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Chapter 1
Introduction

1.1 What is RFID?

RFID (radio-frequency identification) is the use of a wireless non-contact system
that uses radio-frequency electromagnetic fields to transfer data from a tag attached
to an object, for the purposes of automatic identification and tracking [38]. The
basic technologies for RFID have been around for a long time. Its root can be traced
back to an espionage device designed in 1945 by Leon Theremin of the Soviet
Union, which retransmitted incident radio waves modulated with audio information.
After decades of development, RFID systems have gain more and more attention
from both the research community and the industry.

A typical RFID system consists of one or multiple readers and numerous tags.
Each tag carries a unique identifier (ID). Depending on the source of power, tags
can be divided into three categories. 1) Passive tags are most widely used today.
They are cheap, but do not have internal power sources. They rely on radio waves
emitted from the reader for power, and have small operational ranges of a few
meters. 2) Semi-passive tags contain internal batteries to power their circuits and
allow longer reading distance. However, they still rely on a reader to supply its
power for transmitting. 3) Active tags use their own battery power to receive and
transmit information to readers. They have a much longer read range – 300 feet(91
meters) or more.

Consider a large warehouse in a distribution center of a major retailer, where
hundreds of thousands of tagged commercial products are stored. In such an
indoor environment, if we use passive tags, hundreds of RFID readers may have
to be installed in order to access tags in the whole area, which is not only costly
but also causes interference when nearby readers communicate with their tags
simultaneously. It is not a good solution neither to use a mobile reader and walk
through the whole area whenever we need information from tags. If the goal is
to fully automate the warehouse management in a large scale, we believe battery-
powered active tags are a better choice. Their much longer operational distance
allows a reader to access numerous tags in a large area at one or a few fixed

Y. Qiao et al., RFID as an Infrastructure, SpringerBriefs in Computer Science,
DOI 10.1007/978-1-4614-5230-0 1, © The Author(s) 2013
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2 1 Introduction

locations. Meanwhile, with richer on-tag resources, active tags are likely to gain
more popularity in the future, particularly when their prices drop over time as
manufactural technologies are improved and markets are expanded.

1.2 Why are RFID Technologies Important?

The barcode system brought a revolutionary change in the retail industry. Informa-
tion can be embedded in the barcode. In particular, a product ID can be encoded.
Once a reader retrieves the ID, it can use the ID to search a database to find
all information about the product, which may include price, features, or even
manufacture and shipping history. However, barcodes can only be read in close
ranges with direct sight. This is fine when used for checkout in a retail store, but
it is not suitable for warehouse management.

RFID technologies remove this limitation by integrating simple communica-
tion/storage/computation capacities in attachable tags, whose IDs can be read
wirelessly over a distance, even when obstacles exist between tags and the RFID
reader. The longer operational range makes them popular in automatic transporta-
tion payments, object tracking, and supply chain management [15, 26, 33]. Starting
from August 1, 2010, Wal-Mart has begun to embed RFID tags in clothing [39]. If
successful, these tags will be rolled out onto other product lines at Wal-Marts more
than 3,750 U.S. stores [4]. That is one step towards cashier-less checkout, where a
customer pushes his/her shopping cart to pass an RFID reader at the checkout, where
information in the embedded tags is automatically read and a receipt is printed
out [36].

1.3 What to be Expected Next?

In recent years, a relatively small number of research groups have been investigating
novel ways in which future RFID systems can be used to solve practical problems.
Of course, RFID tags may be embedded in library books, passports, driver licenses,
car plates, medical products, etc. In the current application model, tags are treated
as ID carriers and they are dealt with individually for the purpose of identifying
the object that each tag is attached to. Now, if we make a paradigm shift from this
individual view to a collective view, an array of new applications and interesting
research problems will emerge. Consider a major distribution center of a large
retailer, assuming it applies RFID tags to all its merchandise. These tags, which
are pervasively deployed in the center, should not be treated just as ID carriers for
individual objects. Collectively, they constitute a new infrastructure, which can be
exploited for center-wide applications. If we take one step further, we can make
this infrastructure more valuable by augmenting tags with miniaturized sensors,
such that they report not only static ID information but also dynamic real-time
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information about their environment or conditions of the tags themselves. If we take
another step to consider security or tag mobility, more applications and research
problems open up.

1.4 Tag Estimation

Imagine a large warehouse storing thousands of refrigerators, tens of thousands
of furniture pieces, or hundreds of thousands of footwear. A national retail survey
showed that administration error, vendor fraud and employee theft caused about 20
billion dollars lost a year [12]. Hence, it is desirable to have a quick way of counting
the number of items in the warehouse or in each section of the warehouse. To timely
detect theft or management errors, such counting may be performed frequently.

If each item is attached with a RFID tag, the counting problem can be solved by a
RFID reader that receives the IDs transmitted (or backscattered) from the tags [35].
However, reading the actual IDs of the tags can be time-consuming because so many
of them have to be delivered in the same low-rate channel and collisions caused by
simultaneous transmissions by different tags make the matter worse. Naturally, we
want to design a protocol for tag estimation that minimizes the execution time.

Is time efficiency the only performance metric for the RFID estimation problem?
We argue that energy cost is also an important issue that must be carefully dealt with
when active tags are used to cover a large area. Active tags are powered by batteries.
A longer reading range can be achieved by transmitting at higher power. Recharging
batteries for tens of thousands of tags is a laborious operation, considering that the
tagged products may stack up, making tags not easily accessible. To prolong the
tags’ lifetime and reduce the frequency of battery recharge, all functions that involve
large-scale transmission by many tags should be made energy-efficient.

1.5 Sensor-augmented RFID Systems

The deployment of RFID tags will not only make the objects in a warehouse
wirelessly identifiable, but also provide an “infrastructure” that we can leverage
to do other things. Consider a RFID system with miniaturized sensors incorporated
into tags circuit [24,26,29], enabling them to collect useful information in real time.
Such system is called sensor-augmented RFID system. A sensor may be designed
to monitor the state of the tag itself, for instance, the residual energy of the battery.
In this case, the information reported to the reader can be a floating-point number
reflecting the percentage of remaining energy, or simply a single bit indicating
whether or not the battery needs replacement. In another example, consider a large
chilled food storage facility, where each food item is attached with an RFID tag



4 1 Introduction

that carries a thermal sensor. An RFID reader may periodically collect temperature
readings from tags to check whether any area is too hot (or too cold), which may
cause food spoil (or energy waste).1

A sensor-augmented RFID system imposes challenges that are fundamentally
different from traditional sensor networks. For example, information collection
is not difficult in a classical wireless sensor network [6, 7], where each sensor
implements routing/scheduling/MAC protocols. If the MAC protocol is CSMA/CA,
the sensors will be able to sense the channel and transmit their information when
it is idle. In addition, they are able to detect collision and use random backoff to
resolve it. However, in a sensor-augmented RFID system, the simplicity of RFID
tags places many constraints on the solution space, often making an otherwise
easy problem difficult to solve. For example, what if the hardware of tags does
not support such an MAC protocol, let alone routing/scheduling protocols? What if
their simple antenna cannot sense weak signal from peers for collision avoidance,
let alone performing random backoff? Hence, the challenge is to do the same work
of information collection with less hardware support.

1.6 Brief Overview of State-of-the-Art

Much existing work is on designing ID-collection protocols, which read IDs from
all tags in an RFID system. They mainly fall into two categories. One is ALOHA-
based [5, 16, 30, 31, 34, 43], and the other is tree-based [1, 2, 25, 45]. The ALOHA-
based protocols work as follows: The reader broadcasts a query request. With a
certain probability, each tag chooses a time slot in the current frame to transmit its
ID. If there is a collision and the reader does not acknowledge positively, the tag
will continue participating in the next frame. This process repeats until all tag IDs
are read successfully. Zhang et al. [42] improve the ALOHA-based protocols by
extracting useful information from collision slots through analog network coding.
The tree-based protocols organize all IDs in a tree of ID prefixes [1, 2, 25, 45]. Each
in-tree prefix has two child nodes that have one additional bit, ‘0’ or ‘1’. The tag
IDs are leaves of the tree. The RFID reader walks through the tree, and requires
tags with matching prefixes to transmit their IDs. Also related is a recent work that
identifies tags belonging to a given set [44].

Kodialam and Nandagopal [14] estimate the number of tags in an RFID system
based on the probabilistic counting methods [13]. The same authors propose a non-
biased follow-up work in [15]. Han et al. [11] improve the performance of [14]. Qian
et al. [27] present the Lottery-Frame scheme (LoF) for estimating the number of tags
in a multiple-reader scenario. Li et al. [18] uses the maximum likelihood method.
Sheng et al. design two probabilistic algorithms to identify large tag groups [32]. For
the size measurement category, the following problems lack prior study: precisely

1If a tag reports an abnormal temperature, the reader may instruct the tag to keep transmitting
beacons, which guide a mobile signal detector to locate the tag.
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determining the number of tags, estimating the sizes of all groups, classifying
groups based on multiple thresholds, and finding the number of new tags that enter
the system and the number of existing tags that depart between two consecutive
measurements. In addition, most existing work [14, 15, 27, 32] focuses on time
efficiency. Their goal is to reduce the protocol execution time for solving a problem.
Energy-efficient protocol design is under-studied.

Tan et al. [33] design a Trust Reader Protocol (TRP) for probabilistic missing-
tag detection. Their follow-up work [31] can probabilistically identify missing tags
as well as unknown tags in the system. However, it falls short of exact detection
because their protocols cannot guarantee all missing tags (or unknown tags) are
identified. Luo et al. [22] improves on TRP through sampling. All these protocols
are designed for time efficiency, without considering how to improve energy
efficiency in the detection process. Bu et al. [3] design efficient protocols to detect
and pinpoint misplaced tags in a large warehouse, with the consideration of both
time efficiency and energy efficiency. Luo et al. [23] reveal the energy-time tradeoff
in the missing tag problem. For the anomaly detection category, the following
problems lack prior study: exact unknown-tag detection, which is to precisely
identify all unknown tags, and mixed detection of missing tags and unknown tags
when both exist (probabilistic and exact versions of this problem). Although both
missing tags and unknown tags are studied in [31], they are considered separately.
It is unclear how their co-existence will affect each other’s detection.

The idea of using RFID tags for sensing purpose has been around before [24,
29], but the problem of designing an efficient protocol to collect sensor-produced
information from tags is only studied recently in [8, 41], with a primary goal of
minimizing the protocol execution time. Qiao et al. [28] propose energy-efficient
polling protocols for sensor-augmented RFID systems. The problem of information
collection by mobile tags is not studied before.

Weis et al. [37] propose a privacy-preserving authentication protocol, in which
the reader has to try all keys in the database in order to see if there exists one that
produces a match with the authentication data sent from the tag. The computation
overhead is prohibitively high. Yao et al. [40] use a reversible hash function,
CuckooHash [10], in their authentication, which is not secure. In the weak privacy
model by Lu et al. [21], a tag will keep responding the same key index to any fake
readers, until it is refreshed with a new key index after a successful authentication
with a legitimate reader. Hence, the key index can be used to identify the tag before
refreshment. We show in [17] that all tree-based protocols [9, 19, 20, 40] cannot
ensure total privacy protection, either. Therefore, the problem of privacy-preserving
authentication remains open.

1.7 Outline of the Book

In Chap. 2, we discuss how to estimate the number of tags in a large RFID system.
Solving the tag estimation problem incurs energy cost both at the RFID reader and
at active tags. The asymmetry is that energy cost at tags should be minimized while
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energy cost at the reader is relatively less of a concern. We present two probabilistic
algorithms that strive at saving tags’ energy. The performance of the algorithms is
controlled by a parameter that can be tuned to make tradeoff between energy cost
and execution time.

In Chap. 3, we explain how to collect information from a sensor-augmented
RFID network. We first give a lower bound on the execution time for any
sensor information collection protocol. We point out that the existing ID-collection
protocols are ill-fitted for this task. We then present a straightforward polling-based
protocol as a baseline for comparison. Its execution time is much larger than the
lower bound and its energy cost is also very high. We set forward to present more
sophisticated protocols that significantly reduce the execution time toward the lower
bound.

In Chap. 4, we discuss how to efficiently collect information from a subset
of all tags. We first show that the standard, straightforward polling design is not
energy-efficient because each tag has to continuously monitor the wireless channel
and receive all tag IDs that the reader needs to collect information from, which is
energy-consuming if the number of such tags is large. We show that a coded polling
protocol is able to cut the amount of data each tag has to receive by half, which
means that energy consumption per tag is also reduced by half. We then present two
novel tag-ordering polling protocols that can reduce per-tag energy consumption by
more than an order of magnitude when comparing with the coded polling protocol.
In these designs, both the time efficiency and the energy efficiency are taken into
consideration, whereas the tradeoff between time and energy is revealed.
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Chapter 2
Tag Estimation in RFID Systems

2.1 System Model

This section introduces the tag estimation problem and the the energy issue in this
problem. The communication model between RFID readers and tags is explained.

2.1.1 Tag Estimation Problem

A tag estimation problem is the problem to design efficient algorithms to estimate
the number of RFID tags in a deployment area without actually reading the ID of
each tag. Let N be the actual number of tags and N̂ be the estimate. The estimation
accuracy is specified by a confidence interval with two parameters: a probability
value α and an error bound β , both in the range of (0,1). The requirement is that
the probability for N/N̂ to fall in the interval [1−β ,1+β ] should be at least α , i.e.,

Prob{(1−β )N̂ ≤ N ≤ (1+β )N̂} ≥ α.

Our goal is to reduce the energy overhead incurred to the tags during the estimation
process that achieves the above accuracy.

2.1.2 Energy Issue

We consider RFID systems using active tags. Tagged goods (such as apparel) may
stack in piles, and there may be obstacles, such as racks filled with merchandize,
between a tag and the reader. We expect active tags are designed to transmit with
significant power that is high enough to ensure reliable information delivery in such
a demanding environment. Hence, energy cost due to the tags’ transmissions is the
main concern in our algorithm design; it increases at least in the square of the

Y. Qiao et al., RFID as an Infrastructure, SpringerBriefs in Computer Science,
DOI 10.1007/978-1-4614-5230-0 2, © The Author(s) 2013
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maximum distance to be covered by the RFID system. Energy consumption that
powers a tag’s circuit for computing and receiving information is not affected by
long distance and obstacles. We consider RFID systems where power consumption
by tags is dominated by transmission events due to long distances that the systems
need to cover. Energy consumed by the RFID reader is less of a concern. We assume
the reader transmits at sufficiently high power.

2.1.3 Communication Protocol

The following communication protocol is used between a reader and tags. The
reader first synchronizes the clocks of the tags and then performs a sequence
of pollings. Clock synchronization only needs to happen at the beginning of the
protocol execution. RFID systems operate in low-rate wireless channels. If an
operation takes a short period of time, clock drift should not be a major issue in
a low-rate channel.

In each polling, the reader sends out a request, which is followed by a slotted time
frame during which the tags respond. The polling request from the reader carries a
contention probability 0 < p ≤ 1 and a frame size f . Each tag will participate in
the current polling with probability p. If it decides to participate, it will pick a slot
uniformly at random from the frame, and transmit a bit string (called response) in
that slot. The format of the response depends on the application. If the tag decides to
not participate, it will keep silent. In our solutions, p will be set in the order of 1/N.

If we know a lower bound Nmin of N, the contention probability can be
implemented efficiently to conserve energy. For example, a company’s inventory of
certain goods may be in the thousands and never before reduced below a certain
number, or the company has a policy on the minimum inventory, or the RFID
estimation becomes unnecessary when the number of tags is below a threshold.
In these cases, we will have a lower bound Nmin, which can be much smaller than
N. If we know such a value of Nmin, we can implement a contention probability
p without requiring all tags to participate in the contention process. Since only
a small number of tags actually participate in contention, energy cost is reduced.
The implementation is described as follows: At the beginning of a polling, each tag
makes a probabilistic decision: It goes to a standby mode for the current polling with
probability 1− 1/Nmin and wakes up until the next polling starts, or it stays awake
to receive the polling request with probability 1/Nmin and then decides to respond
with probability min{p×Nmin,1}. For example, if N = 10,000 and Nmin = 1,000,
then only 10 tags stay awake in each polling.

In the above communication protocol, the reader’s request may include an
optional prefix and only tags that satisfy the prefix will participate in the polling.
For example, suppose all tags deployed in one section of a warehouse carry the 96-
bit GEN2 IDs that begin with “000” in the Serial Number field. In order to estimate
the number of tags in this section, the request carries a predicate testing whether the
first three bits of a tag’s Serial Number is “000”.
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2.1.4 Empty/Singleton/Collision Slots

A slot is said to be empty if no tag responds (transmits) in the slot. It is called a
singleton slot if exactly one tag responds. It is a collision slot if more than one
tag responds. A singleton or collision slot is also called a non-empty slot. The
Philips I-Code system [12] requires a slot length of 10 bits in order to distinguish
singleton slots from collision slots. On the contrary, one bit is enough if we only
need to distinguish empty slots from non-empty slots — ‘0’ means empty and ‘1’
means non-empty. Hence, the response will be much shorter (or consume much less
energy) if an algorithm only needs to know empty/non-empty slots, instead of all
three types of slots as required by [7].

In order to prolong the lifetime of tags, there are two ways to reduce their
energy consumption: reducing the size of each response and reducing the number
of responses. We will present algorithms that require only the knowledge of
empty/non-empty slots and employ statistical methods to minimize the amount of
transmission needed from the tags.

2.2 Generalized Maximum Likelihood Estimation Algorithm

The first estimator for the number of RFID tags is called the generalized maximum
likelihood estimation (GMLE) algorithm. It fully utilizes the information from all
pollings in order to minimize the number of pollings it needs to meet the accuracy
requirement.

2.2.1 Overview

GMLE uses the polling protocol described in Sect. 2.1.3. The frame size f is fixed
to be one slot. The RFID reader adjusts the contention probability for each polling.
Let pi be the contention probability of the ith polling. GMLE only records whether
the sole slot in each polling is empty or non-empty. Based on this information, it
refines the estimate N̂ until the accuracy requirement is met. Let zi be the slot state
of the ith polling. When at least one tag responds, the slot is non-empty and zi = 1.
When no tag responds, it is empty and zi = 0. The sequence of zi, i ≥ 1, forms the
response vector.

At the ith polling, each tag has a probability pi to transmit and, if any tag
transmits, zi will be one. Hence,

Prob{zi = 1}= 1− (1− pi)
N ≈ 1− e−N pi, (2.1)

where N is the the actual number of tags.
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If the contention probabilities of the pollings are picked too small, the response
vector will contain mostly zeros. If the contention probabilities are picked too large,
the response vector will contain mostly ones. Both cases do not provide sufficient
statistical information for accurate estimation. As will be discussed shortly, our
analysis shows that the optimal contention probability for minimizing the number
of pollings is pi = 1.594/N. The problem is that we do not know N (which is the
quantity we want to estimate).

In order to determine pi, GMLE consists of an initialization phase and an
iterative phase. The former quickly produces a coarse estimation of N. The latter
refines the contention probability and generates the estimation result.

2.2.2 Initialization Phase

We want to pick a small value for the initial contention probability p1 at the first
polling. The expected number of responding tags is N p1. If p1 is picked too large, a
lot of tags will respond, which is wasteful because one response or many responses
produce the same information — a non-empty slot. Suppose we know an upper
bound Nmax of N. This information is often available in practice. For example, we
know Nmax is 10,000 if the warehouse is designed to hold no more than 10,000
microwaves (each tagged with a RFID), or the company’s inventory policy requires
that in-store microwaves should not exceed 10,000, or the warehouse only has
10,000 RFID tags in use. Nmax can be much bigger than N. We pick p1 = 1/Nmax

such that the expected number of responding tags is no more than one. If z1 = 0,
we multiply the contention probability by a constant C(> 1), i.e., p2 = p1 ×C for
the second polling. We continue multiplying the contention probability by C after
each polling until a non-empty slot is observed. When that happens (say, at the lth
polling), we have a coarse estimation of N to be 1/pl. Then we move to the next
phase. When C is relatively large, the initialization phase only takes a few pollings
to complete due to the exponential increase of the contention probability.

2.2.3 Iterative Phase

This phase iteratively refines the estimation result after each polling, and terminates
when the specified accuracy requirement is met. Let N̂i be the estimated number of
tags after the ith polling. To compute N̂i, the reader performs three tasks at the ith
polling. First, it sets the contention probability as follows before sending out the
polling request:

pi =
ω

N̂i−1
, (2.2)
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where N̂i−1 is the estimate after the previous polling and ω is a system parameter,
which will be extensively analyzed in the next subsection. Second, based on the
received zi and the history information, the reader finds the new estimate of N that
maximizes the following likelihood function:

Li =
i

∏
j=1

(1− p j)
N(1−z j)(1− (1− p j)

N)z j , (2.3)

where (1− p j)
N(1−z j)(1− (1− p j)

N)z j is the probability for the observed state z j of
the jth polling to occur. Namely, we want to find

N̂i = arg max{Li}
N

. (2.4)

Third, after computing N̂i, the reader has to determine if the confidence interval of
the new estimate meets the requirement. In the following, we show how the above
tasks can be achieved.

2.2.3.1 Compute the value of N̂i

We compute the new estimate of N that maximizes (2.3). Since the maxima is not
affected by monotone transformations, we use logarithm to turn the right side of the
equation from product to summation:

ln(Li) =
i

∑
j=1

[
N(1− z j) ln(1− p j)+ z j ln(1− (1− p j)

N)

]
.

To find the maxima, we differentiate both sides:

∂ ln(Li)

∂N
=

i

∑
j=1

[
(1− z j) ln(1− p j)− z j

(1− p j)
N ln(1− p j)

1− (1− p j)N

]
. (2.5)

We then set the right hand side to zero and solve the equation for the new estimate
N̂i. Note that the derivative is a monotone function of N, we can numerically obtain
N̂i through bisection search.

2.2.3.2 Termination Condition

Using the δ−method [2], we show that, when i is large, N̂i approximately follows
the Gaussian distribution:

Norm

(
N,

(1− (1− pi)
N)

i(1− pi)N ln2(1− pi)

)
.
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The variance of N̂i is

Var(N̂i)≈ 1− (1− pi)
N

i(1− pi)N ln2(1− pi)
. (2.6)

When N is large and pi is small, we can approximate (1− pi)
N as e−N pi and ln(1−

pi) as pi. The above variance becomes

Var(N̂i)≈ eN pi − 1

ip2
i

. (2.7)

Hence, the confidence interval of N is

N̂i ±Zα ·
√

eN̂i pi − 1

ip2
i

, (2.8)

where Zα is the α percentile for the standard Gaussian distribution. For example,
when α = 95%, Zα = 1.96. Because N is undetermined, we use N̂i as an approxi-
mation when computing the standard deviation in (2.8).

The termination condition for GMLE is therefore

Zα ·
√

eN̂i pi − 1

ip2
i

≤ N̂i ·β , (2.9)

where β is the error bound. The above inequality can be rewritten as

√
i ≥ Zα

√
eN̂i pi − 1

N̂i piβ
. (2.10)

When i is large, the estimation changes little from one polling to the next. Hence,
pi = ω/N̂i−1 ≈ ω/N̂i. We have

i ≥ Z2
α · (eω − 1)

ω2β 2 . (2.11)

Hence, if ω is determined, we can theoretically compute the approximate number of
pollings that are required in order to meet the accuracy requirement. For example,
if α = 95%, β = 5%, and ω = 1.594 (which is the optimal value to be given
shortly), 2372 pollings will be required. Note that (2.11) is independent with the
actual number of tags, N. Hence, our approach has perfect scalability.

Figure 2.1 shows the simulation result of GMLE when N=10,000, α=95%,
β = 5% and ω = 1.594. The simulation setup can be found in Sect. 2.4. The middle
curve is the estimated number of tags, N̂i, with respect to the number pollings. It
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Fig. 2.1 The middle curve
shows the estimated number
of tags with respect to the
number of pollings.
The upper and lower curves
show the confidence interval.

converges to the true value N represented by the central straight line. The upper and
lower curves represent the 95% confidence interval, which shrinks as the number of
pollings increases.

2.2.4 Determine the Value of ω

We demonstrate the impact of the value ω on two performance metrics: the number
of pollings and the number of tag responses (i.e., the number of tag transmissions).
The former measures the estimation time since each polling takes an equal amount
of time for request/response exchange. The latter measures the energy cost because
each response corresponds to one tag making one transmission in a slot.

2.2.4.1 Number of Pollings

According to (2.11), the number of pollings for meeting the accuracy requirement
is Z2

α(e
ω − 1)/(ω2β 2). To find its minimum value, we differentiate it with respect

to ω and let the result be zero. Solving the equation, we have ω = 1.594. Hence, the
optimal value of pi that minimizes the number of pollings is

pi =
1.594

N̂i−1
. (2.12)

2.2.4.2 Number of Responses

We count the total number of responses during the estimation process. After a small
number of pollings, the estimation will closely approximate N (see Fig. 2.1). Hence,
the expected number of responses for each polling is N pi ≈ Ni−1 pi = ω . After
Z2

α(e
ω − 1)/(ω2β 2) pollings are made, the total number of responses is roughly
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Z2
α · (eω − 1)

ω2β 2 ω =
Z2

α · (eω − 1)
ωβ 2 . (2.13)

Simulation results will demonstrate that the approximation in the above count is
reasonably accurate. It is an increasing function with respect to ω , which means that
a larger value of ω will lead to a larger number of responses. We give the intuition as
follows: A larger ω means a larger contention probability and thus more collisions.
Two or more responses in a collision slot produce the same amount of information
as one response in a singleton slot (see further explanation in Sect. 2.2.6). In other
words, in order to generate the necessary amount of information for meeting the
accuracy requirement, more responses must be needed if there are more collisions.

2.2.4.3 Numerical Results

in Fig. 2.2, we plot the number of pollings and the number of responses with respect
to the value of ω . The number of pollings is minimized at ω = 1.594. When ω
is smaller than 1.594, its value controls the performance tradeoff between the two
metrics. When we decrease ω , the energy cost (i.e., the number of responses) drops
at the expenses of the estimation time (i.e., the number of pollings).

2.2.5 Request-less Pollings

We observe that, after a number of pollings, the value of pi will stay in a very
small range and does not change much. It becomes unnecessary for the RFID reader
to transmit it at each polling. Hence, we can improve GMLE as follows: If the
percentage change in pi during a certain number M1 of consecutive pollings is
below a small threshold, the reader will broadcast a polling request, carrying the
latest value of pi, a flag indicating that it will no longer transmit polling requests
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for a certain number M2 of slots, and the value of M2. Without receiving further
polling requests, the tags will respond with the same contention probability in the
subsequent M2 slots. This is called the request-less pollings. After M2 slots, the
reader will recalculate the contention probability, broadcast another polling request,
carrying the new probability value, a flag, and M2. This process repeats until the
termination condition in (2.9) is met. With the threshold being 10%, M1 = 10,
and M2 = 50, simulation results show that the performance difference caused by
request-less pollings is negligibly small even though the contention probability
during request-less pollings may be slightly off the value set by (2.2). Request-less
pollings can also be applied to the algorithm in the next section.

2.2.6 Information Loss due to Collision

GMLE has a frame size of one slot. It obtains only binary information at each
polling. No matter how many tags respond, the information that the reader receives
is always the same, i.e., zi = 1, which implies information loss when two or more
tags decide to transmit at a polling. Let’s compare two scenarios. In one scenario,
only one tag responds at a polling. In the other, two tags respond. These two
scenarios generate the same information but the energy cost of the second scenario
is twice of the first. To address this issue, we present another algorithm that reduces
the probability of collision and, moreover, compensate the impact of collision in its
computation.

2.3 Enhanced Generalized Maximum Likelihood
Estimation Algorithm

The enhanced generalized maximum likelihood estimation (EGMLE) algorithm
also utilizes history information from previous pollings and uses the maximum
likelihood method to estimate the number of tags. However, instead of only
obtaining binary information, it computes the number of responses in each polling.
Because more information can be extracted, it is able to achieve much better energy
efficiency than GMLE.

2.3.1 Overview

EGMLE uses the same polling protocol as GMLE does, except that its frame size
f is larger than one in order to reduce the probability of collision. The result of the
ith polling, xi, is no longer a binary value. Instead, it is an estimate of the number of
tags that respond during the polling.
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EGMLE takes two steps to solve the collision problem. First, it increases the
frame size f such that the tags that decide to respond at a polling are likely to
respond at different slots in the frame. We pick values for pi and f such that the
collision probability is very small. Second, we compensate the remaining impact of
collision in our computation.

EGMLE also consists of an initialization phase and an iterative phase. The
initialization phase of EGMLE is the same as the initialization phase of GMLE,
except that when the RFID reader obtains the first non-zero result xl at the lth polling
with a contention probability pl , it computes a coarse estimation of N as xl/pl . Then
it moves to the next phase below.

2.3.2 Iterative Phase

This phase iteratively refines the estimation after each polling, and terminates when
the specified accuracy requirement is met. The reader performs four tasks during
the ith polling. First, it computes the contention probability before sending out the
polling request.

pi =
ω

N̂i−1
, (2.14)

where N̂i−1 is the estimate after the previous polling and ω is one by default. As
we will show in the next subsection, performance tradeoff can be made by choosing
other values for ω .

Second, the reader computes the number of responses xi in the current frame.
Third, based on the received xi and the history information, the reader computes

the new estimate of N that maximizes the following likelihood function:

Li =
i

∏
j=l+1

[
1√

2πN p j(1− p j)
· e−

((1+ε)x j−N p j )
2

2N p j(1−p j)

]
, (2.15)

where ε is introduced to compensate for collision and the iterative phase begins
from the (l + 1)th polling. The above formula and the value of ε will be derived
shortly. The new estimate is

N̂i = arg max{Li}
N

. (2.16)

Fourth, after computing N̂i, the reader determines if the estimate meets the
accuracy requirement. In the following, we give the details of the above tasks.
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2.3.2.1 Compute the number of responses

At the ith polling, the reader measures the number of non-empty slots in the frame,
denoted as xi, which is an integer in the range of [0.. f ]. Due to possible collision,
the actual number of responses, denoted as x∗i , can be greater. Let x∗i = (1+ ε)xi.
The value of ε is determined below.

Since each tag independently decides to respond with probability pi, x∗i follows
a binomial distribution, Bino(N, pi), i.e.,

Prob{x∗i = k}=
(

N
k

)
pk

i (1− pi)
N−k. (2.17)

Suppose ω takes the default value, 1. When i is large, Ni−1 approximates N and thus
pi ≈ 1/N. If N is sufficiently large, Prob{x∗i = 2}≈ 0.1839, Prob{x∗i = 3}≈ 0.0613,
Prob{x∗i = 4} ≈ 0.0153, and the probability decreases exponentially with respect to
k. Prob{x∗i > 4} is only about 0.0037.

Next, we compute the probability for collision to happen at the ith polling, which
is denoted as Probi{collision}.

Probi{collision}=
N

∑
k=2

Probi{collision|x∗i = k}×Prob{x∗i = k}

=
f

∑
k=2

(1− P( f ,k)
f k )×Prob{x∗i = k}+

N

∑
k= f+1

1×Prob{x∗i = k},

where P( f ,k) = f !/( f − k)! is the permutation function.
Figure 2.3 shows the collision probability Probi{collision} with respect to f .

It diminishes quickly as f increases. When f = 10 (which is what we use in the
simulations), Probi{collision} is just 0.046. With such a small probability, the
chance for more than two tags involved in a collision or more than one collision
at a polling is exceedingly small and thus ignored. Therefore, to approximate x∗i , we
multiply xi by 1.046 to compensate the impact of collision. Namely, ε = 0.046.
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2.3.2.2 Compute the value of N̂i

Recall that the iterative phase starts at the (l+1)th polling. After the ith polling, the
reader has collected the values of x j, l < j ≤ i. By our previous analysis, we know
that x∗i = (1+ ε)xi and it follows a binomial distribution Bino(N, p j). When N is
large enough, the binomial distribution can be closely approximated by a Gaussian
distribution Norm(μ j,σ j) with parameters μ j = N p j and σ j =

√
N p j(1− p j).

Namely,

x∗j ≈ (1+ ε)x j ∼ Norm(N p j ,N p j(1− p j)). (2.18)

Hence, the probability for the measured number of responses, (1+ ε)x j , to occur
under this distribution is [2πN p j(1− p j)]

−1/2exp{−[(1+ ε)x j −N p j]
2/[2N p j(1−

p j)]}. The likelihood function for all measured numbers of responses in the pollings,
(1+ ε)x j, l < j ≤ i, to occur is

Li =
i

∏
j=l+1

[
1√

2πN p j(1− p j)
· e−

((1+ε)x j−N p j )
2

2N p j(1−p j)

]
. (2.19)

To find the value N̂i that maximizes the likelihood function, we first take logarithm
on both sides of (2.19),

ln(Li) =
i

∑
j=l+1

[
ln

1√
2πN p j(1− p j)

− ((1+ ε)x j −N p j)
2

2N p j(1− p j)

]
. (2.20)

We then differentiate both sides,

∂ ln(Li)

∂N
=

i

∑
j=l+1

[
− 1

2N
+

(1+ ε)2x2
j − (N p j)

2

2N2 p j(1− p j)

]

=
i

∑
j=l+1

(1+ ε)2x2
j − (N p j)

2

2N2 p j(1− p j)
− i− l

2N
. (2.21)

Finally, we set the right side to be zero and numerically compute the value of N̂i.

2.3.2.3 Termination Condition

The fisher information1 I (N̂i) of Li is defined as follows

I (N̂i) =−E

[
∂ 2ln(Li)

∂N2

]
. (2.22)

1The fisher information [9] is a way of measuring the amount of information that an observable
random variable x carries about an unknown parameter θ upon which the likelihood function of θ ,
L(θ ) = f (x;θ ), depends.
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According to (2.21), we have

I (N̂i) = E

[ i

∑
j=l+1

(1+ ε)2x2
j

N3 p j(1− p j)
− i− l

2N2

]

=
i

∑
j=l+1

(N p j)
2 +N p j(1− p j)

N3 p j(1− p j)
− i− l

2N2 (2.23)

=
i

∑
j=l+1

p j

N(1− p j)
+

i− l
2N2 . (2.24)

Above, we have applied E((1+ε)2x2
j) = (N p j)

2+N p j(1− p j) in (2.23) because

(1+ ε)x j ∼ Norm(N p j,N p j(1− p j)) and E(x2) = (E(x))2 +Var(x).
Following the classical theory for MLE, when i is sufficiently large, the

distribution of N̂i is approximated by

Norm

(
N,

1

I (N̂i)

)
. (2.25)

Hence, the confidence interval is

N̂i ±Zα ·
√

1

I (N̂i)
. (2.26)

Note that we use N̂i as an approximation for N in the computation when necessary
since N is unknown. The termination condition for EGMLE to achieve the required
accurary is

Zα ·
√

1

I (N̂i)
≤ N̂i ·β . (2.27)

Figure 2.4 shows the simulation result of EGMLE when N = 10,000, α = 95%,
β = 5%, and ω = 1. The middle curve is the value of N̂i, which converges to the
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value of N represented by the central straight line. The upper and lower curves
represent the 95% confidence interval, which shrinks as the number of pollings
increases. The algorithm terminates after 1081 pollings.

2.3.3 Performance Tradeoff

According to (2.14), the contention probability is proportional to ω . We study how
the value of ω controls the tradeoff between the estimation time and the energy
cost, which are measured by the number of pollings and the number of responses,
respectively.

2.3.3.1 Number of Pollings

Since the MLE approach provides statistically consistent estimate, when i is large,
(2.24) can be approximated as follows:

I (N̂i) =
i

∑
j=l+1

p j

N(1− p j)
+

i− l
2N2

≈
(

pi

N(1− pi)
+

1
2N2

)
· (i− l)

≈ 2N pi + 1
2N2 · (i− l). (2.28)

where pi 	 1. According to (2.27), we have

I (N̂i)≥
(

Zα

N̂i ·β
)2

(2.29)

(2.28) and (2.29) give us the following inequality:

2N pi + 1
2N2 · (i− l)≥

(
Zα

N̂i ·β
)2

,

i ≥ 2Z2
α

(2ω + 1)β 2 , (2.30)

where N̂i ≈ N and l 	 i. Hence, the number of pollings it takes to achieve the
accuracy requirement is 2Z2

α/[(2ω + 1)β 2].
The solid line in Fig. 2.5 shows the number of pollings with respect to ω when

α = 95% and β = 5%. It is a decreasing function in ω . The reason is that a



2.4 Simulations 23

0

500

1000

1500

2000

2500

3000

0 1 2 3 4 5
ω

Number of Pollings
Number of Responses

Fig. 2.5 The solid line shows
the number of pollings with
respect to ω when α = 95%
and β = 5%. The dotted line
shows the number of
responses.

larger ω results in more responses (and thus more information) in each polling.
Consequently, a less number of pollings is needed to achieve a certain accuracy
requirement.

2.3.3.2 Number of Responses

When i is large, the expected number of responses for each polling is N pi ≈
Ni−1 pi = ω . After 2Z2

α/[(2ω + 1)β 2] pollings are made, the total number of
responses is roughly

Z2
α · (eω − 1)

ω2β 2 ω =
Z2

α · (eω − 1)
ωβ 2 . (2.31)

The dotted line in Fig. 2.5 shows the number of responses with respect to ω when
α = 95% and β = 5%. It is an increasing function in ω , which means that a larger
value of ω will lead to a larger number of responses.

2.4 Simulations

We evaluate the performance of GMLE and EGMLE by simulations. In order
to demonstrate the performance tradeoff between energy cost and estimation
time, we choose two different contention probability parameters for each of the
two algorithms. We use ω = 0.5 and 1.594 for GMLE, i.e., pi = 0.5/ ˆNi−1 and
1.594/ ˆNi−1. Note that 1.594 is the optimal value of ω for time efficiency in
GMLE. We denote the corresponding variants of the algorithm as GMLE(0.5) and
GMLE(1.594).

For EGMLE, Fig. 2.5 shows that the number of pollings and the number of
responses are both monotonic functions with respect to ω , which means there is
no optimal ω for either energy efficiency or time efficiency. We choose ω = 0.5 and
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Table 2.1 Number of Responses when α = 90%,β = 9%

Total number of responses

N GMLE(0.5) GMLE(1.594) EGMLE(0.5) EGMLE(1.0) UPE-O UPE-M EZB

5000 432S 767 S 172 S 225 S 6345 L 709 L 4342 S
10000 414S 832 S 180 S 231 S 11986 L 899 L 8683 S
20000 402S 844 S 186 S 213 S 22895 L 977 L 17366 S

1.0 for EGMLE, i.e., pi = 0.5/ ˆNi−1 and 1.0/ ˆNi−1. The corresponding variants of the
algorithm is denoted as EGMLE(0.5) and EGMLE(1.0). Section 2.3.2 shows how to
compute the compensation parameter ε for EGMLE(1.0), which is 0.046. Following
the same steps, we obtain ε = 0.012 for EGMLE(0.5). We compare the algorithms
with the state-of-the-art algorithms in the related work. They are the Unified
Probabilistic Estimator (UPE) [7] and the Enhanced Zero-Based (EZB) estimator
[8]. The original UPE, denoted as UPE-O, is very energy-inefficient because its
contention probability begins from 100% and thus all tags will respond. We modify
it (denoted as UPE-M) to begin from a small initial contention probability 1/Nmax

and keep the remaining part of UPE-O. This section shows the performance of
both UPE-O and UPE-M. We run each simulation 100 times and average the
outcomes.

In the initialization phase of our algorithms, let Nmax = 1,000,000 and C = 2. The
frame size in EGMLE(0.5) and EGMLE(1.0) is 10 slots. The parameters for UPE
and EZB are chosen based on the original papers whenever possible. All algorithms
except for UPE need only to identify empty and non-empty slots. To set a non-empty
slot apart from an empty slot, a tag only needs to respond with a short bit string (one
bit) to make the channel busy. UPE has to identify empty, singleton and collision
slots. To set a singleton slot apart from a collision slot, many more bits (10 used by
UPE) are necessary [1]. For example, CRC may be used to detect collision.

The energy cost of an algorithm depends on (1) the number of responses that all
tags transmit before the algorithm terminates and (2) the size of each response. We
use ‘S’ to mean that the response is a short bit string (in the empty/non-empty case),
and ‘L’ to mean a long bit string (in the empty/singleton/collision case).

We do not include the simulation results for LoF [11] because its energy cost
is much higher than others. Its number of responses transmitted by the tags is kN,
where k is the number of frames used in the estimation process.

2.4.1 Number of Responses

The first simulation studies the number of responses in each algorithm with respect
to N, α and β . Table 2.1 shows the number of responses with respect to N when
α = 90% and β = 9%. GMLE and EGMLE require fewer responses than UPE
and EZB. As predicted, UPE-O is energy-inefficient; UPE-M works much better.
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Table 2.2 Number of Responses when α = 90%,β = 6%

Total number of responses

N GMLE(0.5) GMLE(1.594) EGMLE(0.5) EGMLE(1.0) UPE-O UPE-M EZB

5000 1041 S 1855 S 402 S 523 S 7144 L 1811 L 7236 S
10000 1153 S 1924 S 414 S 519 S 12645 L 1687 L 14472 S
20000 1015 S 1797 S 375 S 503 S 23808 L 1814 L 28944 S

Table 2.3 Number of Responses when α = 90%,β = 3%

Total number of responses

N GMLE(0.5) GMLE(1.594) EGMLE(0.5) EGMLE(1.0) UPE-O UPE-M EZB

5000 3927S 7341 S 1499 S 2037 S 12664 L 6426 L 27497 S
10000 3760S 7339 S 1489 S 2059 S 18023 L 6581 L 54993 S
20000 3783S 7350 S 1543 S 2002 S 28708 L 6993 L 109987 S

Table 2.4 Number of Responses when α = 95%,β = 9%

Total number of responses

N GMLE(0.5) GMLE(1.594) EGMLE(0.5) EGMLE(1.0) UPE-O UPE-M EZB

5000 603S 1112 S 258 S 330 S 6715 L 1073 L 4342 S
10000 669S 1120 S 247 S 304 S 12062 L 961 L 8683 S
20000 680S 1197 S 262 S 320 S 23345 L 1136 L 17366 S

Table 2.5 Number of Responses when α = 95%,β = 6%

Total number of responses

N GMLE(0.5) GMLE(1.594) EGMLE(0.5) EGMLE(1.0) UPE-O UPE-M EZB

5000 1340 S 2515 S 581 S 736 S 7712 L 2598 L 10130 S
10000 1354 S 2511 S 596 S 736 S 13477 L 2318 L 20261 S
20000 1381 S 2630 S 555 S 749 S 24631 L 2510 L 40521 S

The best algorithm is EGMLE(0.5), whose number of responses is about one fifth
of what UPE-M requires and one ninetieth of what EZB requires when N is 20,000.
Moreover, each response in UPE is much longer.

GMLE(0.5) has a smaller energy cost than GMLE(1.594). For example, N =
10,000, the ratio between the number of responses by GMLE(1.594) and that by
GMLE(0.5) is 2.01, which is close to the theoretically-computed ratio of 1.90 in
Fig. 2.2. Similarly, EGMLE(0.5) is more energy efficient than EGMLE(1.0). When
N = 10,000, the ratio between the number of responses by GMLE(1.594) and that
by GMLE(0.5) is 1.28, which is also close to the theoretical value of 1.34 in Fig. 2.5.

We vary α from 90% to 95% and to 99%, and vary β from 9% to 6% and to 3%.
Tables 2.2 to 2.9 show similar comparison under different values of α and β values.
In all cases, the number of responses increases when α increases or β decreases, and
except for EZB, the number does not vary much with respect to N, meaning that all
algorithms except for EZB achieve good scalability. The ratio between the numbers
for different algorithms appears to be quite stable under different parameter settings.
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Table 2.6 Number of Responses when α = 95%,β = 3%

Total number of responses

N GMLE(0.5) GMLE(1.594) EGMLE(0.5) EGMLE(1.0) UPE-O UPE-M EZB

5000 5687 S 10493 S 2181 S 2915 S 14678 L 8858 L 39074 S
10000 5673 S 10286 S 2267 S 2924 S 20845 L 9364 L 78148 S
20000 5588 S 10637 S 2217 S 2990 S 32339 L 9683 L 156297 S

Table 2.7 Number of Responses when α = 99%,β = 9%

Total number of responses

N GMLE(0.5) GMLE(1.594) EGMLE(0.5) EGMLE(1.0) UPE-O UPE-M EZB

5000 1040 S 2162 S 427 S 453 S 7240 L 1726 L 7236 S
10000 1071 S 2135 S 416 S 529 S 12842 L 1906 L 14472 S
20000 1017 S 1916 S 439 S 573 S 23982 L 1819 L 28944 S

Table 2.8 Number of Responses when α = 99%,β = 6%

Total number of responses

N GMLE(0.5) GMLE(1.594) EGMLE(0.5) EGMLE(1.0) UPE-O UPE-M EZB

5000 2527 S 4785 S 965 S 1269 S 9679 L 4311 L 17366 S
10000 2527 S 4637 S 973 S 1248 S 15336 L 4130 L 34733 S
20000 2440 S 4580 S 991 S 1293 S 26128 L 4044 L 69465 S

Table 2.9 Number of Responses when α = 99%,β = 3%

Total number of responses

N GMLE(0.5) GMLE(1.594) EGMLE(0.5) EGMLE(1.0) UPE-O UPE-M EZB

5000 9693 S 18690 S 3818 S 4993 S 21823 L 16705 L 65124 S
10000 9606 S 18223 S 3791 S 4998 S 27667 L 15882 L 130247 S
20000 9385 S 17735 S 3847 S 5027 S 38935 L 16471 L 260495 S

2.4.2 Total Number of Bits Transmitted

The second simulation evaluates the energy cost of the algorithms. As mentioned
before, one bit is enough to separate empty/non-empty slot. Hence, the response
of GMLE, EGMLE and EZB is one bit long. A response in UPE-M is 10 bits
long [7]. We compare the total number of bits transmitted by all tags before each
algorithm terminates. We omit the results for UPE-O, which are much worse than
the results of UPE-M. Figure 2.6 shows the simulation results with respect to N
when α = 90%,β = 9%,6% and 3%. For example, when α = 90%, β = 3%, and
N = 20,000, the ratio between the number of bits transmitted by UPE-M (EZB) and
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and 3%.

that by our best estimator EGMLE(0.5) is 45.32 (71.28). Figures 2.7 and 2.8 show
the comparison under different β values when α = 95% and 99%, respectively.
Their results are similar to Fig. 2.6. It should be noted that the number of bits
transmitted is not an accurate measurement of the energy cost because it ignores
the energy spent to power up the radio and synchronize with the reader. However,
combining the number of bits and the number of transmissions (in the previous
subsection) still gives a good idea on how energy-efficient each algorithm is.
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2.4.3 Estimation Time

The third simulation compares the time it takes for each algorithm to complete the
estimation of N. Based on the specification of the Philips I-Code system [12], after
the required waiting times (e.g., gap between transmissions) are included, it can
be calculated that a RFID reader needs 0.4 ms to detect an empty slot, 0.8 ms
to detect a collision or a singleton slot, and 1 ms to broadcast a polling request.
Hence, GMLE, EGMLE and EZB requires a slot length of 0.4 ms, while UPE-M
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requires a slot length of 0.8 ms. Recall that the contention probability takes the
form of ω/N̂i, where ω is a known constant. Thus the reader transmits N̂i instead of
the actual probability value in the polling requests. If we assume Nmax is no more
than a million, then 20 bits for N̂i are sufficient. GMLE has a fixed frame size of
one slot. EGMLE has a fixed frame size of 10 slots. EZB and UPE-M also have
pre-determined frame sizes. Let α = 90%,β = 9%,6% and 3%. The three plots in
Fig. 2.9 show the estimation times of the algorithms with respect to the number of
tags in the deployment. The times grow very slowly as the number of tags increase,
which suggests the algorithms all scale well. In the first plot of Fig. 2.9, UPE-M
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Fig. 2.9 Estimation times of
the algorithms when
α = 90%,β = 9%,6%
and 3%.

takes the least amount of time, only about 0.5 second, to estimate 20,000 tags,
while the other algorithms take between 0.7 to 2.0 seconds. GMLE(1.594) takes
less estimation time than GMLE(0.5) and the ratio is 0.61, which is consistent with
the theoretical value of 0.58 in Fig. 2.2. Similarly, EGMLE(1.0) takes less time
than EGMLE(0.5) and the ratio is 0.68, which is also consistent with the theoretical
value of 0.67 in Fig. 2.5. Figures 2.10 and 2.11 show similar simulation results
when α = 95% and 99%, respectively. Even though the new algorithms take longer
to complete, their estimation time is still small. We believe the extra time needed
can be well justified for the large energy saving.
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There exists a performance tradeoff between GMLE and EGMLE. In the
previous two subsections, we have examined energy cost in terms of number of
responses and number of transmitted bits. EGMLE always performs better than
GMLE. In this subsection, we compare estimation time of our two methods. GMLE
performs better than EGMLE. Because the focus of this work is on energy efficiency,
we regard EGMLE as the best estimator for energy saving.



32 2 Tag Estimation in RFID Systems

0

2

4

6

8

10

12

14

16

18

0 5000 10000 15000 20000

es
ti
m

at
io

n 
ti
m

e 
in

 s
ec

on
ds

the number of tags N

GMLE(0.5)
GMLE(1.594)
EGMLE(0.5)
EGMLE(1.0)

UPE-M
ZEB

0

1

2

3

4

5

6

7

8

0 5000 10000 15000 20000

es
ti
m

at
io

n 
ti
m

e 
in

 s
ec

on
ds

the number of tags N

GMLE(0.5)
GMLE(1.594)
EGMLE(0.5)
EGMLE(1.0)

UPE-M
ZEB

0

10

20

30

40

50

60

70

0 5000 10000 15000 20000

es
ti
m

at
io

n 
ti
m

e 
in

 s
ec

on
ds

the number of tags N

GMLE(0.5)
GMLE(1.594)
EGMLE(0.5)
EGMLE(1.0)

UPE-M
ZEB

Fig. 2.11 Estimation times
of the algorithms when
α = 99%,β = 9%,6%
and 3%.

2.5 Other Methods

Instead of identifying individual RFID tags, Floerkemeier [4,5] studies the problem
of estimating the cardinality of a tag set based on the number of empty slots.
The proposed scheme employs a Bayesian probability estimation to achieve fast
estimation. The scheme is similar to hash-based estimators [3,14] and the difference
is discussed in [8]. In Kodialam and Nandagopal’s approach [7], information from
tags are collected by a RFID reader in a series of time frames. Each frame consists
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of a number of slots, and the tags probabilistically respond in those slots. Using the
probabilistic counting methods, the reader estimates the number of tags based on
the number of empty slots or the number of collision slots in each frame. Their best
estimator is called the Unified Probabilistic Estimator (UPE). A follow-up work by
the same authors proposes the Enhanced Zero-Based Estimator (EZB) [8], which
makes its estimation based on the number of empty slots. The focus of the above
estimators is to reduce the time it takes a reader to complete the estimation process.
Because their goal is not conserving energy for active tags, their design is not geared
towards reducing the number of transmissions made by the tags.

The Lottery-Frame scheme (LoF) [11] by Qian et al. employs a geometric
distribution-based scheme to determine which slot in a time frame each tag will
respond. It significantly reduces the estimation time when comparing with UPE.
However, every tag must respond in each of the time frames, resulting in large
energy cost when active tags use their own power to transmit. The First Non-Empty
slots Based algorithm (FNEB) [6] uses the slot number of the first reply from tags
in a frame to count RFID tags in both static and dynamic environments.

Also related is a novel security protocol proposed by Tan et al. to monitor the
event of missing tags in the presence of dishonest RFID readers [13]. In order to
prevent a dishonest reader from replaying previously collected information, they
maintain a timer in the server and periodically update the system clock. Li et al.
[10] design a series of efficient protocols that employ novel techniques to identify
missing tags in large-scale RFID systems.

2.6 Summary

This chapter presents two probabilistic algorithms for estimating the number of
RFID tags in a region. Solving the tag estimation problem incurs energy cost both
at the RFID reader and at active tags. The asymmetry is that energy cost at tags
should be minimized while energy cost at the reader is relatively less of a concern
because the reader’s battery can be replaced easily or it may be powered by an
external source. To exploit this asymmetry, the probabilistic algorithms trade more
energy cost at the reader for less cost at the tags. The performance of the algorithms
is controlled by a parameter ω , specifying the contention probability that tags use
to decide whether they will transmit. By modifying this parameter, the algorithms
can make tradeoff between energy cost and estimation time.
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Chapter 3
Collecting Information from Sensor-augmented
RFID Systems

3.1 System Model

In this section, we first introduces the information collection problem in sensor-
augmented RFID systems and make assumptions. Then a theoretical lower bound
on the execution time is provided as a basis to evaluate the protocols.

3.1.1 Problem

Consider a RFID system with a large number of active tags deployed in a region.
Each tag is equipped with a sensor that generates a certain type of information,
which can be one bit or multiple bits. In the rest of this chapter, we will refer
to a tag’s sensor information simply as a tag’s information. We assume that
the RFID reader and the tags transmit with sufficient power such that they can
communicate over a long distance. Communications between the reader and the
tags are time-slotted. The reader’s signal will synchronize the clocks of the tags.
Generally speaking, communications are driven by the reader in a request-and-
response pattern. The reader issues a request, which is followed by a tag’s response
or a slotted time frame in which multiple tags respond.

The problem is to design a protocol for a reader to periodically collect informa-
tion from the tags. Our goal is to minimize the execution time of the information
collection protocol, so that it uses as little time as possible to gather data from
the tags.

3.1.2 Assumption

We assume that the RFID reader has access to a database that stores the IDs of all
tags. This is a reasonable assumption for RFID-assisted warehouse management,

Y. Qiao et al., RFID as an Infrastructure, SpringerBriefs in Computer Science,
DOI 10.1007/978-1-4614-5230-0 3, © The Author(s) 2013
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where the tag IDs are read into a database when new objects are moved into the
system and they are removed from the database when the objects are moved out.
Even if this operation is not performed, there are many protocols that are designed
to collect all tag IDs from the system (see the introduction). Once the tag IDs are
collected, we can use the protocols in this chapter to periodically collect information
from the tags.

The set of tags in a warehouse changes over time. If the execution time of the
protocols is short, the set of tags is likely to be stable during the protocol execution.
However, even if the set of tags changes, the reader can simply ignore the tags that
are added or removed from the system during the protocol execution. The reader
will start to collect information from new tags in the next execution of the protocol.

Actions may need to be taken after the sensor information indicates a problem:
For example, the battery of a sensor needs to be replaced or the temperature in a
certain section of a chilled storage is too high. The problem of physically locating
the alarm-raising tag is beyond the scope of this book. One possible method is to
instruct the tag to keep transmitting so that it can be located by a mobile device that
detects the direction and distance of a transmitting target. Another approach is to
use a localization protocol [6].

3.1.3 Performance Lower Bound and ID-collection Protocols

Let tid be the length of a time slot that the reader uses to broadcast a tag ID, which
is 96 bits in the Gen2 standard. Note that the amount of time it takes the reader to
transmit an ID may be different from what it takes a tag to transmit an ID because
the reader and the tags may operate at different transmission rates [9]. Let tin f be the
length of a time slot for a tag to transmit its information. The value of tin f depends
on the number of bits that the information contains, which is application-specific.
Let n be the number of tags in the system. A lower bound for any protocol to collect
information from all tags is n× tin f , which is the aggregate time for all tags to report
their information. This lower bound is not achievable because it takes additional
time for the reader to send its request(s). However, we can design a protocol whose
expected execution time is reasonably close to this lower bound.

Collecting sensor information from tags is a different problem than collecting
IDs from the tags. In fact, solutions to these two problems are complementary in
practice. First, the ID of a tag only needs to be read once when the tag enters
the system and it is removed when the tag exits. Sensor information needs to
be collected periodically. Second, tag IDs are a set of numbers, whereas sensor
information is not only a set of sensor readings but also a mapping from the readings
to the tags where each sensor reading takes place.

One may argue that an ID-collection protocol can piggyback a tag’s sensor
information when it reads the tag’s ID. There are two major types of ID-collection
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protocols: ALOHA-based or tree-based. It is well known that, for any ALOHA-
based protocol [3, 4, 8, 10–12], the optimal execution time for reading n tags is
e× n× T [7], where e is the natural constant and T is the length of a time slot
in which a tag’s ID and its sensor information can be transmitted.1 Note that
n × T is not achievable due to collision in ALOHA. For tree-based protocols
[1,2,5,13], analytical and simulation results have shown that their best performance
is comparable to the best of the ALOHA-based protocols.

We know that a lower bound for only collecting sensor information from n tags
is n× tin f , where tin f can be as little as one seventh of T when one bit information
is reported (see Sect. 3.6). Hence, the optimal execution time e× n× T of an ID-
collection protocol can be almost twenty times of our lower bound. In contrast, the
best protocol specifically designed for information collection achieves an execution
time within 1.44 times the lower bound, as we will see later. The reason is that
when we periodically collect sensor information from tags, the IDs of the tags
are supposed to be already known and in fact the protocol design relies on the
knowledge of these IDs to help avoid radio collisions in order to improve time
efficiency.

3.2 Polling-based Information Collection Protocol

The baseline protocol is called the polling-based information collection protocol
(PIC). It is very simple. The RFID reader broadcasts the tag IDs one after another.
After it transmits an ID, it waits for a period of tin f to receive the information of the
corresponding tag. Hence, the time to collect information from one tag is tid + tin f .
The total execution time of the protocol for collecting information from all tags is
n× (tid + tin f ).

PIC has two major limitations. First, its execution time is much larger than
the optimal value n × tin f . Using the parameters in [9], we find that tid can be
twelve times of tin f when the information that a tag reports is one bit. Hence,
n× (tid + tin f ) is up to thirteen times of the lower bound, which leaves much room
for improvement. Second, each tag must continuously listen to the communication
channel until its ID is received. If battery-powered active tags are used, this will
cause significant energy overhead because each tag has to keep powering its circuit
and may have to receive thousands of tag IDs before finding its own. In the
following, we present two protocols that solve the energy problem and are much
more time-efficient.

1In an ALOHA-based protocol, we cannot let tags only transmit their sensor readings without
sending their IDs because we need to know which tag each senor reading belongs to.
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3.3 Single-hash Information Collection Protocol

In this section, we present a Single-hash Information Collection protocol (SIC) that
avoids the transmission of tag IDs and does not require the tags to continuously
listen to the channel.

3.3.1 Protocol Overview

The execution of the SIC protocol consists of multiple phases. Every phase has the
same structure: It begins with an information collection request sent from the reader
to the tags, followed by a slotted time frame, in which some tags are scheduled
to transmit their information. As we will explain later, about 36.8% of the tags
are scheduled for transmission in the first phase, 36.8% of the remaining tags are
scheduled in the second phase, ..., until all tags are scheduled for transmission. We
stress that each tag will be scheduled only once in one of the phases, and it will be
assigned by the reader to a unique slot in the time frame of that phase.

Next, we will first explain how to assign tags to slots, and then give the protocol
details.

3.3.2 Assigning Tags to Time Slots Using a Hash Function

Consider an arbitrary phase. Suppose there are n′ tags from which the reader has
not yet received information. Only these tags are considered for slot assignment
because the information of other tags has been received in the previous phases.
Clearly, n′ = n for the first phase.

The reader always sets the number of slots in the frame equal to the number of
tags it considers for slot assignment. Namely, the frame size is n′. Before the reader
sends out a request, it has to determine which tags should transmit in this phase and
which slots in the frame they should be assigned to. To avoid collision, it should
never assign more than one tag to a slot. Because the number of tags is equal to the
number of slots, it is not difficult for the reader to construct a one-to-one mapping
from the tags to the slots. But it is too costly to inform the tags about this mapping,
especially when the set of tags may change each time the protocol is executed.

One solution is for the reader to use a hash function H to map the tags to the
slots, while the tags use the same hash function to determine which slots they should
use. The hash function takes the ID of a tag and a random number r as input and
produces a pseudo random number H(ID,r) as output, which is used as the slot
index that the tag is mapped to. However, this approach does not ensure one-to-one
mapping. Multiple tags may be mapped to the same slot. In this case, these tags
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cannot transmit in the slot because otherwise collision would occur. The slot is thus
wasted. If no tag is mapped to a slot, that slot is also wasted. Only when one and
only one tag is mapped to a slot, the reader will assign the tag to the slot. In this
case, we say the slot is useful. How to inform tags which slots are useful so that the
tags assigned to them will transmit in these slots? We introduce an indicator vector,
which is described in the next subsection.

3.3.3 Protocol Description

SIC consists of multiple phases. In each phase, the reader sends out a request and
then tags transmit their information in the subsequent frame. Before sending out
the request, the RFID reader has to assign tags to the slots of the frame. It picks
a random number r and uses the hash function to map the IDs of the tags to the
slots. After determining which slots are useful and which have to be wasted, the
reader constructs an n′-bit indicator vector, where n′ is the number of tags that are
considered for slot assignment. Recall that it is also the number of slots in the frame.
Each bit in the vector corresponds to a slot in the frame at the same index location.
If the slot is useful (i.e., one and only one tag is mapped to it), the bit value is 1;
otherwise, it is 0.

The request broadcast by the reader consists of the information type to be
reported, the frame size (i.e., number of slots in the frame), a random number r,
and the indicator vector, where r is used by the hash function and it is different in
each phase. If the vector is too long, the reader divides it into segments of 96 bits
(equivalent to the length of a tag ID) and transmits each segment in a time slot of
length tid .

Using the same hash function, a tag knows the index i of the slot it is mapped to.
After the tag receives the request, it knows whether its slot will be useful or not by
examining the ith bit in the indicator vector. If the bit is 0, the tag will not transmit.
If the bit is 1, the tag will transmit its information during the ith slot in the frame
and it will not participate in the remaining phases.

It should be noted that the tag does not have to receive the whole indicator vector.
It knows the index i of the bit it looks for. Hence, it also knows which segment of
the indicator vector it must receive. The tag can be in a stand-by mode to conserve
energy at times other than when it receives its segment of the indicator vector or
transmits its information.

The first phase considers n tags for slot assignment and its frame has n slots.
Each subsequent phase considers a fewer number of tags and has a smaller
frame accordingly. The protocol terminates after all tags report their information.
Alternatively, the reader may stop the SIC protocol when the number of remaining
tags is fewer than a small threshold, and then it invokes the PIC protocol to collect
information from these tags.
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3.3.4 Expected Execution Time

We derive the expected execution time of the SIC protocol. Consider an arbitrary
tag x and an arbitrary phase that x participates. Let n′ be the number of tags that are
considered for slot assignment in this phase. The frame size is also n′. Let P1 be the
probability that no other tag is mapped to the slot that x is mapped to. The subscript
‘1’ indicates that a single hash function is used.

P1 =

(
1− 1

n′

)n′−1

≈ e−
n′−1

n′ ≈ e−1 ≈ 36.8%, (3.1)

where e is the natural constant. When this happens, tag x will be assigned to the
slot. It will not participate in the remaining phases. Hence, the expected number of
phases that tag x participates is

1×P1+ 2× (1−P1)P1 + 3× (1−P1)
2P1 + ...

=
∞

∑
i=0

P1(1−P1)
i +

∞

∑
i=1

P1(1−P1)
i +

∞

∑
i=2

P1(1−P1)
i + ...

= 1+(1−P1)+ (1−P1)
2 + ...

=
1
P1

≈ e,

where we have used the fact that ∑∞
i=0 P1(1−P1)

i = 1. Recall that in any phase the
number of slots in the time frame is equal to the number of tags considered for
slot assignment. In other words, each time x participates in a phase, its presence
contributes a slot in the frame. Overall, the expected number of slots in all phases
that can be attributed to x’s participation is e. The total number of tags in the system
is n. Therefore, the number of slots in the frames of all phases is expected to be
n× e. The expected frame time in all phases is e× n× tin f .

There is a one-to-one correspondence between bits in an indicator vector and
slots in a frame. Hence, the total number of bits in all indicator vectors is also n× e.
The expected time for transmitting all indicator vectors is e×n× tid/96. Due to the
large denominator of 96, it is smaller than the total frame time, e×n× tin f . The rest
of the information collection request excluding the indicator vector is very small
and can be ignored. Hence, the expected execution time of SIC is e× n× tin f + e×
n× tid/96. The first item is about 2.72 times of the lower bound n× tin f .

We go back to (3.1). Out of the n′ slots in a frame, the number of useful slots is
n′P1 ≈ 36.8%× n′. Hence, in each phase of the SIC protocol, only about 36.8% of
the time slots are useful and 63.2% of the slots are wasted. This gives us significant
room for further improvement.
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3.4 Multi-hash Information Collection Protocol

We present a Multi-hash Information Collection protocol (MIC) to solve the hash
collision problem of SIC.

3.4.1 Protocol Overview

MIC is similar to SIC except that it assigns tags to slots using k hash functions in
order to alleviate the problem of wasted slots. More specifically, it hashes each tag
to k slots in the frame. As long as any one of these slots has no other tag, the reader
is able to assign the tag to the slot.

The execution of the MIC protocol also consists of multiple phases. In each
phase, the RFID reader broadcasts an information collection request that is followed
by a slotted time frame, in which some tags transmit their information.

In the following, we first explain how to assign tags to slots by using k hash
functions. We then introduce a mechanism (called hash-selection vector) to inform
the tags about the assignment.

3.4.2 Assigning Tags to Slots Using Multiple Hash Functions

The k hash functions are denoted as H[i], 1 ≤ i ≤ k, which takes a tag ID and a
random number r as input and produces a pseudo-random number H[i](ID,r) as
output.

Consider an arbitrary phase in the execution of MIC. Let n′ be the number of tags
for slot assignment in this phase. The frame size is also set to be n′. If it is the first
phase, n′ = n.

The slot assignment consists of k rounds, each involving one hash function. In
the first round, we apply H[1] to map the tags to the slots. A tag is assigned to a
slot if it is the only one that is mapped to the slot. After assignment, we remove the
tag from being further considered in the remaining rounds that involve other hash
functions. We also mark the slot as being occupied. The slots that are not marked at
the end of this round are said to be unoccupied.

In the second round, we apply H[2] to map the remaining tags to the n′ slots. If a
tag is mapped to an unoccupied slot and it is the only one that is mapped to the slot,
it is assigned to the slot and removed from further consideration. The slot is marked
as occupied.

The above process is repeated for other hash functions one round after another
in order to assign as many tags as possible to the unoccupied slots. An illustrative
example is given in Fig. 3.1 (a)-(b). After all k hash functions are used, the reader
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has a subset of tags that are assigned to slots, and it also know which hash function
each of these tags should use. The problem of communicating this information to
the tags will be addressed shortly.

Please be aware of the difference between the term “map” and the term “assign”.
A tag may be mapped to multiple slots based on the k hash functions, but it can
only be assigned to one slot. Also be aware of the difference between “phase” and
“round”. Each execution of MIC consists of phases. Each phase is a request-and-
response exchange between the reader and the tags. Before that exchange, the reader
has to assign tags to slots and the assignment process consists of multiple rounds
when more than one hash function is used.

3.4.3 Protocol Description

In the first phase of the MIC execution, before sending out an information collection
request, the RFID reader determines which tags are assigned to which slots (see the
previous subsection). It then constructs an n-element hash-selection vector. Each
element in the vector corresponds to a slot in the frame at the same index location.
If no tag is assigned to a slot, the reader sets the corresponding element in the hash-
selection vector to zero. If a tag is assigned to a slot using the jth hash function, the
reader sets the corresponding element to be j. The size of an element is 
log2(k+1)�
bits.

The request broadcast by the reader consists of the information type to be
reported, the frame size, a random number r, and the hash-selection vector, where
r is used by the hash functions and it is different in each phase. The hash-selection
vector is divided into segments of 96 bits (equivalent to the length of a tag ID), and
each segment is transmitted in a time slot of size tid .

The tags will receive the hash-selection vector along with other information in
the request. Using the same k hash functions, each tag knows which k slots in the
frame and which k elements in the hash-selection vector it is mapped to. If a tag is
assigned to a slot, it must be one of those k slots. If a tag is assigned to a slot by the
reader using the jth hash function, the corresponding element in the hash-selection
vector must have a value of j because this is exactly how the hash-selection vector
is constructed. The inverse is also true. If a tag finds that (1) it is mapped to a slot
s using the jth function and (2) the corresponding element in the hash-selection
vector is also j, then it can conclude that it must have been assigned to slot s by
the reader. If multiple hash functions satisfy the above conditions, the tag only uses
the one that has the smallest value of j. See Sect. 3.4.6 for correctness proof. An
illustrative example is given in Fig. 3.1.

Hence, in order to determine whether it is assigned to a slot, a tag only needs to
examine the elements in the hash-selection vector that it is mapped to by the k hash
functions. Let E j, 1 ≤ j ≤ k, be the element that the tag is mapped to by the jth hash
function. The tag examines the elements in order from E1 to Ek. If it finds the value
of an element E j is equal to j, the tag knows that it must be assigned to a slot by the
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Fig. 3.1 Arrows represent the mapping from tags to slots based on hash functions. Among them,
thick arrows represent the assignment of tags to slots. In this example, k = 2. (a) Two tags, ID1 and
ID5, are assigned to slots in the first round when H[1] is applied. (b) Two more tags, ID3 and ID4,
are assigned in the second round when H[2] is applied. (c) The reader constructs a hash-selection
vector based on the slot assignment. (d) After receiving the vector, the tag with ID3 examines the
elements in the hash-selection vector that it is mapped to. The element mapped by H[2] has a value
of 2. The tag knows that it must be assigned to the corresponding slot.

reader using the jth hash function. In this case, it will stop examining the remaining
elements and wait until the assigned slot arrives. It will transmit during that slot and
then stop participating further in the protocol execution.

Note that a tag does not have to receive the whole hash-selection vector. It knows
the indices of the elements it looks for. The tag can be in a stand-by mode to
conserve energy at times other than it receives its segments of the hash-selection
vector or transmits its information.

After the first phase completes, the RFID reader moves to the second phase,
which is identical except that the reader removes the tags for which it has assigned
slots. It only considers the tags that have not got a chance to transmit. The frame
size in this phase is reduced accordingly.

The above process repeats phase after phase until all tags report their information.
Alternatively, the reader may stop when the number of remaining tags is fewer
than a small threshold, and it invokes the PIC protocol to collect information from
these tags.

Clearly, SIC is a special case of MIC when k = 1.
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3.4.4 Expected Execution Time

To compute the expected execution time of MIC, we need to find the number of
phases that an arbitrary tag is expected to participate. Consider an arbitrary tag x and
an arbitrary phase that x participates. Let n′ be the number of tags that participate in
this phase. The frame size is also n′. Let Pi be the probability that tag x is assigned to
a slot after the first i hash functions are applied. That is, Pi is the probability that one
of the first i hash functions maps x to a slot that no other unassigned tag is mapped
to. When this happens, tag x will transmit in this phase and will stop participating
in the remaining phases.

From (3.1), we know that P1 = (1−1/n′)n′−1 ≈ e−1. Next, we derive a recursive
formula for Pi, i > 1. After the first i− 1 hash functions are applied, there are two
cases. The first case is that tag x has been assigned to a slot by one of those i− 1
hash functions. The probability for this to happen is Pi−1. The second case is that
tag x has not been assigned to any slot and thus it will be considered when the ith
hash function is applied. The probability for this to happen is 1−Pi−1. We focus on
the second case below.

Because the number of tags is the same as the number of slots and the tag-to-
slot assignment is one-to-one mapping, the probability for an arbitrary slot to stay
unoccupied after i− 1 hash functions is the same as the probability for an arbitrary
tag to stay unassigned, 1−Pi−1. When the ith hash function is applied, the slot that
tag x is mapped to has a probability of 1−Pi−1 to be unoccupied. For each of the
other n′ − 1 tags, it has a probability of 1−Pi−1 to be unassigned and, if so, it has a
probability of 1

n′ to be mapped to the same slot as x does. Hence, the probability p
for tag x to be the only one that is mapped to an unoccupied slot is

p = (1−Pi−1)

(
1− (1−Pi−1)

1
n′

)n′−1

≈ (1−Pi−1)e
−(1−Pi−1) (3.2)

Recall that we are considering the second case here. Combining both cases
discussed previously, we have

Pi = Pi−1 +(1−Pi−1)× p = Pi−1 +(1−Pi−1)
2e−(1−Pi−1), (3.3)

where the first item on the right side is the probability for a tag to be assigned to a
slot by one of the first i−1 hash functions and the second item is the probability for
the tag to be assigned to a slot by the ith hash function. The probability for tag x to
be assigned to a slot after all k functions are applied is Pk, and this is the case for
any phase that x participates.

Based on the recursive formula in (3.3), we compute the numerical values of
Pi in Table 3.1, which match perfectly with the simulation results in Sect. 3.6. If
seven hash functions are used, i.e., k = 7, the probability for an unassigned tag to be
assigned to a slot in any phase is P7 ≈ 86.1%. The probability for an arbitrary slot
to be useful is also 86.1%. Only 13.9% of the slots in each frame is wasted.
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Table 3.1 Numerical values of Pi, which can be interpreted as the
probability for any slot to be useful.

P1 P2 P3 P4 P5 P6 P7

36.8% 58.0% 69.6% 76.4% 80.8% 83.9% 86.1%

The expected number of phases that tag x participates is

1×Pk+ 2× (1−Pk)Pk + 3× (1−Pk)
2Pk + ...=

1
Pk
.

For each phase that x participates, the reader allocates a slot in the frame. Hence,
the expected number of slots that can be attributed to x’s participation in the protocol
is 1/Pk. There are n tags. The total number of slots in all phases is expected to be
n/Pk. The total expected time in the frames of all phases is n×tin f /Pk. When k = 7, it
becomes 1.16×n× tin f , just 16% more than the lower bound. Because 32 elements
of the hash-selection vector can fit in a segment of 96 bits, the expected time for all
indicator vectors is n× tid/(32Pk). Hence, the expected execution time of MIC is
about n× tin f/Pk + n× tid/(32Pk).

The ratio of n × tid/(32Pk) to the lower bound n × tin f is largest when the
information reported by each tag is one bit. In this case, tid is about 12 times of
tin f , according to the parameters in [9]. Hence, when k = 7, n× tid/(32Pk) is up to
45% of the lower bound. Consequently, the expected execution time of MIC is up
to 1.61 times the lower bound.

3.4.5 Hash Functions

There are many efficient hash functions in the literature. We describe a simple
implementation that helps to keep the complexity of a tag’s circuit low. The tags
do not have to fully implement the k hash functions, H[i](ID,r). When k = 1, the
expected number of phases a tag will participate is just 1/P1 ≈ 2.7, which means
that a tag only needs to produce 2.7 hash values on average. Similarly, when k = 3,
a tag needs 1/P3 ≈ 1.4 hash values on average. When k = 7, a tag needs 1/P7 ≈ 1.2
hash values on average. For n = 50,000, each hash value is 16 bits long. We may
derive these hash values from a ring of pre-stored random bits as follows: We use
an offline random number generator with the ID of a tag as seed to generate a string
of random bits. We take k segments of the string. Each segment contains a certain
number of bits, forming a ring by logically connecting the last bit with the first
bit. These rings are pre-stored in the tags before they are deployed. To find the
value of H[i](ID,r), a tag takes a certain number of bits from the ith ring. More
specifically, it takes a number of bits from the ring clockwise beginning from the
rth bit. An alternative approach is to begin from the rth bit and take one bit after
every r bits until a sufficient number of bits are taken. The final hash value is the
number represented by these bits modulo the frame size.
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The larger the size of each ring, the better the pseudo randomness in the hash
output. Because the protocols we present only requires a tag to produce a very small
number of hash values from each ring, a ring size of 100 bits should be more than
sufficient. In this case, when k = 3, each tag needs to store 300 bits to implement
the hash functions. When k = 7, each tag needs 700 bits.

The RFID reader knows the IDs of the tags, and it picks the random number r.
Hence, it can predict the hash values of all tags.

3.4.6 Correctness

In Sect. 3.4.2, the RFID reader assigns a tag to a slot only when no other tag is
mapped to the same slot. After a tag is assigned to a slot, the reader removes it from
further consideration. Hence, from the reader’s point of view, each tag is uniquely
assigned to a slot. According to the protocol description in Sect. 3.4.3, each tag will
only transmit once. What we want to make sure is that the tag will transmit in the
assigned slot. Moreover, there should not be collision in that slot.

To determine in which slot it transmits, a tag first uses the k hash functions to
map itself to k slots in the frame. The rule states that: If the tag finds that (1) it is
mapped to a slot s using the jth function and (2) the corresponding element in the
hash-selection vector is also j, then it can conclude that it must have been assigned
to slot s by the reader. If multiple hash functions satisfy the above conditions, the tag
only uses the one that has the smallest value of j. When a tag x is mapped to a slot
using the jth hash function, if the tag finds that the corresponding element in the
hash-selection vector is also j, it means that the reader has assigned a tag to the slot
based on the jth function, and moreover the reader will do so only when a single tag
is mapped to the slot using the jth function. Tag x can thus conclude that this single
tag must be itself. Because it is the only tag that will transmit in this slot, there will
not be a collision.

3.5 Frame-Optimized Information Collection Protocol

In this section, we present an optimization of MIC. The optimized protocol is called
the frame-optimized information collection protocol (FIC).

3.5.1 Motivation

In the design of SIC or MIC, we set the frame size f to be the number n′ of tags
from which the RFID reader has not yet received their information. However, it
appears arbitrary to set f to be n′ even though good performance has been achieved.
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A natural question is whether we can achieve better performance by choosing a
frame size different from n′. Indeed, we have observed in the simulations that when
f is chosen smaller than n′, the protocol execution time may be noticeably reduced.

We present a variant of MIC, called the frame-optimized information collection
protocol (FIC). It is identical to MIC except that before each phase, the RFID reader
makes a query for the optimal frame size (which is pre-computed and stored in a
table) and broadcasts the frame size as part of the information collection request. In
the following, we will explain how to compute the optimal frame size and discuss
the performance of FIC.

3.5.2 Computing Optimal Frame Size

The execution of FIC also consists of multiple phases. Consider an arbitrary phase.
Let n′ be the number of tags from which the reader has not yet received information.
We derive the functional relationship between the frame size f and the percentage
of time slots that will be useful. Based on this functional relationship, we can find
the value of f that maximizes the percentage of slots that are useful.

Consider an arbitrary participating tag x. In FIC, we use P′
i to denote the

probability that tag x is assigned to a slot after the first i hash functions are applied.
That is, P′

i is the probability that one of the first i hash functions maps x to a slot that
no other unassigned tag is mapped to. When this happens, tag x will transmit during
this phase of FIC and will stop participating in the remaining phases.

Let P′
0 = 0. We derive a recursive formula for P′

i , i ≥ 1. After the first i− 1 hash
functions are applied, there are two cases. In the first case, tag x is assigned to a slot
by one of those i−1 hash functions. The probability for this to happen is P′

i−1. In the
second case, tag x has not been assigned to any slot and thus it will be considered
when the ith hash function is applied. The probability for this to happen is 1−P′

i−1.
Under the condition of the second case, let p′ be the probability for x to be

assigned a slot by the ith hash function. We have

P′
i = P′

i−1 +(1−P′
i−1)× p′. (3.4)

Next, we derive p′. For tag x to be assigned a slot, it has to be mapped by the
ith function to an unoccupied slot, and no other unassigned tag is mapped to the
same slot. After the previous hash functions are applied, each tag has a probability
of P′

i−1 to be assigned a slot. Since there are n′ tags and f slots, it translates into a
probability of P′

i−1 × n′/ f for any slot to be occupied. Hence, the probability for x
to be mapped to an unoccupied slot is (1−P′

i−1× n′/ f ).
Consider any other tag. The probability that it is not yet assigned to a slot is

(1−P′
i−1). Under that condition, the probability that it is mapped to the same slot

as x does is 1/ f . The probability that the tag is either already assigned to a slot or
mapped to a different slot than x is (1− (1−P′

i−1)/ f ). Since there are n′ − 1 tags
other than x, the probability for all of them to be either assigned to slots already or
mapped to different slots is (1− (1−P′

i−1)/ f )n′−1.
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f when k = 7 and
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Based on the above analysis, the probability p′ for tag x to be the only one that is
mapped to an unoccupied slot is

p′ =
(

1−P′
i−1

n′

f

)(
1− (1−P′

i−1)
1
f

)n′−1

≈
(

1−P′
i−1

n′

f

)
e−(1−P′

i−1)
n′
f .

(3.5)

Applying it to (3.4), we have

P′
i = P′

i−1 +(1−P′
i−1)

(
1−P′

i−1
n′

f

)
e−(1−P′

i−1)
n′
f , (3.6)

where the first item on the right side is the probability for a tag to be assigned to a
slot by one of the first i− 1 hash functions and the second item is the probability
for the tag to be assigned to a slot by the ith hash function. Since there are n′ tags
and f slots, the probability for an arbitrary slot to be occupied by a tag after i hash
functions is P′

i ×n′/ f . The probability for an arbitrary slot to be useful (i.e., occupied
by a tag) after all k functions are applied is P′

k × n′/ f .
We want to find the optimal value of f that maximizes P′

k ×n′/ f . As we increase
the value of f , on one hand, it has a negative impact on the value of P′

k×n′/ f because
f is in the denominator. On the other hand, it also has a positive impact because P′

k
is an increasing function of f ; the probability for a tag to be assigned to a slot is
certainly higher when there are more slots available for assignment. Our numerical
computation shows that when f is small, the positive impact dominates and thus the
value of P′

k × n′/ f increases. When f is large, the negative impact dominates and
P′

k × n′/ f decreases. For an example, we plot the functional relationship between
P′

k ×n′/ f and f in Fig. 3.2, where n′ = 50,000 and k = 7. It shows that P′
k ×n′/ f is

an increasing function at first and then a decreasing function. The optimal value of
f that maximizes P′

k × n′/ f is 29,617.
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Algorithm 1 Bisection search for the optimal value of f .
f1 = 1, f2 = F
while f2 − f1 > 1 do

f̄ = � f1 + f2/2

if
P′

k×n′
f̄

<
P′

k×n′
f̄+1 then

f1 = f̄
else

f2 = f̄
end if

end while
if

P′
k×n′
f1

<
P′

k×n′
f2

then
return f2

else
return f1

end if
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Fig. 3.3 Optimal value of f
with respect to n′ when k = 7.

We can use numerical methods to compute the optimal value of f . One method
is exhaustive search: It tries different values of f , starting from 1 and increasing f
by one each time until further increment in f causes P′

k × n′/ f to decrease. A more
efficient method is bisection search: See Algorithm 1. We set f1 to a value (such as
1) that is smaller than the optimal value of f . Set f2 to a value (denoted as F) that
is larger than the optimal value of f . The empirical computation shows that n′ is
always larger than the optimal value of f . Hence, we may let F = n′. We repeat the
following operation: Let f̄ = � f1 + f2/2. If P′

k×n′/ f̄ < P′
k×n′/( f̄ +1), set f1 to be

f̄ ; otherwise, set f2 to be f̄ . The above iterative operation stops when f2 − f1 ≤ 1.
The optimal value of f with respect to n′ is computed before hand and stored in

a table on the RFID reader or a server. Before the reader broadcasts an information
collection request, it looks up in the table for the optimal value of f under the current
value of n′. It then includes f in the broadcast. When k = 7, the optimal value of f
is plotted in Fig. 3.3.
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Table 3.2 Maximum value
of Pk ×n′/ f , which is the
probability for an arbitrary
slot to be useful. The frame
size that achieves the
maximum value of Pk ×n′/ f
is also shown.

k P′
k ×n′/ f (or Ck) f

1 36.8% 49999
2 59.3% 41045
3 73.5% 36385
4 82.7% 33601
5 88.8% 31784
6 92.7% 30526
7 95.2% 29617
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Fig. 3.4 Value of P′
k ×n′/ f

with respect to n′ when k = 7
and the optimal frame size f
is used.

3.5.3 Execution Time

Based on (3.6), we compute the numerical values of P′
k × n′/ f when different

numbers of hash functions are used. The results are shown in Table 3.2, where
n′ = 50,000. We use the optimal frame sizes. They are shown in the third row.
Recall that P′

k × n′/ f is the probability for an arbitrary slot to be useful. It can also
be interpreted as the percentage of all time slots that are useful. For example, when
k = 7, 95.2% of all slots are useful, which compares favorably to 86.1% that is
achieved by MIC (see P7 in Table 3.1).

Through extensively numerical computations, we find that when k is fixed, P′
k ×

n′/ f is largely insensitive to n′. For example, as shown in Fig. 3.4 where k = 7, the
value of P′

k × n′/ f can be treated as a constant. Let’s denote the constant as Ck. For
example, C7 = 95.2%.

As FIC performs its multiple phases, the percentage of time slots that are useful
is Ck in each phase. The total number of useful slots in all phases is equal to the
number n of tags in the system. Hence, the total number of slots in all phases must
be n/Ck. Therefore, the execution time of FIC is n× tin f /Ck +n× tid/(32Ck), where
n× tin f/Ck is the total time of all slots and n× tid/(32Ck) is the total time for the
reader to transmit the hash-selection vector.

When k = 7, the ratio of n× tin f /Ck to the lower bound n× tin f is 1.05. The
ratio of n× tid/(32Ck) to the lower bound is largest when the information reported
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by each tag is one bit. In this case, tid is about 12 times of tin f , according to the
parameters in [9]. Hence, when k = 7, n× tid/(32Ck) is up to 39% of the lower
bound. Consequently, the execution time of FIC is up to 1.44 times the lower bound.

3.5.4 Channel Error

We now consider the impact of channel error. If a segment in the hash-selection
vector is corrupted, the tags that extract information from that segment may transmit
in wrong slots, causing collision. It may also happen that the information transmitted
by a tag in the correct slot is corrupted by noise in the channel. If the channel
error is mild and the application can tolerate a certain level of error, the protocol
may not need additional error control mechanisms. For example, suppose the reader
collects the battery status of the tags to see if any battery needs to be replaced.
The reader may periodically collect such information. Over a period of time, it
will receive a certain number of readings from each tag. It decides whether a
tag needs to replace battery based on the majority votes. In this way, occasional
information corruption due to channel error does not cause a misjudgement of the
battery status. In another example, consider a large chilled food storage facility and
the application is to monitor the temperature at each section of the storage by using
sensor-augmented RFID tags that are attached to the food items. Each section has
many tags, which provide a large amount of redundancy in the information reported
to the RFID reader. If temperature readings from some tags are corrupted, the reader
can still retrieve correct temperature data by removing outliers from all the readings
it receives from a particular section of the storage.

If the application requires that the information received from every tag is correct,
we need to add checksum such as a CRC code to each transmission for error
detection. Each segment of 96 bits in the hash-selection vector carries 16-bit
checksum, and it uses the remaining 80 bits to carry 26 elements of 3 bits each. Each
information report from a tag also carries 16-bit checksum. Consider the following
two cases: (1) When a tag finds that one of its k segments in the hash-selection vector
is corrupted, it ignores the segment and only uses other segments to decide whether
it is assigned to a slot. If none of the other segments suggests that it is assigned to a
slot, it makes the conservative decision that it will not participate in the remaining
phases even through it does not transmit in this phase, because the reader might
have assigned it to a slot using the corrupted segment. (2) Beside the case that a tag
may not transmit at all, even when a tag transmits in the correct slot, that slot may
be corrupted due to channel error, which can be detected by the reader through the
mismatching CRC code.

The reader handles the above cases in the same way: It only assigns one slot to
each tag during the execution of FIC (MIC or SIC). If it does not receive a tag’s
information in the assigned slot or the information is corrupted, it will not assign
another slot because otherwise we would run into the issue of acknowledging the
tags whether their information is received correctly — this can get complicated,
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considering that the acknowledgement itself may also be corrupted. After FIC (MIC
or SIC) completes, the reader wakes up all tags and performs the polling protocol
(PIC) on the set of tags from which the information has not been received correctly.
We expect the set to be relatively small in a practical environment where the channel
noise is not too large to hinder the effectiveness of the RFID system. In PIC, each
transmission also carries CRC. Due to channel error, the reader may poll for the
information of a tag more than once until the information is correctly received.

3.6 Simulation Results

We now compare the execution time of protocols through simulations with and
without channel errors.

3.6.1 Simulation Setting

The simulation setting is based on the Philips I-Code specification [9]. Any two
consecutive transmissions (from the reader to tags or vice versa ) are separated by
a waiting time of 302 μs. According to the specification, the transmission rate from
a tag to the reader is different than the transmission rate from the reader to a tag.
The rate from a tag to the reader is 53 Kb/sec; it takes 18.88 μs for a tag to transmit
one bit. The value of tin f is calculated as the sum of a waiting time and the time
for transmitting the information, which is 18.88 μs multiplied by the length of the
information. For example, if the sensor information is one bit, tin f is 321 μs if a
CRC code is not added, and it is 623 μs if a 16-bit CRC is added. If the sensor
information is 16 bits, tin f is 604 μs without CRC, and it is 906 μs with CRC.

The transmission rate from the reader to tags is 26.5 Kb/sec; it takes 37.76 μs for
the reader to transmit one bit. Each tag ID contains 96 bits, which include a 16-bit
CRC code according to the Gen2 standard. Recall that tid is the time it takes the
reader to transmit an ID to a tag. It is 3927 μs (including a waiting time before the
transmission). The time for the reader to transmit a segment of the indicator vector
or a segment of the hash-selection vector is the same. However, if a tag transmits a
96-bit ID to the reader, it only takes 2114 μs due to a different transmission rate.

In each simulation run, we set the number n of tags in the RFID system. We then
execute seven protocols: PIC, SIC, MIC with k = 3, MIC with k = 7, FIC with k = 3,
FIC with k = 7, and EDFSA [4]. EDFSA is one of the best ID-collection protocols.
We modify it for information collection. The modification is simple: When a tag
transmits its ID to the reader, it piggybacks its sensor information. We measure and
compare the execution times of the five protocols. Each data point in the figures is
the average outcome of 100 simulation runs under the same setting.
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Table 3.3 Execution time comparison (in seconds) when the sensor infor-
mation is 1 bit long.

n = 10,000 30,000 50,000 70,000 90,000

EDFSA 90.5 261.9 587.7 771.9 1021.0
PIC 42.5 127.4 212.4 297.3 382.3
SIC 9.9 30.0 49.2 69.2 89.2
MIC, k = 3 5.8 17.5 28.9 40.6 52.2
MIC, k = 7 5.2 15.5 25.8 36.2 46.4
FIC, k = 3 5.5 16.2 27.1 37.9 48.6
FIC, k = 7 4.7 14.0 23.2 32.4 41.7
lower bound 3.2 9.6 16.0 22.5 28.9

In the following, we first present the simulation results when CRC codes are not
used for error control, and then we present the results when CRC codes are used
(see Sect. 3.5.4).

3.6.2 Execution Time Comparison

We first study the performance of the protocols without considering channel error.
That is, the RFID reader can always correctly receive the information when a tag
transmits in a slot without collision.

Table 3.3 compares the execution times of the seven protocols under different
values of n when the sensor information is one bit. This corresponds to the
application of monitoring the battery status of the RFID tags: ‘1’ means the battery
is ok; ‘0’ means the battery needs to be replaced. We examine the fourth column
in the table for n = 50,000 (imagine that a large military base stores 50,000 pieces
of weapons and ammunition packets, each attached with a tag). The execution time
of EDFSA is 530.1 seconds, which is about thirty-three times of the lower bound,
16.0 seconds. PIC reduces the execution time by 60% to 212.4 seconds because
it eliminates collisions that exist in EDFSA, which is ALOHA-based. SIC further
reduces the time to 49.7 seconds, about one fourth of the time needed by PIC.
MIC reduces the execution time to 29.0 seconds when three hash functions are
used or 25.8 when seven hash functions are used. The best protocol, FIC, is able
to further reduce the execution time to 23.2 when seven hash functions are used.
Similar conclusions can be drawn from other columns: FIC works the best, MIC is
the next, SIC follows, then PIC, and finally EDFSA.

Table 3.4 and Table 3.5 present the execution times when the sensor information
is 16 bits long and 32 bits long, respectively. Again, similar conclusions can be
drawn. For example, when the information is 16 bits long and n = 50,000, the
execution time of FIC with k = 7 is 43% of the time needed by SIC, 17% of the time
needed by PIC, and just 6.6% of the time needed by EDFSA. When the information
is 32 bits long and n = 50,000, the execution time of FIC with k = 7 is 41% of the
time needed by SIC, 22% of the time needed by PIC, and 8.2% of the time needed
by EDFSA.
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Table 3.4 Execution time comparison (in seconds) when the sensor informa-
tion is 16 bits long.

n = 10,000 30,000 50,000 70,000 90,000

EDFSA 92.1 293.1 575.7 815.7 1150.0
PIC 45.3 135.9 226.6 317.2 407.8
SIC 17.8 53.2 88.0 124.3 158.5
MIC, k = 3 9.9 29.7 49.2 69.3 88.7
MIC, k = 7 8.5 25.4 42.2 59.2 76.1
FIC, k = 3 9.2 27.6 45.9 64.1 82.5
FIC, k = 7 7.6 22.8 37.9 53.0 68.3
lower bound 6.0 18.1 30.2 42.3 54.4

Table 3.5 Execution time comparison (in seconds) when the sensor informa-
tion is 32 bits long.

n = 10,000 30,000 50,000 70,000 90,000

EDFSA 106.8 303.7 645.0 951.5 1252.2
PIC 48.3 145.0 241.7 338.3 435.0
SIC 25.5 78.0 129.9 183.1 232.3
MIC, k = 3 14.2 42.7 70.9 99.5 127.8
MIC, k = 7 11.9 35.9 59.8 83.8 107.6
FIC, k = 3 13.3 39.5 65.9 92.5 119.5
FIC, k = 7 10.8 32.2 53.7 75.1 96.6
lower bound 9.1 27.2 45.3 63.4 81.6

Table 3.6 Execution time comparison (in seconds) when the channel error rate
is 1%.

n = 10,000 30,000 50,000 70,000 90,000

EDFSA 80.5 253.4 435.0 657.2 921.7
PIC 46.4 139.3 232.1 325.0 417.8
SIC 19.3 57.9 96.6 136.4 173.9
MIC, k = 3 11.3 34.0 56.4 79.2 101.5
MIC, k = 7 10.0 29.6 49.4 69.1 88.9
FIC, k = 3 10.6 31.8 52.9 74.0 95.4
FIC, k = 7 9.0 27.0 44.8 62.7 80.6

The execution time of FIC with k = 3 is only slightly worse than that of FIC
with k = 7. Because each tag has to store k hash outputs, if one wants to reduce the
storage overhead, k may be chosen as 3.

3.6.3 Execution Time Comparison under Channel Error

The method for handling channel error is described in Sect. 3.5.4. Suppose
the sensor information is 1 bit long. Tables 3.6–3.8 present the execution time
comparison when the channel error rate is 1%, 5% and 10%, respectively. The
channel error rate c is defined as the percentage of slots that is corrupted. In the
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Table 3.7 Execution time comparison (in seconds) when the channel error rate
is 5%.

n = 10,000 30,000 50,000 70,000 90,000

EDFSA 84.6 248.9 498.8 651.1 926.0
PIC 50.4 151.2 252.1 352.9 453.7
SIC 23.3 69.7 117.1 162.6 209.7
MIC, k = 3 15.4 45.7 76.8 107.0 137.6
MIC, k = 7 14.0 41.6 69.4 97.1 124.8
FIC, k = 3 14.6 43.6 72.8 102.1 130.9
FIC, k = 7 13.0 38.8 64.8 90.6 116.5

Table 3.8 Execution time comparison (in seconds) when the channel error rate
is 10%.

n = 10,000 30,000 50,000 70,000 90,000

EDFSA 89.8 252.6 489.3 738.7 1070.2
PIC 56.1 168.5 280.8 393.2 505.5
SIC 29.4 87.4 144.8 203.4 261.3
MIC, k = 3 21.1 63.1 105.1 147.4 189.3
MIC, k = 7 19.6 58.9 98.2 137.3 176.7
FIC, k = 3 20.3 61.0 101.8 142.3 183.0
FIC, k = 7 18.7 56.1 93.5 130.9 168.3

simulations, each slot has a probability of c to be corrupted. With the presence of
different levels of channel error, we continue to observe that FIC outperforms MIC,
MIC performs much better than SIC, SIC is better than PIC, which is in turn better
than EDFSA.

For example, in Table 3.6 where the channel error rate is 1%, when n = 50,000,
the execution time of FIC with k = 7 is 44.8seconds, the time of MIC with k = 7
is 49.4seconds, the time of SIC is 96.9seconds, the time of PIC is 232.1seconds,
and the time of EDFSA is 460.0seconds. In Table 3.7 where the channel error rate
is 5%, when n = 50,000, the execution time of FIC with k = 7 is 64.8seconds,
the time of MIC with k = 7 is 69.4seconds, the time of SIC is 116.8seconds, the
time of PIC is 252.1seconds, and the time of EDFSA is 480.1seconds. In Table 3.8
where the channel error rate is 10%, when n = 50,000, the execution time of FIC
with k = 7 is 93.5seconds, the time of MIC with k = 7 is 98.1seconds, the time of
SIC is 145.6seconds, the time of PIC is 280.8 seconds, and the time of EDFSA is
505.8seconds.

3.6.4 Values of Pi and P′
k ×n′/ f

To verify the analytical results in Sect. 3.4.4, we measure the values of Pi by
simulations. As shown in Table 3.9, the values of Pi measured from simulations
match well with the numerically-computed values based on the recursive formula
(3.3), which confirms the correctness of the analysis.
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Table 3.9 values of Pi

P1 P2 P3 P4 P5 P6 P7

by simulation 37.0% 58.2% 69.9% 76.6% 80.8% 83.8% 86.2%
by analysis 36.8% 58.0% 69.6% 76.4% 80.8% 83.9% 86.1%

Table 3.10 values of P′
k ×n′/ f

k 1 2 3 4 5 6 7

by simulation 36.8% 59.3% 73.5% 82.7% 88.8% 92.7% 95.2%
by analysis 36.9% 59.1% 73.2% 82.8% 89.0% 92.4% 95.1%

Similarly, to verify the analytical results in Sect. 3.5.2 and 3.5.3, we measure the
values of P′

k × n′/ f by simulations. Shown in Table 3.10, the values of P′
k × n′/ f

measured from simulations match the computed values from the analysis.

3.7 Summary

This chapter investigates the problem of efficiently collecting sensor information
from all tags to a reader in a large RFID system. We present three protocols.
The first one, called the polling-based information collection protocol (PIC),
serves as a baseline for comparison. The second protocol, called the single-hash
information collection protocol (SIC), improves time and energy efficiencies by
totally eliminating the transmission of tag IDs. It uses a hash function to assign tags
to the slots of a frame, during which the tags can transmit their data successfully.
However, due to hash collisions, many slots have to be wasted. A wide gap still
exists between the execution time of SIC and a lower bound that we establish.
We use multiple hash functions to solve the hash collision problem, which leads
to the third protocol, called the multi-hash information collection protocol (MIC).
Its execution time is about half of the execution time of the SIC, up to seven times
smaller than the execution time of PIC, and up to nineteen times smaller than
the execution time of a representative ID-collection protocol [4] that is enhanced
to collect sensor information. An optimized version of MIC, called the frame-
optimized information collection protocol (FIC), works even better. Its execution
time is within 1.44 times the lower bound that we have established.
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Chapter 4
Tag-ordering Polling Protocols in RFID Systems

4.1 System Model

We consider a large RFID system using active tags. Each tag carries a unique ID and
one or more sensors. It also has the capability of performing certain computations
as well as communicating with the RFID reader wirelessly. The reader and the tags
transmit with sufficient power such that they can communicate over a long distance.
We assume that the RFID reader knows the IDs of all tags in the system by executing
an ID-collection protocol, and it has enough power supply.

Let N be the set of tags in the system and n = |N|. Let M be a subset of
tags, m = |M|, and M ⊆ N. The objective is to design efficient polling protocols
that collect information from tags in M. A polling protocol may be scheduled to
execute periodically. M may change over time so that different subsets of tags are
queried. We have two performance objectives. The primary performance objective is
to achieve energy efficiency. We want to minimize the average amount of energy that
a tag spends during one execution of a polling protocol. The energy expenditure by
a tag has two components: (1) energy for transmitting its information (e.g., 32 bits)
to the reader, and (2) energy for receiving the polling request and other information
from the reader. The former is a small, fixed amount of energy that must be spent.
The latter is dependent on the protocol design as we will see shortly. It is a variable
amount of energy that should be minimized. Simple protocol designs will result
in all tags in the system, including those not in M, to be continuously active and
unnecessarily receive a large amount of data from the reader for an extended period
of time. How to minimize such energy cost is the focus of this chapter.

The secondary performance objective is to reduce protocol execution time. RFID
systems use low-rate communication channels. For example, in the Philips I-Code
system, the rate from a reader to a tag is about 27 Kbps and the rate from a tag to
a reader is about 53 Kbps. Low rates, coupled with a large number of tags, often
cause long execution times for RFID protocols. To apply such protocols in a busy
warehouse environment, it is desirable to reduce protocol execution time as much
as possible.

Y. Qiao et al., RFID as an Infrastructure, SpringerBriefs in Computer Science,
DOI 10.1007/978-1-4614-5230-0 4, © The Author(s) 2013
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Communication between the reader and tags is time-slotted. The reader’s signal
synchronizes the clocks of tags. Let tid be the length of a time slot during which the
reader is able to broadcast a tag ID, and tin f be the length of a time slot during which
a tag is able to transmit its information.

4.2 Basic Polling Protocol (BP)

In a standard, straightforward way of designing a polling protocol, we simply let the
RFID reader broadcast the tag IDs in M one by one. After it transmits an ID, it waits
for a time slot of tin f during which the corresponding tag transmits its information.
Each tag continuously listens to the wireless channel. Whenever it receives an ID
from the reader, the tag compares the received ID with its own ID. If they match,
the tag will transmit its information and then go to sleep until the next scheduled
execution of the protocol.

In the above protocol, each tag in M will have to receive m/2 IDs on average from
the reader before it transmits. Each tag not in M will have to receive all m IDs. The
amount of energy spent by a tag in receiving such data grows linearly with respect
to m. It takes a constant amount of energy for a tag to receive an ID and another
constant amount of energy for it to transmit its information. The energy cost of the
whole system is thus O(nm). The protocol execution time is m(tid + tin f ).

We use a numerical example to explain the energy cost. Consider a military base
that has a large warehouse storing 50,000 weapons, ammunition magazines, and
other equipment, which are tagged with RFID sensors. Among them, there are 1,000
sensitive devices, from which a RFID reader needs to access information in order
to make sure that they are in good conditions or simply to confirm their presence
(against unauthorized removal). Let er be the amount of energy a tag spends in
receiving an ID and es be the amount of energy a tag spends in transmitting its
information. The total energy consumed by all tags for transmitting is 1,000es,
and the total energy consumed by all tags for receiving is about 50,000,000er.
Even though er may be smaller than es, the total amount of energy spent by tags
in receiving can be much greater than the amount spent in transmitting.

4.3 Coded Polling Protocol (CP)

We show that a coded polling protocol (CP) [4] is able to reduce the amount of
data each tag has to receive by half. The protocol assumes that each tag ID carries
an identification number and a CRC (cyclic redundancy code) for error detection.
This requirement is satisfied by the EPCglobal Gen-2 standard, where each 96-bit
tag ID contains a CRC checksum. The CRC is computed based on the identification
number and a generator. When a tag receives an ID from a wireless channel, it
computes a CRC based on the received identification number and then compares



4.3 Coded Polling Protocol (CP) 61

the result with the received CRC. If they are the same, we say the ID contains a
valid CRC.

CRC has the following property: If x and y are two tag IDs with valid CRCs,
then x⊕ y also has a valid CRC. The same property does not hold for x⊕ ŷ, where ŷ
contains the same bits in y but in the reverse order. For example, if y = 10110, then
ŷ = 01101. We call ŷ the reversal of y.

In the coded polling protocol, the RFID reader first arranges the IDs in M in
pairs. Each pair consists of two IDs that are arbitrarily selected from M. Consider
an arbitrary pair, x and y, which are called each other’s paring ID. We define the
polling code of the pair as c = x⊕ ŷ.

Instead of sending out the IDs in M one after another, the reader broadcasts the
polling code of each pair one after another. After each broadcast of a polling code
c = x⊕ ŷ, the reader waits for two time slots, during which tag x and tag y will
transmit. More specifically, when an arbitrary tag z receives the polling code c, it
first computes z⊕ c, and checks whether the CRC in the reversal of z⊕ c is valid.
If it is, the tag will transmit its information. Otherwise, the tag computes ẑ⊕ c, and
checks whether the CRC in ẑ⊕ c is valid. Again, if it is valid, the tag will transmit.
Otherwise, the tag will not transmit. We show that only tag x and tag y will transmit.

First, consider the case of z = x. The tag first computes z⊕c = x⊕x⊕ ŷ = ŷ. The
reversal of ŷ is y. The CRC in any tag ID (including y) is valid. Hence, tag x will
transmit. Moreover, it now knows its pairing ID, y. If x is greater than y, the tag will
transmit in the first slot after receiving the polling code; otherwise, it will transmit
in the second slot.

Second, we consider the case of z = y. The tag first computes y⊕ c = y⊕ x⊕ ŷ.
Its reversal is likely to have an invalid CRC; the chance for an arbitrary number to
contain a valid CRC is very small. Then, the tag computes ẑ⊕ c = ŷ⊕ x⊕ ŷ = x,
which contains a valid CRC. Consequently, y will transmit. Since it now knows its
pairing ID, x, it also knows in which slot it should transmit.

Finally, consider the case of z �= x and z �= y. The tag computes the reversal of
z⊕c = z⊕x⊕ ŷ and then computes ẑ⊕c = ẑ⊕x⊕ ŷ. Both of them are likely to have
invalid CRCs.

A minor problem is that y⊕c in the second case and z⊕c or ẑ⊕c in the third case
still have a small probability to contain a valid CRC. However, the reader can easily
prevent this from happening. It knows all tag IDs. It can precompute all polling
codes and check whether a valid CRC happens in the above cases by chance when it
is not supposed to. If this is true for a pair of tags, x and y, the reader must break up
the pair, and use them to form new pairs with other IDs in M. Such an approach is
effective because the probability for this to happen is exceedingly small when CRC
is sufficiently long.

Because each polling code represents two tag IDs, the number of polling codes
in CP is m/2. Hence, when comparing with the basic polling protocol, CP reduces
the number of broadcasts made by the reader by half, and it also reduces the amount
of data that each tag has to receive by half. This not only saves energy for tags, but
also reduces the protocol execution time to mtid/2+mtin f .



62 4 Tag-ordering Polling Protocols in RFID Systems

4.4 Tag-Ordering Polling Protocol (TOP)

Although CP is more efficient, the expected amount of energy that each tag spends
in receiving remains O(m). In this section, we present a new tag-ordering polling
protocol that reduces such energy cost to O(1).

4.4.1 Motivation

In the basic polling protocol, a RFID reader broadcasts m IDs in time slots of
length tid . All tags must continuously monitor the wireless channel in order to know
whether their own IDs are in the broadcast. In CP, the reader broadcasts m/2 polling
codes also in time slots of length tid . Again, all tags must continuously monitor the
wireless channel. They have to keep receiving and processing the polling codes.
Each tag in the basic protocol has to receive up to m IDs. Even though CP is more
efficient, a tag still has to receive up to m/2 codes.

We want to remove the necessity for any tag to keep monitoring the wireless
channel. Ideally, a tag should stay in an energy-conserving standby mode for most
of time, and only wake up at the right time slot to receive information about itself,
such as whether it is polled and, if so, when it should transmit. To further reduce
the amount of data that tags have to receive, we let the reader broadcast a so-called
reporting-order vector V , instead of IDs in M. Each ID in M is mapped to a bit in
V through a hash function; the bit is set as one to encode the ID in the vector. A tag
only needs to check a specific bit in V at a location determined by the hash of its ID.
This bit is called the representative bit of the tag. If its value is one, the tag is polled
by the reader for reporting, i.e., the tag belongs to M; if its value is zero, the tag is
not polled. The vector V also carries information about the order in which the polled
tags will report their data. Each bit whose value is one in V represents a polled tag.
If a tag finds that there are i ones in V preceding its representative bit, it knows that
it should be the (i+ 1)th tag in M to report its information. With such an ordering,
it becomes possible for tags in M to report at different times and avoid collision.

However, this basic idea has two problems. First, there should be at least m bits in
V to encode m IDs in M. The energy cost of receiving V remains O(m). How can a
tag find out the number of ones in V preceding its representative bit without having
to receive the whole vector? Second, hash collision causes two issues. If a tag not in
M is hashed to the same bit in V as a tag in M does, it will find its representative bit to
be one, causing false positive. If two tags in M are mapped to the same bit in V , they
will transmit at the same time, causing report collision. In the rest of this section,
we design a new tag-ordering polling protocol (TOP) to solve these problems.
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Fig. 4.1 Vt is the representative segment of tag t , xt is the total number of ones in all previous
segments, and yt is the number of ones in Vt that precede tag t’s representative bit. It is the position
of t in the reporting order. It = xt + yt .

4.4.2 Protocol Description

TOP consists of three phases: ordering phase, polling phase, and reporting phase.
In the ordering phase, the reader broadcasts the vector V so that each tag knows
whether it is polled and where it is located in the reporting order. The polling phase
resolves the issues of false positive and report collision. Finally, in the reporting
phase, tags in M report their information in the order defined by V without collision.

4.4.2.1 Ordering phase

The RFID reader does not broadcast any IDs or indices. It only broadcasts the
reporting-order vector, V . If V cannot fit in one time slot of length tid , the reader
breaks the vector into segments and broadcasts each segment in a time slot of tid . In
addition, the reader also broadcasts the vector size v.

Knowing the vector size, a tag t is able to hash its ID and find out the location
of its representative bit in V . Because the segment size is fixed, t also knows which
segment its representative bit belongs to. This segment, denoted as Vt , is called the
representative segment of tag t. A tag will stay in the standby mode and be active
only when receiving its representative segment.

If a tag finds that its representative bit is zero, it knows for sure that it is not a
member in M. If a tag finds that its representative bit is one, it may be a member in
M or a non-member that is mapped to a bit which a member in M is also mapped to.
The latter case causes false positive. Because the reader knows all IDs in the system,
it can pre-compute the set F of non-member tags that cause false positive.

When the reader broadcasts any segment of V , it includes in the same time slot
the total number of ones in the previous segments. For an arbitrary tag t, let It be the
number of ones in V preceding the representative bit of t. When tag t receives Vt , it
can computes It as the sum of (a) the number of ones in the previous segments and
(b) the number of ones in Vt before its representative bit. see Fig. 4.1 for illustration.
As we will see later, the value of It specifies when tag t will transmit during the
reporting phase.
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If two tags in M are mapped to the same bit in V , they will have the same It value
and thus transmit at the same time during the reporting phase, causing collision.
Because the reader has all IDs in M, it knows exactly which tags will be mapped to
the same bit. This makes it easy to resolve collision. The reader simply removes
all but one tag that are mapped to a bit, and puts them in a set C. These tags,
together with tags in F , will not participate in the reporting phase. They are handled
separately in the polling phase.

4.4.2.2 Polling Phase

In this phase, the reader issues two types of polling requests. For each tag in C,
it sends a positive polling request. For each tag in F , it sends a negative polling
request. To distinguish these two types, the reader must transmit a one-bit flag
together with a tag ID in each request, specifying whether the polling is positive
or negative and which tag is polled.

Tags that find their representative bits to be ones in the previous phase must
continuously listen to the channel during the polling phase. After sending a positive
request, the reader waits for a time slot to receive information. The tag that finds its
ID in the request will transmit its information in this slot. This tag, which belongs
to C, will not participate in the reporting phase. After sending a negative request,
the reader does not wait before sending out the next request. The tag that finds its
ID in a negative request knows that it must belong to F and hence should not further
participate in the protocol execution.

The total number of polling requests is |F |+ |C|. By choosing an appropriate
size for the reporting-order vector, we show later that we can make sure |F |+ |C|=
O(1). Note that only tags in M and F have to listen to the channel in this phase.
Tags in N −M − F , which may contain the majority of tags in the system, have
already known that they do not belong to M and thus do not need to participate in
the protocol execution.

4.4.2.3 Reporting phase

A tag participates in the reporting phase only if it satisfies the following two
conditions: (1) it finds that its representative bit is one in the ordering phase, and
(2) it does not find its ID in the requests of the polling phase.

The reporting phase consists of m− |C| time slots. In each time slot, one tag in
M −C transmits its information. Recall that each tag in M learns its index in the
reporting order during the ordering phase. The tag will transmit in the reporting
phase at the time slot of the same index.
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4.4.2.4 Timing

Before executing the protocol, the RFID reader uses its broadcasting signal to
synchronize the clocks of the tags. The reader computes the vector V and breaks
it into segments. Suppose each time slot of length tid can carry 96 bits. We may set
the segment size to be 80 bits and use the remaining 16 bits to carry the total number
of ones in the previous segments.1 The reader is able to compute the execution time
T1 of the ordering phase, which is the number of segments multiplied by tid .

Since the reader knows all IDs in the system, it can precompute the set F of
tags that cause false positive and the set C of tags that should not participate in
the reporting phase in order to avoid collision. Based on F and C, the reader can
compute the execution time T2 of the polling phase, which is |F|× tid + |C|× (tid +
tin f ).

Suppose all tags wake up at each scheduled execution of the protocol. The reader
computes and broadcasts the values of T1 and T2 right before the ordering phase, so
that the tags know when each phase of the protocol will begin. They will remain
in the standby mode unless they have to receive their representative segments,
participate in the polling phase, or transmit their information in the reporting phase.

If the system requires on-demand polling of tag information instead of periodic
execution, there are two possible solutions to wake the tags up in the first place.
The first one is ”pseudo-on-demand” polling, where tags still wake up periodically,
but the reader only issues the polling request when needed. The second approach
is to attach a wake-up circuit to each tag, and use the two-stage wake-up scheme
proposed in [5] to activate the tags. In this approach, tags responde almost
immediately to the polling event. However, the wake-up circuit requires the reader
to be close enough so that the radio power is strong enough to trigger the wake-up
event. As a result, we may have to deploy extra readers to cover all the tags.

4.5 Performance Analysis of TOP

We show the energy cost and execution time of TOP through analysis in this
section. Also, the energy-time trade-off is analyzed and the time-constrained energy
minimization problem is discussed.

1Using 16 bits to carry the number of ones in previous segments will limit the value of m to (0,
65,535]. To get rid of this limitation, we can use 
log2 m� bits instead and broadcast the value of

log2 m� to tags at the beginning of protocol. However, for the sake of simplicity, we use 16 bits in
this chapter to help demonstrate the main idea.
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4.5.1 Energy Cost

We show how to configure TOP such that the energy cost per tag is O(1). The energy
cost of a tag has four components: (1) receiving v, T1 and T2, (2) receiving a segment
of V in the ordering phase, (3) listening to the channel during the polling phase, and
(4) transmitting information in a slot at the reporting phase (or at the polling phase if
the tag is in C). The first two components incur small, constant energy expenditure
to every tag in the system. The fourth component also incurs small, constant energy
cost, but only to the tags in M. The third component incurs energy cost only to tags
in F and M. In the worse case, a tag has to listen to all |C|+ |F| polling requests
from the reader. Suppose it takes one unit of energy to receive a polling request. The
total energy cost of a tag, denoted as Ω , is

Ω ≤ |C|+ |F|+O(1). (4.1)

We treat |C| and |F | as random variables and derive their expected values. Recall
that v be the number of bits in the reporting-order vector V . Let bi be the value of
the ith bit in V , 0 ≤ i < v. For each tag in M, the reader maps it to a random bit in
V and sets the bit to one. After encoding all m tags in V , the probability for bi to be
one is

Prob{bi = 1}= 1−
(

1− 1
v

)m

≈ 1− e−m/v. (4.2)

The bits, b0, b2, ..., bv−1, are independent of each other. Thus, the expected number
of ones in V is ∑v

i=1 Prob{bi = 1}. The value of |C| is equal to m subtracted by the
number of ones in V . Hence, we have

E(|C|) = m−
v

∑
i=1

Prob{bi = 1} ≈ m− v
(

1− e−m/v
)
. (4.3)

A tag not in M will cause false positive when its representative bit is one. The
probability for this to happen is Prob{bi = 1}. Hence,

E(|F|) = (n−m)Prob{bi = 1} ≈ (n−m)
(

1− e−m/v
)
. (4.4)

Both E(|C|) and E(|F |) are monotonically decreasing functions of v. We show that
E(|C|) = O(1) if v is sufficiently large. Let v = m2/2. From Taylor expansion, we
know that

1− e−m/v =
m
v
− 1

2!

(m
v

)2
+

1
3!

(m
v

)3 − 1
4!

(m
v

)4
...

≥ m
v
− 1

2!

(m
v

)2
.
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Applying it to (4.3), we have

E(|C|) = m− v
(

1− e−m/v
)
≤ 1

2!
m2

v
= 1. (4.5)

Next we show that E(|F|) = O(1) if v is sufficiently large. If n = m, E(|F|) = 0.
Now assume n > m. Let v =−m/ ln[1− 1/(n−m)]. Applying it to (4.4), we have

E(|F|) = (n−m)
(

1− e−m/v
)
= 1. (4.6)

Therefore, if we choose v = max{m2/2, −m/ ln[1− 1/(n−m)]}, we have

E(Ω)≤ E(|C|)+E(|F|)+O(1)≤ 1+ 1+O(1) = O(1).

We conclude that TOP can be configured such that the expected energy cost per
tag is O(1). As we will see shortly, the protocol execution time increases when v
becomes too large. To strike a balance between energy cost and protocol execution
time, we may choose a value of v much smaller than max{m2/2, −m/ ln[1−1/(n−
m)]}. Later we will use simulations to study the performance of TOP under practical
values of v. For example, when v = 24m, the amount of data that a tag receives in
TOP is more than an order of magnitude smaller than what a tag has to receive in CP.

We characterize the energy cost in the polling phase by counting the amount of
data (in Kilobits) that a tag has to receive. Numerical results are shown in the first
plot of Fig. 4.2, where n= 50,000 and m= 5,000,10,000, or 25,000, corresponding
to three curves in the plot. Clearly, as v increases, the energy cost decreases.

4.5.2 Execution Time

The protocol execution time also consists of four components. To begin with, it
takes the reader a small, constant time to broadcast v, T1 and T2. The time for the
ordering phase is vtid/l, where l is the segment size. The time for the polling phase
is |F | × tid + |C| × (tid + tin f ). The time for the reporting phase is |M −C| × tin f .
Hence, the total execution time is

T =
(v

l
+ |F|+ |C|

)
tid +m× tin f +O(1). (4.7)

From (4.3) and (4.4), the expected protocol execution time is

E(T ) =
[v

l
+(n−m)

(
1− e−m/v

)
+m− v(1− e−m/v)

]
tid +m · tin f +O(1)

≈
[v

l
+

(n−m)m
v

]
tid +m · tin f +O(1). (4.8)
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Fig. 4.2 Energy cost and execution time of TOP. First plot: Energy cost per tag with respect
to v. Second plot: Protocol execution time with respect to v. Third plot: Energy-time tradeoff
controlled by v.

The second plot of Fig. 4.2 presents the protocol execution time (excluding the
constant O(1)) when n = 50,000, m = 5,000,10,000, or 25,000, tid = 3297μs, and
tin f = 906μs; see Sect. 4.9 for how they are determined. Interestingly, as v increases,
the execution time first decreases and then increases. We can find the optimal value
of v that minimizes the execution time from δE(T )

δv = 0.
Combining the results in the first and second plots, we can figure out the tradeoff

relation between energy cost and protocol execution time, which is presented in the
third plot. As v becomes large, the energy cost decreases at the expense of increased
execution time.
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4.5.3 Choosing v for Time-constrained Energy Minimization

Recall the performance objectives of TOP are energy efficiency and time efficiency.
However, as shown in Fig. 4.2, we may not be able to achieve the best performance
in both metrics using one configuration. Below we study how to configure TOP for
time-constrained energy minimization.

Consider a warehouse with a large number of RFID-tagged goods. Suppose
the system administer wants to maximize the tags’ battery lifetime, but there is
a requirement on the execution time of a polling operation because excessively
long execution time increases the chance of interfering with other scheduled tasks.
From the previous analysis, we know that the protocol execution time is treated as a
random variable. Let T be the execution time of TOP, B be a pre-defined time bound,
and α be a probability value, 0 < α < 1. The time constraint can be specified in a
probabilistic way,

Prob{T ≤ B} ≥ α. (4.9)

Our performance objective is to find the optimal value of v that minimizes the energy
cost, subject to the above constraint.

As shown in the first plot of Fig. 4.2, the energy cost decreases as the size of
the reporting-order vector, v, increases. Hence, the goal becomes finding the largest
v that satisfies (4.9). In the following, we derive Prob{T ≤ B} as a function of v.
Based on this function, we will be able to compute the optimal value of v.

Let d be the total number of ones in V after encoding tags in M, 0 < d ≤ m. The
probability that x bits are ones, expressed as Prob{d = x}, can be calculated by the
balls and bins algorithm, which will be given in the next subsection. For now we
denote the function for computing Prob{d = x} as pd(m,v,x).

After encoding tags in M, the reader removes colliding tags to C. The value of
|C| is equal to m subtracted by the number of ones in V . Hence,

Prob{|C|= c}= Prob{d = m− c}= pd(m,v,m− c). (4.10)

When a tag not in M is mapped to a bit that is one, false positive happens. The
reader puts all false positive tags to F . When there are x bits that are ones in V , the
conditional false positive probability is x/v. Thus,

Prob{false positive
∣∣d = x}= x

v
.

Obviously, when d = x, the total number of false positive tags follows a binomial
distribution Bino(n−m,x/v).

Prob{|F|= f
∣∣d = x}=

(
n−m

f

)(x
v

) f (
1− x

v

)n−m− f
.
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Let S be the union of C and F , so |S|= |C|+ |F|. The probability distribution of
|S| is

Prob{|S|= s}=
s

∑
c=0

Prob{|F|= s− c
∣∣|C|= c} ·Prob{|C|= c}

=
m

∑
x=1

Prob{|F|= s−m+ x|d = x} ·Prob{d = x}

=
m

∑
x=1

(
n−m

s−m+ x

)(x
v

)s−m+x(
1− x

v

)n−s−x
pd(m,v,x). (4.11)

Adopt (4.7) and ignore O(1), a small constant time for the reader to broadcast v,
T1 and T2, which is negligibly small when comparing with other components on the
right side of (4.7). We have

Prob{T ≤ B}=
smax

∑
s=0

Prob{|S|= s}, (4.12)

where smax = (B−mtin f )/tid − v/l. We denote the right side of (4.12) as Pt(v,B),
which is the probability for the protocol execution time to be bounded by B under
a certain value of v. It is computable as a function of v and B after (4.11) is applied
and parameters m and n are given.

We want to find the largest value of v that satisfies the inequality, Pt(v,B) ≥ α .
Our numerical computation shows that, given a fixed value of B, Pt(v,B) is not a
monotonic function with respect to v. Hence, we cannot directly apply the bisection
search method to find the largest v that satisfies Pt(v,B)≥ α . We may use the False
Position algorithm [3] to find the optimal value of v. The computation overhead is
reasonable. For n = 10,000, m = 1,000, B = 4 seconds, and α = 99%, it takes an
Apple macbook (2.4GHz CPU and 4GB memory) 3 seconds to find the optimal
v = 60,160. And for n = 10,000, m = 1,000, B = 3 seconds, and α = 99%, it takes
the same computer 16 seconds to find that no v can satisfy the requirement, because
B = 3 seconds is smaller than the minimum execution time that TOP can achieve.

As a related problem, if v and α are given, we can also use Pt(v,B) to compute the
time bound that TOP can achieve. More specifically, given a value of v, we are able
to find the smallest B that satisfies Pt(v,B)≥ α through bisection search: Recall that
Pt(v,B) is the formula for Prob{T ≤ B}, the probability for the protocol execution
time to be bounded by B. Clearly, it is an increasing function of B with Pt(v,0) = 0
and Pt(v,+∞) = 1. We choose a small value B1 (e.g., 0) such that Pt(v,B1)< α and
a large value B2 such that Pt(v,B2) ≥ α . Let B3 = 
(B1 +B2)/2�. If Pt(v,B3) < α ,
assign B3 to B1; otherwise, assign B3 to B3. Hence, the search range [B1,B2] is cut
by half. Repeat the above process until B1 = B2, which gives the smallest bound
B that satisfies Pt(v,B) ≥ α . Let n = 10,000 and m = 1,000. Figure 4.3 shows the
smallest bound B with respect to v when α = 90%,95% and 99%, which correspond
to the three curves in the figure.
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4.5.4 Computing pd(m, v, x) — the Balls and Bins Algorithm

Problem: Suppose we throw m balls into v empty bins. Each ball is thrown to a
random bin, and each bin can hold unlimited number of balls. We want to find the
probability that after m balls are thrown, x bins are not empty, denoted as pd(m,v,x).

Solution: There are many solutions to this problem. We now provide a recursive
one. Assume after we throw m balls, there are x non-empty bins, 1 ≤ x ≤ m. When
x > 1, there are two possibilities of where the mth ball goes: (1) If the mth ball
is placed to a previously empty bin, there should be x− 1 non-empty bins after
m− 1 balls were thrown, and the possibility for this to happen is (v− x+ 1)/v; (2)
Otherwise if the mth ball goes to a previously non-empty bin, there must be x non-
empty bins after m− 1 balls were thrown, and the possibility of this option is x/v.
Thus,

pd(m,v,x) =

⎧⎪⎪⎨
⎪⎪⎩

1;x = m = 1.
x
v pd(m− 1,v,x)+ v−x+1

v pd(m− 1,v,x− 1);1≤ x ≤ m and x ≤ v.

0; all other cases.

pd(m,v,x) can be calculated from simple dynamic programing.

4.6 Enhanced Tag-Ordering Polling Protocol (ETOP)

In this section, in present a protocol (ETOP) that will further improve the perfor-
mance of TOP. We first show that there is ;still space for improvement in TOP and
then give the protocol description.
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4.6.1 Motivation

If we do not want to significantly increase execution time, we cannot choose a large
value for v. In this case, we must find other means to lower energy cost. The key is to
reduce the number of IDs that have to be transmitted in the polling phase. Namely,
we should reduce the number of tags in F and C. Let’s first focus our discussion on
false positive. Consider an arbitrary tag t /∈ M. Its representative segment is Vt . Let
q be the number of tags in M that are also mapped to Vt . False positive occurs if t
and one of those q tags have the same representative bit. The probability for this to
happen is 1− (1− 1/l)q, where l is the number of bits in Vt .

To further reduce the false-positive probability, we can implement each segment
of V as a Bloom filter [1, 2]. The reader uses multiple hash functions to map each
tag to k(> 1) representative bits in V , instead of just one in TOP. More specifically,
for each member t ′ ∈ M, the reader first maps it to a representative segment Vt′
through a hash function whose range is [0,v/l). Then the reader further maps t ′ to k
representative bits in Vt′ and set them to ones.

After all members in M are encoded in the segments of V , the reader broadcasts
the segments in the ordering phase. A tag t only listens for its representative segment
Vt and then checks its representative bits. If any representative bit is zero, the tag can
not be in M. If all representative bits are ones, the tag may be a member in M or a
false positive. In the case of false positive, even though the tag does not belong to
M, every one of its representative bits is set because it is also a representative bit of
a member tag in M. The probability for this to happen is (1− (1−1/l)kq)k, where q
is the number of tags in M whose representative segments are also Vt . For example,
if l = 80, k = 3, and q = 2, the false-positive probability is just 3.8× 10−4, much
lower than 1− (1− 1/l)q = 2.5× 10−2 in TOP under the same parameters.

Bloom filters can reduce the false-positive probability. But it is more difficult
to use them to carry the reporting order, based on which the tags will take turn
to transmit during the reporting phase. In TOP, we use the number of ones that
precede the representative bit of a tag to determine the tag’s position in the reporting
order. Bloom filters use multiple representative bits to encode each member. The
representative bits of different members may overlap in an arbitrary way. Hence,
we cannot simply use all bits whose values are ones to represent tags in M because
there is no one-to-one mapping between them.

In the following, we design an enhanced tag-ordering polling protocol (ETOP)
to solve the above problem. ETOP uses partitioned Bloom filters, which not only
reduce false positive and encode the reporting order, but also reduce |C| as well as
overall execution time of the protocol.
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Fig. 4.4 Vt is the
representative segment of tag
t . Vt is evenly divided into k
partitions, each having �l/k
bits. Tag t has one
representative bit in every
partition.

4.6.2 Protocol Description

The main difference between ETOP and TOP is that ETOP implements each
segment of V as a partitioned Bloom filter instead of a simple bit array. When we
describe the protocol of ETOP, we focuses on the difference while omitting the
details that it shares in common with TOP.

In a partitioned Bloom filter, the l bits of a segment are evenly divided into
k partitions. Each partition has �l/k bits. see Fig. 4.4 for illustration. For every
member tag t in M, the reader applies a hash function on its ID to obtain a number of
hash bits. The reader uses 
log2 v� hash bits to map t to a representative segment Vt ,
and then uses k
log2 l/k� hash bits to further map t to one representative bit in every
partition of the segment. Like a classical Bloom filter, the partitioned Bloom filter
sets k representative bits for each encoded member; unlike a classical Bloom filter,
a partitioned Bloom filter spreads the k representative bits in k different partitions.

After receiving its representative segment, a tag checks the k representative bits
to determine if it is a member in M. False positive cases are handled by the reader
in the polling phase as usual.

How does a tag t know its position in the reporting order? First we consider the
reporting order among tags that are encoded in the same segment Vt . Since every tag
has exactly one representative bit in each partition of Vt , we may be able to use one
of the partitions to carry the order information. In other words, if there is a partition
P∗ whose number of ones is equal to the number of tags encoded in Vt , we know
that there must be a one-to-one mapping between these tags and the ‘1’ bits in P∗.
We can use the order of ‘1’ bits in P∗ as the reporting order of the corresponding
tags. We will explain later how the reader makes sure that such a partition exists.
When the reader sends out Vt , in the same time slot it also sends the total number xt

of tags that are encoded in all previous segments of V . The position of tag t in the
reporting order can be computed from xt and the information in P∗, which we will
further explain shortly.

How to make sure that any segment of V always has a partition whose number
of ones is equal to the number of tags encoded in the segment? The reader has to do
some extra work. After encoding all tags in M, the reader examines the partitions
one by one for each segment. If there is not such a partition, the reader removes an
encoded tag and places it in the set C, which will be explicitly polled in the polling
phase. The reader keeps removing tags until it finds a partition that satisfies the
above requirement. Note that the requirement is always satisfied when the number
of tags encoded in a segment is one.
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After receiving its representative segment Vt , a tag t ∈ M computes its position
in the reporting order as follows: It finds out a partition P∗ in Vt that has the largest
number of ones. This partition must have a one-to-one mapping between ‘1’ bits and
encoded tags. Let yt be the number of ones in P∗ that precedes the representative bit
of t. The tag computes its position in the reporting order as yt + xt . Recall that xt is
the number of tags that are encoded in the previous segments. It is received together
with Vt in the same time slot.

The polling phase and the reporting phase of ETOP are identical to their
counterparts in TOP.

We show the energy cost and execution time of ETOP through analysis in this
section. Also, the energy-time trade-off is analyzed and the time-constrained energy
minimization problem is discussed.

4.7 Performance Analysis of ETOP

4.7.1 Energy Cost

We show that ETOP can be configured such that the energy cost per tag is O(1).
ETOP has the same upper bound formula for per-tag energy cost as TOP does,
which is shown in (4.1), but it has different values of |C| and |F |. In the following,
we derive |C| and |F | for ETOP. Let mi be the number of tags in M that are encoded
in the ith segment, 0 ≤ i < v/l. Each tag in M has a probability of l/v to be mapped
to the ith segment. Hence, mi follows a binomial distribution Bino(m, l/v).

Prob{mi = x}=
(

m
x

)(
l
v

)x(
1− l

v

)m−x

. (4.13)

Let Ci be a subset of C, containing the tags that are removed from the ith segment.
We know the following facts: (1) When mi = 0, |Ci|= 0. (2) When mi = 1, |Ci|= 0.
(3) When mi ≥ 1, |Ci| ≤ mi − 1. Hence, we must have

E(|Ci|)< (mi − 1) ·
(

1−Prob{mi = 0}−Prob{mi = 1}
)

= (mi − 1) ·
(

1−
(

1− l
v

)m

− ml
v

(
1− l

v

)m−1
)
.

Since (1− l/v)m > 1−ml/v, we have

E(|Ci|)< mi(m− 1)2l2

v2 <
mim2l2

v2 .

|C| is the sum of all |Ci|s, 0 ≤ i < v/l. We know ∑v/l
i=1 mi = m. So,

E(|C|) =
v/l

∑
i=1

E(|Ci|)< m
m2l2

v2 =
m3l2

v2 .



4.7 Performance Analysis of ETOP 75

If we let v =
√

m3l2, E(|C|)< 1.
Consider an arbitrary tag not in M. Without loss of generality, suppose it is

mapped to the ith segment. In any partition of the segment, the probability for it
to share a representative bit with a tag in M is 1− (1− k/l)mi . The probability for
that to happen in all partitions is [1− (1− k/l)mi]k. Hence, the probability for the
tag to cause false positive, denoted as p f is

p f =
m

∑
q=0

Prob{mi = q}
[

1−
(

1− k
l

)q]k

< (1−Prob{mi = 0})
[

1−
(

1− k
l

)m]k

≈ (1− e−lm/v)(1− e−km/l).

The expected valus of |F | is

E(|F |) = (n−m) · p f < (n−m)(1− e−lm/v)(1− e−km/l). (4.14)

If we let v = −ml/ ln [1− (n−m)−1(1− e−km/l)−1] and apply it to (4.14), we
have E(|F |) < 1. Now, if we choose v = max{

√
m3l2,−ml/ ln[1− (n−m)−1(1−

e−km/l)−1]}, the expected energy cost E(Ω) ≤ E(|C|)+E(|F |)+O(1) < 1+ 1+
O(1) = O(1). Therefore, ETOP can also be configured such that the energy cost per
tag is O(1).

4.7.2 Execution Time

Following the same analysis as in Sect. 4.5.2, it is easy to see that ETOP has the
same formula for protocol execution time as TOP does: T = (v/l + |F |+ |C|)tid +
m× tin f +O(1), but the values of |C| and |F | are different. The simulation results in
Sect. 4.9 show that ETOP has smaller execution time than TOP.

4.7.3 Choosing v for Time-constrained Energy Minimization

Following the same reasoning in Sect. 4.5.3, we define the time bound for ETOP
to be

Prob{T ≤ B} ≥ α, (4.15)

where T is the execution time of ETOP, B is a pre-defined time bound, and α is
a probability value, 0 < α < 1. The objective is to find the largest value v that
minimizes the energy cost, subject to the constraint (4.15). In the following, we
derive a computable formula for Prob{T ≤ B}, which can be found in (4.23) and
(4.24). Based on the formula, we will be able to find the optimal value v.
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Let mi be the number of tags in M that are encoded in the ith segment, denoted
as Vi, 0 ≤ i < v/l. Obviously, mi follows a binomial distribution Bino(m, l/v),

Prob{mi = x}=
(

m
x

)(
l
v

)x(
1− l

v

)m−x

.

Let ni be the number of tags not in M that are mapped to the ith segment, 0 ≤ ni ≤
n−m. Obviously, ni follows the binomial distribution Bino(n−m, l/v).

Prob{ni = z}=
(

n−m
z

)(
l
v

)z(
1− l

v

)n−m−z

.

Let Ci be a subset of C, containing the tags that are removed from Vi; Let Fi be
a subset of F , consisting the false positive tags that are mapped to Vi; Let Si be the
union of Ci and Fi, thus |Si|= |Ci|+ |Fi|, and,

Prob{|Si|= s
∣∣mi = x,ni = z}=

s

∑
c=0

Prob{|Fi|= s− c
∣∣∣|Ci|= c,mi = x,ni = z}

·Prob{|Ci|= c
∣∣mi = x}. (4.16)

Firstly, we show how to calculate Prob{|Ci|= c
∣∣mi = x}. After encoding mi tags

in Vi, let di j be the number of ones in the jth partition, 1 ≤ j ≤ k. As a tag in
M has exactly 1 representative bit in each partition, 0 ≤ di j ≤ min{mi, l/k}. The
reader removes a tag to Ci only if it shares a representative bit with another tag
in the partition that contains the largest number of ones. As a result, |Ci| = mi −
max j∈[1,k] di j. When y ≥ 1, we have

Prob{ max
j∈[1,k]

di j = y
∣∣mi = x}

=
k

∏
j=1

Prob{di j ≤ y
∣∣mi = x}−

k

∏
j=1

Prob{di j ≤ y− 1
∣∣mi = x}

=

(
y

∑
d=0

Prob{di j = d
∣∣mi = x}

)k

−
(

y−1

∑
d=0

Prob{di j = d
∣∣mi = x}

)k

=

(
y

∑
d=0

pd(x,
l
k
,d)

)k

−
(

y−1

∑
d=0

pd(x,
l
k
,d)

)k

, (4.17)

where pd(x, l/k,d) = Prob{di j = d
∣∣mi = x} is the conditional probability that a

partition containing mi = x tags happens to have d ones. The calculation of pd(·)
can be found in Sect. 4.5.4. Hence, the conditional distribution of |Ci| is,

Prob{|Ci|= c
∣∣mi = x}=

(
x−c

∑
d=0

pd(x,
l
k
,d)

)k

−
(

x−c−1

∑
d=0

pd(x,
l
k
,d)

)k

. (4.18)
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Secondly, we derive Prob{|Fi| = s − c
∣∣|Ci| = c,mi = x,ni = z}. A tag not in

M maps itself to k partitions and choose one bit randomly from each partition.
If all these bits are ones, false positive happens. The conditional false positive
probability is,

Prob{false positive in Vi
∣∣mi = x}=
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))k

. (4.19)

When |Ci|= c, max j∈[1,k] di j = mi − c, hence,
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denoted as p f c, which represents the false positive probability when mi = x tags are
encoded in the ith segments and |Ci|= c tags are moved to the collision set C. When
ni tags in N −M are mapped to Vi, the conditional distribution of |Fi| follows the
binomial distribution Bino(ni, p f c), thus,

Prob{|Fi|= s− c
∣∣∣|Ci|= c,mi = x,ni = z}=

(
z

s− c

)
ps−c

f c (1− p f c)
z−s+c. (4.21)

From (4.18) and (4.21), we can derive Prob{|Si| = s
∣∣mi = x,ni = z}. Thus, the

probability distribution of |Si| is,
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Fig. 4.5 Bound B that
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Let S be the union of C and F . We have |S|= |C|+ |F| and |S| = ∑v/l
i=1 |Si|. As S1,

S2, ..., Sv/l are independent of each other, the probability distribution of |S| is the
convolution of |Si|. Hence,

Prob{|S|= s}= Prob{|S1|= s} ∗ ...∗Prob{|S v
l
|= s},

where ∗ is the convolution operator. With the help of Fourier Transform, we have

Prob{|S|= s} = ˆFFT
[(

FFT
(
Prob{|Si|= s}))v/l]

, (4.23)

where FFT is the Fast Fourier Transform, and ˆFFT is the inverse Fast Fourier
Transform. Adopting (4.7), we have

Prob{T ≤ B}=
smax

∑
s=0

Prob{|S|= s}, (4.24)

where smax = (B−mtin f )/tid −v/l. The right hand side is denoted as P′
t (v,B), which

is the probability for the protocol execution time to be bounded by B under a certain
value of v. It is computable as a function of v and B after (4.22) is applied and
parameters m and n are given. Given a value of B, we can find the largest v that
satisfies P′

t (v,B) < α using the False Position algorithm [3]. For example, when
n = 10,000, m = 1,000, B = 2 seconds, and α = 99%, the optimal value of v is
23,200.

As a related problem, if v and α are given, we can use P′
t (v,B) to compute the

time bound that ETOP can achieve. More specifically, given a value of v, we are
able to find the smallest B that satisfies P′

t (v,B) ≥ α through bisection search as
described in Sect. 4.5.3. Figure 4.5 shows the time bound of ETOP with respect to
v when α = 90%,95% and 99%, which correspond to the three curves in the figure.
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4.8 Channel Error

Channel error may corrupt the data exchanged between the reader and tags. For
example, if a negative polling request is corrupted, the tag that is not supposed to
participate in the reporting phase will transmit and cause collision in the reporting
phase. A segment of V sent from the reader may be corrupted so that tags encoded
in this segment will not report their information. There exists other scenarios of
corruption in the execution of TOP or ETOP. They cause two effects: 1) A tag in
M does not transmit its information in the slot when it is supposed to transmit, and
2) it transmits but collides with another tag that is not supposed to transmit in the
slot. To detect these cases, when a tag transmits, we require it to include a CRC
checksum that is computed from the concatenation of the information bits and the
tag’s ID. When the reader expects information from a tag in a time slot, if the slot
turns out to be empty or the data received in the slot do not carry a correct CRC, the
reader knows that information from the tag is not correctly received. At the end of
the protocol, all missed information can be retrieved by polling the tags directly.

4.9 Simulation Results

We evaluate the performance of the presented protocols, the tag ordering polling
protocol (TOP) and the enhanced tag ordering polling protocol (ETOP). We
compare them with the basic polling protocol (BP) and the coded polling protocol
(CP). The evaluation uses two performance metrics: (1) the average number of
bits that each tag has to receive during the protocol execution, and (2) the overall
execution time.

We only consider energy consumption of tags in receiving information for two
reasons. First, this is the major, variable portion of the energy cost per tag. As
we will see shortly, each tag may have to receive hundreds of thousands of bits
during protocol execution, whereas it only sends a small, fixed amount, e.g., 32 bits.
Second, the energy cost for tags in M to transmit their information is the same for
all protocols. Omitting them does not affect the comparison.

We use the following parameters to configure the simulation: each tag ID is 96
bits long, information reported from a tag to the reader is 32 bits long, and each
segment in ETOP is 80 bits long and divided into 4 partitions, i.e. k = 4. The
transmission time is based on the parameters of the Philips I-Code specification
[6]. The rate from a tag to the reader is 53 Kb/sec; it takes 18.88 μs for a tag to
transmit one bit. Any two consecutive transmissions (from the reader to tags or vice
versa ) are separated by a waiting time of 302 μs. The value of tin f is calculated as
the sum of a waiting time and the time for transmitting the information, which is
18.88 μs multiplied by the length of the information. For 32-bit information, tin f =
906 μs. The transmission rate from the reader to tags is 26.5 Kb/sec; it takes 37.76
μs for the reader to transmit one bit. The value of tid is calculated as the sum of a
waiting time and the time for transmitting a 96-bit ID. The result is 3,927 μs.
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Fig. 4.6 Energy and time comparison. Parameters: m = 0.1n, v = 24m for TOP and ETOP. Note
that the horizontal ‘0’ line is not at the bottom in order to make the ETOP curve visible.

4.9.1 Varying the Number n of Tags

We first vary the number n of tags in the system from 10,000 to 100,000. We
set v = 24m and m = 0.1n, i.e., 10% of all tags are selected by the reader to
report information. Figure 4.6 compares four protocols in terms of energy cost and
protocol execution time. The left plot shows energy costs. TOP and ETOP reduce
energy consumption by one or multiple orders of magnitude. For example, when
n = 100,000, per-tag energy cost in TOP is 9.4% of the cost in CP, and 5.0% of the
cost in BP. Per-tag energy cost in ETOP is just 0.52% of the cost in CP, and 0.28%
of the cost in BP. The right plot shows the execution time comparison. TOP requires
25% less time than BP, but 27% more time than CP. ETOP requires 55% less time
than BP and 24% less time than CP.

In summary, CP reduces both energy cost and execution time nearly by half when
comparing with BP. TOP makes great improvement over CP in terms of energy
cost, but has modestly higher execution time. ETOP considerably outperforms CP
in terms of both energy cost and execution time.

4.9.2 Varying the Size v of Reporting-order Vector

Next, we show how the value of v influences the performance of TOP and ETOP. We
set n = 50,000 and m = 5,000, 10,000, or 25,000. We vary v from 4m to 64m and
use simulation to find energy cost per tag and protocol execution time. Figure 4.7
shows the simulation results. The top two plots present the average amount of data
each tag receives in TOP and ETOP, respectively. The curves match the theoretical
results we have given in Sect. 4.5. When v is reasonably large, e.g., v ≥ 7m, ETOP
consumes less energy than TOP. The bottom two plots present the protocol execution
time of TOP and ETOP, respectively. ETOP also requires less time than TOP when
v ≥ 7m.
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4.10 Summary

In this chapter, we present two energy-efficient polling protocols, TOP and ETOP,
for large-scale RFID systems. These protocols are designed to collect real-time
information from a subset of tags in the system. Our primary objective is to lower
energy consumption by tags in order to extend their battery lifetime. The new
protocols can be configured to achieve O(1) energy cost per tag. Performance
tradeoff between energy cost and execution time can be made by controlling the
size of the reporting-order vector.
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