
Zhiming Liu
Jim Woodcock
Huibiao Zhu (Eds.)

Tu
to

ria
l

LN
CS

 8
05

0

International Training School on Software Engineering
Held at ICTAC 2013
Shanghai, China, August 2013, Advanced Lectures

Unifying Theories
of Programming
and Formal
Engineering Methods

 123

Lecture Notes in Computer Science 8050
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Zhiming Liu JimWoodcock Huibiao Zhu (Eds.)

Unifying Theories
of Programming
and Formal
Engineering Methods
International Training School on Software Engineering
Held at ICTAC 2013
Shanghai, China, August 26-30, 2013
Advanced Lectures

13

Volume Editors

Zhiming Liu
United Nations University
International Institute for Software Technology
P.O. Box 3058, Macau, China
E-mail: z.liu@iist.unu.edu

Jim Woodcock
University of York
Department of Computer Science
Deramore Lane, York YO10 5GH, UK
E-mail: jim@cs.york.ac.uk

Huibiao Zhu
East China Normal University
Software Engineering Institute
3663 Zhongshan Road (North), Shanghai 200062, China
E-mail: hbzhu@sei.ecnu.edu.cn

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-39720-2 e-ISBN 978-3-642-39721-9
DOI 10.1007/978-3-642-39721-9
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013943600

CR Subject Classification (1998): F.3, D.2.4, F.4, I.1, I.2.2-3, F.1, D.2, I.6

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the lecture notes of the courses given at the ICTAC 2013
Software Engineering School on Unifying Theories of Programming and Formal
Engineering Methods, held during August 26–30, 2013, in Shanghai. East China
Normal University, UNU-IIST, and the University of York organized the school
as part of the celebrations of the 70th birthday of He Jifeng. There were two
associated events:

• Essays in Honor of He Jifeng on the Occasion of his 70th Birthday. Papers
presented at a Symposium held in Shanghai during September 1–3, 2013.
LNCS volume 8051, Springer 2013.

• Proceedings of the International Colloquium on Theoretical Aspects of Com-
puting. Held in Shanghai during September 4–6, 2013.

The school is aimed at postgraduate students, researchers, academics, and in-
dustrial engineers who are interested in the state of the art in unifying theories of
programming and formal engineering methods. This volume contains the lecture
notes of the five courses. The common themes of the courses include the design
and use of formal models and specification languages with tool support. System
wide, the courses cover component-based and service-oriented systems, real-time
systems, hybrid systems, and cyber physical systems. Techniques include induc-
tive theorem proving, model checking, correct by construction through refine-
ment and model transformations, synthesis and computer algebra. Two of the
courses are explicitly related to Hoare and He’s unifying theories. No previous
knowledge of the topics involved is assumed.

We would like to acknowledge sponsorship from the following organizations:

• East China Normal University
• United Nations University - International Institute for Software
Technology

• University of York

Lecturers and Editors

ETHAN K. JACKSON is Researcher in The Research in Software Engineering
(RiSE) Group at Microsoft Research. His work focuses on next-generation for-
mal specification languages for model-based development with an emphasis on
automated synthesis. He is the developer of the FORMULA language, which has
been applied to software, cyber-physical, and biological systems. Ethan received
his PhD in Computer Science from Vanderbilt University in 2007 and his BS
in Computer Engineering from the University of Pittsburgh in 2004. He joined
Microsoft Research in 2007.

VI Preface

KIM G. LARSEN is Professor in the Department of Computer Science at Aal-
borg University, director of CISS (Center for Embedded Software Systems), as
well as director of the Innovation Network InfinIT. He is also co-director of the
VKR Center of Excellence MT-LAB and director of the new Danish-Chinese
Basic Research Center IDEA4CPS. Currently, he is investing substantial effort
in a number of European projects devoted to model-based development: MBAT,
CRAFTERS, RECOMP, SENSATION and CASSTINGS. Kim G. Larsen’s re-
search includes modeling, verification, performance analysis of real-time and em-
bedded systems with applications to concurrency theory and model checking. In
particular he is prime investigator of the real-time verification UPPAAL as well
as its various new branches of the tool targeted toward optimization, testing,
synthesis, and compositional analysis.

ZHIMING LIU is Senior Research Fellow at the United Nations University - In-
ternational Institute for Software Technology (UNU-IIST). He is the Head of the
Program on Information Engineering and Technology in Healthcare. His is known
for his work on the transformational approach for real-time and fault-tolerant
system specification and verification, and the rCOS Formal Model-Driven Soft-
ware Engineering Method. He is currently leading a research group of a dozen
young researchers working in the areas of formal model-driven software engi-
neering methods, program static analysis, and applications in electronic health
record-based healthcare applications.

JIM WOODCOCK is Head of the Department of Computer Science at the Uni-
versity of York, where he is also Professor of Software Engineering. His research
interests in software engineering include methods and tools for specification,
refinement, and proofs of correctness. He is currently an investigator in the Eu-
ropean COMPASS project on comprehensive modeling of advanced systems of
systems. The COMPASS Modeling Language includes a combination of rich
state, concurrency, communication, time, and object orientation. The formal se-
mantics is given in Unifying Theories of Programming, where each individual
paradigm is dealt with as a separate theory and linked into a unified language
design. Jim Woodcock is a Fellow of the British Computer Society and a Fellow
of the Royal Academy of Engineering.

NAIJUN ZHAN is Full Professor at the Institute of Software, Chinese Academy
of Sciences, where he is also the Deputy Director of State Key Laboratory of
Computer Science. His research interests in formal methods and software engi-
neering include formal techniques for the design of real-time and hybrid systems,
program verification, modal and temporal logics, process algebra, theoretical
foundations of component and object systems.

Preface VII

HUIBIAO ZHU is Professor of Computer Science at Software Engineering Insti-
tute, East China Normal University, also Executive Deputy Director of Shanghai
Key Laboratory of Trustworthy Computing. He earned his PhD in Formal Meth-
ods from London South Bank University in 2005. He has studied various seman-
tics and their linking theories for Verilog, SystemC, Web services and probability
system. Currently, he is the Chinese PI of the Sino-Danish Basic Research Center
IDEA4CPS.

Lecture Courses

Course 1: FORMULA 2.0: A Language for Formal Specifications.
Ethan Jackson gives this course. It is on the specification language FORMULA
2.0. This is a novel formal specification language based on open-world logic pro-
grams and behavioral types. Its goals are (1) succinct specifications of domain-
specific abstractions and compilers, (2) efficient reasoning and compilation of
input programs, (3) diverse synthesis and fast verification. A unique approach
is taken toward achieving these goals: Specifications are written as strongly
typed open-world logic programs. They are highly declarative and easily express
rich synthesis/verification problems. Automated reasoning is enabled by efficient
symbolic execution of logic programs into constraints. This tutorial introduces
the FORMULA 2.0 language and concepts through a series of small examples.

Course 2: Model-Based Verification, Optimization, Synthesis and Per-
formance Evaluation of Real-Time Systems.Kim Larsen teaches this series
of lectures. It aims at providing a concise and precise traveller’s guide, phrase
book or reference manual to the timed automata modeling formalism introduced
by Alur and Dill. The course gives comprehensive definitions of timed automata,
priced (or weighted) timed automata, timed games, stochastic timed automata
and highlights a number of results on associated decision problems related to
model checking, equivalence checking, optimal scheduling, the existence of win-
ning strategies, and then statistical model checking.

Course 3: rCOS: Defining Meanings of Component-Based Software
Architectures. In this course, Zhiming Liu teaches the rCOS method for
component-based software development. Model-driven software development is
nowadays seen as a mainstream methodology. In the software engineering com-
munity, it is a synonym of the OMGmodel-driven architecture (MDA). However,
in the formal method community, model-driven development is broadly seen as
model-based techniques for software design and verification. The method aims
to bridge the gap between formal techniques, together with their tools, and their
potential support to practical software development. To this end the course in-
troduces the rCOS definition of the meanings of component-based software archi-
tectures, and shows how software architectures are formally modeled, designed,
and verified in a model-driven engineering development process.

VIII Preface

Course 4: Unifying Theories of Programming in Isabelle. This course
is given by Jim Woodcock and Simon Foster and it introduces the two most
basic theories in Hoare and He’s Unifying Theories of Programming and their
mechanization in the Isabelle interactive theorem prover. The two basic theories
are the relational calculus and the logic of designs (pre-postcondition pairs). The
course introduces a basic nondeterministic programming language and the laws
of programming in this language based on the theory of designs. The other part
of the course is about theory mechanization in Isabelle/HOL, and shows how
the theorem prover is used to interpret the theory of designs of UTP.

Course 5. Formal Modeling, Analysis and Verification of Hybrid Sys-
tems. This course is given by Naijun Zhan. It introduces a systematic approach
to formal modeling, analysis and verification of hybrid systems. Hybrid system is
modeled using Hybird CSP (HCSP), an extension of Hoare’s CSP. Then for spec-
ification and verification, Hoare logic is extended to Hybrid Hoare Logic (HHL).
For deductive verification of hybrid systems, a complete approach is used to
generate polynomial invariants for polynomial hybrid systems. The course also
presents an implementation of a theorem prover for HHL. Real-time application
case studies are used to demonstrate the language, the verification techniques,
and tool support. The Chinese High-Speed Train Control System at Level 3
(CTCS-3) in particular is a real application. Furthermore, an example is given
to show how, based on the invariant generation technique and using constraint
solving, to synthesize a switching logic for a hybrid system to meet a given safety
and liveness requirement.

June 2013 Zhiming Liu
Jim Woodcock
Huibiao Zhu

Organization

Coordinating Committee

Zhiming Liu UNU-IIST, Macau, SAR China
Jim Woodcock University of York, UK
Min Zhang East China Normal University, China
Huibiao Zhu East China Normal University, China

Local Organization

Mingsong Chen, Jian Guo, Xiao Liu, Geguang Pu, Fu Song, Min Zhang
East China Normal University

Table of Contents

rCOS: Defining Meanings of Component-Based Software
Architectures . 1

Ruzhen Dong, Johannes Faber, Wei Ke, and Zhiming Liu

Model-Based Verification, Optimization, Synthesis and Performance
Evaluation of Real-Time Systems . 67

Uli Fahrenberg, Kim G. Larsen, and Axel Legay

Unifying Theories of Programming in Isabelle . 109
Simon Foster and Jim Woodcock

FORMULA 2.0: A Language for Formal Specifications 156
Ethan K. Jackson and Wolfram Schulte

Formal Modelling, Analysis and Verification of Hybrid Systems 207
Naijun Zhan, Shuling Wang, and Hengjun Zhao

Author Index . 283

rCOS: Defining Meanings of Component-Based
Software Architectures

Ruzhen Dong1,2, Johannes Faber1, Wei Ke3, and Zhiming Liu1

1 United Nations University – International Institute for Software Technology, Macau
{ruzhen,jfaber,z.liu}@iist.unu.edu

2 Dipartmento di Informatica, Università di Pisa, Italy
3 Macao Polytechnic Institute, Macau

wke@ipm.edu.mo

Abstract. Model-Driven Software Development is nowadays taken as a
mainstream methodology. In the software engineering community, it is
a synonym of the OMG Model-Driven Architecture (MDA). However, in
the formal method community, model-driven development is broadly seen
as model-based techniques for software design and verification. Because
of the difference between the nature of research and practical model-
driven software engineering, there is a gap between formal techniques,
together with their tools, and their potential support to practical soft-
ware development. In order to bridge this gap, we define the meanings of
component-based software architectures in this chapter, and show how
software architectures are formally modeled in the formal model-driven
engineering method rCOS. With the semantics of software architecture
components, their compositions and refinements, we demonstrate how
appropriate formal techniques and their tools can be applied in an MDA
development process.

Keywords: Component-Based Architecture, Object-Oriented Design,
Model, Model Refinement, Model Transformation, Verification.

1 Introduction

Software engineering was born and has been growing up with the “software cri-
sis”. The root of the crisis is the inherent complexity of software development,
and the major cause of the complexity “is that the machines have become sev-
eral orders of magnitude more powerful” [18] within decades. Furthermore, ICT
systems with machines and smart devices that are communicating through het-
erogeneous Internet and communication networks, considering integrated health-
care information systems and environment monitoring and control systems, are
becoming more complex beyond the imagination of the computer scientists and
software engineers in the 1980’s.

1.1 Software Complexity

Software complexity was characterized before the middle of the 1990s in terms
of four fundamental attributes of software [5–7]:

Z. Liu, J. Woodcock, and H. Zhu (Eds.): Theories of Programming, LNCS 8050, pp. 1–66, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 R. Dong et al.

1. the complexity of the domain application,
2. the difficulty of managing the development process,
3. the flexibility possible through software,
4. and the problem of characterizing the behavior of software systems [5].

This characterization remains sound, but the extensions of the four attributes
are becoming much wider.

The first attribute focuses on the difficulty of understanding the application
domain (by the software designer in particular), capturing and handling the ever-
changing requirements. It is even more challenging when networked systems sup-
port collaborative workflows involving many different kinds of stakeholders and
end users across different domains. Typical cases are in healthcare applications,
such as telemedicine, where chronic conditions of patients on homecare plans
are monitored and tracked by different healthcare providers. In these systems,
requirements for safety, privacy assurances and security are profound too.

The second attribute concerns the difficulty to define and manage a develop-
ment process that has to deal with changing requirements for a software project
involving a large team comprising of software engineers and domain experts, pos-
sibly in different geographical places. There is a need of a defined development
process with tools that support collaboration of the team in working on shared
software artifacts.

The third is about the problem of making the right design decisions among a
wide range of possibilities that have conflicting features. This includes the design
or reuse of the software architecture, algorithms and communication networks
and protocols. The design decisions have to deal with changing requirements and
aiming to achieve the optimal performance to best support the requirements of
different users.

The final attribute of software complexity pinpoints the difficulty in under-
standing and modeling the semantic behavior of software, for analysis, validation
and verification for correctness, as well as reliability assurance. The semantic be-
havior of modern software-intensive systems [63], which we see in our everyday
life, such as in transportation, health, banking and enterprise applications, has a
great scale of complexity. These systems provide their users with a large variety
of services and features. They are becoming increasingly distributed, dynamic
and mobile. Their components are deployed over large networks of heterogeneous
platforms. In addition to the complexity of functional structures and behaviors,
modern software systems have complex aspects concerning organizational struc-
tures (i.e., system topology), adaptability, interactions, security, real-time and
fault-tolerance. Thus, the availability of models for system architecture compo-
nents, their interfaces, and compositions is crucially important.

Complex systems are open to total breakdowns [53], and consequences of
system breakdowns are sometimes catastrophic and very costly, e.g., the famous
Therac-25 Accident 1985-1987 [41], the Ariane-5 Explosion in 1996 [56], and the
Wenzhou High Speed Train Collision.1 Also the software complexity attributes
are the main source of unpredictability of software projects, software projects fail
1 http://en.wikipedia.org/wiki/Wenzhou_train_collision

http://en.wikipedia.org/wiki/Wenzhou_train_collision

rCOS: Defining Meanings of Component-Based Software Architectures 3

due to our failure to master the complexity [33]. Given that the global economy
as well as our everyday life depends on software systems, we cannot give up
advancing the theories and the engineering methods to master the increasing
complexity of software development.

1.2 Model-Driven Development

The model-driven architecture (MDA) [52,60, 63] approach proposes building of
system models in all stages of the system development as the key engineering
principle for mastering software complexity and improving dependability and
predictability. The notion of software architectures is emphasized in this ap-
proach, but it has not been precisely defined. In industrial project development,
the architecture of a system at a level of abstraction is often represented by
diagrams with “boxes” and “links” to show parts of the systems and their link-
ages, and sometimes these boxes are organized into a number of “layers” for a
“layered architecture”. There even used to be little informal semantic meaning
for the boxes and links. This situation has improved since the introduction of
the Unified Modeling Language (UML) in which boxes are defined as “objects”
or “components”, and links are defined as “associations” or “interfaces”. These
architectural models are defined as both platform independent models (PIM)
and platform specific models (PSM), and the mapping from a PIM to a PSM is
characterized as a deployment model.

MDA promotes in software engineering the principles of divide and conquer
by which an architectural component is hierarchical and can be divided into
subcomponents; separation of concerns that allows a component to be described
by models of different viewpoints, such as static component and class views,
interaction views and dynamic behavioral views; and information hiding by ab-
stractions so that software models at different stages of development only focus
on the details relevant to the problem being solved at that stage.

All the different architectural models and models of viewpoints are important
when defining and managing a development process [43]. However, the semantics
of these models is largely left to the user to understand, and the integration
and transformation of these models are mostly syntax-based. Hence, the tools
developed to support the integration and transformation cannot be integrated
with tools for verification of semantic correctness and correctness preserving
transformations [46].

For MDA to support a seamless development process of model decomposition,
integration, and refinement, there is a need of formal semantic relations between
models of different viewpoints of the architecture at a certain level, and the
refinement/abstraction relation between models at different levels of abstraction.
It is often the case that a software project in MDA only focuses on the grand
levels of abstraction — requirements, design, implementation and deployment,
without effectively supporting refinement of the requirements and design models,
except for some model transformations based on design patterns. This is actually
the reason why MDA has failed to demonstrate the potential advantages of
separation of concerns, divide and conquer and incremental development that it

4 R. Dong et al.

promises. This lack of semantic relations between models as well as the lack of
techniques and tools for semantics-preserving model transformations is also an
essential barrier for MDA to realize its full potential in improving safety and
predictability of software systems.

1.3 Formal Methods in Software Development

Ensuring semantic correctness of computer systems is the main purpose of us-
ing formal methods. A formal method consists of a body of techniques and
tools for the specification, development, and verification of programs of a certain
paradigm, such as sequential or object-oriented procedural programs, concurrent
and distributed programs and now web-services. Here, a specification can be a
description of an abstract model of the program or the specification of desirable
properties of the program in a formally defined notation. In the former case, the
specification notation is also often called a modeling language, though a modeling
language usually includes graphic features. Well-known modeling/specification
languages include CSP [28], CCS [50], the Z-Notation [58], the B-Method [1, 2],
VDM [34], UNITY [9], and TLA+ [38]. In the latter case, i.e., the specification
of program properties, these desirable properties are defined on a computational
model of the executions of the system, such as state machines or transition sys-
tems. Well-known models of this kind include the labeled transition systems and
the linear temporal logic (LTL) of Manna and Pnueli [49], which are also used
in verification tools like Spin [31] and, in an extended form, Uppaal.2

The techniques and tools of a formal method are developed based on a math-
ematical theory of the execution or the behavior of programs. Therefore, we
define a formal method to include a semantic theory as well as the techniques
and tool support underpinned by the theory for modeling, design, analysis, and
verification of programs of a defined programming paradigm. It is important to
note that the semantic theory of a formal method is developed based on the fun-
damental theories of denotational semantics [59], operational semantics [54], and
axiomatic semantics (including algebraic semantics) [17,27] of programming. As
they are all used to define and reason about behavior of programs, they are
closely related [51], and indeed, they can be “unified” [29].

In the past half a century or so, a rich body of formal theories and techniques
have been developed. They have made significant contribution to program behav-
ior characterization and understanding, and recently there has been a growing
effort in development of tool support for verification and reasoning. However,
these techniques and tools, of which each has its community of researchers, have
been mostly focusing on models of individual viewpoints. For examples, type
systems are used for data structures, Hoare Logic for local functionality, process
calculi (e.g., CSP and CSS) and I/O automata [48] for interaction and synchro-
nization protocols. While process calculi and I/O automata are similar from the
perspective of describing the interaction behavior of concurrent and distributed
components, the former is based on the observation of the global behavior of
2 http://www.uppaal.org

http://www.uppaal.org

rCOS: Defining Meanings of Component-Based Software Architectures 5

interaction sequences, and the latter on the observation of local state transitions
caused by interaction events. Processes calculi emphasize on support of alge-
braic reasoning, and automata are primarily used for algorithmic verification
techniques, i.e., model checking [15, 55].

All realistic software projects have design concerns on all viewpoints of data
structures, local sequential functionalities, and interactions. The experience,
e.g., in [32], and investigation reports on software failures, such as those of the
Therac-25 Accident in 1985–1987 [41] and the Ariane-5 Explosion in 1996 [56],
show that the cause of a simple bug that can lead to catastrophic consequences
and that ad hoc application of formal specification and verification to programs
or to models of programs will not be enough or feasible to detect and remove
these causes. Different formal techniques that deal with different concerns more
effectively have to be systematically and consistently used in all stages of a
development process, along with safety analysis that identifies risks, vulnerabil-
ities, and consequences of possible risk incidents. There are applications that
have extra concerns of design and verification, such as real-time and security
constraints. Studies show that models with these extra functionalities can be
mostly treated by model transformations into models for requirements without
these concerns [44].

1.4 The Aim and Theme of rCOS

The aim of the rCOS method is to bridge the gap sketched in the previous
sections by defining the unified meanings of component-based architectures at
different levels of abstraction in order to support seamless integration of formal
methods in modeling software development processes. It thus provides support
to MDA with formal techniques and tools for predictable development of reliable
software. Its scope covers theories, techniques, and tools for modeling, analysis,
design, verification and validation. A distinguishing feature of rCOS is the formal
model of system architecture that is essential for model compositions, transfor-
mations, and integrations in a development process. This is particularly the case
when dealing with safety critical systems (and so must be shown to satisfy cer-
tain properties before being commissioned), but beyond that, we promote with
rCOS the idea that formal methods are not only or even mainly for producing
software that is safety critical: they are just as much needed when producing a
software system that is too complex to be produced without tool assistance. As
it will be shown in this chapter, rCOS systematically addresses these complexity
problems by dealing with architecture at a large granularity, compositionality,
and separation of concerns.

1.5 Organization

Following this introduction section, we lay down the semantic foundation in
Sect. 2 by developing a general model of labeled transition systems that com-
bines the local computation (including structures and objects) in a transition

6 R. Dong et al.

and the dynamic behavior of interactions. We propose a failure-divergence se-
mantics and a failure-divergence refinement relation between transition systems
following the techniques of CSP [57]. Then in Sect. 3-5, we introduce the specifi-
cation of primitive closed components, primitive open components and processes
that are the basic architectural components in rCOS. Each of the different kinds
of components is defined by their corresponding label transition systems. Mod-
els at different levels of abstraction, including contracts and publications for
different purposes in a model-driven development process, are defined and their
relations are studied. Section 6 defines the architectural operators for composing
and adapting components. These operations on component specifications show
how internal autonomous transitions are introduced and how they cause non-
determinism that we characterized in the general labeled transition systems.
These operators extend and generalize the limited plugging, disjoint union and
gluing operators we defined in the original components. The model also unifies
the semantics and compositions of components and processes. A general compo-
nent can exhibit both passive behavior of receiving service requests and actively
invoke services from the environment. This is a major extension, but it preserves
the results that we have developed for the original rCOS model. However, this
extension still needs more detailed investigation in the future, including their
algebraic properties. Section 7 is about a piece of work on an interface model of
rCOS components. The aim is to propose an input-deterministic model of com-
ponent interfaces for better composability checking, and to give a more direct
description of provided and required protocols of components. There, we define
a partial order, called alternative refinement, among component interface mod-
els. The results are still preliminary, and interesting further research topics are
thus pointed out. Concluding remarks are given and future work is discussed in
Sect. 8.

2 Unified Semantics of Sequential Programming

The rCOS method supports programming software components that exhibit
interacting behavior with the environment as well as local data functionality
through the executions of operations triggered by interactions. The method sup-
ports interoperable compositions of components for that the local data function-
ality are implemented in different programming paradigms, including modular,
procedural and object-oriented programming. This requires a unified semantic
theory of models of programs. To this end, rCOS provides a theory of relational
semantics for object-oriented programming, in which the semantic theories of
modular and procedural programming are embedded as sub-theories. This sec-
tion first introduces a theory of sequential programs, which is then extended by
concepts for object-oriented and reactive systems.

To support model-driven development, models of components built at different
development stages are related so that properties established for a model at
a higher level of abstraction are preserved by its lower level refined models.
Refinement of components is also built on a refinement calculus of object-oriented
programs.

rCOS: Defining Meanings of Component-Based Software Architectures 7

2.1 Designs of Sequential Programs

We first introduce a unified theory of imperative sequential programming. In this
programming paradigm, a program P is defined by a set of program variables,
called the alphabet of P , denoted by αP , and a program command c written in
the following syntax, given as a BNF grammar,

c ::= x := e | c; c | c� b� c | c � c | b ∗ c (1)

where e is an expression and b a boolean expression; c1�b�c2 is the conditional
choice equivalent to “if b then c1 else c2” in other programming languages; c � c
is the non-deterministic choice that is used as an abstraction mechanism; b ∗ c
is iteration equivalent to “while b do c”.

A sequential program P is regarded as a closed program such that for given
initial values of its variables (that form an initial state), the execution of its
command c will change them into some possible final values, called the final
state of the program, if the execution terminates. We follow UTP [29] to define
the semantics of programs in the above simple syntax as relations between the
initial and final states.

States. We assume an infinite set of names X representing state variables with
an associated value space V . We define a state of X as a function s : X → V and
use Σ to denote the set of all states of X . This allows us to study all the programs
written in our language. For a subset X of X , we call ΣX the restrictions of Σ on
X the states of X ; an element of this set is called state over X . Note that state
variables include both variables used in programs and auxiliary variables needed
for defining semantics and specifying properties of programs. In particular, for
a program, we call ΣαP the states of program P .

For two sets X and Y of variables, a state s1 over X and a state s2 over Y ,
we define s1 ⊕ s2 as the state s for which s(x) = s1(x) for x ∈ X but x /∈ Y and
s(y) = s2(y) for y ∈ Y . Thus, s2 overwrites s1 in s1 ⊕ s2.

State Properties and State Relations. A state property is a subset of the
states Σ and can be specified by a predicate over X , called a state predicate. For
example, x > y+ 1 defines the set of states s for that s(x) > s(y) + 1 holds. We
say that a state s satisfies a predicate F , denoted by s |= F , if it is in the set
defined by F .

A state relation R is a relation over the states Σ, i.e., a subset of the Cartesian
product Σ × Σ, and can be specified by a predicate over the state variables
X and their primed version X ′ = {x′ | x ∈ X}, where X ′ and X are disjoint
sets of names. We say that a pair of states (s, s′) satisfies a relation predicate
R(x1, . . . , xk, y

′
1, . . . , y

′
n) if

R(s(x1)/x1, . . . , s(xk)/xk, s
′(y1)/y′1, . . . , s

′(yn)/y′n)

holds, denoted by (s, s′) |= R. Therefore, a relational predicate specifies a set of
possible state changes. For example, x′ = x+1 specifies the possible state changes

8 R. Dong et al.

from any initial state to a final state in which the value of x is the value of x in
the initial state plus 1. However, x′ ≥ x + 1 defines the possible changes from
an initial state to a state in which x has a value not less than the initial value
plus 1. A state predicate and a relational predicate only constrain the values of
variables that occur in the predicates, leaving the other variables to take values
freely. Thus, a state predicate F can also be interpreted as a relational predicate
such that F holds for (s, s′) if s satisfies F . In addition to the conventional
propositional connectors ∨, ∧ and ¬, we also define the sequential composition
of relational predicates as the composition of relations

R1;R2 =̂ ∃x0 • R1(x0/x
′) ∧R2(x0/x), (2)

where x0 is a vector of state variables; x and x′ represent the vectors of all
state variables and their primed versions in R1 and R2; and the substitutions
are element-wise substitutions. Therefore, a pair of states (s, s′) satisfies R1;R2

iff there exists a state s0 such that (s, s0) satisfies R1 and (s0, s
′) satisfies R2.

Designs. A semantic model of programs is defined based on the way we observe
the execution of programs. For a sequential program, we observe which possible
final states a program execution reaches from an initial state, i.e., the relation
between the starting states and the final states of the program execution.

Definition 1 (Design). Given a finite set α of program variables (as the alpha-
bet of a program in our interest), a state predicate p and a relational predicate R
over α, we use the pair (α, p � R) to represent a program design. The relational
predicate p � R is defined by p ⇒ R that specifies a program that starts from
an initial state s satisfying p and if its execution terminates, it terminates in a
state s′ such that (s, s′) |= R.

Such a design does not observe the termination of program executions and it is
a model for reasoning about partial correctness. When the alphabet is known,
we simply denote the design by p � R. We call p the precondition and R the
postcondition of the design.

To define the semantics of programs written in Syntax (1), we define the op-
erations on designs over the same alphabet. In the following inductive definition,
we use a simplified notation to assign design operations to program constructs.
Note that on the left side of the definition, we mean the program symbols while
the right side uses relational operations over the corresponding designs of a pro-
gram, i.e., we identify programs with a corresponding design.

x := e =̂ true � x′ = e ∧
∧

y∈α,y �≡x
y′ = y,

c1; c2 =̂ c1; c2

c1 � b� c2 =̂ b ∧ c1 ∨ ¬b ∧ c2,

c1 � c2 =̂ c1 ∨ c2,

b ∗ c =̂ (c; b ∗ c)� b� skip,

(3)

rCOS: Defining Meanings of Component-Based Software Architectures 9

where we have skip =̂ true �
∧

x∈α(x
′ = x). We also define chaos =̂ false �

true. In the rest of the paper, we also use farmed designs of the form X : p � R
to denote that only variables in X can be changed by the design p � R. So
x := e = {x} : true � x′ = e.

However, for the semantics definition to be sound, we need to show that the set
D of designs is closed under the operations defined in (3), i.e., the predicates on
the right-hand-side of the equations are equivalent to designs of the form p � R.
Notice that the iterative command is inductively defined. Closure requires the
establishment of a partial order that forms a complete partial order (CPO) for
the set of designs D.

Definition 2 (Refinement of designs). A design Dl = (α, pl � Rl) is a
refinement of a design Dh = (α, ph � Rh), if

∀x, x′ • (pl ⇒ Rl) ⇒ (ph ⇒ Rh)

is valid, where x and x′ represent all the state variables and their primed versions
in Dl and Dh.

We denote the refinement relation by Dh Dl. The refinement relation says that
any property satisfied by the “higher level” design Dh is preserved (or satisfied)
by the “lower level” design Dl. The refinement relation can be proved using the
following theorem.

Theorem 1. Dh Dl when

1. the pre-condition of the lower level is weaker: ph ⇒ pl, and
2. the post-condition of the lower level is stronger: pl ∧ Rl ⇒ Rh.

The following theorem shows that is indeed a “refinement relation between
programs” and forms a CPO.

Theorem 2. The set D of designs and the refinement relation satisfy the
following properties:

1. D is closed under the sequential composition “;”, conditional choice “ � b� ”
and non-deterministic choice “�” defined in (3),

2. is a partial order on the domain of designs D,
3. is preserved by sequential composition, conditional choice and non-deter-

ministic choice, i.e., if Dh Dl then for any D

D;Dh D;Dl, Dh;D Dl;D,

Dh � b�D Dl � b�D, Dh � D Dl �D,

4. (D,) forms a CPO and the recursive equation X = (D;X)� b� skip has
a smallest fixed-point, denoted by b ∗ D, which may be calculated from the
bottom element chaos in (D,).

10 R. Dong et al.

For the proof of the theorems, we refer to the book on UTP [29]. D1 and D2 are
equivalent, denoted as D1 = D2 if they refine each other, e.g., D1�D2 = D2�D1,
D1 � b � D2 = D2 � ¬b � D1, and D1 � D2 = D1 iff D1 D2. Therefore, the
relation is fundamental for the development of the refinement calculus to
support correct by design in program development, as well as for defining the
semantics of programs.

When refining a higher level design to a lower level design, more program
variables are introduced, or types of program variables are changed, e.g., a set
variable implemented by a list. We may also compare designs given by different
programmers. Thus, we must relate programs with different alphabets.

Definition 3 (Data refinement). Let Dh = (αh, ph � Rh) and Dl = (αl, pl �
Rl) be two designs. Dh Dl if there is a design (αh ∪ αl, ρ(αl, α

′
h)) such that

ρ;Dh Dl; ρ. We call ρ a data refinement mapping.

Designs of Total Correctness. The designs defined above do not support
reasoning about termination of program execution. To observe execution initia-
tion and termination, we introduce a boolean state variable ok and its primed
counterpart ok ′, and lift a design p � R to L(p � R) defined below:

L(p � R) =̂ ok ∧ p ⇒ ok ′ ∧ R.

This predicate describes the execution of a program in the following way: if the
execution starts successfully (ok = true) in a state s such that precondition p
holds, the execution will terminate (ok ′ = true) in a state s′ for which R(s, s′)
holds. A design D is called a complete correctness design if L(D) = D. Notice
that L is a healthy lifting function from the domain D of partially correct designs
to the domain of complete correct designs L(D) in that L(L(D)) = L(D). The
refinement relation can be lifted to the domain L(D), and Theorem 1 and 2 both
hold. For details of UTP, we refer to the book [29]. In the rest of the paper, we
assume the complete correctness semantic model, and omit the lifting function
L in the discussion.

Linking Theories. We can unify the theories of Hoare-logic [27] and the pred-
icate transformer semantics of Dijkstra [17]. The Hoare-triple {p}D{r} of a pro-
gram D, which can be represented as a design according to the semantics given
above, is defined to be p ∧ D ⇒ r′, where p and r are state predicates and r′

is obtained from r by replacing all the state variables in r with their primed
versions.

Given a state predicate r, the weakest precondition of the postcondition r for
a design D, wp(p � R, r), is defined to be p∧¬(R;¬r). Notice that this is a state
predicate.

This unification allows the use of the laws in both theories to reason about
program designs within UTP.

rCOS: Defining Meanings of Component-Based Software Architectures 11

2.2 Designs of Object-Oriented Programs

We emphasize the importance of a semantic theory for concept clarification,
development of techniques and tool support for correct by design and verification.
The semantic theory presented in the previous section needs to be extended to
define the concepts of classes, objects, methods, and OO program execution.
The execution of an OO program is more complex than that of a traditional
sequential program because the execution states have complex structures and
properties. The semantics of OO programs has to cohesively define and treat

– the concepts of object heaps, stacks and stores,
– the problems of aliasing,
– subtyping and polymorphism introduced through the class inheritance mech-

anism, and
– dynamic typing of expression evaluation and dynamic binding of method

invocation.

Without an appropriate definition of the execution state, the classic Hoare-logic
cannot be used to specify OO program executions. Consider two classes C1 and
C2 such that C1 is a subclass of C2 (denoted by C1 � C2), and variables C1 x1

and C2 x2 of the classes, respectively. Assume a is an attribute of C2 and thus
also an attribute of C1, the following Hoare-triple (confer previous section for
representing Hoare-triples as designs) holds when x1 and x2 do not refer to the
same object, i.e., they are not aliases of the same object, but does not necessarily
hold if they refer to the same object:

{x2.a = 4} x1.a := 3 {x2.a = 4}.

If inheritance allows attribute hiding in the sense that the attribute a of C2 can be
redeclared in its subclass C1, even the following Hoare-triple does not generally
hold:

{x1.a = 3} x2 := x1 {x2.a = 3}.

Therefore, the following fundamental backward substitution rule does not gener-
ally hold for OO programs:

{Q[e/le]} le := e {Q}.

In order to allow the use of OO design and programming for component-based
software development, rCOS extends the theory of designs in UTP to a theory
of OO designs. The theory includes an UTP-based denotational semantics [26,
66], a graph-based operational semantics of OO programs [36] and a refinement
calculus [66] of OO designs. We only give a summary of the main ideas and
we refer to the publications for technical details, which are of less interest for
general readers.

12 R. Dong et al.

OO Specification. The rCOS OO specification language is defined in [26]. Sim-
ilar to Java, an OO program P consists of a list ClassDecls of class declarations
and a main program body Main . Each class in ClassDecls is of the form:

class M [extends N]
private T11 a11 = d11, . . . , T1n1 a1n1 = d1n1 ;
protected T21 a21 = d21, . . . , T2n2 a2n2 = d2n2 ;
public T31 a31 = d31, . . . , T3n3 a3n3 = d3n3 ;
method m1 (T11 x1; T12 y1) { c1}

· · ·
m� (T�1 x� ; T�2 y�) { c�}

Therefore, a class can declare at most one direct superclass using extends, some
attributes with their types and initial values, and methods with their signatures
and body commands. Types include classes and a set of assumed primitive data
types such as integers, booleans, characters and strings. The scopes of visibility of
the attributes are defined by the private, protected and public keywords. We
could also have different scopes of visibility for the methods, but we assume all
methods are public for simplicity. A method can have a list of input parameters
and return parameters with their types. We use return parameters, instead of
return types of methods to a) avoid the use of method invocations in expressions
so that evaluation of expressions have no side effect, and b) give us the flexibility
in specifications that a method can have a number of return values.

The main program body Main declares a list vars of variables, called the
global variables with their types and initial values, and a command c. We can
thus denote the main program body as a pair (vars , c) in our discussion. One
can view the main program body as a class Main :

class Main { private vars ; method main(){c} }

A command in a method, including the main method, is written in the following
syntax:

expressions: e ::= x | null | this | e.a | (C)e | f(e)
assignable expressions: le ::= x | e.a
commands: c ::= skip | chaos | var T x = e; c; end x |

c; c | c� b� c | c � c | b ∗ c |
e.m(e∗; le) | le := e | C.new (le)

Here, x is a basic type or an object variable and e.a an attribute of e. For the sake
of clarity, a simplified presentation for method parameters and variable scope
is used; we generally allow lists of expressions as method parameters and lists
of variable declarations for the scope operator var. Notice that the creation of
a new object C.new(le) is a command not an expression. It returns in le the
object newly created and plays the same role as le = new C() in Java or C++.

rCOS: Defining Meanings of Component-Based Software Architectures 13

Objects, Types and States. An object has an identity, a state and a behavior.
We use a designated set REF to represent object identities. An object also has
a runtime type. Thus, we define an object by a triple o = (r, C, s) of its identity
r, runtime type C and state s. The state s is a typed function

s : A(C) → O ∪ V ,

where

– O is the set of all objects of all classes,
– V the value space of all the primitive data types,
– A(C) is the set of names of the attributes of C, including those inherited

from all its superclasses, and
– s maps an attribute a to an object or value of the type of a declared in C.

Therefore, an object o has a recursive structure, and can be represented by a
rooted-labeled-directed graph, called an object graph [36, 66], in which

– the root represents the object labeled by its runtime type,
– each outgoing edge is labeled by an attribute of the object and leads to a

node that is either an object or a value, and
– each object node is the root of a subgraph representing that object.

In an object graph, all value nodes are leaves. An object graph can also be
represented by a UML object diagram [66], but UML object diagrams do not have
the properties of the mathematical structure of rooted-labeled-directed graphs
needed for formal reasoning and analysis. Furthermore, the types in an object
graph together with the labels for attributes form a class graph that is called the
type graph of the object that the object graph represents [36, 66].

States of Programs. Given an OO program P = ClassDecls •Main , a global
state of P is defined as a mapping s : vars → O ∪ V that assigns each variable
x ∈ vars an object or a value depending on the type of x. Taking Main as a class,
a global state of P is thus an object of Main and can be represented as an object
graph, called a global state graph. During the execution of the main method, the
identity of the object representing the state will never be changed, but its state
will be modified in each step of the execution. All the global state graphs have
the same type graph. The type graph of the program can be statically defined
from the class declarations ClassDecls . Its UML counterpart is the UML class
diagram of the program in which classes have no methods. For example, Fig. 1
is a global state of the accompanied program outline, and its type graph (and
the corresponding UML class diagram) is given in Fig. 2.

Global states are enough for defining a UTP-based denotational semantics [26]
and a “big step semantics” of the program in which executions of intermediate
execution steps and the change of locally declared variables are hidden. To define
a small step operational semantics, we need to represent the stack of local variable
declarations to characterize the execution of var T x = x0, where T can either

14 R. Dong et al.

ε

(r2, Guest)

(r1,Room) (r3,Reservation)

(0810, int)(true, bool)
(r4,Account)

(1000, int) (r5,Transaction)

y1

y2

y3

resvstays

nostatus acc

bal trans

1 program Hotel {

2 class Person {

3 public Account acc = null;
4 method m1(){...}

5 }

6 class Guest extends Person {

7 public
8 Room stays = null,
9 Reservation resv = null;

10 method
11 makeReservation() {...}

12 checkOut() {...}

13 }

14 class Account {

15 public
16 int bal = 0;

17 Transaction trans = null;
18 method checkBalance() {...}

19 }

20 class Room {

21 public
22 int no = 0,

23 bool status = false;
24 method changeStatus() {...}

25 }

26 class Transaction {

27 ...

28 }

29 class Main {

30 private
31 Room y1,

32 Guest y2,

33 Reservation y3;

34 method main() {...}

35 }

36 } // end of program

Fig. 1. An example of object graph

be a class or a data type, and x0 is the declared initial value of x. For this, we
extend the notation of global state graphs by introducing edges labeled by a
designated symbol $. The execution of var T x = x0 from a state graph G adds
a new root node n′ to G that has an outgoing edge to the root n of G, labeled
by $, and another outgoing edge to x0, labeled by x. We can understand this as
pushing a new node on top of G with one outgoing edge labeled by $ to the root
of G and another labeled by x to its initial value. Such a state graph contains
a $-path of scope nodes, called the stack. Executing the command end x from
such a state graph pops out the root together with its outgoing edges. Figure 3
shows an example of a state graph that characterizes the local scopes below:

var C2 z = o2, C3 x = o3;var C2 x = o2;var int z = 3, C1 y = o1

where o1, o2 and o3 are objects of type C1, C2, and C3 referred to by the variables
y, z and x in their scopes, respectively.

rCOS: Defining Meanings of Component-Based Software Architectures 15

Person

Guest Account

Reservation Room int

bool

Transaction

� acc

resv stays bal trans

no

status

Person Account

Guest Transaction

RoomReservation

bal: int

no: int
status: bool

acc

trans

staysresv

Fig. 2. An example of class graph and diagram

Semantics. We explain the semantics informally. Both a denotational semantics
and an operational semantics can be defined by specifying which changes the
execution of a command makes on a given state graph. This can be understood
with our graph representation of states. Given an initial state graph G

– assignment: le.a := e first evaluates e on G as a node n′ of G and then swings
the a-edge of the target node of le in G to the node n′;

– object-creation: C.new(le.a) makes an object graph of C according to the
initial values of its attributes, such that the root n′ is not in G, and then
swings the a-edge of the target node of le in G to the node n′;

– method invocation: e.m(e1; le.a) first records e, e1 and le to this , the formal
value parameter of m() and y+, respectively, then executes the body of
m(), returns the value of the formal return parameter of m() to the actual
return parameter y+.a which is the initial le.a that might be changed by the
execution, roughly that is

var this = e, in = e1, y
+ = le, return;

c; y+.a := return;
end this , in, y+, return

where in and return are the formal parameters of m().

16 R. Dong et al.

(o1)

(3) (5)

(o2)

(o3) (null)

a b

imp

next

next

$

$

$

w
v

x
z

x

yz

Fig. 3. An example of state graph with local scopes

Then conditional choice, non-deterministic choice and iterative statements can
be defined inductively. For a denotational semantics, a partial order has to be
defined with that a unique fixed-point of the iterative statements and recursive
method invocations can be defined. The theory of denotational semantics is
presented in [26] and the graph-based operational semantics is given in [36].

OO Refinement. OO refinement is studied at three levels in rCOS: refinement
between whole programs, refinement between class declarations (called struc-
ture refinement), and refinement between commands. The refinement relation
between commands takes exactly the same view as in the previous section about
traditional sequential programs, where the execution of a program command is a
relation between states. A command cl is a refinement of a command ch, denoted
by ch cl, if for any given initial state graph G, any possible final state G′ of cl
is also a possible final state of ch. This definition takes care of non-determinism
and a refined command is not more non-deterministic than the original com-
mand. However, refinement between commands in OO programming only makes
sense under the context of a given list of class declarations ClassDecls . Under
such a given context, some variables and method invocations in a command c
might not be defined. In this case, we treat the command to be equivalent to
chaos, which can be refined by any command under the same context. To com-
pare two commands under different class contexts, we use the extended notation
of data refinement and relate the context of cl to that of ch by a class (graph)
transformation.

The combination of class graph transformations and command transforma-
tions is illustrated in Fig. 4. It shows that given a class graph transformation
ρ from CG to CG1, we can derive a transformation ρo from an instance object
graph OG of CG to an instance object graph OG1 of CG1, as well as a transfor-
mation ρc on commands. Then ρ is a class refinement if the diagram commutes
for all OG of CG and all commands c.

Definition 4 (OO program refinement). A program Pl = ClassDecls l •
Main l is a refinement of a program Ph = ClassDeclsh • Mainh, if there is a
class graph transformation from the class graph of Pl to that of Ph such that the
command of Main l is a refinement of the command of Mainh.

rCOS: Defining Meanings of Component-Based Software Architectures 17

CG OG OG ′

CG1 OG1 OG ′
1

i c

ρ

i ρc(c)

ρo ρo

Fig. 4. Class graph transformations and command transformations

In the paper [66], we give a systematic study of the combination of class re-
finement and command refinement, and develop a graph-based OO refinement
calculus. It gives a full formalization of OO program refactoring [23] by a group
of simple rules of class graph transformations, including adding classes, at-
tributes, methods, decomposition and composition of classes, promoting methods
from subclasses to super classes, from private to protected and then to public.
The combination of class graph transformations with command transformations
formalizes the design patterns for class responsibility assignments for object-
oriented design, including in particular the expert patterns, low coupling and
high cohesion patterns [39]. The use of these patterns is an essential practice in
OO program design [12].

An essential advantage of OO programming is that classes can be reused in
different applications that are implemented in different main methods. Classes
can also be extended for application evolution. The classes of an application
program are in fact the metamodel of the structure or organization of the appli-
cation domain in terms of concepts, objects, their relations, and behavior. On
the other hand, the main method of the program is the automation of the appli-
cation business processes, i.e., use cases, via the control of the objects’ behavior.
Of course, different structures provide different functionalities and thus differ-
ent use cases, the same use case can also be supported by different structures.
The structure refinement in rCOS characterizes this fundamental feature of OO
programming.

Definition 5 (OO structure refinement). A list ClassDecls l of class decla-
rations is a refinement of a list ClassDeclsh of class declarations if for any main
method Main , ClassDeclsh •Main ClassDecls l •Main.

This means that a refined list of class declarations has more capacity in providing
more and “better” services in the sense that the lower level class declarations may
provide additional functionality or may provide more defined functionality with
less non-determinism following the classical notion of refinement.

The refinement calculus is proved to be sound and relatively complete in the
sense that the rules allow us to transform the class graph of a program to a tree
of inheritance, and with the derived transformation rules on the main method,
the program can be refined to an equivalent program that only has the main
class. Thus each OO program can be transformed to an equivalent procedural
program [66].

18 R. Dong et al.

2.3 Reactive Systems and Reactive Designs

The programs that have been considered so far in this section are sequential and
object-oriented programs. For these programs, our semantic definition is only
concerned with the relation between the initial and final states and the termina-
tion of execution. In general, in a concurrent or reactive program, a number of
components (usually called processes) are running in parallel, each following its
own thread of control. However, these processes interact with each other and/or
with the environment (in the case of a reactive program) to exchange data and
to synchronize their behavior. The termination of the processes and the program
as whole is usually not a required property, though the enabling condition and
termination of execution of individual actions are essential for the progress of all
processes, i.e., they do not show livelock or deadlock behavior.

There are mainly two different paradigms of programming interaction and syn-
chronization, shared memory-based programming and message-passing program-
ming. However, there can be programs using both synchronization mechanisms,
in distributed systems in which processes on the same node interact through
shared variables, and processes on different nodes interact through message pass-
ing. We define a general model of labeled transition systems for describing the
behavior of reactive systems.

Reactive Designs. In general a reactive program can be considered as a set
of atomic actions programmed in a concurrent programming language. The ex-
ecution of such an atomic action carries out interactions with the environment
and changes of the state of the variables. We give a symbolic name for each
atomic action, which will be used to label the state transitions when defining
the execution of a reactive program.

The execution of an atomic action changes the current state of the program
to another state, just in the way a piece of sequential code does, thus it can be
specified as a design p � R. However, the execution requires resources that might
be occupied by another process or a synchronization condition. The execution
is then suspended in a waiting state. For allowing the observation of the waiting
state, we introduce the new boolean state variables wait and wait ′ and define
the following lifting function on designs

H(D) =̂ wait ′ � wait �D,

specifying that the execution cannot proceed in a waiting state. Note that wait
is not a program variable, and thus cannot be directly changed by a program
command. Instead, wait allows us to observe waiting states when talking about
the semantics of reactive programs. We call a design D a reactive design if
H(D) = D. Notice that H(H(D)) = H(D).

rCOS: Defining Meanings of Component-Based Software Architectures 19

Theorem 3 (Reactive design). The domain of reactive designs has the fol-
lowing closure properties:

H(D1 ∨ D2) = H(D1) ∨ H(D2),

H(D1;D2) = H(D1);H(D2),

H(D1 � b�D2) = H(D1)� b�H(D2).

Given a reactive design D and a state predicate g, we call g � D a guarded
design and its meaning is defined by

g � D =̂ D � g � (true � wait ′).

Theorem 4. If D is a reactive design, so is g � D.

For non-reactive designs p � R, we use the notation g � (p � R) to denote the
guarded design g � H(p � R), where it can be proved H(p � R) = (wait ∨ p) �
(wait ′ � wait � R). This guarded design specifies that if the guard condition g
holds, the execution of design proceeds from non-waiting state, otherwise the
execution is suspended. It is easy to prove that a guarded design is a reactive
design.

Theorem 5 (Guarded design). For guarded designs, we have

g1 � D1 � b� g2 � D2 = (g1 � b� g2) � (D1 � b�D2),

g1 � D1; g2 � D2 = g1 � (D1; g2 � D2),

g � D1 ∨ g � D2 = g � (D1 ∨ D2),

g � D1;D2 = g � (D1;D2).

A concurrent program P is a set of atomic actions, and each action is a guarded
command in the following syntax:

c ::= x := e | c; c | c� b� c | c � c | g � c | b ∗ c (4)

Note that x := e is interpreted as command guarded by true. The semantics of
the commands is defined inductively by

x := e =̂ H(true � x′ = e
∧

y∈α,y �≡x y′ = y)

g � c =̂ c� g � (true � wait ′)
g1 � c1 � · · · � gn � cn =̂ (g1 ∨ · · · ∨ gn) � (g1 ∧ c1 ∨ · · · ∨ gn ∧ cn)

and for all other cases as defined in equation (3) for the sequential case. The
semantics and reasoning of concurrent programs written in such a powerful lan-
guage are quite complicated. The semantics of an atomic action does not gener-
ally equal to a guarded design of the form g � p � R. This imposes difficulty to
separate the design of the synchronization conditions, i.e., the guards, from the
design of the data functionality. Therefore, most concurrent programming lan-
guages only allow guarded commands of the form g � c such that no guards are
in c anymore. A set of such atomic actions can also be represented as a Back’s
action system [3], a UNITY program [9] and a TLA specification [37].

20 R. Dong et al.

Labeled State Transition Systems. Labeled transition systems are often
used to describe the behavior of reactive systems, and we will use them in the
following sections when defining the semantics of components. Hence, the re-
maining part of this section deals with basic definitions and theorems about
labeled transition systems. Intuitively, states are defined by the values of a set
of variables including both data variables and variables for the flow of control,
which we do not distinguish here. Labels represent events of execution of ac-
tions that can be internal events or events observable by the environments, i.e.,
interaction events.

Definition 6 (Labeled transition system). A labeled transition system
is a tuple

S = 〈var , init , Ω, Λ〉,

where

– var is the set of typed variables (not including ok and wait), denoted S.var ,
we define Σvar to be the set of states over var ∪ {ok ,wait},

– init is the initial condition defining the allowable initial states, denoted by
S.init , and

– Ω and Λ are two disjoint sets of named atomic actions, called observable
and internal actions, respectively; actions are of the form a{c} consisting of
a name a and a guarded command c as defined in Syntax (4). Observable
actions are also called interface actions.

In an action a{c}, we call c the body of a. For Γ = Ω ∪ Λ and for two states s
and s′ in Σvar ,

– an action a ∈ Γ is said to be enabled at s if for the body c of a the
implication c[s(x)/x] ⇒ ¬wait ′ holds, and disabled otherwise.

– a state s is a divergence state if ok is false and a deadlock state if
wait = true.

– we define −→ ⊆ Σvar × {a|a{c} ∈ Γ} ×Σvar as the state transition relation
such that s

a−→ s′ is a transition of S, if a is enabled at s and s′ is a post-state
of the body c of action a.

Notice that this is a general definition of labeled transition systems that includes
both finite and infinite transition systems, closed concurrent systems in which
processes share variables (when all actions are internal), and I/O automata.
Further, it models both data rich models in which a state contains values of data
variables, and symbolic state machines in which a state is a symbol represents
an abstract state of a class of programs. In later sections, we will see the symbols
for labeling the actions can also be interpreted as a combination of input events
triggering a set of possible sequences of output events.

Definition 7 (Execution, observable execution and stable state). Given
a labeled transition system S,

rCOS: Defining Meanings of Component-Based Software Architectures 21

1. an execution of S is a sequence of transitions s0
a1−→ s1

a2−→ · · · an−−→ sn of
S, where n ≥ 0 and si (0 ≤ i ≤ n) are states over var ∪{ok ,wait} such that
s0 is an initial state of S.

2. a state s is said to be unstable if there exists an internal action enabled in
s. A state that is not unstable is called a stable state.

3. an observable execution of S is a sequence of external transitions

s0
a1==⇒ s1

a2==⇒ · · · an==⇒ sn

where all ai ∈ Ω for i = 1, . . . , n, and s
a

==⇒ s′ if s and s′ there exist internal
actions τ1, . . . , τk+� as well as states tj for k, 	 ≥ 0 such that

s
τ1−→ · · · τk−→ tk

a−→ · · · τk+�−−−→ s′.

Notice that the executions (and observable executions) defined above include
chaotic executions in which divergence states may occur. Therefore, we give the
semantic definitions for transitions systems below following the ideas of failure-
divergence semantics of CSP.

Definition 8 (Execution semantics). Let S = 〈var , init , Ω, Λ〉 be a transi-
tion system. The execution semantics of S is defined by a pair (ED(S), EF(S))
of execution divergences and execution failures, where

1. A divergence execution in ED(S) is a finite observable execution sequence of
S

s0
a1==⇒ s1

a2==⇒ · · · an==⇒ sn

where there exists an divergence state sk, k ≤ n. Notice that if sk is a
divergence state, each sj with k ≤ j ≤ n is also a divergence state.

2. The set EF(S) contains all the pairs (σ,X) where σ is a finite observable
execution sequence of S and X ⊆ Ω such that one of the following conditions
hold
(a) σ is empty, denoted by ε, and there exists an allowable initial state s0

such that a is disabled at s0 for any a ∈ X or s0 is unstable and X can
be any set,

(b) σ ∈ ED(S) and X can be any subset of Ω, i.e., any interaction with the
environment can be refused,

(c) σ = s0
a1==⇒ · · · ak==⇒ sk and for any s in the sequence, s(ok) = true and

sk(wait) = false, and each a ∈ X is disabled at sk, or sk is unstable and
X can be any set.

The semantics takes both traces and data into account. The component X of
(σ,X) ∈ EF(S) is called a set of refusals after the execution sequence tr . We
call the subset ExTrace(S) = {σ | (σ, ∅) ∈ EF(S)} the normal execution traces,
or simply execution traces.

When interaction behavior and properties are the main interest, we can omit
the states from the sequences and define the interaction divergences ID(S) and
interaction failures IF(S) as

22 R. Dong et al.

ID(S) = {a1 . . . an | s0
a1==⇒ s1

a2==⇒ · · · an==⇒ sn ∈ ED(S)}
IF(S) = {(a1 . . . an, X) | (s0

a1==⇒ s1
a2==⇒ · · · an==⇒ sn, X) ∈ EF(S)}

We call the set T (S) = {σ | (tr , ∅) ∈ IF(S)} the normal interaction traces, or
simply traces. Also, when interaction is the sole interest, abstraction would be
applied to the states so as to generate transition systems with symbolic states for
the flow of control. Most existing modeling theories and verification techniques
work effectively on transition systems with finite number of states, i.e., finite
state systems.

Definition 9 (Refinement of reactive programs). Let

Sl = 〈var , init l, Ωl, Λl〉 and Sh = 〈var , inith, Ωh, Λh〉

be transition systems. Sl is a refinement of Sh, denoted by Sh Sl, if ED(Sl) ⊆
ED(Sh) and EF(Sl) ⊆ EF(Sh), meaning that Sl is not more likely to diverge or
deadlock when interacting with the environment through the interface actions Ω.

Notice that we, for simplicity, assume that Sl and Sh have the same set of
variables. When they have different variables, the refinement relation can be
defined through a state mapping (called refinement mapping in TLA [37]).

A labeled transition system is a general computational model for reactive pro-
grams developed in different technologies. Thus, the definition of refinement will
lead to a refinement calculus when a modeling notation of reactive programs is
defined that includes models of primitive components and their compositions. We
will discuss this later when the rCOS notation is introduced, but the discussion
will not be in great depth as we focus on defining the meaning of component-
based software architecture. On the other hand, the following theorem provides
a verification technique for checking refinement of transition systems that is sim-
ilar to the relation of simulation of transition systems, but extended with data
states.

Theorem 6 (Refinement by simulation). For two transition systems Sh and
Sl such that they have the same set of variables,

– let guardh(a) and guard l(a) be the enabling conditions, i.e., the guards g for
an action a with body g � c in Sh and Sl, respectively,

– nexth(a) and next l(a) are the designs, i.e., predicates in the form of p �
R, specifying the state transition relations defined by the body of an action
a{g � (p � R)} in Sh and Sl, respectively,

– g(Ωh), g(Λh), g(Ωl) and g(Λl) are the disjunctions of the guards of the in-
terface actions and invisible actions of the programs Sh and Sl, respectively,

– inext(Sh) =
∨

a∈Λh
guardh(a) ∧ nexth(a) the state transitions defined by the

invisible actions of Sh, and
– inext(Sl) analogously defined as inext(Sh) above.

rCOS: Defining Meanings of Component-Based Software Architectures 23

We have Sh Sl if the following conditions holds

1. Sl.init ⇒ Sh.init , i.e., the initial condition of Sh is preserved by Sl,
2. for each a ∈ Ωl, a ∈ Ωh and guard l(a) ⇐⇒ guardh(a),
3. for each a ∈ Ωl, a ∈ Ωh and nexth(a) next l(a), and
4. ¬g(Ωh) =⇒ (g(Λh) ⇐⇒ g(Λl)) ∧ (inext(Sl) =⇒ inext(Sh)), i.e.,

any possible internal action of Sl in an unstable state would be a transition
allowable by an internal action of Sh.

When inext(Sh) inext(Sl), the fourth condition can be weakened to

¬g(Ωh) =⇒ (g(Λh) ⇐⇒ g(Λl))

In summary, the first condition ensures the allowable initial states of Sl are
allowable for Sh; the second ensures Sl is not more likely to deadlock; the third
guarantees that Sl is not more non-deterministic, thus not more likely to diverge,
than Sh, and the fourth condition ensures any refining of the internal action in
Sl should not introduce more deadlock because of removing internal transitions
from unstable states. Notice that we cannot weaken the guards of the actions in
a refinement as otherwise some safety properties can be violated.

This semantics extends and unifies the theories of refinement of closed con-
current programs with shared variables in [3, 9, 37, 44] and failure-divergence
refinement of CSP [57]. However, the properties of this unified semantics still
have to be formally worked out in more detail.

Design and verification of reactive programs are challenging and the scalability
of the techniques and tools is fundamental. The key to scalability is composition-
ality and reuse of design, proofs and verification algorithms. Decomposition of a
concurrent program leads to the notion of reactive programs, that we model as
components in rCOS. The rCOS component model is presented in the following
sections.

3 Model of Primitive Closed Components

The aim of this chapter is to develop a unified model of architecture of com-
ponents, that are passive service components (simply called components) and
active coordinating components (simply referred to as processes). This is the first
decision that we make for separation of concerns. The reason is that components
and processes are different in nature, and they play different roles in composing
and coordinating services to form larger components. Components maintain and
manage data to provide services, whereas processes coordinate and orchestrate
services in business processes and workflows. Thus, they exhibit simpler semantic
behaviors than “hybrid” components that can have both passive and active be-
haviors when interacting with the environment. However, as a semantic theory,
we develop a unified semantic model for all kinds of architectural components -
the passive, active and the general hybrid components. We do this step by step,
starting with the passive components, then the active process and finally we will

24 R. Dong et al.

define compositions of components that produces general components with both
passive and active behavior. We start in this section with the simplest kind of
components - primitive closed components. They are passive.

A closed and passive component on one hand interacts with the environment
(users/actors) to provide services and on the other hand carries out data pro-
cessing and computation in response to those services. Thus, the model of a
component consists of the types of the data, i.e., the program variables, of the
component, the functionality of the operations on the data when providing ser-
vices, and the protocol of the interactions in which the component interacts with
the environment. The design of a component evolves from the techniques ap-
plied during the design process, i.e., decomposing, analyzing, and integrating
different viewpoints to form a correctly functioning whole component, providing
the services required by the environment. The model of a component is sepa-
rated into a number of related models of different viewpoints, including static
structure, static data functionality, interaction protocol, and dynamic control
behavior. This separation of design concerns of these viewpoints is crucial to
a) control the complexity of the models, and b) allow the appropriate use of
different techniques and tools for modeling, analysis, design, and verification.

It is important to note that the types of program data are not regarded as
a difficult design issue anymore. However, when object-oriented programming is
used in the design and implementation of a component-based software system,
the types, i.e., the classes of objects become complicated and their design is much
more tightly coupled with the design of the functionality of a component. The
rCOS method presents a combination of OO technology and component-based
technology in which local data functionality is modeled with the unified theory
of sequential programming, as discussed in the previous section.

3.1 Specification Notation for Primitive Closed Components

To develop tool support for a formal method, there is a need for a specification
notation. In rCOS, the specification notation is actually a graphical input nota-
tion implemented in a tool, called the rCOS modeler.3 However, in this chapter
the specification notation is introduced incrementally so as to show how archi-
tectural components, their operations and semantics can be defined and used
in examples. We first start with the simplest building blocks4 in component
software, which we call primitive closed components. Closed components provide
services to the environment but they do not require services from other compo-
nents to deliver the services. They are passive as they wait for the environment
to call their provided services, having no autonomous actions to interact with
the environment. Furthermore, being primitive components, they do not have in-
ternal autonomous actions that result from interaction among sub-components.
We use the notation illustrated in Fig. 5 to specify primitive closed components,
which is explained as follows.
3 http://rcos.iist.unu.edu
4 In the sense of concepts and properties rather than size of software, e.g., measured

by number of lines of code.

http://rcos.iist.unu.edu

rCOS: Defining Meanings of Component-Based Software Architectures 25

1 component K {
2 T x = c; // initial state of component
3 provided interface I { // provided methods
4 m1(parameters) { g1 � c1 /∗ functionality definition ∗/ };
5 m2(parameters) { g2 � c2 /∗ functionality definition ∗/ };
6 ...
7 m(parameters) { g � c /∗ functionality definition ∗/ };
8 };
9 internal interface { // locally defined methods

10 n1(parameters) { h1 � d1 /∗ functionality definition ∗/ };
11 n2(parameters) { h2 � d2 /∗ functionality definition ∗/ };
12 ...
13 n(parameters) { h � d /∗ functionality definition ∗/ };
14 }
15 class C1{...}; class C2{...}; ... // used in the above specification
16 }

Fig. 5. Format of rCOS closed components

Interfaces of Components. The provided interface declares a list of methods
or services that can be invoked or requested by clients. The interface also allows
declarations of state variables. A closed component only provides services, and
thus, it has only a provided interface and optionally an internal interface, which
declares private methods. Private methods can only be called by provided or
private methods of the same component.

Access Control and Data Functionality. The control to the access and the
data functionality of a method m, in a provided or internal interface, is defined
by a combination of a guard g and a command c in the form of a guarded
command g � c.

The components that we will discuss in the rest of this section are all primitive
closed components. This definition emphasizes on the interface of the provided
services. The interface supports input and output identifications, data variables,
and the functional description defined by the bodies of the interface methods.
On the other hand, the guards of the methods are used to ensure that services
are provided in the right order.

Based on the theory of guarded designs presented in Sect. 2, we assume that
in a closed component the access control and data functionality of each provided
interface method m is defined by a guarded design g � D. For a component
K, we use K.pIF to denote the provided interface of K, K.iIF the internal
interface of K, K.var the variables of K, K.init the set of initial states of K.
Furthermore, we use guard(m) and body(m) to denote the guard g and the body
D of m, respectively. For the sake of simplicity but without loosing theoretical
generality, we only consider methods with at most one input parameter and at
most one return parameter.

26 R. Dong et al.

We define the behavior of component K by the transition relation of K defined
in the next subsection.

3.2 Labeled Transition Systems of Primitive Closed Components

We now show that each primitive closed component specified using the rCOS
notation can be defined by a labeled transition system defined in Sect. 2.3. To
this end, for each method definition m(T1 x;T2 y){c}, we define the following
set of events

ω(m) = {m(u){c[u/x, v/y]} | u ∈ T1}.
We further define Ω(K) =

⋃
m∈K.pIF ω(m). Here, there is a quite subtle reason

why the return parameter is not included in the events. It is because that

– returning a value is an “output” event to the environment and the choice of a
return value is decided by the component itself, instead of the environment,

– we assume that the guards of provided methods do not depend on their
return values,

– we assume a run to complete semantics, thus the termination of a method
invocation does not depend on the output values of the methods, and

– most significantly, it is the data functionality design, i.e. design p � R, of a
method, that determines the range of non-deterministic choices of the return
values of an invocation for a given input parameter, thus refining the design
will reduce the range of non-determinism.

Definition 10 (Transition system of primitive closed component). For
a primitive closed component K, we define the transition system

K = 〈K.var ,K.init , Ω(K), ∅〉

A transition s
m(u)−−−→ s′ of K is an execution of the invocation m(u) if the fol-

lowing conditions hold,

1. the state space of K is the states over K.var , ΣK.var ,
2. the initial states of K are the same initial states of K,
3. s and s′ are states of K,
4. m(u) ∈ Ω(K) and it is an invocation of a provided method m with in input

value u,
5. s ⊕ u satisfies guard(m), i.e., m is enabled in state s for the input u (note

that we identify the value u with the corresponding state assigning values to
inputs u = u(in)), and there exists a state v of the output parameter y of m

6. (s ⊕ u, s′ ⊕ v) ∈ body(m).

We omit the empty set of internal actions and denote the transition system of K
by = 〈K.var ,K.init , Ω(K)〉. A step of state transition is defined by the design
of the method body when the guard holds in the starting state s For transition

t = s
m(u)−−−→ s′, we use pre.t, post .t and event .t to denote the pre-state s, the

post-state s′ and the event m(u), respectively.

rCOS: Defining Meanings of Component-Based Software Architectures 27

Definition 11 (Failure-divergence semantics of components). The exe-
cution failure-divergence semantics 〈ED(K), EF(S)〉 (or the interaction
failure-divergence semantics 〈ID(K), IF(S)〉) of a component K is defined
by the semantics of the corresponding labeled transition system, i.e., by the exe-
cution failure-divergence semantics 〈ED(K), EF(K)〉 (or the interaction failure-
divergence semantics 〈ID(K), IF(K)〉).
The traces T (K) of K are also defined by the traces of the corresponding tran-
sition system: T (K) =̂ T (K).

Example 1. To illustrate a reactive component using guarded commands, we give
an example of a component model below describing the behavior of a memory
that a processor can interact with to write and read the value of the memory.
It provides two methods for writing a value to and reading the content out of
the memory cell of type Z, requiring that the first operation has to be a write
operation.

1 component M {
2 provided interface MIF {
3 Z d;
4 bool start = false;
5 W(Z v) { true � (d := v; start := true) }
6 R(; Z v) { start � (v := d) }
7 }
8 }

Relation to Traditional Theories of Programming. We would like to make
the following important notes on the expressiveness of this model by relating it
to traditional theories.

1. This model is very much similar to the model of Temporal Logic of Actions
(TLA) for concurrent programs [38]. However, “actions” in TLA are au-
tonomous and models interact through shared variables. Here, a component
is a passive entity and it interacts with the environment through method
invocations. Another significant difference between rCOS and TLA is that
rCOS combines state-based modeling of data changes and event-based de-
scription of interaction protocols or behavior.

2. In the same way as to TLA, the model of components in rCOS is related
to Back’s action systems [3] that extends Dijkstra’s guarded commands lan-
guage [17] to concurrent programming.

3. The model of components here is similar to I/O automata [48]. However,
the guards of methods in general may depend on input parameters, as well
as state variables of the component. This implies that a component may be
an I/O automata with infinite number of states. The I/O automata used
for verification, model checking in particular, are finite state automata and
the states are abstract symbolic states. The guards of transitions are also
encoded in the symbolic states such that in some states of an automaton,
transitions are enabled or disabled.

28 R. Dong et al.

4. Similar to the relation with I/O automata, the rCOS model of components
combines data state changes with event-based interaction behavior. The lat-
ter can be specified in CSP [28,57]. Indeed, failure-divergence semantics and
the traces of a component K are directly influenced by the concepts and
definitions in CSP. However, an event m(u) in rCOS is an abstraction of the
extended rendezvous for the synchronizations of receiving an invocation to
m and returning the completion of the execution of m. This assumes a run
to complete semantics for method invocations. For the relation between I/O
automata and process algebras, we refer to the paper by Vaandrager [61].

5. Other formalisms like, e.g. CSP-OZ [22, 30], also combine state and event-
based interaction models in a similar way. These approaches and also similar
combinations like Circus [64] share the idea of rCOS that different formal
techniques are necessary to cope with the complexity of most non-trivial ap-
plications. Contrary to rCOS, they promote the combination of fixed existing
formal languages, whereas the spirit of rCOS is to provide a general semantic
framework and leaving the choice of the concrete applied formalisms to the
engineers.

The above relations show that the rCOS model of components unifies the seman-
tics models of data, data functionality of each step of interaction, and event-based
interaction behavior. However, the purpose of the unification is not to “mix them
together” for the expressive power. Instead, the unification is for their consistent
integration and the separation of the treatments of the different concerns. There-
fore, rCOS promotes the ideas of Unifying Theories of Programming [8, 29] for
Separation of Concerns, instead of extending a notation to increase expressive
power.

3.3 Component Contracts and Publications

We continue with defining necessary constructs for component-based design, i.e.,
contracts, provided protocols, and publications.

Definition 12 (Contract). A component contract C is just like a primitive
component, but the body of each method m ∈ C.pIF is a guarded design gm �
(pm � Rm).

So each closed component K is semantically equivalent to a contract. Contracts
are thus an important notion for the requirement specification and verification of
the correct design and implementation through refinements. They can be easily
modeled by a state machine, which is the vehicle of model checking. The contract
of the component M of Example 1 on page 27 is given as follows.

rCOS: Defining Meanings of Component-Based Software Architectures 29

1 component M {
2 provided interface MIF {
3 Z d; bool start = false;
4 W(Z v) { true � ({d,start}:true � d’ = v ∧ start’ = true) }
5 R(; Z v) { start � ({v}: true � v’ = d) }
6 }
7 }

Notice that in both the component M of Example 1 and its contract, the state
variable start is a protocol control variable.

Clearly, for each component contract C, the labeled actions in the correspond-
ing transition system C are all of the form m(T1 x;T2 y){g � (p � R)}. Notice
that in general a method of the provided interface can be non-deterministic, es-
pecially at a high level abstraction. Some of the traces are non-deterministic in a
way that a client can still get blocked, even if it interacts with K following such
a trace from the provided interface. Therefore, T (K) cannot be used as a de-
scription of the provided protocol of the component, for third party composition,
because a protocol is commonly assumed to ensure non-blocking behavior.

Definition 13 (Input-deterministic trace and protocol). We call a trace
tr = a1 · · · an of a component transition system K input-deterministic or
non-blockable if for any of its prefixes pref = a1 · · · ak, there does not exist a
set X of provided events of K such that ak+1 ∈ X and (pref , X) ∈ IF(K). And
for a closed component K, we call the set of its input deterministic traces the
provided protocol of K, and we denote it by PP(K) (and also PP(K)).

The notion of contract is a rather “operational” model in the sense that the
behavior is defined through the enabledness of a method at a state and the
transition to the next possible state. This model has its advantage in support-
ing model checking verification techniques. However, for such an operational
model with its non-determinism it is not easy to support third party usage and
composition. A more denotational or global behavioral model would be more
appropriate. Hence, we define the notion of protocols of components and pub-
lications of components below. From the behavioral semantics of a contract C
defined by Definition 11, we obtain the following model interface behavior.

Definition 14 (Publication). A component publication B is similar to a
contract and consists of the following sections of declarations,

– its provided interface B.pIF ,
– variables B.var and initial states B.init ,
– the data functionality specification m(T1 x;T2 y){p � R}, and
– the provided protocol B.pProt that is a set of traces.

A contract C can be transformed into a component publication by embedding
the guards of methods into the protocol. That is, the component publication for
C is obtained by using the set of non-blockable traces of C as provided protocol
PP(C) and by removing the guards of interface methods. For the same reason,

30 R. Dong et al.

the state variables that are only used in the flow of interaction control, such as
start in the memory component M in Example 1, can also be abstracted away
from the publication. The protocol can be specified in a formal notation. This
includes formal languages, such as regular expressions or a restricted version of
process algebra such as CSP without hiding and internal choice. Publications
are declarative, while contracts are operational. Thus, publications are suitable
for specifying components in system synthesis.

Example 2. Both the methods W and R of the interface of M in Example 1 are
deterministic. Thus, M is input-deterministic and we have

PP(M) = T (M) =?W ({?W, ?R}∗)

Here we adopt the convention to use a question mark to prefix an input service
request event, i.e., a method invocation, in order to differentiate it from a calling
out event in the required interface of an open component, which we will define
later. Also, we have omitted the actual parameters in the method invocations,
and ?W for example represents all possible ?W (a) for a ∈ Z. Thus, the following
specification is a publication of the memory component M of Example 1.

1 component M {
2 provided interface MIF {
3 Z d;
4 W(Z v) { {d}: true � d’ = v }
5 R(; Z v) { {v}: true � v’ = d }
6 protocol { ?W({?W,?R})∗ }
7 }
8 }

In the example, we used a regular expression to describe the provided protocol.
However, regular expressions have limited expressive power and can only express
languages of finite state automata. Languages like CSP can be used for more
general protocols.

For the rest of the chapter, we use the programming notation defined in Sect. 2
in place of the designs that define its semantics. We use the notion “component”
also for a “contract” and a “publication”, as they are specifications of components
at different levels of abstractions and for different purposes.

3.4 Refinement between Closed Components

Refinement between two components Kh and Kl, denoted by Kh Kl, compares
the services that they provide to the clients. However, this relation is naturally
defined by the refinement relation Kh Kl of their labeled transitions systems.
Also, as a specialized form of Theorem 6, we have the following theorem for the
refinement relation between two primitive closed components.

Theorem 7. If Kh Kl, PP(Kh) ⊆ PP(Kl).

rCOS: Defining Meanings of Component-Based Software Architectures 31

Proof. The proof is given by induction on the length of traces. From an initial
state s0, e is non-blockable in Kh only if e is enabled in all the possible initial
states of Kh. Hence, if e is non-blockable in Kh, so is it in Kl. Assume the
theorem holds for all traces of length no longer than k ≥ 1. If a trace tr =
e1 . . . ekek+1 is not blockable in Kh, all its prefixes are non-blockable in Kh,
thus so are they in Kl. If tr is blockable in Kl, then there is an X such that
ek+1 ∈ X and (e1 . . . ek, X) ∈ IF(Kl). Because Kh Kl, IF(Kl) ⊆ IF(Kh),
thus (e1 . . . ek, X) ∈ IF(Kh). This is impossible because tr is not blockable in
Sh. Hence, we have tr ∈ PP(Kl).

Thus, a refined component provides more deterministic services to the envi-
ronment, because protocols represent executions for which there is no internal
non-determinism leading to deadlocks.

The result of Theorem 7 is noteworthy, because the subset relation is reversed
compared to the usual subset relation defining refinement; for instance, we have
IF(Kl) ⊆ IF(Kh) and T (Kl) ⊆ T (Kh), but PP(Kh) ⊆ PP(Kl). However, a
bit of thought reveals that this actually makes sense, because removal of failures
leads to potentially more protocols. For traces this is a bit more surprising, but
in failure-divergence semantics the traces are derived from failures, so they are
not independent. This also leads to the fact that the correctness of the theorem
actually depends on the divergences: the theorem cannot hold in the stable-
failures model and the traces model, because both have a top element regarding
the refinement order. For both of these top elements (the terminating process
for the trace model and the divergent process for the stable-failures model) the
set of protocols is empty. For this reason, we use an extended version of the
stable-failures semantics in Sect. 7.

The semantic definition of refinement of components (or contracts) by Defini-
tion 2 does not directly support to verify that one component Ml refines another
Mh. To solve this problem, we have the following theorem.

Theorem 8. Let Cl and Ch be two contracts such that Cl.pIF = Ch.pIF , (sim-
ply denoted as pIF). Mh Ml if there is a total mapping from the states over
Cl.var to the states over Ch.var , ρ : Cl.var �−→ Ch.var , that can be written as
a design with variables in Cl.var and Ch.var

′ such that the following conditions
hold.

1. Mapping ρ preserves initial states, i.e., ρ(Cl.init) ⊆ Ch.init .
2. No guards of the methods of Ch are weakened — undermines safety, or

strengthened — introduces likelihood of deadlock, i.e., ρ ⇒ (guard l(m) ⇔
guardh(m)′) for all m ∈ pIF , where guardh(m)′ is the predicate obtained
from guardh(m) with all its variables replaced by their primed versions,

3. The data functionality of each method in Cl refines the data functionality of
the corresponding method in Ch, i.e., for all m ∈ pIF ,

ρ; bodyh(m) body l(m); ρ.

The need for the mapping to be total is to ensure that any state in the refined
component Cl implements a state in the “abstract contract” Ch. With the upward

32 R. Dong et al.

refinement mapping ρ from the states of Cl at the lower level of abstraction to
the states of Ch at a higher level of abstraction, the refinement relation is also
called an upward simulation and it is denoted by Cl �up Ch. Similarly, we have
a theorem about downward simulations, which are denoted by Cl �down Ch.

Theorem 9. Let Cl and Ch be two contracts. Ch Cl if there is a total mapping
from the states over Ch.var to the states over Cl.var , ρ : Ch.var �−→ Cl.var ,
that can be written as a design with variables in Cl.var

′ and Ch.var such that
the following conditions hold.

1. Mapping ρ preserves initial states, i.e., Cl.init ⊆ ρ(Ch.init).
2. No guards of the methods of Ch are weakened — undermines safety, or

strengthened — introduces likelihood of deadlock, i.e., ρ ⇒ (guard l(m)′ ⇔
guardh(m)) for all m ∈ pIF , and

3. The data functionality of each method in Cl refines the data functionality of
the corresponding method in Ch, i.e., for all m ∈ pIF ,

bodyh(m); ρ ρ; body l(m).

The following theorem shows the completeness of the simulation techniques for
proving refinement between components.

Theorem 10. Ch Cl if and only if there exists a contract C such that

Cl �up C �down Ch.

The proofs and details of the discussion about the importance of the above
theorems can be found in [10].

3.5 Separation of Concerns

A component can be modeled in the specification notation defined in Fig. 5
at different levels of abstraction, and the relation between different levels of
abstraction is expressed by refinement. The semantics theory of guarded com-
mands leads to the model of contracts, and a failure-divergence semantic model
of components. Contracts serve as a requirement model of components that can
directly be represented as automata or labeled transition systems. Contracts are
also used for correct by construction of components with the refinement calculus.

From the model of contracts and their failure-divergence semantics, we derive
the model of publications. The publication of a component eases the usage of a
component, including the usage through the interface and the composition with
other components to form new software components. For this, a publication has
to be faithful with respect to the specification of the component by its contract.

Definition 15. Let B be a publication and C be a contract such that B.pIF =
C.pIF , B.var = C.var and B.init ⊆ C.init . B is faithful to C if B.pProt ⊆
PP(C) and bodyC(m) bodyB(m).

rCOS: Defining Meanings of Component-Based Software Architectures 33

The faithfulness of a publications states that each method provides the function-
ality as specified in the contract and all traces published are acceptable traces
of the component specified by the contract. Now we have the following theorem
of separation of concerns.

Theorem 11. We can separate the analysis, design and verification of the data
functionality and the interaction protocol of a component as follows.

1. If B1 = (pIF , X,X0, Ψ, pProt1) and B2 = (pIF , X,X0, Ψ, pProt2) are faithful
to C = (pIF , X,X0, Φ, Γ) then

B = (pIF , X,X0, Ψ, pProt1 ∪ pProt2) is also faithful to C.

2. If B1 = (pIF , X,X0, Ψ, pProt1) is faithful to C and pProt2 ⊆ pProt1, then

B2 = (pIF , X,X0, Ψ, pProt2) is also faithful to C.

3. If B1 = (pIF , X,X0, Ψ1, pProt) is faithful to C and Ψ1 Ψ2, then

B2 = (pIF , X,X0, Ψ2, pProt) is also faithful to C.

4. If a publication B is faithful to C1 and C1 C2, then B is faithful to C2.

Proof. The first three properties are easy to check, and the last property is a
direct corollary of Theorem 7.

For a contract (or a component) K = (pIF , X,X0, Ψ, Γ), the largest faithful pub-
lication of K with respect to the refinement relation is (pIF , X,X0, Ψ,PP(K)).

4 Primitive Open Components

The components defined in the previous section are self-contained and they
implement the functionality of the services, which they provide to the clients.
However, component-based software engineering is about to build new software
through reuse of exiting components that are adapted and connected together.
These adapters and connectors are typical open components. They provide meth-
ods to be called by clients on one hand, and on the other, they require methods
of other components.

4.1 Specification of Open Components

Open components extend closed components with required interfaces. The body
of a provided method may contain undefined methods that are to be provided
when composed with other components. We therefore extend the rCOS specifi-
cation notation for closed components with a declaration of a required interface
as given in Fig. 6.

Notice that the required interface declares method signatures that do not
occur in either the provided or the internal interfaces. It declares method signa-
tures without bodies, but for generality we allow a required interface to declare
its state variables too.

34 R. Dong et al.

1 component K {
2 T x = c; // state of component
3 provided interface I { // provided methods
4 m1(parameters) { g1 � c1 /∗ functionality definition ∗/ };
5 m2(parameters) { g2 � c2 /∗ functionality definition ∗/ };
6 ...
7 m(parameters) { g � c /∗ functionality definition ∗/ };
8 };
9 internal interface { // locally defined methods

10 n1(parameters) { h1 � d1 /∗ functionality definition ∗/ };
11 n2(parameters) { h2 � d2 /∗ functionality definition ∗/ };
12 ...
13 n(parameters) { h � d /∗ functionality definition ∗/ };
14 };
15 required interface J { // required services
16 T y = d;
17 n1(parameters), n2(parameters), n3(parameters)
18 };
19 class C1{...}; class C2{...}; ... // used in the above specification
20 }

Fig. 6. Format of rCOS primitive open components

Example 3. If we “plug” the provided interface of the memory component M
of Example 1 into the required interface of the following open component, we
obtain an one-place buffer.

1 component Buff {
2 provided interface BuffIF {
3 bool r = false, w = true;
4 put(Z v) { w � (W(v); r := true; w := false) }
5 get(; Z v) { r � (R(; v); r := false; w := true) }
6 }
7 required interface BuffrIF {
8 W(Z v), R(; Z v)
9 }

10 }

4.2 Semantics and Refinement of Open Components

With the specification of open components using guarded commands, the deno-
tational semantics of an open component K is defined as a functional as follows.

Definition 16 (Semantics of commands with calls to undefined meth-
ods). Let K be a specification of an open component with provided interface
K.pIF , state variables K.var , internal interface K.iIF and required interface
K.rIF , the semantics of K is the functional �K� : C(K.rIF) �−→ C(K.pIF) such

rCOS: Defining Meanings of Component-Based Software Architectures 35

that for each contract C in the set C(K.rIF) of all the possible contracts for the
interface K.rIF , �K� (C) is a contract in the set C(K.pIF) of all contracts for
the interface K.pIF defined by the specification of the closed component K(C)
in which

1. the provided interface K(C).pIF = K.pIF ,
2. the state variables K(C).var = K.var , and
3. the internal interface K(C).iIF = K.iIF ∪ K.rIF , where the bodies of the

methods in K.rIF are now defined to be their guarded designs given in C.

To illustrate the semantics definition, we give the following example.

Example 4. With the memory component in Example 1, Buff (M) for Buff in
Example 3 is equivalent to the contract of a one-place buffer whose publication
can be specified as

1 component B {
2 provided interface BuffIF {
3 Z d;
4 put(Z v) { d := v }
5 get(; Z v) { v := d }
6 }
7 provided protocol {
8 (?put ?get)∗+(?put ?get)∗?put // data parameters are omitted
9 }

10 }

Definition 17. Let K1 and K2 be specifications of open components with the
same provided and required interfaces, respectively. K2 is a refinement of K1,
K1 K2, if K1(C) K2(C) holds for any contract C of the required interface
of K1 and K2.

The following theorem is used to establish the refinement relation of instantiated
open components.

Theorem 12. Let K be a specification of open components. For two contracts
C1 and C2 of the required interface K.rIF , if C1 C2 then K(C1) K(C2).

To establish a refinement relation between two concretely given open components
C1 C2, a refinement calculus with algebraic laws of programs are useful, e.g.
c;n(a, y) = n(a, y); c for any command if a and y do not occur in command c.
However, the above denotational semantic semantics is in general difficult to use
for checking of one component refines another or for verification of properties.

We define the notion of contracts for open components by extending the se-
mantics of sequential programs and reactive programs to those programs in which
commands contain invocations to undefined methods declared in the required in-
terface of an open component.

36 R. Dong et al.

Definition 18 (Design with history of method invocations). We intro-
duce an auxiliary state variable sqr , which has the type of sequences of method
invocation symbols and define the design of a command that contains invocations
to undefined methods as follows,

– the definition of an assignment is the same as it is defined in Sect. 2: x :=
e = {x} : true � x′ = e, implying an assignment does not change sqr ,

– each method invocation to an undefined method n(T1 x;T2 y) is replaced by
a design

{sqr , y} : true � y′ ∈ T2 ∧ sqr ′ = sqr · {n(x)},

where · denotes concatenation of sequences, and
– the semantics for all sequential composition operations, i.e., sequencing, con-

ditional choice, non-deterministic choice, and recursion, are not changed.

A sequential design that has been enriched with the history variable sqr introduced
above can then be lifted to a reactive design using the lifting function of Sect. 2.3.

With the semantics of reactive commands, we can define the semantics of a
provided method m(){c} in an open component. Also, given a state s of the
component, the execution of an invocation to m() from s will result in a set of
sequences of possible (because of non-determinism) invocations to the required
methods, recorded as the value of sqr in the post-state, denoted by sqr(m(), s).

Definition 19 (Contract of open component). The contract K of an open
component K is defined analogously to that of a closed component except that
the semantics of the bodies of provided methods are enriched with sequence ob-
servables as defined in Definition 18.

For further understanding of this definition, let us give the weakest assumption
on behavior of the methods required by an open component. To this end, we
define the weakest terminating contract, which is a contract without side-effects,
thus leaving all input variables of a method unchanged, and setting its output to
an arbitrary value. The weakest terminating contract wtc(rIF) of the required
interface rIF is defined such that each method m(x; y) ∈ rIF is instantiated
with

m(x; y){true � (true � x′ = x)}.

Thus, wtc(rIF) accepts all invocations to its methods and the execution of a
method invocation always terminates. However, the data functionally is unspec-
ified.

Proposition 1. We have the following conjectures, but their proofs have not
been established yet.

1. Given two open components K1 and K2, K1 K2 if K1 K2.
2. K is equivalent to K(wtc(K.rIF)).

rCOS: Defining Meanings of Component-Based Software Architectures 37

1 publication K {
2 T x = c; // initial state of component
3 provided interface I { // provided methods
4 m1(parameters) { c1 /∗ unguarded design ∗/ };
5 m2(parameters) { c2 /∗ unguarded design ∗/ };
6 ...
7 m(parameters) { c /∗ unguarded design ∗/ };
8 };
9 internal interface {

10 n1(parameters) { d1 /∗ unguarded design ∗/ };
11 n2(parameters) { d2 /∗ unguarded design ∗/ };
12 ...
13 n(parameters) { d /∗ unguarded design ∗/ };
14 };
15 required interface J { // required services
16 T y = d;
17 n1(parameters), n2(parameters), n3(parameters)
18 };
19 provided protocol {
20 L1 // a regular language expression over provided method invocations
21 }
22 required protocol {
23 L2 // a regular language expression over required method invocations
24 }
25 class C1{...}; class C2{...}; ... // used in the above specification
26 }

Fig. 7. Format of rCOS open publication

4.3 Transition Systems and Publications of Open Components

Given an open component K, let

– pE (K) = {m(u) | m(T1 x;T2 y) ∈ K.pIF ∧ u ∈ T1}, and
– rE (K) = {n(u) | n(T1 x;T2 y) ∈ K.rIF ∧ u ∈ T1}

be the possible incoming method invocations and outgoing invocations to the
required methods, respectively. Further, let Ω(K) = pE (K) × 2rE(K)∗ . With
this preparation, we can define the transition systems of open components:

Definition 20 (Transition system of open component). Let K be an open
component, we define the labeled state transition system

K = 〈K.var ,K.init , Ω(K), ∅〉,

such that s
m(u)/E−−−−−→ s′ is a transition from state s to state s′ if

– (s, s′) |= c[u/x, v/y′], where c is the semantic body of the method m() in K,
and

38 R. Dong et al.

– E is the set of sequences of invocations to methods in K.rIF , recorded in sqr
in the execution from state s that leads to state s′. Here the states of K do
not record the value of sqr as it is recorded in the events of the transition.

Notice E in s
m(u)/E−−−−−→ s′ is only the set of possible traces of required method

invocations from s to s′, not from the initial state of the transition system K.
The definition takes non-determinism of the provided methods into account. It
shows that each state transition is triggered by an invocation of a method in the
provided interface. The execution of the method may require a set of possible
sequences of invocations to the methods in the required interface. Therefore, we
define the following notions for open component K.

– For each trace tr = a1/E1 . . . ak/Ek, we have a provided trace tr> = a1 . . . ak
and sets of required traces tr< = E1 · · ·Ek, where · is the concatenation
operation on set of sequences.

– For each provided trace pt , Q(pt) =
⋃

{tr< | tr ∈ T (K), tr> = pt} is the
set of all corresponding required traces of pt .

– A provided trace pt is a non-blocking provided trace if for any trace tr
such that tr> = pt , tr is a non-blocking trace of K.

– The provided protocol of K, denoted by PP(K) is the set of all non-blocking
provided traces.

– The required protocol of K is a union of the sets of required traces of non-
blocking provided traces RP(K) =

⋃
pt∈PP(K) Q(pt).

The model of an open component is a natural extension to that of a closed
component, and a closed component is a special case when the required interface
is empty. Consequently, the set of required traces of a closed component is empty.

As shown in Fig. 7, the specification of a publication of an open component
is similar to that of a closed component, except that the bodies of the methods
of the provided and internal interfaces are defined as commands without guards,
and the specification is extended with provided and required protocols.

Example 5. The publication of the open component Buff of Example 3 can be
specified as follows.

1 publication BuffP {
2 provided interface BuffIF {
3 put(Z v) { W(v) }
4 get(; Z v) { R(; v) }
5 };
6 required interface BuffrIF { W(Z v), R(; Z v) };
7 provided protocol { (?put ?get)∗+(?put ?get)∗?put };
8 required protocol { (!W !R)∗+(!W !R)∗!W }
9 }

Note, unlike in a contract of a component where each transition step is repre-
sented atomically, in a publication an action a/E is executed as an atomic step
of state transition, though E represents a set of traces of method invocations.

rCOS: Defining Meanings of Component-Based Software Architectures 39

However, the composability can be checked in the following way: If the provided
protocol K.pProt of a component K contains (accepts) all the invocation traces
of the required protocol RP(J) of an open component J , then K can be plugged
to provide the services that J requires.

5 Processes

All components that we have defined so far are passive in the sense that a
component starts to execute only when a provided method is invoked from the
environment (say, by a client). Once a provided method is invoked, the com-
ponent starts to execute the body of the method, provided it is enabled. The
execution of the method is atomic and follows the run to complete semantics.
However, it is often the case that active software entities are used to coordinate
the components when the components are being executed. For example, assume
we have two copies of component Buff in Example 3, say B1 and B2 whose pro-
vided interfaces are the same as Buff , except for put and get being renamed to
put i and get i for Bi, respectively, where i = 1, 2. We can then write a program
P that repeatedly calls get1(; a); put2(a) when both get1 and put2 are enabled.
Then, P glues B1 and B2 to form a two-place buffer. We call such an active
software entity a process.

5.1 Specification of Processes

In this section, we define a class of processes that do not provide services to
clients but only actively calls provided services of other components. In the
rCOS specification notation, such a process is specified in the format shown in
Fig. 8. In the body of an action (which does not contain parameters), there are
calls to methods in both the internal interface section and the required interface
section, but not to other methods.

5.2 Contracts of Processes

Notice that the actions, denoted by P.ifa , are autonomous in the sense that
when being enabled they can be non-deterministically selected to execute. The
execution of an action is atomic and may involve invocations to methods in
the required interface P.rIF , as well as program statements and invocations to
methods defined in the internal interface P.iIF . We will see later when we define
the composition of a component and a process that execution of an atomic action
a in P synchronizes all the executions of required methods contained in a, i.e.,
the execution of a locks all these methods until a terminates. For instance, in
the two place buffer example at the beginning of this section, get1(; a); put2(a) is
the only action of the process P . When this action is being executed, B1 cannot
execute another get until this action finishes.

The denotational semantics of a process P is similar to that of an open com-
ponent in the sense that it is a functional over the set C(P.rIF) of the contracts

40 R. Dong et al.

1 process P {
2 T x = c; // initial state of process
3 actions { // guarded commands
4 a1 { g1 � c1 };
5 ...
6 ak { gk � ck }
7 };
8 required interface J { // required services
9 T y = d;

10 n1(parameters), n2(parameters), n3(parameters)
11 };
12 internal interface { // locally defined methods
13 n1(parameters) { h1 � d1 /∗ functionality definition ∗/ };
14 n2(parameters) { h2 � d2 /∗ functionality definition ∗/ };
15 ...
16 n(parameters) { h � d /∗ functionality definition ∗/ };
17 };
18 class C1{...}; class C2{...}; ... // used in the above specification
19 }

Fig. 8. Format of rCOS process specifications

of interface P.rIF such that for each contract C in C(P.rIF), �P � (C) is a fully
defined process, called a self-contained process, containing the autonomous ac-
tions P.ifa . In this way, a failure-divergence semantics in terms of actions in P.ifa
and a refinement relation can be defined following the definitions of Sect. 2.

However, we apply the same trick as we did when defining the semantics
in Definition 18 for the body of a provided method in an open component,
which contains calls to undefined methods. Therefore, the execution of an atomic
action a in a process from a state s records the set sqr of possible sequences of
invocations to methods declared in the required interface.

Definition 21 (Contract of process). Given a specification of a process P in
the form shown in Fig. 8, its contract P is defined analogously to Definition 19
by enrichment with history variables, i.e., it is specified as shown in Fig. 9.

Example 6. Consider two instances of the Buff component, B1 and B2, obtained
from Buff by respectively renaming put to put1 and put2 as well as get to get1
and get2. We design a process that keeps getting an item from B1 and putting it
into B2 when get1 and put2 are enabled. The contract of the process is specified
as follows.

rCOS: Defining Meanings of Component-Based Software Architectures 41

1 process P {
2 T x = c; // initial state of process
3 actions { // reactive designs
4 a1 { /∗ g1 � c1 design enriched by history variables sqr ∗/ };
5 ...
6 ak { /∗ gk � ck design enriched by history variables sqr ∗/ }
7 };
8 required interface J { // required services
9 T y = d;

10 n1(parameters), n2(parameters), n3(parameters)
11 };
12 class C1{...}; class C2{...}; ... // used in the above specification
13 }

Fig. 9. Format of rCOS process contracts

1 process Shift {
2 T x = c; // state of process
3 actions { // reactive designs
4 move { {sqr}: (get1(; x); put2(x) };
5 // equals to true � sqr ′ = {get1(; a) · put2(a) | a ∈ Z}
6 }
7 required interface J { // required services
8 get1(; Z x), put2(Z x)
9 };

10 }

Notice that there is no guard for the process in the above example, it will be
enabled whenever its environment are ready to synchronize on the required meth-
ods, i.e., they are enabled in their own flows of execution. Now we are ready to
define the transition system for a process, and from that, the publication of a
process.

5.3 Transition Systems and Publications of Processes

Given a process P , we define the set ωP = 2P.rIF∗
to be the set of all sets of

invocations sequences to methods in the required interface of P . Following the
way in which we defined the transition system of an open component, we define
the transition system of a process.

Definition 22 (Transition system of processes). The transition system P
of a process P is the quadruple 〈P.var , P.init , ωP, ∅〉, where for E ∈ ωP , states
s, s′ of P , and an action a of P with body c,

s
a/E−−→ s′ if (s⊕ {sqr �→ ∅}, s′ ⊕ {sqr �→ E}) � c

holds.

42 R. Dong et al.

We can define the execution failure-divergence semantics (ED(P), EF(P)) and
interaction failure-divergence semantics (ID(P), IF(P)) for process P in terms
of the transition system P . The interaction traces and the failure-divergence
refinement of processes follow straightforward. However, a process can non-
deterministically invoke methods of components, and its whole trace set is taken
as the required protocol

RP(P) =
⋃

{E1 · · ·Ek | /E1 · · · /Ek ∈ T (P)}.

The definition of the protocol of a process allows us to define publications of
processes in the same way as we defined publications for open components.

6 Architectural Compositions and General Components

We have defined the models of primitive closed and open components as well as
processes. These models do not show any entities resulting from compositions,
but software components and processes that are about constructing components
by compositions of these primitive forms. In this section, we go beyond the prim-
itive component model and define architectural composition operations that al-
low us to build hierarchical software architectures. We will also define a general
model of components in this way and discuss the special classes of components
that are useful in building software components. For this, we reiterate the nota-
tions for the different sections in a component specification (or process) K, that
are K.var , K.init , K.pIF , K.rIF , K.iIF and K.Act . Component operations are
syntactically defined as operations on these sections, and then their semantics
definitions are derived. We provide examples to illustrate their meanings and
uses, too.

6.1 Coordination of Components by Processes

One way of building larger components from existing components is to coordinate
their behavior by active processes. We start with this composition as it introduces
internal autonomous actions to components, by which the primitive component
model defined in the previous section is extended.

Definition 23 (Coordination of components). Let K be a component and
P a process. The coordination of K by P , denoted by K ‖ P , is defined if K
and P do not have common variables. When K ‖ P is defined, it is the following
general component, denoted by J ,

J.var = K.var ∪ P.var , J.init = K.init × P.init ,

J.pIF = K.pIF , J.rIF = K.rIF ∪ P.rIF ,

J.iIF = K.iIF ∪ P.iIF .

Additionally, we extend the specification of components with the section

J.inva = P.Act

rCOS: Defining Meanings of Component-Based Software Architectures 43

containing the set of actions that have the triggering events invisible to the envi-
ronment and can be executed autonomously when enabled. A subset of P.Act con-
tains those which have no external required events or external triggering events.
These are the actions entirely internal in the component.

It is necessary to introduce the internal autonomous actions in the above defini-
tion, because internal actions emerge when a process is used to coordinate the
behavior of a component.

Definition 24 (Transition system of coordination). When J = K ‖ P is
defined, we define the general transition system J = 〈J.var , J.init , Ω, Λ〉 such
that

1. Ω = K.ifa, that is ω(K.pIF)× 2ω(K.rIF)∗ ,
2. Λ = P.Act ,

3. (s1, s2)
e/E−−→ (s′1, s′2) is a transition in J if

(component step) s2 = s′2, e ∈ ω(K.pIF) and s1
e/E−−→ s′1 is a transition of

K, or

(process step) e ∈ Λ and there exists s2
e/F−−→ s′2 in P such that for every

tr0 · m1 · tr1 · · ·mk · trk ∈ F,

where mi ∈ ω(K.pIF) and tr j ∈ ω(J.rIF)∗, it holds

– there exist E1, . . . , Ek such that s1
m1/E1,...,mk/Ek
===========⇒ s′1,

– tr0 · E1 · · ·Ek · trk ⊆ E, and
– E is the smallest set that satisfies these two properties.

In rCOS, we specify a general component in the format shown in Fig. 10, that
extends the specification of an open component in Fig. 6 with a section of in-
visible actions. Thus, K is a primitive open component if K.inva is empty, a
closed component when K.rIF is empty, and a process when K.pIF is empty.
General components thus contain both active and passive behavior. From now
on, a process is also treated as a component.

As shown in the definition of K ‖ P , actions defined in J.inva may also require
methods given in the required interface J.rIF . When an invisible action does not
require any methods outside the component, it is then totally invisible.

6.2 Composition of Processes

Now we define the parallel composition of processes. Since processes only actively
call external methods, but do not provide methods to be called, two processes
do not communicate directly. Thus, the execution of the parallel composition of
two processes is simply the interleaving execution of the actions of the individual
processes.

44 R. Dong et al.

1 component K {
2 T x = c; // initial state of component
3 provided interface I { // provided methods
4 m1(parameters) { g1 � c1 /∗ functionality definition ∗/ };
5 m2(parameters) { g2 � c2 /∗ functionality definition ∗/ };
6 ...
7 m(parameters) { g � c /∗ functionality definition ∗/ };
8 };
9 internal interface { // locally defined methods

10 n1(parameters) { h1 � d1 /∗ functionality definition ∗/ };
11 n2(parameters) { h2 � d2 /∗ functionality definition ∗/ };
12 ...
13 n(parameters) { h � d /∗ functionality definition ∗/ };
14 };
15 actions { // invisible autonomous action
16 a1() { f1 � e1 }; // no parameters
17 a2() { f2 � e2 }; // no parameters
18 ...
19 a() { f � e }
20 };
21 required interface J { // required services
22 T y = d;
23 n1(parameters), n2(parameters), n3(parameters)
24 };
25 class C1{...}; class C2{...}; ... // used in the above specification
26 }

Fig. 10. Format of rCOS general components

Definition 25 (Parallel composition of processes). For two processes P1

and P2, the parallel composition P1 ‖ P2 is defined if they have neither common
variables nor common action names. When P1 ‖ P2 is defined, the composition,
denoted by P , is defined as follows,

P.var = P1.var ∪ P2.var , P.init = P1.init × P2.init ,

P.Act = P1.Act ∪ P2.Act , P.rIF = P1.rIF ∪ P2.rIF .

The following theorem ensures that the above syntactic definition is consistent
with the semantic definition.

Theorem 13 (Semantics of process parallel composition). If P = P1 ‖ P2

is defined, the transition system P of the composition P is the product of P1 and
P2, that is,

1. the states ΣP.var = ΣP1.var × ΣP2.var ,
2. the initial states P.init = P1.init × P2.init ,
3. the transition labels Ω = 2ω(P1.rIF)∗ ∪ 2ω(P2.rIF)∗ , and
4. (s1, s2)

e/E−−→ (s′1, s
′
2) is a transition of P if either

rCOS: Defining Meanings of Component-Based Software Architectures 45

– s2 = s′2 and s1
e/E−−→ s′1 is a transition of P1, or

– s1 = s′1 and s2
e/E−−→ s′2 is a transition of P2.

It can be shown that a parallel composition of processes preserves the refinement
relation between processes.

6.3 Parallel Composition of Components

We continue with introducing composition operators to build larger components.

Definition 26 (Parallel composition of components). Given two compo-
nents K1 and K2, either closed or open, the parallel composition K1 ‖ K2 is
defined, provided the following conditions hold,

1. they do not have common variables, K1.var ∩ K2.var = ∅,
2. they do not have common provided methods, K1.pIF ∩ K2.pIF = ∅,
3. they do not have common autonomous actions, K1.Act ∩K2.Act = ∅, and
4. they do not have common internal methods, K1.iIF ∩ K2.iIF = ∅.

When the composition is defined, the composed component, denoted by K, is
defined as

K.var = K1.var ∪ K2.var , K.init = K1.init × K2.init ,

K.iIF = K1.iIF ∪K2.iIF , K.pIF = K1.pIF ∪ K2.pIF ,

K.rIF = (K1.rIF ∪ K2.rIF) \ (K1.pIF ∪ K2.pIF),
K.Act = K1.Act ∪ K2.Act .

It is important to note that this syntactic definition is actually consistent with
the semantic definition by the transition systems.

Definition 27 (Parallel composition of component transition systems).
The labeled transition system K = 〈K.var ,K.init , Ω,K.Act〉 of the parallel com-
position K = K1 ‖ K2 is defined by

1. Ω is defined from the interface K as for a primitive component,

2. (s1, s2)
a/E−
−−−−→ (s′1, s

′
2) is a transition of K if one of the following conditions

holds.
(K1 step) When a ∈ ω(K1.pIF)

(a) there exists a transition s1
a/E−−→ s′1 of K1, with

tr0 · m1 · tr1 · · ·mk · trk ∈ E,

where mi ∈ ω(K2.pIF) and tr i ∈ ω(K.rIF)∗ for 0 ≤ i ≤ k, then
(b) if k = 0, s′2 = s2

(c) for each s2
m1/E1,...,mk/Ek
===========⇒ s in K2 (i.e., k > 0)

– s′2 = error if (E1 ∪ · · · ∪ Ek) ∩ ω(K1.pIF) �= ∅, and

46 R. Dong et al.

– s′2 = s otherwise,
(d) tr0 · E1 · tr1 · · ·Ek · trk ⊆ E−, and
(e) E− is the smallest set that satisfies above conditions.

(K2 step) When a ∈ ω(K2.pIF), the transition is defined symmetrically.
(action step) When a ∈ K.Act, the transition is defined like the process

step in Definition 24 for the coordination of a component by a process.
Here, the autonomous actions K can be seen as a process step and the
rest can be seen as a component step.

The error state is a designated deadlock state used to explicitly mark failures
from cyclic method calls in compositions violating the run to complete semantics.
We define a composed state (s1, s2) an error state if either s1 or s2 is error.
We will discuss the nature of the error state in more detail in the next section.

Notice that the required interfaces of K1 and K2 do not have to be disjoint,
they may require common services. A special case for the parallel composition
is that when K1 and K2 are totally disjoint, i.e., there is no overlapping in the
required interfaces and no component provides methods that the other requires.
In this case, we call K1 ‖ K2 a disjoint union, and denote it by K1 ⊗ K2. Even
more specifically, when K1 and K2 are closed components, K1 ‖ K2 is always a
disjoint union and K1 ⊗ K2 is also a closed component.

For the refinement of components, we have that ‖ is monotonic.

Theorem 14 (Parallel composition preserves refinement). If K1 J1

and K2 J2, then K1 ‖ K2 J1 ‖ J2.

The parallel composition of components is commutative. Since methods from the
provided interface are never hidden from a composition, it is also associative.

Theorem 15. K1 ‖ K2 = K2 ‖ K1 and J ‖ (K1 ‖ K2) = (J ‖ K1) ‖ K2.

6.4 Renaming and Restriction

When we compose components (including processes), sometimes the provided
method names and required method names do not match. We often need to
rename some methods. A rename function for a component is a one-one function
on the set of methods.

Definition 28 (Renaming). Let K be a component and f a renaming func-
tion, we use K[f] to denote the component for which all the specifications are
the same as those of K, except for the provided and required interfaces, which
are defined by

1. K[f].pIF = {f(m) | m ∈ K.pIF},
2. K[f].rIF = {f(m) | m ∈ K.rIF}, and
3. any occurrence of m in K is replaced by f(m).

rCOS: Defining Meanings of Component-Based Software Architectures 47

Notice that we do not allow renaming internal interface methods, thus an implicit
assumption is that a provided or required interface method is not renamed to
an internal interface method. This is equivalent to require that f(m) = m for
all m ∈ K.iIF .

As a component only involves a finite number of methods, thus a renaming
function is only effective on these methods. Therefore, for any renaming functions
f and g, if f(m) = g(m) for any method name m of K, then K[f] = K[g]. In
particular, K[n/m] is the component obtained from K by renaming its method
m to n. This is extended to the case when a number of methods are renamed,
i.e., K[n1/m1, . . . , nk/mk], which is similar to the renaming function in process
algebras.

Example 7. For the memory component M in Example 1, M [put/W, get/R] is
the same as M except that any occurrence of the method name W is replaced
by put and any occurrence of the method name R is replaced by get .

It is often the case when using a component in a context that some provided
methods are restricted from being accessed by the environment. However, these
methods cannot be simply removed. Instead, they should be moved to the inter-
nal interface so that they can be still called by the other provided and internal
methods of the same component.

Definition 29 (Restriction). Let K be a component and β a subset of the
names of the provided methods of K, the component K \β is obtained from K by
moving the declarations of the methods in β from the provided interface section
to the internal interface section, that is,

(K \ β).pIF = K.pIF \ {m(u; v){c} | m ∈ β ∧m(u; v){c} ∈ K.pIF},
(K \ β).iIF = K.iIF ∪ {m(u; v){c} | m ∈ β ∧ m(u; v){c} ∈ K.pIF}.

Example 8. Let M be the memory component given in Example 1, Buff the
open component in Example 3, and B = (M ‖ Buff) \ {W,R}. Thus, B is a
one-place buffer component. Further, let Bi = B[get i/get , put i/put], for i = 1, 2.
We now use process Shift to coordinate B1 ⊗ B2 and define

Buff 1 = ((B1 ⊗ B2) ‖ Shift) \ {get1, put2},

Buff 1 is a two-place buffer.

Notice that in the above example, the closed component M provides all the
methods required by the open component Buff . The restriction of {W,R} from
the composition M ‖ Buff makes W and R only accessible to Buff . We call such
a restricted composition plugging, and denote it by M � Buff . In general, we
have the following definition.

Definition 30 (Plugging). Let K1 and K2 be components such that K1 ‖ K2

is defined. If K2.rIF ⊆ K1.pIF , then we define the plugging of K1 with K2 by

K1 � K2 = (K1 ‖ K2) \K2.rIF .

48 R. Dong et al.

In the following example, we build the two-place buffer in a different way.

Example 9. We first define the following open component.

1 component Connector {
2 int z;
3 provided interface { shift() { get1(; z); put2(z) } };
4 required interface { get1(; int z); put2(int z) }
5 }
6 process P {
7 required interface { shift() }
8 }

Then, we can define the component

Buff 2 = ((B1 ⊗ B2) � Connector ‖ P) \ {shift}.

This can be simply written as Buff 2 = ((B1 ⊗B2) � Connector) � P . One can
prove that Buff 2 is equivalent to the component Buff 1 in Example 8.

When a number of components are coordinated by a process, the components are
not aware of which other components they are working with or exchange data
with. Another important aspect is the separation of local data functionality
of a component from the control of its interaction protocols. We can design
components in which the provided methods are not guarded and thus have no
access control. Then, using connectors and coordinating processes the desired
interface protocols can be designed. In terms of practicability, most connectors
and coordinating processes in applications are data-less, thus having a purely
event-based interface behavior. This allows rCOS to enable the separation of
design concerns of data functionality from interaction protocols.

6.5 More Examples

The memory component M given in Example 1 models a perfect memory cell in
the sense that its content will not be corrupted. As in Liu’s and Joseph’s work
on fault-tolerance [44], a fault can be modeled as an internal autonomous action.
We model a faulty memory, where an occurrence of a fault corrupts the content
of the memory.

1 component fM { // faulty memory
2 provided interface MIF {
3 Z d; bool start = false;
4 W(Z v) { true � (d := v; start := true) }
5 R(; Z v) { start � v := d }
6 };
7 actions {
8 fault() { true � true � d’ �= d } // corrupting the memory
9 }

10 }

rCOS: Defining Meanings of Component-Based Software Architectures 49

Now we show how to use three faulty memories to implement a perfect memory.
First, for i = 1, 2, 3, let fM i = fM [Wi/W,Ri/R]. We define the following open
component.

1 component V { // majority voting
2 provided interface VIF {
3 W(Z v) { W1(v); W2(v); W3(v) }
4 R(; Z v) {
5 var Z v1, Z v2, Z v3;
6 R1(; v1); R2(; v2); R3(; v3);
7 vote(v1, v2, v3; v);
8 end v1, v2, v3
9 }

10 }
11 required protocol { // interleaving of all fM i’s provided protocols
12 ...
13 }
14 }

Then we have the composite component (fM 1 ‖ fM 2 ‖ fM 3) � V , that can be
proven to be equivalent to the memory component M in Example 1. The proof
requires an assumption that at any time at most one memory is faulty. This in-
volves the use of auxiliary variables to record the occurrence of the fault [44]. The
architecture of this fault-tolerant memory is shown in the component diagram
in Fig. 11, which is a screen-shot from the rCOS Modeler.

In this section, we have defined the general parallel composition for compo-
nents (including closed components, open components and processes). However,
it is important to develop a theory of compositions, techniques for checking com-
posabilities among components, and refinement calculi for the different models
with respect to parallel composition and restriction. These have been partly
studied in the rCOS literature [12, 19, 20, 25, 26, 45, 47, 62, 66]. However, the se-
mantic models defined in this chapter extend the models in those papers. Thus,
the theory and techniques of refinement and composability need a reinvestiga-
tion. In the following section, we present preliminary work on how an interface
model of components supports composability checking, focusing on the interac-
tion between components.

7 Interface Model of Components

In rCOS, the refinement of data functionality is dealt within the unified semantic
theory for sequential programming presented in Sect. 2. Interactions are handled
with the failure-divergence semantics of components. In this section, we first
present a model of components that abstracts the data states away, thus focus-
ing only on interactions. We call this model component automata. This model
still exhibits non-determinism caused by autonomous actions and encounters
difficulties in checking composability, for third party composition in particu-
lar. Therefore, we will define an interface model for components, called interface

50 R. Dong et al.

Fig. 11. Component-based design of a fault-tolerant component

publication automata. An interface publication automaton is input-deterministic,
that is, at each step the choice among provided method invocations is controlled
by the environment. Both models are simplified labeled transition systems, but
the states are only symbolic states for control of dynamic flows. We also focus
on finite state components.

7.1 Component Automata

First, some preliminary notations are defined that we are going to use in the
discussion in this section. For a pair 	 = (e1, e2) in a product of sets A1×A2, we
define the projection functions πi, for i = 1, 2, that is, π1() = e1 and π2() = e2.
The projection functions are naturally extended to sequences of pairs and sets
of sequences of pairs as follows. Given a sequence of pairs tr = 〈	1, . . . , 	k〉

rCOS: Defining Meanings of Component-Based Software Architectures 51

and a set T of sequences of pairs, we define πi(tr) = 〈πi(1), . . . , πi(k)〉, and
πi(T) = {πi(tr) | tr ∈ T }, for i = 1, 2.

Given Γ ⊆ Ω and a sequence tr ∈ Ω∗, tr�Λ is the restriction of tr to element
in Λ, returning the sequence obtained from tr by keeping only those elements
in Λ. We also extend the restriction function to sets of sequences and define
T �Γ = {tr�Γ | tr ∈ T }.

We now introduce a symbolic version of the labeled transition systems, called
component automata, by replacing the variables with a set of states and abstract
the data parameters from the interface methods. We only consider finite state
automata.

Definition 31 (Component automaton). A component automaton is a
tuple K = 〈Σ, s0, pIF , rIF ,Act , δ〉, where

– Σ is a finite set of states and s0 ∈ Σ is the initial state;
– pIF , rIF , and Act are disjoint finite sets of provided, required and in-

ternal events, respectively;
– δ ⊆ Σ × Ω(pIF , rIF ,Act) × Σ is the transition relation, where the set of

labels is defined as Ω(pIF , pIF ,Act) = (pIF ∪ Act)× (2rIF
∗ \ {∅}), simply

denoted by Ω when there is no confusion.

As before, we use e/E to denote a pair (e, E) in Ω and a transition (s, e/E, s′) ∈ δ

by s
e/E−−→ s′. This transition is called a step of provided transition if e ∈ pIF ,

otherwise an autonomous transition. We use s
e/−→ s′ for s

e/{ε}−−−→ s′. Notice that
e/∅ is not a label in an automaton, and a transition without required events
is a transition by a label of the form e/{ε}. The internal events are prefixed

with a semicolon, e.g., s
;e/E−−−→ s′, to differentiate them from a transition step

by a provided event. We use τ to represent an internal event when it causes no
confusion. For a state s, we define the set of events with outgoing transitions by

out(s) = {e ∈ pIF ∪ Act | ∃s′, E • s
e/E−−→ s′}.

Further, let out◦(s) = out(s)∩Act and out•(s) = out(s)∩pIF . We write s
e/−→ s′

for s
e/E−−→ s′, when E is not significant.

Notice that there are no guards for transitions. Instead, the guards of actions
from the general component transition systems are encoded in the states of
the automata. A composite event e/E in Ω is enabled in a state s if there

exists a transition s
e/E−−→ s′, and an action e ∈ pIF ∪ Act is enabled in a

state s ∈ Σ, if there is a set of sequences E ∈ 2rIF
∗

such that s
e/E−−→ s′ ∈ δ.

Then, the executions of an automaton C can be defined in the same way as for
a labeled transition system. However, the execution traces and the interaction
traces are of no significant difference. Formally, we have the following definitions
and notations,

– a sequence of transitions s
�1−→ s1· · ·

�k−→ s′ is called an execution sequence,
and 〈	1, . . . , 	k〉 is called a trace from s to s′,

52 R. Dong et al.

0

start

1

2

3

login/
;wifi/{unu1}

;wifi/{unu2}

read/{cserv}

print/{cprint · senddoc}

read/{cserv}

Fig. 12. Automaton of internet connection component Cic

– we write s
�1,...,�k
=====⇒ s′ if there exists an execution sequence s

�1−→ s1· · ·
�k−→ s′,

– for a trace tr over Ω and a state s, target(tr , s) = {s′ | s
tr
==⇒ s′}, and

target(tr) = target(tr , s0),
– for a sequence sq over pIF ∪Act , we write s

sq
==⇒ s′ if there is a trace tr such

that s
tr
==⇒ s′ and π1(tr) = sq ,

– T (s) = {〈	1, . . . , 	k〉 | ∃s′ • s
�1,...,�k
=====⇒ s′}, and it is called the traces of s,

– T (s0) is the set of traces of the component automaton C, it is also denoted
by T (C),

– for a state s, the provided traces for s are given by

PT (s) = {π1(tr)�pIF | tr ∈ T (s)},

– the set PT (s0) is called the set of provided traces of C, and it is also written
as PT (C).

Example 10. Consider the internet-connection component presented in Fig. 12.
It provides the services login , print , and read to the environment and there is an
internal service ;wifi . The services model the login into the system, invocation
of printing a document, an email service, and automatically connecting the wifi,
respectively. The component calls the services unu1, unu2, cserv , cprint and
senddoc. The first three of them model the searching for a wifi router nearby,
connecting to either the unu1 or unu2 wireless network, and then to an ap-
plication server, respectively. The services cprint and senddoc connect to the
printer, send the document to print and start the printing job. The print service
is only available for the wifi network unu1, while read can be accessed from both
networks.

The component automaton in Fig. 12 can perform, for example, the following
execution,

〈0, (login/{ε}), 1, (;wifi/{unu1}), 2, (print/{cprint · senddoc}), 2〉.

rCOS: Defining Meanings of Component-Based Software Architectures 53

0start 1 2

3

45

τ/T1

a/T2

c/T5

a/T3

b/T4

(i)

0start 1

2 3

τ/T1
a/T2

τ/T3

b/T4

(ii)

Fig. 13. Examples of enabled actions

Now pt = 〈login , print〉 is a provided trace of the execution and the set of
required traces of pt is {〈unu1 · cprint · senddoc〉}.

7.2 Non-blockable Provided Events and Traces

The model of component automata describes how a component interacts with
the environment by providing and requiring services. However, some provided
transitions or executions may be blocked due to the non-determinism caused
by autonomous actions. In this section, we will discuss about the non-refusal of
provided events and traces.

Figure 13 shows what kinds of provided events can be refused (or blocked). The
states 0 and 1 in either automaton are indistinguishable, because every internal
autonomous transition (a τ transition) will be taken eventually. Therefore, a
state, at which an internal autonomous transition may happen, like state 0,
is called an unstable state. In general, a state s of a component automaton C
is stable if out◦(s) = ∅, that is, no internal actions are enabled, otherwise s is
unstable. A state s is a deadlock state if there is no action enabled at all. A
deadlock state is always a stable state.

Now consider state 1 in the automaton in Fig. 13(i), it is a stable state.
The automaton will eventually leave the initial state 0, because if a or c are
never tried, the autonomous τ transition will be eventually performed. Thus
the provided action b cannot be refused (blocked) in state 0 or 1, because it is
enabled in state 1. We call a state s′ internally reachable from state s, denoted
by autoR(s, s′), if there is a sequence (possibly empty and in that case s′ = s)
s

τ1,...,τk
=====⇒ s′ of internal transitions from s to s′. We can see that in the automaton

in Fig. 13(i) state 1 is internally reachable from state 0 and all internal executions
(only one in this case) reach state 1. For this reason, we say provided action b
cannot be refused from state 0. Notice that in the automaton in Fig. 13(ii), there
is no internally reachable stable state from 0.

We define autoR(s) = {s′ | autoR(s, s′)} to be the set of internally reachable
states from s, and autoR•(s) the set of internally reachable stable states, i.e.,
{s′ | s′ ∈ autoR(s) and s′ is stable}. Notice that autoR(s, s′) is a transitive re-
lation and autoR(s) is closed under this relation. Thus, autoR•(s) = ∅ if there
exists a livelock state in autoR(s), i.e., an infinite sequence of internal transitions
is possible.

54 R. Dong et al.

0start

1 2

3 4

a/T1

a/T2

b/T3

c/T4

Fig. 14. An example of a refusal trace

With the above discussion, we are ready to define the refusal provided events
of a component automaton. Informally, a provided event in pIF is a refusal of
state s if it is not enabled at one of the internally reachable stable states s′ of s.

Definition 32 (Refusal events). Let s be a state of a component automaton
C, the set of local refusal events at s is

R(s) = {e | e ∈ pIF ∧ ∃s′ ∈ autoR•(s) • e is disabled at s′}.

We use R(s) to denote the set of local non-refusal (non-blockable) events at
s.

The important concept we are developing in this subsection is the notion of
non-refusal traces, that is going to be used for the publication of a component.

Consider the component automaton shown in Fig. 14. The provided event a is
enabled at state 0, however, after the invocation of a, the component determines
internally whether to move to state 1 or 3. So, both of b and c may be refused
after a.

Definition 33 (Non-blockable provided trace). Let 〈a1, · · · , ak〉, k ≥ 0, be
a sequence of provided events of a component automaton C. It is called a non-
blockable provided trace at state s if for 0 ≤ i ≤ k − 1 and any state s′

such that s
tr
==⇒ s′ and π1(tr)�pIF = 〈a1, . . . , ai〉, ai+1 is not a refusal at s′, i.e.,

ai+1 ∈ R(s′).

A trace tr of a component automaton C is non-blockable at a state s, if the pro-
vided trace π1(tr)�pIF is non-blockable at s. We use PP(s) and UT (s) to denote
the set of all non-blockable provided traces (also denoted as provided protocols
like in the previous sections) and non-blockable traces at state s, respectively.
When s is the initial state of C, we also write PP(s) and UT (s) as PP(C) and
UT (C), respectively.

7.3 Interface Publication Automata

We now define a model of input-deterministic component automata that have
non-blockable traces only. We use this model for publications of components as
they give better composability checking. The main result of this subsection is
the design of an algorithm that transforms a general component automaton to
such an interface publication automaton.

rCOS: Defining Meanings of Component-Based Software Architectures 55

Definition 34 (Input-determinism). A component automaton

C = 〈S, s0, P,R,A, δ〉

is input-deterministic if for any s0
tr1==⇒ s1 and s0

tr2==⇒ s2 such that

π1(tr1)�pIF = π1(tr2)�pIF ,

the sets of non-blockable events are identical, i.e., R(s1) = R(s2).

The definition says that any provided event e is either a refusal or a non-refusal at
both of any two states s1 and s2 that are reachable from the initial state through
the same provided trace. Therefore, any provided trace of an input-deterministic
component automaton is not blocked, provided the required events are accept-
able by the environment. Thus, we call an input-deterministic automaton an
interface publication automaton.

The following theorem states that all the traces of an input-deterministic
component automaton are non-blockable.

Theorem 16. A component automaton C is input-deterministic iff PT (C) =
PP(C).

Proof. PT (C) = PP(C) means every provided trace of C is non-blockable ac-
tually.

First, we prove the direction from left to right. From the input-determinism
of C follows that for each provided trace pt = (a0, . . . , ak) and each state s with
s0

tr
==⇒ s and π1(tr) = 〈a0, . . . , ai〉 for 0 ≤ i ≤ k − 1, the set R(s) is the same.

Since pt is a provided trace (i.e., there exists at least one such s, where ai+1 is
enabled), so ai+1 ∈ R(s) for all such s. This shows that all the provided traces
are non-blockable, so all the traces are non-blockable too.

Second, we prove the direction from right to left by contraposition. We assume
that C is not input-deterministic, so there exist two traces tr1 and tr2 with
π1(tr1)�P = π1(tr2)�P and s0

tr1==⇒ s1, s0
tr2==⇒ s2 such that R(s1) �= R(s2).

Without loss of generality, we assume that there is a provided event a such
that a ∈ R(s1) and a /∈ R(s2). Now π1(tr1) · 〈a〉 is a provided trace of C that is
blockable, which contradicts the assumption. ��

We now present a procedure in Algorithm 1 that, given a component automaton
C, constructs the interface publication automaton I(C). Each state of I(C) is
a pair (Q, r) of a subset Q of states and a single state r of C. A pair (Q, r) is a
state of I(C) if for some provided trace pt of C

– s0
pt
==⇒ r, and

– Q = {s | s0
pt
==⇒ s}.

Thus, in a tuple (Q, r), r ∈ Q and the first element represents the set of all
potentially reachable states for a given provided trace, whereas the second ele-
ment is a specific reachable state for this trace. Notice that for the same r but

56 R. Dong et al.

Algorithm 1. Construction of interface automaton I(C)

Require: C = (S, s0, P, R,A, δ)
Ensure: I(C) = (SI , ({s0}, s0), P,R,A, δI), where SI ⊆ 2S × S
initialization1

SI := {({s0}, s0)}; δI := ∅; todo := {({s0}, s0)}; done := ∅2
end initialization3
while todo �= ∅ do4

choose (Q, r) ∈ todo; todo := todo \ {(Q, r)}; done := done ∪ {(Q, r)}5

foreach a ∈ ⋂
s∈Q

R(s) do
6

Q′ :=
⋃

s∈Q

{s′ | s a
==⇒ s′}

7

foreach (r
e/E−−→ r′) ∈ δ do8

δI := δI ∪ {(Q, r)
e/E−−→ (Q′, r′)}9

if (Q′, r′) /∈ (todo ∪ done) then10
todo := todo ∪ {(Q′, r′)}11
SI := SI ∪ {(Q′, r′)}12

foreach r
τ−→ r′ with r′ ∈ Q do13

δI := δI ∪ {(Q, r)
τ−→ (Q, r′)}14

a provided trace pt1 different from pt such that s0
pt1==⇒ r, there may be a dif-

ferent state (Q′, r) for I(C). Then, the transition relation of I(C) is defined as

(Q, r)
e/E−−→ (Q′, r′) in I(C) if

– e is not a refusal at any state in Q, that is, e ∈
⋂

s∈Q R(s),

– r
e/E−−→ r′, and

– Q′ = {s′ | ∃s ∈ Q • s
e

==⇒ s′}.

From this it becomes clear that the first element Q of a compound state (Q, r) is
necessary to compute if a transition step for an event e is possible at all, which
is not the case if e can be refused in any state reachable by the same provided
trace. The second element r is needed to identify the full transition step enabled
in the state r; note that the required traces E in a compound event e/E can
differ for all states in the set Q.

Algorithm 1 computes the pairs (Q, r) defined above and the transition rela-
tion to simulate the non-blockable executions of C. In the algorithm, the first
elements of these state pairs, i.e., the sets {Q | ∃r • (Q, r) is a state of I(C)},
result from a power-set construction similar to the construction of a determin-
istic automaton from a non-deterministic automaton. The variables todo and
done are used to collect new reachable states that still have to be processed and
states that have already been processed, respectively.

Example 11. In the internet connection component automaton given in Fig. 12,
the provided trace 〈login , read〉 is non-blockable. However, 〈login , print〉 may

rCOS: Defining Meanings of Component-Based Software Architectures 57

{0},0

start

{1,2,3},1

{1,2,3},2

{1,2,3},3

{2,3},2

{2,3},3

login/{ε}

;wifi/{unu1}

;wifi/{unu2}

read/{cserv}

read/{cserv}

read/{cserv}

read/{cserv}

Fig. 15. Interface publication automaton of the internet connection component

be blocked during execution, because after login is called, the component may
transit to state 3 at which print is not available. We use Algorithm 1 to generate
the interface publication automaton in Fig. 15.

Three key correctness properties of the algorithm are stated in the following
theorem.

Theorem 17 (Correctness of Algorithm 1). The following properties hold
for Algorithm 1.

1. For any given component automaton, the algorithm always terminates.
2. For any component C, I(C) is an input-deterministic automaton.
3. PP(C) = PP(I(C)) and UT (C) = UT (I(C)).

The termination of the algorithm is obtained, because todo will eventually be
empty: the set done increases for each iteration of the loop in the algorithm, and
the union of done and todo is bounded. The proofs of the other two properties
are given in [20].

It is interesting to study the states of I(C). Each of them is a pair (Q, r) of a
set of a states of C and a state r. The state r and all states s ∈ Q are target states
of the same provided trace pt in C. Each transition from (Q, r) in I(C) adds
a non-blockable event e to pt . Therefore, in the automaton I(C), R((Q, r)) =⋂

s∈Q R(s), where R(s) are non-blockable events of s in C. We simply write
R(Q, r). This means that each (Q, r) in I(C) actually encodes non-blockable
events in an execution (called global non-blockable events) up to the state r in
the execution of C. We also define the set of events that are enabled locally at a
state s but globally refused (or blocked) as B(s) = R(s)\

⋃
(Q,s)∈SI

R(Q, s). This
will be used in the definition of alternative simulation in the following subsection.

58 R. Dong et al.

7.4 Composition and Refinement

The composition operations for component automata are derived from those for
the component labeled transitions systems defined in Sect. 6. Further, component
automata are special labeled transition systems and there is no data function-
ality (pre- and post-condition for the actions), and we do not have recursively
defined component automata. Thus, we do not have to deal with divergent be-
havior caused by recursion. However, there are still possible livelock states in the
dynamic behavior, but this can be characterized by interaction failures (similar
to the CSP stable failure semantics [57]) with explicit consideration of live-
locks. Another kind of execution failure is caused by cyclic method invocations
of two interacting components. As discussed in Sect. 6, we use one dedicated
state error. A transition that encounters cyclic method invocations will take
the composite component to this state. In fact, error is a deadlock state in
which no actions, including internal autonomous events are enabled. However,
the difference of an error state from a normal deadlock state or a termination
state is that the event e that leads from a state s to the error state, s e−→ error,
is disabled in state s too, and it should be eliminated from the traces of the
system. Similarly, in a composition K1 ‖ K2, if a provided action in K1 invokes
a method provided by K2 that is disabled, the transition also enters the error
state. An automaton with the error state is depicted in Fig. 16. A general com-
ponent automaton may also have the designated error state; an automaton with
the error state that is not reachable from the initial state is equivalent to one
without the error state.

More precisely, for an event e ∈ Ω and a state s of a component automaton
C, if s

e−→ error, e is disabled in state s. Thus, for a general automaton with
error state, the definition of the refusal events R(s) should take such an e into
account. Then, Algorithm 1 also removes the transitions to error.

We now define two notions of failure sets for a component automaton.

Definition 35 (Failures sets of component automata). Let C be a com-
ponent automaton with the error state. A failure of C is a pair (tr , X) of a
trace and a set of the events of Ω of C such that for every e ∈ X there exists
s ∈ target(tr) such that e ∈ R(s), i.e., e is blocked in s, or s is a livelock state
(i.e., an infinite sequence of internal steps is possible) and X ⊆ Ω. We use F(C)
to denote the set of failures of C.

It can be shown that the set of traces T (C) and the set of provided traces PT (C)
are given by

T (C) = {tr | ∃X • (tr , X) ∈ F(C)}
PT (C) = {π1(tr) | tr ∈ T (C)}

Analogously to the traces of open components defined in Sect. 4, for each pro-
vided trace pt , there is an associated set of sequences of required events,

RP(pt) =
⋃

{E1 · · ·Ek | ∃tr ∈ T (C) • π1(tr) = pt ∧ π2(tr) = E1 · · ·Ek}.

rCOS: Defining Meanings of Component-Based Software Architectures 59

0start 1

2 3

error

4 5

τ/

a/

b/

a/

τ/

a/

a/

Fig. 16. An automaton with error state

The set of required traces for the non-blockable provided traces is given by
RP(C) =

⋃
{RP(pt) | pt ∈ PP(C)}. Now we formally define the refinement

relation between component automata as the following partial order on their
failures.

Definition 36 (Failure refinement of component automata). A compo-
nent automaton C2 is a refinement of a component automaton C1, denoted as
C1 f C2, if F(C2) ⊆ F(C1).

The properties of refinement between component automata, e.g., reflexivity and
transitivity, are preserved by composition operations. However, we are interested
in a “refinement relation” defined in terms of non-blocking provided and required
traces.

Definition 37 (Alternative simulation). A binary relation R over the set of
states of a component automaton C is an alternative simulation if whenever
s1 R s2,

– for any transition s1
e/E−−→ s′1 with e ∈ Act ∪ R(s1) \ B(s1) and error /∈

autoR(s1), there exist s′2 and E′ such that s2
e/E′
−−−→ s′2, where E′ ⊆ E and

s′1 R s′2;

– for any transition s2
e/E′
−−−→ s′2 with e ∈ Act ∪ R(s1) \ B(s1) and error /∈

autoR(s2), there exist s′1 and E such that s1
e/E−−→ s′1, where E′ ⊆ E and

s′1 R s′2;
– B(s2) ⊆ B(s1);
– if s2

e/−→ error with e ∈ Act ∪ pIF , then s1
e/−→ error.

We say that s2 alternative simulates s1, written as s1 � s2, if there is an
alternative simulation relation R such that (s1, s2) ∈ R. C2 is an alternative
refinement of C1, denoted by C1 alt C2, C1.init � C2.init , C1.pIF ⊆ C2.pIF
and C2.rIF ⊆ C1.rIF .

60 R. Dong et al.

The above definition is similar to the alternating simulation given in [16] and that
is why we use the same term. But they are actually different. The main differences
are (1) we only require a pair of states to keep the simulation relation with respect
to the provided services that could not result in a deadlock; (2) we also require
that a refinement should have smaller refusal sets at each location, which is
similar to the stable failures model of CSP. Also notice that our refinement is not
comparable with the failure refinement nor the failure-divergence refinement of
CSP, because of the different requirements on the simulation of provided methods
and required methods. However, if we do not suppose required methods, our
definition is stronger than the failure refinement as well as the failure-divergence
refinement.

The following theorem indicates that the component publication automaton
constructed by Algorithm 1 is a refinement of the considered component au-
tomaton with respect to the above definition, which justifies that we can safely
use the resulting component interface instead of the component at the interface
level.

Theorem 18. For any component automaton C, the refinement relation C alt

I(C) holds. If C1 alt C2, then I(C1) alt I(C2).

Proof. Let R = {(s, (Q, s)) | s ∈ S, (Q, s) ∈ SI}. We show that R is a simulation
relation.

For any s R (Q, s),

– s
a/E−−→ s′ with a ∈ R(s) and a /∈ B(s). Then a ∈ B(Q, s) and (Q, s)

a/E−−→
(Q′, s′).

– If s
;e/E−−−→ s′ with ; e ∈ Act , then (Q, s)

;e/E−−−→ (Q, s′).

– For any (Q, s)
e/E−−→ (Q′, s′) with e ∈ Act ∪R(s)\B(Q, s), then s

e/E−−→ s′ and
s′ R (Q′, s′).

– B(Q, s) ⊆ B(s).

Hence, R is a simulation relation.
Now we prove the second part of the theorem. Let R0 be a simulation for

C1 alt C2, then we show

R′
0 =

⎧⎪⎨⎪⎩((Q1, s1), (Q2, s2))

∣∣∣∣∣∣∣
(s1, s2) ∈ R0,

∀r1 ∈ Q1∃r2 ∈ Q2 • (r1, r2) ∈ R0

∀r2 ∈ Q2∃r1 ∈ Q1 • (r1, r2) ∈ R0

⎫⎪⎬⎪⎭.

For any (Q1, s1) R′
0 (Q2, s2), R(Q1) ⊆ R(Q2) and B(Q1, s1) = B(Q2, s2) = ∅.

Then we can show that this is an alternative simulation between the initial states
of I(C1) and I(C2). ��

Theorem 19. Given two component publication automata C1 and C2, if C1 alt

C2, then PP(C1) ⊆ PP(C2), and for any non-blockable provided trace pt ∈
PT (C1), RP(pt) ⊆ RP(pt), where RP on the left is the set of required traces
for pt in C2 and RP on the right is that defined for C1.

rCOS: Defining Meanings of Component-Based Software Architectures 61

This theorem can be proved by induction on the length of pt . The following
theorem states that the refinement relation is preserved by the composition op-
erator over component automata. We refer the reader to the paper [20] for its
proof.

Theorem 20. Given a component automaton C and two interface publication
automata C1 and C2 such that C1 alt C2, then C1 ⊗ C alt C2 ⊗ C.

Corollary 1. Given two component interface automata C1 and C2, if C1 alt

C2, then C1 ‖ C alt C2 ‖ C.

The work on interface model in this section is a new development in rCOS. The
results are still preliminary. There are still many open problems such as the
relation between the failure refinement relation and the alternative refinement
between component automata. A thorough study on the relation between CSP
failure semantics theory and the automata simulation theory would deserve a
Ph.D. thesis.

8 Conclusions

A major research objective of the rCOS method is to improve the scalability
of semantic correctness preserving refinement between models in model-driven
software engineering. The rCOS method promotes the idea that component-
based software design is driven by model transformations in the front end, and
verification and analysis techniques are integrated through the model transfor-
mations. It attacks the challenges of consistent integration of models for different
viewpoints of a software system, for that different theories, techniques and tools
can be applied effectively. The final goal of the integration is to support the
separation of design concerns, those of the data functionality, interaction pro-
tocols and class structures in particular. rCOS provides a seamless combination
of OO design and component-based design. As the semantic foundation pre-
sented in Sect. 2 and the models of components show, rCOS enables integration
of classical specification and verification techniques, Hoare Logic and Predicate
Transformers for data functionality, process algebras, finite state automata and
temporal logics for reactive behavior. Refinement calculi for data functionality
and reactive behavior are integrated as well.

In this chapter, we presented a model of component-based architecture, which
is a generalization of the original rCOS components model presented in our early
publications [10,13,25,35]. The semantics of the component architecture is based
on unified labeled transition systems with a failure-divergence semantics and
refinement for sequential, object-oriented, and reactive designs. Our semantics
particularly integrates a data-based as well as an interaction-based view. This
allowed us to introduce a general and unified model of components, which are the
building blocks of a model-driven software architecture: primitive closed compo-
nents, open components, as well as active and passive generalized components.
The presented composition operators for parallel composition and operators for

62 R. Dong et al.

renaming, hiding, and plugging are used for the construction of complex systems
out of predefined and refined components. Using refinement of components, this
model is particularly suited for model transformations in model-driven software
engineering [24,35,47]. Finally, a specific focus of this work was to study the inter-
face behavior of components in order to being able to precisely specify contracts
and publications for components, which enable the component’s reusability in
different contexts. This particularly included the computation of a component’s
provided protocol, which we identified as necessary to allow correct usage of a
component in all desired situations.

Construction of models and model refinements are supported by the rCOS
Modeler tool. The method has been tested on enterprise systems [11,12], remote
medical systems [65] and service oriented systems [42].

Similar to JML [40], the rCOS method intends to convey the message that the
design of a formal modeling notation can and should consider advanced features
of architectural constructs in modern programming languages like Java. This
will make it easier to use and understand for practical software engineers, who
have difficulties to comprehend heavy mathematical constructs and operators.

The link of the rCOS models to classical semantic models is presented in this
paper. We have not spent much space on related work as this has been discussed
in previous papers, to which we have referred. However, we would like to em-
phasize the work on CSP and its failure-divergence theory [57] that motivated
the input-deterministic interface model. Closely related models are Reo [14] and
Circus [64]. The former model is related to the process model in rCOS, and Cir-
cus also deals with integration of data state into interaction behavior. In future
work, we are interested in dealing with timing issues of components as another
dimension of modeling. Also, with the separation of data functionality and flow
of interaction control, we would like to investigate how the modeling method can
be applied to workflow management, health care workflows in particular [4, 21].

Acknowledgments. In this special occasion of a celebration of He Jifeng’s
70th birthday, we would like to express our thanks for his contribution to the
development of the semantic foundation of rCOS. Many of our former and cur-
rent colleagues have made contributions to the development of the rCOS method
and its tool support. Xiaoshan Li is another main contributor to the development
of the rCOS theory, techniques and tool support. Jing Liu and her group have
made significant contributions to the link of rCOS to UML and service oriented
architecture; Xin Chen, Zhenbang Chen and Naijun Zhan to the component-
based modeling and refinement; Charles Morisset, Xiaojian Liu, Shuling Wang,
and Liang Zhao to the object-oriented semantics, refinement calculus and veri-
fication; Anders P. Ravn to the design of the tool and the CoCoME case study;
Dan Li, Xiaoliang Wang, and Ling Yin to the tool development; Bin Lei and Cris-
tiano Bertolini to testing techniques; and Martin Schäf to the automata-based
model of interface behavior. The rCOS methods have been taught in many UNU-
IIST training schools, inside and outside Macau, and we are grateful to the very
helpful feedback and comments that we have received from the participants.

rCOS: Defining Meanings of Component-Based Software Architectures 63

The work is supported by the projects GAVES, SAFEHR and PEARL funded
by the Macau Science and Technology Development Fund, and the Chinese Nat-
ural Science Foundation grants NSFC-61103013, 91118007 and 60970031.

References

1. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press (1996)

2. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press (2010)

3. Back, R.J.R., von Wright, J.: Trace refinement of action systems. In: Jonsson,
B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 367–384. Springer,
Heidelberg (1994)

4. Bertolini, C., Liu, Z., Schäf, M., Stolz, V.: Towards a formal integrated model of
collaborative healthcare workflows. Tech. Rep. 450, IIST, United Nations Univer-
sity, Macao (2011), In: Liu, Z., Wassyng, A. (eds.) FHIES 2011. LNCS, vol. 7151,
pp. 57–74. Springer, Heidelberg (2012)

5. Booch, G.: Object-Oriented Analysis and Design with Applications. Addison-
Wesley, Boston (1994)

6. Brooks, F.P.: No silver bullet: Essence and accidents of software engineering. IEEE
Computer 20(4), 10–19 (1987)

7. Brooks, F.P.: The mythical man-month: After 20 years. IEEE Software 12(5),
57–60 (1995)

8. Burstall, R., Goguen, J.: Putting theories together to make specifications. In:
Reddy, R. (ed.) Proc. 5th Intl. Joint Conf. on Artificial Intelligence. Department
of Computer Science, pp. 1045–1058. Carnegie-Mellon University, USA (1977)

9. Chandy, K.M., Misra, J.: Parallel Program Design: A Foundation. Addison-Wesley,
Reading (1988)

10. Chen, X., He, J., Liu, Z., Zhan, N.: A model of component-based programming. In:
Arbab, F., Sirjani, M. (eds.) FSEN 2007. LNCS, vol. 4767, pp. 191–206. Springer,
Heidelberg (2007), http://www.iist.unu.edu/www/docs/techreports/reports/
report350.pdf

11. Chen, Z., et al.: Modelling with relational calculus of object and component sys-
tems - rCOS. In: Rausch, A., Reussner, R., Mirandola, R., Plášil, F. (eds.) The
Common Component Modeling Example. LNCS, vol. 5153, pp. 116–145. Springer,
Heidelberg (2008), http://www.iist.unu.edu/www/docs/techreports/reports/
report382.pdf

12. Chen, Z., Liu, Z., Ravn, A.P., Stolz, V., Zhan, N.: Refinement and verifica-
tion in component-based model driven design. Science of Computer Program-
ming 74(4), 168–196 (2009), http://www.sciencedirect.com/science/article/
B6V17-4T9VP33-1/2/c4b7a123e06d33c2cef504862a5e54d5

13. Chen, Z., Liu, Z., Stolz, V., Yang, L., Ravn, A.P.: A refinement driven component-
based design. In: 12th Intl. Conf. on Engineering of Complex Computer Systems
(ICECCS 2007), pp. 277–289. IEEE Computer Society (July 2007)

14. Clarke, D., Proença, J., Lazovik, A., Arbab, F.: Channel-based coordination via
constraint satisfaction. Sci. Comput. Program. 76(8), 681–710 (2011)

15. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching-time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982)

http://www.iist.unu.edu/www/docs/techreports/reports/report350.pdf
http://www.iist.unu.edu/www/docs/techreports/reports/report350.pdf
http://www.iist.unu.edu/www/docs/techreports/reports/report382.pdf
http://www.iist.unu.edu/www/docs/techreports/reports/report382.pdf
http://www.sciencedirect.com/science/article/B6V17-4T9VP33-1/2/c4b7a123e06d33c2cef504862a5e54d5
http://www.sciencedirect.com/science/article/B6V17-4T9VP33-1/2/c4b7a123e06d33c2cef504862a5e54d5

64 R. Dong et al.

16. De Alfaro, L., Henzinger, T.: Interface automata. ACM SIGSOFT Software Engi-
neering Notes 26(5), 109–120 (2001)

17. Dijkstra, E.W., Scholten, C.S.: Predicate Calculus and Program Semantics.
Springer, New York (1990)

18. Dijkstra, E.W.: The humble programmer. Communications of the ACM 15(10),
859–866 (1972), an ACM Turing Award lecture

19. Dong, R., Faber, J., Liu, Z., Srba, J., Zhan, N., Zhu, J.: Unblockable compositions
of software components. In: Grassi, V., Mirandola, R., Medvidovic, N., Larsson,
M. (eds.) CBSE, pp. 103–108. ACM (2012)

20. Dong, R., Zhan, N., Zhao, L.: An interface model of software components. In: Zhu,
H. (ed.) ICTAC 2013. LNCS, vol. 8049, pp. 157–174. Springer, Heidelberg (2013)

21. Faber, J.: A timed model for healthcare workflows based on csp. In: Breu, R.,
Hatcliff, J. (eds.) SEHC 2012, pp. 1–7. IEEE (2012) ISBN 978-1-4673-1843-3

22. Fischer, C.: Combination and Implementation of Processes and Data: from CSP-
OZ to Java. Ph.D. thesis, University of Oldenburg (2000)

23. Fowler, M.: Refactoring – Improving the Design of Existing Code. Addison-Wesley,
Menlo Park (1999)

24. He, J., Li, X., Liu, Z.: Component-based software engineering. In: Van Hung, D.,
Wirsing, M. (eds.) ICTAC 2005. LNCS, vol. 3722, pp. 70–95. Springer, Heidelberg
(2005), http://www.iist.unu.edu/www/docs/techreports/reports/report330.
pdf, uNU-IIST TR 330

25. He, J., Li, X., Liu, Z.: A theory of reactive components. Electr. Notes Theor.
Comput. Sci. 160, 173–195 (2006)

26. He, J., Liu, Z., Li, X.: rCOS: A refinement calculus of object systems. Theo-
retical computer science 365(1-2), 109–142 (2006), http://rcos.iist.unu.edu/
publications/TCSpreprint.pdf

27. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications
of the ACM 12(10), 576–580 (1969)

28. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Upper Saddle
River (1985)

29. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice-Hall, Upper
Saddle River (1998)

30. Hoenicke, J., Olderog, E.R.: Combining specification techniques for processes, data
and time. In: Butler, M., Petre, L., Sere, K. (eds.) IFM 2002. LNCS, vol. 2335,
pp. 245–266. Springer, Heidelberg (2002), http://link.springer.de/link/
service/series/0558/bibs/2335/23350245.htm

31. Holzmann, G.J.: The SPIN Model Checker: Primer and reference manual. Addison-
Wesley (2004)

32. Holzmann, G.J.: Conquering complexity. IEEE Computer 40(12) (2007)
33. Johnson, J.: My Life Is Failure: 100 Things You Should Know to Be a Better

Project Leader. Standish Group International, West Yarmouth (2006)
34. Jones, C.B.: Systematic Software Development using VDM. Prentice Hall, Upper

Saddle River (1990)
35. Ke, W., Li, X., Liu, Z., Stolz, V.: rCOS: a formal model-driven engineering method

for component-based software. Frontiers of Computer Science in China 6(1), 17–39
(2012)

36. Ke, W., Liu, Z., Wang, S., Zhao, L.: A graph-based operational semantics of OO
programs. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol. 5885,
pp. 347–366. Springer, Heidelberg (2009)

37. Lamport, L.: The temporal logic of actions. ACM Transactions on Programming
Languages and Systems 16(3), 872–923 (1994)

http://www.iist.unu.edu/www/docs/techreports/reports/report330.pdf
http://www.iist.unu.edu/www/docs/techreports/reports/report330.pdf
http://rcos.iist.unu.edu/publications/TCSpreprint.pdf
http://rcos.iist.unu.edu/publications/TCSpreprint.pdf
http://link.springer.de/link/service/series/0558/bibs/2335/23350245.htm
http://link.springer.de/link/service/series/0558/bibs/2335/23350245.htm

rCOS: Defining Meanings of Component-Based Software Architectures 65

38. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley (2002)

39. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and the Unified Process, 3rd edn. Prentice-Hall (2005)

40. Leavens, G.T.: JML’s rich, inherited specifications for behavioral subtypes. In:
Liu, Z., Kleinberg, R.D. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 2–34. Springer,
Heidelberg (2006)

41. Leveson, N.G., Turner, C.S.: An investigation of the Therac-25 accidents. IEEE
Computer 26(7), 18–41 (1993)

42. Liu, J., He, J.: Reactive component based service-oriented design – a case study.
In: Proceedings of 11th IEEE International Conference on Engineering of Complex
Computer Systems, pp. 27–36. IEEE Computer Society (2006)

43. Liu, Z.: Software development with UML. Tech. Rep. 259, IIST, United Nations
University, P.O. Box 3058, Macao (2002)

44. Liu, Z., Joseph, M.: Specification and verification of fault-tolerance, timing, and
scheduling. ACM Transactions on Programming Languages and Systems 21(1),
46–89 (1999)

45. Liu, Z., Kang, E., Zhan, N.: Composition and refinement of components. In:
Butterfield, A. (ed.) Post Event Proceedings of UTP 2008. Lecture Notes in Com-
puter Science vol. 5713. Springer, Berlin (2009)

46. Liu, Z., Mencl, V., Ravn, A.P., Yang, L.: Harnessing theories for tool support.
In: Proc. of the Second Intl. Symp. on Leveraging Applications of Formal Meth-
ods, Verification and Validation (ISoLA 2006), pp. 371–382. IEEE Computer Soci-
ety (August 2006), http://www.iist.unu.edu/www/docs/techreports/reports/
report343.pdf; full version as UNU-IIST Technical Report 343

47. Liu, Z., Morisset, C., Stolz, V.: rCOS: Theory and tool for component-based
model driven development. In: Arbab, F., Sirjani, M. (eds.) FSEN 2009. LNCS,
vol. 5961, pp. 62–80. Springer, Heidelberg (2010), http://www.iist.unu.edu/www/
docs/techreports/reports/report406.pdf, keynote, UNU-IIST TR 406

48. Lynch, N.A., Tuttle, M.R.: An introduction to input/output automata. CWI Quar-
terly 2(3), 219–246 (1989)

49. Manna, Z., Pnueli, A.: The temporal logic of reactive and concurrent sys-
tems:specification. Springer (1992)

50. Milner, R.: Communication and concurrency. Prentice-Hall, Inc., Upper Saddle
River (1989)

51. Nielson, H., Nielson, F.: Semantics with Applications. A formal Introduction. Wiley
(1993)

52. Object Managment Group: Model driven architecture - a technical perspective
(2001), document number ORMSC 2001-07-01

53. Peter, L.: The Peter Pyramid. William Morrow, New York (1986)
54. Plotkin, G.D.: The origins of structural operational semantics. Journal of Logic

and Algebraic Programming 60(61), 3–15 (2004)
55. Queille, J.P., Sifakis, J.: Specification and verification of concurrent systems in CE-

SAR. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) Programming 1982. LNCS,
vol. 137, pp. 337–351. Springer, Heidelberg (1982)

56. Robinson, K.: Ariane 5: Flight 501 failure—a case study (2011), http://www.cse.
unsw.edu.au/~se4921/PDF/ariane5-article.pdf

57. Roscoe, A.W.: Theory and Practice of Concurrency. Prentice-Hall, Upper Saddle
River (1997)

58. Spivey, J.M.: The Z Notation: A Reference Manual, 2nd edn. Prentice Hall, Upper
Saddle River (1992)

http://www.iist.unu.edu/www/docs/techreports/reports/report343.pdf
http://www.iist.unu.edu/www/docs/techreports/reports/report343.pdf
http://www.iist.unu.edu/www/docs/techreports/reports/report406.pdf
http://www.iist.unu.edu/www/docs/techreports/reports/report406.pdf
http://www.cse.unsw.edu.au/~se4921/PDF/ariane5-article.pdf
http://www.cse.unsw.edu.au/~se4921/PDF/ariane5-article.pdf

66 R. Dong et al.

59. Stoy, J.E.: Denotational Semantics: The Scott-Strachey Approach to Programming
Language Semantics. MIT Press, Cambridge (1977)

60. Szyperski, C.: Component Software: Beyond Object-Oriented Programming, 2nd
edn. Addison-Wesley Longman Publishing Co., Inc., Boston (2002)

61. Vaandrager, F.W.: On the relationship between process algebra and input/output
automata. In: LICS, pp. 387–398. IEEE Computer Society (1991)

62. Wang, Z., Wang, H., Zhan, N.: Refinement of models of software components. In:
Shin, S.Y., Ossowski, S., Schumacher, M., Palakal, M.J., Hung, C.C. (eds.) SAC,
pp. 2311–2318. ACM (2010)

63. Wirsing, M., Banâtre, J.-P., Hölzl, M., Rauschmayer, A. (eds.): Soft-Ware Intensive
Systems. LNCS, vol. 5380. Springer, Heidelberg (2008)

64. Woodcock, J., Cavalcanti, A.: The semantics of circus. In: Bert, D., Bowen,
J.P., Henson, M.C., Robinson, K. (eds.) ZB 2002. LNCS, vol. 2272, pp. 184–203.
Springer, Heidelberg (2002)

65. Xiong, X., Liu, J., Ding, Z.: Design and verification of a trustable medical system.
In: Johnsen, E.B., Stolz, V. (eds.) Proceedings of 3rd International Workshop on
Harnessing Theories for Tool Support in Software. Electronic Notes in Theoretical
Computer Science, vol. 266, pp. 77–92. Elsevier (2010)

66. Zhao, L., Liu, X., Liu, Z., Qiu, Z.: Graph transformations for object-oriented re-
finement. Formal Aspects of Computing 21(1-2), 103–131 (2009)

Model-Based Verification, Optimization,

Synthesis and Performance Evaluation
of Real-Time Systems

Uli Fahrenberg1, Kim G. Larsen2,	, and Axel Legay1

1 Irisa / INRIA Rennes, France
2 Department of Computer Science, Aalborg University,

Selma Lagerlöfs Vej 300, 9220 Aalborg Øst, Denmark

kgl@cs.aau.dk

Abstract. This article aims at providing a concise and precise Trav-
ellers Guide, Phrase Book or Reference Manual to the timed automata

modeling formalism introduced by Alur and Dill [8, 9]. The paper gives

comprehensive definitions of timed automata, priced (or weighted) timed

automata, timed games, stochastic timed automata and highlights a

number of results on associated decision problems related tomodel check-

ing, equivalence checking, optimal scheduling, the existence of winning

strategies, and then statistical model checking.

1 Introduction

The model of timed automata, introduced by Alur and Dill [8, 9], has by now
established itself as a classical formalism for describing the behaviour of real-
time systems. A number of important algorithmic problems has been shown
decidable for it, including reachability, model checking and several behavioural
equivalences and preorders.

By now, real-time model checking tools such as Uppaal [20,83] and Kronos
[40] are based on the timed automata formalism and on the substantial body of
research on this model that has been targeted towards transforming the early
results into practically efficient algorithms — e.g. [16, 17, 22, 24] — and data
structures — e.g. [23, 80, 82].

The maturity of a tool like Uppaal is witnessed by the numerous applications
— e.g. [50,57,68,73,78,81,86,87] — to the verification of industrial case-studies
spanning real-time controllers and real-time communication protocols. More re-
cently, model-checking tools in general and Uppaal in particular have been
applied to solve realistic scheduling problems by a reformulation as reachability
problems — e.g. [1, 65, 72, 89].

Aiming at providing methods for performance analysis, a recent extension of
timed automata is that of priced or weighted timed automata [10, 21], which

� Corresponding author.

Z. Liu, J. Woodcock, and H. Zhu (Eds.): Theories of Programming, LNCS 8050, pp. 67–108, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

68 U. Fahrenberg, K.G.Larsen, and A. Legay

makes it possible to formulate and solve optimal scheduling problems. Surpris-
ingly, a number of properties have been shown to be decidable for this formal-
ism [10, 21, 34, 59, 84]. The recently developed Uppaal-Cora tool provides an
efficient tool for solving cost-optimal reachability problems [79] and has been
applied successfully to a number of optimal scheduling problems, e.g. [18,25,67].

Most recently, substantial efforts have been made on the automatic synthe-
sis of (correct-by-construction) controllers from timed games for given control
objectives. From early decidability results [13, 91] the effort has lead to efficient
on-the-fly algorithms [44,102] with the newest of the Uppaal toolset, Uppaal-
Tiga [19], Uppaal-SMC [53, 54], providing an efficient tool implementation
with industrial applications emerging, e.g. [75].

This survey paper aims at providing a concise and precise Travellers Guide,
Phrase Book or Reference Manual to the land and language of timed automata.
The article gives comprehensive definitions of timed automata, weighted timed
automata, and timed games and highlights a number of results on associated de-
cision problems related to model checking, equivalence checking, optimal schedul-
ing, the existence of winning strategies, and statistical model checking. The in-
tention is that the paper should provide an easy-to-access collection of important
results and overview of the field to anyone interested.

We acknowledge the assistance of Claus Thrane who has been a co-author
on previous editions of this survey [61, 62, 64]. We would also like to thank the
students of the Marktoberdorf and Quantitative Model Checking PhD schools
for their useful comments and help in weeding out a number of errors in previous
editions, as well as an anonymous reviewer who provided many useful remarks
for the invited paper [63] at FSEN 2009.

2 Timed Automata

In this section we review the notion of timed automata introduced by Alur
and Dill [8, 9] as a formalism for describing the behaviour of real-time systems.
We review the syntax and semantics and highlight the, by now classical, region
construction underlying the decidability of several associated problems.

Here we illustrate how regions are applied in showing decidability of reacha-
bility and timed and untimed (bi)similarity. However, the notion of region does
not provide the means for efficient tool implementations. The verification engine
of Uppaal instead applies so-called zones, which are convex unions of regions.
We give a brief account of zones as well as their efficient representation and
manipulation using difference-bound matrices.

2.1 Syntax and Semantics

Definition 1. The set Φ(C) of clock constraints ϕ over a finite set (of clocks)
C is defined by the grammar

ϕ ::= x �� k | ϕ1 ∧ ϕ2 (x ∈ C, k ∈ �, �� ∈ {≤, <,≥, >}).

Model-Based Verification of Real-Time Systems 69

Off

Light

x ≤ 100

Bright

x ≤ 100

press?

x := 0 press?

x ≤ 3

x := 0

press?

x > 3

x := 0

x = 100

x := 0

press?

x := 0

x = 100

x := 0

Fig. 1. A light switch modelled as a timed automaton

The set Φ+(C) of extended clock constraints ϕ is defined by the grammar

ϕ ::= x �� k | x − y �� k | ϕ1 ∧ ϕ2 (x, y ∈ C, k ∈ �, �� ∈ {≤, <,≥, >}).

Remark 1. The clock constraints in Φ(C) above are also called diagonal-free
clock constraints, and the additional ones in Φ+(C) are called diagonal. We re-
strict ourselves to diagonal-free clock constraints here; see Remark 4 for one rea-
son. For additional modelling power, timed automata with diagonal constraints
can be used, as it is shown in [9,29] that any such automaton can be converted to
a diagonal-free one; however the conversion may lead to an exponential blow-up.

Definition 2. A timed automaton is a tuple (L, 	0, F, C,Σ, I, E) consisting of a
finite set L of locations, an initial location 	0 ∈ L, a set F ⊆ L of final locations,
a finite set C of clocks, a finite set Σ of actions, a location invariants mapping
I : L → Φ(C), and a set E ⊆ L × Φ(C)× Σ × 2C × L of edges.

Here 2C denotes the set of subsets (i.e. the power set) ofC. We shall write 	
ϕ,a,r−−−→

	′ for an edge (, ϕ, a, r, 	′) ∈ E. In figures, resets are written as assignments to
zero, e.g. x := 0.

Example 1. Figure 1 provides a timed automaton model of an intelligent light
switch. Starting in the “Off” state, a press of the button turns the light on, and
it remains in this state for 100 time units (i.e. until clock x = 100), at which time
the light turns off again. During this time, an additional press resets the clock x

70 U. Fahrenberg, K.G.Larsen, and A. Legay

and prolongs the time in the state by 100 time units. Pressing the button twice,
with at most three time units between the presses, triggers a special bright light.

Definition 3. A clock valuation on a finite set C of clocks is a mapping v :
C → �≥0. The initial valuation v0 is given by v0(x) = 0 for all x ∈ C. For a
valuation v, d ∈ �≥0, and r ⊆ C, the valuations v + d and v[r] are defined by

(v + d)(x) = v(x) + d

v[r](x) =

{
0 for x ∈ r,

v(x) for x /∈ r.

Extending the notation for power set introduced above, we will in general
write BA for the set of mappings from a set A to a set B. The set of clock
valuations on C is thus �C

≥0.

Definition 4. The zone of an extended clock constraint in Φ+(C) is the set of
clock valuations C → �≥0 given inductively by

�x �� k� = {v : C → �≥0 | v(x) �� k},
�x − y �� k� = {v : C → �≥0 | v(x) − v(y) �� k}, and

�ϕ1 ∧ ϕ2� = �ϕ1� ∩ �ϕ2�.

We shall write v |= ϕ instead of v ∈ �ϕ�.

Definition 5. The semantics of a timed automaton A = (L, 	0, F, C,Σ, I, E) is
the transition system �A� = (S, s0, Σ ∪�≥0, T = Ts ∪ Td) given as follows:

S =
{
(, v) ∈ L ×�C

≥0

∣∣ v |= I()
}

s0 = (0, v0)

Ts =
{
(, v)

a−→ (′, v′)
∣∣ ∃	 ϕ,a,r−−−→ 	′ ∈ E : v |= ϕ, v′ = v[r]

}
Td =

{
(, v)

d−→ (, v + d)
∣∣ ∀d′ ∈ [0, d] : v + d′ |= I()

}
Remark 2. The transition system �A� from above is an example of what is known
as a timed transition system, i.e. a transition system where the label set includes
�≥0 as a subset and which satisfies certain additivity and time determinacy
properties. We refer to [2] for a more in-depth treatment.

Also note that the semantics �A� contains no information about final states
(derived from the final locations in F); this is mostly for notational convenience.

Definition 6. A (finite) run of a timed automaton A = (L, 	0, F, C,Σ, I, E) is
a finite path ρ = (0, v0) → · · · → (k, vk) in �A�. It is said to be accepting if
	k ∈ F .

Example 1 (continued). The light switch model from figure 1 has as state set

S = {Off} ×�≥0 ∪ {Light,Bright} × [0, 100]

Model-Based Verification of Real-Time Systems 71

�0

�1

a

y ≤ 2

y := 0

b

x ≤ 2

x := 0

c x ≥ 4 ∧ y ≤ 2

Fig. 2. A timed automaton with two clocks

where we identify valuations with their values at x. A few example runs are given
below; we abbreviate “press?” to “p”:

(Off, 0)
150−−→ (Off, 150)

p−→ (Light, 0)
100−−→ (Light, 100) −→ (Off, 0)

(Off, 0)
p−→ (Light, 0)

10−→ (Light, 10)
p−→ (Light, 0)

100−−→ (Light, 100) −→ (Off, 0)

(Off, 0)
p−→ (Light, 0)

1−→ (Light, 1)
p−→ (Bright, 0)

100−−→ (Bright, 100) −→ (Off, 0)

2.2 Reachability

We are concerned with the following problem: Given a timed automaton A =
(L, 	0, F, C,Σ, I, E), is any of the locations in F reachable? We shall later define
the timed language generated by a timed automaton and see that this reachabil-
ity problem is equivalent to emptiness checking : Is the timed language generated
by A non-empty?

Example 2 (cf. [2, Ex. 11.7]). Figure 2 shows a timed automaton A with two
clocks and a final location 	1. To ask whether 	1 is reachable amounts for this au-
tomaton to the question whether there is a finite sequence of a- and b-transitions
from 	0 which brings clock values into accordance with the guard x ≥ 4 ∧ y ≤ 2
on the edge leading to 	1.

An immediate obstacle to reachability checking is the infinity of the state space
of A. In general, the transition system �A� has uncountably many states, hence
straight-forward reachability algorithms do not work for us.

Notation 1. The derived transition relations in a timed automaton A = (L, 	0,
F, C,Σ, I, E) are defined as follows: For (, v), (′, v′) states in �A�, we say that

– (, v)
δ−→ (′, v′) if (, v) d−→ (′, v′) in �A� for some d > 0,

– (, v)
α−→ (′, v′) if (, v) a−→ (′, v′) in �A� for some a ∈ Σ, and

– (, v) � (′, v′) if (, v) (δ−→ ∪ α−→)∗ (′, v′).

72 U. Fahrenberg, K.G.Larsen, and A. Legay

Definition 7. The set of reachable locations in a timed automaton A = (L, 	0,
F, C,Σ, I, E) is

Reach(A) =
{
	 ∈ L

∣∣ ∃v : C → �≥0 : (0, v0) � (, v)
}
.

Hence we can now state the reachability problem as follows:

Problem 1 (Reachability). Given a timed automaton A = (L, 	0, F, C,Σ, I, E),
is Reach(A) ∩ F �= ∅ ?

Definition 8. Let A = (L, 	0, F, C,Σ, I, E) be a timed automaton. A relation
R ⊆ L ×�C

≥0 × L ×�C
≥0 is a time-abstracted simulation provided that for all

(1, v1) R (2, v2),

– for all (1, v1)
δ−→ (′1, v

′
1) there exists some (′2, v

′
2) such that (′1, v

′
1) R (′2, v

′
2)

and (2, v2)
δ−→ (′2, v′2), and

– for all a ∈ Σ and (1, v1)
a−→ (′1, v

′
1), there exists some (′2, v

′
2) such that

(′1, v
′
1) R (′2, v

′
2) and (2, v2)

a−→ (′2, v
′
2).

R is said to be F -sensitive if additionally, (1, v1) R (2, v2) implies that 	1 ∈ F
if and only if 	2 ∈ F . A time-abstracted bisimulation is a time-abstracted sim-
ulation which is also symmetric; we write (1, v1) ≈ (2, v2) whenever (1, v1) R
(2, v2) for a time-abstracted bisimulation R.

Note that ≈ is itself a time-abstracted bisimulation, which is easily shown to
be an equivalence relation and hence symmetric, reflexive and transitive. Ob-
serve also that a time-abstracted (bi)simulation on A is the same as a standard

(bi)simulation on the transition system derived from �A� with transitions
δ−→

and
a−→. Likewise, the quotient introduced below is just the standard bisimula-

tion quotient of this derived transition system.

Definition 9. Let A = (L, 	0, F, C,Σ, I, E) be a timed automaton and R ⊆
L×�C

≥0 ×L×�C
≥0 a time-abstracted bisimulation which is also an equivalence.

The quotient of �A� = (S, s0, Σ ∪ �≥0, T) with respect to R is the transition
system �A�R = (SR, s0R, Σ ∪ {δ}, TR) given by SR = S/R, s0R = [s0]R, and with
transitions

– π
δ−→ π′ whenever (, v)

δ−→ (′, v′) for some (, v) ∈ π, (′, v′) ∈ π′, and
– π

a−→ π′ whenever (, v)
a−→ (′, v′) for some (, v) ∈ π, (′, v′) ∈ π′.

The following proposition expresses that F -sensitive quotients are sound and
complete with respect to reachability.

Proposition 1 ([5]). Let A = (L, 	0, F, C,Σ, I, E) be a timed automaton, R ⊆
L×�C

≥0×L×�C
≥0 an F -sensitive time-abstracted bisimulation and 	 ∈ F . Then

	 ∈ Reach(A) if and only if there is a reachable state π in �A�R and v : C → �≥0

such that (, v) ∈ π.

Model-Based Verification of Real-Time Systems 73

2 4
x

2

y

{a, b} {a} {a, c}

{b} ∅

2 4
x

2

y

Fig. 3. Time-abstracted bisimulation classes for the two-clock timed automaton from

Example 2. Left: equivalence classes for switch transitions only; right: equivalence

classes for switch and delay transitions.

Example 2 (continued). We shall now try to construct, in a näıve way, a time-
abstracted bisimulation R, which is as coarse as possible, for the timed automa-
ton A from Figure 2. Note first that we cannot have (0, v) R (1, v

′) for any
v, v′ : C → �≥0 because 	1 ∈ F and 	0 /∈ F . On the other hand it is easy to see
that we can let (1, v) R (1, v

′) for all v, v′ : C → �≥0, which leaves us with
constructing R on the states involving 	0.

We handle switch transitions
α−→ first: If v, v′ : C → �≥0 are such that v(y) ≤ 2

and v′(y) > 2, the state (0, v) has an a-transition available while the state (0, v
′)

has not, hence these cannot be related in R. Similarly we have to distinguish
states (0, v) from states (0, v

′) where v(x) ≤ 2 and v′(x) > 2 because of b-
transitions, and states (0, v) from states (0, v

′) where v(x) < 4 and v′(x) ≥ 4
because of c-transitions. Altogether this gives the five classes depicted to the left
of Figure 3, where the shading indicates to which class the boundary belongs,
and we have written the set of available actions in the classes.

When also taking delay transitions
δ−→ into account, one has to partition the

state space further: From a valuation v in the class marked {a, b} in the left of
the figure, a valuation in the class marked {a} can only be reached by a delay
transition if v(y) < v(x); likewise, from the {a} class, the {a, c} class can only
be reached if v(y) ≤ v(x)− 2. Hence these two classes need to be partitioned as
shown to the right of Figure 3.

It can easily be shown that no further partitioning is needed, thus we have
defined the coarsest time-abstracted bisimulation relation for A, altogether with
eight equivalence classes.

2.3 Regions

Motivated by the construction in the example above, we now introduce a time-
abstracted bisimulation with a finite quotient. To ensure finiteness, we need the
maximal constants to which respective clocks are compared in the invariants and
guards of a given timed automaton. These may be defined as follows.

74 U. Fahrenberg, K.G.Larsen, and A. Legay

Definition 10. For a finite set C of clocks, the maximal constant mapping
cmax : C → �

Φ(C) is defined inductively as follows:

cmax(x)(y �� k) =

{
k if y = x

0 if y �= x

cmax(x)(ϕ1 ∧ ϕ2) = max
(
c(x)(ϕ1), c(x)(ϕ2)

)
For a timed automaton A = (L, 	0, F, C,Σ, I, E), the maximal constant mapping
is cA : C → � defined by

cA(x) = max
{
cmax(x)(I()), cmax(x)(ϕ)

∣∣ 	 ∈ L, 	
ϕ,a,r−−−→ 	′ ∈ E

}
.

Notation 2. For d ∈ �≥0 we write d! and 〈d〉 for the integral, respectively
fractional, part of d, so that d = d!+ 〈d〉.

Definition 11. For a timed automaton A = (L, 	0, F, C,Σ, I, E), valuations
v, v′ : C → �≥0 are said to be region equivalent, denoted v ∼= v′, if

– v(x)! = v′(x)! or v(x), v′(x) > cA(x), for all x ∈ C, and

– 〈v(x)〉 = 0 iff 〈v′(x)〉 = 0, for all x ∈ C, and

– 〈v(x)〉 ≤ 〈v(y)〉 iff 〈v′(x)〉 ≤ 〈v′(y)〉 for all x, y ∈ C.

Proposition 2 ([5]). For a timed automaton A = (L, 	0, F, C,Σ, I, E), the
equivalence relation ∼= defined on states of �A� by (, v) ∼= (′, v′) if 	 = 	′ and
v ∼= v′ is an F -sensitive time-abstracted bisimulation. The quotient �A�∼= is
finite.

The equivalence classes of valuations of A with respect to ∼= are called regions,
and the quotient �A�∼= is called the region automaton associated with A.

Proposition 3 ([9]). The number of regions for a timed automaton A with a
set C of n clocks is bounded above by

n! · 2n ·
∏
x∈C

(2cA(x) + 2).

Example 2 (continued). The 69 regions of the timed automaton A from Figure 2
are depicted in Figure 4.

Propositions 1 and 2 together now give the decidability part of the theorem
below; for PSPACE-completeness see [7, 49].

Theorem 3. The reachability problem for timed automata is PSPACE-complete.

Model-Based Verification of Real-Time Systems 75

2 4
x

2

y

Fig. 4. Clock regions for the timed automaton from Example 2

2.4 Behavioural Refinement Relations

We have already introduced time-abstracted simulations and bisimulations in
Definition 8. As a corollary of Proposition 2, these are decidable:

Theorem 4. Time-abstracted simulation and bisimulation are decidable for timed
automata.

Proof. One only needs to see that time-abstracted (bi)simulation in the timed
automaton is the same as ordinary (bi)simulation in the associated region au-
tomaton; indeed, any state in �A� is untimed bisimilar to its image in �A�∼=. The
result follows by finiteness of the region automaton. ��

The following provides a time-sensitive variant of (bi)simulation.

Definition 12. Let A = (L, 	0, F, C,Σ, I, E) be a timed automaton. A relation
R ⊆ L ×�C

≥0 × L ×�C
≥0 is a timed simulation provided that for all (1, v1) R

(2, v2),

– for all (1, v1)
d−→ (′1, v

′
1), d ∈ �≥0, there exists some (′2, v

′
2) such that

(′1, v
′
1) R (′2, v

′
2) and (2, v2)

d−→ (′2, v
′
2), and

– for all (1, v1)
a−→ (′1, v

′
1), a ∈ Σ, there exists some (′2, v

′
2) such that (′1, v

′
1) R

(′2, v
′
2) and (2, v2)

a−→ (′2, v
′
2).

A timed bisimulation is a timed simulation which is also symmetric, and two
states (1, v1), (2, v2) ∈ �A� are said to be timed bisimilar, written (1, v1) ∼
(2, v2), if there exists a timed bisimulation R for which (1, v1) R (2, v2).

Note that ∼ is itself a timed bisimulation on A, which is easily shown to be an
equivalence relation and hence transitive, reflexive and symmetric.

Definition 13. Two timed automata A = (LA, 	A0 , FA, CA, ΣA, IA, EA) and
B = (LB, 	B0 , FB, CB , ΣB, IB, EB) are said to be timed bisimilar, denoted A ∼
B, if (A0 , v0) ∼ (B0 , v0) in the disjoint-union transition system �A� � �B�.

76 U. Fahrenberg, K.G.Larsen, and A. Legay

Timed simulation of timed automata can be analogously defined. The following
decidability result was established for parallel timed processes in [46]; below we
give a version of the proof which has been adapted for timed automata. Later, in
Section 4 on page 89, we shall give an alternative proof which uses timed games.

Theorem 5. Timed similarity and bisimilarity are decidable for timed automata.

Before the proof, we need a few auxiliary definitions and lemmas. The first is
a product of timed transition systems which synchronizes on time, but not on
actions:

Definition 14. The independent product of the timed transition systems �A� =
(SA, sA0 , ΣA ∪�≥0, T

A), �B� = (SB, sB0 , ΣB ∪�≥0, T
B) associated with timed

automata A, B is �A� × �B� = (S, s0, Σ
A ∪ ΣB ∪�≥0, T) given by

S = SA × SB s0 = (sA0 , sB0)

T =
{
(p, q)

a−→ (p′, q)
∣∣ a ∈ Σ, p

a−→ p′ ∈ TA
}

∪
{
(p, q)

b−→ (p, q′)
∣∣ b ∈ Σ, q

b−→ q′ ∈ TB
}

∪
{
(p, q)

d−→ (p′, q′)
∣∣ d ∈ �≥0, p

d−→ p′ ∈ TA, q
d−→ q′ ∈ TB

}
We need to extend region equivalence ∼= to the independent product. Below, ⊕
denotes vector concatenation (direct sum); note that (p1, q1) ∼= (p2, q2) is not the
same as p1 ∼= p2 and q1 ∼= q2, as fractional orderings 〈xA〉 �� 〈xB〉, for xA ∈ CA,
xB ∈ CB , have to be accounted for in the former, but not in the latter. Hence
(p1, q1) ∼= (p2, q2) implies p1 ∼= p2 and q1 ∼= q2, but not vice-versa.

Definition 15. For states pi = (pi , vpi) in �A� and qi = (qi , vqi) in �B� for
i = 1, 2, we say that (p1, q1) ∼= (p2, q2) iff 	p1 = 	p2 ∧ 	q1 = 	q2 and vp1 ⊕ vq1 ∼=
vp2 ⊕ vq2 .

Note that the number of states in
(
�A� × �B�

)
∼= is finite, with an upper bound

given by Proposition 3. Next we define transitions in
(
�A� × �B�

)
∼=:

Notation 6. Regions in
(
�A� × �B�

)
∼= will be denoted X,X ′. The equivalence

class of a pair (p, q) ∈ �A� × �B� is denoted [p, q].

Definition 16. For X,X ′ ∈
(
�A� × �B�

)
∼= we say that

– X
a−→� X ′ for a ∈ Σ if for all (p, q) ∈ X there exists (p′, q) ∈ X ′ such that

(p, q)
a−→ (p′, q) in �A� × �B�,

– X
b−→r X ′ for b ∈ Σ if for all (p, q) ∈ X there exists (p, q′) ∈ X ′ such that

(p, q)
b−→ (p, q′) in �A� × �B�, and

– X
δ−→ X ′ if for all (p, q) ∈ X there exists d ∈ �≥0 and (p′, q′) ∈ X ′ such that

(p, q)
d−→ (p′, q′).

Model-Based Verification of Real-Time Systems 77

Definition 17. A subset B ⊆
(
�A�× �B�

)
∼= is a symbolic bisimulation provided

that for all X ∈ B,

– whenever X
a−→� X ′ for some X ′ ∈

(
�A� × �B�

)
∼=, then X ′ a−→r X ′′ for some

X ′′ ∈ B,
– whenever X

a−→r X ′ for some X ′ ∈
(
�A� × �B�

)
∼=, then X ′ a−→� X ′′ for some

X ′′ ∈ B, and
– whenever X

δ−→ X ′ for some X ′ ∈
(
�A� × �B�

)
∼=, then X ′ ∈ B.

Note that it is decidable whether
(
�A�× �B�

)
∼= admits a symbolic bisimulation.

The following proposition finishes the proof of Theorem 5.

Proposition 4. The quotient
(
�A� × �B�

)
∼= admits a symbolic bisimulation if

and only if A ∼ B.

Proof (cf. [46]). For a given symbolic bisimulation B ⊆
(
�A� × �B�

)
∼=, the set

RB =
{
(p, q)

∣∣ [p, q] ∈ B
}

⊆ �A� × �B� is a timed bisimulation. For the other
direction, one can construct a symbolic bisimulation from a timed bisimulation
R ⊆ �A� × �B� by BR =

{
[p, q]

∣∣ (p, q) ∈ R
}
. ��

2.5 Language Inclusion and Equivalence

Similarly to the untimed setting, there is also a notion of language inclusion
and equivalence for timed automata. We need to introduce the notion of timed
trace first. Note that we restrict to finite timed traces here; similar results are
available for infinite traces in timed automata with Büchi or Muller acceptance
conditions, see [9].

Definition 18. A timed trace over a finite set of actions Σ is a finite sequence
((t1, a1), (t2, a2), . . . , (tk, ak)), where ai ∈ Σ and ti ∈ �≥0 for i = 1, . . . , k, and
ti < ti+1 for i = 1, . . . , k− 1. The set of all timed traces over Σ is denoted TΣ∗.

In a pair (ti, ai), the number ti is called the time stamp of the action ai, i.e. the
time at which event ai occurs.

Remark 3. Timed traces as defined above are also known as strongly monotonic
timed traces, because of the assumption that no consecutive events occur at
the same time. Weakly monotonic timed traces, i.e. with requirement ti ≤ ti+1

instead of ti < ti+1, have also been considered, and there are some subtle differ-
ences between the two; see [94] for an important example.

Definition 19. A timed trace ((t1, a1), . . . , (tk, ak)) is accepted by a timed au-
tomaton A = (L, 	0, F, C,Σ, I, E) if there is an accepting run

(0, v0)
t1−→ (0, v0 + t1)

a1−→ (1, v1)
t2−t1−−−→ · · ·

· · · ak−1−−−→ (k−1, vk−1)
tk−tk−1−−−−−→ (k−1, vk−1 + tk − tk−1)

ak−→ (k, vk)

in A. The timed language of A is L(A) = {τ ∈ TΣ∗ | τ accepted by A}.

78 U. Fahrenberg, K.G.Larsen, and A. Legay

It is clear that L(A) = ∅ if and only if none of the locations in F is reachable,
hence Theorem 3 provides us with the decidability result in the following theo-
rem. Undecidability of universality was established in [9]; we give an account of
the proof below.

Theorem 7. For a timed automaton A = (L, 	0, F, C,Σ, I, E), deciding whether
L(A) = ∅ is PSPACE-complete. It is undecidable whether L(A) = TΣ∗.

Proof. We show that the universality problem for a timed automata is unde-
cidable by reduction from the Σ1

1 -hard problem of deciding whether a given
2-counter machine M has a recurring computation.

Let the timed language Lu be the set of timed traces encoding recurring
computations of M . Observe that Lu = ∅ if and only if M does not have such
a computation. We then construct a timed automaton Au which accepts the
complement of Lu, i.e. L(Au) = TΣ∗\Lu. Hence the language of Au is universal
if and only if M does not have a recurring computation.

Recall that a 2-counter, or Minsky, machine M is a finite sequence of labeled
instructions {I0, · · · , In} and counters x1 and x2, with Ii for 0 ≤ i ≤ n − 1 on
the form

Ii : xc := xc + 1; goto Ij or Ii :

{
if xc = 0 then goto Ij

else xc = xc-1; goto Ik

for c ∈ 1, 2, with a special In : Halt instruction which stops the computation.
The language Lu is designed such that each Ii and the counters x1 and x2

are represented by actions in Σ. A correctly encoded computation is represented
by a timed trace where “instruction actions” occur at discrete intervals, while
the state (values of x1 and x2) is encoded by occurrences of “counter actions”
in-between instruction actions (e.g. if xi = 5 after instruction Ij , then action xi

occurs 5 times within the succeeding interval of length 1).
When counters are incremented (or decremented), one more (or less) such

action occurs through the next interval, and increments and decrements are
always from the right. Additionally we require corresponding counter actions to
occur exactly with a time difference of 1, such that if xi occurs with time stamp
a then also xi occurs with time stamp a+1, unless xi is the rightmost xi action

1

1 1

time

Ii Ii+1 Ii+2

1111 111112222 2222

Fig. 5. Timed trace encoding a increment instruction Ii+1 of a 2-counter machine

Model-Based Verification of Real-Time Systems 79

Σ

1

z := 0

2

p

1

1

z = 1

Σ \ {1}

Σ

Fig. 6. Timed automaton which violates the encoding of the increment instruction

and Ii at time stamp a! is a decrement of xi. Figure 5 shows a increment of x1
(from 4 to 5) using actions 1 and 2.

We obtain Au as a disjunction of timed automata A1, . . . , Ak where each Ai

violates some property of a (correctly encoded) timed trace in Lu, either by
accepting traces of incorrect format or inaccurate encodings of instructions.

Consider the instruction: (p): x1:= x1+1 goto (q), incrementing x1 and
jumping to q. A correct encoding would be similar to the one depicted in Figure 5
where all 1’s and 2’s are matched one time unit later, but with an additional
1 action occurring. In order to accept all traces except this encoding we must
consider all possible violations, i.e.

– not incrementing the counter (no change),
– decrementing the counter,
– incrementing the counter more than once,
– jumping to the wrong instruction, or
– incrementing the wrong counter,

and construct a timed automaton having exactly such traces.
Figure 6 shows the timed automaton accepting traces in which instruction p

yields no change of x1. ��

Turning our attention to timed trace inclusion and equivalence, we note the
following.

Proposition 5. Let A and B be timed automata. If A is timed simulated by B,
then L(A) ⊆ L(B). If A and B are timed bisimilar, then L(A) = L(B).

By a standard argument, Theorem 7 implies undecidability of timed trace inclu-
sion and equivalence, a result first shown in [8].

Theorem 8. Timed trace inclusion and equivalence are undecidable for timed
automata.

There is also a notion of untimed traces for timed automata.

Definition 20. The untiming of a set of timed traces L ⊆ TΣ∗ over a finite
set of actions Σ is the set

UL =
{
w = (a1, . . . , ak) ∈ Σ∗ ∣∣ ∃t1, . . . , tk ∈ �≥0 : ((t1, a1), . . . , (tk, ak)) ∈ L

}
.

80 U. Fahrenberg, K.G.Larsen, and A. Legay

Hence we have a notion of the set UL(A) of untimed language of a timed automa-
ton A. One can also define an untime operation U for timed automata, forgetting
about the timing information of a timed automaton and thus converting it to a
finite automaton; note however that UL(A) � L(UA) in general.

Lemma 1 ([9]). For A a timed automaton, UL(A) = L(�A�∼=) provided that
δ-transitions in �A�∼= are taken as silent.

As a corollary, sets of untimed traces accepted by timed automata are regular :

Theorem 9 ([9]). For a timed automaton A = (L, 	0, F, C,Σ, I, E), the set
UL(A) ⊆ Σ∗ is regular. Accordingly, whether UL(A) = ∅ is decidable, and
so is whether UL(A) = Σ∗. Also untimed trace inclusion and equivalence are
decidable.

2.6 Zones and Difference-Bound Matrices

As shown in the above sections, regions provide a finite and elegant abstraction
of the infinite state space of timed automata, enabling us to prove decidability of
reachability, timed and untimed bisimilarity, untimed language equivalence and
language emptiness.

Unfortunately, the number of states obtained from the region partitioning is
extremely large. In particular, by Proposition 3 the number of regions is ex-
ponential in the number of clocks as well as in the maximal constants of the
timed automaton. Efforts have been made in developing more efficient repre-
sentations of the state space [23, 28, 82], using the notion of zones from Defi-
nition 4 on page 70 as a coarser and more compact representation of the state
space.

An extended clock constraint over a finite set C may be represented using
a directed weighted graph, where the nodes correspond to the elements of C

together with an extra “zero” node x0, and an edge xi
k−→ xj corresponds to a

constraint xi − xj ≤ k (if there is more than one upper bound on xi − xj , k is
the minimum of all these constraints’ right-hand sides). The extra clock x0 is
fixed at value 0, so that a constraint xi ≤ k can be represented as xi − x0 ≤ k.
Lower bounds on xi − xj are represented as (possibly negative) upper bounds
on xj − xi, and strict bounds xi − xj < k are represented by adding a flag to
the corresponding edge.

The weighted graph in turn may be represented by its adjacency matrix,
which in this context is known as a difference-bound matrix or DBM. The above
technique has been introduced in [55].

Example 3. Figure 7 gives an illustration of an extended clock constraint to-
gether with its representation as a difference-bound matrix. Note that the clock
constraint contains superfluous information.

Zone-based reachability analysis of a timed automaton A uses symbolic states
of the type (, Z), where 	 is a location of A and Z is a zone, instead of the
region-based symbolic states of Proposition 2.

Model-Based Verification of Real-Time Systems 81

Z =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 ≤ 3

x1 − x2 ≤ 10

x1 − x2 ≥ 4

x1 − x3 ≤ 2

x3 − x2 ≤ 2

x3 ≥ −5 x0

x1 x2

x3

5

3
2

10

-4

2

Fig. 7. Graph representation of extended clock constraint

Definition 21. For a finite set C, Z ⊆ �C
≥0, and r ⊆ C, define

– the delay of Z by Z↑ = {v + d | v ∈ Z, d ∈ �≥0} and
– the reset of Z under r by Z[r] = {v[r] | v ∈ Z}.

Lemma 2 ([69,105]). If Z is a zone over C and r ⊆ C, then Z↑ and Z[r] are
also zones over C.

Extended clock constraints representing Z↑ and Z[r] may be computed efficiently
(in time cubic in the number of clocks in C) by representing the zone Z in a
canonical form obtained by computing the shortest-path closure of the directed
graph representation of Z, see [80].

Example 3 (continued). Figure 8 shows two canonical representations of the
difference-bound matrix for the zone Z of Figure 7. The left part illustrates
the shortest-path closure of Z; on the right is the shortest-path reduction [80]
of Z, essentially obtained by removing redundant edges from the shortest-path
closure. The latter is useful for checking zone inclusion, see below.

The zone automaton associated with a timed automaton is similar to the region
automaton of Proposition 2, but uses zones for symbolic states instead of regions:

Definition 22. The zone automaton associated with a timed automaton A =
(L, 	0, F, C,Σ, I, E) is the transition system �A�Z = (S, s0, Σ ∪ {δ}, T) given as
follows:

S =
{
(, Z)

∣∣ 	 ∈ L,Z ⊆ �C
≥0 zone

}
s0 =

(
	0, �v0�

)
T =

{
(, Z)

δ�
(
	, Z↑ ∧ I()

)}
∪
{
(, Z)

a�
(
	′, (Z ∧ ϕ)[r] ∧ I(′)

) ∣∣ 	 ϕ,a,r−−−→ 	′ ∈ E
}

The analogue of Proposition 1 for zone automata is as follows:

Proposition 6 ([105]). A state (, v) in a timed automaton A = (L, 	0, F, C,Σ,
I, E) is reachable if and only if there is a zone Z ⊆ �

C
≥0 for which v ∈ Z and

such that (, Z) is reachable in �A�Z .

82 U. Fahrenberg, K.G.Larsen, and A. Legay

x0

x1 x2

x3

3
7

5

3
2

4

-4

-2

-1
-2

2

1
x0

x1 x2

x3

33
2

-4

2

Fig. 8. Canonical representations. Left: shortest-path closure; right: shortest-path re-

duction

The zone automaton associated with a given timed automaton is infinite and
hence unsuitable for reachability analysis. Finiteness can be enforced by employ-
ing normalization, using the fact that region equivalence ∼= has finitely many
equivalence classes:

Definition 23. For a timed automaton A and a zone Z ⊆ �C
≥0, the normaliza-

tion of Z is the set {v : C → �≥0 | ∃v′ ∈ Z : v ∼= v′}

The normalized zone automaton is defined in analogy to the zone automaton
from above, and Proposition 6 also holds for the normalized zone automaton.
Hence we can obtain a reachability algorithm by applying any search strategy
(depth-first, breadth-first, or another) on the normalized zone automaton.

Remark 4. For timed automata on extended clock constraints, i.e. with diagonal
constraints permitted, it can be shown [27, 32] that normalization as defined
above does not give rise to a sound and complete characterization of reachability.
Instead, one can apply a refined normalization which depends on the difference
constraints used in the timed automaton, see [27].

In addition to the efficient computation of symbolic successor states according
to the � relation, termination of reachability analysis requires that we can effi-
ciently recognize whether the search algorithm has encountered a given symbolic
state. Here it is crucial that there is an efficient way of deciding inclusion Z1 ⊆ Z2

between zones. Both the shortest-path-closure canonical form as well as the more
space-economical shortest-path-reduced canonical form [80], cf. Example 3, allow
for efficient inclusion checking.

In analogy to difference-bound matrices and overcoming some of their prob-
lems, the data structure called clock difference diagram has been proposed [82].
However, the design of efficient algorithms for delay and reset operations over
that data structure is a challenging open problem; generally, the design of effi-
cient data structures for computations with (unions of) zones is a field of active
research, see [3, 12, 71, 88, 93] for some examples.

Model-Based Verification of Real-Time Systems 83

�1

R = 4

�2

R = 2
�3

y ≤ 4 x := 0

a P = 1

x ≤ 2 ∧ y ≥ 3

c P = 4

y ≤ 4x := 0 b

Fig. 9. A weighted timed automaton with two clocks

3 Weighted Timed Automata

The notion of weighted — or priced — timed automata was introduced indepen-
dently, at the very same conference, by Behrmann et.al. [21] and Alur et.al. [10].
In these models both edges and locations can be decorated with weights, or
prices, giving the cost of taking an action transition or the cost per time unit
of delaying in a given location. The total cost of a trace is then simply the
accumulated (or total) weight of its discrete and delay transitions.

As a first result, the above two papers independently, and with quite different
methods, showed that the problem of cost-optimal reachability is computable for
weighted timed automata with non-negative weights. Later, optimal reachability
for timed automata with several weight functions was considered in [85] as well
as optimal infinite runs in [34, 59].

Definition 24. A weighted timed automaton is a tuple A = (L, 	0, F, C,Σ,
I, E,R, P), where (L, 	0, F, C,Σ, I, E) is a timed automaton, R : L → � a loca-
tion weight-rate mapping, and P : E → � an edge weight mapping.

The semantics of A is the weighted transition system �A� = (S, s0, Σ∪�≥0, T, w),
where (S, s0, Σ ∪ �≥0, T) is the semantics of the underlying timed automaton
(L, 	0, F, C,Σ, I, E), and the transition weights w : T → � are given as follows:

w
(
(, v)

d−→ (, v + d)
)
= dR()

w
(
(, v)

a−→ (′, v′)
)
= P

(
	

ϕ,a,r−−−→ 	′
)

with v |= ϕ, v′ = v[r]

We shall denote weighted edges and transitions by symbols
e−→
w

to illustrate an
edge or a transition labeled e with weight w.

3.1 Optimal Reachability

The objective of optimal reachability analysis is to find runs to a final location
with the lowest total weight as defined below.

Example 4. Figure 9 shows a simple weighted timed automaton with final lo-
cation 	3. Below we give a few examples of accepting runs, where we identify

84 U. Fahrenberg, K.G.Larsen, and A. Legay

valuations v : {x, y} → �≥0 with their values (v(x), v(y)). The total weights of
the runs given here are 17 and 11; actually the second run is optimal in the sense
of Problem 2 below:

(1, 0, 0)
3−→
12

(1, 3, 3)
a−→
1

(2, 0, 3)
c−→
4

(3, 0, 3)

(1, 0, 0)
a−→
1

(2, 0, 0)
3−→
6

(2, 3, 3)
b−→
0

(2, 0, 3)
c−→
4

(3, 0, 3)

Definition 25. The total weight of a finite run ρ = s0 −−→
w1

s1 −−→
w2

· · · −−→
wk

sk in
a weighted transition system is w(ρ) =

∑k
i=1 wk.

We are now in a position to state the problem with which we are concerned here:
We want to find accepting runs with minimum total weight in a weighted timed
automaton A. However, due to the possible use of strict clock constraints on
edges and in locations of A, the minimum total weight might not be realizable,
i.e. there might be no run which achieves it. For this reason, one also needs to
consider (infinite) sets of runs and the infimum of their members’ total weights:

Problem 2 (Optimal reachability). Given a weighted timed automaton A, com-
pute W = inf

{
w(ρ)

∣∣ ρ accepting run in A
}
and, for each ε > 0, an accepting

run ρε for which w(ρε) < W + ε.

The key ingredient in the proof of the following theorem is the introduction
of weighted regions in [21]. A weighted region is a region as of Definition 11
enriched with an affine cost function describing in a finite manner the cost of
reaching any point within it. This notion allows one to define the weighted re-
gion automaton associated with a weighted timed automaton, and one can then
show that optimal reachability can be computed in the weighted region automa-
ton. PSPACE-hardness in the below theorem follows from PSPACE-hardness of
reachability for timed automata.

Theorem 10 ([21]). The optimal reachability problem for weighted timed au-
tomata with non-negative weights is PSPACE-complete.

Similar to the notion of regions for timed automata, the number of weighted
regions is exponential in the number of clocks as well as in the maximal constants
of the timed automaton. Hence a notion of weighted zone — a zone extended
with an affine cost function — was introduced [79] together with an efficient,
symbolic A∗-algorithm for searching for cost-optimal tracing using branch-and-
bound techniques. In particular, efficient means of generalizing the notion of
symbolic successor to incorporate the affine cost functions were given.

During the symbolic exploration, several small linear-programming problems
in terms of determining the minimal value of the cost function over the given zone
have to be dealt with. Given that the constraints of these problems are simple
difference constraints, it turns out that substantial gain in performance may be
achieved by solving the dual problem of minimum-cost flow [98]. The Uppaal
branch Uppaal-Cora provides an efficient tool for cost-optimal reachability
analysis, applying the above data structures and algorithms and allowing the
user to guide and heuristically prune the search.

Model-Based Verification of Real-Time Systems 85

R = (1, 4)

x ≤ 2

�1
R = (2, 1)

x ≤ 3

�2

y ≤ 2

�3
y := 0a

x ≥ 2 ∧ y ≥ 1

y := 0b

Fig. 10. A doubly weighted timed automaton with two clocks

3.2 Multi-weighted Timed Automata

The below formalism of doubly weighted timed automata is a generalization
of weighted timed automata useful for modeling systems with several different
resources.

Definition 26. A doubly weighted timed automaton is a tuple

A = (L, 	0, F, C,Σ, I, E,R, P)

where (L, 	0, F, C,Σ, I, E) is a timed automaton, R : L → �
2 a location weight-

rate mapping, and P : E → �
2 an edge weight mapping.

The semantics of a doubly weighted timed automaton is a doubly weighted
transition system defined similarly to Definition 24, and the total weight of finite
runs is defined accordingly as a pair; we shall refer to the total weights as w1 and
w2 respectively. These definitions have natural generalizations to multi-weighted
timed automata with more than two weight coordinates.

The objective of conditional reachability analysis is to find runs to a final lo-
cation with the lowest total weight in the first weight coordinate while satisfying
a constraint on the other weight coordinate.

Example 5. Figure 10 depicts a simple doubly weighted timed automaton with
final location 	3. Under the constraint w2 ≤ 3, the optimal run of the automaton
can be seen to be

(1, 0, 0)
1/3−−−→

(1
3 ,

4
3)

(1, 1/3, 1/3)
a−→ (2, 1/3, 0)

5/3−−−−→
(10

3 , 53)
(2, 2, 5/3)

b−→ (3, 2, 0)

with total weight
(
11
3 , 3

)
.

The precise formulation of the conditional optimal reachability problem is as
follows, where we again need to refer to (possibly infinite) sets of runs:

Problem 3 (Conditional optimal reachability). Given a doubly weighted timed
automaton A and M ∈ �, compute W = inf

{
w1(ρ)

∣∣ ρ accepting run in A,
w2(ρ) ≤ M} and, for each ε > 0, an accepting run ρε for which w2(ρ) ≤ M and
w1(ρε) < W + ε.

Theorem 11 ([84, 85]). The conditional optimal reachability problem is com-
putable for doubly weighted timed automata with non-negative weights and with-
out weights on edges.

86 U. Fahrenberg, K.G.Larsen, and A. Legay

R = 2

x ≤ 3

H
R = 5

x ≤ 3

M
R = 9
L

x = 3 x := 0

d

x = 3

d

y ≥ 2 x, y := 0

a P = 2

y ≥ 2 x, y := 0

a P = 1

Fig. 11. A weighted timed automaton modelling a simple production system

The proof of the above theorem rests on a direct generalization of weighted to
doubly-weighted zones. An extension can be found in [85], where it is shown that
also the Pareto frontier, i.e. the set of cost vectors which cannot be improved in
any cost variable, can be computed.

3.3 Optimal Infinite Runs

In this section we shall be concerned with computing optimal infinite runs in
(doubly) weighted timed automata. We shall treat both the limit ratio viewpoint
discussed in [34] and the discounting approach of [59, 60].

Example 6. Figure 11 shows a simple production system modelled as a weighted
timed automaton. The system has three modes of production, High, Medium,
and Low. The weights model the cost of production, so that the High production
mode has a low cost, which is preferable to the high cost of the Low production
mode. After operating in a High or Medium production mode for three time
units, production automatically degrades (action d) to a lower mode. When in
Medium or Low production mode, the system can be attended to (action a),
which advances it to a higher mode.

The objective of optimal-ratio analysis is to find an infinite run in a doubly
weighted timed automaton which minimizes the ratio between the two total
weights. This will be formalized below.

Definition 27. The total ratio of a finite run ρ = s0
w1−−→
z1

s1
w2−−→
z2

· · · wk−−→
zk

sk in

a doubly weighted transition system is

Γ (ρ) =

∑k
i=1 wk∑k
i=1 zk

.

The total ratio of an infinite run ρ = s0
w1−−→
z1

s1
w2−−→
z2

· · · is

Γ (ρ) = lim inf
k→∞

Γ (s0 → · · · → sk).

A special case of optimal-ratio analysis is given by weight-per-time models, where
the interest is in minimizing total weight per accumulated time. The example

Model-Based Verification of Real-Time Systems 87

provided in this section is a case of this. In the setting of optimal-ratio analysis,
these can be modelled as doubly weighted timed automata with R2() = 1 and
P2(e) = 0 for all locations 	 and edges e.

Example 6 (continued). In the timed automaton of Figure 11, the following
cyclic behaviour provides an infinite run ρ:

(H, 0, 0)
3−→ (H, 3, 3)

d−→ (M, 0, 3)
3−→ (M, 3, 6)

d−→ (L, 3, 6)
1−→

(L, 4, 7)
a−→ (M, 0, 0)

3−→ (M, 3, 3)
a−→ (H, 0, 0) −→ · · ·

Taking the weight-per-time viewpoint, the total ratio of ρ is Γ (ρ) = 4.8.

Problem 4 (Minimum infinite ratio). Given a doubly weighted timed automaton
A, compute W = inf

{
Γ (ρ)

∣∣ ρ infinite run in A
}
and, for each ε > 0, an infinite

run ρε for which Γ (ρε) < W + ε.

The main tool in the proof of the following theorem is the introduction of the
corner-point abstraction of a timed automaton in [34]. This is a finite refinement
of the region automaton of Definition 11 in which one also keeps track of the
corner points of regions. One can then show that any infinite run with minimum
ratio must pass through corner points of regions, hence these can be found in
the corner-point abstraction by an algorithm first proposed in [76].

The technical condition in the theorem that the second weight coordinate
be strongly diverging means that any infinite run ρ in the closure of the timed
automaton in question satisfies w2(ρ) = ∞, see [34] for details.

Theorem 12 ([34]). The minimum infinite ratio problem is computable for
doubly weighted timed automata with non-negative and strongly diverging second
weight coordinate.

For discount-optimal analysis, the objective is to find an infinite run in a weighted
timed automaton which minimizes the discounted total weight as defined below.
The point of discounting is that the weight of actions is discounted with time,
so that the impact of an event decreases, the further in the future it takes place.

In the definition below, ε is the empty run, and (, v) → ρ denotes the con-
catenation of the transition (, v) → with the run ρ.

Definition 28. The discounted total weight of finite runs in a weighted timed
automaton under discounting factor λ ∈ [0, 1[is given inductively as follows:

wλ(ε) = 0

wλ

(
(, v)

a−→
P

ρ
)
= P + wλ(ρ)

wλ

(
(, v)

d−→ ρ
)
= R()

∫ d

0

λτdτ + λdwλ(ρ)

88 U. Fahrenberg, K.G.Larsen, and A. Legay

The discounted total weight of an infinite run ρ = (0, v0)
d1−→ (0, v0 + d1)

a1−→
P1(1, v1) −→ · · · is

wλ(ρ) = lim
k→∞

wλ

(
(0, v0) −→ · · · ak−−→

Pk

(k, vk)
)

provided that the limit exists.

Example 6 (continued). The discounted total weight of the infinite run ρ in
the timed automaton of Figure 11 satisfies the following equality, where It =∫ t

0
λτdτ = − 1

lnλ(1 − λt):

wλ(ρ) = 2I3 + λ3(5I3 + λ3(9I1 + λ(1 + 5I3 + λ3(2 + wλ(ρ)))))

With a discounting factor of λ = .9 for example, the discounted total weight of
ρ would hence be wλ(ρ) ≈ 40.5.

Problem 5 (Minimum discounted weight). Given a weighted timed automaton A
and λ ∈ [0, 1[, compute W = inf

{
wλ(ρ)

∣∣ ρ infinite run in A
}
and a set P of

infinite runs for which infρ∈P wλ(ρ) = W .

The proof of the following theorem rests again on the corner-point abstraction,
and on a result in [11]. The technical condition that the timed automaton be
time-divergent is analogous to the condition on the second weight coordinate in
Theorem 12.

Theorem 13 ([59]). The minimum discounted weight problem is computable for
time-divergent weighted timed automata with non-negative weights and rational λ.

3.4 Energy Problems

Instead of considering various forms of (conditional) optimality, one can also
concern oneself simply with the question whether there exists an infinite run
satisfying certain bounds on the weights of finite prefixes. This so-called energy
problem, which is surprisingly intricate, was first introduced in [37] and has since
been dealt with e.g. in [36, 38, 47, 48, 58, 97].

For an infinite run ρ = s0 −−→
w1

s1 −−→
w2

· · · and a positive integer k, we write

ρ�k for the finite prefix ρ�k = s0 −−→
w1

· · · −−→
wk

sk of ρ.

Problem 6 (Energy problems). Given a weighted timed automaton A and a pos-
itive integer M , decide whether there exists an infinite run ρ in A for which
w(ρ�k) ≥ 0 for all k ∈ �, and whether there exists an infinite run σ in A for
which 0 ≤ w(σ�k) ≤ M for all k ∈ �.

The first of these problems is called the lower bound energy problem, the second
one the interval bound energy problem. There is a third variant of the problem
which we do not treat here; see [37] for details.

Model-Based Verification of Real-Time Systems 89

a)

−3

�0

+6

�1

−6

�2

x = 1x := 0
b)

0
0

1

2

3

1

c)

0
0

1

2

3

1

d)

0
0

1

2

3

1

Fig. 12. a) Weighted timed automaton (global clock invariant x ≤ 1) b) U = +∞ and

U = 3. c) U = 2. d) U = 1 and W = 1.

Example 7. Consider the weighted timed automaton in Figure 12a) with infinite
behaviours repeatedly delaying in 	0, 	1 and 	2 for a total of precisely one time-
unit. Let us observe the effect of lower and upper constraints on the energy-
level on so-called bang-bang strategies, where the behaviour remains in a given
location as long as permitted by the given bounds. Figure 12b) shows the bang-
bang strategy given an initial energy-level of 1 with no upper bound (dashed
line) or 3 as upper bound (solid line). In both cases, it may be seen that the
bang-bang strategy yields an infinite run.

In Figures 12c) and d), we consider the upper bounds 2 and 1, respectively.
For an upper bound of 2, we see that the bang-bang strategy reduces an ini-
tial energy-level of 1 1

2 to 1 (solid line), and yet another iteration will reduce
the remaining energy-level to 0. In fact, the bang-bang strategy—and it may
be argued, any other strategy—fails to maintain an infinite behaviour for any
initial energy-level except for 2 (dashed line). With upper-bound 1, the bang-
bang strategy—and any other strategy—fails to complete even one iteration
(solid line).

4 Timed Games

Recently, substantial effort has been made towards the synthesis of winning
strategies for timed games with respect to safety and reachability control ob-
jectives. From known region-based decidability results, efficient on-the-fly algo-
rithms have been developed [44, 102] and implemented in the newest branch
Uppaal-Tiga.

For timed games, as for untimed ones, transitions are either controllable or
uncontrollable (i.e. under the control of an environment), and the problem is to
synthesize a strategy for when to take which (enabled) controllable transitions
in order that a given objective is guaranteed regardless of the behaviour of the
environment.

90 U. Fahrenberg, K.G.Larsen, and A. Legay

�1 �2 �3 �4

�5 �6

x > 1 u1

x ≤ 1

c1

x < 1 x := 0u2

x < 1

u3

x ≥ 2 c2

c3

x ≤ 1c4

Fig. 13. A timed game with one clock. Controllable edges (with actions from Σc) are

solid, uncontrollable edges (with actions from Σu) are dashed.

Definition 29. A timed game is a tuple (L, 	0, F, C,Σc, Σu, I, E) with Σc ∩
Σu = ∅ and for which the tuple (L, 	0, F, C,Σ = Σc ∪ Σu, I, E) is a timed
automaton.

Edges with actions in Σc are said to be controllable, those with actions in Σu

are uncontrollable.

Example 8. Figure 13 provides a simple example of a timed game. Here, Σc =
{c1, c2, c4} and Σ2 = {u1, u2, u3}, and the controllable edges are drawn with
solid lines, the uncontrollable ones with dashed lines.

We need the notion of strategy; essentially, a strategy provides instructions for
which controllable edge to take, or whether to wait, in a given state:

Definition 30. A strategy for a timed game A = (L, 	0, F, C,Σc, Σu, I, E) is a
mapping σ from finite runs of A to Σc ∪ {δ}, where δ /∈ Σ, such that for any
run ρ = (0, v0) → · · · → (k, vk),

– if σ(ρ) = δ, then (, v)
d−→ (, v + d) in �A� for some d > 0, and

– if σ(ρ) = a, then (, v)
a−→ (′, v′) in �A�.

A strategy σ is said to be memoryless if σ(ρ) only depends on the last state

of ρ, i.e. if ρ1 = (0, v0)
d1−→ (0, v0 + d1) → · · · → (k, vk), ρ2 = (0, v0)

d′
1−→

(0, v0 + d′1) → · · · → (k, vk) imply σ(ρ1) = σ(ρ2).

An outcome of a strategy is any run which adheres to its instructions in the
obvious manner:

Definition 31. A run (0, v0)
d1−→ (0, v0+d1) → · · · → (k, vk) in a timed game

A = (L, 	0, F, C,Σc, Σu, I, E) is said to be an outcome of a strategy σ provided
that

Model-Based Verification of Real-Time Systems 91

– for all (i, vi)
d−→ (i, vi + d) and for all d′ < d, we have σ

(
(0, v0) → · · · →

(i, vi + d′)
)
= δ, and

– for all (i, vi + d)
a−→ (i+1, vi+1) for which a ∈ Σc, we have σ

(
(0, v0) →

· · · → (i, v
′
i)
)
= a.

An outcome is said to be maximal if 	k ∈ F , or if (k, vk)
a−→ (k+1, vk+1) implies

a ∈ Σu.

Hence an outcome is maximal if it stops in a final state, or if no controllable
actions are available at its end. An underlying assumption is that uncontrollable
actions cannot be forced, hence a maximal outcome which does not end in a
final state may “get stuck” in a non-final state. The aim of reachability games is
to find strategies all of whose maximal outcomes end in a final state; the aim of
safety games is to find strategies all of whose (not necessarily maximal) outcomes
avoid final states:

Definition 32. A strategy is said to be winning for the reachability game if
any of its maximal outcomes is an accepting run. It is said to be winning for the
safety game if none of its outcomes are accepting.

Example 8 (continued). The following memoryless strategy is winning for the
reachability game on the timed game from Figure 13:

σ(1, v) =

{
δ if v(x) �= 1

c1 if v(x) = 1
σ(2, v) =

{
δ if v(x) < 2

c2 if v(x) ≥ 2

σ(3, v) =

{
δ if v(x) < 1

c3 if v(x) ≥ 1
σ(4, v) =

{
δ if v(x) �= 1

c4 if x(x) = 1

Problem 7 (Reachability and safety games). Given a timed game A, does there
exist a winning strategy for the reachability game on A? Does there exist a
winning strategy for the safety game on A?

An important ingredient in the proof of the following theorem is the fact that
for reachability as well as safety games, it is sufficient to consider memory-
less strategies. This is not the case for other, more subtle, control objectives
(e.g. counting properties modulo some N) as well as for the synthesis of winning
strategies under partial observability.

Theorem 14 ([13, 91]). The reachability and safety games are decidable for
timed games.

In [45] the on-the-fly algorithm applied in Uppaal-Tiga has been extended to
timed games under partial observability.

The field of timed games is a very active research area. Research has been
conducted towards the synthesis of optimal winning strategies for reachability
games on weighted timed games. In [6,35] computability of optimal strategies is

92 U. Fahrenberg, K.G.Larsen, and A. Legay

shown under a certain condition of strong cost non-zenoness, requiring that the
total weight diverges with a given minimum rate per time. Later undecidability
results [33,41] show that for weighted timed games with three or more clocks this
condition (or a similar one) is necessary. Lately [39] proves that optimal reach-
ability strategies are computable for one-clock weighted timed games, though
there is an unsettled (large) gap between the known lower bound complexity
P and an upper bound of 3EXPTIME.

We conclude this section by reestablishing the connection between the notion
of games and bisimulation [100] in the presence of time:

Proposition 7. There is a polynomial time reduction from timed bisimilarity
to timed safety games.

Observe that this provides an alternative proof of the decidability of timed bisim-
ilarity in Theorem 5 on page 76.

Proof. Given timed automata Ai = (Li, 	
i
0, F, Ci, Σ, Ii, Ei), for i ∈ {1, 2}, with

C1 ∩C2 = ∅, we consider the timed game with locations L = {⊥}∪ (L1 ×L2) ∪
(L1 × L2 × Σ × {1, 2}), where F = {⊥} is a designated final location. We set
C = C1 ∪ C2 ∪ {z}, where z /∈ C1 ∪ C2 is a fresh clock, Σc = Σ ∪ {⊥} and
Σu = {a′ | a ∈ Σ}, and E is defined by

(p, q)
ϕ,a′,r̃−−−−→ (p′, q, a)1 ∈ E if p

ϕ,a,r−−−→ p′ ∈ E1,

(p, q)
ϕ,a′,r̃−−−−→ (p, q′, a)2 ∈ E if q

ϕ,a,r−−−→ q′ ∈ E2,

(p′, q, a)1
ϕ̃,a,r−−−→ (p′, q′) ∈ E if q

ϕ,a,r−−−→ q′ ∈ E2,

(p, q′, a)2
ϕ̃,a,r−−−→ (p′, q′) ∈ E if p

ϕ,a,r−−−→ p′ ∈ E1, and

(p, q, a)i
Φ∧z=0,⊥,∅−−−−−−−→ ⊥ for all i ∈ {1, 2}.

Here we denote r̃ = r∪{z} and ϕ̃ = ϕ∧z = 0, and Φ =
∨

j ¬ϕj when q
ϕj ,a,r−−−−→ q′

and i = 1 and symmetrically for i = 2. Location invariants are defined by
I(p, q) = I1(p) ∧ I2(q) for (p, q) ∈ L1 × L2 and I(p, q, a)i = (z = 0) for all
(p, q, a)i ∈ L1 × L2 × Σ × {1, 2}. See Figure 14 for a simple example of this
construction.

It remains to be seen that A1 and A2 are timed bisimilar if and only if a

strategy σ exists for which any outcome ρ = (0, v0)
d1−→ (0, v0 + d1) → · · · →

(k, vk) satisfies 	k �= ⊥ (i.e. it avoids the final location ⊥).
Assume A1 and A2 are timed bisimilar, then we can prove something stronger

than the above, namely that any strategy will avoid ⊥. Indeed, if (0, v0)
d1−→

(0, v0 + d1) → · · · → (k, vk) is a run in the timed game, and the transition

(k−2, vk−2)
a−→ (k−1, vk−1) exists due to the first component (pk−2, vk−2) of

(k−2, vk−2), then the corresponding
a−→ transition in �A1� has a matching

a−→
transition in �A2�. Hence the state (k−1, vk−1) has an enabled a-labeled edge,
which by definition of Φ implies that the edge to ⊥ is disabled, thus 	k �= ⊥. A
symmetric argument applies in the other case.

Model-Based Verification of Real-Time Systems 93

p

p1

p2

ϕ1
r1a

ϕ2 r2a q q1
ϕ ra

p, q

p1, q

p, q1 ⊥

p2, q

p1, q1

p2, q1

z = 0

z = 0

z = 0

ϕ r̃a′

ϕ1

r̃1a′

ϕ2

r̃2

a′

ϕ̃1

r1
a

ϕ̃2 r2
a

ϕ̃ ra

ϕ̃ ra

Φ ∧ z = 0, a, ∅

Φ = ¬(ϕ1 ∧ ϕ2) ∧ z = 0

a, ∅

Φ ∧ z = 0, a, ∅

Fig. 14. A timed game constructed for bisimilarity checking of two simple timed au-

tomata

Now assume σ is a strategy which ensures avoidance of ⊥, then we shall show
that any (j , v) = ((pj , qj), v) for j ≥ 0, (i.e. of type S1 × S2) occurring in an

outcome of σ satisfies (pj , v) ∼ (qj , v). Assume to the contrary that (pj , v)
a−→

(p′j , v
′) ∈ �A1� and (qj , v) � a−→ (q′j , v

′′) ∈ �A2� for some a ∈ Σ, then we may

extend the run to (j , v) by (j , v)
a−→ (j+1, v

′) ⊥−→ ⊥, moreover σ((0, v0) →
· · · → (j+1, v

′)) = ⊥ is the only choice for σ as by construction neither δ (due
to the invariant z = 0) nor any b �= a is available. ��

5 Statistical Model Checking for Networks of Price
Timed Automata

A weak point of model checking is undoubtly the state-space explosion, i.e. the
exponential growth in the analysis effort measured in the number of model-
components. Another limitation of real-time model checking is that it merely
provides – admittedly most important – hard quantitative guarantees, e.g. the
worst case response time of a recurrent task under a certain scheduling principle,
the worst case execution time of a piece of code running on a particular execu-
tion platform, or the worst case time before consensus is reached by a real-time
network protocol. In addition to these hard guarantees, it would be desirable
in several situations to obtain refined performance information concerning likely
or expected behaviors in terms of timing and resource consumption. In partic-
ular, this would allow to distinguish and select between systems that perform
identically from a worst-case perspective.

94 U. Fahrenberg, K.G.Larsen, and A. Legay

In a series of recent works [53], we proposed a stochastic semantics for Priced
Timed Automata (PTA), whose clocks can evolve with different rates, while1

being used with no restrictions in guards and invariants. Networks of PTAs
(NPTA) are created by composing PTAs via input and output actions. More
precisely, we define a natural stochastic semantics for networks of NPTAs based
on races between components being composed. We shall observe that such race
can generate arbitrarily complex stochastic behaviors from simple assumptions
on individual components. We shall see that our semantics cannot be emulated by
applying the existing stochastic semantic of [14,30] to the product of components.
Other related work includes the very rich framework of stochastic timed systems
of MoDeST [31]. Here, however, general hybrid variables are not considered and
parallel composition does not yield fully stochastic models. For the notion of
probabilistic hybrid systems considered in [101] the choice of time is resolved non-
deterministically rather than stochastically as in our case. Moreover, based on
the stochastic semantics, we are able to express refined performance properties,
e.g. in terms of probabilistic guarantees of time- and cost-bounded properties2.

To allow for the efficient analysis of probabilistic performance properties we
propose to work with Statistical Model Checking (SMC) [99, 106], an approach
that has been proposed as an alternative to avoid an exhaustive exploration of the
state-space of the model. The core idea of SMC is to monitor some simulations
of the system, and then use results from the statistic area (including sequential
hypothesis testing or Monte Carlo simulation) in order to decide whether the
system satisfies the property with some degree of confidence.

In this section, we first give insights on the model and on the stochastic
semantic, then on the use of statistical model checking. Finally, we conclude
with a brief discussion and some applications;

5.1 Networks of Stochastic Automata

Networks of Price Timed Automata We consider the analysis of Priced Timed
Automata (PTAs) that are timed automata whose clocks can evolve with dif-
ferent rates in different locations. In fact, the expressive power (up to timed
bisimilarity) of NPTA equals that of general linear hybrid automata (LHA) [4],
rendering most problems – including that of reachability – undecidable. We also
assume PTAs are input-enabled, deterministic (with a probability measure de-
fined on the sets of successors), and non-zeno. PTAs communicate via broadcast
channels and shared variables to generate Networks of Price Timed Automata
(NPTA).

Fig. 15 provides an NPTA with three components A, B, and T as specified
using the Uppaal GUI. One can easily see that the composite system (A|B|T)
has the transition sequence:(
(A0, Bo, T0), [x = 0, y = 0, C = 0]

) 1−→ a!−→(
(A1, B0, T1), [x = 1, y = 1, C = 4]

) 1−→ b!−→
1 In contrast to the usual restriction of priced timed automata [10].
2 Clocks with different rates can be used to model costs.

Model-Based Verification of Real-Time Systems 95

htb

A1

A0
x<=1

a!

B1

B0
y<=2

b!
T1

T3

T0

C’==2

C’==4
a?

b?

A B T

Fig. 15. An NPTA, (A|B|T)

(
(A1, B1, T2), [x = 2, y = 2, C = 6]

)
,

demonstrating that the final location T3 of T is reachable. In fact, location T3 is
reachable within cost 0 to 6 and within total time 0 and 2 in (A|B|T) depending
on when (and in which order) A and B choose to perform the output actions a!
and b!. Assuming that the choice of these time-delays is governed by probability
distributions, a measure on sets of runs of NPTAs is induced, according to which
quantitative properties such as “the probability of T3 being reached within a total
cost-bound of 4.3” become well-defined.

Probabilistic Semantics of NPTA Components. In our early works [53], we
provide a natural stochastic semantics, where PTA components associate proba-
bility distributions to both the time-delays spent in a given state as well as to the
transition between states. In Uppaal-SMC uniform distributions are applied for
bounded delays and exponential distributions for the case where a component
can remain indefinitely in a state. In a network of PTAs the components repeat-
edly race against each other, i.e. they independently and stochastically decide
on their own how much to delay before outputting, with the “winner” being
the component that chooses the minimum delay. For instance, in the NPTA of
Fig. 15, A wins the initial race over B with probability 0.75.

In contrast to the probabilistic semantics of timed automata in [14, 30] our
semantics deals with networks and thus with races between components. Let
Aj = (Lj , Xj, Σ,Ej, Rj , Ij) (j = 1 . . . n) be a collection of composable NPTAs.
Under the assumption of input-enabledness, disjointness of clock sets and output
actions, states of the the composite NPTA A = (A1 | . . . | An) may be seen as
tuples s = (s1, . . . , sn) where sj is a state of Aj , i.e. of the form (, ν) where

	 ∈ Lj and ν ∈ IRXj

≥0 . Our probabilistic semantics is based on the principle of
independency between components. Repeatedly each component decides on its
own – based on a given delay density function and output probability function
– how much to delay before outputting and what output to broadcast at that
moment. Obviously, in such a race between components the outcome will be
determined by the component that has chosen to output after the minimum de-
lay: the output is broadcast and all other components may consequently change
state.

96 U. Fahrenberg, K.G.Larsen, and A. Legay

Time
Cost

Time/Cost

pr
ob

ab
ili

ty

0

0.12

0.24

0.36

0.48

0.60

0.72

0 1.2 2.4 3.6 4.8 6.0

Fig. 16. Cumulative probabilities for time and Cost-bounded reachability of T3

Let us first consider a component Aj and let Stj denote the corresponding set
of states. For each state s = (, ν) of Aj we shall provide probability distributions
for both delays and outputs. In this presentation, we restrict to uniform and
universal distributions, but arbitrary distributions can be considered.

The delay density function μs over delays in IR≥0 will be either a uniform
or an exponential distribution depending on the invariant of 	. Denote by E�

the disjunction of guards g such that (, g, o,−,−) ∈ Ej for some output o.
Denote by d(, ν) the infimum delay before enabling an output, i.e. d(, ν) =
inf{d ∈ IR≥0 : ν + Rj · d |= E�}, and denote by D(, ν) the supremum delay,
i.e. D(, ν) = sup{d ∈ IR≥0 : ν +Rj · d |= Ij()}. If D(, ν) < ∞ then the delay
density function μs is a uniform distribution on [d(, ν), D(, ν)]. Otherwise –
that is Ij() does not put an upper bound on the possible delays out of s – the
delay density function μs is an exponential distribution with a rate P (), where
P : Lj → IR≥0 is an additional distribution rate component added to the NPTA
Aj . For every state s = (, ν), the output probability function γs over Σj

o is the
uniform distribution over the set {o : (, g, o,−,−) ∈ Ej ∧ν |= g} whenever this
set is non-empty3. We denote by so the state after the output of o. Similarly,
for every state s and any input action ι, we denote by sι the state after having
received the input ι.

Probabilistic Semantics of Networks of NPTA. We shall now see that
while the stochastic semantics of each PTA is rather simple (but quite realistic),
arbitrarily complex stochastic behavior can be obtained by their composition.

Reconsider the closed network A = (A1 | . . . | An) with a state space St =
St1 × · · · × Stn. For s = (s1, . . . , sn) ∈ St and a1a2 . . . ak ∈ Σ∗ we denote by
π(s, a1a2 . . . ak) the set of all maximal runs from s with a prefix t1a1t2a2 . . . tkak
for some t1, . . . , tn ∈ IR≥0, that is runs where the i’th action ai has been out-
putted by the componentAc(ai). We now inductively define the following measure
for such sets of runs:

PA

(
π(s, a1 . . . an)

)
=

∫
t≥0

μsc (t) ·
(∏
j �=c

∫
τ>t

μsj (τ)dτ
)·γsct(a1) ·PA

(
π(st)a1 , a2 . . . an)

)
dt

where c = c(a1), and as base case we take PA(π(s), ε) = 1.

3 Otherwise a specific weight distribution can be specified and used instead.

Model-Based Verification of Real-Time Systems 97

This definition requires a few words of explanation: at the outermost level
we integrate over all possible initial delays t. For a given delay t, the outputting
component c = c(a1) will choose to make the broadcast at time t with the stated
density. Independently, the other components will choose to a delay amount,
which – in order for c to be the winner – must be larger than t; hence the
product of the probabilities that they each make such a choice. Having decided
for making the broadcast at time t, the probability of actually outputting a1
is included. Finally, in the global state resulting from all components having
delayed t time-units and changed state according to the broadcasted action a1
the probability of runs according to the remaining actions a2 . . . an is taken into
account.

The Hammer Game. To illustrate the stochastic semantics further consider the
network of two priced timed automata in Fig. 17 modeling a competition between
the two players Axel and Alex both having to hammer three nails down. As
can be seen by the representing Work-locations the time (-interval) and rate
of energy-consumption required for hammering a nail depends on the player
and the nail-number. As expected Axel is initially quite fast and uses a lot of
energy but becomes slow towards the last nail, somewhat in contrast to Alex.
To make it an interesting competition, there is only one hammer illustrated by
repeated competitions between the two players in the Ready-locations, where the
slowest player has to wait in the Idle-location until the faster player has finished
hammering the next nail. Interestingly, despite the somewhat different strategy
applied, the best- and worst-case completion times are identical for Axel and
Alex: 59 seconds and 150 seconds. So, there is no difference between the two
players and their strategy, or is there?

Assume now that a third person wants to bet on who is the more likely
winner – Axel or Alex – given a refined semantics, where the time-delay before
performing an output is chosen stochastically (e.g. by drawing from a uniform
distribution) and independently by each player (component).

Under such a refined semantics there is a significant difference between the
two players (Axel and Alex) in the Hammer Game. In Fig. 18a) the probability
distributions for either of the two players winning before a certain time is given.

a) Axel x<=15 && D’==2

go! done!

x=0

x=0 x=0x=0 x=0

x=0

x<=12x<=12 x<=13 && D’==3

x=0

x=0

x<=11 && D’==4x<=10
x=0

Work2Ready2 Ready3

Idle2

done?

Idle1

Ready1 Work1

go?

x>=5x>=6 x>=4 x>=3

Idle3

Work3

x>=6

Done

x>=7

go?

go!

go?done?

done!go!

done?

done!

b) Alex x<=10 && C’==4

go! done!

x=0

x=0 x=0x=0 x=0

x=0

x<=13x<=13 x<=12 && C’==3

x=0

x=0

x<=13 && C’==2x<=15
x=0

Work2Ready2 Ready3

Idle2

done?

Idle1

Ready1 Work1

go?

x>=5x>=4 x>=6 x>=7

Idle3

Work3

x>=4

Done

x>=2

go?

go!

go?done?

done!go!

done?

done!

Fig. 17. 3-Nail Hammer Game between Axel and Alex

98 U. Fahrenberg, K.G.Larsen, and A. Legay

Though it is clear that Axel has a higher probability of winning than Alex (59%
versus 41%) given unbounded time, declaring the competition a draw if it has not
finished before 50 seconds actually makes Alex the more likely winner. Similarly,
Fig. 18b) illustrates the probability of either of the two players winning given an
upper bound on energy. With an unlimited amount of energy, clearly Axel is the
most likely winner, whereas limiting the consumption of energy to maximum 52
“energy-units” gives Alex an advantage.

Some
Axel
Alex
Both

Time

pr
ob

ab
ili

ty

0

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

32 42 52 62 72 82 92 102 112 122

Time−Dependent Distribution

Axel
Alex

Cost (C for Alex, D for Axel)

pr
ob

ab
ili

ty

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

30 40 50 60 70 80 90 100 110 120 130 140 150 160

Cost−Dependent Distribution

a) b)

Fig. 18. Time- and Cost-dependent Probability of winning the Hammer Game

5.2 Verifying Queries Using Statistical Model Checking

Following [95], the measure PA may be extended in a standard and unique way to
the σ-algebra generated by the sets of runs (so-called cylinders) π(s, a1a2 . . . an).
As we shall see this will allow us to give proper semantics to a range of proba-
bilistic time- and cost-constrained temporal properties. Let A be a NPTA. Then
we consider the following non-nested PWCTL properties:

ψ ::= P
(
♦C≤cϕ

)
∼ p | P

(
�C≤cϕ

)
∼ p

where C is an observer clock (of A), ϕ a state-property (wrt. A) , ∼∈ {<,≤,=
,≥, >}, and p ∈ [0, 1]. This logic is a stochastic extension of the classical WCTL
logic for non-stochastic systems, where the existential quantifier is replaced by a
probability operator. For the semantics let A∗ be the modification of A, where
the guard C ≤ c has been conjoined to the invariant of all locations and an edge
(, ϕ, oϕ, ∅,) has been added to all locations 	, where oϕ is a new output action.
Then:

A |= P
(
♦C≤cϕ

)
∼ p iff PA∗

(⋃
σ∈Σ∗

π(s0, σoϕ)
)
∼ p

which is well-defined since the σ-algebra on which PA∗ is defined is closed under
countable unions and finite intersections. To complete the semantics, we note
that P(�C≤cϕ) ∼ p is equivalent to (1− p) ∼ P(♦C≤c¬ϕ).4

4 We also note that the above (stochastic) interpretation of PWCTL is a conservative

extension of the classical (non-stochastic) interpretation of WCTL, in the sense that

A |= P
(
♦C≤cϕ

)
> 0 implies An |= E♦C≤cϕ, where An refers to the standard non-

stochastic semantics of A.

Model-Based Verification of Real-Time Systems 99

A|Br|T
A|B|T
AB|T

Time

pr
ob

ab
ili

ty

0

0.15

0.30

0.45

0.60

0.75

0 0.7 1.4 2.1

A|Br|T
A|B|T
AB|T

C

pr
ob

ab
ili

ty

0

0.15

0.30

0.45

0.60

0.75

0 2.0 4.0 6.0

(a) (b)

Fig. 19. Cumulative probabilities for time and cost-bounded reachability of T3

Compared with previous stochastic semantics of timed automata (see e.g.,
[14,30]), we emphasize the novelty of the semantics of NPTA in terms of RACES
between components, truthfully reflecting their independencies. In particular
our stochastic semantics of a network (A1|..|An) is significantly different from
that obtained by applying the stochastic semantics of [14, 30] to a product con-
struction A1A2 . . . An, as information about independencies are lost. So though
(A1|..|An) and A1A2 . . . An are timed bisimilar they are in general not proba-
bistic timed bisimilar, and hence distinguishable by PWCTL. The situation is
illustrated with the following example.

Example 9. Reconsider the Example of Fig. 15. Then it can be shown that
(A|B|T) |= P

(
♦t≤2T3

)
= 0.75 and (A|B|T) |= P

(
♦C≤6T3

)
= 0.75, whereas

(AB|T) |= P
(
♦t≤2T3

)
= 0.50 and (AB|T) |= P

(
♦C≤6T3

)
= 0.50. Fig. 19 gives a

time- and cost-bounded reachability probabilities for (A|B|T) and (AB|T) for a
range of bounds. Thus, though the two NPTAs satisfy the same WCTL proper-
ties, they are obviously quite different with respect to PWCTL. The NPTA Br

of Fig. 15 is a variant of B, with the uniform delay distribution enforced by the
invariant y ≤ 2 being replaced by an exponential distribution with rate 1

2 . Here
(A|Br|T) satisfies P

(
♦t≤2T3

)
≈ 0.41 and P

(
♦C≤6T3

)
≈ 0.49.

The problem of checking PM(ψ) ≥ p (p ∈ [0, 1]) for a PWCTL property ψ
is unfortunately undecidable in general5. Our solution is to approximate the
answer using simulation-based algorithms known under the name of statistical
model checking algorithms. We briefly recap statistical algorithms permitting to
answer the following three types of questions:

1. Hypothesis Testing: Is the probability PM(ψ) for a given NPTA M greater
or equal to a certain threshold p ∈ [0, 1] ?

2. Probability evaluation: What is the probability PM (ψ) for a given NPTA
M?

3. Probability comparison: Is the probability PM (ψ1) greater than the proba-
bility PM (ψ2]?

5 Exceptions being PTA with 0 or 1 clocks.

100 U. Fahrenberg, K.G.Larsen, and A. Legay

From a conceptual point of view solving the above questions using SMC is sim-
ple. First, each run of the system is encoded as a Bernoulli random variable that
is true if the run satisfies the property and false otherwise. Then a statistical
algorithm groups the observations to answer the three questions. For the quali-
tative questions (1 and 3), we shall use sequential hypothesis testing, while for
the quantitative question (2) we will use an estimation algorithm that resemble
the classical Monte Carlo simulation. The two solutions are detailed hereafter.

Hypothesis Testing. This approach reduces the qualitative question to testing
the hypothesis H : p = PM(ψ) ≥ θ against K : p < θ. To bound the probability
of making errors, we use strength parameters α and β and we test the hypothesis
H0 : p ≥ p0 and H1 : p ≤ p1 with p0 = θ + δ0 and p1 = θ − δ1. The interval
p0−p1 defines an indifference region, and p0 and p1 are used as thresholds in the
algorithm. The parameter α is the probability of accepting H0 when H1 holds
(false positives) and the parameter β is the probability of accepting H1 when H0

holds (false negatives). The above test can be solved by using Wald’s sequential
hypothesis testing [104]. This test computes a proportion r among those runs
that satisfy the property. With probability 1, the value of the proportion will
eventually cross log(β/(1 − α) or log((1 − β)/α) and one of the two hypothesis
will be selected.

Probability Estimation. This algorithm [70] computes the number of runs
needed in order to produce an approximation interval [p−ε, p+ε] for p = Pr(ψ)
with a confidence 1 − α. The values of ε and α are chosen by the user and the
number of runs relies on the Chernoff-Hoeffding bound.

Probability Comparison. This algorithm, which is detailed in [53], exploits
an extended Wald testing.

5.3 Uppaal-SMC

We have implemented the above model and algorithms in a statistical extension
of Uppaal called Uppaal-SMC. In addition to the features exposed above, the
tool also proposes a friendly-user interface to plot results of estimating distri-
butions as well as a distributed engine to exploit computer grids. Details on
Uppaal-SMC can be found in [53,54]. As an illustration, here is how we trans-
late the SMC queries from previous section in Uppaal-SMC.

– Hypothesis testing: Pr[bound](ϕ)>=p0, where bound defines how to bound
the runs. The three ways to bound them are 1) implicitly by time by speci-
fying <=M (where M is a positive integer), 2) explicitly by cost with x<=M
where x is a specific clock, or 3) by number of discrete steps with #<=M . In
the case of hypothesis testing p0 is the probability to test for. The formula
ϕ is either <> q or [] q where q is a state predicate.

– Estimation: Pr[bound](ϕ)
– Comparison: Pr[bound1](ϕ1)>= Pr[bound2](ϕ2).

Model-Based Verification of Real-Time Systems 101

5.4 Some Illustrations

We briefly survey some recent results obtained via Uppaal-SMC.

Robot Control. In [42] we considered a case – explored in [15] – of a robot moving
on a two-dimensional grid. We are interested in the probability that the robot
reaches its goal location without staying on consecutive fire fields for more than
one time unit and on consecutive ice fields for more than two time units. We
applied Uppaal-SMC to compute the probability of the robot reaching this,
without staying more than x time units in some fixed position.

Bluetooth [92] is a wireless telecommunication protocol using frequency-hopping
to cope with interference between the devices in the wireless network. In pa-
per [54] we adopted the model from [56], annotated the model to record the
power utilization and evaluated the probability distributions of likely response
times and energy consumption.

Lightweight Medium Access Protocol (LMAC) [103]. LMAC is a communication
scheduling protocol based on time slot distribution for nodes sharing the same
medium. The protocol is designed having wireless sensor networks in mind: it is
simple enough to fit on a modest hardware and at the same time robust against
topology reconfiguration, minimizing collisions and power consumption. In [53]
we showed how collisions can be analyzed and power consumption estimated
using statistical model checking techniques.

Computing Nash Equilibrium in Wireless Ad Hoc Networks. One of the impor-
tant aspects in designing wireless ad-hoc networks is to make sure that a network
is robust to the selfish behavior of its participants, i.e. that its configuration sat-
isfies Nash equilibrium (NE). In [43] we proposed an SMC-based algorithm for
computing NE for the case when network nodes are modeled by SPTA and an
utility function of a single node is equal to a probability that the node will reach
its goal.

Energy Aware Buildings. In [52], we considered energy aware buildings. We refer
to a recently developed framework including components for layout of builidngs,
availability of heaters, climate and user behavious allowing to evaluated different
strategies for distributing heaters among rooms in terms of the resulting comfort
and energy consumption. To indicate central parts of this framework and the
clear advantages of modeling the evoluation of room temperatures with ODEs,
we illustrated in [52] the framework with a small instance comprising two rooms
with a single shared heater.

Systems Biology. In [51, 52], we extended our model in order to incorporate
ODEs. We then showed how the combination of ODEs and SMC allows us to
reason on biological oscillations – a problem that is beyond the scope of most
existing formal verification techniques. We model a genetic circadian oscillator,
which is used to distill the essence of several real circadian oscillators.

102 U. Fahrenberg, K.G.Larsen, and A. Legay

Duration Probabilistic Automata. In [53] we compared Uppaal-SMC to Prism
[77] in the context of Duration Probabilistic Automata (DPA) [90]. A Duration
Probabilistic Automaton (DPA) is a composition of Simple Duration Proba-
bilistic Automata (SDPA). An SDPA is a linear sequence of tasks that must be
performed in a sequential order. Each task is associated with a duration interval
which gives the possible durations of the task. The actual duration of the tasks
is given by a uniform choice from this interval. The comparison with Prism was
made by randomly generating models with a specific number of SDPAs and a
specific number of tasks per SDPA and translate these into Prism and Uppaal
models. The queries to the models were What is the probability of all SDPAs
ending within t time units (Estimation)and Is the probability that all SDPAs
end within t time units greater than 40% (Hypothesis testing). The value of t is
different for each model as it was computed by simulating the system 369 times
and represent the value for which at least 60% of the runs finished all their tasks.

References

1. Abdeddäım, Y., Kerbaa, A., Maler, O.: Task graph scheduling using timed au-

tomata. In: IPDPS, p. 237. IEEE Computer Society (2003)

2. Aceto, L., Ingólfsdóttir, A., Larsen, K.G., Srba, J.: Reactive Systems: Modeling,

Specification and Verification. Cambridge University Press (2007)

3. Allamigeon, X., Gaubert, S., Goubault, É.: Inferring min and max invariants

using max-plus polyhedra. In: Alpuente, M., Vidal, G. (eds.) SAS 2008. LNCS,

vol. 5079, pp. 189–204. Springer, Heidelberg (2008)

4. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin,

X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.

Theoretical Computer Science 138(1), 3–34 (1995)

5. Alur, R.: Timed automata. In: Halbwachs, Peled (eds.) [66], pp. 8–22

6. Alur, R., Bernadsky, M., Madhusudan, P.: Optimal reachability for weighted timed

games. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004.

LNCS, vol. 3142, pp. 122–133. Springer, Heidelberg (2004)

7. Alur, R., Courcoubetis, C., Dill, D.L.: Model-checking for real-time systems. In:

LICS, pp. 414–425. IEEE Computer Society (1990)

8. Alur, R., Dill, D.L.: Automata for modeling real-time systems. In: Paterson, M.

(ed.) ICALP 1990. LNCS, vol. 443, pp. 322–335. Springer, Heidelberg (1990)

9. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),

183–235 (1994)

10. Alur, R., La Torre, S., Pappas, G.J.: Optimal paths in weighted timed automata.

In: Benedetto, Sangiovanni-Vincentelli (eds.) [26], pp. 49–62

11. Andersson, D.: Improved combinatorial algorithms for discounted payoff games.

Master’s thesis, Uppsala University, Department of Information Technology

(2006)

12. Asarin, E., Bozga, M., Kerbrat, A., Maler, O., Pnueli, A., Rasse, A.: Data-

structures for the verification of timed automata. In: Maler, O. (ed.) HART 1997.

LNCS, vol. 1201, pp. 346–360. Springer, Heidelberg (1997)

13. Asarin, E., Maler, O., Pnueli, A.: Symbolic controller synthesis for discrete and

timed systems. In: Antsaklis, P.J., Kohn, W., Nerode, A., Sastry, S. (eds.) HS 1994.

LNCS, vol. 999, pp. 1–20. Springer, Heidelberg (1995)

Model-Based Verification of Real-Time Systems 103

14. Baier, C., Bertrand, N., Bouyer, P., Brihaye, T., Größer, M.: Probabilistic and

topological semantics for timed automata. In: Arvind, V., Prasad, S. (eds.)

FSTTCS 2007. LNCS, vol. 4855, pp. 179–191. Springer, Heidelberg (2007)

15. Barbot, B., Chen, T., Han, T., Katoen, J.-P., Mereacre, A.: Efficient CTMC

model checking of linear real-time objectives. In: Abdulla, P.A., Leino, K.R.M.

(eds.) TACAS 2011. LNCS, vol. 6605, pp. 128–142. Springer, Heidelberg (2011)

16. Behrmann, G., Bengtsson, J., David, A., Larsen, K.G., Pettersson, P., Yi,

W.: Uppaal implementation secrets. In: Damm, W., Olderog, E.-R. (eds.)

FTRTFT 2002. LNCS, vol. 2469, pp. 3–22. Springer, Heidelberg (2002)

17. Behrmann, G., Bouyer, P., Larsen, K.G., Pelánek, R.: Lower and upper bounds

in zone based abstractions of timed automata. In: Jensen, Podelski (eds.) [74],

pp. 312–326

18. Behrmann, G., Brinksma, E., Hendriks, M., Mader, A.: Production scheduling by

reachability analysis - a case study. In: IPDPS. IEEE Computer Society (2005)

19. Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Lime, D.:

Uppaal-Tiga: Time for playing games! In: Damm, W., Hermanns, H. (eds.)

CAV 2007. LNCS, vol. 4590, pp. 121–125. Springer, Heidelberg (2007)

20. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,

Heidelberg (2004)

21. Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Pettersson, P., Romijn, J.,

Vaandrager, F.W.: Minimum-cost reachability for priced timed automata. In:

Benedetto, Sangiovanni-Vincentelli (eds.) [26], pp. 147–161

22. Behrmann, G., Hune, T., Vaandrager, F.W.: Distributing timed model checking

- how the search order matters. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000.

LNCS, vol. 1855, pp. 216–231. Springer, Heidelberg (2000)

23. Behrmann, G., Larsen, K.G., Pearson, J., Weise, C., Yi, W.: Efficient timed reach-

ability analysis using clock difference diagrams. In: Halbwachs, Peled (eds.) [66],

pp. 341–353

24. Behrmann, G., Larsen, K.G., Pelánek, R.: To store or not to store. In: Hunt Jr.,

W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 433–445. Springer,

Heidelberg (2003)

25. Behrmann, G., Larsen, K.G., Rasmussen, J.I.: Optimal scheduling using priced

timed automata. SIGMETRICS Performance Evaluation Review 32(4), 34–40

(2005)

26. Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.): HSCC 2001. LNCS,

vol. 2034. Springer, Heidelberg (2001)

27. Bengtsson, J.E., Yi, W.: On clock difference constraints and termination in reacha-

bility analysis of timed automata. In: Dong, J.S., Woodcock, J. (eds.) ICFEM 2003.

LNCS, vol. 2885, pp. 491–503. Springer, Heidelberg (2003)

28. Bengtsson, J.E., Yi, W.: Timed automata: Semantics, algorithms and tools.

In: Desel, J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003,. LNCS, vol. 3098,

pp. 87–124. Springer, Heidelberg (2004)

29. Bérard, B., Petit, A., Diekert, V., Gastin, P.: Characterization of the expressive

power of silent transitions in timed automata. Fundam. Inform. 36(2-3), 145–182

(1998)

30. Bertrand, N., Bouyer, P., Brihaye, T., Markey, N.: Quantitative model-checking

of one-clock timed automata under probabilistic semantics. In: QEST, pp. 55–64.

IEEE Computer Society (2008)

104 U. Fahrenberg, K.G.Larsen, and A. Legay

31. Bohnenkamp, H., D’Argenio, P.R., Hermanns, H., Katoen, J.-P.: Modest: A com-

positional modeling formalism for real-time and stochastic systems. Technical

Report CTIT 04-46, University of Twente (2004)

32. Bouyer, P.: Untameable timed automata! In: Alt, H., Habib,M. (eds.) STACS 2003.

LNCS, vol. 2607, pp. 620–631. Springer, Heidelberg (2003)

33. Bouyer, P., Brihaye, T., Markey, N.: Improved undecidability results on weighted

timed automata. Inf. Process. Lett. 98(5), 188–194 (2006)

34. Bouyer, P., Brinksma, E., Larsen, K.G.: Staying alive as cheaply as possible. In:

Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 203–218. Springer,

Heidelberg (2004)

35. Bouyer, P., Cassez, F., Fleury, E., Larsen, K.G.: Optimal strategies in priced

timed game automata. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS,

vol. 3328, pp. 148–160. Springer, Heidelberg (2004)

36. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N.: Timed automata with

observers under energy constraints. In: HSCC, pp. 61–70. ACM (2010)

37. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N., Srba, J.: Infinite runs in

weighted timed automata with energy constraints. In: Cassez, F., Jard, C. (eds.)

FORMATS 2008. LNCS, vol. 5215, pp. 33–47. Springer, Heidelberg (2008)

38. Bouyer, P., Larsen, K.G., Markey, N.: Lower-bound constrained runs in weighted

timed automata. In: QEST, pp. 128–137. IEEE Computer Society (2012)

39. Bouyer, P., Larsen, K.G., Markey, N., Rasmussen, J.I.: Almost optimal strate-

gies in one clock priced timed games. In: Arun-Kumar, S., Garg, N. (eds.)

FSTTCS 2006. LNCS, vol. 4337, pp. 345–356. Springer, Heidelberg (2006)

40. Bozga, M., Daws, C., Maler, O., Olivero, A., Tripakis, S., Yovine, S.: Kronos:

A model-checking tool for real-time systems. In: Hu, A.J., Vardi, M.Y. (eds.)

CAV 1998. LNCS, vol. 1427, pp. 546–550. Springer, Heidelberg (1998)

41. Brihaye, T., Bruyère, V., Raskin, J.-F.: On optimal timed strategies. In: Petters-

son, Yi (eds.) [96], pp. 49–64

42. Bulychev, P., David, A., Larsen, K.G., Legay, A., Li, G., Bøgsted Poulsen, D.,

Stainer, A.: Monitor-based statistical model checking for weighted metric tempo-

ral logic. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18 2012. LNCS, vol. 7180,

pp. 168–182. Springer, Heidelberg (2012)

43. Bulychev, P.E., David, A., Larsen, K.G., Legay, A., Mikučionis, M.: Computing

Nash equilibrium in wireless ad hoc networks: A simulation-based approach. In:

Reich, J., Finkbeiner, B. (eds.) IWIGP. EPTCS, vol. 78, pp. 1–14 (2012)

44. Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly

algorithms for the analysis of timed games. In: Abadi, M., de Alfaro, L. (eds.)

CONCUR 2005. LNCS, vol. 3653, pp. 66–80. Springer, Heidelberg (2005)

45. Cassez, F., David, A., Larsen, K.G., Lime, D., Raskin, J.-F.: Timed control with

observation based and stuttering invariant strategies. In: Namjoshi, K.S., Yoneda,

T., Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 192–206.

Springer, Heidelberg (2007)

46. Čerāns, K.: Decidability of bisimulation equivalences for parallel timer pro-

cesses. In: Probst, D.K., von Bochmann, G. (eds.) CAV 1992. LNCS, vol. 663,

pp. 302–315. Springer, Heidelberg (1993)

47. Chatterjee, K., Doyen, L.: Energy parity games. In: Abramsky, S., Gavoille, C.,

Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS,

vol. 6199, pp. 599–610. Springer, Heidelberg (2010)

48. Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Generalized mean-

payoff and energy games. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS. LIPIcs,

vol. 8, pp. 505–516 (2010)

Model-Based Verification of Real-Time Systems 105

49. Courcoubetis, C., Yannakakis, M.: Minimum and maximum delay problems in

real-time systems. In: Larsen, Skou (eds.) [86], pp. 399–409

50. D’Argenio, P.R., Katoen, J.-P., Ruys, T.C., Tretmans, J.: The bounded retrans-

mission protocol must be on time! In: Brinksma, E. (ed.) TACAS 1997. LNCS,

vol. 1217, pp. 416–431. Springer, Heidelberg (1997)

51. David, A., Du, D., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B.,

Sedwards, S.: Statistical model checking for stochastic hybrid systems. In: HSB.

EPTCS, vol. 92, pp. 122–136 (2012)

52. David, A., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B., Sedwards,

S.: Runtime verification of biological systems. In: Margaria, T., Steffen, B. (eds.)

ISoLA 2012, Part I. LNCS, vol. 7609, pp. 388–404. Springer, Heidelberg (2012)

53. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B., van Vliet, J.,

Wang, Z.: Statistical model checking for networks of priced timed automata. In:

Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol. 6919, pp. 80–96.

Springer, Heidelberg (2011)

54. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Wang, Z.: Time for statistical

model checking of real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.)

CAV 2011. LNCS, vol. 6806, pp. 349–355. Springer, Heidelberg (2011)

55. Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems.

In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg

(1990)

56. Duflot, M., Kwiatkowska, M., Norman, G., Parker, D.: A formal analysis of blue-

tooth device discovery. International Journal on Software Tools for Technology

Transfer (STTT) 8, 621–632 (2006)

57. Ernits, J.P.: Memory arbiter synthesis and verification for a radar memory inter-

face card. Nord. J. Comput. 12(2), 68–88 (2005)

58. Fahrenberg, U., Juhl, L., Larsen, K.G., Srba, J.: Energy games in multiweighted

automata. In: Cerone, A., Pihlajasaari, P. (eds.) ICTAC 2011. LNCS, vol. 6916,

pp. 95–115. Springer, Heidelberg (2011)

59. Fahrenberg, U., Larsen, K.G.: Discount-optimal infinite runs in priced timed au-

tomata. Electr. Notes Theor. Comput. Sci. 239, 179–191 (2009)

60. Fahrenberg, U., Larsen, K.G.: Discounting in time. Electr. Notes Theor. Comput.

Sci. 253(3), 25–31 (2009)

61. Fahrenberg, U., Larsen, K.G., Legay, A., Thrane, C.: Model-based verification,

optimization, synthesis and performance evaluation of real-time systems. In: Pro-

ceedings of the NATO Advanced Study Institute on Engineering Methods and

Tools for Software Safety and Security Marktoberdorf, Germany (August 2012)

(to be published 2013)

62. Fahrenberg, U., Larsen, K.G., Thrane, C.: Verification, performance analysis and

controller synthesis for real-time systems. In: Broy, M., Sitou, W., Hoare, T.

(eds.) ASI 2008. NATO Science for Peace and Security Series - D: Information

and Communication Security, vol. 22. IOS Press BV (2008)

63. Fahrenberg, U., Larsen, K.G., Thrane, C.R.: Verification, performance analysis

and controller synthesis for real-time systems. In: Arbab, F., Sirjani, M. (eds.)

FSEN 2009. LNCS, vol. 5961, pp. 34–61. Springer, Heidelberg (2010)

64. Fahrenberg, U., Larsen, K.G., Thrane, C.: Model-based verification and analysis for

real-time systems. In: Broy,M., Leuxner, C., Hoare, T. (eds.) Software and Systems

Safety - Specification and Verification. NATO Science for Peace and Security Se-

ries - D: Information and Communication Security, vol. 30, pp. 231–259. IOS Press

(2011)

106 U. Fahrenberg, K.G.Larsen, and A. Legay

65. Fehnker,A.: Scheduling a steel plantwith timed automata. In:RTCSA,pp. 280–286.

IEEE Computer Society (1999)

66. Halbwachs, N., Peled, D. (eds.): CAV 1999. LNCS, vol. 1633. Springer, Heidelberg

(1999)

67. Hansen, M.R., Madsen, J., Brekling, A.W.: Semantics and verification of a lan-

guage for modelling hardware architectures. In: Jones, C.B., Liu, Z., Woodcock,

J. (eds.) Formal Methods and Hybrid Real-Time Systems. LNCS, vol. 4700,

pp. 300–319. Springer, Heidelberg (2007)

68. Hendriks, M.: Model checking the time to reach agreement. In: Pettersson, Yi

(eds.) [96], pp. 98–111

69. Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for

real-time systems. Inf. Comput. 111(2), 193–244 (1994)

70. Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilis-

tic model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937,

pp. 73–84. Springer, Heidelberg (2004)

71. Herbreteau, F., Kini, D., Srivathsan, B., Walukiewicz, I.: Using non-convex ap-

proximations for efficient analysis of timed automata. In: Chakraborty, S., Kumar,

A. (eds.) FSTTCS. LIPIcs, vol. 13, pp. 78–89. Schloss Dagstuhl - Leibniz-Zentrum

fuer Informatik (2011)

72. Hune, T., Larsen, K.G., Pettersson, P.: Guided synthesis of control programs

using Uppaal. Nord. J. Comput. 8(1), 43–64 (2001)

73. Jensen, H.E., Guldstr, K., Skou, A.: Scaling up Uppaal. In: Joseph, M. (ed.)

FTRTFT 2000. LNCS, vol. 1926, pp. 19–30. Springer, Heidelberg (2000)

74. Jensen, K., Podelski, A. (eds.): TACAS 2004. LNCS, vol. 2988. Springer,

Heidelberg (2004)

75. Jessen, J.J., Rasmussen, J.I., Larsen, K.G., David, A.: Guided controller syn-

thesis for climate controller using Uppaal Tiga. In: Raskin, J.-F., Thiagarajan,

P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 227–240. Springer, Heidelberg

(2007)

76. Karp, R.M.: A characterization of the minimum cycle mean in a digraph. Disc.

Math. 23(3), 309–311 (1978)

77. Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 2.0: A tool for probabilistic

model checking. In: QEST, pp. 322–323. IEEE (2004)

78. Lamport, L.: Real-time model checking is really simple. In: Borrione, D., Paul,

W. (eds.) CHARME 2005. LNCS, vol. 3725, pp. 162–175. Springer, Heidelberg

(2005)

79. Larsen, K.G., Behrmann, G., Brinksma, E., Fehnker, A., Hune, T., Pettersson,

P., Romijn, J.M.T.: As cheap as possible: Efficient cost-optimal reachability for

priced timed automata. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001.

LNCS, vol. 2102, pp. 493–505. Springer, Heidelberg (2001)

80. Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: Efficient verification of real-time

systems: compact data structure and state-space reduction. In: IEEE Real-Time

Systems Symposium, pp. 14–24. IEEE Computer Society (1997)

81. Larsen, K.G., Mikucionis, M., Nielsen, B., Skou, A.: Testing real-time embed-

ded software using Uppaal-TRON: an industrial case study. In: Wolf, W. (ed.)

EMSOFT, pp. 299–306. ACM (2005)

82. Larsen, K.G., Pearson, J., Weise, C., Yi, W.: Clock difference diagrams. Nord. J.

Comput. 6(3), 271–298 (1999)

83. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. STTT 1(1-2), 134–152

(1997)

Model-Based Verification of Real-Time Systems 107

84. Larsen, K.G., Rasmussen, J.I.: Optimal conditional reachability for multi-priced

timed automata. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441,

pp. 234–249. Springer, Heidelberg (2005)

85. Larsen, K.G., Rasmussen, J.I.: Optimal reachability for multi-priced timed au-

tomata. Theor. Comput. Sci. 390(2-3), 197–213 (2008)

86. Larsen, K.G., Skou, A. (eds.): CAV 1991. LNCS, vol. 575. Springer, Heidelberg

(1992)

87. Lindahl, M., Pettersson, P., Yi, W.: Formal design and analysis of a gear con-

troller. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 281–297. Springer,

Heidelberg (1998)

88. Lu, Q., Madsen, M., Milata, M., Ravn, S., Fahrenberg, U., Larsen, K.G.: Reach-

ability analysis for timed automata using max-plus algebra. J. Log. Algebr. Pro-

gram. 81(3), 298–313 (2012)

89. Maler, O.: Timed automata as an underlying model for planning and scheduling.

In: Fox, M., Coddington, A.M. (eds.) AIPS Workshop on Planning for Temporal

Domains, pp. 67–70 (2002)

90. Maler, O., Larsen, K.G., Krogh, B.H.: On zone-based analysis of duration prob-

abilistic automata. In: INFINITY. EPTCS, vol. 39, pp. 33–46 (2010)

91. Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for timed

systems (an extended abstract). In: Mayr, E.W., Puech, C. (eds.) STACS 1995.

LNCS, vol. 900, Springer, Heidelberg (1995)

92. McDermott-Wells, P.: What is bluetooth? IEEE Potentials 23(5), 33–35 (2005)

93. Møller, J.B., Lichtenberg, J., Andersen, H.R., Hulgaard, H.: Difference decision

diagrams. In: Flum, J., Rodŕıguez-Artalejo, M. (eds.) CSL 1999. LNCS, vol. 1683,

pp. 111–125. Springer, Heidelberg (1999)

94. Ouaknine, J., Worrell, J.: Universality and language inclusion for open and closed

timed automata. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623,

pp. 375–388. Springer, Heidelberg (2003)

95. Panangaden, P.: Labelled Markov Processes. Imperial College Press (2010)

96. Pettersson, P., Yi, W. (eds.): FORMATS 2005. LNCS, vol. 3829. Springer,

Heidelberg (2005)

97. Quaas, K.: On the interval-bound problem for weighted timed automata. In:

Dediu, A.-H., Inenaga, S., Mart́ın-Vide, C. (eds.) LATA 2011. LNCS, vol. 6638,

pp. 452–464. Springer, Heidelberg (2011)

98. Rasmussen, J.I., Larsen, K.G., Subramani, K.: Resource-optimal scheduling using

priced timed automata. In: Jensen, Podelski (eds.) [74], pp. 220–235.

99. Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-box prob-

abilistic systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114,

pp. 202–215. Springer, Heidelberg (2004)

100. Stirling, C.: Modal and temporal logics for processes. In: Moller, F., Birtwistle, G.

(eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 149–237. Springer, Heidelberg

(1996)

101. Teige, T., Eggers, A., Fränzle, M.: Constraint-based analysis of concurrent prob-

abilistic hybrid systems: An application to networked automation systems. Non-

linear Analysis: Hybrid Systems (2011)

102. Tripakis, S., Altisen, K.: On-the-fly controller synthesis for discrete and dense-

time systems. In: Wing, J.M., Woodcock, J. (eds.) FM 1999. LNCS, vol. 1708,

pp. 233–252. Springer, Heidelberg (1999)

108 U. Fahrenberg, K.G.Larsen, and A. Legay

103. van Hoesel, L.F.W., Havinga, P.J.M.: A lightweight medium access protocol

(LMAC) for wireless sensor networks: Reducing preamble transmissions and

transceiver state switches. In: 1st International Workshop on Networked Sens-

ing Systems (INSS 2004), Tokio, Japan, pp. 205–208. Society of Instrument and

Control Engineers (SICE) (2004)

104. Wald, A.: Sequential Analysis. Dover Publications (2004)

105. Yi, W., Pettersson, P., Daniels, M.: Automatic verification of real-time commu-

nicating systems by constraint-solving. In: Hogrefe, D., Leue, S. (eds.) FORTE.

IFIP Conference Proceedings, vol. 6, pp. 243–258. Chapman & Hall (1994)

106. Younes, H.L.S.: Verification and Planning for Stochastic Processes with Asyn-

chronous Events. PhD thesis, Carnegie Mellon (2005)

Unifying Theories of Programming in Isabelle

Simon Foster and Jim Woodcock

Department of Computer Science
University of York
York YO10 5GH

Great Britain
{jim.woodcock,simon.foster}@york.ac.uk

www.cs.york.ac.uk

Abstract. This is a tutorial introduction to the two most basic theories
in Hoare & He’s Unifying Theories of Programming and their mechanisa-
tion in the Isabelle interactive theorem prover. We describe the theories
of relations and of designs (pre-postcondition pairs), interspersed with
their formalisation in Isabelle and example mechanised proofs.

Keywords: Unifying Theories of Programming (UTP), Denotational
Semantics, Laws of Programming, Isabelle, Interactive Theorem
Proving.

Dedication: To Professor He Jifeng on the occasion of his 70th birthday.

1 Preliminaries

Unifying Theories of Programming, originally the work of Hoare & He [15], is a
long-term research agenda that can be summarised as follows. Researchers have
proposed many different programming theories and practitioners have proposed
many different pragmatic programming paradigms; how do we understand the
relationship between them?

UTP can trace its origins back to the work on predicative programming,
which was started by Hehner; see [12] for a summary. It gives three principal
ways to study such relationships: (i) by computational paradigm; (ii) by level of
abstraction; and (iii) by method of presentation.

In Section 2, we introduce the basic concepts of UTP: alphabets, signatures,
and healthiness conditions, and in Section 3 we outline the idea of theory mech-
anisation in Isabelle/HOL. In Section 4, we go on to describe the alphabetised
relational calculus, the formalism used to describe predicates in UTP theories. In
Section 5, we introduce a basic nondeterministic programming language and its
laws of programming. In Section 6, we complete the initial presentation of UTP
by describing the organisaiton of UTP theories into complete lattices. Sections 7
and 8 show how Hoare logic and the weakest precondition calculus can be de-
fined in UTP. Section 9 introduces the UTP theory of designs that capture the
notion of total correctness using assumptions and commitments. The paper ends
with a discussion of related work (Section 11) and some conclusions including
directions for future work (Section 12).

Z. Liu, J. Woodcock, and H. Zhu (Eds.): Theories of Programming, LNCS 8050, pp. 109–155, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

www.cs.york.ac.uk

110 S. Foster and J. Woodcock

Computational Paradigms. UTP groups programming languages according to a
classification by computational model; for example, structured, object-oriented,
functional, or logical. The technique is to identify common concepts and deal
separately with additions and variations. It uses two fundamental scientific prin-
ciples: (i) simplicity of presentation and (ii) separation of concerns.

Abstraction. Orthogonal to this organisation by computational paradigm, lan-
guages could be categorised by their level of abstraction within a particular
paradigm. For example, the lowest level of abstraction may be the platform-
specific technology of an implementation. At the other end of the spectrum,
there might be a very high-level description of overall requirements and how
they are captured and analysed. In between, there will be descriptions of com-
ponents and descriptions of how they will be organised into architectures. Each
of these levels will have interfaces specified by contracts of some kind. UTP gives
ways of mapping between these levels based on a formal notion of refinement
that provides guarantees of correctness all the way from requirements to code.

Presentation. The third classification is by the method chosen to present a
language definition. There are three widely used scientific methods:

1. Denotational, in which each syntactic phrase is given a single mathematical
meaning, a specification is just a set of denotations, and refinement is a
simple correctness criterion of inclusion: every program behaviour is also a
specification behaviour.

2. Algebraic, where no direct meaning is given to the language, but instead
equalities relate different programs with the same meaning.

3. Operational where programs are defined by how they execute on an ide-
alised abstract mathematical machine, giving a useful guide for compilation,
debugging, and testing.

As Hoare & He point out [15], a comprehensive account of a programming the-
ory needs all three kinds of presentation, and the UTP technique allows us to
study differences and mutual embeddings, and to derive each from the others by
mathematical definition, calculation, and proof.

The UTP research agenda has as its ultimate goal to cover all the interesting
paradigms of computing, including both declarative and procedural, hardware
and software. It presents a theoretical foundation for understanding software
and systems engineering, and has been already been exploited in areas such
as hardware ([23,39]), hardware/software co-design ([6]) and component-based
systems ([38]). But it also presents an opportunity when constructing new lan-
guages, especially ones with heterogeneous paradigms and techniques.

Having studied the variety of existing programming languages and identified
the major components of programming languages and theories, we can select
theories for new, perhaps special-purpose languages. The analogy here is of a
theory supermarket, where you shop for exactly those features you need while
being confident that the theories plug-and-play together nicely.

UTP in Isabelle 111

A key concept in UTP is the design: the familiar precondition-postcondition
pair that describes the contract between a programmer and a client. Great use of
this construct is made in the semantics of the Circus family of languages [35,21],
where reactive processes are given a precondition-postcondition semantics that
is then useful in assertional reasoning about state-rich reactive behaviour. Parts
of this introduction are adapted from [36].

2 Introduction to UTP

The book by Hoare & He [15] sets out a research programme to find a com-
mon basis in which to explain a wide variety of programming paradigms: uni-
fying theories of programming (UTP). Their technique is to isolate important
language features, and give them a denotational semantics; algebraic and op-
erational semantics can then be proved sound against this model. This allows
different languages and paradigms to be compared.

The semantic model is an alphabetised version of Tarski’s relational calculus,
presented in a predicative style that is reminiscent of the schema calculus in
the Z [28,33] notation. Each programming construct is formalised as a relation
between an initial and an intermediate or final observation. The collection of
these relations forms a theory of the paradigm being studied, and it contains
three essential parts: an alphabet, a signature, and healthiness conditions.

The alphabet is a set of variable names that gives the vocabulary for the the-
ory being studied. Names are chosen for any relevant external observations of
behaviour. For instance, a program with variables x , y, and z would contain
these names in its alphabet. Theories for particular programming paradigms re-
quire the observation of extra information; some examples are: a flag that says
whether the program has started (ok); the current time (clock); the number of
available resources (res); a trace of the events in the life of the program (tr); a
set of refused events (ref); or a flag that says whether the program is waiting
for interaction with its environment (wait).

The signature gives the rules for the syntax for denoting objects of the theory.

Healthiness conditions identify properties that characterise the predicates of
the theory. Each healthiness condition embodies an important fact about the
computational model for the programs being studied.

Example 1 (Healthiness conditions (Hoare & He)).

1. The variable clock gives us an observation of the current time, which moves
ever onwards. The predicate B specifies this.

C =̂ clock ≤ clock ′

If we add C to the description of some activity, then the variable clock
describes the time observed immediately before the activity starts, whereas

112 S. Foster and J. Woodcock

clock ′ describes the time observed immediately after the activity ends. If we
suppose that P is a healthy program, then we must have that

P ⇒ C

2. The variable ok is used to record whether or not a program has started.
A sensible healthiness condition is that we should not observe a program’s
behaviour until it has started; such programs satisfy the following equation.

P = (ok ⇒ P)

If the program has not started, its behaviour is not described. �

Healthiness conditions can often be expressed in terms of a function φ that makes
a program healthy. There is no point in applying φ twice, since we cannot make
a healthy program even healthier. Therefore, φ must be idempotent: P = φ(P);
this equation characterises the healthiness condition.

For example, we can turn the first healthiness condition above into an equiv-
alent equation, P = P ∧ C , and then the following function on predicates
andC =̂ λX • P ∧ C is the required idempotent. �

Example 2 (Boyle’s Law).

Alphabet. Consider a simple theory to model the behaviour of a gas with regard
to varying temperature and pressure. The physical phenomenon of the behaviour
of the gas is subject to Boyle’s Law:

For a fixed amount of an ideal gas kept at a fixed temperature k , p
(pressure) and V (volume) are inversely proportional (while one doubles,
the other halves).

The alphabet of our theory contains the three mathematical variables described
in Boyle’s Law: k , p, and V . The model’s observations correspond to real-world
observations in what we might term the model-based agenda: the variables k , p,
and V are shared with the real world.

Signature. We now need to describe the syntax used to denote objects of the
theory. There is a requirement that temperature remains constant, so, to use
our model to simulate the effects of Boyle’s law, we need two just operations:
(i) change the pressure; and (ii) change the volume. This pair of operations form
the signature of our theory.

Healthiness Conditions. We know the observations we can make of our theory
and the two operations we can use to change these observations. We now need
to define some healthiness conditions as a way of determining membership of
the theory. We are interested only in gases that obey Boyle’s law, which states
that p ∗V = k must be invariant. Healthiness conditions determine the correct
states of the system, and here we need both static and dynamic invariants:

UTP in Isabelle 113

– The equation p ∗V = k is a static invariant: it applies to a state.
– We also require k to be constant. If we start in the state (k , p,V), where

p ∗V = k , then transit to the state (k ′, p′,V ′), where p′ ∗V ′ = k ′, then we
must have that k ′ = k . This is a dynamic invariant: it applies to a relation.

Some healthiness conditions can be defined using functions. Suppose α(φ) =
{p,V , k}; then define B(φ) = (∃ k • φ) ∧ (k = p ∗ V). Now, regardless of
whether φ is healthy or not, B(φ) certainly is. For example:

φ = (p = 10) ∧ (V = 5) ∧ (k = 100)

B(φ)= (∃ k • φ) ∧ (k = p ∗V)
= (∃ k • (p = 10) ∧ (V = 5) ∧ (k = 100)) ∧ (k = p ∗V)
= (p = 10) ∧ (V = 5) ∧ (k = p ∗V)
= (p = 10) ∧ (V = 5) ∧ (k = 50)

Notice that B(B(φ)) = B(φ). This is known as idempotence: taking the medicine
twice leaves you healthy, no more and no less so than taking the medicine only
once. This give us a simple test for healthiness: φ is already healthy if applying
B leaves it unchanged. That is, if it satisfies the equation φ = B(φ). In this
sense, φ is a fixed point of the idempotent function B.

Consider another observation, that the pressure is between 10 and 20Pa:

ψ = (p ∈ 10 . . 20) ∧ (V = 5)

Notice the fact that φ ⇒ ψ. Now, if we make both φ and ψ healthy, we discover
another fact: B(φ) ⇒ B(ψ).

B(φ) = (p = 10) ∧ (V = 5) ∧ (k = 50)

B(ψ) = (p ∈ 10 . . 20) ∧ (V = 5) ∧ (p ∗V = k)

(p = 10) ∧ (V = 5) ∧ (k = 50) ⇒ (p ∈ 10 . . 20) ∧ (V = 5) ∧ (p ∗V = k)

In fact, B is monotonic in the sense that

∀φ, ψ • (φ ⇒ ψ) ⇒ (B(φ) ⇒ B(ψ))

The most useful healthiness conditions are monotonic idempotent functions,
which leads to some very important mathematical properties concerning com-
plete lattices and Galois connections. �

Relations are used as a semantic model for unified languages of specification and
programming. Specifications are distinguished from programs only by the fact
that the latter use a restricted signature. As a consequence of this restriction,
programs satisfy a richer set of healthiness conditions.

Unconstrained relations are too general to handle the issue of program ter-
mination; they need to be restricted by healthiness conditions. The result is
the theory of designs, which is the basis for the study of the other program-
ming paradigms in [15]. Here, we present the general relational setting, and the
transition to the theory of designs.

114 S. Foster and J. Woodcock

In the next section, we present the most general theory of UTP: the alpha-
betised predicates. In the following section, we establish that this theory is a
complete lattice. Section 9 restricts the general theory to designs. Next, in Sec-
tion 10, we present an alternative characterisation of the theory of designs using
healthiness conditions. Finally, we conclude with a summary and a brief account
of related work.

3 Theory Mechanisation

We have mechanised UTP in the interactive theorem prover Isabelle/HOL [19].
This allows the laws of programming to be mechanically verified, and make them
available for use in mechnical program derivation, verification and refinement.

Interactive theorem provers (ITPs) have been built as an aid to programmers
who wish to prove properties of their programs, such as correctness or refinement.
Core to ITPs are proof goals or obligations: ostensible properties which must be
discharged by the user under a given set of assumptions. A proof of such a goal
consists of a sequence of calculations which transform the assumptions into the
goal. The commands used in this transformation are called proof tactics, which
help the programmer with varying degress of automation.

For instance we may wish to prove the simple property ∃ x .x > 6. In Isabelle
we can formalise such a property and proof in the following manner:

theorem greater-than-six : ∃ x ::nat . x > 6
apply (rule-tac x=7 in exI)
apply (simp)

done

There are two steps to this simple proof. We first invoke a rule called exI which
performs existential introduction: we explictly supply a value for x for which the
property holds, in this case 7. This leaves us with the proof goal 7 > 6, which
can be dispatched by simple arithmetic properties, so we use Isabelle’s built in
simplifier tactic simp to finish the proof. Isabelle then gives the message “No
subgoals!”, which means the proof is complete and we can type done. At this
point the property greater-than-six is entered into the property database for us
to use in future proofs.

Mechanised proofs greatly increase the confidence that a given property is
true. If we try to prove something which is not correct, Isabelle will not let us.
For instance we can try and prove that all numbers are greater than six:

theorem all-greater-than-six : ∀ x ::nat . x > 6
apply (rule-tac allI)
— no possible progress

We cannot make much progress with such a proof – there just isn’t a tactic
to perform this proof as it is incorrect. In fact Isabelle also contains a helpful
counterexample generator called nitpick [3] which can be used to see if a property
can be refuted.

UTP in Isabelle 115

theorem all-greater-than-six : ∀ x ::nat . x > 6
nitpick

When we run this command Isabelle returns “Nitpick found a counterexample:
x = 6”, which clearly shows why this proof is impossible. We therefore terminate
our proof attempt by typing oops. So Isabelle acts as a theoretician’s conscience,
requiring that properties be comprehensively discharged. Isabelle proofs are also
correct-by-construction. All proofs in Isabelle are constructed with respect to a
small number of axioms in the Isabelle core, even those originating from auto-
mated proof tactics. This means that proofs are not predicated on the correctness
of the tools and tactics, but only on the correctness of the underlying axioms
which makes Isabelle proofs trustworthy.

Such proofs can, however, be tedious for a theortician to construct manually
and therefore Isabelle provides a number of automated proof tactics to aid in
proof. For instance the greater-than-six theorem can be proved in one step by
application of Isabelle’s main automated proof method auto. The auto tactic
performs introduction/elimination style classical deduction and simplification in
an effort to prove a goal. The user can also extend auto by adding additional
rules which it can make use of, increasing the scope of problems which it can
deal with.

Additionally, a more recent development is the addition of the sledgeham-
mer [4] tool. Sledgehammer makes use of external first-order automated theorem
provers. An automated theorem prover (ATP) is a system which can provide
solutions to a certain subclass of logical problems. Sledgehammer can make use
of a large number of ATPs, such as E [26], Vampire [24], SPASS [32], Wald-
meister [13] and Z3 [9]. During a proof the user can invoke sledgehammer which
causes the current goal, along with relevant assumptions, to be submitted to the
ATPs which attempt a proof. Upon success, a proof command is returned which
the user can insert to complete the proof.

For instance, let’s say we wish to prove that for any given number there
is an even number greater than it. We can prove such a property by calling
sledgehammer:

theorem greater-than-y-even: ∀ y ::nat . ∃ x > y . (x mod 2 = 0)
sledgehammer

In this case, sledgehammer successfully returns with ostensible proofs from
four of the ATPs. We can select one of these proofs to see if it works:

theorem greater-than-y-even: ∀ y ::nat . ∃ x > y . (x mod 2 = 0)
by (metis Suc-1 even-Suc even-nat-mod-two-eq-zero lessI less-SucI

numeral-1-eq-Suc-0 numeral-One)

The proof command is inserted and successfully discharges the goal, using
a total of 7 laws from Isabelle’s standard libary. In keeping with with proofs
being correct by construction, sledgehammer does not trust the external ATPs
to return sound results, but rather uses them as oracles whose proof output must
be reconstructed with respect to Isabelle’s axioms using the internally verified

116 S. Foster and J. Woodcock

prover metis. So Isabelle is a highly principled theorem prover in which trust can
be placed, but also in which a high degree of proof automation can be obtained.

Sledgehammer works particularly well when used in concert with Isabelle’s
natural language proof script language Isar. Isar allows proof to be written in a
calculational style familiar to mathematicians. The majority of proofs in tutorial
are written Isar, as exemplified in Section 4.

4 The Alphabetised Relational Calculus

The alphabetised relational calculus is similar to Z’s schema calculus [28,33],
except that it is untyped and somewhat simpler. An alphabetised predicate (con-
ventionally written as P ,Q , . . . , true) is an alphabet-predicate pair, where the
predicate’s free variables are all members of the alphabet. Relations are predi-
cates in which the alphabet is composed of undecorated variables (x , y, z , . . .)
and dashed variables (x ′, a′, . . .); the former represent initial observations, and
the latter, observations made at a later intermediate or final point. The alpha-
bet of an alphabetised predicate P is denoted αP , and may be divided into its
before-variables (inαP) and its after-variables (outαP). A homogeneous relation
has outαP = inαP ′, where inαP ′ is the set of variables obtained by dashing
all variables in the alphabet inαP . A condition (b, c, d , . . . , true) has an empty
output alphabet.

Standard predicate calculus operators can be used to combine alphabetised
predicates. Their definitions, however, have to specify the alphabet of the com-
bined predicate. For instance, the alphabet of a conjunction is the union of the
alphabets of its components: α(P ∧ Q) = αP ∪ αQ . Of course, if a variable is
mentioned in the alphabet of both P and Q , then they are both constraining
the same variable.

The alphabetised relational calculus has been mechanised in Isabelle/UTP. An
implementation of any calculus in computer science must make decisions about
how unspecified details are fleshed out. For Isabelle/UTP this includes concretis-
ing the notions of types and values within alphabetised predicates. Isabelle/UTP
predicates are parametrically polymorphic in the type of value which variables
possess, and the user can supply their own notion of value, with an associated
type system and function library. For instance, we are developing a value model
for the VDM and CML specification languages. These will allow users to con-
struct and verify VDM and CML specifications and programs. Indeed it is our
hope that any programming language with a well-specified notion of values and
types can be reasoned about within the UTP.

An Isabelle/UTP value model consists of four things:

1. A type to represent values (α).
2. A type to represent types (τ).
3. A typing relation (: :: α ⇒ τ ⇒ bool), specifies well-typed values.
4. A definedness predicate (D :: α ⇒ bool), specifies well-defined values.

UTP in Isabelle 117

Variables within Isabelle/UTP contain a type which specifies the sort of data the
variable should point to. The typing relation therefore allows us to realise predi-
cates which are well-typed. The definedness predicate is used to determine when
a value has no meaning. For instance it should follow that D(x/0) = false, whilst
D1 = true. A correct program should never yield undefined values, and this predi-
cate allows us to specify when this is and isn’t the case. We omit details of a specific
model since this has no effect on the mechanisation of the laws of UTP.

Isabelle/UTP predicates are modelled as sets of bindings, where a binding is
a mapping from variables to well-typed values. The bindings contained within
a predicate are those bindings which make the predicate true. For instance the
predicate x > 5 is represented by the binding set {(x �→ 6), (x �→ 7), (x �→ 8) · · ·}.
Likewise the predicate true is simply the set of all possible bindings, and false
is the empty set ∅. We then define all the usual operators of predicate calculus
which are used in these notes, including ∨, ∧, ¬, ⇒, ∃ and ∀, most of which
map onto binding set operators. An Isabelle/UTP relation is simply a predicate
consisting only of dashed and undashed variables.

Isabelle/UTP provides a collection of tactics for aiding in automating proof.
The overall aim is to achieve a level of automation such that proof can be at
the same level as the standard pen-and-paper proofs contained herein, or even
entirely automated. The three main tactics we have developed are as follows:

– utp-pred-tac – predicate calculus reasoning
– utp-rel-tac – relational calculus reasoning
– utp-expr-tac – expression evaluation

These tactics perform proof by interpretation. Isabelle/HOL already has a mature
library of laws for reasoning about predicates and binary relations. Thus our
tactics are designed to make use of these laws by identifying suitable subcalculi
within the UTP for which well-known proof procedures exist. The tactics each
also have a version in which auto is called after interpretation, for instance utp-
pred-auto-tac is simply utp-pred-tac followed by auto. These tactics allow us to
easily establish the basic laws of the UTP predicate and relational calculi.

Example 3 (Selection of basic predicate and relational calculus laws).
theorem AndP-assoc: ‘P ∧ (Q ∧ R)‘ = ‘ (P ∧ Q) ∧ R‘
by (utp-pred-tac)

theorem AndP-comm: ‘P ∧ Q‘ = ‘Q ∧ P‘
by (utp-pred-auto-tac)

theorem AndP-OrP-distr : ‘ (P ∨ Q) ∧ R‘ = ‘ (P ∧ R) ∨ (Q ∧ R)‘
by (utp-pred-auto-tac)

theorem AndP-contra: ‘P ∧ ¬ P‘ = false
by (utp-pred-tac)

theorem ImpliesP-export : ‘P ⇒ Q‘ = ‘P ⇒ P ∧ Q‘
by (utp-pred-tac)

118 S. Foster and J. Woodcock

theorem SubstP-IffP : ‘ (P ⇔ Q)[v/x]‘ = ‘P [v/x] ⇔ Q [v/x]‘
by (utp-pred-tac)

theorem SemiR-assoc: P ; (Q ; R) = (P ; Q) ; R
by (utp-rel-auto-tac)

theorem SemiR-SkipR-right: P ; II = P
by (utp-rel-tac)

Using the tactics we have constructed a large library of algebraic laws for propo-
sitional logic and relation algebra. These laws are most easily applied by applica-
tion of sledgehammer, which will find the most appropriate rules to complete the
step of proof. Sledgehammer works particularly well when used in concert with
Isabelle’s natural language proof script language Isar. Isar allows proof to be
written in a calculational style familiar to mathematicians. We will cover these
in detail in the next section.

5 Laws of Programming

A distinguishing feature of UTP is its concern with program development, and
consequently program correctness. A significant achievement is that the notion
of program correctness is the same in every paradigm in [15]: in every state, the
behaviour of an implementation implies its specification.

If we suppose that αP = {a, b, a′, b′}, then the universal closure of P is
given simply as ∀ a, b, a′, b′ • P , which is more concisely denoted as [P]. The
correctness of a program P with respect to a specification S is denoted by S
P (S is refined by P), and is defined as follows.

S P iff [P ⇒ S]

Example 4 (Refinement). Suppose we have the specification x ′ > x ∧ y ′ = y,
and the implementation x ′ = x + 1 ∧ y ′ = y. The implementation’s correctness
is argued as follows.

x ′ > x ∧ y ′ = y x ′ = x + 1 ∧ y ′ = y definition of
= [x ′ = x + 1 ∧ y ′ = y ⇒ x ′ > x ∧ y ′ = y] universal one-point rule, twice
= [x + 1 > x ∧ y = y] arithmetic and reflection
= true

And so, the refinement is valid. �

In the following sections, we introduce the definitions of the constructs of a
nondeterministic sequential programming language, together with their laws of
programming. Each law can be proved correct as a theorem involving the de-
notational semantics given by its definition. The constructs are: (i) conditional
choice; (ii) sequential composition; (iii) assignment; (iv) nondeterminism; and
(v) variable blocks.

UTP in Isabelle 119

5.1 Conditional

As a first example of the definition of a programming constructor, we consider
conditionals. Hoare & He use an infix syntax for the conditional operator, and
define it as follows.

P � b �Q =̂ (b ∧ P) ∨ (¬ b ∧ Q) if αb ⊆ αP = αQ

α(P � b �Q) =̂ αP

Informally, P � b �Q means P if b else Q .
The presentation of conditional as an infix operator allows the formulation of

many laws in a helpful way.

L1 P � b �P = P idempotence
L2 P � b �Q = Q �¬ b �P symmetry
L3 (P � b �Q)� c �R = P � b ∧ c�(Q � c �R) associativity
L4 P � b �(Q � c �R) = (P � b �Q)� c�(P � b �R) distributivity
L5 P � true �Q = P = Q � false �P unit
L6 P � b �(Q � b �R) = P � b �R unreachable branch
L7 P � b �(P � c�Q) = P � b ∨ c �Q disjunction
L8 (P %Q)� b �(R % S) = (P � b �R)% (Q � b � S) interchange
L9 ¬ (P � b �Q) = (¬ P � b �¬ Q) cond. neg.
L10 (P � b �Q) ∧ ¬ (R� b � S) = (P ∧ ¬ R)� b �(Q ∧ ¬ S) comp.
L11 (P ⇒ (Q � b �R)) = ((P ⇒ Q)� b �(P ⇒ R)) cond.-⇒-1
L12 ((P � b �Q) ⇒ R) = ((P ⇒ R)� b �(Q ⇒ R)) cond.-⇒-2
L13 (P � b �Q) ∧ R = (P ∧ R)� b �(Q ∧ R) cond.-conjunction
L14 (P � b �Q) ∨ R = (P ∨ R)� b �(Q ∨ R) cond.-disjunction
L15 b ∧ (P � b �Q) = (b ∧ P) cond.-left-simp
L16 ¬ b ∧ (P � b �Q) = (¬ b ∧ Q) cond.-right-simp
L17 (P � b �Q) = ((b ∧ P)� b �Q) cond.-left
L18 (P � b �Q) = (P � b �(¬ b ∧ Q)) cond.-right

In the Interchange Law (L8), the symbol % stands for any truth-functional
operator. For each operator, Hoare & He give a definition followed by a number
of algebraic laws as those above. These laws can be proved from the definition.
As an example, we present the proof of the Unreachable Branch Law (L6).

Example 5 (Proof of Unreachable Branch (L6)).

(P � b �(Q � b �R)) L2
= ((Q � b �R)�¬ b �P) L3
= (Q � b ∧ ¬ b �(R�¬ b �P)) propositional calculus

120 S. Foster and J. Woodcock

= (Q � false �(R�¬ b �P)) L5
= (R�¬ b �P) L2
= (P � b �R) �

This proof can be mechanised in Isar using the same sequence:

Example 6 (Isar Proof of Unreachable Branch (L6)).

theorem CondR-unreachable-branch:
‘ (P � b � (Q � b � R))‘ = ‘P � b � R‘ (is ?lhs = ?rhs)

proof −
have ?lhs = ‘ ((Q � b � R) � ¬b � P)‘ by (metis CondR-sym)

also have ... = ‘ (Q � b ∧ ¬ b � (R � ¬ b � P))‘ by (metis CondR-assoc)
also have ... = ‘ (Q � false � (R � ¬ b � P))‘ by (utp-pred-tac)
also have ... = ‘ (R � ¬ b � P)‘ by (metis CondR-false)
also have ... = ?rhs by (metis CondR-sym)

finally show ?thesis .
qed

Isar provides an environment to perform proofs in a natural style, by proving
subgoals and the combining these to produce the final goal. The proof command
opens an Isar proof environment for a goal, and have is used to create a subgoal
to act as lemma for the overall goal, which must be followed by a proof, usually
added using the by command. In a calculational proof, we want to transitively
compose the previous subgoal with the next, which is done by prefixing the
subgoal with also. Furthermore Isar provides the . . . variable which contains the
right-hand side of the previous subgoal. Once all steps of the proof are complete
the finally command collects all the subgoals together, and show is used to
prove the overall goal. In the case that no further proof is needed the user can
simply type . to finish. A completed proof environment can then be terminate
with qed.

In this case, the proof proceeds by application of sledgehammer for each line
where an algebraic law is applied, and by utp-pred-tac when propositional calcu-
lus is needed.

Implication is, of course, still the basis for reasoning about the correctness of
conditionals. We can, however, prove refinement laws that support a composi-
tional reasoning technique.

Law 51 (Refinement to conditional)

P (Q � b �R) = (P b ∧ Q) ∧ (P ¬ b ∧ R) �

This result allows us to prove the correctness of a conditional by a case analysis
on the correctness of each branch. Its proof is as follows.

Proof of Law 51

P (Q � b �R) definition of
= [(Q � b �R) ⇒ P] definition of conditional

UTP in Isabelle 121

= [b ∧ Q ∨ ¬ b ∧ R ⇒ P] propositional calculus
= [b ∧ Q ⇒ P] ∧ [¬ b ∧ R ⇒ P] definition of , twice
= (P b ∧ Q) ∧ (P ¬ b ∧ R) �

The corresponding proof in Isar can also be given:

Example 7 (Isar Proof of Law 51).

theorem RefineP-to-CondR:

‘P � (Q � b � R)‘ = ‘ (P � b ∧ Q) ∧ (P � ¬ b ∧ R)‘
proof −
have ‘P � (Q � b � R)‘ = ‘ [(Q � b � R) ⇒ P]‘ by (metis RefP-def)
also have ... = ‘ [(b ∧ Q) ∨ (¬ b ∧ R) ⇒ P]‘ by (metis CondR-def)
also have ... = ‘ [b ∧ Q ⇒ P] ∧ [¬ b ∧ R ⇒ P]‘ by (utp-pred-auto-tac)
also have ... = ‘ (P � b ∧ Q) ∧ (P � ¬ b ∧ R)‘ by (metis RefP-def)
finally show ?thesis .

qed

A compositional argument is also available for conjunctions.

Law 52 (Separation of requirements)

((P ∧ Q) R) = (P R) ∧ (Q R) �

We can prove that an implementation satisfies a conjunction of requirements by
considering each conjunct separately. The omitted proof is left as an exercise for
the interested reader.

5.2 Sequential Composition

Sequence is modelled as relational composition. Two relations may be composed,
providing that the output alphabet of the first is the same as the input alphabet
of the second, except only for the use of dashes.

P(v ′) ; Q(v) =̂ ∃ v0 • P(v0) ∧ Q(v0) if outαP = inαQ ′ = {v ′}
inα(P(v ′) ; Q(v)) =̂ inαP

outα(P(v ′) ; Q(v)) =̂ outαQ

Composition is associative and distributes backwards through the conditional.

L1 P ; (Q ; R) = (P ; Q) ; R associativity
L2 (P � b �Q) ; R = ((P ; R)� b �(Q ; R)) left distribution

The simple proofs of these laws, and those of a few others in the sequel, are
omitted for the sake of conciseness.

122 S. Foster and J. Woodcock

5.3 Assignment

The definition of assignment is basically equality; we need, however, to be careful
about the alphabet. If A = {x , y, . . . , z} and αe ⊆ A, where αe is the set of free
variables of the expression e, the assignment x :=A e of expression e to variable
x changes only x ’s value.

x :=A e =̂ (x ′ = e ∧ y ′ = y ∧ · · · ∧ z ′ = z)

α(x :=A e) =̂ A ∪ A′

There is a degenerate form of assignment that changes no variable: it is called
“skip”, and has the following definition.

IIA =̂ (v ′ = v) if A = {v}
αIIA =̂ A ∪ A′

L1 (x := e) = (x , y := e, y) framing
L2 (x , y, z := e, f , g) = (y, x , z := f , e, g) permutation
L3 (x := e ; x := f (x)) = (x := f (e)) composition
L4 (x := e ; (P � b(x)�Q)) = ((x := e ; P)� b(e)�(x := e ; Q))

L5 P ; IIαP = P = IIαP ; P unit
L6 v ′ = e ; P = P [e/v] where αP = {v , v ′} left-one-point
L7 P ; v = e = P [e/v ′] where αP = {v , v ′} right-one-point

5.4 Nondeterminism

In theories of programming, nondeterminism may arise in one of two ways: either
as the result of run-time factors, such as distributed processing; or as the under-
specification of implementation choices. Either way, nondeterminism is modelled
by choice; the semantics is simply disjunction.

P � Q =̂ P ∨ Q if αP = αQ

α(P � Q) =̂ αP

The alphabet must be the same for both arguments.

L1 P � Q = Q � P symmetry
L2 P � (Q � R) = (P � Q) � R associativity
L3 P � P = P idempotence
L4 P � (Q � R) = (P � Q) � (P � R) distrib.
L5 (P � b �(Q � R)) = (P � b �Q) � (P � b �R) distrib.
L6 (P � Q) ; R = (P ; R) � (Q ; R) distrib.

UTP in Isabelle 123

L7 P ; (Q � R) = (P ; Q) � (P ; R) distrib.
L8 P � (Q � b �R) = ((P � Q)� b �(P � R)) distrib.

The following law gives an important property of refinement: if P is refined by
Q , then offering the choice between P and Q is immaterial; conversely, if the
choice between P and Q behaves exactly like P , so that the extra possibility of
choosing Q does not add any extra behaviour, then Q is a refinement of P .

Law 53 (Refinement and nondeterminism)

P Q = (P � Q = P) �

Proof

P � Q = P antisymmetry
= (P � Q P) ∧ (P P � Q) definition of , twice
= [P ⇒ P � Q] ∧ [P � Q ⇒ P] definition of �, twice
= [P ⇒ P ∨ Q] ∧ [P ∨ Q ⇒ P] propositional calculus
= true ∧ [P ∨ Q ⇒ P] propositional calculus
= [Q ⇒ P] definition of
= P Q �

Another fundamental result is that reducing nondeterminism leads to refinement.

Law 54 (Thin nondeterminism)

P � Q P �

The proof is immediate from properties of the propositional calculus.

5.5 Alphabet Extension

Alphabet extension is a way adding new variables to the alphabet of a predicate,
for example, when new programming variables are declared, as we see in the next
section.

R+x =̂ R ∧ x ′ = x for x , x ′ /∈ αR

α(R+x) =̂ αR ∪ {x , x ′}

5.6 Variable Blocks

Variable blocks are split into the commands var x , which declares and intro-
duces x in scope, and end x , which removes x from scope. Their definitions are
presented below, where A is an alphabet containing x and x ′.

var x =̂ (∃ x • IIA)

end x =̂ (∃ x ′ • IIA)

α(var x) =̂ A \ {x}

α(end x) =̂ A \ {x ′}
The relation var x is not homogeneous, since it does not include x in its alphabet,
but it does include x ′; similarly, end x includes x , but not x ′.

124 S. Foster and J. Woodcock

The results below state that following a variable declaration by a program Q
makes x local in Q ; similarly, preceding a variable undeclaration by a program
Q makes x ′ local.

(var x ; Q) = (∃ x • Q)

(Q ; end x) = (∃ x ′ • Q)

More interestingly, we can use var x and end x to specify a variable block.

(var x ; Q ; end x) = (∃ x , x ′ • Q)

In programs, we use var x and end x paired in this way, but the separation is
useful for reasoning.

The following laws are representative.

L6 (var x ; end x) = II

L8 (x := e ; end x) = (end x)

Variable blocks introduce the possibility of writing programs and equations like
that below.

(var x ; x := 2 ∗ y ; w := 0 ; end x)
= (var x ; x := 2 ∗ y ; end x) ; w := 0

Clearly, the assignment to w may be moved out of the scope of the the declara-
tion of x , but what is the alphabet in each of the assignments to w? If the only
variables are w , x , and y, and suppose that A = {w , y,w ′, y ′}, then the assign-
ment on the right has the alphabet A; but the alphabet of the assignment on
the left must also contain x and x ′, since they are in scope. There is an explicit
operator for making alphabet modifications such as this: alphabet extension. If
the right-hand assignment is P =̂ w :=A 0, then the left-hand assignment is
denoted by P+x .

P+x =̂ P ∧ x ′ = x for x , x ′ /∈ αP

α(P+x) =̂ αP ∪ {x , x ′}
If Q does not mention x , then the following laws hold.

L1 var x ; Q+x ; P ; end x = Q ; var x ; P ; end x

L2 var x ; P ; Q+x ; end x = var x ; P ; end x ; Q

Together with the laws for variable declaration and undeclaration, the laws of
alphabet extension allow for program transformations that introduce new vari-
ables and assignments to them.

6 The Complete Lattice

A lattice is a partially ordered set where all non-empty finite subsets have both a
least upper-bound (join) and a greatest lower-bound (meet). A complete lattice
additionally requires all subsets have both a join and a meet.

UTP in Isabelle 125

Example 8 (Complete lattice: Powerset). The powerset of any set S , ordered by
inclusion, forms a complete lattice. The empty set is the least element and S itself
is the greatest element. Set union is the join operation and set intersection is the
meet. For example, the powerset of {0, 1, 2, 3} ordered by subset, is illustrated in
Figure 1. �

{0,1,2}

{0,1} {0,2} {1,2}

{0} {1} {2}

{}

Fig. 1. 0 . . 3 ordered by inclusion

Example 9 (Complete lattice: Divisible natural numbers). Natural numbers or-
dered by divisibility form a complete lattice. Natural number n is exactly divis-
ible by another natural number m, providing n is an exact multiple of m. This
gives us the following partial order:

m n ⇔ (∃ k • k ×m = n)

In this ordering, 1 is the bottom element (it exactly divides every other number)
and 0 is the top element (it can be divided exactly by every other number). For
example, if we restrict our attention to the numbers between 0 and 1, we obtain
the lattice illustrated in Figure 2. �

0

1

2

3

45

6

7

8

Fig. 2. 0 . . 8 ordered by divisibility

126 S. Foster and J. Woodcock

Isabelle/HOL contains a comprehensive mechanised theory of complete lattices
and fixed-points, which we directly make use of in Isabelle/UTP. We therefore
omit details of these proofs’ mechanisation; the reader can refer directly to the
HOL library.

6.1 Lattice Operators

The refinement ordering is a partial order: reflexive, anti-symmetric, and transi-
tive. Moreover, the set of alphabetised predicates with a particular alphabet A is
a complete lattice under the refinement ordering. Its bottom element is denoted
⊥A, and is the weakest predicate true; this is the program that aborts, and
behaves quite arbitrarily. The top element is denoted &A, and is the strongest
predicate false; this is the program that performs miracles and implements every
specification. These properties of abort and miracle are captured in the following
two laws, which hold for all P with alphabet A.

L1 ⊥A P bottom element
L2 P &A top element

The least upper bound is not defined in terms of the relational model, but by
the law L1 below. This law alone is enough to prove laws L1A and L1B, which
are actually more useful in proofs.

L1 P (� S) iff (P X for all X in S) unbounded nondeterminism
L1A (�S) X for all X in S lower bound
L1B if P X for all X in S , then P (�S) greatest lower bound
L2 (

⊔
S) � Q =

⊔
{P � Q | P ∈ S }

L3 (�S) �Q = �{P �Q | P ∈ S }
L4 (�S) ; Q = �{P ; Q | P ∈ S }
L5 R ; (�S) = �{R ; P | P ∈ S }

These laws characterise basic properties of least upper bounds.
As we saw above, a function F is monotonic if and only if P Q ⇒ F (P)

F (Q). Operators like conditional and sequence are monotonic; negation and
conjunction are not. There is a class of operators that are all monotonic.

Example 10 (Disjunctivity and monotonicity). Suppose that P Q and that %
is disjunctive, or rather, R % (S � T) = (R % S) � (R % T). From this, we can
conclude that P % R is monotonic in its first argument.

UTP in Isabelle 127

P % R assumption (P Q) and Law 53
= (P � Q)% R assumption (% disjunctive)
= (P % R) � (Q % R) thin nondeterminism
 Q % R

A symmetric argument shows that P%Q is also monotonic in its other argument.
In summary, disjunctive operators are always monotonic. The converse is not
true: monotonic operators are not always disjunctive. �

6.2 Recursion

Since alphabetised relations form a complete lattice, every construction defined
solely using monotonic operators has a fixed-point. Even more, a result by
Knaster and Tarski, described below, says that the set of fixed-points form a
complete lattice themselves. The extreme points in this lattice are often of in-
terest; for example, & is the strongest fixed-point of X = P ; X , and ⊥ is the
weakest.

Example 11 (Complete lattice of fixed points). Consider the function f (s) = s ∪
{0} restricted to the domain comprising the powerset of {0, 1, 2}. The complete
lattice of fixed points for f is illustrated in Fig 3. �

{0,1,2}

{0,1} {0,2} {1,2}

{0} {1} {2}

{}

{0,1,2}

{0,1} {0,2} {1,2}

{0} {1} {2}

{}

Fig. 3. Complete lattice of fixed points of the function f (s) = s ∪ {0} (right)

Let be a partial order in a lattice X and let F : X → X be a function over X .
A pre-fixed-point of F is any x such that F (x) x , and a post-fixed-point of f is
any x such that x F (x). The Knaster-Tarski theorem states that a monotonic
function F on a complete lattice has three properties: (i) The function F has
at least one fixed point. (ii) The weakest fixed-point of F coincides with the
greatest lower-bound of the set of its post-fixed-points; similarly, the strongest
fixed-point coincides with the least upper-bound of the set of its pre-fixed-points.
(iii) The set of fixed points of F form a complete lattice.

128 S. Foster and J. Woodcock

The weakest fixed-point of the function F is denoted by μF , and is defined
simply the greatest lower bound (the weakest) of all the pre-fixed-points of F .

μF =̂ �{X | F (X) X }

The strongest fixed-point νF is the dual of the weakest fixed-point.
Hoare & He use weakest fixed-points to define recursion, where they write a

recursive program as μX • C(X), where C(X) is a predicate that is constructed
using monotonic operators and the variable X . As opposed to the variables in the
alphabet, X stands for a predicate itself, called the recursive variable. Intuitively,
occurrences of X in C stand for recursive calls to C itself. The definition of
recursion is as follows.

μX • C(X) =̂ μF where F =̂ λX • C(X)

The standard laws that characterise weakest fixed-points are valid.

L1 μF Y if F (Y) Y weakest fixed-point
L2 F (μF) = μF fixed-point

L1 establishes that μF is weaker than any fixed-point; L2 states that μF is
itself a fixed-point. From a programming point of view, L2 is just the copy rule.

Proof of L1

F (Y) Y set comprehension
= Y ∈ {X | F (X) X } lattice law L1A
⇒ �{X | F (X) X } Y definition of μF

= μF Y �

Proof of L2

μF = F (μF) mutual refinement
= μF F (μF) ∧ F (μF) μF fixed-point law L1
⇐ F (F (μF)) F (μF) ∧ F (μF) μF F monotonic
⇐ F (μF) μF definition
= F (μF) �{X | F (X) X } lattice law L1B
⇐ ∀X ∈ {X | F (X) X } • F (μ f) X comprehension
= ∀X • F (X) X ⇒ F (μF) X transitivity of
⇐ ∀X • F (X) X ⇒ F (μF) F (X) F monotonic
⇐ ∀X • F (X) X ⇒ μF X fixed-point law L1
= true �

UTP in Isabelle 129

6.3 Iteration

The while loop is written b ∗ P : while b is true, execute the program P . This
can be defined in terms of the weakest fixed-point of a conditional expression.

b ∗ P =̂ μX • ((P ; X)� b � II)

Example 12 (Non-termination). If b always remains true, then obviously the
loop b ∗P never terminates, but what is the semantics for this non-termination?
The simplest example of such an iteration is true ∗ II , which has the semantics
μX • X .

μX • X definition of least fixed-point
=�{Y | (λX • X)(Y) Y } function application
=�{Y | Y Y } reflexivity of
=�{Y | true } property of �
= ⊥ �

�

A surprising, but simple, consequence of Example 12 is that a program can
recover from a non-terminating loop!

Example 13 (Aborting loop). Suppose that the sole state variable is x and that
c is a constant.

(b ∗ P); x := c Example 12
= ⊥; x := c definition of ⊥
= true; x := c definition of assignment
= true; x ′ = c definition of composition
= ∃ x0 • true ∧ x ′ = c predicate calculus
= x ′ = c definition of assignment
= x := c �

�

Example 13 is rather disconcerting: in ordinary programming, there is no recov-
ery from a non-terminating loop. It is the purpose of designs to overcome this
deficiency in the programming model; we return to this in Section 9.

7 Hoare Logic

The Hoare triple p {Q} r is a specification of the correctness of a program Q .
Here, p and r are assertions and Q is a command. This is partial correctness

130 S. Foster and J. Woodcock

in the sense that the assertions do not require Q to terminate. Instead, the
correctness statement is that, if Q is started in a state satisfying p, then, if it
does terminate, it will finish in a state satisfying r . We define the meaning of
the Hoare triple as a universal implication:

p {Q} r =̂ [p ∧ Q ⇒ r ′]

This is a correctness assertion that can be expressed as the refinement assertion
(p ⇒ r ′) Q .

The laws that can be proved from this definition form the Axioms of Hoare
Logic:

L1 if p {Q} r and p {Q} s then p {Q} (r ∧ s)

L2 if p {Q} r and q {Q} r then (p ∨ q){Q} r

L3 if p {Q} r then (p ∧ q){Q} (r ∨ s)
L4 r(e) {x := e} r(x)
L5 if (p ∧ b){Q1} r and (p ∧ ¬ b){Q2} r then

p {Q1 � b �Q2 } r

L6 if p {Q1} s and s {Q2} r then p {Q1 ; Q2 } r

L7 if p {Q1} r and p {Q2} r then p {Q1 � Q2 } r

L8 if (b ∧ c){Q} c then c { νX • (Q ; X)� b � II } (¬ b ∧ c)

L9 false {Q} r and p {Q} true and p {false} false and p {II} p

Proof of L1 .

(p {Q} r) ∧ (p {Q} s)

= (Q ⇒ (p ⇒ r ′)) ∧ (Q ⇒ (p ⇒ s ′))
= (Q ⇒ (p ⇒ r ′) ∧ (p ⇒ s ′))
= (Q ⇒ (p ⇒ r ′ ∧ s ′))

= p {Q} (r ∧ s) [�]

Proof of L8 : Suppose that (b ∧ c){Q} c. Define Y =̂ c ⇒ ¬ b′ ∧ c′

c { νX • (Q ; X)� b � II } (¬ b ∧ c)

= Y νX • (Q ; X)� b � II by definition
⇐ Y (Q ; Y)� b � II by sfp L1
= (Y (b ∧ Q) ; Y) ∧ (Y ¬ b ∧ II) refinement to cond
= (Y (b ∧ Q) ; Y) ∧ [¬ b ∧ II ⇒ (c ⇒ ¬ b′ ∧ c′)] by def
= (Y (b ∧ Q) ; Y) ∧ true predicate calculus

= c { b ∧ Q ; Y } (¬ b ∧ c) by definition

⇐ (c { b ∧ Q } c) ∧ (c { c ⇒ ¬ b′ ∧ c′ }¬ b ∧ c) by Hoare L6
= true by assumption and predicate calculus

�

UTP in Isabelle 131

8 Weakest Preconditions

A Hoare triple involves three variables: a precondition, a postcondition, and a
command. If we fix two of these variables, then we can calculate an extreme
solution for the third. For example, if we fix the command and the precondition,
then we calculate the strongest postcondition. Alternatively, we could fix the
command and the postcondition and calculate the weakest precondition, and
that is what we do here. We start with some relational calculus to obtain an
implication with the precondition assertion as the antecedent of an implication
of the form: [p ⇒ R]. If we fix R, then there are perhaps many solutions for p
that satisfy this inequality. Of all the possibilities, the weakest must actually be
equal to R.

p(v){Q(v , v ′)} r(v)

= [Q(v , v ′) ⇒ (p(v) ⇒ r(v ′))]
= [p(v) ⇒ (Q(v , v ′) ⇒ r(v ′))]
= [p(v) ⇒ (∀ v ′ • Q(v , v ′) ⇒ r(v ′))]
= [p(v) ⇒ ¬ (∃ v ′ • Q(v , v ′) ∧ ¬ r(v ′))]
= [p(v) ⇒ ¬ (∃ v0 • Q(v , v0) ∧ ¬ r(v0))]

= [p(v) ⇒ ¬ (Q(v , v ′) ; ¬ r(v))]

So now, if we take W(v) = ¬ (Q(v , v ′) ; ¬ r(v)), then the following Hoare triple
must be valid:

W(v){Q(v , v ′)} r(v)

Here, W is the weakest solution for the precondition for Q to be guaranteed to
achieve r .

We define the predicate transformer wp as a relation between Q and r as
follows:

Q wp r =̂ ¬ (Q ; ¬ r)

The laws for the weakest precondition operator are as follows:

L1 ((x := e)wp r(x)) = r(e)

L2 ((P ; Q)wp r) = (P wp(Q wp r))

L3 ((P � b �Q)wp r) = ((P wp r)� b �(Q wp r))
L4 ((P � Q)wp r) = (P wp r) ∧ (Q wp r)

L5 if [r ⇒ s] then [(Q wp r) ⇒ (Q wp s)]

L6 if [Q ⇒ S] then [(S wp r) ⇒ (Q wp r)]
L7 (Q wp(

∧
R)) =

∧
{ (Q wp r) | r ∈ R }

L8 (Q wp false) = false if Q ; true = true

A representative selection of Isabelle proofs for these rules is shown below. Most
of them can be proved automatically.

132 S. Foster and J. Woodcock

theorem SemiR-wp: (P ; Q) wp R = P wp (Q wp R)

by (utp-rel-auto-tac)

theorem CondR-wp:
assumes
(P ∈ WF-RELATION) (Q ∈ WF-RELATION)

(b ∈ WF-CONDITION) (R ∈ WF-RELATION)

shows ‘ (P � b � Q) wp R‘ = ‘ (P wp R) � b � (Q wp R)‘
proof −
have ‘ (P � b � Q) wp R‘ = ‘¬ ((P � b � Q) ; (¬ R))‘
by (simp add : WeakPrecondP-def)

also from assms have ... = ‘¬ ((P ; (¬ R)) � b � (Q ; (¬ R)))‘
by (simp add :CondR-SemiR-distr closure)

also have ... = ‘ (P wp R) � b � (Q wp R)‘
by (utp-pred-auto-tac)

finally show ?thesis .
qed

theorem ChoiceP-wp:
(P � Q) wp R = ‘ (P wp R) ∧ (Q wp R)‘
by (utp-rel-auto-tac)

theorem ImpliesP-precond-wp:
‘ [R ⇒ S]‘ =⇒ ‘ [(Q wp R) ⇒ (Q wp S)]‘
by (metis ConjP-wp RefP-AndP RefP-def less-eq-WF-PREDICATE-def)

theorem FalseP-wp:
Q ; true = true =⇒ Q wp false = false
by (simp add :WeakPrecondP-def)

9 Designs

The problem pointed out in Section 6—that the relational model does not cap-
ture the semantics of nonterminating programs—can be explained as the failure
of general alphabetised predicates P to satisfy the equation below.

true ; P = true

In particular, in Example 13 we presented a non-terminating loop which, when
followed by an assignment, behaves like the assignment. Operationally, it is as
though the non-terminating loop could be ignored.

The solution is to consider a subset of the alphabetised predicates in which a
particular observational variable, called ok , is used to record information about
the start and termination of programs. The above equation holds for predicates
P in this set. As an aside, we observe that false cannot possibly belong to this
set, since true ; false = false.

The predicates in this set are called designs. They can be split into precond-
ition-postcondition pairs, and are in the same spirit as specification statements

UTP in Isabelle 133

used in refinement calculi. As such, they are a basis for unifying languages and
methods like B [1], VDM [16], Z [33], and refinement calculi [17,2,18].

In designs, ok records that the program has started, and ok ′ records that
it has terminated. These are auxiliary variables, in the sense that they appear
in a design’s alphabet, but they never appear in code or in preconditions and
postconditions.

In implementing a design, we are allowed to assume that the precondition
holds, but we have to fulfill the postcondition. In addition, we can rely on the
program being started, but we must ensure that the program terminates. If the
precondition does not hold, or the program does not start, we are not committed
to establish the postcondition nor even to make the program terminate.

A design with precondition P and postcondition Q , for predicates P and Q
not containing ok or ok ′, is written (P � Q). It is defined as follows.

(P � Q) =̂ (ok ∧ P ⇒ ok ′ ∧ Q)

If the program starts in a state satisfying P , then it will terminate, and on
termination Q will be true.

Example 14 (Specifications). Suppose that we have two program variables, x
and y, and that we want to specify an operation on the state that reduces the
value of x but keeps y constant. Furthermore, suppose that x and y take on
values that are natural numbers. We could specify this operation in Z using an
operation schema[28,33]:

Dec
x , y, x ′, y ′ : N

x > 0
x ′ < x
y ′ = y

This specifies the decrement operation Dec involving the state before the op-
eration (x and y) and the state after the operation x ′ and y ′). The value of x
must be strictly positive, or else the invariant that x is always a natural number
cannot be satisfied. The after-value x ′ must be strictly less than the before-value
x and the value of y is left unchanged. This Z schema defines its operation as a
single relation, just like the alphabetised relations already introduced.

The refinement calculus [17] is similar to Z, except that the relation specifying
a program is slit into a precondition and a postcondition, with the meaning
described above: if the program is activated in a state satisfying the precondition,
then the program must terminate and when it does, the postcondition will be
true. Our operation is specified like this:

Dec =̂ x : [x > 0, x < x0]

Here, the before-value of x in the postcondition is specified as x0 and the after-
value as simply x . The frame, written before the precondition-postcondition

134 S. Foster and J. Woodcock

pair, specifies that only the variable x may be changed; y must remain constant.
Something similar happens in VDM [16]:

operation Dec()
ext wr x: Nat
pre x > 0
post x < x~

In UTP, the same operation is specified using a design; the frame is specified
by saying what must remain constant:

Dec =̂ (x > 0 � x ′ < x)+y

�

9.1 Lattice Operators

Abort and miracle are defined as designs in the following examples. Abort has
precondition false and is never guaranteed to terminate. It is denoted by ⊥D.

Example 15 (Abort).

false � false definition of design
= ok ∧ false ⇒ ok ′ ∧ false false zero for conjunction
= false ⇒ ok ′ ∧ false vacuous implication
= true vacuous implication
= false ⇒ ok ′ ∧ true false zero for conjunction
= ok ∧ false ⇒ ok ′ ∧ true definition of design
= false � true �

�

Miracle has precondition true, and establishes the impossible: false. It is denoted
by &D .

Example 16 (Miracle).

true � false definition of design
= ok ∧ true ⇒ ok ′ ∧ false true unit for conjunction
= ok ⇒ false contradiction
= ¬ ok �

�

Like the set of general alphabetised predicates, designs form a complete lattice.
We have already presented the top and the bottom (miracle and abort).

&D =̂ (true � false) = ¬ ok

⊥D =̂ (false � true) = true

The least upper bound and the greatest lower bound are established in the
following theorem.

UTP in Isabelle 135

Theorem 1. Meets and joins

�i(Pi � Qi) = (
∧

i Pi) � (
∨

i Qi)

�i(Pi � Qi) = (
∨

i Pi) � (
∧

i Pi ⇒ Qi)

As with the binary choice, the choice �i(Pi � Qi) terminates when all the
designs do, and it establishes one of the possible postconditions. The least upper
bound models a form of choice that is conditioned by termination: only the
terminating designs can be chosen. The choice terminates if any of the designs
does, and the postcondition established is that of any of the terminating designs.

Example 17 (Not a design). Notice that designs are not closed under negation.

¬ (P � Q) design
= ¬ (ok ∧ p ⇒ ok ′ ∧ Q) propositional calculus
= ok ∧ p ∧ (ok ′ ⇒ ¬ Q)

Although the negation of a design is not itself a design, this derivation does give
a useful identity. �

9.2 Refinement of Designs

A reassuring result about a design is the fact that refinement amounts to either
weakening the precondition, or strengthening the postcondition in the presence
of the precondition. This is established by the result below.

Law 91 (Refinement of designs)

P1 � Q1 P2 � Q2 = [P1 ∧ Q2 ⇒ Q1] ∧ [P1 ⇒ P2] �

Proof

P1 � Q1 P2 � Q2 definition of
= [(P2 � Q2) ⇒ (P1 � Q1)] definition of design, twice
= [(ok ∧ P2 ⇒ ok ′ ∧ Q2) ⇒ (ok ∧ P1 ⇒ ok ′ ∧ Q1)]

case analysis on ok

= [(P2 ⇒ ok ′ ∧ Q2) ⇒ (P1 ⇒ ok ′ ∧ Q1)] case analysis on ok ′

= [((P2 ⇒ Q2) ⇒ (P1 ⇒ Q1)) ∧ (¬ P2 ⇒ ¬ P1)] propositional calculus
= [((P2 ⇒ Q2) ⇒ (P1 ⇒ Q1)) ∧ (P1 ⇒ P2)] predicate calculus
= [P1 ∧ Q2 ⇒ Q1] ∧ [P1 ⇒ P2] �

9.3 Nontermination

The most important result, however, is that abort is a zero for sequence. This
was, after all, the whole point for the introduction of designs.

136 S. Foster and J. Woodcock

L1 true ; (P � Q) = true left-zero

Proof

true ; (P � Q) property of sequential composition
= ∃ ok0 • true ; (P � Q)[ok0/ok] case analysis
= (true ; (P � Q)[true/ok]) ∨ (true ; (P � Q)[false/ok]) property of design
= (true ; (P � Q)[true/ok]) ∨ (true ; true) relational calculus
= (true ; (P � Q)[true/ok]) ∨ true propositional calculus
= true �

9.4 Assignment

In this new setting, it is necessary to redefine assignment and skip, as those
introduced previously are not designs.

(x := e) =̂ (true � x ′ = e ∧ y ′ = y ∧ · · · ∧ z ′ = z)

IID =̂ (true � II)

Their existing laws hold, but it is necessary to prove them again, as their defi-
nitions changed.

L2 (v := e ; v := f (v)) = (v := f (e))

L3 (v := e ; (P � b(v)�Q)) = ((v := e ; P)� b(e)�(v := e ; Q))

L4 (IID ; (P � Q)) = (P � Q)

As as an example, we present the proof of L2 .

Proof of L2

v := e ; v := f (v) definition of assignment, twice
= (true � v ′ = e) ; (true � v ′ = f (v)) case analysis on ok0

= ((true � v ′ = e)[true/ok ′] ; (true � v ′ = f (v))[true/ok]) ∨
¬ ok ; true definition of design

= ((ok ⇒ v ′ = e) ; (ok ′ ∧ v ′ = f (v))) ∨ ¬ ok relational calculus
= ok ⇒ (v ′ = e ; (ok ′ ∧ v ′ = f (v))) assignment composition
= ok ⇒ ok ′ ∧ v ′ = f (e) definition of design
= (true � v ′ = f (e)) definition of assignment
= v := f (e) �

UTP in Isabelle 137

9.5 Closure under the Program Combinators

If any of the program operators are applied to designs, then the result is also a
design. This follows from the laws below, for choice, conditional, sequence, and
recursion. The choice between two designs is guaranteed to terminate when they
both terminate; since either of them may be chosen, then either postcondition
may be established.

T1 ((P1 � Q1) � (P2 � Q2)) = (P1 ∧ P2 � Q1 ∨ Q2)

If the choice between two designs depends on a condition b, then so do the
precondition and the postcondition of the resulting design.

T2 ((P1 � Q1)� b �(P2 � Q2))
= ((P1 � b �P2) � (Q1 � b �Q2))

A sequence of designs (P1 � Q1) and (P2 � Q2) terminates when P1 holds, and
Q1 is guaranteed to establish P2. On termination, the sequence establishes the
composition of the postconditions.

T3 ((P1 � Q1) ; (P2 � Q2))
= ((¬ (¬ P1 ; true) ∧ (Q1 wpP2)) � (Q1 ; Q2))

where Q1 wpP2 is the weakest precondition under which execution of Q1 is
guaranteed to achieve the postcondition P2. It is defined in [15] as

Q wp P = ¬ (Q ; ¬ P)

The Isabelle proof of this fact is difficult, but rewarding:

Example 18 (Isar Proof of Design Composition).

theorem DesignD-composition:
assumes
(P1 ∈ WF-RELATION) (P2 ∈ WF-RELATION)

(Q1 ∈ WF-RELATION) (Q2 ∈ WF-RELATION)

shows ‘ (P1 � Q1); (P2 � Q2)‘=‘ (¬(¬P1 ; true)) ∧ (Q1 wp P2) � (Q1 ; Q2)‘
proof −
have ‘ (P1 � Q1) ; (P2 � Q2)‘

= ‘∃ okay´´´ . ((P1 � Q1)[$okay´´´/okay´] ; (P2 � Q2)[$okay´´´/okay])‘
by (smt DesignD-rel-closure MkPlain-UNDASHED SemiR-extract-variable assms)

also have ... = ‘ ((P1 � Q1)[false/okay´] ; (P2 � Q2)[false/okay])
∨ ((P1 � Q1)[true/okay´] ; (P2 � Q2)[true/okay])‘

by (simp add :ucases typing usubst defined closure unrest DesignD-def assms)

also have ... = ‘ ((ok ∧ P1 ⇒ Q1) ; (P2 ⇒ ok ′ ∧ Q2)) ∨ ((¬ (ok ∧ P1)) ; true)‘
by (simp add : typing usubst defined unrest DesignD-def OrP-comm assms)

138 S. Foster and J. Woodcock

also have ... = ‘ ((¬ (ok ∧ P1) ; (P2 ⇒ ok ′ ∧ Q2)) ∨ ¬ (ok ∧ P1) ; true)
∨ Q1 ; (P2 ⇒ ok ′ ∧ Q2)‘

by (smt OrP-assoc OrP-comm SemiR-OrP-distr ImpliesP-def)

also have ... = ‘ (¬ (ok ∧ P1) ; true) ∨ Q1 ; (P2 ⇒ ok ′ ∧ Q2)‘
by (smt SemiR-OrP-distl utp-pred-simps(9))

also have ... = ‘ (¬ok ; true) ∨ (¬P1 ; true) ∨ (Q1 ; ¬P2) ∨ (ok ′ ∧ (Q1 ; Q2))‘
proof −
from assms have ‘Q1 ; (P2 ⇒ ok ′ ∧ Q2)‘ = ‘ (Q1 ; ¬P2) ∨ (ok ′ ∧ (Q1 ; Q2))‘
by (smt AndP-comm SemiR-AndP-right-postcond ImpliesP-def SemiR-OrP-distl)

thus ?thesis by (smt OrP-assoc SemiR-OrP-distr demorgan2)
qed

also have ... = ‘ (¬ (¬ P1 ; true) ∧ ¬ (Q1 ; ¬ P2)) � (Q1 ; Q2)‘
proof −
have ‘ (¬ ok) ; true ∨ (¬ P1) ; true‘ = ‘¬ ok ∨ (¬ P1) ; true‘
by (simp add : SemiR-TrueP-precond closure)

thus ?thesis
by (smt DesignD-def ImpliesP-def OrP-assoc demorgan2 demorgan3)

qed

finally show ?thesis by (simp add :WeakPrecondP-def)
qed

Preconditions can be relations, and this fact complicates the statement of Law
T3 ; if the P1 is a condition instead, then the law is simplified as follows.

T3′ ((p1 � Q1) ; (P2 � Q2)) = (p1 ∧ (Q1 wpP2)) � (Q1 ; Q2))

Example 19 (Simplifying condition-composition).

¬ (¬ p1 ; true) composition
= ¬ ∃ v0 • ¬ p1[v0/v

′] ∧ true[v0/v] v not free in true
= ¬ ∃ v0 • ¬ p1[v0/v

′] ∧ true unit for conjunction
= ¬ ∃ v0 • ¬ p1[v0/v

′] v ′ not free in p1

= ¬ ∃ v0 • ¬ p1 v0 not free in p1

= ¬ ¬ p1 propositional calculus
= p1

�

A recursively defined design has as its body a function on designs; as such, it
can be seen as a function on precondition-postcondition pairs (X ,Y). Moreover,
since the result of the function is itself a design, it can be written in terms of a
pair of functions F and G, one for the precondition and one for the postcondition.

UTP in Isabelle 139

As the recursive design is executed, the precondition F is required to hold
over and over again. The strongest recursive precondition so obtained has to
be satisfied, if we are to guarantee that the recursion terminates. Similarly, the
postcondition is established over and over again, in the context of the precon-
dition. The weakest result that can possibly be obtained is that which can be
guaranteed by the recursion.

T4 (μX ,Y • (F (X ,Y) � G(X ,Y))) = (P(Q) � Q)

where P(Y) = (νX • F (X ,Y)) and Q = (μY • P(Y) ⇒ G(P(Y),Y))

Further intuition comes from the realisation that we want the least refined fixed-
point of the pair of functions. That comes from taking the strongest precondition,
since the precondition of every refinement must be weaker, and the weakest
postcondition, since the postcondition of every refinement must be stronger.

10 Healthiness Conditions

Another way of characterising the set of designs is by imposing healthiness con-
ditions on the alphabetised predicates. Hoare & He [15] identify four healthiness
conditions that they consider of interest: H1 to H4 . We discuss each of them.

10.1 H1 : Unpredictability

A relation R is H1 healthy if and only if R = (ok ⇒ R). This means that
observations cannot be made before the program has started. This healthiness
condition is idempotent.

Law 101 (H1 idempotent)

H1 ◦ H1 = H1

Proof:

H1 ◦ H1(P) H1
= ok ⇒ (ok ⇒ P) propositional calculus
= ok ∧ ok ⇒ P propositional calculus
= ok ⇒ P H1
= H1(P) �

140 S. Foster and J. Woodcock

Example 20 (Examples of H1 relations).

1. Abort, the bottom of the lattice, is healthy.

H1(true) = (ok ⇒ true) = true

2. Miracle, the top of the lattice, is healthy.

H1(¬ ok) = (ok ⇒ ¬ ok) = ¬ ok

3. The following relation is healthy: (ok ∧ x �= 0 ⇒ x ′ < x).

H1(ok ∧ x �= 0 ⇒ x ′ < x)

= ok ⇒ (ok ∧ x �= 0 ⇒ x ′ < x)

= (ok ∧ x �= 0 ⇒ x ′ < x)

4. The following design is healthy: (x �= 0 � x ′ < x).

H1(x �= 0 � x ′ < x) = ok ⇒ (x �= 0 � x ′ < x) = (x �= 0 � x ′ < x)

�

If R is H1 -healthy, then R also satisfies the left-zero and unit laws below.

true ; R = true and IID ; R = R

We now present a proof of these results. First, we prove that the algebraic unit
and zero properties guarantee H1 -healthiness.

Designs with Left-Units and Left-Zeros Are H1.

R assumption (IID is left-unit)
= IID ; R IID definition
= (true � IID) ; R design definition
= (ok ⇒ ok ′ ∧ II) ; R relational calculus
= (¬ ok ; R) ∨ (II ; R) relational calculus
= (¬ ok ; true ; R) ∨ (II ; R) assumption (true is left-zero)
= ¬ ok ∨ (II ; R) assumption (II is left-unit)
= ¬ ok ∨ R relational calculus
= ok ⇒ R �

The Isabelle proof has a few more steps, but follows a similar line of reasoning.
We require that P be a well-formed relation, consisting of only undashed and
dashed variables. We also prefer the use of the simplifier, executed by simp, to
discharge each of the steps.

UTP in Isabelle 141

theorem H1-algebraic-intro:
assumes

R ∈ WF-RELATION
(true ; R = true)
(IID ; R = R)

shows R is H1
proof −
let ?vs = REL-VAR − {okay ,okay´}
have R = IID ; R by (simp add : assms)
also have ... = ‘ (true � II ?vs) ; R‘
by (simp add :SkipD-def)

also have ... = ‘ (ok ⇒ (ok ′ ∧ II ?vs)) ; R‘
by (simp add :DesignD-def)

also have ... = ‘ (ok ⇒ (ok ∧ ok ′ ∧ II ?vs)) ; R‘
by (smt ImpliesP-export)

also have ... = ‘ (ok ⇒ (ok ∧ $okay´ = $okay ∧ II ?vs)) ; R‘
by (simp add :VarP-EqualP-aux typing defined , utp-rel-auto-tac)

also have ... = ‘ (ok ⇒ II) ; R‘
by (simp add :SkipRA-unfold [THEN sym]

SkipR-as-SkipRA ImpliesP-export[THEN sym])

also have ... = ‘ ((¬ ok) ; R ∨ R)‘
by (simp add :ImpliesP-def SemiR-OrP-distr)

also have ... = ‘ (((¬ ok) ; true) ; R ∨ R)‘
by (simp add :SemiR-TrueP-precond closure)

also have ... = ‘ ((¬ ok) ; true ∨ R)‘
by (simp add :SemiR-assoc[THEN sym] assms)

also have ... = ‘ok ⇒ R‘
by (simp add :SemiR-TrueP-precond closure ImpliesP-def)

finally show ?thesis by (simp add :is-healthy-def H1-def)
qed

Next, we prove the implication the other way around: that H1 -healthy predicates
have the unit and zero properties.

H1 Predicates Have a Left-Zero.

true ; R assumption (R is H1)
= true ; (ok ⇒ R) relational calculus
= (true ; ¬ ok) ∨ (true ; R) relational calculus
= true ∨ (true ; R) relational calculus
= true �

. . . and the same in Isabelle:

142 S. Foster and J. Woodcock

theorem H1-left-zero:
assumes

P ∈ WF-RELATION
P is H1

shows true ; P = true
proof −
from assms have ‘true ; P‘ = ‘true ; (ok ⇒ P)‘
by (simp add :is-healthy-def H1-def)

also have ... = ‘true ; (¬ ok ∨ P)‘
by (simp add :ImpliesP-def)

also have ... = ‘ (true ; ¬ ok) ∨ (true ; P)‘
by (simp add :SemiR-OrP-distl)

also from assms have ... = ‘true ∨ (true ; P)‘
by (simp add :SemiR-precond-left-zero closure)

finally show ?thesis by simp
qed

H1 Predicates Have a Left-Unit.

IID ; R definition of IID

= (true � IID) ; R definition of design
= (ok ⇒ ok ′ ∧ II) ; R relational calculus
= (¬ ok ; R) ∨ (ok ∧ R) relational calculus
= (¬ ok ; true ; R) ∨ (ok ∧ R) true is left-zero
= (¬ ok ; true) ∨ (ok ∧ R) relational calculus
= ¬ ok ∨ (ok ∧ R) relational calculus
= ok ⇒ R R is H1
= R �

. . . and the same in Isabelle:

theorem H1-left-unit :
assumes

P ∈ WF-RELATION
P is H1

shows IID ; P = P
proof −
let ?vs = REL-VAR − {okay ,okay´}
have IID ; P = ‘ (true � II ?vs) ; P‘ by (simp add :SkipD-def)
also have ... = ‘ (ok ⇒ ok ′ ∧ II ?vs) ; P‘
by (simp add :DesignD-def)

also have ... = ‘ (ok ⇒ ok ∧ ok ′ ∧ II ?vs) ; P‘
by (smt ImpliesP-export)

also have ... = ‘ (ok ⇒ ok ∧ $okay´ = $okay ∧ II ?vs) ; P‘
by (simp add :VarP-EqualP-aux , utp-rel-auto-tac)

also have ... = ‘ (ok ⇒ II) ; P‘
by (simp add : SkipRA-unfold [of okay] ImpliesP-export [THEN sym])

also have ... = ‘ ((¬ ok) ; P ∨ P)‘

UTP in Isabelle 143

by (simp add :ImpliesP-def SemiR-OrP-distr)
also have ... = ‘ (((¬ ok) ; true) ; P ∨ P)‘
by (metis NotP-cond-closure SemiR-TrueP-precond VarP-cond-closure)

also have ... = ‘ ((¬ ok) ; (true ; P) ∨ P)‘
by (metis SemiR-assoc)

also from assms have ... = ‘ (ok ⇒ P)‘
by (simp add :H1-left-zero ImpliesP-def SemiR-TrueP-precond closure)

finally show ?thesis using assms
by (simp add :H1-def is-healthy-def)

qed

This means that we can use the left-zero and unit laws to exactly characterise
H1 healthiness. We can assert this equivalence property in Isabelle by combining
the three theorems:

theorem H1-algebraic:
assumes R ∈ WF-RELATION
shows R is H1 ←→ (true ; R = true) ∧ (IID ; R = R)

by (metis H1-algebraic-intro H1-left-unit H1-left-zero assms)

The design identity is the obvious lifting of the relational identity to a de-
sign; that is, it has precondition true and the postcondition is the relational
identity. There’s a simple relationship between them: H1 .

Law 102 (Relational and design identities)

IID = H1(II)

Proof:

IID IID

= (true � II) design
= (ok ⇒ ok ′ ∧ II) II, prop calculus
= (ok ⇒ II) H1
= H1(II) �

theorem H1-algebraic-intro:
assumes

R ∈ WF-RELATION
(true ; R = true)
(IID ; R = R)

shows R is H1
proof −
let ?vs = REL-VAR − {okay ,okay´}
have R = IID ; R by (simp add : assms)
also have ... = ‘ (true � II ?vs) ; R‘
by (simp add :SkipD-def)

also have ... = ‘ (ok ⇒ (ok ′ ∧ II ?vs)) ; R‘
by (simp add :DesignD-def)

also have ... = ‘ (ok ⇒ (ok ∧ ok ′ ∧ II ?vs)) ; R‘

144 S. Foster and J. Woodcock

by (smt ImpliesP-export)
also have ... = ‘ (ok ⇒ (ok ∧ $okay´ = $okay ∧ II ?vs)) ; R‘
by (simp add :VarP-EqualP-aux typing defined , utp-rel-auto-tac)

also have ... = ‘ (ok ⇒ II) ; R‘
by (simp add :SkipRA-unfold [THEN sym]

SkipR-as-SkipRA ImpliesP-export[THEN sym])

also have ... = ‘ ((¬ ok) ; R ∨ R)‘
by (simp add :ImpliesP-def SemiR-OrP-distr)

also have ... = ‘ (((¬ ok) ; true) ; R ∨ R)‘
by (simp add :SemiR-TrueP-precond closure)

also have ... = ‘ ((¬ ok) ; true ∨ R)‘
by (simp add :SemiR-assoc[THEN sym] assms)

also have ... = ‘ok ⇒ R‘
by (simp add :SemiR-TrueP-precond closure ImpliesP-def)

finally show ?thesis by (simp add :is-healthy-def H1-def)
qed

10.2 H2 : Possible Termination

The second healthiness condition is [R[false/ok ′] ⇒ R[true/ok ′]]. This means
that if R is satisfied when ok ′ is false, it is also satisfied then ok ′ is true. In
other words, R cannot require nontermination, so that it is always possible to
terminate.

Example 21 (Example H2 predicates).

1. ⊥D

⊥f
D = truef = true = truet = ⊥t

D

2. &D

&f = (¬ ok)f = ¬ ok = (¬ ok)t = &t
D

3. (ok ′ ∧ (x ′ = 0))

(ok ′ ∧ (x ′ = 0))f = false ⇒ (x ′ = 0) = (ok ′ ∧ x ′ = 0)t

4. (x �= 0 � x ′ < x)

(x �= 0 � x ′ < x)f

= (ok ∧ x �= 0 ⇒ ok ′ ∧ x ′ < x)f

= (ok ∧ x �= 0 ⇒ false)
⇒ (ok ∧ x �= 0 ⇒ x ′ < x)

= (ok ∧ x �= 0 ⇒ ok ′ ∧ x ′ < x)t

= (x �= 0 � x ′ < x)t

�

UTP in Isabelle 145

The healthiness condition H2 is not obviously characterised by a monotonic
idempotent function. We now define the idempotent J for alphabet {ok , ok ′, v , v ′},
and use this in an alternative definition of H2 .

J =̂ (ok ⇒ ok ′) ∧ v ′ = v

The most interesting property of J is the following algebraic law that allows a
relation to be split into two complementary parts, one that definitely aborts and
one that does not. Note the asymmetry between the two parts.

Law 103 (J -split) For all relations with ok and ok ′ in their alphabet,

P ; J = P f ∨ (P t ∧ ok ′)

Proof:

P ; J J
= P ; (ok ⇒ ok ′) ∧ v ′ = v propositional calculus
= P ; (ok ⇒ ok ∧ ok ′) ∧ v ′ = v propositional calculus
= P ; (¬ ok ∨ ok ∧ ok ′) ∧ v ′ = v relational calculus
= P ; ¬ ok ∧ v ′ = v

∨
(P ; ok ∧ v ′ = v) ∧ ok ′

right one-point, twice

= P f ∨ (P t ∧ ok ′) �

Likewise this proof can be mechanised in Isabelle, though a little more detailed
is required. In particular, we treat the equalities of each sides of the disjunction
separately in the final step.

theorem J-split :
assumes P ∈ WF-RELATION
shows ‘P ; J‘ = ‘P f ∨ (P t ∧ ok ′)‘

proof −
let ?vs = (REL-VAR − {okay ,okay´})

have ‘P ; J‘ = ‘P ; ((ok ⇒ ok ′) ∧ II ?vs)‘ by (simp add :J-pred-def)

also have ... = ‘P ; ((ok ⇒ ok ∧ ok ′) ∧ II ?vs)‘ by (smt ImpliesP-export)

also have ... = ‘P ; ((¬ ok ∨ (ok ∧ ok ′)) ∧ II ?vs)‘ by (utp-rel-auto-tac)

also have ... = ‘ (P ; (¬ ok ∧ II ?vs)) ∨ (P ; (ok ∧ (II ?vs ∧ ok ′)))‘
by (smt AndP-OrP-distr AndP-assoc AndP-comm SemiR-OrP-distl)

also have ... = ‘P f ∨ (P t ∧ ok ′)‘
proof −
from assms have ‘ (P ; (¬ ok ∧ II ?vs))‘ = ‘P f ‘
by (simp add : SemiR-left-one-point SkipRA-right-unit)

146 S. Foster and J. Woodcock

moreover have ‘ (P ; (ok ∧ II ?vs ∧ ok ′))‘ = ‘ (P t ∧ ok ′)‘
proof −
from assms have ‘ (P ; (ok ∧ II ?vs ∧ ok ′))‘ = ‘ (P ; (ok ∧ II ?vs)) ∧ ok ′‘
by (utp-xrel-auto-tac)

moreover from assms have ‘ (P ; (ok ∧ II ?vs))‘ = ‘P t ‘
by (simp add : SemiR-left-one-point SkipRA-right-unit)

finally show ?thesis .
qed

ultimately show ?thesis by simp
qed

finally show ?thesis .
qed

The two characterisations of H2 are equivalent.

Law 104 (H2 equivalence)

(P = P ; J) = [P f ⇒ P t]

Proof:

(P = P ; J) J -split

= (P = P f ∨ (P t ∧ ok ′)) ok ′ split

= (P = P f ∨ (P t ∧ ok ′))f ∧ (P = P f ∨ (P t ∧ ok ′))t subst.

= (P f = P f ∨ (P t ∧ false)) ∧ (P t = P f ∨ (P t ∧ true)) prop calc.

= (P f = P f) ∧ (P t = P f ∨ P t) reflection

= (P t = P f ∨ P t) predicate calculus

= [P f ⇒ P t] �

. . . and in Isabelle:

theorem H2-equivalence:
assumes R ∈ WF-RELATION
shows R is H2 ←→ [Rf ⇒ Rt]

proof −
from assms have ‘ [R ⇔ (R ; J)]‘ = ‘ [R ⇔ (Rf ∨ (Rt ∧ ok ′))]‘
by (simp add :J-split)

also have ... = ‘ [(R ⇔ Rf ∨ Rt ∧ ok ′)f ∧ (R ⇔ Rf ∨ Rt ∧ ok ′)t]‘
by (simp add :ucases)

also have ... = ‘ [(Rf ⇔ Rf) ∧ (Rt ⇔ Rf ∨ Rt)]‘
by (simp add :usubst closure typing defined)

UTP in Isabelle 147

also have ... = ‘ [Rt ⇔ (Rf ∨ Rt)]‘
by (utp-pred-tac)

finally show ?thesis
by (utp-pred-auto-tac)

qed

J itself is H2 healthy.

Law 105 (J is H2)

J = H2(J)

Proof:

H2(J) J -split

= J f ∨ (J t ∧ ok ′) J
= (¬ ok ∧ v ′ = v) ∨ (ok ′ ∧ v ′ = v) propositional calculus
= (¬ ok ∨ ok ′) ∧ v ′ = v propositional calculus
= (ok ⇒ ok ′) ∧ v ′ = v J
= J �

. . . and in Isabelle:

theorem J-is-H2 :
H2 (J) = J

proof −
let ?vs = (REL-VAR − {okay ,okay´})
have H2 (J) = ‘J f ∨ (J t ∧ ok ′)‘
by (metis H2-def J-closure J-split)

also have ... = ‘ ((¬ ok ∧ II ?vs) ∨ II ?vs ∧ ok ′)‘
by (simp add :J-pred-def usubst typing defined closure)

also have ... = ‘ (¬ ok ∨ ok ′) ∧ II ?vs‘
by (utp-pred-auto-tac)

also have ... = ‘ (ok ⇒ ok ′) ∧ II ?vs‘
by (utp-pred-tac)

finally show ?thesis
by (metis J-pred-def)

qed

J is idempotent.

148 S. Foster and J. Woodcock

Law 106 (H2-idempotent)

H2 ◦ H2 = H2

Proof:

H2 ◦ H2(P) H2
= (P ; J) ; J associativity
= P ; (J ; J) H2
= P ; H2(J) J H2 healthy
= P ; J H2
= P �

. . . and in Isabelle:

theorem H2-idempotent :
‘H2 (H2 R)‘ = ‘H2 R‘

proof −
have ‘H2 (H2 R)‘ = ‘ (R ; J) ; J‘
by (metis H2-def)

also have ... = ‘R ; (J ; J)‘
by (metis SemiR-assoc)

also have ... = ‘R ; H2 J‘
by (metis H2-def)

also have ... = ‘R ; J‘
by (metis J-is-H2)

also have ... = ‘H2 R‘
by (metis H2-def)

finally show ?thesis .
qed

Any predicate that insists on proper termination is healthy.

Example 22 (Example: H2-substitution).

ok ′ ∧ (x ′ = 0) is H2

Proof:

(ok ′ ∧ (x ′ = 0))f ⇒ (ok ′ ∧ (x ′ = 0))t

= (false ∧ (x ′ = 0) ⇒ true ∧ (x ′ = 0))

= (false ⇒ (x ′ = 0))

= true

�

The proof could equally well be done with the alternative characterisation of
H2 .

UTP in Isabelle 149

Example 23. Example: H2 -J

ok ′ ∧ (x ′ = 0) is H2

Proof:

ok ′ ∧ (x ′ = 0) ; J J -splitting

= (ok ′ ∧ (x ′ = 0))f ∨ ((ok ′ ∧ (x ′ = 0))t ∧ ok ′) subst.
= (false ∧ (x ′ = 0)) ∨ (true ∧ (x ′ = 0) ∧ ok ′) prop. calculus
= false ∨ ((x ′ = 0) ∧ ok ′) propositional calculus
= ok ′ ∧ (x ′ = 0)

�

If a relation is both H1 and H2 healthy, then it is a design. We prove this by
showing that the relation can be expressed syntactically as a design.

Law 107 (H1-H2 relations are designs)

P assumption: P is H1
= ok ⇒ P assumption: P is H2
= ok ⇒ P ; J J -splitting

= ok ⇒ P f ∨ (P t ∧ ok ′) propositional calculus

= ok ∧ ¬ P f ⇒ ok ′ ∧ P t design

= ¬ P f � P t �

Likewise this proof can be formalised in Isabelle:

theorem H1-H2-is-DesignD :

assumes
P ∈ WF-RELATION
P is H1
P is H2

shows P = ‘ (¬ P f) � P t ‘
proof −
have P = ‘ok ⇒ P‘
by (metis H1-def assms(2) is-healthy-def)

also have ... = ‘ok ⇒ (P ; J)‘
by (metis H2-def assms(3) is-healthy-def)

also have ... = ‘ok ⇒ (P f ∨ (P t ∧ ok ′))‘
by (metis J-split assms(1))

also have ... = ‘ok ∧ (¬ P f) ⇒ ok ′ ∧ P t ‘
by (utp-pred-auto-tac)

150 S. Foster and J. Woodcock

also have ... = ‘¬ P f � P t ‘
by (metis DesignD-def)

finally show ?thesis .
qed

Designs are obviously H1 ; we now show that they must also be H2 . These two
results complete the proof that H1 and H2 together exactly characterise designs.

Law 108 Designs are H2

(P � Q)f definition of design
= (ok ∧ P ⇒ false) propositional calculus
⇒ (ok ∧ P ⇒ Q) definition of design
= (P � Q)t �

Miracle, even though it does not mention ok ′, is H2 -healthy.

Example 24 (Miracle is H2).

¬ ok miracle
= true � false designs are H2
= H2(true � false) miracle
= H2(¬ ok)

�

The final thing to prove is that it does not matter in which order we apply H1
and H2 ; the key point is that a design requires both properties.

Law 109 (H1-H2 commute)

H1 ◦ H2(P) H1, H2
= ok ⇒ P ; J propositional calculus
= ¬ ok ∨ P ; J miracle is H2
= H2(¬ ok) ∨ P ; J H2
= ¬ ok ; J ∨ P ; J relational calculus
= (¬ ok ∨ P) ; J propositional calculus
= (ok ⇒ P) ; J H1, H2
= H2 ◦ H1(P) �

10.3 H3 : Dischargeable Assumptions

The healthiness condition H3 is specified as an algebraic law: R = R ; IID . A
design satisfies H3 exactly when its precondition is a condition. This is a very

UTP in Isabelle 151

desirable property, since restrictions imposed on dashed variables in a precondi-
tion can never be discharged by previous or successive components. For example,
x ′ = 2 � true is a design that can either terminate and give an arbitrary value
to x , or it can give the value 2 to x , in which case it is not required to terminate.
This is a rather bizarre behaviour.

A Design Is H3 iff Its Assumption Is a Condition.

((P � Q) = ((P � Q) ; IID)) definition of design-skip
= ((P � Q) = ((P � Q) ; (true � IID))) sequence of designs
= ((P � Q) = (¬ (¬ P ; true) ∧ ¬ (Q ; ¬ true) � Q ; IID)) skip unit
= ((P � Q) = (¬ (¬ P ; true) � Q)) design equality
= (¬ P = ¬ P ; true) propositional calculus
= (P = P ; true) �

The final line of this proof states that P = ∃ v ′ • P , where v ′ is the output
alphabet of P . Thus, none of the after-variables’ values are relevant: P is a
condition only on the before-variables.

10.4 H4 : Feasibility

The final healthiness condition is also algebraic: R ; true = true. Using the
definition of sequence, we can establish that this is equivalent to ∃ v ′ • R, where
v ′ is the output alphabet of R. In words, this means that for every initial value
of the observational variables on the input alphabet, there exist final values for
the variables of the output alphabet: more concisely, establishing a final state is
feasible. The design &D is not H4 healthy, since miracles are not feasible.

11 Related Work

Our mechanisation of UTP theories of relations and of designs and our future
mechanisation of the theory of reactive processes form the basis for reasoning
about a family of modern multi-paradigm modelling languages. This family con-
tains both Circus [34,35] and CML [37]: Circus combines Z [28] and CSP [14],
whilst CML combines VDM [16] and CSP. Both languages are based firmly
on the notion of refinement [25] and have a variety of extensions with ad-
ditional computational paradigms, including real-time [27,31], object orienta-
tion [8], synchronicity [5], and process mobility [29,30]. Further information on
Circus may be found at www.cs.york.ac.uk/circus. CML is being developed
as part of the European Framework 7 COMPASS project on Comprehensive
Modelling for Advanced Systems of Systems (grant Agreement: 287829). See
www.compass-research.eu.

Our implementation of UTP in Isabelle is a natural extension of the work in
Oliveira’s PhD thesis [20], which is extended in [22], where UTP is embedded in

www.cs.york.ac.uk/circus
www.compass-research.eu

152 S. Foster and J. Woodcock

ProofPowerZ, an extension of ProofPower/HOL supporting the Z notation, to
mechanise the definition of Circus.

Feliachi et al. [10] have developed a machine-checked, formal semantics based
on a shallow embedding of Circus in Isabelle/Circus, a semantic theory of UTP
also based on Isabelle/HOL. The definitions of Circus are based on those in [21],
which are in turn based on those in [35]. Feliachi et al. derive proof rules from
this semantics and implement tactic support for proofs of refinement for Circus
processes involving both data and behavioral aspects. This proof environment
supports a syntax for the semantic definitions that is close to textbook presen-
tations of Circus.

Our work differs from that of Feliachi et al. in three principle ways:

1. Alphabets. We have a unified type for predicates where alphabets are repre-
sented explicitly. Predicates with different alphabets can be composed with-
out the need for type-level coercions, and variables can be easily added and
removed.

2. Expressivity. Our encoding of predicates is highly flexible, providing sup-
port for many different operators and subtheories, of which binary relations
is only one. We also can support complex operators on variables, in partic-
ular we provide a unified notion of substitution. The user can also supply
their own type system for values, meaning we are not necessarily limited to
the type-system of HOL.

3. Meta-theoretic Proofs. We give a deeper semantics to operators such as
sequential composition and the quantifiers, rather than identifying them with
operators of HOL, and therefore support proofs about the operators of the
UTP operators. This meta-level reasoning allows us to perform soundness
proofs about the denotational semantics of our language.

12 Conclusion

We have mechanised UTP, including alphabetised predicates, relations, the op-
erators of imperative programming, and the theory of designs. All the proofs
contained in this paper have been mechanised within our library, including those
where the proofs have been omitted. Thus far, we have mechanised over 200 laws
about the basic operators and over 40 laws about the theory of designs. The UTP
library can therefore be used to perform basic static analysis of imperative pro-
grams. The proof automation level is high due to the inclusion of our proof
tactics and the power of sledgehammer combined with the algebraic laws of the
UTP.

There are several directions for future work:

– Mechanise additional theories, for instance CSP and Circus, which will give
the ability to reason about reactive programs with concurrency.

– Complete the VDM/CML model, which includes implementing all the stan-
dard VDM library functions, so we can support verification of VDM speci-
fications.

UTP in Isabelle 153

– Implement proof obligations for UTP expressions, so that H4 healthiness of
a program can be verified.

– Implement Z-schema types, which allow the specification of complex data
structures.

– Implement the complete refinement calculus by mechanising refinement laws
in Isabelle/UTP. This will allow the derivation of programs from high-level
specifications, supported by mechanised proof.

All of this is leading towards proof support for CML, so that we can prove the
validity of complex specifications of systems of systems in the COMPASS tool.

References

1. Abrial, J.-R.: The B-Book: Assigning Progams to Meanings. Cambridge University
Press (1996)

2. Back, R.J.R., Wright, J.: Refinement Calculus: A Systematic Introduction. Grad-
uate Texts in Computer Science. Springer (1998)

3. Blanchette, J.C., Nipkow, T.: Nitpick: A counterexample generator for higher-order
logic based on a relational model finder. In: Kaufmann, M., Paulson, L.C. (eds.)
ITP 2010. LNCS, vol. 6172, pp. 131–146. Springer, Heidelberg (2010)

4. Blanchette, J.C., Bulwahn, L., Nipkow, T.: Automatic Proof and Disproof in Is-
abelle/HOL. In: Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCoS 2011. LNCS,
vol. 6989, pp. 12–27. Springer, Heidelberg (2011) §

5. Butterfield, A., Sherif, A., Woodcock, J.: Slotted-Circus. In: Davies, J., Gibbons,
J. (eds.) IFM 2007. LNCS, vol. 4591, pp. 75–97. Springer, Heidelberg (2007)

6. Beg, A., Butterfield, A.: Linking a state-rich process algebra to a state-free algebra
to verify software/hardware implementation. In: Proceedings of the 8th Interna-
tional Conference on Frontiers of Information Technology, FIT 2010, article 47
(2010)

7. Cavalcanti, A., Woodcock, J.: A tutorial introduction to CSP in Unifying Theories
of Programming. In: Cavalcanti, A., Sampaio, A., Woodcock, J. (eds.) PSSE 2004.
LNCS, vol. 3167, pp. 220–268. Springer, Heidelberg (2006)

8. Cavalcanti, A., Sampaio, A., Woodcock, J.: Unifying classes and processes. Software
and System Modeling 4(3), 277–296 (2005)

9. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

10. Feliachi, A., Gaudel, M.-C., Wolff, B.: Isabelle/Circus: A Process Specification and
Verification Environment. In: Joshi, R., Müller, P., Podelski, A. (eds.) VSTTE
2012. LNCS, vol. 7152, pp. 243–260. Springer, Heidelberg (2012)

11. Harwood, W., Cavalcanti, A., Woodcock, J.: A theory of pointers for the UTP.
In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H. (eds.) ICTAC 2008. LNCS,
vol. 5160, pp. 141–155. Springer, Heidelberg (2008)

12. Hehner, E.C.R.: Retrospective and prospective for Unifying Theories of Program-
ming. In: Dunne, S., Stoddart, B. (eds.) UTP 2006. LNCS, vol. 4010, pp. 1–17.
Springer, Heidelberg (2006)

13. Hillenbrand, T., Buch, A., Vogt, R., Löchner, B.: Waldmeister: High-performance
equational deduction. Journal of Automated Reasoning 18(2), 265–270 (1997)

154 S. Foster and J. Woodcock

14. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall (1985)
15. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Series in Computer

Science. Prentice Hall (1998)
16. Jones, C.B.: Systematic Software Development Using VDM. Prentice-Hall Inter-

national (1986)
17. Morgan, C.: Programming from Specifications, 2nd edn. Prentice-Hall (1994)
18. Morris, J.M.: A Theoretical Basis for Stepwise Refinement and the Programming

Calculus. Science of Computer Programming 9(3), 287–306 (1987)
19. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer,

Heidelberg (2002)
20. Oliveira, M.V.M.: Formal derivation of state-rich reactive programs using Circus.

PhD Thesis, Department of Computer Science, University of York, Report YCST-
2006/02 (2005)

21. Oliveira, M., Cavalcanti, A., Woodcock, J.: A UTP semantics for Circus. Formal
Asp. Comput. 21(1-2), 3–32 (2009)

22. Oliveira, M., Cavalcanti, A., Woodcock, J.: Unifying theories in ProofPower-Z.
Formal Aspects of Computing 25(1), 133–158 (2013)

23. Perna, J.I., Woodcock, J.: UTP semantics for Handel-C. In: Butterfield, A. (ed.)
UTP 2008. LNCS, vol. 5713, pp. 142–160. Springer, Heidelberg (2010)

24. Riazanov, A., Voronkov, A.: The design and implementation of Vampire. Journal
of AI Communications 15(2/3), 91–110 (2002)

25. Sampaio, A., Woodcock, J., Cavalcanti, A.: Refinement in Circus. In: Eriksson,
L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS, vol. 2391, pp. 451–470. Springer,
Heidelberg (2002)

26. Schultz, S.: E—A braniac theorem prover. Journal of AI Communications 15(2/3),
111–126 (2002)

27. Sherif, A., He, J.: Towards a Time Model for Circus. In: George, C.W., Miao, H.
(eds.) ICFEM 2002. LNCS, vol. 2495, pp. 613–624. Springer, Heidelberg (2002)

28. Michael Spivey, J.: The Z Notation: A Reference Manual, 2nd edn. Series in Com-
puter Science. Prentice Hall International (1992)

29. Tang, X., Woodcock, J.: Towards Mobile Processes in Unifying Theories. In: 2nd
International Conference on Software Engineering and Formal Methods (SEFM
2004), Beijing, China, September 28–30, pp. 44–53. IEEE Computer Society (2004)

30. Tang, X., Woodcock, J.: Travelling Processes. In: Kozen, D., Shankland, C. (eds.)
MPC 2004. LNCS, vol. 3125, pp. 381–399. Springer, Heidelberg (2004)

31. Wei, K., Woodcock, J., Cavalcanti, A.: Circus Time with Reactive Designs. In:
Wolff, B., Gaudel, M.-C., Feliachi, A. (eds.) UTP 2012. LNCS, vol. 7681, pp. 68–87.
Springer, Heidelberg (2013)

32. Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski,
P.: SPASS Version 3.5. In: Schmidt, R.A. (ed.) CADE 2009. LNCS, vol. 5663,
pp. 140–145. Springer, Heidelberg (2009)

33. Woodcock, J., Davies, J.: Using Z—Specification, Refinement, and Proof. Prentice-
Hall (1996)

34. Woodcock, J., Cavalcanti, A.: A Concurrent Language for Refinement. In:
Butterfield, A., Strong, G., Pahl, C. (eds.) 5th Irish Workshop on Formal Meth-
ods, IWFM 2001, Dublin, Ireland, July 16–17. BCS Workshops in Computing,
pp. 16–17 (2001)

35. Woodcock, J., Cavalcanti, A.: The Semantics of Circus. In: Bert, D., Bowen,
J.P., Henson, M.C., Robinson, K. (eds.) ZB 2002. LNCS, vol. 2272, pp. 184–203.
Springer, Heidelberg (2002)

UTP in Isabelle 155

36. Woodcock, J., Cavalcanti, A.: A tutorial introduction to Designs in Unifying The-
ories of Programming. In: Boiten, E.A., Derrick, J., Smith, G. (eds.) IFM 2004.
LNCS, vol. 2999, pp. 40–66. Springer, Heidelberg (2004)

37. Woodcock, J., Cavalcanti, A., Fitzgerald, J., Larsen, P., Miyazawa, A., Perry, S.:
Features of CML: A formal modelling language for Systems of Systems. In: 7th
IEEE International Conference on System of Systems Engineering (SoSE), pp. 1–6
(2012)

38. Zhan, N., Kang, E.Y., Liu, Z.: Component publications and compositions. In: But-
terfield, A. (ed.) UTP 2008. LNCS, vol. 5713, pp. 238–257. Springer, Heidelberg
(2010)

39. Zhu, H., Yang, F., He, J.: Generating denotational semantics from algebraic se-
mantics for event-driven system-level language. In: Qin, S. (ed.) UTP 2010. LNCS,
vol. 6445, pp. 286–308. Springer, Heidelberg (2010)

FORMULA 2.0:

A Language for Formal Specifications

Ethan K. Jackson and Wolfram Schulte

Microsoft Research, Redmond, WA

{ejackson,schulte}@microsoft.com

Abstract. FORMULA 2.0 is a novel formal specification language based

on open-world logic programs and behavioral types. Its goals are (1) suc-

cinct specifications of domain-specific abstractions and compilers, (2)

efficient reasoning and compilation of input programs, (3) diverse syn-

thesis and fast verification. We take a unique approach towards achieving

these goals: Specifications are written as strongly-typed open-world logic

programs. They are highly declarative and easily express rich synthe-

sis / verification problems. Automated reasoning is enabled by efficient

symbolic execution of logic programs into constraints. This tutorial in-

troduces the FORMULA 2.0 language and concepts through a series of

small examples.

1 Data and Types

1.1 Constants

formula specifications define, examine, translate and generate data. The sim-
plest kinds of data are constants, which have no internal structure. Every for-
mula specification has access to some predefined constants. Numeric constants
can be (arbitrarily) long integers:

-1098245634534545630234, 0, 1, 2, 3098098445645649034

Or, they can be pairs of integers separated by a ‘.’, i.e. decimal fractions:

-223423.23422342342, 0.0, 1.5, 10.87987230000000000000003

Or, they can be pairs of integers separated by a ‘/’, i.e. fractions:

-223423/23422342342, 4/8, 9873957/987395487987334

formula converts numerics into normalized fractions; no precision is lost. For
example, the following equalities are true:

2/3 = 6/9, 1/2 = 0.5, 1.0000 = 1

Z. Liu, J. Woodcock, and H. Zhu (Eds.): Theories of Programming, LNCS 8050, pp. 156–206, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

FORMULA 2.0: A Language for Formal Specifications 157

The following disequalities are true:

2/3 != 0.66667, 0 != 0.0000000000000000000000000000001

Operations on numerics do not lose precision. Infinities are not explicitly part
of formula’s vocabulary. For example, the fraction ‘1/0’ causes a syntax error.

ASCII strings are also supported. One way to write a string is by enclosing it
in double-quotes. These strings must end on the same line where they began, so
we refer to them as single-line strings . Here are some examples:

"", "Hello World", "Foo\nBar"

Sometimes it is necessary to put special characters inside of a string. This can
be accomplished using the C-style escape character ‘\’. Table 1 gives the escape
sequences.

Some strings are unpleasant to escape, such as strings containing code or
filenames with backslashes. Multi-line strings capture all the text within a pair of
delimiters, including line breaks. A multi-line string starts with a single-double-
quote pair ' " and ends with a double-single-quote pair " ' . Below is an
example; note ‘\’ is not an escape character in multi-line strings:

'" "This\string has funny 'thi\ngs in it'" "'

The only sequence that needs to be escaped in a multi-line string is the sequence
terminating the string. For symmetry, the starting sequence also has an escape
code (see Table 2). For example, the following equality is true:

'" ''"" ""'' \"' = " '\" \"' \\"

The final kind of constant is the user-defined constant . Syntactically, user-defined
constants are identifiers. Here are some examples of user-defined constants:

TRUE, FALSE, RED, GREEN, NIL

Note that TRUE and FALSE are automatically defined on the user’s behalf, though
they are not keywords.

By convention, the names of user-defined constants should consist of all up-
percase characters and be at least two characters long. This convention helps to
distinguish constants from other identifiers. Two user-defined constants denote
the same value are if and only if they have the same. For example:

TRUE = TRUE, FALSE = FALSE, TRUE != FALSE, RED != BLUE

158 E.K. Jackson and W. Schulte

1.2 Data Constructors

Complex data values are created by functions called data constructors (or con-
structors for short). An n-ary data constructor f takes n data values as argu-
ments and returns a new data value. Here are some examples:

Person("John", "Smith"),

Node(1, Node(2, NIL, NIL), Node(3, NIL, NIL))

The Person(,) constructor creates Person values from two string arguments.
The Node(, ,) constructor builds binary trees of integer keys. The arguments to
Node are: (1) an integer key, (2) a left-subtree (or the constant NIL if none) and
(3) a right-subtree (or the constant NIL if none).

Data constructors are proper functions, i.e. they always produce the same
values from the same inputs. Contrast this with the following object-oriented
program:

1: class Node {
2: ...

3: Node (int Key, Node left, Node right)

4: { ... }
5: }
6:

7: Node x = new Node(1, null, null);

8: Node y = new Node(1, null, null);

9: if (x != y) {
10: print("Different");

11: }

Table 1. Table of single-line string escapes

Single-Line String Escapes#
Syntax Result#

\n Produces a line feed.
\r Produces a carriage return.
\t Produces a tab.
\x Produces x for x /∈ {n, r, t}, e.g. \\ or \" .

Table 2. Table of multi-line string escapes

Multi-Line String Escapes#
Syntax Result#

' ' " " Produces the sequence ' " .

" " ' ' Produces the sequence " ' .

FORMULA 2.0: A Language for Formal Specifications 159

The program prints the string “Different” because x and y hold different nodes,
even though the nodes were constructed with the same values. In formula two
values are the same if and only if (1) they are the same constant, or (2) they were
constructed by the same constructor using the same arguments. For example:

NIL = NIL, NIL != FALSE,

Node(1, NIL, NIL) = Node(1, NIL, NIL),

Person("John", "Smith") != Node(2, NIL, NIL)

As this example shows, values can be compared using the equality ‘=’ and dise-
quality ‘!=’ relations. These relations are defined for arbitrary pairs of values.

1.3 Ordering of Values

Values are also ordered. The ordering relation on values is called a lexicographic
order , which generalizes the dictionary order of strings. First, we split all values
into four ordered families: numerics, strings, user constants, and complex values :

Definition 11 (Ordering of Families).

family(x)
def
=

⎧⎪⎪⎨⎪⎪⎩
0 if x is a numeric,
1 if x is a string,
2 if x is a user constant,
3 otherwise.

Families yield a precedence relation (on values:

x (y if family(x) < family(y).

Definition 12 (Ordering of Values). For values x and y, define x < y if x �= y
and any of the following are satisfied:

– x (y.
– Both values are numerics; x comes before y on the real number line.
– Both values are strings; x comes before y in dictionary order (assuming a

case-sensitive order using the ASCII encoding of characters).
– Both values are user constants; the name of x comes before the name of y

in dictionary order.
– Both values are complex, i.e. x = f(t1, . . . , tn) and y = g(s1, . . . , sm), and

any of the following are satisfied:
• The name of constructor f comes before the name of the constructor g
in dictionary order.

• Both constructors have the same name, and the first i where ti �= si then
ti < si.

Here are some examples:

0 < 1, 1 < "FALSE", "FALSE" < FALSE, FALSE < TRUE

160 E.K. Jackson and W. Schulte

Table 3. Table of built-in data types

Built-in Data Types#
Name Meaning#

Real The set of all numeric values.
Integer The set of all integers.
Natural The set of all non-negative integers.
PosInteger The set of all positive integers.
NegInteger The set of all negative integers.
String The set of all string integers.
Boolean The set of constants TRUE and FALSE.

Node(1, Node(10, NIL, NIL), NIL) < Node(2, NIL, NIL),

Node(2, NIL, NIL) < Person("John", "Smith")

The predefined relations <, <=, >, and >= use this order. The predefined func-
tions min and max find the smallest and largest values according to <. Finally,
all predefined functions that must sort values, e.g. toList, also use this order.

1.4 Data Types and Subtyping

A data type (or just a type) is a expression standing for a set of values. Table 3
lists the built-in data types and their meanings. In addition, other types can be
defined. Suppose f(...) is an n-ary constructor, then the type f stands for the
range of the constructor f . Suppose c is a constant, then the type {c} stands for
the singleton set containing c. Suppose τ1 and τ2 are types, then τ1+τ2 stands for
the set-union of the two types. Finally, f(τ1, . . . , τn) stands for the set of all values
obtained by applying f to all possible values in τ1, . . . , τn. formula provides
some special syntax to make it easier to write types. A finite enumeration is a
set of constants:

{ RED, GREEN, FALSE, 1, 2, "Hello" }

An enumeration can also include integer ranges:

{ -1000..1000, 1001..1001, 1002 }

This type stands for the set of all strings, integers, and Boolean values:

Real + String + { TRUE, FALSE }

This type stands for the set of all integer-keyed binary trees with a non-empty
left child:

Node(Integer, Node, Node + { NIL })

FORMULA 2.0: A Language for Formal Specifications 161

Also, this type stands for the set of all integer-keyed binary trees with a non-
empty right child:

Node(Integer, Node + { NIL }, Node)

Data types are related to each other by the subtyping relation. In object-oriented
languages subtyping is indicated by explicitly subclassing a base class, extending
an interface, or implementing an interface. In formula the subtyping relation-
ship is determined implicitly by the values a type represents. A type τ1 is a
subtype of τ2 if the values represented by τ1 are a subset of those represented by
τ2. We write τ1 <: τ2 if τ1 is a subtype of τ2. Here are some examples of types
satisfying the subtyping relationship:

{ 1, 2 } <: PosInteger <: Natural + String <: Real + String

Node(Integer, Node, Node)<: Node(Integer, Node, Node + {NIL})

Node(Integer, Node, Node + {NIL}) <: Node

The above examples show that types are fairly precise; they can represent very
specific sets of data. Also, types are behavioral ; formula only cares about the
set of values a type stands for, but not how the type is written. For example, all
of these types mean the same:

{ 0..10 } + Natural = Natural = {0} + PosInteger

Node(Integer, Node + {NIL}, Node + {NIL}) = Node

formula infers types for expressions, and these types over-approximate the
evaluation of expressions. We write e : τ if the expression e is assigned the type
τ . For instance, a C++ compiler might assign the int type to the expression 1 or
the float type to the expression 1.5. Because formula types are more precise,
the type of a value is just a singleton set containing that value, i.e. 1 : {1} and
1.5 : { 3

2}. Because subtyping is implicit by subset inclusion, the value 1 can be
used anywhere a Real is accepted without coercion. This is unlike C++, where
the integer value 1 would be coerced to the floating point value 1.0 because int
and float are different kinds of values.

Consider the more complicated C++ example:

1: enum E { Zero = 0, One = 1, Two = 2 };
2: bool Foo(E x, E y)

3: {
4: auto z = x + y;

5: return z > 10;

6: }

162 E.K. Jackson and W. Schulte

The C++ compiler infers z : int, even though the expected values for x and y
are in the interval [0, 2]. Also, z is always less than 10 and z > 10 is always false.
Consider an analogous formula specification:

1: transform Foo(x: E, y: E) returns (b:: Bool)

2: {
3: E ::= { 0..2 }.
4: Return(TRUE) :- z = %x + %y, z > 10.

5: }

The transform takes two parameters x and y of type E (defined in line 3). The
rule in line 4 is triggered whenever z = x + y and z > 10. formula infers that
x, y : {0..2}, z : {0..4}, z > 10 : {FALSE}. Finally, it issues an error because the
condition z > 10 can never be satisfied. (We explain the structure of rules in the
next section.) Thus, type inference can be used to catch errors in specifications.

1.5 Type Declarations

Type declarations are used to: (1) define simple names for complicated type
expressions, (2) introduce new data constructors along with the types of their
arguments, (3) introduce new user-defined constants. Type declarations come in
two forms. The first form assigns a name to a type expression.

TypeName ::= TypeExpr.

The second form introduces a new data constructor.

ConstructorName ::= (Arg1 TypeExpr, ..., ArgN TypeExpr).

The expressions appearing in declarations are restricted; they cannot contain
constructor applications such as Node(Integer,NIL,NIL). However, it is legal to
use the type Node, which stands for the entire range of the Node(, ,) constructor.
This restriction allows for more efficient type inference and type manipulation.

Type declarations must be placed in modules, which are self-contained units.
The meaning of a type declaration is understood w.r.t. all the type declarations
within the same module. In the examples to follow we use domain modules to
hold type declarations. For now it is enough to understand that type declarations
are not visible outside of their modules. (We describe domains in detail in the
next section.) Below are two modules D and D′ that define the type Id in
different ways:

domain D { Id ::= Integer. } domain D' { Id ::= String. }

In domain D the type Id stands for integers and in D′ it stands for strings. The
formula compiler accepts these declarations because they occur in two distinct
modules. On the other hand these declarations are illegal.

FORMULA 2.0: A Language for Formal Specifications 163

Error: Conflicting definitions of type Id

1: domain D

2: {
3: Id ::= Integer.

4: Id ::= String.

5: }
There are multiple conflicting declarations of the type Id in the same module.
formula accepts any set of type declarations as long as their meaning is con-
sistent across the module. For example, this module is legal because it defines
Id in two equivalent ways.

Legal: All definitions of type Id are equivalent

1: domain D

2: {
3: Id ::= Integer.

4: Id ::= NegInteger + {0} + PosInteger.

5: }

1.6 Declaring Constants

User-defined constants are implicitly declared by using them in some enumera-
tion in some type declaration. Every domain automatically contains the decla-
ration:

Boolean ::= { TRUE, FALSE }.

Introduces user-defined constants RED, GREEN, and BLUE.

1: domain Colors

2: {
3: NamedColor ::= { RED, GREEN, BLUE }.
4: Color ::= { RED, GREEN, BLUE, 0..16777215 }.
5: }

The NamedColor type contains the constants RED, GREEN and BLUE.
These constants are implicitly declared by using them in the type declaration.
The Color type also mentions these constants along with all integers in the 24-
bit RGB color spectrum. User-defined constants are only distinguished by name,
so every occurrence of RED stands for the same user-defined constant. Unlike
C++, a user-defined constant is not equivalent to an integer.

In C++ user-defined constants are actually integers; not possible in FORMULA.

1: enum Color { RED = 0xFF0000, GREEN = 0x00FF00, BLUE = 0x0000FF };

164 E.K. Jackson and W. Schulte

Unlike C#, user-defined constants exist independently of the type declaration in
which they are introduced.

C# introduces constants NamedColors.RED, NamedColors.GREEN,

NamedColors.BLUE

1: enum NamedColor { RED, GREEN, BLUE }
C# introduces constants Colors.RED, Colors.BLUE, Colors.GREEN

2: enum Color { RED, GREEN, BLUE }

1.7 Declaring Data Constructors

Data constructors are declared by special syntax. The left-hand side of the dec-
laration is the name of the constructor and the right-hand side is a comma-
separated list of argument types with parenthesis. Every constructor must have
at least one argument, otherwise it would be constant. Here is another domain
providing constructors for colors:

1: domain Colors

2: {
3: NamedColor ::= (String).

4: RGBColor ::= (r: {0..255}, g: {0..255}, b: {0..255}).
5: RGBAColor ::= (a: {0..255}, r: {0..255}, g: {0..255}, b: {0..255}).
6: Color ::= NamedColor + RGBColor + RGBAColor.

7: }

NamedColor (line 3) defines a unary constructor taking a string. This construc-
tor can be used to create values such as:

NamedColor("RED"), NamedColor("GREEN"), NamedColor("BLUE")

It is illegal to apply the NamedColor color constructor to values other than
strings. Also the corresponding NamedColor type is automatically defined and
only contains those values that obey argument types. The RGBColor construc-
tor (line 4) takes three arguments for the red, green, and blue components. The
arguments have been given explicit names r, g, and b. Naming arguments is op-
tional but useful. Finally, the Color type is a union of the possible color values.
As before, there are no implicit conversions between values. For instance:

RGBColor(0, 0, 255) != 255 != RGBAColor(0, 0, 0, 255).

Every constructor creates distinct values.
Data constructors are similar to structs or records in C-like languages, but

more general. Consider the task of defining a node struct in C#. The following
code is illegal because the struct Node directly depends on Node values.

FORMULA 2.0: A Language for Formal Specifications 165

Cannot define a struct that depends directly on itself.

1: struct Node

2: {
3: int key; Node left; Node right;

4: Node(int k, Node l, Node r)

5: { key = k; left = l; right = r; }
6: };

The problem is that Node must have a default value, and there is no way to
construct this default value. The definition becomes legal if struct is replaced
with class and then null is a valid default value for the left and right fields.
However, this comes with the price that node equality is significantly weakened,
i.e. n == m only if the variables n and m hold the same reference. In other
words, binary trees cannot be compared as if they were just values.

The declarations of formula constructors can cyclically depend on them-
selves. Here is the equivalent definition for a Node in formula.

1: domain Trees

2: {
3: Node ::= (key : Integer,

4: left : Node + {NIL},
5: right: Node + {NIL}).
6: }

The only requirement on constructors is that there must be some arguments
of finite size satisfying the type constraints of the constructor. For example, a
minimal node value can be constructed by:

Node(0, NIL, NIL)

Note that NIL is not a keyword; just a user-defined constant. This specification
has an error because there is no way to construct a node value using a finite
number of applications.

1: domain Trees

2: {
3: Node ::= (key : Integer,

4: left : Node,

5: right: Node + {NIL}).
6: }

The problem is the left field can only take a node value, but the only way
to construct a node value is to apply the node constructor. Therefore, only
an infinitely long sequence of node applications could construct such a value.
formula returns an error message like this:

(3, 4): The type Node is badly defined; it does not accept

any finite terms.

166 E.K. Jackson and W. Schulte

The following domain defines nodes in two equivalent ways. It is accepted by the
compiler:

1: domain Trees

2: {
3: Node ::= (key : Integer,

4: left : Node + {NIL},
5: right: Node + {NIL}).
6:

7: Node ::= (key: Integer, left: Tree, right: Tree).

8: Tree ::= Node + {NIL}.
9: }

The type Tree is a super-type of the type Node, because in contains all node
values and the additional value NIL.

2 Domains and Models

The purpose of a domain is describe a “class of things”. The purpose of a model
is to describe a specific “thing”. Here are a few examples that we explore in this
tutorial:

1. DAG: The DAG domain describes the properties of directs acyclic graphs
(DAGs). A DAG model represents an individual DAG.

2. SAT: The SAT domain describes the set of satisfiable boolean expressions.
A SAT model describes a single expression and the variable assignments that
witness its satisfiability.

3. FUNC: The FUNC domain describes a small language of arithmetic func-
tions and the rules of their evaluation. A FUNC model represents a program
of the FUNC language.

The first step to define a “class of things” is to create a representation for
“things” using formula data types. Consider the classical definition of a di-
rected graph G:

G
def
= (V,E) where E ⊆ V × V. (1)

Classically, a directed graph is represented by a set of vertices V and set of edges
E; each e ∈ E is a pair of vertices. Furthermore, suppose vertices are represented
by integers, then the set of all finite integer-labeled graphs is:

G def
= {(V,E) | V ⊂ Z ∧ E ⊆ V × V } where every V is finite.

Here is an example of a specific graph:

Gex
def
= ({1, 2, 100}, {(1, 2), (100, 100)}).

formula does not directly support sets and relations, so we cannot express
vertices and edges as sets. Instead, integer-labeled graphs are represented using
two data constructors V and E as follows:

FORMULA 2.0: A Language for Formal Specifications 167

Example 1 (Integer-labeled graphs).

1: domain IntGraphs

2: {
3: V ::= new (lbl: Integer).

4: E ::= new (src: V, dst: V).

5: }

Intuitively, vertices are values such as:

V(1), V(2), V(100)

and edges are values such as:

E(V(1), V(2)), E(V(100), V(100))

Though these constructors provide representations for the elements of a graph,
the domain does not define any specific graph elements. This is because the
domain is intended as a schema for all graphs; it is not intended to represent a
specific graph. A specific graph is represented by a model, as follows:

Example 2 (A small graph).

1: model Gex of IntGraphs

2: {
3: V(1).

4: V(2).

5: V(100).

6: E(V(1), V(2)).

7: E(V(100), V(100)).

8: }

A model has a name and indicates the domain to which it belongs (line 1).
The body of a model is a list of values separated by periods. These periods are
actually assertions about the model. Each expression f(. . .). is an assertion:

“The value f(. . .) is always provable in the model M .”

Thus, the model Gex contains a set of assertions, built with data constructors,
about some vertex and edge values. These assertions define the specific elements
of the graph Gex.

2.1 Querying Models

To understand how a model contains a set of assertions, create a file called
ex1.4ml and copy the code contained in Examples 1 and 2. A query operation
tests if a property is provable on a model. Follow these steps to test if a vertex
called V (1) exists in the model Gex:

168 E.K. Jackson and W. Schulte

1: ...\Somewhere>Formula.exe
2:

3: []> load ex1.4ml

4: (Compiled) ex1.4ml

5: 0.82s.
6: []> query Gex V(1)

7: Started query task with Id 0.

8: 0.06s.
9: []> ls tasks
10:

11: All tasks

12: Id | Kind | Status | Result | Started | Duration

13: ----|-------|--------|--------|-------------------|----------
14: 0 | Query | Done | true | 5/17/2013 3:28 PM | 0.04s

15: 0.03s.

Line 3 loads and compiles the file ex1.4ml. Line 6 starts a query operation on
the model Gex and tests for the property V (1). If V (1) is provable in Gex then
this query operation returns true; otherwise it returns false. Starting a query
spawns a new background task that may take some time to complete. The Id
of the newly created task is reported (e.g. Id 0). Line 9 causes the status of all
tasks to be displayed. Line 14 shows that the query completed with the result
true.

On the other hand this query evaluates to false, because there is no vertex
named V (3):

[]> query Gex V(3)

This is very important: Any query that is not provable using the model (and its
domain declarations) is false. The query V (3) is false for the model Gex because
there are no assertions that can prove it. We can ask more interesting queries,
such as: Does there exist some vertex?

[]> query Gex V(x)

This query contains a variable called x. More generally, a query is true if there is
some substitution for the variables that is provable. This query is true because
replacing x with 1, 2, or 100 forms queries that are provable. Variables appearing
in a query are not declared and are local to the query expression.

More complicated patterns can be used in a query. This one tests if there is
an edge that loops back onto the same vertex.

[]> query Gex E(x, x)

It is true because if x = V (100) then E(V (100), V (100)) is provable. As with
any language, it is possible to mistype commands. The formula type system
will catch some of these mistakes. For example, the query

[]> query Gex E(V(x), x)

FORMULA 2.0: A Language for Formal Specifications 169

is always false because x must simultaneously be an integer and a vertex, which
is never possible. In this case the query is ignored and warning messages are
returned:

1: []> qr Gex E(V(x), x)

2: commandline.4ml (2, 1): Argument 2 of function E is badly typed.

3: commandline.4ml (0, 0): The install operation failed

4: Failed to start query task.

5: 0.02s.
6: []>

Queries can be conjoined using the comma operator (‘,’). Such a query is true if
there is some substitution of variables making every conjunct true. This query
tests if there are two edges that can be placed end-to-end:

[]> query Gex E(x, y), E(y, z)

Notice that the variables x and z only appear once in the query. Variables that
only appear once can be written with an underscore (‘ ’); every occurrence of an
underscore creates a new variable with a different name from all other variables
in the expression. The previous query can be rewritten as:

[]> query Gex E(, y), E(y,)

Underscores are useful for visually emphasizing those variables that appear in
multiple places. Queries can also be formed from built-in relations and con-
straints.

[]> query Gex V(x), x > 20

Constructor labels can be used to write more readable queries. The query:

“Is there an edge whose source vertex has a label greater than 100?”

can be written as:

[]> query Gex e is E, e.src.lbl > 100

The constraint e is E requires e to be a provable value of type E.
The order in which conjuncts are written does not matter; the semantics of

a query is the same. However, queries can only check for properties that can be
answered using model assertions and a finite number of evaluations. For example,
this query is not allowed:

[]> query Gex x > 100

It asks if there exists a number greater than 100. While the answer is “yes”, it
cannot be proved using the assertions written in the model, nor can it be proved
by evaluating > for a finite number of values. In this case, the following message
is returned:

170 E.K. Jackson and W. Schulte

1: []> query Gex x > 100

2: commandline.4ml (2, 3): Variable x cannot be oriented.

3: commandline.4ml (0, 0): The install operation failed

4: Failed to start query task.

5: 0.02s.
6: []>

The message ‘‘Variable x cannot be oriented’’means the compiler cannot
express x in such a way that the query can be evaluated. Note that formula can
reason about the properties of numbers, but the query operation is not the

mechanism to accomplish this. We shall discuss this more in Section ?? .
Finally, it is important to remember that even though f(. . . , t, . . .) might be

provable, this does not imply that t is itself provable. Consider the following
model:

1: model NoVertices of IntGraphs

2: {
3: E(V(1), V(2)).

4: }
This query is true:

[]> query NoVertices E(,)

But this query is false:

[]> query NoVertices V()

There are no provable vertices, even though a vertex value does appear within a
provable edge. (This may surprise users familiar with term-rewriting systems.)

2.2 Model Conformance

A model M conforms to a domain D if the following properties are satisfied:

P1. Every assertion in M is constructed from new-kind constructors.
P2. Every constructor application in M obeys the type declarations in D.
P3. The operation query M D.conforms evaluates to true.

P1-P2 are checked whenever a model is compiled; any violation causes a compile-
time error; P3 is checked upon request. A new-kind constructor is a constructor
marked with the modifier new. Recall that both V and E constructors were
marked with this modifier.

1: V ::= new (lbl: Integer).

2: E ::= new (src: V, dst: V).

Constructors that are not marked with the new modifier are only used to perform
auxiliary computations; they can never appear in models. (We demonstrate this
in more detail in later sections.) P2 is familiar from earlier examples. It is always
illegal to use constructors with badly typed arguments, as in:

FORMULA 2.0: A Language for Formal Specifications 171

1: model BadlyTyped of IntGraphs

2: {
3: E("Foo", "Bar").

4: }
P3 allows domains to place fine-grained constraints on the conformance re-

lationship. Unlike the first two properties, satisfying P3 can be difficult and
evaluating its satisfaction can be expensive. For these reasons, formula only
checks P3 upon request and failure of this property is not an error.

2.3 Relational Constraints

We began by trying to express the set of all integer-labeled finite graphs. The
intent was to define IntGraphs so its set of conforming models would be equiv-
alent to the set of integer-labeled finite graphs. Properties P1-P2 guarantee that
models contain only vertex and edge assertions, which encode graph elements
in an obvious way. However, there is the additional constraint that graph edges
should be pairs of graph vertices, i.e. E ⊆ V ×V . Did we capture this constraint
correctly? The answer is that it depends on how we choose to define the set of
vertices V present in a model M . There are two options: (1) Every occurrence
of a vertex value anywhere in the model is implicitly a member of V . (2) Only
those vertices that are provable are members of V . Consider this example:

1: model SomeVertices of IntGraphs

2: {
3: V(1).

4: E(V(1), V(2)).

5: }

Under the first definition, the vertex set for this model is {1, 2} and the edge
set is {(1, 2)}. This satisfies the constraint E ⊆ V ×V . Under the second defini-
tion the vertex set is only {1} and the edge set violates the constraint because
2 /∈ V . By default, formula uses the second and more restrictive definition:
E ⊆ V × V means every argument to E(,) must be provable. Models violat-
ing this property do not conform to the domain. These kinds of constraints are
so common that formula automatically introduces them. To see this, add the
code for SomeVertices to ex1.4ml and run this query:

[]> query SomeVertices IntGraphs.conforms

The result of this query is false because V (2) is not derivable. Add V (2) to the
model, save it, and type:

[]> reload ex1.4ml

Evaluate the query again to observe that it evaluates to true.

172 E.K. Jackson and W. Schulte

We call the previous kind of constraint a relational constraint. Relational
constraints are injected by the compiler when it appears that one constructor is
being used to encode a set S and another constructor is being used to encode a
relation R ⊆ . . .× S ×

Definition 21 (Relational Constraint). The constructor R is relational on con-
structor S in position i if the constructor R is declared as:

R ::= new (..., arg i: T i, ...).

and S is a subtype of Ti. The relational constraint means that for every provable
value t containing R(. . . , ti, . . .) and ti = S(. . .) then ti must also be provable.

Some type declarations are not intended to encode finite relations, and the de-
fault behavior would produce strange results. Consider the following recursive
definition for binary trees:

Node ::= new (left: Node + {NIL}, right: Node + {NIL}).

This declaration fits the pattern for relational constraints and the generated
constraints are satisfiable. However, it assumes the user intended to encode a
relation with the following strange property:

Node ⊆ Node × Node.

The only finite relation satisfying this property is the empty set. There is clearly
a semantic mismatch between the binary relation Node and the binary data con-
structor Node. In order to bring attention to this mismatch formula produces
the following error:

1: ex.4ml (3, 4): The constructor Node cannot have relational

2: constraints on itself; see argument 1.

3: ex.4ml (3, 4): The constructor Node cannot have relational

4: constraints on itself; see argument 2.

When this error occurs at position i, the user must explicitly indicate that the
constructor is not intended to encode a relation at position i. Placing the any
modifier before the argument type indicates that any well-typed value is permit-
ted here, not just those values that are provable. The compiler does not generate
relational constraints for this argument and the error message does not occur.
Here is the proper declaration for the recursive binary tree constructor:

Node ::= new (left: any Node + {NIL}, right: any Node + {NIL}).

Of course, binary trees can also be encoded using finite relations, but the encod-
ing is a different one from the recursive constructor shown above.

FORMULA 2.0: A Language for Formal Specifications 173

2.4 Finite Functions

Finite functions are a special case of finite relations satisfying additional con-
straints. Consider the representation of a forest F of binary trees as follows:

F
def
= (V, parent) where parent : V → {&} ∪ ({L,R} × V).

The set V contains the vertices of the forest and the function parent assigns to
each vertex v its parent: parent(v) = (L, u) if v is the left child of u; parent(v) =
(R, u) if v is the right child of u; parent(v) = & if v is a root. Additionally, the
parent function should not introduce a cycle, but we ignore this constraint for
now. The parent function can be treated as a finite relation by listing its input-
output pairs. Consider this forest where 1 is a root, 2 is its left child, and 3 is
its right child:

Fex
def
= ({1, 2, 3}, {(1,&), (2, (L, 1)), (3, (R, 1))}).

The parent relation encodes a total finite function if it is total on the domain:

∀v ∈ V. ∃x. (v, x) ∈ parent,

and every input is related to a unique output:

∀v ∈ V. ∀x, y. (v, x) ∈ parent ∧ (v, y) ∈ parent ⇒ x = y.

formula supports declarations of finite functions also. As before, these decla-
rations are really introducing data constructors plus additional constraints that
provable values must encode finite functions. Example 3 shows the syntax.

Example 3 (Relational Trees).

1: domain RelTrees

2: {
3: V ::= new (lbl: Integer).

4: Parent ::= fun (chld: V => cxt: any {ROOT} + Context).

5: Context ::= new (childPos: {LFT, RT}, prnt: V).

6: }
7:

8: model Fex of RelTrees

9: {
10: V(1). V(2). V(3).

11: Parent(V(1), ROOT).

12: Parent(V(2), Context(LFT, V(1))).

13: Parent(V(3), Context(RT, V(1))).

14: }

174 E.K. Jackson and W. Schulte

Line 5 declares the Context constructor to represent {L,R} × V . Line 4 declares
the Parent constructor using the fun modifier. This modifier implies new. The
arguments on the left side of => correspond to the domain of the relation and the
arguments on the right side correspond to the codomain. The codomain contains
the valueROOT (i.e.&) and anyContext value. The funmodifier injects unique-
ness constraints, i.e. for all provable values Parent(v, x) and Parent(v, y) then
x = y. The totality arrow => injects totality constraints, i.e. for every provable
V (x) there is a provable Parent(V (x), y). Totality is affected by the any modifier.
If an argument is marked with any, then the finite function must be defined for
every well-typed value. For example, this declaration would cause an error:

Parent ::= fun (chld: any V => cxt: any {ROOT} + Context).

The any modifier applied to the first argument means there must be a provable
Parent(V (x), y) value for every well-typed value V (x). This implies an infinite

Table 4. Table of relation / function modifiers

Relation / Function Modifiers#
Syntax Meaning#

R ::= new (..., T i , ...). Relational constraint: If S is a constructor,
S <: T1, R(. . . , ti, . . .) occurs in a provable
value, and ti = S(. . .), then ti must be prov-
able.

R ::= new (..., any T i, ...). Occurrences of R are exempt from the rela-
tional constraint in position i.

R ::= fun (..., D m -> ..., C n). Partial function: Same as new. Additionally,
the set of provable R values must form a par-
tial function from D1 × . . . × Dm to C1 ×
. . .× Cn.

R ::= fun (..., D m => ..., C n). Total function: Same as partial function, but
must be total on D1 × . . . × Dm; totality is
modified by any.

R ::= inj (..., D m -> ..., C n). Partial injection: Same as partial function; ad-
ditionally if R(x, z) and R(y, z) are provable
then x = y.

R ::= inj (..., D m => ..., C n). Total injection: Constrained to be a total
function and partial injection.

R ::= sur (..., D m -> ..., C n). Partial surjection: Same as partial function;
additionally must be total on C1 × . . . × Cn

(totality is modified by any).

R ::= bij (..., D m -> ..., C n). Bijection: Constrained to be a total surjection
and partial injection; partiality arrow has no
effect.

R ::= bij (..., D m => ..., C n). Bijection: Constrained to be a total surjection
and partial injection.

FORMULA 2.0: A Language for Formal Specifications 175

number of provable values, which is not permitted. formula returns the follow-
ing error message:

1: ex.4ml (4, 4): The function Parent requires totality on an

2: argument supported by an infinite number of

3: values; see argument 1.

Whenever the domain of a finite function is infinite that function cannot be total,
but it can be partial. The partial arrow −> indicates a partial function, which
need not be defined on every element of its domain. Suppose every vertex label
should also be given a “pretty name”. This could be expressed by extending the
signature of V as follows:

V ::= fun (lbl: Integer -> prettyName: String).

Every vertex must have a unique pretty name, but there does not need to be a
vertex defined for every integer. Table 4 shows the complete variety of relation
/ function modifiers.

2.5 Recursive Types, Aliases, and Symbolic Constants

Example 3 showed a partial specification of binary trees using a representation
inspired by finite relations. Another approach is to use the full power of recursive
data types. In this representation an entire tree is a single complex value. The
locations of values distinguishes vertices from each other. This is in contrast to
using of unique identifiers to distinguish vertices.

Example 4 (Algebraic Trees).

1: domain AlgTrees

2: {
3: Node ::= new (left: any Node + {NIL},
4: right: any Node + {NIL}).
5: Root ::= new (root: any Node).

6: }
7:

8: model Fex' of AlgTrees

9: {
10: Root(

11: Node(

12: Node(NIL, NIL),

13: Node(NIL, NIL))).

14: }

Example 4 shows an algebraic representation of trees using data constructors.
Notice that the entire tree is a single value (line 10). The Root() constructor is
used to mark some nodes as roots in the forest. The left and right children of the

176 E.K. Jackson and W. Schulte

root are both nodes without children, represented by the value Node(NIL,NIL)
(lines 12, 13). In fact, both these nodes are exactly the same value. They are
distinguishable by where they occur in the construction of the parent. This
representation has several advantages: (1) Nodes do not need to be labeled. (2)
It is impossible to create an illegal tree. (3) Two trees are the same if and only
if they are the same value. Also, because the same value can represent many
nodes, it is possible to define the value once and reuse it in many places. Reuse
is accomplished by introducing an alias as follows:

leaf is Node(NIL, NIL).

The right-hand side of the is keyword requires a constructed assertion. The left-
hand side is an identifier that stands for the constructed value. Using aliases,
the previous model can be expressed as:

1: model Fex Shared of AlgTrees

2: {
3: leaf is Node(NIL, NIL).

4: Root(Node(leaf, leaf)).

5: }

Aliases can be used to represent models with exponentially less space. Consider
the following complete binary tree with 1,023 nodes:

1: model BiggerTree of AlgTrees

2: {
3: leaf is Node(NIL, NIL).
4:

5: subtree 3 is Node(leaf , leaf).

6: subtree 7 is Node(subtree 3 , subtree 3).

7: subtree 15 is Node(subtree 7 , subtree 7).

8: subtree 31 is Node(subtree 15 , subtree 15).

9: subtree 63 is Node(subtree 31 , subtree 31).

10: subtree 127 is Node(subtree 63 , subtree 63).

11: subtree 255 is Node(subtree 127, subtree 127).

12: subtree 511 is Node(subtree 255, subtree 255).

13: subtree 1023 is Node(subtree 511, subtree 511).
14:

15: Root(subtree 1023).

16: }

Aliases are visible to all assertions within their defining model. The order in
which aliases are defined is inconsequential. However, aliases definitions cannot
form as cycle as this would be equivalent to applying an infinite number of
constructors. This property is checked at compile time. Here is an example:

FORMULA 2.0: A Language for Formal Specifications 177

1: model InfiniteTree of AlgTrees

2: {
3: infinite left is Node(infinite right, NIL).

4: infinite right is Node(NIL, infinite right).

5: Root(Node(infinite left, infinite right)).

6: }
The infinite left node has an infinitely deep subtree as its left node, and the
infinite right node has an infinitely deep subtree as its right node. This problem
is detected and the following error is reported.

1: inf.4ml (4, 4): Symbolic constant InfiniteTree.%infinite right is

2: defined using itself.

3: inf.4ml (3, 4): Symbolic constant InfiniteTree.%infinite left is

4: defined using itself.

2.6 Symbolic Constants

The previous error messages referred to symbolic constants. A symbolic constant
is a constant, i.e. it is a function that takes no arguments and returns a value.
However, the value it returns may not be known at compile time. This latter
property is unlike the constants we have encountered so far. For example, the
constant 1 always returns the constant 1 and the constant NIL always returns
the constant NIL. Each model alias a declared in model M defines a symbolic
constant called M.%a. It returns the value produced by expanding all aliases in
the model. Consider Example 2 rewritten with aliases:

1: model Gex' of IntGraphs

2: {
3: v1 is V(1).

4: v2 is V(2).

5: v100 is V(100).
6:

7: e 1 2 is E(v1, v2).

8: e 100 100 is E(v100, v100).

9: }
These aliases create symbolic constants with the following properties:

Gex′.%v1 = V (1)
Gex′.%v2 = V (2)
Gex′.%v100 = V (100)
Gex′.%e 1 2 = E(V (1), V (2))
Gex′.%e 100 100 = E(V (100), V (100))

Unlike variables, symbolic constants can be used to test the properties of specific
model elements. Whenever a symbolic constant occurs in a query, it matches the
corresponding assertion in the model where it was defined. For example:

178 E.K. Jackson and W. Schulte

[]> query Gex' Gex'.%v1.lbl = 1

This query is satisfied if the value represented by Gex′.%v1 is provable and its
label is equal to 1. This query evaluates to true. Symbolic constants are prefixed
with the percent-sign (‘%’) to distinguish them from variables. Consider this
query:

[]> query Gex' E(%v1, v1)

Here %v1 is the same symbolic constant as before, but v1 is a variable. (Names
do not need to be fully qualified if they can be unambiguously resolved.) This
query is satisfied if there is some value for v1 that makes E(V (1), v1) provable.
The assignment v1 = V (2) is one such value and the query evaluates to true.
Finally, this query evaluates to false, because there is not an edge from V (1) to
V (1):

[]> query Gex' E(%v1, %v1)

2.7 Separate Compilation

A formula module can refer to modules in other files. The compiler will load
and compile all files required to completely compile a program. There are several
ways to refer to modules in another files. The first way is to qualify the module
name with a source file using the at operator. For example:

model M of D at "foo.4ml" { ... }

The compiler will look for a domain named D in the file foo.4ml. This method
does not affect the resolution of any other occurrence of D. For example, this
code loads two different domains, both called D, from different files:

1: model M1 of D at "..\\..\\version1.4ml" { ... }
2: model M2 of D at '"..\..\version2.4ml"' { ... }

(Relative paths are resolved w.r.t. to the path of file where they occur.) However,
it is illegal to define two modules with the same name in the same file.

1: model M of D at "version1.4ml" { ... }
2: model M of D at "version2.4ml" { ... }

This causes an error:

1: ex.4ml (2, 1): The module M has multiple definitions.

2: See ex.4ml (1, 1) and ex.4ml (2, 1)

The disadvantage of the at operator is that it must be used on every reference
to D. Another option is to register D using a configuration block. Configuration
blocks have access to various configuration objects, one of which is calledmodules
mapping names to files. To register D and D′ in the scope of the file write:

FORMULA 2.0: A Language for Formal Specifications 179

1: [
2: modules.D = "D at foo.4ml",

3: modules.D' = "D' at foo.4ml"
4:]
5:

6: model M of D { ... }

Lines 1 - 4 form a configuration block. Now every occurrence of D will resolve
to D located in foo.4ml. If D is defined to be in several locations, then an error
occurs.

Causes an error because D is defined to be at two different places.

1: [
2: modules.D = "D at version1.4ml",

3: modules.D = "D at version2.4ml"
4:]

Finally, each module has its own local configuration parameters. Modules in-
herit file level configurations, and can extend these with additional parameters.
Module-level configurations are isolated from each other, so occasionally it may
be useful to register domains at this level. Here is an example:

1: model M1 of D
2: [
3: modules.D = "D at version1.4ml"
4:]

5: {
6: ...

7: }
8:

9: model M2 of D
10: [
11: modules.D = "D at version2.4ml"
12:]

13: {
14: ...

15: }
The module-level configuration block must be placed after the module declara-
tion and before the opening curly brace. These configurations do not conflict,
because they are lexically scoped to the modules M1 and M2. Separate compi-
lation is available for all types of formula modules.

3 Rules and Domain Constraints

Domain constraints are essential for defining “classes of things”. So far we have
demonstrated type constraints and a few kinds of relation / function constraints
(that also appear in type declarations). However, these constraints are not gen-
eral enough to capture many properties. Recall the relational trees example

180 E.K. Jackson and W. Schulte

(Example 3) where we neglected to constrain trees to be acyclic. There was no
way to write this constraint using the mechanisms presented thus far, and so
the specification is incomplete. Some models that are not trees conform to the
RelTrees domain.

The remaining aspects of the formula language deal with computing prop-
erties of models using conditional statements, which we call rules. These com-
puted properties can be used to write powerful domain constraints (among other
things). A basic rule has the following syntax:

head :- body.

The body part can contain anything a query can contain. The head part is a
sequence of constructor applications applied to constants and variables. A rule
means:

“Whenever the body is provable for some variable assignment, then the head is
also provable for that variable assignment.”

Thus, a rule is a logical statement, but it can also be executed (like a query) to
grow the set of provable values.

Consider the problem of computing the ancestors between vertices in a
RelTrees model. First, we introduce a helper constructor called anc(,) into the
RelTrees domain to represent the ancestor relationship:

anc ::= (ancestor: V, descendant: V).

Notice that anc is not modified with new (or any other modifier that implies
new). This means an anc value can never be asserted by a model. The only legal
way to prove an anc value is by proving its existence with rules. We call anc a
derived-kind constructor. Here is a rule that can prove u is an ancestor of w if u
is the parent of w:

anc(u, w) :- Parent(w, Context(, u)).

Here is a rule that can prove u is an ancestor of w if u is an ancestor v and v is
an ancestor of w.

anc(u, w) :- anc(u, v), anc(v, w).

As with queries, the comma operator (‘,’) conjuncts constraints. Every conjunct
must be satisfied for the rule to be satisfied. If two rules have the same head,
then they can be syntactically combined using the semicolon operator (‘;’).

anc(u, w) :- Parent(w, Context(, u)); anc(u, v), anc(v, w).

Intuitively the semicolon operator behaves like disjunction, but remember that
each semicolon actually marks the body of an independent rule.

FORMULA 2.0: A Language for Formal Specifications 181

Table 5. Table of matching constraints

Matching Constraints#
Syntax Meaning#

q true if the derived constant q is provable; false otherwise.
f(t1,...,tn) true for every assignment of variables where f(t1, . . . , tn)

is provable; false otherwise.
x is f(t1,...,tn) true for every assigment of variables where f(t1, . . . , tn) is

provable and x = f(t1, . . . , tn); false otherwise.
x is T true if x is a provable value and a member of the type

named T ; false otherwise.

Table 6. Table of interpreted predicates

Interpreted Predicates#
Syntax Meaning#

no {. . .} true if the set comprehension is empty; false otherwise.
t = t’ true if t and t′ are the same value; false otherwise.
t != t’ true if t and t′ are different values; false otherwise.
t < t’ true if t is less than t′ in the order of values; false otherwise.
t <= t’ true if t is less than equal to t′ in the order of values; false otherwise.
t > t’ true if t is greater than t′ in the order of values; false otherwise.
t >= t’ true if t is greater than or equal to t′ in the order of values; false

otherwise.
x : T true if x is a member of the type named T ; false otherwise.

3.1 Derived Constants

A tree-like graph is not a tree if it has a cycle in its ancestor relation. There
is a cycle if and only if some vertex is an ancestor of itself. The following rule
summarizes this property:

hasCycle :- anc(u, u).

The symbol hasCycle is a derived-kind constant (or just derived constant). A
derived constant is declared by using it, unqualified, on the left-hand side of some
rule. Rules can only prove derived constants or values built from constructors.
This rule causes an error:

1 :- V().

ex.4ml (1, 4): Syntax error - A rule cannot produce

the base constant 1

182 E.K. Jackson and W. Schulte

The full name of a derived constant c declared in domain D is D.c. This allows
for (an optional) coding idiom where each derived constant is declared in exactly
one place.

Declares hasCycle, because appears unqualified on left-hand side of the rule.

(Does not affect the provable values.)

1: hasCycle :- RelTrees.hasCycle.

First use of hasCycle; not a declaration because used in qualified form.

2: RelTrees.hasCycle :- anc(u, u).

Second use of hasCycle; this rule is redundant.

3: RelTrees.hasCycle :- anc(u, w), anc(w, u).

3.2 Rule Bodies

The body of a rule is a conjunction of constraints. Constraints can be either
matching constraints or interpreted predicates. A matching constraint is satisfied
if there is some substitution of the variables where the resulting value is provable.
An interpreted predicate is satisfied if there is some substitution of the variables
where a special predicate evaluates to true. Tables 5 and 6 list the forms of
matching constraints and interpreted predicates. The order in which conjuncts
appear is irrelevant; as with queries, all variables must be orientable.

To demonstrate interpreted predicates, consider that our RelTrees domain
also allows a single node to have more than two left (or right) children.

1: model TwoLeftChildren of RelTrees

2: {
3: v1 is V(1). v2 is V(2). v3 is V(3).

4: Parent(v1, ROOT).

5: Parent(v2, Context(LFT, v1)).

6: Parent(v3, Context(LFT, v1)).

7: }
The following rule can be used to detect these anomalous graphs:

1: tooManyChildren :-

2: Parent(x, Context(pos, parent)),

3: Parent(y, Context(pos, parent)),

4: x != y.

The disequality predicate (‘!=’) is used to detect if more than one distinct node
has been assigned to the same position in the parent. Using the equality predicate
(‘=’) and the selector operator (‘.’), the above rule can be rewritten as:

1: tooManyChildren :-

2: px is Parent,

3: py is Parent,

FORMULA 2.0: A Language for Formal Specifications 183

4: px.chld != py.chld,

5: px.cxt = py.cxt,

6: px.cxt != ROOT.

The choice of whether to use the first or second rule is a matter of style. (Other
equivalent rules can be written too.)

3.3 Interpreted Functions

formula also provides many interpreted functions, such as +, and(,), toString(),
etc... An interpreted function can appear anywhere a t, t′ or ti appears in Tables
5 and 6. (See Section 5 for the full list of interpreted functions.) This constraint
finds all the vertices whose child labels sum to the label of the parent.

1: SumToParent(v) :-

2: Parent(x, Context(, v)),

3: Parent(y, Context(, v)),

4: x.lbl + y.lbl = v.lbl.

The interpreted function + represents ordinary arithmetic addition, which is
only defined for numeric values. Therefore x.lbl and y.lbl must be numeric values
for the operation to be meaningful. These extra requirements are automatically
added as side-constraints to the rule body. The complete rule constructed by
the formula compiler is:

1: SumToParent(v) :-

2: Parent(x, Context(, v)),

3: Parent(y, Context(, v)),

4: x.lbl + y.lbl = v.lbl,

5: xlbl = x.lbl, xlbl : Real,

6: ylbl = y.lbl, ylbl : Real.

These side-constraints have an important consequence: A rule will never evaluate
operations on badly-typed values. The side-constraints guarantee that the rule
is not triggered for values where the operators are undefined.

To demonstrate this, create a new file containing the code in Example 5:

Example 5 (Pretty labeled trees).

1: domain PrettyRelTrees

2: {
3: V ::= new (lbl: Integer + String).

4: Parent ::= fun (chld: V => cxt: any {ROOT} + Context).

5: Context ::= new (childPos: {LFT, RT}, prnt: V).
6:

7: SumToParent ::= (V).

8: SumToParent(v) :-

9: Parent(x, Context(, v)),

184 E.K. Jackson and W. Schulte

10: Parent(y, Context(, v)),

11: x.lbl + y.lbl = v.lbl.

12: }
13:

14: model StringTree of PrettyRelTrees

15: {
16: vA is V("a").

17: vB is V("b").

18: vC is V("c").
19:

20: Parent(vB, ROOT).

21: Parent(vA, Context(LFT, vB)).

22: Parent(vC, Context(RT, vB)).

23: }
In this domain vertices can have either integer labels or “prettier” string labels.
The model StringTree contains a single tree with only string labels. Run the
query:

[]> query StringTree SumToParent()

and notice that it evaluates to false. The query does not produce any errors
or exceptions. The side-constraints created by + simply prevents the rule from
being triggered by the string labeled vertices in StringTree.

3.4 Type Environments

In fact, formula uses type inference to inform you about the values that may
trigger a rule. Type:

[]> types PrettyRelTrees

and the following listing is returned:

1: + Type environment at (8, 4)

2: v: V(Integer)

3: ~dc0: Parent(V(Integer), Context({RT} + {LFT}, V(Integer)))

4: x: V(Integer)

5: ~dc1: {RT} + {LFT}
6: ~dc2: Parent(V(Integer), Context({RT} + {LFT}, V(Integer)))

7: y: V(Integer)

8: ~dc3: {RT} + {LFT}
9: ~sv0: Integer

10: ~sv1: Integer

11: ~sv2: Integer

12: + Type environment at (8, 22)

13: v: V(Integer)

14: ~dc0: Parent(V(Integer), Context({RT} + {LFT}, V(Integer)))

FORMULA 2.0: A Language for Formal Specifications 185

15: x: V(Integer)

16: ~dc1: {RT} + {LFT}
17: ~dc2: Parent(V(Integer), Context({RT} + {LFT}, V(Integer)))

18: y: V(Integer)

19: ~dc3: {RT} + {LFT}
20: ~sv0: Integer

21: ~sv1: Integer

22: ~sv2: Integer

This listing shows the inferred types for variables. Type inference is displayed as
a sequence of nested type environments. The first type environment (line 1) lists
the inferred types for variables in the head of the rule. The second nested type
environment (line 12) lists the inferred types for the body of the rule. Had the
rule contained several bodies via the semicolon operator, then there would be a
distinct type environment for each body, and all of these environments would be
nested under the head. The type of the head would then be the union of all the
types in the bodies.

Line 2 shows that the variable v is guaranteed to be of type V (Integer); it can
never be a string labeled vertex. The variables named ˜dc0, ˜dc1, ˜dc2, ˜dc3 are
don’t care variables. They were generated by the compiler wherever we preferred
not to provide a variable name. This happened in four places in the body:

Parent(x, Context(, v)), Parent(y, Context(, v))

In the first matching constraint we did not provide a variable to bind the match-
ing constraint (using the is operator). The compiler generates one called ˜dc0
and its type is:

Parent(V(Integer), Context({RT} + {LFT}, V(Integer)))

This matching constraint is guaranteed to match only Parent values whose child
is an integer-labeled vertex in the context of an integer-labeled parent. The
variable ˜dc1 occurs because we used the underscore operator (‘ ’) in the first
argument of Context. The variables ˜dc2 and ˜dc3 were analogously created
for the second pattern. Finally, the variables ˜sv0, ˜sv1, and ˜sv2 are compiler-
generated selector variables. They stand for the selection of fields:

~sv0 = x.lbl, ~sv1 = y.lbl, ~sv2 = z.lbl

Examining the type environments is useful for understanding how constraints in
the body interact to restrict the triggering of rules. formula only generates an
error if it is impossible to trigger a rule. For instance, change the declaration of
V to:

V ::= new (lbl: String).

and reload the program. This will result in errors:

ex.4ml (8, 80): Argument 1 of function + is badly typed.

ex.4ml (8, 80): Argument 2 of function + is badly typed.

186 E.K. Jackson and W. Schulte

3.5 Set Comprehensions

Sometimes it is necessary to aggregate all the provable values of a given type
into a single result. The rules we have shown so far cannot accomplish this
task. Consider again the IntGraphs example (Example 1) and imagine trying to
compute the in-degree of a vertex, i.e. the number of distinct edges coming into
a vertex. One might be tempted to write rules such as:

1: indeg atleast 2(v) :-

2: v is V,

3: e1 is E(, v), e2 is E(, v),

4: e1 != e2.
5:

6: indeg atleast 3(v) :-

7: v is V,

8: e1 is E(, v), e2 is E(, v), e3 is E(, v),

9: e1 != e2, e1 != e3, e2 != e3.

These rules can only determine lower bounds on the in-degree by testing for
vertices with at least k distinct incoming edges. Using this approach, we must
write a rule for every possible in-degree that could be encountered. (We could
never write all such rules.) Also, the rules would get larger; the rule computing
indeg atleast k would contain O(k2) constraints. Also, even with these two rules,
we still cannot write a rule that finds vertices whose in-degree is exactly two.
A vertex v has a degree of exactly two if indeg atleast 2(v) is provable and
indeg atleast 3(v) is not provable. But so far we cannot test if indeg atleast 3(v)
is not provable in the body of a rule.

Set comprehensions remedy this problem and fundamentally increase the ex-
pressive power of formula. A set comprehension has the following form:

{ t1, ..., tn | body }

The body part can be legal rule body (e.g. it can contain the semicolon operator
and nested comprehensions). The expressions t1, . . . , tn can be any legal combi-
nation of constants, constructors, variables, and selectors. A set comprehension
means:

“Form a set S of values as follows: For every assignment of variables satisfying the
body substitute these values in to each ti and add each ti to the set S.

Here is an example of using a set comprehension to compute the in-degree of an
arbitrary vertex.

indeg(v, k) :- v is V, k = count({ e | e is E(, v)}).

The count() operation is an interpreted function that takes a set comprehension
and returns its size. The comprehension forms a set of all the edges with v
in the destination position, and k is equal to the size of this set. Notice that
the comprehension sees the variables declared outside of it, and so each choice

FORMULA 2.0: A Language for Formal Specifications 187

of value for the variable v instantiates v inside the comprehension. However,
variables introduced inside the comprehension do not escape. The variable e is
scoped to the comprehension and other comprehensions cannot see it. Consider
this rule:

q :- count({x | V(x), x > 0}) = count({x | V(x), x < 0}).

The first occurrence of x is lexically scoped to the first comprehension, and
second occurrence is scoped to the second comprehension. This rule tests if
the number of vertices with positive labels equals the number with negative
labels. This rules does not constrain x to be both positive and negative (which
is impossible).

Comprehensions can only be used in combination with certain interpreted
predicates / interpreted functions. Variables can only be assigned values, so it is
illegal to assign a set comprehension to a variable. The interpreted predicate no
is used to test if a comprehension is empty, it is equivalent to the constraint:

count({ ... }) = 0

This rule computes all the sources in a graph, i.e. all the vertices with zero
in-degree.

source(v) :- v is V, no { e | e is E(, v) }.

The body of this comprehension consists of a single matching constraint. For
the special case where no is applied to a comprehension with a single matching
constraint, then only the body of the comprehension needs to be written.

source(v) :- v is V, no e is E(, v).

Equivalently,

source(v) :- v is V, no E(, v).

3.6 General Rules and Rule Heads

A general rule has for the form:

head1, ..., headm :- body1; ...; bodyn.

It is equivalent to the set of rules:

head1, ..., headm :- body1.

...

head1, ..., headm :- bodyn.

188 E.K. Jackson and W. Schulte

A general rules proves all heads head1, . . . , headm for every satisfying assign-
ment of the body. Each head must be formed from constants, constructors, and
variables. A rule head must satisfy the following properties:

– Under all circumstances, a rule head must evaluate to a derived constant or
a constructed value.

– Under all circumstances, a rule head must evaluate to a well-typed value.
– Every variable appearing in a rule head must appear at the top level of the

body. (The variable cannot be introduced by a comprehension.)

All of these properties are checked at compile time and generate errors if violated.
A rule violating the first property was demonstrated earlier (i.e. a rule that
proved the constant 1). The second property is the most interesting. It requires
the constraints in the body to prove that every possible assignment satisfying
the body yields a well-typed head value. Imagine adding the following code to
Example 5 where vertices can have integer or string labels:

1: IntLabel ::= (Integer).
2:

3: IntLabel(x) :- V(x).

4: isIntLabel :- IntLabel(x), V(x).

The rule in line 3 matches a vertex; the inferred type of x is String + Integer.
However, the head IntLabel(x) requires x to be an integer. If the rule were
triggered by a string-labeled vertex, then it would produce a badly-typed head
value. This danger is detected by the formula compiler:

ex.4ml (3, 4): Argument 1 of function IntLabel is unsafe.

Some values of type String are not allowed here.

Contrast this with the rule in line 4. Here the conjuncts IntLabel(x) and V (x)
constrain x to be an integer. This rule is accepted by the compiler. Remember
that the bodies must constrain variables enough so that the compiler can prove
the heads are always well-typed. This architecture is designed to detect mistakes
in rules at compile time.

There is one exception to the previous discussion. Selectors can be used in the
head of a rule, in which case they are treated as if they occurred the body. This
mean selectors appearing in the head will constrain the variables appearing in the
body. This rule computes if one vertex is a child of another in a relational tree:

isChild(p.chld, p.cxt.prnt) :- p is Parent.

The occurrence of p.cxt.prnt constrains p to have the type Parent(V,Context)
even though no such constraint appears directly in the body. The rule the com-
piler produces is actually:

1: isChild(p.chld, p.cxt.prnt) :-

2: p is Parent, = p.chld, = p.cxt.prnt.

Finally, every variable appearing in a rule head must also appear at the top level
of a rule body. This rule is illegal:

FORMULA 2.0: A Language for Formal Specifications 189

isChild(p.chld, x) :- p is Parent.

because x does not appear in the body. This restriction prevents rules from
proving an infinite number of facts, thereby preserving executability of rules.
More subtly, this rule is also illegal:

isChild(x, y) :- no Parent(x, Context(, y)).

Intuitively, this rule succeeds if there is no Parent value matching the constraint,
so no assignments are available for the variables x and y in the head. A more
general way to understand the problem is to re-introduce the lexical scoping
braces:

isChild(x, y) :- no { p | p is Parent(x, Context(, y)) }.

The variables x and y are not visible outside of the set comprehension, so they
cannot be used in the head. Finally, a fact is a rule whose head contains no
variables and whose body is empty. It is treated as a rule whose heads are
always provable. A fact can be written as:

value1, ..., valuem.

3.7 Stratification and Termination

Rules are a form of executable logic. This means we can simultaneously treat
them as a set of logical statements or as a kind of program, but both points-of-
view should agree on what the rules mean. Obtaining this agreement becomes
complicated without additional requirements on the structure of rules. The first
major challenge arises because of set comprehensions. Consider these rules:

1: p :- no q.

2: q :- no p.

To execute these rules as program, formula (1) chooses a rule, (2) computes
all the new values it proves, and (3) repeats steps 1-2 until no new values are
proved. If the first rule is executed first then p is proved because q is not, but
then q cannot be proved. On the other hand, if the second rule is executed first
then q is proved because p is not, but then p cannot be proved. Consequently,
the answer to query M p depends on the order of execution.

There are two ways to reconcile this behavior. Either we can treat this
behavior as correct, in which case the logical interpretation of rules must be
generalized. Or, we can restrict the structure of rules to prevent this behavior
all together. We choose the second approach, and prevent rules that would ex-
hibit the behavior just described. One well-known restriction that eliminates this
problem is called stratification.

Definition 31 (Stratification). A formula program is stratified if there is no
set comprehension that examines values (indirectly) proved by the rule contain-
ing the comprehension.

190 E.K. Jackson and W. Schulte

In the previous example the first rule contains a set comprehension no {q | q}.
And, q values are proved by the second rule, which examines p values (under a
set comprehension of its own). Therefore the first set comprehension examines
values that could be indirectly proved by the rule containing it. This is a sign
that the order of execution could yield different outcomes. formula produces
the following error message for the previous program:

1: ex.4ml (1, 9): A set comprehension depends on itself.

2: Listing dependency cycle 0...

3: ex.4ml (1, 9): A set comprehension depends on itself.

4: Dependency cycle 0

5: ex.4ml (1, 4): A set comprehension depends on itself.

6: Dependency cycle 0

7: ex.4ml (2, 9): A set comprehension depends on itself.

8: Dependency cycle 0

9: ex.4ml (2, 4): A set comprehension depends on itself.

10: Dependency cycle 0

The error messages list the locations of the rules and the set comprehensions
that form a dependency cycle. Stratification is fully checked at compile time and
unstratified programs are rejected.

Rules are executed so that all values are proved before a dependent set com-
prehension is executed. This strategy always computes a unique result, which
coincides with the logical interpretation of rules. Users may write rules in any
syntactic order, but they will always be executed to respect the dependencies of
set comprehensions. For example:

1: smallInDegree :- no { v | indeg(v, k), k > 3 }.
2: indeg(v, k) :- v is V, k = count({ e | e is E(, v)}).

A graph has a “small in-degree” if no in-degree is greater than three. The first
rule computes smallInDegree by comprehending over all the indeg values. Fur-
thermore, the second rule computes indeg values by comprehending over all the
edges. The order of execution will be: compute all the E values, and then com-
pute all the indeg values, and then compute the smallInDeg value. It does not
matter that smallInDeg appeared earlier in program text.

The second challenge with executable logic is termination.

Definition 32 (Termination). A domain is terminating if the set of provable
values is finite for every model of that domain.

A non-terminating domain may execute forever when evaluating a query.
Currently formula does not check for termination, so a user may write a non-
terminating program and later find that query execution never stops. Theo-
retically termination cannot be checked with certainty for arbitrary programs,
though many conservative analyses are possible and formula may use some of
them in the future. Here is a classic example of a non-terminating rule repre-
senting the successor function s().

FORMULA 2.0: A Language for Formal Specifications 191

s(x) :- x = 0; x is s.

The value s(0) is provable, and so the value s(s(0)) is provable, and so the value
sn(0) is provable for every positive integer n. In fact, the successor function is
one way to represent the natural numbers. Users should not try to axiomatize
theories, such as the theory of natural numbers, using formula. Instead, they
should utilize the interpreted functions that already embed these theories into
the formula language.

3.8 Complex Conformance Constraints

We have shown how rules can compute properties of models. To create a con-
formance constraint use the following syntax.

conforms body.

Definition 33 (Model Conformance). A model conforms to its domain if:

– Every assertion in M is constructed from new-kind constructors.
– Every value in M is well-typed.
– The body of every conformance constraint is satisfied for some substitution

of the variables.

Internally, formula creates a special derived constant D.conforms for each do-
mainD. All conformance constraints must be provable forD.conforms to be prov-
able. Additionally, conformance constraints are introduced for the relation / func-
tion constraints appearing in type declarations.Table 7 lists the predefined derived
constants. Users maywrite rules referring to these constants, but it is illegal to add
a rule that proves them. Only the compiler can add rules proving these constants.
We now list the complete domains for directed acyclic graphs and relational trees.

Example 6 (Directed Acyclic Graphs).

1: domain DAGs

2: {
New-kind constructors.

3: V ::= new (lbl: Integer).

4: E ::= new (src: V, dst: V).

Derived-kind constructors.

5: path ::= (V, V).

Computation of transitive closure.

6: path(u, w) :- E(u, w); E(u, v), path(v, w).

Acyclicity constraint.

7: conforms no path(u,u).

8: }

192 E.K. Jackson and W. Schulte

Table 7. Table of predefined derived constants

Predefined Derived Constants#
Name Meaning#

D.conforms Provable if all conformance constraints are satisfied.
D.notRelational Provable if a provable value contains f(. . . , ti, . . .), f is

relational on position i, ti = g(. . .), and g(. . .) is not prov-
able.

D.notFunctional Provable if a constructor is declared to be a (partial) func-
tion, but its provable values map an element from the do-
main of the function to several distinct elements in the
codomain.

D.notTotal Provable if a constructor is declared to be a total func-
tion, but some element of its domain is not mapped to an
element of its codomain.

D.notInjective Provable if a constructor is declared to be a (partial) injec-
tion, but several elements of its domain are mapped to the
same element in its codomain.

D.notInvTotal Provable if a constructor is declared to be a (partial) sur-
jection, but there is an element of its codomain for which
no element of the domain is mapped.

Example 7 (Relational Trees).

1: domain RelTrees Final

2: {
New-kind constructors.

3: V ::= new (lbl: Integer + String).

4: Parent ::= fun (chld: V => cxt: any {ROOT} + Context).

5: Context ::= new (childPos: {LFT, RT}, prnt: V).

Derived-kind constructors.

6: anc ::= (ancestor: V, descendant: V).

Computation of ancestors.

7: anc(u, w) :- Parent(w, Context(, u)); anc(u, v), anc(v, w).

Computation of too-many children.

8: tooManyChildren :-

9: Parent(x, Context(pos, parent)),

10: Parent(y, Context(pos, parent)),

11: x != y.

Conformance constraints

12: conforms no anc(u, u).

13: conforms no tooManyChildren.

14: }

FORMULA 2.0: A Language for Formal Specifications 193

3.9 Extracting Proofs

Often times it is useful to know why a query evaluates to true. If a query evaluates
to true, then a proof tree can be obtained showing how the rules prove the query.
In a new file type the code from Example 6 along with the code below:

1: model LittleCycle of DAGs

2: {
3: v1 is V(1).

4: v2 is V(2).

5: E(v1, v2).

6: E(v2, v1).

7: }
Execute the query (and observe that it evaluates to true):

[]> query LittleCycle path(u, u)

Next type:

[]> proof 0

(0 is the id of the query task; type the particular id of your task.) The following
output is displayed:

1: Truth value: true
2:

3: Query 263ea486 4485 4bff bda4 c99ea8f94c27.requires :- (2, 1)

4: ~dc0 equals

5: Query 263ea486 4485 4bff bda4 c99ea8f94c27.~requires0 :- (2, 1)

6: ~dc0 equals

7: path(V(2), V(2)) :- (6, 4)

8: ~dc0 equals

9: E(V(2), V(1)) :- (14, 4)
10: .
11: ~dc1 equals

12: path(V(1), V(2)) :- (6, 4)

13: ~dc0 equals

14: E(V(1), V(2)) :- (13, 4)
15: .
16: .
17: .
18: .
19: .
20:

21: Press 0 to stop, or 1 to continue

Line 1 indicates that the query evaluated to true. The remaining lines show a
nested hierarchy of rules along with the values of the matching constraints that
triggered the rule. The rules in lines 3 and 5 where generated by the compiler
to hold the body of the query expression; they can be ignored. Line 7 shows

194 E.K. Jackson and W. Schulte

Table 8. Table of domain symbol placement

Placement of Domain Symbols#
Kind of Declaration Symbols and Placement#

Type ::= ... The symbol Type and the type constant #Type are placed in
the root. If declaration is an n-ary constructor declaration then
type constants #Type[0], ..., #Type[n-1] are also placed in the
root.

{ ..., Cnst, ... } The new-kind user constant Cnst is placed in the root.

DerCnst :- ... The derived-kind user constant DerCnst is placed in the names-
pace D.

x A variable introduced in a rule is placed in the root namespace.
Variables can be introduced independently by many rules; this
does not cause a conflict.

D.Constant A predefined symbol defined to be the union of all new-kind con-
stants (including numerics and strings). Placed in the names-
pace D along with D.#Constant.

D.Data A predefined symbol defined to be the union of all new-kind con-
stants (including numerics and strings) and data constructors.
Placed in the namespace D along with D.#Data.

D.Any A predefined symbol defined to be the union of all types in the
domain. Placed in the namespace D along with D.#Any.

that a loop path(V (2), V (2)) was proved using the rule at line 6 column 4
in the domain definition (i.e. the transitive closure rule). This rule used the
proofs of E(V (2), V (1)) (line 9) and path(V (1), V (2)) (line 12). The proof of
E(V (2), V (1)) comes directly from the model assertion located at (14, 4). The
proof of path(V (1), V (2)) requires another invocation of the transitive closure
rule using the model assertion at (13, 4).

Press 1 key to obtain another proof of the query. Press the 1 key again and
formula exits the display loop because there are no more proofs to show. In
fact, this statement is not entirely true; there are infinitely many proof trees
that prove the loop, but most of them depend on a subproof of a loop and are
not interesting. For instance, once path(V (2), V (2)) is proved, the the transitive
closure rule can be applied again to obtain another proof for path(V (2), V (2)).
formula only shows minimal proof trees, and ignores (or cuts) proofs containing
a subproof of the property.

The proof command is a bit more general. It can take a value (without vari-
ables) and return a truth value and possibly a proof tree. Try:

FORMULA 2.0: A Language for Formal Specifications 195

[]> proof 0 path(V(1), V(2))

Three results are possible:

– The truth value can be true and trees are displayed.
– The truth value can be false and no trees are displayed.
– The truth value can be unknown. This occurs if formula did not evaluate

enough rules to decide if the value is provable.

When a query operation is executed formula will decide which rules are relevant
to the query. It will report the truth value of unknown if the proof command is
called with a value whose proof might require unexecuted rules. (This can also
occur if the query execution was terminated prematurely.)

4 Domain and Model Composition

Domains and models can be combined to build up more complicated mod-
ules. Domain composition allows type declarations, rules, and conformance con-
straints to be combined. Model composition allows sets of assertions and aliases
to be combined.

4.1 Namespaces

To understand composition, we must first discuss how symbols are organized. Ev-
ery symbol s declared in a module is placed into a namespace n. The complete
name of a symbol is n.s. We hinted at the existence of namespaces when de-
scribing derived constants such as RelTrees.hasCycle or DAGs.conforms. They
also appeared in the symbolic constants Gex’.%v1 andGex’.%e 1 2. The root
namespace has no name at all. The complete name of a symbol s placed in the
root namespace is simply s. When modules are composed their namespaces are
merged. Composition fails if the combined modules declare a symbol with the
same full name but in semantically different ways.

Every domain D starts with two namespaces: the root namespace and a
namespace D, which is a child of the root. Whether a declaration places sym-
bols in the root or the D namespace depends on the kind of declaration. Table
8 describes the introduction and placement of domain symbols. Note that type
constants are used to support reflection, but we have not discussed them yet.

Load the file containing Example 7 (RelTrees Final) and type:

[]> det RelTrees Final

You will see the complete set of symbols and their placement into namespaces.
(Additional compiler generated symbols are listed as well.)

196 E.K. Jackson and W. Schulte

1: Symbol table

2: Space | Name | Arity | Kind

3: ----------------|-----------------|-------|-------
4: | Boolean | 0 | unn

5: | Context | 2 | con

6: | FALSE | 0 | ncnst

7: | Integer | 0 | unn

8: | LFT | 0 | ncnst

9: | Natural | 0 | unn

10: | NegInteger | 0 | unn

11: | Parent | 2 | map

12: | PosInteger | 0 | unn

13: | ROOT | 0 | ncnst

14: | RT | 0 | ncnst

15: | Real | 0 | unn

16: | String | 0 | unn

17: | TRUE | 0 | ncnst

18: | V | 1 | con

19: | anc | 2 | con

20: RelTrees Final | Any | 0 | unn

21: RelTrees Final | Constant | 0 | unn

22: RelTrees Final | Data | 0 | unn

23: RelTrees Final | conforms | 0 | dcnst

24: RelTrees Final | notFunctional | 0 | dcnst

25: RelTrees Final | notInjective | 0 | dcnst

26: RelTrees Final | notInvTotal | 0 | dcnst

27: RelTrees Final | notRelational | 0 | dcnst

28: RelTrees Final | notTotal | 0 | dcnst

29: RelTrees Final | tooManyChildren | 0 | dcnst

30: RelTrees Final | ~conforms0 | 0 | dcnst

31: RelTrees Final | ~conforms1 | 0 | dcnst
32:

33: Type constants: #Boolean #Context #Context[0] #Context[1]

34: #Integer #Natural #NegInteger #Parent #Parent[0]

35: #Parent[1] #PosInteger #Real #String #V #V[0]

36: #anc #anc[0] #anc[1] RelTrees Final.#Any

37: RelTrees Final.#Constant RelTrees Final.#Data
38: Symbolic constants:

39: Rationals:
40: Strings:

41: Variables: parent pos u v w x y ~arg1 ~arg2 ~arg2'

A model M of domain D contains all the same definitions as D but adds an
additional namespace called M under the root. All aliases are placed here as
symbolic constants.

FORMULA 2.0: A Language for Formal Specifications 197

[]> det LittleCycle

Listing omitted

1: Symbolic constants: LittleCycle.%v1 LittleCycle.%v2

Listing omitted

Altogether the LittleCycle model contains three namespaces: the root namespace
and two sub-namespaces called DAGs and LittleCycle.

4.2 Domain Composition

Domains are composed by writing:

domain D includes D1, ..., Dn { ... }

Composition imports all the declarations of D1, . . . , Dn into D. If a symbol is in
namespace n in Di, then it remains in namespace n in D. If this merging causes
a symbol to receive contradictory declarations, then an error is reported. As a
corollary, importing the same domain several times has no effect, because all
declarations trivially agree. Here is an example of a problematic composition:

1: domain D1 { q :- X = 0. }
2: domain D2 { T ::= { X }. }
3: domain D includes D1, D2 { }

In domain D1 the symbol X is a variable, but in domain D2 it is a user constant.
These declarations are incompatible and an error is returned:

ex.4ml (3, 23): The symbol X has multiple definitions.

Here is a more subtle example:

1: domain D1 { List ::= new (Integer, any List + {NIL}). }
2: domain D2 { List ::= new (Real, any List + {NIL}). }
3: domain D includes D1, D2 { }

Though both domains agree that List(,) is a binary constructor; they disagree
on the type constraints. However, this composition is legal:

1: domain D1

2: { List ::= new (Integer, any List + {NIL}). }
3: domain D2

4: {
5: List ::= new (NegInteger + {0} + PosInteger, any List + {NIL}).
6: }
7: domain D includes D1, D2

198 E.K. Jackson and W. Schulte

8: {
9: List ::= new (Integer, any ListOrNone).

10: ListOrNone ::= List + {NIL}.
11: }

Though List has a syntactically different definitions in each domain, all domains
semantically agree on the values accepted by the List(,) constructor.

The includes keyword merges domain declarations. However, it does not force
the importing domain to satisfy all the domain constraints of the imported do-
mains. In the previous examples D contains rules for computing D.conforms,
D1.conforms, and D2.conforms. However, D.conforms need not reflect the con-
formance constraints of D1 and D2. (Relation / function constraints will be
respected, because they occur on type declarations.) A composite domain au-
tomatically inherits conformance constraints if the extends keyword is used in
place of includes :

domain D extends D1, ..., Dn { ... }

Consider that the set of all DAGs is a subset of the set of all directed graphs,
and the set of trees is a subset of the set of DAGs. This chain of restrictions can
be specified as follows:

Example 8 (Classes of graphs).

1: domain Digraphs

2: {
3: V ::= new (lbl: Integer).

4: E ::= new (src: V, dst: V).

5: }
6:

7: domain DAGs extends Digraphs

8: {
9: path ::= (V, V).

10: path(u, w) :- E(u, w); E(u, v), path(v, w).

11: conforms no path(u, u).

12: }
13:

14: domain Trees extends DAGs

15: {
16: conforms no { w | E(u, w), E(v, w), u != v }.
17: }

4.3 The Renaming Operator

Suppose we would like to build a domain representing two distinct graphs, i.e.
with two distinct edge and vertex sets. One construction would be the following:

FORMULA 2.0: A Language for Formal Specifications 199

1: domain TwoDigraphs

2: {
3: V1 ::= new (lbl: Integer).

4: E1 ::= new (src: V1, dst: V1).
5:

6: V2 ::= new (lbl: Integer).

7: E2 ::= new (src: V2, dst: V2).

8: }
The constructors V1() and E1(,) construct elements from the first graph and the
constructors V2() and E2(,) construct elements from the second graph. A model
would contain vertices and edges that could always be classified as belonging to
either the first or second graph.

While this specification accomplishes the goal, it is not very satisfying.
TwoGraphs contains two deep copies of the Digraphs domain, but the construc-
tors have been renamed in an ad-hoc manner. formula provides a methodolog-
ical way to accomplish this same task: the renaming operator (‘::’).

rename::Module

The renaming operator creates a new module of the same kind with a namespace
called rename. It copies all definitions frommodule under the rename namespace,
and rewrites all copied declarations to reflect this renaming. The only symbols
immune to this operation are new-kind constants, which remain at the root of
the freshly created module. The renaming operator has many uses, though we
only demonstrate a few uses now. The following domain describes the set of all
pairs of isomorphic DAGs.

Example 9 (Isomorphic DAGs).

1: domain IsoDAGs extends Left::DAGs, Right::DAGs

2: {
3: Iso ::= bij (Left.V => Right.V).
4:

5: conforms no { e | e is Left.E(u, w),

6: Iso(u, u'), Iso(w, w'),

7: no Right.E(u', w') }.
8: conforms no { e | e is Right.E(u', w'),

9: Iso(u, u'), Iso(w, w'),

10: no Left.E(u, w) }.
11: }

This domain contains two copies of the DAGs domain under the renamings Left
and Right. It contains two vertex constructors called Left.V() and Right.V() as
well as two edge constructors called Left.E(,) and Right.E(,). Because IsoDAGs
extends the renamed domains, the left graph and the right graph must satisfy
Left.DAGs.conforms and Right.DAGs.conforms respectively. In other words, the

200 E.K. Jackson and W. Schulte

constraints on the renamed structures are preserved. Line 3 introduces a new
bijection for witnessing the isomorphism between the left and the right vertices.
Notice that the types Left.V and Right.V are immediately available for use.
Finally, the two additional conformance constraints require the Iso bijection to
relate the vertices such that Iso is a proper isomorphism. Here is a model of the
domain:

1: model LittleIso of IsoDAGs

2: {
3: v1L is Left.V(1).

4: v2L is Left.V(2).

5: v1R is Right.V(1).

6: v2R is Right.V(2).
7:

8: Left.E(v1L, v2L).

9: Right.E(v2R, v1R).
10:

11: Iso(v1L, v2R).

12: Iso(v2L, v1R).

13: }
formula provides several shortcuts to avoid fully qualifying symbols. First, a
symbol only needs to be qualified until there is a unique shortest namespace
containing the symbol. Suppose there are symbols X.f() and X.Y.Z.f(). Then
f() will be resolved to X.f() because this is the shortest namespace containing
a symbol called f(). Also, Y.f() will be resolved to X.Y.Z.f() because this is
the shortest namespace containing a qualifier Y and the symbol f(). Second, the
resolved namespace of a constructor is applied to arguments of the constructor. If
this resolution fails, then resolution restarts from the root namespace. Consider
this example:

Left.E(V(1), V(2))

The outer constructor Left.E(,) is resolved to be in the Left namespace. Next,
the inner constructor V () is encountered and name resolution looks for a unique
shortest qualifier under the Left namespace. This succeeds and resolves as
Left.V (). Thus, we have avoided writing the qualifier Left on the occurrences
of V (). Of course, it is acceptable to fully qualify the inner constructors.

Left.E(Left.V(1), Left.V(2))

In this case, the symbol Left.Left.V () does not exist and so name resolution
restarts from the root and resolves to Left.V ().

FORMULA 2.0: A Language for Formal Specifications 201

5 Interpreted Functions

5.1 Arithmetic Functions and Identities

Table 9. Table of arithmetic functions (I)

Arithmetic Functions (I)
Syntax Side Constraints Result#

-x x : Real −x

x + y x : Real, y : Real x+ y

x - y x : Real, y : Real x− y

x * y x : Real, y : Real x · y

x / y x : Real, y : Real, y != 0. x
y

x % y x : Real, y : Real, y != 0. 0 ≤ r < |y|, such that
∃q ∈ Z. x = q · y + r.

count({. . .}) – The number of elements in {. . .}.

gcd(x, y) x : Integer, y : Integer
def
=

{ |x| if y = 0,
gcd(y, |x|%|y|).

gcdAll(x, {. . .}) – The gcd of all integer elements, or
x if there are no such elements.

lcm(x, y) x : Integer, y : Integer
def
=

{
0 if |x|+ |y| = 0,
|x · y|/gcd(x, y).

lcmAll(x, {. . .}) – The lcm of all integer elements, or
x if there are no such elements.

max(x, y) – x if x ≥ y; otherwise y.

maxAll(x, {. . .}) – The largest element of {. . .} in the
order of values; x if {. . .} is empty.

202 E.K. Jackson and W. Schulte

Table 10. Table of arithmetic functions (II)

Arithmetic Functions (II)
Syntax Side Constraints Result#

min(x, y) – x if x ≤ y; otherwise y.

minAll(x, {. . .}) – The smallest element of {. . .} in
the order of values; x if {. . .} is
empty.

prod(x, {. . .}) –
def
=

⎧⎨
⎩

x if {. . .} ∩ R = ∅,∏
e∈{...}∩R

e.

qtnt(x, y) x : Real, y : Real, y != 0. q ∈ Z, such that
∃0 ≤ r < |y|. x = q · y + r.

sign(x) x : Real
def
=

⎧⎨
⎩

−1 if x < 0,
0 if x = 0,
1 if x > 0

sum(x, {. . .}) –
def
=

⎧⎨
⎩

x if {. . .} ∩ R = ∅,∑
e∈{...}∩R

e.

Table 11. Table of arithmetic identities (LHS-s are not built-in operations)

Arithmetic Identities
Left-Hand Side Right-Hand Side#

abs(x) = max(x,−x).

ceiling(x) = −qtnt(−x, 1).

floor(x) = qtnt(x, 1).

FORMULA 2.0: A Language for Formal Specifications 203

5.2 Boolean Functions

Table 12. Table of Boolean functions

Boolean Functions
Syntax Side Constraints Result#

and(x, y) x : Boolean, y : Boolean x ∧ y.

andAll(x, {. . .}) –
def
=

⎧⎨
⎩

x if {. . .} ∩ B = ∅,∧
e∈{...}∩B

e.

impl(x, y) x : Boolean, y : Boolean ¬x ∨ y.

not(x) x : Boolean ¬x.

or(x, y) x : Boolean, y : Boolean x ∨ y.

orAll(x, {. . .}) –
def
=

⎧⎨
⎩

x if {. . .} ∩ B = ∅,∨
e∈{...}∩B

e.

204 E.K. Jackson and W. Schulte

5.3 String Functions

In the table above, ε is the empty string and s[i] is the single-character string at
position i in s, for 0 ≤ i < strLength(s).

Table 13. Table of string functions

String Operations
Syntax Side Constraints Result#

isSubstring(x, y) x : String, y : String. TRUE if x is a substring of y;
FALSE otherwise. The empty string
is only a substring of itself.

strAfter(x, y) x : String, y : Natural. Returns the largest substring start-
ing at position y, or ε if y ≥
strLength(x).

strBefore(x, y) x : String, y : Natural. Returns the largest substring end-
ing before position y, or ε if y = 0.

strFind(x, y, z) x : String, y : String. Returns the index of the first oc-
currence of x in y; z if y never
appears.

strFindAll(x, y,

z, w)

x is a w-terminated natural-list
type constant #F. y : String,
z : String.

Returns a w-terminated F ′-list of
all the indices where y occurs in z;
w if it never occurs.

strGetAt(x, y) x : String, y : Natural.
def
=

{
x[y] if y < strLength(x),
ε otherwise.

.

strJoin(x, y) x : String, y : String.
def
=

⎧⎨
⎩

y if x = ε,
x if y = ε,
xy otherwise.

.

strLength(x) x : String. Returns the length of x.

strLower(x) x : String. Returns the all-lower-case version
of x.

strReverse(x) x : String. Returns the reverse of x.

strUpper(x) x : String. Returns the all-upper-case version
of x.

FORMULA 2.0: A Language for Formal Specifications 205

5.4 List Functions

A list constructor is a constructor F ::= (T0, T1) such that F is a subtype of
T1. A T-list constructor is a list constructor such that T is a subtype of T0. A
list type constant #F is a type constant such that F is a list constructor. A list is
flat if it has n elements placed as follows:

F (t0, F (t1, . . . , F (tn−1, w) . . .))

The value w is called the terminator. In the table below all operations, except
for isSubTerm and lstFlatten, assume flat lists.

Table 14. Table of list functions

List Functions
Syntax Side Constraints Result#

isSubterm(x, y) – TRUE if x is a subterm of y;
FALSE otherwise. .

lstAfter(x, y, z, w) x is a w-terminated list
type constant #F, z :

Natural.

y if y �= F (. . .); w if z ≥
lstLength(y); a w-terminated F -list
of all the elements at and after z.

lstBefore(x, y,

z, w)

x is a w-terminated list
type constant #F, z :

Natural.

y if y �= F (. . .); w if z ≤ 0; a w-
terminated F -list of all the elements
before z.

lstFind(x, y, z, w) x is a list type constant #F. The first place where z occurs in the
F -list y; w if z never occurs.

lstFindAll(x, x’, y,

z, w)

x is a list type constant
#F, x′ is a w-terminated
natural-list type constant
#F’.

Returns a w-terminated F ′-list of all
the indices where z occurs in y; w if
it never occurs.

lstFlatten(x, y, w) x is a w-terminated list
type constant #F.

Converts y into w-terminated flat
form if y = F (. . .); y otherwise.

lstGetAt(x, y, z) z : Natural,
z < lstLength(x, y).

def
=

{
h if lstGetAt(x, F (h, t), 0),
lstGetAt(x, t, z − 1).

lstLength(x, y) x is a list type
constant #F.

def
=

{
0 if y �= F (h, t),
1 + lstLength(t).

lstReverse(x, y) x is a list type
constant #F.

y if y �= F (. . .); otherwise reverses
the list reusing the same terminator

206 E.K. Jackson and W. Schulte

5.5 Coercion Functions

In the table to follow, a list type constant #F is a type constant such that F ::=

(T1, T2) and F <: T2.

Table 15. Table of coercion functions

Coercion Functions
Syntax Side Constraints Result#

toList(x, y, {. . .}) x is a list type constant, y : T2. F (t1, . . . , F (tn, y) . . .) where
ti are the sorted elements of
{. . .} accepted by T1. Or y if no
element is accepted.

toNatural(x) – Returns a unique natural for the
value x.

toString(x) – Returns a unique string for the
value x.

toSymbol(x) – Returns x if x is a constant;
#F for x = F (. . .).

5.6 Reflection Functions

Table 16. Table of reflection functions

Reflection Functions
Syntax Side Constraints Result#

rflGetArgType(x, y) x is a type constant #F,
y : Natural,
y < rflGetArity(x).

Returns #F[y], where F ::=

(T0,. . .,Tn−1)

rflGetArity(x) x is a type constant #X. Returns n if X ::=

(T0,. . .,Tn−1); 0 otherwise.

rflIsMember(x, y) y is a type constant #Y. TRUE if x is a member of Y ;
FALSE otherwise.

rflIsSubtype(x, y) x is a type constant #X,
y is a type constant #Y.

TRUE if X is a subtype of Y ;
FALSE otherwise.

Formal Modelling, Analysis

and Verification of Hybrid Systems

Naijun Zhan, Shuling Wang, and Hengjun Zhao

State Key Lab. of Comput. Sci., Inst. of Software, Chinese Academy of Sciences

Abstract. Hybrid systems is a mathematical model of embedded sys-

tems, and has been widely used in the design of complex embedded sys-

tems. In this chapter, we will introduce our systematic approach to formal

modelling, analysis and verification of hybrid systems. In our framework,

a hybrid system is modelled using Hybird CSP (HCSP), and specified

and reasoned about by Hybrid Hoare Logic (HHL), which is an extension

of Hoare logic to hybrid systems. For deductive verification of hybrid sys-

tems, a complete approach to generating polynomial invariants for poly-

nomial hybrid systems is proposed; meanwhile, a theorem prover for HHL

that can provide tool support for the verification has been implemented.

We give some case studies from real world, for instance, Chinese High-

Speed Train Control System at Level 3 (CTCS-3). In addition, based

on our invariant generation approach, we consider how to synthesize a

switching logic for a considered hybrid system by reduction to constraint

solving, to meet a given safety, liveness, optimality requirement, or any

of their combinations. We also discuss other issues of hybrid systems,

e.g., stability analysis.

Keywords: Hybrid systems, Hybrid CSP, Hybrid Hoare Logic, Invari-

ant, Theorem proving.

1 Introduction

Our modern life increasingly depends on embedded systems. How to develop
correct complex embedded systems is a grand challenge for computer science and
control theory. The model-based method is thought to be an effective method to
designing complex embedded systems. Using this approach at the very beginning,
an abstract model of the system to be developed with precise mathematical
semantics is defined. Extensive analysis and verification on the abstract model
are then committed so that errors can be identified and corrected at the very
early stage. Then, a higher-level abstract model is refined to a lower-level abstract
model, even to source code, step by step, using model-transformation techniques.

Hybrid systems, combining formal models for discrete reactive systems and
continuous models for dynamical systems [1,59], is a mathematical model of em-
bedded systems. There are hugely numerous work that have been done related to
hybrid systems. Please refer to [4,42] for a survey. Modeling discrete components
by finite automata, and attaching state-dependent ordinary differential equations

Z. Liu, J. Woodcock, and H. Zhu (Eds.): Theories of Programming, LNCS 8050, pp. 207–281, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

208 N. Zhan, S. Wang, and H. Zhao

to the discrete states in order to capture the impact of the discrete component
on the continuous environment, yields hybrid automata [1], which are by far the
most widely used model of hybrid systems in academia. Hybrid automata are,
however, analogs of state machine, with little support for structured descrip-
tion, and consequently, a number of formalisms have been proposed to facilitate
modular descriptions of complex systems. These include modeling environments
such as SHIFT [28] and PTOLEMY [31] for hierarchical specification of hybrid
behavior; models such as hybrid I/O automata [58], hybrid modules [2], and
CHARON [9], for compositional treatment of concurrent hybrid behavior; Hy-
brid CSP (HCSP) [37,98] for process algebra based specification and verification
of hybrid behavior; and differential dynamic logic [65,66] and hybrid Hoare logic
(HHL) [55,86] for logic-based specification and compositional analysis of hybrid
behavior. Industrial variants include the Simulink/Stateflow environment, which
does, however, lack a uniquely defined —depending on the use case, there are
semantical variations— and comprehensive formal semantics.

With most hybrid system models being rooted in automata-based models,
their pertinent verification techniques have accordingly adopted the automaton-
based approach to verification in the past, mainly being based on directly com-
puting exact representations or safe approximations of reachable state sets. For
example, based on model-checking [22,71], the reachability problems of some sim-
ple hybrid systems, like timed automata [8], multirate automata [1], initialized
rectangular automata [70,41], and so on, have been solved; based on the decision
procedure of Tarski algebra [83], in [53] methods for computing reachable sets
for three classes of special linear hybrid systems were investigated. Due to in-
finiteness of the underlying state spaces, symbolic representations, often paired
with safe approximation within a computationally reasonably efficient symbolic
representation, and abstraction techniques are generally applied in reachable set
computation. For example, the tool HYTECH [3] was the first model checker to
implement exact symbolic reachability analysis of linear hybrid automata1 by
using polyhedra-based technique; while the tools CHECKMATE [20] and d/dt
[11] compute over-approximations of reachable sets of linear hybrid systems1 us-
ing polyhedral representations; related techniques use lazy theorem proving for
analyzing bounded reachability problems of linear [12] or non-linear [34] hybrid
automata. Furthermore, discretization of continuous dynamics based on grid-
ding or predicate abstraction has been extended and adopted for hybrid systems
[40,7,21,73,25].

To deal with more complicated systems, recently, a deductive method for
the verification of hybrid systems has been established and successfully applied
in practice [65,66]. This method can be seen as a generalization of the so-called
Floyd-Hoare-Naur inductive assertion method [32,43,62]. The inductive assertion

1 With hybrid systems being an interdisciplinary domain bridging control theory and

computer science, terminology often is subtle due to different roots of naming con-

ventions. A linear hybrid automaton is a system featuring (piecewise) constant dif-

ferential inclusions while a linear hybrid system features linear or often even affine

differential equations.

Formal Modelling, Analysis and Verification of Hybrid Systems 209

method is thought to be the dominant method for the verification of sequential
programs. To generalize the inductive method to hybrid systems, a modeling
language with compositionality for hybrid systems and a Hoare-style logic for the
language with the ability of dealing with continuous dynamics are prerequisites.
For example, a differential-algebraic dynamic logic for hybrid programs [64] was
invented by extending dynamic logic with continuous statements. Recently, we
[55] had another effort by extending Hoare logic to hybrid systems modeled by
HCSP [37,98] for the same purpose.

The concept of invariant is at the core of deductive methods. An invariant
of a hybrid system is a property φ that holds in all the reachable states of the
system. An inductive invariant of a hybrid system is an assertion φ that holds
at the initial states of the system, and preserved by all discrete and continuous
dynamics. In fact, any inductive invariant is also an invariant, but the inverse is
not true in general. The problem of (inductive) invariant generation has received
wide attention in the analysis and verification of programs [13,23,76,48] and
hybrid systems [75,69,65,81,55]. Many properties of hybrid systems like safety,
stability, liveness etc., can be characterized and inferred via invariants without
solving differential equations, while differential equations have to be exactly
solved or approximated in the methods based on directly computing reachable
sets.

The key issue in generating inductive invariants of a hybrid system is to deal
with continuous dynamics, i.e. to generate so-called continuous invariant (CI)
of the continuous dynamics at each mode of the system. A method based on
constraint solving was proposed in [75] for generating CIs containing a single
polynomial equation. This method was generalized in [74] to construct CIs con-
taining infinitely many polynomial equations, i.e. the so-called invariant ideal.
The basic idea of these methods is to reduce the CI generation problem to a
constraint solving problem using techniques from the theory of ideals over poly-
nomial rings. For the polynomial inequality case, it was considered in [69,67]
how to generate CIs containing one polynomial inequality. The basic idea of
their method is to utilize a certain function, called a barrier certificate, to en-
close the invariant. With some stronger constraints, generation of more general
CIs was considered in [65], wherein the CIs are Boolean combinations of polyno-
mial equations and inequalities. By restricting the invariant sets to have smooth
boundaries, a sound but incomplete method for constructing invariants involv-
ing non-strict polynomial inequalities was proposed in [81,80]. While in [56], we
presented a relatively complete method for generating semi-algebraic invariants
(SAIs) for polynomial continuous dynamical systems by employing higher-order
Lie derivatives and the theory of polynomial ideal.

As a complementation of verification, synthesis focuses on designing a
controller that controls the underlying subsystems so that the whole system
is guaranteed to satisfy the given requirement, that may be safety, liveness (e.g.
reachability to a given set of states), optimality criterion, or a desired combina-
tion of them. Numerous work have been done on controller synthesis for safety
and/or reachability requirements. For example, in [10,85], a general framework

210 N. Zhan, S. Wang, and H. Zhao

relying on backward reachable set computation and fixed point iteration was pro-
posed, for synthesizing controllers for hybrid automata to meet a given safety re-
quirement; while in [79], a symbolic approach based on templates and constraint
solving to the same problem was proposed, and in [82], the symbolic approach
is extended to meet both safety and reachability requirements. Compared with
controller synthesis for safety, the optimal controller synthesis problem is more
involved, also quite important in the design of hybrid systems. In the literature,
few work has been done on the problem. Larsen et al proposed an approach
based on energy automata and model-checking [18], while Jha, Seshia and Ti-
wari gave a solution to the problem using unconstrained numerical optimization
and machine learning [44]. In [94], we proposed a “hybrid” approach for synthe-
sizing optimal controllers of hybrid systems subject to safety requirements. The
basic idea is as follows. Firstly, we reduce optimal controller synthesis subject to
safety requirements to quantifier elimination (QE for short). Secondly, in order
to make our approach scalable, we discuss how to combine QE with numerical
computation, but at the same time, keep arising errors due to discretization
manageable and within bounds. A major advantage of our approach is not only
that it avoids errors due to numerical computation, but it also gives a better
optimal controller.

All the aforementioned verification or synthesis approaches aim at showing
or avoiding unreachability of undesirable states, i.e. total absence of undesirable
behavior. In realistic applications, this often is an overly ambitious goal, be-
ing economically unattainable or even technically impossible to achieve due to
uncontrollable environmental influences, unavoidable manufacturing tolerances,
component breakdown, etc. Therefore, the existing, qualitative safety analysis
methods for hybrid systems have to be complemented by quantitative meth-
ods, quantifying the likelihood of residual error or related performance figures
(MTBF, MTTF, etc.) in systems subject to uncertain, stochastic behavior (both
in the embedded system and its environment) as well as noise. It is therefore
necessary to address such stochastic issues in the model of embedded systems,
i.e. hybrid systems, by adding models of stochastic behavior to the modeling
language and corresponding analysis techniques to the verification. Some first
attempts on introducing probability and stochasticity in hybrid models have
been pursued, e.g. [45,46,34,33], yet expressiveness of the models and scalability
of the analysis tools remain pressing issues.

1.1 Synopsis

In Sec. 2, some basic notions, notations and mathematical foundations that will
be used later are provided.

In Sec. 3, we introduce our approach for generating semi-algebraic invariants
for polynomial continuous dynamical systems and its extension to hybrid sys-
tems. This is the first relatively complete approach for discovering polynomial
invariants for these systems in the literature. This section is mainly based on
our previous joint work with Liu reported in [56,54].

Formal Modelling, Analysis and Verification of Hybrid Systems 211

In Sec. 4, we first introduce how to synthesize switching controllers for hybrid
systems subject to safety requirement based on continuous invariant generation
reported in Sec. 3. To improve the efficiency, qualitative analysis [47] is adopted.
This part is based on our recent joint work with Kapur [49]. Then, we consider
optimal controller synthesis problems of hybrid systems by reducing to constraint
solving, which is based on a joint work with Kapur and Larsen [94].

In Sec. 5, we introduce Hybrid CSP due to He, Zhou et al [37,98], which is
an extension of CSP for hybrid systems. Here, we define a formal operational
semantics for HCSP, which has been implemented in the HHL prover introduced
later.

In Sec. 6, we introduce a specification logic for hybrid systems, called Hybrid
Hoare Logic, which is achieved by combining Hoare logic with Duration Calculus
(DC) [97,96]. The presentation is based on our previous work [55].

In Sec. 7, we introduce a proof assistant of HHL in Isabelle/HOL, which is
based on our recent joint work with Zou et al [99].

In Sec. 8, we present a case study from a real world on Chinese high-speed
train control system by using HCSP and HHL and the tool, based on the recent
joint work [99].

In Sec. 9, we discuss other issues related to hybrid systems, mainly focusing
on stability analysis of continuous dynamical systems based on a joint work with
Liu [57].

Finally, we conclude this tutorial by Sec. 10 with some discussions of future
work.

2 Preliminaries

In this section, we define the basic notions and notations that will be used in the
rest of this tutorial. We also give an elementary description of several relevant
mathematical theories fundamental to the understanding of this tutorial. For a
comprehensive introduction of these theories the readers may refer to the cited
literatures.

Throughout this tutorial, we use N,Q,R to denote the set of natural, ratio-
nal and real numbers respectively. Given a set A, the Cartesian product of its
n duplicates is denoted by An; for instance, Rn stands for the n-dimensional
Euclidean space. A vector element (a1, a2, . . . , an) ∈ An is usually abbreviated
by a boldface letter a when its dimension is clear from the context.

2.1 Continuous Dynamical Systems

We introduce some basic theories of continuous dynamical systems here. For
details please refer to [50,84].

Typically, a continuous dynamical systems (CDS for short) is modeled by
first-order autonomous ordinary differential equations

ẋ = f(x) , (1)

where x ∈ Rn and f : Rn → Rn is a vector function, called a vector field in Rn.

212 N. Zhan, S. Wang, and H. Zhao

If f in (1) satisfies the local Lipschitz condition, then given x0 ∈ Rn, there
exists a unique differentiable vector function x(x0; t) : (a, b) → Rn, where (a, b)
is an open interval containing 0, such that x(x0; 0) = x0 and the derivative of
x(x0; t) w.r.t. t satisfies

∀t ∈ (a, b).
dx(x0; t)

dt
= f(x(x0; t)) .

Such x(x0; t) is called the solution to (1) with initial value x0.
If for any x0 ∈ Rn, there is a solution x(x0; t) to (1) that exists for all time

t ∈ R, then the vector field f is called complete. A globally Lipschitz continuous
vector field f guarantees the existence, uniqueness and completeness of solutions
to (1).

If f is analytic at x0 ∈ Rn, i.e. f is given by a convergent power series in a
neighborhood of x0, then there exists a unique analytic solution x(x0; t) to (1)
defined in a neighborhood of 0.

According to the evolution direction w.r.t. time, the solutions to (1) induce
two sorts of geometrical curves as follows.

Definition 1. Suppose x(x0; t) is the solution to (1) with initial value x0. Then

– x(x0; t) with t ≥ 0 is called the trajectory of f starting from x0;
– x(x0;−t) with t ≥ 0 is called the inverse trajectory of f starting from x0,

where x(x0;−t) is obtained by substituting −t for t in x(x0; t).

When x0 is clear from the context, we write x(x0; t) and x(x0;−t) as x(t) and
x(−t) for brevity.

The notion of Lie derivative is important for the study of CDSs and plays a
central role in several subsequent sections of this tutorial. Let σ(x) : Rn → R be
a scalar function and f be a vector field in Rn. Suppose both σ and f are smooth
functions, i.e. differentiable in x at any order k ∈ N. Then we can inductively
define the Lie derivatives of σ along f , i.e. Lk

f σ : Rn → R for k ∈ N, as follows:

– L0
fσ(x) = σ(x),

– Lk
f σ(x) =

�
∇Lk−1

f σ(x), f(x)
�
, for k > 0,

where ∇ stands for the gradient operator, i.e. for any differentiable function
�(x) : Rn → R,

∇�(x)�= �
∂�(x)

∂x1
,
∂�(x)

∂x2
, . . . ,

∂�(x)

∂xn

�
,

and (·, ·) is the inner product of two vectors, i.e. (a,b) =
�n

i=1 aibi for a =
(a1, . . . , an) and b = (b1, . . . , bn).

2.2 Hybrid Systems

Hybrid systems are those systems that exhibit both continuous evolutions and
discrete transitions between different modes. A widely adopted model of hy-
brid systems is hybrid automata [5,63,39], the extension of finite automata with

Formal Modelling, Analysis and Verification of Hybrid Systems 213

continuous components. In this tutorial, the discussion of invariant generation
and controller synthesis of hybrid systems will be cast in the setting of hybrid
automata. A separate section (Sec. 5) of this tutorial will be devoted to a com-
positional language named HCSP, which is more suitable for modelling complex
hybrid systems. The formal definition of hybrid automata in the literature differs
slightly from each other. Here the presentation is based on [85] and [75].

Definition 2 (Hybrid Automaton). A hybrid automaton (HA) is a system
H�=(Q,X, f,D,E,G,R,Ξ), where

– Q = {q1, . . . , qm} is a finite set of discrete states (or modes);
– X = {x1, . . . , xn} is a finite set of continuous state variables, with x =

(x1, . . . , xn) ranging over Rn;
– f : Q → (Rn → Rn) assigns to each mode q ∈ Q a locally Lipschitz continu-

ous vector field fq;
– D assigns to each mode q ∈ Q a mode domain Dq ⊆ Rn;
– E ⊆ Q × Q is a finite set of discrete transitions;
– G assigns to each transition e ∈ E a switching guard Ge ⊆ Rn;
– R assigns to each transition e ∈ E a reset function Re: R

n → Rn;
– Ξ assigns to each q ∈ Q a set of initial states Ξq ⊆ Rn.

The state space of H is H�=Q×Rn, the domain of H is DH�= �
q∈Q({q}×Dq),

and the set of all initial states is denoted by ΞH�= �
q∈Q({q}×Ξq). The semantics

of H can be characterized by the set of hybrid trajectories accepted by H or the
reachable set of H.

Definition 3 (Hybrid Time Set). A hybrid time set is a sequence of intervals
τ = {Ii}Ni=0 (N can be ∞) such that:

– Ii = [τi, τ
′
i] with τi ≤ τ ′i = τi+1 for all i < N ;

– if N < ∞, then IN = [τN , τ ′N 〉 is a right-closed or right-open nonempty
interval (τ ′N may be ∞);

– τ0 = 0 .

Given a hybrid time set, let 〈τ〉 = N and ‖τ‖ =
�N

i=0(τ
′
i − τi) . Then τ is called

infinite if 〈τ〉 = ∞ or ‖τ‖ = ∞, and zeno if 〈τ〉 = ∞ but ‖τ‖ < ∞ .

Definition 4 (Hybrid Trajectory). A hybrid trajectory of H starting from
an initial point (q0,x0) ∈ ΞH is a triple ω = (τ, α, β), where τ = {Ii}Ni=0 is a
hybrid time set, and α = {αi : Ii → Q}Ni=0 and β = {βi : Ii → Rn}Ni=0 are two
sequences of functions satisfying:

1. Initial condition: α0[0] = q0 and β0[0] = x0;

2. Discrete transition: for all i < 〈τ〉, e =
�
αi(τ

′
i), αi+1(τi+1)

�
∈ E, βi(τ

′
i) ∈ Ge

and βi+1(τi+1) = Re(βi(τ
′
i));

3. Continuous evolution: for all i ≤ 〈τ〉 with τi < τ ′i , if q = αi(τi), then
(1) for all t ∈ Ii, αi(t) = q,
(2) βi(t) is the solution to the differential equation ẋ = fq(x) over Ii with

initial value βi(τi), and
(3) for all t ∈ [τi, τ

′
i), βi(t) ∈ Dq .

214 N. Zhan, S. Wang, and H. Zhao

The set of trajectories starting from an initial state (q0,x0) of H is denoted by
Tr(H)(q0,x0), and the set of all trajectories of H by Tr(H).

A hybrid trajectory ω = (τ, α, β) is called infinite or zeno, if τ is infinite or
zeno respectively. An HA H is called non-blocking if for any (q0,x0) ∈ ΞH there
exists an infinite trajectory in Tr(H)(q0,x0), and blocking otherwise; H is called
non-zeno if there exists no zeno trajectory in Tr(H), and zeno otherwise.

Another way to interpret hybrid automata is using reachability relation.

Definition 5 (Reachable Set). Given an HA H, the reachable set of H, de-
noted by RH, consists of those (q,x) for which there exists a finite sequence

(q0,x0), (q1,x1), . . . , (ql,xl)

such that (q0,x0) ∈ ΞH, (ql,xl) = (q,x), and for any 0 ≤ i ≤ l − 1, one of the
following two conditions holds:

– (Discrete Jump): e = (qi, qi+1) ∈ E, xi ∈ Ge and xi+1 = Re(xi); or
– (Continuous Evolution): qi = qi+1, and there exists a δ ≥ 0 s.t. the solution

x(xi; t) to ẋ = fqi satisfies
• x(xi; t) ∈ Dqi for all t ∈ [0, δ]; and
• x(xi; δ) = xi+1 .

Note that there is a subtle difference between Definition 4 and 5 in how to treat a
continuous state x which terminates a piece of continuous evolution and evokes a
discrete jump. Definition 4 is less restrictive because such x is not required to be
inside the mode domain before jump happens. Nevertheless, if all mode domains
are assumed to be closed sets, then the above two definitions are consistent with
each other, that is, RH is exactly the set of states that are covered by Tr(H).

One of the major concerned properties of hybrid systems is safety. Given an
HA H, a safety requirement S assigns to each mode q ∈ Q a safe region Sq ⊆ Rn,
i.e. S =

�
q∈Q({q}×Sq). We say that H satisfies S if x ∈ Sq for all (q,x) ∈ RH.

The prominent feature that distinguishes hybrid systems from traditional dis-
crete programs and makes them more difficult to study is continuous behavior.
To facilitate the investigation of continuous parts of hybrid systems, the following
definition is proposed.

Definition 6 (Constrained CDS). A constrained continuous dynamical sys-
tem (CCDS) is a pair (D, f), where D ⊆ Rn and f is a locally Lipschitz contin-
uous vector field in Rn.

Thus an HA can be regarded as a composition of a finite set of CCDSs, one for
each mode, together with discrete transitions among the CCDSs.

2.3 Polynomials and Polynomial Ideals

The tractability of the problems of analysis, verification and synthesis of hybrid
systems depends on the language used to specify the hybrid systems, as well as
the concerned properties. In this tutorial, we will focus on the class of polynomial

Formal Modelling, Analysis and Verification of Hybrid Systems 215

expressions, which have powerful modeling ability and are easy to manipulate.
We will give a brief overview of the theory of polynomials and polynomial ideals
here. For more details please refer to [24].

A monomial in n variables x1, x2, . . . , xn (or briefly x) is a product form
xα1
1 xα2

2 · · ·xαn
n , or briefly xααα, where ααα = (α1, α2, . . . , αn) ∈ Nn. The number�n

i=1 αi is called the degree of xααα.
Let K be a number field, which can be either Q or R in this tutorial. A

polynomial p(x) in x (or briefly p) with coefficients in K is of the form
�

ααα cαααx
ααα,

where all cααα ∈ K. The degree of p, denoted by deg(p), is the maximal degree of
its component monomials. It is easy to see that a polynomial in x1, x2, . . . , xn

with degree d has at most
�n+d

d

	
many coefficients. The set of all polynomials in

x1, x2, . . . , xn with coefficients in K form a polynomial ring, denoted by K[x].
A parametric polynomial is of the form

�
ααα uαααx

ααα, where uααα ∈ R are not
constants but undetermined parameters. It can also be regarded as a standard
polynomial p(u,x) in Q[u,x], where u = (u1, u2, . . . , uw) is the set of all param-
eters. It is easy to see that a parametric polynomial with degree d (in x) has at
most

�n+d
d

	
many indeterminates. In practice, one only keeps some of the uααα’s as

unknowns, by judiciously fixing the coefficients of specific monomials. For any
u0 ∈ Rw, we call pu0(x) ∈ R[x], obtained by substituting u0 for u in p(u,x), an
instantiation of p(u,x).

A vector field f is called a polynomial vector field (PVF) if each element of f
is a polynomial. Given a polynomial p ∈ K[x] and a PVS f ∈ Kn[x], according to
Section 2.1, the Lie derivatives Lk

f p(x) is defined for all k ∈ N and all polynomials
in K[x]. The Lie derivatives of a parametric polynomial p(u,x) ∈ K[u,x] can be
defined similarly by setting the gradient as

∇p(u,x)�= (
∂p

∂x1
,
∂p

∂x2
, · · · , ∂p

∂xn
) .

In this way all Lk
f p(u,x) are still polynomials in K[u,x].

We next recall the basic theory of polynomial ideals.

Definition 7 (Polynomial Ideal). A subset I ⊆ K[x] is called an ideal if the
following conditions are satisfied:

1. 0 ∈ I;
2. If p, g ∈ I, then p+ g ∈ I;
3. If p ∈ I and h ∈ K[x], then hp ∈ I.

Let g1, g2, . . . , gs ∈ K[x]. It is easy to check that the set

〈g1, g2, . . . , gs〉�=
 s�
i=1

higi : h1, h2, . . . , hs ∈ K[x]
�

is an ideal, called the ideal generated by g1, g2, . . . , gs. If I = 〈g1, g2, . . . , gs〉,
then {g1, g2, . . . , gs} is called a basis of I.

Theorem 1 (Hilbert Basis Theorem). Every ideal I ⊆ K[x] has a basis,
that is, I = 〈g1, g2, . . . , gs〉 for some g1, g2, . . . , gs ∈ K[x].

216 N. Zhan, S. Wang, and H. Zhao

In particular, every ideal I ⊆ K[x] has a Gröbner basis which possesses very nice
properties. To illustrate this, we need to fix an ordering of monomials. First,
suppose the list of variables x1, x2, . . . , xn are ordered by x1 + x2 + · · · + xn.
Then + induces a total ordering on the set of monomials xααα with ααα ∈ Nn. One
example is the lexicographic (lex for short) order, i.e. xααα + xβββ if and only if
there exists 1 ≤ i ≤ n such that αi > βi, and αj = βj for all 1 ≤ j < i. It can be
shown that the lex order of monomials is a well-ordering, that is, every nonempty
set of monomials has a least element. Besides, the lex order is preserved under
multiplication, i.e. xααα + xβββ implies xαααxγγγ + xβββxγγγ for any γγγ ∈ Nn. Such an
ordering of monomials as the lex order is called a monomial ordering.

Given a monomial ordering + and a polynomial g ∈ K[x], rearrange the
monomials in p in a descending order as

g = c1x
α1α1α1 + c2x

α2α2α2 + · · ·+ ckx
αkαkαk ,

where all ci’s are nonzero. Then c1x
ααα1 is called the leading term of g, denoted

by lt(g); c1 is called the leading coefficient of g, denoted by lc(g); and xα1α1α1 is
called the leading monomial of g, denoted by lm(g). For a polynomial p ∈ K[x],
if p has a nonzero term cβββx

βββ and xβββ is divisible by lm(g), i.e. xβββ = xγγγ lm(g) for
some γγγ ∈ Nn, then we say p is reducible modulo g, and call

p′ = p − cβββ
lc(g)

xγγγg

the one-step reduction of p modulo g.
Given a finite set of polynomials G � K[x] and a polynomial p ∈ K[x], we can

do a muli-step reduction on p using polynomials in G, until p is reduced to p∗

which is not further reducible modulo G. Such p∗ is called the normal form of
p w.r.t. G, denoted by nf(p,G). For general G, the above process of reduction is
guaranteed to terminate; however, the final result nf(p,G) may vary, depending
on the sequence of polynomials chosen from G during reduction. Fortunately, we
have

Proposition 1. Given a monomial ordering, then every ideal I ⊆ K[x] other
than {0} has a basis G = {g1, g2, . . . , gs}, such that for any p ∈ K[x], nf(p,G) is
unique. Such G is called a Gröbner basis of I.

Furthermore,

Proposition 2. Let G be a Gröbner basis of an ideal I ⊆ K[x]. Then for any
p ∈ K[x], p ∈ I if and only if nf(p,G) = 0.

Most importantly, for any ideal I = 〈h1, h2, . . . , hl〉 ⊆ K[x], the Gröbner basis
G of I can be computed from the hi’s using Buchberger’s Algorithm [24]. Then
by Proposition 2, we get that the ideal membership problem, that is to decide
whether a polynomial p ∈ K[x] lies in a given ideal 〈h1, h2, . . . , hl〉 ⊆ K[x], is
algorithmically solvable.

The following theorem, which can be deduced from Hilbert Basis Theorem, is
key to the proof of several main results in this tutorial.

Formal Modelling, Analysis and Verification of Hybrid Systems 217

Theorem 2 (Ascending Chain Condition). For any ascending chain of ide-
als

I1 ⊆ I2 ⊆ · · · ⊆ Il ⊆ · · ·
in K[x], there exists an N ∈ N such that Il = IN for any l ≥ N .

2.4 First-Order Theory of Reals

From a logical point of view, polynomials can be used to construct the first-
order theory T (R) of real numbers (actually of all real closed fields), which is
very useful in formulating problems arising in the study of hybrid systems. The
language of T (R) consists of

– variables: x, y, z, . . . , x1, x2, . . . , which are interpreted over R ;
– relational symbols: >,<,≥,≤,=, �= ;
– Boolean connectives: ∧,∨,¬,→,↔, . . . ; and
– quantifiers: ∀, ∃ .

A term of T (R) over a finite set of variables {x1, x2, . . . , xn} is a polynomial
p ∈ Q[x1, x2, . . . , xn]. An atomic formula of T (R) is of the form p� 0, where �

is any relational symbol. A quantifier-free formula (QFF) of T (R) is a Boolean
combination of atomic formulas. A generic formula of T (R) is built up from
atomic formulas using Boolean connectives as well as quantifiers.

A profound result about T (R) is that it admits quantifier elimination (QE)
[83]. That is, any formula ϕ in T (R) has a quantifier-free equivalent ϕQF involving
only free variables of ϕ, and ϕQF can be computed from ϕ using QE algorithms.
An immediate consequence of this result is the decidability of T (R): the truth
value of any formula in T (R) can be decided.

Formulas in T (R) define a special class of sets:

Definition 8 (Semi-algebraic Set). A subset A ⊆ Rn is called a semi-
algebraic set (SAS), if there exists a QFF φ in T (R) over variables x1, x2, . . . , xn,
or briefly x, such that

A = {x ∈ Rn | φ(x) is true} .

Let A(φ) denote the SAS defined by a QFF φ. Then from Definition 8 it is easy
to check that SASs are closed under common set operations:

– A(φ1) ∩ A(φ2) = A(ϕ1 ∧ ϕ2) ;
– A(φ1) ∪ A(φ2) = A(ϕ1 ∨ φ2) ;
– A(φ1)

c = A(¬φ1) ;
– A(φ1) \ A(φ2) = A(φ1) ∩ A(φ2)

c = A(φ1 ∧ ¬φ2) ,

where Ac and A \B stand for the complement and subtraction operation of sets
respectively. Moreover, checking of emptiness, inclusion and equality of SASs
can be done by the decidability of T (R).

For convenience, in the rest of this tutorial, we do not distinguish between
an SAS A(φ) and its defining formula φ. That is, we will use T (R)-formulas to

218 N. Zhan, S. Wang, and H. Zhao

represent SASs and use Boolean connectives as set operators. Besides, it is easy
to check that any SAS can be represented by a QFF in the form of

φ(x)�= K
k=1

Jk�
j=1

pkj(x) � 0 ,

where pkj(x) ∈ Q[x] and � ∈ {≥, >} . Therefore restricting SASs to formulas of
this shape will not lose any generality.

Definition 9 (Semi-algebraic Template). A semi-algebraic template with
degree d is of the form

φ(u,x)�= K
k=1

Jk�
j=1

pkj(ukj ,x) � 0 ,

where pkj ∈ Q[ukj ,x] are parametric polynomials with degree d (in x), u is the
collection of parameters appearing in each pkj (i.e. ukj), and � ∈ {≥, >}.

As mentioned in Section 2.3, we will focus on hybrid systems and properties
described by polynomial expressions.

Definition 10. A polynomial CDS (or CCDS, HA, safety property, etc), de-
noted by PCDS (or PCCDS, PHA, etc) for short, is a CDS (or CCDS, HA,
safety property etc, respectively) wherein the sets are SASs and the vector fields
are PVFs (with rational coefficients).

3 Computing Invariants for Hybrid Systems

3.1 Continuous and Global Invariant

An invariant of a hybrid system is a property that holds at every reachable state
of the system.

Definition 11 (Invariant). An invariant of an HA H maps to each q ∈ Q a
subset Iq ⊆ Rn, such that for all (q,x) ∈ RH, we have x ∈ Iq.

One effective way of finding invariants of hybrid systems is to generate so-called
inductive invariants, as inductiveness is usually checkable [75].

Definition 12 (Inductive Invariant). Given an HA H, an inductive invari-
ant maps to each q ∈ Q a subset Iq ⊆ Rn, such that the following conditions are
satisfied:

1. Ξq ⊆ Iq for all q ∈ Q;
2. for any e = (q, q′) ∈ E, if x ∈ Iq ∩ Ge, then x′ = Re(x) ∈ Iq′ ;
3. for any q ∈ Q and any x0 ∈ Iq, if there exists a δ ≥ 0 s.t. the solution

x(x0; t) to ẋ = fq satisfies: (i) x(x0; δ) = x′; and (ii) x(x0; t) ∈ Dq for all
t ∈ [0, δ], then x′ ∈ Iq .

Formal Modelling, Analysis and Verification of Hybrid Systems 219

It is easy to check that any inductive invariant is also an invariant. We assume
in this section that all invariants mentioned are inductive.

In Definition 12, condition 1 and 2 are about initial states and discrete induc-
tiveness, which can be checked using the standard techniques for the verification
of discrete programs [92]. However, it is not so straightforward and requires spe-
cial efforts to check condition 3, for which the notion of continuous invariant2

[65,56] is quite useful.

Definition 13 (Continuous Invariant). A subset I ⊆ Rn is called a contin-
uous invariant (CI) of a CCDS (D, f) if for any x0 ∈ I and any T ≥ 0, we
have:

(∀t ∈ [0, T].x(x0; t) ∈ D) =⇒ (∀t ∈ [0, T].x(x0; t) ∈ I) ,

or equivalently,

(∀t ∈ [0, T].x(x0; t) ∈ D) =⇒ x(x0;T) ∈ I .

By Definition 13, it is not difficult to check that condition 3 in Definition 12 is
equivalent to

3’. for any q ∈ Q, Iq is a CI of (Dq, fq) .

To distinguish from CI, we refer to the inductive invariant in Definition 12 a
global invariant (GI). Simply, a GI of an HA H consists of a set of CIs, one
for each CCDS corresponding to a mode of the HA. Using GI, if Iq ⊆ Sq for
all q, then a safety property S can be verified without computing RH. In the
rest of this section, we will present an approach for automatically discovering
semi-algebraic CIs (SCI) and semi-algebraic GIs (SGI) for PCCDS and PHA
respectively.

3.2 Predicting Continuous Evolution via Lie Derivatives

Given a PVF f , we can make use of Lie derivatives to investigate the tendency
of f ’s trajectories in terms of a polynomial p. To capture this, look at Example
1 shown in I of Figure 1.

Example 1. Suppose f = (−x, y) and p(x, y) = x+ y2. Then

L0
f p(x, y) = x+ y2

L1
f p(x, y) = −x+ 2y2

L2
f p(x, y) = x+ 4y2

...

2 In some later sections of this tutorial when we talk about the Hybrid Hoare Logic

(HHL), the terminology differential invariant is used instead of continuous invariant,

with exactly the same meaning.

220 N. Zhan, S. Wang, and H. Zhao

Fig. 1. Lie Derivatives

In I of Figure 1, vector B denotes the corresponding evolution direction of the
vector field f = (−x, y) at point (−1, 1). We could imagine the points on the
parabola p(x, y) = x+y2 with zero energy, and the points in the white area have
positive energy, i.e. p(x, y) > 0. Vector A is the gradient ∇p|(−1,1) of p(x, y),
which infers that the trajectory starting at (−1, 1) will enter the white area im-
mediately if the angle, between ∇p|(−1,1) and the evolution direction at (−1, 1),
is less than π

2 , which means equivalently that the 1-order Lie derivative L1
f p|(−1,1)

is positive. Thus the 1-order Lie derivative L1
f p|(−1,1) = 3 predicts that there is

some positive ε > 0 such that the trajectory starting at (−1, 1) (curve C) has

the property p
�
x((−1, 1); t)

�
> 0 for all t ∈ (0, ε).

However, if the angle between the gradient and the evolution direction equals
π
2 or the gradient is zero-vector, then the 1-order Lie derivative is zero and it is
impossible to predict trajectory tendency by means of 1-order Lie derivative. In
this case, we resort to nonzero higher order Lie derivatives. For this purpose, we
introduce the pointwise rank of p with respect to f as the function γp,f : Rn →
N ∪ {∞} defined by

γp,f (x) = min{k ∈ N | Lk
f p(x) �= 0}

if such k exists, and γp,f (x) = ∞ otherwise.

Example 2. Let f(x, y) = (−2y, x2) and h(x, y) = x+ y2. Then

L0
fh(x, y) = x+ y2

L1
fh(x, y) = −2y + 2x2y

L2
fh(x, y) = −8y2x − (2− 2x2)x2

...

Here, γh,f (0, 0) = ∞, γh,f (−4, 2) = 1, etc.

Formal Modelling, Analysis and Verification of Hybrid Systems 221

Look at II of Figure 1. At point (−1, 1) on curve h(x, y) = 0, the gradient of
h is (1, 2) (vector A) and the evolution direction is (−2, 1) (vector B), so their
inner product is zero. Thus it is impossible to predict the tendency (in terms
of curve h(x, y) = 0) of the trajectory starting from (−1, 1) via the 1-order Lie
derivative. By a simple computation, the 2-order Lie derivative L2

fh(−1, 1) is 8.
Hence γh,f (−1, 1) = 2. In the sequel, we shall show how to use such high order
Lie derivatives to analyze the trajectory tendency.

For analyzing trajectory tendency by high order Lie derivatives, we need the
following fact.

Proposition 3. Given a PVF f and a polynomial p, then for any x0 ∈ Rn,
p(x0) = 0 if and only if γp,f (x0) �= 0. Let x(t)�=x(x0; t). Then it follows that

(a) if γp,f (x0) < ∞ and L
γp,f (x0)
f p(x0) > 0, then

∃ε > 0, ∀t ∈ (0, ε). p(x(t)) > 0;

(b) if γp,f (x0) < ∞ and L
γp,f (x0)
f p(x0) < 0, then

∃ε > 0, ∀t ∈ (0, ε). p(x(t)) < 0;

(c) if γp,f (x0) = ∞, then

∃ε > 0, ∀t ∈ (0, ε). p(x(t)) = 0.

Proof. By Section 2.1, p(x(t)) is the composition of two analytic functions, which
implies [52] that the Taylor expansion of p(x(t)) at t = 0

p(x(t)) = p(x0) +
dp

dt
· t+ d2p

dt2
· t

2

2!
+ · · ·

= L0
f p(x0) + L1

f p(x0) · t+ L2
f p(x0) ·

t2

2!
+ · · · (2)

converges in a neighborhood of zero. Then the conclusion of Proposition 3 follows

immediately from formula (2) by case analysis on the sign of L
γp,f (x0)
f p(x0). ��

Based on this proposition, we introduce the notion of transverse set to indicate
the tendency of the trajectories of a considered PVF in terms of the first nonzero
high order Lie derivative of an underlying polynomial as follows.

Definition 14 (Transverse Set). Given a polynomial p and a PVF f , the
transverse set of f over the domain P �= p(x) ≥ 0 is

Transf↑p�= {x ∈ Rn | γp,f (x) < ∞ ∧ L
γp,f (x)
f p(x) < 0}.

Intuitively, if x ∈ Transf↑p, then either x is not in P , or x is on the boundary
of P (i.e. p(x) = 0) such that the trajectory x(t) starting from x will exit P
immediately.

222 N. Zhan, S. Wang, and H. Zhao

3.3 Computing Transverse Set

The set Transf↑p in Definition 14 plays a crucial role in developing the automatic
invariant generation method. First of all, we have

Theorem 3. Given a polynomial p ∈ Q[x] and a PVF f ∈ Qn[x], the set
Transf↑p is an SAS, and its explicit representation is computable.

To prove this theorem, it suffices to show γp,f (x) is computable for each x ∈ Rn.
However, γp,f (x) may be infinite for some x. Thus, it seems that we have to
compute Lk

f p(x) infinitely many times for such x to determine if x ∈ Transf↑p.
Fortunately, we can find a uniform upper bound on γp,f (x) for all x with finite
pointwise rank. To see this, consider the polynomial ideals in ring Q[x] generated
by Lie derivatives L0

f p, L
1
f p, . . . , L

i
fp for all i ≥ 0, i.e.

Ji�= 〈L0
f p(x), L

1
f p(x), . . . , L

i
fp(x)〉 .

Note that

J0 ⊆ J1 ⊆ · · · ⊆ Jl ⊆ · · ·

forms an ascending chain of ideals in Q[x]. By Theorem 2, the number

Np,f �= min{i ∈ N | Ji = Ji+1}, (3)

or equivalently,

Np,f �= min{i ∈ N | Li+1
f p ∈ Ji}

is well-defined. Furthermore, Np,f can be computed by solving the ideal mem-
bership problem with the assistance of an algebraic tool like Maple [61].

Example 3. For f and h in Example 2, by simple computations we get L1
fh /∈

〈L0
fh〉, L2

fh /∈ 〈L0
fh, L

1
fh〉, L3

fh ∈ 〈L0
fh, L

1
fh, L

2
fh〉, so Nh,f = 2.

Actually, the integer Np,f is the upper bound mentioned above on pointwise rank
by the following two theorems.

Theorem 4 (Fixed Point Theorem). If Ji = Ji+1, then Ji = Jl for all l > i .

Proof. We prove this fact by induction on l. Base case: Ji = Ji+1. Assume
Ji = Jl for some l ≥ i + 1. Then there are gj ∈ Q[x] for 0 ≤ j ≤ i, such that

Ll
fp =

�i
j=0 gjL

j
fp. By the definition of Lie derivatives it follows that

Formal Modelling, Analysis and Verification of Hybrid Systems 223

Ll+1
f p = (∇Ll

fp, f)

= (∇
i�

j=0

gjL
j
fp, f)

= (
i�

j=0

Lj
fp∇gj +

i�
j=0

gj∇Lj
fp, f)

=
i�

j=0

(∇gj , f)L
j
fp+

i�
j=0

gjL
j+1
f p

=
i�

j=0

(∇gj , f)L
j
fp+

i�
j=1

gj−1L
j
fp+ giL

i+1
f p . (4)

By base case, Li+1
f p ∈ Ji. Then by (4) we get Ll+1

f p ∈ Ji, so Ji = Jl+1. By
induction, the fact follows immediately. ��

Theorem 5 (Rank Theorem). Given a polynomial p and a PVF f , for any
x ∈ Rn, if γp,f (x) < ∞, then γp,f (x) ≤ Np,f , where Np,f is defined in (3).

Proof. If Np,f < γp,f (x) < ∞, then
�Np,f

i=0 Li
fp(x) = 0. By (3) and Theorem 4 we

get Li
fp(x) = 0 for all i ∈ N. Thus γp,f (x) = ∞, which is a contradiction. ��

Now, applying the above two theorems we can prove Theorem 3.

Proof (of Theorem 3). First by Theorem 5, for any x,

x ∈ Transf↑p ⇐⇒ γp,f (x) ≤ Np,f ∧ L
γp,f (x)
f p(x) < 0 . (5)

Given p and f , let
π(0)(p, f ,x)�= p(x) < 0 ;

for 1 ≤ i ∈ N,

π(i)(p, f ,x) �= � �
0≤j<i

Lj
fp(x) = 0

�
∧ Li

fp(x) < 0 ,

and

π(p, f ,x) �=
0≤i≤Np,f

π(i)(p, f ,x) .

Then from (5) we have another equivalence

x ∈ Transf↑p ⇐⇒ π(p, f ,x) . (6)

Thus Transf↑p is actually an SAS which can be represented by π(p, f ,x). ��

224 N. Zhan, S. Wang, and H. Zhao

In automatic invariant generation, it actually makes use of parametric poly-
nomials p(u,x). The following theorem indicates Theorem 5 still holds after
substituting p(u,x) for p(x).

Theorem 6 (Parametric Rank Theorem). Given a parametric polynomial
p(u,x) and a PVF f , there is an integer Np,f ∈ N such that γpu0 ,f

(x) < ∞
implies γpu0 ,f

(x) ≤ Np,f for all x ∈ Rn and all u0 ∈ Rw.

The proof of this theorem is quite close to the one of Theorem 5. The difference
lies in the settings of polynomials. Here, all polynomials and ideals are consid-
ered in the polynomial ring Q[u,x], and the number Np,f is defined similarly
as in (3).

3.4 Computing SCI in Simple Case

Given a PCCDS (D, f), the task is to find SCIs for (D, f). First of all, we illustrate
how to compute an SCI of the simple form P �= p(x) ≥ 0 for a simple domain
D�=h(x) ≥ 0.

Notice that if x0 is in the interior of P ∩D, then the trajectory x(t) starting
at x0 will remain in the interior within adequately small t > 0. Therefore, the
condition of CI could be violated only at the points x on the boundary of P , i.e.
p(x) = 0. Thus by Definition 14 and Proposition 3, P is an invariant of (D, f) if
and only if for all x

p(x) = 0 → x /∈ (Transf↑p \ Transf↑h),

i.e.
p(x) = 0 → x ∈ (Transf↑p)c ∪ Transf↑h. (7)

By equivalence (6), the formula (7) is equivalent to

p(x) = 0 → (¬π(p, f ,x) ∨ π(h, f ,x)),

i.e. �
p(x) = 0 ∧ π(p, f ,x)

�
→ π(h, f ,x). (8)

Let θ(h, p, f ,x) denote the formula (8). Then we obtain the following sufficient
and necessary condition for P being an SCI of (D, f).

Theorem 7 (Criterion Theorem). Given a polynomial p, p(x) ≥ 0 is an SCI
of the PCCDS (h(x) ≥ 0, f) if and only if the formula θ(h, p, f ,x) defined as (8)
is true for all x ∈ Rn.

Based on Theorem 7, a constraint based method for generating SCIs in the
simple form can be presented as follows.

Formal Modelling, Analysis and Verification of Hybrid Systems 225

I. First, set a simple semi-algebraic template P �= p(u,x) ≥ 0 using a paramet-
ric polynomial p(u,x).

II. Then apply QE3 to the formula ∀x.θ(h, p, f ,x). In practice, QE may be
applied to a formula ∀x.(θ∧φ), where φ is a formula imposing some additional
constraint on the SCI P . If the output of QE is false, then there is no SCI
in the form of the predefined P ; otherwise, a constraint on u, denoted by
R(u), will be returned.

III. Now, use an SMT solver like [26] to pick a u0 ∈ R(u) and then pu0(x) ≥ 0
is an SCI of (h(x) ≥ 0, f) by Theorem 7.

Example 4. Again, we make use of Example 2 to demonstrate the above method.
Here, we take D�= h(x, y) ≥ 0 with h(x, y)�= − x − y2 as the domain.

Apply procedure (I-III), we have:

1. Set a template P �= p(u,x) ≥ 0 with p(u,x)�= ay(x − y), where u�=(a). By
a simple computation we get Np,f = 2.

2. Compute the corresponding formula

θ(h, p, f ,x) �= p = 0 ∧ (π
(0)
p,f ,x ∨ π

(1)
p,f ,x ∨ π

(2)
p,f ,x) −→

(π
(0)
h,f ,x ∨ π

(1)
h,f ,x ∨ π

(2)
h,f ,x)

where

π
(0)
h,f ,x �= −x− y2 < 0,

π
(1)
h,f ,x �= −x− y2 = 0 ∧ 2y − 2x2y < 0,

π
(2)
h,f ,x �= −x− y2 = 0 ∧ 2y − 2x2y = 0 ∧ 8xy2 + 2x2 − 2x4 < 0,

π
(0)
p,f ,x �= ay(x− y) < 0,

π
(1)
p,f ,x �= ay(x− y) = 0 ∧ −2ay2 + ax3 − 2yax2 < 0,

π
(2)
p,f ,x �= ay(x− y) = 0 ∧ −2ay2 + ax3 − 2yax2 = 0

∧ 40axy2 − 16ay3 + 32ax3y − 10ax4 < 0.

In addition, we require the two points {(−1, 0.5), (−0.5,−0.6)} to be con-
tained in P . Then apply QE to the formula

∀x∀y.
�
θ(h, p, f ,x) ∧ 0.5a(−1− 0.5) ≥ 0 ∧ −0.6a(−0.5 + 0.6) ≥ 0

�
.

The result is a ≤ 0.
3. Just pick a = −1, and then −xy+ y2 ≥ 0 is an SCI of (D, f). The grey part

of Picture III in Fig. 2 is the intersection of the invariant P and domain D.

3 QE has been implemented in many computer algebra tools such as QEPCAD [17],

Redlog [30], Mathematica [88], etc.

226 N. Zhan, S. Wang, and H. Zhao

Fig. 2. Semi-Algebraic Continuous Invariants

3.5 Computing SCI in General Case

Now, consider how to automatically discover SCIs of a PCCDS in general case.
Given a PCCDS (D, f) with

D�= M
m=1

Lm�
l=1

pml(x) � 0 with � ∈ {≥, >} , (9)

the procedure of automatically generating SCIs with a general template

P �= K
k=1

Jk�
j=1

pkj(ukj ,x) � 0 with � ∈ {≥, >}

for (D, f), is essentially the same as the steps (I-III) depicted in Section 3.4.
However, we must sophisticatedly handle the complex Boolean structures of the
formulas herein. In what follows, the main results on general SCI generation are
outlined without rigorous proofs. Please refer to [54] for details.

Necessary-Sufficient Condition for CI. First of all, we study a necessary
and sufficient condition like formula (7) for P being a CI of (D, f). To analyze
the evolution tendency of trajectories of f in terms of a subset A ⊆ Rn, the
following notions and notations are needed.

Inf (A)�= {x0 ∈ Rn | ∃ε > 0∀t ∈ (0, ε).x(x0; t) ∈ A},
IvInf (A)�= {x0 ∈ Rn | ∃ε > 0∀t ∈ (0, ε).x(x0;−t) ∈ A}.

Intuitively, x0 ∈ Inf (A) means that the trajectory starting from x0 enters A
immediately and keeps inside A for a certain amount of time; x0 ∈ IvInf (A)
means that the trajectory through x0 reaches x0 from inside A. By the notion
of CI, it can be proved that

Formal Modelling, Analysis and Verification of Hybrid Systems 227

Theorem 8. Given a CCDS (D, f), a subset P ⊆ Rn is a CI of (D, f) if and
only if

1. ∀x ∈ P ∩ D ∩ Inf (D).x ∈ Inf (P); and

2. ∀x ∈ P c ∩ D ∩ IvInf (D).x ∈
�
IvInf (P)

�c
.

Necessary-Sufficient Condition for SCI. Given a PCCDS (D, f) and a
semi-algebraic template P , to encode the conditions in Theorem 8 as polynomial
formulas, it is sufficient to show that Inf (D), Inf (P), IvInf (D) and IvInf (P) are
all SASs if D and P are SASs, for which we have the following lemmas4.

Lemma 1. For any polynomial p and PVF f ,

Inf (p > 0) = ψ+(p, f) and

Inf (p ≥ 0) = ψ+
0 (p, f) ,

where

ψ+(p, f)�=
0≤i≤Np,f

ψ(i)(p, f) with ψ(i)(p, f)�=� �
0≤j<i

Lj
fp = 0

�
∧ Li

fp > 0, and

ψ+
0 (p, f)�=ψ+(p, f) ∨

� �
0≤j≤Np,f

Lj
fp = 0

�
.

Lemma 2. For an SAS D defined by (9) and a PVF f , we have

Inf (D) =
M

m=1

Lm�
l=1

Inf (pml � 0).

Lemma 3. For any polynomial p and PVF f ,

IvInf (p > 0) = ϕ+(p, f) and

IvInf (p ≥ 0) = ϕ+
0 (p, f) ,

where

ϕ+
(p, f) �=

0≤i≤Np,f

ϕ(i)
(p, f) with ϕ(i)

(p, f) �= � �
0≤j<i

Lj
fp = 0

�
∧ (−1)

i · Li
fp > 0, and

ϕ+
0 (p, f) �=ϕ+

(p, f) ∨ � �
0≤j≤Np,f

Lj
fp = 0

	
.

Lemma 4. For an SAS D defined by (9) and a PVF f , we have

IvInf (D) =
M

m=1

Lm�
l=1

IvInf (pml � 0).

4 In the presentation below, we adopt the convention that
�

i∈∅ ηi = false and�
i∈∅ ηi = true, where ηi is a logical formula.

228 N. Zhan, S. Wang, and H. Zhao

Now the main result on automatic SCI generation can be stated as follows.

Theorem 9 (Main Result). A semi-algebraic template P (u,x) defined by

K
k=1

�
jk�
j=1

pkj(ukj ,x) ≥ 0 ∧
Jk�

j=jk+1

pkj(ukj ,x) > 0

�

is a CI of the PCCDS
�
D, f) with

D�= M
m=1

�
lm�
l=1

pml(x) ≥ 0 ∧
Lm�

l=lm+1

pml(x) > 0

�
,

if and only if u satisfies

∀x.
��

P ∧ D ∧ ΦD → ΦP

�
∧
�
¬P ∧ D ∧ ΦIv

D → ¬ΦIv
P

��
,

where

ΦD �= M
m=1

�
lm�
l=1

ψ+
0 (pml, f) ∧

Lm�
l=lm+1

ψ+(pml, f)

�
,

ΦP �= K
k=1

�
jk�
j=1

ψ+
0 (pkj , f) ∧

Jk�
j=jk+1

ψ+(pkj , f)

�
,

ΦIv
D �= M

m=1

�
lm�
l=1

ϕ+
0 (pml, f) ∧

Lm�
l=lm+1

ϕ+(pml, f)

�
,

ΦIv
P �= K

k=1

�
jk�
j=1

ϕ+
0 (pkj , f) ∧

Jk�
j=jk+1

ϕ+(pkj , f)

�
,

with ψ+(p, f), ψ+
0 (p, f), ϕ

+(p, f), ϕ+
0 (p, f) defined in Lemma 1 and 3 respectively.

Please refer to [54] for the proofs of the above results.

Example 5. Let f(x, y) = (−2y, x2) and D�=R2. Take a template: P (u,x)�= x−
a ≥ 0 ∨ y − b > 0 with u = (a, b). By Theorem 9, P is an SCI of (D, f) if and
only if a, b satisfy

∀x∀y.
�
(P → ζ) ∧ (¬P → ¬ξ)

�
, 5

5 Note that in Theorem 9 ϕD and ϕIv
D are trivially true when D equals Rn.

Formal Modelling, Analysis and Verification of Hybrid Systems 229

where

ζ�=(x − a > 0) ∨ (x − a = 0 ∧ −2y > 0)

∨ (x − a = 0 ∧ −2y = 0 ∧ −2x2 ≥ 0)

∨ (y − b > 0) ∨ (y − b = 0 ∧ x2 > 0)

∨ (y − b = 0 ∧ x2 = 0 ∧ −4yx > 0)

∨ (y − b = 0 ∧ x2 = 0 ∧ −4yx = 0 ∧ 8y2 − 4x3 > 0)

ξ�=(x − a > 0) ∨ (x − a = 0 ∧ −2y < 0)

∨ (x − a = 0 ∧ −2y = 0 ∧ −2x2 ≥ 0)

∨ (y − b > 0) ∨ (y − b = 0 ∧ x2 < 0)

∨ (y − b = 0 ∧ x2 = 0 ∧ −4yx > 0)

∨ (y − b = 0 ∧ x2 = 0 ∧ −4yx = 0 ∧ 8y2 − 4x3 < 0)

In addition, we require the set x+ y ≥ 0 to be contained in P . By applying QE,
we get a + b ≤ 0 ∧ b ≤ 0. Let a = −1 and b = −0.5, and we obtain an SCI
P �=x+ 1 ≥ 0 ∨ y + 0.5 > 0, which is shown in IV of Figure 2.

3.6 SGI Generation

Now the method for generating SGIs for a PHA H�=(Q,X, f,D,E,G,R,Ξ) can
be stated as the following steps.

I. Predefine a familiy of semi-algebraic templates Iq(u,x)
6 with degree bound

d for each q ∈ Q, as the SCI to be generated at mode q.
II. Translate conditions for the family of Iq(u,x) to be a GI of H, i.e.

– Ξq ⊆ Iq for all q ∈ Q;
– for any e = (q, q′) ∈ E, if x ∈ Iq ∩ Ge, then x′ = Re(x) ∈ Iq′ ;
– for any q ∈ Q, Iq is a CI of (Dq, fq)

into a set of first-order real arithmetic formulas, i.e.

(1) ∀x.
�
Ξq → Iq(u,x)

�
for all q ∈ Q;

(2) ∀x,x′.
�
Iq(u,x) ∧ Ge ∧ x′ = Re(x) → Iq′(u,x

′)
�
for all q ∈ Q and all

e = (q, q′) ∈ E, where x′ is a vector of new variables with the same
dimension as x, and Iq′(u,x

′) is obtained by substituting x′ for x in
Iq′ (u,x);

(3) ∀x.
�
(Iq(u,x) ∧Dq ∧ ΦDq → ΦIq) ∧ (¬Iq(u,x) ∧Dq ∧ ΦIv

Dq
→ ¬ΦIv

Iq
)
�
for

each q ∈ Q, as defined in Theorem 9.

Regarding the verification of a safety property S, there may be a fourth set
of formulas:

(4) ∀x.(Iq(u,x) −→ Sq) for all q ∈ Q.

6 Templates at differentmodes have different sets of parameters. Here we simply collect

all the parameters together into a w-tuple u.

230 N. Zhan, S. Wang, and H. Zhao

III. Take the conjunction of all the formulas in Step 2 and apply QE to get a
QFF φ(u). Then choose a specific u0 from φ(u) with a tool like Z3 [26],
and the set of instantiations Iq,u0(x) form a GI of H.

The above method is relatively complete with respect to the predefined set of
templates, that is, if there exist SGIs in the form of the predefined templates
then we are able to find one.

Example 6. The Thermostat example taken from [6] can be described by the HA
in Fig. 3. The system has three modes: Cool (qcl), Heat (qht) and Check (qck); and
2 continuous variables: temperature T and timer clock c. All the domains, guards,
reset functions and continuous dynamics are included in Fig. 3. We want to verify
that under the initial condition ΞH�= {qht} ×X0 with X0�= c = 0 ∧ 5 ≤ T ≤ 10,
the safety property S�=T ≥ 4.5 is satisfied at all modes.

�
�

�
�

�
�

�
�

�
�

�
�

Cool Heat Check

Ṫ=2, ċ=1

T≤10, c≤3

Ṫ=−T, ċ=1

T≥5

Ṫ=−T
2
, ċ=1

c≤1

�
�

�
�

T≤6, c:=0

T≥9

c≥0.5, c:=0

c≥2, c:=0

Fig. 3. A hybrid automaton describing the Thermostat system

Using the above SGI generation method, the following set of templates are pre-
defined:

– Iqht �=T + a1c+ a0 ≥ 0 ∧ c ≥ 0;
– Iqcl �=T + a2 ≥ 0;
– Iqck �=T ≥ a3c

2 − 4.5c+ 9 ∧ c ≥ 0 ∧ c ≤ 1

with indeterminates a0, a1, a2 and a3. By deriving verification conditions and
applying QE we get the following constraint on a0, a1, a2, a3:

10a3 − 9 ≤ 0 ∧ 2a3 − 1 ≥ 0 ∧ a1 + 2 = 0 ∧ a0 + 2a1 + 9 = 0 ∧ a2 − a0 = 0 .

By choosing a0 = −5, a1 = −2, a2 = −5, a3 =
1
2 , the following SGI instantiation

is obtained

– Iqht �=T ≥ 2c+ 5 ∧ c ≥ 0;
– Iqcl �=T ≥ 5;
– Iqck �=2T ≥ c2 − 9c+ 18 ∧ c ≥ 0 ∧ c ≤ 1 ,

and the safety property is successfully verified.

Formal Modelling, Analysis and Verification of Hybrid Systems 231

4 Switching Controller Synthesis

4.1 Problem Description

In verification problems, a given hybrid system is proved to satisfy a desired
safety (or other) property. A synthesis problem is harder given that the focus
is on designing a hybrid system that will satisfy a safety requirement, reach a
given set of states, or meet an optimality criterion, or a desired combination of
these requirements.

In this section we talk about the synthesis of switching controllers for hybrid
systems with safety requirements. That is, given a hybrid system and a safety
requirement, we aim to identify a subset of continuous states from each original
transition guard, such that if only at these states is mode switching allowed,
then the system can run forever without violating the required safety property.

The formal definition of the switching controller synthesis problem w.r.t.
safety requirement can be given in the way of [10]. Note that the specification
of hybrid automata has been simplified by assuming that the initial condition is
identical with the domain, and all reset functions are identity mappings.

Problem 1 (Switching Controller Synthesis for Safety). Given a hybrid automa-
ton H = (Q,X, f,D,E,G) and a safety property S, find a hybrid automaton
H′ = (Q,X, f,D′, E,G′) such that

(r1) Refinement: for any q ∈ Q, D′
q ⊆ Dq, and for any e ∈ E, G′

e ⊆ Ge;
(r2) Safety: for any (q,x) ∈ RH′ , x ∈ Sq;
(r3) Non-blocking: H′ is non-blocking.

If suchH′ exists, then SC�= {G′
e ⊆ Rn | e ∈ E} is a switching controller satisfying

the safety requirement S, and DH′ �= �
q∈Q({q}×D′

q) is the controlled invariant
set rendered by SC.

In the following, the theory and techniques on continuous invariant generation
developed in Section 3 will be exploited to solve Problem 1.

4.2 A Synthesis Procedure Based on CI Generation

To solve Problem 1 amounts to refining the domains and guards ofH by removing
so-called bad states. A state (q,x) ∈ DH is bad if the hybrid trajectory starting
from (q,x) either blocks H or violates S; otherwise if the trajectory starting from
(q,x) can either be extended to infinite time or execute infinitely many discrete
transitions while maintaining S, then (q,x) is called a good state. By Definition
13, the set of good states of H can be approximated appropriately using CIs,
which results in the following solution to Problem 1.

Theorem 10. Let H and S be the same as in Problem 1. Suppose D′
q is a closed

subset of Rn for all q ∈ Q and
�

q∈Q D′
q is non-empty. If we have

(c1) for all q ∈ Q, D′
q ⊆ Dq ∩ Sq; and

232 N. Zhan, S. Wang, and H. Zhao

(c2) for all q ∈ Q, D′
q is a CI of (Hq, fq), where

Hq �= � �
e=(q,q′)∈E

G′
e

�c
with G′

e�=Ge ∩D′
q′ ,

then the HA H′ = (Q,X, f,D′, E,G′) is a solution to Problem 1.

Please refer to [49] for the proof of this theorem.
Intuitively, by (c1), D′

q is a refinement of Dq and is also contained in the safe
region Sq, thus guaranteeing (r1) and (r2) of Problem 1; by (c2), any trajectory
starting from D′

q will either stay in D′
q forever7, or finally intersect one of the

transition guards enabling jumps from q to a certain q′, thus guaranteeing (r3)
of Problem 1.

Based on Theorem 10, the following template-based method for synthesizing
switching controllers for PHA with semi-algebraic safety requirement is pro-
posed, by incorporating the automatic SCI generation method in Section 3.4
and 3.5.

(s1) Template Assignment: assign to each q ∈ Q a semi-algebraic template
specifying D′

q, which will be required (see step (s3)) to be a refinement of
Dq, as well as the CI to be generated at mode q ;

(s2) Guard Refinement: refine guard Ge for each e = (q, q′) ∈ E by setting
G′

e�=Ge ∩ D′
q′ ;

(s3) Deriving Synthesis conditions: encode (c1) and (c2) in Theorem 10 into
first-order polynomial formulas; the encoding of condition (c1) is straight-
forward, while encoding of (c2) is based on Theorem 9;

(s4) Constraint Solving: apply QE to the fisrt-order formulas derived in (s3)
and a QFF will be returned specifying the set of all possible values for the
parameters appearing in templates;

(s5) Parameters Instantiation: a switching controller can be obtained by an
appropriate instantiation of D′

q and G′
e such that D′

q are closed sets for all
q ∈ Q, and D′

q is non-empty for at least one q ∈ Q; if such an instantiation
is not found, we choose a new set of templates and go back to (s1).

In the above procedure, the method for SCI generation based on a necessary
and sufficient criterion for SCIs is used as an integral component. As a result,
the above controller synthesis method is relatively complete with respect to a
given family of templates, thus having more possibility of discovering a switching
controller.

The shape of chosen templates in (s1) determines the likelihood of success of
the above procedure, as well as the complexity of QE in (s4). Next, heuristics for
choosing appropriate templates will be discussed using the qualitative analysis
proposed in [47].

7 Actually in Theorem 10, for any mode q ∈ Q, fq is required to be a complete vector

field, that is, for any x0 ∈ Rn, the solution x(x0; t) to ẋ = fq exists on [0,∞).

Formal Modelling, Analysis and Verification of Hybrid Systems 233

4.3 Heuristics for Predefining Templates

The key steps of the qualitative analysis used in [47] are as follows.

1. The evolution behavior (increasing or decreasing) of continuous state vari-
ables in each mode is inferred from the differential equations (using first or
second order derivatives);

2. control critical modes, at which the maximal (or minimal) value of a contin-
uous state variable is achieved, can be identified;

3. the safety requirement is imposed to obtain constraints on guards of transi-
tions leading to control critical modes, and

4. then this information on transition guards is propagated to other modes.

Next, we illustrate how such an analysis helps in predefining templates for a
nuclear reactor temperature control system discussed in [47].

Example 7. The nuclear reactor system consists of a reactor core and a cooling
rod which is immersed into and removed out of the core periodically to keep the
temperature of the core, denoted by x, in a certain range. Denote the fraction
of the rod immersed into the reactor by p. Then the initial specification of
this system can be represented using the hybrid automaton in Fig. 4. The goal
is to synthesize a switching controller for this system with the global safety
requirement that the temperature of the core lies between 510 and 550, i.e.
Si�=510 ≤ x ≤ 550 for i = 1, 2, 3, 4.

�
�

�
	

�
�

�
	

�
�

�
	

�
�

�
	

�

�

�

�

G12

θ=0

G34

θ=1

G41 θ=0 G23θ=1

q1: no rod q2: being immersed

q4: being removed q3: immersed

ẋ= x/10−6θ−50

θ̇=0
D1 =̂ θ=0

ẋ= x/10−6θ−50

θ̇=1
D2 =̂ 0≤θ≤1

ẋ= x/10−6θ−50

θ̇=0
D3 =̂ θ=1

ẋ= x/10−6θ−50

θ̇=−1

D4 =̂ 0≤θ≤1

Fig. 4. Nuclear reactor temperature control

1) Refine Domains. Using the safety requirement, domainsDi for i = 1, 2, 3, 4
are refined by Ds

i �=Di ∩ Si, e.g. D
s
1�= θ = 0 ∧ 510 ≤ x ≤ 550 .

234 N. Zhan, S. Wang, and H. Zhao

2) Infer Continuous Evolutions. Let l1�=x/10−6θ−50 = 0 be the zero-level
set of ẋ and check how x and θ evolve in each mode. For example, in Ds

2,
ẋ > 0 on the left of l1 and ẋ < 0 on the right; since θ increases from 0 to
1, x first increases then decreases and achieves maximal value when crossing
l1. (See Fig. 5.)

3) Identify Critical Control Modes. By 2), q2 and q4 are critical control
modes at which the evolution direction of x changes, and thus maximal (or
minimal) value of x is achieved.

4) Generate Control Points. By 3), we can get a control point E(5/6, 550)
at q2 by taking the intersection of l1 and the safety upper bound x = 550;
and F (1/6, 510) at q4 is obtained by taking the intersection of l1 and the
safety lower bound x = 510.

5) Propagate Control Points. E is backward propagated to A(0, a) using
the trajectory �AE through E defined by fq2 , and then to C(1, c) using the
trajectory �CA through A defined by fq4 ; similarly, by propagating F we get
D and B.

6) Construct Templates. For brevity, we only show how to construct D′
2. In-

tuitively, θ = 0, θ = 1,�AE and �BD form the boundaries of D′
2. In order to get

a semi-algebraic template, we need to fit�AE and �BD (which are generally not
polynomial curves) by polynomials using points A,E and B,D respectively.
By the inference of 2), �AE has only one extreme point (also the maximum
point) E in Ds

2, and is tangential to x = 550 at E. A simple algebraic curve
that can exhibit a shape similar to �AE is the parabola through A,E opening
downward with l2�= θ = 5

6 the axis of symmetry. Therefore to minimize the
degree of terms appearing in templates, we do not resort to polynomials with
degree greater than 2. This parabola can be computed using the coordinates
of A,E as: x − 550− 36

25 (a − 550)(θ − 5
6)

2 = 0 , with a the parameter to be
determined.

Fig. 5. Control points propagation

Formal Modelling, Analysis and Verification of Hybrid Systems 235

Through the above analysis, we generate the following templates:

• D′
1�= θ = 0 ∧ 510 ≤ x ≤ a ;

• D′
2�= 0 ≤ θ ≤ 1 ∧ x − b ≥ θ(d − b) ∧ x − 550− 36

25 (a − 550)(θ − 5
6)

2 ≤ 0 ;
• D′

3�= θ = 1 ∧ d ≤ x ≤ 550 ;
• D′

4�= 0 ≤ θ ≤ 1 ∧ x − a ≤ θ(c − a) ∧ x − 510− 36
25 (d − 510)(θ − 1

6)
2 ≥ 0 ,

in which a, b, c, d are parameters satisfying

510 ≤ b ≤ a ≤ 550 ∧ 510 ≤ d ≤ c ≤ 550 .

Note that without qualitative analysis, a single generic quadratic polynomial
over θ and x would require

�2+2
2

	
= 6 parameters.

Based on the synthesis procedure (s1)–(s5) presented in Section 4.2, we show
below how to synthesize a switching controller for the system in Example 7 step
by step.

(s1) The four templates are defined as the above D′
i for 1 ≤ i ≤ 4.

(s2) The four guards are refined by G′
ij �=Gij ∩ D′

j and then simplified to:
• G′

12�= θ = 0 ∧ b ≤ x ≤ a ;
• G′

23�= θ = 1 ∧ d ≤ x ≤ 550 ;
• G′

34�= θ = 1 ∧ d ≤ x ≤ c ;
• G′

41�= θ = 0 ∧ 510 ≤ x ≤ a .
(s3) The derived synthesis condition, which is a first-order polynomial formula

in the form of φ�=∀x∀θ.ϕ(a, b, c, d, x, θ), is not included here due to its big
size.

(s4) By applying QE to φ we get the following sample solution to the parameters:

a =
6575

12
∧ b =

4135

8
∧ c =

4345

8
∧ d =

6145

12
. (10)

(s5) Instantiate D′
i and G′

ij by (10). It is obvious that all D′
i are nonempty

closed8 sets. According to Theorem 9, we get a switching controller guar-
anteeing safety property for the nuclear reactor system, i.e.
• G′

12�= θ = 0 ∧ 4135/8 ≤ x ≤ 6575/12 ;
• G′

23�= θ = 1 ∧ 6145/12 ≤ x ≤ 550 ;
• G′

34�= θ = 1 ∧ 6145/12 ≤ x ≤ 4345/8 ;
• G′

41�= θ = 0 ∧ 510 ≤ x ≤ 6575/12 .

In [47], an upper bound x = 547.97 for G12 and a lower bound x = 512.03 for G34

are obtained by solving the differential equations at mode q2 and q4 respectively.
By (10), the corresponding bounds generated here are x ≤ 6575

12 = 547.92 and
x ≥ 6145

12 = 512.08.
As should be evident from the above discussion, in contrast to [47], where

differential equations are solved to get closed-form solutions, here good approxi-
mate results are obtained without requiring closed-form solutions. This indicates
that the controller synthesis approach based on CI generation should work well
for hybrid automata where differential equations for modes need not have closed
form solutions.
8 Actually all D′

i become closed sets naturally by the construction of templates, in

which only ≥,≤,= relations appear conjunctively.

236 N. Zhan, S. Wang, and H. Zhao

4.4 Synthesis of Optimal Controllers

Most of the discussion so far on switching controller synthesis is based on meeting
the safety requirements. As a result, there is still considerable flexibility left
in designing controllers to meet other objectives. One important criterion for
further refinement of controllers is optimality, i.e. to optimize a reward/penalty
function that reflects the performance of the controlled system.

The optimal switching controller synthesis problem studied in this section can
be stated as follows.

Problem 2. Suppose H is a hybrid automaton whose transition guards are not
determined but specified by a vector of parameters u. Associated with H is an
objective function g in u. The task is to determine values of u, or a relation over
u, such that H can take discrete jumps at desired conditions, thus guaranteeing

1) a safety requirement S is satisfied; and
2) an optimization goal G, possibly

min
u

g(u), max
u2

min
u1

g(u) , or min
u3

max
u2

min
u1

g(u)9 is achieved.

The determined values of u or relations over u are called the optimal switching
controller.

If H is a PHA and S is a semi-algebraic safety property, then Problem 2 can be
solved by following the steps (s1)–(s4) in Section 4.2 and then solving an opti-
mization problem with objective G. In particular, if g is a polynomial function,
then the optimization problem can also be encoded into first-order polynomial
formulas and then solved by QE.

In detail, the approach for solving the optimal controller synthesis problem
can be described as the following steps.

Step 1. Derive constraint D(u) on u from the safety requirements of the system.
The reachable set RH (parameterized by u) is either computed exactly, or

approximated using SCIs (with u and possibly others as parameters). Then the
safety requirement S is imposed to derive constraint on u using QE.

Step 2. Encode the optimization problem G over constraint D(u) into a quan-
tified first-order polynomial formula Qu.ϕ(u, z), where z is a fresh variable.

The encoding is based on the following proposition, in which all the afore-
mentioned optimization objectives are discussed together.

Proposition 4. Suppose g1(u1), g2(u1,u2), g3(u1,u2,u3) are polynomials, and
D1(u1), D2(u1,u2), D3(u1,u2,u3) are nonempty compact (i.e. bounded closed)
SASs. Then there exist c1, c2, c3 ∈ R s.t.

9 The elements of u are divided into groups u1,u2,u3, . . . according to their roles in

G.

Formal Modelling, Analysis and Verification of Hybrid Systems 237

∃u1.(D1 ∧ g1 ≤ z) ⇐⇒ z ≥ c1 , (11)

∀u2.
�
∃u1.D2 −→ ∃u1.(D2 ∧ g2 ≤ z)

�
⇐⇒ z ≥ c2 , (12)

∃u3.
�
(∃u1u2.D3) ∧ ∀u2.

�
∃u1.D3 −→ ∃u1.(D3 ∧ g3 ≤ z)

��
⇐⇒ z � c3,(13)

where �∈ {>,≥}, and c1, c2, c3 satisfy

c1 = min
u1

g1(u1) overD1(u1) , (14)

c2 = supmin
u2 u1

g2(u1,u2) overD2(u1,u2) , (15)

c3 = inf supmin
u3 u2 u1

g3(u1,u2,u3) overD3(u1,u2,u3) . (16)

The proof of this proposition can be found in [95].

Step 3. Apply QE to Qu.ϕ(u, z) and from the result we can retrieve the optimal
value of G and the corresponding optimal controller u.

Using the above procedure, the issues of synthesis, verification and optimization
for hybrid systems are integrated into one elegant framework. Compared to nu-
merical approaches, using the QE-based method, the synthesized controllers are
guaranteed to be correct and better optimal optimal values can be obtained.

4.5 Oil Pump: A Case Study

We illustrate the above approach on an industrial oil pump example studied in
[18].

The whole system consists of a machine, an accumulator, a reservoir and a
pump. The machine consumes oil periodically out of the accumulator with a
period of 20s (second) for one consumption cycle. The profile of consumption
rate is shown in Fig. 6. The pump adds oil from the reservoir into the accumula-
tor with power 2.2l/s (liter/second). There is an additional physical constraint
requiring a latency of at least 2s between any two consecutive operations of the
pump.

Control objective for this system is to switch on/off the pump at appropriate
time points

0 ≤ t1 ≤ t2 ≤ · · · ≤ tk ≤ tk+1 ≤ · · · (17)

in order to

1) maintain the oil volume v(t) in the accumulator within a safe range
[Vmin, Vmax] at any time, where Vmin = 4.9l, Vmax = 25.1l ; and

2) minimize the average accumulated oil volume in one cycle, i.e. 1
T

� T
t=0 v(t).

238 N. Zhan, S. Wang, and H. Zhao

Fig. 6. Consumption rate in each cycle Fig. 7. Optimal switching con-

troller for the oil pump

The second objective is important because the average oil level reflects the energy
cost of the system.

Following [18], the time points to switch on/off the pump in one consumption
cycle is determined by measuring the oil volume v0 at the beginning of each
cycle. Besides, it is assumed that the pump is operated (turned on/off) at most
4 times in one cycle.

The system along with the safety and optimality requirements can all be
exactly modeled by first-order polynomial formulas. By applying various QE
heuristics, the following results are obtained:

– The optimal switching controller is

t1 =
10v0 − 25

13
∧ t2 =

10v0 + 1

13
∧ t3 =

10v0 + 153

22
∧ t4 =

157

11
, (18)

where t1, t2, t3, t4 are the 4 time points to operate the pump in one cycle, and
v0 ∈ [5.1, 7.5] is the measurement of the initial oil volume at the beginning
of each cycle. If v0 = 6.5, then by (18) the pump should be switched on at
t1 = 40/13, off at t2 = 66/13, then on at t3 = 109/11, and finally off at
t4 = 157/11 (dashed line in Fig. 7).

– The optimal average accumulated oil volume obtained using the strategy
given by (18) is Vopt = 215273

28600 = 7.53, which is a significant improvement
(over 5%) compared to the optimal value 7.95 reported in [18]. If the pump
is allowed to be turned on more times, then even better controllers can be
generated (Vopt = 7.35 if the pump is allowed to be turned on at most 3
times in one cycle).

More details about this case study can be found in [94,95].

Formal Modelling, Analysis and Verification of Hybrid Systems 239

5 Hybrid CSP

HCSP [37,98], which extends CSP by introducing differential equations for mod-
elling continuous evolutions and interrupts, is a formal language for describing
hybrid systems. In HCSP, exchange of data among processes is described solely
by communications; no shared variable is allowed between different processes in
parallel, so each process variable is local to the respective sequential component.
We denote by V ranged over x, y, s, . . . the set of variables, and by Σ ranged
over ch, ch1, . . . the set of channels. The syntax of HCSP is given as follows:

P ::= skip | x := e | wait d | ch?x | ch!e | P ;Q | B → P | P �Q | �i∈I(chi∗ → Qi)

| P ∗ | 〈F(ṡ, s) = 0&B〉 | 〈F(ṡ, s) = 0&B〉�d Q
| 〈F(ṡ, s) = 0&B〉� �i∈I(chi∗ → Qi)

S ::= P | S‖S

Here ch, chi ∈ Σ, chi∗ stands for a communication event, i.e., either chi?x
or chi!e, x, s ∈ V , B and e are Boolean and arithmetic expressions, d is a
non-negative real constant, P,Q,Qi are sequential processes, and S stands for
a system, i.e., an HCSP process.

The intended meaning of the individual constructs is as follows:

– skip terminates immediately having no effect on variables.
– x := e assigns the value of expression e to x and then terminates.
– wait d will keep idle for d time units keeping variables unchanged.
– ch?x receives a value along channel ch and assigns it to x.
– ch!e sends the value of e along channel ch. A communication takes place

when both the sending and the receiving parties are ready, and may cause
one side to wait.

– The sequential composition P ;Q behaves as P first, and if it terminates, as
Q afterwards.

– The alternative B → P behaves as P if B is true; otherwise it terminates
immediately.

– P �Q denotes internal choice. It behaves as either P or Q, and the choice is
made by the process.

– �i∈I(chi∗ → Qi) denotes communication controlled external choice. I is sup-
posed to be finite. As soon as one of the communications chi∗ takes place,
the process continues as the respective guarded Qi.

– The repetition P ∗ executes P for some finite number of times.
– 〈F(ṡ, s) = 0&B〉 is the continuous evolution statement (hereafter shortly

continuous). It forces the vector s of real variables to obey the differential
equations F as long as the boolean expression B, which defines the domain
of s, holds, and terminates when B turns false.

– 〈F(ṡ, s) = 0&B〉 �d Q behaves like 〈F(ṡ, s) = 0&B〉, if that continuous
terminates before d time units. Otherwise, after d time units of evolution
according to F , it moves on to execute Q.

240 N. Zhan, S. Wang, and H. Zhao

– 〈F(ṡ, s) = 0&B〉 � �i∈I(chi∗ → Qi) behaves like 〈F(ṡ, s) = 0&B〉, except
that the continuous evolution is preempted as soon as one of the commu-
nications chi∗ takes place, which is followed by the respective Qi. Notice
that, if the continuous part terminates before a communication from among
{chi∗}I occurs, then the process terminates without communicating.

– S1‖S2 behaves as if S1 and S2 run independently except that all communi-
cations along the common channels connecting S1 and S2 are to be synchro-
nized. The processes S1 and S2 in parallel can neither share variables, nor
input or output channels.

Note that some primitives of CSP and timed CSP are derivable from the above

syntax, e.g. stop
def
= t := 0; 〈ṫ = 1&true〉. Specifically, some of the constructs

in the above syntax can be defined with other ones and thus are not primitive
either, for instance

wait d
def
= t := 0; 〈ṫ = 1&t < d〉,

�i∈I(chi∗ → Qi)
def
= stop� �i∈I(chi∗ → Qi),

〈F(ṡ, s) = 0&B〉�d Q
def
= t := 0; 〈F (ṡ, s) = 0 ∧ ṫ = 1&t < d ∧ B〉; t ≥ d → Q.

Example 8. Consider the classic plant-controller example: A plant is sensed by
a computer periodically (say every d time units), and receives a control (u)
from the digit controller soon after the sensing. Thus, it can be modelled by the
following HCSP process:

((〈F (u, s, ṡ) = 0&true〉� (cp2c!s → skip)); cc2p?u)
∗ ‖ (wait d; cp2c?x; cc2p!e(x))

∗

where 〈F (u, s, ṡ) = 0&true〉 describes the behaviour of the plant. We refer this
HCSP process as PLC hereafter.

In the sequel, we use V(P) to stand for the set of local variables and Σ(P) for
the set of channels of a process P .

5.1 Notations

In order to define the real-time behavior of HCSP processes, we use non-negative
reals R+ to model time, and introduce a global clock now as a system variable
to record the time in the execution of a process.

A timed communication is of the form 〈ch.c, b〉, where ch ∈ Σ , c ∈ R and
b ∈ R+, representing that a communication along channel ch occurs at time b
with value c transmitted. The set Σ × R× R+ of all timed communications is
denoted by TΣ. The set of all timed traces is

TΣ∗
≤ = {γ ∈ TΣ∗ | if 〈ch1.c1, b1〉 precedes 〈ch2.c2, b2〉 in γ, then b1 ≤ b2}.

If X ⊆ Σ , γ 	X is the projection of γ onto X.
Given two timed traces γ1, γ2, and X ⊆ Σ , the alphabetized parallel of γ1

and γ2 over X , denoted by γ1 ‖
X

γ2, results in a set of timed traces, defined by:

Formal Modelling, Analysis and Verification of Hybrid Systems 241

〈〉 ‖
X

〈〉 def
= 〈〉, 〈〉 ‖

X

γ
def
= γ ‖

X

〈〉

〈ch.a, b〉 · γ ‖
X

〈〉 def
=

�
〈ch.a, b〉 · (γ ‖

X

〈〉) if ch �∈ X

∅ otherwise
〈ch1.a, t1〉 · γ′

1 ‖
X

〈ch2.b, t2〉 · γ′
2

def
=

�����������������

〈ch1.a, t1〉 · (γ′
1 ‖
X

γ′
2) if ch1 = ch2 ∈ X, a = b, t1 = t2

〈ch1.a, t1〉 · (γ′
1 ‖
X

(〈ch2.b, t2〉 · γ′
2)) ∪ 〈ch2.b, t2〉 · ((〈ch1.a, t1〉 · γ′

1) ‖
X

γ′
2)

otherwise if ch1, ch2 /∈ X, t1 = t2
〈ch1.a, t1〉 · (γ′

1 ‖
X

(〈ch2.b, t2〉 · γ′
2)) otherwise if ch1 /∈ X, t1 ≤ t2

〈ch2.b, t2〉 · ((〈ch1.a, t1〉 · γ′
1) ‖

X

γ′
2) otherwise if ch2 /∈ X , and t2 ≤ t1

∅ otherwise

To model synchronization of communication events, we need to describe their
readiness, and meanwhile, to record the timed trace of communications having
occurred till now. Each communication event has the form of γ.ch? or γ.ch!, to
represent that ch? (resp. ch!) is ready to occur, and before that the sequence of
communications γ have occurred. Therefore, we introduce two system variables,
rdy and tr, to represent the ready set of communication events and the timed
communication trace accumulated, at each time point during process execution.
In what follows, we use V+(P) to denote V(P) ∪ {rdy, tr, now}.

For a process P , a state σ of P is an assignment to associate a value from
the respective domain to each variable in V+(P). Given two states σ1 and σ2,
we say σ1 and σ2 are parallelable iff Dom(σ1)∩Dom(σ2) = {rdy, tr, now} and
σ1(now) = σ2(now). Paralleling them over X ⊆ Σ results in a set of new states,
denoted by σ1 - σ2, any of which σ is given by

σ(v)
def
=

���������
σ1(v) if v ∈ Dom(σ1) \Dom(σ2),
σ2(v) if v ∈ Dom(σ2) \Dom(σ1),
σ1(now) if v = now,
γ, where γ ∈ σ1(tr) ‖

X

σ2(tr) if v = tr,

σ1(rdy) ∪ σ2(rdy) if v = rdy.

It makes no sense to distinguish any two states in σ1-σ2, so hereafter we abuse
σ1 - σ2 to represent any of its elements.

5.2 Operational Semantics

As mentioned above, we use now to record the time during process execution.
A state, ranging over σ, σ1, assigns respective value to each variable in V+(P);
moreover, we introduce flow, ranging over H,H1, defined on a time interval,
assigns a state to each point in the interval.

Each transition relation has the form of (P, σ)
α−→ (P ′, σ′, H), where P is

a process, σ, σ′ are states, H is a flow. It records that starting from initial

242 N. Zhan, S. Wang, and H. Zhao

state σ, P evolves into P ′ and ends in state σ′ and flow H , while performing
event α. When the transition is discrete and thus produces a flow on an in-
terval that contains only one point, we will write (P, σ)

α−→ (P ′, σ′) instead of

(P, σ)
α−→ (P ′, σ′, {σ(now) �→ σ′}). The label α represents events, which can be

an internal event like skip, assignment, or a termination of a continuous etc,
uniformly denoted by τ , or an external communication event ch!c or ch?c, or an
internal communication ch.c, or a time delay d that is a positive real number.
We call the events but the time delay discrete events, and will use β to range
over them. We define the dual of ch?c (denoted by ch?c) as ch!c, and vice
versa, and define comm(ch!c, ch?c) or comm(ch?c, ch!c) as the communication
ch.c. To make our operational semantics more expressive, we will record both
the internal events and internal communications that have occurred till now in
tr.

The semantics of skip and x := e are defined as usual, except that for each,
an internal event occurs. Rule (Idle) says that a terminated configuration can
keep idle arbitrarily, and then evolves to itself. For input ch?x, the input event
has to be put in the ready set if it is enabled (In-1); then it may wait for its
environment for any time d during which it keeps ready (In-2), or it performs a
communication and terminates, with x being assigned and tr extended by the
communication, and the ready set being reduced one corresponding to the input
(In-3). The semantics of output ch!e is similarly defined by rules (Out-1), (Out-2)
and (Out-3). The continuous evolves for d time units if B always holds within
this period, during which the ready set is empty (Cont-1), and it terminates
at a point when B turns out false at the point or at a right open interval
(Cont-2). For communication interrupt, it evolves for d time units if none of
the communications ioi is ready (IntP-1), or continues as Qj if ioj occurs first
(IntP-2); or terminates immediately when the continuous terminates (IntP-3).
For P1‖P2, we always assume that the initial states σ1 and σ2 are parallelable.
There are four rules: both P1 and P2 evolve for d time units in case they
can delay d time units respectively; or P1 may progress separately on internal
events or external communication events (Par-2), and the symmetric case can
be defined similarly (omitted here); or they together perform a synchronized
communication (Par-3); or P1‖P2 terminates when both P1 and P2 terminate
(Par-4). At last, the semantics for conditional, sequential, internal choice, and
repetition is defined as usual.

(skip, σ)
τ−→ (ε, σ[tr + τ] (Skip)

(ε, σ)
d−→ (ε, σ[now �→ σ(now) + d]) (Idle)

(x := e, σ)
τ−→ (ε, σ[x �→ σ(e), tr �→ σ(tr) · 〈τ, σ(now)〉]) (Ass)

σ(tr).ch? �∈ σ(rdy)

(ch?x, σ)
τ−→ (ch?x, σ[rdy �→ σ(rdy) ∪ {σ(tr).ch?}])

(In-1)

σ(tr).ch? ∈ σ(rdy)

(ch?x, σ)
d−→ (ch?x, σ[now �→ σ(now) + d], Hd,i)

(In-2)

Formal Modelling, Analysis and Verification of Hybrid Systems 243

σ(tr).ch? ∈ σ(rdy)

(ch?x, σ)
ch?b−−−→ (ε, σ[x �→ b, tr + ch.b, rdy �→ σ(rdy)\{σ(tr).ch?}])

(In-3)

σ(tr).ch! �∈ σ(rdy)

(ch!e, σ)
τ−→ (ch!e, σ[rdy �→ σ(rdy) ∪ {σ(tr).ch!}])

(Out-1)

σ(tr).ch! ∈ σ(rdy)

(ch!e, σ)
d−→ (ch!e, σ[now �→ σ(now) + d], Hd,o)

(Out-2)

σ(tr).ch! ∈ σ(rdy)

(ch!e, σ)
ch!σ(e)−−−−→ (ε, σ[tr + ch.σ(e), rdy �→ σ(rdy)\{σ(tr).ch!}])

(Out-3)

S(t) is a trajectory of F(ṡ, s) = 0 s.t.(S(0) = σ(s)

∧∀t ∈ [0, d].(F(˙S(t), S(t)) = 0 ∧ σ(B[s �→ S(t)]) = true))

(〈F(ṡ, s) = 0&B〉, σ) d−→
� 〈F(ṡ, s) = 0&B〉,
σ[now �→ σ(now) + d, s �→ S(d)], Hd,s

� (Cont-1)

(σ(B) = false) or (S(t) is a trajectory of F(ṡ, s) = 0 s.t.

∃ε > 0.(S(0) = σ(s)

∧∀t ∈ (0, ε].(F(˙S(t), S(t)) = 0 ∧ σ(B[s �→ S(t)]) = false)))

(〈F(ṡ, s) = 0&B〉, σ) τ−→ (ε, σ[s �→ limt→0 S(t), tr �→ σ(tr) · 〈τ, σ(now)〉])
(Cont-2)

(chi∗;Qi, σ)
d−→ (chi∗;Qi, σ

′
i,Hi), ∀i ∈ I

(〈F(ṡ, s) = 0&B〉, σ) d−→ (〈F(ṡ, s) = 0&B〉, σ′,H)

(〈F(ṡ, s) = 0&B〉� �i∈I(chi∗ → Qi), σ)
d−→� 〈F(ṡ, s) = 0&B〉� �i∈I(chi∗ → Qi),

σ′[rdy �→ ∪i∈Iσ
′
i(rdy)],H [rdy �→ ∪i∈Iσ

′
i(rdy)]

� (IntP-1)

(chj∗;Qj , σ)
chj∗−−−→ (Qj , σ

′),∃j ∈ I

(〈F(ṡ, s) = 0&B〉� �i∈I(chi∗ → Qi), σ)
chj∗−−−→ (Qj , σ

′)
(IntP-2)

(〈F(ṡ, s) = 0&B〉, σ) τ−→ (ε, σ′))

(〈F(ṡ, s) = 0&B〉� �i∈I(chi∗ → Qi), σ)
τ−→ (ε, σ′)

(IntP-3)

(P1, σ1)
d−→ (P ′

1, σ
′
1,H1), (P2, σ2)

d−→ (P ′
2, σ

′
2, H2),

∀ch ∈ Σ(P1) ∩Σ(P2).¬((P1, σ1 � σ2)
ch∗−−→ ∧(P2, σ1 � σ2)

ch∗−−→)

(P1 ‖ P2, σ1 - σ2)
d−→ (P ′

1 ‖ P ′
2, (σ

′
1 - σ′

2), H1 - H2)
(Par-1)

(P1, σ1)
β−→ (P ′

1, σ
′
1), Σ(β) �∈ Σ(P1) ∩Σ(P2)

(P1 ‖ P2, σ1 - σ2)
β−→ (P ′

1 ‖ P2, σ
′
1 - σ2)

(Par-2)

(P1, σ1)
ch∗−−→ (P ′

1, σ
′
1), (P2, σ2)

ch∗−−→ (P ′
2, σ

′
2),

(P1 ‖ P2, σ1 - σ2)
comm(ch∗,ch∗)−−−−−−−−−−→ (P ′

1 ‖ P ′
2, σ

′
1 - σ′

2)

(Par-3)

(ε ‖ ε, σ1 - σ2)
τ−→ (ε, σ1 - σ2) (Par-4)

244 N. Zhan, S. Wang, and H. Zhao

σ(B) = true

(B → P, σ)
τ−→ (P, σ[tr + τ])

(Cond-1)
σ(B) = false

(B → P, σ)
τ−→ (ε, σ[tr + τ])

(Cond-2)

(P, σ)
α−→ (P ′, σ′, H) P ′ �= ε

(P ;Q, σ)
α−→ (P ′;Q, σ′, H)

(Seq-1)
(P, σ)

α−→ (ε, σ′, H)

(P ;Q, σ)
α−→ (Q, σ′, H)

(Seq-2)

(P � Q, σ)
τ−→ (P, σ[tr + τ]) (IntC-1) (P �Q, σ)

τ−→ (Q, σ[tr + τ])
(IntC-2)

(P, σ)
α−→ (P ′, σ′, H) P ′ �= ε

(P ∗, σ) α−→ (P ′;P ∗, σ′, H)
(Rep-1)

(P, σ)
α−→ (ε, σ′, H)

(P ∗, σ) α−→ (P ∗, σ′, H)
(Rep-2)

(P ∗, σ) τ−→ (ε, σ[tr + τ]) (Rep-3)

where for an internal or communication event β, σ[tr + β] stands for σ[tr �→
σ(tr) · 〈β, σ(now)〉], and the flow Hd,i (or Hd,o) is defined over time interval
[σ(now), σ(now) + d], such that for any t in the domain, Hd,i(t) = σ[now �→ t]
(or Hd,o(t) = σ[now �→ t]); and the flow Hd,s is defined over time interval
[σ(now), σ(now) + d] such that for any t ∈ [σ(now), σ(now) + d], Hd,s(t) =
σ[now �→ t, s �→ S(t − σ(now))], where S(·) is the trajectory as defined in the
rule. For any t in the domain, H1 - H2(t) = H1(t) - H2(t).

Given two flows H1 and H2 defined on [r1, r2] and [r2, r3] respectively, we

define the concatenation H�
1H2 as the flow defined on [r1, r3] such that H�

1H2(t)
is equal to H1(t) if t ∈ [r1, r2), and H2(t) if t ∈ [r2, r3). Given a process P and
an initial state σ0, if we have the following sequence of transitions:

(P, σ0)
α0−→ (P1, σ1, H1)

(P1, σ1)
α1−→ (P2, σ2, H2)

. . .

(Pn−1, σn−1)
αn−1−−−→ (Pn, σn, Hn)

then we define the sequence H�
1 . . .�Hn as a flow from P1 to Pn starting from

σ0, and write (P, σ0)
α0···αn−1−−−−−−→ (Pn, σn, H

�
1 . . .�Hn) as an abbreviation of the

above transition sequence; and meanwhile, define the sequence B�
1 . . .�Bn as a

behavior from P1 to Pn starting from σ0, where Bi is Hi if Hi is not empty,
empty otherwise if Hi is empty but Hi+1 is not, σi otherwise. Thus, a flow
records for each time point the rightmost state, while a behavior records for
each time point all the discrete states that occur in execution. Especially, when
Pn is ε, we will call them complete flow and complete behavior of P with respect
to σ0 respectively.

Formal Modelling, Analysis and Verification of Hybrid Systems 245

6 Hybrid Hoare Logic

HHL was first proposed in [55], which is an extension of Hoare logic to hybrid
system, used to specify and reason about hybrid systems modelled by HCSP. The
assertion logic of HHL consists of two parts: the first-order logic and Duration
Calculus (DC) [97,96]. The former is used to specify discrete events, represented
by pre- and post-condition, while the latter is used to specify continuous evolu-
tion. In HHL, a hybrid system is modelled by an HCSP process. So, the proof
system of HHL consists of the following three parts: axioms and inference rules
for the first-order logic, axioms and inference rules for DC, and axioms and in-
ference rules for the constructs of HCSP. A theorem prover of the logic based on
Isabelle/HOL has been implemented, and applied to model and specify Chinese
High-Speed Train Control System at Level 3 (CTCS-3) [99].

However, the version of HHL given in [55] can only be used to deal with
closed systems, as it lacks compositionality and therefore cannot cope with open
systems. Recently, some attempts to define a compositional proof system are
undertaken [86,36,93].

Here, we present a revised version of HHL given in[55].

6.1 History Formulas

As indicated before, we will use a subset of DC formulas to record execution his-
tory of HCSP processes. The formulas in this subset are denoted as HF (history
formula) and given as follows.

HF ::= 	 < T | 	 = T | 	 > T | .S/0 | ¬HF | HF�
1HF2 | HF2 ∨ HF2

where 	 stands for interval length, T ∈ R+ is a constant, and S is a state expres-
sion, which is a first order formula of V(P) interpreted as a Boolean function
over the time domain, defined by

S ::= 1 | 0 | R(e1, . . . , en) | ¬S | S1 ∨ S2

where R(e1, . . . , en) is a n-ary predicate over expressions e1, . . . , en, normally
of the form p(x1, . . . , xn) � 0 with � ∈ {≥, >,=, �=,≤, <} and p(x1, . . . , xn) a
polynomial in x1, . . . , xn.

Informally, the above formulas can be understood as follows:

– 	 < T (resp. 	 = T , 	 > T) means the length of the reference interval is less
than (resp. equal to, greater than) T ;

– .S/0 means that the state S is satisfied at the reference point interval, i.e.,
the considered time point;

– HF�
1HF2 says that the reference interval can be split into two parts such that

HF1 is satisfied on the first segment, while HF2 holds on the second;

– The logical connectives can be understood in the standard way.

246 N. Zhan, S. Wang, and H. Zhao

.S/ is an abbreviation of ¬(true�.¬S/0�	 > 0), which means S holds everywhere
on a considered interval, except for its right endpoint. Obviously, we have

false ⇔ (< 0) true ⇔ (= 0) ∨ (> 0) ⇔ ¬(= 0) ∨ .S/
.S/�.S/ ⇔ .S/ .S/�(= 0) ⇔ .S/ ⇔ (= 0) �.S/

In addition, given a history formula HF, we use HF< to denote the internal of
HF, meaning that HF holds on the interval derived from the considered interval
by excluding its endpoint. HF< can be formally defined as follows:

(< T)<
def
= (< T)

(= T)<
def
= (= T)

(> T)<
def
= 	 > T

(.S/0)< def
= 	 = 0

.S/< def
= .S/

(HF�
1HF2)

< def
= (HF1)

<�
(HF2)

<

(HF1 ∧ HF2)
< def

= (HF1)
< ∧ (HF2)

<

(HF1 ∨ HF2)
< def

= (HF1)
< ∨ (HF2)

<

Formally, given a state σ, a state expression S is interpreted as

σ(1) = 1

σ(0) = 0

σ(R(e1, . . . , en)) =

1, if R(σ(e1), . . . , σ(en));
0, otherwise

σ(¬S) = 1− σ(S)

σ(S1 ∨ S2) = max{σ(S1), σ(S2)}

Thus, given a flow H and a reference interval of the flow [a, b] with a, b ∈
Dom(H), and a ≤ b, we can formally define the meaning of a history formula
HF inductively as follows:

– H, [b, e] |= 	� T iff e − b� T , where � ∈ {≤, >,=, �=,≤, <};
– H, [b, e] |= .S/0 iff b = e, and H(b)(S) = 1;
– H, [b, e] |= ¬HF iff H, [b, e] �|= HF;
– H, [b, e] |= HF1 ∧ HF2 iff H, [b, e] |= HF1 and H, [b, e] |= HF2;
– H, [b, e] |= HF1 ∨ HF2 iff H, [b, e] |= HF1 or H, [b, e] |= HF2;
– H, [b, e] |= HF�

1HF2 iff there is m ∈ [b, e] such that H, [b,m] |= HF1 and
H, [m, e] |= HF2.

6.2 Hoare Assertion

A Hoare assertion of HHL consists of four parts: precondition, process, postcon-
dition and history, written as

{Pre}P{Post;HF}

Formal Modelling, Analysis and Verification of Hybrid Systems 247

where Pre specifies values of V(P) before an execution of P , Post specifies values
of V(P) when P terminates, and HF is a formula of V(P) from the DC subset
to describe the execution history of P . HCSP has three kinds of interruptions:
boundary interruption like 〈F (ṡ, s) = 0∧B〉, timeout interruption like 〈F (ṡ, s) =
0∧B〉�dQ and communication interruption like 〈F (ṡ, s) = 0∧B〉� []i∈I(chi∗ →
Qi). For these three kinds of interruptions, HF has to join in reasoning.

Definition 15 (Validity). We say a Hoare assertion {Pre}P{Post;HF} is

valid, denoted by |= {Pre}P{Post;HF}, iff for any initial state σ1, if (P, σ1)
α∗
−−→

(ε, σ2, H) then σ1 |= Pre implies σ2 |= Post and H, [σ1(now), σ2(now)] |= HF .

For a parallel process, say P1 ‖ ... ‖ Pn, the assertion becomes

{Pre1, ...,Pren}P1 ‖ ... ‖ Pn{Post1, ...,Postn;HF1, ...,HFn}

where Prei,Posti,HFi are (first order or DC) formulas of V(Pi) (i = 1, ..., n)
separately. The validity can be defined similarly.

Another role of HF is to specify real-time (continuous) property of an HCSP
process, while Pre and Post can only describe its discrete behaviour. HF therefore
bridges up the gap between discrete and continuous behaviour of the process. For
instance, in Example 8, we may want the plant controller stable after T time
units, i.e. after T time units the distance between the trajectory of s and its
target starg must be small. This can be specified through the following assertion.

{s = s0 ∧ u = u0 ∧ Ctrl(u0, s0),Pre2} PLC
{Post1,Post2; (l = T)�.| s− starg |≤ ε/,HF2}

where Ctrl(u, s) may express a controllable property, and the other formulas are
not elaborated here.

Note that we can essentially put Pre and Post as parts of history formula

HF like the form .Pre/0�HF�.Post/0. But we did not adopt this way, because
separation of specifying and reasoning about discrete behavior and continuous
behavior can indeed improve readability and simplify our approach.

6.3 Proof System of HHL

We will omit the axioms and inference rules for the first-order logic and DC, and
just concentrate on the axioms and rules for the constructs of HCSP.

1. Monotonicity

If {Pre1,Pre2}P1 ‖ P2{Post1,Post2;HF1,HF2},
and Pre′i ⇒ Prei,Posti ⇒ Post′i,HFi ⇒ HF′

i(i = 1, 2),

then {Pre′1,Pre′2}P1 ‖ P2{Post′1,Post′2;HF′
1,HF

′
2}

where we use first order logic to reason about Pre′i ⇒ Prei and Posti ⇒ Post′i,
but use DC to reason about HFi ⇒ HF′

i. From now on we will not repeatedly
mention this.

248 N. Zhan, S. Wang, and H. Zhao

2. Case Analysis

If {Pre1i,Pre2}P1 ‖ P2{Post1,Post2;HF1,HF2} (i = 1, 2),

then {Pre11 ∨ Pre12,Pre2}P1 ‖ P2{Post1,Post2;HF1,HF2}

Symmetrically,

If {Pre1,Pre2i}P1 ‖ P2{Post1,Post2;HF1,HF2} (i = 1, 2),

then {Pre1,Pre21 ∨ Pre22}P1 ‖ P2{Post1,Post2;HF1,HF2}
3. Parallel vs Sequential

These two rules show a simple relation between assertions of a parallel pro-
cess and its sequential components that can ease a proof.

If {Pre1,Pre2}P1 ‖ P2{Post1,Post2;HF1,HF2}
then {Prei}Pi{Posti;HFi} (i = 1, 2)

and
If {Prei}Pi{Posti;HFi} (i = 1, 2),

and Pi (i = 1, 2) do not contain communication,

then {Pre1,Pre2}P1 ‖ P2{Post1,Post2;HF1,HF2}
4. Skip

{Pre}skip{Pre; l = 0},
where by l = 0 we assume that, in comparison with physical device, compu-
tation takes no time (i.e. super dense computation [60])

5. Assignment
{Pre[e/x]}x := e{Pre, .x = e/0}

The precondition and postcondition are copied from Hoare Logic. Here we
use .x = e/0 as its history to indicate that x is assigned to e, which takes
place at this time point.

6. Communication
Since HCSP rejects sharing variables, a communication looks like the output
party (P1; ch!e) assigning to variable x of the input one (P2; ch?x) a value
e. Besides, in order to synchronize both parties, one may have to wait for
another. During the waiting of Pi, Posti must stay true (i = 1 or 2). We use
const(V(P)) to denote ∧x∈V(P)∃v..x = v/, which means that all variables of
P keep unchanged except for at the endpoint.

If {Pre1,Pre2}P1 ‖ P2{Post1,Post2;HF1,HF2},
Post1 ⇒ G(e),HF1 ⇒ 	 = c1, and HF2 ⇒ 	 = c2

then {Pre1,Pre2}(P1; ch!e) ‖ (P2; ch?x)

{Post1, G(x) ∧ ∃x.Post2;HF1
�(.Post1/ ∧ const(V(P1)) ∧ 	 = c− c1),

(HF2
�(.Post2/ ∧ const(V(P2)) ∧ 	 = c− c2))

<�.x = e/0}
where c = max{c1, c2}.

Formal Modelling, Analysis and Verification of Hybrid Systems 249

Note that for simplicity, in the above rule we just consider a simple case of
communication; a rule for the general case of communication

(P1; []i∈Ichi∗ → Q1i) ‖ (P2; []j∈Jchj∗ → Q2j),

where chi∗ = chj∗ for some i ∈ I, j ∈ J , can be defined similarly.

Example 9. If

{Pre1,Pre2}P1 ‖ P2

{y = 3, x = 1; (.y = 0/ ∧ (l = 3))�.y = 3/0, .x = 0/ ∧ (l = 5)�.x = e/0},

we want to deduce through this rule

{Pre1,Pre2}P1; ch!y ‖ P2; ch?x{Post3,Post4;HF3,HF4}.

Since (y = 3) ⇒ (3 = 3), .y = 0/ ∧ (l = 3))�.y = 3/0 ⇒ 	 = 3, and
(.x = 0/ ∧ 	 = 5)�.x = 1/0 ⇒ 	 = 5, we can conclude that Post3 is y = 3,

Post4 is x = 3, HF3 is ((.y = 0/∧(l = 3))�.y = 3/0�(.y = 3/∧const(V(P1)∪
{y}) ∧ 	 = 2), and HF4 is (= 5�.x = 1/0)<�.x = 3/0, which is equivalent
to (= 5�.x = 3/0 by the definition of HF<. ��

7. Continuous
This is about 〈F (ṡ, s) = 0 ∧ B〉, where s can be a vector and F be a group
of differential equations, such as

〈(ṡ1 = f1, ..., ṡn = fn) ∧ B〉.

As indicated in Sec 3, in our framework, we only deal with polynomial dif-
ferential equations and semi-algebraic differential invariants. That is, fjs are
polynomials in si (i = 1, ..., n), B is a conjunction of polynomial equations
and inequalities of si (i = 1, ..., n), and differential invariants are also re-
stricted to polynomial equations and inequalities. So, given a polynomial
differential invariant Inv of 〈F (ṡ, s) = 0 ∧ B〉 with initial values satisfying
Init, the inference rule for continuous can be formulated as follows:

If Init ⇒ Inv,

then {Init ∧ Pre}〈F (ṡ, s) = 0 ∧ B〉{Pre ∧Cl(Inv) ∧Cl(¬B);

.Inv ∧ Pre ∧ B/}

where Pre does not contain s, Cl(G) stands for the closure of G10.
The second rule is about explicit time.

If {Pre}〈F (ṡ, s) = 0&B〉{Post;HF}
and {Pre ∧ t = 0}〈(F (ṡ, s) = 0, ṫ = 1)&B〉{t = t0 ∧ Rg(t0),HF

′},
then {Pre}〈F (ṡ, s) = 0&B〉{Post;HF ∧ Rg()}

where t is a clock to count the execution time, and Rg(t) is a constraint on
the final value of t which is an arithmetic formula.

10 When G is constructed by polynomial inequalities through ∧ and ∨, Cl(G) can be

obtained from G by replacing < (and >) with ≤ (and ≥) in G.

250 N. Zhan, S. Wang, and H. Zhao

Example 10. According to the result given in Section 3, it is easy to see that
v ≤ vebi is an invariant of 〈(ṡ = v, v̇ = a)∧v < vebi〉. Thus, by the continuous
rule

{(v = v0 ≤ vebi)}〈(ṡ = v, v̇ = a) ∧ v < vebi〉
{(v ≤ vebi) ∧ (v ≥ vebi); .(v ≤ vebi) ∧ (v < vebi)/}

In addition, we can prove that, if the initial values are v = v0 and t = 0, and
we assume p ≥ a ≥ w, then

((v0 + wt) ≤ v ≤ (v0 + pt)) ∧ (v ≤ vebi)

is an invariant of 〈(ṡ = v, v̇ = a, ṫ = 1) ∧ v < vebi〉. So under the assumption
(p ≥ a ≥ w)

{(v = v0 ≤ vebi) ∧ (t = 0)}〈(ṡ = v, v̇ = a, ṫ = 1) ∧ v < vebi〉
{(v = vebi) ∧ ((v0 + wt) ≤ v ≤ (v0 + pt)) ∧ vebi−v0

w ≥ t ≥ vebi−v0
p ;

.(v < vebi) ∧ ((v0 + wt) ≤ v ≤ (v0 + pt))/}

Therefore, assuming (p ≥ a ≥ w) we can have

{(v = v0 ≤ vebi)}〈(ṡ = v, v̇ = a) ∧ v < vebi〉
{(v = vebi); .(v < vebi)/ ∧ (vebi−v0

w ≥ l ≥ vebi−v0
p)}

��

8. Sequential. The rule for sequential composition is very standard, given as
follows:
If {Pre1}P1{Post1;HF1}, and {Post1}P2{Post2;HF2}
then {Pre1}P1;P2{Post2;HF<

1
�
HF2}.

9. Internal Choice. The rule for internal choice is standard, given as follows:
If {Pre}P1{Post1;HF1} and {Pre}P2{Post2;HF2},
then {Pre}P1 � P2{Post1 ∨ Post2;HF1 ∨ HF2}.

10. Communication Interruption
There are two rules for communication interruption, the first one says that
the continuous part terminates before a communication happens, while the
second one states that the continuous evolution is interrupted by a commu-
nication.
Rule1: If

(a) {Pre,PreR} 〈F (ṡ, s) = 0&B〉 ‖ R{Post,PostR;HF,HFR},
(b) for all i ∈ I, {Pre,PreR} chi∗ ‖ R{Posti,PostiR;HFi,HF

i
R},

(c) HF ⇒ 	 = x, ∧i∈I(HFi ⇒ 	 = xi) ∧ x < xi,
then

{Pre,PreR} 〈F (ṡ, s) = 0&B〉� []i∈I(chi∗ → Qi) ‖ R
{Post,PostR;HF,HFR}

Rule 2: Assume j ∈ I. If
(a) {Pre,PreR} 〈F (ṡ, s)=0&B〉 ‖ R1; chj∗ → R2{Post,PostR;HF,HFR},
(b) for all i ∈ I, {Pre,PreR} chi∗ ‖ R1; chj∗ {Posti,PostiR;HFi,HF

i
R},

(c) HF ⇒ 	 = x, ∧i∈IHFi ⇒ 	 = xi, and xj ≤ x ∧ ∧i�=jxj ≤ xi,

Formal Modelling, Analysis and Verification of Hybrid Systems 251

(d) HF ⇒ (= xj ∧ HFs)
�.G(s0)/0,

(e) {Postj ∧ G(s0),Post
j
R}Qj ‖ R2{Postf ,PostfR;HF

f ,HFf
R},

then

{Pre,PreR} 〈F (ṡ, s) = 0&B〉� []i∈I(chi∗ → Qi) ‖ R1; chj∗ → R2

{Postf ,PostfR; ((HFs
�.G(s0)/0) ∧ HFj)

�HFf ,HFj
R

�
HFf

R}

Note that for simplicity, in Rule 2, we only consider 〈F (ṡ, s) = 0&B〉 �
[]i∈I(chi∗ → Qi) to be parallel with R1; chj∗;R2. For general case, the rule
can be given similarly, without any difficulty.

11. Repetition
We can pick up rules from the literature for the repetition. Here we only
show a rule which ends off an assertion reasoning.

If {Pre1,Pre2}P1 ‖ P2{Pre1,Pre2;HF1,HF2},
HFi ⇒ (Di ∧ (l = T)) (i = 1, 2, T > 0),

and D�
i Di ⇒ Di,

then {Pre1,Pre2}P ∗
1 ‖ P ∗

2 {Pre1,Pre2; 	 = 0 ∨ D1, 	 = 0 ∨ D2}

where T is the time consumed by both P1 and P2 that can guarantee the
synchronisation of the starting point of each repetition.

6.4 Soundness

We only present the case for sequential processes.

Definition 16 (Theorem). We say a Hoare triple {Pre}P{Post;HF} is a
theorem, denoted by � {Pre}P{Post;HF}, iff it is derivable from the above
proof system.

The soundness of the proof system is guaranteed by the following theorem.

Theorem 11 (Soundness). If � {Pre}P{Post;HF}, then |= {Pre}
P{Post;HF}, i.e. every theorem of the proof system is valid.

7 HHL Prover

In this section, we aim to provide the tool support for verifying whether an
HCSP process conforms to its specification written in HHL. Fig. 8 shows the
verification architecture of our approach: given an annotated HCSP process in
the form of HHL specification, by designing a verification condition generator
based on HHL proof system, the specification to be proved is reduced to a set
of verification conditions, each of which is either a first-order formula or a DC
formula, and the validity of these logical formulas is equivalent to that of the
original specification; these logical formulas can then be proved by interactive
theorem proving, furthermore, some of which falling in decidable subsets of first-
order logic or DC can be proved automatically by designing the corresponding
decision procedures.

252 N. Zhan, S. Wang, and H. Zhao

As shown in Fig. 8, a differential invariant generator is needed for specifying
and verifying differential equations. But currently we assume for each differential
equation, its invariant is annotated as given, as we have not implemented the
results reported in Sec. 3 yet. As one of future work, such an invariant generator
will be implemented and integrated.

Differential

Invariant

Generator

Annotated

HCSP Processes

A Verification

Condition Generator

Logical formulas

Interactive Provers

(Isabelle/HOL)

Automatic Provers

(SMT Solver)

Fig. 8. Verification Architecture of HCSP Processes

We have mechanized the main part of the verification architecture connected
by solid lines shown in Fig. 8 in proof assistant Isabelle/HOL, based on which
implemented an interactive theorem prover called HHL prover for verifying HHL
specifications. The mechanization mainly includes the embedding of HCSP, the
assertion languages, i.e., first-order logic (FOL) and DC, and upon them, the
embedding of the proof system of HHL in Isabelle/HOL. We adopt the deep
embedding approach [14,87] here, which represents the abstract syntax for both
HCSP and assertions by new datatypes, and then defines the semantic functions
that assign meanings to each construct of the datatypes. It allows us to quantify
over the syntactic structures of processes and assertions, and furthermore, make
full use of deductive systems for reasoning about assertions written in FOL and
DC.

The HHL prover can be downloaded at https://github.com/iscas/HHL_prover.

7.1 Expressions

We start from encoding the bottom construct, i.e. expressions, that are repre-
sented as a datatype exp:

datatype exp = RVar string | SVar string | BVar string | Real real
| String string | Bool bool | exp + exp | exp − exp | exp ∗ exp

Formal Modelling, Analysis and Verification of Hybrid Systems 253

An expression can be a variable, that can be of three types, RVar x for real vari-
able, SVar x and BVar x for string and boolean variables; a constant, that can
be also of the three types, e.g. Real 1.0, String ‘‘CO’’ and Bool True; an arith-
metic expression constructed from operators +,−, ∗. Based on expressions, we
can define the assertion languages and the process language HCSP respectively.

7.2 Assertion Language

As we introduced in Sec. 6, there are two assertion logics in HHL: FOL and DC,
where the former is used for specifying the pre-/post-conditions and the latter
for the execution history of a process respectively. The encodings for both logics
consist of two parts: syntax and deductive systems. We will encode the deduc-
tive systems in Gentzen’s sequent calculus style, which applies backward search
to conduct proofs and thus is more widely used in interactive and automated
reasoning. A sequent is written as Γ � Δ, where both Γ and Δ are sequences of
logical formulas, meaning that when all the formulas in Γ are true, then at least
one formula in Δ will be true. We will implement a sequent as a truth propo-
sition. The sequent calculus deductive system of a logic is composed of a set of
sequent rules, each of which is a relation between a (possibly empty) sequence
of sequents and a single sequent. In what follows, we consider to encode FOL
and DC respectively.

First-Order Logic. The FOL formulas are constructed from expressions by using
relational operators from the very beginning, and can be represented by the
following datatype fform:

datatype fform = [True] | [False] | exp [=] exp | exp [<] exp

| [¬] fform | fform [∨] fform | [∀] string fform

The other logical connectives including [∧], [→], and [∃] can be derived as normal.
For quantified formula [∀]string fform, the name represented by a string corre-
sponds to a real variable occurring in fform. We only consider the quantification
over real variables here, but it can be extended to variables of other types (e.g.
string and bool) without any essential difficulty. Notice that we add brackets to
wrap up the logical constructors in order to avoid the name conflicts between
fform and the FOL system of Isabelle library. But in sequel, we will remove
brackets for readability when there is no confusion in context; and moreover,
in order to distinguish between FOL formulas and Isabelle meta-logic formulas,
we will use ⇒, & and | to represent implication, conjunction and disjunction in
Isabelle meta-logic.

Now we need to define the sequent calculus style deductive system for fform.
The Isabelle library includes an implementation of the sequent calculus of clas-
sical FOL with equation, based upon system LK that was originally introduced
by Gentzen. Our encoding of the sequent calculus for fform is built from it di-
rectly, but with an extension for dealing with the atomic arithmetic formulas
that are defined in fform. We define an equivalent relation between the validity
of formulas of fform and of bool , the built-in type of Isabelle logical formulas,
represented as follows:

254 N. Zhan, S. Wang, and H. Zhao

formT (f :: fform) ⇔ � f

where the function formT transforms a formula of type fform to a corresponding
formula of bool . This approach enables us to prove atomic formulas f of fform
by applying the built-in arithmetic solvers of Isabelle and proving formT (f)

instead.

Duration Calculus. Encoding DC into different proof assistants has been studied,
such as [78] in PVS, and [38,72] in Isabelle/HOL. DC can be considered as an
extension of Interval Temporal Logic (ITL) by introducing state durations (here
point formulas instead), while ITL an extension of FOL with the introducing of
temporal variables and chop modality by regarding intervals instead of points as
worlds. Therefore, both [38] and [72] apply an incremental approach to encode
ITL on top of an FOL sequent calculus system, and then DC on top of ITL. We
will follow a different approach here, to represent DC formulas as a datatype, as
a result, the proving of DC formulas can be done by inductive reasoning on the
structures of the formulas.

The datatype dform encodes the history formulas HF given in Sec. 6:

datatype dform = [[True]] | [[False]] | dexp[[=]]dexp | dexp[[<]]dexp

| [[¬]]dform | dform[[∨]]dform |[[∀]] string dform | pf fform | dform�dform

We will get rid of double brackets for readability if without confusion in context.
The datatype dexp defines expressions that are dependent on intervals. As seen
from HF , it includes the only temporal variable 	 for representing the length
of the interval, and real constants. Given a state formula S of type fform, pf S

encodes the point formula .S/0, and furthermore, the following high S encodes
formula .S/:
high :: fform ⇒ dform

high S ≡ ¬ (True �pf (¬S)� � > Real 0)

The chop modality � can be encoded as well.
To establish the sequent calculus style deductive system for dform, we first

define the deductive system for the first-order logic constructors of dform, which
can be taken directly from the one built for fform above, and then define the
deductive system related to the new added modalities for DC, i.e. 	, � and pf.

For 	 and �, we encode the deductive system of ITL from [96], which is pre-
sented in Hilbert style. Thus, we need to transform the deductive system to se-
quent calculus style, and it is not so natural to do. We borrow the idea from [72]
that for each modality, define both the left and right introducing rules, e.g., the
following implementation

LI : $H, P � $E ⇒ $H, P�(� = Real 0) � $E

RI : $H � P, $E ⇒ $H � P�(� = Real 0), $E

where $H, $E represent arbitrary sequences of logical formulas of type dform,
encodes the axiom of ITL: P ↔ P�(= 0). In the same way, for point formula
pf, we encode the deductive system of DC defined in [96] in sequent calculus
style, e.g., the following implementation

Formal Modelling, Analysis and Verification of Hybrid Systems 255

PFRI : $H � (pf S1
�pf S2), $E ⇒ $H � pf (S1 ∧ S2), $E

encodes the axiom of DC: .S1/0�.S2/0 → .S1 ∧ S2/0.

7.3 HCSP

We represent HCSP processes as a datatype proc, and each construct of HCSP
can be encoded as a construct in datatype proc correspondingly. Most of the
encoding is directly a syntactic translation, but with the following exceptions:

– As mentioned in previous sections, in the deductive verification of HCSP
process, the role of differential equation is reflected by an differential invari-
ant with respect to the property to be verified, which can be automatically
discovered in polynomial cases. So in proc, instead of differential equation,
we use differential invariant to describe the underlying continuous, and for
aiding verification, we also add execution time range of the continuous. Thus,
we encode continuous of form 〈F(ṡ, s) = 0&B〉 as <Inv&B> : Rg, where Inv

represents the differential invariant of the continuous, B the domain con-
straint, and Rg the range of execution time, of the continuous respectively;
and Inv, B are implemented as formulas of type fform, while Rg of type dform.

– For sequential composition, we encode P ;Q as P; mid; Q, where P and Q

represent the encodings of P andQ respectively, and mid is added to represent
the intermediate assertions between P and Q. This is requisite for reducing
proof of sequential composition to the ones of its components, and commonly
used in theorem proving.

– For parallel composition, we remove the syntax restriction that it can only
occur in the outmost scope, thus it is encoded with the same datatype proc

as other constructs.

7.4 Semantics

In this section, we encode the semantics of HCSP, FOL and DC in Isabelle/HOL.
This is done by implementing all the relevant semantic notations and functions
defined in Sec. 5 and Sec. 6.

There are two disjoint sets of variables considered in the semantics of HCSP:
local variables in V(P), and system variables {now, tr, rdy}. Notice that the
system variables do not occur in HHL; therefore, we will implement the semantic
functions for evaluating them separately. We define type state to represent states
and each element of it is a function that assigns respective values to (only)
process variables. Besides, we define types now, trace, ready to represent system
time (i.e. real), timed traces and ready sets of communication events. Based on
these definitions, we implement the behavior of a process by the following lbevr

and sbevr:

type synonym lbevr = now ⇒(state list)

sbevr = now ⇒ ((trace*ready) list)

256 N. Zhan, S. Wang, and H. Zhao

Each local behavior of type lbevr associates a sequence of states to each time
point, while each system behavior of type sbevr associates a sequence of traces
and ready sets to each time point. The combination of local behavior and system
behavior implements the overall behavior defined in Sec. 5. It should be pointed
out that the flow of a process is not implemented explicitly here, but it can always
be extracted from the behavior of the process by only keeping the rightmost state
in the state list for each time point11. Thus, in the following, we always use a
behavior whenever a flow is needed.

The expressions of HCSP are interpreted over states. Given a state s of type
state and an expression e of type exp, the function evalE(s, e) defines the value
of e under the state s. Based on the evaluation of expressions, the pre-/post-
conditions in the form of fform, can be interpreted over states. Given a state s

of type state and a formula p of type fform, the function evalF(s, p) evaluates
the truth value of p under the state s.

As defined in Sec. 6, the history formulas of DC are interpreted over flows and
timed intervals. Because the history formulas do not refer to system variables,
we interpret them over local behaviors instead of flows. First of all, given a
local behaviour f of type lbevr and a timed interval [c, d], ievalE(f,�, c, d)

returns the value of 	, that is d-c, under the behavior f and the timed interval
[c, d]. Given a behavior f of type lbevr, a DC formula ip, and a timed interval
[c, d], ievalF(f, ip, c, d) evaluates the truth value of ip under the behavior
f and the timed interval [c, d]. In particular, the point formula and chop can
be defined as follows:

pf_eval: ievalF (f, pf (P), c, d) = (c=d & evalF (last(f(c)), P))

chop_eval: ievalF (f, P�Q, c, d) = ∃k. c<=k & k<=d & ievalF (f, P, c, k)

& ievalF (f, Q, k, d)

Thus, pf(P) holds, iff the interval is a point interval, and P holds at the last state
of the state list that is recorded at the time point.

Finally, we implement the operational semantics of HCSP processes. Given
a process P of type proc, a local behavior f of type lbevr, a system behavior
sf of type sbevr, an event α of type event, and a time point d, the function
evalP (P, f, sf, d,α) = (P’, f’, sf’, d’) represents that, starting to execute
from behaviors f and sf, and time d, P performs an event α and evolves to P’ at
time d’, and produces the new local and system behaviors f’ and g’ respectively.
It implements exactly the transition relation (P, σ)

α−→ (P ′, σ′, H) defined in
Sec. 5, in particular that the initial state σ can be extracted from f, sf, and d,
while final state σ′ from f’, sf’, and d’ respectively.

We explain the semantics of several HCSP constructors as an illustration here.
For instance, the transition rule (Ass) of assignment is implemented as follows
(only the case for real variables is considered):

11 Please note the difference between flow and behavior that a flow only records the

last state occurring at any time point, while the corresponding behavior records all

states occurring at the time point.

Formal Modelling, Analysis and Verification of Hybrid Systems 257

assignR : evalP (((RVar (x)) :=e), f, sf, d, Tau) =

(ε, updateVal(f, x, R, e, d), updateTr(sf, Tau, d), d)

where updateVal adds a new state corresponding to the discrete assignment to
the state list recorded at time d, and this new state is the same as the initial state
except that the value of variable RVar (x) is updated by e; and updateTr adds
a Tau event to the initial trace and then pushes the resulting trace to the trace
list recorded at time d. Notice that the termination time is still d, indicating
assignment does not take time. As another instance, the transition rule (In-3) of
input is implemented as follows:

in3 : inList((fst(last(sf(d))), (I ch)), snd(last(sf(d))))

⇒ evalP(ch??(RVar(x)), f, sf, d, (Inp ch e)) =

(ε, updateVal(f, x, R, e, d), removeRdy(

updateTr(sf, Com(ch, e), d), (fst(last(sf(d))), (I ch)), d), d)

where ch??(RVar(x)) of type proc represents an input to real variable. The pred-
icate inList(...) represents that the communication event corresponding to
input ch??(RVar(x)), represented by (fst(last(sf(d))), (I ch)) of type ready,
is in the initial ready set (represented by snd(last(sf(d)))); and it implements
exactly the premise in rule (In-3). It performs an input event Inp ch e, and re-
sults in the adding of a new state that assigns the value of e to RVar(x) to the
state list at time d, and the adding of a new trace increased by the communica-
tion Com(ch,e) to the trace list at time d, and the adding of a new ready set with
the removal of the communication event corresponding to input ch??(RVar(x))

at time d. At last, the transition rule (Par-3) for parallel composition is imple-
mented as follows:

par3: evalP(P, f, sf, d, (Inp ch e)) = (P’, f’, sf’, d) &

evalP(Q, f, sf, d, (Outp ch e)) = (Q’, f’’, sf’’, d) ≡
evalP((P || Q), f, sf, d, a) = ((P’ || Q’), f’, sf’, d)

P performs an input communication event, while Q performs an output communi-
cation event along the same channel, as a consequence, a synchronization occurs
for P || Q. Notice that the resulting behaviors of P || Q are exactly the same to
those of P.

7.5 Proof System of HHL

With the definitions of datatypes proc, fform and dform, it is now easy to en-
code HHL assertions. First of all, a Hoare assertion for sequential process P is
implemented as a truth proposition of the form {Pre} P {Post;HF}, where Pre

and Post are of type fform, and HF of type dform respectively. A Hoare assertion
for parallel process P||Q can be implemented in the similar way.

Verification Condition. Based on the inference rules of HHL, we implement the
verification condition generator for reasoning about HCSP specifications. The
inference rules encoded here are slightly different from those presented in Sec. 6,
in the sense that we remove the point formulas for specifying discrete changes

258 N. Zhan, S. Wang, and H. Zhao

in history formulas and use 	 = 0 instead. This will not affect the expressiveness
and soundness of HHL.

In deep embedding, the effects of assignments are expressed at the level of for-
mulas by substitution. We implement a map as a list of pairs (exp * exp) list,
and then given a map σ and a formula p of type fform, we define function
substF(σ, p) to substitute expressions occurring in p according to the map σ.
Based on this definition, we have the following axiom for assignment e:=f:

axioms Assignment :

� (p → substF ([(e, f)], q)) ∧ (� = Real 0 →G) ⇒ {p} (e :=f) {q; G}

According to the rule of assignment, the weakest precondition of e := f with
respect to postcondition q is substF ([(e, f)], q), and on the other hand, the
strongest history formula for assignment is �= Real 0, indicating that as a dis-
crete action, assignment takes no time. Therefore, {p} (e :=f) {q;G} holds, if
p implies the weakest precondition, and moreover, G is implied by the strongest
history formula.

For continuous <Inv & B> : Rg, we assume that the precondition can be sep-
arated into two conjunctive parts: Init referring to initial state of continuous
variables, and p referring to other distinct variables that keep unchanged dur-
ing continuous evolution. With respect to precondition Init∧p, according to the
rule of continuous, when it terminates (i.e. B is violated), the precondition p

not relative to initial state, the closures of Inv and of ¬B hold in postcondition;
moreover, there are two cases for the history formula: the continuous terminates
immediately, represented by �= Real 0, or otherwise, throughout the continuous
evolution, p, Inv and B hold everywhere except for the endpoint, represented by
high (Inv∧p∧B), where both cases satisfy Rg.

axioms Continuous : �(Init →Inv) ∧ ((p ∧ close(Inv) ∧ close(¬B)) →q)

∧ ((((� = Real 0) ∨ (high (Inv ∧ p ∧ B))) ∧ Rg) → G)

⇒ {Init ∧ p} <Inv & B> : Rg {q; G}

where function close returns closure of corresponding formulas. The above ax-
iom says that {Init∧p} <Inv & B> : Rg {q;G} holds, if the initial state satisfies
invariant Inv, and furthermore, both q and G are implied by the postcondition
and the history formula of the continuous with respect to Init∧p respectively.

For sequential composition, the intermediate assertions need to be annotated
(i.e., (m, H) below) to refer to the postcondition and the history formula of the
first component. Therefore, the specification {p} P;(m, H);Q {q; H�G} holds, if
both {p} P {m;H} and {m} Q {q;G} hold, as indicated by the following axiom.

axioms Sequence : {p} P {m; H}; {m} Q {q; G} ⇒{p} P; (m, H); Q {q; H�G}

The following axiom deals with communication P1; ch!e || P2;ch?x, where P1

and P2 stand for sequential processes. Let p1 and p2 be the preconditions for
the sequential components respectively, and (q1, H1), (q2, H2) the intermedi-
ate assertions specifying the postconditions and history formulas for P1 and P2

respectively. r1 and G1 represent the postcondition and history formula for the

Formal Modelling, Analysis and Verification of Hybrid Systems 259

left sequential component ended with ch!e, while r2 and G2 for the right com-
ponent ended with ch?x. Rg stands for the execution time range of the whole
parallel composition.
axioms Communication :

{p1, p2} P1 || P2 {q1, q2; H1, H2};

� (q1 → r1) ∧ (q2 →substF ([(x, e)], r2));

� (H1 � high (q1)) →G1) ∧ (H2 � high (q2)) →G2);

� (((H1 � high (q1)) ∧ H2) ∨ ((H2 � high (q2)) ∧ H1)) →Rg;

⇒ {p1, p2} ((P1; (q1, H1); ch !! e) || (P2; (q2, H2); ch ?? x))

{r1, r2; G1 ∧ Rg, G2 ∧ Rg}

As shown above, to prove the final specification, the following steps need to
be checked: first, the corresponding specification with intermediate assertions
as postconditions and history formulas holds for P1 || P2; second, after the
communication is done, for the sending party, q1 is preserved, while for the
receiving party, x is assigned to be e. Thus, r1 must be implied by q1, and q2

implies the weakest precondition of the communicating assignment with respect
to r2, i.e. substF ([(x, e)], r2); third, for the communication to take place,
one party may need to wait for the other party to be ready, in case that P1 and
P2 do not terminate simultaneously. The left sequential component will result in
history formula H1�high (q1), in which high (q1) indicates that during waiting
time, the postcondition of P1 is preserved, and similarly for the right component.
Thus, G1 and G2 must be implied by them respectively; and finally, for both cases
when one party is waiting for the other, the conjunction of their history formulas
must satisfy the execution time Rg.

For repetition, we have the following implementation:

axioms Repetition :

{p1, p2} P || Q {p1, p2; H1, H2}; �(H1 � H1 →H1) ∧ (H2 � H2 →H2)

⇒ {p1, p2} P∗ || Q∗ {p1, p2; H1 ∨ (� = Real 0), H2 ∨ (� = Real 0)}

The above axiom says that the final specification for P∗|| Q∗ holds, if the same
specification holds for one round of execution, i.e. P || Q, and moreover, H is
idempotent with respect to chop modality. The formula �= Real 0 indicates that
the repetition iterates zero time.

Soundness. To prove the soundness of HHL proof system, we need to have a
big step operational semantics for HCSP first, which can be derived directly
from the small step semantics given in Sec. 5. Besides, considering that the
interpretation of pre-/post-conditions and history formulas are irrelevant to the
system behavior and also the events, we will get rid of them in the big step
operational semantics, represented by function evalPB.

axioms
base: evalP (P, f, sf, d, α) = (ε, f’, sf’, d’) ⇔

evalPB (P, f, d) = (ε, f’, d’)

ind: evalP (P, f, sf, d, α) = (P’, f’, sf’, d’) & evalPB (P’, f’, d’) =

(ε, f’’, d’’) ⇔ evalPB (P, f, d) = (ε, f’’, d’’)

260 N. Zhan, S. Wang, and H. Zhao

The axioms base and ind define the cases when P terminates after one step
transition, and after more than one step transitions respectively.

We can then define the validity of a specification {p} P {q;H} with respect to
the big operational semantics, as follows:

definition Valid :: fform ⇒proc ⇒fform ⇒dform ⇒bool
where Valid (p, P, q, H) = ∀f d f’ d’. evalPB (P, f, d) = (ε, f’, d’) ⇒

evalF (f, p, d) ⇒(evalF (f’, q, d’) & ievalF (f’, H, d, d’))

which says that, given a process P, for any initial behavior f and initial time d,
if P terminates at behavior f’ and time d’, and if the precondition p holds under
the initial state, i.e. last(f(d)), the last state among the state list at initial time,
then the postcondition q will hold under the final state, i.e. last(f’(d’)), the
last state among the state list at termination time, and furthermore, the history
formula will hold under f’ between d and d’.

Based on the above definitions, we have proved the soundness of HHL proof
system in Isabelle/HOL, i.e. all the inference rules of the proof system are valid.

8 Case Study: Chinese Train Control System

In this section, we illustrate our approach by modelling and verifying a combined
operational scenario of Chinese Train Control System at Level 3 (CTCS-3) with
respect to its System Requirement Specification (SRS).

A train at CTCS-3 applies for movement authorities (MAs) from Radio Block
Center (RBC) via GSM-Railway (GSM-R) and is guaranteed to move safely in
high speed within its MA. CTCS-2 is a backup system of CTCS-3, under which
a train applies for MAs from Train Control Center (TCC) via train circuits and
balises instead. There are 9 main operating modes in CTCS-3, among which
the Full Supervision (FS) and Calling On (CO) modes will be involved in the
combined scenario studied in this section. During FS mode, a train needs to
know the complete information including its MA, line data, train data and so
on; while during CO mode, the on-board equipment of the train cannot confirm
explicit routes, thus a train is required to move under constant speed 40km/h.

The operating behavior of CTCS-3 is specified by 14 basic scenarios, all of
which cooperate with each other to constitute normal functionality of train con-
trol system. The combined scenario considered here integrates the Movement
Authority and Level Transition scenarios of CTCS-3, plus a special Mode Tran-
sition scenario.

For modeling a scenario, we model each component involved in it as an HCSP
process and then combine different parts by parallel composition to form the
model of the scenario. In particular, the train participates in each scenario, and
the HCSP model corresponding to the train under different scenarios has a very
unified structure. Let s be trajectory, v velocity, a acceleration, t clock time of
a train respectively. Then we have the following general model for the train:

Train �= � 〈ṡ = v, v̇ = a, ṫ = 1& B〉� �i∈I(ioi → Pcompi);
Qcomp

�∗

Formal Modelling, Analysis and Verification of Hybrid Systems 261

where Pcompi and Qcomp are discrete computation that takes no time to com-
plete. The train process proceeds as follows: at first the train moves continuously
at velocity v and acceleration a; as soon as domain B is violated, or a commu-
nication among {ioi}i∈I between the train and another component of CTCS-3
takes place, then the train movement is interrupted and shifted to Qcomp, or
Pcompi respectively; after the discrete computation is done, the train repeats the
above process, indicated by ∗ in the model. For each specific scenario, the domain
B, communications ioi, and computation Pcompi and Qcomp can be instantiated
correspondingly. We assume the acceleration a is always in the range [−b, A].

In the rest of this section, we will first model three basic scenarios separately,
and then construct a combined scenario from them.

8.1 Movement Authority Scenario

Among all the scenarios, MA is the most basic one and crucial to prohibit trains
from colliding with each other. Before moving, the train applies for MA from
RBC in CTCS-3 or TCC in CTCS-2, and if it succeeds, it gets the permission
to move but only within the MA it owns. An MA is composed of a sequence
of segments. Each segment is represented as a tuple (v1, v2, e,mode), where v1
and v2 represent the speed limits of emergency brake pattern and normal brake
pattern by which the train must implement emergency brake and normal brake
(thus v1 is always greater than v2), e the end point of the segment, and mode
the operating mode of the train in the segment. We introduce some operations
on MAs and segments. Given a non-empty MA α, we define hd(α) to return the
first segment of α, and tl(α) the rest sequence after removing the first segment;
and given a segment seg, we define seg.v1 to access the element v1 of seg, and
similarly to other elements.

�

�

s1 s2 s3

v1

v2

s

v

0

Fig. 9. Static and dynamic speed

profiles

� � � �

ST x1 z
MA

FS CO

RW RBC

level 2 level 3

Fig. 10. Level and mode transition

Given an MA, we can calculate its static speed profile and dynamic speed
profile respectively. As an illustration, Fig. 9 presents an MA with three seg-
ments, separated by points s1, s2, and s3. In the particular case, we assume s3
the end of the MA, thus the train is required to fully stop at s3 if the MA is not
extended. The static speed profile corresponds to two step functions formed by

262 N. Zhan, S. Wang, and H. Zhao

the two speed limits (i.e. v1 and v2) of each segment; and for any segment seg,
the dynamic speed profile is calculated down to the higher speed limit of next
segment taking into account the train’s maximum deceleration (i.e. constant b),
and corresponds to the curved function v2+2b s < next(seg).v21+2b seg.e, where
next(seg) represents the next segment following seg in the considered MA. The
train will never be allowed to run beyond the static and dynamic speed profiles.

By specializing the general model of train, we get its specific model in MA
scenario. Let B0 represent the general restriction that the train always moves
forward, i.e. v ≥ 0, or otherwise, the train has already stopped deceleration
(denoted by a ≥ 0). If B0 fails to hold, the acceleration a needs to be set by a
non-negative value in [0, A]. Let B1 denote the case when the speed is less than
the lower limit v2, or otherwise the train has already started to decelerate; and
B2 the case when the speed is less than the higher limit v1 and not exceeding the
dynamic speed profile, or otherwise the train has already started an emergency
brake, i.e., the acceleration a is set to be the maximum deceleration b. The above
procedure is defined by Q1comp below. For future use, we denote the formula for
specifying dynamic speed profile, i.e. ∀seg : MA . v2 + 2b s < next(seg).v21 +
2b seg.e, by DSP Form.

B0 �= (v ≥ 0 ∨ a ≥ 0 ∨ t < Temp+ Tdelay)

B1 �= (∀seg : MA. v < seg.v2) ∨ a < 0 ∨ t < Temp′ + Tdelay

B2 �= (∀seg : MA. v < seg.v1 ∧ v2 + 2b s < next(seg).v21 + 2b seg.e)∨ a = −b
Q1comp �= ¬B0 → (Temp := t;�{0<=c<=A}a := c);

¬B1 → (Temp′ := t;�{−b<=c<0}a := c);
¬B2 → a := −b;

Notice that we add Tdelay to clock t to guarantee that the interrupt B0 can
at most occur once every Tdelay time units, to avoid Zeno behavior. This is in
accordance with the real system to check the condition periodically. We adopt
this approach several times. In parallel with the train, the RBC or TCC will
send MA to the train periodically via communications, and as a consequence,
the train will update the MA it owns. We omit the formalization of this process
here as it is hardly related to the combined scenario.

8.2 Level Transition

Under CTCS-2, whenever a train passes some specific balises, it can apply for
upgrading to CTCS-3 when necessary. It is assumed balises to be equally dis-
tributed every δ meters along the track. Let B3 represent the negation of the
case when the train is at level 2 and passing a specific balise. When B3 is vi-
olated, then as specified in Q2comp, the following computation will take place:
first, the train sends a level upgrade application signal to RBC; as soon as RBC
receives the application, it sends back the package (b, x1, x2) to the train, where
b represents weather RBC approves the application, x1 the location for starting
level upgrade, and x2 the location for completing level upgrade; if RBC approves
the level upgrade (i.e. b is true), the train enters level 2.5 and meanwhile passes

Formal Modelling, Analysis and Verification of Hybrid Systems 263

the balise. Notice that level 2.5 does not actually exist, but is used only for
modelling the middle stage between level 2 and level 3, during which the train
will be supervised by both CTCS-2 and CTCS-3. Finally, as soon as the train at
level 2.5 reaches location x2 (the negation denoted by B4), the level will be set
to 3, specified in Q3comp. RBClu defines the behavior of RBC under the level
transition scenario.

B3 �= level �= 2 ∨ s �= n ∗ δ
B4 �= level �= 2.5 ∨ s ≤ LU.x2

Q2comp �= ¬B3 → (CHLUA!;CHLU?LU ;LU.b → level = 2.5;n = n+ 1);
Q3comp �= ¬B4 → level := 3
RBClu �= CHLUA?;�bLU∈{true,false}CHLU !(b, x1, x2)

8.3 Mode Transition

When a train moves under CTCS-2, it will always check whether its operating
mode is equal to the mode of current segment, i.e. hd(MA).mode. We denote
this condition by B5, and as soon as it is violated, the train will update its mode
to be consistent with mode of the segment, specified in Q4comp.

B5 �= mode = hd(MA).mode
Q4comp �= ¬B5 → mode := hd(MA).mode

We consider the mode transition from Full Supervision (FS) to Calling On (CO)
under CTCS-3, which is a little complicated. In the MA application stage, RBC
can only grant the train the MAs before the CO segment. The train needs to
ask the permission of the driver before moving into a CO segment at level 3.
To reflect this specification in modelling, both the speed limits for CO seg-
ments are set to be 0. As a consequence, if the train fails to get the permission
from the driver, it must stop before the CO segment; but if the train gets the
driver’s permission, the speed limits of the CO segments will be reset to be
positive.

Let B6 denote the negation of the case when the train is at level 3, and it
moves to 300 meters far from the end of current segment, and the mode of
next segment is CO. As soon as B6 is violated, then as specified in Q5comp, the
following computation will take place: first, the train will report the status to
the driver and ask for permission to enter next CO segment via communications;
if the driver sends true, the speed limits of next CO segment will be reset to
be 40km/h and 50km/h respectively (abstracted away by function coma(MA)).
As a consequence, the train is able to enter next CO segment at a positive
speed successfully. Drivermc defines the process for the driver under the mode
transition scenario.

264 N. Zhan, S. Wang, and H. Zhao

B6 �= level �= 3 ∨ CO �= hd(tl(MA)).mode ∨ hd(MA).e − s > 300
∨t < Temp+ Tdelay

Q5comp �= CHwin!¬B6;¬B6 → Temp := t;CHDC?brConf; brConf → coma(MA)
Drivermc �= CHwin?bwin; bwin → �bsConf∈{true,false}CHDC !bsConf

8.4 Combined Scenario and Its Model

We combine the scenarios introduced above, but with the following assumptions
for the occurring context:

– The train moves inside an MA it owns, and in the combined scenario, it does
not need to apply for new MAs from RBC or TCC;

– There are two adjacent segments in the MA, divided by point z. The train
is supervised by CTCS-2 to the left of z and by CTCS-3 to the right, and
meanwhile, it is operated by mode FS to the left of z and by mode CO
to the right. Thus the locations for mode transition and for level transition
are coincident. At the starting point of a CO segment, i.e., location z, both
speed limits are initialized to 0 by RBC;

– The train has already got the permission for level transition from RBC which
sends (true, x1, z).

Please see Fig. 10 for an illustration. Based on these assumptions, the train will
not cooperate with RBC or TCC temporarily in this combined scenario. Thus,
only the train and the driver participate in the combined scenario.

The model of the combined scenario can then be constructed from the models
of all the basic scenarios contained in it. The construction takes the following
steps: firstly, decompose the process for each basic scenario to a set of sub-
processes corresponding to different system components that are involved in the
scenario (usually by removing parallel composition on top); secondly, as a com-
ponent may participate in different basic scenarios, re-construct the process for
it based on the sub-processes corresponding to it under these scenarios (usually
by conjunction of continuous domain constraints and sequential composition of
discrete computation actions); lastly, combine the new obtained processes for all
the components via parallel composition. According to this construction process,
we get the following HCSP model for the combined scenario:

System �= Train∗ ‖ Driver∗mc

Train �= 〈ṡ = v, v̇ = a, ṫ = 1& B0 ∧ B1 ∧ B2 ∧ B4 ∧ B5 ∧ B6〉;Ptrain

Ptrain �= Q1comp;Q3comp;Q4comp;Q5comp

According to SRS of CTCS-3, we hope to prove that the combined scenario sat-
isfies a liveness property, i.e., the train can eventually pass through the location
for level transition and mode transition.

Formal Modelling, Analysis and Verification of Hybrid Systems 265

8.5 Proof of the Combined Scenario

Under the given assumptions in Section 8.4, we check whether the combined
scenario (i.e. model System) satisfies a liveness property, i.e., the train will
eventually move beyond location z for both level transition and mode transition.
In this section, instead of proving the liveness property directly, we provide a
machine-checked proof for negation of the livness, which says, after moving for
any arbitrary time, the train will always stay before location z. We start from
encoding the model System and the negation property first.

According to HCSP syntax implemented by proc, most encoding of model
System is a direct translation, except for continuous and sequential composi-
tion. Firstly, the continuous of System needs to be represented in the form of
differential invariants. According to the differential invariant generation method,
the differential invariant (a = −b) → DSP Form is calculated for the continuous,
indicating that when the train brakes with maximum deceleration b, it will never
exceed the dynamic speed profile. Obviously it is a complement to the domain
constraint B2, saying that the train will never exceed the dynamic speed profile
except for the case of emergency brake. We adopt the conjunction of these two
formulas, that results in DSP Form, as the final invariant for the continuous.
Thus we represent the continuous as <Inv&B> : Rg, where Inv and B correspond
to encodings of DSP Form and the domain constraints respectively, and Rg is
True, specifying the executing time of the continuous; Secondly, the intermediate
formulas for all sequential composition are added. We finally get the encoding
of System, represented by System, with structure Train∗|| Driver∗.

Now it is turn to encode the negation property, specified by pre/post-conditions,
and history formula. The precondition is separated into two parts depending on
whether it is relative to initial values, shown by Init and Pre below:

definition Init :: fform where Init ≡(x2 - s > Real 300)

definition Pre :: fform where
Pre ≡ (level = Real 2.5) ∧ (fst (snd (snd (hd (MA)))) = x2)

∧ (snd (snd (snd (hd (MA)))) = String ‘‘FS’’)

∧ (snd (snd (snd (hd (tl (MA))))) = String ‘‘CO’’)

∧ (fst (hd (MA)) = Real 0) ∧ (fst (snd (hd (MA))) = Real 0)

The Init represents that the initial position of the train (i.e. s) is more than 300
meters away from x2. The Pre indicates the following aspects: the train moves
at level 2.5, i.e. in process of level transition from CTCS-2 to CTCS-3; the end
of current segment is x2; the mode of the train in current segment is ‘‘FS’’; the
mode of the train in next segment is ‘‘CO’’; and at the end of current segment,
both speed limits are initialized to be 0. Notice that for any segment seg, seg.v1
is implemented as fst (seg), and seg.v2 as fst (snd (seg)), and so on.

We then get a specification corresponding to the negation property, with the
postcondition and history formula for the train to indicate that the train will
never pass through location x2:
theorem System : {Init ∧ Pre, True} System {Pre ∧ s <= x2,

True; (� = Real 0) ∨ (high (Pre ∧ s <= x2)), True}

266 N. Zhan, S. Wang, and H. Zhao

In Isabelle/HOL, we have proved this specification as a theorem. From this
fact, we know that the model System for level transition and mode transition
fails to conform to the liveness property. This reflects some design flaw for the
specifications of related scenarios in CTCS-3.

9 Other Issues: Stability Analysis

In the previous sections, we have discussed the issues of modeling, invariant
generation, deductive verification and controller synthesis of hybrid systems. The
focus has been on safety properties, that is, properties need to hold at all time.
Other important properties of hybrid systems include: reachability, which asks
whether a given set of target states will be reached in finite time; stability, which
reflects the influence of small perturbations of initial conditions on the system’s
trajectories; or asymptotic stability which, beyond stability, also cares about the
system’s convergence behavior when time approaches infinity; and so on. The
issues of verification and controller synthesis of hybrid systems for reachability
specifications have been investigated in works such as [51,68,29,82,35]. In this
section, we will exploit the same techniques developed for invariant generation
in Section 3, to automatically generate so-called relaxed Lyapunov functions for
asymptotic stability analysis of PCDSs. For stability analysis of hybrid systems
using tools like multiple Lyapunov functions, the readers are referred to such
works as [15,16], and the survey papers [27,77] and the citations therein.

9.1 Lyapunov Stability

The following are classic results of stability theory in the sense of Lyapunov. For
the details please refer to [50].

Definition 17. A point xe ∈ Rn is called an equilibrium point or critical point
of a CDS (1) if f(xe) = 0.

It is assumed that xe = 0 from now on without loss of generality.

Definition 18. Suppose 0 is an equilibrium point of (1). Then

– 0 is called Lyapunov stable if for any ε > 0, there exists a δ > 0 such that
if ‖x0‖ < δ,12 then the solution x(x0; t) of (1) can be extended to infinity,
and ‖x(x0; t)‖ < ε for all t ≥ 0.

– 0 is called asymptotically stable if it is Lyapunov stable and there exists
a δ > 0 such that for any ‖x0‖ < δ, the solution x(x0; t) of (1) satisfies
limt→∞ x(x0; t) = 0.

Lyapunov first provided a sufficient condition, using so-called Lyapunov func-
tions, for the Lyapunov stability as follows.

12 For x = (x1, x2, . . . , xn) ∈ Rn, ‖x‖ =
!�n

i=1
x2
i denotes the Euclidean norm of x.

Formal Modelling, Analysis and Verification of Hybrid Systems 267

Theorem 12 (Lyapunov Stability Theorem). Suppose 0 is an equilibrium
point of (1). If there is an open set U ⊂ Rn with 0 ∈ U , and a continuously
differentiable function V : U → R such that

(a) V (0) = 0,
(b) V (x) > 0 for all x ∈ U\{0} and
(c) L1

fV (x) ≤ 0 for all x ∈ U ,

then 0 is a stable equilibrium point. Moreover, if condition (c) is replaced by

(c∗) L1
fV (x) < 0 for all x ∈ U\{0},

then 0 is an asymptotically stable equilibrium point. Such V satisfying (a), (b)
and (c) (or (c*)) is called a Lyapunov function.

Basically, for asymptotic stability of an equilibrium point of a CDS, Theorem
12 requires a positive definite function V with negative definite first-order Lie
derivative L1

fV in a neighborhood of the equilibrium. If V has only negative
semi-definite L1

fV but no trajectories can stay identically in the zero level set of
L1
fV , then the asymptotic stability can also be guaranteed, which is known as

the Barbashin-Krasovskii-LaSalle (BKL) Principle.

Theorem 13 (BKL Principle). Let V be such a function as stated in The-
orem 12 with conditions (a), (b) and (c). If the set M�= {x ∈ U | L1

fV (x) = 0}
does not contain any trajectory of the system other than the trivial trajectory
x(t) ≡ 0, then 0 is asymptotically stable.

9.2 Relaxed Lyapunov Function

Intuitively, a Lyapunov function in Theorem 12 with conditions (a), (b), (c)
requires any trajectory starting from x0 ∈ U to stay in the region {x ∈ Rn |
V (x) ≤ V (x0)}. In the asymptotic stability case, the corresponding V forces any
trajectory starting from x0 ∈ U \{0} to transect the boundary {x ∈ Rn | V (x) =
V (x0)}, called a Lyapunov surface, towards the set {x ∈ Rn | V (x) < V (x0)}.
The left picture in Figure 11 illustrates how a Lyapunov function guarantees
asymptotic stability.

For any x0 ∈ U \ {0}, it is not difficult to see that L1
fV (x0) < 0 is only a

sufficient condition for x(x0; t) to move towards the set V (x) < V (x0). When
L1
fV (x0) = 0, the transection requirement may still be met if the first non-zero

higher order Lie derivative of V at x0 is negative. In this case, the trajectory may
be tangential to a Lyapunov surface at the cross point (see the right picture in
Fig. 11). To formalize the above idea, and motivated by the results on invariant
generation in Section 3, the following definitions are proposed.

Definition 19 (Pointwise Rank). Let N+ be the set of positive natural num-
bers. Given a smooth function σ and a smooth vector field f , the pointwise rank
of σ w.r.t. f is defined as the function νσ,f : R

n → N+ ∪ {∞} given by

νσ,f (x) =

 ∞, if ∀k ∈ N+. Lk
f σ(x) = 0,

min{k ∈ N+ | Lk
f σ(x) �= 0}, otherwise.

268 N. Zhan, S. Wang, and H. Zhao

Fig. 11. Trajectories transecting Lyapunov surfaces

Example 11. For f = (−x, y) and p(x, y) = x + y2, by Example 1, we have
νp,f (0, 0) = ∞, νp,f (1, 1) = 1, νp,f (2, 1) = 2.

Actually, νσ,f is almost the same as the pointwise rank function γp,f defined in
Section 3.2. The only difference is that for νσ,f , the zeroth order Lie derivative
is not considered.

Definition 20 (Transverse Set). Given a smooth function σ and a smooth
vector field f , the transverse set of σ w.r.t f is defined as

Transσ,f �= {x ∈ Rn | νσ,f (x) < ∞ ∧ L
νσ,f (x)
f σ(x) < 0} .

Actually, Transσ,f is defined in the same manner as the transverse set Transf↑p
in Definition 14, using a different definition of pointwise rank function.

Using transverse set, condition (c∗) in Theorem 12 can be relaxed to give a
new criterion for asymptotic stability.

Theorem 14. Suppose 0 is an equilibrium point of (1) with smooth vector field
f . If there is an open set U ⊂ Rn with 0 ∈ U , and a smooth function V : U → R

such that

(a) V (0) = 0,
(b) V (x) > 0 for all x ∈ U\{0} and
(c) x ∈ TransV,f for all x ∈ U\{0},

then 0 is an asymptotically stable equilibrium.

Proof. First notice that condition (c) implies L1
fV (x) ≤ 0 for all x ∈ U\{0}.

Then according to Theorem 13, in order to show the asymptotic stability of 0,
it is sufficient to show that M�= {x ∈ U | L1

fV (x) = 0} contains no nontrivial
trajectory of (1).

If not, let x(t), t ≥ 0 be such a trajectory contained in M other than x(t) ≡ 0.
Then for all t ≥ 0, L1

fV (x(t)) = 0 and x(t) �= 0. By (c), x0�=x(0) ∈ TransV,f .
Then by Definition 20, we get the Taylor Formula of L1

fV (x(t)) at t = 0:

Formal Modelling, Analysis and Verification of Hybrid Systems 269

L1
fV (x(t)) = L1

fV (x0) + L2
fV (x0) · t+ · · ·

+L
νV,f (x0)
f V (x0) ·

tνV,f (x0)−1

(νV,f (x0)− 1)!
+ o(tνV,f (x0)−1)

= L
νV,f (x0)
f V (x0) ·

tνV,f (x0)−1

(νV,f (x0)− 1)!
+ o(tνV,f (x0)−1) . (19)

Since L
νV,f (x0)
f V (x0) < 0, the formula (19) shows that there exists an ε > 0 s.t.

∀t ∈ (0, ε). L1
fV (x(t)) < 0, which contradicts the fact ∀t ≥ 0. L1

fV (x(t)) = 0. ��

Definition 21 (Relaxed Lyapunov Function). We refer to the function V
in Theorem 14 as a relaxed Lyapunov function, denoted by RLF for short.

9.3 Automatically Discovering Polynomial RLFs for PCDSs

Given a PCDS, the process of automatically discovering polynomial RLFs is as
follows:

I. A parametric polynomial p(u,x) (also called a template) is predefined as
a candidate for RLF;

II. The conditions for p(u,x) to be an RLF, i.e. (a), (b) and (c) in Theorem
14, are encoded into a first-order polynomial formula ϕ;

III. Constraint φ on the parameters u is obtained by applying QE to ϕ, and
any instantiation of u from φ yields an RLF pu0(x).

Step II in the above process, i.e. encoding of the three conditions in Theorem
14, is crucial to automatic RLF generation. In particular, we have to show that
for any polynomial p(x) and PVF f , the transverse set Transp,f can be repre-
sented by first-order polynomial formulas. In fact, all the results established for
Transf↑p in Section 3.3 apply to Transp,f here.

Theorem 15 (Fixed Point Theorem). Given a polynomial p and a PVF f ,
if Li+1

f p ∈ 〈L1
f p, · · · , Li

fp〉, then for all m > i, Lm
f p ∈ 〈L1

f p, · · · , Li
fp〉.

Theorem 16 (Rank Theorem). Given a polynomial p and a PVF f , for any
x ∈ Rn, if νp,f (x) < ∞ then νp,f (x) ≤ Np,f , where

Np,f �= min{i ∈ N+ | Li+1
f p(x) ∈ 〈L1

f p(x), · · · , Li
fp(x)〉} .

Theorem 17 (Parametric Rank Theorem). Given a parametric polynomial
p�= p(u,x) and a PVF f , for all x ∈ Rn and all u0 ∈ Rw, νpu0 ,f

(x) < ∞ implies
νpu0 ,f

(x) ≤ Np,f , where

Np,f �= min{i ∈ N+ | Li+1
f p(u,x) ∈ 〈L1

f p(u,x), · · · , Li
fp(u,x)〉} . (20)

270 N. Zhan, S. Wang, and H. Zhao

Theorem 18. Given a parametric polynomial p�= p(u,x) and a PVF f , for any
u0 ∈ Rw and any x ∈ Rn, x ∈ Transpu0 ,f

if and only if u0 and x satisfy ϕp,f ,
where

ϕp,f �=
1≤i≤Np,f

ϕi
p,f with (21)

ϕi
p,f �= � �

1≤j≤i−1

Lj
fp(u,x) = 0

�
∧ Li

fp(u,x) < 0

and Np,f defined in (20).

All the proofs of the above theorems can be given in exactly the same way as in
Section 3.3. The details are omitted here and can be found in [57].

Now the main result on automatically generating polynomial RLFs for PCDSs
can be stated as the following theorem.

Theorem 19 (Main Result). Given a PCDS ẋ = f(x) with f(0) = 0, a
parametric polynomial p�= p(u,x), and u0 = (u10 , u20 , . . . , uw0) ∈ Rw, then pu0

is an RLF of the PCDS if and only if there exists r0 ∈ R, r0 > 0, such that
(u10 , u20 , . . . , uw0 , r0) satisfies φp,f �=φ1

p,f ∧ φ2
p,f ∧ φ3

p,f , where

φ1
p,f �= p(u,0) = 0 , (22)

φ2
p,f �= ∀x.(‖x‖2 > 0 ∧ ‖x‖2 < r2 → p(u,x) > 0) , (23)

φ3
p,f �= ∀x.(‖x‖2 > 0 ∧ ‖x‖2 < r2 → ϕp,f) (24)

with ϕp,f defined in (21).

Proof. First, in Theorem 14, the existence of an open set U is equivalent to the
existence of an open ball B(0, r0)�= {x ∈ Rn | ‖x‖ < r0}. Then according to
Theorem 18, it is easy to check that (22), (23) and (24) are direct translations
of conditions (a), (b) and (c) in Theorem 14. ��

According to Theorem 19, we can follow the three steps at the beginning of
Section 9.3 to discover polynomial RLFs for PCDSs. This method is relatively
complete because we can discover all possible polynomial RLFs in the form of a
predefined template, and thus can find all polynomial RLFs by enumerating all
polynomial templates for a given PCDS.

9.4 Simplification and Implementation

When constructing φp,f in Theorem 19, computation of Np,f is a time-consuming
work. Furthermore, whenNp,f is a large number the resulting φp,f could be a huge
formula, for which QE is infeasible in practice. Regarding this, in the following
the complexity of RLF generation is reduced in two aspects:

1) some of the QE problems arising in RLF generation can be reduced to so-
called real root classification (RRC for short) problems, which can be solved
in a more efficient way than standard QE problems;

Formal Modelling, Analysis and Verification of Hybrid Systems 271

2) RLF can be searched for in a stepwise manner: if an RLF can be obtained
by solving constraints involving only lower order Lie derivatives, there is no
need to resort to higher order ones.

The following three lemmas are needed to explain the first aspect.

Lemma 5. Suppose f is a smooth vector field, σ is a smooth function defined
on an open set U ⊆ Rn, and L1

fσ(x) ≤ 0 for all x ∈ U . Then for any x ∈ U ,
νσ,f (x) < ∞ implies x ∈ Transσ,f .

Proof. Suppose there is an x0 ∈ U such that νσ,f (x0) < ∞ and L
νσ,f (x0)
f σ(x0) >

0. Let x(t) be the trajectory of f starting from x0. Then from

L1
fσ(x(t)) = L1

fσ(x0) + L2
fσ(x0) · t+ · · ·

+ L
νσ,f (x0)
f σ(x0) ·

tνσ,f (x0)−1

(νσ,f (x0)− 1)!
+ o(tνσ,f (x0) − 1)

= L
νσ,f (x0)
f σ(x0) ·

tνσ,f (x0)−1

(νσ,f (x0)− 1)!
+ o(tνσ,f (x0) − 1) (25)

we can see that there exists an ε > 0 such that ∀t ∈ (0, ε). L1
fσ(x(t)) > 0, which

contradicts L1
fσ(x) ≤ 0 for all x ∈ U . ��

Lemma 6. Suppose f is a smooth vector field, σ is a smooth function defined
on an open set U ⊆ Rn, and L1

fσ(x) ≤ 0 for all x ∈ U . Then for any x ∈ U ,
νσ,f (x) < ∞ implies νσ,f (x) = 2k + 1 for some k ∈ N .

Proof. If there is an x0 ∈ U such that νσ,f (x0) < ∞ and νσ,f (x0) = 2k for some

k ∈ N+, then by Lemma 5 we have L
νσ,f (x0)
f σ(x0) < 0. Then by (25) we can see

there exists an ε > 0 such that ∀t ∈ (−ε, 0). L1
fσ(x(t)) > 0, which contradicts

L1
fσ(x) ≤ 0 for all x ∈ U . ��

Lemma 7. Suppose f is a PVF and p(x) is a polynomial, and L1
f p(x) ≤ 0 for

all x in an open set U ⊆ Rn. Then for any x ∈ U , x ∈ Transp,f if and only if x
is not a common root of the sequence of polynomials

L1
f p(x), L

3
f p(x), . . . , L

(2K0+1)
f p(x) ,

where K0�= Np,f−1
2 !13 and Np,f is defined in Theorem 16 .

Proof. (⇒) Actually K0 has been chosen is such a way that 2K0+1 is the largest
odd number less than or equal to Np,f , i.e. 2K0+1 = Np,f or 2K0+1 = Np,f −1.

Suppose x0 ∈ Transp,f and L1
f p(x0) = L3

f p(x0) = · · · = L
(2K0+1)
f p(x0) = 0. From

Lemma 6 we know that νp,f (x0) is an odd number. Thus νp,f (x0) ≥ 2K0+1+2 >
Np,f , which contradicts Theorem 16 .

(⇐) If x0 is not a common root of L1
f p(x), L

3
f p(x), . . . , L

(2K0+1)
f p(x), then

νp,f (x0) < ∞. By Lemma 5 we get x0 ∈ Transp,f . ��
13 For 0 ≤ r ∈ R, we have �r ∈ N and r − 1 < �r ≤ r.

272 N. Zhan, S. Wang, and H. Zhao

Now a simplified version of Theorem 19 can be given as follows.

Theorem 20. Given a PCDS ẋ = f(x) with f(0) = 0, a parametric polynomial
p�= p(u,x), and u0 = (u10 , u20 , . . . , uw0) ∈ Rw, then pu0 is an RLF of the PCDS
if and only if there exists r0 ∈ R, r0 > 0 such that (u10 , u20 , . . . , uw0 , r0) satisfies
ψp,f �=ψ1

p,f ∧ ψ2
p,f ∧ ψ3

p,f ∧ ψ4
p,f , where

ψ1
p,f �= p(u,0) = 0 , (26)

ψ2
p,f �= ∀x.(‖x‖2 > 0 ∧ ‖x‖2 < r2 → p(u,x) > 0) , (27)

ψ3
p,f �= ∀x.(‖x‖2 < r2 → L1

f p(u,x) ≤ 0) , (28)

ψ4
p,f �= ∀x.(0 < ‖x‖2 < r2 → L1

f p(x) �= 0 ∨ L3
f p(x) �= 0 ∨ · · · ∨ L

(2K0+1)
f p(x) �= 0)

(29)

with K0 defined in Lemma 7 .

Proof. By combining Theorem 14 with Lemma 7 we can get the results imme-
diately. ��

In Theorem 20, constraints (26), (27) and (28) have relatively small sizes and
can be solved by QE tools, while (29) can be handled more efficiently as an RRC
problem of parametric semi-algebraic systems.

Definition 22. A parametric semi-algebraic system (PSAS for short) is a con-
junction of polynomial formulas of the following form:�����

p1(u,x) = 0, ..., pr(u,x) = 0,
g1(u,x) ≥ 0, ..., gk(u,x) ≥ 0,
gk+1(u,x) > 0, ..., gl(u,x) > 0,
h1(u,x) �= 0, ..., hm(u,x) �= 0,

(30)

where r ≥ 1, l ≥ k ≥ 0,m ≥ 0 and all pi’s, gi’s and hi’s are in Q[u,x] \Q.

For a PSAS, the interesting problem is so-called real root classification, that is, to
determine conditions on the parameters u such that the given PSAS has certain
prescribed number of distinct real solutions. Theories on real root classification of
PSASs were developed in [90,91]. A computer algebra tool named DISCOVERER

[89] was developed to implement these theories.
Given a PSAS P with n indeterminates and s polynomial equations, it was

argued in [19] that CAD-based QE on P has complexity doubly exponential in
n. In contrast, the RRC approach has complexity singly exponential in n and
doubly exponential in t, where t is the dimension of the ideal generated by the
s polynomials. Therefore RRC can dramatically reduce the complexity of RRC
problems especially when t is much less than n.

For RLF generation, to solve (29) we can define a PSAS

P �= "
L1
f p(u,x) = 0, L3

f p(u,x) = 0, . . . , L
(2K0+1)
f p(u,x) = 0

−‖x‖2 > −r2, ‖x‖2 > 0
.

Formal Modelling, Analysis and Verification of Hybrid Systems 273

Then the command RealRootClassification(P , 0) in DISCOVERER returns condi-
tions on u and r such that P has NO solutions. In practice, P can be constructed

in a stepwise manner. That is, L
(2i+1)
f p(u,x) = 0 for 0 ≤ i ≤ K0 can be added

to P one by one. Based on the above ideas, an RLF generation algorithm (Al-
gorithm 1) is proposed to implement Theorem 20 .

Algorithm 1. Relaxed Lyapunov Function Generation

1 Input: f ∈ Qn[x1, . . . , xn] with f(0) = 0, p ∈ Q[u1, . . . , uw, x1, . . . , xn]

2 Output: Res ⊆ Rw+1

3 i := 1; Res := ∅; L1
f p := (∇p, f);

4 P := ‖x‖2 > 0 ∧ −‖x‖2 > −r2;
5 Res0 := QE(ψ1

p,f ∧ ψ2
p,f ∧ ψ3

p,f);

6 if Res0 = ∅ then
7 return ∅;
8 else
9 repeat

10 P := P ∧ Li
fp = 0;

11 Res := Res0 ∩RRC(P , 0);
12 if Res �= ∅ then
13 return Res;
14 else
15 Li+1

f p := (∇Li
fp, f);

16 Li+2
f p := (∇Li+1

f p, f);
17 i := i+ 2;

18 until Li
fp ∈ 〈L1

f p, L
2
f p, . . . , L

i−1
f p〉;

19 return ∅;

Remark 1. In Algorithm 1,

– ψ1
p,f ψ2

p,f and ψ3
p,f in Line 5 are defined in (26), (27) and (28) respectively;

– QE in line 5 is done in a computer algebra tool like Redlog [30] or QEPCAD
[17];

– RRC in line 11 stands for the RealRootClassification command in DISCOV-
ERER;

– in Line 18 the loop test can be done by the IdealMembership command in
MapleTM [61] .

Termination of Algorithm 1 is guaranteed by Theorem 15 and Theorem 17;
correctness of Algorithm 1 is guaranteed by Theorem 20 .

9.5 Example

We illustrate the method for RLF generation using the following example.

274 N. Zhan, S. Wang, and H. Zhao

Example 12. Consider the PCDS�
ẋ
ẏ

�
=

�−x+ y2

−xy

�
(31)

with a unique equilibrium point O(0, 0). We want to establish the asymptotic
stability of O.

First, the linearization of (31) at O has the coefficient matrix

A =

�−1 0
0 0

�
with eigenvalues −1 and 0, so none of the principles of stability for linear systems
can be applied. Besides, a homogeneous quadratic Lyapunov function x2+axy+
by2 for verifying asymptotic stability of (31) does not exist in R2, because

∀x∀y.
�

x2 + y2 > 0 →
�
x2 + axy + by2 > 0

∧ 2xẋ+ ayẋ+ axẏ + 2byẏ < 0
� �

is false. However, if we try to find an RLF in R2 for (31) using the simple
template p�=x2+ay2 with a the indeterminate, then Algorithm 1 returns a = 1.
This means (31) has an RLF x2 + y2, and O is asymptotically stable. See Fig.
12 for an illustration.

Fig. 12. Vector field and Lyapunov surfaces in Example 12

From this example, we can see that RLFs really extend the class of functions
that can be used for asymptotic stability analysis, and the method for automat-
ically discovering polynomial RLFs can save the effort in finding conventional
Lyapunov functions in some cases.

Formal Modelling, Analysis and Verification of Hybrid Systems 275

10 Conclusion

In this tutorial, we have developed a theoretical and practical foundation for
deductive verification of hybrid systems, which includes a selection of topics re-
lated to modeling, analysis, and logic of hybrid systems. We choose HCSP as the
formal modeling language for hybrid systems, due to its more compositionality
and scalability compared to automata-based approach. In order to guarantee
the correct functioning of hybrid systems, we have defined a specification logic,
called HHL, for specifying and reasoning about the behavior of HCSP, both dis-
crete and continuous, based on first-order logic and DC respectively. However,
the logic is not compositional, thus fails to manage more complex HCSP models.
The compositionality of the specification logic is one main topic we are working
on now.

The specification logic for HCSP uses differential invariants for proving cor-
rectness about differential equations instead of their solutions, because solutions
of differential equations may not even be expressible. To support this, we have
invented a relative complete method for generating polynomial invariants for
polynomial differential equations, based on higher-order Lie derivatives and the
theory of polynomial ideal.

As a complement of logic-based verification, synthesis provides another ap-
proach to ensuring hybrid systems meet given requirements. It focuses on de-
signing a controller for a system such that under the controller, the system is
guaranteed to satisfy the given requirement. Based on the differential invariant
generation method, we have solved the switching controller synthesis problem
with respect to a safety requirement in the context of hybrid automata; and on
the other hand, we have also studied the switching controller synthesis problem
with respect to an optimality requirement by reducing it to a constraint solving
problem.

For tool support, we have implemented a theorem prover for verifying HCSP
models in Isabelle/HOL, called HHL prover, which takes an annotated HCSP
model in the form of HHL specification as input, and by interactive theorem
proving, checks whether the model conforms to the annotated property. The
automated verification is not considered yet, and both verification techniques
and their implementation to support this will be one of our future work.

Finally, we have demonstrated that our logic-based verification techniques can
be used successfully for verifying safety and liveness properties in practical train
control systems. In particular, we considered a combined scenario originating
from the Chinese High-Speed Train Control System at Level 3 (CTCS-3), and
reached a verification result in HHL prover indicating a design error of the com-
bined scenario in CTCS-3. We will consider how to apply our approach to more
case studies, among which one direction will be on the safety checking of the
other scenarios of CTCS-3 and their all possible combinations.

Acknowledgements. First of all, we thank all the collaborators of the joint
work presented in this tutorial for their great contribution. The deductive ap-
proach to formal verification of hybrid systems based on Hybrid Hoare Logic

276 N. Zhan, S. Wang, and H. Zhao

(HHL) was pioneered by Prof. Chaochen Zhou, to whom the basic principles of
HHL should be mainly attributed; Prof. Dimitar P. Guelev contributes to the
joint work of developing improved versions of HHL; formal modelling and verifi-
cation of Chinese High-Speed Train Control System (CTCS-3), in particular the
scenario reported in Sec. 8, is the result of our long-term collaboration with a
research team led by Prof. Tao Tang in Beijing Jiaotong University; Dr. Jidong
Lv, Mr. Zhao Quan and Mr. Liang Zou are involved intensively in modelling
and verifying CTCS-3; Mr. Liang Zou also helps with the development of HHL
prover; Dr. Jiang Liu is one of the major contributors to the work on invariant
generation and stability analysis of hybrid systems; the part on (optimal) con-
troller synthesis of hybrid systems is joint work with Prof. Deepak Kapur and
Prof. Kim G. Larsen.

We also Thank Prof. Lu Yang, Prof. Bican Xia, Prof. Shaofa Yang, Dr. Ming
Xu, Dr. Jiaqi Zhu, Yang Gao, Danqing Guo and many other colleagues for their
valuable comments and helpful discussions on the topics of this tutorial.

The work in this tutorial has been supported mainly by projects NSFC-
91118007, NSFC-6110006, and National Science and Technology Major Project
of China (Grant No. 2012ZX01039-004).

References

1. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T., Ho, P.H., Nicollin, X.,

Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.

Theoretical Computer Science 138(1), 3–34 (1995)

2. Alur, R., Dang, T., Esposito, J., Hur, Y., Ivančić, F., Kumar, V., Mishra, P.,

Pappas, G., Sokolsky, O.: Hierarchical modeling and analysis of embedded systems.

Proceedings of the IEEE 91(1), 11–28 (2003)

3. Alur, R., Henzinger, T., Ho, P.H.: Automatic symbolic verification of embedded

systems. IEEE Transactions on Software Engineering 22(3), 181–201 (1996)

4. Alur, R.: Formal verification of hybrid systems. In: EMSOFT 2011, pp. 273–278.

ACM, New York (2011)

5. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.H.: Hybrid automata: An al-

gorithmic approach to the specification and verification of hybrid systems. In:

Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) HS 1991 and HS 1992.

LNCS, vol. 736, pp. 209–229. Springer, Heidelberg (1993)

6. Alur, R., Dang, T., Ivančić, F.: Counterexample-guided predicate abstraction of

hybrid systems. Theor. Comput. Sci. 354(2), 250–271 (2006)

7. Alur, R., Dang, T., Ivančić, F.: Predicate abstraction for reachability analysis of

hybrid systems. ACM Trans. Embed. Comput. Syst. 5(1), 152–199 (2006)

8. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Sci-

ence 126(2), 183–235 (1994)

9. Alur, R., Henzinger, T.A.: Modularity for timed and hybrid systems. In:

Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243,

pp. 74–88. Springer, Heidelberg (1997)

10. Asarin, E., Bournez, O., Dang, T., Maler, O., Pnueli, A.: Effective synthesis of

switching controllers for linear systems. Proceedings of the IEEE 88(7), 1011–1025

(2000)

Formal Modelling, Analysis and Verification of Hybrid Systems 277

11. Asarin, E., Bournez, O., Dang, T., Maler, O.: Approximate reachability analy-

sis of piecewise-linear dynamical systems. In: Lynch, N.A., Krogh, B.H. (eds.)

HSCC 2000. LNCS, vol. 1790, pp. 20–31. Springer, Heidelberg (2000)

12. Audemard, G., Bozzano, M., Cimatti, A., Sebastiani, R.: Verifying industrial

hybrid systems with MathSAT. Electronic Notes in Theoretical Computer Sci-

ence 119(2), 17–32 (2005)

13. Bensalem, S., Bozga, M., Fernández, J.-C., Ghirvu, L., Lakhnech, Y.: A trans-

formational approach for generating non-linear invariants. In: Palsberg, J. (ed.)

SAS 2000. LNCS, vol. 1824, pp. 58–72. Springer, Heidelberg (2000)

14. Boulton, R.J., Gordon, A., Gordon, M.J.C., Harrison, J., Herbert, J., Tassel, J.V.:

Experience with embedding hardware description languages in HOL. In: Proceed-

ings of the IFIP TC10/WG 10.2 International Conference on Theorem Provers

in Circuit Design: Theory, Practice and Experience, pp. 129–156. North-Holland

Publishing Co. (1992)

15. Branicky, M.: Stability of switched and hybrid systems. In: CDC 1994, vol. 4,

pp. 3498–3503 (1994)

16. Branicky, M.: Multiple Lyapunov functions and other analysis tools for switched

and hybrid systems. IEEE Transactions on Automatic Control 43(4), 475–482

(1998)

17. Brown, C.W.: QEPCAD B: A program for computing with semi-algebraic sets

using CADs. SIGSAM Bull. 37, 97–108 (2003)

18. Cassez, F., Jessen, J.J., Larsen, K.G., Raskin, J.-F., Reynier, P.-A.: Automatic

synthesis of robust and optimal controllers – an industrial case study. In: Majum-

dar, R., Tabuada, P. (eds.) HSCC 2009. LNCS, vol. 5469, pp. 90–104. Springer,

Heidelberg (2009)

19. Chen, Y., Xia, B., Yang, L., Zhan, N.: Generating polynomial invariants with

DISCOVERER and QEPCAD. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.) Formal

Methods and Hybrid Real-Time Systems. LNCS, vol. 4700, pp. 67–82. Springer,

Heidelberg (2007)

20. Chutinan, A., Krogh, B.H.: Verification of polyhedral-invariant hybrid automata

using polygonal flow pipe approximations. In: Vaandrager, F.W., van Schuppen,

J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp. 76–90. Springer, Heidelberg (1999)

21. Clarke, E., Fehnker, A., Han, Z., Krogh, B., Stursberg, O., Theobald, M.: Verifi-

cation of hybrid systems based on counterexample-guided abstraction refinement.

In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 192–207.

Springer, Heidelberg (2003)

22. Clarke, E., Emerson, E.: Design and synthesis of synchronization skeletons using

branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs. LNCS,

vol. 131, pp. 52–71. Springer, Heidelberg (1982)

23. Colón, M.A., Sankaranarayanan, S., Sipma, H.B.: Linear invariant generation using

non-linear constraint solving. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003.

LNCS, vol. 2725, pp. 420–432. Springer, Heidelberg (2003)

24. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction to

Computational Algebraic Geometry and Commutative Algebra, 2nd edn. Springer

(1997)

25. Damm, W., Pinto, G., Ratschan, S.: Guaranteed termination in the verification of

LTL properties of non-linear robust discrete time hybrid systems. In: Peled, D.A.,

Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 99–113. Springer, Heidelberg

(2005)

278 N. Zhan, S. Wang, and H. Zhao

26. de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,

Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg

(2008)

27. DeCarlo, R., Branicky, M., Pettersson, S., Lennartson, B.: Perspectives and re-

sults on the stability and stabilizability of hybrid systems. Proceedings of the

IEEE 88(7), 1069–1082 (2000)

28. Deshpande, A., Göllü, A., Varaiya, P.: SHIFT: A formalism and a programming

language for dynamic networks of hybrid automata. In: Antsaklis, P., Kohn, W.,

Nerode, A., Sastry, S. (eds.) HS 1996. LNCS, vol. 1273, pp. 113–133. Springer,

Heidelberg (1997)

29. Ding, J., Tomlin, C.: Robust reach-avoid controller synthesis for switched nonlinear

systems. In: CDC 2010, pp. 6481–6486 (2010)

30. Dolzmann, A., Seidl, A., Sturm, T.: Redlog User Manual, Edition 3.1, for Redlog

Version 3.06 (Reduce 3.8) edn. (2006)

31. Eker, J., Janneck, J., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Sachs, S., Xiong, Y.,

Neuendorffer, S.: Taming heterogeneity — the Ptolemy approach. Proceedings of

the IEEE 91(1), 127–144 (2003)

32. Floyd, R.W.: Assigning Meanings to Programs. In: Schwartz, J.T. (ed.) Proceedings

of a Symposium on Applied Mathematics, vol. 19, pp. 19–31 (1967)

33. Fränzle, M., Hahn, E.M., Hermanns, H., Wolovick, N., Zhang, L.: Measurability

and safety verification for stochastic hybrid systems. In: HSCC 2011, pp. 43–52.

ACM, New York (2011)

34. Fränzle, M., Teige, T., Eggers, A.: Engineering constraint solvers for automatic

analysis of probabilistic hybrid automata. The Journal of Logic and Algebraic

Programming 79(7), 436–466 (2010)

35. Girard, A.: Controller synthesis for safety and reachability via approximate bisim-

ulation. CoRR abs/1010.4672 (2010), http://arxiv.org/abs/1010.4672

36. Guelev, D., Wang, S., Zhan, N.: Hoare reasoning about HCSP in the duration

calculus (submitted, 2013)

37. He, J.: From CSP to hybrid systems. In: A Classical Mind: Essays in Honour of

C. A. R. Hoare, pp. 171–189. Prentice Hall International (UK) Ltd., Hertfordshire

(1994)

38. Heilmann, S.T.: Proof Support for Duration Calculus. Ph.D. thesis, Technical

University of Denmark (1999)

39. Henzinger, T.: The theory of hybrid automata. In: LICS 1996, pp. 278–292 (July

1996)

40. Henzinger, T.A., Ho, P.H.: Algorithmic analysis of nonlinear hybrid systems. In:

Wolper, P. (ed.) CAV 1995. LNCS, vol. 939, pp. 225–238. Springer, Heidelberg

(1995)

41. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid

automata? In: STOC 1995, pp. 373–382. ACM, New York (1995)

42. Henzinger, T.A., Sifakis, J.: The embedded systems design challenge. In: Misra, J.,

Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 1–15. Springer,

Heidelberg (2006)

43. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun.

ACM 12(10), 576–580 (1969)

44. Jha, S., Seshia, S.A., Tiwari, A.: Synthesis of optimal switching logic for hybrid

systems. In: EMSOFT 2011, pp. 107–116. ACM, New York (2011)

45. Julius, A., Girard, A., Pappas, G.: Approximate bisimulation for a class of stochas-

tic hybrid systems. In: American Control Conference 2006, pp. 4724–4729 (2006)

http://arxiv.org/abs/1010.4672

Formal Modelling, Analysis and Verification of Hybrid Systems 279

46. Julius, A., Pappas, G.: Probabilistic testing for stochastic hybrid systems. In:

CDC 2008, pp. 4030–4035 (2008)

47. Kapur, D., Shyamasundar, R.K.: Synthesizing controllers for hybrid systems. In:

Maler, O. (ed.) HART 1997. LNCS, vol. 1201, pp. 361–375. Springer, Heidelberg

(1997)

48. Kapur, D.: Automatically generating loop invariants using quantifier elimination.

In: Baader, F., Baumgartner, P., Nieuwenhuis, R., Voronkov, A. (eds.) Deduction

and Applications (2005)

49. Kapur, D., Zhan, N., Zhao, H.: Synthesizing switching controllers for hybrid sys-

tems by continuous invariant generation. CoRR abs/1304.0825 (2013),

http://arxiv.org/abs/1304.0825

50. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall (December 2001)

51. Koo, T.J., Pappas, G.J., Sastry, S.S.: Mode switching synthesis for reachability spec-

ifications. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001.

LNCS, vol. 2034, pp. 333–346. Springer, Heidelberg (2001)

52. Krantz, S., Parks, H.: A Primer of Real Analytic Functions, 2nd edn. Birkhäuser,

Boston (2002)

53. Lafferriere, G., Pappas, G.J., Yovine, S.: Symbolic reachability computation for

families of linear vector fields. Journal of Symbolic Computation 32(3), 231–253

(2001)

54. Liu, J., Zhan, N., Zhao, H.: Computing semi-algebraic invariants for polynomial

dynamical systems. ArXiv e-prints (Febraury 2011),

http://arxiv.org/abs/1102.0705

55. Liu, J., Lv, J., Quan, Z., Zhan, N., Zhao, H., Zhou, C., Zou, L.: A calculus for

hybrid CSP. In: Ueda, K. (ed.) APLAS 2010. LNCS, vol. 6461, pp. 1–15. Springer,

Heidelberg (2010)

56. Liu, J., Zhan, N., Zhao, H.: Computing semi-algebraic invariants for polynomial

dynamical systems. In: EMSOFT 2011, pp. 97–106. ACM, New York (2011)

57. Liu, J., Zhan, N., Zhao, H.: Automatically discovering relaxed Lyapunov functions

for polynomial dynamical systems. Mathematics in Computer Science 6(4), 395–

408 (2012)

58. Lynch, N., Segala, R., Vaandrager, F., Weinberg, H.: Hybrid I/O automata. In:

Alur, R., Sontag, E.D., Henzinger, T.A. (eds.) HS 1995. LNCS, vol. 1066, pp.

496–510. Springer, Heidelberg (1996)

59. Maler, O., Manna, Z., Pnueli, A.: From timed to hybrid systems. In: Huizing, C., de

Bakker, J.W., Rozenberg, G., de Roever, W.-P. (eds.) REX 1991. LNCS, vol. 600,

pp. 447–484. Springer, Heidelberg (1992)

60. Manna, Z., Pnueli, A.: Verifying hybrid systems. In: Grossman, R.L., Ravn, A.P.,

Rischel, H., Nerode, A. (eds.) HS 1991 and HS 1992. LNCS, vol. 736, pp. 4–35.

Springer, Heidelberg (1993)

61. Maplesoft: Maple 14 User Manual,

http://www.maplesoft.com/documentation_center/

62. Naur, P.: Proof of algorithms by general snapshots. BIT Numerical Mathemat-

ics 6(4), 310–316 (1966)

63. Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: An approach to the description and

analysis of hybrid systems. In: Grossman, R.L., Ravn, A.P., Rischel, H., Nerode,

A. (eds.) HS 1991 and HS 1992. LNCS, vol. 736, pp. 149–178. Springer, Heidelberg

(1993)

64. Platzer, A.: Differential-algebraic dynamic logic for differential-algebraic programs.

J. Log. and Comput. 20(1), 309–352 (2010)

http://arxiv.org/abs/1304.0825
http://arxiv.org/abs/1102.0705
http://www.maplesoft.com/documentation_center/

280 N. Zhan, S. Wang, and H. Zhao

65. Platzer, A., Clarke, E.M.: Computing differential invariants of hybrid systems as

fixedpoints. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 176–189.

Springer, Heidelberg (2008)

66. Platzer, A., Clarke, E.M.: Formal verification of curved flight collision avoidance

maneuvers: A case study. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS,

vol. 5850, pp. 547–562. Springer, Heidelberg (2009)

67. Prajna, S., Jadbabaie, A., Pappas, G.: A framework for worst-case and stochas-

tic safety verification using barrier certificates. IEEE Transactions on Automatic

Control 52(8), 1415–1428 (2007)

68. Prajna, S.: Optimization-based methods for nonlinear and hybrid systems verifi-

cation. Ph.D. thesis, California Institute of Technology (January 2005)

69. Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certifi-

cates. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 477–492.

Springer, Heidelberg (2004)

70. Puri, A., Varaiya, P.: Decidability of hybrid systems with rectangular differential

inclusions. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 95–104. Springer,

Heidelberg (1994)

71. Queille, J., Sifakis, J.: Specification and verification of concurrent systems in CE-

SAR. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) Programming 1982. LNCS,

vol. 137, pp. 337–351. Springer, Heidelberg (1982)

72. Rasmussen, T.M.: Interval Logic — Proof Theory and Theorem Proving. Ph.D.

thesis, Technical University of Denmark (2002)

73. Ratschan, S., She, Z.: Safety verification of hybrid systems by constraint propa-

gation based abstraction refinement. In: Morari, M., Thiele, L. (eds.) HSCC 2005.

LNCS, vol. 3414, pp. 573–589. Springer, Heidelberg (2005)

74. Sankaranarayanan, S.: Automatic invariant generation for hybrid systems using

ideal fixed points. In: HSCC 2010, pp. 221–230. ACM, New York (2010)

75. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constructing invariants for hybrid

systems. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 539–554.

Springer, Heidelberg (2004)

76. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Non-linear loop invariant genera-

tion using Gröbner bases. In: POPL 2004, pp. 318–329. ACM, New York (2004)

77. Shorten, R., Wirth, F., Mason, O., Wulff, K., King, C.: Stability criteria for

switched and hybrid systems. SIAM Rev. 49(4), 545–592 (2007)

78. Skakkebaek, J.U., Shankar, N.: Towards a duration calculus proof assistant in PVS.

In: Langmaack, H., de Roever, W.-P., Vytopil, J. (eds.) FTRTFT 1994. LNCS,

vol. 863, pp. 660–679. Springer, Heidelberg (1994)

79. Taly, A., Gulwani, S., Tiwari, A.: Synthesizing switching logic using constraint

solving. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009. LNCS, vol. 5403,

pp. 305–319. Springer, Heidelberg (2009)

80. Taly, A., Gulwani, S., Tiwari, A.: Synthesizing switching logic using constraint

solving. International Journal on Software Tools for Technology Transfer 13(6),

519–535 (2011)

81. Taly, A., Tiwari, A.: Deductive verification of continuous dynamical systems. In:

Kannan, R., Kumar, K.N. (eds.) FSTTCS 2009. LIPIcs, vol. 4, pp. 383–394 (2009)

82. Taly, A., Tiwari, A.: Switching logic synthesis for reachability. In: EMSOFT 2010,

pp. 19–28. ACM, New York (2010)

83. Tarski, A.: A Decision Method for Elementary Algebra and Geometry. University

of California Press, Berkeley (1951)

84. Tenenbaum, M., Pollard, H.: Ordinary Differential Equations. Dover Publications

(October 1985)

Formal Modelling, Analysis and Verification of Hybrid Systems 281

85. Tomlin, C., Lygeros, J., Sastry, S.: A game theoretic approach to controller design

for hybrid systems. Proceedings of the IEEE 88(7), 949–970 (2000)

86. Wang, S., Zhan, N., Guelev, D.: An assume/Guarantee based compositional cal-

culus for hybrid CSP. In: Agrawal, M., Cooper, S.B., Li, A. (eds.) TAMC 2012.

LNCS, vol. 7287, pp. 72–83. Springer, Heidelberg (2012)

87. Wildmoser, M., Nipkow, T.: Certifying machine code safety: Shallow versus deep

embedding. In: Slind, K., Bunker, A., Gopalakrishnan, G.C. (eds.) TPHOLs 2004.

LNCS, vol. 3223, pp. 305–320. Springer, Heidelberg (2004)

88. Wolfram: Mathematica Documentation,

http://reference.wolfram.com/mathematica/guide/Mathematica.html

89. Xia, B.: DISCOVERER: a tool for solving semi-algebraic systems. ACM Commun.

Comput. Algebra 41(3), 102–103 (2007)

90. Yang, L.: Recent advances on determining the number of real roots of parametric

polynomials. J. Symb. Comput. 28(1-2), 225–242 (1999)

91. Yang, L., Xia, B.: Real solution classification for parametric semi-algebraic sys-

tems. In: Dolzmann, A., Seidl, A., Sturm, T. (eds.) Algorithmic Algebra and Logic,

pp. 281–289 (2005)

92. Yang, L., Zhou, C., Zhan, N., Xia, B.: Recent advances in program verification

through computer algebra. Frontiers of Computer Science in China 4, 1–16 (2010)

93. Zhan, N., Wang, S., Guelev, D.: Extending Hoare logic to hybrid systems. Tech.

Rep. ISCAS-SKLCS-13-02, State Key Lab. of Computer Science, Institute of Soft-

ware, Chinese Academy of Sciences (2013)

94. Zhao, H., Zhan, N., Kapur, D., Larsen, K.G.: A “hybrid” approach for synthesizing

optimal controllers of hybrid systems: A case study of the oil pump industrial

example. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436,

pp. 471–485. Springer, Heidelberg (2012)

95. Zhao, H., Zhan, N., Kapur, D., Larsen, K.G.: A “hybrid” approach for synthesizing

optimal controllers of hybrid systems: A case study of the oil pump industrial

example. CoRR abs/1203.6025 (2012), http://arxiv.org/abs/1203.6025

96. Zhou, C., Hansen, M.: Duration Calculus — A Formal Approach to Real-Time Sys-

tems. Monographs in Theoretical Computer Science. An EATCS Series. Springer,

Heidelberg (2004)

97. Zhou, C., Hoare, C., Ravn, A.P.: A calculus of durations. Information Processing

Letters 40(5), 269–276 (1991)

98. Zhou, C., Wang, J., Ravn, A.P.: A formal description of hybrid systems. In: Alur,

R., Henzinger, T.A., Sontag, E.D. (eds.) HS 1995. LNCS, vol. 1066, pp. 511–530.

Springer, Heidelberg (1996)

99. Zou, L., Lv, J., Wang, S., Zhan, N., Tang, T., Yuan, L., Liu, Y.: Verifying Chinese

train control system under a combined scenario by theorem proving. In: Shankar,

N. (ed.) VSTTE 2013. LNCS. Springer, Heidelberg (to appear, 2013)

http://reference.wolfram.com/mathematica/guide/Mathematica.html
http://arxiv.org/abs/1203.6025

Author Index

Dong, Ruzhen 1

Faber, Johannes 1

Fahrenberg, Uli 67

Foster, Simon 109

Jackson, Ethan K. 156

Ke, Wei 1

Larsen, Kim G. 67

Legay, Axel 67

Liu, Zhiming 1

Schulte, Wolfram 156

Wang, Shuling 207

Woodcock, Jim 109

Zhan, Naijun 207

Zhao, Hengjun 207

	Preface
	Organization
	Table of Contents
	rCOS: Defining Meanings of Component-BasedSoftware Architectures
	1 Introduction
	1.1 Software Complexity
	1.2 Model-Driven Development
	1.3 Formal Methods in Software Development
	1.4 The Aim and Theme of rCOS
	1.5 Organization

	2 Unified Semantics of Sequential Programming
	2.1 Designs of Sequential Programs
	2.2 Designs of Object-Oriented Programs
	2.3 Reactive Systems and Reactive Designs

	3 Model of Primitive Closed Components
	3.1 Specification Notation for Primitive Closed Components
	3.2 Labeled Transition Systems of Primitive Closed Components
	3.3 Component Contracts and Publications
	3.4 Refinement between Closed Components
	3.5 Separation of Concerns

	4 Primitive Open Components
	4.1 Specification of Open Components
	4.2 Semantics and Refinement of Open Components
	4.3 Transition Systems and Publications of Open Components

	5 Processes
	5.1 Specification of Processes
	5.2 Contracts of Processes
	5.3 Transition Systems and Publications of Processes

	6 Architectural Compositions and General Components
	6.1 Coordination of Components by Processes
	6.2 Composition of Processes
	6.3 Parallel Composition of Components
	6.4 Renaming and Restriction
	6.5 More Examples

	7 Interface Model of Components
	7.1 Component Automata
	7.2 Non-blockable Provided Events and Traces
	7.3 Interface Publication Automata
	7.4 Composition and Refinement

	8 Conclusions
	References

	Model-Based Verification, Optimization, Synthesis and Performance Evaluationof Real-Time Systems
	1 Introduction
	2 Timed Automata
	2.1 Syntax and Semantics
	2.2 Reachability
	2.3 Regions
	2.4 Behavioural Refinement Relations
	2.5 Language Inclusion and Equivalence
	2.6 Zones and Difference-Bound Matrices

	3 Weighted Timed Automata
	3.1 Optimal Reachability
	3.2 Multi-weighted Timed Automata
	3.3 Optimal Infinite Runs
	3.4 Energy Problems

	4 TimedGames
	5 Statistical Model Checking for Networks of Price Timed Automata
	5.1 Networks of Stochastic Automata
	5.2 Verifying Queries Using Statistical Model Checking
	5.3 Uppaal-SMC
	5.4 Some Illustrations

	References

	Unifying Theories of Programming in Isabelle
	1 Preliminaries
	2 Introduction to UTP
	3 Theory Mechanisation
	4 The Alphabetised Relational Calculus
	5 Laws of Programming
	5.1 Conditional
	5.2 Sequential Composition
	5.3 Assignment
	5.4 Nondeterminism
	5.5 Alphabet Extension
	5.6 Variable Blocks

	6 The Complete Lattice
	6.1 Lattice Operators
	6.2 Recursion
	6.3 Iteration

	7 Hoare Logic
	8 Weakest Preconditions
	9 Designs
	9.1 Lattice Operators
	9.2 Refinement of Designs
	9.3 Nontermination
	9.4 Assignment
	9.5 Closure under the Program Combinators

	10 Healthiness Conditions
	10.1 H1: Unpredictability
	10.2 H2: Possible Termination
	10.3 H3: Dischargeable Assumptions
	10.4 H4: Feasibility

	11 Related Work
	12 Conclusion
	References

	FORMULA 2.0:A Language for Formal Specifications
	1 DataandTypes
	1.1 Constants
	1.2 Data Constructors
	1.3 Ordering of Values
	1.4 Data Types and Subtyping
	1.5 Type Declarations
	1.6 Declaring Constants
	1.7 Declaring Data Constructors

	2 Domains and Models
	2.1 Querying Models
	2.2 Model Conformance
	2.3 Relational Constraints
	2.4 Finite Functions
	2.5 Recursive Types, Aliases, and Symbolic Constants
	2.6 Symbolic Constants
	2.7 Separate Compilation

	3 Rules and Domain Constraints
	3.1 Derived Constants
	3.2 Rule Bodies
	3.3 Interpreted Functions
	3.4 Type Environments
	3.5 Set Comprehensions
	3.6 General Rules and Rule Heads
	3.7 Stratification and Termination
	3.8 Complex Conformance Constraints
	3.9 Extracting Proofs

	4 Domain and Model Composition
	4.1 Namespaces
	4.2 Domain Composition
	4.3 The Renaming Operator

	5 Interpreted Functions
	5.1 Arithmetic Functions and Identities
	5.2 Boolean Functions
	5.3 String Functions
	5.4 List Functions
	5.5 Coercion Functions
	5.6 Reflection Functions

	Formal Modelling, Analysisand Verification of Hybrid Systems
	1 Introduction
	1.1 Synopsis

	2 Preliminaries
	2.1 Continuous Dynamical Systems
	2.2 Hybrid Systems
	2.3 Polynomials and Polynomial Ideals
	2.4 First-Order Theory of Reals

	3 Computing Invariants for Hybrid Systems
	3.1 Continuous and Global Invariant
	3.2 Predicting Continuous Evolution via Lie Derivatives
	3.3 Computing Transverse Set
	3.4 Computing SCI in Simple Case
	3.5 Computing SCI in General Case
	3.6 SGI Generation

	4 Switching Controller Synthesis
	4.1 Problem Description
	4.2 A Synthesis Procedure Based on CI Generation
	4.3 Heuristics for Predefining Templates
	4.4 Synthesis of Optimal Controllers
	4.5 Oil Pump: A Case Study

	5 HybridCSP
	5.1 Notations
	5.2 Operational Semantics

	6 Hybrid Hoare Logic
	6.1 History Formulas
	6.2 Hoare Assertion
	6.3 Proof System of HHL
	6.4 Soundness

	7 HHL Prover
	7.1 Expressions
	7.2 Assertion Language
	7.3 HCSP
	7.4 Semantics
	7.5 Proof System of HHL

	8 Case Study: Chinese Train Control System
	8.1 Movement Authority Scenario
	8.2 Level Transition
	8.3 Mode Transition
	8.4 Combined Scenario and Its Model
	8.5 Proof of the Combined Scenario

	9 Other Issues: Stability Analysis
	9.1 Lyapunov Stability
	9.2 Relaxed Lyapunov Function
	9.3 Automatically Discovering Polynomial RLFs for PCDSs
	9.4 Simplification and Implementation
	9.5 Example

	10 Conclusion
	References

	Author Index

