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PREFACE

This book is on digital system design for programmable devices, such as FPGAs,
CPLDs, and PALs. A designer wanting to design with programmable devices
must understand digital system design at the RT (Register Transfer) level,
circuitry and programming of programmable devices, digital design
methodologies, use of hardware description languages in design, design tools
and environments; and finally, such a designer must be familiar with one or
several digital design tools and environments. Books on these topics are many,
and they cover individual design topics with very general approaches. The
number of books a designer needs to gather the necessary information for a
practical knowledge of design with field programmable devices can easily reach
five or six, much of which is on theoretical concepts that are not directly
applicable to RT level design with programmable devices.

The focus of this book is on a practical knowledge of digital system
design for programmable devices. The book covers all necessary topics under
one cover, and covers each topic just enough that is actually used by an
advanced digital designer. In the three parts of the book, we cover digital
system design concepts, use of tools, and systematic design of digital systems.

In the first chapter, design methodologies, use of simulation and
synthesis tools and programming programmable devices are discussed. Based
on this automated design methodology, the next four chapters present the
necessary background for logic design, the Verilog language, programmable
devices, and computer architectures.

Presenting design and use of design tools based on the methodology
discussed in the first part of the book becomes meaningful, only if a real
industrial tool is used.  For this purpose, the second part of the book presents
design of small components using simulation, synthesis and design entry tools
provided by Altera’s Quartus II design environment. While practicing design



methodology of the first part of the book, this part familiarizes readers with the
use of Quartus II integrated design environment.

The third part of the book discusses RT level system design. A top-down
systematic approach is presented for design of relatively complex systems. This
part shows how a design is partitioned into its lower-level components, how
synthesis tools or predefined parts are used for implementation of RT level
components, and how a complete system is put together and used for
programming a programmable device.

The book can be used by hardware design practitioners who are already
familiar with basics of logic design and want to move into the arena of
automated design and design implementation using filed programmable
devices. For this audience, this book provides a recap of digital design topics
and computer architectures and shows the Verilog language for synthesis. In
addition, for an industrial setting, the book shows how existing design
components are used in upper level designs, and how user libraries are formed
and utilized. Using Altera’s UP2 programmable device development board with
this book helps engineers test and debug their designs before programming
their programmable devices on production boards.

In an educational setting, the book can be used as a complementary
book for the basic logic design course, or a laboratory book for the sophomore
logic design lab, or as a textbook for senior level design courses. Using Altera’s
UP2 programmable device education board with this book helps students see
their designs being implemented and tested, and thereby get a down-to-wire
understanding of how things work. For students in other fields of engineering
like mechanical and chemical engineering, the book is a useful tool for design
and implementation of controllers and interfaces.

OVERVIEW OF THE CHAPTERS

An overview of the chapters is given here. The first five chapters cover the main
concepts of digital design with field programmable devices from a practical point
of view. The next part of the book, in five chapters, shows the use of Altera’s
Quartus II as a typical FPLD design environment. The last four chapters cover
complete digital designs that utilize various tools and utilities provided by a
design environment like Quartus II.

Chapter 1 discusses the general flow of a digital design using tools available
in design environments.  This chapter is introductory and introduces tools and
design methodologies.

Chapter 2 discusses basic logic design from a practical point of view. Only
topics used for an automated design are discussed here.

Chapter 3 introduces Verilog.  Synthesizable Verilog is emphasized, but for
a complete HDL based design, testbenches and language utilities for this
purpose are also discussed.

Chapter 4 talks about programmable devices. The approach we take is
showing how original ROMs evolved into today’s complex FPGAs.

In Chapter 5 we talk about digital design architectures. We show the basics
of CPU architecture and how one goes about designing a processor.

Chapter 6 of this book discussed tools we use for design validation,
synthesis, device programming and prototyping. We discuss the use of Quartus
II, ModelSim HDL simulator and the UP2 development board.

xv
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Chapter 7 shows basic schematic entry for gate level designs. In this
chapter we show the use of Quartus or simulation and device programming.

Chapter 8 shows the formation of a design library by developing commonly
used parts, testing them and making available in a user library.

In Chapter 9, we show how parts from a user library and configurable parts
from a design library can be put together for generating a complete design.

Chapter 10 shows HDL based design, simulation, synthesis and device
programming. Only the synthesizable subset of Verilog is used for the design of
this chapter.

Chapter 11 that is the first of the four complete designs of this book shows
the design of a sequential multiplier by partitioning it into a data and a control
part. Top-down design with Verilog is shown here.

In Chapter 12 a VGA interface is designed.  We show how Verilog, gate level
schematics, configurable library parts, and definable memories can be mixed in
a complete design. In addition, the operating of a VGA monitor is discussed
here.

A keyboard interface is designed in Chapter 13.  In addition to showing the
operation of a keyboard, we show a design that consists of schematics and HDL
entry.

The CPU of Chapter 14 is a complete CPU that is primarily designed with
Verilog. Testing of this CPU in Verilog and use of high-level test related tasks
are discussed here.
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Part
1

Digital Design Concepts

This part provides a practical knowledge of logic design concepts. The focus is
on those digital design topics that are necessary for design and implementation
of programmable logic devices using design automation tools and environments.
Topics covered here are:

Programmable Logic Based Design
Digital Logic
Practical Verilog
Programmable Logic Devices
Computer Architecture Design
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1PLD Based Design

This chapter presents tools and environments that are used for design with
Field Programmable Logic Devices. We discuss steps involved in taking a
hierarchical‚ high-level design from a description of the design to its
implementation in an FPLD. Processes and terminologies are illustrated here.
After the first section that discusses design flow‚ the proceeding sections
elaborate on each step of this design flow.

1.1 Design Flow

For the design of FPLDs‚ the design flow begins with specification of the design
and ends with programming the target device. Figure 1.1 shows steps involved
in this design flow.

In the design entry phase‚ a design is specified as a mixture of block
diagram and textual specifications. After performing pre-synthesis simulation‚
this design is taken through the synthesis process to translate it into actual
hardware of the target device. Here‚ target device refers to the FPLD that is
being programmed for the implementation of our design. After the synthesis
process and before the actual device is programmed‚ another simulation is done
that is referred to as‚ post-synthesis simulation. The difference between pre-
and post-synthesis simulations is in the level of details obtained from each
simulation.

The sections that follow elaborate on each of the blocks shown in Figure
1.1. In these sections we make reference to Altera's Quartus II integrated
design tool. Most FPLD design tools provide blocks shown in Figure 1.1 in one
or several environments. Quartus II provides all the necessary utilities under
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one environment‚ which makes it easy to learn and is typical of a complete
environment.

Figure 1.1 FPLD Design Flow

1.2 Design Entry

A design entry tool allows a designer to specify his or her design in textual
and/or graphical form. Generally‚ when specification of component
interconnections is being done‚ a graphical entry tool suits best‚ while
component behavior is best described by textual design entry methods.
Whether to use a graphical or a textual design entry method also depends on
the level of components being described and available parts. Usually‚ a design
is specified by a mixture of graphical and textual representations‚ and design
entry tools allow both schemes. Methods of design entry at various levels of
hardware description are described in the following sub-sections.
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1.2.1 Discrete Logic

A simple way of describing a design at the gate level is schematic entry using
gate primitives. For this purpose‚ a schematic entry tool allows selection of
gates and provides tools for wiring gates. The resulting circuit description can
be used for simulation‚ synthesis and device programming.

Figure 1.2 shows a two-gate design in the schematic entry program of
Quartus II. In this design‚ IO pins are used to mark and label inputs and
outputs of the design.

Figure 1.2 Discrete Logic Entry Tool

For simple designs and logic used for gluing together larger components
(glue logic) this entry method is appropriate. However‚ for larger designs it is
impossible to manually place all gates and specify their interconnections. For
large gate level designs‚ basic components are built by use of gate-level
primitives‚ and then these components are hierarchically used to complete the
design.

1.2.2 Pre-Designed Components

After being involved in several designs‚ a hardware designer usually forms a
library of hardware functions that the designer can use in his or her next
designs. Designers usually test such components‚ document them and place
them in a library for future use. Design team members working on different
parts of a design‚ share such design libraries.

Figure 1.3 shows a component from a user library wired together with
discrete gates. The mechanism for wiring library components is the same as
that of primitive gates as discussed in relation with Figure 1.2.

User components can only be used as pre-defined library components if a
symbol is made for them. In a design entry tool‚ a symbol editor program
allows generation of a custom symbol for a design. Quartus II allows a custom
symbol generation as well as automatic generation of a default symbol.
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Figure 1.3 Using a Library Component in a Schematic Specification

1.2.3 Configurable Parts

In addition to allowing the use of primitives and pre-designed components‚ a
schematic entry tool has a set of pre-defined library components of its own.
Altera refers to these components as megafunctions or Mega-blocks. Mega-
blocks can be designs consisting of as few as 2 or 3 gates to complete
programmable processors.

To make these libraries useful to designers with a wide range of
requirements‚ these blocks are made configurable. When a designer chooses a
certain configurable part (megafunction)‚ the design entry environment asks for
the size of inputs‚ outputs‚ clocking scheme‚ and many other options specific to
the component being configured.

1.2.4 Generic Configurable Functions

Some of the very common configurable parts are adders‚ ALUs‚ counters‚
stacks‚ queues and processors. When a designer selects a counter‚ the
schematic entry program allows the user to specify‚ parameters like counter
size‚ clocking‚ parallel-load‚ set and resetting‚ and carry out.

As an example‚ Figure 1.4 shows a configuration window of a counter
megafunction. After the component is configured‚ it can be placed in the
schematic editor of a design entry program and wired with other parts and
components.

1.2.5 Configurable Memories

Megafunctions are for functions that are generic and have a wide range of
applications. However‚ a designer may require functions that are hard to
implement with discrete logic and at the same time are not generic enough to be
able to use megafunctions for their implementation. In such cases‚ designers
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have the choice of using a ROM (for combinational circuits) or a RAM (for
memory functions) for implementing their designs.

As an example‚ consider a design that reads keyboard codes and generates
ASCII codes. For this‚ a large ROM can do the lookup of the ASCII code.

Figure 1.4 Configuring a Counter

User interface of our schematic entry program allows the use of ROM
megafunctions. For this‚ the user specifies the number of rows‚ columns‚ and
input or output clocking of the ROM. In addition‚ an initialization file is used
for specifying ROM contents.

1.2.6 HDL Entry

With the increasing complexity of digital systems‚ the use of Hardware
Description Languages (HDL) has become an essential mechanism for design
entry.

Figure 1.5 HDL Interface Symbol

Tools for FPLD design‚ allow the use of VHDL and Verilog for design
specification. One way of using an HDL description in a design is to take a
complete description of a part‚ generate a symbol of it and use it like any other
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predefined component in the design. Alternatively‚ a schematic entry tool‚ such
as that of Quartus II, allows definition of interface of an HDL part and uses its
wiring mechanisms to wire this HDL part with other design components.
Symbolic representation of this method is shown in Figure 1.5.

After defining the interface symbol‚ Quartus II allows generation of an HDL
template that a designer can use to enter his or her HDL code. The template
consists of the name of the component and its input and output ports.

1.3 Simulation

An important utility in any digital design environment is its simulation tool.
There are two ways a design can be simulated. One is pre-synthesis simulation
of an HDL description for functional and behavioral verification‚ and the other
is post-synthesis simulation for detailed timing verification.

1.3.1 Pre-Synthesis Simulation

Before a design described in Verilog or VHDL is synthesized‚ its functionality
must be verified. This verification is for discovering design errors‚ specification
problems and incompatibility of parts used in a design.

Because high-level HDL designs are usually described at the level that
specifies system registers and transfer of data between registers through
busses‚ this level of system description is referred to as Register Transfer Level
(RTL). Pre-synthesis simulation is also referred to as RT-level simulation.

Figure 1.6 Test Data for Simulation‚ Using a Testbench‚ and Waveform Editor
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At the RT level a design includes clock level timing but no gate and wire
delays are included. Simulation at this level is accurate to the clock level. By
performing RT level simulation‚ hazards‚ glitches‚ race conditions‚ setup and
hold violations and other timing issues will not be detected. The advantage of
this simulation is its speed compared with the gate level simulation.

Simulation of a design requires test data and HDL simulation environments
provide various methods for application of this data to the design being tested.
Test data can be generated graphically using waveform editors‚ or by use of
HDL testbenches. Figure 1.6 shows two alternatives for defining test input data
for a simulation engine. Outputs of simulators are in the form of waveforms
(for visual inspection) and text for large designs for machine processing.

Figure 1.7 HDL Simulation with ModelSim
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Simulation using an HDL testbench uses a testbench that instantiates the
design under test‚ and as part of the code of the testbench it applies test data to
the instantiated circuit. The complete testbench and the design instantiated
within it are referred to as the simulation model. The simulation model that is
shown in the upper part of Figure 1.6 is taken by the simulator engine‚
analyzed and processed and its results are generated for visual inspection
and/or machine validation. Quartus II environment suggest use of ModelSim
HDL simulator for VHDL and Verilog simulation. Figure 1.7 shows a Verilog
code of a counter circuit‚ its testbench and its simulation results as simulated
by ModelSim.

As shown in Figure 1.7‚ simulation results validate functionality of the
counter circuit being tested. With every clock pulse the counter is incremented
by 1. Note in the timing diagram shown that the counter output changes with
the rising edge of the clock and no gate delays and propagation delays are
shown here. The simulation shown in this figure shows good results no matter
how fast the circuit clock frequency is.

Obviously‚ an actual hardware component behaves differently. Based on
the timing and delays of the parts used‚ there will be a non-zero delay between
the active edge of the clock and the counter output. Furthermore‚ if the clock
frequency applied to an actual part is too fast for propagation of values within
the gates and transistors of a design‚ the output of the design becomes
unpredictable.

The simulation shown here is not provided with the details of timing of the
hardware being simulated. Therefore‚ timing problems of the hardware that are
due to gate delays cannot be detected. This is typical of a pre-synthesis or
high-level behavioral simulation. What is being verified in Figure 1.7 is that our
counter counts binary numbers. How fast the circuit works and what clock
frequency it requires can only be verified after the design is synthesized.

1.3.2 Post-Synthesis Simulation

Timing issues‚ determination of a proper clock frequency and race and hazard
considerations can only be checked by a post-synthesis simulation run after a
design is synthesized. After synthesizing a design‚ details of gates used for the
implementation of the design as well as wiring delays and load effects become
evident. The simulation model used for post-synthesis simulation contains all
such information.

The compilation phase of a design flow (Figure 1.1) generates a netlist of
gates used along with timing files. Quartus II has an embedded simulator for
post-synthesis simulation. This simulation is much slower than pre-synthesis
simulation because it analyses the design at the gate level. Waveforms and
simulation results show delay values between signal changes. If hazards occur‚
they appear as glitches in the simulation report of a post-synthesis simulation.

Figure 1.8 shows a Quartus II waveform editor screen for specification of
inputs of our counter example‚ and shows the waveform generated by post-
synthesis simulation in Quartus II.

As shown in this figure‚ there is a delay between the rising edge of the clock
and the counter output. The figure shows 5.1 ns between the rising edge of the
clock and the time that count[1] changes. As shown‚ the delay is slightly
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different for count[0]. Also depending on the count value‚ the delay value may
vary.

Figure 1.8 Post-Synthesis Simulation in Quartus II

Due to delays of wires and gates‚ it is possible that the behavior of a design
as intended by the designer and its behavior after post-synthesis simulation are
different. In this case‚ the designer must modify his or her design and try to
avoid close timings and race situations.

1.3.3 Timing Analysis

As shown in Figure 1.1‚ as part of the compilation process‚ or in some tools
after the compilation process‚ there is a timing analysis phase. This phase
generates worst-case delays‚ clocking speed‚ delays from one gate to another‚ as
well as required setup and hold times. Results of timing analysis appear in
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tables and / or graphs. Designers use this information to decide on their
clocking speed and‚ in general‚ speed of their circuits.

Quartus II allows users to place timing specification and constraints on the
implementation of their designs. This timing will be considered when the final
layout of the design is being done on an FPLD chip. Due to the internal delays
of programmable devices‚ such user constraints are not always satisfied.

1.4 Compilation

After a design is successfully entered and its pre-synthesis simulation results
has been verified by the designer‚ it must be compiled to make it one step closer
to an actual hardware on silicon.

Figure 1.9  Compilation Process

The compilation process‚ translates various parts of a design that are
described by various methods of data entry to an intermediate format (analysis
phase)‚ links all parts together‚ generates the corresponding logic (synthesis
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phase)‚ places and routes parts on the target FPLD and generates timing
details.

Figure 1.9 shows the compilation process and a graphical representation for
each of the compilation phase outputs. As shown‚ the input of this phase is a
hardware description that consists of HDL and schematic descriptions‚ and its
output is a detailed hardware for programming an FPLD. Information about the
specific FPLD to be programmed (target hardware specification in Figure 1.9)
enter the compilation process at its binding stage.

1.4.1 Analysis

As discussed in Section 1.2‚ different parts of a design may be entered by
various design entry methods. A complete design may consist of VHDL code‚
Verilog code‚ gates‚ or parts described in some propriety tool vendor’s format.
Before the complete design is turned into hardware‚ the design must be
analyzed and a uniform format must be generated for all parts of the design.

In the analysis phase‚ HDL code syntax and semantics‚ use of proper
interconnections between components‚ and appropriate use of pre-defined
components will be checked.

1.4.2 Generic Hardware Generation

After a uniform presentation for all components of a design is obtained‚ the
synthesis pass begins its operation by turning the design into a generic
hardware format‚ such as a set of Boolean expressions or a netlist of basic
gates.

1.4.3 Logic Optimization

The next phase of synthesis‚ after a design has been converted to a set of
Boolean expressions‚ is the logic optimization phase. This phase is responsible
for reducing expressions with constant input‚ removing redundant logic
expressions‚ two level minimization‚ and multi-level minimization that includes
logic sharing.

This is a very computationally intensive process‚ and some tools allow users
to decide on the level of optimization. Output of this phase is in form of
Boolean expressions‚ tabular logic representations‚ or primitive gate netlists.

1.4.4 Binding

After logic optimization‚ the synthesis process uses information from target
hardware to decide exactly what FPLD internal logic elements and cells are
needed for the realization of the circuit that is being designed. This process is
called binding and its output is specific to the FPLD used. Some FPLDs use
multiplexers and some use look-up tables. After binding is done,
interconnection of multiplexers or contents of memories implementing look-up
tables will be determined.
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1.4.5 Routing and Placement

The routing and placement phase decides on the placement of the FPLD cells
selected in the binding phase. Specific cells of the FPLD and wiring of inputs
and outputs of these cells through wiring channels and switching areas are
determined by the routing and placement phase.

The output of this phase is specific to the FPLD being used as target
hardware and can be used for its programming. Altera FPLDs use .sof (SRAM
Object File) and .pof (Programming Object File) formats for programming their
FPLDs.

The timing analyzer that was discussed in Section 1.3.3 uses post routing
and placement information.

1.5 Device Programming

Programmable devices have configuration elements that are programmed to
make a device perform the functionality we program into it. Furthermore‚ there
are various ways these configuration elements can be programmed. This
section discusses configuration elements and device programming hardware
alternatives.

1.5.1 Configuration Elements

Programmable devices incorporate three types of configuration elements:
EEPROM‚ SRAM‚ and EPROM. EEPROMs and EPROMs are non volatile
memories‚ and SRAM is volatile. All three types are reprogrammable.

EEPROM. The EEPROM cell is a transistor that is either ON or OFF depending
on the threshold voltage. Unlike EPROM devices‚ however‚ EEPROM devices
can be erased electrically. The EEPROM cell consists of a single‚ floating
polysilicon gate structure that is used to change the threshold voltage of the
transistor. The threshold voltage is changed when a tunneling mechanism
traps an access of electrons on the floating gate. Once the electrons have been
trapped on the floating gate‚ they present a negative shielding voltage and
increase the threshold voltage of the transistor‚ making it impossible to turn the
transistor on under normal operating voltages. This process allows the floating
gate to act as an ON/OFF switch for the read transistor.

The EEPROM cell is erased by the tunneling mechanism. That is‚ electrons
are removed from the floating gate‚ and the gate has a net positive charge that
allows the EEPROM transistor to be turned on or off‚ depending on the voltage
on the control gate.

SRAM. SRAM configuration elements are standard Static CMOS memory cells
that consist of NMOS and PMOS transistors. Address lines enable writing data
into cross-coupled gates of the memory through its input line‚ while the same
address lines enable reading data from this static memory element through its
output. Programming such devices is simply‚ writing into the memory and the
memory element remains programmed for as long as the power is not removed
from it.
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EPROM. The EPROM transistor is a modified NMOS transistor in which the
threshold voltage is easily switched between a low voltage and a high voltage.
The different threshold voltages represent the EPROM cell in the ON and OFF
states. The EPROM transistor has a floating polysilicon gate between the
access gate (the regular transistor gate) and the substrate. The floating gate is
electrically isolated from the substrate‚ on the one side‚ and the access gate‚ on
the other side. EPROM transistors are programmed to a high-threshold voltage
with hot electron injection. This electron injection causes some electrons to be
trapped on the floating-gate electrode‚ creating a net negative voltage on the
floating gate that opposes the electric filed created by the positive voltage on the
access gate. The result is a substantial increase in the threshold voltage
required to change the EPROM cell from a non-conducting to a conducting state
by its access gate. The programmed EPROM cell behaves as a transistor that is
turned off‚ and an erased cell works like a regular transistor operating by its
access gate.

Programmed EPROM cells in the OFF state are erased by exposing the
device to ultraviolet (UV) radiation. The excess electrons on the floating gate
absorb radiant UV energy‚ experience a rise in energy level‚ overcome the oxide-
silicon potential barrier‚ and finally migrate into substrate where they are
neutralized.

1.5.2 Programming Hardware

Programmable device manufacturers offer a variety of hardware to program and
configure their devices. For conventional device programming‚ in-system
programming‚ and in-circuit reconfiguration‚ designers can choose from
external programming hardware‚ external PC based devices‚ stand-alone
programmers‚ and download cables. Devices are programmed by sending serial
data generated after a design is successfully synthesized. The bit stream that is
generated as configuration or programming data is sent to the programmable
device in order to program it.

PC Based Programmers. A PC-based programmer is a hardware module that is
used together with an appropriate adapter to program programmable devices.
Such a component connects to a PC via the Universal Serial Bus (USB) or the
serial port. Programming and functional test information is transmitted from
the PC through the USB or serial port connection to the programmer.

Stand-Alone Programmers. A stand-alone programmer‚ together with the
appropriate programming adapters‚ provides the hardware and software needed
for programming EPROM- and EEPROM-based devices and configuring SRAM-
based devices.

Download Cables. An inexpensive way of programming devices is to download
serial configuration data via a serial download cable into the programmable
device. Such cables interface to either a standard PC or UNIX workstation RS-
232 port‚ USB port or the parallel port. Serial configuration or programming
data is sent to the JTAG port of a configurable device via the download cable.
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Configuration Devices. With SRAM-based devices‚ configuration data must be
reloaded each time the system initializes‚ or when new configuration data is
needed. Configuration devices store configuration data for SRAM-based
programmable devices. Configuration devices are programmed by any of the
programming hardware mentioned above and interface with the SRAM based
device to transfer their non-volatile program into them. The configuration data
going from a configuration device to an SRAM-based programmable device is
clocked and serial.

1.6 Summary

This chapter gave an overview of mechanisms‚ tools‚ and processes used for
taking a design from the design stage to an FPLD implementation. This
overview contained information that will become clearer in the chapters that
follow. We tried to make this information as generic as possible and not bound
to a specific tool or environment. However‚ as a typical environment‚ specific
references to the terminologies used by Quartus II were made.



2 Logic Design Concepts

This chapter gives a review of basic logic design concepts. The purpose is to
highlight only those topics that are essential for design. Knowledge of the
theoretical concepts, and much of the background concepts are assumed here.
The chapter begins with a review of number systems, and basic logic gates.
Combinational circuits and design of combinational circuits are discussed next.
We will then focus on memory elements and sequential circuit design.  Because
of importance of state machines in RT level designs, special attention is given to
these circuits in this chapter.

2.1 Number Systems

The transistor is the basic element of all digital electronic circuits. A transistor
in a digital circuit behaves as an on-off switch. Because all elements are based
on this on-off switch, they only take two distinct values. These values can be
(ON, OFF), (TRUE, FALSE), (3V, 0V), or (1, 0).

Because of this two-value system, all numbers in a computer are in base-2
or binary system. On the other hand, we use the decimal system in our every
day life. To be able to understand what happens inside a digital system, we
have to be able to convert between base-10 (Decimal) and base-2 (Binary)
systems.

2.1.1 Binary Numbers

A decimal number has n digits and the weight of each digit is where i is the
position of digits counting from the right hand side and starting with 0. For
example, 3256 is evaluated as:
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A number in base-2 is evaluated similarly, except that the weights in
decimal are instead of For example 10110 is evaluated as:

By considering the weights in decimal and multiplying binary digits (bit) by
their weights a binary number is converted to its equivalent decimal.

For conversion from decimal to binary, a decimal number is broken into
necessary parts. Corresponding to the i values for which the decimal number
has a part, there is a 1 in the equivalent binary number. For example
can be broken into:

256
64
4
1

that is
that is
that is
that is

and

Therefore, the equivalent binary number has 1s in positions 0, 2, 6, and 8,
which makes the binary equivalent of to become

Methods described above for decimal to binary and binary to decimal also
apply to fractional numbers. In this case the weight of digits on the right hand
side of the decimal point are Similarly, the weights of binary
digits on the right hand side of the binary point of a fractional binary number
are

For example, in binary becomes in decimal, and
in decimal translates to When converting from decimal to

binary, for keeping the same precision as in the decimal number, a fractional
decimal digit translates to 3 fractional binary digits.

2.1.2 Hexadecimal Numbers

A number in binary requires many bits for its representation. This makes,
writing, documenting, or entering into a computer very error-prone. A more
compact way of representing numbers, while keeping a close correspondence
with binary numbers, is Hexadecimal representation.

Table 2.1 shows Hexadecimal digits and their equivalent Decimal and
Binary representations. As shown, a base-16 digit translates to exactly 4 bits.
Because of this, conversion from (to) a binary number to its (from) hex
(hexadecimal) equivalent are straight forward processes. Therefore, we can use
Hex numbers as a compact way of writing binary numbers. Several examples
are shown below:
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2.2 Binary Arithmetic

In general, binary arithmetic is done much the same way as it is in the decimal
system. In straight arithmetic, binary arithmetic is even simpler than decimal
because it only involves 1s and 0s.

2.2.1 Signed Numbers

As we discussed earlier, everything inside a digital system is represented by 1s
and 0s. This means that we have no way of representing plus (+) or minus (-)
signs for signed numbers other than using 1s and 0s. Furthermore, unlike
writing on paper that we can use as many digits as we like, representing
numbers inside a digital system is limited by the width of busses, storage units,
and lines. Because of these, a binary number in a digital system uses a fixed
width, and the left most bit of the number is reserved for its sign.

A simple signed number system is sign and magnitude (S&M) in which a 0
in the left-most position of the number represents a positive and a 1 represents
a negative number. For example +25 in 8-bit S&M system is 00011001 and -
25 is 10011001. Note here that enough 0’s are put between the sign-bit and
the magnitude of the number to complete 8 bits.

2.2.2 Binary Addition

As mentioned before, binary addition is very similar to decimal addition, and
even easier. Adding two numbers starts from the right-hand side and with
addition of every two bits a carry is generated. The carry is added to the
addition of the next higher order bits. An example binary addition is shown
below.
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Addition is done in slices (bit positions) and with every add operation, there
is a sum and a carry. The sum bit is the add result of the slice being added,
and the carry is carried over to the next higher slice. The right-most bit result
is the least-significant bit and is calculated first, and the sign-bit is calculated
last.

2.2.3 Binary Subtraction

We can perform subtraction in binary using borrows from higher bits. This is
similar to the way subtraction is done in decimal. However, this requires a
different process from binary addition, which means that a different hardware
is needed for its implementation.

2.2.4 Two’s Complement System

As an alternative procedure for adding and subtracting, we can write numbers
in the 2’s complement number system and perform subtractions the same way
we add. This signed number representation system is used to simplify signed
number arithmetic.

Unlike the S&M system, in the 2's complement system just changing the
sign-bit is not enough to change a positive number to a negative number or
vice-versa. In this system, to change a positive (negative) number to a negative
(positive) number, all bits must be complemented and a 1 must be added to it.
For example -25 is calculated as shown below:

00011001
11100110
00000001
11100111

(=25)
(complementing all bits)
(adding a 1)
(-25)

When subtracting, instead of performing A-B, subtraction is done by A+(-B),
in which (-B) is the two's complement of B. As an example consider subtraction
of 25 from 93. First, 25 is turned into its two's complement negative
representation that is 11100111 (as shown above). Then +93 that is
01011101 and -25 are added together as shown below:



21

When adding a positive and negative number that results in a positive number,
or adding two negative numbers that results in a negative number, a last carry
(as in the above example) is generated that is ignored.

2.2.5 Overflow

In the two's complement arithmetic if adding two positive (negative) numbers
with 0 (1) sign bits results in a result that has a 1 (0) in its sign-bit position, an
overflow has occurred. This means that the result requires more room than is
given to it. For example, the following addition is an over-flow case and the
result is not valid.

In the above example the last bit beyond the sign-bit is dropped, as is done in
2's complement arithmetic. The final result of adding two negative numbers is
a positive number that cannot be correct.

The case of overflow can be corrected by allocating more bits to the
numbers involved in the two's complement arithmetic. A 2's complement
number can be extended to occupy more bits by extending its sign-bit to the
left. For example, 10111010 in 8-bit 2's complement system becomes
1111111110111010 in 16-bit 2's complement system. The overflow example
shown above can be corrected if performed in 16-bit system as shown below:

In the above example, two negative numbers are added and a negative result is
obtained, no over-flow occurs here.

2.3 Basic Gates

The transistor is the basic element for all digital logic components. However,
for a design with several million transistors, designers cannot think at the
transistor level. Therefore, transistors are put together into more abstract
components, called gates, so that designers thinking at the high behavioral level
can better relate to such abstract components. Later we will see that even gate
structures are not abstract enough and designers need higher level means of
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specifying their designs. For this chapter, however, we concentrate on gates
and gate-level designs.

2.3.1 Logic Value System

The (0, 1) logic value system is a simple representation for voltage levels in a
digital circuit. However, this logic value system fails to represent many
situations that are common in digital circuits. For example if a line is
connected to neither Gnd nor Vdd, it is neither 0 nor 1. Or a line that is both
driven by logic 0 and logic 1, is neither a 0 nor a 1.

A more complete system for representation of logic values is the four-value
system, shown in Table 2.2.

In logic simulations, a line that is not driven through pull-up or pull-down
structures assumes Z. A line or a wire that is driven by both pull-up and pull-
down structures appears as X in the simulation report.

Figure 2.1 MOS Transistors
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2.3.2 Transistors

The CMOS technology uses two types of transistors called NMOS and PMOS.
These transistors act like on-off switches with the Gate input controlling
connection (current flow) between Drain and Source terminals. As shown in
Figure 2.1, an NMOS transistor conducts when logic 1 representing a high-
voltage level drives its Gate. The conduction path allows current to flow
between its Source and Drain terminals. Driving the Gate of an NMOS
transistor with logic 0 (low voltage value) causes an open between Source and
Drain terminals, which causes no current to flow through the transistor in
either way.

As shown in Figure 2.1, opposite to the way an NMOS transistor works, the
PMOS transistor conducts when its gate is driven by 0, and is open when its
gate is driven by logic 1 (or high voltage value).

2.3.3 CMOS Inverter

An inverter (also referred to as NOT gate) is a logic gate with an output that is
the complement of its input. Transistor level structure of this gate, its logic
symbol, its algebraic notations, and its truth table are shown in Figure 2.2.

In the transistor structure shown in this figure, if a is 0, the upper
transistor conducts and w becomes 1. If a is 1, there will be a conduction path
from w to Gnd which makes it 0. The table shown in Figure 2.2 is called the
truth table of the inverter and lists all possible input values and their
corresponding outputs. The inverter symbol is a bubble that can be placed on
either side of a triangle representing a buffer.

Figure 2.2 CMOS Inverter (NOT gate)

2.3.4 CMOS NAND

A CMOS NAND gate uses two series NMOS transistors for pull-down, and two
parallel PMOS transistors in its pull-up structure. Figure 2.3 shows structure
and notations used for this gate.
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Figure 2.3 CMOS NAND

In the structure shown in Figure 2.3, if a and b are both 1, there will be a
conduction path from w to Gnd, making w 0. Otherwise, the pull-up structure,
instead of the pull-down structure, conducts that forces supply current to flow
to w, making this output 1.

2.3.5 CMOS NOR

A CMOS NOR gate uses two parallel NMOS transistors in its pull-down
structure and two series PMOS transistors in its pull-up. Figure 2.4 shows
structure and notations used for this gate. For the output of a NOR gate to
become 1, the pull-up structure must conduct. This means that both a and b
must be 0.

Figure 2.4 CMOS NOR
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2.3.6 AND and OR gates

Figure 2.5 shows symbolic notations, algebraic forms and truth tables for AND
and OR gates. These gates are realized using inverters on the outputs of NAND
and NOR gates.

Figure 2.5 AND and OR gates

2.3.7 MUX and XOR gates

In addition to gates discussed above, several other logic structures become
useful for realization of logic functions. One such gate or structure is the
multiplexer that selects one of its Inputs depending on the value of its select (s)
input. Shown in Figure 2.6, the a input of the MUX appears on its output when
s is 0. HDL expression of the MUX and its truth table are shown in Figure 2.6.
The right hand side of the equation shown reads as: if (s is 1) then (b) else (a).
This is a convenient conditional expression that is used in the C language and
Verilog.

Figure 2.6 Multiplexer

The XOR gate (Exclusive-OR) that is shown in Figure 2.7 is similar to the
OR gate except that its output is 1 when only one of its inputs is 1.
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Figure 2.7 Exclusive-OR

2.3.8 Three-State Gates

All gates discussed so far generate a 1 or a 0 on their outputs depending on the
values on their inputs. A three-state (also referred to as tri-state) buffer (or gate)
has a data input (a) and a control input (c). Depending on c, it either passes a
to its output (when c is 1) or it floats the output (when c is 0). As previously
discussed, a float wire is represented by Z. Figure 2.8 shows a three-state
buffer with true-value output and active-high control input. A truth-table and
an algebraic representation are also shown for this structure.

Figure 2.8 Three-State Gate

Other gate structures can be built by use of transistors arranged into
complementary NMOS pull-down and PMOS pull-up structures. Furthermore,
more complex functions can be built by use of gates discussed above.

2.4 Designing Combinational Circuits

Primitive gates discussed in the previous section form a set of structures with
which any digital circuit can be designed. Methods of utilizing these parts for
implementation of logic functions are discussed here.

2.4.1 Boolean Algebra

When a design is being done, a designer thinks of the functionality of the design
and not the gate structure of it. To facilitate the use of logic gates and to make
a correspondence between logic gates and design functions, Boolean algebra is
used.

Boolean variables used in Boolean algebra take 1 or 0 values only. This
makes Boolean algebraic rules different from the algebra that is based on
decimal numbers.
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Boolean algebra operations are AND, OR and NOT and their algebraic
notations are ., + and The AND operator between two operands can be
eliminated if no ambiguities occur. An over-bar also represents the NOT
operator. Basic rules used for transformation of functions into gates are
discussed below. These are Boolean algebra postulates and theorems.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

a + 0 = a
a·1 = a

a + 1 = 1
a · 0 = 0

a + a = a
a · a = a

a + b = b + a
a · b = b · a

a + (b + c) = (a + b) + c
(a · b) · c = a · (b · c)

a + b · c = (a + b) · (a + c)
a · (b + c) = a · b + a · c

a + a · b = a
a · (a + b) = a

Duality: If E is true, changing AND (.) to OR (+), OR (+) to AND(.), 1 to 0,
and 0 to 1 results in that is also true.

DeMorgan's:

Once designers obtain functionality of their designs, they translate this
functionality into a set of Boolean expressions. Using the above rules, this
functionality can be manipulated, minimized, and put into a form that can be
realized using gates described in Section 2.3.

As an example, consider the overflow situation that may arise in two's
complement addition. Consider the sign bits of the operands and the result,
a7, b7 and s7. Overflow (v) occurs if a7 is 1, b7 is 1, s7 is 0 or if a7 is 0, b7 is
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0, and s7 is 1. This statement can be written as the following Boolean
expression

Applying Rule 12 (DeMorgan's Theorem), described above, v becomes:

This expression is realized using NAND and NOT gates as shown in Figure 2.9.

Figure 2.9 An Overflow Detector

2.4.2 Karnaugh Maps

Application of rules of Boolean algebra and expressing a hardware function with
Boolean expressions is not always as easy as it is in the overflow example
above. Karnaugh maps present a graphical method of representing Boolean
functions. Karnaugh maps have close correspondence with tabular list of
function output values, and at the same time present a visual method of
applying Boolean algebra rules.

Figure 2.10 shows a 3-variable truth table and its corresponding karnaugh
map (k-map). The truth table shows the listing of output values of a function in
a list, and a k-map shows this information in a two-dimensional table.

A Boolean expression can be obtained for function f by reading rows of its
truth table. As shown, function f is 1 for four combinations of a, b, and c. In
Row #3, f is 1 if a is 0, b is 1 and c is 1. This means that the complement of a
ANDed with b and ANDed with c make f become 1. Therefore if is 1 f
becomes 1. This term is called a product term and since it contains all
variables of function f it is also called a minterm of this function.
Corresponding to every row of f in which function f is 1 there is a minterm.
Function f is 1 if any of its minterms are true. Therefore function f can be
written by ORing its four minterms, as shown below:



29

This form of representing a function is called sum of products, and since the
product terms are all minterms. this representation is the Standard Sum Of
Products(SSOP).

As shown in Figure 2.10, the same expression could be written by reading
the karnaugh map shown. For this, a product term corresponds to every box of
the Karnaugh map that contains a 1. However, the k-map has certain
properties that we can use to come up with a more reduced form of sum of
products.

Figure 2.10 A 3-Variable K-map

For discussion of Karnaugh map properties, we define Boolean and physical
k-map adjacency as follows:

Boolean Adjacency: Two product terms are adjacent if they
consist of the same Boolean variables and only one variable
appears in its true-form in one and complement in another (v in
one, in another).

Physical Adjacency: Two k-map boxes are adjacent if they are
horizontally or vertically next to each other.

Numbering k-map rows and columns are arranged such that input
combinations corresponding to adjacent boxes in the map are only different in
one variable. This means that two Physical Adjacent boxes are also Boolean
Adjacent. The main idea in the k-map is that two minterms that are different in
only one variable can be combined to form one product term that does not
include the variable that is different in the two minterms.

In the k-map of Figure 2.10, and a · b · c that are Boolean adjacent
can be combined into one product term as shown below:

In the resulting product term, variable a that appears as a in one product term
and in another is dropped. Because of adjacency in the k-maps, the same
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can be resulted without having to perform the above Boolean manipulations.
Figure 2.11 shows minimization of function f using k-map grouping of terms.

Figure 2.11 Minimizing Function f

This figure shows that instead of writing the ORing of minterms and
a · b · c and then using Boolean algebra to reduce it to b · c , we can directly write
b · c by reading the k-map. Since the two 1's corresponding to these product
terms are physically adjacent on the k-map, they are also Boolean adjacent.
Therefore, the product term that corresponds to these two adjacent 1's is one
that includes all the variables except the variable that appears as its true and
its complement in the two adjacent k-map boxes (variable a).

The following Boolean manipulations correspond to the mappings shown in
Figure 2.11:

As shown above, the term a · b · c is repeated 3 times. This is according to
Boolean algebra Rule 4 of Section 2.4.1 that states ORing an expression with
itself is the same as the original expression. In the k-map, application of this
rule is implied by using the k-map box with a 1 that corresponds to abc=111 in
as many mappings as we need (here in 3 mappings). For another example, we
use a 4-variable map.

A four-variable function, its k-map, its minimal Boolean realization, and its
gate level implementation are shown in Figure 2.12. To make a correspondence
between Boolean adjacency and k-map physical adjacency, we visualize a k-
map as a spherical map in which, in the back of the sphere, the sides of the
map and its four corners are adjacent.

With this interpretation, the four corners of the k-map of Figure 2.12 form
two product terms that are themselves adjacent. The complete mapping of the
four corners of the map results in only one product term. By use of Boolean
algebra rules, Figure 2.13 shows justification for combining the four corners of



31

the k-map into one product term. In this diagram Position indicates North
West, North East, South West and South East of the map.

Figure 2.12 Minimizing a 4-variable Function

Figure 2.13 Combining Four Corners of a 4-variable Map

For implementation of this function another product term is needed to
cover minterms a · b · c · d and Because of adjacency of these two
terms, variable b drops in the resulting product term. Figure 2.12 shows the
minimal realization of function w. After a minimal SOP is obtained, it is
converted to an expression using NAND operations by application of
DeMorgan's theorem.
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2.4.3 Don't Care Values

In some designs, certain input values never occur or if they do occur, their
outputs are not important. For example, consider a design that takes a one-
digit BCD number (Binary Coded Decimal) as input and generates a 1 output
when the input is divisible by 3. The 4-bit input includes combinations ranging
from 0 to 15 binary. However, 1010 through 1111 combinations are not valid
BCD numbers and are not expected to appear on the circuit inputs.

Figure 2.14  Using Don't Care Values

When we are designing this circuit with a k-map, we have to decide what to
do with the k-map boxes that correspond to the invalid BCD numbers. If we fill
them with all 1s, we will end up mapping unnecessary 1s. However, if we fill
them with all 0s, mapping function minterms may become too limited. The
alternative is to leave them as undecided or (Don't Care) values and let the
mapping decide what values these invalid cases take.

We use a dash (-), or d or X for showing a Don't Care k-map value. When
mapping for a minimal realization, we only use the Don't Care values if they
help us form larger maps. This way, those mapped Don't Care values are used
as 1s and the rest are 0s.

The solution to the problem stated above is shown in Figure 2.14. Note
here that of the 6 Don't Care values 4 are used for forming larger maps and 2
are not mapped.
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2.4.4 Iterative Hardware

Boolean minimization of functions by use of Boolean rules or, indirectly, by use
of k-maps is only practical for small functions. Partitioning based on regularity
of a structure, or based on independent functionalities, help in breaking a
circuit into smaller manageable circuits.

For example, consider a 4-bit comparator that generates a 1 when its 4-bit
A input is greater than its 4-bit B input (Figure 2.15). One way of doing this
circuit is to try to come up with its minimal realization by doing an 8-variable k-
map. Obviously, this is not practical.

Figure 2.15 A 4-bit Comparator

Alternatively, we can design the comparator by first comparing the most
significant bits of its two inputs and working our way into the least significant
bit.

The G output becomes 1 if is greater than Logically, this means that
the product term forms an AND gate that is an input for an OR gate that
generates G. Next, we compare and only if the decision for putting a 1 on
G cannot be made by and This means that the decision based on and

can only be made if and are equal. Therefore the product term
can only cause the G output to become 1 when and are equal

Repeating this logic for all bits of the two inputs from bits 3 down
to 0, we will cover all logics that causeG to become 1 when we reach and
Figure 2.16 shows the resulting hardware for our 4-bit comparator. This
hardware has a repeating part, and can easily be extended for larger magnitude
comparators.

As another example of iterative hardware, consider the design of an 8-bit
adder. Adding two 8-bit numbers is shown in Figure 2.17. As shown in this
figure, adding is done bit-by-bit starting from the right-hand side. The process
of adding repeats for every bit position. This process uses a carry-in from its
previous position (i-1), adds it to and and generates as well as a carry-
out for the next position. Therefore, hardware for the 8-bit adder uses eight
repetitions of a one-bit adder that is called a Full-Adder (FA).
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Figure 2.16  An Iterative Comparator

Figure 2.17  Adding Two 8-bit Numbers

The FA hardware has 3 inputs (Carry-in bit i of A (a), and bit i of B (b))
and two outputs (Carry-out and bit i of sum (s)). Figure 2.18 shows the
design of an FA using k-maps. Also shown in this figure is an 8-bit adder using
eight full-adders. This adder design is referred to as "ripple-carry" since the
carry ripples from one FA to another.



35

Figure 2.18  An 8-bit Ripple Carry Adder

Hardware components like the comparator and the adder described above
are iterative, cascadable, extendable, and in many cases configurable. In
designing digital systems it is important to have a library of such packages
available. Instead of designing from scratch, a digital designer uses these
packages and configures them to meet his or her design requirements.

Discrete logic gates used to match inputs and outputs of various packages
are referred to as "Glue Logic".

2.4.5 Multiplexers and Decoders

Other packages that become useful in many high level designs include
multiplexers and decoders.

A multiplexer is like an n-position switch that selects one of its n inputs to
appear on the output. A multiplexer with n inputs is called an n-to-1 Mux. The
number of bits of the inputs (b) determines the size of the multiplexer. A
multiplexer with n data inputs requires number of select lines to select
one of the n inputs; i.e.,

For example, a multiplexer that selects one of its four (n=4) 8-bit (b=8)
inputs is called an 8-bit 4-to-1 Mux. This multiplexer needs 2 select lines (s=2).
Schematic diagram of this multiplexer is shown in Figure 2.19. This circuit can
be built using an array of AND-OR gates or three-state gates wired to
implement a wired-OR logic. Figure 2.20 shows the gate level design of a 1-bit
4-to-1 Mux.
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Figure 2.19  An 8-bit 4-to-1 Mux

Figure 2.20  A 4-to-1 Mux

Multiplexers are used for data selection, bussing, parallel-to-serial conversion,
and for implementation of arbitrary logical functions. A 1-bit 2-to-1 Mux can be
wired to implement NOT, AND, and OR gates. Together with a NOT, a 2-to-1
Mux can be used for implementation of most primitive gates. Because of this
property, many FPGA cells contain multiplexers for implementing logic
functions.

Another part that is often used in high level designs is a decoder.
Generally, a combinational circuit that takes a certain code as input and
generates a different code is referred to as a decoder. For example, a circuit
that takes as input a 4-bit BCD (Binary Coded Decimal) and generates outputs
for display on a Seven Segment Display (SSD) is called a BCD to SSD decoder.

A more accurate definition is that a decoder has as many outputs as it has
combinations of inputs. For every combination of values on its inputs a certain
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output of the decoder becomes active. For example a 2-to-4 binary decoder has
2 inputs forming four combinations. Its four outputs become active for input
combinations, 00, 01, 10, and 11. The gate level design of this decoder is
shown in Figure 2.21.

Figure 2.21  A 2-to-4 Decoder

The selected output in Figure 2.21 becomes 0 and all others are 1. The
circuit also has an enable input, EN. For the decoder to become operational,
this input must be 1. The enable input is useful for cascading decoders.

2.4.6 Activity Levels

Activity levels for input and output ports of digital circuits refer to the way that
these ports function. For example an active-low output (like the decoder
described above) is 1 when not active and it becomes 0 when active. An active-
low enable input of a circuit makes the circuit operational when it is 0. When
such an input is 1, circuit outputs become inactive. The EN input of the
decoder described above is an active-high enable input.

A NAND gate can be looked at as an AND gate with an active-low output
and active-high inputs. A NAND gate can also be looked at as an OR gate with
active-low inputs and active-high output (see Figure 2.22). The following
Boolean expressions justify these views of a NAND gate:

Using correct polarities and notations with correct activity-level markings,
make circuit diagrams more readable. For example in Figure 2.22 the two
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circuits with w output are equivalent. The one on the left requires writing
Boolean expressions to understand its functionality, but the function of the one
on the right can easily be understood by inspection.

Figure 2.22 NAND Gate Activity Levels

2.4.7 Enable / Disable Inputs

Many digital logic packages, like multiplexers and decoders come with enable
(EN) and/or output-enable (OE) inputs. When an input is referred to as EN, it
means that if this input is not active, all circuit outputs are inactive. On the
other hand, an OE input is for three-state control of the output. In a circuit
with an OE input, if OE is active, the outputs of the circuit are as defined by the
function of the circuit. However when OE is inactive, all circuit outputs become
high-impedance or float (Z value).

Figure 2.23 Wiring Circuits with OE Control Inputs

Circuits with three-state outputs require an OE input. Outputs of such
circuits can be wired to form wired-OR logic. Figure 2.23 shows two 2-to-1
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multiplexers with three-state outputs that are wired to form a 4-to-1
multiplexer.

If the multiplexers of Figure 2.23 had EN inputs instead of OE inputs,
forming the final output of the circuit, w, would require an OR gate.

2.4.8 A High-Level Design

In the first part of this chapter we showed that instead of using transistors in a
design, we wire them to form upper-level structures (primitive gates) with easier
functionalities that digital designers can relate to. In the second part, we
discussed the use of gates in still higher level structures such as adders,
comparators, decoders and multiplexers. With these higher-level structures,
designers will be able to think at a more functional level and not have to get
involved in putting thousands of gates together for a simple design.

This level of design is called RT (Register Transfer) level. In today's designs,
designers think at this level and most design tools work at this level. Most
design libraries include configurable RTL components for designers to use.

As a simple RT level design, consider an 8-bit Absolute-Value calculator.
The circuit takes a positive or negative 2's complement input and generates the
absolute value of its input on its 8-bit output. The circuit diagram using RT
level packages is shown in Figure 2.24.

Figure 2.24  An Absolute Value Circuit

The circuit uses an array of eight NOT gates to form the complement of the
input. Using the adder shown a 1 is added to this complement to generate the
two's complement of the input. The multiplexer on the output uses the sign-bit
of the input to select the input if it is positive or to select the 2's complement of
the input if the input is a negative number.

2.5 Storage Elements

Circuits discussed so far in this chapter were combinational circuits that did
not retain a history of events on their inputs. To be able to design circuits that
can make decisions based on past events, we need to have circuits with
memory that can remember some of what has happened on their inputs. This
section discusses the use of memory elements that help us achieve this.
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The past history of a memory circuit participates in determination of its
present output values. Therefore, outputs of these circuits are not only a
function of their inputs, but also a function of their past history. This history
enters the logic structure of a memory circuit by way of feedbacks from its
outputs back to its inputs. The more lines that are fed back means that the
circuit remembers more of its past.

2.5.1 The Basic Latch

The circuit shown in Figure 2.25 is the basic latch. We will show that this
circuit has some memory. The circuit has one feedback line from its y output
back to its input. One feedback line that can take 0 or 1 binary values means
that the circuit remembers only two things from its past.

Figure 2.25  The Basic latch (Two Equivalent Circuits)

Applying the waveform shown in Figure 2.26 to the inputs of the latch of
Figure 2.25 shows that a pulse on s sets the w output to 1 and a pulse on r
sets it to 0.

Note from of the timing diagram of Figure 2.26 that at time a when s and r
are both 0, w is 0, and at time b when the same exact values appear on the
circuit inputs the output is 1. This reveals that the output depends not only on
the present input, and that the circuit is remembering something from its past
history.

Figure 2.26  Setting and Resetting the Basic Latch

An interpretation of the behavior of this circuit is that a complete positive
pulse on the input s causes w to set and a complete pulse on r causes it to
reset. Because of this behavior, the circuit of Figure 2.25 is called an SR-Latch.
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This structure is the basic element for most static memory structures.
Alternative structures that implement this memory behavior use NAND gates or
inverters and pass-transistors.

2.5.2 Clocked D Latch

The memory behavior of the SR-latch does not have a close correspondence to
the way we think about storing data or saving information. The structure
shown in Figure 2.27 improves this behavior. In this structure, when clock is 1
a 1 on D causes s to become 1 which causes Q to set to 1, and a 0 on D causes
r to become 1 to reset Q.

Figure 2.27 A Clocked D-Latch

This structure behaves as follows: when clock becomes 1, the value of D will
be stored until the next time that clock becomes 1. At all times this value
appears on Q and its complement on

This behavior that at a given time, determined by the clock, a value is stored
until the next time we decide to store a new value, corresponds more to the way
we think about memories. The circuit of Figure 2.27 is called a clocked D-latch
and is used in applications for storing data, buffering data, and temporary
storage of data. For storing multiple bits of data, multiple latches with a
common clock can be used. Figure 2.28 shows a quad latch using a symbolic
representation of a latch.

Figure 2.28  Quad Latch

In Figure 2.27 when clock is 1, data on D pass through the latch and reach
Q and changes on D directly affect Q. Because of this, this structure is called a
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transparent latch. The symbolic notation of latch shown in Figure 2.28
indicates dependence of D on clock. This shows that control signal 1 that is the
clock signal controls the D input.

2.5.3 Flip-Flops

The latch as discussed above is a good storage element, but because of its
transparency, it cannot be used in feedback circuits. Take for example a
situation that the output Q of the latch goes through a combinational circuit
and feeds back to its own inputs (see Figure 2.29). Because latches are
transparent, the feedback path stays open while the clock signal is active. This
will result in an unpredictable latch output due to the uncontrolled number of
times that data feeds back through the logic block. In some cases the output
oscillates while the clock is active.

Figure 2.29 Latch Feedback Causes Unpredictable Results

To overcome the above mentioned problem, a structure without
transparency must be used. Conceptually this is like the use of double doors
for building entrances. At any one time only one door is open to keep the air-
conditioned air inside the building.

For our case, we use two latches with inverting clocks as shown in Figure
2.30. When clock is 0, the first latch stops data on D from propagating to the
output. When clock becomes 1, data is allowed to propagate only as far as the
output of the first latch (M). While this is happening the second latch stops
data on M from propagating any further. As soon as clock becomes 0, D and M
are disconnected and data stored in M propagates to Q. The latch on the left is
called master, and the one on the right is the slave. This structure is called a
master-slave D-flip-flop. At all times, input and output of this structure are
isolated.

Other forms of flip-flops that have this isolation feature use a single edge of
the clock to accept the input data and affect the output. Such structures are
called edge-trigger flip-flops. Figure 2.31 shows a rising- and a falling-edge D-
flip-flop. The triangle indicates edge triggering and the bubble on the clock
input of the circuit on the right indicates negative (falling) edge triggering.
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Figure 2.30  A D-Flip-Flop, Its Symbolic Notation and Waveform

Figure 2.31  Edge Trigger Flip-flops

2.5.4 Flip-Flop Control

The initial value of a flip-flop output depends on its internal gate delays, and in
most cases is unpredictable. To force an initial state into a flip-flop, set and
reset control inputs should be used. Other control inputs for flip-flops are
clock-enabling and three-state output control signals.

A Set or Preset control input forces a flip-flop into its 1 state, and a Reset or
Clear input forces it to 0. We refer to these signals as flip-flop initialization
inputs. Such control inputs can act independent of the clock, or act like the D-
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input with the specified edge of the clock. In the former case, the initialization
inputs must be put into the internal logic of a flip-flop and are called
asynchronous control inputs. In the case that a control signal only affects the
flip-flop when the flip-flop is clocked, it is called a synchronous control input.
Synchronous control inputs can be added to a flip-flop by adding external logic.
Figure 2.32 shows four flip-flops with various forms of synchronous and
asynchronous controls. To indicate clock dependency in a flip-flop with a
synchronous control, the clock identifier (number 1 on the right hand side of
letter C) is used on the left hand side of the control signal name.

Figure 2.32 Flip-flops with Synchronous and Asynchronous Control

Another control input for flip-flops is a clock enabling input. When
enabled, the flip-flop accepts its input when a clock pulse arrives, and when
disabled, clocking the flip-flop does not change its state.

Figure 2.33 Clock Enabling

Two implementations for clock enabling are shown in Figure 2.33. The one
on the left, circulates data back into the flip-flop when it is disabled (EN = 0).
When enabled, the external data on the D input is clocked into the flip-flop.
The structure shown on the right, uses an AND gate to actually gate the clock
and stop the flip-flop from accepting data on its D input. This is called clock
gating and because of its critical timing issues, care must be taken when using
this implementation.

Some flip-flops come with three-state outputs. In this case, a three-state
buffer on the output is controlled by an OE (Output Enable) control input.
Hardware implementation of this feature and its symbolic notation are shown in
Figure 2.34. The use of a triangle on the output side of the symbolic notation is
useful, but is not always used.
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Figure 2.34  Three-State Control

2.5.5 Registers

The structure formed by a group of flip-flops with a common clock signal and
common control signals is called a register. As with flip-flops, registers come in
different configurations in terms of their enabling, initialization and output
control signals. Figure 2.35 shows an 8-bit register with an active-low three-
state output control and a synchronous active low reset. A register is also said
to a group of latches.

Figure 2.35  An 8-bit Register

2.6 Sequential Circuit Design

This section discusses design of circuits that have memory; such circuits are
also called sequential circuits. We will first discuss the design of sequential
circuits using discrete parts (gates and flip-flops) and then focus our attention
on sequential packages. This approach is similar to what was done in Section
2.4 for combinational circuits.

2.6.1 Finite State Machines

A sequential circuit is a digital system that has memory and decisions it makes
for a given input depend on what it has memorized. These circuits have local
(inside flip-flops) or global feedbacks and the number of feedbacks determine
how much of its past history it remembers.

The number of states of a sequential circuit is determined by its memory. A
circuit with n memory bits has possible states. Signals or variables
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representing these states (n of them) are called state variables. Because
sequential circuits have a finite number of states, they are also called finite-
state machines, or FSM.

All sequential circuits - from a single latch to a network of high performance
computers - can be regarded as an FSM. These machines can be modeled as a
combinational circuit with feedback. If the feedback path includes an array of
flip-flops with a clock for controlling the timing of data feeding back, the circuit
becomes a synchronous sequential circuit. Figure 2.36 shows the Huffman
model of synchronous sequential circuits. This model divides such a circuit
into a combinational part and a register part.

Figure 2.36 Huffman Model of a Sequential Circuit

The clock shown is the synchronization signal. Outputs that are fed back to
the inputs are state variables. The inputs of the flip-flops become the present
state of the machine after the circuit clock ticks. The circuit decides on its
outputs and its next state based on its inputs and its present state.

2.6.2 Designing State Machines

To show the design process for FSMs, we use a simple design with one input
and one output. The circuit searches on its input for a sequence of 1s and 0s.
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This circuit is called a sequence detector, and the procedure used in its design
applies to the design of very large FSMs.

Problem Description. A sequence detector with one Input, x and one output, w,
is to be designed. The circuit searches on its x input for a sequence of 1011. If
in four consective clocks the sequence is detected, then its output becomes 1
for exactly one clock period. The circuit continuously performs this search and
it allows overlapping sequences. For example, a sequence of 1011011 causes
two positive pulses on the output. Figure 2.37 shows a timing diagram example
of this search.

Figure 2.37  Searching for 1011

State Diagram. The above problem description is complete, but does not
formally describe the machine. To design this sequence detector, a state
diagram which has representations for all states of the machine must be used.
A state diagram is like a flowchart and it completely describes our state
machine for values that occur on its input. Input events are only considered if
they are synchronized with the clock. Figure 2.38 shows the state diagram of
our 1011 detector.

As shown in this state diagram, each state has a name (A through E) and a
corresponding output value (w is 1 in E and 0 in the other states). There are
edges out of each state for all possible values of circuit inputs.

Since we only have one input, two edges, one for x=0 and one for x=1 are
shown for each state. Since the machine is to detect 1011, this sequence
always ends in state E, no matter what state we start from. In each state, if the
input value that takes the machine one state closer to the output is not received
(e.g., receiving a 0 in state D), the machine goes to the state that saves the most
number of bits of the correct sequence. For example a 0 in state D takes the
machine to state C that has a 0 output, since state D is the state that 101 has
been detected and a 0 on x makes the remembered received bits 1010. Of
these remembered bits only the last 10 can be used towards a correct
sequence, and therefore the machine goes to state C that remembers this
sequence.
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Figure 2.38 State Diagram for the 1011 Detector

State Table. Design of digital circuits requires data and behavior of the circuit
that is being designed to be represented in a tabular form. This enables us to
form truth tables and/or k-maps from this behavioral description. Therefore,
the next step in design of our sequence detector is to form a table from the state
diagram of Figure 2.38.

Figure 2.39 State Table of the 1011 Detector

Figure 2.39 shows the state table that corresponds to this state diagram.
The first column shows the present states of the machine, State. Table entries
are the next states of the machine for x values 0 and 1. The table also shows
the output of the circuit for various states of the machine. State E goes to state
C for x of 0 and to state B if x is 1. The value of the w output in this state is 1.

State Assignment. The state table of Figure 2.39 takes us one step closer to the
hardware implementation of our sequence detector, because the information is
represented in a tabular form instead of the graphical form of Figure 2.38.
However, hardware implementation requires all variables in a circuit
description to be in binary. Obviously, in our state table, state names are not
in binary.

For this binary representation, we assign a unique binary pattern (binary
number) to each of the states of our state table. This step of the work is called
"state assignment". Because we have five states, we need five unique binary
numbers, which means that we need three bits for giving our states unique bit
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patterns. Figure 2.40 shows the state assignment that we have decided to use
for this design.

Figure 2.40 State Assignment

Specific bit patterns given to the states of a state machine are not
important. Binary values assigned to each state become values for and

These variables are state variables of our machine.

Transition Table. Now that we have binary values for the states of our state
machine, state names in the state table of Figure 2.39 must be replaced with
their corresponding binary values. This will result in a tabular representation
of our circuit in which all values are binary. This table is called a transition
table and is shown in Figure 2.41.

Figure 2.41 Transition Table for the 1011 Detector

A transition table shows the present values of state variables and
and their next values Next state values are those that are

assigned to the state variables after the circuit clock ticks once. Since only five
of eight possible states are used, three combinations of state-variable value are
unused. Therefore, next state and output values for these table entries are
don't care values.
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Excitation Tables. So far in the design of the 1011 detector, we have
concentrated on the design of the complete circuit including its combinational
and register parts, as defined by the Huffman model of Figure 2.36. We have
been discussing present and next state values, which obviously imply a
sequential circuit.

In the next step of the design, we separate the combinational and the
register parts of the design. The register part is simply an array of flip-flops
with a common clock signal. The combinational part is where present values of
flip-flops (their outputs) are used as input to generate flip-flop input values that
will become their next state values.

Because a D-type flip-flop takes the value on its D input and transfers it
into its output after the edge of clock, what we want to become its next state is
the same as what we put on its D input. This means that the required D input
values generated by the combinational part of a sequential circuit are no
different than their next state values Therefore, tables for valuesof

and in our 1011 sequence detector are the same as thosefor and
Flip-flop input tables are called excitation tables that are shown in Figure

2.42 for our design.

Figure 2.42 Flip-flop Excitation Tables

Implementing the Combinational Part.  Now that we have separated the
combinational and register parts of our design, the next step is to complete the
design of the combinational part. This part is completely described by the table
of Figure 2.42. This table includes values for D2, D1 and D0 in terms of x, y2,
y1, and y0, as well as values for w in terms of y2, y1 and y0. Karnaugh maps
shown in Figure 2.43 are extracted from the table of Figure 2.42.

Figure 2.43 also shows Boolean expressions for the D-inputs of and
flip-flops. The four-input (x,  and four-output (w, and

combinational circuit is fully defined by Boolean expressions of Figure 2.43.
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Figure 2.43 Implementing Combinational Part

Figure 2.44 Logic Block Diagram of the 1011 Detector



52 Digital Design and Implementation with Field Programmable Devices

Complete Implementation. The design of the 1011 sequence detector will be
completed by wiring the gate-level realization of the combinational part with the
flip-flops of the register part. This realization is shown in Figure 2.44.

Implementation of the 1011 detector is according to the Huffman model of
Figure 2.36. The box on the left is the combinational part, and the one on the
right is the register part. State variables of this circuit are and that are
fed back from the outputs of the combinational part back into its inputs
through the register part. The clocking mechanism and initialization of the
circuit only affect the register part. For asynchronous initialization of the
circuit, flip-flops with asynchronous set and/or reset inputs should be used.
For synchronous initialization, AND gates on the D inputs should be used for
resetting and OR gates for setting the flip-flops.

2.6.3 Mealy and Moore Machines

The design presented in the previous section produces an output that is fully
synchronous with the circuit clock. In its state diagram, since the output is
specified in the states of the machine, while in a given state, the output is fixed.
This can also be seen in the circuit block diagram of Figure 2.44 in which the
logic of the w output only uses the state variables, and does not involve x. This
state machine is called a Moore machine. A more relaxed timing can be realized
by use of a different machine that is referred to as a Mealy machine.

Figure 2.45 shows the Mealy state diagram of the 1011 detector. As
shown, the output values in each state are specified on the edges out of the
states, along with input values. This means that while in a given state, the
value on x decides the value of the output. For example, in state D, if x is 0, w
is 0 and if x is 1, w is 1.

With this dependency, changes on x propagate to the output even if they
are not accompanied by the clock. The implementation of a Mealy machine is
similar to that of a Moore machine, except that the output k-map involves the
inputs as well as the state variables. A sequence detector that is implemented
with a Mealy machine usually requires one state less than the Moore machine
that detects the same sequence. If implemented as a Mealy machine, our
detector requires four states, two state variables, and three 3-variable
Karnaugh maps for the two state variables and the output.

Figure 2.45 Mealy State Diagram
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2.6.4 One-Hot Realization

Instead of going through steps discussed in Section 2.6.2 for gate-level
implementation of a state machine, a more direct realization can be obtained by
using one flip-flop per state of the machine. Since in a state diagram only one
state is active at any one time, only one of the corresponding flip-flops becomes
active. This method of state assignment is called one-hot assignment. This
implementation uses more flip-flops than the binary state assignment
discussed in Section 2.6.2, but uses fewer logic gates for activation of the flip-
flops.

Figure 2.46  One-hot Implementation

One-hot implementation of the Mealy machine of Figure 2.45 is shown in
Figure 2.46. Output of the AND gates on the outputs of the flip-flops
correspond to the edges that come out of the states of the state diagram. These
AND gates are conditioned by x=0 or x=1. The four flip-flops used yield
possible states. Of these 16 states only four are used (1000, 0100, 0010 and
0001). Initialization of a one-hot machine should be done such that it is put
into one of its valid states. Starting the machine in 0000 is wrong because it
will never get out of this state.

Some of the advantages of one-hot machines are their ease of design,
regularity of their structure, and testability.

2.6.5 Sequential Packages

As there are commonly used combinational packages, like adders, decoders and
multiplexers, there are commonly used sequential packages like registers,
counters and shifters. An RT level designer first partitions his or her design
into such predefined components, and will only resort to designing with discrete
components when there are no packages that meet the design requirements.

Counters. Counters are used in many RT level designs. A counter is a
sequential circuit that counts a certain sequence in ascending or descending
order. An n-bit binary up-counter counts n-bit numbers in the ascending
order.
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Figure 2.47 State Diagram of a 2-bit Counter

As an example we will show the design of a 2-bit up-down counter. With
each clock pulse, when UD is 1 it counts up and when UD is 0 it counts down.
In the count-up mode the next count after 11 is 00, and in the count-down
mode the next count after 00 is 11.

The state diagram for this counter is shown in Figure 2.47. Counter count
outputs are shown in each state. This is a Moore state machine and the
procedure discussed earlier in this chapter can be used for its design. However,
because of the simple sequencing of counter circuits, many of the steps
discussed in Section 2.6.2 can be skipped and we can go directly from the
description of the counter to its transition tables. Furthermore, if we decide to
use D-type flip-flops for our counter, excitation tables, or even D-input k-maps,
can be written based on the count sequence. Figure 2.48 shows k-maps
generated directly from the up and down sequences of the counter of Figure
2.47.

Figure 2.48 Excitation K-maps for a 2-Bit Up-Down Counter

In the right columns of the k-maps when UD=1, values for D1 and D0 are set to
take and through the 00, 01, 10, 11, ... sequence. In the left columns of
the k-maps, and values make the counter count the 11, 10, 01, 00, ...
sequence. Circuit shown in Figure 2.49 performs the basic up- and down-
countings for our 2-bit counter.
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Figure 2.49 A Two-Bit Up-Down Counter

In addition to the basic counting implemented by the circuit of Figure 2.49,
other features in a counter include, resetting, parallel loading, enabling, carry-
in and carry-out. Resetting a counter is like resetting registers. Asynchronous
resetting forces the counter into its initial state and acts independent of the
clock. Synchronous resetting loads the initial state of the counter through the
D-inputs of counter flip-flops, which obviously requires the proper clocking of
the register.

To start counting from a given state, the counter is put into parallel-load
mode and the designated start state is loaded into the flip-flops of the counter.
In this mode the counter acts just like a register. Inputs of flip-flops of a
counter with parallel load feature must be available outside of the counter
package.

Figure 2.50 Two-Bit Up-Counter with Added Features

An enable input for a counter makes it count only when this input is active.
This signal controls clocking of data into the individual flip-flops of the counter.

Some counters have carry-in and carry-out input and output signals that
are used for cascading several of them. Carry-out output of a modulo-n



56 Digital Design and Implementation with Field Programmable Devices

counter becomes 1 when the counter reaches its maximum count. The carry-in
input of a counter (if it exists) acts just like an enable input except that it also
enables the carry-out of the counter. Figure 2.50 shows a two-bit up-counter
with added features of synchronous reset, enable, parallel load, carry-in and
carry-out.

The and inputs of the counter shown in Figure 2.50 are its mode
inputs. These inputs control data that are clocked into the flip-flops. If mode is

the counter is disabled. In mode 1 the counter resets to 0, in
mode 2 the counter counts up. Mode 3 is for parallel load; in this mode and

are loaded into the counter. The counter only counts if carry_in is 1,
otherwise it is disabled. When carry_in is 1 and counter reaches 11, the
carry_out becomes 1. Cascading counters can be done by connecting carry_out
of one to thecarry_inof another.

Shifters. Shift registers are registers with the property that data shifts right or
left with the edge of the clock. Shift registers are used for serial data collection,
serial to parallel, and parallel to serial converters.

Figure 2.51 shows a 4-bit right shifter. With every edge of the clock data in
the register moves one place to the right. Data on (serial-in) starts moving
into the register and data in the register moves out bit-by-bit from (serial-
out).

Figure 2.51  A 4-bit Shift Register

Shift-registers can be easily cascaded by connecting of one to the of
another. Other functionalities included in these packages are left-shift, parallel
load, enable, and reset. These features can be included in much the same way
as in counters (Figure 2.50). Shift-registers with three-state output control use
three-state gates on their output, like what is done in registers (Figure 2.34 and
Figure 2.35).

2.7 Memories

In their simplest form, memories are two-dimensional arrays of flip-flops, or
one-dimensional arrays of registers. Flip-flops in a row of memory share read
and write controls, and memory rows share input and output lines.
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The number of flip-flops in a row of memory is its word-length, m. Memory
words are arranged so that each word can individually be read or written into.
Memory access is limited to its words. A memory of m-bit words has n
address lines for addressing and enabling read and write operations into its
words. The address space of such a memory is words. Input and output
busses of such a memory have m bits. The block diagram of a clocked memory
with a r/w (read/write) control signal is shown in Figure 2.52. The CE input
shown is the Chip Enable input, which must be active for the memory to be
read or written into.

Figure 2.52 A m-bit Memory

Because accessing words in a memory can be done independent of their
location in the memory array and by simply addressing them, memories are
also called RAM or Random Access Memory. RAM structures come in various
forms, SRAM (Static RAM), DRAM (Dynamic RAM). Pseudo-Static RAM, and
many other forms that depend on their technology as well as their hardware
structures.

2.7.1 Static RAM Structure

Figure 2.53 shows an SRAM that has an address space of 4, and word length of
3. The address bus for this structure is a 2-bit bus and its input and
output are 3-bit busses. A 2-to-4 decoder is used for decoding the address
lines and giving access to the words of the memory. An external Chip-Enable
disables all read and write operations when it is 0.

The logic of the decoder shown in Figure 2.53 may be distributed inside the
memory array. Other blocks in the memory shown are a read-write logic block
and an IO block.
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Figure 2.53 SRAM Structure

2.7.2 Bidirectional IO

The memory shown in Figure 2.53 has bidirectional inout lines used both as
input and output. In the input mode, IO lines feed D-flip-flop inputs. In the
output mode, three-state gates in the IO buffer block take the output of the
addressed memory word and put it on the IO of the memory.

Bidirectional inout lines are useful for cascading memory chips and for
reducing pin count of memory packages.

2.8 Summary

This chapter presented an overview of basic logic design. The focus was mostly
on the design techniques and not on their theoretical background. We covered
combinational and sequential circuits at the gate and RT levels. At the
combinational gate-level, we discussed Karnaugh maps, but mainly
concentrated on the use of iterative hardware and packages. In the sequential
part, state machines were treated at the gate level; we also discussed sequential
packages such as counters and shift-registers. The use of these packages
facilitates RT level designs and use of HDLs in design.



3 Verilog for Simulation and Synthesis

This chapter presents Verilog from the point of view of a designer wanting to
describe a design‚ perform pre-synthesis simulation‚ and synthesize his or her
design for programming an FPGA or generating a layout. Many of the complex
Verilog constructs related to timing and fine modeling features of this language
will not be covered here. The chapter first describes Verilog with emphasis on
design using simple examples. We will cover the basics‚ just enough to describe
our examples. In a later section after a general familiarity with the language is
gained‚ more complex features of the Verilog language with emphasis on
testbench development will be described.

3.1 Design with Verilog

Verilog syntax and language constructs are designed to facilitate description of
hardware components for simulation and synthesis. In addition‚ Verilog can be
used to describe testbenches‚ specify test data and monitor circuit responses.
Figure 3.1 shows a simulation model that consists of a design and its testbench
in Verilog. Simulation output is generated in form of a waveform for visual
inspection or data files for machine readability.

After a design passes basic functional validations‚ it must be synthesized
into a netlist of components of a target library. Constructs used for verification
of a design‚ or timing checks and timing specifications are not synthesizable. A
Verilog design that is to be synthesized must use language constructs that have
a clear hardware correspondence. Figure 3.2 shows a block diagram specifying
the synthesis process.
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Figure 3.1  Simulation in Verilog

The output of synthesis is a netlist of components of the target library.
Often synthesis tools have an option to generate this netlist in Verilog. In this
case‚ the same testbench prepared for pre-synthesis simulation can be used
with the netlist generated by the synthesis tool.

Figure 3.2  Synthesis

3.1.1 Modules

The entity used in Verilog for description of hardware components is a module.
A module can describe a hardware component as simple as a transistor or a
network of complex digital systems. As shown in Figure 3.3‚ modules begin
with the module keyword and end with endmodule.

module

endmodule

Figure 3.3 Module
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Figure 3.4  Module Hierarchy

A design may be described in a hierarchy of other modules. The top-level
module is the complete design‚ and modules lower in the hierarchy are the
design's components. Module instantiation is the construct used for bringing a
lower level module into a higher level one. Figure 3.4 shows a hierarchy of
several nested modules.

As shown in Figure 3.5‚ in addition to the module keyword‚ a module
header also includes the module name and list of its ports. Following the
module header‚ its ports and internal signals and variables are declared.
Specification of the operation of a module follows module declarations.

module name (ports);
port declarations;
other declarations;

statements

endmodule

Figure 3.5  Module Outline

Figure 3.6  Module Definition Alternatives



module acircuit (a‚ b‚ c‚ av‚ bv‚ cv‚ w‚ wv);
input a‚ b;
output w;
inout c;
input [7:0] av‚ bv;
output [7:0] wv;
inout [7:0] cv;

endmodule

Figure 3.8  Module Ports

Following module header‚ ports of a module are declared. In this part‚ size
and direction of each port listed in the module header are specified. A port may
be input‚ output or inout. The latter type is used for bidirectional
input/output lines. Size of vectored ports of a module is also declared in the
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Operation of a module can be described at the gate level‚ using Boolean
expressions‚ at the behavioral level‚ or a mixture of various levels of
abstraction. Figure 3.6 shows three ways operation of a module may be
described. Module simple1a in Figure 3.6 uses Verilog's gate primitives‚
simple1b uses concurrent statements‚ and simple1c uses a procedural
statement.

The subsections that follow describe details of module ports and description
styles. In the examples in this chapter Verilog keywords and reserved words
are shown in bold. Verilog is case sensitive. It allows letters‚ numbers and
special character "_" to be used for names. Names are used for modules‚
parameters‚ ports‚ variables‚ and instance of gates and modules.

For readability of graphics‚ we use the symbol shown in Figure 3.7 for
representing a Verilog module. Inputs are shown as hollow boxes‚ and outputs
as solid ones. The name of the module appears inside the module box on its
upper side.

Figure 3.7  Module Notation

3.1.2 Module Ports

Following the name of a module is a set of parenthesis with a list of module
ports. This list includes inputs‚ outputs and bidirectional input lines. Ports
may be listed in any order. This ordering can only become significant when a
module is instantiated‚ and does not affect the way its operation is described.
Top-level modules used for testbenches have no ports.
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module port declaration part. Size and indexing of a port is specified after its
type name within square brackets. Figure 3.8 shows an example circuit with
scalar‚ vectored‚ input‚ output and inout ports. Ports named a‚ and b are one-
bit inputs. Ports av and bv are 8-bit inputs of acircuit. The set of square
brackets that follow the input keyword applies to all ports that follow it. Port w
of acircuit is declared as a 1-bit output‚ and wv is an 8-bit bi-directional port of
this module.

module bcircuit (a‚ b‚ av‚ bv‚ w‚ wv);
input a‚ b;
output w;
Input [7:0] av‚ bv;
output [7:0] wv;
wire d;
wire [7:0] dv;
reg e;
reg [7:0] ev;

endmodule

Figure 3.9  Wire and Variable Declaration

In addition to port declarations‚ a module declarative part may also include
wire and variable declarations that are to be used inside the module. Wires
(that are called net in Verilog) are declared by their types‚ wire‚ wand or wor;
and variables are declared as reg. Wires are used for interconnections and
have properties of actual signals in a hardware component. Variables are used
for behavioral descriptions and are very much like variables in software
languages. Figure 3.9 shows several wire and variable declarations.

module vcircuit (av‚ bv‚ cv‚ wv);
input [7:0] av‚ bv‚ cv;
output [7:0] wv;
wire [7 :0] iv‚ jv;
assign iv = av & cv;
assign jv = av l cv;
assign wv = iv ^ jv;

endmodule

Figure 3.10  Using Wires

Wires represent simple interconnection wires‚ busses‚ and simple gate or
complex logical expression outputs. When wires are used on the left hand sides
of assign statements‚ they represent outputs of logical structures. Wires can be
used in scalar or vector form. Figure 3.10 shows several examples of wires
used on the right and left hand sides of assign statements.
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In the vector form‚ inputs‚ outputs‚ wires and variables may be used as a
complete vector‚ part of a vector‚ or a bit of the vector. The latter two are
referred to as part-select and bit-select.

3.1.3 Logic Value System

Verilog uses a 4-value logic value system. Values in this system are 0‚ 1‚ Z‚
and X. Value 0 is for logical 0 which in most cases represent a path to ground
(Gnd). Value 1 is logical 1 and it represents a path to supply (Vdd). Value Z is
for float‚ and X is used for un-initialized‚ undefined‚ un-driven‚ unknown‚ and
value conflicts. Values Z and X are used for wired-logic‚ busses‚ initialization
values‚ tri-state structures‚ and switch-level logic.

For more logic precision‚ Verilog uses strengths values as well as logic
values. Our dealing with Verilog is for design and synthesis‚ and these issues
will not be discussed here.

3.2 Combinational Circuits

A combinational circuit can be represented by its gate level structure‚ its
Boolean functionality‚ or description of its behavior. At the gate level‚
interconnection of its gates are shown; at the functional level‚ Boolean
expressions representing its outputs are written; and at the behavioral level a
software-like procedural description represents its functionality. This section
shows these three levels of abstraction for describing combinational circuits.

Figure 3.11  Basic Primitives
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3.2.1 Gate Level Combinational Circuits

Verilog provides primitive gates and transistors. Some of the more important
Verilog primitives and their logical representations are shown in Figure 3.11. In
this figure w is used for gate outputs‚ i for inputs and c for control inputs.

Basic logic gates are and‚ nand‚ or‚ nor‚ xor‚ xnor. These gates can be
used with one output and any number of inputs. The other two structures
shown‚ are not and buf. These gates can be used with one input and any
number of outputs.

Another group of primitives shown in this figure are three-state (tri-state is
also used to refer to these structures) gates. Gates shown have w for their
outputs‚ i for data inputs‚ and c for their control inputs. These primitives are
bufif1‚ notif1‚ bufif0‚ and notif0. When control c for such gates is active (1 for
first and third‚ and 0 for the others)‚ the data input‚ i‚ or its complement
appears on the output of the gate. When control input of a gate is not active‚
its output becomes high-impedance‚ or Z.

Also shown in Figure 3.11 are NMOS‚ PMOS and CMOS structures. These
are switches that are used in switch level description of gates‚ complex gates‚
and busses. The nmos (pmos) primitive is a simple switch with an active high
(low) control input. The cmos switch is usually used with two complementary
control inputs. These switches behave like the three-state gates. They are
different in their output voltage levels and drive strengths. These parameters
are modeled by wire strengths and are not discussed in this book.

Figure 3.12 A Majority Circuit

Majority Example. We use the majority circuit of Figure 3.12 to illustrate how
primitive gates are used in a design. The description shown in Figure 3.13
corresponds to this circuit. The module description has inputs and outputs
according to the schematic of Figure 3.12.

Line 1 of the code shown is the timescale directive. This defines all time
units in the description and their precision. For our example‚ 1ns/100Ps
means that all numbers in the code that represent a time value are in
nanoseconds and they can have up to one fractional digit (100 Ps).

The statement that begins in Line 6 and ends in Line 9 instantiates three
and primitives. The construct that follows the primitive name specifies rise and



66 Digital Designand Implementationwith Field ProgrammableDevices

fall delays for the instantiated primitive This part is optional and
if eliminated‚ 0 values are assumed for rise and fall delays. Line 7 shows
inputs and outputs of one of the three instances of the and primitive. The
output is im1 and inputs are module input ports a and b. The port list on Line
7 must be followed by a comma if other instances of the same primitive are to
follow‚ otherwise a semicolon should be used‚ like the end of Line 9. Line 8 and
Line 9 specify input and output ports of the other two instances of the and
primitive. Line 10 is for instantiation of the or primitive at the output of the
majority gate. The output of this gate is y that comes first in the port list‚ and
is followed by inputs of the gate. In this example‚ intermediate signals for
interconnection of gates are im1‚ im2‚ and im3. Scalar interconnecting wires
need not be explicitly declared in Verilog.

`timescale 1ns/100ps
module maj3 ( a‚ b‚ c‚ y );

input a‚ b‚ c;
output y;

and #(2‚4)
(im1‚ a‚ b)‚
(im2‚ b‚ c )‚
(im3‚ c‚ a );

or #(3‚5) (y‚ im1‚ im2‚ im3);

endmodule

// Line 1

// Line 6
// Line 7
// Line 8
// Line 9
//Line 10

Figure 3.13  Verilog Code for the Majority Circuit

The three and instances could be written as three separate statements‚ like
instantiation of the or primitive. If we were to specify different delay values for
the three instances of the and primitive‚ we had to have three separate primitive
instantiation statements.

Three-state gates are instantiated in the same way as the regular logic
gates. Outputs of three-state gates can be wired to form wired-and‚ wired-or‚ or
wiring logic. For various wiring functions‚ Verilog uses wire‚ wand‚ wor‚ tri‚
tri0 and tri1 net types. When two wires (nets) are connected‚ the resulting
value depends on the two net values‚ as well as the type of the interconnecting
net. Figure 3.14 shows net values for net types wire‚ wand and wor.

Figure 3.14  "net" Type Resolutions
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The table shown in Figure 3.14 is called a net resolution table. Several
examples of net resolutions are shown in Figure 3.15. The tri net type
mentioned above is the same as the wire type. tri0 and tri1 types resolve to 0
and 1‚ respectively‚ when driven by all Z values.

Figure 3.15  "net" Resolution Examples

Multiplexer Example. Figure 3.16 shows a 2-to-1 multiplexer using three-state
gates. The Verilog code of this multiplexer is shown in Figure 3.17.

Lines 6 and 7 in Figure 3.17 instantiate two three-state gates. Their output
is y‚ and since it is driven by both gates a wired-net is formed. Since y is not
declared‚ its net type defaults to wire. When s is 1‚ bufif1 conducts and the
value of b propagates to its output. At the same time‚ because s is 1‚ bufif0
does not conduct and its output becomes Z. Resolution of these values driving
net y is determined by the wire net resolution as shown in Figure 3.14.

Figure 3.16  Multiplexer Using Three-state Gates

`timescale 1ns/100ps

module mux_2to1 ( a‚ b‚ s‚ y );
input a‚ b‚ s;
output y;
bufif1 #(3) (y‚ b‚ s);
bufif0 #(5) (y‚ a‚ s);

endmodule

// Line 6
// Line 7

Figure 3.17  Multiplexer Verilog Code
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CMOS NAND Example.  As another example of instantiation of primitives‚
consider the two-input CMOS NAND gate shown in Figure 3.18.

The Verilog code of Figure 3.19 describes this CMOS NAND gate. Logically‚
NMOS transistors in a CMOS structure push 0 into the output of the gate.
Therefore‚ in the Verilog code of the CMOS NAND‚ input to output direction of
NMOS transistors are from Gnd towards w. Likewise‚ PMOS transistors push a
1 value into w‚ and therefore‚ their inputs are considered the Vdd node and
their outputs are connected to the w node. The im1 signal is an intermediate
net and is explicitly declared.

In the Verilog code of CMOS NAND gate‚ primitive gate instance names are
used. This naming (T1‚ T2‚ T3‚ T4) is optional for primitives and mandatory
when modules are instantiated. Examples of module instantiations are shown
in the next section.

Figure 3.18  CMOS NAND Gate

module cmos_nand (a‚ b‚ w);
input a‚ b;
output w;
wire im1;
supply1 vdd;
supply0 gnd;

nmos #(3‚ 4)
T1 (im1, gnd‚ b)‚
T2 (w‚ im1‚ a);

pmos #(4‚ 5)
T3 (w‚ vdd‚ a)‚
T4 (w‚ vdd‚ b);

endmodule

Figure 3.19  CMOS NAND Verilog Description
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3.2.2 Descriptions by Use of Equations

At a higher level than gates and transistors‚ a combinational circuit may be
described by use of Boolean‚ logical‚ and arithmetic expressions. For this
purpose the Verilog concurrent assign statement is used. Figure 3.20 shows
Verilog operators that can be used with assign statements.

XOR Example.  As our first example for using an assign statement consider the
description of an XOR gate as shown in Figure 3.21. The assign statement
uses y on the left-hand-side and equates it to Exclusive-OR of a‚ b‚ and c
inputs.

Effectively‚ this assign statement is like driving y with the output of a 3-
input xor primitive gate. The difference is that‚ the use of an assign statement
gives us more flexibility and allows the use of more complex functions than
what is available as primitive gates. Instead of being limited to the gates shown
in Figure 3.11‚ we can write our own expressions using operators of Figure
3.20.

Figure 3.20 Verilog Operators

module xor3 ( a‚ b‚ c‚ y );
input a‚ b‚ c;
output y;

assign y = a ^ b ^ c ;

endmodule

Figure 3.21 XOR Verilog Code

Full-Adder Example.   Figure 3.22 shows another example of using assign
statements. This code corresponds to a full-adder circuit (see Chapter 2). The
s output is the XOR result of a‚ b and ci inputs‚ and the co output is an AND-
OR expression involving these inputs.

A delay value of 10 ns is used for the s output and 8 ns for the co output.
As with the gate outputs‚ rise and fall delay values can be specified for a net
that is used on the left-hand side of an assign statement. This construct allows
the use of two delay values. If only one value is specified‚ it applies to both rise
and fall transitions.
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`timescale 1ns/100ps

module add_1bit ( a‚ b‚ ci‚ s‚ co );
input a‚ b‚ ci;
output s‚ co;
assign #(10) s = a^b^ci;
assign #(8) co = ( a & b ) I ( b & ci ) I ( a & ci );

endmodule

Figure 3.22  Full Adder Verilog Code

Another property of assign statements that also corresponds to gate
instantiations is their concurrency. The statements in the Verilog module of
Figure 3.22 are concurrent. This means that the order in which they appear in
this module is not important. These statements are sensitive to events on their
right hand sides. When a change of value occurs on any of the right hand side
net or variables‚ the statement is evaluated and the resulting value is
scheduled for the left hand side net.

Comparator Example. Figure 3.23 shows another example of using assign
statements. This code describes a 4-bit comparator. The first assign statement
uses a bitwise XOR operation on its right hand side. The result that is assigned
to the im intermediate net is a 4-bit vector formed by XORing bits of a and b
input vectors. The second assign statement uses the NOR reduction operator
to NOR bits of im to generate the equal output for the 4-bit comparator.

The above describes the comparator using its Boolean function. However‚
using compare operators of Verilog‚ the eq output of the comparator may be
written as:

assign eq = (a == b);

In this expression‚ (a == b) results in 1 if a and b are equal‚ and 0 if they are
not. This result is simply assigned to eq.

The right-hand side expression of an assign statement can have a condition
expression using the ? and : operators. These operators are like if-then-else.
In reading expressions that involve a condition operator‚ ? and : take places of
then and else respectively. The if-condition appears to the left of ?.

module comp_4bit ( a‚ b‚ eq );
input [3:0]a‚ b;
output eq;
wire [3:0] im;
assign im = a^b ;
assign eq = ~l im;

endmodule

Figure 3.23  Four-Bit Comparator
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Multiplexer Example.  Figure 3.24 shows a 2-to-1 multiplexer using a condition
operator. The expression shown reads as follows: if s is 1‚ then y is i1 else it
becomes  i0.

module mux2_1 ( i0 ‚ i1‚ s‚ y );
input [3:0] i0‚ i1;
input s;
output [3:0] y;

assign y = s ? i1 : i0;

endmodule

Figure 3.24  A 2-to-1 Mux Using Condition Operator

Decoder Example. Figure 3.25 shows another example using the condition
operator. In this example a nesting of several ?: operations are used to describe
a decoder.

`timescale 1ns/100ps

module dcd2_4( a‚ b‚ d0‚ d1‚ d2‚ d3 );
input a‚ b;
output d0‚ d1‚ d2‚ d3;

assign {d3‚ d2‚ d1‚ d0} =
( {a‚ b} == 2'b00 ) ? 4'b0001 :
( {a‚ b} == 2'b01 ) ? 4'b0010 :
( {a‚ b} == 2'b10 ) ? 4'b0100 :
( {a‚ b} == 2'b11 ) ? 4'b1000 :

4'b0000;

endmodule

Figure 3.25  Decoder Using ?: and Concatenation

The decoder description also uses the concatenation operator { } to form
vectors from its scalar inputs and outputs. The decoder has four outputs‚ d3‚
d2‚ d1 and d0 and two inputs a and b. Input values 00‚ 01‚ 10‚ and 11
produce 0001‚ 0010‚ 0100‚ and 1000 outputs. In order to be able to compare
a and b with their possible values‚ a two-bit vector is formed by concatenating a
and b. The {a‚ b} vector is then compared with the four possible values it can
take using a nesting of ?: operations.

Similarly‚ in order to be able to place vector values on the outputs‚ the four
outputs are concatenated using the { } operator and used on the left-hand side
of the assign statement shown in Figure 3.25.
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This example also shows the use of sized numbers. Constants for the
inputs and outputs have the general format of n`bm. In this format‚ n is the
number of bits‚ b is the base specification and m is the number in base b. For
calculation of the corresponding constant‚ number m in base b is translated to
n bit binary. For example‚ 4 `hA becomes 1010 in binary.

Adder Example.  For another example using assign statements‚ consider an 8-
bit adder circuit with a carry-in and a carry-out output. The Verilog code of
this adder‚ shown in Figure 3.26‚ uses an assign statement to set
concatenation of co on the left-hand side of s to the sum of a‚ b and ci. This
sum results in nine bits with the left-most bit being the resulting carry. The
sum is captured in the 9-bit left-hand side of the assign statement in {co‚ s}.

So far in this section we have shown the use of operators of Figure 3.20 in
assign statements. A Verilog description may contain any number of assign
statements and can use any mix of the operators discussed. The next example
shows multiple assign statements.

module add_4bit ( a‚ b‚ ci‚ s‚ co );
input [7:0] a‚ b;
output [7:0] s;
input ci;
output co;

assign {co‚ s} = a + b + ci;

endmodule

Figure 3.26  Adder with Carry-in and Carry-out

ALU Example. As our final example of assign statements‚ consider an ALU that
performs add and subtract operations and has two flag outputs gt and zero.
The gt output becomes 1 when input a is greater than input b‚ and the zero
output becomes 1 when the result of the operation performed by the ALU is 0.

Figure 3.27 shows the Verilog code of this ALU. Used in this description
are arithmetic‚ concatenation‚ condition‚ compare and relational operations.

module ALU ( a‚ b‚ ci‚ addsub‚ gt‚ zero‚ co‚ r );
input [7:0] a‚ b;
output [7:0] r;
input ci;
output gt‚ zero‚ co;

assign {co‚ s} = addsub ? (a + b + ci) : (a – b – ci);
assign gt = (a>b);
assign zero = (r == 0);

endmodule

Figure 3.27  ALU Verilog Code Using a Mix of Operations
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3.2.3 Descriptions with Procedural Statements

At a higher level of abstraction than describing hardware with gates and
expressions‚ Verilog provides constructs for procedural description of hardware.
Unlike gate instantiations and assign statements that correspond to concurrent
sub-structures of a hardware component‚ procedural statements describe the
hardware by its behavior. Also‚ unlike concurrent statements that appear
directly in a module body‚ procedural statements must be enclosed in
procedural blocks before they can be put inside a module.

The main procedural block in Verilog is the always block. This is
considered a concurrent statement that runs concurrent with all other
statements in a module. Within this statement‚ procedural statements like if-
else and case statements are used and are executed sequentially. If there are
more than one procedural statement inside a procedural block‚ they must be
bracketed by begin and end keywords.

Unlike assignments in concurrent bodies that model driving logic for left
hand side wires‚ assignments in procedural blocks are assignments of values to
variables that hold their assigned values until a different value is assigned to
them. A variable used on the left hand side of a procedural assignment must
be declared as reg.

An event control statement is considered a procedural statement‚ and is
used inside an always block. This statement begins with an at-sign‚ and in its
simplest form‚ includes a list of variables in the set of parenthesis that follow
the at-sign‚ e.g.‚ @ (v1 or v2 ...); .

When the flow of the program execution within an always block reaches an
event-control statement‚ the execution halts (suspends) until an event occurs
on one of the variables in the enclosed list of variables. If an event-control
statement appears at the beginning of an always block‚ the variable list it
contains is referred to as the sensitivity list of the always block. For
combinational circuit modeling all variables that are read inside a procedural
block must appear on its sensitivity list.

Examples that follow show various ways combinational component may be
modeled by procedural blocks.

Majority Example. Figure 3.28 shows a majority circuit described by use of an
always block. In the declarative part of the module shown‚ the y output is
declared as reg since this variable is to be assigned a value inside a procedural
block.

The always block describing the behavior of this circuit uses an event
control statement that encloses a list of variables that is considered as the
sensitivity list of the always block. The always block is said to be sensitive to
a‚ b and c variables. When an event occurs on any of these variables‚ the flow
into the always block begins and as a result‚ the result of the Boolean
expression shown will be assigned to variable y. This variable holds its value
until the next time an event occurs on a‚ b‚ or c inputs.

In this example‚ since the begin and end bracketing only includes one
statement‚ its use is not necessary. Furthermore‚ the syntax of Verilog allows
elimination of semicolon after an event control statement. This effectively
collapses the event control and the statement that follows it into one statement.
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module maj3 ( a‚ b‚ c‚ y );
input a‚ b‚ c;
output y;
reg y;

always @( a or b or c)
begin

y = (a&b)l(b&c)l(a&c);
end

endmodule

Figure 3.28  Procedural Block Describing a Majority Circuit

Majority Example with Delay. The Verilog code shown in Figure 3.29 is a
majority circuit with a 5ns delay. Following the always keyword‚ the
statements in this procedural block are an event-control‚ a delay-control and a
procedural assignment. The delay-control statement begins with a sharp-sign
and is followed by a delay value. This statement causes the flow into this
procedural block to be suspended for 5ns. This means that after an event on
one of the circuit inputs‚ evaluation and assignment of the output value to y
takes place after 5 nanoseconds.

Note in the description of Figure 3.29 that begin and end bracketing is not
used. As with the event-control statement‚ a delay-control statement can
collapse into its next statement by removing their separating semicolon. The
event-control‚ delay-control and assignment to y become a single procedural
statement in the always block of maj3 code.

`timescale 1ns/100ps

module maj3 ( a‚ b‚ c‚ y );
input a‚ b‚ c;
output y;
reg y;

always @( a or b or c ) #5 y = (a & b) I (b &c) I (a & c);

endmodule

Figure 3.29  Majority Gate with Delay

Full-Adder Example. Another example of using procedural assignments in a
procedural block is shown in Figure 3.30. This example describes a full-adder
with sum and carry-out outputs.

The always block shown is sensitive to a‚ b‚ and ci inputs. This means that
when an event occurs on any of these inputs‚ the always block wakes up and
executes all its statements in the order that they appear. Since assignments to
s and co outputs are procedural‚ both these outputs are declared as reg.



75

The delay mechanism used in the full-adder of Figure 3.30 is called an
intra-statement delay that is different than that of the majority circuit of Figure
3.29.

`timescale 1ns/100ps

module add_1 bit ( a‚ b‚ ci‚ s‚ co );
input a‚ b‚ ci;
output s‚ co;
reg s‚ co;

always @(a or b or ci )
begin

s = #5 a ^ b ^ ci;
co = #3 (a & b) I (b &ci) I (a & ci);

end
endmodule

Figure 3.30  Full-Adder Using Procedural Assignments

In the majority circuit‚ the delay simply delays execution of its next statement.
However‚ the intra-statement delay of Figure 3.30 only delays the assignment of
the calculated value of the right-hand side to the left-hand side variable. This
means that in Figure 3.30‚ as soon as an event occurs on an input‚ the
expression a^b^c is evaluated. But‚ the assignment of the evaluated value to s
and proceeding to the next statement takes 5ns.

Because assignment to co follows that to s‚ the timing of the former
depends on that of the latter‚ and evaluation of the right-hand side of co begins
5ns after an input change. Therefore‚ co receives its value 8ns after an input
change occurs. To remove this timing dependency and be able to define the
timing of each statement independent of its previous one‚ a different kind of
assignment must be used.

`timescale 1ns/100ps

module add_1bit ( a‚ b‚ ci‚ s‚ co );
input a‚ b‚ ci;
output s‚ co;
reg s‚ co;

always @(a or b or ci)
begin

s <= #5 a ^ b ^ ci;
co <= #8 (a & b) I (b &ci) I (a & ci);

end
endmodule

Figure 3.31  Full-Adder Using Non-Blocking Assignments
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Assignments in Figure 3.30 are of the blocking type. Such statements
block the flow of the program until they are completed. A different assignment
is of the non-blocking type. A different version of the full-adder that uses this
construct is shown in Figure 3.31. This assignment schedules its right hand
side value into its left hand side to take place after the specified delay. Program
flow continues into the next statement while propagation of values into the first
left hand side is still going on.

In the example of Figure 3.31‚ evaluation of the right hand side of s is done
immediately after an input changes. Evaluation of the right hand side of co
occurs 8ns after that. To make s and co delays match those of Figure 3.30‚ an
8 nanoseconds delay is used for assignment to co.

Since our focus is on synthesizable coding and gate delay timing issues are
not of importance‚ we will mostly use blocking assignments in this book.

Procedural Multiplexer Example.   For another example of a procedural block‚
consider the 2-to-1 multiplexer of Figure 3.32. This example uses an if-else
construct to set y to i0 or i1 depending on the value of s.

As in the previous examples‚ all circuit variables that participate in
determination of value of y appear on the sensitivity list of the always block.
Also since y appears on the left hand side of a procedural assignment‚ it is
declared as reg.

The if-else statement shown in Figure 3.32 has a condition part that uses
an equality operator. If the condition is false (or equal to 0)‚ the block of
statements that follow it will be taken‚ otherwise block of statements after the
else are taken. In both cases‚ the block of statements must be bracketed by
begin and end keywords if there is more than one statement in a block.

module mux2_1 ( i0‚ i1 ‚ s‚ y );
input i0‚ i1‚ s;
output y;
reg y;

always @( i0 or i1 or s ) begin
if (s==1'b0)

y = i0;
else

y = i1;
end

endmodule

Figure 3.32  Procedural Multiplexer

Procedural ALU Example. The if-else statement‚ used in the previous example‚
is easy to use‚ descriptive and expandable. However‚ when many choices exist‚
a case-statement which is more structured may be a better choice. The ALU
description of Figure 3.33 uses a case statement to describe an ALU with add‚
subtract‚ AND and XOR functions.
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module alu_4bit ( a‚ b‚ f‚ y );
input [3:0] a‚ b;
input [1:0] f;
output [3:0] y;
reg [3:0] y;

always @ ( a or b or f ) begin
case (f)

2'b00 : y = a + b;
2'b01 : y = a - b;
2'b10 : y = a & b;
2'b11 : y = a ^ b;
default: y = 4'b0000;

endcase
end

endmodule

Figure 3.33  Procedural ALU

The ALU has a and b data inputs and a 2-bit f input that selects its
function. The Verilog code shown in Figure 3.33 uses a‚ b and f on its
sensitivity list. The case-statement shown in the always block uses f to select
one of the case alternatives. The last alternative is the default alternative that
is taken when f does not match any of the alternatives that appear before it.
This is necessary to make sure that unspecified input values (here‚ those that
contain X and/or Z) cause the assignment of the default value to the output
and not leave it unspecified.

3.2.4 Combinational Rules

Completion of case alternatives or if-else conditions is an important issue in
combinational circuit coding. In an always block‚ if there are conditions under
which the output of a combinational circuit is not assigned a value‚ because of
the property of reg variables the output retains its old value. The retaining of
old value infers a latch on the output. Although‚ in some designs this latching
is intentional‚ obviously it is unwanted when describing combinational circuits.
With this‚ we have set two rules for coding combinational circuits with always
blocks.

List all inputs of the combinational circuit in the sensitivity list of the
always block describing it.
Make sure all combinational circuit outputs receive some value
regardless of how the program flows in the conditions of if-else and/or
case statements. If there are too many conditions to check‚ set all
outputs to their inactive values at the beginning of the always block.

1.

2.
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3.2.5 Bussing

Bus structures can be implemented by use of multiplexers or three-state logic.
In Verilog‚ various methods of describing combinational circuits can be used for
the description of a bus.

Figure 3.34 shows Verilog coding of busout that is a three-state bus and
has three sources‚ busin1‚ busin2‚ and busin3. Sources of busout are put on
this bus by active-high enabling control signals‚ en1‚ en2 and en3. Using the
value of an enabling signal‚ a condition statement either selects a bus driver or
a 4-bit Z value to drive the busout output.

module bussing (busin1‚ busin2‚ busin3‚ en1‚ en2‚ en3‚ busout );
input [3:0] busin1‚ busin2‚ busin3;
input en1‚ en2‚ en3;
output [3:0] busout;

assign busout = en1 ? busin1 : 4'bzzzz;
assign busout = en2 ? busin2 : 4'bzzzz;
assign busout = en3 ? busin3 : 4'bzzzz;

endmodule

Figure 3.34  Implementing a 3-State Bus

Verilog allows multiple concurrent drivers for nets. However‚ a variable
declared as a reg and used on a left hand side in a procedural block (always
block)‚ can only be driven by one source. This makes the use of nets more
appropriate for representing busses.

3.3 Sequential Circuits

As with any digital circuit‚ a sequential circuit can be described in Verilog by
use of gates‚ Boolean expressions‚ or behavioral constructs (e.g.‚ the always
statement). While gate level descriptions enable a more detailed description of
timing and delays‚ because of complexity of clocking and register and flip-flop
controls‚ these circuits are usually described by use of procedural always
blocks. This section shows various ways sequential circuits are described in
Verilog. The following discusses primitive structures like latch and flip-flops‚
and then generalizes coding styles used for representing these structures to
more complex sequential circuits including counters and state machines.

3.3.1 Basic Memory Elements at the Gate Level

A clocked D-latch latches its input data during an active clock cycle. The latch
structure retains the latched value until the next active clock cycle. This
element is the basis of all static memory elements.
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A simple implementation of the D-latch that uses cross-coupled NOR gates
is shown in Figure 3.35. The Verilog code of Figure 3.36 corresponds to this D-
latch circuit. This description uses primitive and and nor structures.

Figure 3.35  Clocked D-latch

`timescale 1ns/100ps

module latch ( d‚ c‚ q‚ q_b );
input d‚ c;
output q‚ q_b;
wire _s‚  _r;

and #(6) g1(_s‚ c‚ d)‚
g2(_r‚ c‚ ~d);

nor #(4)    g3(q_b‚ _s‚ q)‚
g4 ( q‚  _r‚  q_b );

endmodule

Figure 3.36  Verilog Code for a Clocked D-latch

As shown in this Verilog code‚ the tilde (~) operator is used to generate the
complement of the d input of the latch. Using AND gates‚ the d input and its
complement are gated to generate internal _s and _r inputs. These are inputs
to the cross-coupled NOR structure that is the core of the memory in this latch.

Alternatively‚ the same latch can be described with an assign statement as
shown below.

assign #(3) q = c ? d : q;

This statement simply describes what happens in a latch. The statement
says that when c is 1‚ the q output receives d‚ and when c is 0 it retains its old
value. Using two such statements with complementary clock values describe a
master-slave flip-flop. As shown in Figure 3.37‚ the qm net is the master
output and q is the flip-flop output.
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`timescale 1ns/100ps

module master_slave ( d‚ c‚ q );
input d‚ c;
output q;

wire qm;

assign #(3) qm = c ? d : qm;
assign #(3) q = ~c ? qm : q;

endmodule

Figure 3.37  Master-Slave Flip-Flop

This code uses two concurrent assign statements. As discussed before‚
these statements model logic structures with net driven outputs (qm and q).
The order in which the statements appear in the body of the master_slave
module is not important.

3.3.2 Memory Elements Using Procedural Statements

Although latches and flip-flops can be described by primitive gates and assign
statements‚ such descriptions are hard to generalize‚ and describing more
complex register structures cannot be done this way. This section uses always
statements to describe latches and flip-flops. We will show that the same
coding styles used for these simple memory elements can be generalized to
describe memories with complex control as well as functional register
structures like counters and shift-registers.

module latch ( d‚ c‚ q‚ q_b );
input d‚ c;
output q‚ q_b;
reg q‚ q_b;

always @ ( c or d )
if ( c ) begin

#4 q = d;
#3 q_b = ~d;

end
endmodule

Figure 3.38  Procedural Latch

Latches.  Figure 3.38 shows a D-latch described by an always statement. The
outputs of the latch are declared as reg because they are being driven inside
the always procedural block. Latch clock and data inputs (c and d) appear in
the sensitivity list of the always block‚ making this procedural statement
sensitive to c and d. This means that when an event occurs on c or d‚ the
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always block wakes up and it executes all its statements in the sequential order
from begin to end.

The if-statement enclosed in the always block puts d into q when c is
active. This means that if c is 1 and d changes‚ the change on d propagates to
the q output. This behavior is referred to as transparency‚ which is how latches
work. While clock is active‚ a latch structure is transparent‚ and input changes
affect its output.

Any time the always statement wakes up‚ if c is 1‚ it waits 4 nanoseconds
and then puts d into q. It then waits another 3 nanoseconds and then puts the
complement of d into q_b. This makes the delay of the q_b output 7 ns.

D Flip-Flop.  While a latch is transparent‚ a change on the D-input of a D flip-
flops does not directly pass on to its output. The Verilog code of Figure 3.39
describes a positive-edge trigger D-type flip-flop.

The sensitivity list of the procedural statement shown includes posedge of
clk. This always statement only wakes up when clk makes a 0 to 1 transition.
When this statement does wake up‚ the value of d is put into q. Obviously this
behavior implements a rising-edge D flip-flop.

`timescale 1ns/100ps

module d_ff ( d‚ clk‚ q‚ q_b );
input d‚ clk;
output q‚ q_b;
reg q‚ q_b;

always @ ( posedge clk )
begin

#4 q = d;
#3 q_b = ~d;

end
endmodule

Figure 3.39  A Positive-Edge D Flip-Flop

Instead of posedge‚ use of negedge would implement a falling-edge D flip-
flop. After the specified edge‚ the flow into the always block begins. In our
description‚ this flow is halted by 4 nanoseconds by the #4 delay-control
statement. After this delay‚ the value of d is read and put into q. Following this
transaction‚ the flow into the always block is again halted by 3 nanoseconds‚
after which ~d is put into qb. This makes the delay of q after the edge of the
clock equal to 4 nanoseconds. The delay for q_b becomes the accumulation of
the delay values shown‚ and it is 7 nanoseconds. Delay values are ignored in
synthesis.

Synchronous Control.  The coding style presented for the above simple D flip-
flop is a general one and can be expanded to cover many features found in flip-
flops and even memory structures. The description shown in Figure 3.40 is a
D-type flip-flop with synchronous set and reset (s and r) inputs.
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The description uses an always block that is sensitive to the positive-edge
of clk. When clk makes a 0 to 1 transition‚ the flow into the always block
begins. Immediately after the positive-edge‚ s is inspected and if it is active (1),
after 4 ns q is set to 1 and 3 ns after that q_b is set to 0. Following the positive-
edge of clk‚ if s is not 1‚ r is inspected and if it is active‚ q is set to 0. If neither
s nor r are 1‚ the flow of the program reaches the last else part of the if-
statement and assigns d to q.

The behavior discussed here only looks at s and r on the positive-edge of
clk‚ which corresponds to a rising-edge trigger D-type flip-flop with synchronous
active high set and reset inputs. Furthermore‚ the set input is given a higher
priority over the reset input. The flip-flop structure that corresponds to this
description is shown in Figure 3.41.

Other synchronous control inputs can be added to this flip-flop in a similar
fashion. A clock enable (en) input would only require inclusion of an if-
statement in the last else part of the if-statement in the code of Figure 3.40.

module d_ff ( d‚ s‚ r‚ clk‚ q‚ q_b );
input d‚ clk‚ s‚ r;
output q‚ q_b;
reg q‚ q_b;

always @ ( posedge clk ) begin
if ( s ) begin

#4q = 1'b1;
#3q_b=1'b0;

end else if ( r ) begin
#4q = 1'b0;
#3q_b=1'b1;

end else begin
#4 q = d;
#3 q_b = ~d;

end
end

endmodule

Figure 3.40 D Flip-Flop with Synchronous Control

Figure 3.41 D Flip-Flop with Synchronous Control
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Asynchronous Control. The control inputs of the flip-flop of Figure 3.40 are
synchronous because the flow into the always statement is only allowed to start
when the posedge of clk is observed. To change this to a flip-flop with
asynchronous control‚ it is only required to include asynchronous control
inputs in the sensitivity list of its procedural statement.

Figure 3.42 shows a D flip-flop with active high asynchronous set and reset
control inputs. Note that the only difference between this description and the
code of Figure 3.40 (synchronous control) is the inclusion of posedge s and
posedge r in the sensitivity list of the always block. This inclusion allows the
flow into the procedural block to begin when clk becomes 1 or s becomes 1 or r
becomes 1. The if-statement in this block checks for s and r being 1‚ and if
none are active (activity levels are high) then clocking d into q occurs.

An active high (low) asynchronous input requires inclusion of posedge
(negedge) of the input in the sensitivity list‚ and checking its 1 (0) value in the
if-statement in the always statement. Furthermore‚ clocking activity in the flip-
flop (assignment of d into q) must always be the last choice in the if-statement

the procedural block.
The graphic symbol corresponding to the flip-flop of Figure 3.42 is shown in

Figure 3.43.

module d_ff ( d‚ s‚ r‚ clk‚ q‚ q_b );
input d‚ clk‚ s‚ r;
output q‚ q_b;
reg q‚ q_b;
always @ (posedge clk or posedge s or posedge r )
begin

if ( s ) begin
#4q = 1'b1;
#3q_b = 1'b0;

end else if ( r ) begin
#4q = 1'b0;
#3q_b = 1'b1;

end else begin
#4q = d;
#3 q_b = ~d;

end
end

endmodule

Figure 3.42  D Flip-Flop with Asynchronous Control

Figure 3.43  Flip-Flop with Asynchronous Control Inputs
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3.3.3 Registers‚ Shifters and Counters

Registers‚ shifter-registers‚ counters and even sequential circuits with more
complex functionalities can be described by simple extensions of the coding
styles presented for the flip-flops. In most cases‚ the functionality of the circuit
only affects the last else of the if-statement in the procedural statement of
codes shown for the flip-flops.

Registers. Figure 3.44 shows an 8-bit register with synchronous set and reset
Inputs. The set input puts all 1s in the register and the reset input resets it to
all 0s. The main difference between this and the flip-flop with synchronous
control is the vector declaration of inputs and outputs.

Figure 3.44  An 8-bit Register

Shift-Registers. A 4-bit shift-register with right- and left-shift capabilities‚ a
serial-input‚ synchronous reset input‚ and parallel loading capability is shown
in Figure 3.45. As shown‚ only the positive-edge of clk is included in the
sensitivity list of the always block of this code‚ which makes all activities of the
shift-register synchronous with the clock input. If rst is 1‚ the register is reset‚
if ld is 1 parallel d inputs are loaded into the register‚ and if none are 1 shifting
left or right takes place depending on the value of the l_r input (1 for left‚ 0 for
right). Shifting in this code is done by use of the concatenation operator { }.
For left-shift‚ s_in is concatenated to the right of q[2:0] to form a 4-bit vector
that is put into q. For right-shift‚ s_in is concatenated to the left of q[3:1] to
form a 4-bit vector that is clocked into q[3:0].

The style used for coding this register is the same as that used for flip-flops
and registers presented earlier. In all these examples‚ a single procedural block
handles function selection (e.g.‚ zeroing‚ shifting‚ or parallel loading) as well as
clocking data into the register output.
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module shift_reg (d‚ clk‚ Id‚ rst‚ l_r‚ s_in‚ q);
input [3:0] d;
input clk‚ Id‚ rst‚ l_r‚ s_in;
output [3:0] q;
reg [3:0]q;

always @( posedge clk ) begin
if (rst)

#5 q = 4'b0000;
else if ( ld )

#5 q = d;
else if ( l_r )

#5 q = {q[2:0]‚ s_in};
else

#5 q = {s_in‚ q[3:1]};
end

endmodule

Figure 3.45  A 4-bit Shift Register

Another style of coding registers‚ shift-registers and counters is to use a
combinational procedural block for function selection and another for clocking.

As an example‚ consider a shift-register that shifts s_cnt number of places
to the right or left depending on its sr or sl control inputs (Figure 3.46). The
shift-register also has an ld input that enables its clocked parallel loading. If no
shifting is specified‚ i.e.‚ sr and sl are both zero‚ then the shift register retains
its old value.

The Verilog code of Figure 3.46 shows two procedural blocks that are
identified by combinational and register. A block name appears after the begin
keyword that begins a block and is separated from this keyword by use of a
colon. Figure 3.47 shows a graphical representation of the coding style used for
the description of our shifter.

The combinational block is sensitive to all inputs that can affect the shift
register output. These include the parallel d_in‚ the s_cnt shift-count‚ sr and sl

if-else statement decides on the value placed on the int_q internal variable. The
value selection is based on values of ld‚ sr‚ and sl.  If ld is 1‚ int_q becomes d_in
that is the parallel input of the shift register. If sr or sl is active‚ int_q receives
the previous value of int_q shifted to right or left as many as s_cnt places. In
this example‚ shifting is done by use of the >> and << operators. On the left‚
these operators take the vector to be shifted‚ and on the right they take the
number of places to shift.

The int_q variable that is being assigned values in the combinational block is
a 4-bit reg that connects the output of this block to the input of the register
block.

The register block is a sequential block that handles clocking int_q into the
shift register output. This block (as shown in Figure 3.46) is sensitive to the
positive edge of clk and its body consists of a single reg assignment.

Note in this code that both q and int_q are declared as reg because they are
both receiving values in procedural blocks.

shift control inputs‚ and the ld load control input. In the body of this block an
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module shift_reg ( d_in‚ clk‚ s_cnt‚ sr‚ sl‚ Id‚ q );
input [3:0] d_in;
input clk‚ sr‚ sl‚ Id;
input [1:0] s_cnt;
output [3:0] q;
reg [3:0] q‚ int_q;

always @ ( d_in or s_cnt or sr or sl or Id ) begin: combinational
if ( ld ) int_q = d_in;
else if ( sr ) int_q = int_q >> s_cnt;
else if ( sl ) int_q = int_q << s_cnt;
else int_q = int_q;

end

always @ ( posedge clk ) begin: register
q = int_q;

end

endmodule

Figure 3.46  Shift-Register Using Two Procedural Blocks

Figure 3.47  Shifter Block Diagram

Counters. Any of the styles described for the shift-registers in the previous
discussion can be used for describing counters. A counter counts up or down‚
while a shift-register shifts right or left. We use arithmetic operations in
counting as opposed to shift or concatenation operators in shift-registers.
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Figure 3.48 shows a 4-bit up-down counter with a synchronous rst reset
input. The counter has an ld input for doing the parallel loading of d_in into
the counter. The counter output is q and it is declared as reg since it is
receiving values within a procedural statement.

Discussion about synchronous and asynchronous control of flip-flops and
registers also apply to the counter circuits. For example‚ inclusion of posedge
rst in the sensitivity list of the counter of Figure 3.48 would make its resetting
asynchronous.

module counter (d_in‚ clk‚ rst‚ Id‚ u_d‚ q );
input [3:0] d_in;
input clk‚ rst‚ Id‚ u_d;
output [3:0] q;
reg [3:0] q;

always @ ( posedge clk ) begin
if (rst)

q = 4'b0000;
else if ( Id )

q = d_in;
else if ( u_d )

q = q + 1;
else

q = q - 1;
end

endmodule

Figure 3.48  An Up-Down Counter

3.3.4 State Machine Coding

Coding styles presented so far can be further generalized to cover finite state
machines of any type. This section shows coding for Moore and Mealy state
machines. The examples we will use are simple sequence detectors. These
circuits represent the controller part of a digital system that has been
partitioned into a data path and a controller. The coding styles used here apply
to such controllers‚ and will be used in later chapters of this book to describe
CPU and multiplier controllers.

Moore Detector. State diagram for a Moore sequence detector detecting 101 on
its x input is shown in Figure 3.49. The machine has four states that are
labeled‚ reset‚ got1‚ got10‚ and got101. Starting in reset‚ if the 101 sequence is
detected‚ the machine goes into the got101 state in which the output becomes
1. In addition to the x input‚ the machine has a rst input that forces the
machine into its reset state. The resetting of the machine is synchronized with
the clock.
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Figure 3.49  A Moore Sequence Detector

module moore_detector (x‚ rst‚ clk‚ z );
input x‚ rst‚ clk;
output z; reg z;
parameter [1:0] reset = 0‚ got1 = 1‚ got10 = 2‚ got101 = 3;
reg [1:0] current;
always @ ( posedge clk ) begin

if (rst) begin
current = reset; z = 1'b0;

end
else case ( current )

reset: begin
if ( x==1 'b1 ) current = got1 ;
else current = reset; z = 1'b0;

end
got1: begin

if ( x==1'b0 ) current = got10;
else current = got1; z = 1'b0;

end
got 10: begin

if ( x==1'b1 ) begin
current = got101; z=1'b1;

end else begin
current = reset; z = 1'b0;

end
end

got 101: begin
if ( x==1'b1 ) current = got1;
else current = got10;
z = 1'b0;

end
endcase

end
endmodule

Figure 3.50  Moore Machine Verilog Code
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The Verilog code of the Moore machine of Figure 3.49 is shown in Figure
3.50. After the declaration of inputs and outputs of this module‚ parameter
declaration declares four states of the machine as two-bit parameters. The
square-brackets following the parameter keyword specify the size of parameters
being declared. Following parameter declarations in the code of Figure 3.50‚
the two-bit current reg type variable is declared. This variable holds the current
state of the state machine.

The always block used in the module of Figure 3.50 describes state
transitions and output assignments of the state diagram of Figure 3.49. The
main task of this procedural block is to inspect input conditions (values on rst
and x) during the present state of the machine defined by current and set values
into current for the next state of the machine.

The flow into the always block begins with the positive edge of clk. Since all
activities in this machine are synchronized with the clock‚ only clk appears on
the sensitivity list of the always block. Upon entry into this block‚ the rst input
is checked and if it is active‚ current is set to reset (reset is a declared parameter
and its value is 0). The value put into current in this pass through the always
block gets checked in the next pass with the next edge of the clock. Therefore
this assignment is regarded as the next-state assignment. When this
assignment is made‚ the if-else statements skip the rest of the code of the
always block‚ and this always block will next be entered with the next positive
edge of clk.

Upon entry into the always block‚ if rst is not 1‚ program flow reaches the
case statement that checks the value of current against the four states of the
machine. Figure 3.51 shows an outline of this case-statement.

Figure 3.51  case-Statement Outline

case ( current )
reset: begin
got1: begin
got10: begin

got101: begin
endcase

end
end
end
end

The case-statement shown has four case-alternatives. A case-alternative is
followed by a block of statements bracketed by the begin and end keywords. In
each such block‚ actions corresponding to the active state of the machine are
taken.

Figure 3.52 shows the Verilog code of the got10 state and its diagram from
the state diagram of Figure 3.49. As shown here‚ the case-alternative that
corresponds to the got10 state only specifies the next values for the state and
output of the circuit.

Note‚ for example‚ that the Verilog code segment of state got10 does not
specify the output of this state. Instead‚ the next value of current and the next
value of z are specified based on the value of x. If x is 1‚ the next state becomes
got101 in which z is 1‚ and if x is 0‚ the next state becomes reset.
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Figure 3.52  Next Values from got10

In this coding style‚ for every state of the machine there is a case-
alternative that specifies the next state values. For larger machines‚ there will
be more case-alternatives‚ and more conditions within an alternative.
Otherwise‚ this style can be applied to state machines of any size and
complexity.

This same machine can be described in Verilog in many other ways. We
will show alternative styles of coding state machines by use of examples that
follow.

A Mealy Machine Example. Unlike a Moore machine that has outputs that are
only determined by the current state of the machine‚ in a Mealy machine‚ the
outputs are determined by the state the machine is in as well as the inputs of
the circuit. This makes Mealy outputs not fully synchronized with the circuit
clock. In the state diagram of a Mealy machine the outputs are specified along
the edges that branch out of the states of the machine.

Figure 3.53  A 101 Mealy Detector
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Figure 3.53 shows a 101 Mealy detector. The machine has three states‚
reset‚ got1 and got10. While in got10‚ if the x input becomes 1 the machine
prepares to go to its next state with the next clock. While waiting for the clock‚
its output becomes 1. While on the edge that takes the machine out of got10‚ if
the clock arrives the machine goes into the got1 state. This machine allows
overlapping sequences. The machine has no external resetting mechanism. A
sequence of two zeros on input x puts the machine into the reset state in a
maximum of two clocks.

The Verilog code of the 101 Mealy detector is shown in Figure 3.54. After
input and output declarations‚ a parameter declaration defines bit patterns
(state assignments) for the states of the machine. Note here that state value 3
or 11 is unused. As in the previous example‚ we use the current two-bit reg to
hold the current state of the machine.

After the declarations‚ an initial block sets the initial state of the machine
to reset. This procedure for initializing the machine is only good for simulation
and is not synthesizable.

This example uses an always block for specifying state transitions and a
separate statement for setting values to the z output. The always statement
responsible for state transitions is sensitive to the circuit clock and has a case
statement that has case alternatives for every state of the machine. Consider
for example‚ the got10 state and its corresponding Verilog code segment‚ as
shown in Figure 3.55.

module mealy_detector ( x‚ clk‚ z );
input x‚ clk;
output z;
parameter [1:0]
reset = 0‚ // 0 = 0 0
got1 = 1‚ // 1 = 0 1
got10 = 2; // 2 = 1 0

reg [1:0] current;

initial current = reset;
always @ ( posedge clk )
begin
case ( current )
reset: if ( x==1 'b1 ) current = got1;

else current = reset;
got1:  if ( x==1'b0 ) current = got10;

else current = got1;
got10:  if ( x==1 'b1 ) current = got1;

else current = reset;
default: current = reset;

endcase
end
assign z= ( current==got10 && x==1'b1 ) ? 1'b1 : 1'b0;

endmodule

Figure 3.54  Verilog Code of 101 Mealy Detector
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Figure 3.55  Coding a Mealy State

As shown, the Verilog code of this state only specifies its next states and
does not specify the output values. Notice also in this code segment that the
case alternative shown does not have begin and end bracketing. Actually,
begin and end keywords do not appear in blocks following if and else keywords
either.

Verilog only requires begin and end bracketing if there is more than one
statement in a block. The use of this bracketing around one statement is
optional. Since the if part and the else part each only contain one statement,
begin and end keywords are not used. Furthermore, since the entire if-else
statement reduces to only one statement, the begin and end keywords for the
case-alternative are also eliminated.

The last case-alternative shown in Figure 3.54 is the default alternative.
When checking current against all alternatives that appear before the default
statement fail, this alternative is taken. There are several reasons that we use
this default alternative. One is that, our machine only uses three of the
possible four 2-bit assignments and 11 is unused. If the machine ever begins
in this state, the default case makes reset the next state of the machine. The
second reason why we use default is that Verilog assumes a four-value logic
system that includes Z and X. If current ever contains a Z or X, it does not
match any of the defined case alternatives, and the default case is taken.
Another reason for use of default is that our machine does not have a hard
reset and we are making provisions for it to go to the reset state. The last
reason for default is that it is just a good idea to have it.

The last statement in the code fragment of Figure 3.55 is an assign
statement that sets the z output of the circuit. This statement is a concurrent
statement and is independent of the always statement above it. When current
or x changes, the right hand side of this assignment is evaluated and a value of
0 or 1 is assigned to z. Conditions on the right hand side of this assignment
are according to values put in z in the state diagram of Figure 3.54.
Specifically, the output is 1 when current is got10 and x is 1, otherwise it is 0.
This statement implements a combinational logic structure with current and x
inputs and z output.
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Huffman Coding Style. The Huffman model for a digital system characterizes it
as a combinational block with feedbacks through an array of registers. Verilog
coding of digital systems according to the Huffman model uses an always
statement for describing the register part and another concurrent statement for
describing the combinational part.

We will describe the state machine of Figure 3.49 to illustrate this style of
coding. Figure 3.56 shows the combinational and register part partitioning that
we will use for describing this machine. The combinational block uses x and
p_state as input and generates z and n_state. The register block clocks n_state
into p_state, and reset p_state when rst is active.

Figure 3.56  Huffman Partitioning of 101 Moore Detector

Figure 3.57 shows the Verilog code of Figure 3.49 according to the
partitioning of Figure 3.56. As shown, parameter declaration declares the
states of the machine. Following this declaration, n_state and p_state variables
are declared as two-bit regs that hold values corresponding to the states of the
101 Moore detector. The combinational always block follows this reg
declaration. Since this a purely combinational block, it is sensitive to all its
inputs, namely x and p_state. Immediately following the block heading, n_state
and z are set to their inactive or reset values. This is done so that these
variables are always reset with the clock to make sure they do not retain their
old values. As discussed before, retaining old values implies latches, which is
not what we want in our combinational block.

The body of the combinational always block of Figure 3.57 contains a case-
statement that uses the p_state input of the always block for its case-
expression. This expression is checked against the states of the Moore
machine. As in the other styles discussed before, this case-statement has
case-alternatives for reset, got1, got10, and got101 states.

In a block corresponding to a case-alternative, based on input values,
n_state and z output are assigned values. Unlike the other styles where current
is used both for the present and next states, here we use two different variables,
p_state and n_state.

The next procedural block shown in Figure 3.57 handles the register part of
the Huffman model of Figure 3.56. In this part, n_state is treated as the
register input and p_state as its output. On the positive edge of the clock,
p_state is either set to the reset state (00) or is loaded with contents of n_state.
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Together, combinational and register blocks describe our state machine in a very
modular fashion.

module moore_detector ( x, rst, clk, z );
input x, rst, clk;
output z;
reg z;
parameter [1:0]

reset = 2'b00, got1 = 2'b01, got10 = 2'b10, got101 = 2'b11;

reg [1:0] p_state, n_state;

always @ ( p_state or x ) begin : combinational
n_state = 0; z = 0;
case ( p_state )

reset: begin
if( x==1'b1 ) n_state = got1;
else n_state = reset; z = 1'b0;

end
got1: begin

if( x==1'b0 ) n_state = got10;
else n_state = got1; z = 1'b0;

end
got 10: begin

if( x==1'b1 ) n_state = got101;
else n_state = reset; z = 1 'b0;

end
got 101: begin

if( x==1'b1 ) n_state = got1;
else n_state = got10; z = 1 'b1;

end
default: n_state = reset;

endcase
end

always @ ( posedge clk ) begin : register
if ( rst ) p_state = reset;
else p_state = n_state;

end

endmodule

Figure 3.57  Verilog Huffman Coding Style

The advantage of this style of coding is in its modularity and defined tasks
of each block. State transitions are handled by the combinational block and
clocking is done by the register block. Changes in clocking, resetting, enabling
or presetting the machine only affect the coding of the register block. If we were
to change the synchronous resetting to asynchronous, the only change we had
to make was adding posedge rst to the sensitivity list of the register block.

A More Modular Style. For a design with more input and output lines and more
complex output logic, the combinational block may further be partitioned into a
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block for handling transitions and another for assigning values to the outputs
of the circuit. For coding both of these blocks‚ it is necessary to follow the rules
discussed for combinational blocks in Section 3.2.4.

module mealy_detector ( x‚ en‚ clk‚ rst‚ z );
input x‚ en‚ clk‚ rst; output z; reg z;
parameter [1:0] reset = 0‚ got1 = 1‚ got10 = 2‚ got11 = 3;

reg [1:0] p_state‚ n_state;

always @( p_state or x ) begin : Transitions
n_state = reset;
case ( p_state )

reset: if ( x == 1'b1 ) n_state = got1;
else n_state = reset;

got1: if ( x == 1'b0 ) n_state = got10;
else n_state = got11;

got10: if ( x == 1'b1 ) n_state = got1;
else n_state = reset;

got11: if ( x == 1'b1 ) n_state = got11;
else n_state = got10;

default: n_state = reset;
endcase

end

always @(p_state or x) begin: Outputting
z = 0;
case ( p_state )

reset: z = 1'b0;
got1: z = 1'b0;
got10: if (x == 1'b1 ) z = 1'b1;

else z = 1'b0;
got11: if ( x==1'b1 ) z = 1'b0;

else z = 1'b1;
default: z = 1'b0;

endcase
end

always @ ( posedge clk ) begin: Registering
if ( rst ) p_state = reset;
else if( en ) p_state = n_state;

end

endmodule

Figure 3.58  Separate Transition and Output Blocks

Figure 3.58 shows the coding of the 110-101 Moore detector using two
separate blocks for assigning values to n_state and the z output. In a situation
like what we have in which the output logic is fairly simple‚ a simple assign
statement could replace the outputting procedural block. In this case‚ z must
be a net and not a reg.
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The examples discussed above‚ in particular‚ the last two styles‚ show how
combinational and sequential coding styles can be combined to describe very
complex digital systems.

3.3.5 Memories

Verilog allows description and use of memories. Memories are two-dimensional
variables that are declared as reg. Verilog only allows reg data types for
memories. Figure 3.59 shows a reg declaration declaring mem and its
corresponding block diagram. This figure also shows several valid memory
operations.

Figure 3.59  Memory Representation

Square brackets that follow the reg keyword specify the word-length of the
memory. The square brackets that follow the name of the memory (mem)‚
specify its address space. A memory can be read by addressing it within its
address range‚ e.g.‚ mem[956]. Part of a word in a memory cannot be read
directly‚ i.e.‚ slicing a memory word is not possible. To read part of a word‚ the
whole word must first be read in a variable and then slicing done on this
variable. For example‚ data[7:4] can be used after a memory word has been
placed into data.

With proper indexing‚ a memory word can be written into by placing the
memory name and its index on the left hand side of an assignment‚ e.g.‚
mem[932] = data; ‚ memories can also be indexed by reg or net type variables‚
e.g.‚ mem[addr]‚ when addr is a 10-bit address bus. Writing into a part of the
memory is not possible. In all cases data directly written into a memory word
affects all bits of the word being written into. For example to write the four-bit
short_data into a location of mem‚ we have to decide what goes into the other
four bits of the memory word.
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Figure 3.60 shows a memory block with separate input and output busses.
Writing into the memory is clocked‚ while reading from it only requires rw to be
1. An assign statement handles reading and an always block performs writing
into this memory.

module memory (inbus‚ outbus‚ addr‚ clk‚ rw);
input [7:0] inbus;
input [9:0] addr;
output [7:0] outbus;
input clk‚ rw;

reg [7:0] mem [0:1023];

assign outbus = rw ? mem [addr] : 8’bz;

always @ (posedge clk)
if (rw == 0) mem [addr] = inbus;

endmodule

Figure 3.60  Memory Description

3.4 Writing Testbenches

Verilog coding styles discussed so far were for coding hardware structures‚ and
in all cases synthesizability and direct correspondence to hardware were our
main concerns. On the other hand‚ testbenches do not have to have hardware
correspondence and they usually do not follow any synthesizability rules. We
will see that delay specifications‚ and initial statements that do not have a one-
to-one hardware correspondence are used generously in testbenches.

For demonstration of testbench coding styles‚ we use the Verilog code of
Figure 3.61 that is a 101 Moore detector‚ as the circuit to be tested.

This description is functionally equivalent to that of Figure 3.50. The
difference is in the use of condition expressions (?:) instead of if-else
statements‚ and separating the output assignment from the main always block.
This code will be instantiated in the testbenches that follow.

3.4.1 Generating Periodic Data

Figure 3.62 shows a testbench module that instantiates moore_detector and
applies test data to its inputs. The first statement in this code is the 'timescale
directive that defines the time unit of this description. The testbench itself has
no ports‚ which is typical of all testbenches. All data inputs to a circuit-under-
test are locally generated in its testbench.
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module moore_detector ( x‚ rst‚ clk‚ z );
input x‚ rst‚ clk;
output z;
parameter [1:0] a=0‚ b=1‚ c=2‚ d=3;
reg [1:0] current;

always @( posedge clk )
if ( rst ) current = a;
else case ( current )

a : current = x ? b : a ;
b : current = x ? b : c ;
c : current = x ? d : a ;
d : current = x ? b : c ;
default : current = a;

endcase
assign z = (current==d) ? 1'b1 : 1'b0;

endmodule

Figure 3.61  Circuit Under Test

Because we are using procedural statements for assigning values to ports of
the circuit-under-test‚ all variables mapped with the input ports of this circuit
are declared as reg. The testbench uses two initial blocks and two always
blocks. The first initial block initializes clock‚ x‚ and reset to 0‚ 0‚ and 1
respectively. The next initial block waits for 24 time units (ns in this code)‚
and then sets reset back to 0 to allow the state machine to operate.

The always blocks shown produce periodic signals with different
frequencies on clock and x. Each block waits for a certain amount of time and
then it complements its variable. Complementing begins with the initial values
of clock and x as set in the first initial block. We are using different periods for
clock and x‚ so that a combination of patterns on these circuit inputs is seen. A
more deterministic set of values could be set by specifying exact values at
specific times.

`timescale 1 ns / 100 ps

module test_moore_detector;
reg x‚ reset‚ clock;
wire z;
moore_detector uut ( x‚ reset‚ clock‚ z );
initial begin

clock=1'b0; x=1'b0; reset=1'b1;
end
initial #24 reset=1'b0;
always #5 clock=~clock;
always #7 x=~x;

endmodule

Figure 3.62  Generating Periodic Data
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3.4.2 Random Input Data

Instead of the periodic data on x we can use the $random predefined system
function to generate random data for the x input. Figure 3.63 shows such a
testbench.

This testbench also combines the two initial blocks for initially activating
and deactivating reset into one. In addition‚ this testbench has an initial block
that finishes the simulation after 165 ns.

When the flow into a procedural block reaches the $finish system task‚ the
simulation terminates and exits. Another simulation control task that is often
used is the $stop task that only stops the simulation and allows resumption of
the stopped simulation run.

`timescale 1 ns / 100 ps

module test_moore_detector;
reg x‚ reset‚ clock;
wire z;
moore_detector uut( x‚ reset‚ clock‚ z );
initial begin

clock=1'b0; x=1'b0; reset=1'b1;
#24 reset=1'b0;

end
initial #165 $finish;
always #5 clock=~clock;
always #7 x=~x;

endmodule

Figure 3.63  Random Data Generation

3.4.3 Synchronized Data

Independent data put into various inputs of a circuit may not be random
enough to be able to catch many design errors. Figure 3.64 shows another
testbench for our Moore detector that only reads random data into the x input
after the positive edge of the clock.

The third initial statement shown in this code uses the forever construct
to loop forever. Every time when the positive edge of clock is detected‚ after 3
nanoseconds a new random value is put into x. The initial statement in charge
of clock generation uses a repeat loop to toggle the clock 13 times every 5
nanoseconds and stop. This way‚ after clock stops‚ all activities cease‚ and the
simulation run terminates. For this testbench we do not need a simulation
control task.

The testbench of Figure 3.64 uses an invocation of $monitor task to
display the contents of the current state of the sequence detector every time it
changes. The initial statement that invokes this task puts it in the background
and every time uut.current changes‚ $monitor reports its new value. The
uut.current name is a hierarchical name that uses the instance name of the
circuit-under-test to look at its internal variable‚ current.
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`timescale 1ns/100ps

module test_moore_detector;
reg x‚ reset‚ clock;
wire z;

moore_detector uut( x‚ reset‚ clock‚ z );

initial begin
clock=1'b0; x=1'b0; reset=1'b1;
#24 reset=1'b0;

end
initial repeat(13) #5 clock=~clock;
initial forever @(posedge clock) #3 x=$random;
initial $monitor("New state is %d and occurs at %t"‚ uut.current‚ $time);
always @(z) $display("Output changes at %t to %b"‚ $time‚ z);

endmodule

Figure 3.64  Synchronized Test Data

The $monitor task shown also reports the time that current takes a new
value. This time is reported by the $time task. The uut.current variable uses
the decimal format (%d) and $time is reported using the time format (%t).
Binary‚ Octal and Hexadecimal output can be obtained by using %b‚ %o‚ and
%h format specifications.

The last statement in this testbench is an always statement that is
sensitive to z. This statement uses the $display task to report values put on z.
The $display task is like the $monitor‚ except that it only becomes active when
flow into a procedural block reaches it. When z changes‚ flow into the always
statement begins and the $display task is invoked to display the new value of z
and its time of change. This output is displayed in binary format. Using
$monitor inside an initial statement‚ for displaying z (similar to that for
uut.current) would result in exactly the same thing as the $display inside an
always block that is sensitive to z.

3.4.4 Applying Buffered Data

Examples discussed above use random or semi-random data on the x input of
the circuit being tested. It is possible that we never succeed in giving x
appropriate data to generate a 1 on the z output of our sequence detector. To
correct this situation‚ we define a buffer‚ put the data we want in it and
continuously apply this data to the x input.

Figure 3.65 shows another testbench for our sequence detector of Figure
3.61. In this testbench the 5-bit buff variable is initialized to contain 10110.
The initial block that follows the clock generation block‚ rotates concatenation
of x and buff one place to the right 3 nanoseconds after every time the clock
ticks. This process repeats for as long as the circuit clock ticks.



`timescale 1ns/100ps

module test_moore_detector;
reg x, reset, clock;
wire z;

reg [4:0] buff;
initial buff = 5'b10110;

moore_detector uut( x, reset, clock, z );

initial begin
clock=1'b0; x=1'b0; reset=1'b1;
#24 reset=1'b0;

end

initial repeat(18) #5 clock=~clock;
initial forever @(posedge clock) #3 {buff,x}={x,buff};
initial forever @(posedge clock) #1 $display(z, uut.current);

endmodule
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Figure 3.65  Buffered Test Data

The last initial statement in this description outputs z and uut.current 1
nanosecond after every time the clock ticks. The $display task used for this
purpose is unformatted which defaults to the decimal data output.

3.4.5 Timed Data

A very simple testbench for our sequence detector can be done by applying test
data to x and timing them appropriately to generate the sequence we want, very
similar to the way values were applied to reset in the previous examples. Figure
3.66 shows this simple testbench.

Techniques discussed in the above examples are just some of what one can
do for test data generation. These techniques can be combined for more
complex examples. After using Verilog for some time, users form their own test
generation techniques. For small designs, simulation environments generally
provide waveform editors and other tool-dependent test generation schemes.
Some tools come with code fragments that can be used as templates for
testbenches.

An important issue is developing testbenches is external file IO. Verilog
allows the use of $readmemh and $readmemb system tasks for reading hex
and binary test data into a declared memory. Moreover, for writing responses
from a circuit-under-test to an external file, $fdisplay can be used. Examples
for these features of the language will be shown in Chapters 11 and 14.
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`timescale 1ns/100ps

module test_moore_detector;
reg x, reset, clock;
wire z;

moore_detector uut( x, reset, clock, z) ;

initial begin
clock=1'b0; x=1'b0; reset=1'b1;
#24 reset=1'b0;

end

always #5 clock=~clock;

initial begin
#7 x=1;
#5 x=0;
#18 x=1;
#21 x=0;
#11 x=1;
#13 x=0;
#33 $stop;

end

endmodule

Figure 3.66  Timed Test Data Generation

3.5 Synthesis Issues

Verilog constructs described in this chapter included those for cell modeling as
well as those for designs to be synthesized. In describing an existing cell,
timing issues are important and must be included in the Verilog code of the
cell. At the same time, description of an existing cell may require parts of this
cell to be described by interconnection of gates and transistors. On the other
hand, a design to be synthesized does not include any timing information
because this information is not available until the design is synthesized, and
designers usually do not use gates and transistors for high level descriptions for
synthesis.

Considering the above, taking timing out of the descriptions, and only using
gates when we really have to, the codes presented in this chapter all have one-
to-one hardware correspondence and are synthesizable. For synthesis, a
designer must consider his or her target library to see what and how certain
parts can be synthesized. For example, most FPGAs do not have internal three-
state structures and three-state bussings are converted to AND-OR busses.
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3.6 Summary

This chapter presented the Verilog HDL language from a hardware design point
of view. The chapter used complete design examples at various levels of
abstraction for showing ways in which Verilog could be used in a design. We
showed how timing details could be incorporated in cell descriptions. Aside
from this discussion of timing‚ all examples that were presented had one-to-one
hardware correspondence and were synthesizable. We have shown how
combinational and sequential components can be described for synthesis and
how a complete system can be put together using combinational and sequential
blocks for it to be tested and synthesized.

This chapter did not cover all of Verilog‚ but only the most often used parts
of the language.
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4 Programmable Logic Devices

The need for getting designs done quickly has led to the creation and evolution
of Programmable Logic devices. The idea began from Read Only Memories
(ROM) that were just an organized array of gates and has evolved into System
On Programmable Chips (SOPC) that use programmable devices, memories and
configurable logic all on one chip.

This chapter shows the evolution of basic array structures like ROMs into
complex CPLD (Complex Programmable Logic Devices) and FPGAs (Field
Programmable Gate Array). This topic can be viewed from different angles, like
logic structure, physical design, programming technology, transistor level,
software tools, and perhaps even from historic and commerical aspects.
However our treatment of this subject is more at the structural level. We
discuss gate level structures of ROMs, PLAs, PALs, CPLDs, and FPGAs. The
material is at the level needed for understanding configuration and utilization of
CPLDs and FPGAs in digital designs.

4.1 Read Only Memories

We present structure of ROMs by showing the implementation of a 3-input 4-
output logic function. The circuit with the truth table shown in Figure 4.1 is to
be implemented.

4.1.1 Basic ROM Structure

The simplest way to implement the circuit of Figure 4.1 is to form its minterms
using AND gates and then OR the appropriate minterms for formation of the
four circuit outputs. The circuit requires eight 3-input AND gates and four OR
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gates that can take up-to eight inputs. It is easiest to draw this structure in an
array format as shown in Figure 4.2.

Figure 4.1  A Simple Combinational Circuit

The circuit shown has an array of AND gates and an array of OR gates, that are
referred to as the AND-plane and the OR-plane. In the AND-plane all eight
minterms for the three inputs, a, b, and c are generated. The OR plane uses
only the minterms that are needed for the outputs of the circuit. See for
example minterm 7 that is generated in the AND-plane but not used in the OR-
plane. Figure 4.3 shows the block diagram of this array structure.

Figure 4.2  AND-OR Implementation
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Figure 4.3  AND and OR Planes

4.1.2 NOR Implementation

Since realization of AND and OR gates in most technologies are difficult and
generally use more delays and chip area than NAND or NOR implementations,
we implement our example circuit using NOR gates. Note that a NOR gate with
complemented outputs is equivalent to an OR, and a NOR gate with
complemented inputs is equivalent to an AND gate. Our all NOR
implementation of Figure 4.4 uses NOR gates for generation of minterms and
circuit outputs. To keep functionality and activity levels of inputs and outputs
intact, extra inverters are used on the circuit inputs and outputs. These
inverters are highlighted in Figure 4.4. Although NOR gates are used, the left
plane is still called the AND-plane and the right plane is called the OR-plane.

Figure 4.4  All NOR Implementation



108 Digital Design and Implementation with Field Programmable Devices

Hardware implementation of the circuit of Figure 4.4 faces difficulties in routing
wires and building gates with large number of inputs. This problem becomes
more critical when we are using arrays with tens of inputs. Take for example, a
circuit with 16 inputs, which is very usual for combinational circuits. Such a
circuit has 64k minterms. In the AND-plane, wires from circuit inputs
must be routed to over 64,000 NOR gates. In the OR-plane, the NOR gates
must be large enough for every minterm of the function (over 64,000 minterms)
to reach their inputs.

Such an implementation is very slow because of long lines, and takes too
much space because of the requirement of large gates. The solution to this
problem is to distribute gates along array rows and columns.

In the AND-plane, instead of having a clustered NOR gate for all inputs to
reach to, the NOR gate is distributed along the rows of the array. In Figure 4.4,
the NOR gate that implements minterm 3 is highlighted. Distributed transistor-
level logic of this NOR gate is shown in Figure 4.5. This figure also shows a
symbolic representation of this structure.

Figure 4.5  Distributed NOR of the AND-plane

Figure 4.6  Distributed NOR Gate of Output y

4.1.3 Distributed Gates
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Likewise, in the OR-plane, instead of having large NOR gates for the
outputs of the circuit, transistors of output NOR gates are distributed along the
corresponding output columns. Figure 4.6 shows the distributed NOR
structure of the y output of circuit of Figure 4.4. A symbolic representation of
this structure is also shown in this figure.

As shown in Figure 4.5 and Figure 4.6, distributed gates are symbolically
represented by gates with single inputs. In each case, connections are made on
the inputs of the gate. For the AND-plane, the inputs of the AND gate are a, b,
and c forming minterm 3, and for the OR gate of Figure 4.6, the inputs of the
gate are m2, m5 and m6. The reason for the difference in notations of
connections in the AND-plane and the OR-plane (dots versus crosses) becomes
clear after the discussion of the next section.

Figure 4.7 Fixed AND-plane, Programmable OR-plane

4.1.4 Array Programmability

For the a, b and c inputs, the structure shown in Figure 4.4 implements w, x, y
and z functions. In this implementation, independent of our outputs, we have
generated all minterms of the three inputs. For any other functions other than
w, x, y and z, we would still generate the same minterms, but use them
differently. Hence, the AND-plane with which the minterms are generated can
be wired independent of the functions realized. On the contrary, the OR-plane
can only be known when the output functions have been determined.
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We can therefore generate a general purpose array logic with all minterms
in its AND-plane, and capability of using any number of the minterms for any of
the array outputs in its OR-plane. In other words, we want a fixed AND-plane
and a programmable (or configurable) OR-plane. As shown in Figure 4.7,
transistors for the implementation of minterms in the AND-plane are fixed, but
in the OR-plane there are fusible transistors on every output column for every
minterm of the AND-plane. For realization of a certain function on an output of
this array, transistors corresponding to the used minterms are kept, and the
rest are blown to eliminate contribution of the minterm to the output function.

Figure 4.7 shows configuration of the OR-plane for realizing outputs shown
in Figure 4.1. Note for example that for output y, only transistors on rows m2,
m5, and m6 are connected and the rest are fused off.

Instead of the complex transistor diagram of Figure 4.7, the notation shown
in Figure 4.8 is used for representing the programmability of the configurable
arrays. The dots in the AND-plane indicate permanent connections, and the
crosses in the OR-plane indicate programmable or configurable connections.

Figure 4.8  Fuse Notation for Configurable Arrays

Let us look at the circuit of Figure 4.8 as a black box of three inputs and four
outputs. In this circuit, if an input value between 0 and 7 is applied to the abc
inputs, a 4-bit value is read on the four circuit outputs. For example abc=011
always reads wxyz=1001.

If we consider abc as the address inputs and wxyz as the data read from
abc designated address, then the black box corresponding to Figure 4.8 can be
regarded as a memory with an address space of 8 words and data of four bits
wide. In this case, the fixed AND-plane becomes the memory decoder, and the
programmable OR-plane becomes the memory array (see Figure 4.9). Because

4.1.5 Memory View
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this memory can only be read from and not easily written into, it is referred to
as Read Only Memory orROM.

The basic ROM is a one-time programmable logic array. Other variations of
ROMs offer more flexibility in programming, but in all cases they can be read
more easily than they can be written into.

Figure 4.9  Memory View of ROM

The acronym, ROM is generic and applies to most read only memories. What is
today implied by ROM may be ROM, PROM, EPROM, EEPROM or even flash
memories. These variations are discussed here.

ROM. ROM is a mask-programmable integrated circuit, and is programmed by
a mask in IC manufacturing process. The use of mask-programmable ROMs is
only justified when a large volume is needed. The long wait time for
manufacturing such circuits makes it a less attractive choice when time-to-
market is an issue.

PROM.   Programmable ROM is a one-time programmable chip that, once
programmed, cannot be erased or altered. In a PROM, all minterms in the
AND-plane are generated, and connections of all AND-plane outputs to OR-
plane gate inputs are in place. By applying a high voltage, transistors in the
OR-plane that correspond to the minterms that are not needed for a certain
output are burned out. Referring to Figure 4.7, a fresh PROM has all
transistors in its OR-plane connected. When programmed, some will be fused
out permanently. Likewise, considering the diagram of Figure 4.8, an un-
programmed PROM has X’ s in all wire crossings in its OR-plane.

4.1.6 ROM Variations
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EPROM.  An Erasable PROM is a PROM that once programmed, can be
completely erased and reprogrammed. Transistors in the OR-plane of an
EPROM have a normal gate and a floating gate as shown in Figure 4.10. The
non-floating gate is a normal NMOS transistor gate, and the floating-gate is
surrounded by insulating material that allows an accumulated charge to
remain on the gate for a long time.

Figure 4.10   Floating Gate

When not programmed, or programmed as a '1', the floating gate has no
extra charge on it and the transistor is controlled by the non-floating gate
(access gate). To fuse-out a transistor, or program a '0' into a memory location,
a high voltage is applied to the access gate of the transistor which causes
accumulation of negative charge in the floating-gate area. This negative charge
prevents logic 1 values on the access gate from turning on the transistor. The
transistor, therefore, will act as an unconnected transistor for as long as the
negative charge remains on its floating-gate.

To erase an EPROM it must be exposed to ultra-violate light for several
minutes. In this case, the insulating materials in the floating-gates become
conductive and these gates start loosing their negative charge. In this case, all
transistors return to their normal mode of operation. This means that all
EPROM memory contents become 1, and ready to be reprogrammed.

Writing data into an EPROM is generally about a 1000 times slower than
reading from it. This is while not considering the time needed for erasing the
entire EPROM.

EEPROM.   An EEPROM is an EPROM that can electrically be erased, and hence
the name: Electrically Erasable Programmable ROM. Instead of using ultra-
violate to remove the charge on the non-floating gate of an EPROM transistor, a
voltage is applied to the opposite end of the transistor gate to remove its
accumulated negative charge. An EEPROM can be erased and reprogrammed
without having to remove it. This is useful for reconfiguring a design, or saving
system configurations. As in EPROMs, EEPROMs are non-volatile memories.
This means that they save their internal data while not powered. In order for
memories to be electrically erasable, the insulating material surrounding the
floating-gate must be much thinner than those of the EPROMS. This makes the
number of times EEPROMs can be reprogrammed much less than that of
EPROMs and in the order of 10 to 20,000. Writing into a byte of an EEPROM is
about 500 times slower than reading from it.
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Flash Memory.   Flash memories are large EEPROMs that are partitioned into
smaller fixed-size blocks that can independently be erased. Internal to a
system, flash memories are used for saving system configurations. They are
used in digital cameras for storing pictures. As external devices, they are used
for temporary storage of data that can be rapidly retrieved.

Various forms of ROM are available in various sizes and packages. The
popular 27xxx series EPROMs come in packages that are organized as byte
addressable memories. For example, the 27256 EPROM has 256K bits of
memory that are arranged into 32K bytes. This package is shown in Figure
4.11.

The 27256 EPROM has a Vpp pin that is used for the supply input during read-
only operations and is used for applying programming voltage during the
programming phase. The 15 address lines address 256K of 8-bit data that are
read on to O7 to O0 outputs. Active low CS and OE are for three-state control
of the outputs and are used for cascading EPROMs and/or output bussing.

EPROMs can be cascaded for word length expansion, address space
expansion or both. For example, a 1Meg 16-bit word memory can be formed by
use of a four by two array of 27256s.

The price we are paying for the high degree of flexibility of ROMs is the large
area occupied by the AND-plane that forms every minterm of the inputs of the
ROM. PLAs (Programmable Logic Arrays) constitutes an alternative with less
flexibility and less use of silicon. For this discussion we look at ROMs as logic
circuits as done in the earlier parts of Section 4.1, and not the memory view of
the later parts of this section.

For illustrating the PLA structure, we use the 3-input, 4-output example
circuit of Figure 4.1. The AND-OR implementation of this circuit that is shown

Figure 4.11 27256 EPROM

4.2 Programmable Logic Arrays
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in Figure 4.2 led to the ROM structure of Figure 4.8, in which minterms
generated in the AND-plane are used for function outputs in the OR-plane.

An easy step to reduce the area used by the circuit of Figure 4.8 is to
implement only those minterms that are actually used. In this example, since
minterm 7 is never used, the last row of the array can be completely eliminated.
In large ROM structures, there will be a much larger percentage of unused
minterms that can be eliminated. Furthermore, if instead of using minterms, we
minimize our output functions and only implement the regained product terms
we will be able to save even more rows of the logic array.

Figure 4.12 shows Karnaugh maps for minimization of w, x, y and z
outputs of table of Figure 4.1. In this minimization sharing product terms
between various outputs is particularly emphasized.

Resulting Boolean expressions for the outputs of circuit described by the tables
of Figure 4.12 are shown in Figure 4.13. Common product terms in these
expressions are vertically aligned.

Implementation of w, x, y and z functions of a, b and c inputs in an array
format using minimized expressions of Figure 4.13 is shown in Figure 4.14.
This array uses five rows that correspond to the product terms of the four
output functions. Comparing this with Figure 4.8, we can see that we are using
less number of rows by generating only the product terms that are needed and
not every minterm.

Figure 4.12  Minimizing Circuit of Figure 4.1

Figure 4.13  Minimized Boolean Expressions
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Figure 4.14 PLA Implementation

The price we are paying for the area gained in the PLA implementation of
Figure 4.14 is that we now have to program both AND and OR planes. In
Figure 4.14 we use X’ s in both planes where in Figure 4.8 dots are used in the
fixed AND-plane and X’ s in the programmable OR-plane.

While ROM structures are used for general purpose configurable packages,
PLAs are mainly used as structured array of hardware for implementing on-chip
logic. A ROM is an array logic with fixed AND-plane and programmable OR-
plane, and PLA is an array with programmable AND-plane and programmable
OR-plane.

A configurable array logic that sits between a PLA and a ROM is one with a
programmable AND-plane and a fixed OR-plane. This logic structure was first
introduced by Monilitic Memories Inc. (MMI) in the late 1970s and because of
its similarity to PLAwas retuned to PALor ProgrammableArray Logic.

The rationale behind PALs is that outputs of a large logic function generally
use a limited number of product terms and the capability of being able to use
all product terms for all function outputs is in most cases not utilized. Fixing
the number of product terms for the circuit outputs significantly improves the
speed of PALs.

4.2.1 PAL Logic Structure

In order to illustrate the logical organization of PALs, we go back to our 3-input,
4-output example of Figure 4.1. Figure 4.15 shows PAL implementation of this
circuit. This circuit uses w, x, y and z expressions shown in Figure 4.13.
Recall that these expressions are minimal realizations for the outputs of our
example circuit and are resulted from the k-maps of Figure 4.12.

The PAL structure of Figure 4.15 has a programmable AND-plane and a
fixed OR-plane. Product terms are formed in the AND-plane and three such
terms are used as OR gate inputs In the OR-plane. This structure allows a
maximum of three product terms per output.

Implementing expressions of Figure 4.13 is done by programming fuses of
the AND-plane of the PAL. The z output uses all three available product terms
and all other outputs use only two.



116 Digital Design and Implementation with Field Programmable Devices

Figure 4.15 PAL Implementation

The limitation on the number of product terms per output in a PAL device can
be overcome by providing feedbacks from PAL outputs back into the AND-plane.
These feedbacks are used in the AND-plane Just like regular inputs of the PAL.
Such a feedback allows ORing a subset of product terms of a function to be fed
back into the array to further be ORed with the remaining product terms of the
function.

Consider for example, PAL implementation of expression w shown below:

Let us assume that this function is to be implemented in a 3-input PAL with
three product terms per output and with outputs feeding back into the AND-
plane, as shown in Figure 4.16.

The partial PAL shown in this figure allows any of its outputs to be used as
a circuit primary output or as a partial sum-of-products to be completed by
ORing more product terms to it. For implementation of expression w, the first
three product terms are generated on the The structure shown does not
allow the last product term (a ·b·c) to be ORed on the same output. Therefore,
the feedback from this output is used as an input into the next group of
product terms. The circled X connection in this figure causes be used as

4.2.2 Product Term Expansion
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an input into the group. The last product terms (a.b.c) is generated in the
AND-plane driving the output and is ORed with using the OR-gate of the
output. Expression w is generated on Note that the feedback of back into
the AND-plane does exist, but not utilized.

Figure 4.16  A PAL with Product Term Expandability

A further improvement to the original PAL structure of Figure 4.15 is done by
adding three-state controls to its outputs as shown in the partial structure of
Figure 4.17.

Figure 4.17 PAL Structure with Three Output Control

In addition to the feedback from the output, this structure has two more
advantages. First, the pin used as output or partial sum-of-products terms can

4.2.3 Three-State Outputs
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also be used as input by turning off the three-state gate that drives it. Note
that the lines used for feeding back outputs into the AND-plane in Figure 4.16,
become connections from the input into the AND-plane. The second
advantage of this structure is that when io2 is used as output it becomes a
three-state output that is controlled by a programmable product term.

Instead of using a three-state inverting buffer, an XOR gate with three-state
output and a fusible input (see Figure 4.18) provides output polarity control
when the bi-directional port is used as output

Figure 4.18 Output Inversion Control

A major advantage of PALs over PLAs and ROMs is the capability of
incorporating registers into the logic structure. Where registers can only be
added to the latter two structures on their inputs and outputs, registers added
to PAL arrays become more integrated in the input and output of the PAL logic.

As an example structure, consider the registered output of Figure 4.19. The
input/output shown can be used as a registered output with three-state, as a
two-state output, as a registered feedback into the logic array, or as an input
into the AND-plane.

Figure 4.19 Output Inversion Control

A further enhancement to this structure provides logic for bypassing the
output flip-flop when its corresponding I/O pin is being used as output. This
way, PAL outputs can be programmed as registered or combinational pins.

Other enhancements to the register option include the use of asynchronous
control signals for theflip-flop,direct feedback from theflip-flopinto the array,

4.2.4 Registered Outputs
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and providing a programmable logic function for the flip-flop output and the
feedback line.

PAL is a trademark of American Micro Devices Inc. More generically, these
devices are referred to as PLDs or programmable logic devices. A variation of
the original PAL or a PLD that is somewhat different from a PAL is GAL (Generic
Array Logic). The inventor of GAL is the Lattice Semiconductor Inc. GALs are
electrically erasable; otherwise have a similar logical structure to PALs. By
ability to bypass output flip-flops, GALs can be configured as combinational or
sequential circuits. To familiarize readers with some actual parts, we discuss
one of Altera's PLD devices.

Altera Classic EPLD Family.
Altera Corporation's line of PLDs is its Classic EPLD Family. These devices are
EPROM based and have 300 to 900 usable gates depending on the specific part.
These parts come in 24 to 68 pin packages and are available in dual in-line
package (DIP), plastic J-lead chip carrier (PLCC), pin-grid array (PGA), and
small-outline integrated circuit (SOIC) packages. The group of product terms
that are ORed together are referred to as a Macrocell, and the number of
Macrocells varies between 16 and 48 depending on the device. Each Macrocell
has a programmable register that can be programmed as a D, T, JK and SR flip-
flop with individual clear and clock controls.

These devices are fabricated on CMOS technology and are TTL compatible.
They can be used with other manufacturers PAL and GAL parts. The EP1810 is
the largest of these devices that has 900 usable gates, 48 Macrocells, and a
maximum of 64 I/O pins. Pin-to-pin logic delay of this part is 20 ns and it can
operate with a maximum frequency of 50 MHz. The architecture of this and
other Altera's Classic EPLDs includes Macrocells, programmable registers,
output enable or clock select, and a feedback select.

Macrocells.   Classic macrocells, shown in Figure 4.20, can be individually
configured for both sequential and combinatorial logic operation. Eight product
terms form a programmable-AND array that feeds an OR gate for combinatorial
logic implementation. An additional product term is used for asynchronous
clear control of the internal register; another product term implements either an
output enable or a logic-array-generated clock. Inputs to the programmable-
AND array come from both the true and complement signals of the dedicated
inputs, feedbacks from I/O pins that are configured as inputs, and feedbacks
from macrocell outputs. Signals from dedicated inputs are globally routed and
can feed the inputs of all device macrocells. The feedback multiplexer controls
the routing of feedback signals from macrocells and from I/O pins.

The eight product terms of the programmable-AND array feed the 8-input
OR gate, which then feeds one input to an XOR gate. The other input to the
XOR gate is connected to a programmable bit that allows the array output to be
inverted. This gate is used to implement either active-high or active-low logic,
or De Morgan's inversion to reduce the number of product terms needed to
implement a function.

4.2.5 Commercial Parts
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Programmable Registers.   To implement registered functions, each macrocell
register can be individually programmed for D, T, JK, or SR operation. If
necessary, the register can be bypassed for combinatorial operation. Registers
have an individual asynchronous clear function that is controlled by a
dedicated product term. These registers are cleared automatically during
power-up. In addition, macrocell registers can be individually clocked by either
a global clock or any input or feedback path to the AND array. Altera's
proprietary programmable I/O architecture allows the designer to program
output and feedback paths for combinatorial or registered operation in both
active-high and active-low modes.

Figure 4.20  Altera's Classic Mecrocell

Output Enable / Clock Select.   The box shown in the upper part of Figure 4.20
allows two modes of operations for output and clocking of a Classic macrocell.
Figure 4.21 shows these two operating modes (Modes 0 and 1) that are provided
by the output enable/clock (OE/CLK) select. The OE/CLK select, which is
controlled by a single programmable bit, can be individually configured for each
macrocell.

In Mode 0, the tri-state output buffer is controlled by a single product term.
If the output enable is high, the output buffer is enabled. If the output enable
is low, the output has a high-impedance value. In Mode 0, the macrocell flip-
flop is clocked by its global clock input signal.

In Mode 1, the output enable buffer is always enabled, and the macrocell
register can be triggered by an array clock signal generated by a product term.
This mode allows registers to be individually clocked by any signal on the AND
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array. With both true and complement signals in the AND array, the register
can be configured to trigger on a rising or falling edge. This product-term-
controlled clock configuration also supports gated clock structures.

Figure 4.21  Macrocell OE/CLK Select (Upper: Mode 0, Lower: Mode 1)

Feedback Select.  Each macrocell in a Classic device provides feedback selection
that is controlled by the feedback multiplexer. This feedback selection allows
the designer to feed either the macrocell output or the I/O pin input associated
with the macrocell back into the AND array. The macrocell output can be either
the Q output of the programmable register or the combinatorial output of the
macrocell. Different devices have different feedback multiplexer configurations.
See Figure 4.22.

EP1810 macrocells can have either of two feedback configurations:
quadrant or dual. Most macrocells in EP1810 devices have a quadrant
feedback configuration; either the macrocell output or I/O pin input can feed
back to other macrocells in the same quadrant. Selected macrocells in EP1810
devices have a dual feedback configuration: the output of the macrocell feeds
back to other macrocells in the same quadrant, and the I/O pin input feeds
back to all macrocells in the device. If the associated I/O pin is not used, the
macrocell output can optionally feed all macrocells in the device. In this case,
the output of the macrocell passes through the tri-state buffer and uses the
feedback path between the buffer and the I/O pin.
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Figure 4.22  Classic Feedback Multiplexer Configurations

Altera "Classic EPLD Family" datasheet describes other features of EP1810 and
other Altera's EPLDs. This document has an explanation of device timings of
these EPLDs.

The next step up in the evolution and complexity of programmable devices is
the CPLD, or Complex PLD. Extending PLDs by making their AND-plane larger
and having more macrocells in order to be able to implement larger and more
complex logic circuits would face difficulties in speed and chip area utilization.
Therefore, instead of simply making these structures larger, CPLDs are created
that consist of multiple PLDs with programmable wiring channels between the
PLDs. Figure 4.23 shows the general block diagram of a CPLD.

Figure 4.23  CPLD Block Diagram

The approach taken by different manufacturers for implementation of their
CPLDs are different. As a typical CPLD we discuss Altera's EPM7128S that is a
member of this manufacturer's MAX 7000 Programmable Device Family.

4.3 Complex Programmable Logic Devices
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A member of Altera's MAX 7000 S-series is the EPM7128S CPLD. This is an
EEPROM-based programmable logic device with in-system programmability
feature through its JTAG interface. Logic densities for the MAX family of CPLDs
range from 600 to 5,000 usable gates and the EPM7128S is a mid-rage CPLD in
this family with 2,500 usable gates. Note that these figures are 2 to 4 times
larger than those of the PLDs from Altera.

The EPM7128s is available in plastic J-lead chip carrier (PLCC), ceramic
pin-grid array (PGA), plastic quad flat pack (PQFP), power quad flat pack
(RQFP), and 1.0-mm thin quad flat pack (TQFP) packages. The maximum
frequency of operation of this part is 147.1 MHz, and it has a propagation delay
of 6 ns. This part can operate with 3.3 V or 5.0 V.

Figure 4.24  Altera's CPLD Architecture

This CPLD has 8 PLDs that are referred to as Logic Array Blocks (LABs).
Each LAB has 16 macrocells, making the total number of its macrocells 128.
The LABs are linked by a wiring channel that is referred to as the
Programmable Interconnect Array (PIA). The macrocells include hardware for
expanding product terms by linking several macrocells. The overall
architecture of this part is shown in Figure 4.24. In what follows, blocks shown
in this figure will be briefly described.

4.3.1 Altera's MAX 7000S CPLD
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Logic Array Blocks.   The EPM7128S has 8 LABs (4 shown in Figure 4.24) that
are linked by the PIA global wiring channel. In general, a LAB has the same
structure as a PLD described in the previous section. Multiple LABs are linked
together via the PIA global bus that is fed by all dedicated inputs, I/O pins, and
macrocells. Signals included in a LAB are 36 signals from the PIA that are used
for general logic inputs, global controls that are used for secondary register
functions, and direct input paths from I/O pins to the registers.

Macrocells.  The MAX 7000 macrocell can be individually configured for either
sequential or combinatorial logic operation. The macrocell consists of three
functional blocks: the logic array, the product-term select matrix, and the
programmable register. The macrocell for EPM7128S is shown in Figure 4.25.

Figure 4.25  MAX 7000 EPM7128S Macrocell

Combinatorial logic is implemented in the logic array, which provides five
product terms per macrocell. The product-term select matrix allocates these
product terms for use as either primary logic inputs (to the OR and XOR gates)
to implement combinatorial functions, or as secondary inputs to the macrocell's
register clear, preset, clock, and clock enable control functions. Two kinds of
expander product terms ("expanders") are available to supplement macrocell
logic resources: Shareable expanders, which are inverted product terms that
are fed back into the logic array, and Parallel expanders, which are product
terms borrowed from adjacent macrocells.

For registered functions, each macrocell flip-flop can be individually
programmed to implement D, T, JK, or SR operation with programmable clock
control. The flip-flop can be bypassed for combinatorial operation. Each
programmable register can be clocked by a global clock signal and enabled by
an active-high clock enable, and by an array clock implemented with a product
term. Each register also supports asynchronous preset and clear functions. As
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shown in Figure 4.25, the product-term select matrix allocates product terms to
control these operations.

Expander Product Terms.  Although most logic functions can be implemented
with the five product terms available in each macrocell, the more complex logic
functions require additional product terms. Another macrocell can be used to
supply the required logic resources; however, the MAX 7000 architecture also
allows both shareable and parallel expander product terms ("expanders") that
provide additional product terms directly to any macrocell in the same LAB.

Each LAB has 16 shareable expanders that can be viewed as a pool of
uncommitted single product terms (one from each macrocell) with inverted
outputs that feed back into the logic array. Each shareable expander can be
used and shared by any or all macrocells in the LAB to build complex logic
functions. Figure 4.26 shows how shareable expanders can feed multiple
macrocells.

Figure 4.26  MAX 7000 Sharable Expanders

Parallel expanders are unused product terms that can be allocated to a
neighboring macrocell. Parallel expanders allow up to 20 product terms to
directly feed the macrocell OR logic, with five product terms provided by the
macrocell and 15 parallel expanders provided by neighboring macrocells in the
LAB.

Two groups of 8 macrocells within each LAB (e.g., macrocells 1 through 8
and 9 through 16) form two chains to lend or borrow parallel expanders. A
macrocell borrows parallel expanders from lower numbered macrocells. For
example, Macrocell 8 can borrow parallel expanders from Macrocell 7, from
Macrocells 7 and 6, or from Macrocells 7, 6, and 5. Within each group of 8, the
lowest-numbered macrocell can only lend parallel expanders and the highest-
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numbered macrocell can only borrow them. Figure 4.27 shows how parallel
expanders can be borrowed from a neighboring macrocell.

Figure 4.27  MAX 7000 Parallel Expanders

Programmable  Interconnect   Array. Logic is routed between LABs via the
programmable interconnect array (PIA). This global bus is a programmable
path that connects any signal source to any destination on the device. All MAX
7000 dedicated inputs, I/O pins, and macrocell outputs feed the PIA, which
makes the signals available throughout the entire device. Only the signals
required by each LAB are actually routed fromthe PIA into the LAB.

Figure 4.28   PIA Routing in MAX 7000 Devices

Figure 4.28 shows how the PIA signals are routed into the LAB. An
EEPROM cell controls one input to a 2-input AND gate, which selects a PIA
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signal to drive into the LAB. The PIA has a fixed delay that eliminates skew
between signals and makes timing performance easy to predict.

I/O Control Blocks.  The I/O control block allows each I/O pin to be individually
configured for input, output, or bidirectional operation. All I/O pins have a tri-
state buffer that is individually controlled by one of the global output enable
signals or directly connected to ground or VCC. Figure 4.29 shows the I/O
control block for the EPM7128S of the MAX 7000 family. The I/O control block
shown here has six global output enable signals that are driven by the true or
complement of two output enable signals, a subset of the I/O pins, or a subset
of the I/O macrocells.

Figure 4.29  I/O Control Block for EPM7128S

When the tri-state buffer control is connected to ground, the output is tri-
stated (high impedance) and the I/O pin can be used as a dedicated input.
When the tri-state buffer control is connected to VCC, the output is enabled.
The MAX 7000 architecture provides dual I/O feedback, in which macrocell and
pin feedbacks are independent. When an I/O pin is configured as an input, the
associated macrocell can be used for buried logic.

Because of the logic nature of this book, the above discussion concentrated
on the logical architecture of the EPM7128S member of the MAX 7000S family.
Other details of this part including its timing parameters, programming
alternatives, and its In-System Programmability (ISP) features can be found in
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Altera's "MAX 7000 Programmable Logic Device Family" datasheet. In addition
to the EPM7128S device that we discussed, this datasheet has details about
other members of the MAX 7000 CPLD family.

A more advanced programmable logic than the CPLD is the Field Programmable
Gate Array (FPGA). An FPGA is more flexible than CPLD, allows more complex
logic implementations, and can be used for implementation of digital circuits
that use equivalent of several Million logic gates.

An FPGA is like a CPLD except that its logic blocks that are linked by wiring
channels are much smaller than those of a CPLD and there are far more such
logic blocks than there are in a CPLD. FPGA logic blocks consist of smaller
logic elements. A logic element has only one flip-flop that is individually
configured and controlled. Logic complexity of a logic element is only about 10
to 20 equivalent gates. A further enhancement in the structure of FPGAs is the
addition of memory blocks that can be configured as a general purpose RAM.
Figure 4.30 shows the general structure of an FPGA.

Figure 4.30  FPGA General Structure

As shown in Figure 4.30, an FPGA is an array of many logic blocks that are
linked by horizontal and vertical wiring channels. FPGA RAM blocks can also
be used for logic implementation or they can be configured to form memories of
various word sizes and address space. Linking of logic blocks with the I/O cells
and with the memories are done through wiring channels. Within logic blocks,
smaller logic elements are linked by local wires.

4.4 Field Programmable Gate Arrays
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FPGAs from different manufacturers vary in routing mechanisms, logic
blocks, memories and I/O pin capabilities. As a typical FPGA, we will discuss
Altera's EPF10K70 that is a member of this manufacturer's FLEX 10K
Embedded Programmable Logic Device Family.

4.4.1 Altera's FLEX 10K FPGA

A member of Altera's FLEX 10K family is the EPF10K70 FPGA. This is a SRAM-
based FPGA that can be programmed through its JTAG interface. This interface
can also be used for FPGAs logic boundary-scan test. Typical gates of this
family of FPGAs range from 10,000 to 250,000. This family has up to 40,960
RAM bits that can be used without reducing logic capacity.

Altera's FLEX 10K devices are based on reconfigurable CMOS SRAM
elements, the Flexible Logic Element MatriX (FLEX) architecture is geared for
implementation of common gate array functions. These devices are
reconfigurable and can be configured on the board for the specific functionality
required. At system power-up, they are configured with data stored in an Altera
serial configuration device or provided by a system controller. Altera offers the
EPC1, EPC2, EPC16, and EPC1441 configuration devices, which configure
FLEX 10K devices via a serial data stream. Configuration data can also be
downloaded from system RAM or from Altera's BitBlaster™ serial download
cable or ByteBlasterMV™ parallel port download cable. After a FLEX 10K
device has been configured, it can be reconfigured in-circuit by resetting the
device and loading new data. Reconfiguration requires less than 320 ms. FLEX
10K devices contain an interface that permits microprocessors to configure
FLEX 10K devices serially or in parallel, and synchronously or asynchronously.
The interface also enables microprocessors to treat a FLEX 10K device as
memory and configure the device by writing to a virtual memory location.

The EPF10K70 has a total of 70,000 typical gates that include logic and
RAM. There are a total of 118,000 system gates. The entire array contains 468
Logic Array Blocks (LABs) that are arranged in 52 columns and 9 rows. The
LABs are the "Logic Blocks" shown in Figure 4.30. Each LAB has 8 Logic
Elements (LEs), making the total number of its LEs 3,744. In the middle of the
FPGA chip, a column of 9 Embedded Array Blocks (EABs), each of which has
2,048 bits, form the 18,432 RAM bits of this FPGA. The EPF10K70 has 358
user I/O pins.

FLEX 10K Blocks. The block diagram of a FLEX 10K is shown in Figure 4.31.
Each group of LEs is combined into an LAB; LABs are arranged into rows and
columns. Each row also contains a single EAB. The LABs and EABs are
interconnected by the FastTrack Interconnect. IOEs are located at the end of
each row and column of the FastTrack Interconnect.

FLEX 10K devices provide six dedicated inputs that drive the flip-flops'
control inputs to ensure the efficient distribution of high-speed, low-skew (less
than 1.5 ns) control signals. These signals use dedicated routing channels that
provide shorter delays and lower skews than the FastTrack Interconnect. Four
of the dedicated inputs drive four global signals. These four global signals can
also be driven by internal logic, providing an ideal solution for a clock divider or
an internally generated asynchronous clear signal that clears many registers in
the device.
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Figure 4.31  FLEX 10K Block Diagram

Signal interconnections within FLEX 10K devices and to and from device
pins are provided by the FastTrack Interconnect, a series of fast, continuous
row and column channels that run the entire length and width of the device.

Each I/O pin is fed by an I/O element (IOE) located at the end of each row
and column of the FastTrack Interconnect. Each IOE contains a bidirectional
I/O buffer and a flip-flop that can be used as either an output or input register
to feed input, output, or bidirectional signals. When used with a dedicated
clock pin, these registers provide exceptional performance. As inputs, they
provide setup times as low as 1.6 ns and hold times of 0 ns; as outputs, these
registers provide clock-to-output times as low as 5.3 ns. IOEs provide a variety
of features, such as JTAG BST support, slew-rate control, tri-state buffers, and
open-drain outputs.

Embedded Array Block.  Each device contains an embedded array to implement
memory and specialized logic functions, and a logic array to implement general
logic. The embedded array consists of a series of EABs (EPF10K70 has 9
EABs). When implementing memory functions, each EAB provides 2,048 bits,
which can be used to create RAM, ROM, dual-port RAM, or first-in first-out
(FIFO) functions. When implementing logic, each EAB can contribute 100 to
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600 gates towards complex logic functions, such as multipliers,
microcontrollers, state machines, and DSP functions. EABs can be used
independently, or multiple EABs can be combined to implement larger
functions. Figure 4.32 shows the architecture of EABs and their interconnect
busses. The EPF10K70 has 26 inputs to the LAB local interconnect channel
from the row.

Figure 4.32  EAB Architecture and its Interconnects

Logic functions are implemented by programming the EAB with a read-only
pattern during configuration, creating a large look-up table. With tables,
combinatorial functions are implemented by looking up the results, rather than
by computing them. This implementation of combinatorial functions can be
faster than using algorithms implemented in general logic, a performance
advantage that is further enhanced by the fast access times of EABs. The large
capacity of EABs enables designers to implement complex functions in one logic
level.  For example, a single EAB can implement a 4×4 multiplier with eight

EABs can be used to implement synchronous RAM that generates its own
WE signal and is self-timed with respect to the global clock. A circuit using the
EAB's self-timed RAM need only meet the setup and hold time specifications of

inputs and eight outputs.
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the global clock. When used as RAM, each EAB can be configured in any of the
following sizes: 256×8, 512×4, 1,024×2, or 2,048×1. Larger blocks of RAM are
created by combining multiple EABs.

Different clocks can be used for the EAB inputs and outputs. Registers can
be independently inserted on the data input, EAB output, or the address and
WE inputs. The global signals and the EAB local interconnect can drive the WE
signal. The global signals, dedicated clock pins, and EAB local interconnect can
drive the EAB clock signals. Because the LEs drive the EAB local interconnect,
the LEs can control the WE signal or the EAB clock signals.

Each EAB is fed by a row interconnect and can drive out to row and column
interconnects. Each EAB output can drive up to two row channels and up to
two column channels; the unused row channel can be driven by other LEs.

Figure 4.33  FLEX 10K LAB Architecture

Logic Array Block.    Referring to Figure 4.31, the logic array of FLEX 10K
consists of logic array blocks (LABs). Each LAB contains eight LEs and a local
interconnect. An LE consists of a 4-input look-up table (LUT), a programmable
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flip-flop, and dedicated signal paths for carry and cascade functions. Each LAB
represents about 96 usable gates of logic.

Each LAB (see Figure 4.33) provides four control signals with programmable
inversion that can be used in all eight LEs. Two of these signals can be used as
clocks; the other two can be used for clear/preset control. The LAB clocks can
be driven by the dedicated clock input pins, global signals, I/O signals, or
internal signals via the LAB local interconnect. The LAB preset and clear
control signals can be driven by the global signals, I/O signals, or internal
signals via the LAB local interconnect. The global control signals are typically
used for global clock, clear, or preset signals because they provide
asynchronous control with very low skew across the device. If logic is required
on a control signal, it can be generated in one or more LEs in any LAB and
driven into the local interconnect of the target LAB. In addition, the global
control signals can be generated from LE outputs.

Logic Element. The LE is the smallest unit of logic in the FLEX 10K
architecture. Each LE contains a four-input LUT, which is a function generator
that can compute any function of four variables. In addition, each LE contains
a programmable flip-flop with a synchronous enable, a carry chain, and a
cascade chain. Each LE drives both the local and the FastTrack Interconnect.
See Figure 4.34.

Figure 4.34  Logic Element Structure

The programmable flip-flop in the LE can be configured for D, T, JK, or SR
operation. The clock, clear, and preset control signals on the flip-flop can be
driven by global signals, general-purpose I/O pins, or any internal logic. For
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combinatorial functions, the flip-flop is bypassed and the output of the LUT
drives the output of the LE.

The LE has two outputs that drive the interconnect; one drives the local
interconnect and the other drives either the row or column FastTrack
Interconnect. The two outputs can be controlled independently. For example,
the LUT can drive one output while the register drives the other output. This
feature, called register packing, can improve LE utilization because the register
and the LUT can be used for unrelated functions.

The FLEX 10K architecture provides two types of dedicated high-speed data
paths that connect adjacent LEs without using local interconnect paths: carry
chains and cascade chains. The carry chain supports high-speed counters and
adders; the cascade chain implements wide-input functions with minimum
delay. Carry and cascade chains connect all LEs in an LAB and all LABs in the
same row. Intensive use of carry and cascade chains can reduce routing
flexibility. Therefore, the use of these chains should be limited to speed-critical
portions of a design.

The FLEX 10K LE can operate in the following four modes: Normal mode,
Arithmetic mode, Up/down counter mode, and Clearable counter mode. Each
of these modes uses LE resources differently. In each mode, seven available
inputs to the LE—the four data inputs from the LAB local interconnect, the
feedback from the programmable register, and the carry-in and cascade-in from
the previous LE—are directed to different destinations to implement the desired
logic function. Three inputs to the LE provide clock, clear, and preset control
for the register. The architecture provides a synchronous clock enable to the
register in all four modes.

The FLEX 10K architecture, shown in Figure 4.34, includes a “Clear/Preset
Logic” block, which provides controls for the LE flip-flop. Logic for the
programmable register's clear and preset functions is controlled by the DATA3,
LABCTRL1, and LABCTRL2 inputs to the LE. The clear and preset control
structure of the LE asynchronously loads signals into a register. Either
LABCTRL1 or LABCTRL2 can control the asynchronous clear.  Alternatively, the
register can be set up so that LABCTRL1 implements an asynchronous load.
The data to be loaded is driven to DATA3; when LABCTRL1 is asserted, DATA3
is loaded into the register.

FastTrack Interconnect.  In the FLEX 10K architecture, connections between
LEs and device I/O pins are provided by the FastTrack Interconnect, shown in
Figure 4.35. This is a series of continuous horizontal and vertical routing
channels that traverse the device. This global routing structure provides
predictable performance, even in complex designs.

The FastTrack Interconnect consists of row and column interconnect
channels that span the entire device. Each row of LABs is served by a
dedicated row interconnect. The row interconnect can drive I/O pins and feed
other LABs in the device. The column interconnect routes signals between rows
and can drive I/O pins.

A row channel can be driven by an LE or by one of three column channels.
These four signals feed dual 4-to-1 multiplexers that connect to two specific row
channels. These multiplexers, which are connected to each LE, allow column
channels to drive row channels even when all eight LEs in an LAB drive the row
interconnect.
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Each column of LABs is served by a dedicated column interconnect. The
column interconnect can then drive I/O pins or another row's interconnect to
route the signals to other LABs in the device. A signal from the column
interconnect, which can be either the output of an LE or an input from an I/O
pin, must be routed to the row interconnect before it can enter an LAB or EAB.
Each row channel that is driven by an IOE or EAB can drive one specific
column channel.

Figure 4.35  FastTrack Interconnect

Access to row and column channels can be switched between LEs in
adjacent pairs of LABs. For example, an LE in one LAB can drive the row and
column channels normally driven by a particular LE in the adjacent LAB in the
same row, and vice versa. This routing flexibility enables routing resources to
be used more efficiently. EPF10K70 has 8 rows, 312 channels per row, 52
columns, and 24 interconnects per column.

I/O Element.  An I/O element (IOE) of FLEX 10K (see the top-level architecture of
Figure 4.31) contains a bidirectional I/O buffer and a register that can be used
either as an input register for external data that requires a fast setup time, or
as an output register for data that requires fast clock-to-output performance.
In some cases, using an LE register for an input register will result in a faster
setup time than using an IOE register. IOEs can be used as input, output, or
bidirectional pins. For bidirectional registered I/O implementation, the output
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register should be in the IOE, and the data input and output enable register
should be LE registers placed adjacent to the bidirectional pin.

When an IOE connected to a row (as shown in Figure 4.36), is used as an
input signal it can drive two separate row channels. The signal is accessible by
all LEs within that row. When such an IOE is used as an output, the signal is
driven by a multiplexer that selects a signal from the row channels. Up to eight
IOEs connect to each side of each row channel.

Figure 4.36  FLEX 10K Row-to-IOE Connections

When an IOE connected to a column (as shown in Figure 4.37) is used as
an input, it can drive up to two separate column channels. When an IOE is
used as an output, the signal is driven by a multiplexer that selects a signal
from the column channels. Two IOEs connect to each side of the column
channels. Each IOE can be driven by column channels via a multiplexer. The
set of column channels that each IOE can access is different for each IOE.

Figure 4.37  FLEX 10K Column-to-IOE Connections

In this section we have shown FPGA structures by using Altera's EPF10K70
that is a member of the FLEX 10K family as an example. The focus of the above
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discussion was on the logic structure on this programmable device, and many
of the timing and logical configuration details have been eliminated. The “FLEX
10K Embedded Programmable Logic Device Family” datasheet is a detailed
document about this and other FLEX 10K members. Interested readers are
encouraged to study this document for advanced features and details of logical
configurations of this FPGA family.

In an evolutionary fashion, this chapter showed how a simple idea like the ROM
have evolved into FPGA programmable chips that can be used for
implementation of complete systems that include several processors, memories
and even some analog parts. The first part of this chapter discussed generic
structures of programmable devices, and in the second part, when describing
more complex programmable devices, Altera devices were used as examples.
We focused on the structures and tried to avoid very specific manufacturer's
details. This introduction familiarizes readers with the general concepts of the
programmable devices and enables them to better understand specific
manufacturer's datasheets.

4.5 Summary
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5 Computer Architecture

This chapter provides the basic concepts and techniques that are necessary to
understand and design a computer system. The chapter begins with an
introduction of computer systems‚ which describes the role of software and
hardware in a computer system. In this part‚ instructions‚ programs‚
instruction execution‚ and processing hardware will be described. After this
brief introduction‚ we will describe a computer from its software point of view.
This will be brief‚ and mainly focuses on definition of terms and the necessary
background for understanding the hardware of a processor. In description of
the hardware of a computer we use a simple example that has the basic
properties found in most processing units. This becomes the main focus of this
chapter. In a top-down fashion‚ we will show control-data partitioning of this
example and design and implement the individual parts of this machine.

5.1 Computer System

It is important to understand what it is that we refer to as a computer. This
section gives this overall view. A computer is an electronic machine which
performs some computations. To have this machine perform a task‚ the task
must be broken into small instructions‚ and the computer will be able to
perform the complete task by executing each of its comprising instructions. In
a way‚ a computer is like any of us trying to evaluate something based on a
given algorithm.

To perform a task‚ we come up with an algorithm for it. Then we break
down the algorithm into a set of small instructions‚ called a program‚ and using
these step-by-step instructions we achieve the given task. A computer does
exactly the same thing except that it cannot decide on the algorithm for
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performing a task‚ and it cannot break down a task into small instructions
either. To use a computer‚ we come up with a set of instructions for it to do‚
and it will be able to do these instructions much faster than we could.

Putting ourselves in place of a computer‚ if we were given a set of
instructions (a program) to perform‚ we would need an instruction sheet and a
data sheet (or scratch paper).   The instruction sheet would list all instructions
to perform.  The data sheet‚ on the other hand‚ would initially contain the
initial data used by the program‚ and it could also be used for us to write our
intermediate and perhaps the final results of the program we were performing.

In this scenario‚ we read an instruction from the instruction sheet‚ read its
corresponding data from the data sheet‚ use our brain to perform the
instruction‚ and write the result in the data sheet.  Once an instruction is
complete‚ we go on to the next instruction and perform that.   In some cases‚
based on the results obtained‚ we might skip a few instructions and jump to the
beginning of a new set of instructions.  We continue execution of the given set
of instructions until we reach the end of the program.

For example consider an algorithm that is used to add two 3-digit decimal
numbers. Figure 5.1 shows the addition algorithm and two decimal numbers
that are added by this algorithm. The algorithm starts with reading the first
two digits from the paper‚ and continues with adding them in the brain and
writing the sum and output carry on the paper in their specified positions. So
the paper is used to store both the result (i.e.‚ sum)‚ and the temporary results
(i.e.‚ carry). The algorithm continues until it reaches Step 7 of Figure 5.1.

There are similar components in a computing machine (computer). A CPU
has a memory unit. The part of the memory that is used to store instructions
corresponds to the instruction sheet and the part that stores temporary and
final results corresponds to the scratch paper or the data sheet.   The Central
Processing Unit (CPU)‚ which corresponds to the brain‚ sequences and executes
the instructions.

There is an important difference between storing information in these two
methods.  In the manual computation the instructions are represented using
natural language or some human readable guidelines and data is usually
presented in decimal forms.   On the other hand‚ in the computer‚ information
(both instructions and data) are stored and processed in the binary form.   To
provide communication between the user and the computer‚ an input-output (IO)
device is needed to convert information from human language to machine

Figure 5.1  Decimal Addition
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language (0 and 1) and vice versa. So each computer should have a CPU to
execute instructions‚ a memory to store instructions and data‚ and an IO device
to transfer information between the computer and the outside word.

There are several ways to interconnect these three components (Memory‚
CPU and IO) in a computer system. A computer with an interconnection shown
in Figure 5.2 is called a Von-Neumann computer. The CPU communicates with
the IO device(s) for receiving input data and displaying results.  It
communicates with the memory for reading instructions and data as well as
writing data.

Figure 5.2  Von-Neumann Machine

As shown in this figure‚ the CPU is divided into datapath and controller.
The datapath has storage elements (registers) to store intermediate data‚
handles transfer of data between its storage components‚ and performs
arithmetic or logical operations on data that it stores. Datapath also has
communication lines for transfer of data; these lines are referred to as busses.
Activities in the datapath include reading from and writing into data registers‚
controlling busses selection of their sources and destinations‚ and control of the
logic units for performing various operations that they are built for.

The controller commands the data-path to perform proper operation(s)
according to the instruction it is executing. Control signals carry these
commands from the controller to the datapath. Control signals are generated
by controller state machine that‚ at all times‚ knows the status of the task that
is being executed and the sort of the information that is stored in datapath
registers.  Controller is the thinking part of a CPU.

5.2 Computer Software

The part of a computer system that contains instructions for the machine to
perform is called its software.   For making software of a computer available for
its hardware to execute‚ it is put in the memory of the computer system. As
shown in Figure 5.2 the memory of a system is directly accessible by its
hardware. There are several ways computer software can be described.
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5.2.1 Machine Language

Computers are designed to perform our commands. To command a computer‚
you should know the computer alphabets. As mentioned in Chapter 2‚ the
computer alphabet is just two letters 0 and 1.   An individual command‚ which
is presented using these two letters‚ is called instruction. Instructions are
binary numbers that are meaningful for a computer. For example‚ the binary
number 0000000010000001 commands a computer to add two numbers. This
number is divided into three fields‚ the first filed (0000) signifies the ADD
operation‚ and the other two (000010 and 000001) are references to the
numbers that are to be added. The binary language‚ in which instructions are
defined‚ is referred to as machine language. Note that the machine language is
hardware dependent‚ which means that different computers have different
machine languages.

5.2.2 Assembly Language

The earliest programmers wrote their programs in machine language. Machine
language programs are tedious and error prone to write‚ and difficult to
understand. So the programmers used a symbolic notation which is closer to
the human language. This symbolic language is called assembly language
which is easier to use than machine language. For example‚ the above
instruction might be written as ADD A‚ B.

We need a special program‚ called assembler‚ to convert a program from
assembly language to machine language. Because the assembly language is a
symbolic representation of the machine language‚ each computer has its own
assembler.

Figure 5.3  Translation of Programming Languages
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5.2.3 High-Level Language

The development of the programming language continued and resulted in a
high-level programming language which is closer to the programmer's problem
specification.  For example a user can write the ADD A‚ B instruction mentioned
above‚ as A + B‚ which is more readable.

Similarly we need a program‚ called compiler‚ to translate these high-level
programs into the assembly language of a specific computer. So the high-level
languages can be used on different computers. Figure 5.3 shows the
translation of different programming languages. The SMPL CPU shown in this
figure is a small fictitious processor that we will use later in this chapter.

5.2.4 Instruction Set Architecture

As shown in Figure 5.4‚ a computer system is comprised of two major parts‚
hardware and software. The interface between these parts is called Instruction
Set Architecture (ISA).  ISA defines how data that is being read from a CPU
memory (CPU program) and that is regarded as an instruction‚ is interpreted by
the hardware of the CPU.

Figure 5.4  Computer System Components

Hardware.  The hardware part of a computer has three major components (CPU‚
Memory Unit‚ and IO Device). Breaking down the CPU into its composing parts‚
shows that the CPU is built from an interconnection of datapath and controller.

Datapath consists of functional units and storage elements. A functional
unit (such as an adder‚ a subtracter and an arithmetic-logical unit (ALU))
performs an arithmetic or logical operation. The storage element (such as a
register or a register-file) is needed to store data. Bussing structure describes
the way functional units and storage elements are connected. Datapath shows
the flow of data in the CPU‚ i.e.‚ how data is stored in the registers and
processed by functional units. Controller is used to control the flow of data or
the way data is processed in the data-path.

Figure 5.5 shows a datapath which contains two registers R0‚ and R1 and
an adder/subtracter unit. This datapath is able to add (subtract) the content of
R0 to (from) R1 and store the result in R0.  The controller controls the data-
path to perform addition or subtraction.
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Figure 5.5 A Typical Datapath

Software. The software part of a computer consists of the Operating System‚
Compiler‚ and Assembler. The operating system provides an interface between
the user and the hardware. The compiler translates the high-level language
programs to assembly language programs. The assembler translates the
assembly language programs to machine language programs.

ISA. By specifying the format and structure of the instruction set‚ the ISA
specifies the interface between hardware and software of a processing unit. In
other words‚ the ISA provides the details of the instructions that a computer
should be able to understand and execute. Each instruction specifies an
operation to be performed on a set of data‚ called operands. The operands also
show where the result of the instruction should be stored. The instruction
format describes the specific fields of the instruction assigned to operation and
operands. The opcode field specifies the operation‚ and the operand fields
specify the required data. The way in which the operands can be delivered to
an instruction is called addressing mode. For example‚ an operand may be a
constant value (immediate addressing)‚ contents of a register (register
addressing)‚ or contents of a memory unit (direct addressing).  Figure 5.6 shows
an instruction format with two operands. It is common to specify some
operands explicitly in the instruction and the other operands are implicit. The
implicit operands refer to the CPU registers. For example‚ the instruction ADD
200‚ means "add the content of the memory location 200 with acc and store the
result in acc". Here‚ acc is an implicit operand and 200 is an explicit operand.

Figure 5.6  Instruction Format
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5.3 CPU Design

In the previous two sections‚ we introduced basic concepts of a computer
system.     Now we are ready to design a simple CPU‚ which we refer to as SMPL-
CPU.  Here we describe two different implementations of SMPL-CPU‚ called
Single-Cycle and Multi-Cycle implementation.

5.3.1 CPU Specification

CPU design begins with CPU specification‚ including the number of general
purpose registers‚ memory organization‚ instruction format‚ and addressing
modes. Note that a CPU is defined according to the application it will be used
for.

CPU External Busses. The SMPL-CPU has a 16-bit external data bus and a 13-
bit address bus. The address bus connects to the memory in order to address
locations that are being read or written into. Data read from the memory are
instructions and instruction operands‚ and data written into the memory are
instruction results and temporary information. The CPU also communicates
with its IO devices through its external busses. The address bus addresses a
specific device or device register‚ while the data bus contains data that is to be
written or read from the device.

General Purpose Registers. The SMPL-CPU has a 16-bit register‚ called
accumulator (acc). The acc register plays an important role in this CPU. All
data transfers‚ and arithmetic-logical instructions use acc as an operand. In a
real CPU‚ there may be multiple accumulators‚ or a general purpose register-
file‚ each of its registers working like an accumulator.

Memory Organization. The SMPL-CPU is capable of addressing 8192 words of
memory; each word has a 16 bit width. We assume the memory read and write
operations can be done synchronous with the CPU clock in one clock period.
Reading from the memory is done by putting the address of the location that is
being read on the address bus and issuing the memory read signal. Writing
into the memory is done by assigning the right address to the address bus‚
putting data that is to be written on the data bus‚ and issuing the memory write
signal.

Instruction Format. Each instruction of SMPL-CPU is a 16-bit word and occupies
a memory word. The instruction format of the SMPL-CPU‚ as shown in Figure
5.7‚ has an explicit operand (the memory location whose address is specified in
the instruction)‚ and an implicit operand (acc). The SMPL-CPU has a total of 8
instructions‚ divided into three classes: arithmetic-logical instructions (ADD‚
SUB‚ AND‚ and NOT)‚ data-transfer instructions (LDA‚ STA)‚ and control-flow
instructions (JMP‚ JZ).



146 Digital Design and Implementation with Field Programmable Devices

Figure 5.7  SMPL CPU Instruction Format

SMPL-CPU instructions are described below. A tabular list and summary of this
instruction set is shown in Table 5.1.

ADD adr: adds the content of the memory location addressed by adr with
acc and stores the result in acc.

SUB adr: subtract the content of the memory location addressed by adr
from acc and stores the result in acc.

AND adr: ANDs the content of the memory location addressed by adr with
acc and stores the result in acc.

NOT  adr: negates the content of the memory location addressed by adr and
stores the result in acc.

LDA  adr: reads the content of the memory location addressed by adr and
writes it into acc.

STA adr: writes the content of acc into the memory location addressed by
adr.

JMP  adr: jump to the memory location addressed by adr.

JZ adr: jump to the memory location addressed by adr if acc equals zero.

Addressing Mode. The SMPL-CPU uses direct addressing. For an instruction
that refers to the memory‚ the memory location is its explicit operand and acc is
its implicit operand.
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5.3.2 Single-Cycle Implementation – Datapath Design

Datapath design is an incremental process‚ at each increment we consider a
class of instructions and build up a portion of the datapath which is required
for execution of this class. Then we combine these partial datapaths to
generate the complete datapath. In these steps‚ we decide on the control
signals that control events in the datapath. In the design of the datapath‚ we
are only concerned with how control signals affect flow of data and function of
data units in the data path‚ and not how control signals are generated.

Step 1: Program Sequencing. The instruction execution begins with reading an
instruction from the memory‚ called Instruction Fetch (IF). So an instruction
memory is needed to store the instructions. We also need a register to hold the
address of the current instruction to be read from the instruction memory.  This
register is called program counter or pc.   When an instruction execution is
completed‚ the next instruction (which is in the next memory location) should
be read and executed. After the completion of the current instruction‚ the pc
should be incremented by one to point to the next instruction in the instruction
memory.  This leads us to use an adder to increment the pc.  Because the size
of the memory is 8192 words‚ the pc should be a 13-bit register. Figure
5.8 shows the portion of the datapath that is used for program sequencing.

Figure 5.8  Program Sequencing Datapath

Step 2: Arithmetic-Logical Instruction Data-Path. All the arithmetic and logical
instructions (except NOT) need two operands. The first operand is acc‚ and the
second operand should be read from a memory‚ called the data memory. The
adr field of the instruction points to the memory location that contains the
second operand. The result of the operation will be stored in acc. We need a
combinational circuit‚ arithmetic-logical unit (alu)‚ which performs the operation
on the operands of arithmetic and logical instructions.

According to the instruction‚ the alu operation will be controlled by a 2-bit
input‚ alu_op. As shown in Figure 5.9‚ the alu is able to perform addition‚
subtraction‚ logical AND‚ and logical NOT. The alu is designed as other
combinational circuits using the methods presented in Chapter 2.
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Figure 5.9  SMPL-CPU Arithmetic Logic Unit

Figure 5.10 shows the arithmetic-logical instruction data-path. Note that
the address input of the data memory comes from adr field of the instruction.
At this point in our incremental design‚ the data memory needs no control
signals‚ because in all instructions of the type we have considered so far
(arithmetic or logical)‚ an operand should be read from the data memory.
Likewise‚ this increment of the design does not call for any control signals for
writing into acc.

Figure 5.10  Arithmetic-Logical Instructions Data-path

Step 3: Combining the Two Previous Datapaths. Combining the two datapaths
constructed so far‚ leads us to connect the address input of the data memory to
the adr field (bits 12 to 0) of the instruction which is read from the instruction
memory. This combined datapath is able to sequence the program and execute
arithmetic or logical instructions. Figure 5.11 shows the combined datapath.
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Figure 5.11  Combined Datapath for Program Sequencing & ALU Instructions

Step 4: Data-Transfer Instruction Datapath. There are two data-transfer
instructions in SMPL-CPU‚ LDA and STA.   The LDA instruction uses the adr
field of the instruction to read a 16-bit data from the data memory and store it
in the acc register. The STA instruction writes the content of acc into a data
memory location that is pointed by the adr field. Figure 5.12 shows the
datapath that satisfies requirements of data-transfer instructions. Because
LDA reads from the data memory while STA writes into it‚ the data memory
must have two control signals‚ mem_read and mem_write for control of reading
from it or writing into it. In data-transfer instructions‚ only LDA writes into the
acc. When executing an STA instruction‚ acc should be left intact. Having a
register without a clock control causes data to be written into it with every
clock. In order to control this clocking‚ the acc_write (write-control‚ or clock
enable) signal is needed for the acc register.

Figure 5.12  Datapath for the Data-Transfer Instructions
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Figure 5.13  Combined Datapath for Program Sequencing‚ ALU and Data-Transfer

Step 5: Combining the Two Previous Datapaths. Combining the two datapaths‚
may result in multiple connections to the input of an element. For example‚ in
Step 3 (Figure 5.10 and Figure 5.11) the alu output is connected to the acc
input and in Step 4 (Figure 5.12) the data memory output (ReadData) is
connected to the acc input. To have both connections‚ we need a multiplexer
(or a bus) to select one of the acc sources. When the multiplexer select input‚
acc_src is 0 the alu output is selected‚ and when acc_src is 1 the data memory
output is selected. Figure 5.13 shows the combined datapath.

Step 6: Control-Flow Instruction Datapath. There are two control-flow
instructions in SMPL-CPU‚ JMP‚ which is an unconditional jump‚ and JZ which
is a conditional jump.  The JMP instruction writes the adr field (bits 12 to 0) of
an instruction into pc. The JZ instruction writes the adr field into pc if acc is
zero. So we need a path between the adr field of the instruction and the pc
input. The required datapath is shown in Figure 5.14. As for checking for the
zero value of acc‚ a NOR gate on the output of this register generates the proper
signal that detects this condition.  This signal is used for execution of the JZ
instruction.

Figure 5.14  Control-Flow Instructions Datapath
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Step 7: Combining the Two Previous Datapaths. The increment of Step 6 created
another partial datapath for satisfying operations of our CPU. In this step we
are to combine the result of the last step with the combined datapath of Figure
5.13. Considering these two partial datapaths‚ there are two sources for the pc
register.  One was created in Step 1‚ shown in Figure 5.8 and carried over to
Figure 5.13 by Step 5‚ and the other was created in Step 6 that is shown in
Figure 5.14. As in the case of acc‚ we need a multiplexer in the combined
datapath to select the appropriate source for the pc input. The multiplexer
select input is called pc_src. If this control signal is 0‚ the increment of pc is
selected and if it is 1‚ the address field of the instruction being fetched will be
selected. Figure 5.15 shows the combined datapath. This step completes the
datapath design of SMPL-CPU.

Figure 5.15 The SMPL-CPU Datapath

Instruction Execution. Now that we have a complete datapath, it is useful to
show how a typical instruction, e.g., ADD 100, will be executed in the SMPL-
CPU datapath. On the rising edge of the clock, a new value will be written into
pc, and pc points the instruction memory to read the instruction ADD 100.  After
a short delay, the memory read operation is complete and the controller starts
to decode the instruction. Instruction decoding is the process of controller
deciding what control signals to activate in order to execute the given
instruction. According to this, the controller will issue the appropriate control
signals to control the flow of data in the datapath. When data propagation is
completed in the datapath, on the next rising edge of the clock, the alu output
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is written into acc to complete the execution of the current instruction and the
pc+1 is written into pc. This new value of pc points to the next instruction.
Because the execution of the instruction is completed in one clock cycle‚ the
implementation is called single-cycle implementation.

5.3.3 Single-Cycle Implementation – Controller Design

As described before‚ controller issues the control signals based on the opcode
field of the instruction.   On the other hand‚ the opcode field will not change
while the instruction is being executed.  Therefore‚ the control signals will have
fixed values during the execution of an instruction‚ and consequently the
controller will be implemented as a combinational circuit.

Figure 5.16  Datapath and Controller Interconnection

Figure 5.16 shows the interconnection of the datapath and controller. As
shown in this figure‚ the controller issues all control signals directly‚ except
pc_src‚ which is issued using a simple logic circuit. For all instructions‚ except
JMP and JZ‚ both jmp_uncond and jmp_cond signals are 0. With these
conditions‚ the Jump Logic block shown in Figure 5.16 produces a 0 on pc_src
that causes pc to increment. For the JMP instruction‚ the jmp_uncond signal
becomes 1‚ and this puts a 1 on the pc_src and directs the adr field of the
instruction into the pc input. For the JZ instruction‚ the jmp_cond signal is
asserted and if the acc_zero signal is 1 (when all bits of acc are 0‚ the acc_zero
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signal becomes 1)‚ the address field of the instruction from the instruction
memory is put into the pc register.   While executing the JZ instruction‚ if acc is
not 0‚ the pc+1 source of pc is selected.

As described before‚ the controller of a single-cycle implementation of a
system is designed as a combinational circuit. In Chapter 2 you learned how to
specify a combinational logic using a truth table. Table 5.2 shows the truth
table of the controller. The values shown are based on activities and flow of
data in the datapath. In what follows‚ we indicate status of control signals as
they are necessary for controlling the flow of data in the datapath.

Arithmetic-Logical Class:

mem_read=1 to read an operand from the data memory.
acc_write=1 to store the alu result in acc.
alu_op becomes 00‚ 01‚ 10‚ or 11 depending on the type of arithmetic
or logical instruction‚ i.e.‚ ADD‚ SUB‚ AND‚ and NEG (see Figure 5.9).
acc_src=0‚ to direct alu output to the acc input.
jmp_cond‚ and jmp_uncond are 0 to direct pc+1 to the pc input.

Data-Transfer Class:

LDA Instruction:

mem_read=1 to read an operand from the data memory.
acc_write=1‚ to store the data memory output in acc.
alu_op is XX‚ because alu has no role in the execution of LDA.
acc_src=1‚ to direct data memory output to the acc input.
jmp_cond‚ and jmp_uncond are 0 to direct pc+1 to the pc input.

STA Instruction:

mem_write=1 to write acc into the data memory.
acc_write=0‚ so that the value of acc remains unchanged.
alu_op is XX because alu has no role in the execution of STA.
acc_src=X‚ because acc clocking is disabled and its source is
not important.
jmp_cond‚ and jmp_uncond are 0 to direct pc+1 to the pc input.
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instruction is broken into a series of steps; each takes one clock cycle to
execute. These steps are described below:

Instruction Fetch (IF): In this step we read the instruction from memory
and increment pc. To do so‚ we should use pc to address the memory‚
perform a read operation from the memory and write the instruction into ir.
Also we should apply pc to the first alu input‚ the constant value 1 to the
second alu input‚ perform an addition‚ and store the alu output in pc.

Instruction Decode (ID): In this step the controller decodes the instruction
(which is stored in ir) to issue the appropriate control signals.

Execution (EX): The datapath operation in this step is determined by the
instruction class:

Arithmetic-Logical Class: Apply bits 12 to 0 of ir to the memory‚ and
perform a memory read operation. Apply acc to the first alu input‚
and the memory output to the second alu input‚ perform an alu
operation (addition‚ subtraction‚ logical and‚ and negation)‚ and
finally store the alu result into acc.

Data-Transfer Class: Apply bits 12 to 0 of ir to the memory. For the
LDA instruction‚ perform a memory read operation‚ and write the
data into acc. For the STA instruction‚ perform a memory write
operation to write acc into the memory.

Control-Flow Class: For the JMP instruction write bits 12 to 0 of ir to
pc. For JZ‚ write bits 12 to 0 of ir to pc if the content of acc is zero.

Figure 5.17   SMPL CPU Multi-Cycle Data-Path
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Controller Design. As mentioned before‚ in multi-cycle implementation of
SMPL-CPU each instruction is executed in a series of steps. So the controller
should specify the appropriate control signals‚ which have different values for
each step. As a result‚ the controller of a multi-cycle datapath should be
designed as a sequential circuit.

Figure 5.18 shows the interconnection of the datapath and controller. As
shown in this figure‚ the controller issues all control signals directly‚ except
pc_write‚ which is issued using a simple logic circuit.

Figure 5.18  Datapath and Controller Interconnection

Figure 5.19 shows the implementation of SMPL-CPU controller‚ which is
designed as a Moore finite state machine. As shown in the figure‚ each state
issues appropriate control signals and specifies the next state. There are two
important points to be considered‚ first‚ transition between states are triggered
by the edge of the clock‚ and second‚ all control signals in a state are issued by
entering the state.
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Figure 5.19   SMPL-CPU Multi-Cycle Controller

Instruction execution begins in State 0‚ which corresponds to the IF step. In
this state‚ pc is applied to the memory address input (i_or_d=0)‚ the instruction
is read from the memory (mem_read=1), the instruction is written into ir
(ir_write=1)‚ and pc is incremented by 1 (src_a=0‚ src_b=1‚ alu_op=00‚ pc_src=1‚
pc_write_uncond=1). The next state is State 1 that is the step. In this state we
give enough time to the controller to decode the instruction‚ so there is no need
to assert any control signal. When the instruction decoding is complete‚ it
specifies the next state according to the type of the instruction being executed.

Arithmetic-logical instruction: bits 12 to 0 of ir are applied to the memory
address input (i_or_d=1)‚ data is read from the memory (mem_read=1)‚ the
acc output and memory output are directed to the alu inputs (src_a=1‚
src_b=0)‚ an alu operation is performed (alu_op=ir[14-13])‚ the alu output is
selected as acc input (acc_src=0)‚ and the alu output is written into acc
(acc_write=1). This finishes the arithmetic-logical instruction execution‚ and
control goes to State 0 to fetch the next instruction.

LDA instruction: bits 12 to 0 of ir are applied to the memory address input
(i_or_d=1)‚ data is read from the memory (mem_read=1)‚ the memory output
is selected as the acc input (acc_src=1)‚ and the memory output is written
into acc (acc_write=1). This finishes the LDA instruction execution‚ and
control goes to State 0 to fetch the next instruction.

STA instruction: bits 12 to 0 of ir are applied to the memory address input
(i_or_d=1)‚ and acc is written into the memory (mem_write=1). This finishes
the STA instruction execution‚ and control goes to State 0 to fetch the next
instruction.
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JMP instruction: bits 12 to 0 of ir are written into pc (pc_src=0‚
pc_write_uncond=1). This finishes the JMP instruction execution‚ and
control goes to State 0 to fetch the next instruction.

JZ instruction: bits 12 to 0 of ir are written into pc if the content of acc is
zero(pc_src=0‚ pc_write_cond=1). This finishes the JZ instruction execution‚
and control goes to State 0 to fetch the next instruction.

The implementation of the controller as discussed above and as shown in
Figure 5.19 requires a state machine that can be implemented by a one-hot
state machine or an encoded machine with three flip-flops. We will leave this
detailed implementation as an exercise for the interested reader.

5.4 Summary

In this chapter we discussed processing units and presented a method of
designing general purpose computers. The discussion on the CPU components
and its hardware and software was brief and its only purpose was to prepare
the reader for the second part of the chapter that discussed the design of a
CPU. In presenting the design methodology‚ we used a simple processor and
developed its hardware in several incremental steps. This presentation
familiarizes the reader with hardware details of complex CPU architectures and
prepares the reader for the CPU example that we will present in the second part
of this book.



Part
2
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This part shows how the Quartus II environment and its related tools are used
for entering a design testing it and programming Altera programmable devices.
We will show how Altera's UP2 development board can be used for prototyping
digital components. Topics covered here are:
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Gate Level Combinational Design
Designing Library Components
Design Reuse
HDL Based Design
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Control-Flow Class:

JMP Instruction:

mem_read and mem_write are 0‚ because JMP does not read
from or write into the data memory.
acc_write=0‚ because acc does not change during JMP.
alu_op is XX because alu has no role in execution of JMP.
acc_src=X‚ because acc clocking is disabled and its source is
not important.
jmp_cond=0‚ jmp_uncond=1‚ this puts a 1 on pc_src signal and
directs the jump address (bits 12 to 0 of instruction) to the pc
input.

JZ Instruction:

mem_read and mem_write are 0‚ because JZ does not read from
or write into the data memory.
acc_write=0, because acc does not change during JZ.
alu_op equals to XX‚ because alu has no role in execution of JZ.

acc_src=X‚ because acc clocking is disabled and its source is
not important.
jmp_cond=1‚ jmp_uncond=0‚ if acc_zero is 1‚ this puts a 1 on
pc_src and directs the jump address (bits 12 to 0 of instruction)
to the pc input. Otherwise the value of pc_src is 0 and pc+1 is
directed to the pc input.

5.3.4 Multi-Cycle Implementation

In the single-cycle implementation of SMPL-CPU‚ we used two memory units‚
two functional units (the alu and the adder). To reduce the required hardware‚
we can share the hardware within the execution steps of an instruction. This
leads us to a multi-cycle implementation of SMPL-CPU.  In a multi-cycle
implementation‚ each instruction will be executed in a series of steps; each
takes one clock cycle to execute.

Datapath Design. We start from the single-cycle datapath and try to use a single
memory unit which stores both instructions and data‚ and also a single alu
which plays the role of both alu and the adder. Sharing hardware adds one or
more registers to store the output of that unit to be used in the next clock cycle.

To use a single memory‚ we need a multiplexer to choose between the
address of the memory unit from the pc output (to address instructions) and
bits 12 to 0 of the instruction (to address data). To use a single logic unit
instead of the present alu and the adder‚ we should use two multiplexers at the
alu inputs. The multiplexer on the first alu input‚ chooses between pc and acc‚
and the multiplexer at the second alu input chooses between memory output
and a constant value of 1. Note that alu inputs are 16 bits wide‚ so we append
3 zeros on the left of pc to make it a 16-bit vector for the input of the alu.

To store the instruction which is read from the memory‚ a register is used at
the output of the memory unit‚ called instruction register (ir). The multi-cycle
implementation of datapath is shown in Figure 5.17. As mentioned before‚ the
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6 Tools for Design and Prototyping

This chapter introduces tools and environments offered by Altera for design
development and prototyping. We will discuss how Altera's Quartus II is
utilized to complete a design and program a programmable device. Using UP2
development board for prototyping a design that is developed in Quartus II will
be discussed. The chapter also discusses the role of an HDL simulator in
design.   We will only show the general features of Quartus II and will not get
into its details. Various ways Quartus II can be used for design development
will be discussed in the chapters that follow.

6.1 Design with Quartus II

This section shows steps involved in using Quartus II for design entry‚
simulation and device programming. We use a simple AND gate for illustrating
the necessary steps.

The environment we are using has several "Utility Windows" and "Tool
Bars". Utility Windows are selected by the user and they remain active until
they are turned off. On the other hand‚ Tool Bars become active depending on
the application you are using. By default‚ the Project Manager‚ Status‚ and
Messages windows are on. As shown in Figure 6.1‚ using the View tab and‚ in
there‚ selecting the Utility Windows tab brings up a pull-down menu that
enables you to select your active Utility Windows.

The Project Manager window is a useful window and should be turned on at
all times. Project files‚ design files‚ their hierarchies‚ and their compilation
status are displayed in this window.
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Figure 6.1  Utility Windows

Figure 6.2  Page 5 of Project Definition Pages



163

6.1.1 Project Definition

The first step in definition of a design in Quartus II is to define a project. A
project encloses design files in a given subdirectory. In a project‚ we define a
top-level design that can be simulated and synthesized.

To define a project‚ use the New Project Wizard in the File menu. The
project wizard brings up a series of windows (pages) for defining project
subdirectory‚ design libraries‚ tools used with the project‚ device family‚ and the
specific device used in the project.

For our demo project (the AND gate design)‚ we use the MyFirstProject
subdirectory‚ use the anding design name‚ use the MAX7000s device family‚
and in this family of devices we use the EPM7128SLC84-7 CPLD. We have
selected this device because it is one of the two programmable devices on
Altera's UP2 development board. Figure 6.2 shows the project definition page in
which the project device is defined. After project definition is complete‚ the
name of the project (anding) will be displayed in the Project Navigator window.

6.1.2 Design Entry

The next step in design development is entering the design. For this purpose‚
Quartus II offers ways for schematic entry‚ HDL entry‚ use of Megafunctions‚
use of existing parts‚ tabular specification of functions‚ and a mixture of all
these methods. Entering a design begins by selecting a design entry method
from the Applications tool bar.

In our demo design we use the schematic entry method‚ the icon for which
appears on the Applications tool bar shown in Figure 6.3. Selecting this icon
(the one with the little AND-gate)‚ opens a blank schematic file. Next to the
schematic file‚ the Block and Symbol Editors tool bar opens that allows selection
of gates and components for our new schematic file.

Figure 6.3 Applications Tool Bar

Figure 6.4 Block and Symbol Editors Tool Bar

To enter components of your design‚ double-click anywhere on the
schematic window‚ or select the Symbol Tool (the little AND-gate) from the Block
and Symbol Editors tool bar of Figure 6.4. This opens the Symbol window in
which available libraries‚ including the standard Quartus II library‚ are shown.
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Open this library by clicking on the little plus sign next to it. Once opened‚
select Primitives‚ and in the Logic hierarchy that opens select and2. This
selection is shown in the Symbol window of Figure 6.5. Alternatively‚ if you
already know the name of the component you are using‚ enter it in the Name
area shown in this figure.

The window of Figure 6.5 closes by clicking OK. When this closes‚ the
selected symbol becomes available for placement on your schematic window.
Click anywhere on this window to place your AND gate. The schematic window
of Figure 6.6 shows this AND gate.

When a design is complete‚ you have to define its input and output pins.
Since in our case‚ our design is just a simple AND gate‚ we now have to enter
its pins and connect them to core of our design (the AND gate). For this
purpose‚ enter pins the same way you entered your AND gate.

In the library hierarchy of the Symbol window of Figure 6.5‚ open the pins
folder‚ select input and output and place two of the former and one of the latter
in your schematic window of Figure 6.6. This figure shows all design
components that must now be connected.

Figure 6.5 Library Component Hierarchy
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Figure 6.6  Schematic Window

Figure 6.7  Completed anding Block Diagram File

To connect components of Figure 6.6‚ in the Block and Symbol Editors tool
bar of Figure 6.4‚ select the Orthogonal Node Tool (the 90° thin line with dots on
its ends). This makes your curser a wiring tool that can be used to connect
nodes together. Use this tool to connect the input pins to the inputs of the AND
gate and the output pin to the gate's output. When done‚ disable the wiring
tool by clicking the arrow on the tool bar of Figure 6.4.

Before completing your design‚ rename input and output ports to names
you are comfortable with. We use a‚ b‚ and w for the inputs and the output of
our design. To name a pin‚ either double-click it to open its Pin Properties
window‚ or right-click it and select Properties from the pull-down menu that
shows up.

When this is completed‚ save your design and make sure it is named the
same as your project‚ i.e.‚ anding.    Figure 6.7 shows the completed block
diagram of our anding design. The top level entity of a design must be named
the same as its project.

6.1.3 Device Configuration

In the next step of our design development‚ we use the Assign Pins window to
assign input and output ports of our design to pins of the CPLD we are using.
To bring up this window go to the Assignments tab and in the pull-down menu
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that shows up select Assign Pins... . The corresponding window is shown in
Figure 6.8.

A straight forward way of assigning pins is to scroll down the device's pin
list‚ and click on the pin that is being assigned to a design node. Then in the
Assignment area‚ next to the Pin name type the name of the node of your
design. Alternatively‚ you can click on the three dots next to the Pin name box
to have the Node Finder utility find your design's nodes. This feature can only
be used if a design has already been compiled. In the Node Finder window‚
clicking Start begins the search for nodes of your design. We can assign nodes
from our design to the numbered device pin by selecting it from the list of nodes
found.

Figure 6.8 Assign Pins Window to Assign Deign ports to CPLD Pins (Partial View)

In our design we use the straight forward method of typing the name of the
node in association of the highlighted pin number. This is partly due to the fact
that we have not compiled our design yet‚ and node names are not available.
For our design‚ we assign a‚ b‚ and w nodes to device pins 54‚ 56 and 58
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respectively. The reason for this selection becomes clear after we discuss the
UP2 board in the next section.

6.1.4 Design Compilation

After the completion of the design entry phase‚ and for simulation and device
programming‚ we have to compile our design. Compilation consists of many
phases including‚ design analysis‚ synthesis‚ binding‚ layout and placement‚
timing extraction‚ and building data files for chip layout and floor plan. For our
AND gate design many of these phases are either very simple or completely
eliminated. For example the synthesis phase that converts our behavioral
designs to a netlist of gates‚ does not have a strong role in compiling our design.

To start the compilation process‚ select the Start Compilation icon from the
Standard tool bar. This icon is the right-pointed triangle shown in Figure 6.9.
When compilation begins‚ the status of its various phases is displayed in the
Status utility window. If errors occur‚ they will be displayed in the Messages
utility window.

Figure 6.9 Standard Tool Bar

6.1.5 RTL View

As a result of compilation‚ Quartus II generates a schematic diagram of the
hardware that is to be programmed into a programmable device. This
schematic is independent of the target device and uses basic logic gates and
primitive functions. To see the RTL view of a compiled design‚ go to the Tools
pull-down menu and select RTL Viewer.

Figure 6.10 shows the RTL view of our anding project. Since the design we
are dealing with is a simple AND‚ the RTL view of it is just an AND gate shown
in this figure. However‚ for a large design‚ the RTL view shows the design
hierarchy and post-synthesis netlist of the components of the design.

Figure 6.10 RTL View of anding
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6.1.6 Post-Synthesis Simulation

A design that is compiled can be simulated. This simulation is often referred to
as post-synthesis‚ because it simulates the actual gates and cells of the target
device (the device that will be programmed). In our case‚ no synthesis was
necessary because of our simple design. However‚ we still use this terminology
to reflect the detailed simulation that is being performed.

Before we start our simulation‚ we have to specify input values for the
inputs of our design. To do this‚ select the New Vector Waveform File icon (the
icon with the square wave) from the Applications tool bar of Figure 6.3 to open a
new waveform definition file. The waveform file is initially blank and we need to
enter our node names and their associated waveforms. Figure 6.11 shows our
waveform file after node names are entered and waveforms defined for them.

To enter design nodes‚ double-click in the area under the word "Name" in
the waveform file. Doing this‚ or right-clicking and selecting the "Inset Node or
Bus..." brings up the Insret Node or Bus window shown in Figure 6.12.   In this
window‚ in the white box next to Name‚ type the name of your node‚ or select
the Node Finder to find your design's nodes.

Figure 6.11 Waveform Definition File

Figure 6.12 Insert Node or Bus Window
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Figure 6.13  Waveform Editor Tool Bar

Figure 6.14  Simulation Run Results

In order to define waveforms for our input ports‚ we can take advantage of
the tools provided by the Waveform Editor tool bar‚ shown in Figure 6.13. One
way of doing this‚ is to select the Waveform Editing Tool (the icon with crossing
waveforms and a two-headed arrow inside it). When this is selected‚ you can
use your mouse to paint your waveform in the waveform area of Figure 6.11 to
paint 0s and 1s.

Alternatively‚ you can select the arrow in the Waveform Editor‚ and in your
waveform area paint a portion of the waveform. The painted area of the
waveform will highlight. Then select one of the icons in right part of the
Waveform Editor tool bar (Figure 6.13) to set a value in the highlighted area.

When definition of the waveform is completed‚ save it as anding.vwf. Using
the sane name as your design‚ associates this waveform with the anding
schematic file. This readies everything that we need for our simulation run. To
start the simulation‚ select the simulation icon from the Standard tool bar of
Figure 6.9 (the simulation icon is the right-pointed triangle with a little
waveform underneath it).

While simulation is running it status appears in the Status utility window.
It will show all processes as 100% when the run is complete. At this time a new
waveform file will be displayed that shows the input waveforms as we entered
and the resulting output pin. Figure 6.14 shows this simulation report.

Note in this waveform that there is a delay from the time that the b input
becomes 1 to the time that w becomes 1. This delay (7.761 ns) is due to the
delays of logic cells of our CPLD and the delay of its IO cells. A successful
simulation run verifies the correctness of our design as well as the timing of the
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input waveforms. If we change our input waveforms too fast‚ the outputs
cannot catch up and we will end up with hard-to-justify output waveforms.

6.1.7 Device Programming

The last step in developing a design for a PLD is programming the target PLD.
The necessary files for this purpose are generated in Quartus II after a design
has been successfully compiled. MAX 7000S devices use the pof (Programmer
Object File) programming file format and the FLEX 10K devices use sof (SRAM
Object File). These files that are generated by the compiler‚ include all
necessary configuration data for the appropriate PLDs. The pof flies configure
EEPROMs and sof files are loaded in FPGA SRAMs.

To start the device programming process‚ select the Programmer icon from
the Applications tool bar shown in Figure 6.3 (the icon with some wave on top of
a little chip). This brings up the device configuration window‚ shown in Figure
6.15‚ and its associated Programmer tool bar‚ shown Figure 6.16. In the
configuration window‚ you specify the hardware used for programming your
device‚ the programming file (a pof file for our CPLD‚ generated by the compiler)
and the specific device being programmed.

If your Quartus II environment is being used for the first time‚ you should
setup its programmer hardware. To do this‚ click on Hardware in Figure 6.15
and in the Hardware Setup window that opens add your hardware‚ select it and
close the window. In our example of Figure 6.9 we have specified ByteBlasterII
that is connected to the LPT1 port of our computer. ByteBlasterII is a device
programmer by Altera for Altera devices‚ and connects to the parallel printer
port of your PC. The UP2 development board uses this hardware for
programming its devices. Referring back to Figure 6.15‚ the selected Mode of
programming is JTAG‚ which is the way ByteBlasterII connects to UP2.

Figure 6.15 Device Programming Window
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Figure 6.16 Programmer Tool Bar

If the programming file does not automatically appear in the configuration
window of Figure 6.15‚ or if you need to change the file‚ double-click in the
white space in the File area and select the appropriate programming file.
Likewise‚ if the device you are programming is not already shown under the
Device heading in Figure 6.15‚ you can select your device by double-clicking
this area.

After you have completed your setup in the configuration window‚ put a
check-mark in the Program/Configure box and select the Start Programming
icon from the Programmer tool bar of Figure 6.16. The right-pointed triangle
with some wave on its right hand side is the icon for starting the device
programming process. When programming is being done‚ the corresponding
messages appear in the Messages window and its progress is shown in the
configuration window.

6.1.8 Configured Devices

Quartus II enables you to inspect the timing of your configured devices‚ see
their floor plan‚ and in some cases change the way device cells are used. Three
icons in the Standard tool bar of Figure 6.9 activate Timing Closure Floorplan‚
Last Compilation Floorplan‚ and Chip Editor applications. The timing of ports to
the CPLD cells and internal CPLD delays can be seen in the Timing Closure
window.

Figure 6.17 shows the Timing Closure window resulted from compilation of
our AND gate design targeting the EPM7128SLC84-7 CPLD. As shown‚ there
are eight PLDs in this CPLD (see Section 4.3). These PLDs are numbered A to H
from the upper left to lower right CPLD.

For navigating in this floorplan‚ there is an associated tool bar that is
shown in Figure 6.18. This tool bar becomes active when a floorplan of the
device is displayed.

Zooming on the floorplan of Figure 6.17 enables us to see the actual IO pins
used for our design‚ macrocells that have been utilized‚ and their timings.
Figure 6.19 shows PLD "F" that is used for implementing our anding design.
The arrow from b to w shows the internal timing delay value.

Other features on the Timing Closure window include display of critical
times‚ connection counts‚ delays in and out of cells‚ node equations‚ user
specified pin assignments‚ fitter pin assignments‚ and other parameters that
show how the compiler and the device programmer have implemented our
design in our target device. This information is displayed by selecting
appropriate icons from the Floorplan Editor tool bar of Figure 6.18.
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Figure6.17 Floorplan Showing MAX 7000S Eight PLDs

Figure 6.18 Floorplan Editor Tool Bar

Figure 6.19 PLD "F" Utilized in MAX 7000S
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6.2 Hardware Description Language Based Design

An alternative to using schematic capture for a complete design or components
of a design is to use an HDL. The Quartus II software allows describing a
component used in the schematic window in VHDL or Verilog. This software
also allows a complete design to be described in an HDL. In either case‚
Quartus II will synthesize the HDL portion of the design‚ incorporate it with the
rest of the design‚ and generate device layout and appropriate device
programming files the same way it does for any other design. This means that
Quartus II allows post-synthesis simulation of HDL designs‚ the same way it
allows detailed simulation of design parts using other design entry methods.

The problem with treating an HDL based design the same as other design
parts is that‚ an HDL design is generally more complex and consists of custom
new code developed by a designer. That is unlike a purely schematic based
design that uses pre-tested existing parts in a hierarchical fashion. Therefore‚
before a designer uses his or her HDL code with other parts of a design and
synthesizes it along with other components‚ he or she must simulate the HDL
design to verify its correct operation.

This means that in addition to all tools and utilities that Quartus II offers‚ a
complete digital design environment needs a high-level HDL simulator. The
simulator that we use for this purpose is the ModelSim Altera 5.7c simulator
from Mentor Graphics Inc. This simulator that is customized for Altera is
distributed with the full version of Quartus II software. Since this simulator is
not an integrated part of the Quartus II software‚ other HDL simulators can
also be used for simulating our high-level HDL designs.

In this section we show how a Verilog description written for an "or"
function is simulated and tested in ModelSim‚ and how it is incorporated in
Quartus II for synthesis and device programming. Figure 6.20 and Figure 6.21
show the "or" description and its testbench for simulation by ModelSim.

`timescale 1 ns /1 ns
module ored2 (a‚ b‚ w);
input a‚ b;
output w;
assign w = a I b;

endmodule

Figure 6.20 OR Gate Verilog File (Filename is ored2.v)

`timescale 1 ns / 1 ns
module or2tester();
reg aa‚ bb;
wire ww;
ored2 U1 (aa‚ bb‚ ww);
initial begin aa = 0; bb = 0; end
initial repeat (4) #17 aa = ~ aa;
initial repeat (3) #29 bb = ~ bb;

endmodule

Figure 6.21 OR Gate Testbench (Filename is or2tester.v)
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When ModelSim begins‚ it brings up the last design project. The first thing
to do for specifying a new design for simulation is creating a new project. For
doing this‚ go to the File menu of the main ModelSim window and select New
Project‚ as shown in Figure 6.22. This brings up a Create Project window (also
shown in Figure 6.22)‚ in which the name of the project‚ its location and its
library name can be specified.

Figure 6.22  Creating a new Project in ModelSim

Figure 6.23  Design Files Added to the Project
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Following the project creation step‚ design files must be added to the
project. To enter your new design files‚ start in the File menu and follow File
New Source Verilog. This opens a Verilog editing window. When editing a
new file is completed‚ it is automatically added to your active project.

Alternatively‚ you can add existing files to your design project by selecting
File Add to Project Existing File …‚ and then selecting an existing file. In
our example‚ we add ored2.v and or2tester.v files to our oring project. Figure
6.23 shows the resulting ModelSim window.

The next step is to compile all our design files. To do this‚ click on the
Compile tab and follow Compile Compile All. After a successful compilation‚
the question-marks next to the file names under the status of your design files
(Figure 6.23) will be changed to check-marks.

Figure 6.24  Starting the Simulation

The next step after a successful compilation is to initiate the simulation.
For this purpose‚ start from the Simulate menu and follow Simulate Simulate
.... This brings up the Simulate window shown in Figure 6.24. Since we have
compiled our design files in the work library (see Create Project window in
Figure 6.22)‚ our compiled simulation model is available in this library. Open
the work library of Figure 6.24‚ and select the top-level entity of the design that
is being simulated. In our example‚ the or2tester module that encloses all other
modules is the top-level design entity. Note that you only have to do this once‚
and successive simulations can just be started by clicking on various
simulation icons that will appear in the ModelSim main window.

When the Simulate window is Okayed‚ the simulation initializes. We can
now select signals from our design hierarchies to display in the waveform
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window. To do this, in the View pull-down menu select Signals and Wave
windows. This opens the Signals and Wave windows.

Figure 6.25 Signals Window to Select Display Signals

Figure 6.26 Wave Window Displaying Simulation Results

The Signals window‚ shown in Figure 6.25‚ contains signal names of the top-
level entity of our design. On the other hand‚ the Wave window is initially
blank. Select and copy signals from the Signals window and paste them in the
Wave window. Use the Edit tab in both windows for select‚ copy and paste.

To run the simulation‚ start from the Simulate tab‚ and in the pull-down
menu that appears follow: Simulate Run Run  -All. This causes the
simulation to continue until no more events occur in the design. Our
simulation run stops at 87 ns. Figure 6.26 shows our simulation results. If
further simulation runs of this testbench become necessary‚ follow: Simulate
Run Restart...‚ and in the Restart window that opens select the windows you
want to keep (like Signals of Figure 6.25 and Wave of Figure 6.26)‚ and then
click on Restart.
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6.2.1 Porting to Quartus II

The design that is completed and tested in ModelSim can be used as a
component of another design‚ or a complete design in Quartus II. We now show
steps necessary for porting our tested ored2.v Verilog description to a Quartus
II project‚ e.g.‚ oring.

Copy the tested Verilog file of ored2 to the directory of the oring project.
Then‚ in the File menu of Quartus II select Open and in the window that opens
select the ored2.v file. This opens a text editor window containing the ored2.v
file.

To use this file in another design‚ you have to generate a symbol for it. The
easiest way to generate a symbol for a design file (schematic or HDL design files)
is to have Quartus II generate a default symbol. For doing this‚ while your
design file is open‚ go to the File pull-down menu of Quartus II and follow: File

Create/Update Create Symbol Files for Current File. This will generate a
symbol for the design file that can be used in the design of our oring project.

To use this symbol‚ in the Symbol window that opens when a component is
being placed in a schematic file (Figure 6.5)‚ select the Project folder and in this
folder you will find all symbols that have been added to your current project.
Figure 6.27 shows the Symbol window of the oring project that contains our
own ored2 symbol. This symbol can be selected and used in a schematic file
just like any other symbol‚ e.g.‚ the AND2 primitive of Section 6.1.2. Figure
6.28 shows the schematic of the oring project that uses two of the instances of
our own ored2 symbol and one instance of Quartus II NAND2 primitive.

Figure 6.27  Selecting a Symbol from the Current Project Directory
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Figure 6.28  Using ored2 Symbol in oring Project

6.3 UP2 Development Board

As a simulation model is a soft model of a hardware that is being designed‚ a
prototype is a hard model of the hardware under design. A development board
includes one or more devices to be used as prototypes‚ and provides easy
programming and interfaces for utilization of such devices. Such a board
provides basic I/O devices and interfaces for the peripherals that the prototype
devices may be used with.

Having a development board available‚ a digital designer develops his or her
design using simulators at various levels of abstraction‚ synthesis tools‚
placement programs‚ and other related tools. When the design is complete‚
devices on a development board are programmed‚ and using the interfaces
provided on the board‚ the actual peripherals are connected to the prototype
device. This provides an exact hardware model of the design that can be tested
for actual physical conditions.

Because of the growth of programmable devices‚ development boards have
become very popular‚ and are available for various devices‚ various degrees of
complexity‚ and many common interfaces. It is not unusual for a company with
a product that is being distributed to a limited number of customers‚ to use a
development board in the product that is being shipped. This way‚ the system
will be tested and examined on-site‚ and the final board will be generated after
all design and board layout bugs are fixed.

Altera's UP2 development board is mainly designed for educational
purposes. In a university setting‚ this board is used for laboratories related to
courses on digital system design‚ computer architecture‚ and peripheral design.
In spite of its main educational target‚ UP2‚ with its popular MAX 7000S CPLD
and FLEX 10K FPGA‚ is a very useful development board for industrial settings.
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Altera's "University Program UP2 Development Kit" datasheet is a document
that describes details of this board. In this section of this book‚ we will discuss
some of its feature that we use in the design projects of the rest of this book.

6.3.1 UP2 General Features

The UP2 development board‚ shown in Figure 6.29, has an EPM7128SLC84-7
CPLD and an EPF10K70RC240-4 FPGA. The board has an interface for
ByteBlaster II device programming hardware that can be used to program the
on-board devices. The board provides power and clock for its CPLD and FPGA.

CPLD. The EPM7128S device‚ a member of the MAX 7000S family‚ is based on
erasable programmable read-only memory (EEPROM) elements. The EPM7128S
device features a socket-mounted 84-pin plastic j-lead chip carrier (PLCC)
package and has 128 macrocells. With a capacity of 2‚500 gates and a simple
architecture‚ the EPM7128S device is ideal for introductory designs as well as
larger combinatorial and sequential logic functions.

FPGA. The EPF10K70 device is based on SRAM technology. It is available in a
240-pin RQFP package and has 3‚744 logic elements (LEs) and nine embedded
array blocks (EABs). With 70,000 typical gates‚ the EPF10K70 device is ideal
for intermediate to advanced digital design courses‚ including computer
architecture‚ communications‚ and DSP applications.

Figure 6.29  UP2 Development Board

ByteBlaster II. Designs can be easily and quickly downloaded into the UP2
board using the ByteBlaster II download cable‚ which is a hardware interface to
a standard parallel port. This cable sends programming or configuration data
between the device programming software (programmer part of Quartus II) and
the UP2 Education Boards. Because design changes are downloaded directly to
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the devices on the board‚ prototyping is easy and multiple design iterations can
be accomplished in quick succession.

JTAG Input Header. The 10-pin female plug on the ByteBlaster II download
cable connects with the JTAG_IN 10-pin male header on the UP Education
Board. The board provides power and ground to the ByteBlaster II download
cable. Data is shifted into the devices via the TDI pin and shifted out of the
devices via the TDO pin. In all of our configurations we use the ByteBlaster II
in the Joint Test Action Group (JTAG) operating mode.

Jumpers. The UP Education Board has four three-pin jumpers (TDI‚ TDO‚
DEVICE‚ and BOARD) that set the JTAG configuration. The JTAG chain can be
set for a variety of configurations (i.e.‚ to program only the EPM7128S device‚ to
configure only the FLEX 10K device‚ to configure and program both devices‚ or
to connect multiple UP Education Boards together). In all of our work with UP2
we only use one board and only one of the programming devices.

Supply Power. The DC_IN power input accepts a 2.5-mm × 5.55-mm female
connector. The acceptable DC input is 7 to 9 V at a minimum of 350 mA. The
RAW power input consists of two holes for connecting an unregulated power
source. After being regulated by the board hardware proper DC voltage is
applied to both devices on the board.

Oscillator. The UP Education Board contains a 25.175-MHz crystal oscillator.
The output of the oscillator drives a global clock input on the EPM7128S device
(pin 83) and a global clock input on the FLEX 10K device (pin 91).

6.3.2 EPM7128S CPLD Device

Resources for the UP2 CPLD device include prototyping headers‚ switches‚
push-buttons‚ LEDs and seven-segment displays. Female connectors
surrounding this device give access to its pins for connecting to on-board or
external resources.

Prototyping Headers. The EPM7128S prototyping headers are female headers
that surround the device and provide access to the device's signal pins. The 21
pins on each side of the 84-pin PLCC package connect to one of the 22-pin‚
dual-row 0.1-inch female headers. The pin numbers for the EPM7128S device
are printed on the UP2 Education Board (an "X" indicates an unassigned pin).
Table 6.1 lists the pin numbers for the four female headers: P1‚ P2‚ P3‚ and P4.
The power‚ ground‚ and JTAG signal pins are not accessible through these
headers.

Push-Buttons and Switches. MAX_PB1 and MAX_PB2 are two push-buttons
that provide active-low signals and are pulled-up through resistors. Pins
from the EPM7128S device are not pre-assigned to these push-buttons.
Connections to these signals are made by inserting one end of the hook-up wire
into the push-button female header. The other end of the hook-up wire should
be inserted into the appropriate female header assigned to the I/O pin of the
EPM7128S device.
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MAX_SW1 and MAK_SW2 each contain eight switches that provide logic-
level signals. These switches are pulled-up through resistors. Pins from
the EPM7128S device are not pre-assigned to these switches. Connections to
these signals are made by inserting one end of the hook-up wire into the female
header aligned with the appropriate switch. Insert the other end of the hook-up
wire into the appropriate female header assigned to the I/O pin of the
EPM7128S device. The switch output is set to logic 1 when the switch is open
and set to logic 0 when the switch is closed.

LEDs and Displays. The UP Education Board contains 16 LEDs that can be
used with the EPM7128S device. These LEDs are pulled-up with a
resistor. An LED is illuminated when a logic 0 is applied to the female header
associated with the LED. Pins from the EPM7128S device are not pre-assigned
to LEDs. Connections to LEDs are made by inserting one end of the hook-up
wire into the LED female header. The other end of the hook-up wire should be
inserted into the appropriate female header assigned to the I/O pin of the
device. Figure 6.30 shows female headers corresponding to the UP2 LEDs.

MAX_DIGIT is a dual-digit‚ seven-segment display connected directly to the
EPM7128S device. Each LED segment of the display can be illuminated by
driving the connected EPM7128S device I/O pin with a logic 0. Figure 6.31
shows the display segments and their connections to EPM7128S pins.

Figure 6.30  LED Corresponding Female Headers
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Figure 6.31  EPM7128S Pin Connections to MAX Digits

Figure 6.32  Jumper Settings for Programming Only the EPM7128S Device

Programming. EPM7128S of the UP2 is programmed by the ByteBlaster II
hardware connected to the JTAG terminal of the board. Board jumpers must be
set as shown in Figure 6.32 in order to program this device.

6.3.3 EPF10K70 FPGA Device

Resources for the UP2 FPGA device include switches‚ push-buttons‚ seven-
segment displays‚ a VGA connector‚ and a keyboard/mouse interface
connector. Pins from the EPF10K70 device are pre-assigned to these resources.
For connection to other peripherals‚ expansion pins on the sides of the UP2
board should be used.

Push Buttons and Switches. FLEX_PB1 and FLEX_PB2 are two push buttons
that provide active-low signals to two general-purpose I/O pins on the FLEX
10K device. FLEX_PB1 connects to pin 28‚ and FLEX_PB2 connects to pin 29.
Each push button is pulled-up through a resistor. Figure 6.33 shows
FLEX pin connections to the two available push-buttons.

FLEX_SW1 contains eight switches that provide logic-level signals to eight
general-purpose I/O pins on the FLEX 10K device. An input pin is set to logic 1
when the switch is open and set to logic 0 when the switch is closed. Figure
6.34 shows FLEX pin connections to the FLEX switch set.

Figure 6.33  FLEX Pin Connections to its Push Buttons
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Figure 6.34  FLEX Pin Connections to its Switches

Figure 6.35  FLEX Pin Connections to its Seven-Segment Displays

Figure 6.36  FLEX Pin Connections to the VGA D-sub Connector

Figure 6.37  FLEX Pin Connections to the Mouse Mini-DIN Connector

Figure 6.38  Jumper Settings for Configuring Only the EPF10K70 Device
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Displays. FLEX_DIGIT is a dual-digit‚ seven-segment display connected directly
to the FLEX 10K device. Each LED segment on the display can be illuminated
by driving the connected FLEX 10K device I/O pin with a logic 0. See Figure
6.35 for FLEX pin connections to the display segments.

VGA Interface. The VGA interface allows the FLEX 10K device to control an
external video monitor. This interface is composed of a simple diode-resistor
network and a 15-pin D-sub connector (labeled VGA)‚ where the monitor can
plug into the boards. The diode-resistor network and D-sub connector are
designed to generate voltages that conform to the VGA standard. Information
about the color‚ row‚ and column indexing of the screen is sent from the FLEX
10K device to the monitor via five signals. Three VGA signals are red‚ green‚
and blue‚ while the other two signals are horizontal and vertical
synchronization. Manipulating these signals allows images to be written to the
monitor's screen. Figure 6.36 shows FLEX pin assignments to the VGA
connector.

Mouse Connector. The mouse interface‚ is a six-pin mini-DIN connector that
allows the FLEX 10K device to receive data from a PS/2 mouse or a PS/2
keyboard. The board provides power and ground to the attached mouse or
keyboard. The FLEX 10K device outputs the DATA_CLOCK signal to the mouse
and inputs the data signal from the mouse. Figure 6.37 shows the signal
names and the mini-DIN and FLEX 10K pin connections.

Programming. EPF10K70 of the UP2 is programmed by the ByteBlaster II
hardware connected to the JTAG terminal of the board. Board jumpers must be
set as shown in Figure 6.38 in order to program this device.

6.3.4 Device Programming

Section 6.1.7 discussed device programming from Quartus II environment.
Figure 6.15 shows Quartus II programming window that is used to program an
EPM7128S device in JTAG programming mode. The device is connected to the
LPT1 port through the ByteBlaster II programming cable.

In this section we show how the UP2 development board should be setup
for its EPM7128S device to be programmed with the anding example of Section
6.1. We also show how this board is used for testing our simple demo example.

Programming Setup. To program the EPM7128S device of the UP2 board‚
connect the LPT side of ByteBlaster II to your computer and the JTAG end of it
to the JTAG_IN of the UP2 board. Set the jumpers on the UP2 according to
Figure 6.32 for programming the MAX device.

With this setup‚ a few seconds after clicking on the Start Programming icon
of the Programming tool bar of Figure 6.16‚ the EPM7128S devices will be
programmed with the anding.pof file that corresponds to our anding design.

Testing the Design. After performing the above steps‚ our anding project
implemented on the MAX 7000S device of the UP2 board is ready to be tested.
As discussed in Section 6.3.2‚ push-buttons and LEDs are not pre-assigned to
EPM7128S pins. Figure 6.8 shows that input ports of our example design are
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assigned to device pins 54 and 56, and the output of our design is connected to
pin 58. Figure 6.39 shows connections that need to be made from UP2 push-
buttons and its D2 LED to pins 54‚ 56, and 58 respectively.

With these connections we are ready to test the EPM7128S implementation
of our anding design. Since the push-buttons are normally 1‚ the output of our
design becomes 1 when the push-buttons are not pressed. However‚ since an
LED is illuminated when a logic 0 is applied to it‚ the D2 LED is initially off. By
pressing one or both push-buttons‚ the output LED will be illuminated (AND
output becomes 0). You will also notice that Segment a of MAX display digit 1
also illuminated when a push-button is pressed. This is because Pin 58 of
EPM7128S is pre-assigned to this display segment (see Figure 6.31).

Figure 6.39  Programming MAX 7000S and Testing the anding Design

6.4 Summary

This chapter presented design entry‚ simulation and prototyping with tools that
are provided by Altera for this purpose. We showed how an HDL simulator can
be used for pre-synthesis simulation and then porting the tested design to
Quartus II for synthesis and device programming. We also showed how a
complete design can be directly entered into Quartus II for synthesis‚ post-
synthesis simulation‚ timing analysis‚ and device programming. The design
used here was a simple one; in the chapters that follow we will show
implementation of more complex designs by running them through the design
flow illustrated in this chapter.
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7Gate Level Combinational Design

This chapter shows the use of Quartus II for design of an iterative, hierarchical
combinational circuit at the gate level. We will show steps necessary for
entering a low level component and building upon that a larger combinational
circuit. Testing and packaging the low-level component and putting it in a
library for it to be used by its enclosing architecture will be illustrated.  In the
upper-level design that is presented, the use of bussing, multi-bit vectors, and
use of functional simulation will be illustrated. The chapter shows
programming the MAX device of UP2 and hardware testing of the design.

7.1 Element Design

The design we are doing in this chapter is an iterative comparator. This section
shows project definition, design entry, simulation, and packaging of a 1-bit
comparator that becomes the basic element of our n-bit comparator of the next
section.

7.1.1 Project definition

The design of our 1-bit comparator is done as a new project of its own. This
enables independent compilation and testing of this element. The project name
is bcompare and is created in chapter7 subdirectory of our Altera design
directory.
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Our design is a 1-bit cascadable comparator that has greater and equal
outputs.  As shown in Figure 7.1, our bcompare has a and b data inputs, ei
(equal-in) and gi (greater-in) cascade inputs, and eo (equal-out) and go (greater-
out) outputs. If a is greater than b and higher order bits are equal (ei is 1), go
becomes 1. The eo becomes 1 when a and b are equal. This output will be
used as the equal output of the comparator or the ei of the next higher order
bit. The greater outputs will be ORed together to form the final greater output
of the n-bit comparator built using this -bit design.

Figure 7.1  Cascadable 1-bit comparator

After completing the schematic entry of bcompare, it must be compiled. After a
successful compilation, we will perform a functional simulation in order to
verify our design. To begin this simulation, a new waveform file containing
input data should be defined. For this purpose, in the Applications tool bar,
select New Vector Waveform File and specify waveforms for the circuit inputs.
From the main Quartus II tool bar, a waveform file can also be specified by
selecting File New Other Files Vector Waveform File.

7.1.2 Design Entry

7.1.3 Functional Simulation
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Quartus II offers functional and timing simulation modes. In the functional
mode, PLD delays are not considered and zero-delay simulation is performed,
while the timing mode performs full timing simulation. The simulation mode is
selected in the Settings window that can be reached from the Assignments pull-
down menu. Among other simulation parameters, this window, shown in
Figure 7.2, allows setting of the simulation mode.

Before running functional simulation, a netlist must be generated by
running Generate Functional Simulation Netlist from the Processing menu.
Figure 7.3 shows the functional simulation run of bcompare. Usually, after this
simulation run and verifying the functionality of your design, you should run
the simulation in the timing mode to make sure your applied input waveforms
do not violate the worst-case delay of your circuit.

Figure 7.2  Simulator Settings in the Settings window

We can always cut and paste a design as many times as we want into a larger
design that uses multiple instantiations of the lower-level design. A better
alternative is to make a symbol for the design and use it as a package in an
upper-level design. We package a general purpose design that is tested. The
package will be placed in a library so that it becomes accessible to other
designs.

7.1.4 Packaging a Design
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Quartus II makes a default symbol for a design. For doing this, while the
schematic window of bcompare is active, from the main Quartus II window,
select File Create/Update Create Symbol File for Current File. The created
symbol has a default shape that can be decorated by the user using the symbol
editor of Quartus II.

To view and possibly edit the created symbol, go to the File menu select
Open and open file bcompare.bsf. This opens in the symbol editor. In the
symbol editor, the Block and Symbol Editors tool bar is used for editing a
symbol. Figure 7.4 shows the default bcompare symbol with some user editing.

Figure 7.4  Symbol for bcompare

We close the bcompare project and start our 4-bit comparator project that uses
this design.

7.2

In this section, the design of the 1-bit comparator of the previous section is
used in an iterative fashion to form a 4-bit comparator.

Figure 7.3  Functional Simulation of bcompare

Iterative Structures
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7.2.1 Project Definition

7.2.2 Design Entry

As with the bcompare, we use schematic entry for the icompare project.  In the
Symbol window that opens for entering design components, click on the little
"+" next to Project to open this folder. In this folder all symbols defined in the
subdirectory of this project will be shown. Since bcompare was defined in this
project's subdirectory, it is accessible to icompare. Click on the Repeat-insert
mode so that you can place multiple symbols in your design without having to
come back to the Symbol window.   Figure 7.5 shows the Symbol window in
which bcompare is selected.

In the block diagram editor of icompare, place bcompare instances in a row.
The left-most instance becomes the most-significant and the right-most is the
least-significant bit. Double-click on the instance names to name them
according their significance (see Figure 7.6).

Figure 7.5  Placing Multiple Instances of bcompare

We begin a new project in the chapter7 directory that is the same directory as
that of the bcompare project. The new project is named icompare. Because of
the shared directory, files of bcompare can be used by icompare.
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I/O Ports. For placing the I/O ports, we use pin primitive symbols from the
Quartus II library of primitives. After these symbols are placed they must be
named to represent input and output ports of the icompare. The 4-bit data
ports are named a[3..0] and b[3..0], and the output ports are named equal and
greater.  Naming an input port as a[3..0], implicitly declares a[3], a[2], a[1], and
a[0]

Busses. We use two 4-bit buses to connect our input ports to the 1-bit data
inputs of our 1-bit comparators. To place a bus, click on the Orthogonal Bus
Tool icon on the Block and Symbol Editors tool bar. Name these busses
according to ports they are connecting to. Naming a bus is done by selecting
the bus and setting its name in its Bus Properties window.

For connecting wires to these busses, start from the node of the component
you are connecting to, and using the Orthogonal Node Tool, draw a wire to the
4-bit bus. For specifying which line of the bus a wire is connected to, select the
wire and in its Node Properties window set its name to the name of the bus
indexed by the bus-line it is connecting to. For example, naming a wire as a[2]
connects the line to bit 2 of bus a[3..0].

If name association is used, specific connections are not necessary, except
for cosmetics reasons. The complete wiring of icompare based on bcompare is
shown in Figure 7.6.

Constants. Our design uses a constant 1 for its equal-input and a 0 for its
greater-input. As shown in Figure 7.6, we use VCC and GND primitives for
these constants.

After completing the design entry phase, the design must be compiled.
Compilation reports provide information on the utilization of the chip's
hardware (macrocells for CPLDs, LEs for FPGAs), timing parameters, pins used,
and routing and placement information.

Figure 7.6  Complete icompare Block Diagram

7.2.3 Compilation
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Figure 7.7  Compilation Summary

Figure 7.8  Timing Analyzer Summary

The Flow Summary of Figure 7.7 shows that the icompare design uses 5
macrocells of a MAX 7000S device. The Timing Analyzer Summary of Figure 7.8
indicates that the worst-case delay is 9.1 ns and occurs between the a[1] input
and the greater output. Note that a different pin assignment can change this
timing.

Compilationreadies a design for device programming and simulation. After
a design is compiled, the Node Finder utility will be able to look up design's
nodes for pin-assignment and for waveform definition.

In a waveform file, we should specify values for the a[3..0] and b[3..0] in order to
apply to our icompare design and test it.

7.2.4 Simulation
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Selecting Input Vectors. To place the input vectors in the Waveform window,
double-click in the signal name area and the Insert Node or Bus window opens.
In this window, clicking on the Node Finder opens the Node Finder window. In
this window, select "Pins: all" filter and click on Start. This will place all design
pins in the Node Finder windows and allows users to select signals for assigning
test values to them. We select a and b vectors to be placed in our Waveform
window.

Simulation End Time. The default end-time for simulation is 200 ns. To extend
our simulation run, click on Edit and in the pull-down menu that opens select
End Time ... and in the End Time window that opens, enter a new simulation
end-time. We use 600 ns for simulation of icompare.

Applying Test Data. We now show the procedure for assigning test vectors to
inputs of icompare. In the Waveform window, double-click in the waveform area
in front of the name of the bus or node for which a value is being assigned.
This will select the bus' entire waveform interval for which we can specify test
values. Right-click on the selected area and in the menu that opens select
Value. This will bring up a Value menu in which various schemes of applying
test data to nodes or busses can be specified.

In our design, we use Count Value for a and b busses. In the Count Value
window we can specify count values for our busses. We use a binary counter
that increments every 71 ns for the a vector and a Gray code counter that
increments every 113 ns for b. Figure 7.9 shows the Count Value window for b.

Figure 7.9  Gray Code Counter for b[3..0]
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Figure 7.10  Simulation Result of icompare

In digital circuit simulation with timing, if input vectors change at the same
time or if they change before the circuit has a chance to stabilize, it becomes
difficult to trace the inputs and analyze the response of the circuit. In our test
data, we have chosen 71 and 113 prime numbers to eliminate the chance of
inputs changing at the same time. Because these numbers are far apart, the
circuit will have a chance to stabilize before a new test vector is applied to it.
Note that according to the compilation report of Figure 7.8, the worst-case delay
of our design is 9.1 ns. Resulting waveform of the simulation run of icompare
in the timing mode is shown in Figure 7.10.

After a successful simulation, we are now ready for device programming. We
can either program our device with the pin-assignment done by Quartus II, or
assign our own pins. In this design we do the latter.

Pin Assignment. In the Quartus II main window, clicking on the Assignments
tab, brings up a pull-down menu in which selecting Assign Pins activates the
window corresponding to this selection. A portion of this window is shown in
Figure 7.11. In this window, a pin number is selected and a Pin name from our
design is assigned to it. Since our design is already compiled, for looking for
our design's pins we can use the Node Finder utility of Quartus II.

The Node Finder is activated by clicking on the three dots next to the Pin
name box in the Assign Pins window. In our design, a[3], a[2], a[1], a[0], b[3],
b[2], b[1], b[0], equal, and greater nodes are assigned to pins 24, 25, 27, 28, 29,
30, 31, 33, 37, and 39 respectively.

In assigning pins, make sure reserved pins, such as those of the JTAG, are
not used. For example since pin 23 is used for TMS, it cannot be used as a
regular I/O pin of our design.

7.2.5 Device Programming
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Figure 7.11  Assign Pins Window (Partial View)

Figure 7.12 Options Window (Partial View)
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Figure 7.13  Pin Assignments Shown for a[3..0]

When pin assignments are complete, the design must be recompiled for the
pin assignments to become effective in programming the device.

You can set an option to view pin assignments in the schematic window.
For this purpose, click on the Tools tab and select Options .... This brings up
the Options window (Figure 7.12) in which various categories of options are
shown. Select the Block/Symbol Editor category, and in this category click on
General. In the selection area that opens on the right-hand side part of this
window, check Show pin and location assignments. When this is set, tabs next
to ports of your design in its schematic window show pin numbers assigned to
the I/O ports.   Figure 7.13 shows a portion of schematic of icompare in which
pin assignments for the a[3..0] port of this design are displayed.

Programming UP2.  To start programming the MAX device of UP2, we connect
the UP2 board to the printer port using ByteBlaster II and configure UP2 for
programming this device (see Section 6.3.4). Then, in Quartus II, we run the
Programmer utility to program our device. Make sure pins programmed as
output are not connected to push-buttons or switches.

With the programming discussed above, we can test our implementation of
icompare on the UP2 board.   Since, switch and LED connections to the MAX
device are not pre-assigned in UP2, hard-wire connections should be made. We
connect MAX_SW1 switch set to device pins 24, 25, 27, 28, 29, 30, 31 and 33,
and D1 and D2 LEDs to pins 36 and 38. See Table 6.1 for exact positions of
device pins in the prototyping headers surrounding EPM7128S.

Our design is tested by setting UP2 switches and observing the LEDs.
Switches are at logic 1 in the up position, and the LEDs are illuminated when
logic 0 is applied to them.

7.3 Testing the Design
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This chapter presented design and implementation of an iterative combinational
circuit. The procedure we used for designing this circuit and entering it in
Quartus II is typical of any large iterative circuit, such as ALUs. Using Quartus
II, we showed steps for design entry and device programming on the UP2 board.
Features of Quartus II that were not discussed in the previous chapter were
discussed here. In the chapters that follow, only those features of Quartus II
that we are seeing for the first time will be discussed.

7.4 Summary



8Designing Library Components

This chapter shows design of small components that we will use in the chapters
that follow as library components. The purpose is to show various ways a
design can be implemented and at the same time generate a reusable library.
The library components will be individually tested and symbols will be created
for them. In order to test these components, each will be created as a complete
project and they will be individually tested. Sequential and combinational
components will be designed, and for their design, the use of primitives,
megafunctions and Verilog for description of functions will be illustrated.

8.1 Library Organization

8.2 Switch Debouncing – Schematic Entry

Components that we are discussing in this chapter will be placed in a directory
called BookLibrary. Each component will have its own complete project in this
directory. This way, we will be able to test each component by simulation and /
or by device programming. For testing our library components we use the MAX
7000S device. Obviously, these components can be used in a design using any
programmable device as long as they fit in the device.

This section describes hardware for creating clean filtered pulses from
mechanical UP2 pushbuttons. In design of this hardware we will use schematic
entry at the gate and functional levels.

Pushbuttons on the UP2 board are mechanical switches and are not
debounced. This means that when you press a pushbutton, it makes several
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contacts before it stabilizes. The result is that when you press a pushbutton
that is 1 in the normal position, its output changes several times between logic
0 and 1 before it becomes 0, and when you release it, it again switches several
times between these logic values before it becomes 1. Figure 8.1 shows a
pushbutton contact bounce.

The problem described above causes no problems in combinational circuits
if you give enough time for all changes to propagate before reading the switch's
output. However, in sequential circuits with a fast clock, each of the bounces
between 0 and 1 logic values may be regarded as an actual logic value. For
example, for a counter with a fast clock for which a mechanical pushbutton is
used as a count input, pressing the pushbutton may cause several counts.

Figure 8.2 Debouncing a Single-Pole Double-Throw (SPDT) Switch

A Single-Pole Double-Throw (SPDT) mechanical switch such as that shown
in Figure 8.2 can easily be debounced by an SR-latch also shown in this figure.
However, UP2 pushbuttons are Single-Pole Single-Throw (SPST) and their only
available terminals are those that connect to logic 1 or logic 0, as shown in
Figure 6.33.

Debouncing UP2 pushbuttons requires a slow clock to sample the switch
output before and after it is pressed or released. The clock should be slow
enough to bypass all the transitional changes that occur on its output terminal.
This section shows generation of a switch debouncer and its necessary clock.
For the design of the former part we use schematic entry at the gate level, and
for the latter part we use schematic entry using Quartus II megafunctions.

8.2.1 Debouncer – Gate Level Entry

The debouncer project is created in the BookLibrary.  We use schematic entry at
the gate level for this design. The design is entered in Quartus II and is tested
on the EPM7128S device of UP2.

The design, shown in Figure 8.3, has two inputs Switch and SlowClock.
One of the flip-flops used here is triggered on the rising edge of SlowClock and
the other is triggered on the falling edge of this clock. Since the output of this
circuit is generated by ANDing the two flip-flop outputs, both flip-flops must see

Figure 8.1 Contact Bounce in a Pushbutton
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logic 1 on their inputs before the output of the circuit becomes 1. This means
that the pushbutton connected to the Switch input of this circuit must stay
high for the entire duration of the slow clock for the circuit output to become 1.

Figure 8.3  Schematic of the Debouncer

This design is entered in the Quartus II environment using its block editor.
Flip-flops used here are part of the Quartus II library of primitives. These
components are categorized in this library under primitives/storage. The
specific flip-flop used is dff.

Figure 8.4  Default Symbol Created by Quartus II for Debouncer

After entering the schematic of this design, a symbol (shown in Figure 8.4)
is created for it by using the Quartus II utility for generating default symbols.
This part of the hardware for debouncing pushbuttons uses 3 of the 128
macrocells of the MAX 7000S device.

This part of our design can be simulated, but the real test of this circuit is
using it with UP2 pushbuttons. This requires the use of a slow clock that will
be created next.

The frequency of the UP2 clock is 25.175 MHz. Obviously this is too fast for
filtering transitions in pushbuttons. Dividing this clock by produces a 12
Hz clock that will be more adequate for filtering slow mechanical transitions.
We use a 21 bit counter for dividing the UP2 on-board clock. The Quartus II
project for this purpose is called Divider21 and is created in the BookLibrary
directory. We demonstrate the use Altera megafunctions for the generation of
this circuit.

8.2.2 Slow Clock – Using Megafunctions
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The design shown in Figure 8.5 uses a 21-bit up-counter. The input is the
fast clock and bit 20 of the counter output is the slow clock. The core of this
counter is Divider21c that is made by configuring a Quartus II megafunction.

Figure 8.5  Slow Clock Generator

Megafunctions. Just like gates and flip-flops, megafunctions are part of the
Quartus II library of components. Unlike gates and flip-flop primitives that are
only available with predefined features and inputs, megafunctions are
configurable. For example, an OR megafunction can be configured to become
an array of n-input OR gates. A counter megafunction can be configured as an
up- or down-counter with any number of bits with various forms of load, reset
and preset control inputs.

In general, megafunctions are frequently used general purpose digital parts
that can be customized according to specific applications. In a way,
megafunctions replace the older 7400 series of parts that are available in many
technologies for board level designs. The 7400 series packages cover a wide
range of functions, but because they are actual physical parts, they only have a
limited configurability. Altera megafunctions also cover a wide range of
functions. They are described in a hardware description language and because
of this, they are far more flexible than the 7400 series that are physical parts.

Megafunctions are available in five categories: arithmetic, embedded_logic,
gates, IO and storage. The arithmetic megafunctions cover various forms of
adders, counters, and other general purpose arithmetic functions. The storage
category covers memories, registers, RAMs and ROMs.

Quartus II utility for configuring megafunctions is MegaWizard Plug-In
Manager. When this utility is invoked, in a series of windows it asks users to
specify and configure the megafunction that they have chosen. When done, it
generates a schematic symbol for the configured part and generates an HDL
design file that corresponds to the symbol. The symbol can be placed on the
block editor and used with other configured megafunctions or primitives for
completing a design.

To access a megafunction, go through the same process as for placing a
primitive in your schematic. When the Symbol window appears, in the list of
libraries select the standard Quartus II library (i.e., \quartus\libraries\) and
open the megafunctions folder in this library. In what follows we show how the
Divider21c counter of Figure 8.5 is generated.

Frequency Divider. To enter the megafunction counter in the schematic of
Divider21 project, while the schematic entry window (Block and Symbol Editors)
is open, select the Symbol Tool from the corresponding tool bar. This opens the
Symbol window shown in Figure 8.6. Open this library and in the arithmetic
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category, select lpm_counter.  After clicking OK, a series of windows will appear
that allow you to configure your counter.

Figure 8.6  Megafunctions Library

In the first window, the HDL used for specifying this megafunction and the
name you want to give it is defined. The language used can be any of the three
choices shown. Use any language you are most comfortable with. For the
name of the megafunction we use Divider21c. The next three windows allow
you to specify count direction (up or down) number of bits, count sequence
(binary or Modulus), enabling mechanism, and set or resetting mechanism
(synchronous, asynchronous, etc). Figure 8.7 shows one of these three
windows. The last window tells you the flies that are generated and added to
your project when this mega function is generated. One of the files created is
Divider21c.bsf that represents the symbol that corresponds to your configured
counter. When configuration of a megafunction is complete, this symbol is
placed on your schematic (see Figure 8.5).
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Figure 8.7  Counter Megafunction Configuration Window

After placing Divider21c on the schematic, the design of Divider21 frequency
divider will be complete by connecting the input Clock to the clock input of
Divider21c and the SlowClock output to q[20].  As shown in Figure 8.5,
connection to q[20] port of Divider21c is done by connecting a bus to the q
output of this component, assigning a name to it and using the indexed name
for driving the SlowClock output.

This completes the design of the frequency divider. In order for this design
to be usable in other designs, a symbol is generated for it. This symbol will be
used in the complete design of the switch debouncing hardware.

8.2.3 A Debounced Switch – Using Completed Parts

Finally by putting together the hardware of Figure 8.3 with that of Figure 8.5
hardware for debouncing a switch is generated. For this hardware we generate
the Debounced project in the BookLibrary directory, and in its schematic we use
symbols for Debouncer (Figure 8.4) and Divider21.

For placing these symbols in the schematic of Debounced project, click on
the Symbol Tool of the Block and Symbol Editors toolbar.  When the Symbol
window opens, in the Libraries hierarchy select Project (first item in Figure 8.6).
This points to symbols created in the directory of our present project.  Since the
Debouncer and Divider21 projects use the BookLibrary directory, their symbols
are available in the Project directory.

When the Project hierarchy opens, select Debouncer and Divider21 symbols
and place them on the schematic of the Debounced project. The complete
schematic diagram of this design is shown in Figure 8.8. The SlowClock signal
feeds the input of the Debouncer; in addition it is pulled out as an output of the
Debounced hardware. This way, the SlowClock output can be shared among
multiple Debouncer components.

A symbol, shown in Figure 8.9, is created for this design so that it can be
used in designs requiring a debounced pushbutton.
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For testing our project, it is compiled and it is programmed into the MAX
7000S device of UP2.  The FastClock input is put on pin number 83 that is the
global lock of this chip.  The Switch input is wired to a pushbutton, and the
CleanSwitch and SlowClock outputs are put on two of the MAX LEDs.  The
functionality of this circuit is tested by pressing a pushbutton and observing its
output. Note that if glitches transmit to the output, because of their short
duration, we will not be able to see them on the output LED.

Figure 8.8  Schematic of the Debounced Project

Figure 8.9 Debounced Symbol

The complete hardware of the Debounced component uses 24 of the 128
macrocells of the MAX 7000S device. Because of this high gate count, it is
recommended that for multiple switches, only one Debounced is used and the
rest use the Debouncer of Section 8.2.1 that only uses 3 macrocells.

8.3 Single Pulser – Gate Level

Often, start pulse for a sequential circuit must be only one clock pulse
duration. A problem with using pushbuttons for this purpose is that operation
of such a switch by human is usually very slow, and the best we can do is to
generate pulses of several milliseconds by pushing a push button.

The OnePulser project of this section takes a clock and a long pulse as
inputs and produces a single pulse of the duration of the clock period for every
time the long pulse becomes 1. The output pulse is synchronous with the
clock. The long-pulse input connects to a debounced switch, and the clock
input of this circuit connects to the main clock signal of the sequential circuit
using the start pulse. The design is done using a block diagram using
primitives shown in Figure 8.10.

This design is done by a 2-bit shift register. As shown in Figure 8.10, when
LongPulse is 0 on the rising edge of the ClockPulse at time     and 1 on the rising
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edge of ClockPulse at the OnePulse output becomes 1 after the edge at
and remain 1 until the next edge that a 1 is shifted into the shift-register. The
output waveform of this circuit that is actually a 01 detector is shown in Figure
8.11.

Figure 8.10  The OnePulser Circuit

Figure 8.11 OnePulser Output Waveform

Figure 8.12 OnePulser Symbol

The OnePulser circuit is tested by instantiating a copy of the Debounced circuit
(Figure 8.8) in its schematic and driving its inputs. The CleanSwitch and
SlowClock outputs of Debounced connect to the LongPulse and ClockPulse
inputs of OnePulser, respectively. The Switch and FastClock inputs of
Debounced connect to a pushbutton and the system clock respectively, and the
OnePulse output is displayed on an LED on the UP2 board. By pressing the
input pushbutton, a short blink on the output LED indicates the correct
operation of this circuit.

The OnePulser uses 3 of the 128 macrocells of the MAX device on UP2.



207

We generate a project and a design called Pulser2 to debounce both MAX
pushbuttons of the UP2 board. This circuit uses two copies on the Debouncer
of Figure 8.4 and the Divider21 of Figure 8.5. This design is shown in Figure
8.13.

Figure 8.13 Pulser2 Schematic

Figure 8.14 Pulser2 Symbol

The Pulser2 symbol is shown in Figure 8.14. For generation of this symbol we
first use Quartus II symbol generation utility to generate a default symbol.
Using the symbol editor tools (on the Block and Symbol Editor toolbar), the
default symbol is edited to look as shown in this figure. Tools used from this
toolbar are Text, Rectangle, Oval, and Line tools.

8.4 Debouncing Two Pushbuttons – Using Completed Parts
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The next library component described in this chapter is a hexadecimal display
driver. As with the other components, we will generate a design file and a
symbol for this circuit. This circuit takes a 4-bit HEX input and generates
Seven Segment Display (SSD) code that corresponds to the input data.

Alternative methods of design entry that exist for creating this design
include gate-level schematic entry, table-driven ROM specification, use of
megafunctions, use of standard 7400 parts (7400 parts are available in
Libraries\others\maxplus2), and using an HDL like Verilog. We have chosen
the latter method, since it is easy to describe, uses fewer device cells than some
other methods, and is adaptable to both MAX and FLEX. The entry method
used here starts from the block diagram editor of Quartus II, and enables the
use of Verilog for describing a block used in the schematic diagram.

The project used for the display adapter is called DisplayHEX and is created
in the BookLibrary directory. Once this project is defined, we use the New Block
Diagram/Schematic File tool of the Applications toolbar to open a new schematic
file. In the schematic, the HexDecoder block will be defined to include the
Verilog code for the core of our project.

Figure 8.15 An Empty Block

The next step in defining a block for inclusion of a design description in Verilog
is to specify its name and ports. This is done by specifying block properties.
Right-click on the block of Figure 8.15, and in the pull-down menu that opens
select Block Properties. In the General tab of the window of Figure 8.16 the
block name (HexDecoder) is entered and in its I/Os tab its input and output
ports are specified.

The 4-bit input of HexDecoder is HEXin[3..0] and its 7-bit output is
SSDout[6..0].  The next step is entering the Verilog code of HexDecoder.

8.5 Hexadecimal Display – Using Verilog

8.5.1 Block Specification

When a new schematic file opens, its corresponding toolbar (Block and Symbol
Editors) becomes available, and the schematic window is initially blank. Select
the Block tool from this toolbar to place a blank block on the schematic window.
The size of this block is not important at this point and can be adjusted once
more details are known about it. Figure 8.15 shows a block that needs to be
configured.  This becomes our HexDecoder.

8.5.2 Block Properties
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Figure 8.16  Block Properties

Figure 8.17  Creating a Verilog HDL Design File
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With the block properties defined above, Quartus II can generate a Verilog
template file for entering the Verilog code of HexDecoder. In the schematic of
DisplayHEX, right-click on the block symbol of HexDecoder and in the pull-
down menu that opens (Figure 8.17) select Create Design File from Selected
Block .... This generates a Verilog template that contains declarations and I/O
ports of the HexDecoder module.

The complete Verilog code of HexDecoder is shown in Figure 8.18. The
HexDecoder.v file in the BookLibrary contains this code.  What is shown here in
bold is the part of the code that we have entered for the description of our
design. The rest of the code has been generated automatically by Quartus II.
The description of HexDecoder is now complete.

// Generated by Quartus II Version 3.0 (Build Build 199 06/26/2003)
// Created on Thu Mar 11 02:53:38 2004

// Module Declaration
module HexDecoder
(

// {{ALTERA_ARGS_BEGIN}} DO NOT REMOVE THIS LINE!
HEXin, SSDout
// {{ALTERA_ARGS_END}} DO NOT REMOVE THIS LINE!

);
// Port Declaration

as

// {{ALTERA_IO_BEGIN}} DO NOT REMOVE THIS LINE!
input [3:0] HEXin;
output [6:0] SSDout;
// {{ALTERA_IO_END}} DO NOT REMOVE THIS LINE!

sign SSDout =
HEXin == 4'b0000 ? 7'b0000001 :
HEXin == 4'b0001 ? 7'b1001111 :
HEXin == 4'b0010 ? 7'b0010010 :
HEXin == 4'b0011 ? 7'b0000110 :
HEXin == 4'b0100 ? 7'b1001100 :
HEXin == 4'b0101 ? 7'b0100100 :
HEXin == 4'b0110 ? 7'b0100000 :
HEXin == 4'b0111 ? 7'b0001111 :
HEXin == 4'b1000 ? 7'b0000000 :
HEXin == 4'b1001 ? 7'b0000100 :
HEXin == 4'b1010 ? 7'b0001000 :
HEXin == 4'b1011 ? 7'b1100000 :
HEXin == 4'b1100 ? 7'b0110001 :
HEXin == 4'b1101 ? 7'b1000010 :
HEXin == 4'b1110 ? 7'b0110000 :
HEXin == 4'b1111 ? 7'b0111000 :

7'b1111111 ;
endmodule

Figure 8.18 HexDecoder Verilog Code

8.5.3 Block Verilog Code
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8.5.4 Connections to Block Ports

When a block is defined, it can be used like any symbol in a design file. The
HexDecoder block in the DisplayHEX design file is completely defined and the
next step is to wire its ports to other components of this design. Place an input
pin symbol and an output pin symbol in DisplayHEX schematic. Assign
HEX[3..0] for the input pin name and SSD[6..0] for the output pin.   This makes
the input a 4-bit bus and the output of DisplayHEX a 7-bit bus.

Use the Orthogonal Bus tool to make connections from HEX[3..0] and
SSD[6..0]pins to the sides of the HexDecoder block. I/O mapper symbols will
be placed on the block boundaries where bus connections touch the
HexDecoder block (see Figure 8.19).

Figure 8.19  Connections of the DisplayHEX to HexDecoder Block

Figure 8.20  Block Port Mapper
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The mappers shown in Figure 8.19 must be configured to map outside
busses to the internal ports of HexDecoder. To configure a mapper, right-click
on the mapper on the boundary of HexDecoder to bring up the Mapper
Properties window, shown in Figure 8.20.   In the Mappings tab of this window
select an I/O on block and make a mapping between that and a signal in bus.
Figure 8.20 shows a mapping made between SSDout[6..0] of HexDecoder and
SSD[6..0] bus of DisplayHEX.

Figure 8.21  Symbol for DisplayHEX

The schematic shown in Figure 8.19 is the complete design of DisplayHEX and
is compiled in the BookLibrary. For it to be accessible by other designs, a
symbol is generated that is shown in Figure 8.21. This design uses 5 of the 128
macrocells of the MAX device of UP2 board.

This chapter presented various ways designs can be generated in Quartus II. At
the same time we presented several utility hardware structures. The structures
presented are put in a library to be accessible by designs of the following
chapters. On the use of Quartus II, this chapter showed definition and usage of
megafunctions, defining and using HDL blocks, using existing components in a
design, and editing and customizing component symbols. On the
organizational side, this chapter showed how a library of parts could be
generated and tested. Finally, from digital design point of view, this chapter
showed small, but useful, parts that many designs can use.

8.5.5 Completing DisplayHEX

8.6 Summary



9 Design Reuse

This chapter shows digital system design by reuse of already tested parts. For
demonstration of this topic we use a simple counter circuit and take advantage
of components designed in the previous chapter.

9.1 Design Description

The design we are using for demonstration of reuse of existing parts is a
hexadecimal up/down counter with synchronous count enable and clear
inputs. The counter counts from 0 to 15 or 15 down to 0 depending on its up
or down mode of count.

For the design of the counter we use an Altera megafunction and configure
it according to the above specification.

The counter uses the fast 25 MHz clock that is available on UP2. For
control of the counter we use UP2 pushbuttons and switches. Components
from BookLibrary for pushbutton debouncing and single pulse generation will
be utilized in this project. The counter output will be displayed on one of the
Seven Segment Displays of UP2‚ for which we will take advantage of the
DisplayHEX library component.

9.2 Project Definition

The design project we use for our counter circuit is HexCounter and will be
created in a directory with the same name.
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We use the New Project Wizard for creating our HexCounter project. The
procedure is the same as other projects we have discussed so far‚ except that
we have to specify that this project uses design files from the BookLibrary.

By default‚ quartus/libraries and the current project's library (Project) are
available to all designs. If more libraries are needed‚ they have to be explicitly
specified during project creation‚ or in the Settings window.

During the project definition phase‚ we are asked to specify other design
files used by this project. We will be allowed to specify User Library Pathnames
for libraries that we are accessing. The window shown in Figure 9.1 is where
user library path names are specified. We add the directory of our BookLibrary
to the list of available libraries.

Figure 9.1  User Library Pathnames

9.3 Design Implementation

The HexCounter described here has a counter core and several interfaces. We
use Altera's megafunctions for the core of the counter and our pre-defined
library functions for its interfaces.

We begin this design by opening a schematic window in Quartus II. The
counter core and its interfaces will be placed here and proper interconnections
made between them.

9.3.1 Counter Core

The lpm_counter megafunction of Quartus II is available in the
quartus\libraries\megafunctions\arithmetic directory of Quartus II libraries.
This library component can be adjusted for size‚ count sequence‚ control
inputs‚ and count direction. The original schematic of this counter is Figure
9.2.

When this megafunction is selected for being placed in a schematic‚
through a series of interactive windows‚ the Megafunction Wizard generates a
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counter according to the designer's specifications. For our design‚ we have
communicated the following specifications to the Megafunction Wizard. As a
result‚ a counter is built and its symbol is shown in Figure 9.3.

Use Verilog HDL
Output file name is CounterCore
Output bus is 4 bits wide
Create an up-down input to allow count-up and count-down
Counter is a binary counter
Provide a count enable input
Provide synchronous clear

Figure 9.2  Quartus II Configurable Counter

Figure 9.3  Configured Counter Core

9.3.2 Counter Interfaces

The counter of Figure 9.3 has three control inputs‚ sclr for synchronous clear‚
updown for up-down control‚ and cnt_en for count enable. We use a UP2
switch for the up-down control and pushbuttons for the clear and count-enable
inputs.
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For debouncing the pushbuttons we use the Pulser2 library component of
the BookLibrary. Pulses generated by Pulser2 are long and they are active for
as long as a pushbutton is pressed. For debounced outputs of the
pushbuttons‚ we use OnePulser library components to generate a single pulse
coinciding with our circuit clock for every time a pushbutton is pressed.

The counter output is a 4-bit hexadecimal code. We use our DisplayHEX
SSD driver to display the counter output on one of the UP2 displays.

The complete schematic of our HexCounter is shown in Figure 9.4. For
connections between various components of this design we use the Orthogonal
Node or the Orthogonal Bus tool. Connections from the DisplayHEX output to
the output pins of our design are done by assigning the same signal names to
connecting signals.

9.3.3 Pin Assignments

Our design project in this chapter is small enough to fit on MAX or FLEX
devices‚ and it does not require any of the special features that are only
available in FLEX devices. For example‚ using ROMs or RAMs are only
available on certain Altera devices‚ and not on the CPLDs. In this project‚ we
have chosen to implement this design on the MAX CPLD. In our case‚ the only
difference between the FLEX and MAX is the different pin assignments.

Inputs of the HexCounter design are UpDown‚ Clear‚ Count and
SystemClock. The outputs of this design are SSD[6] through SSD[0]. Since
UpDown is a mode select input debouncing it is not necessary and we use one
of UP2 switches. Clear and Count inputs connect to the pushbuttons. The
SystemClock input of our circuit connects to the UP2 main clock that is directly
connected to pin 83 of the MAX device.

Display outputs SSD[6] through SSD[0] connect to MAX Digit 1 according to
pin assignment of Figure 6.31.

Table 9.1 shows HexCounter port connections to EPM7128S pins and UP2
resources. The first three connections shown in this table are not part of UP2
and must be made by inserting connecting wires.
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Figure 9.4 HexCounter Complete Design

9.3.4 RTL View

The RTL Viewer tool is a utility for viewing the post-synthesis schematic of the
synthesized design‚ independent from the target device that is being
programmed. This view of a design becomes available after compiling it. Figure
9.5 shows a portion of the RTL view of the HexCounter. In this view‚ by clicking
on a component of the design‚ the RTL Viewer shows the details of that
component. Figure 9.6 shows the RTL view after clicking on CounterCore. Note
in this view‚ the use of flip-flops and primitive gates.

Figure 9.5  Top-Level RTL View of HexCounter
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Figure 9.6  RTL View of CounterCore of HexCounter

9.3.5 Floorplan View

After compiling HexCounter‚ several report flies are created that indicate the
timing‚ cell usage‚ and macrocells used by this design. The compilation
summary indicates that a total of 40 macrocells out of 128 available macrocells
are used by this design.

The floorplan view that is generated by the compiler shows macrocells used
by various parts of our design. Starting from the schematic of our design‚ we
can locate macrocell(s) that correspond to a certain block of our design. This is
done by right-clicking a block in the block diagram of a design‚ and selecting
Locate in Last Compilation Floorplan in the pull-down menu that opens.

9.3.6 Device Programming

The HexCounter.pof file that is generated by the compiler is used by the
programmer to program the MAX 7000S device of UP2. Because this device is
EEPROM based‚ a design that is programmed in it remains there until
overwritten by another.

9.4 Summary

We have shown implementation of a design using megafunctions from the
standard Quartus II library and pre-tested components from a user library. No
logic level design or Verilog coding was necessary for the implementation of
HexCounter.



10 HDL Based Design

In this chapter we show a design done in Verilog and implemented on UP2. We
describe a circuit at the behavioral level and test it with an HDL simulator. The
tested design is then brought into Quartus II and incorporated into a complete
design. The Quartus II compiler synthesizes our behavioral code and generates
a device programming file that contains the synthesized parts as well as other
components used in the complete design. The final design is used to program
the MAX device of the UP2 board.

10.1 High Level Description and Simulation

The design that will be used in this chapter is a sequence detector. After
describing the functionality of this circuit‚ we will describe it in Verilog‚ test our
synthesizable Verilog design with an HDL simulator‚ and ready it for being used
in programming a programmable device. This section describes the design of
the sequence detector and the next section discusses its preparation for device
programming.

10.1.1 State Machine Description

The core of the design that will be used to program the MAX device of UP2 is a
sequence detector that detects a sequence of 1011 on its x serial input. When
this sequence is detected‚ it generates a complete one clock duration pulse on
its z output. The machine has a reset input (rst) that forces the machine into
its initial or reset state. The state machine for implementing this design is a
Moore machine‚ the state diagram of which is shown in Figure 10.1.
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Figure 10.1  Moore 1011 State Diagram

'timescale 1ns/100ps

module moore1011 ( x‚ rst‚ clk‚ z );
input x‚ rst‚ clk;
output z;

parameter [2:0] a= 0‚ b = 1‚ c = 2‚ d = 3‚ e = 4;
reg [2:0] p_state‚ n_state;

always @( p_state or x ) begin: combinational
case ( p_state )

a:
if( x == 1 ) n_state = b;
else n_state = a;

b:
if( x == 0 ) n_state = c;
else n_state = b;

c:
if( x == 1 ) n_state = d;
else n_state = a;

d:
if( x == 1 ) n_state = e;
else n_state = c;

e:
if( x == 1 ) n_state = b;
else n_state = c;

default:
n_state = a;

endcase
end

assign z = (p_state == e);

always @( posedge clk ) begin: sequential
if( rst ) p_state = a;
else p_state = n_state;

end

endmodule

Figure 10.2  Moore Detector Verilog Code
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10.1.2 Moore Machine Verilog Code

The synthesizable Verilog code of our Moore machine is shown in Figure 10.2.
As shown‚ three concurrent statements describe transitions‚ output and
clocking of this machine. The combinational always block describes the
transitions shown in the state diagram of Figure 10.1‚ while the sequential
always block describes the clocking of our machine. The other concurrent
statement in this description is an assign statement that is used for assigning
values to the z output of the circuit.

The description shown uses p_state for the present state of the machine
and n_state for its next state. Because our machine has five states‚ parameter
and reg declarations are three bits wide.

10.1.3 Moore Machine Verilog Testbench

The testbench of Figure 10.3 is used for testing the Verilog code of Figure 10.2.
In this testbench a 19-bit wide buffer holds serial data that are applied to the x
input of the circuit being tested. Two concurrent always blocks in this
description produce the circuit clock and simultaneously rotate buffer bits out
into x.

'timescale 1ns/100ps

module test_moore1011;
reg x, rst, clk;
wire z;
reg [18:0] buffer;

moore1011 uut( x, rst, clk, z );

initial buffer = 19'b0001101101111001001;
initial begin

clk = 0;x = 0; rst = 1;
#29 rst = 0;
#500 $stop;

end
always @(posedge clk) #1 {x, buffer} = {buffer, x};
always #5 clk = ~clk;

endmodule

Figure 10.3  Moore Detector Testbench
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10.1.4 Behavioral Simulation

The Moore1011.v (Figure 10.2) design description file and its testbench,
Moore1011Tester.v (Figure 10.3) are simulated in a ModelSim 5.7c project. The
simulation run waveform is shown in Figure 10.4.

The present state of the machine (p_state) is displayed in the waveform
shown. The output of the machine becomes 1 when p_state is 100 that
correspond to state e of our Moore machine.

10.2 Design Implementation

This section discusses how Quartus II environment is used for hardware
implementation of the Moore design of the previous section. Steps involved in
this implementation include‚ project creation in Quartus II. generation of proper
interfaces for our tested description of Moore machine‚ porting or adapting the
Verilog code of our design to the Quartus II environment‚ design compilation‚
and device programming. After completion of these steps‚ using UP2
pushbuttons and LEDs‚ our UP2 prototype will be able to verify waveforms
shown in Figure 10.4.

Figure 10.4  Moore Machine Simulation Run (Partial View)

10.2.1 Project Definition

The Quartus II project for harware implementation of our Moore machine is
Detector. This project uses our BookLibrary as its pre-defined user library. A
user library can either be specified during creation of a project or in the Settings
window after a project is created. To add a user library in the Settings window‚
open the Assignments pull-down menu from the Quartus II main window‚ and
select Settings. When the Settings window opens‚ under Files & Directories‚
click on User Libraries to set your libraries.

10.2.2 Symbol Generation from Verilog Code

In order to be able to use our tested Verilog code of Figure 10.2 in Quartus‚ a
symbol has to be created for it. The generated symbol becomes available in the
Project library and can be used like any other symbol is a block diagram.
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For generating a symbol for Moore1011 module of Figure 10.2, copy its
code to the directory of the Quartus II Detector project. Then open this file
using Quartus II text editor (File Open‚ and select  Moore1011.v to open it).
While this file is open‚ open the File pull-down menu‚ and follow links to create
symbol for the current file. As with other symbols‚ we can edit the symbol that
is so generated. The edited symbol for our Moore1011 Verilog code is shown
Figure 10.5.

10.2.3 Schematic Entry

The schematic file for Quartus II Detector project is Detector.bdf. In this
schematic‚ the moore1011 symbol of Figure 10.5‚ its necessary interfaces for
UP2 resources‚ and the Detector pins are entered and proper interconnections
made. Components from BookLibrary are used for interfacing pushbuttons of
UP2 to the inputs of moore1011 circuit. Figure 10.6 shows the complete
schematic of the Detector circuit for programming a UP2 device.

Figure 10.5  Moore Detector Symbol

Figure 10.6  Detector System Description



224 Digital Design and Implementation with Field Programmable Devices

After the completion of design entry phase‚ the design is compiled in
Quartus II. This phase synthesizes the Verilog parts of the design and pulls
together other cell-based and gate-level parts into a complete device
programming file.

10.2.4 Compilation and Synthesis

By compiling the design of Figure 10.6‚ it is synthesized and proper
programming files are created for it. In addition‚ various timing and floorplan
views become available. For the moore1011 component‚ a portion of its RTL
view that is its post-synthesis netlist is shown in Figure 10.7. This netlist is
generated for the FLEX 10K device being used as the synthesis target. This
schematic shows the use of three flip-flops for implementing states of our
detector circuit. AND-OR logic is used for flip-flop inputs.

Figure 10.7  RTL View of moore1011

10.2.5 Device Programming and Testing

As previously discussed‚ either of the two UP2 devices can be programmed with
the hardware of Figure 10.6. We have chosen the EPM7128S device for this
design and Table 10.1 shows its corresponding pin settings. Pin numbers are
also shown in Figure 10.6 in block IO tables. The complete design of Detector‚
including moore1011 and its pushbutton interfaces‚ uses 34 of the 128
macrocells of the EPM7128S device.

For testing the design‚ the input and the clock are connected to UP2
pushbuttons and the circuit reset is connected to a UP2 switch. Use of a
pushbutton for the clock allows manual slow operation of the circuit and thus‚
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pushbuttons are debounced by using Pulser2 from our BookLibrary. The
debounced PB2 is put into OnePulser so that with each release of the
pushbutton‚ a positive pulse is generated. This output provides the clock signal
for moore1011. The other debounced output of Pulser2 that corresponds to PB1
is directly connected to the Moore machine’ s Xin input (this is a level input).
The circuit operates when its reset input switch is in the off position (SW1 must
be down).

To test the circuit‚ hold down both pushbuttons and release and push PB2
several times to make sure the machine is in its initial state. Then release PB1
(this puts a 1 on Xin) and release and push PB2 to clock the circuit. Repeat
this process for clocking a 0 and then two 1s into the circuit through its Xin
input. With the release of PB2 (rising edge of the clock) the a-segment of
SSD1 of MAX turn off‚ which means that Zout has become 1.

Since the circuit is clocked and all Xin values are taken on the edge of Clk,
we could test the circuit without using a debouncer for PB1 (theXin input).

10.3 Summary

This chapter used a state machine example to demonstrate how a behavioral
Verilog that is synthesizable could be used in a design and after synthesis
incorporated with the other components of the design. We showed the
procedure for simulating our behavioral design outside of Quartus II and after
verifying it bringing it into Quartus II.



This page intentionally left blank



Part
3

System Design Projects

Having learned the use of Quartus II (and its related tools) for various forms of
design entry‚ this part shows complete design projects. In these projects‚
hardware design aspects are emphasized and very little will be said about using
specific design tools. Because of the complexity and the large size of these
designs‚ we use the FLEX 10K device of UP2 for the projects of this part.
Design projects presented here are:

Sequential Multiplier
VGA Adapter
Keyboard Interface
Design of Sayeh CPU
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11 Sequential Multiplier

This chapter discusses the design‚ simulation and prototyping of a sequential
multiplier. The multiplication process will be done by the shift-and-add
sequential multiplication procedure. After a discussion of the multiplication
method used‚ we present the details and interfacing of our design. Then the
multiplier will be partitioned into its data and control parts‚ and each part will
be designed separately. The completed design will be simulated in Verilog and
tested by programming the FLEX 10K device of the UP2 board.

11.1 Sequential Multiplier Specification

The project is the design of a 2-bit sequential multiplier‚ with 8-bit A and B
inputs and a 16-bit result. The block diagram of the circuit to be designed is
shown in Figure 11.1. This multiplier has an 8-bit bi-directional I/O for
inputting its A and B operands‚ and outputting its 16-bit output one byte at a
time.

Multiplication begins with the start pulse‚ and the databus will contain
operands A and B in two consecutive clock pulses. After accepting these data
inputs‚ the multiplier begins its multiplication process and when it is
completed‚ it starts sending the result out on the databus. When the least-
significant byte is placed on databus‚ the Lsb_out output is issued‚ and for the
most-significant byte‚ msb_out is issued. When both bytes are outputted‚ done
becomes 1‚ and the multiplier is ready for another set of data.

The multiplexed bi-directorial databus is used to reduce the total number of
pins of the multiplier.
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Figure 11.1 Multiplier Block Diagram

11.2 Shift-and-Add Multiplication

When designing multipliers there is always a compromise to be made between
how fast the multiplication process is done and how much hardware we are
using for its implementation.

A simple multiplication method that is slow‚ but efficient in use of hardware
is the shift-and-add method. In this method‚ depending on bit i of operand A‚
either operand B is added to the collected partial result and then shifted to the
right (when bit i is 1)‚ or (when bit i is 0) the collected partial result is shifted
one place to the right without being added to B.

This method is justified by considering how binary multiplication is done
manually. Figure 11.2 shows manual multiplication of two 8-bit binary
numbers.

We start considering bits of A from right to left. If a bit value is 0 we select
00000000 to be added with the next partial product‚ and if it is a 1‚ the value of
B is selected. This process repeats‚ but each time 00000000 or B is selected‚ it
is written one place to the left with respect to the previous value. When all bits
of A are considered‚ we add all calculated values to come up with the
multiplication results.

Understanding hardware implementation of this procedure becomes easier
if we make certain modifications to this procedure. First‚ instead of having to
move our observation point from one bit of A to another‚ we put A in a shift-
register‚ always observe its right-most bit‚ and after every calculation‚ we move
it one place to the right‚ making its next bit accessible.

Second‚ for the partial products‚ instead of writing one and the next one to
its left‚ when writing a partial product‚ we move it to the right as we are writing
it‚ and the next one will not have to be shifted.

Finally‚ instead of calculating all partial products and at the end adding
them up‚ when a partial product is calculated‚ we add it to the previous partial
result and write the newly calculated value as the new partial result.

Therefore‚ if the bit of A that is being observed is 0‚ 00000000 is to be
added to the previously calculated partial result‚ and the new value should be
shifted one place to the right. In this case‚ since the value being added to the
partial result is 00000000‚ adding is not necessary‚ and only shifting the partial
result is sufficient. This process is called shift. However‚ if bit of A being
observed is 1‚ B is to be added to the previously calculated partial result‚ and
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the calculated new sum must be shifted one place to the right. This is called
add-and-shift.

Repeating the above procedure‚ when all bits of A are shifted out‚ the
partial result becomes the final multiplication result. We use a 4-bit example to
clarify the above procedure. As shown in Figure 11.3‚ A = 1001 and  B = 1101
are to be multiplied. Initially at time 0‚ A  is in a shift-register with a register for
partial results (P) on its left.

Figure 11.2 Manual Binary Multiplication

Figure 11.3 Hardware Oriented Multiplication Process
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At the time 0‚ because A[0] is 1‚ the partial sum of B + P is calculated. This
value is 01101 (shown in the upper part of time 1) and has 5 bits to consider
carry. The right most bit of this partial sum is shifted into the A register‚ and
the other bits replace the old value of P. When A is shifted‚ 0 moves into the
A[0] position. This value is observed at time 1.  At this time‚ because A[0] is 0‚
0000 + P is calculated (instead of B + P). This value is 00110‚ the right most
bit of which is shifted into A‚ and the rest replace P. This process repeats 4
times‚ and at the end of the 4 cycle‚ the multiplication result becomes
available in P and A. The least significant 4 bits of the result are in A and the
most-significant bits are in P. The example used here performed 9*13 and 117
was obtained as the result of this operation.

Figure 11.4  Data and Control Parts

11.3 Sequential Multiplier Design

The multiplication process discussed in the previous section justifies the
hardware implementation that is being discussed here.

11.3.1 Control Data Partitioning

The multiplier has a datapath and a controller. The data part consists of
registers‚ logic units and their interconnecting busses. The controller is a state
machine that issues control signals for control of what gets clocked into the
data registers.

As shown in Figure 11.4‚ the data path registers and the controller are
triggered with the same clock signal. On the rising edge of a clock the
controller goes into a new state. In this state‚ several control signals are issued‚
and as a result the components of the datapath start reacting to these signals.
The time given for all activities of the datapath to stabilize is from one edge of
the clock to another. Values that are propagated to the inputs of the datapath
registers are clocked into these register with every clock edge.

th
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11.3.2 Multiplier Datapath

Figure 11.5 shows the datapath of the sequential multiplier. As shown‚ P and B
are 8-bit registers and A  is an 8-bit shift-register. An adder‚ a multiplexer and
a tri-state buffer constitute the other components of this datapath.

Control signals that are outputs of the controller and inputs of the datapath
(Figure 11.4)‚ are shown in bold in Figure 11.5 next to the data component that
they control. These control signals control register clocking‚ bus assignments
and logic unit output selections.

The input databus connects to the inputs of A  and B to load multiplier and
multiplicand into these registers. This bi-directional bus is driven by the
output of P through an octal tri-state buffer‚ and by the tri-state output of A .
This bi-directional bus is driven by the output of P through an actual tri-state
buffer‚ and by the tri-state output of A. These tri-states become active when
multiplication result is ready.

Figure 11.5  Multiplier Block Diagram

The output from B and P are put into an 8-bit adder for partial result in P to
be added to B. The output of this adder (P+B) feeds one side of a multiplexer.
The other side of the multiplexer is driven by the P output‚ (P+0). The sel_sum
control input determines if P+B or P+0 is to go on the multiplexer output.

The AND gate shown in Figure 11.5 selects carry-out from the adder or 0
depending of the value of sel_sum control input. This value is concatenated to
the left of the multiplexer output to form a 9-bit vector. This vector has P+B or
P+0 with a carry to its left. The right-most bit of this 9-bit vector is split and



234 Digital Design and Implementation with Field Programmable Devices

goes into the serial input of the shift-register that contains A , and the other
eight bits go into register P. Note that concatenation of the AND gate output to
the left of multiplexer output and splitting the right bit from this 9-bit vector‚
effectively produces a shifted result that is clocked into P.

11.3.3  Description of Parts

Register P and B in Figure 11.5 are 8-bit registers with active high load-enable
inputs. Module Reg8‚ shown in Figure 11.6 is used for these registers.

The adder used for adding P and B is a simple 8-bit adder with a carry-in
and a carry-out and is shown in Figure 11.7. This description uses an assign
statement that assigns a+b+ci to the concatenation of co and s. With this
assignment‚ the carry-out from the operation on the right-hand-side is captured
in co.

Another component of the multiplier design is the 8-bit shift-register of
Figure 11.8. The shift-register keeps its contents in its im_data intermediate
variable. Depending on {s1,s0}‚ im_data is either untouched‚ shifted to the
right‚ loaded with data or reset to 0.

module Reg8(d_in‚ clk‚ en‚ d_out);

input [7:0] d_in;
inputclk‚ en;
output [7:0] d_out;
reg [7:0] d_out;

always @( posedge clk )
if (en) d_out = d_in;

endmodule

Figure 11.6  8-bit Register Used for P and B

module Add8 ( a‚ b‚ ci‚ s‚ co );

input [7:0] a‚ b;
input ci;
output [7:0] s;
output co;

assign { co‚ s } = a + b + ci;

endmodule

Figure 11.7  8-bit Adder with Carry
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module Shift8 ( clk‚ sin‚ s1‚ s0‚ oe‚ qa‚ data );

inputclk‚ sin‚ s1‚s0‚oe;
output qa;
inout [7:0] data;

reg [7:0] im_data;

always @( posedge clk )
case ( { s1 ‚ s0 } )

2'b00 : im_data = im_data;
2'b01 : im_data = { sin‚ im_data[7:1] };
2'b10 : im_data = data;
2'b11: im_data = 8'b00;

endcase

assign data = ( oe & ~s1 ) ? im_data : 8'hzz;
assign qa = im_data[0];

endmodule

Figure 11.8  Shift-Register with Tri-state Output

module Mux8 ( a, b, sel, zero, y );

input [7:0] a, b;
input sel, zero;
output [7:0] y;

assign y = zero ? 8'h0 : ( ~sel ? a : b );

endmodule

Figure 11.9  Multiplexer

module Tri8 ( d_in, en, d_out );

input [7:0] d_in;
input en;
output [7:0] d_out;

assign d_out = en ? d_in : 8'hzz;

endmodule

Figure 11.10  Tri-state for Driving databus
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When the output enable (oe) of the shift-register is active‚ im_data is placed
on the data bi-directional port of the shift-register. Otherwise‚ data is float.
Placement of im_data on data is also conditioned by ~s1‚ so that data is driven
only when not used as input.

Another component of the datapath of Figure 11.5 is the multiplexer of
Figure 11.9. This multiplexer selects its a or b input depending on the value of
sel. In addition‚ the multiplexer has a zero input that when 1‚ it forces its
output to 8'h0. Since the multiplexer output connects to P‚ its zeroing feature
is used for initial resetting of the P register.

As shown in Figure 11.5‚ an octal tri-state buffer connects the output of P
to the bi-directional databus. The Verilog Code of this buffer is shown in Figure
11.10. The en input of this structure becomes active‚ when the most significant
byte of the result that is in P is to go on the multiplier output (databus).

11.3.4 Datapath Description

The Verilog Code of the datapath of the multiplier is shown in Figure 11.11. In
this description components described above are instantiated and wired
together according to the block diagram of Figure 11.5.

module datapath ( clk‚ clr_P‚ load_P‚ load_B‚ msb_out‚
lsb_out‚ sel_sum‚ load_A‚ shift_A‚ data‚ A0 );

input clk‚ clr_P‚ load_P‚ load_B‚ msb_out‚ lsb_out‚ sel_sum‚ load_A‚ shift_A;
inout [7:0] data;
output A0;

wire [7:0] B‚ P‚ sum‚ ShiftAdd;
wire co;

Reg8 latch_B ( data‚ clk‚ load_B‚ B );

Add8 add_PB ( P‚ B‚ 1'b0‚ sum‚ co );

Mux8 P_or_sum ( P‚ sum‚ sel_sum‚ clr_P‚ ShiftAdd );

Reg8 latch_P ( {co&sel_sum‚ShiftAdd[7:1]}‚ clk‚ load_P‚ P );

Shift8 latch_A_shift ( clk‚ ShiftAdd[0]‚ load_A‚ shift_A‚ lsb_out‚ A0‚ data );

Tri8 buffer ( P‚ msb_out‚ data );

endmodule

Figure 11.11  Datapath Verilog Code
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11.3.5 Multiplier Controller

The multiplier controller is a finite state machine that has two starting states‚
eight multiplication states‚ and two ending states. States and their binary
assignments are shown in Figure 11.12. In the ìdle state the multiplier waits
for `start while loading A. In `init‚ it loads the second operand B. In `m1 to `m8‚
the multiplier performs add-and-shift of P+P‚or P+0‚ depending on A0. In the
last two states(`rslt1 and 1rslt2)‚ the two halves of the result are put on
databus.

`define idle
`define init
`define m1
`define m2
`define m3
`define m4
`define m5
`define m6
`define m7
`define m8
`define rslt1
`define rslt2

4'b0000
4'b0001

4'b0010
4'b0011
4'b0100
4'b0101
4'b0110
4'b0111
4'b1000
4'b1001

4'b1010
4'b1011

Figure 11.12  Multiplier Control States

The Verilog Code of controller is shown in Figure 11.13. This Code declares
datapath ports‚ and uses a single always block to issue control signals and
make state transitions. At the beginning of this always block all control signal
outputs are set to their inactive values. This eliminates unwanted latches that
may be generated by the synthesis tool for these outputs.

The 4-bit current variable represents the currently active state of the
machine.  When current is `idle and start is 0‚ the done output remains high.  In
this state if start becomes 1‚ control signals load_A‚ clr_P and load_P become
active to load A with databus and clear the P register. Clearing P requires clr_P
to put 0's on the multiplexer output by disabling it and loading the 0's into P by
asserting load_P.

In `m1 to `m8 states‚ A is shifted‚ P is loaded‚ and if A0 is 1‚ sel_sum is
asserted. As discussed in relation to datapath‚ sel_sum controls shifted P+B or
shifted P+0) to go into P.

In the result states lsb_out and msb_out are asserted in two consecutive
clocks in order to put A and P on the databus‚ respectively.
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module controller ( clk‚ start‚ A0‚ clr_P‚ load_P‚ load_B‚
msb_out‚ lsb_out‚ sel_sum‚ load_A, Shift_A‚ done );

input clk‚ start‚ A0;
output clr_P‚ load_P‚ load_B‚ msb_out‚ lsb_out‚ sel_sum‚ done;
output load_A‚ Shift_A;

reg clr_P‚ load_P‚ load_B‚ msb_out‚ lsb_out‚ sel_sum‚ done;
reg load_A‚ Shift_A;

reg [3:0] current;

always @ ( negedge clk ) begin
clr_P = 0; load_P = 0; load_B = 0; msb_out = 0; Isb_out = 0; sel_sum = 0;
load_A = 0; Shift_A = 0; done = 0;

case ( current )
ìdle :
if (~start) begin

current = ìdle;
done = 1;

end else begin
current= ̀ init;
load_A = 1;
clr_P = 1;load_P = 1;

end
`init:

begin
current=`m1;
load_B = 1;

end
`m1‚ `m2‚ `m3‚ `m4‚ `m5‚ `m6‚ `m6‚ `m7‚ `m8 :

begin
current = current + 1 ; Shift_A = 1 ; load_P = 1 ;
if(A0)sel_sum = 1;

end
`rslt1 :

begin
current=`rslt2; lsb_out = 1;

end
`rslt2 :

begin
current= ìdle; msb_out = 1;

end
default : current= ìdle;

endcase

end

endmodule

Figure 11.13  Verilog Code of Controller
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module Multiplier ( clk‚ start‚ databus‚ lsb_out‚ msb_out‚ done );

input clk‚ start;
inout [7:0] databus;
output done‚ lsb_out‚ msb_out;
wire clr_P‚ load_P‚ load_B‚ msb_out‚ lsb_out‚ sel_sum‚ load_A‚ Shift_A;

datapath dpu( clk‚ clr_P‚ load_P‚ load_B‚
msb_out‚ lsb_out‚ sel_sum‚ load_A‚ Shift_A, databus‚ A0 );

controller cu( clk‚ start‚ A0‚ clr_P‚ load_P‚ load_B‚
msb_out‚ lsb_out‚ sel_sum‚ load_A‚ Shift_A‚ done );

endmodule

Figure 11.14 Top-Level Multiplier Code

11.3.6 Top-Level Code of the Multiplier

Figure 11.14 shows the top-level Multiplier module. The datapath and
controller modules are instantiated here. The input and output ports of this
unit are according to the diagram of Figure 11.1. This description is
synthesizable‚ and can be ported into Quartus II for synthesis and device
programming.

11.4 Multiplier Testing

This section shows an auto-check verifying testbench for our sequential
multiplier. Several forms of data applications and result monitoring are
demonstrated by this example. The outline of the test_multiplier module is
shown in Figure 11.15.

In the declarative part of this testbench inputs of the multiplier are declared
as reg and its outputs as wire. Since databus of the multiplier is a
bidirectional bus‚ it is declared as wire for reading it‚ and a corresponding
im_data reg is declared for writing into it. An assign statement drives databus
with im_data. When writing into this bus from the testbench‚ the writing must
be done into im_data‚ and after the completion of writing the bus must be
released by writing 8'hzz into it.

Other variables declared in the testbench of Figure 11.15 are
expected_result and multiplier_result.  The latter is for the result read from the
multiplier‚ and the former is what is calculated in the testbench. It is expected
that these values are the same.

The testbench shown in Figure 11.15 applies three rounds of test to the
Multiplier module. In each round‚ data is applied to the module under test and
results are read and compared with the expected results. The following are
tasks performed by this testbench:

Read data files data1.dat and data2.dat and apply data to databus
Apply start to start multiplication
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Calculate the expected result
Wait for multiplication to complete‚ and collect the calculated result
Compare expected and calculated results and issue error if they do not
match

These tasks are independently timed‚ and at the same time‚ an always block
generates a periodic signal on clk that clocks the multiplier.

`timescale 1ns/100ps

module test_multiplier;
reg clk‚ start‚ error;
wire [7:0] databus;
wire lsb_out‚ msb_out‚ done;
reg [7:0] mem 1[0:2]‚ mem2[0:2];
reg [7:0] im_data‚ opnd1‚ opnd2;
reg [15:0] expected_result‚ multiplier_result;
integer indx;

Multiplier uut ( clk‚ start‚ databus‚ lsb_out‚ msb_out‚ done );

initial begin: Apply_data . . . end
initial begin: Apply_Start . . . end
initial begin: Expected_Result . . . end
always @(posedge clk) begin: Actual_Result . . . end
always @(posedge clk) begin: Compare_Results . . . end
always #50 clk = ~clk;
assign databus=im_data;

endmodule

// Figure 11.16
// Figure 11.17
// Figure 11.18
// Figure 11.19
// Figure 11.20

Figure 11.15  Multiplier Testbench Outline

11.4.1 Reading Data Files

Figure 11.16 shows the Apply_data initial block that is responsible for reading
data and applying them to im_data‚ which in turn goes on databus. Data from
data1.dat and data2.dat external lines are read into men1 and men2. In each
round of test data from mem1 and mem2 are put on im_data. Data from mem2
is distanced from that of mem1 by 100 ns. This way‚ the latter is interpreted as
data for the A operand and the former for the B multiplication operand. After
placing this data‚ 8'hzz is put on im_data. This releases the databus so that it
can be driven by the multiplier when its result is ready.

11.4.2 Applying Start

Figure 11.17 shows an initial block in which variable initializations take place‚
and start signal is issued. Using a repeat statement‚ three 100 ns pulses
distanced by 1350 ns are placed on start.
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11.4.3 Calculating Expected Result

Figure 11.18 shows an initial block that reads data that is put on databus by
the Apply_data block (Figure 11.16)‚ and calculates the expected multiplication
result. After start‚ when databus is updated‚ the first operand is read into
opnd1. The next time databus changes‚ opnd2 is read. The expected result is
calculated using these operands.

initial begin: Apply_data
indx=0;
$readmemh( "data1.dat"‚ mem1 );
$readmemh( "data2.dat"‚ mem2 );
repeat(3) begin

#300 im_data=mem1 [indx];
#100 im_data=mem2 [indx];
#100 im_data=8'hzz;
indx=indx+1;
#1000;

end
#200 $stop;

end

Figure 11.16  Reading Data Files

initial begin: Apply_Start
clk=1'b0;start=1'b0; im_data=8'hzz;
#200 ;
repeat(3) begin

#50 start=1'b1;
#100 start=1'b0;
#1350;

end
end

Figure 11.17  Initializations and Start

initial begin: Expected_Result
error=1'b0;
repeat(3) begin

wait (start==1'b1 );
@ (databus);
opnd1=databus;
@( databus);
opnd2=databus;
expected_result = opnd1 * opnd2;

end
end

Figure 11.18  Calculating Expected Result
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11.4.4 Reading Multiplier Output

When the multiplier completes its task‚ it issues msb_out and lsb_out to signal
that it has readied the two bytes of the result. The always block of Figure
11.19 is triggered by the rising edge of the circuit clock. After a clock edge‚ if
msb_out or lsb_out is 1‚ it reads the databus and puts in its corresponding
position in multiplier_result.

always @(posedge clk) begin: Actual_Result
if (msb_out) multiplier_result[15:8] = databus;
if (lsb_out) multiplier_result[7:0] = databus;

end

Figure 11.19 Reading Multiplier Results

always @(posedge clk) begin: Compare_Results
if (done)
if (multiplier_result != expected_result) error = 1 ;
else error = 0;

end

Figure 11.20  Comparing Results

11.4.5 Comparing Results

Figure 11.20 shows the always block that is responsible for comparing actual
and expected multiplication results. After the active edge of the circuit clock if
done is 1‚ then comparing multiplier_result and expected_result takes place. If
values of these variables do not match error is issued.

The self-running testbench presented here verifies RT-level operation of our
multiplier. Prototyping this design using the UP2 board is presented in the next
section.

11.5 Multiplier Prototyping

We use the FLEX 10K device of UP2 for prototyping our multiplier. This section
describes porting the Verilog Code of the multiplier into Quartus II‚ generating
switch and display interfaces for our design and programming the EPF10K70 of
the UP2 development board. The Quartus II project used for this part is
SeqMultiplier in a design directory by the same name. BookLibrary is included
in the list of libraries available to the project.

11.5.1 Porting Multiplier into Quartus II

The Multiplier module of Figure 11.14 is the top-level module of our multiplier.
To be able to use this design in Quartus II‚ this and all its related Verilog Files
must be copied to the directory of the SeqMultiplier project.



243

In order to use the Multiplier module in a Quartus II schematic‚ a symbol
has to be created for it. Figure 11.21 shows this symbol created by Quartus II‚
after some manual editings.

Figure 11.21  Multiplier Symbol

11.5.2 Multiplier Interfaces

Figure 11.22 shows the Seq Multiplier schematic that includes the Multiplier and
its pushbutton and display interfaces. In order to step through the
multiplication process‚ its clock is driven by a pushbutton. The other
pushbutton available to FLEX is used for the start input. FLEX switch set is
used for the A and B operands. We manually set these switches to values that
are to be multiplied.

Figure 11.22  SeqMultiplier Prototype
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For the display of the output of the multiplier two instances of DisplayHEX
from BookLibrary are used. These outputs display both halves of the 16-bit
output of the multiplier.

11.5.3 Bidirectional Databus

The multiplier databus is a bidirectional bus used for A and B operands as well
as the two halves of the result. We have used the lpm_bustri megafunction of
Quartus II‚ that is available under gates category of megafunctions, to split the
in-side and out-side of the databus.

The FLEX switches connect to the input side of Bidirectional-IO component‚
and the displays connect to its output side. When either lsb_out or msb_out is
issued by the multiplier‚ the databus connects to the displays through the
Bidirectional-IO. At all other times that the multiplier is not driving its output‚
the switches drive the databus.

11.5.4 Operating the Prototype

Compiling SeqMultiplier of Figure 11.22 synthesizes the Multiplier module and
together with the rest of components of this design‚ generates the
SeqMultiplier.sof  file for programming the FLEX 10K device.

Pin assignments are done according to permanently assigned pins of FLEX.
Bits of DataIn port of diagram of Figure 11.22 are connected to the switches
according to Figure 6.34. The outputs of the DisplayHEX components are
assigned to the seven segment displays according to Figure 6.35‚ and inputs
PB1 and PB2 are assigned to FLEX pushbuttons as shown in Figure 6.33.

To test the multiplier‚ the switches are set to a test value for A and while
start is 1‚ a clock pulse is given. Then‚ while start is 0‚ the switches are set to a
value for B and another clock pulse is given. Following the leading of A and B‚
eight clock pulses are given (releasing and pressing PB2 eight times) to
complete the multiplication process. With the next clock‚ the right-most byte of
the result becomes available on the SSDs‚ and with the next clock the left-most
byte of the multiplication result becomes available on the SSDs. Both values of
the output are displayed in hexadecimal Code.

Figure 11.23 shows part of the FLEX 10K timing closure floorplan after
being programmed with our multiplier. The complete SeqMultiplier project uses
230 Logic Elements of the total 3744 available on FLEX 10K. Of the available
36‚804 memory bits‚ none are used. The timing viewer allows cells to be
selected and timing between them be viewed. When a cell is selected‚ its fan-
ins and fan-outs are listed and corresponding delay values are shown on the
arrows going between the logic elements; Figure 11.23 shows an example.
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Figure 11.23  Chip Floorplan (Partial View)

11.6 Summary

This chapter showed a complete design of a system with a well-defined datapath
and a good-size controller. The design demonstrates top-down design and
data/control partitioning. We showed how this design could be implemented by
coding lower level RTL parts and then wiring them into a complete system.
Concepts of controllers‚ control signals controlling data activities‚ bussing‚ and
various forms of unidirectional and bi-directional busses were demonstrated in
this design. We demonstrated how the UP2 board could be utilized to test the
physical implementation of an HDL based design.
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12 VGA Adapter

The design of a VGA adapter capable of displaying characters from a display
RAM on a standard VGA monitor is discussed in this chapter. The chapter
discusses the basics of interfacing with a VGA monitor and develops an
interface using the UP2 development board. Unlike the previous chapter that
dealt with a top-down data/control design, this chapter designs small interfaces
and puts a complete design together. The design methodology presented here
uses Verilog blocks, megafunctions, memories, and schematic capture to
complete the design of a display adapter.

12.1 VGA Driver Operation

A standard VGA monitor consists of a grid of pixels that can be divided into
rows and columns. A VGA monitor contains at least 480 rows, with 640 pixels
per row, as shown in Figure 12.1. Each pixel can display various colors,
depending on the state of the red, green, and blue signals.

Each VGA monitor has an internal clock that determines when each pixel is
updated. This clock operates at the VGA-specified frequency of 25.175 MHz.
The monitor refreshes the screen in a prescribed manner that is partially
controlled by the horizontal and vertical synchronization signals. The monitor
starts each refresh cycle by updating the pixel in the top left-hand corner of the
screen, which can be treated as the origin of an X–Y plane (see Figure 12.1).
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Figure 12.1  VGA Monitor

After the first pixel is refreshed, the monitor refreshes the remaining pixels in
the row. When the monitor receives a pulse on the horizontal synchronization,
it refreshes the next row of pixels. This process is repeated until the monitor
reaches the bottom of the screen. When the monitor reaches the bottom of the
screen, the vertical synchronization pulses, causing the monitor to begin
refreshing pixels at the top of the screen (i.e., at [0,0]).

12.1.1 VGA Timing

For the VGA monitor to work properly, it must receive data at specific times
with specific pulses. Horizontal and vertical synchronization pulses must occur
at specified times to synchronize the monitor while it is receiving color data.

Figure 12.2 shows the timing waveform for the color information with
respect to the horizontal synchronization signal. Based on the clock frequency,
these times translate to certain number of clock cycles shown in this figure.
For example, a horizontal sweep (parameter A) that takes translates
to 800 clock cycles of 25.175 MHz.

Figure 12.2  Horizontal Refresh Cycle
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Figure 12.3  Vertical Refresh Cycle

Figure 12.3 shows the timing waveform for the color information with
respect to the vertical synchronization signal. Based on the fact that a
horizontal sweep takes (800 clock cycles), the times shown take a
certain number of horizontal refresh cycles that are shown in this figure. For
example, a screen refresh cycle that takes 16.7 ms, translates to 525 horizontal
cycles of

The frequency of operation and the number of pixels that the monitor must
update determines the time required to update each pixel, and the time
required to update the whole screen. The following equations roughly calculate
the time required for the monitor to perform all of its functions.

Where:

The monitor writes to the screen by sending red, green, blue, horizontal and
vertical synchronization signals when the screen is at the expected location.

Time required to update a pixel
25.175 MHz
Time required to update one row
Time required to update the screen

B, C, E=Guard bands
P, Q, S=Guard bands
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Once the timing of the horizontal and vertical synchronization signals is
accurate, the monitor only needs to keep track of the current location, so it can
send the correct color data to the pixel.

12.1.2 Monitor Synchronization Hardware

The hardware required for VGA signal generation must keep track of the
number of 25.175 MHz clock cycles, and issue signals according to the timing
waveforms of Figure 12.2 and Figure 12.3. The Verilog code of Figure 12.4 uses
the SynchClock clock signal to generate Hsynch (HORIZ_SYNCH of Figure 12.2)
and Vsynch (VERT_ SYNCH of Figure 12.3).

module MonitorSynch
( RedIn, GreenIn, BlueIn, SynchClock, Red, Green, Blue, Hsynch, PixelRow, PixelCol, Vsynch
);

input Redln, Greenln, Blueln, SynchClock;
output Red, Green, Blue, Hsynch, Vsynch;
output [9:0] PixelRow, PixelCol;

reg Red, Green, Blue, Vsynch, Hsynch;
reg [9:0] PixelRow, PixelCol;
reg [9:0] Hcount, Vcount;

always @(posedge SynchClock) begin
if (Hcount == 799) Hcount =0;

else Hcount = Hcount + 1;
if (Hcount >= 661 && Hcount <= 756) Hsynch = 0;

else Hsynch = 1;
if (Vcount >= 525 && Hcount >= 756) Vcount = 0;

else if (Hcount == 756) Vcount = Vcount + 1;
if (Vcount >= 491 && Vcount <= 493) Vsynch = 0;

else Vsynch = 1;

if (Hcount <= 640) PixelCol = Hcount;
if (Vcount <= 480) PixelRow = Vcount;

if (Hcount <= 680 && Vcount <= 480) begin
Red = Redln; Green = Greenln; Blue = Blueln;

end else
{Red, Green, Blue} = 0;

end
endmodule

Figure 12.4  Monitor Synchronization Verilog Code

The code shown, uses color specifications from RedIn, GreenIn and BlueIn
input signals and during the time periods specified by parameter D in Figure
12.2 and parameter R in Figure 12.3, puts them on the Red, Green and Blue
output signals. At any point in time, the Verilog code of Figure 12.4 outputs
the position of the pixel being updated in its 10-bit PixelRow and PixelCol
output vectors.
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The Hcount variable in this Verilog code keeps track of the number of clock
cycles in each row, and Vcount is the number of horizontal cycles in each
screen. Considering the very first pixel at (0, 0) position, the counting of the
horizontal pixels begins at the beginning of the D region of the waveform of
Figure 12.2. Therefore as the Verilog code shows, Hsynch becomes 0 when
Hcount is between 661 and 756 (this is the B region). Likewise, considering the
beginning of region R as the 0 point, the P region in Figure 12.3 begins at
Vcount of 491 and ends at 493. Therefore, as the code shows, Vsynch is 0
during such Vcount values. With the (0, 0) point defined as such, pixels are
active while Hcount is between 0 and 640 and Vcount is between 0 and 480.
During these count periods output colors are active and PixelRow and PixelCol
outputs reflect Hcount and Vcount respectively.

The Verilog code of Figure 12.4 is defined as a block shown in Figure 12.5
to be used in our implementation of a character display design.

Figure 12.5 Monitor Synchronization Block Specification

12.2 Character Display

The design we are considering in this section is a character display hardware
that outputs an address to a character display memory and inputs an ASCII
code representing the character to display. We assume the display memory has
300 ASCII characters that will be displayed in 15 rows of 20 characters.
Considering the 480 by 640 resolution, this makes each character occupy a
matrix of 32×32 pixels.

In addition to the synchronization module of the previous section, the
character display hardware has a character matrix and a pixel generation
module. The character matrix defines active pixels of the supported characters
and the pixel generation module reads this matrix and produces active color
inputs (RedIn, GreenIn, and BlueIn) for the synchronization module.
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12.2.1 Character Matrix

In our simple design we use 8×8 character resolution and only support ASCII
characters from 32 to 95. With these 64 supported characters, our character
matrix becomes an 8-bit memory of 512 words, in which every 8 consecutive
words define a character. For example, as shown in Figure 12.6, pixels for
character "5" with ASCII code of 53 decimal, begin at address 0A8 Hex that is
(53-32)×8.

0A8 :
0A9 :
0AA :
0AB :
0AC :
0AD :
0AE :
0AF :

01111110
01100000
01111100
00000110
00000110
01100110
00111100
00000000

;

;
;
;

;

;
;

;

%
%
%
%
%
%
%
%

%
%
%
%
%
%
%
%

Figure 12.6 Character Matrix for Character "5"

DEPTH = 512;
WIDTH = 8;
ADDRESS_RADIX = HEX;
DATA_RADIX = BIN;
% Character Matrix ROM, addressed by PixelGeneration module %
CONTENT

BEGIN

% ASCII 0010_0000 to 0010_1111 %
000  :
001 :
002 :
003 :
004  :
005 :
006 :
007  :

1F8  :
1F9  :
1FA  :
1FB  :
1FC  :
1FD  :
1FE :
1FF  :

END;

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

00000000
00010000
00110000
01111111
01111111
00110000
00010000
00000000

%
%
%
%
%
%
%
%

%
%
%
%
%
%
%
%

%
%
%
%
%
%
%
%

%
%
%
%
%
%
%
%

Figure 12.7 Character Matrix mif File

;
;

;
;

;
;
;

;
;
;
;
;
;
;
;

;

. . .
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For implementing the character matrix we use the LPM_ROM megafunction
of Quartus II. This component is available under the storage category of
megafunctions. With the aid of the megafunction wizard, this component is
configured as an 8-bit memory with 9 address lines. During the configuration
process we are asked to enter the Memory Initialization File name (.mif), for
which we use CharMtx.mif. Using the mif format, pixel values (similar to those
shown in Figure 12.6 for character "5") are defined for ASCII characters from 32
to 95. Figure 12.7 shows the beginning and end of this file, from which the
formatting can be seen.

The symbol of the CharMtx component defined in Quartus II is shown in
Figure 12.8. The input of this ROM is a 9-bit address and its output is the
horizontal slice of the display code of the character. The most significant 6 bits
of the address are the ASCII code for the display character, and bits 2 to 0 of
the address determine its slice number.

Figure 12.8   Character Matrix Symbol

module PixelGeneration (PixelRow, PixelCol, Clk, Char, MtxPntr, CharPntr);
input [9:0] PixelRow, PixelCol;
input Clk;
input [7:0] Char;
output [8:0] MtxPntr,
output [8:0] CharPntr;

reg [5:0] MtxStart;
reg [8:0] MtxPntr;
reg [8:0] CharPntr;

wire [4:0] ScreenLine, ScreenPos;
assign ScreenLine = PixelRow [9:5]; // 15 Lines=480/32
assign ScreenPos = PixelCol [9:5]; //20 Positions=640/32

always @(posedge Clk) begin
CharPntr = ScreenLine*20 + ScreenPos;
MtxStart = Char - 32;
// Char resolution is 8 pixel rows, bits [4:2];
MtxPntr = {MtxStart, PixelRow[4:2]};

end
endmodule

Figure 12.9 Pixel Generation Verilog Code
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12.2.2 Pixel Generation Module

Another component for our character display hardware is the PixelGeneration
module. This module uses the 640×480 pixel coordinates from the
MonitorSynch module and translates it to our low-resolution 20×15 character
coordinates. Using the latter coordinates it generates an address for our
display memory (that contains 300 ASCII codes) and reads the corresponding
ASCII code. This code, offset by 32, and the pixel position that is being
refreshed determine a pointer for the character matrix (CharMtx) discussed
above. The Verilog code of this module is shown in Figure 12.9.

The output of the CharMtx ROM is an 8-bit slice of the character being
displayed. The specific bit that is to be displayed is selected by pixel column
position coming from the MonitorSynch module.

12.2.3 Character Display Hardware

The complete schematic diagram of the character display hardware is shown in
Figure 12.10. This hardware is our VGA adapter that addresses a memory of
300 characters, reads the character and displays it in one of the 300 locations
of the screen. This hardware uses MonitorSynch, PixelGeneration, CharMtx, and
an 8-to-1 multiplexer.

Figure 12.10 VGA Adapter Complete Schematic
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The MonitorSynch module continuously sweeps across the 640×480 pixel
screen and refreshes pixels with colors specified by its three color inputs. At
the same time it reports the position of the pixel being refreshed to
PixelGeneration. Based on these coordinate, this module calculates the address
of the character that is being displayed, and using the CharMtx and the 8-to-1
multiplexer determines the value of the pixel in the screen position being
refreshed. This pixel value allows color inputs to be used by the MonitorSynch
module for painting the pixel.

12.3 UP2 Prototyping

The design of our VGA adapter of Figure 12.10 is complete in the sense that it
addresses a character and displays it on the monitor. Testing this design
requires a display memory with some data. Figure 12.11 shows a system
utilizing this Adapter circuit to display character contents of DisplayMem while
providing a mechanism of writing new characters into this memory.

Figure 12.11  Prototyping the VGA Adapter (Adapter)

12.3.1 Display Memory

The DisplayMem block is a memory block of 512 8-bit words, of which only 300
are used. This memory is addressed by Adapter for reading from it, and by
InitDisplay for writing into it. When writing into the memory, the BUSMUX
multiplexer selects addr address output of InitDisplay. Writing into this
memory is clocked, for which the main system clock is used, while reading is
done asynchronous.

The display memory is designed by configuring the LPM_RAM_DQ
megafunction of Quartus II. As with other memories, this megafunction is in
the storage category of megafunctions. While configuring it, a memory
initialization file in the mif format is specified. This file contains test data that
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will be displayed. Also, during configuration of DisplayMem, input clocking,
write-enable and other memory parameters will be specified.

12.3.2 Address Selection

The BUSMUX multiplexer that selects the read or write address of DiplayMem is
a 9-bit 2-to-1 multiplexer. This unit is a megafunction in Quartus II.

12.3.3 Writing Display Data

The InitDisplay Verilog module of Figure 12.11 has a counter that counts
between 0 and 299 with its Countup input and loads its DataIn input in its data
output when Load is issued. We use this circuit to count to a location in
DisplayMem and load data from UP2 switches into this memory. If Load is
pressed twice in a row, the counter resets to location 0. Count-up and load
input are taken from the UP2 pushbuttons.

module InitDisplay ( Clk, Dataln, Countup, Load, Write, data, addr );
input Clk;
input [7:0] Dataln;
input Countup, Load;
output Write;
output [7:0] data;
output [8:0] addr;

reg Write;
reg [8:0] addr;
reg loaded; //two Loads in a row resets

assign data = Dataln;

always @(posedge Clk)
if (Countup) begin

addr = addr + 1;
if (addr ==300) addr = 0;
Write = 0;
loaded = 0;

end else if (Load) begin
if (loaded) begin // perform reset

addr = 0;
loaded = 0;

end else begin // perform loading
Write = 1;
loaded =1;

end
end else Write = 0;

endmodule

Figure 12.12 Module for Manual Loading of Display Memory

InitDisplay is implemented in Verilog in a schematic block of Quartus II. As
shown in the Verilog code of Figure 12.12, DataIn continuously drives data that
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is the data to be written into the display memory. When Countup is issued,
addr is incremented. When Load is issued, the output Write (write-enable)
becomes active, that causes a write at the addr location.

12.3.4 Pushbutton Interfaces

The DualOnePulsers component of Figure 12.12 uses a dual debouncer (Figure
8.14) and two one-pulse generators (Figure 8.12) to generate synchronous one-
clock duration pulses for every time a pushbutton is pressed.

12.3.5 Pin Assignments

In order to test out design, data and control inputs of Figure 12.11 are
connected to UP2 switches and pushbuttons. The outputs of this circuit should
be connected to FLEX 10K pins according to connections shown in Figure 6.36.
Figure 12.13 shows these pin assignments.

12.3.6 Prototype Operation

Upon programming the FLEX 10K device, the monitor connected to VGA D-sub
connector displays characters in the DisplayMem file. We can write any ASCII
character on the display by setting its ASCII code on the FLEX switches,
pressing the Countup pushbutton some number of times and then pressing
Load to write the ASCII character in the counted location of the screen.

Figure 12.13 Adapter Pin Assignments to the VGA Connector

Note that our hardware only supports ASCII characters from 32 to 95, and
large characters are displayed. To start from location 0, press Load twice.

12.4 Summary

This chapter showed a complete design by use of Verilog, schematics and
megafunctions. Some features of Quartus II, such as use of memory blocks
that were not discussed before, were presented in this chapter. If done
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properly, the use of memory blocks is an Altera design uses FPGA memory bits
that can free up a large number of logic elements for other uses. Dual-port
memories cannot be implemented with FLEX memory bits and must be
implemented using logic element flip-flops. Not only this is an inefficient use of
logic elements, such memories cannot be initialized with memory initialization
files.

In addition to presenting an elaborate use of Quartus II, this chapter
showed the design of a VGA adapter. Understanding display monitors and
being able to program them is important for logic designers and students in the
digital field.



13 Keyboard Interface

This chapter deals with the design of a keyboard interface that is implemented
on UP2 using its FLEX 10K device. The chapter discusses how keyboards work
and how they transmit data to and receive data from a computer. We will then
take a simplified approach and show the interface for receiving data from a
keyboard. The interface receives serial data from the keyboard and generates
ASCII codes for keys that ASCII codes are applicable.

13.1 Data Transmission

Data communication between the keyboard and the host system is
synchronous serial over bi-directional clock and data lines. Keyboard sends
commands and key codes, and the system sends commands to the keyboard.

Either the system or the keyboard drive the data and clock lines, while
clocking data in either direction is provided by the keyboard clock. When no
communication is occurring, both lines are high. Figure 13.1 shows the timing
of keyboard serial data transmission.

13.1.1 Serial Data Format
Data transmission on the data line is synchronized with the clock; data will be
valid before the falling edge and after the rising edge of the clock pulse. Serial
data transmission begins with the data line dropping to 0. This bit value is
taken on the rising edge of the clock and considered as the start-bit. On the
next eight clock edges, data is transmitted in low to high order bit. The next
data bit is the odd-parity bit, such that data bits and the parity bit always have
odd number of ones. The last bit on the data line is the stop-bit that is always
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1. After the stop-bit, the data line remains high until another transmission
begins.

When the keyboard sends data to or receives data from the system it
generates the clock signal to time the data. The system can prevent the
keyboard from sending data by forcing the clock line to 0, during this time the
data line may be high or low. When the system sends data to the keyboard, it
forces the data line to 0 until the keyboard starts to clock the data stream.

13.1.2 Keyboard Transmission

When the keyboard is ready to send data, it first checks the status of the clock
to see if it is allowed to transmit data. If the clock line is forced to low by the
system, data transmission to the system is inhibited and keyboard data is
stored in the keyboard buffer. If the clock line is high and the data line is low,
the keyboard is to receive data from the system. In this case, keyboard data is
stored in the keyboard buffer, and the keyboard receives system data. If the
clock and data lines are both high the keyboard sends the start-bit, 8 data bits,
the parity bit and the stop-bit.

During transmission, the keyboard checks the clock line for low level at
least every If the system forces the clock line to 0 after the
keyboard starts ending data, a condition known as line contention occurs, and
the keyboard stops sending data. If line contention occurs before the rising
edge of the 10th clock pulse, the keyboard buffer returns the clock and data
lines to high level.

13.1.3 System Transmission

The system sends 8-bit commands to the keyboard. When the system is ready
to send a command to the keyboard, it first checks to see if the keyboard is
sending data. If the keyboard is sending, but has not reached the 10th clock
signal, the system can override the keyboard output by forcing the keyboard
clock line to 0. If the keyboard transmission is beyond the 10th clock signal,
the system receives the transmission.

If the keyboard is not sending or if the system decides to override the
output of the keyboard, the system forces the keyboard clock line to 0 for more
than while preparing to send data. When the system is ready to
send the start bit, it allows the keyboard to drive the clock line to 1 and drives
the data line to low. This signals the keyboard that data is being transmitted
from the system. The keyboard generates the clock signals and receives the
data bits, parity and the stop-bit. After the stop-bit, the system releases the
data line. If the keyboard receives the stop-bit it forces the data line low to
signal the system that the keyboard has received its data.

Upon receipt of this signal, the system returns to a ready state, in which it
can accept keyboard output or goes to the inhibited state until it is ready. If the
keyboard does not receive the stop-bit, a framing error has occurred, and the
keyboard continues to generate clock signals until the data line becomes high.
The keyboard then makes the data line low and requests a resending of the
data. A parity error will also generate a re-send request by the keyboard.
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Figure 13.1  Keyboard Serial Data Transmission

13.1.4 Power-On Routine

The keyboard logic generates a power-on-reset signal when power is first
applied to the keyboard. The timing of this signaling is between 150
milliseconds and 2.0 seconds from the time power is first applied to the
keyboard.

Following this signaling, basic assurance test is performed by the keyboard.
This test consists of a keyboard processor test, a checksum of its ROM, and a
RAM test. During this test, activities on the clock and data lines are ignored.
The keyboard LEDs are turned on at the beginning and off at the end of the
test. This test takes a minimum of 300 milliseconds and a maximum of 500
milliseconds. Upon satisfactory completion of the basic assurance test, a
completion code (hex AA) is sent to the system, and keyboard scanning begins.
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13.2 Codes and Commands

A host system may send 8-bit commands to the keyboard, while a keyboard
may send commands and key codes to the system.

13.2.1 System Commands

System commands may be sent to the keyboard at any time. The keyboard will
respond within 20 milliseconds, except when performing the basic assurance
test (BAT), or executing a Reset command. System commands and their
hexadecimal values are shown in Table 13.1.

13.2.2 Keyboard Commands

Table 13.2 shows the commands that the keyboard may send to the system and
their hexadecimal values.

13.2.3 Keyboard Codes

Keyboards are available for several languages and settings. The keyboard that
is most common for the English language is one with 104 keys shown in Figure
13.2. Keys of this keyboard are identified by numbers, and for every key there
is a scan code. Several scan codes are available, and the default scan code is
Scan Code 2 that we will discuss here.

Keyboard scan codes consist of a Make and a Break code. The Make code
identifies the key pressed and the Break code indicates the release of a key. For
most keys the Break code is F0 followed by the Make code. For example when
the Space bar (key 61) is pressed and released, hexadecimal codes 29, F0 and
29 are transmitted from the keyboard to the system via the data serial line. If
this key remains pressed, the Make code (29) is continuously transmitted until
it is released. Make codes for Scan Code 2 are shown in Table 13.3

The Make and Break arrangement, makes it possible for the system to
identify multiple keys pressed and the order in which they have been pressed.
For example, if one presses and holds down the Left-Shift key (key number 44),
12 Hex is continuously sent to the system. While this is happening, if key
number 9 (the 8/* key) is pressed and released, 3E, F0 and 3E codes are
transmitted. The receiving system identifies this sequence of events as the
intention to enter an asterisk (*).
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Figure 13.2  Standard 104-key Keyboard and Key Numbers
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13.3 Keyboard Interface Design

This section discusses a keyboard interface for reading scan data from the
keyboard and producing ASCII codes of the keys pressed. Code Set 2 is
assumed, and the interface only handles data transmission from the keyboard.
The interface reads serial data from the keyboard, detects the Make code when
a key is pressed and looks up the Make code in an ASCII conversion table. For
simplicity, the look-up table only handles upper-case characters.

13.3.1   Collecting the Make Code

The first part of our interface connects to the keyboard data and clock lines and
when a key is pressed, it outputs an 8-bit scan code. The KBdata, KBclock
inputs are for the keyboard data and clock inputs, and the 8-bit ScanCode is
the main output of this part.

This part also uses a fast synchronizing clock, SYNclk, and a keyboard reset
input, KBreset.  In addition to the ScanCode output, this part outputs a signal
to indicate that a scan code is ready (ScanRdy) and another output to indicate
that a key has been released (KeyReleased). These outputs make distinction
between Make and Break states.

module Keyboardlnterface
(KBclk, KBdata, ResetKB, SYNclk, ScanRdy, ScanCode, KeyReleased);
input KBclk;
input KBdata;
input ResetKB;
input ReadKB;
input SYNclk;
output ScanRdy;
output [7:0] ScanCode;
output KeyReleased;

// Details in Figure 13.4
// Generate an internal synchronized clock
always @(posedge Clock) begin

// Count the number of serial bits and collect data into ScanCode

end

// Details in Figure 13.5
always @(posedgeSYNclk)begin

// Keep track of the state of Scan Codes outputted

end
// Issue KeyReleased when done

endmodule

Figure 13.3 Verilog Pseudo Code
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The pseudo-code of this unit is shown in Figure 13.3. After the
declarations, in this part an internal clock (Clock) that is based on the keyboard
clock and is synchronized with the board clock is generated. This clock is used
in an always block to collect serial data bits and shift them into ScanCode.
Another always block in this code, monitors completion of serial data collection
and generates the state of the keys pressed and released. The details of these
sections of the interface module are depicted in Figure 13.4 and Figure 13.5
respectively.

The first always statement of Figure 13.4 shows the generation of Clock
that is equal to the keyboard clock and synchronized with the external system
clock, SYNclk.  In the always block that follows this block, after detection of the
start-bit, on the rising edge of Clock, bit values are read from the keyboard data
line (KBdata) and shifted into ScanCode. The shifting continues for 8 bit
counts. On the next clock after collecting 8 data bits is complete, ScanRdy is
issued, and the collection process returns to its initial state of looking for the
next start-bit.

reg Clock;

always @ (posedge SYNclk) Clock = KBclk;

reg [3:0] BitCount;
reg StartBitDetected, ScanRdy;
reg [7:0] ScanCode;

always @(posedge Clock) begin
if (ResetKB) begin

BitCount = 0; StartBitDetected = 0;
end else begin

if (KBdata == 0 && StartBitDetected == 0) begin
StartBitDetected = 1;
ScanRdy = 0;

end else if (StartBitDetected) begin
if (BitCount < 8) begin

BitCount = BitCount + 1;
ScanCode = {KBdata, ScanCode[7:1]};

end else begin
StartBitDetected = 0;
BitCount = 0;
ScanRdy =1;

end
end

end
end

Figure 13.4 Serial Data Collection

The partial code of Figure 13.5 uses the two-bit CompletionState to keep
track of the scan codes that have been generated. Starting in the initial state,
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when ScanRdy becomes 1 and F0 is on ScanCode, CompletionState becomes 1.
This state is entered when a key is released and the F0 part of the Break code is
transmitted. The next time ScanRdy is detected, the second part of the Break
code (that is the same as Make) becomes available on ScanCode. In the
following clock, the KeyReleased output becomes 1 and remains at this level for
a complete clock period.

reg [1:0] CompletionState;
wire KeyReleased;

always @ (posedge SYNclk) begin
if (ResetKB) CompletionState = 0;

else case (CompletionState)
0: if (ScanCode == 8'hF0 && ScanRdy == 1) CompletionState = 1;

else CompletionState = 0;
1: if (ScanRdy == 1) CompletionState = 1;

else CompletionState = 2;
2: if (ScanRdy == 0) CompletionState = 2;

else CompletionState = 3;
3: CompletionState = 0;

endcase

end

assign KeyReleased = CompletionState == 3 ? 1 : 0;

endmodule

Figure 13.5  Break State Recognition

13.3.2 ASCII Look-Up

The ASCII lookup part of our keyboard interface is a ROM of Quartus II
megafunctions with 7 address lines and word length of 8 bits. Hexadecimal
locations 0D through 66 of this ROM are defined to contain ASCII codes for
scan codes that correspond to ROM addresses. This megafunction is defined to
use the KbASCII.mif memory initialization file, a portion of which is shown in
Figure 13.6. The ScanCode output of Figure 13.3 connects to the address input
of this ROM, and ASCII codes corresponding to input addresses appear on its
output.
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DEPTH = 128;
WIDTH = 8;
ADDRESS_RADIX = HEX;
DATA_RADIX = DEC;
% Keyboard Scan Code to ASCII %
CONTENT
BEGIN
% Set 2: ASCII Key Char %
%------+---------------+-------------------%

OD     :
0E :
11 :
12 :
14 :
15 :
16 :
1A :
1B :
1C :

66 :
END;

09
96
0
0
0
81
49
90
83
65

08

%
%
%
%
%
%
%
%
%
%

%

16
1
60
44
58
17
2
46
32
31

15

Tab
`

Alt
Shift
Ctrl
Q
1
Z
s
A

BS

%
%
%
%
%
%
%
%
%
%

%

Figure 13.6  ASCII Conversion Memory Initialization File

Figure 13.7  Prototyping Keyboard Character Generator

13.4 Keyboard Interface Prototyping

The Verilog module of Figure 13.3 and the ROM of Figure 13.6 are put together
into the KeyboardChar schematic file. Testing this design is achieved by
programming the FLEX 10K of UP2, assigning keyboard clock and data inputs
to pins 30 and 31 (see Figure 6.37), and connecting the UP2 clock to its SYNclk
input. A portion of the schematic of this prototype design is shown in Figure
13.7. With this settings, the ASCII code of the key pressed on the keyboard
that is connected to the PS2 connecter of UP2 appears on the 8-bit char output
of the diagram of Figure 13.7.

;
;
;
;
;
;
;
;
;
;

;

;
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13.5 Summary

This chapter showed another interface design utilizing Verilog design entry as
well as storage megafunctions of Quartus II. The design here illustrated how an
interface could be designed to read keyboard characters. The knowledge of this
basic peripheral is important for logic designers and students in this field.



14 Design of SAYEH Processor

This chapter shows design of a small computer in Verilog and implementation
of it on UP2 using Quartus II. The CPU is SAYEH (Simple Architecture, Yet
Enough Hardware) that has been designed for educational and benchmarking
purposes. The design is simple, and follows the design strategy used for the
multiplier of Chapter 1. We rely on the material of the chapter on computer
architectures for providing the necessary background for understanding details
of the hardware of SAYEH in this chapter.

14.1 CPU Description

The simple CPU example discussed here has a register file that is used for data
processing instructions. The CPU has a 16-bit data bus and a 16-bit address
bus. The processor has 8 and 16-bit instructions. Short instructions contain
shadow instructions, which effectively pack two such instructions into a 16-bit
word. Figure 14.1 shows SAYEH interface signals.

Figure 14.1 SAYEH Interface
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14.1.1 CPU Components

SAYEH uses its register file for most of its data instructions. Addressing modes
of this processor also take advantage of this structure. Because of this, the
addressing hardware of SAYEH is a simple one and the register file output is
used in address calculations.

SAYEH components that are used by its instructions include the standard
registers such as the Program Counter, Instruction Register, the Arithmetic
Logic Unit, and Status Register. In addition, this processor has a register file
forming registers R0, R1, R2 and R3 as well as a Window Pointer that defines
R0, R1, R2 and R3 within the register file. CPU components and a brief
description of each are shown below.

PC: Program Counter, 16 bits
R0, R1, R2, and R3:  General purpose registers part of the register file,
16 bits
Reg File: The general purpose registers form a window of 4 in a register
file of 8 registers
WP: Window Pointer points to the register file to define R0, R1, R2 and
R3, 3 bits
IR: Instruction Register that is loaded with a 16-bit, an 8-bit, or two 8-
bit instructions, 16 bits
ALU: The ALU that can AND, OR, NOT,Shift, Compare, Add, Subtract
and Multiply its inputs, 16 bit operands
Z flag: Becomes 1 when the ALU output is 0
C flag: Becomes 1 when the ALU has a carry output

14.1.2 SAYEH Instructions

The general format of 8-bit and 16-bit SAYEH instructions is shown in Figure
14.2. The 16-bit instructions have the Immediate field and the 8-bit
instructions do not. The OPCODE filed is a 4-bit code that specifies the type of
instruction. The Left and Right fields are two bit codes selecting R0 through R3
for source and/or destination of an instruction. Usually, Left is used for
destination and Right for source. The Immediate filed is used for immediate
data, or if two 8-bit instructions are packed, it is used for the second
instruction.

Figure 14.2 SAYEH Instruction Format

Our processor has a total of 29 instructions as shown in Table 14.1.
Instructions with I immediate field are 16-bit instructions and the rest are 8-bit
instructions.  Instructions that use the Destination and Source fields
(designated by D and S in the table of instruction set) have an opcode that is
limited to 4 bits. Instructions that do not require specification of source and
destination registers use these fields as opcode extensions. Because of this, our
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processor has room for extending its instruction set beyond what is shown in
Table 14.1. In addition to nop, hex code 0F is used as filler for the right most 8-
bits of a 16-bit word that only contains an 8-bit instruction in its 8 left-most
bits.

In the instruction set, addressed locations in the memory are indicated by
enclosing the address in a set of parenthesis. When these instructions are
executed, the processor issues ReadMem or WriteMem signals to the memory.
When input and output instructions (inp, oup) are executed, SAYEH issues
ReadIO or WriteIO signals to its IO devices.

14.1.3 SAYEH Datapath

The datapath of SAYEH is shown in Figure 14.3. Main components and their
lower level structures are listed below.

1. Addressing Unit
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PC (Program Counter)
Address Logic

IR (Instruction Register)
WP (Window Pointer)

a.
b.

2.
3.
4. Register File

Decoder 1 (Left)
Decoder2 (Right)

a.
b.

ALU (Arithmetic Unit)
Flags

5.
6.

As shown in Figure 14.3, components are either hardwired or connected
through three-state busses. Component inputs with multiple sources, such as
the right hand side input of ALU, use three-state buses. Three-state busses in
this structure are Databus and OpndBus. Names shown on component
interconnections are used in the Verilog description of the processor.

In this figure, signals that are in italic are control signals issued by the
controller. These signals control register clocking, logic unit operations and
placement of data in busses.

Figure 14.3  SAYEH Datapath
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14.1.4 Datapath Components

Figure 14.4 shows the hierarchical structure of SAYEH components. The
processor has a datapath and a controller. Datapath components are
Addressing Unit, Instruction Register, Window Pointer, Register File, Arithmetic
Unit, and the Flags register. The Addressing Unit is further partitioned into the
Program Counter and Address Logic.

Figure 14.4 Sayeh Hierarchical Structure

The Addressing Logic is a combinational circuit that is capable of adding its
inputs to generate a 16-bit output that forms the address for the processor
memory. The Program Counter and Instruction Register are 16-bit registers.
The Register File is a two-port memory and a file of 8 16-bit registers. The
Window Pointer is a 3-bit register that is used as the base of the Register File.
Specific registers for read and write (R0, R1, R2 or R3) in the Register File are
selected by its 4-bit input bus coming from the Instruction Register. Two bits
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are used to select a source register and other two bits select the destination
register.

When the Window Pointer is enabled, it adds its 3-bit input to its current
input. The Flags register is a 2-bit register that saves the flag outputs of the
Arithmetic Unit. The Arithmetic Unit is a 16-bit arithmetic and logic unit that
has the functions shown in Table 14.2. A 9-bit input selects the function of the
ALU shown in this table. This code is provided by the processor controller.

Controller of SAYEH has eleven states for reset, fetch, decode, execute, and
halt operations. Signals generated by the controller control logic unit
operations and register clocking in the datapath.

SAYEH sequential data components and its controller are triggered on the
falling edge of the main system clock. Control signals remain active after one
falling edge through the next. This duration allows for propagation of signals
through the busses and logic units in the datapath.

14.2 SAYEH Verilog Description

SAYEH is described according to the hierarchical structure of Figure 14.4.
Data components are described separately, and then wired to form the
datapath. Controller is described in a single Verilog module. In the complete
SAYEH description, the datapath and controller are wired together.

14.2.1 Data Components

Combinational and sequential SAYEH data components are described here.
The combinational ones are like the ALU that perform arithmetic and logical
operations. The function of such units is controlled by the controller. The
sequential components are clocked with the negative edge of the main CPU
clock. These components have functionalities like loading and resetting that
are controlled by the controller.
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module AddressingUnit (
Rside, Iside, Address, clk, ResetPC, PCplusI, PCplus1, RplusI, Rplus0, PCenable);

input [15:0] Rside;
input [7:0] Iside;
input ResetPC, PCplusI, PCplus1, RplusI, Rplus0, PCenable;
input clk;
output [15:0] Address;
wire [15:0] PCout;

ProgramCounter PC (Address, PCenable, clk, PCout);
AddressLogic AL (PCout, Rside, Iside, Address, ResetPC, PCplusI, PCplus1, Rplusl, Rplus0);

Endmodule

Figure 14.5  AddressingUnit Verilog Code

Figure 14.6  ProgramCounter Verilog Code

Figure 14.7  AddressLogic Verilog Code

module AddressLogic (
PCside, Rside, Iside, ALout, ResetPC, PCplusI, PCplus1, RplusI, Rplus0);

input [15:0] PCside, Rside;
input [7:0] Iside;
input ResetPC, PCplusI, PCplus1, RplusI, Rplus0;
output [15:0] ALout;
reg [15:0] ALout;

always @ (PCside or Rside or Iside or ResetPC or PCplusI or PCplus1 or Rplusl or Rplus0)
case ({ResetPC, PCplusI, PCplus1, RplusI, Rplus0})

5'b10000: ALout = 0;
5'b01000: ALout = PCside + Iside;
5'b00100: ALout = PCside + 1;
5'b00010: ALout = Rside + Iside;
5'b00001: ALout = Rside;
default: ALout = PCside;

endcase

endmodule

module ProgramCounter (in, enable, clk, out);
input [15:0] in;
input enable, clk;
output [15:0] out;
reg [15:0] out;

always @ (negedge clk) if (enable) out = in;

endmodule
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`define B15to0H 10'b1000000000
`define AandBH 10'b0100000000
`define AorBH 10'b0010000000
`define notBH 10'b0001000000
`define shIBH 10'b0000100000
`define shrBH 10'b0000010000
`define AaddBH 10'b0000001000
`define AsubBH 10'b0000000100
`define AmulBH 10'b0000000010
`define AcmpBH 10'b0000000001

module ArithmeticUnit ( A, B,
B15to0, AandB, AorB, notB, shIB, shrB, AaddB, AsubB, AmulB, AcmpB, aluout,
cin, zout, cout);

input [15:0] A, B;
input B15to0, AandB, AorB, notB, shIB, shrB, AaddB, AsubB, AmulB, AcmpB;
input cin;
output [15:0] aluout;
output zout, cout;
reg [15:0] aluout;
reg zout, cout;

always @( A or B or B15to0 or AandB or AorB or notB or
shIB or shrB or AaddB or AsubB or AmulB or AcmpB or cin)

begin
zout = 0; cout = 0; aluout = 0;

case ({B15to0, AandB, AorB, notB, shIB, shrB, AaddB, AsubB, AmulB, AcmpB})
`B15to0H:aluout = B;
`AandBH: aluout = A & B;
`AorBH: aluout = A | B;
`notBH: aluout = ~B;
`shlBH: aluout = {B[15:0], B[0]};
`shrBH: aluout = {B[15], B[15:1]};
`AaddBH: {cout, aluout} = A + B + cin;
`AsubBH: {cout, aluout} = A - B - cin;
`AmulBH: aluout = A[7:0] * B[7:0];
`AcmpBH: begin

aluout = A;
if (A> B) cout = 1 ; else cout = 0;
if (A==B) zout = 1 ; else zout = 0;

end
default: aluout = 0;

endcase

if (aluout == 0) zout = 1'b1;
end

endmodule

Figure 14.8  ArithmeticUnit Verilog Code
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Addressing Unit. The Addressing Unit, shown in Figure 14.5, consists of the
Program Counter and Address Logic. The Program Counter is a simple register
with enabling and resetting mechanisms, while the Address Logic is a small
arithmetic unit that performs adding and incrementing for calculating PC or
memory addresses.

This unit has a 16-bit input coming from the Register File, an 8-bit input
from the Instruction Register, and a 16-bit address output. Control signals of
the Addressing Unit are ResetPC, PCplusI, PCplus1, RplusI, Rplus0, and
PCenable. These control signals select what goes on the output of this unit.
Shown in Figure 14.6 is the Verilog code of the Program Counter. The Address
Logic of Figure 14.7 uses control signal inputs of the Addressing Unit to
generate input data to the Program Counter via the PCout of Figure 14.5.

Arithmetic Unit. The ALU of SAYEH is shown in Figure 14.8. For readability,
control input codes of this unit are defined according to their function. For
example, the select input that causes the ALU to perform the add operation is
0000001000, and it is defined as AaddBH. Control inputs of this unit are
B15to0, AandB, AorB, notB, shlB, shrB, AaddB, AsubB, AmulB and AcmpB that
select its various operations. In order to insure that no unwanted latches are
made, all ALU outputs are set to their inactive values at the beginning of the
always statement of its Verilog code. In a case-statement in this code, aluout
and its flags outputs are set according to the selected control input of the ALU.

Instruction Register. SAYEH Instruction Register is shown in Figure 14.9. This
unit is a 16-bit register with an active high load-enable input. As shown the
only control input of the InstructionRegister module is IRload.

Register File. Figure 14.10 shows the Verilog code of SAYEH Register File. This
is a two-port memory with a moving window pointer. For reading from the
memory, the base of the window pointer (Base) is added to the left and right
addresses (Laddress and Raddress) and memory words are read on appropriate
left and right outputs (Lout and Rout). Writing into the memory is done in the
location pointed by its left address (left is used for instruction destinations).
The RFLwrite and RFHwrite control signals decide whether a write is done to
the low order or the high order bits of the Register File. If both these signals are
active, writing is done in a 16-bit word addressed by Laddress plus Base.

module InstrunctionRegister (in, IRload, clk, out);
input [15:0] in;
input IRload, clk;
output [15:0] out;
reg [15:0] out;

always @(negedge clk) if (IRload == 1) out <= in;
endmodule

Figure 14.9  InstructionRegister Verilog Code
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module RegisterFile (in, clk, Laddr, Raddr, Base, RFLwrite, RFHwrite, Lout, Rout);

input [15:0] in;
input clk, RFLwrite, RFHwrite;
input [1:0] Laddr, Raddr;
input [2:0] Base;
output [15:0] Lout, Rout;

reg [15:0] MemoryFile [0:7];

wire [2:0] Laddress = Base + Laddr;
wire [2:0] Raddress = Base + Raddr;

assign Lout = MemoryFile [Laddress];
assign Rout = MemoryFile [Raddress];

reg [15:0] TempReg;

always @(negedge clk) begin
TempReg = MemoryFile [Laddress];
if (RFLwrite) TempReg [7:0] = in [7:0];
if (RFHwrite) TempReg [15:8] = in [15:8];
MemoryFile [Laddress] = TempReg;

end

endmodule

Figure 14.10  RegisterFile Verilog Code

14.2.2

Figure 14.11 shows the datapath of SAYEH module. This module specifies
component instantiations and bussing structure of the CPU according to the
diagram of Figure 14.3. Inputs of this module are the processor's data and
address busses, as well as control signals that are provided by the controller of
the CPU. Control signals shown in the Data Path module are routed to the data
components that are instantiated here or the internal buses that are specified
in this module.

Following the declarations, the Data Path module instantiates Addressing
Unit, Arithmetic Unit, Register File, Instruction Register, Status Register, and
the Window Pointer. Control signals that are inputs of DataPath are passed
from this module to the data components via their port connections. For
example, ResetPC that is an input of DataPath and a control signal of
AddressingUnit appears on the port list of AddressingUnit in its instantiation
statement.

The part that follows module instantiations makes bus assignments to the
internal buses of this module. For example, assignment of the output of
ArithmeticUnit to Databus that is controlled by ALU_on_Databus is done by an
assign statement with a right hand side that is a conditional expression. Note
the assignment of 16'bZZZZZZZZZZZZZZZZ to Databus when none of control
signals of this bus are active.

SAYEH Datapath
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module DataPath (
clk, Databus, Addressbus,
ResetPC, PCplusI, PCplus1, Rplusl, Rplus0,
Rs_on_AddressUnitRSide, Rd_on_AddressUnitRSide, EnablePC,
B15to0, AandB, AorB, notB, shIB, shrB, AaddB, AsubB, AmulB, AcmpB, RFLwrite, RFHwrite,
WPreset, WPadd, IRIoad, SRIoad, Address_on_Databus, ALU_on_Databus,
IR_on_LOpndBus, IR_on_HOpndBus, RFright_on_OpndBus,
Cset, Creset, Zset, Zreset, Shadow, Instruction, Cout, Zout );

input clk;
inout [15:0] Databus;
output [15:0] Addressbus, Instruction;
output Cout, Zout;
input

ResetPC, PCplusI, PCplus1, Rplusl, Rplus0,
Rs_on_AddressUnitRSide, Rd_on_AddressUnitRSide, EnablePC,
B15to0, AandB, AorB, notB, shIB, shrB, AaddB, AsubB, AmulB, AcmpB, RFLwrite, RFHwrite,
WPreset, WPadd, IRIoad, SRIoad, Address_on_Databus, ALU_on_Databus,
IR_on_LOpndBus, IR_on_HOpndBus, RFright_on_OpndBus,
Cset, Creset, Zset, Zreset, Shadow;

wire [15:0] Right, Left, OpndBus, ALUout, IRout, Address, AddressUnitRSideBus;
wire SRCin, SRZin, SRZout, SRCout;
wire [2:0] WPout;
wire [1:0] Laddr, Raddr;

AddressingUnit AU (AddressUnitRSideBus, IRout[7:0], Address, clk,
ResetPC, PCplusI, PCplus1, Rplusl, Rplus0, EnablePC);

ArithmeticUnit AL (Left, OpndBus, B15toO, AandB, AorB, notB, shlB, shrB,
AaddB, AsubB, AmulB, AcmpB, ALUout, SRCout, SRZin, SRCin);

RegisterFile RF (Databus, clk, Laddr, Raddr, WPout, RFLwrite, RFHwrite, Left, Right);
InstrunctionRegister IR (Databus, IRIoad, clk, IRout);
StatusRegister SR (SRCin, SRZin, SRIoad, clk, Cset, Creset,

Zset, Zreset, SRCout, SRZout);
WindowPointer WP (IRout[2:0], clk, WPreset, WPadd, WPout);

assign AddressUnitRSideBus = (Rs_on_AddressUnitRSide) ? right :
(Rd_on_AddressUnitRSide) ? Left : 16'bZZZZZZZZZZZZZZZZ;

assign Addressbus = Address;
assign Databus = (Address_on_Databus) ? Address :

(ALU_on_Databus) ? ALUout : 16'bZZZZZZZZZZZZZZZZ;
assign OpndBus[07:0] = IR_on_LOpndBus == 1 ? IRout[7:0] : 8'bZZZZZZZZ;
assign OpndBus[15:8] = IR_on_HOpndBus == 1 ? IRout[7:0] : 8'bZZZZZZZZ;
assign OpndBus = RFright_on_OpndBus == 1 ? Right : 16'bZZZZZZZZZZZZZZZZ;

assign Zout = SRZout;
assign Cout = SRCout;
assign Instruction = IRout[15:0];

assign Laddr = (~Shadow) ? IRout[11:10] : IRout[3:2];
assign Raddr = (~Shadow) ? IRout[09:08] : IRout[1:0];

endmodule

Figure 14.11  SAYEH DataPath Module

In the last part of the DataPath module, bits of IR that indicate source and
destination registers to the Register File are placed on Laddr and Raddr inputs



280 Digital Design and Implementation with Field Programmable Devices

of this register. The Shadow signal that becomes 1 if a shadow instruction is
being executed is used to select appropriate bits of the IR as source and
destination addresses.

14.2.3 SAYEH Controller

The controller of SAYEH is a state machine with nine states that issues
appropriate control signals to the Data Path. The controller uses the Huffman
style of coding, in which the state machine has a large combinational part that
is responsible for state transitions and issuing controller outputs. State
transitions are done by setting next state values to the Nstate. Figure 14.12
shows a general outline of this controller. Various sections of this outline are
discussed below.

Controller Ports. The instruction register output, ALU flags, and external
control signals constitute the inputs of the controller. The outputs of the
controller are 38 control signals going to the Data Path and a Shadow output
that indicates that the controller is handling a shadow instruction. As shown
in Figure 14.12, controller outputs are declared as reg and are assigned values
in the combinational always block of the controller module.

Control States. A parameter declaration declares the eight states of the
controller. States reset and halt are for the initial state of the machine and its
halt state. In state fetch the machine begins fetching a 16-bit instruction that
can include an 8-bit instruction and a shadow. State memread is entered while
our controller is waiting for memDataReady signal from the memory indicating
that its data is ready. Execution of instructions is performed in the exec1 state.
This state is entered from the memread state. The lda instruction that is not
completed by the exec1 state requires the additional state of exec1lda to
complete its memory read. States exec2 and exec2lda are like exec1 and
exec1lda except that they handle the shadow part of an instruction. The
execute state of most instructions (exec1 or exec2) increment the program
counter while the instruction is being executed. However, certain instructions
that use the address bus for their execution cannot increment PC while they are
being executed. For these instructions, the incpc state increments the program
counter.

Opcodes. Referring to Figure 14.12, instruction opcodes are declared as 4-bit
parameters in the controller of SAYEH. These parameters are according to the
processor's instruction set of Table 14.1.

State Declarations. As mentioned, the coding style the controller is according to
the Huffman style of Figure 3.56 discussed in Section 3.3.4. The next state and
present states, required by this style of coding, are declared in the controller of
SAYEH as 4-bit registers, Nstate and Pstate.

module controller (
ExternalReset, clk, ResetPC, PCplusI, PCplus1, RplusI, Rplus0, . . . );

input
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ExternalReset, clk, . . .
output
ResetPC, PCplusI, PCplus1, RplusI, Rplus0, . . .

reg
ResetPC, PCplusI, PCplus1, Rplusl, Rplus0, . . .

parameter [3:0]
reset = 0, halt = 1 , fetch = 2, memread = 3,
exec1 = 4, exec2 = 5, exec1lda = 6, exec2lda = 7, incpc =8;

parameter nop = 4'b0000;
parameter hlt = 4'b0001;
parameter szf = 4'b0010;

reg [3:0] Pstate, Nstate;

wire ShadowEn = ~(Instruction[7:0] == 8'b000011111)

always @ (Instruction or Pstate or ExternalReset or Cflag or Zflag or memDataReady) begin
ResetPC = 1'b0;
PCplusI = 1'b0;
PCplus1 = 1'b0;
RplusI = 1'b0;
Rplus0 = 1'b0;

case (Pstate)
reset :

halt:

fetch :

memread :

exec1 :

exec1lda :

exec2 :

exec2lda :

incpc :

default: Nstate = reset;
endcase

end

always @ (negedge clk) Pstate = Nstate;

endmodule

Figure 14.12 SAYEH Controller General Outline

Shadow Instructions: The ShadowEn signal that is internal to the controller is
set when the hex code 0F (this code indicates that the right-most bits are not
used) is not found in the right-most eight bits of a 16-bit instruction. If this
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wire is 1 and execution of an 8-bit instruction is complete, the controller
branches to exec2 to execute the second half of the instruction before the next
fetching begins.

Combinational Block. The combinational block of SAYEH controller has an
always block that has a main case statement with case choices for every state
of the machine. Transitions from one state to another and issuing control
signals are performed in the case statement. At the beginning of the always
statement, all control signals are set to their inactive values in order to avoid
latches on these outputs.

always @ (Instruction, Pstate, ExternalReset, Cflag, Zflag) begin

case (Pstate)

exec1 :
if (ExternalReset == 1'b1) Nstate = reset;
else begin

case (Instruction[15:12])

mvr : begin
RFright_on_OpndBus = 1'b1;
B15to0 = 1'b1;
ALU_on_Databus = 1'b1;
RFLwrite = 1'b1;
RFHwrite = 1'b1;
SRload = 1'b1;
if(ShadowEn==1'b1)

Nstate = exec2;
else begin

PCplus1 = 1'b1;
EnablePC=1'b1;
Nstate = fetch;

end
end

lda : begin
Rplus0 = 1'b1;
Rs_on_AddressUnitRSide = 1'b1;
ReadMem = 1'b1;
Nstate = exec1lda;

end

endcase
end

endcase
end

Figure 14.13  Instruction Execution

Sequential Block. The last part of the code outline of Figure 14.12 is the
sequential always block f or clocking Pstate into Nstate. The control state
register of SAYEH and all its data registers are falling edge trigger. Control
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signals issues by the controller remain active through the next falling edge of
the system clock.

Instruction Execution. Figure 14.13 zooms on the combinational always
statement of the controller module and shows the details of execution of mvr in
the exec1 state of the controller. Signals issued for the execution of this
instruction are shown in this figure. This instruction reads a word from the
right address of the Register File and writes it into its left address. The right
and left (source and destination) addresses are provided in the Data Path by
connections made from IR to the Register File.

always @ (Instruction, Pstate, ExternalReset, Cflag, Zflag) begin

case (Pstate)

exec1Ida :
if (ExternalReset == 1'b1)

Nstate = reset;
else begin

if (memDataReady == 1'b0) begin
Rplus0 = 1'b1;
Rs_on_AddressUnitRSide = 1'b1;
Read Mem = 1'b1;
Nstate = exec1lda;

end
else begin

RFLwrite = 1'b1;
RFHwrite = 1'b1;
if(ShadowEn==1'b1)

Nstate = exec2;
else begin

PCplus1 =1'b1;
EnablePC=1'b1;
Nstate = fetch;

end
end

end

endcase
end

Figure 14.14  Memory Handshaking for exec1lda

The RFright_on_OpndBus control signal is issued to read the source register
from RegisterFile onto OpndBus. Since this bus is the input of the ALU, the
data on the ALU's right input (B) must pass through it to reach its output. For
this purpose, the B15to0 control input of ALU is issued. Once the data reaches
the ALU output, it becomes available at the input of the Register File. Issuing
RFLwrite and RFHwrite cause data to be written into the destination into
RegisterFile.
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The partial code of Figure 14.13 shows assignment of exec2 to Nstate if the
instruction we are executing has a shadow. Otherwise, signals for incrementing
the Program Counter are issued and the next state is set to fetch.

The execution discussed here applies to most SAYEH instructions.
However, instructions that require memory access, e.g., lda, require an extra
clock for reading the memory. The first part of the execution of lda is shown in
Figure 14.13. As shown, for the execution of this instruction, the address is
read from Register File and put on the address bus. At the same time,
ReadMem is issued to initiate the memory read process.

The next state for execution of lda after exec1 is exec1lda shown in the
partial code of Figure 14.14. In this state, ReadMem continues to be issued and
state remains in exec1lda until memDataReady becomes 1. In this case,
memory data that is available on Databus will be clocked into RegisterFile by
issuing RFLwrite and RFHwrite.

Executions of other SAYEH instructions are similar to the examples we
discussed. The complete Verilog code of SAYEH controller is over 800 lines and
is included on the CD that accompanies this book.

14.2.4 Complete SAYEH Processor
The top-level Verilog code of SAYEH that is shown in Figure 14.15 consists of
instantiation of DataPath and controller modules. In Sayeh module, control
signal outputs of controller are wired to the similarly named signals of DataPath.
The ports of the processor are according to the block diagram of Figure 14.1.

module Sayeh ( clk, ReadMem, WriteMem, ReadIO, WriteIO,
Databus,Addressbus,ExternalReset,MemDataready);

input clk;
output ReadMem, WriteMem, ReadIO, WritelO;
inout[15:0] Databus;
output [15: 0] Addressbus;
inputExternalReset,MemDataready;

wire [15:0] Instruction;
wire esetPC, PCplusI, PCplus1, RplusI, Rplus0,

DataPath dp ( clk, Databus, Addressbus,
ResetPC, PCplusI, PCplus1, RplusI, Rplus0, . . . );

controller Ctrl ( ExternalReset, clk,
ResetPC, PCplusI, PCplus1, RplusI, Rplus0, . . . );

endmodule

Figure 14.15  SAYEH Top Level Description
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14.3 SAYEH Testing

Because of the complexity of this design, it is best to test it with an HDL
simulator and a high level testbench. Tools for generation and application of
test data and monitoring and generation of output data are provided in HDL
simulators. These tools together with ability to describe high level testbenches
provide an efficient test and debugging environment for HDL based designs.

The testbench for SAYEH is shown in Figure 14.16. The use of external
files for reading and writing test data are demonstrated by this example. As
shown in this figure, SayehRAM that is a memory of 1024 16-bits words is
declared in this testbench. The testbench reads test data that is the memory
image of our processor in this file and when the test is completed contents of
this memory are written into another external file. The input file is
SayehRAM.hex and the output file is OutputRAM.hex. Contents of both files are
in hexadecimal. 16-bit hexadecimal codes in these files represent memory data
starting from location 0.

The first initial block is labeled IOfiles. This block opens the
OutputRAM.hex output file for later writing and reads the contents of
SayehRAM.hex into the declared SayehRAM memory. Reading the input file
(memory image) is done by the $readmemh system task. This task expects
data in the file to match the word length of the memory it is writing into.

An always block shown in SayehTest testbench generates a periodic signal
on the circuit clock input.

The next procedural block shown in this testbench is an initial block that
is labeled RunCPU. This block applies the resetting signal, runs the CPU for
370,000 nanoseconds, and when this time expires, it writes all 1024 words of
SayehRAM into OutputRAM.hex external file. Note here that the $fopen
statement in the IOfiles block made memout a file handler for the output file.
The $stop statement in RunCPU block stops the simulation after the memory
image has been written.

The always procedural block that is labeled MemoryRead handles reading
data from SayehRAM when requested by the CPU. When ReadMem is issued by
the CPU, the testbench issues MemDataready and places data from SayehRAM
at the Addressbus location on MemoryData. At all other times, MemoryData
bus is at the high-impedance state. This is done because MemoryData connects
to Databus hat is a bi-directional bus.

The always block that appears next in Figure 14.16 handles writing data
that appears on Databus into SayehRAM. This block has delays to allow
signals from the CPU to stabilize.

This testbench allows for any SAYEH program to be loaded into the CPU
memory and executed. Out testing of this processor consisted of an instruction
based testing as well as several programs. For the instruction testing we
applied independent instructions and monitored internal registers of SAYEH.
For example, F205, that is the hex code for "mil r2 05", loads 05 into R2 of the
Register File. Similarly, 0204 is the packing of two 8-bit instructions that set
the zero and carry flags. An initial testing of a CPU requires verification of
individual CPU instructions.

A more elaborate test program is discussed in the next section.
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`timescale 1 ns /1 ns

module SayehTest ();

reg clk, ExternalReset, MemDataready;
reg [15:0] MemoryData;
wire [15:0] Databus, Addressbus;
wire ReadMem, WriteMem, ReadIO, WriteIO;

reg [15:0] SayehRAM [0:1023];

integer memout;
initial begin : IOfiles

memout = $fopen ("OutputRAM.hex");
$readmemh ("SayehRAM.hex", SayehRAM);
clk = 0; ExternalReset = 0; MemDataready = 0;
MemoryData = 16'bZ;

end

always #20 clk = ~clk;

integer i;
initial begin : RunCPU

#05 ExternalReset = 1; #81 ExternalReset = 0;
#370000;
for (i=0; i<= 1023; i=i+1)

$fdisplay (memout, "%h: %h", i, SayehRAM[i]);
$stop;

end

always @(negedge clk) begin : MemoryRead
if (ReadMem) begin

#1 MemDataready = 1 ;
MemoryData = SayehRAM [Addressbus];

end else begin
#1 MemDataready = 0;
MemoryData = 16'hZZZZ;

end
end

always @(negedge clk) begin : MemoryWrite
#1 if (WriteMem) #1 SayehRAM [Addressbus] = Databus;

end

assign Databus = MemoryData;

Sayeh U1 (clk, ReadMem, WriteMem, ReadIO, WriteIO,
Databus, Addressbus, ExternalReset, MemDataready);

endmodule

Figure 14.16  A Testbench for SAYEH
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Figure 14.17 shows a sorting program for SAYEH. This program reads data
starting from the CPU memory and sorts them in descending order. The
number of data item to sort is in location 768 and data begins in the next
memory location. This sorting program uses two loops for the sorting to be
done. When completed, the CPU is put into the halt state.
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01
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0E

0A

r0 = 768

r1=

r5=1

r1=

r2=

r3=

r3=r3+1
r4=r3

r6=(r3)

r4=r4+r5
r7=(r4)

r5=(r4)
(r4)=r6

(r3)=r5

r5=1

starting address in memory

total number of elements

for adding with index each time

limit for final r4

limit for index r3

outer index

check if outer index is equal to its limit
branch to 0025 if zero

increment outer index
set inner index to outer index as initial

check if inner index is equal to its limit
branch to 0022 if zero

increment inner index

check if r6 is greater than r7
branch to 001F if carry
r5 as an temperary register

for adding with index each time

jump to 000F

jump to 000B

Figure 14.17  Sorting Program for SAYEH
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The program shown in Figure 14.17 is translated into its hexadecimal
equivalent and is put in SayehRAM.hex file. As discussed in the previous
section, SAYEH testbench reads instructions from this file and applies to the
CPU.

14.5 FPGA Programming

The CPU described in this chapter has been programmed into the FLEX device
of an Altera UP2. We used a RAM from Altera's megafunctions and configured
it as a memory of 1024 16-bit words. The number of logic elements used by
this CPU was 1,125, which is 30% of the available LEs. Memory bits used was
16,384, which is 44% of the available memory bits. This usage indicates that
we can form a complete system with a keyboard and VGA output on a FLEX
10K of UP2.

14.6 Summary

This chapter showed design, testing and implementation of a complete CPU.
This design put all that we have covered in this book into one package. The
design is complete and typical of any large system with a complex controller
and data path. Use of the synthesizable subset of Verilog for development of a
design for FPGA programming was shown. On the other hand, utilization of
behavioral constructs of Verilog was demonstrated in developing a testbench for
our processor.
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