests stands at around 67% of the total, exceeding the OECD average of 33%. This is contrary to the popular belief that Japan is a country of congested urban and industrial areas. Table 9-2 reveals the reasons why. The table shows the physical configuration of land in Japan. As can be seen in the part (a), which classifies land area by gradient, most of the land consists of steep mountains. Areas with a gradient of 15 degrees or more amount to 48% of the total area; and areas with 8 to 15 degrees constitute an additional 24%. Virtually all of the economic activities such as farming, industrial production,

|    |                       | (unit: square km, %) |
|----|-----------------------|----------------------|
| a. | Area by gradient      |                      |
|    | 0°-3°                 | 48458 (14.0)         |
|    | 3°-8°                 | 50309 (14.6)         |
|    | 8°-15°                | 81341 ( 23.5)        |
|    | 15°-20°               | 56386 (16.3)         |
|    | 20 ° - 30 °           | 80526 ( 23.3)        |
|    | 30 ° and over         | 28519 (83)           |
|    | Total                 | 345539 (100.0)       |
| b. | Area by configuration |                      |
|    | Mountain              | 230331 ( 61.0)       |
|    | Hill land             | 44337 ( 11.8)        |
|    | Upland                | 41471 ( 11.0)        |
|    | Lowland               | 51963 (13.8)         |
|    | Inland water, etc     | 9232 ( 2.4)          |
|    | Total                 | 377334 (100 0)       |

| Table 9-2 | Gradient  | and | configuration | of  | land area  |
|-----------|-----------|-----|---------------|-----|------------|
|           | Ulaulelli | anu | configuration | UI. | iallu alca |

Note: Area by gradient excludes area of lakes, marshes, and rivers. Data are based on the 1982 Research and Management on Land Numerical Information.

Source: National Land Agency, Summary Statistics on Land.

and human habitation had to be conducted in the remaining 30% or so.

#### 9.2 Environmental impact of changing land use

A typical shift of land use occurs when natural forest, grassland, and farm land are shifted to various urban-type uses. Table 9-3 captures such dynamics of changing land use over the last 20 years. Among the sources of supply of land which are given in Table 9-3a, farm land, forest, and reclamation are distinguished; among new uses of land, urban-type uses such as residential, industrial, public facilities, and leisure facilities are noted and for rural-type use, agricultural and forest are listed. Thus, over time, the table enables us to trace the shift of land use (see Table 9-3b) and establish linkages with capital formation for various purposes. It can be seen that farm land constituted the bulk of land supply converted to urban-type use, while forest was turned into agricultural land. There are also cases when forest directly turned into urbantype use. Typically, of the total land turned into urban-type use, farm land shares about 2/3 and forest 1/3. The reclamation of sea and inland water also

0/>

|           |                            | (unit: squa                                          | re km, 76)                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------|----------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |                            |                                                      |                                                                                                                                                                                                                                                                                                                                                                                               |
| Farm land | Forest                     | Reclaimed                                            | Total                                                                                                                                                                                                                                                                                                                                                                                         |
|           |                            |                                                      |                                                                                                                                                                                                                                                                                                                                                                                               |
|           |                            |                                                      |                                                                                                                                                                                                                                                                                                                                                                                               |
| 192 0     | 100.0                      | 30                                                   | 295.0                                                                                                                                                                                                                                                                                                                                                                                         |
| 75 0      | 70                         | 18 0                                                 | 100 0                                                                                                                                                                                                                                                                                                                                                                                         |
| 117.0     | 35.0                       | 4.0                                                  | 156.0                                                                                                                                                                                                                                                                                                                                                                                         |
|           | 76.0                       |                                                      | 76.0                                                                                                                                                                                                                                                                                                                                                                                          |
| 62.0      |                            | 10.0                                                 | 72 0                                                                                                                                                                                                                                                                                                                                                                                          |
| 446 0     | 218.0                      | 35.0                                                 | 699.0                                                                                                                                                                                                                                                                                                                                                                                         |
|           |                            |                                                      |                                                                                                                                                                                                                                                                                                                                                                                               |
|           | 313.0                      | 23 0                                                 | 336.0                                                                                                                                                                                                                                                                                                                                                                                         |
| 199.0     | _                          |                                                      | 199 0                                                                                                                                                                                                                                                                                                                                                                                         |
| 199.0     | 313.0                      | 23 0                                                 | 535 0                                                                                                                                                                                                                                                                                                                                                                                         |
| 38.0      | 2.0                        |                                                      | 40 0                                                                                                                                                                                                                                                                                                                                                                                          |
| 683.0     | 533 0                      | 58.0                                                 | 1274.0                                                                                                                                                                                                                                                                                                                                                                                        |
|           | 192 0<br>75 0<br>117.0<br> | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | Farm land         Forest         Reclaimed           192 0         100.0         3 0           75 0         7 0         18 0           117.0         35.0         4.0           -         76.0            62.0          10.0           446 0         218.0         35.0            313.0         23 0           199.0             199.0         313.0         23 0           38.0         2.0 |

Table 9-3 Transformation of land use, annual tables (unit: square km, %)

| 1975 |
|------|
|------|

256

| Changed from.        | Farm land | Forest | Reclaimed | Total |
|----------------------|-----------|--------|-----------|-------|
| Changed to:          |           |        |           |       |
| A. Urban-type use:   |           |        |           |       |
| 1. Residential       | 113.0     | 32 0   | 2 0       | 147 0 |
| 2. Industrial        | 38 0      | 50     | 22 0      | 65 0  |
| 3 Public facilities  | 81 0      | 61 0   | 30        | 145 0 |
| 4 Leisure facilities | 12 0      | 63 0   |           | 75 0  |
| 5. Other             | 30.0      |        | 10.0      | 40 0  |
| Subtotal             | 274 0     | 161.0  | 37 0      | 472 0 |
| B Rural-type use.    |           |        |           |       |
| 1 Agricultural       |           | 287 0  | 39 0      | 326 0 |
| 2. Forest            | 88.0      |        |           | 88 0  |
| Subtotal             | 88.0      | 287.0  | 39 0      | 414 0 |
| C. Other use.        | 27.0      | 25.0   |           | 52 0  |
| Total                | 389 0     | 473 0  | 76 0      | 938 0 |

| 1976                  |           |        |           |       |
|-----------------------|-----------|--------|-----------|-------|
| Changed from:         | Farm land | Forest | Reclaimed | Total |
| Changed to:           |           |        |           |       |
| A. Urban-type use:    |           |        |           |       |
| 1. Residential        | 110.0     | 21.0   | 2.0       | 133.0 |
| 2. Industrial         | 33 0      | 50     | 21.0      | 590   |
| 3. Public facilities  | 69.0      | 60.0   | 30        | 132 0 |
| 4. Leisure facilities | 9.0       | 42 0   |           | 51 0  |
| 5. Other              | 34 0      |        | 8.0       | 42 0  |
| Subtotal              | 255.0     | 128.0  | 34 0      | 417.0 |
| B. Rural-type use:    |           |        |           |       |
| 1. Agricultural       |           | 296.0  | 10 0      | 306.0 |
| 2. Forest             | 69 0      |        |           | 69.0  |
| Subtotal              | 69.0      | 296.0  | 10.0      | 375.0 |
| C. Other use:         | 28.0      | 35.0   |           | 63.0  |
| Total                 | 352.0     | 459.0  | 44 0      | 855 0 |

| 1977                  |           |        |           |       |
|-----------------------|-----------|--------|-----------|-------|
| Changed from:         | Farm land | Forest | Reclaimed | Total |
| Changed to:           |           |        |           |       |
| A. Urban-type use:    |           |        |           |       |
| 1. Residential        | 101.0     | 25.0   | 10        | 127.0 |
| 2 Industrial          | 32.0      | 80     | 9.0       | 49 0  |
| 3. Public facilities  | 75.0      | 20.0   | 3.0       | 98 0  |
| 4. Leisure facilities | 5.0       | 19.0   |           | 24 0  |
| 5. Other              | 31.0      |        | 9.0       | 40.0  |
| Subtotal              | 244 0     | 72 0   | 22.0      | 338 0 |
| B. Rural-type use:    |           |        |           |       |
| 1. Agricultural       |           | 186.0  | 30 0      | 189 0 |
| 2. Forest             | 53 0      |        |           | 53.0  |
| Subtotal              | 53.0      | 186.0  | 30 0      | 242.0 |
| C. Other use:         | 27 0      | 42.0   |           | 69 0  |
| Total                 | 324.0     | 300 0  | 25 0      | 649 0 |

| 1978                  |           |        |           |       |
|-----------------------|-----------|--------|-----------|-------|
| Changed from:         | Farm land | Forest | Reclaimed | Total |
| Changed to:           |           |        |           |       |
| A. Urban-type use:    |           |        |           |       |
| 1. Residential        | 97.0      | 19.0   | 4.0       | 120.0 |
| 2. Industrial         | 33.0      | 9.0    | 10.0      | 52.0  |
| 3. Public facilities  | 89.0      | 38.0   | 4.0       | 131.0 |
| 4. Leisure facilities | 3.0       | 9.0    |           | 12.0  |
| 5. Other              | 31.0      |        | 9.0       | 40.0  |
| Subtotal              | 253.0     | 75.0   | 27.0      | 355 0 |
| B. Rural-type use:    |           |        |           |       |
| 1. Agricultural       |           | 131.0  | 1.0       | 132.0 |
| 2. Forest             | 53.0      |        |           | 53 0  |
| Subtotal              | 53.0      | 131.0  | 1.0       | 185.0 |
| C. Other use.         | 31.0      | 28.0   |           | 59.0  |
| Total                 | 337.0     | 234.0  | 28.0      | 599 0 |

| 1313 | 1 | 9 | 7 | 9 |
|------|---|---|---|---|
|------|---|---|---|---|

| Changed from          | Farm land | Forestland | Reclaimed | Total |
|-----------------------|-----------|------------|-----------|-------|
| Changed to:           |           |            |           |       |
| A. Urban-type use     |           |            |           |       |
| 1. Residential        | 102 0     | 20.0       | 1.0       | 123 0 |
| 2. Industrial         | 36.0      | 80         | 12 0      | 56 0  |
| 3 Public facilities   | 88.0      | 25.0       | 50        | 118 0 |
| 4. Leisure facilities | 20        | 2.0        |           | 4.0   |
| 5. Other              | 35.0      |            | 70        | 43 0  |
| Subtotal              | 264.0     | 55 0       | 26.0      | 344 0 |
| B. Rural-type use:    |           |            |           |       |
| 1. Agricultural       |           | 113.0      | 20        | 115 0 |
| 2. Forest             | 47.0      |            |           | 47 0  |
| Subtotal              | 47.0      | 113.0      | 2.0       | 162.0 |
| C. Other use          | 30.0      | 32.0       |           | 62.0  |
| Total                 | 341 0     | 200 0      | 28 0      | 568 0 |

| 1980                  |           |        |           |       |
|-----------------------|-----------|--------|-----------|-------|
| Changed from:         | Farm land | Forest | Reclaimed | Total |
| Changed to:           |           |        |           |       |
| A. Urban-type use:    |           |        |           |       |
| 1. Residential        | 88.0      | 17.0   | 0.0       | 106 0 |
| 2. Industrial         | 34.0      | 19.0   | 5.0       | 59.0  |
| 3. Public facilities  | 87.0      | 26.0   | 3.0       | 117 0 |
| 4. Leisure facilities | 2.0       | 4.0    | _         | 60    |
| 5. Other              | 34.0      |        | 8.0       | 42.0  |
| Subtotal              | 246.0     | 66.0   | 17.0      | 329.0 |
| B. Rural-type use:    |           |        |           |       |
| 1. Agricultural       | —         | 96.0   | 6.0       | 102.0 |
| 2. Forest             | 45.0      |        |           | 45.0  |
| Subtotal              | 45.0      | 96.0   | 60        | 146.0 |
| C. Other use:         | 30.0      | 32.0   |           | 62 0  |
| Total                 | 320.0     | 194.0  | 22 0      | 536.0 |

| 1981                 |           |        |           |       |
|----------------------|-----------|--------|-----------|-------|
| Changed from:        | Farm land | Forest | Reclaimed | Total |
| Changed to:          |           |        |           |       |
| A. Urban-type use.   |           |        |           |       |
| 1. Residential       | 81.0      | 15 0   | 1.0       | 97.0  |
| 2. Industrial        | 39 0      | 10 0   | 8.0       | 57 0  |
| 3. Public facilities | 85.0      | 33.0   | 4.0       | 122.0 |
| 4 Leisure facilities | 30        | 70     |           | 10 0  |
| 5. Other             | 31 0      |        | 7.0       | 38.0  |
| Subtotal             | 240 0     | 65.0   | 20.0      | 324 0 |
| B. Rural-type use    |           |        |           |       |
| 1. Agricultural      |           | 97 0   | 20        | 99 O  |
| 2 Forest             | 41.0      |        |           | 41 0  |
| Subtotal             | 41 0      | 97 0   | 2.0       | 140 0 |
| C. Other use.        | 26.0      | 34.0   |           | 60 0  |
| Total                | 307.0     | 196.0  | 22.0      | 525 0 |

| 1982                    |           |        |           |         |
|-------------------------|-----------|--------|-----------|---------|
| Changed from:           | Farm land | Forest | Reclaimed | Total   |
| Changed to <sup>.</sup> |           |        |           | <u></u> |
| A. Urban-type use:      |           |        |           |         |
| 1. Residential          | 103.0     | 21.0   | 1.0       | 125.0   |
| 2. Industrial           | 25.0      | 9.0    | 3.0       | 38 0    |
| 3. Public facilities    | 78.0      | 42.0   | 30        | 123 0   |
| 4. Leisure facilities   | 4.0       | 70     | _         | 11 0    |
| 5. Other                | 32 0      |        | 5.0       | 37.0    |
| Subtotal                | 242.0     | 79.0   | 12.0      | 334 0   |
| B. Rural-type use:      |           |        |           |         |
| 1. Agricultural         | —         | 121.0  | 50        | 126.0   |
| 2. Forest               | 37.0      |        |           | 37 0    |
| Subtotal                | 37.0      | 121 0  | 5.0       | 163 0   |
| C. Other use:           | 25.0      | 37.0   |           | 62.0    |
| Total                   | 304.0     | 237.0  | 18.0      | 559.0   |

| 1983                           |           |         |           |       |
|--------------------------------|-----------|---------|-----------|-------|
| Changed from:                  | Farm land | Forest  | Reclaimed | Total |
| Changed to:                    |           |         |           |       |
| A. Urban-type use <sup>.</sup> |           |         |           |       |
| 1. Residential                 | 71 0      | 14 0    | 1.0       | 86 0  |
| 2. Industrial                  | 37 0      | 7.0     | 6.0       | 50.0  |
| 3. Public facilities           | 70 0      | 40 0    | 4 0       | 114 0 |
| 4 Leisure facilities           | 5.0       | 13.0    |           | 18 0  |
| 5 Other                        | 31.0      |         | 50        | 36.0  |
| Subtotal                       | 214.0     | 74 0    | 16.0      | 304.0 |
| B Rural-type use:              |           |         |           |       |
| 1. Agricultural                | _         | 85.0    | 10        | 86 0  |
| 2. Forest                      | 32 0      | <u></u> | _         | 32 0  |
| Subtotal                       | 32 0      | 85.0    | 10        | 118 0 |
| C Other use:                   | 10 0      | 30 0    |           | 40.0  |
| Total                          | 256 0     | 189 0   | 17 0      | 462 0 |

| 1984                           |           |        |           |       |
|--------------------------------|-----------|--------|-----------|-------|
| Changed from:                  | Farm land | Forest | Reclaimed | Total |
| Changed to.                    |           |        |           |       |
| A. Urban-type use <sup>.</sup> |           |        |           |       |
| 1. Residential                 | 75.0      | 16 0   | 10        | 92 0  |
| 2. Industrial                  | 40.0      | 18.0   | 7.0       | 65.0  |
| 3. Public facilities           | 65.0      | 37.0   | 4.0       | 106 0 |
| 4. Leisure facilities          | 5.0       | 22 0   |           | 27.0  |
| 5. Other                       | 34.0      |        | 60        | 40 0  |
| Subtotal                       | 219.0     | 93.0   | 17 0      | 329.0 |
| B. Rural-type use:             |           |        |           |       |
| 1. Agricultural                |           | 122.0  | 10        | 123 0 |
| 2 Forest                       | 29.0      |        |           | 29.0  |
| Subtotal                       | 29.0      | 122.0  | 1.0       | 152.0 |
| C. Other use:                  | 30 0      | 30.0   |           | 60.0  |
| Total                          | 278 0     | 245.0  | 18.0      | 541 0 |

| Farm land | Forest                                           | Reclaimed                                            | Total                                                |
|-----------|--------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
|           |                                                  |                                                      |                                                      |
|           |                                                  |                                                      |                                                      |
| 73 0      | 21.0                                             | 10                                                   | 95 0                                                 |
| 40 0      | 21 0                                             | 5.0                                                  | 66.0                                                 |
| 64.0      | 43 0                                             | 50                                                   | 112 0                                                |
| 50        | 28 0                                             |                                                      | 33 0                                                 |
| 33 0      |                                                  | 50                                                   | 38 0                                                 |
| 215.0     | 113.0                                            | 16 0                                                 | 344 0                                                |
|           |                                                  |                                                      |                                                      |
|           | 82.0                                             | 20                                                   | 84 0                                                 |
| 29.0      |                                                  |                                                      | 29.0                                                 |
| 29 0      | 82.0                                             | 2 0                                                  | 113 0                                                |
| 28.0      | 31 0                                             |                                                      | 59.0                                                 |
| 272 0     | 226.0                                            | 18.0                                                 | 516 0                                                |
|           | 73 0<br>40 0<br>64.0<br>5 0<br>33 0<br>215.0<br> | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

| 1986                  |           |        |           |       |
|-----------------------|-----------|--------|-----------|-------|
| Changed from:         | Farm land | Forest | Reclaimed | Total |
| Changed to:           |           |        |           |       |
| A. Urban-type use:    |           |        |           |       |
| 1. Residential        | 70.0      | 15.0   | 1.0       | 86.0  |
| 2. Industrial         | 42.0      | 20.0   | 2.0       | 64.0  |
| 3. Public facilities  | 54.0      | 32.0   | 4 0       | 90.0  |
| 4. Leisure facilities | 7.0       | 47.0   |           | 54 0  |
| 5. Other              | 33.0      |        | 6.0       | 39 0  |
| Subtotal              | 206.0     | 114.0  | 13.0      | 333.0 |
| B. Rural-type use:    |           |        |           |       |
| 1. Agricultural       |           | 61.0   | 2.0       | 63.0  |
| 2. Forest             | 26.0      |        |           | 26.0  |
| Subtotal              | 26.0      | 61.0   | 2.0       | 89.0  |
| C. Other use:         | 25.0      | 30.0   |           | 55.0  |
| Total                 | 257.0     | 205.0  | 15.0      | 477.0 |

| 1201 |  | 1 | 9 | 8 | 7 |
|------|--|---|---|---|---|
|------|--|---|---|---|---|

| Changed from                   | Farm land | Forest | Reclaimed | Total |
|--------------------------------|-----------|--------|-----------|-------|
| Changed to:                    |           |        |           |       |
| A. Urban-type use <sup>.</sup> |           |        |           |       |
| 1. Residential                 | 78 0      | 14.0   | 10        | 93 0  |
| 2. Industrial                  | 45.0      | 16.0   | 30        | 64 0  |
| 3. Public facilities           | 56.0      | 30.0   | 4 0       | 90 0  |
| 4. Leisure facilities          | 8 0       | 59.0   |           | 67 0  |
| 5 Other                        | 37 0      |        | 50        | 42 0  |
| Subtotal                       | 224.0     | 119.0  | 13.0      | 356.0 |
| B Rural-type use:              |           |        |           |       |
| 1. Agricultural                |           | 54 0   | 2 0       | 56.0  |
| 2 Forest                       | 24 0      |        |           | 24.0  |
| Subtotal                       | 24.0      | 54.0   | 2.0       | 80.0  |
| C. Other use:                  | 27 0      | 28 0   |           | 55 0  |
| Total                          | 275.0     | 201.0  | 15.0      | 491.0 |

| 1988                  |           |        |           |       |
|-----------------------|-----------|--------|-----------|-------|
| Changed from:         | Farm land | Forest | Reclaimed | Total |
| Changed to:           |           |        |           |       |
| A. Urban-type use:    |           |        |           |       |
| 1. Residential        | 77.0      | 7.0    |           | 84.0  |
| 2. Industrial         | 47.0      | 15.0   | 4.0       | 66.0  |
| 3. Public facilities  | 58.0      | 40.0   | 4.0       | 102.0 |
| 4. Leisure facilities | 12.0      | 83.0   |           | 95.0  |
| 5. Other              | 41.0      |        | 6.0       | 47.0  |
| Subtotal              | 235.0     | 145.0  | 14.0      | 394.0 |
| B. Rural-type use:    |           |        |           |       |
| 1. Agricultural       |           | 51.0   | 1.0       | 52 0  |
| 2. Forest             | 24.0      |        | _         | 24.0  |
| Subtotal              | 24.0      | 51.0   | 1.0       | 76.0  |
| C. Other use:         | 32.0      | 28.0   |           | 60.0  |
| Total                 | 291 0     | 224.0  | 15.0      | 530.0 |

| 1989                  |           |        |           |       |
|-----------------------|-----------|--------|-----------|-------|
| Changed from:         | Farm land | Forest | Reclaimed | Total |
| Changed to:           |           |        |           |       |
| A. Urban-type use:    |           |        |           |       |
| 1. Residential        | 83.0      | 14.0   |           | 97 0  |
| 2. Industrial         | 56.0      | 17 0   | 3.0       | 76.0  |
| 3 Public facilities   | 64.0      | 36.0   | 5.0       | 105 0 |
| 4. Leisure facilities | 16.0      | 81.0   |           | 97.0  |
| 5. Other              | 44.0      |        | 10.0      | 54.0  |
| Subtotal              | 263.0     | 148 0  | 18 0      | 429 0 |
| B. Rural-type use:    |           |        |           |       |
| 1. Agricultural       |           | 57.0   | 50        | 62.0  |
| 2. Forest             | 34.0      |        |           | 34.0  |
| Subtotal              | 34.0      | 57.0   | 5.0       | 96 0  |
| C. Other use:         | 36.0      | 33.0   |           | 69.0  |
| Total                 | 333.0     | 238.0  | 23.0      | 594.0 |

| 1990                  |           |             |           |       |
|-----------------------|-----------|-------------|-----------|-------|
| Changed from:         | Farm land | Forest      | Reclaimed | Total |
| Changed to:           |           |             |           |       |
| A. Urban-type use:    |           |             |           |       |
| 1. Residential        | 85.0      | 11.0        |           | 96.0  |
| 2. Industrial         | 62.0      | 20.0        | 5.0       | 87.0  |
| 3. Public facilities  | 64.0      | 37.0        | 3.0       | 104.0 |
| 4. Leisure facilities | 16.0      | 65.0        |           | 81.0  |
| 5. Other              | 48.0      | <del></del> | 8.0       | 56.0  |
| Subtotal              | 275.0     | 133.0       | 16.0      | 424.0 |
| B. Rural-type use:    |           |             |           |       |
| 1. Agricultural       |           | 50.0        |           | 50.0  |
| 2. Forest             | 29.0      | <u></u>     |           | 29 0  |
| Subtotal              | 29.0      | 50.0        |           | 79.0  |
| C. Other use:         | 38.0      | 32.0        |           | 70.0  |
| Total                 | 342.0     | 215.0       | 16.0      | 573.0 |

Note: The data refer to farm land, forests, and reclaimed land and do not include transformation from grassland. Transformation of farm land to public facilities partly includes agricultural use such as farm roads, agricultural waterways, etc. Transformation of forests does not include those with less than one hectare. 1970-72 figure for "other" urban-type includes transformation of farm land to leisure facility use.

Source: Estimates by the Land Agency reported in Land White Paper

played an important role, although the area affected is relatively small compared with the other sources of supply. Reclaimed land was typically turned to industrial use, and this is the usual case after the mid-1970s, whereas in earlier years reclaimed land was used for agricultural purposes. This pattern should be interpreted in the context of the concentration of economic activities along the coast in order to facilitate transportation by sea. This was also practically the only choice for an industrial location given the fact that nearly 80% of the territory is mostly mountains and hills. The area reclaimed amounted to 116.1 square km between 1955 and 1965.[2] The figures for the second half of the 1960s typically stood around 35 to 40 square km. The peak was reached in 1975 when 76 square km were added (51 square km according to the Geographical Survey Institute). Land reclamation has been tapering off in recent years, and the annual addition of land is down to around 15 square meters in recent years. As a result, the total land area of the country has increased from 377,118 square km in 1965 to 377,728 square km in 1990. However, the fact remains that reclamation runs directly counter to conservation of the natural environment.

#### 9.3 Farm land

Farm land constituted about 14% of the total land area in 1990. Of the total farm land of 53,430 square km in 1990, paddy fields amounted to 28,460 square km, area under trees, vines, etc. about 4,750 square km, and the remaining was ordinary farm land. The farm land reached a peak of 60,860 square km in 1961 and has exhibited a continued decrease since then. Before this period, agricultural land was used extensively for multiple crops. For instance, in 1960, the rate of utilization of farm land (= total area planted/farm land) stood at 133.9, meaning that the same farm land was used 1.3 times during the year. Thus, the total area planted reached 81,300 square km, whereas the farm land area was around 60,700 square km in that year. The ratio dropped to 123.8 in 1965, 108.9 in 1970, and 100.3 in 1978, and the 1990 ratio was about 101.1.[Land Agency, 1993, p.6] The farm land area itself had expanded through clearing forests and, to a certain extent, by irrigation, as we have seen above. Throughout the last three decades, farm land was shifted to urban-type use such as industrial and residential. Farm land which was dilapidated artificially increased in the process of industrialization. Starting from 68 square km in 1955, it gradually increased to 238 square km in 1960, 689 square km in 1965, and 1,009 square km in 1970. It peaked off in 1971 at 1,110 squre km. More recent trends are recorded in Table 9-3.[3]

Agriculture is not immune from environmental concerns. Nitrogen, phosphate, and plant nutrients in the form of synthetic chemical fertilizers are applied in the fields in increasing quantities. In fact, the rapid gains in agricultural productivity after WWII can be attributed to the availability of low-cost chemical fertilizers. Their application, however, has hazardous consequences for the water quality. Another environmental concern attributable to farming is the consumption of pesticides (Table 9-6). The application of certain pesticides is found to be responsible for affecting the quality of the soil and water, causing undesirable effects on the flora and fauna. Residues of pesticides remain on crops after harvesting and potentially affect human health adversely. Similar concerns have been raised concerning post-harvest preservatives which

| Year                  | 1966  | 1968  | 1970-72 |
|-----------------------|-------|-------|---------|
| Changed to:           |       |       | average |
| A. Urban-type use:    |       |       | Ũ       |
| 1. Residential        | 143.3 | 179.8 | 295.0   |
| 2. Industrial         | 56.5  | 65.0  | 100.0   |
| 3. Public facilities  | 136.3 | 130.0 | 156.0   |
| 4. Leisure facilities | 22.9  | 21.9  | 76.0    |
| 5. Other              | n.a.  | n.a.  | 72.0    |
| Subtotal              | 359.0 | 397.2 | 699.0   |
| B. Rural-type use:    |       |       |         |
| 1. Agricultural       |       |       | 336.0   |
| 2. Forest             |       |       | 199.0   |
| Subtotal              |       |       | 535.0   |
| C. Other use:         |       |       | 40.0    |
| Total                 |       |       | 1274 0  |

Table 9-3b Transformation of land use, total, time series

| 1982  | 1983                                                                              |
|-------|-----------------------------------------------------------------------------------|
|       |                                                                                   |
|       |                                                                                   |
| 125.0 | 86.0                                                                              |
| 38.0  | 50 0                                                                              |
| 123 0 | 114.0                                                                             |
| 11 0  | 18.0                                                                              |
| 37.0  | 36 0                                                                              |
| 334.0 | 304 0                                                                             |
|       |                                                                                   |
| 126.0 | 86 0                                                                              |
| 37 0  | 32.0                                                                              |
| 163 0 | 118 0                                                                             |
| 62.0  | 40 0                                                                              |
| 559.0 | 462 0                                                                             |
|       | 125.0<br>38.0<br>123 0<br>11 0<br>37.0<br>334.0<br>126.0<br>37 0<br>163 0<br>62.0 |

Sources<sup>.</sup> Same as Table 9-6.

|    |       |       |       |       |       | ( unit . sq | uare km) |
|----|-------|-------|-------|-------|-------|-------------|----------|
|    | 1975  | 1976  | 1977  | 1978  | 1979  | 1980        | 1981     |
| •  |       |       |       |       |       |             |          |
| Α. |       |       | 407.0 | 100.0 |       |             |          |
| 1. | 147.0 | 133.0 | 127.0 | 120.0 | 123.0 | 106 0       | 97.0     |
| 2. | 65.0  | 59.0  | 49.0  | 52.0  | 56.0  | 59 0        | 57.0     |
| 3. | 145.0 | 132.0 | 98.0  | 131.0 | 118.0 | 117.0       | 122 0    |
| 4. | 75.0  | 51.0  | 24.0  | 12.0  | 4.0   | 6.0         | 10.0     |
| 5. | 40.0  | 42.0  | 40.0  | 40.0  | 43.0  | 42.0        | 38.0     |
|    | 472.0 | 417.0 | 338.0 | 355.0 | 344.0 | 329.0       | 324.0    |
| Β. |       |       |       |       |       |             |          |
| 1. | 326.0 | 306.0 | 189.0 | 127.0 | 115.0 | 102 0       | 99.0     |
| 2. | 88.0  | 69.0  | 53.0  | 53.0  | 47.0  | 45.0        | 41.0     |
|    | 414.0 | 375.0 | 242.0 | 185.0 | 162.0 | 146.0       | 140.0    |
| С. | 52.0  | 63.0  | 69.0  | 59.0  | 62.0  | 62 0        | 60.0     |
|    | 938.0 | 855.0 | 649.0 | 599.0 | 568.0 | 536.0       | 525 0    |

| 1984  | 1985                                                                             | 1986                                                                                                                                                                                                                                                                                 | 1987                                                                                                                                                                                                                                                                                                                                                                                                                    | 1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1990                                                  |
|-------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
|       |                                                                                  |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |
| 92.0  | 95 N                                                                             | 86.0                                                                                                                                                                                                                                                                                 | 93.0                                                                                                                                                                                                                                                                                                                                                                                                                    | 84 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 97.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 96 0                                                  |
|       |                                                                                  |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 87 0                                                  |
|       | 112 0                                                                            |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                         | 102.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 105 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 104.0                                                 |
| 27 0  | 33.0                                                                             | 54.0                                                                                                                                                                                                                                                                                 | 67.0                                                                                                                                                                                                                                                                                                                                                                                                                    | 95.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 97.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 81 0                                                  |
| 40.0  | 38.0                                                                             | 39.0                                                                                                                                                                                                                                                                                 | 42.0                                                                                                                                                                                                                                                                                                                                                                                                                    | 47.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 54 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 56 0                                                  |
| 329.0 | 344.0                                                                            | 333.0                                                                                                                                                                                                                                                                                | 356.0                                                                                                                                                                                                                                                                                                                                                                                                                   | 394.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 429 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 424 0                                                 |
|       |                                                                                  |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |
| 123.0 | 84 0                                                                             | 63.0                                                                                                                                                                                                                                                                                 | 56.0                                                                                                                                                                                                                                                                                                                                                                                                                    | 52.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 62.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50 0                                                  |
| 29.0  | 29.0                                                                             | 26.0                                                                                                                                                                                                                                                                                 | 24.0                                                                                                                                                                                                                                                                                                                                                                                                                    | 24.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 34.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29.0                                                  |
| 152.0 | 113.0                                                                            | 89.0                                                                                                                                                                                                                                                                                 | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                    | 76.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 96.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 79.0                                                  |
| 60.0  | 59.0                                                                             | 55.0                                                                                                                                                                                                                                                                                 | 55 0                                                                                                                                                                                                                                                                                                                                                                                                                    | 60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 69 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 70.0                                                  |
| 541.0 | 516.0                                                                            | 477 0                                                                                                                                                                                                                                                                                | 491.0                                                                                                                                                                                                                                                                                                                                                                                                                   | 530 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 594.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 573 0                                                 |
|       | 92.0<br>65.0<br>106.0<br>27 0<br>40.0<br>329.0<br>123.0<br>29.0<br>152.0<br>60.0 | 92.0         95.0           65.0         66.0           106.0         112 0           27 0         33.0           40.0         38.0           329.0         344.0           123.0         84 0           29.0         29.0           152.0         113.0           60.0         59.0 | 92.0         95.0         86.0           65.0         66.0         64.0           106.0         112.0         90.0           27 0         33.0         54.0           40.0         38.0         39.0           329.0         344.0         333.0           123.0         84.0         63.0           29.0         29.0         26.0           152.0         113.0         89.0           60.0         59.0         55.0 | 92.0         95.0         86.0         93.0           65.0         66.0         64.0         64.0           106.0         112.0         90.0         90.0           27.0         33.0         54.0         67.0           40.0         38.0         39.0         42.0           329.0         344.0         333.0         356.0           123.0         84.0         63.0         56.0           29.0         29.0         26.0         24.0           152.0         113.0         89.0         80.0           60.0         59.0         55.0         55.0 | 92.0         95.0         86.0         93.0         84.0           65.0         66.0         64.0         64.0         66.0           106.0         112.0         90.0         90.0         102.2           27.0         33.0         54.0         67.0         95.0           40.0         38.0         39.0         42.0         47.0           329.0         344.0         333.0         356.0         394.0           123.0         84.0         63.0         56.0         52.0           29.0         29.0         26.0         24.0         24.0           152.0         113.0         89.0         80.0         76.0           60.0         59.0         55.0         55.0         60.0 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

|      |       | or land us               |                    | (unit: 100 | 0 square km |
|------|-------|--------------------------|--------------------|------------|-------------|
| Year | Total | Farm land:<br>Cultivated | Meadows & pastures | Forests    | Grassland   |
| 1963 | 376.9 | 60.9                     | 4.6                | 250.8      | 6.6         |
| 1964 | 376.9 | 60.9                     | 4.4                | 251.2      | 6.5         |
| 1965 | 377.1 | 60.2                     | 4.1                | 251.6      | 6.4         |
| 1966 | 377.2 | 60.1                     | 3.8                | 251 6      | 6.3         |
| 1967 | 377.2 | 59.6                     | 3.6                | 251.2      | 6.          |
| 1968 | 377.2 | 59 1                     | 3.4                | 252 2      | 6.          |
| 1969 | 377.3 | 58.7                     | 3.3                | 252 4      | 5.          |
| 1970 | 377.3 | 58.1                     | 3.1                | 252 3      | 5.          |
| 1971 | 377.3 | 57.6                     | 29                 | 252.2      | 5.          |
| 1972 | 377.4 | 57 3                     | 2.6                | 252 3      | 5.          |
| 1973 | 377.4 | 56.6                     | 2.5                | 252.3      | 5.          |
| 1974 | _     |                          |                    | _          | -           |
| 1975 | 377.5 | 55.7                     | 1.8                | 251.8      | 4.          |
| 1976 | 377.6 | 55.4                     | 18                 | 252 8      | 3.          |
| 1977 | 377 6 | 55.2                     | 17                 | 252.7      | 3.          |
| 1978 | 377.6 | 54.9                     | 17                 | 252 8      | 3.          |
| 1979 | 377.7 | 54.7                     | 1.7                | 252 8      | 3.          |
| 1980 | 377.7 | 54.6                     | 1.5                | 252 6      | 3.          |
| 1981 | 377.7 | 54 4                     | 15                 | 252 4      | 3.          |
| 1982 | 377.7 | 54 3                     | 14                 | 252 6      | 3           |
| 1983 | 377.8 | 54.1                     | 1.4                | 252.6      | 3.          |
| 1984 | 377.8 | 54.0                     | 11                 | 253.0      | 3.          |
| 1985 | 377.8 | 53.8                     | 1.1                | 252.9      | 3.          |
| 1986 | 377.8 | 53 6                     | 1.1                | 252 9      | 2.          |
| 1987 | 377 8 | 53.4                     | 1.0                | 252.8      | 2           |
| 1988 | 377.7 | 53.2                     | 1.0                | 252.8      | 2.          |
| 1989 | 377.7 | 52.8                     | 1.0                | 252 6      | 2.          |
| 1990 |       |                          |                    |            |             |

Table 9-4 Overview of land use

Source · National Land Agency, Survey on Land for Public Facilities, reported in Summary Statistics on Land.

are used in some countries exporting farm products.

### 9.4 Forests

Forests comprise 2/3 of the land area in Japan, as indicated in Table 9-4 together with land use for other purposes, and the area has not decreased over the last 30 years. Details of the forest area and forest resources are shown in

|    | Water area, | Roads | Land for    | building:  | Offices,   | Other |
|----|-------------|-------|-------------|------------|------------|-------|
|    | rivers, and |       |             |            | stores etc |       |
|    | channels    |       | Residential | Industrial |            |       |
| 63 | 11.1        | 7.9   | 6.4         | 0.8        | 0.6        | 27.2  |
| 64 | 11.1        | 8.1   | 6.7         | 0.8        | 0.6        | 26.9  |
| 65 | 11.1        | 82    | 69          | 0.9        | 0.7        | 27 0  |
| 66 | 11 2        | 8.3   | 71          | 09         | 08         | 27 1  |
| 67 | 11 2        | 83    | 7.3         | 10         | 08         | 27.2  |
| 68 | 11.3        | 8.5   | 7.5         | 1.0        | 09         | 27 3  |
| 69 | 11.3        | 8.6   | 7.8         | 1.1        | 09         | 274   |
| 70 | 11.1        | 8.8   | 81          | 12         | 09         | 28.0  |
| 71 | 11 1        | 8.9   | 84          | 1.3        | 09         | 28 4  |
| 72 | 11.2        | 9.1   | 8.8         | 13         | 1.0        | 28 2  |
| 73 | 11.2        | 9.3   | 91          | 1.4        | 11         | 28.4  |
| 74 | -           | -     | -           | -          | -          | -     |
| 75 | 11.3        | 9.7   | 94          | 1.5        | 1.3        | 30.9  |
| 76 | 11.3        | 9.7   | 10.0        | 15         | 14         | 29 9  |
| 77 | 11.3        | 9.9   | 10.3        | 1.5        | 1.4        | 29.8  |
| 78 | 11.4        | 10.2  | 10.4        | 1.4        | 16         | 29 5  |
| 79 | 11.4        | 10.3  | 10.7        | 1.5        | 1.6        | 29 4  |
| 80 | 11.5        | 10.4  | 10.8        | 1.5        | 1.7        | 298   |
| 81 | 11.6        | 10.5  | 10.9        | 1.5        | 1.8        | 29.8  |
| 82 | 11.6        | 10.7  | 11.0        | 1.5        | 2.0        | 29.5  |
| 83 | 11.6        | 10.8  | 11.1        | 1.5        | 20         | 29 7  |
| 84 | 13.1        | 10.5  | 9.2         | 15         | 4 2        | 28 1  |
| 85 | 13.2        | 10.7  | 9.4         | 15         | 4.2        | 28 0  |
| 86 | 13 1        | 10 9  | 9.5         | 15         | 43         | 28.0  |
| 87 | 13 2        | 11 0  | 95          | 16         | 4 4        | 28 0  |
| 88 | 13.2        | 11.2  | 96          | 16         | 4.5        | 27.9  |
| 89 | 13 2        | 11.3  | 97          | 16         | 4 6        | 28.1  |
| 90 |             |       |             |            |            |       |

Table 9-7. Of the total area of 245,880 square km, approximately 40% is manmade, and the share of the artificial forest increased consistently until about the mid-1980s. The stock of forest resources has risen steadily, from about 1900 million cubic meters in the early 1960s to more than 3100 million cubic meters in 1990. The stock in artificial forests has shown a faster growth, from about 520 million cubic meters in 1960 (1/3 of the total) to 1600 million cubic meters in 1990 (1/2 of the total). The significance of the forests is proba-

| lable 9   | -5 Farm lan  | D      |          | (un    | it: square km) |
|-----------|--------------|--------|----------|--------|----------------|
| ( <u></u> | Total        | Fields | Attached | Paddy  | Under trees,   |
|           |              | proper | dykes    | fields | vines, etc.    |
| 1955      | <u>51400</u> |        |          | 28470  |                |
| 1956      | 60120        | 57030  | 3090     | 33200  |                |
| 1957      | 60440        | 57300  | 3145     | 33350  |                |
| 1958      | 60640        | 57490  | 3152     | 33450  | _              |
| 1959      | 60730        | 57570  | 3158     | 33640  |                |
| 1960      | 60710        | 57550  | 3157     | 33810  |                |
| 1961      | 60860        | 57690  | 3163     | 33880  | 4509           |
| 1962      | 60810        | 57630  | 3171     | 33930  | 4641           |
| 1963      | 60600        | 57440  | 3159     | 33990  | 4806           |
| 1964      | 60420        | 57260  | 3157     | 33920  | 5017           |
| 1965      | 60040        | 56900  | 3144     | 33910  | 5258           |
| 1966      | 59960        | 56810  | 3142     | 33960  | 5425           |
| 1967      | 59380        | 56260  | 3123     | 34150  | 5606           |
| 1968      | 58970        | 55860  | 3105     | 34350  | 5773           |
| 1969      | 58520        | 55430  | 3087     | 34410  | 2902           |
| 1970      | 57960        | 54910  | 3046     | 34150  | 6002           |
| 1971      | 57410        | 54420  | 2980     | 33640  | 6160           |
| 1972      | 56830        | 53910  | 2922     | 33120  | 6267           |
| 1973      | 56470        | 53590  | 2880     | 32740  | 6324           |
| 1974      | 56150        | 53310  | 2841     | 32090  | 6368           |
| 1975      | 55720        | 52930  | 2793     | 31710  | 6280           |
| 1976      | 55360        | 52620  | 2743     | 31440  | 6152           |
| 1977      | 55150        | 52440  | 2711     | 31330  | 6040           |
| 1978      | 54940        | 52250  | 2684     | 31080  | 5958           |
| 1979      | 54740        | 52090  | 2653     | 30810  | 5919           |
| 1980      | 54610        | 51990  | 2621     | 30550  | 5870           |
| 1981      | 54420        | 51830  | 2593     | 30310  | 5813           |
| 1982      | 54260        | 51690  | 2571     | 30100  | 5738           |
| 1983      | 54110        | 51560  | 2546     | 29890  | 5679           |
| 1984      | 53960        | 51450  | 2518     | 29710  | 5598           |
| 1985      | 53790        | 51300  | 2490     | 29520  | 5490           |
| 1986      | 53580        | 51130  | 2460     | 29310  | 5380           |
| 1987      | 53400        | 50970  | 2460     | 29100  | 5260           |
| 1988      | 53170        | 50770  | 2400     | 28890  | 5110           |
| 1989      | 52790        | 50420  | 2370     | 28680  | 4870           |
| 1990      | 52430        | 50100  | 2340     | 28460  | 4750           |

Table 9-5 Farm land

Note: "Fields proper" refers to land for actual cultivation and "attached dykes" refer to ridges circling cultivated land. The data exclude Okinawa through 1973.

Source : Ministry of Agriculture, Forestry, and Fisheries. 1955 figures are from *Provisional Basic Survey on Farming* (1/5 samples), and *Crop Survey* thereafter.

| (index, 1975=100) |      |      |      |      |       |        | (quantity, tons) |
|-------------------|------|------|------|------|-------|--------|------------------|
|                   | 1975 | 1980 | 1985 | 1988 |       | 1975   | Most recent      |
| Japan             | 100  | 96   | 88   | n.a. |       | 94070  | 83096('85)       |
| United States     | 100  | 100  | n.a. | n.a. |       | 292000 | 373333('84)      |
| France            | 100  | 187  | 228  | 225  |       | 41200  | 92500('88)       |
| Germany           | 100  | 132  | 120  | 120  | ('87) | 24981  | 29857('87)       |
| Netherlands       | 100  | n.a. | 120  | 104  | · · / | 17439  | 19146('89)       |
| Sweden            | 100  | 100  | 78   | 84   | ('86) | 4554   | 5715('86)        |
| United Kingdom    | 100  | 133  | na.  | n.a. | . ,   | 30300  | 40300('82)       |

Table 9-6 Application of pesticides in selected countries

Note: Quantities are in terms of active ingredients, and do not include diluents and adjuvants. UK data refer to Great Britain only.

Source : OECD [1991b], pp.260-263.

bly shifting from logging to preservation of the natural environment due to the shifting preference of the people. This trend has accelerated with the rise in wages in other sectors of the economy, which has made the forestry industry economically unattractive. The demand for forest products is increasingly met by imports, which is a topic in chapter 10. Thus, in Japan, the conventional method of forest management, which includes 'economy' and 'self-financing accounting', has developed conflicts with the increasing number of people who want to preserve nature. Larger numbers of people see the forests as resources for recreation activities, such as camping, golfing, and skiing. With the expansion of the road networks, especially the ones going across the mountain ranges to the other side of the Japan archipelago in contrast to the ones running parallel to the coast lines, the conflict between development and conservation has been aggravated. This is one of the areas where the direct application of cost-benefit analysis is not warranted. For one thing, the subjects bearing the 'costs' and 'benefit' are widespread in society and not limited to the ones within geographical proximity of the development plans. Another difficulty is when 'intrinsic value' comes to play a larger role. This is particularly true when the forest in question represents a preserved natural environment or when it provides a habitat for endangered species. Last but not least, when the global climate is at stake, far more importance must be attached to forest resources.

|           | Total         |               |         |         | Artificial    | forests |
|-----------|---------------|---------------|---------|---------|---------------|---------|
|           | Area          |               | Growing |         | Area          | Growing |
|           |               |               | stock   |         |               | stock   |
|           | Total         | Private       | Total   | Private |               |         |
| 1955('54) | 229609        | 138946        |         |         | 53090         |         |
| 1960      | 244030        | 141510        |         |         | 61110         |         |
| 1965      | 250990        | 141930        | 1892    | 785     | 76630         | 547     |
| 1970      | 252840        | 145590        | 1906    | 869     | 87420         | 581     |
| 1975      | 252630        | 147890        | 2186    | 1184    | 93770         | 798     |
| 1980      | 252790        | 147330        | 2484    | 1449    | 98950         | 1054    |
| 1985      | 252550        | 146840        | 2862    | 1752    | 102190        | 1361    |
| 1989      | <u>252120</u> | <u>146510</u> | 3138    | 1967    | <u>103270</u> | 1598    |
| 1990      | 245880        | 137940        |         |         | 102530        |         |

Table 9-7 Forest area and resources

Note: As a general rule, figures are as of April 1 For 1954 and 1957, figures are as of August 1. Figures after 1975 are as of the end of the fiscal year. The 1990 figure is from the World Census of Agriculture and Forestry as of August 1.

Source : Forestry Agency, Current State of Forestry

#### 9.5 Industrial and commercial land

Table 9-4 lists the land area being occupied by factories and offices, among various other uses. It can be seen that industrial land has doubled in size in the past three decades. The pace of expansion, however, seems to have slowed down substantially after the 1973-1975 period, when the Japanese economy suffered a setback following the oil crisis and started to undergo a fundamental structural change from rapid industrialization based on basic metals, petrochemicals, and heavy machinery to a new growth path based on electronics and services.[4] The rapid expansion of the land area devoted to offices, stores, etc., as listed in the table, provides proof of our previous point. Although the statistics seem to suffer from data discontinuity in 1983 when part of the residential land was reclassified for commercial use (such as offices, stores, etc.), the table shows that the quantity of industrial land has remained more or less constant around 1600 square km, whereas the land for commercial use has reached 4600 square km and is still increasing. It should be noted that, within the manufacturing sector, the parts dealing with basic materials tend to be overshadowed by those in the machinery sectors (general machinery, electrical machinery, transportation equipment, and precision instruments). The man-

|           | Natural | forests          | Other |                  | Bamboo forest |
|-----------|---------|------------------|-------|------------------|---------------|
|           | Area    | Growing<br>stock | Area  | Growing<br>stock |               |
| 1955('54) | 165976  |                  |       |                  | 1639          |
| 1960      | 170152  |                  |       |                  | 1638          |
| 1965      | 157860  | 1339             | 14670 | 5.8              | 1830          |
| 1970      | 147620  | 1317             | 16130 | 8.1              | 1370          |
| 1975      | 144370  | 1386             | 13010 | 1.8              | 1480          |
| 1980      | 139940  | 1428             | 12460 | 1.2              | 1440          |
| 1985      | 136660  | 1500             | 12220 | 1.6              | 1470          |
| 1989      | 135230  | 1538             | 12100 | 16               | 1510          |
| 1990      | 135180  |                  |       |                  | 1450          |

quantity in million Cubic motors)

ufacturing sector related to consumer goods is also active in land acquisition. Comparing the land acquisition data in physical terms and in value terms, it can be seen that the machinery and consumer goods sectors are purchasing more expansive land, implying that they are urban-located. For instance, in physical terms (i.e., land area), they shared 21% and 35%, respectively, while in value terms, their shares stood at 28% and 40% in 1991. [Land Agency, 1993, pp.11-21]

#### **Residential land** 9.6

The ratio of public land supply to private has not changed very much over time; in 1970 the share of the public supply stood at 26.80ther words, the institutional divisions are not particularly important in discussing the residential land supply, and we continue our discussion without referring to this distinction. The public supply here refers to that of the Housing and Urban Facilities Public Corporation (Jutaku Toshi Seibi Kodan) and local public bodies, including land zoning projects by said organizations, while private supply refers to private land owners and private land developers and includes land supply by land zoning projects by the private sector. First, let us look at the relative

|      | Residential I | and supply: | Housing starts: |              |
|------|---------------|-------------|-----------------|--------------|
|      | Total         | Private     | number of units | floor space  |
|      | (ha)          | (ha)        | (1000)          | $(1000 m^3)$ |
| 1955 |               |             | 257.3           | 14976        |
| 1956 |               |             | 308.6           | 17470        |
| 1957 |               |             | 321.0           | 18788        |
| 1958 |               |             | 337.9           | 19423        |
| 1959 |               |             | 380.5           | 21964        |
| 1960 |               |             | 424.1           | 25046        |
| 1961 |               |             | 535.9           | 31023        |
| 1962 |               |             | 586.1           | 32285        |
| 1963 |               |             | 688.7           | 38523        |
| 1964 |               |             | 751.4           | 43102        |
| 1965 |               |             | 842.5           | 49667        |
| 1966 | 12300         | 8600        | 856.5           | 53856        |
| 1967 | 14700         | 10700       | 991.1           | 66173        |
| 1968 | 16000         | 11400       | 1201.6          | 79178        |
| 1969 | 19100         | 14100       | 1346 6          | 90116        |
| 1970 | 21300         | 15600       | 1484.5          | 101068       |
| 1971 | 22800         | 17100       | 1463 7          | 101544       |
| 1972 | 23400         | 17900       | 1807.5          | 128745       |
| 1973 | 22800         | 18300       | 1905.1          | 146542       |
| 1974 | 19700         | 14900       | 1316.1          | 107238       |
| 1975 | 16300         | 11700       | 1356.2          | 112422       |
| 1976 | 15000         | 11000       | 1523.8          | 125281       |
| 1977 | 13500         | 9800        | 1508.2          | 126818       |
| 1978 | 13500         | 10000       | 1549.3          | 136249       |
| 1979 | 13400         | 9700        | 1493 0          | 136514       |
| 1980 | 12400         | 9000        | 1268.6          | 119102       |
| 1981 | 11800         | 8400        | 1151.6          | 107853       |
| 1982 | 11400         | 8100        | 1146.1          | 107637       |
| 1983 | 11200         | 8100        | 1136.7          | 799442       |
| 1984 | 10800         | 7900        | 1187.2          | 100227       |
| 1985 | 10200         | 7500        | 1236.0          | 103131       |
| 1986 | 10400         | 7400        | 1364.6          | 111004       |
| 1987 | 10300         | 7300        | 1674.3          | 132526       |
| 1988 | 10700         | 7700        | 1684.6          | 134531       |
| 1989 | 10300         | 7300        | 1662.6          | 135029       |
| 1990 | 10800         | 8000        | 1707 1          | 137489       |

#### Table 9-8 Supply of residential land

Source: Residential land data are from Land Agency, Land White Paper. Housing start data are from the Ministry of Construction, Annual Report on Building Construction Statistics.

#### LAND USE

size of land for housing which is listed in Table 9-4 together with land for other purposes. In recent years, the total residential land reached 9700 square km, which is about 2.6% of the total land area and is somewhat comparable to land used for the road networks and twice that used for commercial purposes. Second, the annual supply of residential land is available from two alternative sources. One is based on the estimates by the Land Agency, which provides concerning the shifts of land use from farm land, forests, and reclamation to residential land. The other refers to the data series compiled by the Ministry of Construction. This source provides the institutional breakdown into the public and private supply. Both sources are essentially identical because the fomer estimates are based on the latter. The latter has an advantage in that they provide a continuous picture starting in the latter half of the 1960s and cover the very turbulent years during the first half of the 1970s. The former is actually a product of these turbulent years in land supply and, especially, land price hikes which prompted the Japanese government to start collecting statistics concerning land in a systematic manner. With a little exaggeration, one can say that, prior to these years, land was outside the boundary of public administration in Japan. The supply of residential land reached a peak in 1972 of 234 square km. The annual supply in recent years hovers around 100 to 110 square km.

Towards the end of our observation period, the supply of land tended to increase again. It is noted that there were financial factors at work, and the aspect of land as a form of asset once again affected land transactions.[Land Agency 1993, pp.144-147] As of the end of March 1984, outstanding bank loans to the real estate sector increased by 15.2% compared with the same period in the previous year. Subsequent years have shown an annual increase of 14.9%, 25.9%, 32.7%, 11.3%, and 15.3%. The comparable figure for 1991 has been restrained at 0.3%. This is evidence of the formation of a 'bubble' and its collapse, which plagued the Japanese economic scene in the early 1990s.

Coming back to the real side of the economy, it is indicated in Table 9-8 that the housing starts also reflect the economic trends. Conversely, one can say that housing investment is an important factor behind the economic cycles. This is especially so now that capital formation in plant and equipment has somewhat lost its impetus in Japan. Housing starts in 1990 exceeded 1700 thousand units before dropping off to around 1400 thousand units more re-

|      | Numb  | er of la | nd fill sit | es:  |       | Area    | Cap   | acity:          |
|------|-------|----------|-------------|------|-------|---------|-------|-----------------|
|      | Hills | Sea      | Inland      | Low- | Total | (square | Total | Remaining       |
|      |       |          | water       | land |       | km)     |       | $(million m^3)$ |
| 1980 | 1600  | 36       | 50          | 796  | 2482  | 52.1    | 356.1 | 191.9           |
| 1981 | 1619  | 40       | 48          | 779  | 2486  | 53.6    | 403.2 | 181.6           |
| 1982 | 1612  | 36       | 46          | 778  | 2472  | 53.9    | 377.6 | 176.0           |
| 1983 | 1638  | 34       | 41          | 766  | 2479  | 55.1    | 382.7 | 170 8           |
| 1984 | 1633  | 37       | 38          | 731  | 2439  | 56.2    | 403 1 | 174 2           |
| 1985 | 1630  | 38       | 42          | 721  | 2461  | 60.9    | 410.1 | 195.7           |
| 1986 | 1629  | 36       | 39          | 707  | 2411  | 55.7    | 429 9 | 197.0           |
| 1987 | 1637  | 31       | 35          | 692  | 2395  | 53 1    | 423 9 | 195.1           |
| 1988 | 1628  | 35       | 34          | 676  | 2373  | 49.4    | 414 3 | 170 9           |

Table 9-9 Land use for land fill

Note. The data refer to the fiscal year

Source: Ministry of Health and Welfare, Welfare White Paper

cently. The same table lists the total floor space of the housing start, which exhibits a similar trend to the housing start in terms of the number of units. The average floor space per unit remained practically unchanged over the period; however, it should be noted that this is actually a very important economic variable as well as being an essential component of the quality of life indicators. Whenever the real income tends to increase relative to construction cost and land price, the average floor space tends to expand, and vice versa.[Uno 1978] The sensitivity to the economic conditions is most marked in the case of the number of units for sale, which tends to exhibit radical ups and downs. In the case of the number of units owned, the trend has been consistently upward. It stood at 119.4 square meters in 1980 and rose to 136.4 square meters in 1990.

#### 9.7 Waste disposal sites

Land is also being used for the disposal of wastes. We have seen in chapter 6 that the proportion of household wastes undergoing incineration has been increasing, thus reflecting an improved provision for proper waste treatment. Recycling is another possibility which is being sought rigorously. However,

|                | Road netwo | rk length   | Estimated area | Motorvehicles in use |  |
|----------------|------------|-------------|----------------|----------------------|--|
|                | All roads  | Expressways | •              |                      |  |
|                | (1000 km)  | (km)        | (square km)    | (1000)               |  |
| Japan          | 1127.4     | 4407        | 9900           | 55098                |  |
| United States  | 6627.4     | 83964       | 87000          | 188015               |  |
| France         | 805.5      | 6950        | 8740           | 27868                |  |
| Germany        | 496.7      | 8721        | 5800           | 31588                |  |
| Netherlands    | 103.0      | 2074        | 1110           | 5894                 |  |
| Sweden         | 133.7      | 999         | 1740           | 3888                 |  |
| United Kingdom | 354.3      | 2993        | n.a            | 23558                |  |

Table 9-10 Road network length and area in selected countries

Source . Data on area refer to all roads Road network length data and motor vehicles in use are from OECD Environmental Data, 1991, pp 205-209 and refer to 1989; data on area occupied by all roads are from OECD, Tranport and Environment, 1988, p 35, and are estimates for early 1980s

there remains the residue after incineration which has to be disposed of. There are also portions going to land fills directly. Table 9-9 shows the time series data on available sites for land fills. In recent years, nearly 50 square km of land has been devoted to this purpose. In addition, there are plans to prepare reclamation sites for the final disposal of industrial waste in the Tokyo Bay and Osaka Bay areas. It is reported that the sites will have a land area of 5-6 square km in Tokyo and about 3 square km in Osaka.[Ministry of Health and Welfare, 1991, p.296]

#### 9.8 Road network length and area

Of the land used for social facilities, let us examine the case of roads. We have addressed ourselves to the impact of transportation activities on the environment in chapter 5, where the focus was on the stock of motor vehicles in use, the traffic volume of passengers and freight, and the consumption of energy for transportation purposes. In this section, we focus our attention on the stock of the transportation infrastructure, namely the land area devoted to road networks. In Japan, where motorization proceeded at a rapid pace, and the economic activities are concentrated in the Pacific Belt extending south-

|      | Population |            | Area        |        |
|------|------------|------------|-------------|--------|
|      | (1000)     | (%)        | (square km) | (%)    |
| 1960 | 40830      | (43.7)     | 3865.2      | (1.03) |
| 1961 |            |            |             |        |
| 1962 |            |            |             |        |
| 1963 |            |            |             |        |
| 1964 |            |            |             |        |
| 1965 | 47261      | (48.1)     | 4604.9      | (1.23) |
| 1966 |            | . ,        |             |        |
| 1967 |            |            |             |        |
| 1968 |            |            |             |        |
| 1969 |            |            |             |        |
| 1970 | 55535      | (53.5)     | 6399.2      | (1.71  |
| 1971 |            | <b>、</b> , |             | ``     |
| 1972 |            |            |             |        |
| 1973 |            |            |             |        |
| 1974 |            |            |             |        |
| 1975 | 63823      | (57.0)     | 8275.4      | (2.19  |
| 1976 |            | <b>、</b> , |             | `      |
| 1977 |            |            |             |        |
| 1978 |            |            |             |        |
| 1979 |            |            |             |        |
| 1980 | 69935      | (59.7)     | 10014.7     | (2.65  |
| 1981 |            | <b>`</b> , |             | `      |
| 1982 |            |            |             |        |
| 1983 |            |            |             |        |
| 1984 |            |            |             |        |
| 1985 | 73344      | (60.6)     | 10570 7     | (2.80  |
| 1986 |            | ()         | 200101      | (      |
| 1987 |            |            |             |        |
| 1988 |            |            |             |        |
| 1989 |            |            |             |        |
| 1990 | 78152      | (63.2)     | 11732.2     | (3.11  |

Table 9-11 Densely inhabited districts

Note: See text for the definition of Densely Inhabited Districts (DIDs) Source : Bureau of Statistics, *Population Census*.

ward from Tokyo to Nagoya and Osaka and beyond, the shortage of roads has been a serious problem. The construction of new roads and improvement of existing ones continued at an accelerated pace after 1970. By this time, the demand for financial resources for directly productive purposes had lessened somewhat, and the government often used road construction as a measure to promote the economy when recession set in. Table 9-10 compares the road network length and the estimated area occupied by all roads in selected countries. It can be seen that, even around 1980, Japan was lagging in terms of a road network, especially when comparisons are made with the number of motor vehicles. Table 9-4 lists the time series of land area used for roads in Japan. During the 1970s, the road area increased by 18% and in the 1980s by nearly 10%. The expressways have been extended from a mere 698 km in 1970 to 2579 km in 1980 and nearly 4500 km in 1990.

#### 9.9 Urbanization

Table 9-11 shows one representative measure of urbanization. A densely inhabited district (DID) is defined in the Japanese Population Census as an area (1) using census enumeration districts as the basic unit of area, (2) composed of a group of contiguous census-enumeration districts with a high population density, in principle 4000 inhabitants or more per square kilometer within the administrative boundary, and (3) constituting an agglomeration of 5000 inhabitants or more as of the date of the census-taking. The DIDs were established for the first time in the 1960 Population Census. Because of the fact that this measure is available only for the census year, the data appear at five-year intervals. Despite this drawback, they have an advantage as no redrawing of the administrative borders among various cities and towns is needed. In the urbanization process, cities often expand in size, by their own expansion and by merging with neighboring towns. It also happens that the extent of urbanization in terms of the concentration of economic activities and population varies within the city limit. DID is a statistical concept intended to overcome such difficulties. The urban population in this definition has nearly doubled during the 30-year period from 1960 to 1990, increasing from about 41 million to 78 million. Because the total population continued to increase at the same time, the ratio of urban population to the total showed an increase from 44% to 63% during the same period. One can observe that the speed of urbanization tended to decline over the period; the 1960s saw a 36% increase in the DID population, whereas the figure for the 1970s and the 1980s stood at 26%and 12%, respectively. In terms of area, DIDs have increased from about 1% of the total land to more than 3%.

|                |      |                                  |      |      | (unit: %) |  |  |  |  |
|----------------|------|----------------------------------|------|------|-----------|--|--|--|--|
|                | S    | Sound level in Leq (dBA) outdoor |      |      |           |  |  |  |  |
|                | >55  | >60                              | >65  | >70  | >75       |  |  |  |  |
| Japan          | 80.0 | 58.0                             | 31.0 | 10.0 | 1.0       |  |  |  |  |
| United States  | 37.0 | 18.0                             | 7.0  | 2.0  | 0.4       |  |  |  |  |
| France         | 44.0 | 25.0                             | 13.0 | 4.0  | 0.4       |  |  |  |  |
| Germany        | 34.0 | 17.0                             | 8.0  | 3.0  |           |  |  |  |  |
| Netherlands    | 40 0 | 18.0                             | 60   | 0.6  | —         |  |  |  |  |
| Sweden         | 38.0 | 24.0                             | 11.0 | 40   | 1.0       |  |  |  |  |
| United Kingdom | 50.0 | 25.0                             | 11.0 | 4.0  | 0.6       |  |  |  |  |

Table 9-12 Exposure of population to road traffic noise

Note: The data refer to the early 1980s except for the United Kingdom (England only) where data are from a 1973 survey. Figures are daytime leq (6-22h) except for the United States and Sweden where they are leq over 24 hours Japanese figures are OECD estimates.

Source . OECD [1988b], p.44.

Thus, a situation has developed in which more than 60% of the total population are crowded into 3% of the land area. This calls for the provision of housing, schools, city parks, roads and railways, water supply and sewerage, and waste disposal, among various others. As this was not always easy, especially when investment had to be diverted to production purposes, a huge gap between human needs and what was actually made available was created. The last two decades have witnessed the narrowing of this gap to a considerable extent, as observed in the previous sections. Because of the rapid urbanization, urban planning tended to lag behind the existing reality. Coupled with the lack of effective zoning, Japanese city dwellers are still left with urban nuisance such as traffic noise. Table 9-12 compares the extent to which the population is exposed to road traffic noise. Figures from selected countries are also listed for comparison. According to an OECD report, the population exposed to high noise levels due to road traffic (defined here as leq > 65 dBA) numbered 35 million in Japan (total population 123 million) in the early 1980s, compared with 19 million in North America (population of the USA and Canada totals 275 million) and 53 million in OECD Europe (total population 430 million). A decibel (dB) is a unit of sound pressure level related to a standard reference level of 0.000002 Newtons per square meter. The decibel scale is logarithmic,

so that a very wide range of audible sound can be described in terms of a small range of numerical expressions. A sound level of 0 db at 1000 Hertz is just audible to a person with good hearing, while 60 db is described as corresponding to a "busy street through open windows" and 80 db as a "busy crossroads". A sound level of 120 db would cause pain in the ear. A decibel A-weighted [db(A)] is a unit of measurement of sound in which greater emphasis is given to the medium and high frequencies to which the human ear is most sensitive. It gives a good correlation with the subjective impression of loudness. The Leq (or "equivalent sound level") gives the average sound level over a given period, e.g. a full day.[OECD 1988b, pp.40-41, 60]

#### FOOTNOTES

- See OECD [1991b], p.277, for trends in pollution prevention investment by industry. As for technological development and legislation concerning motor vehicle exhaust emissions, see OECD [1988b], especially pp.89-91, pp.100-109, and p.129.
- [2] The figures in this section are estimates by the Land Agency based on data supplied by the Ministry of Agriculture, Forestry, and Fisheries, Ministry of Transportation, and Ministry of Construction. Data on reclamation are also available from the Geographical Survey Institute. The two series differ slightly, presumably reflecting the timing of registration.
- [3] The figures on farm land dilapidated artificially are from the Crop Survey by the Ministry of Agriculture, which is more comprehensive than the Land Agency data on transformation of land, which is the basis of Table 9-3. Although the former source provides figures which are about 40% larger than the latter, the trends of both series are basically very similar.
- [4] More detailed data on the new acquisition and usage of industrial land are available in MITI's Census of Manufacturers.

## Chapter 10

## Resource Endowment and International Linkages

#### **10.1** Introduction

This chapter is a reminder that an environmental analysis cannot be concluded within a national boundary. Resources have to be imported where the domestic supply is not sufficient to meet the demand, and Japan is a typical example. In other words, we have a situation where the final demand such as consumption and investment in Japan triggers a series of interindustry transactions within the economy, which then turns to foreign suppliers for raw materials. International linkages of environmental impact through international trade has to be sought in this context. Another route of international linkage would be through direct foreign investment which sometimes helps to relocate resource-intensive industrial activities abroad. A typical case in Japan is the aluminum industry, which has moved all of its refining processes to areas where energy is less expensive. The third source is transborder flow of pollutants. Acid rain is a typical example. In Japan, acid rain caused by foreign polluters has been detected, although the situation is presumably much worse on the European continent and North America due to the geographical proximity of countries. Fourth is global warming. The emission of GHGs will have global consequences, and the scope is much wider than the one discussed above. Another aspect of this issue involves the tropical rain forests and other

vegetation which absorb  $CO_2$  and help prevent the greenhouse effect. Seen in this way, the global community benefits from the existence of tropical rain forests, whereas their distribution is probably inversely related to the current levels of income. This chapter only touches on the first issue, which is the international linkages of Japanese society and economy through trade flows.

#### **10.2** The case of wood products

Theoretically, the most consistent way to introduce linkages through international trade would be to expand the input-output framework regarding trade. In other words, import (and export) vectors included in the usual tables can be further disaggregated by trading partners. In the input-output tables, international transactions are already disaggregated at the individual industry level so that domestic supply, imports, and exports can be distinguished. The further provision of a trade matrix is a desirable way to connect the framework with the international trade matrices. International trade matrices, in turn, show the exporting countries and importing countries, identifying who is selling to whom (or who is buying from whom). The matrices are prepared for individual commodities and products. Such data are regularly prepared by the United Nations and the OECD. On the side of the exporting countries, mining, logging, harvesting, fishing and other activities bring various resources from the natural environment domain into the economic domain. We are concerned here with mineral and wood resources. The former represents the case of depletable resources, and the latter, undepletable ones. Coming back to the case of the Japanese economy, the import matrix for 1990 is provided in chapter 12 (see Table 12-3). The import matrix has a sectoral classification which is identical to the transaction table (Table 12-1) and the final demand table (Table 12-2), with detailed information on the trading partners for each industrial sector. In essence, this matrix corresponds to the import vector, which is included among the final demand matrix but lists only the commodity trade to the exclusion of service trade, which is not recorded in the customs statistics. The sectoral classification is basically the same as the standard 36-sector scheme which I have used in previous works, with some additional information on environment-related activities. Now, let us focus on one of the activities listed, say wood products, which fall under forestry. In Japan, the

annual input-output tables are compiled, starting in 1973, by the Ministry of International Trade and Industry, of which the ones starting in 1977 provide an import matrix. Thus, one can use a time series of import matrices with consistent sectoral classification with the transaction tables and final demand tables. Table 10-1 is a list of such time series comparison for wood products. Tables 10-3 and 10-6 correspond to energy resources and metals, respectively. The data prior to 1977 have been supplemented by the final demand tables without detailed information as to trading partners. The tables also provide physical data regarding the trade volumes of corresponding imports (which are recorded in current prices). In an analysis pertinent to the share in total imports or in an aggregate economy on the side of the importers, or the economic importance on the part of the exporters, all have to be gauged in value terms. Thus, when it comes to resource depletion or the impact on the environment, physical data are probably more appropriate.

Table 10-2 in turn describes selected indicators of the global aspects of resources and production of wood products. Panel (a) concerns the production of wood products. Nearly one-half of the annual consumption of forest resources is attributable to firewood, and a large portion of this category is directed to the local market. Industrial use, which represents the other half of the demand, is subdivided into sawwood and plywood, pulp and wood chip, and others (not shown). According to the FAO, 84% of the demand for fuel is attributable to developing countries, whereas 77% of industrial use is attributable to developed industrial countries [FAO, Yearbook of Forest Products]. Panel (b) concerns the forest resources. Needless to say, panel (a) focuses on the annual flow of wood products, whereas panel (b) focuses on the stock of forest resources. The quantity measurement of vegetation is not an easy task because of the variety of types and intensity. In a survey conducted jointly by the FAO and the UNEP, woody vegetation is classified into:

- (a) closed forest where a large portion of the earth is covered by trees;
- (b) open forest where trees cover at least 10% of the earth surface, with dense grass covering the rest;
- (c) forest fallow where wood has been cleared for cultivation but is left unattended thereafter, and is expected to return to forest again in due time;

| Table 10-1 Import matrix, wood products |                 |                |              |               |         |       |  |  |
|-----------------------------------------|-----------------|----------------|--------------|---------------|---------|-------|--|--|
|                                         | USA             | America,       | EC           | Soviet        | Europe, | East  |  |  |
|                                         |                 | others         |              | & EE          | others  | Asia  |  |  |
|                                         | d wood (I-O see | ctor code: 022 | :0)          |               |         |       |  |  |
| 1955                                    |                 |                |              |               |         |       |  |  |
| 1960                                    |                 |                |              |               |         |       |  |  |
| 1965                                    |                 |                |              |               |         |       |  |  |
| 1970                                    |                 |                |              |               |         |       |  |  |
| 1975                                    |                 |                |              |               |         |       |  |  |
| 1976                                    |                 |                |              |               |         |       |  |  |
| 1977                                    | 302650          | 14314          | 3            | 142455        | 21      | 3828  |  |  |
| 1978                                    | 254389          | 8863           | 42           | 108752        | Ũ       | 3987  |  |  |
| 1979                                    | 432397          | 16446          | 39           | 156739        | 6       | 6637  |  |  |
| 1980                                    | 424580          | 27300          | 621          | 157025        | 3       | 5508  |  |  |
| 1981                                    | 263598          | 13518          | 323          | 98146         | 1       | 3443  |  |  |
| 1982                                    | 275610          | 15548          | 444          | 95825         | 1       | 3914  |  |  |
| 1983                                    | 222161          | 24670          | 349          | 94534         | 6       | 2886  |  |  |
| 1984                                    | 204968          | 40304          | 43           | 81263         | 2       | 2583  |  |  |
| 1985                                    | 213924          | 43126          | 112          | 81719         | 2       | 2452  |  |  |
| 1986                                    | 164925          | 31368          | 88           | 73322         |         | 2646  |  |  |
| 1987                                    | 201698          | 44128          | 153          | 56551         |         | 4729  |  |  |
| 1988                                    | 218913          | 33478          | 272          | 73566         | 1       | 9618  |  |  |
| 1989                                    | 288780          | 29556          | 625          | 79301         | 58      | 8894  |  |  |
| 1990                                    | 297844          | 22084          | 787          | 69651         |         | 7858  |  |  |
|                                         |                 |                |              |               |         |       |  |  |
| b. Sawlo                                | gs, veneer logs | and wooden c   | hips (I-O se | ctor code: 25 | 510)    |       |  |  |
| 1955                                    | <u> </u>        |                | `.           |               |         |       |  |  |
| 1960                                    |                 |                |              |               |         |       |  |  |
| 1965                                    |                 |                |              |               |         |       |  |  |
| 1970                                    |                 |                |              |               |         |       |  |  |
| 1975                                    |                 |                |              |               |         |       |  |  |
| 1976                                    |                 |                |              |               |         |       |  |  |
| 1977                                    | 108432          | 63206          | 864          | 6928          | 373     | 24104 |  |  |
| 1978                                    | 84636           | 59141          | 754          | 5923          | 424     | 23058 |  |  |
| 1979                                    | 135231          | 99695          | 866          | 8399          | 381     | 45448 |  |  |
| 1980                                    | 190652          | 144861         | 1290         | 11793         | 165     | 31374 |  |  |
| 1981                                    | 124739          | 89846          | 1023         | 8831          | 92      | 15320 |  |  |
| 1982                                    | 132580          | 113271         | 1062         | 7544          | 82      | 16203 |  |  |
| 1983                                    | 116117          | 95705          | 851          | 6371          | 232     | 13609 |  |  |
| 1984                                    | 113822          | 93365          | 849          | 6798          | 178     | 13266 |  |  |
| 1985                                    | 115733          | 101611         | 1029         | 6830          | 221     | 15592 |  |  |
| 1985                                    | 101475          | 83853          | 1025         | 6559          | 302     | 15795 |  |  |
| 1987                                    | 127738          | 114367         | 1000         | 6056          | 383     | 25004 |  |  |
| 1988                                    | 147892          | 136682         | 1470         | 7523          | 453     | 29425 |  |  |
| 1988                                    | 201950          | 189502         | 2115         | 10989         | 452     | 34499 |  |  |
| 1989                                    | 201950          | 207992         | 2826         | 11053         | 463     | 34100 |  |  |
| 1990                                    | 210044          | 201992         | 2020         | 11022         | 403     | 24100 |  |  |

Table 10-1 Import matrix, wood products

Sources: Input-Output Tables, various issues

|          |          |          |                | (unit. | current prices   |                  |
|----------|----------|----------|----------------|--------|------------------|------------------|
|          | Mid      | Asia,    | Oceania        | Africa | Total            | Physical         |
|          | East     | others   |                |        |                  | quantity         |
|          |          |          |                |        |                  | $(1000 m^3)$     |
| 55       |          |          |                |        | 22242            | ( 2051)          |
| 60       |          |          |                |        | 58388            | ( 6221)          |
| 65       |          |          |                |        | 163143           | (15943)          |
| 70       |          |          |                |        | 501205           | (39356)          |
| 75       |          |          |                |        | 673497           | (35650)          |
| 76       |          |          |                |        | 913889           | (41589)          |
| 77       | 0        | 407683   | 21379          | 3034   | 895367           | (41880)          |
| 78       | 0        | 349451   | 16270          | 4058   | 745812           | (42653)          |
| 79       | 0        | 727494   | 28273          | 7353   | 1375384          | (44786)          |
| 80       | 0        | 643673   | 36307          | 9251   | 1304268          | (37510)          |
| 81       | 0        | 397894   | 25895          | 3823   | 806641           | (29220)          |
| 82       | 0        | 475765   | 28133          | 4802   | 900042           | (30406)          |
| 83       | 0        | 353833   | 20237          | 4292   | 722968           | (29795)          |
| 84       | 0        | 370870   | 23204          | 12300  | 735537           | (28404)          |
| 85       | 0        | 296826   | 25403          | 4077   | 667641           | (28900)          |
| 86       | 0        | 202164   | 17012          | 3547   | 495072           | (28929)          |
| 87       | 0        | . 293699 | 22608          | 7405   | 630971           | (32292)          |
| 88       | 0        | 219655   | 20655          | 5533   | 581691           | (29598)          |
| 89       | 0        | 252371   | 27622          | 7252   | 694459           | (31298)          |
| 90       | 0        | 218830   | 32745          | 5723   | 655522           | (28999)          |
|          |          |          |                |        |                  | Sawlogs only     |
|          |          |          |                |        |                  | $(1000 m^3)$     |
| 55<br>60 |          |          |                |        | 3016             | ( 166)           |
| 65       |          |          |                |        | 16117            | ( 166)<br>( 968) |
| 70       |          |          |                |        | 108620           | ( 3011)          |
| 75       |          |          |                |        | 234094           | (2612)           |
| 76       |          |          |                |        | 273899           | ( 3301)          |
| 77       | 0        | 18867    | 46429          | 3081   | 272284           | (3585)           |
| 78       | 0<br>0   | 18129    | 40534          | 3265   | 235864           | (3857)           |
| 79       | 0        | 33217    | 53289          | 3999   | 380525           | (5116)           |
| 80       | 0        | 47387    | 78804          | 7072   | 513398           | (5110)           |
| 80<br>81 | 0        | 31805    | 65209          | 6744   | 343609           | ( 3898)          |
| 82       | 1        | 51805    | 69088          | 8546   | 399298           | (4953)           |
| 83       | 0        | 46871    | 66538          | 9511   | 355805           | (4953)           |
| 84       | 0        | 53861    | 69014          | 9231   | 360384           | (4007)           |
| 85       | 0        | 80845    | 60790          | 9231   | 300384<br>391685 | (5176)           |
| 86       | 23       | 65491    | 50548          | 7110   | 332164           | (5523)           |
| 87       | 23       | 137416   | 56868          | 6681   | 475549           | (7397)           |
| 88       | 23       | 160218   | 56969          | 5679   | 475549<br>546334 | (8462)           |
| 89       | 23<br>44 | 261647   | 56969<br>64217 | 6355   | 546554<br>771769 | ( 9624)          |
| 89<br>90 | 44<br>18 | 248422   | 70268          | 7281   | 793267           | ( 9024)          |
|          | 10       | 240422   | 10200          | 1201   | 193201           | ( 3002)          |

(unit: million  $m^3$ )

|      | World total | Firewood  | Industrial use |          |        |
|------|-------------|-----------|----------------|----------|--------|
|      |             | , nemotia | Total          | Lumber & | Pulp & |
|      |             |           |                | plywood  | chips  |
| 1965 | 2213.9      | 1082.6    | 1131.2         | 681.3    | 237.6  |
| 1970 | 2390.0      | 1113.3    | 1276.7         | 760.4    | 313.5  |
| 1975 | 2579.1      | 1283.0    | 1296.1         | 766.6    | 322.6  |
| 1980 | 2926.5      | 1475.9    | 1450.5         | 877.0    | 370.6  |
| 1981 | 2931.4      | 1518.2    | 1413.1         | 835.1    | 372.4  |
| 1982 | 2926.4      | 1551.6    | 1374.7         | 803 2    | 361.9  |
| 1983 | 3037.7      | 1580.2    | 1457.4         | 875.1    | 369.6  |
| 1984 | 3125.8      | 1613.8    | 1511.9         | 907.3    | 386.5  |
| 1985 | 3164.3      | 1645.9    | 1518.4         | 911.8    | 385.6  |
| 1986 | 3252.3      | 1678.4    | 1573.9         | 959.3    | 393.6  |

Table 10-2 World forest resources and production of wood products a. Production of wood products

b Closed forest resources

| b Closed lorest resources | 5      |                  | (unit: million $m^3$ ) |
|---------------------------|--------|------------------|------------------------|
|                           | Total  | Coniferous trees | Broad-leaved trees     |
| US                        | 23396  | 15184            | 8212                   |
| Canada                    | 22958  | 18310            | 4648                   |
| America, others           | 78584  | 1191             | 77393                  |
| Europe                    | 10103  | 7040             | 3063                   |
| Soviet Union & EE         | 72064  | 57209            | 14855                  |
| East Asia                 | 26364  | 211              | 26153                  |
| Mid East                  |        |                  |                        |
| Asia, others              | 3865   | 1021             | 2844                   |
| Oceania (PNG)             | 1817   | 6                | 1811                   |
| Africa                    | 38782  | 66               | 38716                  |
| World total               | 276117 | 100233           | 175883                 |

c. Annual depletion of tropical rain forests

| c. Annual depiction of tropical rain forests | (unit <sup>.</sup> 1000 ha) |
|----------------------------------------------|-----------------------------|
| Tropical Africa                              | 1332                        |
| Tropical America                             | 4076                        |
| Tropical Asia                                | 1826                        |
| Total                                        | 7234                        |

Note: Resource data refer to closed forests available for economic use as of 1980. Countries are limited to those with forest area of one million ha and with appropriate forest statistics. Tropical Asia includes PNG

Sources: Production data are from FAO, Yearbook of Forest Products. Resource data are compiled from FAO/UNEP, Tropical Forest Resources Assessment Project, ECE/EAO, The Forest Resources of the ECE Region, and various country data Modified here from Tominaga,ed., Handbook on Resources (J). (d) shrubland where at least 10% of the earth's surface is covered by vegetation up to 7 meters in height.

In 1980 when the survey was conducted, the area corresponding to closed forest was estimated to be 2.95 million ha, open forest 13.7 million ha, and forest fallow and shrubland an additional 1.03 million ha. This corresponds to 22%, 10%, and 8% of the land surface, respectively. Panel (b) shows the growing stock of closed forest resources by regional breakdown. In the following, an attempt has been made to maintain a more or less consistent geographical classification which corresponds to the import matrices. It is shown that the world's total forest resources coming from closed forest are somewhere around 280 billion cubic meters. One has to quickly add that the precise measurement of a growing stock of trees, which should include the economically usable part of the trees and exclude branches and treetops, is a difficult task, and the availability of statistics is limited to a selected number of countries for this reason. It is estimated also that the total growing stock of the world would amount to 365 billion cubic meters.

About one-third of the growing stock is coniferous, while the remaining two-thirds is broad-leaved. Nearly three-quarters of the latter is concentrated in the tropics in Africa, Latin America, and Southeast Asia. Panel (c) of Table 10-2 focuses on this point, "revealing that more than 7200 ha of closed forests are being lost annually in the tropics. According to the survey by the FAO and the UNEP, the total loss including open forest amounts to more than 11,000 ha. Of this, 6200 ha (4100 ha of closed forest and 2100 ha of open forest) are permanently turned into farmland or residential land, whereas the rest is lost to forest clearance in the tropics. Needless to say, this damage to the tropical rain forests is causing global concern. To the extent that this damage is triggered by the increased demand for wood products in the North, it ceases to be a policy matter for the South alone.

### 10.3 The case of energy resources

Table 10-3 summarizes the import of energy resources into Japan from various countries and regions. The table is similar to Table 10-1 in its construction and is based on the import matrix which comprises a part of the input-output

|                                      | USA                     | America,                                       | EC                   | Soviet                             | Europe,     | East                       |
|--------------------------------------|-------------------------|------------------------------------------------|----------------------|------------------------------------|-------------|----------------------------|
|                                      | <u> </u>                | others                                         |                      | & EE                               | others      | Asia                       |
|                                      | (I-O sector code        | e: 1101)                                       |                      |                                    |             |                            |
| 1955                                 |                         |                                                |                      |                                    |             |                            |
| 1960                                 |                         |                                                |                      |                                    |             |                            |
| 1965                                 |                         |                                                |                      |                                    |             |                            |
| 1970                                 |                         |                                                |                      |                                    |             |                            |
| 1975                                 |                         |                                                |                      |                                    |             |                            |
| 1976                                 | 005454                  | 174000                                         | 05.00                | 53000                              | -           | 5007                       |
| 1977                                 | 295654                  | 174898                                         | 8539                 | 57992                              | 5           | 5887                       |
| 1978                                 | 134226                  | 134479                                         | 6524                 | 36107                              | 0           | 7802                       |
| 1979                                 | 222074                  | 133485                                         | 7026                 | 34247                              | 0           | 15923                      |
| 1980                                 | 356280                  | 153597                                         | 7                    | 32813                              | 1           | 27732                      |
| 1981                                 | 430848                  | 152585                                         | 5                    | 20859                              | 60          | 43679                      |
| 1982                                 | 524453                  | 189331                                         | 6                    | 23566                              | 6           | 53727                      |
| 1983                                 | 290222                  | 180509                                         | 11                   | 26266                              | 24          | 50957                      |
| 1984                                 | 264056                  | 263887                                         | 36                   | 28285                              | 15          | 49399                      |
| 1985                                 | 223002                  | 281012                                         | 27                   | 47006                              | 17          | 46950                      |
| 1986                                 | 132801                  | 196647                                         | 33                   | 45905                              | 19          | 33682                      |
| 1987                                 | 85281                   | 157008                                         | 41                   | 43468                              | 32          | 27305                      |
| 1988                                 | 102869                  | 176138                                         | 68                   | 49910                              | 24          | 27659                      |
| 1989                                 | 105119                  | 185578                                         | 132                  | 61887                              | 24          | 32144                      |
| 1990                                 | 109673                  | 199805                                         | 424                  | 67301                              | 40          | 41280                      |
|                                      |                         |                                                |                      |                                    |             |                            |
|                                      | e oil (I-O sector       | code: 1301)                                    |                      |                                    |             |                            |
| 1955                                 |                         |                                                |                      |                                    |             |                            |
| 1960                                 |                         |                                                |                      |                                    |             |                            |
| 1965                                 |                         |                                                |                      |                                    |             |                            |
| 1970                                 |                         |                                                |                      |                                    |             |                            |
| 1975                                 |                         |                                                |                      |                                    |             |                            |
| 1976                                 |                         |                                                |                      |                                    |             |                            |
| 1977                                 | 0                       | 9616                                           | 0                    | 1657                               | 0           | 175674                     |
| 1978                                 | 1                       | 8221                                           | 0                    | 971                                | 0           | 158988                     |
| 1979                                 | 0                       | 13791                                          | 0                    | 1746                               | 0           | 221708                     |
| 1980                                 | 1                       | 196106                                         | 0                    | 4534                               | 0           | 440171                     |
| 1981                                 |                         |                                                |                      |                                    |             |                            |
| 1000                                 | 53                      | 410788                                         | 0                    | 1869                               | 0           | 580277                     |
| 1982                                 |                         |                                                | 0                    | 4948                               | 0           | 494761                     |
| 1983                                 | 1                       | 427826                                         |                      |                                    |             |                            |
| 1983<br>1984                         | 0                       | 468398                                         | 0                    | 3922                               | 0           | 555611                     |
| 1983<br>1984<br>1985                 | 0<br>0                  |                                                | 0<br>0               |                                    | 4           | 555611<br>526795           |
| 1983<br>1984<br>1985<br>1986         | 0                       | 468398<br>376813<br>196607                     | 0                    | 3922                               |             |                            |
| 1983<br>1984<br>1985                 | 0<br>0                  | 468398<br>376813                               | 0<br>0               | 3922<br>5456<br>1361<br>896        | 4<br>0<br>0 | 526795                     |
| 1983<br>1984<br>1985<br>1986         | 0<br>0<br>5<br>0<br>199 | 468398<br>376813<br>196607<br>178382<br>128430 | 0<br>0<br>15386      | 3922<br>5456<br>1361<br>896<br>821 | 4<br>0      | 526795<br>207466           |
| 1983<br>1984<br>1985<br>1986<br>1987 | 0<br>0<br>5<br>0        | 468398<br>376813<br>196607<br>178382           | 0<br>0<br>15386<br>0 | 3922<br>5456<br>1361<br>896        | 4<br>0<br>0 | 526795<br>207466<br>226808 |

### Table 10-3 Import matrix, energy resources

Source: Same as Table 10-1.

|    |         |               |         |        | : current prices, | million yen)    |
|----|---------|---------------|---------|--------|-------------------|-----------------|
|    | Middle  | Asia,         | Oceania | Africa | Total             | Physical        |
|    | East    | others        |         |        |                   | quantity        |
|    |         |               |         |        |                   | (1000 t)        |
| 55 |         |               |         |        | 20236             | ( 2861)         |
| 60 |         |               |         |        | 50935             | ( 8292)         |
| 65 |         |               |         |        | 97302             | ( 17080)        |
| 70 |         |               |         |        | 363800            | <u>(</u> 50172) |
| 75 |         |               |         |        | 1024865           | <u>(</u> 62107) |
| 76 |         |               |         |        | 1057879           | <u>(</u> 60930) |
| 77 | 0       | 1269 <b>3</b> | 374803  | 29469  | 959464            | <u>(</u> 61095) |
| 78 | 0       | 5866          | 302241  | 23760  | 651005            | <u>(</u> 52284) |
| 79 | 0       | 5209          | 330867  | 25144  | 773975            | <u>(</u> 58615) |
| 80 | 0       | 7204          | 392835  | 39836  | 1010305           | <u>(</u> 68323) |
| 81 | 0       | 5082          | 506056  | 58368  | 217542            | (78348)         |
| 82 | 0       | 3389          | 542693  | 95569  | 1432740           | (79091)         |
| 83 | 0       | 3118          | 532288  | 77129  | 1160524           | (74666)         |
| 84 | 0       | 6322          | 557741  | 89614  | 1259355           | (87818)         |
| 85 | 0       | 7657          | 548316  | 99011  | 1252998           | (93077)         |
| 86 |         | 4460          | 361819  | 68876  | 844242            | (91449)         |
| 87 | 2       | 3023          | 316769  | 45563  | 678492            | (92762)         |
| 88 |         | 3437          | 296897  | 34320  | 691322            | (104485)        |
| 89 |         | 4827          | 382793  | 35929  | 808433            | (105472)        |
| 90 | 2       | 8076          | 438073  | 36310  | 900984            | (107938)        |
|    |         |               |         |        |                   | ()              |
|    |         |               |         |        |                   | (1000 kl)       |
| 55 |         |               |         |        | 53500             | ( 8501)         |
| 60 |         |               |         |        | 174290            | ( 31120)        |
| 65 |         |               |         |        | 423699            | ( 84143)        |
| 70 |         |               |         |        | 921433            | (197108)        |
| 75 |         |               |         |        | 5831691           | (263373)        |
| 76 |         |               |         |        | 6289383           | (267754)        |
| 77 | 4902770 | 1238557       | 4134    | 34685  | 6367093           | (278017)        |
| 78 | 3860748 | 935025        | 4923    | 11387  | 4980264           | (270650)        |
| 79 | 5559722 | 1545887       | 4811    | 29836  | 7377501           | (281203)        |
| 80 | 8686827 | 2465975       | 0       | 220757 | 12011371          | (254447)        |
| 81 |         |               |         |        | 11687743          | (227444)        |
| 82 | 7954868 | 2336386       | 888     | 157764 | 11442893          | (212259)        |
| 83 | 6664777 | 1785630       | 4437    | 123766 | 9506146           | (207005)        |
| 84 | 6510366 | 1720239       | 9657    | 52026  | 9320219           | (213201)        |
| 85 | 5833971 | 1370648       | 78908   | 110198 | 8302793           | (195945)        |
| 86 | 2367581 | 594895        | 22368   | 25314  | 3430983           | (188839)        |
| 87 | 2029715 | 556913        | 6714    | 15323  | 3014751           | (184702)        |
| 88 | 1601120 | 450228        | 3953    | 22057  | 2412131           | (192162)        |
| 89 | 2058767 | 535554        | 4158    | 10933  | 2961881           | (204914)        |
| 90 | 3133133 | 780617        | 35137   | 21116  | 4469847           | (225251)        |

| a. Time series      |              | i reserves and   | producen |             | (unit: billion bbl) |
|---------------------|--------------|------------------|----------|-------------|---------------------|
|                     | F            | Proven           | <i>F</i> | Annual      | Reserve             |
|                     |              | serves           |          | uction      | production          |
|                     |              | vth,%)           |          | /th,%)      | ratio(year)         |
| 1955                | 187.0        | (19.4)           | 5.6      | (8.2)       | 33.1                |
| 1960                | 265.7        | (7.4)            | 7.6      | (6.3)       | 34.7                |
| 1965                | 365.0        | ( 6.6)           | 11.0     | (7.5)       | <u>33.1</u>         |
| 1965                | 343.5        | (0.6)            | 11.6     | (7.4)       | 29.6                |
| 1970                | 620.7        | (29.2)           | 17.4     | (9.4)       | 35.7                |
| 1974                | 720.4        | (13.4)           | 21.2     | (0.5)       | <u>34 0</u>         |
| 1974                | 710.8        | $\overline{(-)}$ | 20.4     | $\dot{(-)}$ | 34.9                |
| 1975                | 657.8        | (-7.1)           | 19.4     | (-5.0)      | 34.0                |
| 1976                | 641.9        | (-2.5)           | 20.9     | (8.0)       | 30.7                |
| 1977                | 646.0        | (0.6)            | 21.8     | (4.3)       | 29.6                |
| 1978                | 641.6        | (-0.7)           | 22.0     | (1.0)       | 29.1                |
| 1979                | 641.6        | (0.0)            | 22.8     | (3.7)       | 28.1                |
| 1980                | 648.5        | (1.1)            | 21.8     | (-4.5)      | 29.7                |
| 1981                | 670.7        | ( 3.4)           | 20.4     | (-6.5)      | 32 9                |
| 1982                | 670.2        | (-0.1)           | 193      | (-5.2)      | 34.6                |
| 1983                | 669.3        | (-0.1)           | 19.4     | (05)        | 34.4                |
| 1984                | 698.6        | (4.4)            | 19.7     | (1.6)       | 35.4                |
| 1985                | 700.1        | (0.2)            | 19.5     | (-1.1)      | 35.9                |
| 1986                | 697.5        | (-0.4)           | 20.4     | (4.5)       | 34.2                |
| 1987                | 887.4        | (27.2)           | 20.3     | (-0.3)      | 43 6                |
| 1988                | 907.4        | (2.3)            | 21.0     | (36)        | 43 1                |
| 1989                | 1001.6       | (10 4)           | 21.7     | (2.9)       | 46 2                |
| 1990                | 999.1        | (-0.3)           | 22.0     | (1.6)       | 45.4                |
| b. Regional distrib | ution of roc | onvoc            |          |             | (unit: million bbl) |
| US                  |              | CIVES            |          |             | 25860               |
| Canada              |              |                  |          |             | 6133                |
| America, others     |              |                  |          |             | 125027              |
| Europe              |              |                  |          |             | 18822               |
| Soviet Union & EE   | =            |                  |          |             | 60100               |
| East Asia           | -            |                  |          |             | 13088               |
| Middle East         |              |                  |          |             | 660247              |
| Asia, others        |              |                  |          |             | 31635               |
| Oceania             |              |                  |          |             | 1822                |
| Africa              |              |                  |          |             | 58837               |
| World total         |              |                  |          |             | 1001572             |

Table 10-4 World proven reserves and production of crude oil

Note: Proven reserves are at the end of the calendar year. Annual growth figures prior to 1965 refer to the five-year average. Regional distribution refers to 1989.

Source: Data for the 1965-1974 period from BP Statistical Review of World Energy and Oil cited in Tominaga, ed. Handbook on Resources (J) and more recent data from Gas Journal cited in MITI, International Trade White Paper, framework. In the import matrix for 1990 (Table 12-3), coal and crude oil are provided under sector 02 (mining). The table here is based on a time series of such matrices.

Along with the value of imports, physical quantity is also listed in the last column of the table. This is expected to serve as a linkage between the economic sphere to material flow and the natural environment sphere. The data also allow analysis of the impact of price fluctuations on the importers' side as well as on the exporters'. A typical case is crude oil. Between 1970 and 1975, there was a sharp increase in the value of imports compared with a rather moderate increase in quantity. In fact, the value of crude oil per 1000 kl in 1970 was calculated to be 4675 yen, which rose to 16,501 yen in 1975. In the 1980s, crude oil imports remained more or less stable in terms of quantity, but declined considerably in terms of value. The price has declined from 51,378 yen per 1000 kl in 1981 to 19,844 yen in 1990. On the side of the exporting countries, we have to look into the reserves of energy resources. Tables 10-4 and 10-5 provide some data on crude oil and coal, respectively.

Harris [1993] clarifies some conceptual ambiguities surrounding the usage of the following terms: resource base > mineral endowment > resources > potential supply > reserves. "An ore reserve is simply a known quantity of mineral resource that is economically producible under existing economic conditions. ... Resource exists only within an economic and technological reference. ... When the term resource is qualified only by a specified price, it is understood to refer to the sum of the element or compound in all (known plus undiscovered) deposits producible at that price (ignoring discovery costs), given current and near feasible technology. ... When the set of deposits that comprises resource is restricted to only those that also are economically discoverable, the sum of the element or compound in these deposits consitutes the stock known as potential supply. ... Resource base and endowment ... are not defined by economics or technology. Resource base is the total amount of an element or compound that is present in the earth's crust within the region of interest. ... Mineral endowment can be considered a component of resource base ... that meet specified minima of concentration and size and a maximum depth within the crust." Tables 10-4 and 10-5 provide reserve-production (R/P) ratios for crude oil and coal. As Harris rightly points out, reserve is an economic variable. "This reflects the planning function of man-

|      | (unit: million ton) |
|------|---------------------|
|      | Hard coal           |
| 1955 | 1598.2              |
| 1960 | 1966.2              |
| 1965 | 2014.6              |
| 1970 | 2134.1              |
| 1975 | 2357.8              |
| 1980 | 2729.8              |
| 1981 | 2740.7              |
| 1982 | 2822.9              |
| 1983 | 2828.6              |
| 1984 | 2966.5              |
| 1985 | 3099.9              |
| 1986 | 3248.0              |
| 1987 | 3335 2              |
| 1988 | 3453.9              |
| 1989 | 3474.1              |
| 1990 | (3478.0)            |

Table 10-5 World reserves and production of coal a. Production

b. Regional distribution of reserves

|                 |          |             | (u         | nit. million TOE) |
|-----------------|----------|-------------|------------|-------------------|
|                 | Proven   | Proven      | Production | Reserve           |
|                 | amount   | recoverable |            | production        |
|                 | in place | reserves    |            | production ratio  |
|                 |          |             |            | (year)            |
| North America   | 229281   | 126960      | 581.6      | 218               |
| America, others | 3907     | 2607        | 12.1       | 216               |
| Europe          | 93660    | 36934       | 254 8      | 145               |
| Soviet Union&EE | 202386   | 138875      | 721.8      | 192               |
| Asia            | 37339    | 14357       | 169.4      | 85                |
| CPE Asia        | 214300   | 99450       | 667.4      | 149               |
| Oceania         | 48584    | 27481       | 85 5       | 322               |
| Africa          | 124963   | 59081       | 136.3      | 434               |
| World total     | 954420   | 505745      | 2628.9     | 192               |

Note: Data on reserves refer to around 1980.

agement, who typically desire to have enough reserves to support production capacity for the planning horizon, e.g. 5 - 10 years. Thus as proven reserves are produced, more may be added by additional drilling. For that reason, it is

Source: Coal production figures are from UN, Yearbook of World Energy Statistics. Reserve figures are from the World Energy Congress (J), cited here from the Handbook on Resources (J).

useful to consider a quoted reserve as the current working inventory. Change in product price or factor cost alters the magnitude of reserve." Thus, the R/P ratio is not an appropriate indicator of the sustainability of the resource base, despite frequent reference to it as such. In fact, table 10-4 reveals that as production (flow) increased over time, so did proven reserves (stock or working inventory), with the result that the R/P ratio remained more or less unchanged. For an obvious reason, this relation cannot hold in the very long run. Our society is consuming energy resources at an accelerating rate, and ultimately depletable resources will be literally drained, under current price and technology. At higher prices and with new technology, new sources of energy can be drawn into the economic sphere. The cases range from oil shale and oil sand, synthetic fuels, geothermal, wind and solar, and biomass, to nuclear fusion. The analysis of the technological feasibility of these new sources of energy is provided in chapters 3 and 8.

#### 10.4 The case of metals

Lastly, table 10-6 describes the case of metals including iron ore and nonferrous metal ores. Table 10-7 provides a summary of information on the world reserves of iron ore and of the nonferrous metal bauxite. A regional breakdown of reserves is also provided.

There are two points to be made. First, in the case of iron ore, the physical quantity of imports has matched very closely the aggregate economic activity. In fact, the production of iron and steel in Japan took off with its industrialization drive in the 1950s and continued to expand at a faster pace than the economy as a whole. However, with the structural change of the economy which started in the mid-1970s and continued more distinctly in the 1980s, the production level has tapered off [for details, see Uno 1989a]. Service orientation and electronics were the factors contributing to the trend. There can be different types of economic development reflecting factor endowment (i.e., availability of labor, capital, and resources), but it is generally true that if an economy develops depending on a fairly large domestic population, iron and steel are required after achieving a certain per capita income level and before reaching some saturation point. This typically reflects active capital formation and the diffusion of consumer durables. Second, although the demand for

|           | USA            | America, | EC                | Soviet | Europe,          | East     |
|-----------|----------------|----------|-------------------|--------|------------------|----------|
|           |                | others   |                   | & EE   | others           | Asia     |
| a. Iron o | re             |          |                   |        | (I-O sector code | e: 1220) |
| 1955      |                |          |                   |        |                  |          |
| 1960      |                |          |                   |        |                  |          |
| 1965      |                |          |                   |        |                  |          |
| 1970      |                |          |                   |        |                  |          |
| 1975      |                |          |                   |        |                  |          |
| 1976      |                |          |                   |        |                  |          |
| 1977      | 0              | 202719   | 0                 | 5360   | 0                | 385      |
| 1978      | 0              | 153224   | 0                 | 3937   | 0                | 290      |
| 1979      | 0              | 225951   | 0                 | 2322   | 1                | 337      |
| 1980      | 0              | 275334   | 0                 | 763    | 0                | 151      |
| 1981      | 0              | 280531   | 0                 | 0      | 0                | 139      |
| 1982      | 0              | 312671   | 0                 | 0      | 0                | 0        |
| 1983      | 0              | 249950   | 0                 | 0      | 0                | 0        |
| 1984      | 2              | 256551   | 0                 | 0      | 0                | 0        |
| 1985      | 1              | 241760   | 0                 | 0      | 0                | 0        |
| 1986      | 0              | 153149   | 0                 | 0      | 3383             | 15       |
| 1987      | 0              | 128908   | 0                 | 0      | 3993             | 166      |
| 1988      | 0              | 116563   | 1                 | 0      | 2602             | 530      |
| 1989      | 2              | 140003   | 2                 | 0      | 2568             | 763      |
| 1990      | 1              | 166067   | 0                 | 0      | 2356             | 845      |
|           |                |          | · · · · · · · · · |        |                  |          |
|           | errous metal o | ores     |                   |        | (I-O sector cod  | e: 1220) |
| 1955      |                |          |                   |        |                  |          |
| 1960      |                |          |                   |        |                  |          |
| 1965      |                |          |                   |        |                  |          |
| 1970      |                |          |                   |        |                  |          |
| 1975      |                |          |                   |        |                  |          |
| 1976      |                |          |                   |        |                  |          |
| 1977      | 13496          | 165753   | 346               | 3359   | 1246             | 9165     |
| 1978      | 13958          | 123436   | 98                | 1002   | 477              | 4703     |
| 1979      | 49679          | 205763   | 7525              | 760    | 406              | 7931     |
| 1980      | 73898          | 250059   | 4109              | 630    | 3522             | 8753     |
| 1981      | 67723          | 201308   | 912               | 1342   | 1519             | 6557     |
| 1982      | 54986          | 184317   | 1229              | 2586   | 4188             | 6303     |
| 1983      | 20313          | 177113   | 4129              | 2604   | 6959             | 4187     |
| 1984      | 20869          | 187745   | 4403              | 3190   | 7973             | 4399     |
| 1985      | 38111          | 172502   | 6079              | 5754   | 6379             | 3345     |
| 1986      | 29947          | 103326   | 8340              | 2266   | 55               | 3641     |
| 1987      | 37588          | 102464   | 8321              | 1070   | 44               | 7927     |
| 1988      | 55548          | 129910   | 9529              | 3296   | 337              | 9901     |
| 1989      | 67305          | 144967   | 13048             | 3845   | 447              | 14476    |
| 1990      | 69849          | 180594   | 18330             | 5760   | 1140             | 10419    |

### Table 10-6 Import matrix, metals

Source: Same as Table 10-1.

|    |        |        |         | (unit: d | current prices, | million yen)             |
|----|--------|--------|---------|----------|-----------------|--------------------------|
|    | Middle | Asia,  | Oceania | Africa   | Total           | Physical                 |
|    | East   | others |         | etc.     |                 | quantity                 |
|    |        |        |         |          |                 | (1000 t)                 |
| 55 |        |        |         |          | 29354           | ( 5459)                  |
| 60 |        |        |         |          | 76548           | ( 15036)                 |
| 65 |        |        |         |          | 188391          | ( 39018)                 |
| 70 |        |        |         |          | 443948          | (102090)                 |
| 75 |        |        |         |          | 670393          | (131752)                 |
| 76 |        |        |         |          | 708360          | (133758)                 |
| 77 | 0      | 121593 | 319581  | 55949    | 705587          | (132614)                 |
| 78 | 0      | 96132  | 234893  | 39347    | 527823          | (114690)                 |
| 79 | 0      | 115847 | 267315  | 51640    | 663413          | (130276)                 |
| 80 | 0      | 140436 | 325053  | 54881    | 796618          | (133721)                 |
| 81 | 0      | 134577 | 316384  | 49267    | 780898          | (123379)                 |
| 82 | 0      | 148925 | 381524  | 56139    | 899259          | (121817)                 |
| 83 | 0      | 127782 | 326230  | 42870    | 746832          | (109181)                 |
| 84 | 0      | 129006 | 331575  | 40497    | 757631          | (125372)                 |
| 85 | 0      | 139607 | 307010  | 44583    | 732961          | (124513)                 |
| 86 | 103    | 101665 | 187850  | 24718    | 470883          | (115234)                 |
| 87 | 0      | 85369  | 142526  | 20576    | 381538          | (112034)                 |
| 88 | 0      | 83043  | 146797  | 15983    | 365519          | (123377)                 |
| 89 | 0      | 92781  | 177586  | 19111    | 432816          | (127709)                 |
| 90 | 0      | 105504 | 194299  | 19395    | 488467          | (125290)                 |
|    |        |        |         |          |                 | Bauxite only<br>(1000 t) |
| 55 |        |        |         |          | 15127           | (1000 t)<br>(343)        |
| 60 |        |        |         |          | 53427           | ( 1094)                  |
| 65 |        |        |         |          | 103689          | ( 1675)                  |
| 70 |        |        |         |          | 374104          | ( 3660)                  |
| 75 |        |        |         |          | 504280          | ( 4600)                  |
| 76 |        |        |         |          | 551392          | ( 4276)                  |
| 77 | 4747   | 122946 | 149869  | 34348    | 505275          | ( 5318)                  |
| 78 | 2680   | 105451 | 94108   | 18589    | 364002          | (4742)                   |
| 79 | 2457   | 167835 | 149775  | 29709    | 621840          | ( 4597)                  |
| 80 | 1186   | 266627 | 190152  | 42862    | 841818          | ( 5707)                  |
| 81 | 0      | 190481 | 143495  | 38438    | 651775          | ( 4352)                  |
| 82 | 1126   | 162474 | 130867  | 39713    | 587789          | ( 3439)                  |
| 83 | 767    | 149082 | 136590  | 38827    | 540578          | ( 3579)                  |
| 84 | 2766   | 117862 | 127330  | 43649    | 520186          | ( 3861)                  |
| 85 | 451    | 108820 | 122767  | 39086    | 503294          | ( 3518)                  |
| 86 | 1138   | 69263  | 77867   | 32410    | 328253          | (2307)                   |
| 87 | 657    | 66831  | 81995   | 30855    | 337752          | ( 1872)                  |
| 88 | 2340   | 95576  | 133001  | 38578    | 478016          | ( 2148)                  |
| 89 | 7395   | 124235 | 167756  | 43890    | 587364          | ( 2269)                  |
| 90 | 4408   | 104699 | 158896  | 52207    | 606302          | ( 2302)                  |

| a. Time series  | Iron ore           | ······································ | Bauxite  |            |
|-----------------|--------------------|----------------------------------------|----------|------------|
|                 | Reserves           | Production                             | Reserves | Production |
| 1955            | n.a.               | 379.0                                  | n.a.     | 16.8       |
| 1960            | n.a.               | 489.8                                  | n.a.     | 27.6       |
| 1965            | n.a.               | 623.9                                  | 5852     | 37.2       |
| 1970            | n.a.               | 773.8                                  | 8430     | 59.0       |
| 1975 ('74)      | 97000              | 888.8                                  | 15500    | 77.        |
| 1980 ` ´        | 105000             | 879.1                                  | 22700    | 93.        |
| 1981            | 108000             | 851.4                                  | 22800    | n.a        |
| 1982            | 108000             | 775.6                                  | 22400    | 78.        |
| 1983            | 98200              | 746 1                                  | 22400    | 78.        |
| 1984            | 98200              | 822.5                                  | 22490    | 92         |
| 1985            | 98400              | 897.7                                  | 22300    | 89.        |
| 1986            | n.a.               | 909.4                                  | 23200    | 92.        |
| b. Regional dis | stribution of rese | rves                                   |          |            |
| ā               |                    | Iron                                   | ore      | Bauxit     |
| US              |                    | 5                                      | 900      | 4          |
| Canada          |                    | 9                                      | 800      |            |
| America, other  | rs                 | 12                                     | 000      | 675        |
| Europe          |                    | 3                                      | 300      | 65         |
| Soviet Union a  | nd EE              | 25                                     | 300      | 120        |
| Asia, others    |                    | 8                                      | 300      | 120        |
| Oceania         |                    | 20                                     | 200      | 460        |
| Africa          |                    | 7                                      | 400      | 590        |
| Other market    | economies          | 6                                      | 200      | 290        |
| World total     |                    |                                        | 400      | 2324       |

Table 10-7 World reserves and production of metals

Note: The unit for iron ore reserves is short ton (or American ton, 1 st = 2000 lb = 1102 kg). Data on iron ore reserves are for 1985 and on bauxite, 1986.

Source: Data on reserves are from the US Bureau of Mines, Mineral Commodity Summaries, and those on production from Metallgesellschaft and WBMS. Tominaga, ed., Handbook on Resources (J).

aluminum is growing in Japan, imports of bauxite have dropped considerably. Japan is now heavily dependent on imported aluminum. This is a result of the higher energy prices in this country after a series of oil price hikes which prompted the aluminum industry to shift to imports from countries where electricity is much cheaper (often hydro-power generation). Thus, industrial relocation is a factor behind the changing economy-environment interaction.

#### **10.5** Resource endowment and sustainability

The aim of this chapter is a limited one, as was stated at the outset, which is to demonstrate, starting from the environmental accounting of a single economy, the empirical feasibility of establishing linkages across national boundaries in an attempt to arrive at a global picture of sustainabillity. Our focus in this chapter has been limited to the international repercussion through commodity trade. Even in this respect, one can envisage detailed resource endowment data for an individual country providing information on the value and physical quantity of various resources under given economic and/or technological conditions. This aspect can be properly included in the integrated economic-environmental statistical system. We have not dealt with it in this series of work because Japan is at the consuming end of world resource flows, herself endowed with practically no natural resources. Thus, the research represents a typical standpoint of the industrial North. There are at least three additional channels through which economic-environmental interrelations have to be analyzed beyond national boundaries. In the case of the impact of direct foreign investment (and part of official development assistance) which transfers production capacity overseas, often involving technology transfer, the environmental accounting in the host country can probably take place as a part of capital formation in relevant industrial sector(s). Transborder flow of pollutants, such as acid rain or contamination of international rivers, will require quite a different approach in that an analytical framework with a spatial dimension has to be prepared. As to the global warming issue, a group of country frameworks will work as a driving mechanism for the global climate model. In other words, the individual country framework, hopefully linked together on a global level through international trade, etc., will provide the resource requirement,  $CO_2$  emission, and other relevant data for the global climate model. The latter, again, falls beyond the scope of this work.

## Part V

# Measuring Quality of Environment

### Chapter 11

# Composite Measures of Quality of Life

#### 11.1 Introduction

This paper attempts to update the composite measures of quality of life developed in the 1970s. In so doing, the latest features developed in the System of National Accounts (SNA) are explicitly recognized and incorporated in the conceptualization as well as in the empirical estimation. Some of the new features of SNA which are particularly useful for our purpose include consumption expenditure according to purpose of government, non-profit institutions, and household; capital formation and stock by type of capital goods; stock of consumer durables ; and national assets and liabilities. Our final aim is to reveal the potential for the expanded use of National Account data in various social, economic, and environmental analyses. Methodology is discussed in order to utilize SNA and other supporting data sets in a modeling framework designed to focus on some of the recent policy issues.

The current flow of income and consumption is undoubtedly an important facet of our quality of life. This aspect is adequately dealt with in the framework of established SNA. However, quality of life is understandably more complex than can be measured by national accounts. This led to various attempts at social indicators, prevalent in the early 1970s, with their subsequent advantages as well as disadvantages. The social indicators approach certainly expanded the scope of analysis, but it did not lead to an aggregate measure. Another approach to the problem was to rearrange the items included in the gross national expenditure (GNE) and make them amenable to quality-of-life measurement.

The GNE modification approach was taken up by the Economic Council of Japan as net national welfare or NNW. "Net" in this case means net of investment in plant and equipment. As a personal viewpoint, it would be inappropriate to interpret the framework in a welfare context because the concept does not aim at measuring consumer surplus, which is essential in welfare measurement. In fact, the mere mention of "welfare" caused considerable confusion and criticism of the idea itself. One prominent economist dubbed NNW as "No-one (K)nows What," or "Naniga Nandaka Wakaranai" in Japanese. The framework actually deals with the *cost* of delivering the bundle of goods and services related to the quality of life. The framework itself is a useful tool, though, to come up with an aggregate measure of the quality of life.

Twenty years after its inception, this chapter reconsiders the framework of NNW and updates the empirical analysis which incorporates the following items:

- (1) Government consumption (adjusted)
- (2) Personal consumption (adjusted)
- (3) Flow of services attributable to consumer durable goods
- (4) Flow of services attributable to household-related social overhead capital
- (5) Leisure time
- (6) Nonmarket activities such as housewives' domestic services
- (7) Loss due to urbanization
- (8) Damages due to environmental pollution.

In section 2, we will review the historical context which gave rise to this framework. Section 3 introduces the updated account covering 1955 to 1990, taking empirical data from the Japanese economy. Section 4 is devoted to further discussion, especially the usefulness of the framework in addressing recent policy issues and the possibility of incorporating the framework in a multisectoral econometric model.

#### 11.2 The background

In retrospect, the 1960s was an interesting era. After continued economic expansion and considerable prosperity, people were questioning the meaning of growth. For one thing, there was an emerging urban problem. Environmental disruption was becoming all too evident. There was a growing criticism about using GNP as a yardstick of economic and social success, although it never was intended as such. In late 1960s and early 1970s, there appeared many attempts to expand the National Accounting to incorporate new dimensions. The interest was shortlived, however. In 1973, the world community witnessed the first oil crisis and then became preoccupied with acute short-term stabilization problems like stemming inflation, securing employment, and restoring the fiscal balance.

In the 1990s, having lived through a decade of relative stability and prosperity, the world community is once again asking long-term questions. This time the central issues are sustainability and development. People are concerned about the depletion of our resource base, global warming, and acid rain. What if our grandchildren or great-grandchildren cannot inherit the economic and social system as the aftermath of growth itself? If economic growth is to be blamed for threatening sustainability, what is the implication for less developed countries which are striving for economic expansion? Thus, renewed interest in lifestyle , environmental accounting , pollution abatement cost, energy efficiency , and new technology reappeared.

Some people are more bold (and some more cautious) than others about introducing new ideas and modifying the framework of SNA. In a debate 20 years ago, Denison represented the cautious voice. "It would be enormously convenient to have a single, generally accepted index of the economic and social welfare of the people .... Some recent discussion seems almost to imply that such an index could be constructed." "Some suggestions to change the measurement of national product will derive from confusion between an output measure and a comprehensive welfare measure. Such proposals must be rejected. ... Efforts to do so can only impair their (i.e., GNP and NNP) usefulness for the very important purposes of both long-term and short-term analysis that they now serve well."[1]

Commenting on the environment, he wrote "To measure the state of affairs

with respect to any aspect of the human and physical environment requires adequate and accurate data." "The idea of measuring the net gain from production by balancing the value of the deterioration of the physical environment caused by production against the value of greater output is attractive. ... But implementation of this suggestion would require an objective measurement of the value of the deterioration expressed as a dollar amount. Such a valuation does not exist. ..." But even if these data were available, he says, such an attempt would face two serious problems. "First, relations between environmental conditions and welfare are rarely linear, and nonlinear relationships are hard to establish. ... Second, weighting is required. ... The absence of any natural weighting scheme is an even greater obstacle to combining indexes of crime, water pollution, racial discrimination, and the like into a single index."

We should note three points in his argument. First is that, perhaps responding to a casual mention of "welfare" on the part of the proponents of a new measure, it is impossible to derive a welfare index. As I have touched upon earlier, Denison has a point here. Second, he is against "a single, generally acceptable index of welfare." We need not accept his criticism here because a coherent economic accounting system can include physical measures as well as monetary measures, and additivity is not essential. Third, his point on environment boils down to a lack of data, which is true but distinct from the desirability of environmental accounting if such data were forthcoming.

Among the proponents of modifying SNA to take account of the extra dimensions of economic and social reality, we cite here Sametz [1968], Juster [1973], and Nordhaus and Tobin [1972].

Sametz's point is as follows: "... Change in GNP over long periods of time is not a good measure of economic growth or welfare. One cannot ignore—as one can for cyclical problems—price and population changes, nor can one assume that composition of inputs (or costs) or of output is relatively unchanged. Worse, one cannot even assume unchanged tastes or constant social priorities. In short, since structural change is the essence of secular change, it must be accounted for." According to him, the minimum requirement is:

- (1) An index of quality improvement parallel to the consumer price index—a "quality of goods deflator".
- (2) A measure of the amount and value of change in leisure time—a "quantity of work deflator".

- (3) Revisions and additions to GNP series
  - (a) Development of imputed values for crucial nonmarket economic activities.
  - (b) Reworking of the government account to remove "intermediary" or "necessary evil" social expenditures, assigning the remainder to consumption and investment.
  - (c) Revision of private sector to remove "costs" from consumption just as we remove "maintenance" from investment.
  - (d) The end product to be final consumption and investment regardless of originating sector and whether market priced or not.

In his suggestion, nonmarket-priced social costs (3-c above) include "water (air, noise, etc.) pollution, traffic congestion, and the like". Listing research projects which were underway at that time, Sametz saw the feasibility of actually implementing his idea in an empirical context.

Juster starts by saying: "The present system of U.S. national income and product account has, in recent years, been subjected to mounting criticism relating to conceptual framework, what is included and excluded from measured final output and income, the adequacy with which the accounts carry out their intended purposes, and whether they can and should be more specifically designed to measure changes in economic welfare ." Noting that "income (output) of the system is derived in one way or another from an implicit set of wealth accounts", he proposes a set of wealth accounts.[Juster 1973, p.42]

- (1) Reproducible tangible wealth (structure and durable equipment). "To the extent that reproducible tangible assets are owned by enterprises, the income generated by these assets is counted. ... However, if such assets are owned by households or governments, they are not now counted as part of the wealth and are not viewed as producing income to the owners or to society." "The most questionable aspect of developing the necessary imputation is that of an appropriate rate of return on these assets in both household and government sectors."
- (2) Reproducible intangible wealth (the stock of disembodied socially useful knowledge). This asset category is "meant to be coterminous with business and government outlays for research and development".

- (3) Human wealth (the stock of skills and knowledge embodied in persons). "(Current treatment) mixes together capital and current account transactions which can and should be disentangled." "For the most part, these activities are unmeasured simply because they represent uncompensated uses of time on the part of individuals and families." He applies this principle in analyzing allocation of time, and time spent is divided into consumption (leisure) and investment, plus maintenance of the stock of human capital itself.
- (4) Natural physical resource wealth (the stock of mineral, forest, water, climate, etc., assets). "The difference seems to be in difficulty of measurement, not in differences of concept. The point simply is that there are physical environmental assets that provide flows of direct consumption benefits to final users, and that deterioration in these environmental assets will result in a reduction in the flow of such benefits. ..."[Juster 1973, p.47] "My own preference is to subtract defensive outlays by consumers and not to add defensive outlays by enterprises."[Juster 1973, p.67]
- (5) Sociopolitical wealth (the stock of personal and national security, freedom, equity, privacy, etc.).

Nordhaus and Tobin write as follows. "A major question raised by critics of economic growth is whether we have been growing at all in any meaningful sense. Gross national product statistics cannot give the answers, for GNP is not a measure of economic welfare . ... An obvious shortcoming of GNP is that it is an index of production, not consumption. The goal of economic activity, after all, is consumption." "Our adjustments to GNP fall into three general categories: reclassification of GNP expenditures as consumption, investment, and intermediate; imputation for the services of consumer capital, for leisure ,and for the product of household work; correction for some of the disamenities of urbanization ."[Nordhaus and Tobin 1972, p.4]

Thus, their measure of economic welfare (MEW) consists of the following items.[Nordhaus and Tobin 1972, p.10]

- (1) Personal consumption (national income and product account)
- (2) Private instrumental expenditures (deduction)
- (3) Durable goods purchases (deduction)

- (4) Other household investment (deduction)
- (5) Services of consumer capital imputation
- (6) Imputation for leisure
- (7) Imputation for nonmarket activities
- (8) Disamenity correction (deduction)
- (9) Government consumption
- (10) Services of government capital imputation
- (11) Total consumption = actual MEW

In addition to theoretical exposition, which is in line with the two authors cited above, Nordhaus and Tobin provide an empirical account of their framework for the 1929-1965 period in the USA. Disamenity correction is based on their view that the higher earnings of urban residents to some extent represent compensation for the disamenities of urban life. They ran a cross-sectional regression among American cities to estimate the income differentials necessary to hold people in an urban environment.[Nordhaus and Tobin 1972, p.13] Otherwise, their estimation is based on statistical datasets drawn from various sources.

The framework employed by the NNW Measurement Committee of the Economic Council of Japan was strongly influenced by Nordhaus and Tobin's MEW and Sametz's Welfare GNP. [Economic Council 1973, p.39] Before turning to updating the NNW estimation in the next section, let us briefly observe what the committee had to say regarding the background of their work. "It is frequently argued, concerning national income, that it is merely intended as an indicator of economic activities and effective demand and not as an indicator of economic welfare at all. However, we find it to the contrary, when we look back to the historical background in the development of the national income concept or its estimation. For instance, the national income or 'national divident' in Pigou's Economics of Welfare, not to mention Adam Smith's 'annual produce', manifests an emphasis on economic welfare rather than effective demand. And anyone who has ever studied Simon Kuznets' Commodity Flow and Capital Formation based on the commodity flow method may easily understand that Kuznets intended for the national income series to reflect changes of economic welfare in the long-range point of view. In this sense, the committee wishes to make it clear that we attach importance to such a background and the history of national income estimates." [Economic Council 1973, p.4]

The thrust of the discussion was beginning to take a concrete shape by the mid-1970s. By that time, "welfare measurement" had ceased to be simply a manifestation of individual views and was starting to have an official nature. The United Nations Statistical Office in 1977 published a report whose purpose was "to make a critical review of the concepts, methodologies and empirical applications of monetary measures of welfare that may be used to supplement national accounts and balances, with special references to the use of such measures for international comparison and to their feasibility for government statistical work." [UN 1977, p.1] "There has been a tendency to treat GNP as the sole indicator of successful performance in the achievement of economic and social aims. ... For these reasons, critics have rightly emphasized the urgent need to give much greater weight, in the statistical inventory as in economic policy and analysis, to other measures of performance of a society - to employment, to the distribution of income and wealth, to indicators of social conditions, of education, of health, of housing. More recently, especially in developed countries, the costs of high rates of material progress have been publicized in terms of pollution, environmental damage and the disamenities of a modern urbanized - and particularly a motorized - society."

They have relied heavily on the US and Japanese estimates as well as the then ongoing exploration into a system of social and demographic statistics (SSDS) and social indicators .[2]

The listing below summarizes the topics discussed in this document as well as the coverage of major accounting frameworks such as SNA and SSDS. The distinction between market vs nonmarket activities is also made.[UN 1977, p.71]

As to the labeling of the alternative aggregate, the report rightly states: "It is recognized by all that it is not practicable to make a direct measure of the welfare of a community in monetary or in any other terms. The best that can be done is to measure a number of factors that are generally supposed to contribute to or detract from welfare." [UN 1977, pp.6-7]

A recent development which is indispensable in our context is the effort towards developing an environmental accounting. The publication of Our*Common Future* marked a renewed interest in the environmental aspect of the global community. The key word was "sustainable development ."[World Commission on Environment and Development 1987, p.43]

#### COMPOSITE MEASURES OF QUALITY OF LIFE

|                                                      | SNA                | SSDS   | Market(M)<br>nonmarket(NM) |
|------------------------------------------------------|--------------------|--------|----------------------------|
| (1) Household economy                                |                    |        | ( )                        |
| Productive activities:                               |                    |        |                            |
| 1.1 Own-account food, etc.                           | final (a)          | (a)    | NM                         |
| 1.2 Housework                                        | excluded           | (b)    | NM                         |
| 1.3 Students                                         | excluded           | (b)    | NM                         |
| 1.4 Volunteers                                       | excluded           | (b)    | NM                         |
| 1.5 Leisure activities                               | excluded           | (b)    | NM                         |
| 1.6 Instrumental activities<br>(travel to work)      | final (a)          | (b)    | М                          |
| 1.7 Enterprise subsidies to                          | inter-             |        |                            |
| households                                           | mediate(a)         | (a)    | М                          |
| Durable consumer goods:                              |                    |        |                            |
| 1.8 Stock                                            | incl. in<br>assets | Yes    | NM                         |
| 1.9 Flow of services                                 | excluded           | No     | NM                         |
| (2) Government expenditures on<br>goods and services |                    |        |                            |
| 2.1 Intermediate                                     | final (a)          | Yes(a) | М                          |
| (e.g., law and order)                                | ~ /                | ( )    |                            |
| 2.2 Final (education, health)                        | final (a)          | Yes(a) | М                          |
| (3) Environmental variables                          |                    | . ,    |                            |
| 3.1 Expenditures on pollution intermediate           |                    |        |                            |
| abatement and control                                | or final(d)        | No     | M&NM                       |
| 3.2 Hypothetical costs of restoration                | excluded           | No     |                            |
| 3.3 Damage costs                                     | part in-           | No     | M&NM                       |
|                                                      | cluded (a)         |        |                            |
| 3.4 Input-output balances                            | excluded           | No     | NM                         |
| (4) Measurement of assets                            |                    |        |                            |
| 4.1 Commercial natural resources                     | included           | No     | M                          |
|                                                      | as assets          |        |                            |
| 4.2 Public goods (air, water)                        | excluded           | No     | NM                         |
| 4.3 Human capital                                    | excluded           | (f)    | NM                         |
| Abbreviations:                                       |                    |        |                            |
| (a) Included but not generally specified separa      | atelv.             |        |                            |

(a) Included but not generally specified separately.

(b) Included in the form of time-budget.

(d) Intermediate or investment for enterprises; final (current or investment) for government.

(f) The stock of educational attainment of the population is measured in non-monetary terms only.

(c) and (e) are not relevant in the present context.

Thus, Pronk and Haq, summarizing one of many conferences leading to the Earth Summit in Rio, advocated the 'green GNP.' "Traditional economic indicators, such as GNP and GDP, are inadequate measures of sustainability. They measure production but provide little information about people or about the state of their living environment. If a deteriorating environment causes disease, resulting in increased health expenditures and thus increased GNP, the higher GNP would be interpreted as a higher level of development—even though people and their environment are worse off. Similarly, current income measures do not factor in inevitable future costs of current depletion of resources." Hence, the need to prepare environmentally sensitive national accounts ("green GNP") to reflect the impact of environmental damage on national and global output.[Pronk and Haq 1992, p.23] A similar feeling is expressed in a recent publication by the World Resources Institute .[Repeto et al., 1979, p.1] "... The SNA does classify as gross capital formation, expenses incurred in 'improving' land for pastures, developing or extending timber-producing areas, or creating infrastructure for the fishing industry. SNA records such actions as contributing to recorded income and investment, although they can destroy ... valuable natural assets through deforestation, soil erosion, and overfishing. ... The national accounts thereby create the illusion of income development, when in fact national wealth is being destroyed."

Peskin et al. observed that "frameworks, which are structurally very different, can rely on similar data sets. Therefore, with respect to the 'data framework' function of national accounting, some of the differences between these approaches may not be as great as they may first appear." [Peskin and Lutz 1990, p.21][3] Reflecting UNSO's efforts to provide a recommendation on environmental accounting, various countries including Japan are now initiating new forms of estimates.[4]

It may not be appropriate to provide a more comprehensive bibliographical survey of environmental accounting and related fields within the short span of this research. Interested readers are referred to Ahmad et al.[1989], Constanza [1991], UN[1989][1990][1993], Bartelmus, Stahmer, and van Tongeren [1991], among others.

#### 11.3 Empirical measurement

Let us now have a closer look at the framework of composite measures of the quality of life. Tables 11-1a and b summarize the revised estimates of NNW in current prices and 1970 constant prices, respectively. Readers are reminded of the restraint in using the word "welfare" touched upon earlier in this paper. In updating the estimates, I have followed the original method where it was deemed appropriate. However, I have shifted to new data sources wherever they became available. In the following, the method of estimation is summarized and the latest empirical figures are provided for the 1955-1990 period. The estimates supersede my earlier work.[5]

NNW government consumption: Whereas government budgetary data were employed in the past estimates, the new estimates are based on SNA data which classify government expenditures by purpose. Classifications of the purposes of government in SNA include the following[UN 1969, pp.87-89; Economic Planning Agency, Annual Report on National Accounts]:

- (1) General administration
- (2) Defense
- (3) Education
- (4) Health
- (5) Social security and welfare services
- (6) Housing and community amenities
- (7) Other community and social services
- (8) Economic services
- (9) Other purposes

Of these, (3) education, (4) health, and (5) social security and welfare services are included in the NNW update for the 1970-1990 period (Table 11-2). Law courts, police, fire protection, etc. are included under the heading (1) general administration. These are, however, not included in NNW estimates on the grounds that they are defensive expenditures. In other words, they do not contribute to the improvement of well-being in a positive manner but simply nullify the potential damage caused by crimes, fires, etc. Housing and community amenities (item 6) are dealt with under the relevant headings below, such as housing and environment. Other community and social services (item 7) may be included under NNW government consumption; we did not do so in order to maintain consistency with earlier calculations.

SNA provides a classification of the purposes of private nonprofit bodies serving household.[6] Whereas the Blue Book distinguishes eight categories,

| a. Current prices                       | 1955          | 1960    | 1965    |
|-----------------------------------------|---------------|---------|---------|
| 1. Government consumption adjusted      | 394           | 617     | 1532    |
| 2. Private consumption adjusted         | 5371          | 8254    | 16750   |
| 3. Service of consumer durables         | 101           | 207     | 764     |
| 4. Service of social capital            | 102           | 148     | 255     |
| 5. Leisure time                         | (714)         | 0       | 2355    |
| 6. Extra-market activities              | <b>` 9</b> 87 | 1378    | 3140    |
| 7. Loss due to urbanization (deduction) | 121           | 247     | 505     |
| 8. Environmental pollution (deduction)  | 54            | 647     | 2569    |
| Total NNW                               | 6780          | 9710    | 21722   |
| Reference <sup>.</sup>                  |               |         |         |
| GNE                                     | 8399.1        | 19306.6 | 32772.8 |
|                                         |               |         |         |
| b. Constant prices                      | 1955          | 1960    | 1965    |
| 1. Government consumption adjusted      | 1199          | 1374    | 2254    |
| 2. Private consumption adjusted         | 10429         | 14706   | 22168   |
| 3. Service of consumer durables         | 91            | 195     | 755     |
| 4. Service of social capital            | 169           | 210     | 300     |
| 5. Leisure time                         | (3077)        | 0       | 4680    |
| 6. Extra-market activities              | 1876          | 2388    | 4068    |
| 7. Loss due to urbanization (deduction) | 435           | 719     | 920     |
| 8. Environmental pollution (deduction)  | 119           | 1123    | 3376    |
| Total NNW                               | 13210         | 17031   | 29929   |
| Reference:                              |               |         |         |
| GNE                                     | 18298.6       | 27769.4 | 43050.7 |
|                                         |               |         |         |

Table 11-1 Measures of Quality of Life "NNW"

Source: Estimates by the present author. Some of the figures for 1955-1970 have been adopted from the *Economic Council* [1973] and Kanamori, Takase, Uno[1977]. See text for details.

the Japanese framework provides three, which are listed in Table 11-3. Unlike earlier estimates of NNW, we have included these in the estimates. Therefore, the exact definition of item (1) in the summary table is the total of the final consumption of government and nonprofit institutions serving household. Together with the classification of household goods and services, which is discussed below, the SNA framework allows us to compile data on resource allocation by social purpose.

NNW private consumption: In the case of private consumption expenditures, purchases of consumer durables (see "services attributable to durable

|    |         |          |          | (unit    | : billion yen) |
|----|---------|----------|----------|----------|----------------|
|    | 1970    | 1975     | 1980     | 1985     | 1990           |
| 1. | 2761.7  | 7134 2   | 11499.3  | 14779.2  | 18454.8        |
| 2. | 34408.6 | 77638.3  | 128470.5 | 170529.0 | 219552.0       |
| 3. | 2286.8  | 5130.2   | 8477.9   | 11963.4  | 16651.8        |
| 4. | 444.0   | 1324.5   | 2936.8   | 4176.7   | 6193.4         |
| 5. | 8323.6  | 31675.8  | 46087.6  | 58808.8  | 93264.4        |
| 6. | 7220.0  | 20138.0  | 29682.1  | 34475 5  | 40122.9        |
| 7. | 1188.0  | 3068.8   | 4687.9   | 5394.5   | 7297.0         |
| 8. | 6236.6  | 8901.2   | 8206.1   | 6619.6   | 6424.6         |
|    | 48020.1 | 131071.0 | 214260.2 | 282718.5 | 380517.7       |
|    | 73188.4 | 148169.9 | 240098.5 | 321555.9 | 428667.5       |
|    | 1970    | 1975     | 1980     | 1985     | 1990           |
| 1. | 2671.7  | 3396.2   | 4261.9   | 4838.0   | 5314.5         |
| 2. | 34408.6 | 46243.5  | 55985.7  | 64802.9  | 79533.4        |
| 3. | 2286.8  | 3709.2   | 5734.1   | 8553.8   | 13876.5        |
| 4. | 444.0   | 802.4    | 1297.7   | 1745.9   | 2370.8         |
| 5. | 8323.6  | 12464.8  | 12464.2  | 13218.6  | 17475.2        |
| 6. | 7213.0  | 11703.8  | 12571.5  | 13079.3  | 13953.5        |
| 7. | 1188.0  | 1226.5   | 1283.6   | 1230.0   | 1392.2         |
| 8. | 6236.6  | 5461.2   | 3893.4   | 2826.6   | 2580.8         |
|    | 47923.1 | 71632.2  | 87138.1  | 102181.9 | 128550.9       |
|    | 73188.4 | 90907.3  | 113914.9 | 137305.5 | 183042.6       |

consumer goods" below) and "defensive expenses" are subtracted (Table 11-4). Commuting expenses, cost of obligatory payments including ceremonial services, etc. fall under the latter category. Starting with the private consumption figures from the SNA, adjustments were made based on the data from household survey concerning the "annual expenditures for individual items per household" and the number of households from the population census. Aggregate figures were obtained by simply multiplying the annual expenses for these items with the number of households.

The SNA classifies household expenditures by their type, some of which are common to the consumption of government and of nonprofit institutions.

| Purposes                                | 1970   |
|-----------------------------------------|--------|
| 1. General public services              | 1556.0 |
| 2. Defense                              | 560.2  |
| 3. Education                            | 2077.9 |
| 4. Health                               | 255.9  |
| 5. Social security and welfare services | 219.3  |
| 6. Housing and community amenities      | 216.5  |
| 7. Other community and social services  | 73 5   |
| 8. Economic services                    | 675.4  |
| 9. Other purposes                       | 12.4   |
| Total                                   | 5647.0 |
| Deflator (PCG)                          | =100.0 |

Table 11-2 Government final consumption according to purpose

Note: The data in this table refer to fiscal year.

Table 11-3 Consumption of private nonprofit institutions

| Purposes                             | 1970   |
|--------------------------------------|--------|
| 1. Education                         | 121.5  |
| 2. Medical and other health services | 87.1   |
| 3. Miscellaneous purposes            | 229.2  |
| Total                                | 437.8  |
| Deflator (PCG)                       | =100.0 |

Note: The data in this table refer to fiscal year.

Goods are subdivided into durables, semidurables, and nondurables, and there is an additional item covering various sorts of services. Expenditure items are also classified according to purpose.[7] Our table, therefore, shows the functional classification in the bottom half, enabling us to link it with consumption by purpose of both government and nonprofit institutions serving household.

Services attributable to consumer durable goods: The capital stock possessed by households consists of housing and consumer durables. The former is included in the personal consumption as imputed rents in the SNA (see Table 11-4 above). The latter is estimated as a part of SNA in Japan for five major categories, which are shown in Table 11-5. Unlike earlier estimates, we need not compile stock data based on current purchases. The SNA figures on the stock of consumer durables are on a net basis (i.e., net of depreciation). Net stock is assumed to generate a flow of services over its life span at a rate

|         |         | (unit: billion yer | n, current prices) |
|---------|---------|--------------------|--------------------|
| 1975    | 1980    | 1985               | 1990               |
| 4143.4  | 6460.5  | 8137.0             | 10553.0            |
| 1285.0  | 2066.4  | 2961.1             | 3944.4             |
| 5744.5  | 8990.8  | 11261.8            | 13760.6            |
| 628.3   | 908.1   | 1212.2             | 1678.1             |
| 724.3   | 1207.9  | 1726.2             | 2341.7             |
| 782.8   | 1397.4  | 1795.9             | 2433.6             |
| 241.5   | 472.2   | 717.6              | 1026.8             |
| 1671.6  | 2531.7  | 3107.7             | 3597.5             |
| 40.1    | 87.5    | 118.6              | 194.2              |
| 15261.5 | 24122.4 | 31038 0            | 39529.8            |
| 210.0   | 269.8   | 305.5              | 347.3              |

Source: Economic Planning Agency, Annual Report on National Accounts.

|       |        | (unit <sup>.</sup> billion yen | , current prices) |
|-------|--------|--------------------------------|-------------------|
| 1975  | 1980   | 1985                           | 1990              |
| 68.2  | 385.2  | 605.7                          | 783.9             |
| -31.1 | 7.3    | -26.7                          | -109.5            |
| 542.6 | 1438.9 | 1969.4                         | 2573.1            |
| 579.7 | 1831.5 | 2548.3                         | 3247.6            |
| 210.0 | 269.8  | 305.5                          | 347.3             |

Source: Economic Planning Agency, Annual Report on National Accounts .

equal to depreciation at a compounded interest rate.[8]

Table 11-6 has been prepared in order to provide a more vivid picture about the diffusion of consumer durables. Under the macro-aggregate, one can observe how the Japanese households started to own durable goods as the income level rose and new products became available. One advantage of this data set is that, rather than showing the percentage of households which possess a particular item, it shows the number of units possessed. The difference between the two approaches, needless to say, is that in the former case the maximum rate of diffusion is 100%, whereas in the case of the latter, it can take values exceeding 100% (here the figures are per 1000 households). This dataset is useful in tracing the changes in lifestyle.[9] In addition, given the data on energy efficiency of items such as refrigerators, television sets, air conditioners, and automobiles, the diffusion data can be useful in analyzing

| Items                               | 1955   | 1960   | 1965    | 1970    |
|-------------------------------------|--------|--------|---------|---------|
| SNA private consumption             | 5645.1 | 9065.2 | 18631.3 | 37521.3 |
| imputed rent of                     |        |        |         |         |
| owner-occupied dwellings            |        |        |         |         |
| By type of expenditures:            |        |        |         |         |
| 1. Durable (deduction)              | 96.5   | 380.7  | 1031.3  | 2772.4  |
| 2. Semi-durable                     |        |        |         |         |
| 3. Nondurable                       |        |        |         |         |
| 4. Services                         |        |        |         |         |
| By purpose:                         |        |        |         |         |
| 1. Food, beverages and tobacco      |        |        |         |         |
| 2. Clothing and footwear            |        |        |         |         |
| 3. Gross rent, fuel and power       |        |        |         |         |
| 4. Furniture, furnishings, etc.     |        |        |         |         |
| 5. Medical care and health expenses |        |        |         |         |
| 6. Transport and communication      |        |        |         |         |
| 7. Recreation, education, etc.      |        |        |         |         |
| 8. Miscellaneous                    |        |        |         |         |
| Commuting expenses (deduction)      | 17.8   | 62 1   | 84.2    | 178.8   |
| Ceremonial expenditures (deduction) | 40.1   | 69 2   | 151.7   | 324.2   |
| Adjusted private consumption        | 5371.1 | 8254.3 | 16750.9 | 32764.5 |
| Deflator                            |        |        |         |         |

Table 11-4 Adjusted private consumption

Note: For classification of household goods and services into durables etc., see United Nations, A System of National Accounts, Table 6.1. Commuting expenses and ceremonial expenditures are estimates based on household survey data. See text for details. Figures for 1955-1970 are from Kanamori (1978) based on old SNA data. Deflator shown is for total Total household consumption includes adjustment for purchases of nonresidents.

energy demand in the household sector.[10] Some items such as television and audio equipment are deeply related to time budget.[11] Still others may be labor saving at home, affecting the female labor supply.

Services attributable to social capital: The stock of social capital such as housing, city parks, schools, water supply, among others is related to the well-being of households. Flows of services from these stocks are imputed and included (Table 11-7). The data source in this case is an estimate by the Japanese government which classifies social capital into 20 categories and 5 subcategories. [Economic Planning Agency 1976] Drainage and waste water disposal are related to the quality of life but are considered to be of a defensive nature. Roads, rail transportation, mail service, and telecommunications are

|         |         | (ui      | nit: billion yen, c | urrent prices) |
|---------|---------|----------|---------------------|----------------|
| 1970    | 1975    | 1980     | 1985                | 1990           |
| 37804.7 | 83904.7 | 139506.4 | 186234.6            | 241081.1       |
| n.a.    | n.a.    | n.a.     | 22727.0             | 31699.7        |
| 2349.9  | 4836.2  | 6696.5   | 11442.9             | 16916.8        |
| 5373.7  | 11822.0 | 16308.7  | 22561.5             | 28295 3        |
| 14055.0 | 30234.3 | 45397.5  | 58361.3             | 67677.3        |
| 16028.5 | 36713.7 | 66347.3  | 92969.4             | 125073.7       |
| 11502.6 | 23781.8 | 34050.9  | 41537.2             | 49189.7        |
| 2923.9  | 6785.1  | 9315.8   | 12490.5             | 15308.6        |
| 6133.8  | 13020.3 | 24718.5  | 35082.3             | 46010.4        |
| 2893.2  | 5313.1  | 8043.2   | 11478.2             | 14669.7        |
| 2979.0  | 7504.1  | 13372.2  | 19548.7             | 25450.4        |
| 2934.5  | 7984.7  | 12698.3  | 18119.6             | 24450.4        |
| 3484.3  | 7327.5  | 11945.0  | 18259.3             | 23832.9        |
| 4955.7  | 11889.5 | 20606.1  | 28819.1             | 38983.6        |
| 347.5   | 781.3   | 1521.0   | 2209.0              | 2709.2         |
| 276.0   | 664.2   | 1330.5   | 2053.6              | 1903.1         |
| 34408.6 | 77638.3 | 128470.5 | 170529.0            | 219552.0       |
| =100.0  | 167.9   | 229.5    | 263.2               | 276.1          |

Sources: Economic Planning Agency, Annual Report on National Accountsend, Bureau of Statistics, Annual Report on the Family Income and Expenditure Survey.

at least partially related to the well-being of the people, but the benefit received by invididuals is considered to be already included in the consumption expenditure above.

Lessure time: There are three items which are related to the time budget. One is leisure time which we discuss in this section. Second is the domestic service of housewives, and the third is time spent for commuting, which is part of the loss due to urbanization. Unlike earlier estimates of NNW which had to compile data from various sources, we are now able to rely on a time budget study conducted by the Japan Broadcasting Corporation. This survey has been conducted every five years since 1960 (with an extra survey in 1973), but suffers from changes in definition up to around 1970.[12] With the accu-

| Items                                                | 1970   |
|------------------------------------------------------|--------|
| Net stock, end of the year:                          |        |
| 1. Furniture, fixtures, carpets, etc.                | 3042.8 |
| 2. Household appliances                              | 2199.1 |
| 3. Transport equipment                               | 2106.0 |
| 4. Radios, television sets, etc.                     | 1810.5 |
| 5. Photographic equipment, musical instruments, etc. | 606.2  |
| Total                                                | 9764.7 |
| Flow of services of consumer durables                | 2286.8 |
| Deflator (PCD)                                       | =100.0 |

Table 11-5 Stock of consumer durables and imputed service

Note: For derivation of flow of services, see text and footnote.

| Table 11-6 Selected consumer durable goods owned by hous |
|----------------------------------------------------------|
|----------------------------------------------------------|

| Items                                   | 1959     | 1964 |
|-----------------------------------------|----------|------|
| Chest of drawers for 'kimono'           | 1555     | 1518 |
| Chest of drawers                        | 772      | 1086 |
| Wardrobes                               | 674      | 970  |
| Dining table sets                       |          | 208  |
| Kitchen cabinets, sideboards, cupboards |          | 1665 |
| Vacuum cleaners                         | 57       | 440  |
| Washing machines                        | 334      | 786  |
| Refrigerators                           | 69       | 637  |
| Gas water heater                        |          |      |
| Microwave ovens                         |          |      |
| Sewing machines                         | 731      | 919  |
| Electric fans                           | 347      | 922  |
| Japanese electric warmers               | —        | 1140 |
| Kerosene stoves                         | 444      | 485  |
| Room air conditioners                   |          | 23   |
| Automobiles                             | ('60) 12 | 68   |
| Scooters, motorcycles                   | 94       | 226  |
| TV sets, monochrome                     | 323      | 878  |
| TV sets, color                          |          |      |
| Stereo phonograph sets                  |          | 259  |
| Video tape recorders                    |          |      |
| Cameras                                 | 439      | 799  |
| Pianos                                  | 18       | 45   |

Note: The data are as of the end of November for ordinary households with two or more members. The survey has been conducted every five years since 1959. The sample size for 1989 was about 55,000. The data for monochromeTV sets and automobiles (1960) have been adopted from Economic Planning Agency, Current Consumption Survey.

|         | (unit: billon yen, current pr |         |         |
|---------|-------------------------------|---------|---------|
| 1975    | 1980                          | 1985    | 1990    |
| 6455.2  | 9526.8                        | 12180.4 | 17946.3 |
| 5235.2  | 7820.9                        | 9812.2  | 11719.5 |
| 5586.6  | 11620.6                       | 17839.5 | 27309.8 |
| 3456.2  | 4796.8                        | 7054.5  | 8381.3  |
| 1163.1  | 2434.6                        | 4195.8  | 5744.2  |
| 21905.3 | 36199.7                       | 51082.4 | 71101.1 |
| 5130.2  | 8477.9                        | 11963.4 | 11651.8 |
| 138.3   | 147.9                         | 139.9   | 120.0   |

Source: Economic Planning Agency, Annual Report on National Accounts.

|      |      |      | (unit: per 1000 | households) |
|------|------|------|-----------------|-------------|
| 1969 | 1974 | 1979 | 1984            | 1989        |
| 2416 | 1299 | 1278 | 1303            | 1288        |
|      | 1466 | 2027 | 2179            | 2125        |
| 1179 | 1413 | 1480 | 1601            | 1634        |
| 349  | 533  | 666  | 728             | 748         |
| 1442 | 1657 | 1880 | 2015            | 2105        |
| 787  | 1014 | 1146 | 1220            | 1277        |
| 975  | 1023 | 1054 | 1061            | 1082        |
| 944  | 1083 | 1125 | 1154            | 1200        |
| 426  | 695  | 786  | 743             | 553         |
|      | 129  | 301  | 541             | 761         |
| 979  | 1006 | 1030 | 1037            |             |
| 1282 | 1586 | 1747 | 1847            |             |
| 1262 | 1419 | 1527 | 1577            | 1043        |
| 1098 | 1461 | 1602 | 1629            | 1382        |
| 81   | 286  | 643  | 820             | 1131        |
| 278  | 512  | 670  | 837             | 1090        |
| 217  | 177  | 225  | 466             | 236         |
| 947  | 557  | 269  |                 |             |
| 231  | 1066 | 1422 | 1685            | 1927        |
| 415  | 566  | 677  | 723             | 667         |
| _    | _    | 62   | 316             | 834         |
| 997  | 1127 | 1238 | 1331            | 1385        |
| 86   | 135  | 190  | 219             | 254         |

Source: Bureau of Statistics, National Survey of Family Income and Expenditures.

| able 11-7 Stock of social capital and imputed service |         |         |         |  |  |
|-------------------------------------------------------|---------|---------|---------|--|--|
| Items                                                 | 1955    | 1960    | 1965    |  |  |
| Transportation and communication:                     |         |         |         |  |  |
| 1. Roads                                              | 1764.8  | 2421.0  | 4484.5  |  |  |
| 2. Harbors                                            | 512.7   | 639.4   | 967.7   |  |  |
| 3. Airports                                           | 5.8     | 11.9    | 37.6    |  |  |
| 4. National Railways                                  | 2928.9  | 2922.6  | 3792.7  |  |  |
| 5. Japan Railway Construction Corp.                   |         |         | 31.7    |  |  |
| 6. Subways                                            | 44.6    | 143.4   | 386.4   |  |  |
| 7. Telephone & Telegraph Corp.                        | 762.8   | 1316 0  | 2607.3  |  |  |
| Livelihood-related:                                   |         |         |         |  |  |
| 8. Public housing                                     | 427.7   | 797.0   | 1420.3  |  |  |
| 9 Sewerage                                            | 473.4   | 610.1   | 902.7   |  |  |
| 10. Waste disposal                                    | 5.9     | 27.7    | 133.8   |  |  |
| 11. Water supply                                      | 428.0   | 702 2   | 1318.6  |  |  |
| 12. City parks                                        | 221.9   | 228.8   | 264.5   |  |  |
| Education:                                            |         |         |         |  |  |
| 13. Schools                                           | 2372.4  | 2549.7  | 3108.0  |  |  |
| Land preservation:                                    |         |         |         |  |  |
| 14. River improvement                                 | 1744.6  | 2078 6  | 2635.1  |  |  |
| 15. Forestry conservation                             | 255 8   | 363.1   | 527.4   |  |  |
| 16. Coastal preservation                              | 95.8    | 209.6   | 402.7   |  |  |
| Agriculture, forestry, and fisheries:                 |         |         |         |  |  |
| 17. Agriculture, etc.                                 | 1958.8  | 2600.7  | 3749.5  |  |  |
| Others:                                               |         |         |         |  |  |
| 18. Postal administration                             | 51.1    | 69 3    | 96.7    |  |  |
| 19. National forest                                   | 408 5   | 668 7   | 971.3   |  |  |
| 20. Industrial water supply                           | 4.5     | 42 3    | 233.1   |  |  |
| Total:                                                | 14468.0 | 18402 1 | 28071.6 |  |  |
| Household-related stock                               | 3450.0  | 4277.7  | 6111 4  |  |  |
| Flow of services                                      | 169.7   | 210.4   | 300.6   |  |  |
| Deflator (PIG)                                        | 60.3    | 70.8    | 85.2    |  |  |
|                                                       |         |         |         |  |  |

Table 11-7 Stock of social capital and imputed service

Note: The capital stock data refer to gross stock. Totals include items not elsewhere classified. The 1990 figures are provisional pending official estimates

mulation of data since then, we now consider this to be the most comprehensive time budget study available for Japan and can conduct time series comparisons with some caution. As for working hours, however, we can obtain more detailed and reliable data from the *Monthly Labor Survey*, which we use as a supplementary source.[13]

The definition of leisure can vary. If we observe the data over time, we realize that even sleeping hours are variable (people tend to sleep less now)

|           | it: billion yen, |          |         |         |     |
|-----------|------------------|----------|---------|---------|-----|
| 1990      | 1985             | 1980     | 1975    | 1970    |     |
|           | 36260.4          | 25301.5  | 15900.0 | 8334.0  | 1.  |
|           | 5134.9           | 3900.2   | 2726.5  | 1531.2  | 2.  |
|           | 951.2            | 682.7    | 388.9   | 127.9   | 3.  |
|           | 9515.6           | 8857.3   | 6948.6  | 5118.0  | 4.  |
|           | 2731.6           | 2031.3   | 944.3   | 279.6   | 5.  |
|           | 3504.9           | 2585.8   | 1638.4  | 927.6   | 6.  |
|           |                  | 15476 3  | 10228 2 | 5087.6  | 7.  |
| 6662 9(p  | 5704 0           | 4883 0   | 3857.7  | 2591 5  | 8.  |
|           | 13830 4          | 8553.3   | 4065.2  | 1599.9  | 9.  |
|           | 1937 4           | 1377.7   | 724.1   | 277 2   | 10. |
| 12811.9(p | 10106.9          | 7972.1   | 4932.9  | 2279.3  | 11. |
| 2938.2(p  | 1693.0           | 975.5    | 562.4   | 358.0   | 12. |
| 25775.0(p | 17982.7          | 12546.0  | 6957.9  | 3800.5  | 13. |
|           | 13967 6          | 9926.7   | 6300.5  | 3733.1  | 14. |
|           | 2920.5           | 2107.7   | 1300.7  | 763.1   | 15. |
|           | 1667.1           | 1238 1   | 844.4   | 574.0   | 16. |
|           | 24792.0          | 17690.2  | 10610.6 | 5808.4  | 17. |
|           | 706.6            | 474.4    | 271.6   | 155 1   | 18. |
|           | 3627.4           | 2659.6   | 1775.0  | 1255.1  | 19. |
|           | 1288.6           | 1027.6   | 714.1   | 397 1   | 20. |
|           | 205895.8         | 158409.0 | 94602.2 | 44968.5 |     |
| 48188.    | 35486.6          | 26376.6  | 16310.9 | 9029.3  |     |
| 2370.     | 1745.9           | 1297.7   | 802.4   | 444.0   |     |
| 261.      | 239 2            | 226.3    | 165.1   | =100.0  |     |

Source: Economic Planning Agency, Social Capital Stock in Japan

and that people are spending more time on "eating" and "taking care of oneself". A proper way of treating leisure, it seems to me, is to refer to the activities to which an increasing amount of time is spent as income goes up. Another point in measuring leisure is involuntary leisure caused by unemployment. In this study, we have ignored all the refinements.

Our procedure is as follows. We refer to the national average, although distinction by sex, age bracket, occupation, etc. are available. We use the

|                            |               | 1955   | 1960   | 1965   |
|----------------------------|---------------|--------|--------|--------|
| Leisure per person         | (hours/year)  | 1305.2 | 1166.5 | 1339.0 |
| Monthly wages              | (1000yen)     | 18.343 | 24.375 | 39.360 |
| Monthly working hours      | (hours)       | 194.8  | 202.7  | 192.9  |
| Hourly wages               | (1000yen)     | 0.0941 | 0.1202 | 0.2040 |
| Population aged 15 to 64   | (million)     | 54.7   | 60.0   | 66.9   |
| Aggregate value of leisure |               |        |        |        |
| current prices             | (billion yen) |        | 0      | 2355.0 |
| 1970 prices                | (billion yen) |        | 0      | 4680.2 |

### Table 11-8 Value of leisure

Note: Leisure here refers to free time excluding duplication of activities.

Source: Estimates by the present author.

|                                | 1960 | 1965  |
|--------------------------------|------|-------|
| Requisites:                    | 9.48 | 10:01 |
| Sleep                          | 8:15 | 8:10  |
| Meals                          | 1:08 | 1:15  |
| Taking care of oneself         | :25  | :36   |
| Time spent for livelihood:     | 9:25 | 9:09  |
| Work                           | 8:10 | 8:07  |
| Housekeeping                   | :38  | :26   |
| Commuting                      | .37  | :36   |
| Work-related activities        |      |       |
| Free time:                     |      |       |
| Personal association           | :35  | :37   |
| Leisure activities             | :22  | :29   |
| Picnic and walking             |      |       |
| Sports                         |      |       |
| Betting and games              |      |       |
| Hobby and taking lessons       |      |       |
| Moving n.e.c.                  |      |       |
| TV-watching                    | :53  | 2:47  |
| Radio listening                | 1.30 | :31   |
| Newspaper, journals, and books | :44  | :47   |

### Table 11-9 Time budget, adult male, weekdays

Source Japan Broadcasting Corporation, National Time Budget Survey.

time budget for weekdays, Saturdays, and Sundays. Time is allocated among requisites, livelihood, and free activities, and we define leisure as the last of the three (Table 11-9 for details). Whenever more than two activities are recorded

| 1970   | 1975    | 1980    | 1985    | 1990    |
|--------|---------|---------|---------|---------|
| 1453.4 | 1572.1  | 1556.5  | 1561.7  | 1668.3  |
| 75.67  | 177.21  | 263.38  | 317.09  | 370.00  |
| 186.6  | 172.0   | 175.7   | 175.8   | 171.0   |
| 0.4055 | 1.0303  | 1.4990  | 1.8037  | 2.1637  |
| 71.5   | 75.8    | 78.8    | 82.5    | 85.9    |
| 8323.6 | 31675.8 | 46087.6 | 58808.8 | 93264.4 |
| 8323.6 | 12464.8 | 12464.2 | 13218.6 | 17475.2 |

|       |       |       | (unit: hours | & minutes) |
|-------|-------|-------|--------------|------------|
| 1970  | 1975  | 1980  | 1985         | 1990       |
| 10:37 | 10:40 | 10:39 | 10:29        | 10:25      |
| 8:04  | 8:06  | 8:02  | 7:50         | 7:47       |
| 1:31  | 1:31  | 1:33  | 1:33         | 1:35       |
| :58   | :59   | :59   | :59          | :55        |
| 9:23  | 8:55  | 9:05  | 9:17         | 9:10       |
| 7:54  | 7:15  | 7:19  | 7:40         | 7:26       |
| :28   | :27   | :29   | :26          | :33        |
| :42   | :53   | :55   | :49          | :51        |
| :13   | :13   | :18   | :17          | :14        |
| 3:51  | 4:19  | 4:05  | 4:01         | 4:11       |
|       |       |       |              |            |
| :27   | .33   | :29   | .38          | .40        |
| :08   | :06   | :07   | :12          | 11         |
| :05   | :05   | :04   | :07          | :07        |
| :07   | :10   | :07   | :07          | :08        |
| :07   | :12   | :11   | :12          | :14        |
| :08   | :06   | :11   | :13          | :14        |
| 2:47  | 2:58  | 2:57  | 2:41         | 2:47       |
| :35   | :43   | :45   | :40          | :35        |
| :40   | :44   | :48   | :48          | :45        |

at the same time (watching TV while eating, for instance), the three major categories take precedence in the order listed above (eating is recorded in this example). An annual aggregate is obtained by considering the increasing

| Table 11-10 Automobiles and traine         | 1955  | 1960   | 1965   |
|--------------------------------------------|-------|--------|--------|
| Traffic accidents (unit: cases):           |       |        |        |
| 1. Number of cases                         | 93981 | 449917 | 567286 |
| 2. Deaths                                  | 6379  | 12055  | 12484  |
| 3. Injuries                                | 76501 | 289156 | 425666 |
| Loss due to accidents (unit: billion yen): |       |        |        |
| 1970 prices                                | 87.0  | 197 7  | 233.6  |
| Current prices                             | 24.3  | 67.8   | 128.3  |
| Car fleet (unit: 1000):                    |       |        |        |
| Trucks                                     | 693   | 1321   | 2870   |
| Buses                                      | 35    | 58     | 105    |
| for business                               | 33    | 53     | 77     |
| for private use                            | 2     | 4      | 28     |
| Passenger cars                             | 158   | 440    | 1878   |
| for business                               | 47    | 76     | 151    |
| for private use                            | 111   | 364    | 1727   |
| Light vehicles                             | 531   | 1460   | 3058   |
| Total motor vehicles                       | 1502  | 3404   | 8123   |

Table 11-10 Automobiles and traffic accidents

Note: Total includes other types of cars such as those for special use, extra-large cargo, etc.

population (aged 15 to 64 years) but disregarding (for brevity only) paid holidays. Time budget data are then converted to money terms based on average hourly wages. A constant price series is then obtained, deflating by consumer prices. The result is reported in Table 11-8.

One additional consideration in our estimate is the fact that working hours tended to increase before full employment was achieved around 1960. We regard shorter working hours as involuntary and disregard leisure before 1960. In other words, we recorded the increment in free time after 1960 as 'leisure.'

*Extramarket activities*: The imputed value of domestic services of housewives corresponds to this item. According to a time budget survey, Japanese housewives spend 7 hours and 18 minutes on housekeeping during weekdays [Japan Broadcasting Corporation]. Compared with 1970, this figure is 39 minutes shorter. Judging from the increased automation at home which we observed above, it is not clear if this represents a real decline in services rendered. Incidentally, time spent on housekeeping by adult men is increasingly

| 1990   | 1985   | 1980   | 1975   | 1970   |
|--------|--------|--------|--------|--------|
| 643097 | 552788 | 476677 | 472938 | 718080 |
| 11227  | 9261   | 8760   | 10792  | 16765  |
| 790295 | 681346 | 598719 | 662467 | 981096 |
| 304 0  | 257.5  | 233 0  | 260.7  | 408.2  |
| 1490.1 | 1067.8 | 804.0  | 614.6  | 408.2  |
| 1450.1 | 1007.0 |        | 014.0  | 400.2  |
| (1989) |        |        |        |        |
| 8695   | 8306   | 8682   | 7381   | 5460   |
| 242    | 231    | 229    | 219    | 190    |
| 94     | 90     | 88     | 87     | 86     |
| 148    | 141    | 141    | 133    | 105    |
| 30882  | 25848  | 21544  | 14822  | 6777   |
| 257    | 253    | 250    | 243    | 217    |
| 30625  | 25595  | 21293  | 14579  | 6559   |
| 15975  | 12062  | 7297   | 5867   | 5968   |
| 57994  | 48241  | 38992  | 29143  | 18919  |

Source: Ministry of Transport, Motor Vehicles Ownership.

marked, particularly on Saturdays and Sundays. These factors, however, are not taken into account according to the convention followed in the earlier NNW estimates. The imputation is carried out based on the average wage of female workers. Covered are members of a female population who are 15 years or older and who are exclusively engaged in domestic work.

Loss due to urbanization: Economic development accompanies urbanization. In the pursuit of economies of scale and economies of scope, production activities tend to concentrate in urban areas. A positive effect of urbanization is that it improves efficiency, which is recorded as the growth of GNP. The negative side of urbanization is that it brings about various inconveniences, which go unrecorded in GNP because it is external to market activities. Examples are traffic congestion, car accidents, street crimes, and longer commuting hours, among others.

Following the original NNW estimates, we take up the problem of commuting and traffic accidents. A time budget study is the data source for our

|                        | ·     | (unit: billion yen, | 1970 prices) |
|------------------------|-------|---------------------|--------------|
|                        | 1955  | 1960                | 1965         |
| Air pollution:         |       |                     |              |
| $SO_2$                 |       | 289.3               | 750.7 I      |
| Soot and dust          | 34.6  | 89.3                | 177.4 I      |
| Automobile exhaust gas | 85.1  | 187.3               | 457.6        |
| Water pollution:       |       |                     |              |
| Industrial             |       | 299.3               | 630.7 I      |
| Household, etc.        |       | 258.3               | 512.1 I      |
| Waste:                 |       |                     |              |
| Industrial             |       |                     | 948.4        |
| Household, etc.        |       |                     | 87.0         |
| Total                  | 119.6 | 1123.5              | 3563.9       |

Table 11-11 Loss due to environmental pollution

Note: NOX emission from fixed origins and  $CO_2$  are not included here due to unavailability of cost data thereof.

estimates on loss due to commuting.[14] According to the national average of hours spent for commuting, imputation is done based on average wage.

As for the loss caused by traffic accidents, deaths and injuries are included in the calculation. We have used the value of life calculated for the 1970 base year in the original NNW estimates, which stood at 10,884 thousand yen on the average for a death and 230 thousand yen for each injury. Such estimates depend on life expectations, labor force participation, and annual wage income.[15] Constant price series is derived based on the number of cases reported and converted to current price series based on the nominal wage index.

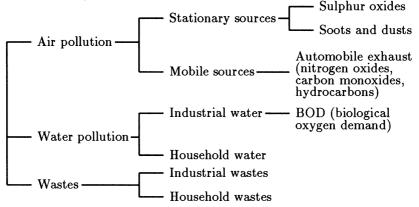
The year 1970 was the worst one as far as traffic accidents are concerned, with 16,800 deaths. By 1980, the situation had improved somewhat, with 8,800 deaths. Despite a considerably larger car fleet and longer distances travelled, the improved road conditions and provision of guard rails, etc. probably contributed to the decline.

*Environmental pollution*: The NNW Measurement Committee notes in their report that two methods are conceivable in estimating the social cost of environmental pollution.

(a) The direct estimation in money terms of damage caused by the above-stated discharge of polluting factors, such as that to health,

|          |          |        | (unit: billion yen, : | 1970 prices) |
|----------|----------|--------|-----------------------|--------------|
| 1970     | 1975     | 1980   | 1885                  | 1990         |
|          |          |        |                       |              |
| 1727.9   | 1167.9 I | 832.6  | 702.7                 | 641.0        |
| 368.7    | 375.9 I  | 266.2  | 216.0                 | 180.2        |
| 1151.1   | 1390.4   | 1121.1 | 668.6                 | 738.8        |
| 1078.7   | 639.5 I  | 355.8  | 241.6                 | 189.2        |
| 664.6    | 842.1 I  | 689.6  | 537.2                 | 449.0        |
| 1138.9 I | 920.6    | 452.7  | 339.1                 | 283 2        |
| 106.7 I  | 124.8    | 175.4  | 121.4                 | 99.4         |
| 6236.6   | 5461.2   | 3893.4 | 2826.6                | 2580.8       |

Source: Recent figures (marked by vertical lines) are estimates by the present author Figures for 1955-1965 are from the Economic Council of Japan [1973]. 1970-1975 figures are from Kanamori, Takase, and Uno [1977] except for damage due to industrial and household waste for which the Economic Council figures are used.


human life, animals and plants, and properties.

(b) The method of estimating expenses necessary for the proper treatment of polluting factors overflowing into the present environment to an assumed "normal physical environmental level." It is a method to estimate expenses necessary to make the external diseconomies internalized.

While the former is more properly called environmental damage, the latter is judged a feasible method due to the fact that comprehensive, time-series surveys on the damage caused by individual polluting factors are still inadequate in Japan.

Environmental disruption was extremely strong in Japan from the mid-1960s to the mid-1970s. This necessitated the formulation of environmental policy in Japan discussed elsewhere.["Pollution Prevention Investment and Environmental Quality" in Uno 1987] A collection of statistical data was also initiated to support policy decisions. The cases in question included the emission accompanying various productive activities, such as industrial wastes, water pollutants, and air pollutants. The data were collected for each industrial sector for a particular year, typically around 1970, when the pollution problem was most threatening. This is one of the reasons for choosing 1970 as the base year.[17]The committee set a base year in which the environmental quality was deemed to have been acceptable. They chose 1955 for this purpose. Second, emission in excess of this initial period is estimated for subsequent years, and finally the removal cost is calculated. In this paper, we have followed the methodology established by the committee. The results are reported in Table 11-11.

Representative factors causing environmental pollution are classified as follows in this study:



Sectoral breakdown is available for most of the items for the base year.[16] However, time series data are available only for limited items. Thus, in our estimates of the cost of environmental damage, we need to take a detailed account in 1970 as the starting point and devise various ways to capture the time trend.

There are two points to be made in conjunction with the methodology. First, in contrast to a direct estimation of the cost of environmental degradation which we adopt here, there is an indirect method. This is the case in Nordhaus and Tobin [1972, pp.48-54]. See section 11-2 of this chapter. From an analytical point of view, their methodology can be more conprehensive than the direct method and can override the problem of lack of data concerning the cost of pollution. From a policy point of view, however, the direct method is preferable in that they explicitly recognize the sources of pollution, the quantity of pollutants discharged, and the policy leverage for improving the situation. The cases in question are the quantity of discharge of various pollutants, pollution prevention facilities, removal rate, and disaggregation by types of economic activities.

The second point is the concept of 'cost'. In our estimate this is the expenses required for the proper treatment of pollutants. This is the cost we have to incur in order to restore the quality of the environment to a level acceptable to society.[18] In other words, we refer to the measured cost of delivering a better environment. This treatment is consistent with the other parts of SNA. When we talk about consumption, it is the cost of delivering a bundle of goods and services measured at the margin, i.e., the area represented by marginal cost times the quantity. We do not measure consumer surplus which is represented by the area under the demand curve exceeding cost. In welfare economics, it is customary to use 'willingness to pay' as the measure of cost people are ready to incur in order to restore environmental quality. However, this is only good on the basis of individual decisions. It would be wrong to sum up a willingness to pay at the micro-level to arrive at the willingness of the society to pay as a whole. The point can be seen by noting that as the quality of the environment improves, the individual willingness to pay will almost certainly decline.

The convention followed in this paper is as follows: For each pollution category, we first examine the unit output coefficients of pollutants. These coefficients give the amount of pollutant generated in individual sectors in physical terms per unit of activity; for example, so many tons of industrial wastes per one billion yen worth of production. Second, we estimate the total quantity of pollutant output as the economy expands in its size and changes in its structure. This is achieved by multiplying the unit output coefficient vector with the amount of activity in each sector at different points in time. Third, based on the cost of removing a particular pollutant, the aggregate cost is estimated by imputation.

The items listed are not comprehensive enough to cover all of the problems related to the environment. Apart from additional aspects of the environment which are difficult to put into quantitative terms, there are aspects which can be treated in operational terms but are not recognized in the framework, which is already some 20 years old. One such case is the impact on global warming. Another would be radioactive wastes. These remain future tasks.

### 11.4 Social concerns, SNA, and modeling

Some 20 years have passed since the framework was first put into practice. In the meantime, there have been developments with regard to the data sources. The concept of satellite accounts, which is sometimes referred to as building blocks, has now been widely accepted in order to better reflect various social concerns in a framework providing detailed information in respective areas of interest but still being consistent with SNA. New technology has been developed, and the real resource requirement is changing rapidly in various segments of our society. The scope of our interest in the quality of life measurement has been widened to include not only regional or national concerns but, more importantly, also global issues such as sustainable development.

Should we be dealing with the social concerns, some of which we have discussed in section 11-2 of this paper? Is it worthwhile to try to combine such diverse aspects as floor space, refrigerators, automobiles, leisure, waste disposal, and pollution into a composite measure of the quality of life explored in section 11-3?

If we are to deal with such an extended scope of social concerns in an empirical context, we apparently need statistical data sets going beyond the production boundary of SNA. This is not to say that SNA has become irrelevant; on the contrary, SNA is the central core of satellite accounts and serves as the linkage among various accounts as well as providing a detailed description of the production sector. Here is an inventory of the statistical framework which can be useful for such an endeavor.

Capital stock: The most comprehensive account in SNA regarding the asset of a nation is the one dealing with closing stocks, capital transactions, and reconciliations.[19] The main items listed include the following. We have omitted the details of inventories (disaggregated to 5 categories) and financial assets (15 categories) as well as liabilities.

- 1. Tangible assets:
  - (a) Inventories
  - (b) Net fixed assets:
    - i. Dwellings
    - ii. Buildings other than dwellings

- iii. Other structure
- iv. Transportation equipment
- v. Machinery and equipment
- (c) Nonreproducible assets
  - i. Land
    - A. Residential
    - B. Agricultural
    - C. Others
  - ii. Forest
    - A. Forest land
    - B. Trees
  - iii. Underground resources
  - iv. Fishing ground
- 2. Financial assets

Within "machinery and equipment," we would like to see disaggregation into industrial sectors and by purpose (production, pollution prevention, R&D, for example). This can be supplemented by data from other sources.

There seems to be no objection, theoretical or otherwise, for including "consumer durable goods" among the net fixed assets in this account. Relevant data are already present in SNA. (See Table 11-5).

The entries regarding land can be supplemented by various data which describe land use by function, ownership, etc., in physical terms. Examples are agricultural land by types of crops, industrial land, residential land, and roads.

Forest and underground resources are important as segments of environmental accounting in addition to being economic assets.

Intangibles: One thing which is not included in the SNA account above is intangibles. No one would dispute the fact that intangibles such as industrial patents and computer software have become very important assets whose formation requires a substantial input of real resources. A theoretical justification for their recognition in SNA is that, like other assets, they generate a stream of pecuniary returns.[20]

|                             |         | (unit   | : billion yen) |
|-----------------------------|---------|---------|----------------|
|                             | 1955    | 1960    | 1965           |
| I. Tangible assets:         | 32504.7 | 59718.7 | 118719.9       |
| (1) Inventories             | 3019.7  | 5965.0  | 11160.4        |
| (2) Net fixed assets:       | 13738.3 | 19552.3 | 40159.3        |
| 1. Dwellings                | 2418.6  | 3330.8  | 7453.5         |
| 2. Buildings                | 3487.8  | 5166.8  | 10627 6        |
| 3. Other structure          | 4366.1  | 6668.6  | 12668.5        |
| 4. Transportation equipment | 844.1   | 820.3   | 1822.6         |
| 5. Machinery and equipment  | 2621.8  | 3565.8  | 7587.1         |
| (3) Nonreproducible assets  | 15746.6 | 34201.4 | 67400.2        |
| 1. Land                     | 11813.9 | 29105.1 | 60451.8        |
| a. Residential              | 4920.2  | 18333.3 | 44802.8        |
| b. Agricultural             | 6179.0  | 8999 9  | 12100.1        |
| c. Other                    | 714.7   | 1771.9  | 3548.9         |
| 2. Forest                   | 3419.8  | 4646.3  | 6562.0         |
| a. Forest land              | 780.2   | 1441.5  | 1800.4         |
| b. Trees                    | 2639.6  | 3204.8  | 4761.6         |
| 3. Underground resources    | 452.8   | 378.1   | 254.1          |
| 4. Fishing ground           | 60.2    | 71.9    | 132.2          |
| II. Financial assets        | 18917.3 | 48121 3 | 122850.8       |

Table 11-12 Assets of the nation

Note Figures are as of the end of calendar years. Details of inventories and financial assets are omitted here. Net fixed asset total includes 'subtraction item.'

Population and labor force: Another type of asset which is not explicitly recognized in SNA is human capital. The characteristics of human capital range from educational background, labor force participation, their skill in working force, life expectancy and health. The time budget is also closely related to this. Part of the resource allocation directed to the formation of human capital is already included in SNA. See "education" in the consumption accounts of government and private nonprofit institutions serving household in tables 11-2 and 3. One of the items among social capital stock is education, which can be seen in table 11-7. Although this social capital account is not formally a part of SNA, underlying data are already consistent with SNA.

Also, I have compiled data on the industry-occupation profile of the Japanese working force since 1955. Their educational attainment is also available from the census. [Uno 1989a] The data on demographic variables such as births

| 1970     | 1975     | 1980      | 1985      | 1990      |
|----------|----------|-----------|-----------|-----------|
| 313385.3 | 735190.9 | 1337695.7 | 1804355.7 | 3442238.0 |
| 22823.8  | 45656.8  | 64702.1   | 68093.9   | 77167.6   |
| 98117.4  | 285672.4 | 526588.1  | 687381.1  | 973645.9  |
| 20678.4  | 68143.0  | 133684.0  | 159173.8  | 218349.0  |
| 23631.3  | 64949.8  | 116321.4  | 156334.9  | 215279.1  |
| 28412.1  | 87982.1  | 185844.5  | 252748.4  | 360961.1  |
| 4773.8   | 12805.3  | 17487.2   | 19351.9   | 32763.3   |
| 20622.0  | 51792.3  | 73251.1   | 99772.0   | 149862.9  |
| 192444.1 | 403861.7 | 746405.5  | 1048880.7 | 2391424.5 |
| 181530.8 | 376405.7 | 705792.7  | 1004072.6 | 2338238.7 |
| 138558.5 | 289550.4 | 558161.6  | 813880.0  | 1987536.9 |
| 35616.7  | 64013.2  | 99315.5   | 121806.5  | 205068.1  |
| 7355.6   | 22842.1  | 48315.6   | 68386.1   | 145633.7  |
| 10194.4  | 26566.8  | 39009.7   | 43232.1   | 51565.2   |
| 3196.6   | 7198.9   | 9364.5    | 9626.1    | 12771.3   |
| 6997.8   | 19367.9  | 29645.2   | 33606.0   | 38793.9   |
| 379.6    | 316.5    | 567.2     | 880.8     | 883.1     |
| 339,3    | 572.7    | 1035.9    | 695.2     | 737.5     |
| 280050.8 | 655062.8 | 1297547.9 | 2131549.4 | 3664097.9 |

Source: Economic Planning Agency, Report on National Accounts from 1955 to 1989, and Annual Report on National Accounts.

and deaths as well as labor force participation can be arranged by age bracket. [Uno 1990b]

*Resources*: The stock of resources is recognized in the assets account for a nation. We would like to see details of the stock by types of resource, a task which remains to be done if we want linkages with environmental accounting . The depletion of natural resources is described in the assets account, albeit as an aggregate.

The flow of resources in the economic transaction can be seen in physical tables accompanying the input-output tables.[21] Statistics in physical terms is indispensable in order to trace material flow within an economic system. This has become all the more important because increasing efforts are directed at the conservation of resources in the production process and recycling of wastes after use.

If the resources in question are traded internationally, one is obliged to ex-

amine international repercussions. International linkages can be achieved by the use of trade matrices. [United Nations, Yearbook of International Trade Statistics] One would also want to have statistics on the stock of natural resources of various kinds in major supplying countries.

Energy: In a sense, energy is no different from other resources. However, judged from its importance as an input to productive activities and to maintaining the quality of life for the household sector, energy deserves special treatment. The point is strengthened by the fact that the sources of energy have much to do with regard to global warming. Emission of  $CO_2$  through fossil fuel burning is the major contributor to global warming. An additional factor would be the fact that an increasing amount of energy is recycled via the recovery of heat in the production process and in incineration of wastes.

The supply and demand of energy becomes important in this context. In Japan, they are depicted in the *Comprehensive Energy Statistics*. Among the sources of supply, a major distinction can be drawn between fossil fuels and nuclear. Nonconventional sources of energy such as solar, geothermal, waste incineration, energy recovery, etc. are also listed.

The energy demand in most industrialized countries is equally divided among industry, household, and transportation. The industry demand for energy is rather straightforward, although one should note the fact that the energy intensity varies widely among the industrial sectors, calling for disaggregated analysis.["Energy Prices and Energy Requirements" in Uno 1987, pp.257-270] The household demand must be explained in terms of heating or cooling needs as well as diffusion of various consumer durables. We have discussed this point in section 3. Transportation activities range over market and nonmarket spheres. Increasingly important in most industrialized countries is the nonbusiness use of passenger vehicles. This is directly linked to the diffusion of automobiles among households. From the environment point of view, transportation is the major source of air pollution, a point made in section 3 above. The provision of social capital such as expressways and airports is also directly related to transportation activities. We have touched upon this point in discussing social capital.

*Model building*: The reason why we need to construct econometric models based on social, economic, and environmental accounting is threefold. First, based on statistical accounts, we often derive coefficients of various sorts. These coefficients are usually not fixed but are variables which require explanation. Second, there are linkages among various accounts. Final demand induces intermediate demand. We also need to consider the interdependence of the social, economic, and environmental variables. Third, we want to improve the situation (whatever that might be) through policy means. Model building and simulation are indispensable for this purpose.

SNA has traditionally served as the major source of data in econometric model building, the purpose of which ranges from short-term (quarterly) analysis focusing on business cycles to long-term (annual) analysis focusing on productivity and growth. The focal point in either case has been the aggregate output, although the former tended to concentrate on effective demand or GNE and the latter on supply capability or GNP.[22] Although they are numerically identical on the aggregate, explanatory variables are altogether different.

If we are to respond to the wide social concerns, the scope of statistical accounting has to be expanded considerably. Whether the production boundary of SNA should be expanded or not is another issue. The fact remains, however, that statistical accounts covering social, economic, and environmental spheres need to be developed. The scope of the model building has to be expanded accordingly.

Environmental accounting is an approach which has emerged in recent years, the purpose of which in most general terms is to monitor the sustainability of our socioeconomic systems. The framework is also intended to respond to global issues such as climate change and resource depletion. The concept of sustainability is not operational in itself as described in the original text. We have shown that environmental burden can be broken down into four factors: (1) population density, (2) income per capita, (3) resource use per unit of income, and (4) environmental damage per unit of resource use.

One should note that the composite measure of the quality of life discussed in this chapter is more suitable to replacing the income term in the above formulation. Our measure takes account of the service flow of housing, consumer durables, social capital stock, transportation, pollution prevention, and other activities which fall outside the production boundary of SNA, making it a better proxy for what we consider the levels of living which we want to sustain in the longrun.

### 11.5 Final words

In lieu of a conclusion, I would only like to point to the fact that what appeared to be a 'misuse' of national account data has turned out to be a 'proper use' by the development of various data sets covering social, economic, and environmental spheres and, more importantly, by the development of SNA itself.

# FOOTNOTES

- Denison [1971]. See also his comment on paper by Nordhaus and Tobin in Moss [1973].
- [2] For SSDS, see United Nations [1975]. For social indicators, see, for example, United Nations [1978], OECD [1982a].
- [3] Peskin and Lutz [1990], p.20. Country experiences covered in the table include Canada, France, Japan, The Netherlands, Norway, the USA, and Germany. The works by Peskin and Repetto are also included, as well as the framework by the United Nations Statistical Office.
- [4] Economic Planning Agency of the Japanese government formed a research team in 1991, of which the present author is the chairman. Interim report (in Japanese) is being prepared, entitled Report on Preliminary Research in order to Add Environmental Accounts to the SNA\* (Kokumin Keizai Keisan Taikeini Kankyo Kanjowo Fukasurutameno Yobiteki Kenkyu Hokokusho), Japan Research Institute.
- [5] Earlier estimates are available in Economic Council [1973], Kanamori, Takase, and Uno [1977](in Japanese), Kanamori [1980], and Uno [1989b].
- [6] United Nations [1969], pp.89. For empirical data for Japan, Economic Planning Agency, Annual Report on National Accounts, various issues.
- [7] United Nations, ibid., pp.105-108. The classification scheme is summarized below. The symbols D, SD, ND, and S stand for durables, semidurables, nondurables, and services, respectively.
  - 1. Food, beverages and tobacco (ND)
  - 2. Clothing and footwear (SD)

#### COMPOSITE MEASURES OF QUALITY OF LIFE

- 3. Gross rent, fuel and power
  - Gross rents (S)
  - Water charges (ND)
  - Fuel and power (ND)
- 4. Furniture, furnishing, and household equipment and operation
  - Furniture, fixtures, carpets, other floor coverings and repairs (D)
  - Household textiles, other furnishing, and repairs (S)
  - Heating and cooking appliances, refrigerators, washing machines and similar major household appliances, including fittings and repairs (D)
  - Glassware, tableware and household utensils including repair (SD)
  - Household operation except domestic services
     Non-durable household goods (ND)
     Household services excluding domestic services (S)
  - Domestic services (S)
- 5. Medical care and health expenses
  - Medical and pharmaceutical products (ND)
  - Therapeutic appliances and equipment (D)
  - Services of physicians, nurses and related practitioners (S)
  - Hospital care and the like (S)
  - Service charges on accident and health insurance (S)
- 6. Transport and communication
  - Personal transport equipment (D)
  - Operation of personal transport equipment
     Tires and tubes, parts and accessories, and repair charge (SD)
     Gasoline, oils and greases (ND)
     Other expenditure (S)
  - Purchased transport (S)
  - Communication (S)
- 7. Recreation, entertainment, education and cultural services

- Equipment and accessories, including repair
   Wireless and television sets and gramophones (D)
   Photographic equipment, musical instruments, boats and other
   major durables (D)
   Other recreational goods (SD)
   Parts and accessories for, and repairs to, recreational goods (SD)
- Entertainment, recreational and cultural services, excluding hotels, restaurants and cafes (S)
- Books, newspapers and magazines (ND)
- Education (S)
- 8. Miscellaneous goods and services (S and SD)
- [8] The interest rate is assumed to be 5.5, which is the rate applied to a 6-month saving deposit in 1970, the base year. Assuming a 5-year life span, this means that the flow amounts to 23.41 of the value of stock. A detailed description of durability and prices of consumer durables is found in Bureau of Statistics and Economic Planning Agency [1973], pp.436-441.
- [9] Disaggregation by income class or by region is also possible.
- [10] See Uno [1991a] where preliminary analysis is attempted along this line.
- [11] Stock data in SNA are net of depreciation. However, the stock of social capital from Economic Planning Agency [1986] is in gross terms. Following the practice in original NNW estimates, we have assumed that net figures are 60 of gross. Imputation is then carried out assuming a life span of 25 years and an interest rate of 6.5%, which is the rate paid in the base year for local bonds. See Kanamori, Takase, and Uno[1977], pp.40-41.
- [12] Japan Broadcasting Corporation, various issues. Notes for time series comparisons are found on pp.19-21 of the 1990 issue, volume on time quantity.
- [13] The model COMPASS built by the present author has working hour equations at the disaggregated industry level which are based on working hours from this source.
- [14] On weekdays, commuters are spending one hour and 32 minutes in the Tokyo metropolitan area, one hour and 20 minutes in Osaka, and one hour and 3 minutes in cities with more than 500,000 population. Japan

Broadcasting Corporation, ibid., 1990 issue, p.33. The use of this data set increased consistently in the fields related to time budget. However, in this case, alternative data provided in the *Housing Survey* are more detailed in, for example, giving the number of people classified by hours spent for commuting and by ownership of houses.

- [15] Economic Council [1973], p.196 for value of life for each age bracket.
- [16] See Kanamori, Takase, Uno [1977] for list of such data. See also Mine, Norikazu, "The Estimation of Some Basic Data about Industrial Pollution"(J), The Journal of Japan Economic Research, March 1976.
- [17] Another reason is that various other statistics are available for this particular year. Most important are the details of the structure of private non-residential capital stock. See Uno [1987], pp.87-106. The National Wealth Survey was carried out in that year, the third after WWII, and nothing is available thereafter. It was also the year of the population census. Detailed SNA series are also estimated starting in 1970, although major series have been made available retroactively starting in 1955.
- [18] This approach is sometimes criticized on the grounds that the cost cannot be uniquely determined if it is measured against some environmental standards variable over time and across localities.
- [19] In the Japanese account, this corresponds to a table entitled "closing stocks, capital transactions, and reconciliation of assets and liabilities for the nation." This account now dates back to 1955. For recent years, a distinction was made between private and public sectors. See Economic Planning Agency [1991] and Annual Report on National Accounts, various issues.
- [20] As for R&D, see "Research and Development in an Input-Output Framework—A Methodological Exposition—" in Uno [1989] and "The Impact of Research and Development" in Uno [1991e]. For software, see Database Promotion Center, Database White Paper.
- [21] See, for example, physical tables in 1985 Input-Output Tables compiled by the Ministry of International Trade and Industry. For empirical analysis, see Uno [1991c] which examines the resources (some recycled) in physical terms.
- [22] See "A Survey on Econometric Models and Statistical Databases" by the present author in Uno and Shishido, eds., Statistical Data Bank Systems, Amsterdam: Elsevier Science Publishers, 1988.

# Chapter 12

# Social, Economic, and Environmental Data Set

## 12.1 The basic approach

People are asking new questions about development. They are increasingly concerned with the quality of air and water and are alarmed by the depletion of natural resources. The concept of sustainable socioeconomic development has received increased attention in recent years. Along with many others, Nordhaus and Tobin in 1972 noted, "there are some socially productive assets (for example, the environment) that do not appear in any balance sheets. Their services to producers and consumers are not valued in calculating national income. By the same token no allowance is made for depletion of their capacity to yield services in the future."[Nordhaus and Tobin 1972, p.13]

In chapter 1, we set out by saying that it is necessary to operationalize the concept of sustainability. In the following chapters, we examined various aspects of the sustainability issue involving the environment, economy, technology, and society. If one just looks at the economic impact on the environment, based on the experience of industrial development since the 18th century, the logical conclusion would be to halt further growth for the sake of preserving the environment and to safeguard our future generations. However, if one looks at the reality of the global community today, one is struck to find vast differentials in the well-being of its member societies. It seems imperative to develop technology which is more resource-conserving and amenable to the environment, not to speak of accelerating the pace of diffusion of advanced technology across national boundaries. It is also imperative to start reexamining our lifestyle and find a way of preserving the quality of life while making our consumption pattern less resource-intensive. Thus, environment, economy, technology, and society are the four pillars on which we want to construct a statistical information system.

The report of the World Commission on Environment and Development, published in 1987, states referring to sustainable development : "Humanity has the ability to make development sustainable—to ensure that it meets the needs of the present without compromising the ability of future generations to meet their own needs. The concept of sustainable development does imply limits—not absolute limits but limitations imposed by the present state of technology and social organization on environmental resources and by the ability of the biosphere to absorb the effects of human activities. But technology and social organization can be both managed and improved to make way for a new era of economic growth." [WCED 1987, p.8] "But physical sustainability cannot be secured unless development policies pay attention to such considerations as changes in access to resources and in the distribution of costs and benefits." [WCED 1987, p.43]

The attempts by economists and statisticians to define the concept of sustainability in an operational term can be interpreted within this context. They noticed two major drawbacks of standard national accounting. These include (a) emerging scarcities of natural resources which threaten the continued expansion of the economy and (b) the environmental degradation from pollution and its effects on human health and welfare. National accountants and environmental specialists endorse the idea of developing a satellite system of environmental accounts. The endeavor is expected to develop into an internationally recommended manual of environmental accounting. The recent UN manual [United Nations 1992, 1993a] is the first of these attempts.

It is our conviction that the established statistical framework has its own purpose and structure, and we should not tamper with it unless we absolutely have to. In other words, we need not develop a new statistical framework every time we are confronted with a new problem. Needless to say, we have to be certain that the existing framework is capable of handling a new issue, and if it does not, we should not hesitate to modify the existing scheme. Even in this case, we believe we would benefit more by creating linkages with the established framework than by inventing something completely new. The cases in question include, among other things, the SNA (system of national accounts , which by the way has evolved over the past years in order to cope with new issues and to improve its coherence) and input-output framework. There are more than 60 countries in the world which have compiled input-output tables at least once in the past, and there is a significant number of countries which are doing so at regular intervals [Bureau of Statistics 1991, pp.140-141].

This is in line with what the UN manual says: "The input-output framework is the best suitable economic one for analyzing environmental economic relations because it could easily be extended to include flows of natural resources from the natural environment as inputs of economic activities and the flows of residuals of production and consumption activities as unwanted output delivered back to the natural environment. The starting point for the natural asset accounts of the SEEA are the non-financial asset accounts of the SNA comprising also non-produced natural assets." [United Nations 1993a, p.26].

There are conflicting points, however, particularly in the case where valuation of the economic use of the environment is involved. Although almost all experts agree that environmental damage has to be measured and deducted from the positive achievement, they tend to differ in methodology.

Bartelmus, Stahmer, and van Tongeren [1991] in their attempt to integrate environmental accounting in the SNA framework distinguished conventional GDP, environmentally adjusted DGP (GDP adj.), sustainable gross domestic product (SGDP), and sustainable net domestic product (SNDP). Environmentally adjusted GDP is derived from gross output by subtracting not only the intermediate inputs (this is what is traditionally done) but also expenditures on environmental protection services that are presently included in final consumption. Their intention is not only to reflect environmental protection as a production result, but also to include environmental degradation by households as a component of environmental cost.

We denote the relevant variables in their framework (modified here for our purpose) as follows:

| C:      | final consumption (households and the government)            |
|---------|--------------------------------------------------------------|
| CZ:     | expenditures on environmental protection services            |
| DK:     | consumption of fixed capital                                 |
| DZ:     | depletion or degradation of environmental assets in economic |
|         | activities                                                   |
| E:      | exports                                                      |
| F:      | final demand                                                 |
| I:      | fixed capital formation (reproducible and renewable assets)  |
| M:      | imports                                                      |
| V:      | GDP                                                          |
| $V^*$ : | environmentally adjusted $GDP(=GDPadj.)$                     |
| V**:    | sustainable $GDP(=SGDP)$                                     |
| V***:   | sustainable $NDP(=SNDP)$                                     |
| Then,   |                                                              |

$$V = C + I + (E - M)$$
$$= F$$

Adjusting for expenditures on environmental protection services which are traditionally included in the final consumption, we obtain the environmentally adjusted GDP as follows:

$$V^* = FD - CZ$$

Sustainable gross domestic product (SGDP) is defined as the difference between gross output and cost including environmental costs. It reflects cost estimates which would have been necessary to avoid, restore, or replace decreases of environmental quantities and qualities during the reference period. In the case of reproducible assets, the consumption of fixed capital is estimated as the amount required to keep capital intact. In analogy, for the 'use' of the environment, the amount of money to keep the environment intact or, in the case of exhaustible resources, to provide for alternative investment which keeps the income stream intact is estimated. For the degradation of environmental quality, this concept can only be realized by setting specific quality standards and by taking into account the available knowledge about environmental protection techniques.

 $V^{**} = V^* - DZ$ 

Finally, the sustainable net domestic product (SNDP) is derived by subtracting consumption of fixed capital from SGDP.

### $V^{***} = V^{**} - DK$

Their framework is a typical one in this field today, as can be witnessed by the fact that Stahmer acted as a consultant in drafting the UN manual and Bartelmus and Van Tongeren were on the receiving end at the UN Statistical Office. The framework now has to be validated in an empirical context, and the crux of the problem lies in estimating the term DZ in the above formulation, which represents "depletion or degradation of environmental assets in economic activities."

The UN manual on environmental accounting distinguishes three different valuation methods:

(1) market valuation according to the concepts of the non-financial asset accounts in the SNA;

(2) maintenance valuation, which estimates the costs necessary to sustain at least the present level of natural assets; and

(3) contingent valuation, which could be applied especially in estimating the value of the consumptive services of the natural environment. [United Nations 1993a, p.28]

Related to this point, the SNA manual, which underwent a revision in 1993, states from a slightly different perspective: "There are now three main approaches to environmental accounting and they complement and overlap each other. The first one, generally referred to as natural resource accounting, focuses on accounts in physical terms. The second approach, ... identifies the actual expenditures on environmental protection and deals with the treatment of environmental cost to natural and other assets caused by production activities in the calculation of *net product*. ... The third approach is a welfareoriented one. It deals with the environmental effects borne by individuals and by producers other than the ones causing these effects. The latter effects may often be much larger than the cost caused and do not affect net product but rather net income through transfers of environmental services. Of the three approaches, physical resource accounting is the most advanced in terms of its practical implementation. Experience with monetary satellite accounting is much more recent, and many controversies still surround this approach, particularly with regard to valuation. The least consensus exists with regard to the welfare approach to environmental accounting." [United Nations 1993b, pp.508-509] Willingness to pay or contingent valuation is useful in finding out social concerns and setting priorities among various policy issues. This methodology, however, is alien to convention in established economic accounting such as SNA which records the market transactions in terms of marginal cost of delivering a bundle of goods and services, not including the consumer surplus which is defined geometrically in microeconomics as the area under the demand curve exceeding the cost.

Our approach regarding this point has consistently been to exclude the consumer surplus portion and to distinguish the actual transaction in the market and the imputed value of benefits and costs of nonmarket activities. The latter is derived from conventional SNA rather than by modifying the SNA boundary itself. As for environmental degradation, urban congestion, and some other items for which market valuation is lacking, imputation was applied based on the market-determined price parameters such as treatment cost and wages, but this is done outside the SNA core. Refer to chapter 11 for details.

Here we compare the concept of NNW (net national welfare) with that of GDP. We denote relevant variables as follows:

| C: persona | l consumption | expenditures |
|------------|---------------|--------------|
|------------|---------------|--------------|

CZ: personal 'defensive' expenditures

CG: government current expenditures

CGZ: government 'defensive' expenditures

- IGn: government net investment
- IGg: government gross investment
- *IPn*: private net investment
- *IPg*: private gross investment
- DG: government capital consumption allowances
- DP: private capital consumption allowances
- TL: imputed leisure hours
- TW: imputed housewive's services
- VKCD: imputed services obtainable from stock of consumer durables
- VKG: imputed service from social overhead capital
- VKH: imputed service from housing capital

C' and CG' are items which are modified from GNP in accordance with the concept of NNW.

The interrelationship among GDP and NNW is as follows:

GDP = C + CG + IGg + IPg

NNW = C' + CG'

= (C - CZ) + (CG - CGZ) + VKCD + VKH + VKG + TL + TWOne word about the term NNW. This term was first used by the Economic Council of Japan [1973] in an attempt to come up with a measure of economic well-being. However, the term caused unnecessary criticism in referring to "welfare". There is a strong tradition in mainstream economics for opposing the measurement of welfare, not to speak of its interpersonal, intertemporal comparisons or aggregation. This tradition is theoretically understandable. After all, what they did in estimating NNW was not to measure welfare, for, if it were, they would have to measure the consumer surplus portion of consumption in the conventional sense before attempting to evaluate nonmarketed phenomena. Actually, they measured consumption at marginal cost, as usual, and they measured pollution prevention at marginal cost, just as usual.

With this in mind, we have used the word MQL (measures of quality of life) in this chapter.

# 12.2 The framework of SEEDS: a social, economic, and environmental data set

The conceptual framework is one thing, and empirical feasibility is another. In this section, we examine the availability of statistical data in Japan. Lacking an indigenous supply of raw materials while being the world's second largest industrial power, she represents a typical case of the North. Also, due to the fact that the island country consists mainly of mountains and steep hills, her 124 million population is concentrated in about 20% of the already very small geographic span, aggravating the environmental impact of human habitat and industrial activities. Thus, Japan experienced keen environmental disruption already in the 1960s and the 1970s. Coupled with a series of oil crises, Japan was obliged to undertake fundamental changes in industrial structure and technology. The case of Japan, therefore, is probably illustrative of the problematics of the Northern response to the environmental issue.

The prototype is compiled based on a social, economic, and environmental data set (SEEDS). There are three points to be noted about SEEDS. First, it is not a rigid statistical system as is indicated by its name "data set". It is rather a group of modules, or building blocks, each designed to be compatible with related ones, which can be assembled for a particular analytical need in order to respond to a particular policy issue. It presupposes a basic statistical framework such as the SNA and input-output tables. It originates from an attempt to provide statistical accounts based on which social indicators can be derived. [Uno 1974, 1978] In a sense, it is similar to the proposed system of social and demographic statistics (SSDS), which is now being developed into the social accounting matrix approach.[1] The social indicator approach appeared in the 1960s with the proper intention of reflecting the limits of typical economic accounts, but ended up simply being a wish list with respect to various social concerns. In reality, human aspiration is limitless, whereas what is attainable is constrained by the productive capacity of a society. SEEDS therefore was built around an input-output framework so that various competing policy objectives would somehow be reduced (either via a market mechanism or by a political process) to a set of final demands which can be met by the productive capacity in hand. In this sense, the input-output framework was the core account of SEEDS. Its main focus has been to seek the relations between the quality of life and the economy.

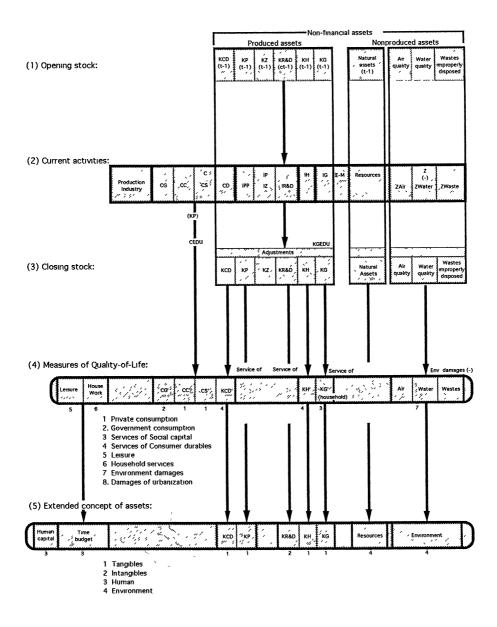
Second, the framework includes, together with monetary measures, physical measures which relate to the quality of life. It is often the case that physical measures are more directly related to how people live. As an example, the number of housing units and the floor space of each unit is probably more relevant from the quality-of-life point of view, although the monetary value of housing investment is useful in obtaining an aggregate demand in the macroeconomic analysis.

Third, from the start, it distinguishes among statistical accounts, indicators (summary of the accounts, often scalar), and policy models (explicit causal relations among indicators). Therefore, SEEDS has always been accompanied by an econometric model, with a name of COmprehensive Model for Policy ASSessment (COMPASS), designed to respond to various policy analyses. Precisely for this reason, SEEDS emphasizes time series data, together with accounting consistency at a given point in time. It is important to be able to simulate economic and social phenomena, distinguishing appropriate policy tools in the model system. The accounting system in itself does not lead to policy decisions. Fourth, as it started about 20 years ago, it has a fairly long history. The model has evolved from a two-sector development model in 1973 which generated social indicators into a 25-sector multipurpose model. The supporting data set SEEDS was also extended in its scope and sectoral disaggregation. COMPASS was used to describe the Japanese industrial development from 1955 to 1980 and was subsequently used for various simulation experiments including the analysis of the exchange rate appreciation after 1985.[Uno 1987, 1988] A more recent attempt has involved integrating the impact of microelectronics such as computer, communication, and control technology (industrial robots, numerically controlled machines, etc.) and the investment pattern and nonprice competitiveness in foreign trade.[Uno 1989, 1991]

The basic skeleton of the statistical system is presented in Figure 12-1, taking account of the availability of empirical data and our basic approach to the problem, spelled out in section 1 above.

Financing is important in discussing the environmental maintenance effort. The allocation of purchasing power occurs before the allocation of real resources for a particular purpose. In the case of the environment, various measures can be financed by private industry out of their retained profits, or borrowed from financial institutions, or subsidized or borrowed from public institutions such as local government. Investment by local government can be financed by tax, bond flotation, borrowing, or subsidy from the central government. Part of the effort has to be borne by the household, in the form of an increased cost to finance an anti-pollution catalyst in a car or to pay for the extra cost of garbage collection. We have dealt with the financing part of the problem in an earlier article, and it is omitted in the present work.

The structure of the diagram is obvious. Vertically, it shows:


(1) opening stock of produced and nonproduced assets (the latter including natural assets and environmental quality such as air, water, etc.),

(2) current activities, which now describes not only the production of goods and services but also the use of the natural environment for socioeconomic activities,

(3) closing stock, with corresponding scope for current activities,

(4) measures of quality of life, composed of private consumption (adjusted), government consumption (adjusted), imputed services of stock of consumer durables, housing, and social capital, imputed value of leisure and housework,

### Figure 12-1 Conceptual scheme of Social, Economic, and Environmental Data Set



and imputed damage due to urban congestion and environmental degradation, and

(5) extended concept of assets including, in addition to the tangibles which have usually been the case, intangibles, human, environment, and institutional.

There are several points to be noted. First, the framework presents the stock (carry-over which exceeds the current period) as well as flow (activities in the current period). In conventional economic accounts, only the industrial plant and equipment are explicitly recognized as stock. The proposed framework includes, in addition, the stock of consumer durables and housing stock. Diffusion of automobiles and electric appliances has to do with the environment via an increased consumption of energy, harmful exhaust gas, and disposal problem after use. In the case of energy consumption, about 1/3 is attributable to the household sector (which incidentally continues to increase, reflecting the higher income), 1/3 to transportation (again, half of it is attributable to passenger cars owned by a household, which continues to increase), and 1/3 to industry (which tends to decrease, reflecting improved technology and structural change). Thus, household stock is too important to be neglected. The diagram also shows the stock of the natural environment, spanning mineral resources, forest resources, land, air, and water.

Ideally, the framework should also describe the accumulation of intangibles (technology, software, knowhow) and human capital (health, education, and skill). Environmental stocks are exploited in the current socioeconomic activities, and either consumed or accumulated. Accumulation can be in the form of plant and equipment, or in intangibles and/or humans. In this manner, one form of asset has been turned into another form of asset, leaving the society's net worth intact. If the development is to be sustainable, probably technology and quality of the workforce will be more important than tangibles in the sense that the former may reinforce and perpetuate the development process, whereas the latter is limited in its durability, likely a maximum of 20 years in the case of plant and equipment and 50 years in the case of social overhead capital. Some of the variables pertaining to this aspect are included in the proposed framework, but full implementation has not yet been achieved. The cases in question include a functional classification of activities of the household, government, and private nonprofit institutions serving household. From our perspective, they are important in that they relate to education and medical services. Another case in question involves research and development and further disaggregation of private investment in plant and equipment into pollution prevention, energy conservation, etc.

Second, physical measures are provided as well as monetary. This is now a standard procedure in the UN manual. It has been the case for SEEDS from the outset in order to deal with the variables which have to do with the quality of life. For instance, in the case of housing capital, the average floor space and the number of units are more relevant than the total value of dwellings. In the case of pollution prevention, the capacity of the pollution prevention facility has to be measured in physical terms rather than the amount of money which went into it. The proposed framework consists of physical tables which are prepared in parallel with monetary tables in order to explicitly describe the flow from natural environment to the economy, the flow within the economy, and the flow from the economy to the environment in the form of wastes.

Third, a portion representing current activities is very similar to the inputoutput framework. That portion describing the intermediate demand shows the input structure which is the production technology per se. Technological change such as energy conservation is described as the change in the input coefficients over time. The input-output table contains more than 500 sectors, but they are somewhat compressed in our case. Some of the environmentrelated activities are explicitly recognized, as described below. The portion pertaining to final demand is also similar to the usual input-output tables, and its only difference is that it is further disaggregated to explicitly describe the items related to the quality of life and environment. The cases in question include various consumer durables, pollution prevention investment, energy conservation investment, research and development, and provision of social capital (water supply, sewerage, waste disposal, forest preservation, flood control, in addition to road construction, etc.). This framework is also directly linked to emission factors pertaining to air pollutants, water pollutants, and waste output. These are the tables indicating the output of pollutants per unit of production (for example, one million yen). Given the final demand, the input-output framework generates a sectoral output, taking due account of interindustry repercussion. The unit emission tables then lead to the calculation of the output of pollutants corresponding to activity levels in individual sectors.

The SEEA proposed by the UN distinguishes several versions. One version is described as referring to "data according to the conventional concept of the SNA. These data are further disaggregated to reveal environment-related activities and the monetary flows and stocks connected. In this case, domestic production activities comprise only production activities of industries, and, therefore, produced assets contain only assets of industries. The use of products is limited to products of industries; and the use of assets, to the use of produced fixed assets of industries." Another version which aims to "describe different approaches of valuing imputed environmental costs imply the recording of additional costs associated with different economic activities (production, final consumption, use of produced assets), and with reverse sign, with volume changes of natural assets deteriorated by economic activities." "A third stage of development of the SEEA implies extensions of the production boundary of the SNA. The extended concept of household production activities is reflected in the SEEA matrix as an additional record of production activities ... and products. The corresponding extension of the concept of produced assets entails the introduction of asset accounts of consumer durables and the record of corresponding user costs. If environmental services are treated as production activities, a further extension of the concept of domestic production is necessary" [United Nations 1992, pp.48-50, also United Nations 1993a, pp.32-33].

On this point, the revised SNA explains, "In addition to the disposal services provided by the environment 'free of charge' in the case of degradation, actual expenses are incurred to avoid environmental degradation or eliminate the effects after degradation takes place. Increasingly, enterprises explicitly produce such services on a commercial basis. In many instances, however, the services are produced as the ancillary activities" [United Nations 1993b, p.516]

There is also an added factor which is the fact that, unlike earlier days when enterprises were retrofitting the existing facilities with pollution prevention equipment, today we have a situation where the production processes themselves have been altered to avoid or lessen environmental impact. Thus, the whole concept of investment for pollution prevention is becoming somewhat dubious.

In the current version, sewerage and waste disposal activities are made into independent sectors. In the prevention of air pollution typically due to  $SO_X$ 

and  $NO_X$ , private enterprises are mostly responsible for the installation of purification equipment, and these are precisely where activities are ancillary. A similar situation prevails regarding research and development activities undertaken by enterprises. Unlike the activities of research institutions, which are recorded, business R&D are not fully recorded. The capital formation pertaining to R&D is included in private capital formation but is not earmarked by purpose, and current expenditure on R&D is also buried in the intermediate demand without demarcation. It is desirable to 'peel off' these expenditures from conventional activities. This remains a future task.

The Economic Planning Agency of the Japanese Government has recently initiated a project which aims at implementing the UN manual in the Japanese context. A preliminary study was carried out in 1991 which mainly consisted of a literature survey. A three-year project was then started, and an attempt is now being made to implement the parts of SEEA. Although I am serving as the chairman of the working group, the prototype presented is solely my responsibility and is not the outcome of a joint effort at the EPA. Rather, it is intended to demonstrate the validity of the approach represented by SEEDS. It is also intended to examine the validity of earlier attempts initiated by Japanese scholars, part of which is inherent in the current work.[2]

The System of Environmental Economic Accounts (SEEA) has been presented in a UN manual, but its empirical application has yet to be attempted by individual countries based on their historical experience and policy needs. The UN proposal is expected to evolve further as a result of continuing discussion based on country experience. The prototype presented here is one of these attempts.

# 12.3 Input-output framework as the core account

An attempt is made in this section to rearrange the input-output tables in order to focus on the interaction between the economy and the environment. This corresponds to the "current activities" indicated in Figure 12-1.

For illustrative purposes, let us start from the 36-sector classification of industry which has been followed in a series of the my work related to inputoutput framework and multisectoral econometric model building.[3] Some additional details are inserted in the table in order to illustrate environmentrelated activities, which include the following:

| Sector    | Sector name                              |
|-----------|------------------------------------------|
| number    |                                          |
| 01        | Agriculture, forestry, and fisheries     |
|           | Forestry                                 |
| <b>02</b> | Mining                                   |
|           | Coal                                     |
|           | Petroleum                                |
|           | Natural gas                              |
| 07        | Pulp and paper                           |
|           | Pulp                                     |
| 12        | Petroleum and coal products              |
|           | Petroleum products                       |
|           | Coal products                            |
| 25        | Electricity, gas, water, and heat supply |
|           | Electricity                              |
|           | Gas and heat supply                      |
|           | Water                                    |
|           | Sewerage                                 |
|           | Waste processing                         |
| 32        | Public service                           |
|           | Research                                 |

Additional details are provided for forest products, fossil fuels, and sewerage and waste treatment which are deemed relevant to reflect environmentrelated activities in the interindustry transaction table. In addition, such sectors as chemicals (as inputs to agriculture), motor vehicles (as an addition to the existing stock of automobiles), and transportation (as an activity consuming 1/3 of the energy) are the ones particularly of interest for our purpose. Research activities are also related to pollution abatement and energy conservation.

These additions appear in tables 12-1, 12-2, and 12-3 with an asterisk. In the above, "sewerage" is a sub-sector of the water supply and is listed with double asterisks. It should be noted that these additional sectors are shown as subdivisions of the standard 36-sector industrial classification and not as

|         |                     | 01           | *        | 02      | *          | <u>+</u>  |
|---------|---------------------|--------------|----------|---------|------------|-----------|
|         |                     | Agriculture, | Forestry |         |            |           |
|         |                     | etc          | rorestry | Mining  | Coal       | Petroleum |
| 01      | Agriculture,etc     | 2091622      | 629930   | 2217    | 1692       | 1         |
| *       | Forestry            | 602673       | 595971   | 2217    | 1692       | 1         |
| 02      | Mining              | 22           | 22       | 4435    | 1092       | 179       |
| *       | Coal                | 0            | 0        | 126     | 0          | 1/9       |
| *       | Petroleum           | 0            | 0        | 120     | 0          | 0         |
| *       | Natural gas         | 0            | 0        | 1595    | 0          | -         |
| 03      | Food Processing     | 1381282      | 4170     | 1395    | 14         | 179<br>14 |
| 04      | Textiles            | 99054        | 12006    | 3871    | 374        |           |
| 05      | Lumber and Wood     | 10437        | 4557     | 2918    |            | 10        |
| 06      | Furniture, Fixtures | 6421         | 4557     | 1303    | 495<br>267 | 0         |
| 07      | Pulp and Paper      | 200407       | 2        |         |            | 5         |
| *       | Pulp                | 2556         | 2        | 0       | 0          | 0         |
| 08      | Printing, Publish   |              |          | -       | 0          | 0         |
| 09      | Leather & Prod.     | 7774         | 658      | 4822    | 1060       | 40        |
| 10      | Rubber Products     | 1972         | 493      | 4030    | 41         | 1         |
| 11      | Chemicals           | 16081        | 1445     | 8262    | 586        | 13        |
| 12      |                     | 686821       | 24278    | 10834   | 792        | 1         |
| *       | Petroleum & Coal    | 432386       | 20383    | 123504  | 1589       | 184       |
|         | Petroleum products  | 280709       | 18797    | 122621  | 1397       | 167       |
| *<br>13 | Coal Products       | 20           | 0        | 138     | -31        | 0         |
| 13      | Nonmetal Minerals   | 26294        | 4788     | 142     | 75         | 3         |
| 14      | Iron & Steel Mat    | 0            | 0        | 0       | 0          | 0         |
| 15      | Iron & Steel Prod   | 485          | 12       | 5700    | 3216       | 0         |
| 10      | Nonferrous Metals   | 0            | 0        | 0       | 0          | 0         |
|         | Fabricated Metals   | 28245        | 8012     | 33182   | 5522       | 180       |
| 18      | General Machinery   | 127859       | 7481     | 38439   | 2896       | 550       |
| 19      | Electrical Mach.    | 4293         | 90       | 1135    | 2          | 0         |
| 20      | Motor Vehicles      | 0            | 0        | 0       | 0          | 0         |
| 21      | Other Transport     | 107409       | 8155     | 199028  | 776        | 81        |
| 22      | Precision Inst.     | 724          | 319      | 19      | 3          | 0         |
| 23      | Manufacturing nec   | 12272        | 587      | 4616    | 427        | 0         |
| 24      | Construction        | 43309        | 7592     | 8208    | 801        | 66        |
| 25      | El.,Gas,Water       | 61093        | 7708     | 42889   | 8894       | 692       |
| *       | Electricity         | 46932        | 5325     | 37223   | 8499       | 406       |
| *       | Gas & Heating       | 25           | 4        | 202     | 3          | 0         |
| *       | Water               | 13430        | 2379     | 2775    | 136        | 68        |
| **      | Sewerage            | 0            | 0        | 0       | 0          | 0         |
| *       | Waste Processing    | 706          | 0        | 2689    | 256        | 218       |
| 26      | Wholesale Retail    | 593286       | 39888    | 114219  | 2764       | 171       |
| 27      | Fin.,Ins ,Estate    | 710854       | 39277    | 212454  | 8709       | 883       |
| 28      | Real Estate Rent    | 0            | 0        | 0       | 0          | 0         |
| 29      | Transportation      | 463789       | 75988    | 87749   | 2953       | 293       |
| 30      | Communication       | 10255        | 2025     | 6560    | 1429       | 63        |
| 31      | Public Admin        | 0            | 0        | 0       | 0          | 0         |
| 32      | Public Services     | 16225        | 675      | 7065    | 497        | 407       |
| *       | Research            | 10268        | 0        | 594     | 48         | 279       |
| 33      | Private Services    | 45280        | 5157     | 68411   | 2029       | 468       |
| 34      | Office Supplies     | 9293         | 743      | 3288    | 314        | 19        |
| 36      | Activities nec      | 173970       | 3898     | 39861   | 3277       | 276       |
|         | Subtotal            | * 7369144    | 910955   | 1039161 | 51480      | 4586      |
|         | Total Output        | 17237693     | 1622197  | 2087770 | 120934     | 10512     |
|         |                     |              |          |         |            |           |

Table 12-1 I-O table with environmental aspects, 1990

Note: An asterisk signifies environment related activities Compiled from the Ministry of International Trade and Industry *Input-Output Tables 1990* [1993].

|          |             |            |            |                   | ion yen, curr |            |
|----------|-------------|------------|------------|-------------------|---------------|------------|
|          | *           | 03         | 04         | 05                | 06            | 07         |
|          | Natural gas | Food       | Textiles   | Lumber and        | Furniture     | Pulp and   |
|          |             | Processing | 410050     | wood              | etc.          | Paper      |
| 01       | 8           | 10028453   | 418250     | 1258826           | 2899          | 39406      |
| *        | 8           | 22772      | 887        | 1258786           | 2899          | 37816      |
| 02       | 1416        | 22         | 137        | 0<br>0            | 2             | 27906      |
| *        | 0<br>0      | 22<br>0    | 110<br>0   | 0                 | 2<br>0        | 13030<br>0 |
| *        | 1416        | 0          | 4          | 0                 | 0             | 114        |
| *        | 1410        | 6625603    | 4<br>41873 | 1520              | 0<br>15       | 1114       |
| 03<br>04 | 14<br>72    | 31987      | 41073      | 6092              | 80872         | 21052      |
| 04       | 0           | 39121      | 2362       | 511769            | 557682        | 335301     |
| 05       | 63          | 17961      | 11951      | 1352              | 133791        | 4450       |
| 08       | 0           | 601552     | 113717     | 31294             | 91602         | 3105004    |
| *        | 0           | 35754      | 7547       | 30709             | 13419         | 3023865    |
| *<br>08  | 170         | 91537      | 28599      | 4107              | 12969         | 568436     |
| 09       | 1/0         | 1026       | 15128      | 1125              | 2033          | 234        |
| 10       | 93          | 3640       | 13012      | 850               | 6309          | 2771       |
| 10       | 53          | 387511     | 859089     | 119058            | 121795        | 291873     |
| 11       | 1108        | 839532     | 179302     | 21880             | 102807        | 311258     |
|          | 100         | 164143     | 85719      | 10213             | 10122         | 180805     |
| *        | 1017        | 85         | 11         | 10213             | 5             | 100005     |
| *<br>13  | 27          | 313545     | 2273       | 1853 <sup>,</sup> | 108464        | 1236       |
| 13       | 27          | 0 J15545   | 2275       | 1055              | 0             | 0          |
| 14       | 76          | 12         | 0          | 15803             | 179827        | ů<br>0     |
| 15       | , c<br>0    | 39751      | 256        | 2701              | 25433         | 2259       |
| 17       | 332         | 802808     | 45602      | 50106             | 267268        | 6865       |
| 18       | 2051        | 190409     | 56784      | 20126             | 54125         | 43834      |
| 10       | 2051        | 190409     | 0          | 13                | 3755          | 43034      |
| 20       | Ő           | 0          | ő          | 0                 | 0             | Ő          |
| 20       | 612         | 34368      | 6127       | 7759              | 3403          | 7570       |
| 22       | 2           | 126        | 212        | 59                | 130           | 169        |
| 23       | 3           | 17864      | 206006     | 11572             | 35490         | 100        |
| 24       | 305         | 74109      | 22370      | 7669              | 9050          | 32720      |
| 25       | 5574        | 454895     | 245317     | 79900             | 46433         | 364340     |
| *        | 5434        | 281831     | 193350     | 71376             | 37008         | 310246     |
| *        | 0           | 46706      | 5827       | 55                | 1323          | 9574       |
| *        | 96          | 119908     | 22978      | 3362              | 4617          | 18904      |
| **       | 0           | 0          | 0          | 0                 | 0             | 0          |
| *        | 44          | 6450       | 23162      | 5107              | 3485          | 25616      |
| 26       | 1009        | 2070870    | 1316947    | 286290            | 221353        | 339474     |
| 27       | 3992        | 683282     | 587722     | 216890            | 201766        | 332697     |
| 28       | 0           | 0          | 0          | 0                 | 0             | 0          |
| 29       | 1076        | 1136553    | 271975     | 186688            | 104461        | 425808     |
| 30       | 489         | 58681      | 31956      | 7887              | 14539         | 16455      |
| 31       | 0           | 0          | 0          | 0                 | 0             | 0          |
| 32       | 384         | 150157     | 77456      | 8386              | 32968         | 50822      |
| *        | 0           | 76653      | 25610      | 3472              | 19671         | 24331      |
| 33       | 2532        | 1143251    | 154984     | 34801             | 115862        | 142945     |
| 34       | 73          | 44947      | 36732      | 9885              | 9761          | 11190      |
| 36       | 1540        | 259581     | 67840      | 32393             | 86970         | 74556      |
|          | 23015       | 26191450   | 9024418    | 2938640           | 2633820       | 6571862    |
|          | 78585       | 41778324   | 13456348   | 4529669           | 4506089       | 9718296    |
|          |             |            |            |                   |               |            |

"Repair, machinery" and "repair, auto" have been omitted

|     | *<br>Pulp | 08<br>Printing, | 09<br>Leather & | 10<br>Rubber | 11<br>Chemicals | 12<br>Petroleum |
|-----|-----------|-----------------|-----------------|--------------|-----------------|-----------------|
|     | Fuip      | Publ.           | Products        | Products     | Chemicais       | & Coa           |
| 0.1 | 39383     | <u> </u>        | 5794            | 59051        | 53368           | 125             |
| 01  |           | 0               | 5794<br>241     | 59051        | 25392           | 123             |
| *   | 37816     | -               |                 |              |                 | 5096665         |
| 02  | 27906     | 1               | 48              | 472<br>94    | 112784          | 5096663         |
| *   | 13030     | 1               | 7               |              | 22039           |                 |
| *   | 0         | 0               | 0               | 0            | 37              | 4500283         |
| *   | 114       | 0               | 0               | 0            | 26206           | 1183            |
| 03  | 10993     | 14              | 116880          | 15           | 175164          | 1057            |
| 04  | 8469      | 29179           | 27192           | 147788       | 14857           | 47963           |
| 05  | 333515    | 695             | 10924           | 53           | 2205            | 2468            |
| 06  | 2391      | 7993            | 401             | 2410         | 13007           | 8303            |
| 07  | 1908339   | 1840472         | 29254           | 22943        | 440148          | 40179           |
| *   | 1876564   | 1795625         | 1638            | 13462        | 97641           | 18075           |
| 08  | 153146    | 1495118         | 2095            | 9117         | 66234           | 17085           |
| 09  | 69        | 386             | 226970          | 473          | 1606            | 948             |
| 10  | 806       | 5958            | 33212           | 65576        | 20275           | 6464            |
| 11  | 211260    | 319642          | 14174           | 667976       | 7795872         | 2148717         |
| 12  | 186476    | 31545           | 53640           | 135450       | 1470170         | 2625322         |
| *   | 165553    | 19508           | 3931            | 20847        | 1088441         | 513768          |
| *   | 0         | 5               | 0               | 0            | 37202           | 28014           |
| 13  | 1236      | 164             | 148             | 8842         | 129966          | 91461           |
| 14  | 0         | 0               | 0               | 0            | 224             | (               |
| 15  | 0         | 0               | 373             | 11079        | 478             | 872             |
| 16  | 2081      | 15519           | 1961            | 15003        | 81703           | 778:            |
| 17  | 5015      | 3692            | 5862            | 78947        | 259672          | 8393            |
| 18  | 35711     | 38597           | 1325            | 37371        | 238560          | 252434          |
| 19  | 0         | 14              | 77              | 0            | 0               | 730             |
| 20  | Ō         | 0               | 0               | 0            | 0               | (               |
| 21  | 4454      | 11855           | 1396            | 807          | 10654           | 611             |
| 22  | 126       | 105             | 6               | 30           | 521             | 353             |
| 23  | 74        | 1495            | 17359           | 855          | 591             | 134             |
| 24  | 22742     | 16081           | 1976            | 5798         | 97427           | 3887            |
| 25  | 303089    | 117031          | 9372            | 66019        | 1094651         | 31368           |
| *   | 258803    | 85754           | 7330            | 60941        | 888011          | 28335           |
| *   | 5470      | 11097           | 84              | 2049         | 20125           | 331             |
| *   | 15988     | 3227            | 1407            | 1735         | 88401           | 2107            |
| *   | 15500     | 5227            | 1407            | 1/35         | 0               | 2107            |
| • • | 22828     | 16953           | 551             | 1294         | 98114           | 593             |
| *   | 167637    | 386095          | 71585           | 183970       | 589470          | 63411           |
| 26  | 190535    |                 | 29500           | 263117       | 1090122         | 57554           |
| 27  |           | 428563          |                 | 203117       | 1090122         | 57554           |
| 28  | 0         | 0               | 0               |              | -               | 43438           |
| 29  | 308392    | 284403          | 24640           | 77642        | 656528          |                 |
| 30  | 7109      | 54380           | 1886            | 7404         | 125017          | 5748            |
| 31  | 0         | 0               | 0               | 0            | 0               | 70(1            |
| 32  | 37576     | 30665           | 3234            | 39610        | 783783          | 7261            |
| *   | 21832     | 10165           | 846             | 17417        | 670801          | 3300            |
| 33  | 40037     | 691293          | 16524           | 66037        | 1107794         | 27364           |
| 34  | 4222      | 27687           | 2671            | 6098         | 17080           | 1645            |
| 36  | 42023     | 135176          | 14217           | 47617        | 190154          | 4510            |
|     | 4054798   | 5973804         | 724682          | 2027556      | 16639973        | 1291541         |
|     | 5720011   | 11645571        | 1217260         | 3571325      | 25531785        | 2102607         |

|            | *             | *               | 13              | 14                | 15                | 16         |
|------------|---------------|-----------------|-----------------|-------------------|-------------------|------------|
|            | Petroleum     | Coal            | Nonmetal        | Iron &            | Iron &            | Nonferrous |
| 01         | products<br>0 | products<br>125 | Minerals<br>503 | Steel Mat.<br>564 | Steel Prod.<br>22 | Metals     |
|            | 0             | 125             | 503<br>0        | 564               | 22                | 276<br>0   |
| *<br>02    | 4484155       | 612322          | 1041959         | 546707            | 15148             | 574091     |
|            | 5227          | 573932          | 73668           | 5087              | 294               | 2075       |
| *          | 4500283       | 0               | 75008           | 5087              | 294               | 2073       |
| *<br>*     | 4300283       | 288             | 6557            | 3495              | 11194             | 2692       |
| <b>0</b> 3 | 539           | 200             | 2881            | 14                | 61                | 2092       |
| 04         | 623           | 2843            | 22136           | 612               | 8473              | 11545      |
| 05         | 025           | 2045            | 41727           | 550               | 27025             | 6918       |
| 06         | 561           | 188             | 19680           | 925               | 4548              | 2958       |
| 07         | 0             | 0               | 115701          | 0                 | 2960              | 1367       |
| *          | Ő             | õ               | 27925           | Õ                 | 1393              | 1289       |
| 08         | 2962          | 1177            | 33644           | 2904              | 8648              | 7059       |
| 09         | 31            | 404             | 1350            | 514               | 735               | 202        |
| 10         | 0             | 756             | 8237            | 4556              | 16230             | 1300       |
| 11         | 28701         | 5628            | 176668          | 77184             | 58115             | 113246     |
| 12         | 391978        | 137867          | 290509          | 564352            | 245523            | 65154      |
| *          | 377689        | 109874          | 257081          | 13258             | 101250            | 49191      |
| *          | 0             | 27993           | 16402           | 551094            | 144004            | 10144      |
| 13         | 525           | 16613           | 1205684         | 76281             | 55978             | 21701      |
| 14         | 0             | 0               | 0               | 2297991           | 4765953           | 0          |
| 15         | 0             | 0               | 99921           | 0                 | 5472319           | 16868      |
| 16         | 406           | 1               | 24624           | 52085             | 180183            | 2941821    |
| 17         | 27825         | 5090            | 37477           | 145               | 38157             | 14688      |
| 18         | 89284         | 16096           | 188655          | 98010             | 159886            | 85791      |
| 19         | 0             | 0               | 314             | 0                 | 0                 | 1925       |
| 20         | 0             | 0               | 0               | 0                 | 0                 | 0          |
| 21         | 3685          | 139             | 23896           | 5476              | 16238             | 3526       |
| 22         | 33            | 4               | 233             | 39                | 43                | 53         |
| 23         | 3             | 92              | 5502            | 4                 | 7100              | 4254       |
| 24         | 11048         | 7571            | 36633           | 37689             | 102321            | 33328      |
| 25         | 56312         | 15939           | 366192          | 446538            | 487418            | 318279     |
| *          | 49300         | 12668           | 312363          | 430707            | 433806            | 300985     |
| *          | 3             | 120             | 8990            | 1130              | 10168             | 4474       |
| *          | 7009          | 2616            | 21607           | 10733             | 31401             | 10145      |
| **         | 0             | 0               | 0               | 0                 | 0                 | 0          |
| *          | 0             | 535             | 23232           | 3968              | 12043             | 2675       |
| 26         | 238718        | 56050           | 416442          | 89973             | 592586            | 205793     |
| 27         | 268715        | 17130           | 564573          | 217119            | 444115            | 249175     |
| 28         | 0             | 0               | 0               | 0                 | 0                 | 0          |
| 29         | 94764         | 112128          | 726558          | 331392            | 572317            | 283858     |
| 30         | 25807         | 1012            | 23140           | 1233              | 17312             | 16240      |
| 31         | 0             | 0               | 0               | 0                 | 0                 | 0          |
| 32         | 27297         | 5564            | 86758           | 27900             | 123412            | 61155      |
| *          | 13997         | 2069            | 47365           | 6474              | 75299             | 41523      |
| 33         | 39288         | 6743            | 99584           | 45133             | 103321            | 58275      |
| 34         | 572           | 290             | 16019           | 1353              | 11180             | 5740       |
| 36         | 3520          | 11478           | 164571          | 126258            | 182715            | 77330      |
|            | 5797338       | 1033250         | 5841715         | 5053487           | 13720000          | 5183916    |
|            | 9531052       | 1354577         | 10205842        | 6556814           | 19449236          | 7231016    |

|    | 17         | 18        | 19         | 20       | 21        | 22        |
|----|------------|-----------|------------|----------|-----------|-----------|
|    | Fabricated | General   | Electrical | Motor    | Other     | Precision |
|    | Metals     | Machinery | Mach.      | Vehicles | Transport | Inst.     |
| 01 | 0          | 68        | 0          | 0        | 452       | 0         |
| *  | 0          | 19        | 0          | 0        | 452       | 0         |
| 02 | 2469       | 14315     | 95         | 0        | 628       | 0         |
| *  | 452        | 25        | 38         | 0        | 112       | 0         |
| *  | 0          | 0         | 0          | 0        | 0         | C         |
| *  | 220        | 231       | 57         | 0        | 516       | C         |
| 03 | 28         | 70        | 112        | 28       | 70        | 14        |
| 04 | 21102      | 34760     | 62378      | 24307    | 56092     | 5809      |
| 05 | 17009      | 15000     | 11523      | 1561     | 24901     | 2372      |
| 06 | 14426      | 10395     | 120413     | 9278     | 16281     | 1476      |
| )7 | 37679      | 35711     | 235434     | 1122     | 20850     | 27259     |
| *  | 2664       | 9247      | 79357      | 4        | 7201      | 760       |
| 08 | 42784      | 91839     | 163260     | 13504    | 21738     | 12739     |
| 09 | 7148       | 5003      | 6695       | 6438     | 2992      | 50652     |
| 10 | 14884      | 362232    | 180915     | 340588   | 934799    | 16058     |
| 11 | 132201     | 189889    | 790746     | 99350    | 439978    | 4447      |
| 12 | 161168     | 280943    | 1500609    | 299821   | 933433    | 162786    |
| *  | 92808      | 81078     | 143051     | 21191    | 100514    | 7010      |
| *  | 1590       | 1767      | 489        | 456      | 2331      | 304       |
| 13 | 63882      | 236327    | 499876     | 170872   | 133785    | 59690     |
| 14 | -38003     | -27185    | -12625     | 0        | -33721    | -1672     |
| 15 | 3590560    | 2819640   | 968427     | 0        | 1902799   | 7186      |
| 16 | 890153     | 532257    | 1758019    | 90683    | 769964    | 155857    |
| 17 | 856539     | 1115305   | 1131183    | 51765    | 406690    | 76204     |
| 18 | 269502     | 8123576   | 1069918    | 129199   | 795118    | 65147     |
| 19 | 61552      | 2393699   | 14065826   | 996984   | 1487504   | 212871    |
| 20 | 0          | 0         | 0          | 0        | 0         | (         |
| 21 | 30225      | 47063     | 14914      | 9735210  | 10361918  | 2213      |
| 22 | 187        | 153206    | 35557      | 3767     | 12064     | 652760    |
| 23 | 3712       | 2077      | 15604      | 8058     | 11049     | 29102     |
| 24 | 26806      | 38964     | 70044      | 29309    | 74648     | 5672      |
| 25 | 307242     | 655809    | 803119     | 139056   | 412679    | 42899     |
| *  | 269355     | 501983    | 648396     | 86761    | 323540    | 28150     |
| *  | 11154      | 11142     | 36654      | 16984    | 16856     | 2235      |
| *  | 17628      | 36186     | 38019      | 14123    | 41590     | 8020      |
| ** | 0          | 0         | 0          | 0        | 0         | (         |
| *  | 9105       | 106498    | 80050      | 21188    | 30693     | 4494      |
| 26 | 530278     | 1623176   | 1912213    | 759907   | 1282445   | 154683    |
| 27 | 626400     | 1280794   | 1808235    | 271939   | 681354    | 206029    |
| 28 | 0          | 0         | 0          | 0        | 0         | (         |
| 29 | 396083     | 779232    | 884844     | 199805   | 551873    | 83024     |
| 30 | 49930      | 124357    | 129357     | 7778     | 45513     | 23910     |
| 31 | 0          | 0         | 0          | 0        | 0         | (         |
| 32 | 194206     | 909576    | 1736538    | 357777   | 733847    | 103819    |
| *  | 79357      | 564483    | 1534078    | 339892   | 667883    | 8410      |
| 33 | 370778     | 735853    | 2173953    | 322178   | 740802    | 11152     |
| 34 | 32192      | 49882     | 65988      | 5571     | 42115     | 8483      |
| 36 | 215495     | 666475    | 734444     | 7437     | 248256    | 3836      |
|    | 8928589    | 23300238  | 32937502   | 14083264 | 23112846  | 242607    |
|    | 16180863   | 38514137  | 51135206   | 17105562 | 33064922  | 437756    |

|         | 23             | 24       | 25       |                  |                    | *             |
|---------|----------------|----------|----------|------------------|--------------------|---------------|
|         | 23<br>Manufac- | Const-   | El.,Gas, | *<br>Electricity | ∓<br>Gas & Heating | Water         |
|         | turing nec     | ruction  | Water    | Electricity      | Gas at meaning     | <b>W</b> ucci |
| 01      | 91808          | 180202   | 0        | 0                | 0                  | 0             |
| *       | 4383           | 105310   | Ő        | Ō                | 0<br>0             | Ő             |
| т<br>02 | 11957          | 1020936  | 1702671  | 1428293          | 274245             | 5             |
| *       | 3              | 30       | 300086   | 227497           | 72456              | 5             |
| *       | Ő              | 0        | 413717   | 413717           | 0                  | Ō             |
| *       | Ő              | Ō        | 988931   | 787142           | 201789             | Ō             |
| 03      | 17734          | 42       | 56       | 14               | 14                 | 14            |
| 04      | 73428          | 370868   | 15884    | 2053             | 502                | 3420          |
| 05      | 215859         | 3070433  | 233      | 230              | 3                  | 0             |
| 06      | 16172          | 1012814  | 27179    | 8717             | 1104               | 7117          |
| 07      | 168910         | 270466   | 7984     | 0                | 0                  | 2168          |
| *       | 33178          | 226066   | 276      | 0                | 0                  | 0             |
| 08      | 15045          | 148431   | 41862    | 8431             | 14406              | 10206         |
| 09      | 13056          | 8478     | 2341     | 362              | 1574               | 119           |
| 10      | 35303          | 376478   | 26079    | 0                | 0                  | 2713          |
| 11      | 336205         | 433610   | 88494    | 4120             | 6131               | 35074         |
| 12      | 509250         | 2378095  | 1010163  | 709363           | 20284              | 196187        |
| *       | 23396          | 836906   | 747836   | 542548           | 85351              | 41024         |
| *       | 396            | 394389   | 101897   | 166814           | -65067             | 4             |
| 13      | 30414          | 5868862  | 17471    | 878              | 34                 | 15701         |
| 14      | -521           | -9929    | 0        | 0                | 0                  | 0             |
| 15      | 49222          | 2765344  | 1922     | 0                | 0                  | 1922          |
| 16      | 205280         | 724997   | 3105     | 2167             | 0                  | 938           |
| 17      | 92636          | 8440776  | 8393     | 3560             | 1318               | 3291          |
| 18      | 16641          | 2315849  | 608341   | 463168           | 30099              | 82810         |
| 19      | 65744          | 1204292  | 283      | 44               | 0                  | 239           |
| 20      | 0              | 0        | 0        | 0                | 0                  | 0             |
| 21      | 12190          | 673805   | 60245    | 14343            | 1762               | 3449          |
| 22      | 78             | 284      | 123      | 0                | 0                  | 102           |
| 23      | 357059         | 221817   | 2064     | 689              | 51                 | 15            |
| 24      | 5660           | 174894   | 481371   | 293356           | 9310               | 164543        |
| 25      | 54142          | 730754   | 561468   | 123739           | 64120              | 333273        |
| *       | 36134          | 431554   | 382543   | 15156            | 22134              | 322704        |
| *       | 1318           | 91776    | 38688    | 381              | 30174              | 3736          |
| *       | 7540           | 111170   | 34160    | 9307             | 5294               | 6169          |
| **      | 0              | 0        | 0        | 0                | 0                  | 0             |
| *       | 9150           | 96254    | 106077   | 98895            | 6518               | 664           |
| 26      | 274289         | 4713854  | 366458   | 229399           | 36917              | 33835         |
| 27      | 163680         | 2566994  | 1165784  | 892855           | 79851              | 121211        |
| 28      | 0              | 0        | 0        | 0                | 0                  | 0             |
| 29      | 184504         | 3576968  | 362449   | 232848           | 52142              | 15145         |
| 30      | 20035          | 306120   | 48782    | 11114            | 4010               | 11823         |
| 31      | 0              | 0        | 0        | 0                | 0                  | 0             |
| 32      | 66294          | 424725   | 312033   | 159734           | 24894              | 110339        |
| *       | 46015          | 106103   | 139132   | 125949           | 13124              | 59            |
| 33      | 174924         | 4758865  | 948495   | 505382           | 97087              | 305320        |
| 34      | 10142          | 60687    | 49804    | 11897            | 11430              | 7356          |
| 36      | 66888          | 898199   | 129320   | 61857            | 33606              | 19345         |
|         | 3354014        | 49688968 | 8050801  | 5168599          | 764880             | 1487666       |
|         | 5373990        | 88461108 | 21632668 | 12919486         | 1660140            | 3376029       |

|       | **       | *          | 26         | 27         | 28          | 29        |
|-------|----------|------------|------------|------------|-------------|-----------|
|       | Sewerage | Waste      | Wholesale, | Fin.,Ins., | Real Estate | Trans-    |
|       | ocmenage | Processing | Retail     | Estate     | Rent        | portation |
| 01    | 0        | 10431      | 0          | 0          | 1672        | 0         |
| *     | 0<br>0   | 0          | 0          | 0          | 0           | Ō         |
| 02    | 128      | Ő          | 0          | Ō          | 96          | Ō         |
| *     | 128      | 0          | 0          | 0          | 96          | Ō         |
| *     | 0        | Ō          | 0          | Ō          | 0           | 0         |
| *     | 0<br>0   | Ō          | Ō          | Ō          | Ō           | Ō         |
| 03    | 14       | 14330      | 28         | 14         | 6009        | 28        |
| 04    | 9909     | 216478     | 36677      | 158        | 113559      | 16669     |
| 05    | 0        | 95937      | 0          | 0          | 196197      | 145       |
| 06    | 10241    | 105708     | 80556      | 17221      | 26619       | 16559     |
| 07    | 5816     | 563398     | 47270      | 184        | 266049      | 13697     |
| *     | 276      | 0          | 12961      | 65         | 74913       | 1796      |
| 08    | 8819     | 331807     | 787102     | 2328       | 137109      | 142208    |
| 09    | 286      | 13463      | 1452       | 4          | 3839        | 3702      |
| 10    | 23366    | 3143       | 0          | 0          | 26436       | 3233      |
| 11    | 43169    | 363        | 101        | 0          | 15102       | 43087     |
| 12    | 84329    | 1508210    | 102070     | 36762      | 1123954     | 31106     |
| *     | 78913    | 1162578    | 47184      | 19945      | 1073077     | 26132     |
| *     | 146      | 0          | 30         | 0          | 298         | 0         |
| 13    | 858      | 47790      | 0          | 0          | 1473        | 2         |
| 14    | 0        | 0          | 0          | 0          | 0           | 0         |
| 15    | 0        | 0          | 0          | 0          | 30244       | 0         |
| 16    | 0        | 1243       | 0          | 0          | 673         | 0         |
| 17    | 224      | 250632     | 1195       | 13         | 43828       | 352       |
| 18    | 32264    | 32260      | 65339      | 0          | 53743       | 95457     |
| 19    | 0        | 17431      | 0          | 0          | 5666        | 1907      |
| 20    | 0        | 0          | 0          | 0          | 0           | 0         |
| 21    | 40691    | 827333     | 35191      | 12142      | 1760194     | 26381     |
| 22    | 21       | 147206     | 1203       | 134        | 681         | 185       |
| 23    | 1309     | 63680      | 118        | 0          | 1226        | 13127     |
| 24    | 14162    | 486947     | 507822     | 2984759    | 461472      | 28410     |
| 25    | 40336    | 971222     | 307618     | 7664       | 957499      | 145895    |
| *     | 22549    | 778853     | 160082     | 6259       | 565734      | 99030     |
| *     | 4397     | 4485       | 47251      | 446        | 13911       | 11110     |
| *     | 13390    | 98256      | 42915      | 959        | 91350       | 19437     |
| **    | 0        | 0          | 0          | 0          | 0           | 0         |
| *     | 0        | 89628      | 57370      | 0          | 286504      | 16318     |
| 26    | 66307    | 2599623    | 161776     | 23692      | 482608      | 45549     |
| 27    | 71867    | 10546950   | 5267052    | 1303737    | 2635794     | 318338    |
| 28    | 0        | 0          | 0          | 0          | 0           | 0         |
| 29    | 62314    | 2153101    | 297876     | 12198      | 3421104     | 251237    |
| 30    | 21835    | 1219717    | 825515     | 534        | 232316      | 284520    |
| 31    | 0        | 0          | 0          | 0          | 0           | 0         |
| 32    | 17066    | 213419     | 191522     | 97974      | 357439      | 144986    |
| *     | 0        | 11391      | 26         | 0          | 30836       | 83012     |
| 33    | 40706    | 6957937    | 4325444    | 613899     | 1357033     | 1215528   |
| 34    | 19121    | 383822     | 183542     | 5555       | 101182      | 33200     |
| 36    | 14512    | 249163     | 561010     | 94056      | 171462      | 105822    |
|       | 629656   | 30032730   | 13787451   | 5213014    | 13992194    | 2981302   |
| ····· | 3677013  | 76567932   | 53328867   | 36679399   | 34850364    | 10261469  |

| 33         34         33         34           Commu-<br>nication         Admin<br>Admin         Services         Services         Services         Services           01         0         209087         16850         976673         0         107418           2         479         12303         3000         2289         0         41773           4         412303         3000         2289         0         41773           5         0         0         0         0         0         2289         0         41773           5         1333         3000         2289         0         41773         31547           6         4         0         0         0         0         0         2337           03         14         541222         5936         4556728         14         31547           05         1368         138         0         56025         0         12695           06         45784         252821         42635         317838         0         17083           07         6485         135464         36508         359771         904489         64733           09 <t< th=""><th>•</th><th></th><th></th><th></th><th></th><th></th><th></th></t<> | •  |          |          |         |          |         |         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------|----------|---------|----------|---------|---------|
| nicationAdminServicesServicesSupplies010209087168509766730107418024791230330002289041773*441230330002289041773*0000002937*44123033000228914177331647*000002937000002937317381544704623941823981448024111854808135130051368138 4056025012695060645784252821426353178380160800764851335464365083597190448964238083606161579754694155406016701645370942504874777243130176631114771506050967410449773835222261551215772550401110641291734961041231113142006047933153893070287735464951635824286602678181043700174423818760482947024074744181125842900816029830587210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | 30       | 31       | 32      | *        | 33      | 34      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |          |          |         | Research |         |         |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |          |          |         | 076670   |         |         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 01 |          |          |         |          | -       |         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |          |          |         |          |         |         |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 02 |          |          |         |          |         |         |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | *  |          |          |         |          |         |         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *  |          |          |         |          | 0       | 4517    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | *  | -        | 0        |         | 0        | 0       | 2937    |
| 05136813805602501269506 $45784$ 252821 $42635$ 3178380160800764851354643650635977190448964238*18927303328674167741190813402110836061615797546941554060167016453709425048747772431301726310235214421105246323636367811114771506050967410449773835222251551215772550401110641295817236920253650*149104395756507246388520175601*050008972033071134057896681519017349610412311131420060479331538930702827354649516358242886026781810437001744238187604829470240747840181125584290081408298830587221065836191825481430934502353512068830000002149191911211310039270855023582229819162701 <td>03</td> <td>14</td> <td>541222</td> <td>5936</td> <td>4556728</td> <td>14</td> <td>315447</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 03 | 14       | 541222   | 5936    | 4556728  | 14      | 315447  |
| 06         45784         252821         42635         317838         0         16080           07         6485         135464         36508         359771         904489         64238           *         1892         73033         28674         167741         190813         40211           08         360616         1579754         694155         4060167         0         164537           09         4250         4874         777         24313         0         17263           10         23521         44211         0         52463         23636         36781           11         14771         506059         67410         449773         33522         226155           12         157725         504011         106412         958172         36920         253650           *         0         500         0         8972         0         33071           13         4057         89668         15190         173496         10412         31113           14         2         0         0         26781         810         43700           17         44238         18760         4822         94702                                                           | 04 | 62394    | 182398   | 14480   | 241118   | 54808   | 135130  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 05 | 1368     | 138      | 0       | 56025    | 0       | 12695   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 06 | 45784    | 252821   | 42635   | 317838   | 0       | 16080   |
| 08         360616         1579754         694155         4060167         0         164537           09         4250         4874         777         24313         0         17263           10         23521         44211         0         52463         23636         36781           11         14771         506509         67410         449773         83522         225155           12         157725         504011         106412         958172         36920         253650           *         149104         395756         50724         638852         0         175601           13         4057         89668         15190         173496         10412         31113           14         2         0         0         6         0         47933           15         389         307         0         2827         35         46495           16         3582         42886         0         26781         810         43700           17         44238         18760         482         94702         407         47840           18         112558         429008         140829         883058         72210                                                      | 07 | 6485     | 135464   | 36508   | 359771   | 904489  | 64238   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | *  | 1892     | 73033    | 28674   | 167741   | 190813  | 40211   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    | 360616   | 1579754  | 694155  | 4060167  | 0       | 164537  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |          |          |         |          |         |         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |          |          |         |          | -       |         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |          |          |         |          |         |         |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |          |          |         |          |         |         |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |          |          |         |          |         |         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |          |          |         |          |         |         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |          |          |         |          |         |         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |          |          |         |          |         |         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |          |          |         |          |         |         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |          |          |         |          |         |         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |          |          |         |          |         |         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |          |          |         |          |         |         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |          |          |         |          |         |         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |          |          |         |          |         |         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |          |          |         |          |         |         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |          |          |         |          |         |         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |          |          |         |          | -       |         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |          |          |         |          |         |         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |          |          |         |          |         |         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25 |          |          |         |          |         |         |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | *  | 236723   | 922515   | 302030  | 854926   | 0       | 132146  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | *  | 10509    | 120410   | 11922   | 172079   | 0       | 18360   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | *  | 64745    | 406782   | 49017   | 377213   | 0       | 1488    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ** | 0        | 0        | 0       | 0        | 0       | 0       |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | *  | 546502   | 222900   | 14128   | 271669   | 0       | 3894    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 26 | 240152   | 2062265  |         | 2534163  | 367480  | 425838  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    | 159681   | 1952626  | 843634  | 5680866  | 0       | 333353  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |          |          |         | 0        | 0       | 0       |
| 30         225164         525671         192675         2435762         0         203389           31         0         0         0         0         370404           32         2302         277727         34246         750417         0         60931           *         94         33         0         7958         0         12174           33         2347031         3256804         866000         11382563         0         595137           34         63532         343242         109844         203993         0         916           36         64772         590652         134925         249233         31695         0           6480314         21607895         4439440         41050529         1873229         4620327                                                                                                                                                                                                                                                                                                                                                                                                                                             |    | -        | -        | -       | -        | -       | -       |
| 31         0         0         0         0         0         370404           32         2302         277727         34246         750417         0         60931           *         94         33         0         7958         0         12174           33         2347031         3256804         866000         11382563         0         595137           34         63532         343242         109844         203993         0         916           36         64772         590652         134925         249233         31695         0           6480314         21607895         4439440         41050529         1873229         4620327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |          |          |         |          |         |         |
| 32         2302         277727         34246         750417         0         60931           *         94         33         0         7958         0         12174           33         2347031         3256804         866000         11382563         0         595137           34         63532         343242         109844         203993         0         916           36         64772         590652         134925         249233         31695         0           6480314         21607895         4439440         41050529         1873229         4620327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |          |          |         |          |         |         |
| *         94         33         0         7958         0         12174           33         2347031         3256804         866000         11382563         0         595137           34         63532         343242         109844         203993         0         916           36         64772         590652         134925         249233         31695         0           6480314         21607895         4439440         41050529         1873229         4620327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |          |          |         |          |         |         |
| 33         2347031         3256804         866000         11382563         0         595137           34         63532         343242         109844         203993         0         916           36         64772         590652         134925         249233         31695         0           6480314         21607895         4439440         41050529         1873229         4620327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |          |          |         |          |         |         |
| 34         63532         343242         109844         203993         0         916           36         64772         590652         134925         249233         31695         0           6480314         21607895         4439440         41050529         1873229         4620327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |          |          |         |          |         |         |
| 36         64772         590652         134925         249233         31695         0           6480314         21607895         4439440         41050529         1873229         4620327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |          |          |         |          |         |         |
| 6480314 21607895 4439440 41050529 1873229 4620327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |          |          |         |          |         |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30 |          |          |         |          |         |         |
| 20215739 58153354 5300556 90755975 1873229 6602821                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |          |          |         |          |         |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    | 20215739 | 58153354 | 5300556 | 90755975 | 1873229 | 6602821 |

|                                         | 36         |           |
|-----------------------------------------|------------|-----------|
|                                         | Activities | Intermed  |
|                                         | nec        | Demand    |
| 1                                       | 107418     | 15539187  |
|                                         | 30724      | 2131919   |
| 02                                      | 41773      | 10230410  |
| ۶.                                      | 7316       | 1018383   |
| k i i i i i i i i i i i i i i i i i i i | 4517       | 4918554   |
| k                                       | 2937       | 1045939   |
| )3                                      | 315447     | 13808238  |
| )4                                      | 135130     | 6487157   |
| 05                                      | 12695      | 5273551   |
| 06                                      | 16080      | 2345074   |
| 07                                      | 64238      | 9803060   |
| *                                       | 40211      | 5993076   |
| 08                                      | 164537     | 10476978  |
| 09                                      | 17263      | 434695    |
| 10                                      | 36781      | 2713493   |
| 11                                      | 226155     | 22296908  |
| 12                                      | 253650     | 19441182  |
| *                                       | 175601     | 8663632   |
|                                         | 33071      | 1333624   |
| *<br>13                                 | 31113      | 9483222   |
| 13                                      | 47933      | 6988453   |
| 14                                      | 46495      | 18061670  |
| 16                                      | 43700      | 8641070   |
| 16<br>17                                | 47840      | 14438109  |
|                                         | 44097      | 10275770  |
| 18                                      | 235351     | 20968159  |
| 19                                      | 235351     | 6883      |
| 20                                      | -          | 21679965  |
| 21                                      | 204686     |           |
| 22                                      | 15422      | 1219460   |
| 23                                      | 27771      | 2275840   |
| 24                                      | 107957     | 7282752   |
| 25                                      | 155888     | 14973975  |
| *                                       | 132146     | 10245903  |
| *                                       | 18360      | 750510    |
| *                                       | 1488       | 1787285   |
| **                                      | 383        | 341889    |
| *                                       | 3894       | 2190277   |
| 26                                      | 425838     | 28672915  |
| 27                                      | 333353     | 43777104  |
| 28                                      | 0          | (         |
| 29                                      | 204528     | 21939856  |
| 30                                      | 203389     | 7158805   |
| 31                                      | 370404     | 370404    |
| 32                                      | 60931      | 8507746   |
| *                                       | 12174      | 4770064   |
| *<br>33                                 | 595137     | 46555880  |
| 34                                      | 916        | 1873229   |
| 34<br>36                                | 910        | 6841053   |
| JU                                      | 4620327    | 431370320 |
|                                         | 4020327    | 401010020 |

independent sectors. This is a convention in order to maintain consistency with other parts of the SEEDS.

Table 12-1 lists the intermediate transactions based on the sectoral classification scheme explained above. There is nothing much to add except to say that environment-related activities are highlighted, which enables us to gauge the magnitude of each activity, examine their input structure or "production technology", and look at the demand for them among the interindustry relations.

We have added considerable details for the classification of final demand. Input-output tables in many cases distinguish private consumption, government consumption, government investment, private investment, increase in stock, and exports among final demand.[4] It would be more useful if final demand is further disaggregated by its purpose or function. If this is actually done, the interindustry table can be made the central account of a satellite accounting system which provides detailed information on various social concerns such as pollution prevention, housing, medical care, research and development, etc.

In table 12-2, which relates to final demand, the industrial classification is of course identical to the previous table. What is new about the table is the detailed breakdown of final demand by purpose, including:

Private consumption

- 1. Food, beverages, and tobacco
- 2. Clothing
- 3. Fuel and light
- 4. Water
- 5. Housing
- 6. Furniture and household utensils
- 7. Medical care
- 8. Transportation and communication
- 9. Reading and recreation
- 10. Miscellaneous

#### CHAPTER 12.

Government consumption

- 1. Defense
- 2. Health and sanitation
- 3. Education
- 4. Others

Government investment

- 1. Roads
- 2. Harbors
- 3. Agriculture, etc.
- 4. Housing
- 5. Environment and sanitation
- 6. Welfare
- 7. Others

Private investment

- 1. Housing investment
- 2. Plant and equipment

of which:

- 3. Pollution prevention
- 4. Energy conservation
- 5. Research and development

The 1968 version of the SNA manual identifies eight purposes for government and household goods and services. The former include general public services, defense, education, health, social security and welfare services, housing and community amenities, other community and social services, economic services, and other purposes. The household goods and services include food, beverages and tobacco; clothing and footwear; gross rent, fuel and power; furniture, furnishing, and household equipment and operation; medical care and health expenses; transport and communication; recreation, entertainment, education and cultural services; and miscellaneous goods and services. Although such data are compiled in the Japanese SNA, the practice is not carried through in the case of an input-output framework.

The breakdown provided in table 12-2 is for illustration only. This kind of information was compiled once in the 1970s, and our table here is constrained by the unavailability of coverters by social purpose for recent years. In some cases, the figures do not add up to the total due to the omission of details.

368

|                        | C Outside | Private     | 1           |
|------------------------|-----------|-------------|-------------|
|                        | household | consumption | Food,       |
|                        |           |             | beverages,  |
|                        |           |             | and tobacco |
| 01 Agriculture,etc     | 125872    | 4389834     | 8628280     |
| * *Forestry            | 1884      | 186703      | 144672      |
| 02 Mining              | 0         | -942        | 28934       |
| * *Coal                | 0         | 624         | 0           |
| * *Crude oil           | 0         | 0           | 0           |
| * *Natural gas         | 0         | 11367       | 0           |
| 03 Food Processing     | 714527    | 26418546    | 34333729    |
| 04 Textiles            | 125932    | 7872012     | 0           |
| 05 Lumber and Wood     | 12255     | 67592       | 0           |
| 06 Furniture, Fixtures | 61955     | 722474      | 0           |
| 07 Pulp and Paper      | 23377     | 90458       | 0           |
| * *Pulp                | 6010      | -36415      | 0           |
| 08 Printing, Publish   | 51700     | 1095303     | 0           |
| 09 Leather & Prod.     | 3175      | 1219534     | 0           |
| 10 Rubber Products     | 9074      | 634890      | 0           |
| 11 Chemicals           | 215872    | 2557149     | 0           |
| 12 Petroleum & Coal    | 28742     | 2823246     | 0           |
| * *Petroleum products  | 27511     | 2287019     | 0           |
| * *Coal Products       | 166       | 4815        | 0           |
| 13 Nonmetal Minerals   | 94819     | 431899      | 0           |
| 14 Iron & Steel Mat    | 0         | -32850      | 0           |
| 15 Iron & Steel Prod.  | 0         | 0           | 0           |
| 16 Nonferrous Metals   | 32090     | 361069      | 0           |
| 17 Fabricated Metals   | 69005     | 489359      | 0           |
| 18 General Machinery   | 0         | 46264       | 0           |
| 19 Electrical Mach.    | 145083    | 3930672     | 0           |
| 20 Motor Vehicles      | 0         | 5756135     | 0           |
| 21 Other Transport     | 0         | 418459      | 0           |
| 22 Precision Inst.     | 0         | 881339      | 0           |
| 23 Manufacturing nec   | 263483    | 2655980     | 0           |
| 24 Construction        | 0         | 0           | 0           |
| 25 El.,Gas,Water       | 3075      | 5226780     | 0           |
| * *Electricity         | 804       | 2663639     | 0           |
| * *Gas & heater        | 708       | 909328      | 0           |
| * *Water               | 1563      | 1213945     | 0           |
| ** **sewerage          | 253       | 254856      | 0           |
| * *Waste Process       | 0         | 439868      | 0           |
| 26 Wholesale Retail    | 1101369   | 39882205    | 11319193    |
| 27 Fin.,Ins.,Estate    | 0         | 9948371     | 0           |
| 28 Real Estate Rent    | 0         | 36681159    | 0           |
| 29 Transportation      | 183206    | 11010077    | 1093725     |
| 30 Communication       | 302       | 3155737     | 0           |
| 31 Public Admin        | 0         | 366968      | 0           |
| 32 Public Services     | 355700    | 32647608    | 0           |
| * *Research            | 0         | 0           | 0           |
| * *Repair, machine     | 14038482  | 32799794    | 0           |
| * *Repair,auto         | 0         | 1653241     | 0           |
| 33 Private Services    | 5026      | 118724      | 2465223     |
| 34 Office Supplies     | 0         | 0           | 0           |
| 36 Activities nec      | 0         | 0           | 0           |
| Subtotal               | 17948813  | 239921587   | 57869086    |

# Table 12-2 Final demand disaggregated to reflect environmental aspects, 1990

|               | c                | c            | 4            | 3                 |               |
|---------------|------------------|--------------|--------------|-------------------|---------------|
| /<br>Medicare | 6<br>Furniture & | 5<br>Housing | 4<br>Water   | ہ<br>Fuel & light | 2<br>Clothing |
| Wiedicare     | household        | Tiousing     | vvater       | i dei oz light    | Clothing      |
|               | utensils         |              |              |                   |               |
| 0             | 0                | 0            | 0            | 411993            | 0             |
| 0             | 0                | 0            | 0            | 0                 | ΰ             |
| 0             | -15179           | 0            | 0            | 212798            | 0             |
| 0             | 0                | 0            | 0            | 0                 | 0             |
| 0             | 0                | 0            | 0            | 0                 | 0             |
| 0             | 0                | 0            | 0            | 0                 | 0             |
| 0             | 0                | 0            | 0            | 39838             | 0             |
| 0             | 0                | 0            | 0            | 0                 | 9848109       |
| 0             | 0                | 207061       | 0            | 35952             | 0             |
| ں<br>44459    | 1841820<br>0     | 0<br>0       | 0<br>0       | 0<br>0            | 0             |
| 44459         | 0                | 0            | 0            | 0                 | 0             |
| 0             | 0                | 0            | 0            | 0                 | 0             |
| 0             | 0                | 0            | 0            | 0                 | 286754        |
| Ő             | 183844           | 0            | 0            | 0                 | 400765        |
| 942423        | 105044           | 0            | Ő            | 74819             | 709975        |
| 0             | õ                | Õ            | ŏ            | 2230982           | 0             |
| 0             | 0                | 0            | 0<br>0       | 0                 | Ő             |
| Ō             | Ō                | 0            | Ő            | Ō                 | 0             |
| 0             | 52286            | Ō            | Ō            | Ō                 | Ō             |
| 0             | -52286           | 0            | 0            | 0                 | 0             |
| 0             | 0                | 0            | 0            | 0                 | 0             |
| 0             | -26986           | 0            | 0            | 0                 | 0             |
| 0             | 0                | 342723       | 0            | 0                 | 0             |
| 0             | 2803210          | 0            | 0            | 0                 | 0             |
| 0             | 3697133          | 0            | 0            | 0                 | 0             |
| 0             | 1907599          | 0            | 0            | 0                 | 0             |
| 0             | 1224506          | 0            | 0            | 0                 | 0             |
| 48843         | 62406            | 0            | 0            | 0                 | 324757        |
| 167820        | 350822           | 0            | 0            | 0                 | 364488        |
| 0<br>57609    | 0<br>0           | 0<br>0       | 0<br>2399215 | 0<br>5495835      | 0             |
| 57009         | 0                | 0            | 2399213      | 5495635<br>0      | 0             |
| Ő             | 0                | 0            | 0            | 0                 | 0             |
| ŏ             | 0                | 0            | 0            | 0                 | 0             |
| Ő             | ŏ                | Ő            | ŏ            | 0                 | 0             |
| Ő             | Ő                | Ő            | ŏ            | 0                 | 0             |
| 505965        | 4559011          | 254662       | ŏ            | 975569            | 5662533       |
| 0             | 0                | 0            | 0<br>0       | 0                 | 0             |
| 0             | Ō                | 11069482     | Ō            | Ō                 | 0             |
| 16281         | 274923           | 26180        | 0            | 237090            | 385218        |
| 0             | 0                | 0            | 0            | 0                 | 0             |
| 0             | 0                | 0            | 0            | 0                 | 0             |
| 3156024       | 0                | 0            | 0            | 0                 | 0             |
| 0             | 0                | 0            | 0            | 0                 | 0             |
| 0             | 0                | 0            | 0            | 0                 | 0             |
| 0             | 0                | 0            | 0            | 0                 | 0             |
| 1322524       | 0                | 0            | 0            | 0                 | 0             |
| 0             | 0                | 0            | 0            | 0                 | 0             |
| 0             | 0                | 0            | 0            | 0                 | 0             |
| 6261953       | 16866487         | 11900110     | 2399215      | 9716824           | 17274354      |

| 8            | 9           | 10         |           | Government | 1       |
|--------------|-------------|------------|-----------|------------|---------|
| Transport-   | Reading &   | Education  | Miscella- | Cons.      | Defense |
| ation & Com- | recreation  |            | neous     |            |         |
| munication   |             |            |           |            |         |
| 0            | 0           | 0          |           | 0          | 0       |
| 0            | 0           | 0          |           | 0          | 0       |
| 0            | 0           | 0          |           | 0          | 0       |
| 0            | 0           | 0          |           | 0          | 0       |
| 0            | 0           | 0          |           | 0          | 0       |
| 0            | 0           | 0          |           | 0          | 0       |
| 0            | 0<br>0      | 0<br>0     |           | 14<br>0    | 0<br>0  |
| 0            | 0           | 0          |           | 0          | 0       |
| 0            | 0           | 0          |           | 0          | 0       |
| ů<br>0       | -662740     | 774848     |           | ő          | ŏ       |
| ŏ            | 0           | 0          |           | Ő          | ŏ       |
| Ō            | 4631475     | 0          |           | 5614       | 5614    |
| 0            | 0           | 0          |           | 0          | 0       |
| 0            | 0           | 0          |           | 0          | 0       |
| 0            | 0           | 0          |           | 85341      | 85341   |
| 0            | 0           | 0          |           | 69995      | 69995   |
| 0            | 0           | 0          |           | 0          | 0       |
| 0            | 0           | 0          |           | 0          | 0       |
| 0            | 0           | 0          |           | 0          | 0       |
| 0            | 0           | 0          |           | 0          | 0       |
| 0            | 0           | 0<br>0     |           | 0<br>0     | 0<br>0  |
| 0            | 0           | 0          |           | 238806     | 238806  |
| 0            | 0           | 0          |           | 238800     | 238800  |
| 0<br>0       | 0           | 0          |           | 225331     | 225331  |
| ů<br>0       | Ő           | õ          |           | 52777      | 52777   |
| Ō            | Ō           | Ő          |           | 1229967    | 1229967 |
| 0            | 1441074     | 0          |           | 0          | 0       |
| 0            | 1635658     | 1316147    |           | 1871       | 1871    |
| 0            | 0           | 0          |           | 45665      | 45665   |
| 0            | 0           | 0          |           | 1420668    | 18715   |
| 0            | 0           | 0          |           | 0          | 0       |
| 0            | 0           | 0          |           | 0          | 0       |
| 0            | 0           | 0          |           | 373800     | 0       |
| 0            | 0           | 0          |           | 373800     | 0       |
| 0            | 0           | 0          |           | 1046868    | 0       |
| 0            | 2595090     | 956092     |           | 89084      | 89084   |
| 0            | 0           | 0          |           | 0          | 0       |
| 18429994     | 0<br>111741 | 0<br>35275 |           | -40575     | 26201   |
| 2155277      | 0           | 35275<br>0 |           | 19089      | 19089   |
| 2155277      | 0           | 0<br>0     |           | 16094101   | 1182056 |
| õ            | õ           | 9080443    |           | 16684701   | 32938   |
| 0<br>0       | Ő           | 0          |           | 533857     | 02000   |
| 0            | 0           | Ō          |           | 0          | Ō       |
| 0            | 0           | 0          |           | 0          | 0       |
| 0            | 9511477     | 0          |           | 32938      | 32938   |
| 0            | 0           | 0          |           | 0          | 0       |
| 0            | 0           | 0          |           | 387780     | 387780  |
| 20585272     | 19265703    | 12164024   |           | 37543161   | 3743053 |

| ,            | 2       | 3 4          | Courses                  | 1       | <u>_</u>     |
|--------------|---------|--------------|--------------------------|---------|--------------|
| Health &     |         |              | Government<br>investment | Roads   | 2<br>Harbors |
| sanitation   |         | in Others    | mvestment                | Roads   | Tarbors      |
| 5411114 1101 | •       |              |                          |         |              |
| (            | )       | 0 0          | 0                        | 0       | 0            |
| (            | )       | 0 0          | 0                        | 0       | 0            |
| (            | )       | 00           | 0                        | 0       | 0            |
| (            | )       | 00           | 0                        | 0       | 0            |
| (            | )       | 00           | 0                        | 0       | 0            |
|              | -       | 00           | 0                        | 0       | 0            |
|              |         | 0 14         | 14                       | 0       | 0            |
|              | -       | 0 0          |                          | 0       | 0            |
|              |         | 0 0          | 5186                     | 0       | 0            |
|              |         | 0 0          | 108757                   | 0       | 0            |
|              |         | 0 0          | 0                        | 0       | 0            |
|              | -       | 0 0          | 0                        | 0       | 0            |
|              |         | 0 0          | 0                        | 0       | 0            |
|              | -       | 0 0<br>0 0   | 0                        | 0       | 0            |
|              |         | 0 0<br>0 0   | 0                        | 0       | 0            |
|              |         | 0 0          | 0                        | 0       | 0<br>0       |
|              |         | 0 0          | 0                        | 0       | 0            |
|              |         | 0 0          | 0                        | 0       | 0            |
|              |         | 0 0          | 0                        | 0       | 0            |
|              |         | 0 0          | -21991                   | Ő       | 0<br>0       |
|              |         | 0 0          | 0                        | Ő       | Õ            |
| (            | )       | 0 0          | 0                        | Ō       | 0            |
| (            | )       | 0 0          | 17904                    | 0       | 0            |
| (            | )       | 0 0          | 477348                   | 69577   | 14683        |
| (            | )       | 0 0          | 2498058                  | 0       | 0            |
|              |         | 00           | 73681                    | 0       | 0            |
|              |         | 00           | 46296                    | 0       | 0            |
|              |         | 00           | 190718                   | 0       | 0            |
|              | -       | 0 0          | 162888                   | 0       | 0            |
|              | -       | 0 0          | 24476929                 | 7027314 | 581361       |
|              |         | 0 1401952    | 0                        | 0       | 0            |
|              |         | 0 0          | 0                        | 0       | 0            |
|              | -       | 0 0          | 0                        | 0       | 0            |
|              |         | 0 373800     | 0                        | 0       | 0            |
|              |         | 0 373800     | 0                        | 0       | 0            |
|              |         | 0 1046868    | 0                        | 0       | 0            |
|              |         | 0000<br>0000 | 473738                   | 2129    | 477          |
|              |         | 0 0<br>0 0   | 0                        | 0       | 0            |
|              |         | 0 -66776     | 45765                    | 709     | 358          |
|              |         | 0 -00770     | +5705                    | 0       | 558<br>0     |
|              |         | 0 18296310   | 0                        | 0       | 0            |
| 3517794      |         |              | 0                        | 0       | 0            |
|              |         | 0 533857     | 0                        | 0       | 0            |
|              |         | 0 0          | 0                        | 0       | ů<br>0       |
|              |         | 0 0          | 0                        | 0       | ů<br>0       |
|              |         | 0 0          | 0                        | Ő       | Ő            |
|              |         | 0 0          | 0                        | 0       | 0            |
|              |         | 0 0          | Ő                        | Ő       | Ő            |
| 3517794      | 1306877 | 4 17213540   | 28558861                 | 7099732 | 596880       |
|              |         |              |                          |         |              |

| 3           | 4       | 5                           | 6       |          | Private    |
|-------------|---------|-----------------------------|---------|----------|------------|
| Agriculture | Housing | Environment<br>& sanitation | Welfare | Others   | Investment |
| etc.        |         | & samuation                 |         |          |            |
| 0           | 0       | 0                           | 0       | 0        | 321261     |
| Ő           | Õ       | Ő                           | Õ       | ŏ        | 0          |
| 0           | Ō       | 0                           | Ō       | Ō        | Ō          |
| 0           | Ō       | Ō                           | 0       | 0        | 0          |
| 0           | 0       | 0                           | 0       | 0        | 0          |
| 0           | 0       | 0                           | 0       | 0        | 0          |
| 0           | 0       | 0                           | 0       | 14       | 14         |
| 0           | 0       | 0                           | 0       | 3584     | 346646     |
| 0           | 0       | 0                           | 0       | 5186     | 31804      |
| 0           | 0       | 0                           | 0       | 108757   | 1395775    |
| 0           | 0       | 0                           | 0       | 0        | 0          |
| 0           | 0       | 0                           | 0       | 0        | 0          |
| 0           | 0       | 0                           | 0       | 0        | 0          |
| 0           | 0       | 0                           | 0       | 0        | 0          |
| 0           | 0       | 0                           | 0       | 0        | 0          |
| 0           | 0       | 0                           | 0<br>0  | 0<br>0   | 0          |
| 0<br>0      | 0<br>0  | 0<br>0                      | 0       | 0        | 0          |
| 0           | 0       | 0                           | 0       | 0        | 0          |
| 0           | 0       | 0                           | 0       | 0        | 0          |
| 0           | 0       | 0                           | 0       | -21991   | -130716    |
| ŏ           | ů<br>0  | 0<br>0                      | ů<br>0  | 0        | 0          |
| ŏ           | ŏ       | Ő                           | Ő       | Õ        | 1912       |
| Ő           | Ō       | 0                           | 0       | 17904    | 649677     |
| 16741       | Ō       | Ō                           | Ō       | 376345   | 15878715   |
| 0           | 0       | 0                           | 0       | 2498058  | 14390468   |
| 0           | 0       | 0                           | 0       | 73681    | 5887900    |
| 0           | 0       | 0                           | 0       | 46296    | 2039028    |
| 0           | 0       | 0                           | 0       | 190718   | 1248975    |
| 0           | 0       | 0                           | 0       | 162888   | 768224     |
| 2726941     | 1562169 | 3164321                     | 945298  | 8469523  | 56701427   |
| 0           | 0       | 0                           | 0       | 0        | 0          |
| 0           | 0       | 0                           | 0       | 0        | 0          |
| 0           | 0       | 0                           | 0       | 0        | 0          |
| 0           | 0       | 0                           | 0       | 0        | 0          |
| 0           | 0       | 0                           | 0       | 0        | 0          |
| 0           | 0       | 0                           | 0       | 0        | 0          |
| 548         | 0       | 0                           | 0       | 470581   | 4199882    |
| 0<br>0      | 0<br>0  | 0<br>0                      | 0<br>0  | 0<br>0   | 0          |
| 274         | 0       | 0                           | 0       | 44422    | 588245     |
| 274         | 0       | 0                           | 0       | 44422    | 566245     |
| 0           | 0       | 0                           | 0       | 0        | 0          |
| 0           | 0       | 0                           | 0       | 0        | 0          |
| 0           | 0       | 0                           | 0       | 0        | 0          |
| 0           | 0       | 0                           | 0       | 0        | 0          |
| 0           | 0       | 0                           | 0       | 0        | 0          |
| 0           | 0       | 0                           | Ő       | 0<br>0   | 0          |
| 0           | Ő       | 0                           | ŏ       | 0        | C          |
| 0           | 0       | 0                           | ŏ       | 0        | Ő          |
| -           | -       | -                           | -       |          |            |
| 2744506     | 1562169 | 3164321                     | 945298  | 12445955 | 104319223  |

|            |           |            |              | ······  |          |
|------------|-----------|------------|--------------|---------|----------|
| 1          | 2         | 3          | - 4          | 5       | 6        |
| Housing    | Plant &   | Pollution  | Energy       | R&D     | Increase |
| investment | equipment | prevention | conservation |         | in stock |
| 0          | 104233    | 5107       | 6462         | 1876    | 90639    |
| 0          | 0         | 0          | 0            | 0       | 1618     |
| 0          | 0         | 0          | 0            | 0       | 66790    |
| 0          | 0         | 0          | 0            | 0       | 2825     |
| 0          | 0         | 0          | 0            | 0       | 66494    |
| 0          | 0         | 0          | 0            | 0       | 1217     |
| 0          | 0         | 0          | 0            | 0       | 34726    |
| 0          | 64143     | 3143       | 3976         | 1154    | 29110    |
| 0          | 16035     | 785        | 994          | 288     | 8533     |
| 0          | 833869    | 40859      | 51699        | 15009   | 22645    |
| 0          | 0         | 0          | 0            | 0       | 4505     |
| 0          | 0         | 0          | 0            | 0       | -1405    |
| 0          | 0         | 0          | 0            | 0       | 47056    |
| 0          | 0         | 0          | 0            | 0       | 9358     |
| 0          | 0         | 0          | 0            | 0       | 10536    |
| 0          | 0         | 0          | 0            | 0       | 154763   |
| 0          | 0         | 0          | 0            | 0       | 154963   |
| 0          | 0         | 0          | 0            | 0       | 129765   |
| 0          | 0         | 0          | 0            | 0       | 6985     |
| 0          | 0         | 0          | 0            | 0       | 56413    |
| 0          | 906031    | 44395      | 56173        | 16308   | -5211    |
| 0          | 0         | 0          | 0            | 0       | 133540   |
| 0          | 617384    | 30251      | 38277        | 11112   | 84705    |
| 0          | 697563    | 34180      | 43248        | 12556   | 187540   |
| 0          | 22057450  | 1080814    | 1367561      | 397033  | 629514   |
| 0          | 12067053  | 591285     | 748157       | 217206  | 399817   |
| 0          | 11104895  | 544139     | 688503       | 199887  | 56745    |
| 0          | 1579541   | 77397      | 97931        | 28431   | 249535   |
| 0          | 785761    | 38502      | 48717        | 14143   | 82688    |
| 0          | 48107     | 2357       | 2982         | 865     | 84829    |
| 24139468   | 25865988  | 1267433    | 1603691      | 465586  | 0        |
| 0          | 0         | 0          | 0            | 0       | 0        |
| 0          | 0         | 0          | 0            | 0       | 0        |
| 0          | 0         | 0          | 0            | 0       | 0        |
| 0          | 0         | 0          | 0            | 0       | 0        |
| 0          | 0         | 0          | 0            | 0       | 0        |
| 0          | 0         | 0          | 0            | 0       | 0        |
| 0          | 5676726   | 278159     | 351956       | 102180  | 126385   |
| 0          | 0         | 0          | 0            | 0       | 0        |
| 0          | 0         | 0          | 0            | 0       | 0        |
| 0          | 801797    | 39288      | 49711        | 14432   | 46210    |
| 0          | 0         | 0          | 0            | 0       | 0        |
| 0          | 0         | 0          | 0            | 0       | 0        |
| 0          | 0         | 0          | 0            | 0       | 0        |
| 0          | 0         | 0          | 0            | 0       | 0        |
| 0          | 0         | 0          | 0            | 0       | 0        |
| 0          | 0         | 0          | 0            | 0       | 0        |
| 0          | 0         | 0          | 0            | 0       | 0        |
| 0          | 0         | 0          | 0            | 0       | 0        |
| 0          | 0         | 0          | 0            | 0       | 0        |
| 24139468   | 80179754  | 3928807    | 4971144      | 1443232 | 2735670  |

| ······   |           |           | (uni      | t: million yen, c |           |
|----------|-----------|-----------|-----------|-------------------|-----------|
| 7        |           | 9         | 10        | 11                | 12        |
| Exports  | Final     | Total     | Imports   | Import Tax        | Domestic  |
|          | demand    | demand    |           |                   | output    |
| 53089    | 4980695   | 20519882  | -3215059  | -67130            | 17237693  |
| 7784     | 197989    | 2329908   | -706097   | -1614             | 1622197   |
| 13982    | 79830     | 10310240  | -7697879  | -524591           | 2087770   |
| 151      | 3535      | 1021918   | -900984   | 0                 | 120934    |
| 1        | 66495     | 4985049   | -4469847  | -504690           | 10512     |
| 2        | 12586     | 1058525   | -960041   | -19899            | 78585     |
| 214526   | 27382269  | 41190493  | -2978312  | -436810           | 37775315  |
| 769381   | 9146665   | 15633822  | -1987452  | -190022           | 13456348  |
| 10923    | 136293    | 5409844   | -855808   | -24367            | 4529669   |
| 43834    | 2355440   | 4700514   | -193626   | -799              | 4506089   |
| 268125   | 386465    | 10189525  | -468246   | -2983             | 9718296   |
| 206053   | 174243    | 6167319   | -444871   | -2437             | 5720011   |
| 59438    | 1253497   | 11730475  | -84900    | -4                | 11645571  |
| 47770    | 1279837   | 1714532   | -452172   | -45100            | 1217260   |
| 482155   | 1136655   | 3850148   | -262378   | -16445            | 3571325   |
| 2555688  | 5483472   | 27780380  | -2187652  | -60943            | 25531785  |
| 698112   | 3705063   | 23146245  | -2023883  | -96286            | 21026076  |
| 373430   | 2817725   | 11481357  | -1858700  | -91605            | 9531052   |
| 24487    | 36453     | 1370077   | -15400    | -100              | 1354577   |
| 482234   | 1065365   | 10548587  | -338652   | -4093             | 10205842  |
| 15109    | -175659   | 6812794   | -252574   | -3406             | 6556814   |
| 1704589  | 1838129   | 19899799  | -445545   | -5018             | 19449236  |
| 508316   | 988092    | 9629162   | -2379744  | -18402            | 7231016   |
| 620471   | 2033956   | 16472065  | -288361   | -2841             | 16180863  |
| 5683745  | 22715586  | 32991356  | -1157007  | -3157             | 31831192  |
| 11301049 | 32665147  | 53633306  | -2497139  | -961              | 51135206  |
| 6246287  | 18020748  | 18027631  | -922069   | 0                 | 17105562  |
| 4393746  | 7147064   | 28827029  | -863382   | -511              | 27963136  |
| 1380125  | 3783845   | 5003305   | -624059   | -1683             | 4377563   |
| 572067   | 4507471   | 6783311   | -1392141  | -17180            | 5373990   |
| 0        | 81178356  | 88461108  | 0         | 0                 | 88461108  |
| 10549    | 6661072   | 21635047  | -2379     | 0                 | 21632668  |
| 10112    | 2674555   | 12920458  | -972      | 0                 | 12919486  |
| 289      | 910325    | 1660835   | -695      | 0                 | 1660140   |
| 148      | 1589456   | 3376741   | -712      | 0                 | 3376029   |
| 0        | 628909    | 970798    | 0         | 0                 | 970798    |
| 0        | 1486736   | 3677013   | 0         | 0                 | 3677013   |
| 3000352  | 48783931  | 77456846  | -888914   | 0                 | 76567932  |
| 385409   | 10333780  | 54110884  | -782017   | 0                 | 53328867  |
| 461      | 36681620  | 36681620  | -2221     | 0                 | 36679399  |
| 3686756  | 15519684  | 37459540  | -2609176  | 0                 | 34850364  |
| 32831    | 3188870   | 10347675  | -86206    | 0                 | 10261469  |
| 0        | 19845335  | 20215739  | 0         | 0                 | 20215739  |
| 69433    | 49757442  | 58265188  | -111834   | 0                 | 58153354  |
| 14594    | 548451    | 5318515   | -17959    | 0                 | 5300556   |
| 780871   | 47619147  | 94175027  | -3419052  | 0                 | 90755975  |
| 104      | 1653345   | 5102290   | -504      | 0                 | 5101786   |
| 0        | 123750    | 6682945   | 0         | 0                 | 6682945   |
| 0        | 0         | 1873229   | 0         | 0                 | 1873229   |
| 1188089  | 1188089   | 8029142   | -1426144  | -177              | 6602821   |
| 47291807 | 478319122 | 909689442 | -43123066 | -1682094          | 864884282 |

|          |                                        | US      | Other     | llion yen,curre<br>FC | Russia |
|----------|----------------------------------------|---------|-----------|-----------------------|--------|
|          |                                        | 03      | America   | EC                    | EE     |
| 01       | Agriculture,etc                        | 1155918 | 388143    | 43167                 | 90382  |
| κ<br>) Τ | Forestry                               | 302113  | 23109     | 4658                  | 69653  |
| )2       | -                                      | 247305  | 756779    | 36791                 | 77256  |
| •        | Mining<br>Coal                         | 109673  | 199805    | 424                   | 67301  |
| *        | Crude oil                              | 253     | 176268    | 424                   | 1346   |
| *        | Natural gas                            | 23658   | 0         | Ő                     | 10+0   |
| 03       | Food Processing                        | 834974  | 288487    | 450254                | 67594  |
| 04       | Textiles                               | 84187   | 14782     | 432334                | 7306   |
| 05       | Lumber and wood                        | 218231  | 209862    | 7659                  | 11079  |
| 06       | Furniture, fixtures                    | 34150   | 956       | 47460                 | 1250   |
| 07       | Pulp and paper                         | 215238  | 150319    | 19249                 | 855    |
| *        | Pulp                                   | 207346  | 149519    | 15309                 | 804    |
| 08       | Printing & publishin                   | 34650   | 532       | 37887                 | 257    |
| 09       | Leather & products                     | 19114   | 5283      | 148831                | 1229   |
| 10       | Rubber products                        | 42325   | 2012      | 53514                 | 1223   |
| 10       | Chemicals                              | 658586  | 118915    | 705148                | 23025  |
| 11<br>12 |                                        | 157876  | 20628     | 53639                 | 23023  |
| 12<br>*  | Petroleum & coal<br>Petroleum products | 104098  | 19408     | 25263                 | 2237   |
| *        | Coal products                          | 275     | 115       | 1299                  | 22322  |
| 13       | Nonmetal minerals                      | 66490   | 5861      | 125287                | 541    |
| 13<br>14 | Iron & steel materia                   | 21253   | 51399     | 5542                  | 42504  |
| 14<br>15 | fron & steel product                   | 33688   | 57213     | 20343                 | 21169  |
| 15       | Nonferrous metals                      | 464861  | 428428    | 259447                | 191277 |
| 17       | Fabricated metals                      | 79764   | 2071      | 74991                 | 449    |
| 18       | General machinery                      | 357998  | 10064     | 455520                | 3909   |
| 19       | Electrical machinery                   | 1347279 | 47108     | 288720                | 859    |
| 20       | Motor vehicles                         | 97216   | 3940      | 783455                | 17     |
| 20       | Other transport                        | 625384  | 25856     | 137860                | 44:    |
| 22       | Precision inst.                        | 189451  | 11204     | 115744                | 643    |
| 22       | Manufacturing nec                      | 190886  | 9056      | 262650                | 1104   |
| 23<br>24 | Construction                           | 190000  | 9030<br>0 | 202050                | 1104   |
| 25       | Electricity, gas & water               | ŏ       | ő         | Ő                     | (      |
| 20<br>*  | Electricity                            | Ő       | 0         | Ő                     |        |
| *        | Gas & heat supply                      | ŏ       | Ő         | Ő                     |        |
| *        | Water                                  | ŏ       | ů<br>0    | ů<br>0                |        |
| **       | Sewerage                               | 0<br>0  | 0         | 0                     |        |
| *        | Waste processing                       | 0       | 0         | 0                     |        |
| 26       | Wholesale & retail                     | Ő       | 0         | 0<br>0                |        |
| 20       | Fin., ins., estate                     | 0       | 0         | 0                     |        |
| 28       | Real estate rent                       | 0       | 0         | 0                     |        |
| 20<br>29 |                                        | 0       | 0         | 0                     |        |
| 29<br>30 | Transportation<br>Communication        | 0       | 0         | 0                     |        |
| 30<br>31 | Public admin.                          | 0       | 0         | 0                     |        |
|          |                                        | 0       | 0         | 0                     |        |
| 32<br>*  | Public services                        | 0       | 0         | 0                     |        |
| *        | Research<br>Basair machinan            | 0       | 0         | 0                     |        |
| *        | Repair, machinery                      |         | 0         | 0                     |        |
|          | Repair, auto                           | 0       | -         | 777                   | 1      |
| 33       | Private services                       | 1982    | 3<br>0    | 0                     | 1      |
| 34       | Office supplies                        | 0       | -         | 496699                | 609    |
| 36       | Activities nec                         | 223517  | 9726      | 490099                | 0098   |

## Table 12-3 Import matrix, 1990

|             |              |             | 0.1           |         | Africa       |          |
|-------------|--------------|-------------|---------------|---------|--------------|----------|
| Other       | East<br>Asia | Mid<br>East | Other<br>Asia | Oceania | etc.         | Total    |
| Europe      | 410209       | 7169        | 687831        | 276083  | 136235       | 3210497  |
| 15360<br>31 | 410209       | 96          | 225663        | 32749   | 7124         | 706097   |
| 7926        | 40901        | 3200465     | 1881248       | 918494  | 150773       | 7697879  |
| 7926<br>40  | 420842       | 3200465     | 8076          | 438073  | 36310        | 900984   |
|             |              | 3133133     | 780617        | 35137   | 21116        | 4469847  |
| 0           | 321977       |             | 803341        | 73873   | 1122         | 960041   |
| 0           | 0            | 58047       |               | 319585  | 45784        | 2861860  |
| 51377       | 547065       | 12147       | 244719        |         |              |          |
| 27243       | 1032359      | 13815       | 272763        | 57104   | 6354<br>7984 | 1948247  |
| 1058        | 66707        | 20          | 262779        | 70404   | 7984<br>90   | 855783   |
| 5744        | 54764        | 88          | 48151         | 390     |              | 193043   |
| 41820       | 11061        | 0           | 5144          | 16676   | 7466         | 467828   |
| 41102       | 6602         | 0           | 3574          | 13152   | 7463         | 444871   |
| 3011        | 3576         | 61          | 3327          | 491     | 19           | 83811    |
| 2561        | 124610       | 223         | 23127         | 3062    | 1767         | 329807   |
| 19952       | 102000       | 137         | 40818         | 1407    | 7            | 262323   |
| 183547      | 200344       | 89645       | 123314        | 26536   | 14046        | 2143106  |
| 5954        | 178974       | 949537      | 464819        | 27981   | 30555        | 1912336  |
| 1153        | 120820       | 949367      | 449722        | 24763   | 30237        | 1747153  |
| 2           | 11185        | 0           | 0             | 2224    | 300          | 15400    |
| 9852        | 102618       | 1353        | 17905         | 2639    | 1230         | 338652   |
| 14610       | 42035        | 1011        | 22063         | 16505   | 35652        | 252574   |
| 9988        | 258451       | 10552       | 21484         | 8907    | 3749         | 445544   |
| 204597      | 123238       | 51044       | 173038        | 354606  | 129177       | 2379713  |
| 15433       | 75982        | 273         | 36448         | 1894    | 308          | 287613   |
| 138600      | 117601       | 6633        | 59729         | 6857    | 96           | 1157007  |
| 50668       | 466028       | 6377        | 283398        | 4999    | 44           | 2495480  |
| 31086       | 1297         | 6           | 138           | 592     | 2614         | 920519   |
| 13463       | 38437        | 67          | 7458          | 14321   | 23           | 863312   |
| 128344      | 47809        | 1449        | 45179         | 1842    | 17           | 541682   |
| 44776       | 204718       | 96161       | 210587        | 3101    | 737          | 1033716  |
| 0           | 0            | 0           | 0             | 0       | 0            | 0        |
| 0           | 0            | 0           | 0             | 0       | 0            | 0        |
| 0           | 0            | 0           | 0             | 0       | 0            | 0        |
| 0           | 0            | 0           | 0             | 0       | 0            | 0        |
| 0           | 0            | 0           | 0             | 0       | 0            | 0        |
| 0           | 0            | 0           | 0             | 0       | 0            | 0        |
| 0           | 0            | 0           | 0             | 0       | 0            | 0        |
| 0           | 0            | 0           | 0             | 0       | 0            | 0        |
| 0           | 0            | 0           | 0             | 0       | 0            | 0        |
| 0           | 0            | 0           | 0             | 0       | 0            | 0        |
| Ō           | 0            | 0           | 0             | 0       | 0            | 0        |
| Ō           | Ō            | Ō           | 0             | 0       | 0            | 0        |
| Ő           | Ō            | Ō           | Ō             | Ō       | Ō            | 0        |
| Õ           | Ō            | 0           | Ō             | 0       | Ō            | 0        |
| ŏ           | ŏ            | ů<br>0      | ŏ             | Ő       | Ő            | Ő        |
| ŏ           | ő            | ů<br>0      | ŏ             | ŏ       | ŏ            | Ő        |
| ŏ           | ŏ            | Ő           | Ő             | õ       | Ő            | Ő        |
| 61          | 26           | 0           | 31            | 9       | ő            | 2900     |
| 0           | 20           | Ö           | 0             | 0       | Ő            | 2300     |
| 16710       | 53382        | 8932        | 79102         | 15041   | 1741         | 910948   |
| 1046422     | 4685581      | 4462097     | 5017517       | 2149512 | 583998       | 33811771 |
| 1040422     | 4000001      | 4402031     | 5011511       | 2173312 | 303330       |          |

In providing a detailed breakdown of the final demand items, we have used converters estimated for 1965, provided in Uno [1989], in our standard 36sector classification scheme. Information on the environment-related activities added in the interindustry table is lacking, and no details are provided (zeros are inserted). Nevertheless, the table clearly indicates a different environmental impact of household consumption activites by purpose. Based on the survey on household expenditures, we can obtain the changing structure of household consumption over time, such as increased spending on energy, consumer durables, transportation, etc. It is strongly hoped that expansion of the input-output tables in this direction is pursued by the appropriate statistical offices.

Table 12-3 is the import matrix for 1990. The export matrix is also available but is omitted here because, in the Japanese case at least, import of raw materials is more directly related to the environment than her export, which largely consists of manufactured goods. The table shows the country of origin of Japanese imports. The table relates to tradable goods; nontradable activities (services) have null values. This table corresponds to "imports" in table 12-2, the difference being the noninclusion of service imports in table 12-3.

The accounting framework includes the portion which relates to the current input-output relation, the only modification being the explicit inclusion of environment-related activities. We can apply a standard I-O analysis regarding this part of the framework. It can also be used in conjunction with the matrix of fixed discharge coefficients dij computed as Zij/Xj for the base year, where Z is a vector of residuals with elements Zi (*i*: type of residual) and Xj, gross production of industry j. Thus, the framework possesses a theoretical structure which is widely used in the recent literature [Kneese and Sweeney, 1993].

### 12.4 Reconciliation tables, 1970 and 1990

In earlier chapters, data have been collected for the 1970-1990 period in numerous tables, of which 1970 and 1990 data were fitted into the reconciliation tables presented here.

Environmental accounting has emerged as an important tool in describing the interaction between human activities and the environment. Rather than focusing on a particular aspect of the environment, this approach attempts to fit various aspects into a statistical accounting framework in a consistent manner, taking the national accounts as a starting point. Economic development has traditionally been measured based on national accounts. Value added, national income and expenditures are well-established concepts in this respect. The usefulness of the national accounts lies in the fact that the concepts are geared toward market transactions.[5] The main thrust of the accounts is placed on the flow of goods and services in the current period.[6] In contrast, the statistical system to describe the interaction between the environment, economy, technology, and society has to be more complex. Thus, there is a need to construct a concise table which contains much of the information into a single, consistent framework. This is the purpose of presenting a reconciliation table.

The basic format of the reconciliation table is similar to the scheme shown in figure 12-1. However, for the purpose of presentation, the table here is somewhat like a transpose of the diagram, where current activities are placed vertically in the center of the diagram.

Table 12-4, which shows the empirical application of SEEDS, consists of four parts, namely, (a) supply of goods and services, (b) demand for goods and services and accumulation, (c) technology, and (d) measures of the quality of life.

The sources of data are listed in parentheses immediately after the item named. T refers to the table numbers in preceding chapters. Other abbreviations are listed at the end of the table. The 1990 data also show deflators, which were employed in obtaining 1970 constant price figures from 1990 current price data. Although for some purposes the current price figures are desirable, constant price figures are more useful in environmental analysis simply because one would have to deal with physical quantities at the same time. At any rate, the 1990 price figures can be calculated, if required, by the use of deflators. Deflators are also useful in estimating the cost of the environmental preservation efforts.

The first part is directly derived from the input-output framework. Actually, the 1990 data are taken from tables 12-1 and 12-2, showing only intermediate demand, final demand, imports, and domestic output for each sector. In Japan, the input-output tables have been compiled since the 1950s at five-year intervals with varying sectoral disaggregation.[7] The tables with comparable

| 1970                |                                          |                                                       |                 | (unit:         | bil. yen, 1    | 970 prices)      |
|---------------------|------------------------------------------|-------------------------------------------------------|-----------------|----------------|----------------|------------------|
| a. Supply o         | of goods and services                    |                                                       |                 | •              |                |                  |
| Modified            | Industrial                               | Sources                                               | Inter-          | Final          | Imports        | Domestic         |
| JSIC                | sectors                                  |                                                       | mediate         | demand         |                | output           |
| code                |                                          |                                                       | demand          |                |                | •                |
|                     | Total                                    | (1-0)                                                 | 161657.5        | 84307.0        | -7725.3        | 161657.5         |
| (01) 01&            | Agriculture, etc.                        | (")                                                   | 6811.9          | 1986.6         | -1638.0        | 7113.5           |
| `´ #                | Forestry                                 | (")                                                   | 1557.0          | 29.1           | -509.0         | 1076.9           |
| (02) 10&            | Mining                                   | (")                                                   | 3156.4          | 68.4           | -2146.0        | 959.2            |
| `´´#                | Coal                                     | (")                                                   | 495.0           | 20.4           | -363.8         | 151.7            |
| #                   | Petroleum                                | (")                                                   | 919.0           | 8.8            | -804.8         | 64               |
| #                   | Natural gas                              | ( " )                                                 | 24.6            | 0.9            | -8.3           | 17.2             |
| (03) 18             | Food processing                          | č" Ś                                                  | 2990.1          | 7166.7         | -401 3         | 9620.5           |
| (04) 20&            | Textiles                                 | č" Ś                                                  | 2965.5          | 3342.8         | -152.9         | 6134.5           |
| (05) 22             | Lumber & wood                            | č" Ś                                                  | 2316.1          | 99.5           | -108.5         | 2304.3           |
| (06) 23             | Furniture, fixtures                      | č" ś                                                  | 567.6           | 577.2          | -2.2           | 1142.1           |
| (07) 24             | Pulp and paper                           | <u>č " Ś</u>                                          | 2566.9          | 132.6          | -74.6          | 2621.1           |
| `´#                 | Pulp                                     | č " Ś                                                 | 555.9           | -521.0         | -61.5          | 439.6            |
| (08) 25             | Printing & publishing                    | <u>č</u> " ś                                          | 1447.3          | 431 0          | -25.9          | 1852.4           |
| (09) 29             | Leather & products                       | <u>č</u> " ś                                          | 103.5           | 98.5           | -11.0          | 189 3            |
| (10) 28             | Rubber products                          | <u>č</u> " ś                                          | 493 8           | 252.0          | -5 5           | 739.7            |
| (11) 26             | Chemicals                                | 2" 3                                                  | 5099.1          | 1454.1         | -406.3         | 6110 9           |
| (12) 27             | Petroleum & coal prod.                   | 2" 3                                                  | 2834.1          | 465.5          | -265.0         | 3018.7           |
| (, #                | Petroleum products                       | 2" 3                                                  | 2222.3          | 429.5          | -263.1         | 2372.7           |
| #                   | Coal products                            | 2" 3                                                  | 611.8           | 36.0           | -1.8           | 646.0            |
| (13) 30             | Nonmetal minerals                        | 2" 3                                                  | 2420.3          | 269.9          | -18.3          | 2669.8           |
| (14) 31 A           | Iron & steel material                    | <u>}</u> "                                            | 4256.2          | -35.7          | -217.4         | 4001.7           |
| (15) 31 B           | Iron & steel products                    | <u>}</u> " {                                          | 6270.6          | 1020.3         | -217.4         | 7283.5           |
| (16) 32             | Nonferrous metals                        | <u>}</u> " {                                          | 2271.4          | -17.6          | -390.5         | 1856.7           |
| (17) 33             | Fabricated metals                        | 2" \                                                  | 2718.6          | 1086.8         | -25.8          | 3776.5           |
| (18) 34             | General machinery                        | 2" 3                                                  | 3603.5          | 5096.6         | -343.9         | 8323.6           |
| (19) 35             | Electrical machinery                     | 2" 3                                                  | 3512.5          | 4394.9         | -245.9         | 7632.3           |
| (20) 36M            | Motor vehicles                           | 2" 3                                                  | 1478.4          | 2990.5         | -27 7          | 4430.7           |
| (21) 36 S           | Other trans. equip.                      | 2" 3                                                  | 1381.4          | 1975.5         | -145.0         | 3211.6           |
| (22) 37             | Precision instrument                     | 2" 3                                                  | 477.8           | 746.9          | -107 5         | 1103.4           |
| (23) 38&            | Manufacturing nec                        | 2" 3                                                  | 1321.5          | 1001.9         | -89.8          | 2219 6           |
| (24) 15             | Construction                             | 2" 3                                                  | 1343.3          | 14915.4        | 0.0            | 16258.7          |
| (25) 70             | Elec., gas, & water                      | <u>}</u> " {                                          | 1773.0          | 854.9          | -0.0           | 2627.9           |
| (20).0              | Electricity                              | $\left\{ \begin{array}{c} \\ \\ \end{array} \right\}$ | 1440.0          | 416.9          | -0.0           | 1856.9           |
| ##                  | Nuclear                                  |                                                       | n.a.            | n.a.           | n.a.           | n.a.             |
| #                   | Gas and heat supply                      | (")                                                   | 120.0           | 122.5          | 0.0            | 242.6            |
| #                   | Water                                    | 2" (                                                  | 178.7           | 132.8          | 0.0            | 311.5            |
| ##                  | Sewerage                                 | $\left( \begin{array}{c} \\ \\ \end{array} \right)$   | 0.0             | 26.5           | 0.0            | 26.5             |
| #                   | Waste processing                         | <u>}</u>                                              | 127.5           | 212.0          | 0.0            | 339.5            |
| (26) 40             | Wholesale & retail                       | $\sum_{n}$                                            | 5947.5          | 8461.2         | -119 1         | 14289.6          |
| (27) 50&            | Fin., ins., estate                       | $\sum_{n}$                                            | 3177.7          | 6574.4         | -20.8          | 9731.3           |
| (28) 50R            | Real estate rent                         | <u>}</u> " {                                          | 1062.1          | 30.0           | -20.8          | 1083.2           |
| (29) 60T            | Transportation                           | $\sum_{n}$                                            | 2992.2          | 3588.8         | -396.3         |                  |
| (30) 60C            | Communication                            | $\binom{1}{2}$                                        | 2992.2<br>974.1 | 290.7          | -396.3<br>-5.7 | 6184.7<br>1259.2 |
| (30) 800            | Public administration                    | ()                                                    | 974.1           | 290.7          | -5.7           | 2313.1           |
| (31) 37<br>(32) 75P | Public administration<br>Public services | $\sum_{n}$                                            | 149.8           |                |                |                  |
|                     | Research                                 | $\begin{pmatrix} \\ \\ \\ \end{pmatrix}$              | 149.8<br>34.8   | 5341 5<br>85.7 | 0.0            | 5491.4           |
| #<br>(33) 75M       | Private services                         | \                                                     | 34.8<br>2574.8  | 6772.1         | 0.0            | 120.5            |
| (34)                | Office supplies                          | ()                                                    | 2574.8<br>814.2 |                | -93.7          | 9252.8           |
| (34)                | ••                                       | ()                                                    |                 | 24.3           | 0.0            | 838.6            |
| (35)<br>(36)        | Packing materials<br>Activities nec      | $\binom{\circ}{(")}$                                  | 411.3           | 0.7<br>522 5   | 0.0            | 412 0            |
|                     | Activities nec                           |                                                       | 3287.4          | 533.5          | -223.2         | 3597.6           |

Table 12-4 Empirical application of SEEDS (social, economic, and environmental data set), reconciliation table

| 1990 | 1 | 9 | 9 | 0 |
|------|---|---|---|---|
|------|---|---|---|---|

(unit: bil. yen, 1970 prices)

| 1990      |                                                                                                                            |          |          | (unit   | t: bil. yen, 1 | 970 prices) |
|-----------|----------------------------------------------------------------------------------------------------------------------------|----------|----------|---------|----------------|-------------|
|           | of goods and services                                                                                                      |          |          |         |                |             |
| Modified  | Industrial                                                                                                                 | Inter-   | Final    | Imports | Domestic       | Deflators   |
| JSIC      | sectors                                                                                                                    | mediate  | demand   |         | output         | ('70        |
| code      |                                                                                                                            | demand   |          |         |                | =1.00)      |
|           | Total                                                                                                                      | 360714.1 | 199490.8 | 17985.1 | 360714.0       | 2.3977      |
| (01) 01&  | Agriculture, etc.                                                                                                          | 6886.9   | 2207.4   | -1424.8 | 7639.7         | 2.2563      |
| #         | Forestry                                                                                                                   | 659.5    | 61.2     | -218.4  | 501.7          | 3.2326      |
| (02) 10&  | Mining                                                                                                                     | 4373.0   | 34.1     | -3290.5 | 892.4          | 2.3394      |
| #         | Coal                                                                                                                       | 360.9    | 1.2      | -319.3  | 42.8           | 2.8208      |
| #         | Petroleum                                                                                                                  | 2414.9   | 32.6     | -2194.3 | 5.1            | 2.0367      |
| #         | Natural gas                                                                                                                | 406.4    | 4.8      | -373.0  | 30.5           | 2.5733      |
| (03) 18   | Food processing                                                                                                            | 6036.2   | 11969.8  | -1301.9 | 16513.0        | 2.2876      |
| (04) 20&  | Textiles                                                                                                                   | 3362.9   | 4741.6   | -1030.2 | 6975.7         | 1.9290      |
| (05) 22   | Lumber & wood                                                                                                              | 2436.0   | 62.9     | -395.3  | 2092.3         | 2.1648      |
| (06) 23   | Furniture, fixtures                                                                                                        | 956.8    | 961.0    | -78.9   | 1838.5         | 2.4508      |
| (07) 24   | Pulp and paper                                                                                                             | 5149.1   | 202.9    | -245.9  | 5104.6         | 1.9038      |
| `´ #      | Pulp                                                                                                                       | 2926.6   | 85.0     | -217.2  | 2793.3         | 2.0477      |
| (08) 25   | Printing & publishing                                                                                                      | 3584.9   | 428.8    | -29.0   | 3984.7         | 2.9225      |
| (09) 29   | Leather & products                                                                                                         | 188.8    | 555.9    | -196.4  | 528.7          | 2.3019      |
| (10) 28   | Rubber products                                                                                                            | 1226.9   | 513.9    | -118.6  | 1614.8         | 2.2115      |
| (11) 26   | Chemicals                                                                                                                  | 14191.9  | 3490.1   | -1392.4 | 16250.8        | 1.5711      |
| (12) 27   | Petroleum & coal proc                                                                                                      | 6787.8   | 1293.6   | -706.6  | 7341.2         | 2.8641      |
| (,        | Petroluem products                                                                                                         | 2924.2   | 951.0    | -627.3  | 3216.9         | 2.9627      |
| #         | Coal products                                                                                                              | 497.6    | 13.5     | -5.7    | 505.4          | 2.6796      |
| (13) 30   | Nonmetal minerals                                                                                                          | 3885.7   | 424 2    | -138.7  | 4181 8         | 2.4405      |
| (14) 31A  | Iron & steel material                                                                                                      | 4081.0   | 102.5    | -147.4  | 3829.0         | 1.7124      |
| (15) 31B  | Iron & steel prod.                                                                                                         | 10595 1  | 1078.2   | -261.3  | 11409.1        | 1.7047      |
| (16) $32$ | Nonferrous metals                                                                                                          | 6265.6   | 716.4    | -1725.5 | 5243.2         | 1.3791      |
| (17) 33   | Fabricated metals                                                                                                          | 6997.9   | 985 7    | -139 7  | 7842.5         | 2.0632      |
| (18) 34   | General machinery                                                                                                          | 6586.0   | 11693.8  | -555.4  | 17722.9        | 2.0839      |
| (10) 34   | Electrical machinery                                                                                                       | 25944.1  | 40417.0  | -3089.7 | 63270.4        | 0 8082      |
| (20) 36M  | Motor vehicles                                                                                                             | 3.7      | 9814.1   | -502.1  | 9315.7         | 1.8362      |
| (21) 365  | Other trans. equip.                                                                                                        | 10610.5  | 2731 9   | -324.2  | 13017.9        | 2.6614      |
| (22) 37   | Precision instrument                                                                                                       | 977.2    | 3721,2   | -500.0  | 3508.1         | 1.2478      |
| (22) 38&  | Manufacturing nec                                                                                                          | 963.8    | 1908.9   | -589.5  | 2275.9         | 2 3612      |
| (24) 15   | Construction                                                                                                               | 2596.8   | 28949.8  | -305.5  | 31547.0        | 2.8041      |
| (25) 70   | Elec., gas, & water                                                                                                        | 4291.1   | 1908.8   | -0.6    | 6199.3         | 3.4895      |
| • •       | Electricity                                                                                                                | 5200.1   | 1357.4   | -0.0    | 6557.0         | 1.9703      |
| ##        |                                                                                                                            | 5200.1   | 1557.4   |         |                |             |
| ##        | Nuclear<br>Consideration of the second | 350.6    | 405.0    | 0.0     | 1668.8         | 1.9703      |
| #         | Gas and heat supply                                                                                                        |          | 425.2    | -0.2    | 775.6          | 2.1404      |
| "#        | Water                                                                                                                      | 743.2    | 660.9    | -0.2    | 1403.9         | 2.4047      |
| ##        | Sewerage                                                                                                                   | 117.8    | 216.8    | 0.0     | 334.7          | 2.9001      |
| #         | Waste processing                                                                                                           | 471.3    | 319.9    | 0.0     | 791.3          | 4.6462      |
| (26) 40   | Wholesale & retail                                                                                                         | 14107.2  | 24001.9  | -437.3  | 37671.7        | 2.0325      |
| (27) 50&  | Fin., ins., & estate                                                                                                       | 15355.5  | 3624.7   | -274.2  | 18705.9        | 2.8509      |
| (28) 50R  | Real estate rent                                                                                                           | 0.0      | 11846.1  | -0.7    | 11845.4        | 3.0965      |
| (29) 60T  | Transportation                                                                                                             | 6957.9   | 4921.8   | -827.4  | 11052.3        | 3.1532      |
| (30) 60C  | Communication                                                                                                              | 3738.6   | 1665.3   | -45.0   | 5358.9         | 1.9148      |
| (31) 97   | Public administration                                                                                                      | 89.9     | 4818.8   | 0.0     | 4908.7         | 4.1183      |
| (32) 75P  | Public services                                                                                                            | 2142.0   | 12527.6  | -28.1   | 14641.5        | 3.9718      |
| #         | Research                                                                                                                   | 1536.1   | 176.6    | -5.7    | 1707.0         | 3.1051      |
| (33)75M   | Private services                                                                                                           | 11863.4  | 12134.4  | -871.2  | 23126.6        | 3.9243      |
| (34)      | Office supplies                                                                                                            | 1088.4   | 0.0      | 0.0     | 1088.4         | 1.7210      |
| (35)      | Packing materials                                                                                                          |          |          |         |                |             |
| (36)      | Activities nec                                                                                                             | 2853.1   | 495.4    | -594.7  | 2753.8         | 2.3977      |
|           |                                                                                                                            |          |          |         |                |             |

| Item                       | Sources | ulation of non<br>Opening | Current  | Adjust- | Closing   |
|----------------------------|---------|---------------------------|----------|---------|-----------|
|                            |         | stock                     | expendi- | ment    | stock     |
|                            |         |                           | tures    |         |           |
| GDP                        | (SNA)   |                           | 73344.9  |         |           |
| 1.Consumption: government  | (SNA)   |                           | 5647.0   |         |           |
| General public services    | `(")    |                           | 1556.0   |         |           |
| Defense                    | (")     |                           | 560.2    |         |           |
| Education                  | č" Ś    |                           | 2077.9   |         |           |
| Health                     | (")     |                           | 255.9    |         |           |
| Social security, welfare   | (")     |                           | 219.3    |         |           |
| Housing & community        | ( " )   |                           | 216.5    |         |           |
| Other community services   | (")     |                           | 73.5     |         |           |
| Economic services          | (")     |                           | 675.4    |         |           |
| Other purposes             | (")     |                           | 12.4     |         |           |
| 2.Consumption: Non-profit  | (SNA)   |                           | 437.8    |         |           |
| Education                  | `(")    |                           | 121.5    |         |           |
| Health                     | ( " )   |                           | 87.1     |         |           |
| Other purposes             | (")     |                           | 229.2    |         |           |
| 3.Consumption: private     | (SNA)   |                           | 37807.2  |         |           |
| Food & beverages           | `(" Ś   |                           | 11502.6  |         |           |
| Clothing & footwear        | č" ś    |                           | 2923.9   |         |           |
| Gross rent, fuel & power   | č" ś    |                           | 6133.8   |         |           |
| # imputed rents (dup.)     | č" Ś    |                           | n.a.     |         |           |
| Furniture, equipment       | č" Ś    |                           | 2893.2   |         |           |
| Medical & health           | č" Ś    |                           | 2979.0   |         |           |
| Trans. & communication     | (" )    |                           | 2934.5   |         |           |
| Recreation, education      | ( " )   |                           | 3484.3   |         |           |
| Miscellaneous              | ( " )   |                           | 4955.7   |         |           |
| Durables (dup.)            | (SNA)   |                           | 2349.9g  |         |           |
| Durables (dup.)            | (SNA)   | 8731.8n                   | 2175.9n  | -1143 0 | 9764.7r   |
| # Furniture, carpets       | `(")    | 2682.3n                   | 331.1n   | 29.4    | 3042.8n   |
| # Household appliances     | (")     | 1996.6n                   | 618.1n   | -415.6  | 2199.1n   |
| # Trans. equipment         | (")     | 1976.1n                   | 360.2n   | -230.3  | 2106.0n   |
| # Radio and TV sets        | (")     | 1553.3n                   | 781.5n   | -524.3  | 1810.5n   |
| # Cameras, musical inst.   | (")     | 523.5n                    | 84.9n    | -2.2    | 606.2r    |
| 4. Fixed capital formation | (SNA)   |                           | 26043.2g |         |           |
| Reproducible tangibles     | (SNA)   | 78361.9n                  | 15286.4n | 4469.1  | 98117.4r  |
| Dwellings                  | · (")   | 16169.5n                  | 3903 8n  | 605.1   | 20378.4n  |
| Buildings                  | (")     | 19484.1n                  | 2632.5n  | 1514.7  | 23631.3r  |
| Other structures           | ( " )   | 23232.6n                  | 3595.9n  | 1583.6  | 28412.1r  |
| Transportation equipment   | (")     | 3437.2n                   | 1561.4n  | -224.8  | 4773.8n   |
| Machinery & equipment      | ( " )   | 16038.3n                  | 3592.7n  | 991.0   | 20622.0r  |
| Subtraction item           | (")     |                           |          |         |           |
| Nonreproducible tangibles  | (SNA)   | 162223.4n                 | 909.2n   | 29311.5 | 192444.1r |
| Land                       | `("Ś    | 151873.7n                 | 757.5n   | 28899.6 | 181530.8r |
| # Residential              | ( " )   | 114239.3n                 | 448.0n   | 23871.2 | 138558.5n |
| # Agricultural             | ( " )   | 31223.1n                  | 309.5n   | 4084.1  | 35616.7n  |
| # Others                   | ( " )   | 6411.3n                   | 0.0n     | 944.3   | 7355.6r   |
| Forests                    | ( " )   | 9681.6n                   | 98.8n    | 414.0   | 10194.4r  |
| # Forest land              | (")     | 2917.6n                   | 98.8n    | 180.2   | 3196.6r   |
| # Trees                    | (")     | 6764.0n                   | 0.0n     | 233.8   | 6997.8r   |
| Subsoil resources          | (")     | 381.0n                    | 52.9n    | -54 3   | 379.6n    |
| Fishing ground             | (")     | 287.1n                    | 0.0n     | 52.2    | 339.3r    |

| ltem                       | Opening   | nulation of 1<br>Current | Adjust- | Closing   | Deflato  |
|----------------------------|-----------|--------------------------|---------|-----------|----------|
|                            | stock     | expendi-                 | ment    | stock     | Denato   |
|                            | Stock     | tures                    | ment    | btben     | ('70=1.0 |
| GDP                        |           | 170373.7                 |         |           | 2.491    |
| 1.Consumption: government  |           | 11390.7                  |         |           | 3.469    |
| General public services    |           | 3059.2                   |         |           | 0.101    |
| Defense                    |           | 1136.8                   |         |           |          |
| Education                  |           | 3946.7                   |         |           |          |
| Health                     |           | 487.4                    |         |           |          |
| Social security, welfare   |           | 673.9                    |         |           |          |
| Housing & community        |           | 700.6                    |         |           |          |
| Other community services   |           | 294.7                    |         |           |          |
| Economic services          |           | 1035.2                   |         |           |          |
| Other purposes             |           | 56.0                     |         |           |          |
| 2.Consumption: Non-profit  |           | 837.2                    |         |           | 3.80     |
| Education                  |           | 189.4                    |         |           | 2.00     |
| Health                     |           | -28.9                    |         |           |          |
| Other purposes             |           | 676 7                    |         |           |          |
| B.Consumption: private     |           | 85276.2                  |         |           | 2 78     |
| Food & beverages           |           | 18392.1                  |         |           | 2.65     |
| Clothing & footwear        |           | 5178.2                   |         |           | 2.95     |
| Gross rent, fuel & power   |           | 16165.6                  |         |           | 2 84     |
| # imputed rents (dup.)     |           | 11136.0                  |         |           | 2.84     |
| Furniture, equipment       |           | 7012.8                   |         |           | 2.09     |
| Medical & health           |           | 9401.8                   |         |           | 2.70     |
| Trans & communication      |           | 8900.5                   |         |           | 2.73     |
| Recreation, education      |           | 9917.9                   |         |           | 2.40     |
| Miscellaneous              |           | 12715.2                  |         |           | 3.05     |
| Durables (dup.)            |           | 13942.7g                 |         |           | 1.20     |
| Durables (dup.)            | 54551.4n  | 12325.8n                 | -7834.0 | 59043.2n  |          |
| # Furniture, carpets       | 13557.1n  | 1829.0n                  | -493.3  | 14892.8n  |          |
| # Household appliances     | 9774.4n   | 2606.0n                  | -2597.9 | 9782.5n   |          |
| # Trans. equipment         | 20225.0n  | 4776.4n                  | -2395.0 | 22606.4n  |          |
| # Radio and TV sets        | 6626.3n   | 2322.5n                  | -1975.3 | 6973.5n   |          |
| # Cameras, musical inst.   | 4368.5n   | 791.8n                   | -372.5  | 4787 8n   |          |
| 4. Fixed capital formation |           | 62312.6g                 |         |           | 2 19     |
| Reproducible tangibles     | 404980.8n | 31640.7n                 | 6461.5  | 443083.0n | 2.19     |
| Dwellings                  | 72333.2n  | 5328.9n                  | 624.5   | 78286 6n  | 2 78     |
| Buildings                  | 66711.1n  | 4241.7n                  | 2321.6  | 73274.4n  | 2.93     |
| Other structures           | 106620.8n | 5892.7n                  | 3842.8  | 116356.3n | 3 09     |
| Trans.equipment            | 21436.1n  | 4603.6n                  | -1173.1 | 24866.6n  | 1.30     |
| Machinery & equipment      | 119870.8n | 17779.5n                 | -4307.3 | 133343.0n | 1.13     |
| Subtraction item           | 625.6n    | 983.4n                   | -68.2   | 1540.8n   | 2 19     |
| Nonreproducible tangibles  | 733011.7n | 1490.7n                  | 77695.7 | 812198.1n | 3 00     |
| Land                       | 715887.2n | 1216.8n                  | 77168.9 | 794272.9n | 2.50     |
| # Residential              | 608067.6n | 423.4n                   | 66855.2 | 675346.2n |          |
| # Agricultural             | 62878.7n  | 793.4n                   | 2807.9  | 66480.0n  |          |
| # Others                   | 44940.7n  | 0.0n                     | 7505 9  | 52446.6n  |          |
| Forests                    | 16589.6n  | 243 7n                   | 610.9   | 17414.3n  |          |
| # Forest land              | 4055.4n   | 243.7n                   | -167.9  | 4131.2n   |          |
| # Trees                    | 12534.2n  | 0.0n                     | 748.9   | 13283.1n  |          |
| Subsoil resources          | 287.5n    | 30 0n                    | -56.5   | 261.0n    |          |
| Fishing ground             | 247 3n    | 0.0n                     | 2.4     | 249 7n    |          |

|                               |             | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · |       |           |
|-------------------------------|-------------|---------------------------------------|---------------------------------------|-------|-----------|
| 5.Inventory                   | (SNA)       | 20043 2n                              | 25/3.2n                               | 207 4 | 22823.8n  |
| 6.Exports                     | (SNA, I-O)i |                                       | 8272.7                                |       |           |
| 7.Imports                     | (SNA, I-O)i |                                       | 7488.5                                |       |           |
| 8.Reproducible tangibles      |             | • F****                               |                                       |       |           |
| Private                       | (SNA, PBC)  | 49954 5n                              | 20152 7g                              |       | 64230.4n  |
| # Dwellings                   | (SNA)       |                                       | 4746.4g                               |       | 0.2000.00 |
| # Plant and equipment         | (SNA. PBC)i |                                       | 15406.3g                              |       |           |
| 9.Reproducible tangibles      |             |                                       |                                       |       |           |
| Government                    | (SNA)       | 28407 4n                              | 5890.5g                               |       | 33887.0n  |
| Social capital stock          | (SCS, MHA)  | 40983.3g                              | 6171.7g                               |       | 44968.5g  |
| # Trans. & communication      |             | _                                     | -                                     |       | -         |
| (1) Roads                     | (")         | 7425.2g                               | 1262.7g                               |       | 8334.0g   |
| (2) Harbors                   | (")         | 1366.8g                               | 180.6g                                |       | 1531.2g   |
| ( 3) Airports                 | (")         | 98.3g                                 | 32.1g                                 | _     | 127.9g    |
| (4) National railways         | (")         | 4883.4g                               | 615.7g                                |       | 5118.0g   |
| (5) Railway Const. Corp       | (")         | 213.3g                                | 66.4g                                 | _     | 279.6g    |
| ( 6) Subways                  | (")         | 807.1g                                | 114.1g                                | _     | 927.6g    |
| (7) Telephone & Telegraph     | (")         | 4474.5g                               | 697.8g                                |       | 5087.6g   |
| # Livelihood-related          |             |                                       |                                       |       |           |
| (8) Public housing            | (")         | 2320.2g                               | 600.0g                                |       | 2591.5g   |
| (9) Sewerage                  | (")         | 1412.4g                               | 228.7g                                |       | 1599.9g   |
| (10) Waste disposal           | (")         | 249.1g                                | 31.1g                                 |       | 277.2g    |
| (11) Water supply             | (")         | 2058.3g                               | 230.6g                                |       | 2279.3g   |
| (12) City parks               | (")         | 329.5g                                | 46 4g                                 | —     | 358.0g    |
| # Education                   |             |                                       |                                       |       |           |
| (13) Schools & cultural       | (")         | 3620.3g                               | 554.7g                                |       | 3800.5g   |
| # Land preservation           |             |                                       |                                       |       |           |
| (14) River improvement        | (")         | 3432.9g                               | 376.7g                                |       | 3733.1g   |
| (15) Forestry conservation    | (")<br>(")  | 709.0g                                | 53 9g                                 |       | 763.1g    |
| (16) Coastal preservation     | (")         | 538.1g                                | 46.1g                                 | _     | 574.0g    |
| # Agriculture, forestry, etc. |             |                                       |                                       |       |           |
| (17) Agriculture              | (")         | 4140.9g                               | 369.5g                                |       | 4498.8g   |
| (18) Forestry                 | (")         | 729.3g                                | 55.6g                                 |       | 771.3g    |
| (19) Fisheries                | (")         | 503.0g                                | 39.8g                                 |       | 536.6g    |
| # Others                      |             |                                       |                                       |       |           |
| (20) National forest          | (")         | 1173.7g                               | 59.1g                                 | _     | 1225.1g   |
| (21) Industrial water supply  | (")         | 355.1g                                | 43.0g                                 |       | 397.1g    |

| 5.Inventory                   | 45896.2n  | 1466.1n      | 1201.3   | 48563.6   | 1 5837 |
|-------------------------------|-----------|--------------|----------|-----------|--------|
| 6. Exports                    |           | 43253.9      |          |           | 1.4898 |
| 7.Imports                     |           | 25924 4      |          |           | 2.255  |
| 8.Reproducible tangibles      |           |              |          |           |        |
| # Private                     | 278478.6n | 52194.6g     | -24061.8 | 306611.4n | 2.0812 |
| ## Dwellings                  |           | 8899.2g      |          |           | 2.833  |
| ## Plant and equipment        |           | 44411.9g     |          |           | 1.878  |
| 9.Reproducible tangibles      |           |              |          |           |        |
| # Government                  | 117369.0n | 10672.4g     |          | 126884.2n | 2.633  |
| Social capital stock          | 176590.7g | 13479.9g     | _        | 190070.6g |        |
| # Trans. & communication      |           |              |          | -         |        |
| (1) Roads                     | 41324 1g  | 3605.8g      |          | 44929.9g  |        |
| ( 2) Harbors                  | 5497.5g   | 282.9g       |          | 5790.4g   |        |
| () 3) Airports                | 1212.2g   | 118.3g       | _        | 1330.5g   |        |
| (4) National railways         | -         | (privatized) |          | -         |        |
| (5) Railway Const. Corp.      | 2592.7g   | 92.8g        | _        | 2685.5g   |        |
| ( 6) Subways                  | 3720.1g   | 118.3g       | _        | 3838.4g   |        |
| (7) Telephone & Telegraph     | -         | (privatized) |          | Ū.        |        |
| # Livelihood-related          |           |              |          |           |        |
| (8) Public housing            | 8551.2g   | 737.5g       |          | 9288.7g   |        |
| ( 9) Sewerage                 | 14559.6g  | 1096.2g      |          | 15655.0g  |        |
| (10) Waste disposal           | 1933.9g   | 278.9g       |          | 2212.8g   |        |
| (11) Water supply             | 9333.1g   | 520.4g       | _        | 9853.5g   |        |
| (12) City parks               |           |              |          | 2938.2g   |        |
| # Education                   |           |              |          | -         |        |
| (13) Schools & cultural       | 16566.0g  | 1153.6g      |          | 17719.6g  |        |
| # Land preservation           |           |              |          | -         |        |
| (14) River improvement        | 16998.7g  | 1154.8g      |          | 18153.5g  |        |
| (15) Forestry conservation }  | -         | Ĩ            | }        | •         |        |
| (16) Coastal preservation     | 1756.5g   | 60.1g        |          | 1817.6g   |        |
| # Agriculture, forestry, etc. | -         | -            |          | •         |        |
| (17) Agriculture              | 16834.1g  | 984.8g       |          | 17819.0g  |        |
| (18) Forestry                 | 2488.7g   | 145.6g       |          | 2634.3g   |        |
| (19) Fisheries                | 2814.1g   | 164.6g       |          | 2978 8g   |        |
| ¥ Óthers                      | •         | · ·          |          | U         |        |
| (20) National forest          |           |              |          |           |        |
| (21) Industrial water supply  | 1255.8g   | 36.6g        |          | 1292.4g   |        |

| c. Technology                                                            | 6          | 0       | <u> </u>          | <u> </u>     |        |
|--------------------------------------------------------------------------|------------|---------|-------------------|--------------|--------|
| ltem                                                                     | Sources    | Opening | Current           | Closing      |        |
|                                                                          |            | stock   | expendi-          | stock        |        |
| 1 Dellution environtion                                                  | (76.1)     |         | tures             |              |        |
| <ol> <li>Pollution prevention</li> <li># Heavy oil desulphur.</li> </ol> | (T6-1)     | 24.6    | 193.0g            |              |        |
| # Flue gas desulphur.                                                    | (T6-1,-4)  | 24.6    | 9.9g              |              | 34.    |
|                                                                          | (T6-1,-5)  | 1.3     | 3.6g              | _            | 4.9    |
| # Flue gas NOX removal                                                   | (T6-1,-6)  |         |                   |              |        |
| # Ind'I water processing                                                 | (T6-1,-7)  | 10.0    | 30.0g             |              | 39.    |
| # Sewerage treatment                                                     | (T6-1,-7)  | 36.3    | 17.1g             |              | 53.4   |
| # Municipal waste                                                        | (T6-1,-9)  | 12.8    | 16.5g             |              | 29.3   |
| # Industrial waste                                                       | (T6-1,10)  |         |                   |              |        |
| 2. R&D expenditures                                                      | (T8-1)     |         | 1195.3            | ('76 in '70p | 1414.0 |
| of which fixed capital form.                                             | (STA)      |         | 273.4             | <i></i>      |        |
| Environmental protection                                                 | (")        |         | 16.9              | ('76 in '70p | 51.8   |
| Energy                                                                   | (T8-1,-2)  |         | n.a.              | ('76 in '70p | 77.0   |
| # Fossil energy                                                          | (T8-2)     |         | n.a.              | ('76 in '70p | 6.0    |
| # Solar, etc.                                                            | (")        |         | n.a.              | ('76 in '70p | 3.9    |
| # Nuclear energy                                                         | (")        |         | n.a.              | ('76 in '70p | 62.5   |
| # Energy conservation                                                    | (")        |         | n.a.              | ('76 in '70p | 3.9    |
| # Other energy                                                           | <u>(")</u> |         | n.a               | ('76 in '70p | 0.8    |
| 3. Energy conservation invest.                                           | (T8-3)     |         | n.a.              |              |        |
| 4 Alternative energy invest                                              | (T8-4)     |         | n.a.              |              |        |
| 1970                                                                     |            |         |                   |              |        |
| d. Quality of life                                                       |            |         |                   |              |        |
| Measures of quality of life                                              | (T11-1)    |         | 47923.1           |              |        |
| 1.Gov. consumption adjusted                                              | (T11-1)    |         | 2761.7            |              |        |
| 2.Private consumption adjusted                                           | (T11-1)    |         | 34408.6           |              |        |
| 3.Service of consumer durables                                           | (T11-1)    |         | 2286.8            |              |        |
| 4.Service of social capital                                              | (T11-1)    |         | 444.0             |              |        |
| 5.Leisure time                                                           | (T11-1)    |         | 8323.6            |              |        |
| 6.Extra-market activities                                                | (T11-1)    |         | 7213.0            |              |        |
| 7.Loss due to urbanization                                               | (T11-1)    |         | -1188.0           |              |        |
| 8.Environmental pollution                                                | (T11-1)    |         | -6236.6           |              |        |
| # Air pollution:                                                         | (,,,,,,)   |         | -0230.0           |              |        |
| ## SO2                                                                   | (T11-11)i  |         | -1127.9           |              |        |
| ## Soot and dust                                                         | (T11-11)   |         | -368.7            |              |        |
| ## Automobile exhaust                                                    | (T11-11)   |         | -1151.1           |              |        |
| # Water pollution:                                                       | (111-11)   |         | -1151.1           |              |        |
| ## Industrial                                                            | (T11-11)i  |         | -1078.7           |              |        |
| ## Municipal                                                             |            |         | -1078.7<br>-664.6 |              |        |
| # Wastes                                                                 | (T11-11)   |         | -004.0            |              |        |
|                                                                          |            |         |                   |              |        |

(g) signifies gross accumulation and (n) net of depreciation.(i) denotes that industrial breakdown is available. Note:

(T11-11)i

(T11-11)

-1138.9

-106.7

(#) and (##) indicates sub-items.

## Municipal

# Wastes: ## Industrial

| c. Technology<br>Item                                                                                                                                                                                                                       | Opening | Current                                                                                    |       | Closing | Deflators                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------------------|-------|---------|-------------------------------------------|
|                                                                                                                                                                                                                                             | stock   | expendi-                                                                                   |       | stock   | Denatori                                  |
|                                                                                                                                                                                                                                             | Stock   | tures                                                                                      |       | otoen   | ('70=1.00)                                |
| 1. Pollution prevention                                                                                                                                                                                                                     |         | 755.9g                                                                                     |       |         |                                           |
| # Heavy oil desulphur.                                                                                                                                                                                                                      | 269.8g  | 0.6g                                                                                       |       | 270.2g  |                                           |
| # Flue gas desulphur.                                                                                                                                                                                                                       | 538.4g  | 11.4g                                                                                      | _     | 545.7g  |                                           |
| # Flue gas NOX removal                                                                                                                                                                                                                      | 135.5g  | 23.1g                                                                                      | _     | 150.2g  |                                           |
| # Ind'l water processing                                                                                                                                                                                                                    | 766.5g  | 56.3g                                                                                      |       | 802.5g  |                                           |
| # Sewerage treatment                                                                                                                                                                                                                        | 1536.1g | 131.6g                                                                                     | _     | 1620.3g |                                           |
| # Municipal waste                                                                                                                                                                                                                           | 1064.4g | 209.1g                                                                                     |       | 1174.2g |                                           |
| # Industrial waste                                                                                                                                                                                                                          |         | 8.8g                                                                                       |       | _       |                                           |
| 2. R&D expenditures                                                                                                                                                                                                                         |         | 3893.4                                                                                     |       |         | 3.105                                     |
| of which fixed capital form.                                                                                                                                                                                                                |         | 1047.8                                                                                     |       |         | 1.878                                     |
| Environmental protection                                                                                                                                                                                                                    |         | 75.6                                                                                       |       |         | 3.105                                     |
| Energy                                                                                                                                                                                                                                      |         | 294.3                                                                                      |       |         | •                                         |
| # Fossil energy                                                                                                                                                                                                                             |         | 28.9                                                                                       |       |         |                                           |
| # Solar, etc                                                                                                                                                                                                                                |         | 9.0                                                                                        |       |         |                                           |
| # Nuclear energy                                                                                                                                                                                                                            |         | 129.4                                                                                      |       |         | •                                         |
| # Energy conservation                                                                                                                                                                                                                       |         | 119.1                                                                                      |       |         |                                           |
| # Other energy                                                                                                                                                                                                                              |         | 7.6                                                                                        |       |         | 1                                         |
| 3. Energy conservation invest.                                                                                                                                                                                                              |         | 137.4                                                                                      |       |         | 1.878                                     |
| 4 Alternative energy invest.                                                                                                                                                                                                                |         | 32.3                                                                                       |       |         | 1.878                                     |
| 1990<br>d. Quality of life                                                                                                                                                                                                                  |         |                                                                                            |       |         |                                           |
| Measures of quality of life                                                                                                                                                                                                                 |         | 128550.9                                                                                   |       |         |                                           |
| 1.Government cons. adjusted                                                                                                                                                                                                                 |         | 5314.5                                                                                     | ~~~~· |         | 3.473                                     |
| 2.Private consumption adjusted                                                                                                                                                                                                              |         | 79533.4                                                                                    |       |         | 2.761                                     |
| 3.Service of consumer durables                                                                                                                                                                                                              |         | 13876.5                                                                                    |       |         | 1 200                                     |
| c.cc. the c. companies durables                                                                                                                                                                                                             |         |                                                                                            |       |         |                                           |
| 4 Service of social capital                                                                                                                                                                                                                 |         |                                                                                            |       |         |                                           |
| 4.Service of social capital<br>5 Leisure time                                                                                                                                                                                               |         | 2370 8                                                                                     |       |         | 2.612                                     |
| 5.Leisure time                                                                                                                                                                                                                              |         | 2370 8<br>17475.2                                                                          |       |         | 2.612<br>5.336                            |
| 5.Leisure time<br>6.Extra-market activities                                                                                                                                                                                                 |         | 2370 8<br>17475.2<br>13953.5                                                               |       |         | 2.612<br>5.336<br>2.875                   |
| 5.Leisure time<br>6.Extra-market activities<br>7 Loss due to urbanization                                                                                                                                                                   |         | 2370 8<br>17475.2<br>13953.5<br>-1392.2                                                    |       |         | 2.612<br>5.336<br>2.875<br>5.241          |
| 5.Leisure time<br>6.Extra-market activities<br>7 Loss due to urbanization<br>8.Environmental pollution                                                                                                                                      |         | 2370 8<br>17475.2<br>13953.5                                                               |       |         | 2.612<br>5.336<br>2.875<br>5.241          |
| <ul> <li>5. Leisure time</li> <li>6. Extra-market activities</li> <li>7 Loss due to urbanization</li> <li>8. Environmental pollution</li> <li># Air pollution:</li> </ul>                                                                   |         | 2370 8<br>17475.2<br>13953.5<br>-1392.2<br>-2580.8                                         |       |         | 2.612<br>5.336<br>2.875<br>5.241          |
| 5. Leisure time<br>6. Extra-market activities<br>7 Loss due to urbanization<br>8. Environmental pollution<br># Air pollution:<br>## SO2                                                                                                     |         | 2370 8<br>17475.2<br>13953.5<br>-1392.2<br>-2580.8<br>-641.0                               |       |         | 2.612<br>5.336<br>2.875<br>5.241          |
| 5. Leisure time<br>6. Extra-market activities<br>7 Loss due to urbanization<br>8. Environmental pollution<br># Air pollution:<br>## SO2<br>## Soot and dust                                                                                 |         | 2370 8<br>17475.2<br>13953.5<br>-1392.2<br>-2580.8<br>-641.0<br>-180.2                     |       |         | 2.612<br>5.336<br>2.875<br>5.241          |
| 5. Leisure time<br>6. Extra-market activities<br>7 Loss due to urbanization<br>8. Environmental pollution<br># Air pollution:<br>## SO2<br>## Soot and dust<br>## Automobile exhaust                                                        |         | 2370 8<br>17475.2<br>13953.5<br>-1392.2<br>-2580.8<br>-641.0                               |       |         | 2.612<br>5.336<br>2.875<br>5.241          |
| 5. Leisure time<br>6. Extra-market activities<br>7 Loss due to urbanization<br>8. Environmental pollution<br># Air pollution:<br>## SO2<br>## Soot and dust<br>## Automobile exhaust<br># Water pollution:                                  |         | 2370 8<br>17475.2<br>13953.5<br>-1392.2<br>-2580.8<br>-641.0<br>-180.2<br>-738.8           |       |         | 2.612<br>5.336<br>2.875<br>5.241          |
| 5. Leisure time<br>6. Extra-market activities<br>7 Loss due to urbanization<br>8. Environmental pollution<br># Air pollution:<br>## SO2<br>## SO2<br>## Soot and dust<br>## Automobile exhaust<br># Water pollution:<br>## Industrial       |         | 2370 8<br>17475.2<br>13953.5<br>-1392.2<br>-2580.8<br>-641.0<br>-180.2<br>-738.8<br>-189.2 |       |         | 2.612<br>5.336<br>2.875<br>5.241          |
| 5. Leisure time<br>6. Extra-market activities<br>7 Loss due to urbanization<br>8. Environmental pollution<br># Air pollution:<br>## SO2<br>## Soot and dust<br>## Automobile exhaust<br># Water pollution:<br>## Industrial<br>## Municipal |         | 2370 8<br>17475.2<br>13953.5<br>-1392.2<br>-2580.8<br>-641.0<br>-180.2<br>-738.8           |       |         | 2.612<br>5.336<br>2.875<br>5.241          |
| 5. Leisure time<br>6. Extra-market activities<br>7 Loss due to urbanization<br>8. Environmental pollution<br># Air pollution:<br>## SO2<br>## SO2<br>## Soot and dust<br>## Automobile exhaust<br># Water pollution:<br>## Industrial       |         | 2370 8<br>17475.2<br>13953.5<br>-1392.2<br>-2580.8<br>-641.0<br>-180.2<br>-738.8<br>-189.2 |       |         | 2.612<br>5.336<br>2.875<br>5.241<br>2.489 |

- PBC: Economic Planning Agency, Gross Fixed Nonresidential Private Business Capital in Japan.
- SCS: Economic Planning Agency, Social Capital Stock in Japan.
- SNA: Economic Planning Agency, National Accounts.
- STA: Science and Technology Agency, Indicators of Science and Technology.

sectoral classification to the current version have been available since the 1960s. They also contain physical tables and data on the generation and reuse of scraps, providing a basis for extension in this regard. Annual tables have been available since 1973.

The second part of the reconciliation table concerns the current expenditures as well as the opening and closing stock where applicable. The main part has been obtained from the SNA. Functional classification is provided for consumption by government, nonprofit institutions, and household. Some details are provided for stocks of consumer durables owned by household. The classification scheme follows the SNA.

The tables reported here do not fully reflect the extra dimensions to be added to the conventional economic accounts and, in that sense, interim in their nature. First of all, there is the problem concerning production boundary. "The case of environmental protection activities and products is even more complex. Some establishments specialize in the production of environmental protection services for delivery to other units (e.g., waste disposal, sewage treatment) or goods which are used for the environmental protection (e.g., filters). ... Moreover, an important part of environmental protection activities is internal to establishments. They are ancillary activities in the central framework and have to be externalized if one wants to measure the environmental activities more broadly." "The above-mentioned re-analyses take place within the limits of the central framework's boundary of production. For certain objectives, however, the production boundary itself may be changed. ... Generally speaking, the scope of non-market activities may be extended considerably." [United Nations 1993b, pp.490-491]

It should be noted that the assets are valued net of depreciation in the SNA. This is appropriate from the point of view of measuring the value of assets for it should represent the present value of the future flow of profits to be derived from the existing assets, which should also equal its resale value. However, from the point of view of environmental analysis, old machines will consume just the same amount of energy as the new ones, will emit the same amount of pollutants as the new ones, etc., etc. Thus, gross stock which accounts for physical replacement but not depreciation in the economic or business accounting sense is a better indicator. The table provides both gross and net values for the current expenditure for comparison.

Fixed capital formation figures are also from the SNA, which is subdivided into reproducible tangibles and nonproducible tangibles. Both are subdivided into types of assets. Nonreproducible tangible assets have a direct bearing on the environment, consisting of land (residential, agricultural, and others), forests (forest land, trees), and subsoil resources. Gross capital formation figures are available for individual items but are not presented in the table.

One problem here from the point of the environment would be the boundary of assets. The SNA manual under revision states, "The most important amendment introduced into environmental accounting as compared with the SNA is the extension of the asset boundary. In the SNA, natural assets are included only if they provide economic benefits to the owner, a characteristic that manifests itself through being controlled by an institutional unit. This often means explicit ownership, subject to government legislation in the case of natural forests, and/or availability of a market price. These assets are referred to in the SNA as economic assets. In SEEA, the asset boundary is defined to be much wider. It includes in principle all natural assets; some may directly participate in production activities while others may be affected by the environmental impacts of economic activities." [United Nations 1993b, p.513]

When one tries to respond to today's environmental concerns, however, one would have to deal with a natural environment for which the establishment of ownership is not feasible. Global climate change is a typical example.  $CO_2$ emission may lead to global warming, but no ownership is established to the atmosphere, and human beings have used the atmosphere as a free sink since the start of the Industrial Revolution. The same thing can be said of the oceans. Although water rights are often established, river and lake waters are not effectively owned or controlled by any institutional unit.

Given the present level of scientific knowledge, there may be differing views as to the global climate change or the degree of damage done by acid rain. There are difficulties in establishing causal relations, and there are wide variation as to the valuation of the damage done. For the time being, rather than including damage estimates in the core account, we have opted to list them separately in the measures of quality of life described below. Even then, we would have to resort to physical measures.

Reproducible tangibles are then divided into private and government. Of the private expenditures, gross capital formation figures are provided for dwellings and plant and equipment. Industrial breakdown is available for the flow of stock of plant and equipment in gross terms, which are used in production analysis in SEEDS and the multisector econometric model COMPASS. Functional classifications, such as pollution prevention, R&D, labor-saving measures, and capacity expansion, are available from the survey data, but their appropriateness on the national economy level needs careful examination.[8] The current expenditure on pollution prevention equipment is provided in detail below, together with estimated accumulated stock.

A detailed breakdown of the social capital stock in gross terms is available from the Economic Planning Agency [1986], which can be supplemented by annual data on administrative investment. The latter includes the purchase of land. The consistency between annual flow from the SNA and the EPA social capital data is fairly good, as can be seen from the table (5890 billion yen and 6170 billion yen, respectively). Some of the items of social capital stock, such as sewerage, waste disposal, water supply, and city parks, are relevant for our purpose here, as well as items under land preservation, agriculture and forestry, and national forest.

The next portion of table 12-4 deals with technology. We have already mentioned that the input structure represents production technology in the respective industrial sectors. Here, we are concerned with technology more directly. First, pollution prevention investment is explicitly recognized as well as the stock thereof (which is equated with cumulative investment). Because of the fact that the underlying statistical data were collected starting mid-1960s, this methodology seriously underestimates some items. Sewerage treatment and municipal waste treatment are cases in question. Fortunately, these items are included among the social capital stock and would serve as a good alternative. It should be noted that the pollution prevention investment listed here relates to the relevant machinery portion only and does not include construction costs, whereas social capital figures include the whole facility. For other items such as heavy oil desulphurization, flue gas desulphurization, and industrial water processing, there is no problem of underestimation because the technology was only just being put into practical use around 1970. Flue gas NOX removal had not even started at that time.

The next item under technology is private R&D expenditures related to environment and energy. The table reveals that R&D for environmental protection was of limited magnitude in 1970 as far as the private sector was concerned. It is known that research projects specifically aimed at development of air pollution prevention technology were effective in the 1970s.

The last item shown in table 12-4 is the measure of the quality of life. We have dealt with this topic in chapter 11 in detail. Environmental damage is estimated based on the cost of removing excess emission in order to clarify a certain environmental quality (which is set as a rule equal to the level in 1955). Environmental standards were not used as the criteria because they were introduced at a later stage in the sequence, and their severity varied according to the region.[9] In other words, there is no single, absolute standard to be adhered to. The list includes  $SO_2$ , soot and dust, and automobile exhaust concerning air pollution, water pollutants attributable to industry and household, and industrial and municipal wastes. There are numerous other types of pollution (noise, vibration, odor, heat island, acid rain, global climate change, loss of ozone layer, etc.), and there are other consequences of socioeconomic activities on the environment (such as endangered species, soil erosion, loss of scenic beauty, damage to historical sites, etc.). These are not included at this stage of development of SEEDS, and one can argue that the figures provided here are almost certainly underestimating reality. However, even limiting the scope to items such as the ones included here, one notices that the estimated damage amounts to 8.6% of GDP in 1970 and about 10% of the estimated economic benefits including imputation of various capital stock and leisure. In 1990, the estimated environmental damage has been reduced to about 41% of the 1970 level in absolute terms, or to 1.5% of GDP and 1.9% of the total economic benefits.

Tables 12-1 through 12-4, like other tables of the SNA or input-output framework, are calculated in value terms. Conceivably, the table can have a counterpart in physical terms, which can then be matched with the stock of resources on the part of the exporters.

## 12.5 From accounting to policy: responding to AGENDA 21

One remaining fundamental question is whether the statistical system such as the one presented here, or any indicator derived from it, will by itself suggest the road leading to sustainable development. The question can be asked of the SEEA suggested by the UN as a manual or of the SEEDS which I have been developing in an empirical context. Apparently, the answer is no.

The UN's SEEA in particular is preoccupied with the natural environment and the economy and needs to be strengthened in three respects: first, social aspects such as demographic trends, urbanization, income and consumption, lifestyle, and quality of life. The human aspect is one of the prime concerns of AGENDA 21. One of the important policy goals has to do with quality of life. Our task is to find a scenario for maintaining and even improving the quality of life while removing the negative impact on the global environment. In this regard, unless we realize the importance of the quality of life, as distinct from the levels of income and consumption, the answer seems to be remote.

Second, the technological aspect has to be included in the scope of the analysis. Within the span of the last 20 years, there have been improvements in energy conservation and pollution prevention. At the same time, however, wide differentials exist between the best technological practice and the reality not between North and South but, more importantly, among the members of the North. Such a gap, in a particular segment of the production process or the whole set of the industrial branch or the structure of the economy as a whole, represents room for improvement based on the technology currently available. If we want to narrow the differentials which exist among the current generation and still preserve the global environment for our future generations, technology has to be a part of the answer. The further enhancement of technological potentials through R&D and the diffusion process of new technology must be among the research agenda.

Third, AGENDA 21 pertains to the global community as a whole. In order to respond to the policy issues spelled out in it, we need to strive to establish linkages with the environmental accounting of individual countries. Although such an endeavor presupposes the development of country accounts in the first place, the individual framework should be developed with future international linkages in mind. Otherwise, the whole exercise will be in vain. If we look at a resource-consuming country in the North, such as Japan, it is apparent that one has to look at the resource-producing countries at the same time in order to be able to gauge the whole process. Also, given the fact that industrial relocation is in progress on a world-wide scale, the time has come to look at the global economic structure, which consists of individual economies intertwined through international trade, direct foreign investment, and the global environment.

We have tried in this work to show how these points can be incorporated in the accounting framework which is intended to support policy decisions. This aim, however, is only partially achieved in this study, and we have to await the development of a policy model based on the framework presented here.

One thing which the proposed framework can realize is to provide pictures of "trees" while keeping the entire "forest" in sight. The entries in the reconciliation table are actually composed of numerous matrices which have their own structure. We have tried to demonstrate this point by fitting the tables developed in the preceding chapters in the reconciliation table. We need a time series of such tables in order to describe the dynamism involving the environment, economy, technology, and society.

The most important role the framework can play would be to promote an interaction between in-depth study on the one hand and the comprehensive framework on the other. It is also essential to stimulate discussion between the natural sciences, social sciences, and technology spheres. This is more easily said than done. But this is exactly what needs to be done today.

## FOOTNOTES

- For SSDS, see United Nations [1975]. See also United Nations [1978] for its relation with social indicators. A list of social indicators coordinated by the OECD appears, for example, in OECD [1982a].
- [2] Particularly noteworthy in this regard is the contribution of Prof. Miyohei Shinohara who headed a group of experts in estimating "NNW" [Economic Council of Japan 1973] and Mr. Hisao Kanamori, Chairman of the Japan Center for Economic Research, who attempted a follow up [Kanamori, Takase, Uno 1977, Kanamori 1980].

- [3] Sector 35 corresponds to "packing materials" in our classification but has been omitted in recent input-output tables. "Repair, machine" and "repair, auto" have been added to our standard classification scheme in order to reflect their explicit treatment among service activities in recent input-output tables.
- [4] In addition, Japanese tables identify consumption outside the household sector which relates to business consumption, the benefit of which is deemed to accrue to household.
- [5] An exception is the directly competitive, nonmarket production of goods and services which is included in the accounts through imputations. Examples are production of goods for own use, housing, etc.
- [6] The stock is recognized in the SNA. However, empirical data concerning stock variables are typically a weak part of the accounts. In addition, it is generally true that environmental conditions as the stock is not explicitly recognized in the accounts.
- [7] For details of the compilation of input-output tables in Japan, see Uno [1989]. This publication also includes 36-sector summary tables (since 1951) and matching industry-occupation matrices covering the same period based on census data.
- [8] Uno [1987] provides information on investment motives.
- [9] The development of pollution prevention policy measures including the introduction of environmental standards is discussed in Uno [1987]. See also chapter 5 for environmental standards pertinent to automobile exhaust.

# References

- An asterisk (\*) attached to the title indicates translation by the present writer, in which case original title is given in the parenthesis. Otherwise, the English title is from the original publication.
- Ahmad, Yusuf J.; Serafy, Salah El; and Lutz, Ernst. 1989. Environmental Accounting for Sustainable Development. Washington, D.C.: The World Bank.
- Amano, Akihiro, ed. 1992. Global Warming and Economic Growth-Modeling Experience in Japan. National Institute for Environmental Studies, Environmental Agency of Japan.
- Anderson, Kym and Blackhurst, Richard, eds. 1992. The Greening of World Trade Issues. London: Harvester Wheatsheaf.
- Anderson, Victor. 1993. Energy Efficiency Policies. London: Routledge
- Ando, Jumpei. 1991. "Abatement of Ozone and Acid Rain Precursors." International Symposium on Environmentally Sound Energy Technologies and their Transfer to Developing Countries and European Economies in Transition. Milan.
- Angerer, Gerhard. 1992. "Innovative Technologies for Sustainable Development." Diets, F.J.; Simonis, U.E.; and van der Straaten, J. eds. Sustainability and Environmental Policy. Berlin: Edition Sigma.
- Asian Development Bank. 1992. Integrated Energy-Environment Planning. Manila.
- Atomic Energy Comission of Japan. Various years. *Atomic Power White Paper*\* (Genshiryoku Hakusho). Tokyo: Ministry of Finance Printing Bureau.
- Ayres, Robert U., and IIASA. 1990. "Eco-restructuring: Managing the Transition to an Ecologically Sustainable Economy." Laxenburg, Austria: IIASA.
- Balaceaunu, J.C., Bertrand, A., and Lacour, J.J. 1989. "The Greenhouse Effect and Its Connection with the Area of Fossil Fuels: the Concept of CO2 Emission Intensity." *Energy Technologies for Reducing Emissions of Greenhouse Gases.* Paris: OECD.
- Banister, David and Burron, Kenneth, eds. 1993. Transport, the Environment and Sustainable Development. London: E & FN Spon.

- Barrett, Scott. 1989. "Economic Incentives for Environmental Regulation in the UK." Prince Bertil Symposium on Economic Instruments in National and International Environmental Protection Policies. Stockholm.
- Bartelmus, Peter; Stahmer, Carsten; and Jan van Tongeren. 1991. "Integrated Environmental and Economic Accounting: Framework for a SNA Satellite System." *Review of Income and Wealth.* Series 37, No.2.
- Blavin, Christopher. 1992. "Building a Bridge to Sustainable Energy." Brown, Lester R, et al. State of the World 1992. New York: W.W. Norton & Co.
- Bleviss, Deborah Lynn. 1992. "Efficiency Improvements and Fuel Substitution in the Transport Sector." International Symposium on Environmentally Sound Energy Technologies and their Transfer to Developing Countries and European Economies in Transition. Milan.
- Blok, K.; Farla, J.; Hendriks, C.A.; and Turkenburg, W.C. 1992. "Carbon Dioxide Removal: A Review." International Symposium on Environmentally Sound Energy Technologies and their Transfer to Developing Countries and European Economies in Transition. Milan.
- Boland, John J. 1989. "Environmental Control Through Economic Incentive: A Survey of Recent Experience." Prince Bertil Symposium on Economic Instruments in National and International Environmental Protection Policies. Stockholm.
- Bowes, Michael D. and Krutilla, John V. 1985. "Multiple Use Management of Public Forestland." Kneese, Allen V. and Sweeney, James L. eds. Handbook of Natural Resoruce and Energy Economics. Vol.II. Amsterdam: Elsevier Science Publishers B.V.
- Braun, Gerald W. 1992. "Improving Efficiency in Electricity Generation: Advanced Conversion Systems." International Symposium on Environmentally Sound Energy Technologies and their Transfer to Developing Countries and European Economies in Transition. Milan.
- Brown, Lester R. et al. Various issues. State of the World. New York: W.W. Norton & Co.
- Bureau of Statistics. Various issues. Report on the Survey of Research and Development. (Kagaku Gijutsu Kenkyu Chosa Hokoku). Tokyo: Nihon Tokei Kyokai.
- —. Various issues. Report on the Survey of Research and Development on Energy taken as a Supplement of the Survey of Research and Development. (Kagaku Gijutsu Kenkyu Chosani Futaisuru Enerugi Kenkyu Chosa Hokoku).

Tokyo.

- —. 1991. A Report on a Survey on the Compilation of Input-Output Tables and Related Statistics in Foreign Countries.\* (Shogaikokuni Okeru Sangyo Renkanhyoto Sakusei Jokyo Chosa Kekka Hokokusho). (mimeographed). Tokyo.
- —. and Economic Planning Agency. 1973. 1970 National Wealth Survey of Japan, Vol.6, Household. Tokyo: Ministry of Finance Printing Bureau.
- Chapman, Neil A. and McKinley, Ian G. 1987. The Geological Disposal of Nuclear Waste. Chichester: John Wiley & Sons.
- Colombo, Umberto. 1992. "Sustainable Energy Development." Science and Sustainability. Laxenburg: International Institute for Applied Systems Analysis.
- Constanza, Robert, ed. 1991. Ecological Economics: The Science and Management of Sustainability. New York: Columbia University Press.
- Daneka, Gregory A. and Lawrence, Andy. 1982. "Life-quality Accounting Systems and the Energy transition." Daneke, Gregory A. Energy, Economics, and the Environment. Lexington, Mass.: D.C. Heath and Company.
- Darmstadter, Joel, ed. 1992. Global Development and the Environment. Washington, D.C.: Resources for the Future.
- Denison, Edward F. 1971. "Welfare Measurement and the GNP." Survey of Current Business. January.
- ----, and Chung, William K. 1976. How Japan's Economy Grew So Fast, The Sources of Postwar Expansion. Washington, D.C.: The Brookings Institution.
- ---. 1979. Accounting for United States Economic Growth, 1929-1969. Washington, D.C.: The Brookings Institution.
- Economic and Social Commission for Asia and the Pacific, United Nations. 1991. Energy Policy Implications of the Climatic Effects of Fossil Fuel Use in the Asia-Pacific Region. ST/ESCAP/1007. Bangkok.
- Economic Council of Japan. 1973. Measuring Net National Welfare of Japan. Tokyo: Ministry of Finance Printing Bureau.
- Economic Planning Agency. Various issues. Annual Report on National Accounts. Tokyo: Ministry of Finance Printing Bureau.
- —. Various issues. Current Consumption Survey (Shohi Doko Chosa). Tokyo: Ministry of Finance Printing Bureau.
- ---. 1973. Project COSMO. (mimeographed.)
- ----. 1986. Social Capital Stock in Japan\* (Nihonno Shakai Shihon). Tokyo:

Gyosei.

- ----. 1988. Report on National Accounts from 1955 to 1969. Tokyo: Ministry of Finance Printing Bureau.
- ----. 1991a. Report on National Accounts from 1955 to 1989. Tokyo: Ministry of Finance Printing Bureau.
- ----. 1991b. The World and Japan in an Age of Globalization\* (Chikyuka Jidaino Sekaito Nihon). Tokyo: Ministry of Finance Printing Bureau.
- Elsom, Derek. 1992. Atmospheric Pollution, A Global Problem. Second Edition. Oxford: Blackwell Publishers.
- Environment Agency. Various issues. Environment White Paper\* (Kankyo Hakusho). Tokyo: Ministry of Finance Printing Bureau.
- —. 1977. A Long Range Plan for Environmental Preservation\* (Kankyo Hozen Choki Keikaku). Tokyo: Nihon Kankyo Kyokai.
- Food and Agriculture Organization. 1985. Forest Resources 1980. Rome.
- ----. 1993. FAO Forest Product 1980-1991. Rome.
- Forsund, Finn R. 1985. "Input-Output Models, National Economic Models, and the Environment." Kneeze, Allen V. and Sweeney, James L. eds. Handbook of National Resources and Energy Economics. Amsterdam: North-Holland.
- Gehrisch, W., Haapalainen, T., Park, Y.M., Stevens, G.H., Tadani, K. 1989.
  "The Potential Longer Term Contribution of Nuclear Energy in Reducing CO2 Emissions in OECD Countries." *Energy Technologies for Reducing Emissions* of Greenhouse Gases. Proceedings of an Experts' Seminar. Paris: OECD.
- Gilbert, A.J. and Braat, L.C. 1991. Modelling for Population and Sustainable Development. London: Routledge.
- Greyson, Jerome. 1990. Carbon, Nutrogen, and Sulphur Pollutants and Their Determination in Air and Water. New York: Marcel Dekker, Inc.
- Griffin, James M. and Steele, Henry B. 1896. Energy Economics and Policy, Second Edition. Orlando: Academic Press.
- Gross, Bertram M. and Michael Springer. 1967. "A New Orientation in American Government." Annals of the American Academy of Political and Social Science. May.
- and —. 1967. "New Goals for Social Information." Annals of the American Academy of Political and Social Science. Sept.
- Harris, DeVerle P. 1993. "Mineral Resource Stocks and Information." Kneese, Allen V. and Sweeney, James L. eds. Handbook of Natural Resource and Energy Economics. Vol.III. Amsterdam: Elsevier Science Publishers B.V.

#### REFERENCES

- The Institute of Energy Economics. Various issues. Comprehensive Energy Statistics (Sogo Enerugi Tokei).
- Intergovernmental Panel on Climate Change. 1990. "Policymakers Summary of the Scientific Assessment of Climate Change." Report to IPCC from Working Group 1, prepared by the IPCC Group at the Meteorological Office.
- International Energy Agency, Organisation for Economic Co-operation and Development. 1987. Energy Conservation in IEA Countries. Paris.
- ----. 1988. Emission Controls in Electricity Generation and Industry. Paris.
- ----. 1989a. Energy and the Environment: Policy Overview. Paris.
- ----. 1989b. Energy Technologies for Reducing Emissions of Greenhouse Gases. Paris.
- ----. 1989c. Electricity End-Use Efficiency. Paris.
- ----. 1990a. Energy Statistics of OECD Countries 1987-1988. Paris.
- ----. 1990b. Energy Policies and Programmes of IEA Countries, 1989 Review. Paris.
- ----. 1990c. Substitute Fuels for Road Transport. A Technology Assessment. Paris.
- ----. 1990d. World Energy Statistics and Balances 1985-1988. Paris.
- ----. 1991a. Energy Efficiency and the Environment. Paris.
- ----. 1991b. Greenhouse Gas Emissions: The Energy Dimension. Paris.
- ----. 1992a. The Role of IEA Governments in Energy. Paris.
- ----. 1992b. Energy Policies in IEA Countries. 1991 Review. Paris.
- ----. 1993. World Energy Outlook to the Year 2010. Paris.
- The Japan Association of Industrial Machinery Producers. Various issues. The Production of Pollution Prevention Equipment\* (Kogai Boshi Sochino Seisan Jissekini Tsuite). Tokyo.
- Japan Broadcasting Corporation. 1991. 1990 National Time Budget Study\* (1990nendo Kokumin Seikatsu Jikan Chosa). Tokyo: Nihon Hoso Shuppan Kyokai.
- The Japan Information Center of Science and Technology. 1993. Corporate R&D in Japan—As Analyzed by JICST Bibliographic Database—. Tokyo.
- Juster, F. Thomas. 1973. ""A Framework for the Measurement of Economic and Social Performance". Milton Moss, ed. The Measurement of Economic and Social Performance. National Bureau of Economic Research, Studies in Income and Wealth Volume 38. New York: Columbia University Press.
- ----; Courant, Paul N.; and Dow, Greg K. 1980. "The Theory and Measurement

of Well-being: A Suggested Framework for Accounting and Analysis." Working Paper Series No.8007. Institute of Social Research, The University of Michigan.

- -, Courant, P.N., and Dow, G.K. 1981. "A Theoretical Framework for the Measurement of Well-being." Review of Income and Wealth. 27, 1-31.
- Kagaku Kogyosha. 1973. Process Flow Diagrams of Pollution Prevention Equipment\* (Kogai Boshi Setsubi Koteizushu). Tokyo: Kagaku Kogyosha.
- Kanamori, Hisao; Takase, Yuriko; and Uno, Kimio. 1977. Economic Growth and Welfare—An Estimation of NNW in Japan —\* (Keizai Seichoto Fukushi— Nihonno NNWno Suikei). Research Report No.41. Tokyo: The Japan Economic Research Center.
- —. 1980. "Japanese Economic Growth and Economic Welfare." Tsuru, Shigeto,
   ed. Economic Growth and Resources, Problems Related to Japan. London: The Macmillan Press.
- Kendrick, John W. 1972. "The Treatment of Intangible Resources as Capital." The Review of Income and Wealth. March.
- Kirschen, E.S. et al. 1964. *Economic Policy in Our Time*. Vol.I General Theory. Amsterdam: North-Holland Publishing Company.
- Kneeze, Allen V. and Sweeney, James L. eds. 1985. Handbook of Natural Resource and Energy Economics. Amsterdam: North-Holland.
- Kosobud, Richard F. 1981. "Civilian Nuclear Energy and Weapons Proliferation: An Analysis of Japanese and U.S. Views." The Japan Seminar.
- Land Agency. Various issues. Land White Paper\* (Tochi Hakusho). Tokyo: Ministry of Finance Printing Bureau.
- Larson, Eric D. 1992. "Trends in the Consumption of Energy-intensive Basic Materials in the Industrialized Countries and Implications for Developing Regions." International Symposium on Environmentally Sound Energy Technologies and their Transfer to Developing Countries and European Economies in Transition. Milan.
- Lashof, Daniel A. and Tirpak, Dennis A., eds. 1990. Policy Options for Statilizing Global Climate. New York: Hemisphere Publishing Corporation.
- Lecht, Leonard A. 1965. The Dollar Cost of Our National Goals. National Planning Association. Washington, D.C.
- Lenssen, Nicholas. 1992. "Confronting Nuclear Waste." Brown, Lester R. State of the World 1992. New York: W.W. Norton & Company.
- Lovins, A.B. 1977. Soft Energy Paths. Friends of the Earth Inc.

- Malinvaud, Edmond. 1979. "Costs of Economic Growth." Edmond Malinvaud, ed. *Economic Growth and Resources. Vol. 1: The Major Issues.* London and Basingstoke: The Macmillan Press.
- Management and Coordination Agency. 1990. 1985 Input Output Tables\* (Showa 60nen Sangyo Renkanhyo). Tokyo: Zenkoku Tokei Kyokai Rengokai.
- Meadows, D.H. et al. 1972. The Limits to Growth. Washington, D.C.: Potomac Associates.
- Ministry of Construction. Various issues. Annual Report on Building Construction Statistics\* (Kenchiku Tokei Nenpo). Tokyo: Kensetsu Bukka Chosakai.
- Ministry of Health and Welfare. 1993. Welfare White Paper 1991. Tokyo: Gyosei.
- Ministry of Home Affairs. Various issues. Administrative Investment Records. Tokyo: Chiho Zaimu Kyokai.
- Ministry of International Trade and Industry. Various years. Plant and Equipment Investment Plans in Major Industries\* (Shuyo Sangyono Setsubi Toshi Keikaku). Tokyo: Ministry of Finance Printing Bureau.
- Various issues. Plant and Equipment Investment Plans in Major Industries
   Current Status and Issues —\* (Shuyo Sangyono Setsubi Toshi Keikaku—
   Sono Genjoto Kadai). Tokyo: Ministry of Finance Printing Bureau.
- ----. Various issues. Census of Manufactures\* (Kogyo Tokeihyo). Tokyo: Ministry of Finance Printing Bureau.
- —. Various issues. International Trade White Paper. Tokyo: Ministry of Finance Printing Bureau.
- —. Various issues. Input-Output Tables (Extension Tables).\* (Sangyo Renkanhyo (Enchohyo). Tokyo: Tsusan Tokei Kyokai.
- ---. 1991. Energy New Trends in the Global Age\* (Chikyu Jidaino Enerugi Shinchoryu). Tokyo: Denryoku Shinposha.
- ----. 1992. Energy '92\* (Enerugi '92). Tokyo: Denryoku Shinposha.
- Ministry of Transport. Various issues. Statistical Handbook of Transport Economy (Unyu Keizai Tokei Yoran). Tokyo: Ministry of Finance Printing Bureau.
  Mishan, E.J. 1969. Growth: The Price We Pay. London: Staples Press.
- Moriguchi, Chikashi, ed. 1987. Economic Study Concerning Energy\* (Enerugini Kansuru Keizaigakuteki Kenkyu). Osaka University Social and Economic Research Institute. (mimeographed).
- Moss, Milton, ed. 1973. The Measurement of Economic and Social Performance. National Bureau of Economic Research Studies in Income and Wealth, No.38.

New York:Columbia University Press.

Mounfield, Peter R. 1991. World Nuclear Power. London: Routledge.

- Nilsson, Lars J. 1992. "Energy Efficiency in the Industrial Sector." International Symposium on Environmentally Sound Energy Technologies and their Transfer to Developing Countries and European Economies in Transition. Milan.
- Nordhaus, William and Tobin, James. 1972. "Is Growth Obsolete?" National Bureau of Economic Research Fiftieth Anniversary Colloquium Series. Economic Growth. New York: Columbia University Press. Also in Moss, M., ed. 1973. The Measurement of Economic and Social Performance. National Bureau of Economic Research, Studies in Income and Wealth. Vol.38. New York and London: Columbia University Press.
- Nuclear Energy Agency, Organisation for Economic Co-operation and Development. 1985. The Economics of the Nuclear Fuel Cycle. Paris.
- ----. 1986. Decomissioning of Nuclear Facilities: Feasibility, Needs and Costs. Paris.
- Organisation for Economic Cooperation and Development. 1977. Environmental Policies in Japan. Paris.
- ----. 1982a. The OECD List of Social Indicators. Paris.
- ----. 1982b. Economic and Ecological Interdependence. Paris.
- ----. 1984. Emission Standards for Major Air Pollutants from Energy Facilities
- in OECD Member Countries. Paris.
- ----. 1985a. Environmental Policy and Technical Change. Paris.
- ----. 1985b. Environmental Effects of Electricity Generation. Paris.
- ----. 1986. Living Conditions in OECD Countries, A Compendium of Social Indicators. Paris.
- ----. 1987. Energy and Cleaner Air: Costs of Reducing Emissions. Paris.
- ----. 1988a. Environmental Impacts of Renewable Energy. Paris.
- ----. 1988b. Transport and the Environment. Paris.
- ----. 1989. Economic Instruments for Environmental Protection. Paris.
- ----. 1991a. The State of the Environment. Paris.
- ----. 1991b. OECD Environmental Data, Compendium 1991. Paris.
- ----. 1992. Science Responds to Environmental Threats, Synthesis Report. Paris.
- ----. 1993. OECD Environmental Data, Compendium 1993. Paris.
- Pasqualetti, Martin J. 1990. Nuclear Decommissioning and Society, Public Links to a New Technology. London: Routledge.
- Pearce, David W. and Warford, Jeremy J. 1993. World without End; Economics,

Environment, and Sustainable Development. The International Bank for Reconstruction and Development. New York: Oxford University Press.

- Peskin, Henry M. and Lutz, Ernst. 1990. A Survey of Resource and Environmental Accounting in Industrialized Countries. Environment Working Paper No.37. Washington, D.C.: The World Bank.
- Pronk, Jan and Haq, Mahbubul. 1992. Sustainable Development, From Concept to Action. Geneva: United Nations Conference on Environment and Development
- Repetto, Robert; Magrath, William; Wells, Michael; Beer, Christine; and Rossini, Fabrizio. 1989. Wasting Assets: Natural Resources in the National Income Accounts. Washington, D.C.: World Resources Institute.
- ----, et al. 1991. Accounts Overdue: Natural Resource Depreciation in Costa Rica. Washington, D.C.: World Resources Institute.
- Resources and Energy Agency. Various issues. Comprehensive Energy Statistics\* (Sogo Enerugi Tokei). Tokyo: Tsusho Sangyo Kenkyusha.
- ----. 1974. Collected Materials on Mineral Resources\* (Kinzoku Kobutsu Kankei Shiryo). Tokyo.
- —. 1974. Reference Materials on the Overseas Mineral Resources Development\* (Kaigai Kobutsu Shigen Kaihatsu Kankei Sanko Shiryo). Tokyo.
- ----. 1990. Energy Conservation Handbook\* (Sho Enerugi Binran). Tokyo: Energy Conservation Center.
- ---. 1991. Earth-Friendly Energy System-All about Petroleum Cogeneration\* (Chikyuni Yasashii Enerugi Shisutemu-Sekiyu Kojenereshonno Subete-). Tokyo: Tsusho Shiryo Chosakai.
- Ryan, John C. 1992. "Conserving Biological Diversity." Brown, Lester R. et al. State of the World 1992. New York: W.W. Norton & Co.
- Sametz, A. W. 1968. "Production of Goods and Services." Sheldon, Eleanor Bernert and Moore, Wilbert E., eds. Indicators of Social Change, Concepts and Measurements. New York: Russel Sage Foundation.
- Sasaki, Nobuhiko. 1989. "Contribution of Energy Conservation and Alternative Energy Technologies to the Problems of Global Environment." Energy Technologies for Reducing Emissions of Greenhouse Gases. Paris: International Energy Agency.
- Schmidheiny, Stephan. 1992. Changing Course, A Global Business Perspective on Development and the Environment. Cambridge, Massachusetts: The MIT Press.

#### REFERENCES

- Science and Technology Agency. Various issues. Science and Technology White Paper\* (Kagaku Gijutsu Hakusho). Tokyo: Ministry of Finance Printing Bureau.
- ----. Various issues. Indicators of Science and Technology (Kagaku Gijuts Yoran). Tokyo: Ministry of Finance Printing Bureau.
- Simonis, Udo E. 1992. "Sustainable Development Will the Technology Option Work?" Diets, F.J.; Simonis, U.E.; and van der Straaten, J. eds. Sustainability and Environmental Policy. Berlin: Edition Sigma.
- Skjoeldebrand, Robert, and Avenhaus, Rudolf. 1973. "Materials Accountability and Pollution Control." Proceedings of IIASA Planning Conference on Energy Systems. Laxenburg, Austria: International Institute for Applied Systems Analysis.
- Sprenger, Rolf-Ulrich. 1989. "Economic Incentives in Environmental Policies: The Case of Western Germany." Prince Bertil Symposium on Economic Instruments in National and International Environmental Protection Policies. Stockholm.
- Steinmetz, K., Maisonnier, Ch., and Darvas, J. 1989. "Thermonuclear Fusion: A Potential Energy Source for the Next Century." Energy Technologies for Reducing Emissions of Greenhouse Gases. Proceedings of an Experts' Seminar. Paris: OECD.
- Teitelbaum, Michael S. and Winter, Jay M., eds. 1989. Population and Resources in Western Intellectual Traditions. Cambridge: Cambridge University Press.
- Tietenberg, T.H. 1989. "Designing Marketable Emission Permit Systems: Lessons from the U.S. Experience." Prince Bertil Symposium on Economic Instruments in National and International Environmental Protection Policies. Stockholm.
- Tominaga, Hiroo, ed. 1989. Handbook on Resources\* (Shigen Handbook). Tokyo: Maruzen.
- Turner, Kerry, ed. 1993. Sustainable Environmental Economics and Management, Principles and Practice. London: Belhaven Press.
- United Nations. Various issues. Energy Statistics Yearbook. New York.
- ----. Various issues. Statistical Yearbook. New York.
- ----. Various issues. Yearbook of International Trade Statistics. New York.
- ----. Various issues. World Energy Supplies. New York.
- ---. 1969. A System of National Accounts. ST/STAT/SER.F/2/Rev.3. New York.

- ----. 1975. Towards a System of Social and Demographic Statistics. Series F, No.18. New York.
- ---. 1977. The Feasibility of Welfare-Oriented Measures to Supplement the National Accounts and Balances: A Technical Report. Series F, No.22. New York.
- —. 1978. Social Indicators: Preliminary Guidelines and Illustrative Series. Series M. No.63. New York.
- —. 1979. Studies in the Integration of Social Statistics: Technical Report. Series F. No.24. New York.
- ---. 1980. Classification of the Functions of Government. Series M, No.70. New York.
- ----. 1988. Concepts and Methods of Environment Statistics: Human Settlements Statistics-A Technical Report. ST/ESA/STAT/SER.F/51. New York.
- ----. 1989. Concepts and Methods of Environmental Statistics: Statistics of the Natural Environment—A Technical Report. Series F. New York.
- ----. 1990. SNA Handbook on Integrated Environmental and Economic Accounting. Preliminary Draft on the Part 1: General Concept. New York.
- ---. 1992. Agenda 21: The United Nations Programme of Action from Rio. New York.
- United Nations Department of Economic and Social Development. 1992. Handbook of National Accounting, Integrated Environmental and Economic Accounting. New York.
- —. 1993a. Integrated Environmental and Economic Accounting. ST/ESA/STAT/SER.F/61. New York.
- ---. 1993b. System of National Accounts. ST/ESA/STAT/SER.F/2/Rev.4. New York.
- United Nations University. 1993. Environmental Pollution Control, the Japanese Experience. Tokyo.
- Uno, Kimio. 1974. "Social Indicators and Macroeconomic Framework (Shakai Shihyo—Hattenno Keifuto Makuro Shakai Shihyo Moderu)." Journal of Japan Economic Research. No.3.
- —. 1978. "A Social Indicators Approach to Economic Development." Tsuru, Shigeto, ed. Growth and Resources Problems Related to Japan. Tokyo: Asahi Evening News. Republished in 1980 in London and Basingstoke: The Macmillan Press.
- ----. 1985a. "Social, Economic, and Environmental Statistics-Accounting

Framework for Policy Analysis—." Paper prepared for the 19th General Conference of the IARIW, Noordwijkerhout, the Netherlands.

---. 1985b. "Resource Allocation by Social Purpose and the Input-Output Framework." Paper prepared for the International Meeting on Problems of Compilation of IO-Tables, Baden, Austria.

- ----. 1987. Japanese Industrial Performance. Amsterdam: Elsevier Science Publishers.
- —. 1989a. Measurement of Services in an Input-Output Framework. Amsterdam: Elsevier Science Publishers.
- ---. 1989b. "Economic Growth and Environmental Change in Japan: Net National Welfare and Beyond." F. Archibugi and P. Nijkamp, eds. *Economy* and *Ecology: Towards Sustainable Development*. Dordrecht: Kluwer Academic Publishers.
- —. 1990a. "National Accounting and Environment." Paper prepared for the United Nations University/WIDER Project on the Environment and the Emerging Development Issues. Helsinki.
- ----. 1990b. Demography and Labor Supply Model. Statistical Data Bank Project Report No.66. Tsukuba: The University of Tsukuba.
- —. 1990c. "Annual Input-Output Tables in Japan, 1975-1985." Statistical Data Bank Project Report No.63. Institute of Socio-Economic Planning, the University of Tsukuba.
- ---. 1991a. "Environmental Quality and Technology: Lifestyle Options." United Nations Economic and Social Commission for Asia and the Pacific. Energy Policy Implications of the Climatic Effects of Fossil Fuel Use in the Asia-Pacific Region. Bangkok.
- ---. 1991b. "Quality-of-Life and Environmental Accounting: Assessment of Pollution Prevention Investment." Paper submitted to Special IARIW (International Association for Research in Income and Wealth) Conference on Environmental Accounting. Baden, Austria.
- —. 1991c. "Produce-Consume-and-Recycle: Operationalizing the Concept of Sustainability." Paper submitted to the United Nations Conference on Environment and Development. Geneva.
- —. 1991d. "Diffusion of Environment-related New Technology and Policy Implications." Paper submitted to the International Symposium on Environmentally Sound Energy Technologies and Their Transfer to Developing Economies and European Economies in Transition. Milan.

- ----. 1991e. Technology, Investment, and Trade. New York: Elsevier Science Publishing Co.
- —. 1993. "Policy Formulation and Information Needs." Paper presented at the International UNU Symposium on Ecorestructuring held at the United Nations University. Tokyo.
- ----. "Social, Economic, and Environmental Data Set (SEEDS)." 1994. Paper presented at the National Accounts and the Environment Meeting. London.
- van Velzen, Daniel, ed. 1991. Sulphur Dioxide and Nitrogen Oxides in Industrial Waste Gases: Emission, Legislation, and Abatement. Dordrecht: Kluwer Academic Publishers.
- Vesilind, P. Aarne and Peirce, J. Jeffrey. 1983. Environmental Pollution and Control. Second Edition. Boston: Butterworths.
- Winteringham, F. Peter W., ed. 1992. Energy Use and the Environment. Boca Raton: Lewis Publishers.
- World Commission on Environment and Development. 1987. Our Common Future. Oxford: Oxford University Press.
- Wyman, Richard L., ed. 1991. Global Climate Change and Life on Earth. New York: Chapman and Hall.
- Ygdrassil, Alexis; Gelobter, Michael; Holnicki, Piotr; Anderberg, Stafan; and Schlenzig, Christoph. 1989. "A Critical Review of Energy Projections for the Study of Long-term, Large-scale Interactions between Development and Environment." Toth, Ferenc L.; Hizsnyik, Eva; and Clark, William C., eds. Scenarios of Socioeconomic Development for Studies of Global Environmental Change: A Critical Review. RR-89-4. Laxenburg: International Institute for Applied Systems Analysis.
- Young, John E. 1992. "Mining the Earth." Brown, Lester R. et al. State of the World 1992. New York: W.W. Norton & Co.

# Index

accounting 9,11,14,217 resource -200accounts 15 acid rain 283,299 administrative investment 147,176 Administrative Management Agency 177 advanced thermal converter reactor 242 Agency of Natural Resources and Energy 47 AGENDA 21 13, 15, 392Ahmad 312 air conditioner 92,94,113,115,235,237 air conditioning 38,92 air pollution 143,145 air 4,11,13,353,356 alternative energy 232,240 aluminum 237,283,295 ancillary activities 355,388 asset boundary 389 assets 11,16,253,332,351,353,355,388 economic - 389 environmental - 16,19,308 national - 303 natural - 389 productive - 343 Atomic Energy Commission 241

ATR 242 automobile - exhaust gas 38,189 automobiles 90,94,100,113,117, 134,194,208,211,213,234, 236,237,353 Ayres 35,38 back-end 20,33,35 Balaceanu 238 Barett 44 Bartelmus 312,345 basic oxygen furnace 85 bauxite 295 benefit 271 Bertrand 238 bio-mass 223 biodiversity 18 biological oxygen demand 194 BOD 192,195,236 BOF 85 Boland 44 Brundtland report 6,199 Bureau of Statistics 221,227,345 by-product 204,234 cadmium 236 capacity 184 capital - formation 18,295,303

- stock 18,147,190,192,228, 303,332 carbon - dioxide 5, 211 - monoxide 91,121,122,189, 195,211 carbon tax 14,20,99,248 catalyst converter 133,211 CCS 243 cement 37,84,86,213 Central Council for Environmental Pollution Control 234 CFC 5,8,46,235 charge 42 chemical fertilizer 265 chemicals 105,357 China 51 chlorofluorocarbons 235CHP 84,88,238 Clean Japan Center 237 co-generation 37,47,88,214,217,246 coal cartridge system 243 coal-oil mixture 243 coal-water mixture 243 coal 3,46,49,50,51,53,97,98,104, 105,232,242,243,245,293 - gasification 100,233,244 - liquefaction 100,233,244 COD 193,236 COM 243 combined cycle 88,100,214,218,244 combined heat and power 84,88 command and control 44 command-and-rule 99.248 COMPASS 195,218,350,351

Constanza 312 consumer durables 11,13,16,38, 90,92,111,113,120,137, 211,295,303,304,314,336, 353,354,355,378,388 consumer surplus 304,331,349 consumption 27,304,307 total - 309 consumptive services 347 contingent valuation 347 continuous casting 37,85 **COSMO** 191 cost-benefit 8.42 cost 36,41,42,45,46,192,193,244 271,304,307,331,348,349 355 discovery -293 marginal - 349 **Council of Industrial Structure** 229CO 189.195  $CO_2$  3,5,7,20,29,35,50,51,52,84, 99,100,104,105,121,137, 238,240,243,247,284,299, 336,389 crude oil 95,293 CWM 243 damage cost 16 damage environmental – 329,345 de-inking 208 decibel 280 decommissioning 8,33,35,98 – waste 33 defensive

### INDEX

- expenditures 313 - outlays 308 deforestation 4,8,312 degradation 16,344,353 demography 13 Denison 305,306 densely inhabited district 279 depletable 284 depletion 16,343 desulphurization 184 desulphurization flue gas - 233,390 DH 84 DID 279 diesel 234.244 diffusion 249 **DIP** 208 disassembly 209 discounting 8,40,248 district heating 84,88 EAF 85 Earth Summit 6,9,104 EC 139 Economic Council 193,304,309,349 Economic Planning Agency 51, 105,177,191,198,313,356, 390 economic - instruments 44,45 ecosystems 21,125 EEC 254 electric arc furnace 85 electric battery vehicles 92 electric power 31 Electricity Utility Law 88

electricity 35,95,105,113,212 emission trading 43 employment 17,21 endangered species 4 endowment 293 Energy Council 86,102 energy matrix 215 energy 3,7,9,20,120,143,205,208, 212,221,236,289,336,367, 378 - conservation 84,88,106,222, 228,233 - consumption 47,51,52,53, 112 - conversion 28,53,354 - demand elasticity 106 - efficiency 29,36,37,39,41, 51,55,88,99,104,137,218, 230,238,305 - flow 215 - intensity 29 – matrix 53 - recovery 336 - supply 102,103 -tax 99 alternative - 232,240 primary - 49,51,53,97 waste -230entropy 11 environmental accounting 144,189, 193, 196, 299, 305, 310, 312, 335,337,344,345,347,378, 392 Environmental Agency 192,235 environmental

- assets 16,19,308  $-\cos t$  347 - damage 119 - quality 186 - service 42,355 - standards 90,196 equivalent sound level 280 externalities 8,19,40 FAO 285,289 farm land 255,265,289 fast breeder reactor 239 FBC 234 FBR 239,240,241 FGD 233 FGR 234 final demand 39,192,193,354,367 fixed capital formation matrix 177 fixed capital 346 floating particles 185,189 flow 7.353 flue gas desulphurization 233 flue gas recirculation 234 fluidised bed combustion 234.243 forest products 357 forest 208,254,255,308,333,353 - resources 268 forests 389 fossil fuels 5,7,20,31,36,41,47,49, 99,104,336,357 France 29,55,96,135,238,239,240,241 FRG 55 front-end 33,35 fuel cells 88,99,246 fuel cycle 100,222,239,240,241,242 fuel

- efficiency 90,100,116,117 Fugen 242 functional classification 353,388 fusion 222 gasification 234,244 GDP environmentally adjusted -345 sustainable - 345,348 green GNP 9,312 Gehrisch 238 geothermal 100,104,223,242,245, 336 Germany 94,96,97,135,234,241,244 GHGs 29,283 global warming 4,5,20,35,53,98, 102,109,143,238,240,283, 299,331,336,389 government 8,99,101,147,227, 233,237,240,242,247,275, 303,307,313,314,351,353, 388 - consumption 240,304 greenhouse gases 5,7,13,20,29,53, 104,137,246,247 halon 235,250 Haq 311 Harris 293 HC 136,195,235 heat pump 84,93,99,214,218 heat recovery 215 Helsinki Declaration 235 high-tech 31,36 household 13,92,96,109,111,303, 307,351,353,378,388

412

#### INDEX

- durables 194 - production 13,355 housing start 275 housing 11,13,16,353 human - assets 7 - wealth 16.308 hydro 32,46,49,50,51,53,98,104 hydrocarbons 91,121,123,195,211,235 **IAEA** 241 IEA 44,55,84,85,86,90,93,94,95, 106,237 IIASA 35,36 import matrix 378 imputation 16,190,195,307,308, 309,331,348,391,394 incentive 14,40,43 incineration 236,276 income 7,9,13,15,17,29,39 - differentials 3,8,19,31 industrial - classification 367 – metabolism 19 - structure 27,39,40,53,349 Industrial Revolution 5,6.49 industrialization 3,6,7,19,21,27, 55,265,272 innovation 248 input - coefficient 203 - structure 17.19 input-output 14,17,106,138,146, 178,190,193,200,203,208,211, 215,217,284,289,335,345,350, 354,356,367,368,379,391,394

Institute of Energy Economics 31,47 insulation 37,84,94,95,99,115 intangible - assets 7 - wealth 16 intangibles 307,333,353 intellectual property right 46 Intergovernmental Panel on Climate Change 6 intrinsic value 271 investment 228,232 - in plant and equipment 86 administrative - 147.177 direct foreign - 41,299 energy conservation -354housing -275pollution prevention - 354 private - 94,99,177,192,193, 228,232,249,346 IPCC 6 iron and steel 37,84,205,208,295 iron ore 295 irradiated fuel 241 Japan Association of Industrial Machinery Producers 197 Japan Information Center of Science and Technology 228 JICST 228 Joyo 240 Juster 307 Kanamori 393 Kneeze 378 Lacour 238 Land Agency 265,273,281 land fill 211,277

land supply 255 land 4,18,21,253,353,389,390 - use 5,11,125 residential - 273 leisure 304,306,308,319,353 Lenssen 8 Leg 281 licensing 45 lifestyle 7,13,14,20,31,37,38,39, 40,109,199,203,305, 344 light water reactor 241 liquefaction coal - 234,242,244 LNG 46,238,245 Lutz 312 maintenance valuation 347 Management and Coordination Agency 212 manufacturing 47 marginal cost 349 market 8,43,46,99,120 - creation 43 - failures 40 - intervention 43 - mechanism 19.247.350 - valuation 347 material - flow 203,205,335 - inputs 11 Meadows 249 measures of economic welfare 16, 193.308 measures of quality of life 303,349 mercury 236

metals 295 methane 5 methanol 245 MEW 193.308 Ministry of Agriculture 281 Ministry of Construction 93,275, 281 Ministry of Health and Welfare 277 Ministry of Home Affairs 147,177 Ministry of International Trade and Industry 147,177,233, 237 Ministry of Transportation 93, 139.281 MITI 86,93,147,198,229,232,237, 239,243,244,281 mobile sources 189,194,234 modal shift 125 model 146,189,191,192,200,217, 336,350,356,390,393 - COMPASS 195 - COSMO 190 - NNW 193 Moniu 240 Montreal Protocol 235,250 Moonlight Project 100,242,246 motor vehicles 90,123,125,134,357 MOX 241 MQL 349 multinationals 42 national wealth 312 natural assets 7 natural gas 51,53,95,98,100,104, 105,232,245

414

Natural Resources and Energy Agency 96 natural resources 7 NEA 33,34,35 NEDO 242 net national welfare 193,304,348 net worth 353 nitrogen dioxide 189 nitrogen monoxide 189 nitrogen oxides 91,121,123,134, 193,195,234 nitrous oxide 5 NNW 119,193,304,313,348,393 - Measurement Committee 309 noise 125,146,280 non-profit institutions 303,353 non-proliferation 239 nonmarket activities 307 nonprofit institutions 314,354,388 Nordhaus 193,308,309,330,343 North 3,6,7,8,17,19,299,349,392 NO<sub>2</sub> 189  $NO_X$ 136,189,195,234,240,243, 245,247,356 NSP 37 Nuclear Energy Agency 8,33,238 nuclear 31,32,35,40,46,49,50,51,53, 95,97,98,100,102,104,221, 222,233,238,239,241,242,336 - energy 7,20 - power plant 242 -wastes 7 ODA 41.46 OECD 42,44,45,46,47,53,90,105, 118,121,125,133,134,136,

139,197,227,234,238,248, 280,281,284,393 opening stock 11 ownership 389 oxidants 123,125,235 ozone 125.235 - holes 8 - layer 4 paper and pulp 37,84,85 paper 205 Peskin 310 pesticide 265 petrochemical industry 37 petrochemicals 41,84 petroleum 46,49,51,53,97,98,100, 102.245 - alternatives 232 photochemical 123,125,135,235 photovoltaic 35,244 physical - spheres 11 - tables 204,388 - variables 21 plutonium 8,239,240,241,242 policy 3,5,6,7,8,14,15,20,22,27,31, 40,43,44,46,86,90,93,99, 111,118,133,200,237,241, 247,329,303,330,337,348, 350, 392, 393, 394 - body 42 - model 191,393 development - 344 nuclear -242R&D - 247 political failures 41

pollutants 9,192 polluter-pays principle 192 Pollution Control Programs 233, 236pollution 120,194,195,304,328,344 - abatement 305 - prevention 28,143,191,354 - water 236 air - 194 water - 194 population 9,27,28,40,49,111,201, 254.349- density 279 post-harvest preservatives 265 potential supply 293 power generation 100,215pressurized fluidized bed 100,234 price 11,19,40,43,47,90,99,192, 193,220,293,389 - elasticity 47,106 energy - 37,39 land - 275 oil - 295 primary energy 88,215 private consumption 314 private sector 46.146 production boundary 337,355,388 production process 37,96,196,356 Pronk 311 public sector 146,147,190 pulp and paper 205 pulp 285 pulverized-coal-fired 244 quality of life 13,14,15,16,18,22, 37,38,120,137,143,194,

196,303,332,350,352,354, 379,389,391 R&D energy related -221R/P ratio 293 radioactive waste 239 raw materials 283 reclamation 253,255,281 recycle 233 recycling 38,86,99,201,203,236 - waste paper 208 refrigerator 92,113,119,237 regulation 44.45.248 Repeto 312 reprocessing 238,240,241 research and development 100.307 reserves 293 residential land 273,289 resource - depletion 4 - endowment 15,283,308 - intensity 27 Resources and Energy Agency 88 resources 7,201,293,333,335,353, 389 energy - 289 forest -285retrofitting 18,355 risk 45,47 road network 277 R&D 219,356,391 Sametz 306 satellite account 190,197,332 satellite 344,367 Schmidheiny 228

#### INDEX

SCR 234 scrap iron 211 scraps 204 SEEA 11,13,345,355,356,392 SEEDS 349,351,354,356,367,379, 390,392 selective catalytic reduction 234 sewerage 99,147,185,236,355,357 Shinohara 393 sink 389 SNA 14,147,177,190,193,196,198, 216,303,305,306,310,312,313,332,337,345,347,348, 350,355,368,388,389,390, 391 social accounting matrix 350 social capital 13,16,318,336,353, 354,390 social - concerns 348,350,367 - indicators 16,197,303,310, 350.393 social, economic, and environmetal data set 349 35soft-energy path soil 4,11,13 solar 31,35,40,53,98,100,223,242, 244,245,336 - radiation 5 consumer surplus 348 South 3,6,7,8,392 SO<sub>2</sub> 189 SO<sub>X</sub> 192,240,243,245,355 spent fuel 33,238 SSDS 310,350,393

Stahmer 312,345 standards emission - 45,136 environmental - 44,45,196 steel 3,41,85,105,213,237 stock 7,14,16,38,120,216,351,353 - resources 233 car - 90Stone 204 structural change 37,295 subsidies 14,20,43 sulphur contents 233 sulphur dioxide 189 sulphur oxides 193,194,233 sulphur 194 Sunshine Project 100,242,245 sustainability 6,7,15,299,305,343 - eco-system 200 - quality of life 200,216 sustainable development 6,16,39, 118,199,310,332,344,392 Sweenev 378 System of National Accounts 216, 253,303,345 System of Social and Demographic Statistics 310,350 tangible wealth 16 tangibles 7,307,353 tax 234 – allowances 43 - differentiation 43 carbon - 99.248 commodity - 90 energy - 99 environmental -104,234,

### 235

technological change 13,21,37,45 technological progress 55,88,203 technology 3,7,13,14,17,22,35,40, 50,51,99,111,133,199,200, 208,218,219,247,249,293, 305,344,349,353,354,379, 390 diffusion 228- transfer 17,21,299 coal handling - 243 disassembly - 211 energy conservation – 233energy-efficient - 94 nuclear -242pollution prevention - 233 recycling - 237 thermal coal - 32,46LNG - 32,46 petroleum - 32,46 throughputs 11,205 time budget 319 Tobin 193,308,309,330,343 total consumption 16,309 trade matrix 7,8,15,17,19,205, 284,336 transportation 47,90,96,119,213, 222,336,357,378 tropical rain forest 283,289 UK 55,96,97,134,239,240,241 UN 311,312,313,354,355,392 UNCED 13,15 uncertainty 35 undepletable 284

UNEP 283,287 United Kingdom 44 United Nations 11,284,310,336, 344,345,347,355,389,393 Uno 44,106,189,193,197,198,218, 249,295,329,350,351,378, 393 uncertainty 33 uranium-plutonium mixed oxide 241 uranium 8,240,242 urban - congestion 5 urbanization 7,21,29,194,203,253, 279,304,308,327 USA 13,29,34,44,55,92,94,96,97, 133,135,136,139,239,241, 242,244,245,254,280,309 user cost 249 valuation 345,347 van Tongeren 312,345 Vienna Convention 121,235 VOC 235 volatile organic compounds 235 waste 143,146,147,193,195,211, 232,236,244,276,357 - disposal 233,355 -heat 37,86,212 - incineration 37,53,99, 236,336 - paper 207 - treatment 185 nuclear -242radioactive - 98,100,239 water pollution 143,146,236

### INDEX

water 4,11,13,353 waste - 185 WCED 118,119,200,344 wealth natural resource - 16 welfare 13,120,304,305,307,308, 310,311,312,344,349 well-being 38,119,120,143,190, 194,195,216,349 willingness to pay 331,347 wind 242,245 wood products 284 World Commission on Environment and Development 3,6,118, 199,216,310,344 World Resources Institute 312 zoning 45,280

## Economy & Environment

- F. Archibugi and P. Nijkamp (eds.): Economy and Ecology: Towards Sustainable Development. 1989 ISBN 0-7923-0477-2
- J. Bojö, K.-G. Mäler and L. Unemo: Environment and Development: An Economic Approach. 1990 ISBN 0-7923-0802-6
- J. B. Opschoor and D. W. Pearce (eds.): Persistent Pollutants: Economics and Policy. 1991 ISBN 0-7923-1168-X
- D.J. Kraan and R. J. in 't Veld (eds.): Environmental Protection: Public or Private Choice. 1991 ISBN 0-7923-1333-X
- 5. J.J. Krabbe and W.J.M. Heijman (eds.): National Income and Nature: Externalities, Growth and Steady State. 1992 ISBN 0-7923-1529-4
- J. Bojö, K.-G. Mäler and L. Unemo: Environment and Development: An Economic Approach (revised edition). 1992 ISBN 0-7923-1878-1
- 7. T. Sterner (ed.): Economic Policies for Sustainable Development. 1994

- L. Bergman and D.M. Pugh (eds.): Environmental Toxicology, Economics and Institutions. The Atrazine Case Study. 1994 ISBN 0-7923-2986-4
- 9. G. Klaassen and F.R. Førsund (eds.): Economic Instruments for Air Pollution Control. 1994 ISBN 0-7923-3151-6
- 10. K. Uno: Environmental Options: Accounting for Sustainability. 1995

ISBN 0-7923-3513-9

ISBN 0-7923-2680-6