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Preface 

Wireless sensor networks (WSNs) have become an important technol
ogy in the realization of many applications, including both simple 
event/phenomena monitoring applications and heavy-duty data streaming 
applications. While many systems are being developed, we focus on two 
fundamental operations: information processing and information routing. 
In the data-centric operating paradigm of WSNs, these two operations are 
tightly related and must be performed in a collaborative fashion. 

A major concern in designing and operating WSNs is their energy-
efficiency. Cross-layer optimization is widely accepted as an effective tech
nique to ameliorate this concern. The basic idea is to share information 
across different system layers and to enable tradeoffs involving multiple lay
ers, which provides a larger optimization space for system design. Cross-
layer optimization in the context of collaborative information processing 
and routing is the motivation of this book. 

Objectives: 
This book presents state-of-the-art techniques for cross-layer optimiza

tion to improve the energy-efficiency of information processing and routing 
in wireless sensor networks. Besides providing a survey on this important 
research area, three specific research topics are addressed in detail: real
time information processing in a single hop cluster, real-time information 
transport over a given tree substrate, and information routing for compu
tationally intensive applications. We choose these three topics because (1) 
each of them is important and challenging in itself, and (2) together they 
constitute a complete operating flow of information processing and rout
ing. The presented techniques provide a framework above which various 
extensions can be overlaid. 

We focus on the use of three system knobs for cross-layer optimiza-
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tion: voltage scaling, rate adaptation, and tunable compression. These 
system knobs can be used to explore the tradeoffs between communica
tion/computation energy and latency, as well as the balance between com
putation and communication. The presented techniques are based on a 
high level system model that suitably abstracts details of low level hard
ware, networking protocols, and signal processing techniques. 

We intend to (1) illustrate significant research results in cross-layer op
timization for collaborative information processing and routing, and (2) 
motivate more research efforts in this crucial area from both theoretical 
and practical perspectives. 

Book Organization: 
In Chapter 1, we give an introduction to WSNs by discussing the en

abling technologies of WSNs, the evolution of wireless sensor nodes, the 
application domain of WSNs, and related research topics and challenges. 

In Chapter 2, we elaborate on the concept of information processing and 
routing in data-centric operating paradigm of WSNs. This is followed by a 
discussion of cross-layer optimization for energy minimization. A survey of 
state-of-the-art cross-layer optimization techniques is then presented. 

The techniques presented in this book are centered around three sys
tem knobs: voltage scaling, rate adaptation, and tunable compression. In 
Chapter 3, we first give a list of common notations that are used through
out the book. We then describe the energy models of the above knobs. In 
particular, we demonstrate the tradeoffs involved in these knobs. 

In Chapter 4, we consider collaborative data processing in a single 
hop cluster that behaves as a basic operating unit across the network. We 
investigate the assignment and scheduling of a set of real-time communicat
ing tasks onto the cluster under a novel performance metric — to balance 
the energy cost of all nodes within the cluster. We focus on exploring the 
energy-latency tradeoffs with adjustable computation and communication 
speed, enabled by techniques such as voltage scaling and rate adaptation. 
We present integer linear programming formulations for optimal solutions 
as well as a 3-phase heuristic. Our techniques are shown to achieve up to 
lOx lifetime improvements in simulated scenarios. 

In Chapter 5, we investigate the transportation of information to 
the base station over an existing routing substrate (i.e., a data gather
ing tree) within a user-specified latency constraint. We again explore the 
energy-latency tradeoffs through rate adaptation. By exploiting the de
pendency between communication links over the tree, we have developed 
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both off-line and on-line techniques to adjust the communication speed for 
energy minimization. Energy conservation up to 90% is achieved by our 
techniques. 

In Chapter 6, we focus on the construction of a routing tree that 
minimizes the total energy costs of data compression and communication. 
Such an objective is novel compared with traditional maximum compression 
philosophy, and is crucial for advanced computationally intensive applica
tions, where a balance between computation and communication energy 
is necessary. We utilize the concept of tunable compression with a suit
able model to capture the tradeoffs between the compression time and the 
output size. By revealing the inherent tradeoffs between two simple tree 
constructions — shortest path tree and minimal steiner tree — via both 
analysis and simulation, we show that the minimal steiner tree is a prac
tical solution with acceptable performance for systems with both grid and 
arbitrary deployment. 

We expect that the contents presented in this book will motivate further 
research and implementation in the field of collaborative information pro
cessing and routing. Yet, many real-world challenges need to be overcome. 
We briefly discuss these challenges in Chapter 7. 

Target Audience: 
Most of the technical contents presented in this book are intended for 

scholars and researchers in academic institutions as well as industrial re
search groups. This book will benefit scholars and researchers by presenting 
(1) a survey of state-of-the-art techniques on information processing and 
routing and cross-layer optimization for energy-efficiency, and (2) a sys
tematic framework to perform cross-layer optimization at various stages 
of information processing and routing, with results on three specific case 
studies. 
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Chapter 1 

Introduction to Wireless Sensor 
Networks 

1.1 Overview 

With the popularity of laptops, cell phones, PDAs, GPS devices, RFID, and 
intelligent electronics in the post-PC era, computing devices have become 
cheaper, more mobile, more distributed, and more pervasive in daily life. 
It is now possible to construct, from commercial off-the-shelf (COTS) com
ponents, a wallet size embedded system with the equivalent capability of a 
90's PC. Such embedded systems can be supported with scaled down Win
dows or Linux operating systems. From this perspective, the emergence of 
wireless sensor networks (WSNs) is essentially the latest trend of Moore's 
Law toward the miniaturization and ubiquity of computing devices. 

Typically, a wireless sensor node (or simply sensor node) consists of sens
ing, computing, communication, actuation, and power components. These 
components are integrated on a single or multiple boards, and packaged in 
a few cubic inches. With state-of-the-art, low-power circuit and networking 
technologies, a sensor node powered by 2 AA batteries can last for up to 
three years with a 1% low duty cycle working mode. A WSN usually con
sists of tens to thousands of such nodes that communicate through wireless 
channels for information sharing and cooperative processing. WSNs can be 
deployed on a global scale for environmental monitoring and habitat study, 
over a battle field for military surveillance and reconnaissance, in emer
gent environments for search and rescue, in factories for condition based 
maintenance, in buildings for infrastructure health monitoring, in homes to 
realize smart homes, or even in bodies for patient monitoring [60; 76; 124; 
142]. 

After the initial deployment (typically ad hoc), sensor nodes are re
sponsible for self-organizing an appropriate network infrastructure, often 
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with multi-hop connections between sensor nodes. The onboard sensors 
then start collecting acoustic, seismic, infrared or magnetic information 
about the environment, using either continuous or event driven working 
modes. Location and positioning information can also be obtained through 
the global positioning system (GPS) or local positioning algorithms. This 
information can be gathered from across the network and appropriately 
processed to construct a global view of the monitoring phenomena or ob
jects. The basic philosophy behind WSNs is that, while the capability of 
each individual sensor node is limited, the aggregate power of the entire 
network is sufficient for the required mission. 

In a typical scenario, users can retrieve information of interest from 
a WSN by injecting queries and gathering results from the so-called base 
stations (or sink nodes), which behave as an interface between users and the 
network. In this way, WSNs can be considered as a distributed database [45; 
184]. It is also envisioned that sensor networks will ultimately be connected 
to the Internet, through which global information sharing becomes feasible 
(Figure 1.1). 

The era of WSNs is highly anticipated in the near future. In September 
1999, WSNs were identified by Business Week as one of the most important 
and impactive technologies for the 21st century [31]. Also, in January 2003, 
the MIT's Technology Review stated that WSNs are one of the top ten 
emerging technologies [125]. It is also estimated that WSNs generated less 
than $150 million in sales in 2004, but would top $7 billion by 2010 [133]. 
In December 2004, a WSN with more than 1000 nodes was launched in 
Florida by the ExScal team [61], which is the largest deployed WSN to 
date. 

1.2 Enabling Technologies 

1.2.1 Hardware 

The hardware basis of WSNs is driven by advances in several technologies. 
First, System-on-Chip (SoC) technology is capable of integrating complete 
systems on a single chip. Commercial SoC based embedded processors from 
Atmel, Intel, and Texas Instruments have been used for sensor nodes such as 
UC Berkeley's motes [48; 173], UCLA's Medusa [120] and WINS [197], and 
MIT's /zAMPS-1 [187]. Several research groups, such as the PicoRadio team 
from UC Berkeley [139], have been trying to integrate prototype sensor 
nodes (PicoNode I) onto a few chips (PicoNode II). Many interesting SoC 
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Fig. 1.1 Accessing WSNs through Internet. 

designs related to wireless communication and sensor nodes can also be 
found at the SoC Design Challenge, 2004-2006 [174]. 

Second, commercial R.F circuits enable short distance wireless communi
cation with extremely low power consumption. Commercial products from 
RF Monolithics, Chipcon, Conexant Systems, and National Semiconductor 
have been used on various sensor nodes, including motes, Medusa, WINS, 
and /iAMPS. A SoC based ZigBee radio is also available from Ember Co
operation [58]. These commercial radios can usually achieve a data rate 
of tens to hundreds of Kbps, while consuming less than 20 mW of power 
for both packet transmission and receiving [140]. With wideband tech
nology, enhanced modulation schemes and error detection mechanisms are 
employed to provide increased robustness. 

Third, Micro-Electro-Mechanical Systems (MEMS) technology [122] is 
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now available to integrate a rich set of sensors onto the same CMOS chip. 
Commercially available sensors now include thermal, acoustic/ultrasound, 
and seismic sensors, magnetic and electromagnetic sensors, optical trans
ducers, chemical and biological transducers, accelerometers, solar radia
tion detectors, photosynthetically active radiation detectors, and baromet
ric pressure detectors [105]. These sensors can be used in a broad range of 
applications, including acoustic ranging, motion tracking, vibration detec
tion, and environmental sensing. 

The above technologies, along with advanced packaging techniques, 
have made it possible to integrate sensing, computing, communication, and 
power components into a miniaturized sensor node. 

1.2.2 Wireless Networking 

Besides hardware technologies, the development of WSNs also relies on 
wireless networking technologies. The 802.11 protocol, the first standard 
for wireless local area networks (WLANs), was introduced in 1997. It was 
upgraded to 802.11b with an increased data rate and CSMA/CA mech
anisms for medium access control (MAC). Although designed for wire
less LANs that usually consist of laptops and PDAs, the 802.11 proto
cols are also assumed by many early efforts on WSNs. However, the 
high power consumption and excessively high data rate of 802.11 pro
tocols are not suitable for WSNs. This fact has motivated several re
search efforts to design energy efficient MAC protocols [109; 145; 189; 
206]. Recently, the 802.15.4-based ZigBee protocol was released, which was 
specifically designed for short range and low data rate wireless personal 
area networks (WPAN). Its applicability to WSNs was soon supported by 
several commercial sensor node products, including MicaZ [48], Telos [140], 
and Ember products [58]. 

Above the physical and MAC layers, routing techniques in wireless net
works are another important research direction for WSNs. Some early 
routing protocols in WSNs are actually existing routing protocols for wire
less ad hoc networks or wireless mobile networks. These protocols, in
cluding DSR [88] and AODV [138], are hardly applicable to WSNs due 
to their high power consumption. They are also designed to support 
general routing requests in wireless networks, without considering spe
cific communication patterns in WSNs. Nevertheless, the customization 
of these protocols for WSNs and the development of new routing tech
niques have become hot research topics [26; 51; 66; 73; 85; 95; 107; 160; 
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202]. The main idea behind these research efforts is to enable energy effi
cient and robust routing by exploiting link and path diversity. 

1.2.3 Collaborative Signal Processing 

Collaborative signal processing algorithms are another enabling technology 
for WSNs. While raw data from the environment are collected by sensor 
nodes, only useful information is of importance. Hence, raw data need to 
be properly processed locally at sensing nodes, and only processed data 
is sent back to the end users. Since computation is much more energy 
efficient than wireless communication, this avoids wasting energy on sending 
large volumes of raw data. Such signal processing is often required to be 
performed by a set of sensor nodes in proximity, due to the weak sensing 
and processing capabilities of each individual node. 

Information fusion is an important topic for collaborative signal process
ing. Since sensor readings are usually imprecise due to strong variations 
of the monitoring entity or interference from the environment, informa
tion fusion can be used to process data from multiple sensors in order 
to filter noise measurements and provide more accurate interpretations 
of the information generated by a large number of sensor nodes. A rich 
set of techniques is applicable in this context, including Kalman filtering, 
Bayesian inference, neural networks, and fuzzy logic [7; 52; 91; 113; 165; 
198]. 

Other signal processing techniques that have been developed for 
WSNs include time synchronization [57; 65; 179], localization [131; 154; 
155], target tracking [50; 108; 214], edge and boundary detection [38; 101; 
132], calibration [83; 194], adaptive sampling [137; 195], and distributed 
source coding [86; 153]. 

1.3 Evolution of Sensor Nodes 

There has been a long history for (remote) sensing as a means for humans 
to observe the physical world. For example, the telescope invented in the 
16th century is simply a device for viewing distant objects. As with many 
technologies, the development of sensor networks has been largely driven 
by defense applications. 
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1.3.1 Military Networks of Sensors 

Since the early 1950s, a system of long-range acoustic sensors (hy
drophones), called the Sound Surveillance System (SOSUS), has been de
ployed in the deep basins of the Atlantic and Pacific oceans for submarine 
surveillance. Beams from multiple hydrophone arrays are used to detect 
and locate underwater threats. Recently, SOSUS has been replaced by the 
more sophisticated Integrated Undersea Surveillance System. 

Networks of air defense radars can be regarded as an example of net
worked large scale sensors. Both ground-based radar systems and Airborne 
Warning and Control System (AWACS) planes are integrated into such 
networks to provide all-weather surveillance, command, control, and com
munications. The radar dome on AWACS planes is 30 feet in diameter 
and six feet thick. It can detect flying targets in a range of more than 200 
miles. In the 1980s and 1990s, the Cooperative Engagement Capability 
(CEC) [33] was developed as a military sensor network, in which informa
tion gathered by multiple radars was shared across the entire system, to 
provide a consistent view of the battle field. 

Another early example of sensing with wireless devices is the Air Deliv
ered Seismic Intrusion Detector (ADSID) system, used by US Air Force in 
the Vietnam war. Each ADSID node was about 48 inches in length, nine 
inches in diameter, and weighted 38 pounds. Equipped with a sensitive seis
mometer, these ADSID nodes were planted along the Ho Chi Minh Trail 
to detect vibrations from moving personnel and vehicles. The sensed data 
were transmitted from each node directly to an airplane, over a channel 
with unique frequency. 

Although the ADSID nodes were large, and the high energy cost of direct 
communication limited the lifetime of nodes to only a few weeks, they suc
cessfully demonstrated the concept of wirelessly networked sensors. With 
the success of digital packet radios for wireless networking by the ALO-
HAnet Project [2] at Hawaii and DARPA's Packet Radio Project [90] in 
1970s, wireless communication within the same frequency band using MAC 
techniques and packet-based multihop communication became possible. 

1.3.2 Next Generation Wireless Sensor Nodes 

1.3.2.1 WINS from UCLA 

In 1996, the Low Power Wireless Integrated Microsensors (LWIMs) [28] 
were produced by UCLA and the Rockwell Science Center. By using com-
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mercial, low cost CMOS fabrication, LWIMs demonstrated the ability to in
tegrate multiple sensors, electronic interfaces, control, and communication 
on a single device. LWIM supported over 100 Kbps wireless communication 
at a range of 10 meters using a 1 mW transmitter. 

In 1998, The same team built a second generation sensor node — the 
Wireless Integrated Network Sensors (WINS) [ll]. Commercial WINS from 
Rockwell Science Center [197] each consists of a processor board with an 
Intel StrongARM SAllOO 32-bit embedded processor (1 MB SRAM and 4 
MB flash memory), a radio board that supports 100 Kbps with adjustable 
power consumption from 1 to 100 mW, a power supply board, and a sensor 
board. These boards are packaged in a 3.5"x3.5"x3" enclosure (Figure 1.2). 
The processor consumes 200 mW in the active state and 0.8 mW when 
sleeping. 

(a) The WINS processor board (b) The WINS radio board 

Fig. 1.2 WINS node from Rockwell Science Center. 

1.3.2.2 Motes from UC Berkeley 

While WINS offer relatively powerful processing and communication ca
pabilities, other research efforts have been developing smaller and cheaper 
nodes with less power consumption. In 1999, the Smart Dust project [173] 
at UC Berkeley released the first node, WeC, in their product family of 
motes (Figure 1.3(a)). WeC was built with a small 8-bit, 4 MHz Atmel mi
crocontroller (512 bytes RAM and 8 KB flash memory), which consumed 15 
mW active power and 45 /iW sleeping power. WeC also had a simple radio 
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supporting a data rate up to 10 Kbps, with 36 mW transmitting power and 
9 mW receiving power. Later on, Rene and Dot were built in 1999 and 
2000, respectively, with upgraded microcontrollers. 

(a) WeC (b) Mica family 

(c) Telos (d) Spec prototype 

Fig. 1.3 Motes from UC Berkeley. 

Along this line, the Mica family was released in 2001, including 
Mica [75], Mica2, Mica2Dot, and MicaZ [48]. While Mica still used an 
8-bit 4 MHz microcontroller (ATmegal03L), it offered enhanced capabil
ities in terms of memory and radio, compared with preceding products. 
Specifically, Mica was designed with 4 KB Ram, 128 KB flash, and a sim
ple bit-level radio using RFM TR1000 that supported up to 40 Kbps with 
almost the same power consumption as the radio module on WeC. Mote 
architecture allowed several different sensor boards, or a data acquisition 
board, or a network interface board to be stacked on top of the main proces
sor/radio board. These boards supported various sensors, most of which are 
listed in Section 1.2.1. The basic processor/radio board was approximately 
one inch by two inches in size (Figure 1.3(b)). 
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The follow-ups to Mica, Mica2 and Mica2Dot were built in 2002 with an 
ATmegal28L microcontroller that reduced standby current (33 mW active 
power and 75 /xW sleep power). They also had improved radio modules 
(Chipcon CC1000) with more options for frequency range, and increased 
resilience to noise by using FSK modulation. One year later, MicaZ was 
produced with a Chipcon CC2420 wideband radio module that supported 
802.15.4 and ZigBee protocols, with a data rate up to 250 Kbps. This radio 
module also supported on-chip data encryption and authentication. 

The latest member in the family, Telos [140], was released in 2004 (Fig
ure 1.3(c)). Telos offered a set of new features: (1) a microcontroller from 
Texas Instruments with 3 mW active power and 15 /xW sleep power, (2) 
an internal antenna built into the printed circuit board to reduce cost, (3) 
an on-board USB for easier interface with PCs, (4) integrated humidity, 
temperature, and light sensors, and (5) a 64-bit MAC address for unique 
node identification. 

An interesting research testbed is the Spec platform [74], which inte
grated the functionality of Mica onto a single 5 mm2 chip (Figure 1.3(d)). 
Spec was built with a micro-radio, an analog-to-digital converter, and a 
temperature sensor on a single chip, which lead to a 30-fold reduction in 
total power consumption. This single-chip integration also opened the path 
to low cost sensor nodes. 

The integrated RAM and flash memory architecture has greatly simpli
fied the design of the mote family. However, the tiny footprint also requires 
a specialized operating system, which was developed by UC Berkeley, called 
TinyOS [185]. TinyOS features a component-based architecture and event-
driven model that are suitable for programming with small embedded de
vices, such as motes. The combination of Motes and TinyOS is gradually 
becoming a popular experimental platform for many research efforts in the 
field of WSNs. 

1.3.2.3 Medusa from UCLA 

The design philosophy and operational space of motes are quite different 
from those of WINS. On one hand, motes are designed for simple sensing 
and signal processing applications, where the demand for computation and 
communication capabilities is low. On the other hand, WINS are essentially 
an embedded version of PDAs, for more advanced computationally intensive 
applications with large memory space requirements. To bridge the gap 
between the two extremes, the Medusa MK-2 sensor node was developed 
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by the Center for Embedded Networked Sensing (CENS) at UCLA in 2002 
(Figure 1.4). 

Fig. 1.4 Medusa node from UCLA. 

One distinguishing feature of Medusa MK-2 is that it integrates two 
microcontrollers. The first one, ATmegal28, is dedicated to less computa
tionally demanding tasks, including radio base band processing and sensor 
sampling. The second one, AT91FR4081, is a more powerful microcon
troller (40 MHz, 1 MB flash, 136 KB RAM) that can be used to handle more 
sophisticated, but less frequent signal processing tasks (e.g., the Kalman 
filter). The combination of these two microcontrollers provides more flexi
bility in WSN development and deployment, especially for applications that 
require both high computation capabilities and long lifetime. 

1.3.2.4 PicoRadio from UC Berkeleij 

All the aforementioned sensor architectures are based on batteries. Due to 
the slow advancement in battery capacity, techniques for energy scaveng
ing from the environment have been an attractive research field. In 2003, 
the Berkeley Wireless Research Center (BWRC) presented the first radio 
transmitter, PicoBcacon (Figure 1.5), purely powered by solar and vibra
tional energy sources. With a custom RF integrated circuitry that was 
developed for power consumption less than 400 /tW, the beacon was able 
to achieve duty cycles up to 100% for high light conditions and 2.6% for 
typical ambient vibrational conditions. It is anticipated that an integrated 
wireless transceiver with < 100 /«W power consumption is feasible in the 
near future. 
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Fig. 1.5 PicoBeacon from UC Berkeley. 

The BWRC also produced SoC based sensor nodes instead of using 
COTS components. In 2002, PicoNode II was built using two ASIC chips 
tha i i m p l e m e n t e d the e n t i r e d ig i ta l p o r t i o n of t he pro tocol s l a c k . T b g e t h e r , 

the chip set consumed an average of 13 mW when three nodes were con
nected. The team is also building PicoNode III, which will integrate a 
complete PicoNode into a single small aspect-ratio package. 

1.3.2.5 \xAMPS from MIT 

The same ASIC based approach is being taken by the /iAMPS group from 
MIT. Following its first testbed, /zAMPS-I (Figure 1.6), the team is now 
trying to build a highly integrated sensor node comprised of a digital and an 
analog/RF ASIC, /zAMPS-II. The interesting feature of /iAMPS-II is that 
the node will be able to operate in several modes. It can operate as either a 
low-end stand-alone guarding node, a fully functional node for middle-end 
sensor networks, or a companion component in a more powerful high-end 
sensor systems. Thus, it favors a network with heterogeneous sensor nodes 
for a more efficient utilization of resources. 

Besides the above sensor nodes, other commercial products and testbeds 
for WSNs include Ember products [58], Sensoria WINS [161], Pluto 
mote [40], PC104 testbed [136], and Gnome testbed [193]. 
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Fig. 1.6 / J A M P S - I from MIT. 

1.3.3 Why Microscopic Sensor Nodes? 

The transition from large to small scale sensor nodes has several advantages. 

(1) Small sensor nodes are easy to manufacture with much lower cost than 
large scale sensors. They are even disposable if the envisioned US$1 
target price can be realized in the future. 

(2) With a mass volume of such low cost and tiny sensor nodes, they can 
be deployed very closely to the target phenomena or sensing field at an 
extremely high density. Therefore, the shorter sensing range and lower 
sensing accuracy of each individual node are compensated for by the 
shorter sensing distance and large number of sensors around the target 
objects, which generates a high signal to noise ratio (SNR). 

(3) Since computing and communication devices can be integrated with 
sensors, large-sample in-network and intelligent information fusion be
comes feasible. The intelligence of sensor nodes and the availability 
of multiple onboard sensors also enhances the flexibility of the entire 
system. 

(4) Due to their small size and self-contained power supply, sensor nodes 
can be easily deployed into regions where replenishing energy is not 
available, including hostile or dangerous environments. The survivabil
ity of nodes also increases with reduced size. 
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(5) The high node density enables system-level fault tolerance through 
node redundancy. 

These advantages are illustrated by the microclimate monitoring of 
coastal redwood trees [150]. It is known that the movement of water from 
the ground to the canopy through the trunk is caused by the difference in 
water vapor pressure in the leaf and water vapor pressure in the air. To 
understand precisely the effects of microclimate variables, such as temper
ature and humidity, it is necessary to gather such information at different 
locations on the tree. 

Because of their coarse resolution, it is difficult for large scale sensors, 
such as weather stations, to perform this task. However, by mounting a 
sufficient number of small sensor nodes along the tree trunk, it is possible 
to gather the desired information with a relatively low cost. These sensor 
nodes are able to collect both spatially and temporally dense sampling to 
enable a comprehensive view of the microclimate around the redwood tree. 
Because of wireless networking, it is easy to add more sensor nodes or move 
mounted nodes for better coverage. It is also possible to place redundant 
sensor nodes in order to enable local information fusion for better sensing 
accuracy. 

Once deployed, the long lifetime of the network allows data collection 
over several years. The in-network storage capacity makes it possible to 
transfer intermittently the gathered data to a laptop. Also, these au
tonomous and intelligent sensor nodes are able to self-organize and self-heal 
the wireless network should node or link failures occur. This untethered 
operation avoids costly human management and maintenance. 

1.4 Applications of Interest 

An outline of the envisioned applications for WSNs is given in [ll]. Descrip
tions of general applications for WSNs can also be found in [39] and [199]. 
For the purpose of this book, we categorize the applications into two classes. 
The first class, data gathering applications, focuses on entity monitoring 
with limited signal processing requirements. The primary goal of these 
applications is to gather information of a relatively simple form, such as 
temperature and humidity, from the operating environment. Some envi
ronmental monitoring and habitat study applications also belong to this 
class. 
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The second class of applications require the processing and transporta
tion of large volumes of complex data. This class includes heavy industrial 
monitoring and video surveillance, where complicated signal processing al
gorithms are usually employed. We refer to these applications as computa
tionally intensive applications. 

In the following sections, we describe several academic and industrial 
efforts based on the above categorization. While both classes of applications 
are important for realizing the potential of WSNs, the involved techniques 
can be quite different due to their varying computation and communication 
demands. In Section 1.6, we discuss these differences in the context of this 
book. 

1.4.1 Data Gathering Applications 

1.4.1.1 Habitat Study 

Habitat study is one of the driving applications for WSNs [34]. Such ap
plications usually require the sensing and gathering of bio-physical or bio
chemical information from the entities under study, such as Redwoods [150], 
Storm Petrels [116], Zebras [89], and Oysters [84]. In many scenarios, habi
tat study requires relatively simple signal processing, such as data aggrega
tion using minimum, maximum, or average operations. Hence, motes are 
ideal platforms for such applications. 

The famous Great Duck Island project was initiated in the Spring of 
2002 by Intel Research and UC Berkeley, to monitor the microclimates in 
and around Storm Petrel nesting burrows [116]. Thirty two motes were de
ployed on the island, each equipped with sensors for temperature, humidity, 
barometric pressure, and mid-range infrared. The network was designed to 
have a tiered structure. The motes were grouped into patches so that data 
collected in each patch could be relayed via a gateway to a base station, 
where data logging was performed. Within one year of monitoring, the 
system gathered approximately 1 million readings. In 2003, a second gen
eration network, with more than 100 nodes, was also deployed. 

Cape Breton University and the National Research Council of Canada 
are conducting an on-going bio-physical monitoring effort in the bras d'Or 
Lakes. Their goal is to study the life cycle of an oyster parasite (MSX), 
requiring the gathering of temperature and salinity parameters [84]. COTS 
sensor nodes will be deployed in the shallow shoreline of the lakes, which is 
preferred by oysters and easily accessible for biological and oceanographic 
monitoring. 
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1.4.1.2 Environmental Monitoring 

Environmental monitoring is another application for WSNs. The vast 
spaces involved in such applications require large volumes of low cost sen
sor nodes that can be easily dispersed throughout the region. For in
stance, WSNs have been studied for forest fire alarm [99], landscape flooding 
alarm [8], soil moisture monitoring [32], microclimate and solar radiation 
mapping [141], and environmental observation and forecasting in rivers [43]. 

Researchers at University of West Australia are developing a prototype 
WSN for outdoor, fine-grained environmental monitoring of soil water [32]. 
Such a network can be used to assist salinity management strategies, or 
to monitor irrigated crops, urban irrigation, and water movement in forest 
soils. In January 2005, a prototype network was built, which included 15 
Mica2 nodes integrated with soil moisture sensors and other gateway and 
routing nodes. The system distinguishes itself by using a reactive data 
gathering strategy — frequent soil moisture readings are collected during 
rain, while less frequent readings are collected otherwise. This strategy 
helps increase the system lifetime. 

1.4.2 Computation-Intensive Applications 

1.4.2.1 Structural Health Monitoring 

Health monitoring for civil structures has long been a research topic for 
industry and academia. Traditional methods include visual inspection, 
acoustic emission, ultrasonic testing, and radar tomography. The emer
gence of WSNs has prompted new, non-destructive, and cheap meth
ods for many tasks related to structural health monitoring [114; 178; 
200]. 

The volume of raw data to be gathered and transported for such appli
cations is on the order of 1-10 Mbps [37]. Thus, transmitting only useful 
information obtained from local signal processing becomes imperative for 
sustaining a long system lifetime. Many sophisticated and computation
ally intensive signal processing algorithms have been studied, including 
the Fast Fourier Transformation (FFT), Wavelet Transform, Autoregres-
sive Models [175], and AR-ARX Damage Detection Pattern Recognition 
Method [175]. To serve the large computation demand from these algo
rithms, while maximizing energy savings, a dual-core design method has 
been employed. For instance, with the aforementioned Medusa node and 
the sensor node developed by Lynch [114], while a low-end microcontroller 
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is responsible for frequent sensing and communication tasks, a high-end 
embedded processor is occasionly utilized when heavy signal processing is 
required. 

An on-going Structural Health Monitoring (SHM) project by University 
of Southern California [164] has developed two software systems, Wisden 
and NET-SHM. These systems facilitate continuous data acquisition over a 
self-configuring multi-hop WSN, with high data rate and reliable communi
cation requirements. Moreover, a full-scale testbed ceiling of 28 x 48 feet has 
been built with actuators to deliver deterministic excitations. Currently, 
the team is constructing robotic actuators that can be remotely controlled 
to move above the ceiling. The team is also investigating the use of other 
modalities, such as images, to enhance the fidelity of the system. 

1.4.2.2 Heavy Industrial Monitoring 

Sensors have already been widely used in industrial applications, such as the 
monitoring of automated assembly lines. Integrating wireless technology 
with these sensors enables condition based maintenance (CBM) to reduce 
downtime and enhance safety, with low installation and maintenance cost. 
Condition based maintenance can replace traditional high-cost, schedule-
driven, manual maintenance for various industrial entities, including power 
plants, oil pipelines, transportation systems and vehicles, engineering facil
ities, and industrial equipment. 

Industrial applications are unique in their requirement of highly reli
able operation in harsh environments. For example, the electromagnetic 
radiation of machines may cause microcontroller malfunction or wireless 
communication interference. Also, the large variation in temperature and 
humidity demands reliable hardware components. Moreover, industrial ap
plications often require the processing of large volumes of data with sophis
ticated signal processing algorithms. Thus, computation demand is usually 
high for these applications. 

Intel Research has deployed a network with 160 Mica2 motes on a ship 
to measure the vibrations in the ship's pumps, compressors, and engines as 
an indicator of potential failure [29; 54]. These motes were organized into 
clusters, with Stargate gateways [48] forming the backbone of the network. 
Without operator intervention, the deployed network operated for 4 months 
without major failures. This experiment was still preliminary since the 
diagnosis of the ship equipments was performed in a centralized way at 
the base station, instead of distributed within the network. However, it 
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paved the path for WSNs to a broad range of applications in industrial 
environments. 

1.5 Research Topics and Challenges 

Due to potentially harsh, uncertain, and dynamic environments, WSNs are 
envisioned to operate in an autonomous and untethered fashion. This poses 
considerable challenges ranging through network organization, topology dis
covery, communication scheduling, routing control, and signal processing. 
Also, tight energy budgets enforce energy efficient designs for hardware 
components, network stacks, and application algorithms. 

In this section, we briefly describe a list of research challenges for WSNs. 
For the purpose of this book, we are particularly interested in the first three 
challenges. In Chapter 2, we discuss them in detail. 

(1) Data-centric paradigm: The operating paradigm of WSNs is cen
tered around information retrieval from the underlying network, usually 
referred to as a data-centric paradigm. Compared to the address-centric 
paradigm exhibited by traditional networks, the data-centric paradigm 
is unique in several ways. New communication patterns resemble a re
versed multicast tree. In-network processing extracts information from 
raw data and removes redundancy among multiple source data. Also, 
cooperative strategies among sensor nodes are used to replace the non-
cooperative strategies for most Internet applications. The development 
of appropriate routing strategies that take the above factors into con
sideration is challenging. 

(2) Collaborative information processing and routing: The data-
centric paradigm involves two fundamental operations in WSNs: infor
mation processing and information routing. Many research efforts are 
motivated by the fact that information processing and routing are mu
tually beneficial. While information processing helps reduce the data 
volume to be routed, information routing facilitates joint information 
compression (or data aggregation) by bringing together data from mul
tiple sources. However, it is often non-trivial to model and analyze 
the inter-relationship between information processing and routing. In 
many situations, the problem of finding a routing scheme in conjunc
tion with joint compression for energy minimization turns out to be 
NP-hard. 
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(3) Energy-efficient design: Once deployed, it is often infeasible or un
desirable to re-charge sensor nodes or replace their batteries. Thus, 
energy conservation becomes crucial for sustaining a sufficiently long 
network lifetime. Among the various techniques proposed for improv
ing energy-efficiency, cross-layer optimization has been realized as an 
effective approach. Due to the nature of wireless communication, one 
performance metric of the network can be affected by various factors 
across layers. Hence, a holistic approach that simultaneously considers 
the optimization at multiple layers enables a larger design space within 
which cross-layer tradeoffs can be effectively explored. 

(4) Network discovery and organization: Due to the large scale of 
WSNs, each sensor node behaves based on its local view of the entire 
network, including topology and resource distribution. Here, resources 
include battery energy and sensing, computation, and communication 
capabilities. To establish such a local view, techniques such as localiza
tion and time synchronization are often involved. A local view depends 
on the initial deployment of sensor nodes, which is itself a challenging 
topic. The network is usually organized using either a flat or hier
archical structure, above which topology control, MAC, and routing 
protocols can be applied accordingly. 

One key challenge is to handle network dynamics during the process 
of network discovery and organization. These dynamics include fluc
tuation in channel quality, failure of sensor nodes, variations in sensor 
node capabilities, and mobility or diffusion of the monitored entity. 
Autonomous adaptation of network discovery and organization proto
cols, in light of such dynamics, is the key to deliver proper system 
functionality. 

(5) Security: Since WSNs may operate in a hostile environment, security 
is crucial to ensure the integrity and confidentiality of sensitive infor
mation. To do so, the network needs to be well protected from intrusion 
and spoofing. The constrained computation and communication capa
bility of sensor nodes make it unsuitable to use conventional encryption 
techniques. Lightweight and application-specific architectures are pre
ferred instead. 
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1.6 Focus of This Book 

The focus of this book is on algorithm development and performance analysis 
for cross-layer optimization for energy-efficient information processing and 
routing in WSNs. 

While our research efforts stem from the general concept of information 
processing and routing, this book covers the following three specific topics: 

(1) information processing within a cluster of sensor nodes (or in-cluster 
information processing) 

(2) information transportation over a given multi-hop tree structure (re
ferred to as data gathering tree) 

(3) information routing for computationally intensive applications over a 
general graph. 

Each of these three topics is important and challenging in itself. To
gether, they cover a complete operating flow, from raw data sensing and 
processing at local clusters to information gathering and routing across the 
network. This is the major motivation to choose these three topics. 

To facilitate cross-layer optimization in these topics, we study a set of 
fundamental techniques, referred to as system knobs. These system knobs 
are parameters that are exposed at certain levels, and can be tuned to adjust 
the performance of the system. In this book, we are particularly interested 
in three of them: voltage scaling, rate adaptation, and tunable compression. 
These techniques address the energy issue from computation, communica
tion, and joint compression perspectives, respectively. Specifically, voltage 
scaling and rate adaptation achieve energy savings by trading computa
tion/communication delay for energy, while tunable compression explores 
the tradeoffs between computation and communication energy cost. We 
illustrate these tradeoffs in Figure 1.7. 

These three system knobs are applied in the aforementioned research 
topics. For the first topic, we investigate the application of voltage scaling 
and rate adaptation to maximize the system lifetime for in-cluster process
ing. For the second topic, we study rate adaptation for minimizing the 
energy cost for information transporting over an existing tree. For the last 
topic, we show that tunable compression can be incorporated into routing 
tree construction for minimizing the overall computation and communica
tion energy in information routing. 

One scenario for our research efforts is the cluster-based network 
scheme [72; 167; 208; 207]. In this scheme, the whole network is parti-
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Fig. 1.7 Tradeoffs explored by three system knobs: voltage scaling, rate adaptation, 
and tunable compression. 

tioned into either static or dynamic clusters, with one sensor node per 
cluster designated as a cluster head. We assume that each cluster behaves 
as a basic function unit, where in-cluster processing is responsible for con
verting raw data into useful information. The processed information is 
then transported back to the base station through either direct communi
cation from cluster heads [72], a multi-hop tree that consists of only cluster 
heads [167], or a general multi-hop tree consisting of any sensor nodes in 
the network [208]. While the construction of a cluster-based infrastructure 
is beyond the scope of this book, we can see that our three research topics 
fit well into this scheme. Moreover, the proposed techniques are applicable 
to other scenarios as well. 

Note that the research efforts presented in the book by no means pro
vide a complete solution to information processing and routing. Our works 
are based on a relatively high model of the system. We are not concerned 
with the details of specific hardware to realize the system knobs, protocols 
for MAC layer scheduling and networking layer communication, or tech-
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niques for signal processing and data compression. Our focus is to improve 
the energy-efficiency of the systems by assuming that all such techniques 
are available. From a cross-layer optimization perspective, our work sits 
between the hardware and application layers when voltage scaling is em
ployed, MAC and application layers for rate adaptation, and routing and 
application layers for tunable compression. 





Chapter 2 

Background 

2.1 Data-Centric Paradigm 

The set of applications envisioned for WSNs include environment monitor
ing, habitat study, battlefield surveillance, and infrastructure monitoring. 
All of these applications require the sensing, processing, and gathering of 
information from the physical environment, in which the network operates. 
The end user is interested in the content of the information (including re
lated spatial and temporal specifications), instead of the sensor nodes that 
sense or hold the information. This focus on information is known as data-
centric computation and communication [100] (as opposed to the address-
centric or node-centric paradigm, which are exhibited in traditional Internet 
networks, mobile ad hoc networks, and parallel and distributed systems). 

The data-centric paradigm differs from the address-centric paradigm in 
several ways. First, the typical goal of data-centric WSNs is to gather spe
cific information from multiples source nodes, and transfer it to a small 
number of sink nodes. Thus, the communication pattern normally resem
bles a reversed-multicast tree, instead of a more randomized peer-to-peer-
based communication pattern found in address-centric systems. The work 
presented in this book is largely motivated by this tree structure. 

Second, raw data gathered from a physical environment are usually not 
of direct interest to the end user, and are often strongly correlated. There
fore, it is necessary to process the data before they are transported to the 
end user. Such in-network processing includes signal/image processing and 
data fusion to extract useful information from the raw data, data com
pression to reduce communication load, and joint compression of multiple 
sources to eliminate redundancy. Our work addresses these three forms of 
in-network processing. 

23 
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Third, the routing schemes for address-centric systems are based on ful
filling each individual data routing request. Thus, they become unsuitable 
for data-centric systems, where the communication request of the whole 
system is application-specific, e.g., routing data from all source nodes to 
a sink node. To investigate new routing schemes that are customized for 
WSN applications becomes important. 

Fourth, since applications of a WSN are usually more specific and more 
well-defined than address-centric applications, the sensor nodes within the 
system are more likely to work in a collaborative fashion, instead of a com
peting fashion. In this way, the aggregated resources of the system can be 
more efficiently utilized. 

The difference between data-centric and address-centric paradigms can 
be effectively reflected by the user queries. For example, typical user queries 
or service requests in the address-centric paradigm are "Load the web page 
at address ...," "Transfer file A from host B to host C," etc. However, in a 
data-centric system, typical queries are "Gather the average temperature 
at region A within time T," or "Count the number of vehicles currently in 
region A." For these queries, the user is interested purely in the information 
itself, but not the sensor nodes that generate or hold the information, nor 
the way the information is transmitted to the end user. 

The unique features of the data-centric paradigm have raised various 
new research topics for WSNs, ranging from hardware components, to net
working techniques, to application algorithms. One of the most important 
topics is the method of processing and transporting information within the 
system so that the required functionality and performance metrics can be 
fulfilled. We discuss this topic in detail in the next section. 

2.2 Collaborative Information Processing and Routing 

In the data-centric paradigm, the system operations are centered around 
the fundamental functionality: to deliver the required information to the 
end user. This involves two operations: 

(1) information processing, which includes sensing the environment and 
extracting useful information from the raw data, and 

(2) information routing, which includes combining the information from 
different sources across the network, and routing the final set of infor
mation to the end user. 
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Note that in some sense these two operations are applicable to the 
address-centric paradigm. For example, users may want to extract informa
tion from a file on machine A, and then transmit the result to machine B. 
However, in a data-centric system, these two operations are not sequential 
and independent, as they usually are in the address-centric paradigm. In 
the data-centric system, these two operations are performed in a parallel 
fashion and are closely related to each other. 

Information processing can help reduce the data volume to route by 
information extraction from the raw data, data compression, or redundancy 
elimination through joint source compression. Also, since source data are 
distributed across the network, the routing scheme determines the available 
data for many information processing techniques (especially joint source 
compression). Such a mutually beneficial relationship leads to a tightly 
coupled design and implementation of information processing and routing. 
In this book, we refer to the resulting technique as collaborative information 
processing and routing. 

Fig. 2.1 An example network scheme for collaborative information processing and rout
ing. 

For example, consider the simple network scheme in Figure 2.1 [100], 
where vertices A,B,C,D, and S denote sensor nodes, and edges denote 
valid communication links. In this example, there are two source nodes, A 
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and £?, and one sink node, S. Our task is to gather and transport informa
tion from both A and B to the sink node. While the route from node B 
to S has one option (BCS), there are two alternative routes from A to S 
(ACS and ADS). If the two pieces of source information at nodes A and 
B are relatively independent, the routing selection for A is not crucial in 
terms of the total communication cost. However, if the source information 
is strongly correlated, we can take advantage of joint compression to reduce 
the data volume to be routed. Therefore, the route ACS would be preferred 
to enable joint compression at node C, given that the gain from reducing 
data volume to communicate over CS dominates the extra communication 
cost of choosing ACS instead of ADS. This example indicates the impor
tance of coupling the selection of routing schemes with data compression 
techniques. 

Because sensor readings from the physical world are usually highly cor
related, joint compression is particularly useful to reduce data volume by 
removing redundancy among data from multiple sources. Such joint com
pression is also referred to as data aggregation [lOO]. We will use the terms 
data aggregation and joint compression exchangeably hereafter. 

Choosing an appropriate routing scheme with joint compression in gen
eral networks is much more challenging, since it is affected by many factors, 
including network topology, communication cost and reliability, computa
tion cost, and data correlation. In many general settings, to choose the 
optimal routing scheme is NP-hard, and therefore heuristic solutions are 
preferred. For example, consider the problem with the assumption that a 
perfect data aggregation can be achieved. In other words, joint compression 
for an arbitrary number of sources always produces one unit data. Under 
this assumption, to form a routing tree from a given set of source nodes to 
a sink node with a minimum number of edges is the Minimal Steiner Tree 
problem, which is known to be NP-hard1 [lOO]. 

In many real-life cases, without perfect data aggregation, to choose an 
appropriate model for abstracting the data aggregation operation is even 
more difficult, since it depends heavily on the data correlation from mul
tiple sources. Such a data correlation is determined by the nature of the 
observed phenomena, as well as the physical situation of the operating 
field, which affects the propagation of the phenomena. While several pa
pers have proposed models to abstract the correlation among data from the 
physical world [117; 135; 156], a unified and widely accepted model remains 

Note that the routing scheme does not necessarily need to be a tree in general cases. 
However, such a tree structure is the focus of many studies due to its simplicity. 
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elusive. Hence, several research efforts have been attempting to study the 
relationship between information processing and routing under certain sim
plifications. For example, the work by Cristescu et al. [47] assumes a fixed 
reduction in volume for any source data that is jointly compressed by data 
from other sources. Some other models are discussed in Section 2.4.4. 

Another important research direction — joint data compression from 
information coding perspective — deals with the challenge of collabo
rative information processing and routing. For example, Slepian-Wolf 
coding [172] can be used to code two correlated sources with a to
tal data volume equal to the joint entropy of the two sources, with
out explicit communication between the two sources. With this cod
ing scheme, Cristescu et al. show that the routing selection and joint 
data compression can be perfectly de-coupled [47]. While practical dis
tributed source coding schemes for sensor networks are being developed [96; 
181], most existing work for data gathering is based on compression 
schemes with explicit communication [3; 47; 59; 67; 100; 111; 135; 156; 
190]. The work in this book is also based on compression using explicit 
communication: To perform joint data compression requires the availabil
ity of side information from other sources via explicit communication. 

Most of the existing work on information processing and routing is in
tended for a single sink node. When multiple sink nodes are considered, the 
concept of network information flow [4] can be used to design a joint rout
ing and coding scheme that transports required information to all sources 
under a given network capacity. However, joint data compression is not con
sidered in the original definition of network information flow. Integrating 
these two concepts in the context of WSN applications is an open challenge. 

Also, most existing work on collaborative information processing and 
routing assumes a static system model in terms of communication relia
bility, network topology, and data correlation. The problem becomes even 
more challenging if we consider the possibly high dynamics in the system 
parameters of real-life scenarios. 

2.3 Cross-Layer Optimization for Energy-Efficiency 

2.3.1 Motivation 

A major concern for WSNs is energy-efficiency, which has been addressed 
by various techniques targeting hardware components [76; 144], media ac
cess control (MAC) layer scheduling policies [110; 206], network organiza-
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tion [72; 167], routing protocols [66; 85], signal processing techniques [7; 
17], and application level algorithms [168; 170]. Cross-layer optimization is 
also of particular importance for saving energy in WSNs, since it enables a 
large space for tradeoffs and the optimization of performance metrics across 
different layers [147; 162; 212]. 

Although widely studied in many contexts, there are no formal defini
tions for cross-layer optimization. From a broad perspective, we present our 
definition as follows: Any hardware/software techniques applied at a specific 
system layer can be regarded as cross-layer optimization, if they explicitly 
interact with the functionalities or optimization techniques at other system 
layers. In most cases, cross-layer optimization also impacts the system 
properties or performance at other layers. 

The motivation for cross-layer optimization for energy-efficiency is 
multi-fold. First, system performance metrics in WSNs are often deter
mined by multiple factors across several layers. For example, the perfor
mance of wireless communication (either throughput or energy) is jointly 
determined by several factors across physical, MAC, and routing layers. 
This is significantly different from wired communication. Also, an effi
cient routing scheme should take wireless communication conditions, net
work topology and connectivity, possibility of joint data compression, and 
application-level quality-of-service requirements into consideration. The 
optimization within each individual layer often leads to inefficient solu
tions. Thus, a holistic approach that simultaneously considers different 
layers with cross-layer information sharing and coordinated optimization 
enables a much larger design and optimization space. Many research ef
forts on cross-layer optimization are based on this important hypothesis. 

Second, optimization techniques applied at one particular layer often 
affect the behavior and performance metrics at other layers. For example, 
sleep scheduling can affect signal interference at the physical layer, chan
nel access at the MAC layer, routing selection at the routing layer, and 
sensing coverage at the application layer. Isolating optimization techniques 
at each individual layer may cause conflicts in optimization goals or even 
counteracting solutions. It is therefore crucial to share information across 
the system stack, and expose the effects of various optimization techniques 
to all layers so that coordinated optimization can be performed. This factor 
is, however, not widely studied, due to the inherent complexity of coping 
with multiple performance metrics at multiple layers. 

Third, WSNs are usually application specific in terms of the required 
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functionality. The general functionalities supported by strictly layered net
work/system structure becomes unnecessary, when compared with the lay
ering overhead. Therefore, a blurred boundary between layers, or even 
the removal of unused layers, helps build a lightweight and more efficient 
system. 

Of course, the advantage of cross-layer optimization is not free. The 
large design and optimization space also leads to more challenging algorithm 
and system design, and more complicated interactions across various layers. 
However, given the application specific property of WSNs and the fairly 
limited functionality and capability of sensor nodes, these challenges are 
expected by most researchers to be tractable and worthwhile. Also, cross-
layer optimization does not mean that layering is useless. We still need a 
layered structure, so that a clean model is presented at each layer, which 
abstracts unnecessary details from lower layers. The key point in cross-
layer optimization is information sharing through the exposure of certain 
parameters and the follow-on coordinated optimization across the stack. 

A common way to realize cross-layer optimization is to adjust the sys
tem performance by tuning low level hardware-based system knobs. One 
well-known example is the shutdown or sleeping scheduling that tunes the 
awake time of the sensor nodes to adjust various upper-layer function
alities, including MAC layer scheduling [110; 206], topology control [36; 
202], routing selection [201], and coverage for event detection [l; 183]. Be
sides the motivation to reduce channel contention, and to alleviate the 
scalability issue by keeping as small a number of sensor nodes awake as 
possible, the major principle in this case is to deliver "just enough" perfor
mance, with minimum resource usage (including energy). Other commonly 
used system knobs include voltage scaling that adjusts CPU computation 
time [204], power control that adjusts radio transmission radius [151], and 
rate adaptation that adjusts radio transmission speed [143]. We will discuss 
these system knobs in detail in Section 2.4. 

2.3.2 Consideration for Collaborative Information 
Processing and Routing 

It is quite natural to apply cross-layer optimization techniques to collab
orative information processing and routing. From one perspective, such 
techniques can be applied based on the following three operating stages: 
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(1) data sensing at source nodes 
(2) signal processing at source nodes 
(3) joint information routing and compression across the network 

We note that, in many cases, the first two stages also require distributed and 
coordinated operations among sensor nodes. Although data sensing seems 
to be a localized operation that involves each sensor node as a basic function 
unit, the challenge lies in the fact that the aggregated sensing behavior of 
all sensor nodes usually needs to satisfy certain coverage requirements [l; 
183]. Since the sensing and computation capability of each sensor node is 
limited, signal processing usually requires the coordination of a small group 
of sensor nodes in proximity to extract useful information from the raw data 
gathered by the sensor nodes (e.g, the beamforming algorithm [17]). Thus, 
for all three operating stages, the cross-layer optimization is expected to be 
performed in a distributed fashion. 

Table 2.1 Examples of cross-layer optimization techniques for energy-efficient, col
laborative information processing and routing. 

System layer 

Application 

Routing 

MAC 

Physical 

Hardware 

Data 

Low-

sensing 

power 

Signal processing 

Energy-efficient 
signal processing, 
adaptive fidelity 

algorithms 

CPU, node sleep scheduling, 
voltage scaling 

Joint information 
routing and compression 

Tunable compression, 

Energy-aware routing, 
entropy-aware routing 
Radio sleep scheduling 

Power control, 
rate adaptation, 
adaptive coding 
Low-power radio 

From another perspective, cross-layer optimization techniques can be 
classified by the layer wherein the techniques are applied. For our purpose, 
we divide the system into 5 layers: hardware layer, physical layer, MAC 
layer, routing layer, and application layer. Many cross-layer optimization 
techniques have been proposed at each of these layers with the general goal 
of improving the system energy-efficiency. In Table 2.1, we re-interpret the 
techniques in the context of the above three operating stages of collabora
tive information processing and routing. 
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In the next section, we give a brief survey of the system knobs listed in 
Table 2.1. 

2.4 A Brief Survey of Cross-Layer Optimization for Energy-
Efficient Collaborative Information Processing and 
Routing 

We present this brief survey based on the system layers where the tech
niques are applied. Note that although we have narrowed our focus to only 
optimization techniques for energy-efficiency, this survey is by no means a 
complete list. Instead, we focus on the techniques that are listed in Ta
ble 2.1. 

2.4.1 Hardware Layer 

The most important hardware layer technique is low-power circuit design 
for both the CPU and radio modules, which has been addressed by a large 
body of literature [124; 144]. Such low-power design gains energy efficiency 
by (1) developing dedicated low-power, low cost hardware modules for the 
expected low performance of sensor nodes, and (2) exploring tradeoffs be
tween power consumption of the system and other performance metrics. 
The performance criteria for typical sensor nodes are around tens of MIPS 
for CPUs (e.g., 16 MIPS for the ATMEL ATmegal28L processor [12] used 
in Berkeley Motes) and tens of Kbps for the radio modules, which are fairly 
low compared to the performance of usual PCs with commercial wireless 
LAN cards. This application-level requirement provides opportunities to 
design simple digital circuits, including digital signal processors (DSPs) 
and radio frequency (RF) circuits, with less power consumption. 

We now discuss two important tradeoffs that have been explored at the 
hardware layer: the energy vs response time tradeoff and the energy vs 
delay tradeoff. The energy vs response time tradeoff is realized via shut
ting down the node in idle state [169; 177], which is motivated by the 
well-known ACPI (Advanced Configuration and Power Interface) indus
try specification. Note that here we discuss the shutdown of the whole 
node; shutting down the radio at the MAC layer will be discussed in Sec
tion 2.4.3. The key points of the tradeoff lie in two aspects: (1) to select 
the appropriate shutdown mode based on the tradeoffs between shutdown 
duration and wake-up time/energy cost, and (2) to determine the shut-



32 Information Processing and Routing in Wireless Sensor Networks 

down duration by exploring the tradeoffs between energy efficiency and 
possible event miss rate at application level. By converting the temporal 
event miss rate to the spatial percentage of coverage, the second trade
off may also be regarded as the energy vs sensing coverage tradeoff [l; 
183]. 

Instead of reducing the operating duration of the CPU by the shutdown 
technique, voltage scaling explores the energy vs delay tradeoff by running 
the CPU at a lowered speed, and therefore a longer operating duration 
with reduced supply voltage and operating frequency [204], The key ratio
nale is that the CPU power consumption is quadratically proportional to 
the supply voltage, with delay being inversely proportional to the supply 
voltage, implying that the power-delay product increases with the supply 
voltage. Apparently, the energy vs delay tradeoff is meaningful for tasks 
with application-level, real-time constraints, which are usually captured 
by setting a hard or soft deadline for each task. Various research efforts 
have proposed scheduling techniques for voltage scaling in uni-processor 
systems [14; 79; 163; 204] or multi-processor systems [69; 112; 210; 213; 
217]. 

A key question regarding the usefulness of the above CPU related 
techniques is the relative energy cost spent by CPUs compared to that 
of radio modules. The energy cost to transmit one bit is typically 
around 500 - 1000 times greater than a single 32-bit computation [16; 
166]. Thus, for applications with simple functionality, striving for CPU 
energy-efficiency might not be worthwhile. However, we also envision 
the development of more advanced, computationally intensive applications 
within the near future. Moreover, it has been noted that for many high-end 
sensor nodes, the power consumption of the CPU is around 30-50% of the 
total power consumption of the system [147], which also motivates energy 
minimization for CPUs with complex applications. 

2.4.2 Physical Layer 

At the physical layer, energy efficiency is often optimized using techniques 
such as power control, rate adaptation, and adaptive coding. These tech
niques have a direct impact on the signal strength and interference at re
ceivers2. Such an impact eventually affects the network connectivity, topol
ogy, data transmission rate, and energy costs at various layers. These com-

2 Power control is sometimes treated as a MAC layer technique since it affects the 
MAC layer topology 
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plicated cross-layer effects make it difficult to isolate the tradeoffs involved 
with these techniques. Nevertheless, we can make a first-order classifica
tion that power control explores the tradeoff of energy vs connectivity and 
reliability, while rate adaptation and adaptive coding explore the tradeoff 
between energy and communication speed, or transmission delay. 

The rationale behind these two tradeoffs can be explained using Shan
non's law in wireless communication [46]. Consider an Additive White 
Gaussian Noise channel. This law states that the achievable communica
tion rate is logarithmically proportional to the power at the receiver, which 
in turn is proportional to the transmission power at the receiver, and de
cays with the transmission distance at a rate of da, where d is the radius 
and a is a pass loss exponent between 2 and 6. Thus, incrementing ei
ther the communication radius or data rate leads to increased transmission 
power. Following the principle of delivering just enough performance, we 
would like to decrease power while maintaining just enough communication 
radius and data rate. 

Power control was originally proposed for single-hop, multi-user systems 
(e.g., the cellular system), to maintain a given level of signal-to-noise qual
ity to compensate for fading effects, thermal noise, and mutual interference 
in the shared radio spectrum [71; 82]. In the context of WSNs, where multi-
hop communication prevails, power control has been used mainly for deter
mining an appropriate communication radius, which can be either common 
for all sensor nodes [129], or not [l5l]. Many research efforts have proposed 
power control schemes to reduce the communication radius, and thus the 
power consumption, while achieving global network connectivity [20; 103; 
129; 149; 151; 192]. The tradeoff between energy and reliability through 
power control has also been studied [102]. 

Rate adaptation (sometimes also referred to as modulation scaling [157]) 
and adaptive coding were also originally proposed for cellular systems and 
local wireless networks, with the goal of throughput optimization [77; 188]. 
The use of these techniques for scheduling packet transmission over a given 
channel with delay constraint is studied in [143], with an optimal off-line 
algorithm similar to the one in [204]. The problem is then extended to a 
star structure with multiple downstream links [64]. 

Currently, many research efforts are trying to analyze and utilize the 
joint impact of these two techniques on energy-efficiency and throughput 
optimization, often with MAC layer scheduling and routing layer deci
sions [24; 49; 56; 98; 102]. As it has been realized that energy efficiency 
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depends on factors spanning multiple layers, this is becoming a promising 
research direction. 

2.4.3 MAC Layer 

The MAC layer affects the energy efficiency mainly through the ad
justment of transmission scheduling and channel access. A common 
way to do that is via sleep scheduling [109; 145; 189; 206], from a 
long time scale perspective, or time-division multiple access (TDMA) [9; 
110], from a short time scale perspective. Similar to the shutdown tech
nique of CPUs, sleep scheduling also explores the energy vs response time 
tradeoffs in wireless communication. During many studies, the response 
time is translated to network or application layer transmission delay or 
throughput. 

The PAMAS (Power Aware Multi-Access with Signaling) protocol [145] 
is a simple improvement over the MAC A protocol [94], which turns off the 
radios of nodes that cannot transmit or receive given the current neigh
borhood traffic. A more aggressive policy, S-MAC, is proposed by Ye et 
al. [206], in which nodes determine their own sleep scheduling based on the 
sleep scheduling of neighboring nodes. To cope with the problem that the 
scheduling is pre-determined in S-MAC, a more dynamic policy, T-MAC is 
proposed so that the scheduling of a node can be adapted on-the-fly based 
on transmission requests from neighbors [189]. While these works are pro
posed for a general network topology, a scheduling policy dedicated to a 
routing tree structure in WSNs is proposed in D-MAC [109]. The main ad
vantage of D-MAC is that it facilitates a fully pipelined packet transmission 
over the routing tree, by staggering the sleep scheduling of nodes. 

Compared to the adaptive sleep scheduling, TDMA provides a stricter, 
pre-specified sleep scheduling. Tradeoffs between energy and delay, as well 
as buffering size, are studied by Arisha et al. [9]. A novel performance 
metric of network-wise delay diameter is studied by Lu et al. [110]. 

Another tradeoff of sleep scheduling is the energy vs topology, which 
in turn impacts concurrent transmission scheduling and channel access at 
the MAC layer, and routing selection at the routing layer. Most of the 
research efforts along this line try to maintain a backbone style topology 
of the network, so that the network remains connected with a minimum 
number of awake sensor nodes [36; 159; 202]. 

The Span protocol [36] uses a randomized method to elect so-called 
coordinator nodes to maintain a backbone connectivity with redundancy. 
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The concept of a virtual grid is proposed in GAF [202], the size of which is 
determined by the communication radius, so that any nodes in two adjacent 
virtual grids can communicate with each other directly. The key point is 
then to ensure exactly one active node in every virtual grid. In the STEM 
protocol [159], radios are proactivated by using either a paging channel 
with fixed duty cycle, or a tone on a secondary channel, which provides 
additional means to explore the energy vs latency tradeoff. 

2.4.4 Routing Layer 

The first batch of routing protocols that were adopted for WSNs is mostly 
based on protocols originally proposed for ad hoc networks, including ex
tensions of AODV and DSR [202]. These routing protocols are still based on 
traditional, address-centric, peer-to-peer communication patterns, instead 
of the data-centric paradigm of WSNs. 

Directed diffusion [85] is one of the first well-known protocols customized 
for information routing in data-centric networks. However, information pro
cessing is simply incorporated as an opportunistic by-product of routing in 
directed diffusion. While this might be sufficient for simple event monitor
ing applications, where data volume is small, the lack of formal considera
tion for integrating information processing with routing makes the protocol 
inappropriate for applications with complex information processing. Some 
other geographic routing [95] and rumor routing [26] protocols also fall into 
this category. 

The LEACH protocol [73] adopts a two-tier clustering structure, where 
the information processing is performed at each cluster head, and routing is 
simply divided into two stages: routing from sensor nodes to cluster heads, 
and from cluster heads to the base station. This is however, an empirical 
study that aims for energy-conservation by avoiding long distance commu
nication, but not really integrating information processing with routing. 

A formal and analytical study of the impact of data aggregation on 
routing in WSNs was first presented by Krishnamachari et al. [100]. An 
intuitive theoretical bound is that if every k pieces of information can be 
aggregated into a single piece of information, the routing load can be re
duced by a factor of at most k. Here, the value of k is usually referred to 
as the aggregation factor, or correlation factor among data. 

Along this line, the impact of k on two different routing schemes, the 
Shortest Path Tree (SPT) and the Minimal Steiner Tree (MST), was inves
tigated by Pattern et al. [135]. It is further revealed that the optimal tree 
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structure for integrated information processing and routing is a hybrid of 
SPT and MST. This can be explained by the intuition that SPT is optimal 
when k is one, since the routing of each piece of source information becomes 
independent; MST is optimal when k is infinity, since exactly one piece of 
information is transported on each edge of the tree. 

The above conclusion on a hybrid routing scheme is also confirmed by 
other results. Cristescu et al. assumes a simplified compression model [47], 
where the aggregation factor of a piece of information does not depend 
on the amount of side information, but only on its availability. A hybrid 
scheme of SPT and TSP, the Shallow Light Tree (STL), is proved to provide 
2-approximation performance for minimizing the overall cost of the data 
gathering tree. Goel et al. studied a very similar problem, where the joint 
entropy was modeled as a concave, but unknown function of the number of 
source nodes [67]. It is also noted by Goel that the data gathering problem 
is essentially a single-source buy-at-bulk problem [13]. The key point is that 
the cost spent on each edge is a concave function of the number of source 
nodes that use this edge to communicate to the sink. Another randomized 
algorithm for routing information on a grid of sensors is proposed in [59], 
which achieves constant factor approximation (in expectation). 

Moreover, some research efforts have investigated other routing sub
strates besides the tree structure. Bo et al. proposed a distributed 
in-network processing algorithm that achieves maximal throughput un
der the assumption that the information processing is independent for all 
sources [78]. His algorithm is essentially based on the optimization of a 
network flow problem. A hierarchical data gathering scheme for a linear 
array of sensor nodes is studied by ElBatt [55]. 

All of these papers [47; 55; 59; 67; 78; 100; 135] assume that certain 
coding mechanisms are available to accomplish the data aggregation oper
ation, so the authors can focus on a relatively high level algorithm design 
and performance analysis. There are also papers that try to understand 
the inter-relationship between information processing and routing from in
formation coding perspective. 

Scaglione et al. considered tight coupling between routing and source 
coding for the problem of broadcast communication in a WSN, subject to a 
given distortion constraint [156]. It is proved that while the whole network 
traffic for such a broadcast scales as 0(N log N) (N being the number of 
sensor nodes), a simple integrated routing and source coding scheme can 
be used to reduce the traffic to 0(y/N), and is therefore supportable by 
the O(VN) network capacity. It is also argued by Cristescu et al. [47] that 
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when Slepian-Wolf coding can be used without explicit communication, 
the shortest path tree is optimal in terms of minimizing network traffic. 
However, to ease the task of a global Slepian-Wolf coding, the authors also 
proposed an approximation algorithm by grouping nodes into clusters and 
performing Slepian-Wolf coding in each cluster. In these works, the optimal 
clustering is conjectured to be NP-Hard. 

Since the above works explicitly consider the collaboration between joint 
data compression and routing, the joint entropy of gathered information be
comes a key factor that determines the problem settings and the consequent 
solutions. We therefore refer to the routing techniques discussed above as 
entropy-aware routing. 

Other works have also been proposed for energy-efficient routing from 
a more general perspective. For example, the energy x delay metric is 
used to determine a data gathering substrate [107]; the expected number 
of transmissions (ETX) is used as a path metric for multi-hop transmis
sion [51]; the packet reception rate x distance metric is used to choose 
a forwarding node during routing [160]. In this context, various tradeoffs 
between energy and transmission delay, number of hops, and path length 
have been explored. 

2.4.5 Application Layer 

At the application layer, both energy-efficient signal processing algo
rithms [7; 17] and adaptive-fidelity algorithms [171; 182] have been studied 
for cross-layer optimization. The key idea is to trade the application-level 
information precision or accuracy for energy. 

The tradeoffs between computation and communication were first ex
plored by Acimovic et al. [3]. For prediction-based data gathering over a 
one-dimensional random Gaussian field, such tradeoffs are enabled by ad
justing the group size within which prediction is performed — large group 
increases computation cost but decreases communication cost [3]. Simula
tion results indicate that the optimal group size increases with its distance 
from the sink. 

Another useful technique at the application layer is the so-called tunable 
compression, which tunes the compression ratio for balanced computation 
energy cost against communication energy cost. Consider the example of 
gzip: It provides up to ten levels of compression ratio, with larger ratios 
resulting in longer compression time, and therefore higher energy cost [16; 
2l]. The use of tunable compression is focused on computationally intensive 
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Table 2.2 Examples of cross-layer optimization techniques and the associated tradeoffs. 

System layer 

Application 

Routing 

MAC 

Physical 

Hardware 

Techniques 

Energy-efficient signal processing 
Adaptive fidelity algorithms 

Tunable compression 
Energy-aware routing 
Entropy-aware routing 
Radio sleep scheduling 

Power control 
Rate adaptation 
Adaptive coding 

Low-power circuit 
Node sleep scheduling 

Voltage scaling 

Tradeoffs 

Energy vs information precision/accuracy 
Energy vs information precision/accuracy 

Energy vs output size 
Energy vs delay/reliability/path length 

Energy vs delay/routing complexity 
Energy vs delay/throughput/topology 

Energy vs connectivity/topology/reliability 
Energy vs delay 

Energy vs delay/reliability 
Energy vs performance 

Energy vs response time/sensing coverage 
Energy vs delay 

applications, where traditional maximal compression becomes less energy-
efficient because of the over-paid computation energy for data compression. 
Thus, carefully choosing the compression ratio is necessary to explore the 
tradeoffs between computation and communication energy. 

2.4.6 Summary 

In Table 2.2, we illustrate the tradeoffs explored by the these techniques. 
Note that it is often difficult, if possible, to isolate clearly the different 
performance metrics involved in the tradeoffs. For example, transmission 
delay and reliability are closely related at both the physical layer and the 
routing layer, since transmission delay depends on both the time cost for 
each transmission and the expected number of re-transmissions, which is 
determined by reliability. Also, the radio sleep scheduling at MAC layer 
affects both the transmission delay and throughput simultaneously. Thus, 
in many cases, it is necessary and helpful to understand the tradeoffs while 
taking multiple performance metrics into consideration. 

Moreover, the concrete interpretation of a single performance metric 
may vary across different levels. For example, delay at the application 
layer often refers to the end-to-end time duration for performing a specific 
task, e.g., gathering information across the network. At the routing layer, 
delay usually refers to the time duration of transporting a packet over a 
path between two sensor nodes. At the physical layer, delay may refer to 
the time duration for packet transmission over a single link. Furthermore, 
link-wide delay at the physical layer and path-wide delay at the routing 
layer also affect system-wide delay at the application layer. Due to such 
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an inherent relationship, we do not rigorously distinguish between these 
different interpretations. 

Based on the table, we summarize two important issues in cross-layer 
optimization, which also reinforce our motivation stated in Section 2.3.1. 

First, it is worth noting that these optimization techniques are not in
dependent. In fact, the behavior of certain techniques can change the opti
mization space, and hence solutions for other techniques. For example, the 
radio sleep scheduling at the MAC layer affects network topology, which 
in turn impacts the routing decision at the routing layer. Also, the sleep 
scheduling affects channel access at the MAC layer and hence signal interfer
ence at the physical layer, which is referenced while applying power control 
and rate adaptation techniques. Given such a complex inter-relationship, it 
is important to understand the impact of certain techniques across various 
stacks before applying the techniques. 

Second, a single performance metric observed by the users can be af
fected by techniques across different layers. For example, network topol
ogy is affected by both physical layer power control and MAC layer sleep 
scheduling. Also, application-level delay is co-determined by a series of 
techniques, including application layer joint routing and coding scheduling, 
routing layer decision, MAC layer sleep scheduling, physical layer packet 
transmission, and hardware layer CPU processing. If an application-level 
delay constraint is imposed by the user, the up-front question for the energy 
vs delay tradeoff is how to break the application-level delay constraint into 
sub-constraints for each individual layer. There is no easy solution for this 
problem, unless a cross-layer optimization technique can be developed to 
integrate the tradeoffs at different layers. 





Chapter 3 

Energy Models 

3.1 Definitions and Notations 

Before describing the energy models, we first give a list of basic definitions 
and notations that are used throughout the book. 

3.1.1 Mathematics and Graphs 

Let N + denote the set of positive natural numbers, i.e., N + = {1, 2 , . . . } . 
We usually use i,j,k to denote the indices of a set or an array. Given 
i e N+, let [i] denote the set { l , 2 , . . . , i } c N + . 

Let G = < V, L > denote a graph with vertex set V and edge set L. 
If G is undirected, we use (Vi,Vj), or simply (i,j) to denote an edge that 
connects vertices Vi and Vj. If G is directed, let (Vi,Vj), or simply (i,j) 
denote an edge that points from Vi to Vj. In this book, we often use u e V 
to denote a node, and e € L to denote an edge, if the indices of nodes or 
edges can be ignored in the context. 

In the following, we define the predecessor and successor relationship 
for nodes and edges in a directed graph. 

Definition 3.1 Given two nodes V\ and V% in a directed graph G =< 
V, L >, V\ is a predecessor node (or simply predecessor) of V2 if there is a 
path from V\ to V2, denoted as V\ -< V2. We also refer to V2 as a successor 
node (or simply successor) of V\. 

Definition 3.2 Given two edges Lx and L2 in a directed graph G =< 
V, L >, L\ is a predecessor edge (or simply predecessor) of L2 if the ending 
point of L\ is a predecessor of the starting point of L2, denoted as L\ -< L2. 
We also refer to L2 as a successor edge (or simply successor) of L\. 

41 
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We use the above notations to abstract both the network structure and 
application tasks of WSNs. When using graphs to represent WSNs, the 
vertices correspond to the set of sensor nodes, and the edges correspond 
to the set of communication links between the sensor nodes. Since general 
network topology is usually modeled as an undirected graph, the predeces
sor/successor relationship is usually applied in a specific routing substrate, 
such as a data gathering tree, that is usually represented as a directed 
graph. For such a data gathering tree, the predecessor/successor relation
ship defines the order of nodes or edges that a packet may traverse within 
the tree. 

We also use directed graphs to represent the inner-structure of an appli
cation. In this case, the vertices correspond to computation tasks, and the 
edges correspond to communication tasks with directed data flow. Thus, 
the predecessor/successor relationship specifies the order of execution for 
the related tasks in the application. 

We formally define the above representations in the following two sec
tions. 

3.1.2 Network Topology Graph 

Consider a network of sensor nodes. Given v G N + , we use V to denote the 
set of v sensor nodes, i.e., V = {Vi : i G [v]}. Given I G N + , we use L to 
denote the set of I communication links between the sensor nodes in V, i.e., 
h = {Lz:ie[l]}. 

Definition 3.3 An network topology graph (or simply network graph) 
NG = < V, L > is a graph with vertex set V representing the set of sensor 
nodes, and edge set L representing the set of communication links. 

NG is undirected if the communication links are symmetric, and di
rected if the communication links are asymmetric. If NG is undirected, 
we also use (i,j) G L to denote a communication link that connects sensor 
nodes V, and Vj. Throughout the book, we consider symmetric communi
cation links only. For the ease of presentation, the terms "sensor node," 
"node," and "vertex" are often used interchangeably. Also, the terms "com
munication link," "link," and "edge" are often used interchangeably. In the 
following, we define several special network graphs. 

Definition 3.4 A collocated network of sensor nodes consists of a set of 
nodes that are connected to each other via one-hop communication. In 
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other words, the network graph for a collocated network is a complete 
graph. 

Definition 3.5 A grid network of sensor nodes consists of a set of nodes 
placed on a grid structure, where each node can communicate with its eight 
neighbors (ignoring boundary effects) through one-hop communication. 

Definition 3.6 An arbitrary network of sensor nodes consists of a set 
of nodes randomly placed on a planar. Each node can communicate with 
another node within distance d through one-hop communication, where d 
is given as the communication radius. 

To model the energy cost for communication between any pair of sensor 
nodes in V, we also associate a weight with each link in L, which reflects 
the energy cost of transmitting a packet of unit size over the link. In this 
book, we have different assumptions about the weights according to the 
specific problem scenarios. 

For example, in Chapters 4 and 5, we model the weight as a function of 
the transmission speed based on the energy model of rate adaptation, which 
is determined by the physical distance and environment, as well as the radio 
features. In Chapter 6, we assume that the transmission speed is fixed, and 
the weight simply becomes a scalar value for each edge, which is determined 
by the physical distance between the two sensor nodes associated with the 
link. In other words, the transmission power is adjusted in such a way 
that just enough reception power is achieved at the receiving node. Recall 
the signal fading model for wireless communication in Section 2.4.2. This 
means that the transmission power is proportional to da

7 where d is the 
distance between the sending and receiving nodes and, a is the path loss 
exponent (between 2 and 6 in most scenarios). Also, in the special case of 
the grid network in Chapter 6, we assume that the cost of transmitting a 
packet of unit size over any communication link (either horizontal, vertical, 
or diagonal) is the same. 

Since the above different network topologies are used in Chapters 4, 5, 
and 6, we give a detailed description of the link weights in these chapters 
accordingly. 

3.1.3 Application Graph 

Given c e N + , we use C to denote a set of c computation tasks, i.e., 
C = {Ci : i G [c]}. Given q G N + , we use Q to denote a set of q com-
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munication tasks between the computation tasks, i.e., Q = {Qi : i G [q]}. 
Since a WSN application usually consists of a set of computation tasks and 
a set of communication tasks, we often use a graph representation to ab
stract the dependency and inter-relationship between the computation and 
communication tasks. Such a graph is referred to as an application graph: 

Definition 3.7 An application graph AG = < C, Q > is a directed acyclic 
graph (DAG) with vertex set C representing the set of computation tasks, 
and edge set Q representing the set of communication tasks. 

We often use tasks or activities to refer to both computation and com
munication tasks. Also, for a communication link, the terms "sending node" 
and "sender" are used interchangeably, as are the terms "receiving node" 
and "receiver". 

In the following, we slightly abuse the predecessor/successor relation
ship to define the dependency relationship between a pair of computa
tion/communication tasks, or between a computation task and a commu
nication task. 

Definition 3.8 Any edge Qk = (Ci,Cj) in an application graph defines 
a dependency relationship between tasks Cj, Qk, and Cj, which specifies 
that (1) the execution of Qk cannot start until Ci is finished, denoted as 
Ci -< Qk, and (2) the execution of Cj cannot start until Qk is finished, 
denoted as Qk -< Cj. Also, we refer to Cj as a predecessor of Cj and Cj a 
successor of C,. 

Definition 3.9 A computation task without any predecessors is referred 
to as a source task. A computation task without any successors is referred 
to as a sink task. 

This definition of dependency refers mainly to data dependency — the 
output of Cj acts as an input to Cj. If Cj and Cj are hosted on two 
different sensor nodes, then it is necessary to transmit the output of Cj 
to the sensor node where Cj is hosted, before the execution of Cj. If Cj 
and Cj are hosted on the same sensor node, data exchange is performed 
through memory exchange, which has a negligible cost compared to packet 
transmission. 

Extending the above data dependency, the execution of a task can only 
be started after it receives output from all of its predecessors, if any. Since 
the dependency relationship is essentially a predecessor/successor relation
ship, the dependency relationship is also transitive, i.e., Cj -< Qk and 
Qk -< Cj imply Cj -< Cj. Similarly, consider a task Ck with incoming 
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edge Qi and outgoing edge Qj\ We have Qi -< Ck and Cfc -< Qj, implying 

Note that we do not model control dependency with the above appli
cation graph. This is reasonable if we consider the worst case execution 
scenario and abstract computation tasks at a reasonably coarse granularity. 
Similar models are widely used in parallel and distributed computing [27; 
68; 203] and real-time computing [63; 79; 93; 112]. 

Similar to the weights in network graph, we also annotate the compu
tation and communication loads of tasks by giving weights to tasks in the 
application graph. For a computation task, the associated weight is the 
worst case number of CPU cycles that are needed to execute the task. For 
a communication task, the associated weight is the size of the packet needed 
to be transmitted. Based on the specific problem scenarios, we give more 
detailed descriptions and notations of task weights later. 

The application graph can be used to represent both signal processing 
algorithms, and information processing and routing procedure. For ex
ample, the recursive, one-dimensional Fast Fourier Transformation (FFT) 
algorithm is given in Figure 3.1(a), with an example task graph of 4 points 
demonstrated in Figure 3.1(b). 

Another example is the information transportation over a given routing 
tree substrate. Intuitively, the structure of the application graph is identical 
to the structure of the routing tree. For the task graph shown in Figure 3.2, 
each task is a data aggregation operation. Note that a general application 
graph for information processing does not need to be a tree structure. 

The task graph for the operation of information processing and routing, 
without a given routing tree, is trickier. Basically, the structure of the 
task graph cannot be determined until the structure of the routing tree 
is determined. In this case, the task graph is insufficient to describe the 
application. 

3.1.4 Performance Metrics 

We are interested in several performance metrics. Energy is our primary 
focus. We usually use e* to denote the energy cost of either a computation 
or communication task, where i is the corresponding index of the task in 
the application graphs. When we consider the scenario of real-time process
ing, we use Tj to denote the time cost of a computation or communication 
task i. This time cost is sometimes referred to as delay, or latency. The 
subscription i is often ignored if it can be inferred from the context. 
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FFT(A, u) 
1. Set / = length(^) 
2. If I = 1, return A 
3. r<°) = FFT((A[0],A[2],...,A[1-2]),LU2) 

4. YW=FFT((A[1],A[3},...,A[1-1]),LJ2) 

5. For i = 0 to 1/2 - 1 Do 
6. Y[i} = Y^[i}+ojixY^[i] 
7. Y[i +1/2} = y(°) [*] - w< x y(!) [i] 
8. Return Y 

(b) example application graph with 4 points 

Fig. 3.1 Fast Fourier Transformation (FFT) algorithm. 

In real-time scenarios, the accumulated time cost of tasks is often limited 
by a certain constraint at the application level. We refer to such a constraint 
as the latency constraint, denoted as I\ Such a latency constraint is common 
in the literature of real-time task scheduling [63; 79; 93; 112]. 

The notion of latency constraint is usually used together with the notion 
of periodicity in real-time task scheduling. An application is periodic if it 
needs to be repeated every k time units, where k is defined as the period 
of the application. On the other hand, an application is transient if it 
is executed only once. The latency constraint can be applied for both 
periodic and transient applications. For transient applications, the latency 
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Fig. 3.2 Application graph for information transportation over a given tree. 

constraint is easy to understand. For periodic applications, we consider 
the latency constraint to be less than the application period. Otherwise, 
certain pipeline techniques need to be developed so that the execution of 
two or more rounds of information processing or routing overlap. This is 
beyond the scope of our research. 

A similar concept involving periodic applications in WSNs is the 
epoch-based system [115]. Within each epoch, the desired system func
tionality (e.g., a query) needs to be performed. From this perspec
tive, the length of the epoch can be understood as the latency con
straint. Moreover, to measure the system delay, we assume the avail
ability of time-synchronization schemes within the network (e.g., [57; 65; 
179]). 

Some other performance measurements, such as throughput, have also 
been studied [78]. Our research is focused on applications that require 
low-duty cycle, for which throughput optimization is not a concern. 

3.2 Energy Models 

In this section, we describe the energy models for the three system knobs 
under consideration. For voltage scaling, the model is developed at the 
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circuit switching level. For rate adaptation, the model is developed at 
the physical level. For tunable compression, the model is developed at 
the application level. However, from the perspective of optimization at 
a relatively high abstract level, we are more interested in the tradeoffs 
involved in these knobs, rather than the details of the energy models and the 
corresponding low level implementation. Such tradeoffs are often abstracted 
as a convex function. For example, the energy cost is usually a convex 
function of either the computation time or the communication time. We 
discuss these energy functions in detail in the following sections. 

3.2.1 Voltage Scaling 

Consider a computation task. There are three major components of power 
consumption for executing the task by a CMOS integrated circuit: switch
ing power, short-circuit power, and leakage power [35]. We focus on the 
switching power, which dominates the power consumption in most cases. 

Let Vdd denote the supply voltage, j'dock denote the clock frequency, CL 
denote the loading capacitance, and Pt denote the probability that a power-
consuming transition occurs (the activity factor). The switching power Psw 

can be modeled as: 

Psw =PtxCLx VJd x fclock . (3.1) 

The product of Pt x CL is also referred to as the effective switched capaci
tance. 

From (3.1), we observe that the power consumption increases quadrat-
ically with supply voltage. Therefore, the power consumption can be re
duced by decreasing the supply voltage. However, this comes at the ex
pense of reduced processing speed, and therefore increased processing time 
T, which is given by: 

— h ^dd 

T~ c{vdd-vTy 
where kc is a constant and Vr is the threshold voltage [35]. 

Based on the above models, we can see that Psw oc Vdd and r oc ^-. 
Thus, the energy cost e = Psw x r increases linearly with Vdd- In other 
words, the energy cost for executing a task can be reduced at the expense 
of increased execution delay. In fact, the energy cost can be modeled as a 
monotonically decreasing and strictly convex function of the delay. 

(3.2) 
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Since delay is understood as the reciprocal of the processing speed, we 
can also model the energy cost of processing a task as an increasing function 
of processing speed [30], which is detailed in Chapter 4. 

Note that switching the voltage is not free: It costs both time and 
energy. While most of the techniques proposed for voltage scaling ignore 
this fact, or assume that such time and energy costs are absorbed in the 
execution cost of tasks, there are a few papers that explicitly address these 
costs as well [79]. Also, while the switching power is being continuously 
reduced by advances in CMOS technology, the leakage power becomes a 
significant portion of the total power consumption. Various techniques 
have been proposed to reduce leakage current, such as scaling the threshold 
voltage [118; 130], and power supply gating [128]. The tradeoffs between 
voltage scaling and shutdown policy has also been studied [87]. Although 
we focus solely on switching power in this book, our techniques can be 
extended to incorporate leakage power based on the work by Jejurikar et 
al. [87]. 

3.2.2 Rate Adaptation 

We model the transmission energy using the example of modulation 

scaling [157], based on the Quadrature Ampitude Modulation (QAM) 

scheme [188]. Consider a communication task that transmits a packet of 

s bits between two sensor nodes. Assuming that the symbol rate, Rs, is 

fixed, the transmission time, r , can be calculated as [157]: 

where b is the modulation level of the sender in terms of the constellation 
size (number of bits per symbol). 

The corresponding transmission energy can be modeled as the sum of 
output energy and electronics energy, which is also determined by b. To 
illustrate the key energy-latency tradeoffs, we abstract the energy cost as 
a function of r [157], denoted as W(T): 

W(T) = [Ctr • ( 2 ^ ? - 1) + Cele] • T • Rs , (3.4) 

where Ctr is determined by the quality of transmission (in terms of Bit 
Error Rate) and the noise power, and Ceie is a device-dependent parameter 
that determines the power consumption of the electronic circuitry of the 
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sender. Further, the output power, P0, and the electronic power, Pe, can 
be modeled as follows: 

P0 = Ctr • Rs • (2b - 1) and (3.5) 

Pe = Cele • Rs . (3.6) 

Note that different assumptions about the radio characteristics, includ
ing power consumption and data rate, may significantly affect the analysis 
of various energy-saving mechanisms. In this work, we consider the radio 
modules described in [147; 191]. Typically, for short-range communication 
with Rs — 1 Mbaud, the electronic power of the radio is approximately 
10 mW, while the output power is approximately 1 rnW at 4-QAM (which 
translates into 2 Mbps). Note that the data rate and power consump
tion are better than currently available radios for commercial sensor nodes, 
which typically support a data rate up to 100 Kbps with slightly higher 
power characteristics, such as the Berkeley motes. However, radio devices 
with these specifications are anticipated in the near future. 

From the calculation of P0 and Pe, it can be derived that Ctr ~ 3 x 
10~10 and Ceie = 10~8. Further, we consider a d2 path loss model for 
signal propagation, where d is the communication radius. Assuming that 
it takes 10 pJ/bi t /m 2 by the amplifier to transmit one bit at an acceptable 
quality [72], we infer that the corresponding communication radius for 1 
mW output power is V50 « 7 m (from V W 7 — = 1 0 pJ/bi t /m2 xd 2 ) . 

In our study, we also consider one more case of communication in WSNs 
with longer radii. Specifically, we set the communication range to 30 m, 
implying an output power of 10 pJ/bi t /m 2 x 302 m2 x 2 x 106 bit/sec = 
18 mW at 4-QAM, and consequently Ctr = 6 x 10~9. We refer to this 
communication scenario as long-range communication. Note that these 
numbers for communication radii are for illustrative purposes only, i.e., to 
show the different weights of Ctr against Ceie, with respect to variations in 
communication radius. They may vary according to different radio devices 
and operating environments. 

Figure 3.3 plots the energy functions with b G [2,8] for the long and short 
range communication scenarios. In practice, b is typically set to positive 
even integers, as indicated by circles in the figure. We observe a 10-fold 
energy reduction for long-range communication by varying b from 8 to 2, 
and a 3-fold energy reduction for short-range communication by varying b 
from 8 to 4. Therefore, it is more beneficial to explore the energy-latency 
tradeoffs for the long-range communication. 
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transmission lime duration (Sec) x 10-' 

(a) Long-range communication 
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b=2 
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(b) Short-range communication 

Fig. 3.3 Energy-latency tradeoffs for transmitting one bit. 

A l t h o u g h Q A M is used as a n e x a m p l e t o a b s t r a c t t h e e n e r g y m o d e l , t h e 

presented algorithms extend to other modulation schemes and techniques 
that can be used to trade latency against energy, such as code scaling [10]. 



52 Information Processing and Routing in Wireless Sensor Networks 

3.2.3 Tunable Compression 

The concept of tunable compression is not new. For example, the 
well-known gzip program for lossless data compression supports up to 
ten levels of compression ratio, with larger compression ratios result
ing in longer compression times, and therefore higher energy cost [16; 

21]. 
Since it is quite difficult to define a general form for characterizing the 

energy costs of various compressing schemes, we use a simple model that 
captures the principle rationale, which states that the computation time 
complexity of compressing one unit of data is inversely proportional to the 
output size. Further, the energy cost is proportional to the time complex
ity [16]. We illustrate this rationale using the example of gzip to compress 
the benchmark file "alice29.txt" from the Canterbury Corpus [21], at 5 dif
ferent levels of compression ratio (by properly parameterizing gzip). The 
curve of running time vs the normalized output size over input size is shown 
in Figure 3.4(a) (averaged over 20 runs on a SUN SPARC II machine). In 
fact, similar compression time vs normalized output size tradeoffs are ob
served for a collection of various compression techniques [16]. 

We define a pre-specified system parameter, 7 > 0, which abstracts the 
relative energy cost of compressing one unit of data normalized by the cost 
of communicating one unit of data. Following the above rationale, and for 
the purpose of illustration, the energy cost of compressing a data packet of 
size s to an output of size / is modeled as function 

<?(/)= « 7 ( y ) . (3.7) 

While the first term s indicates that the energy cost is proportional to input 
size, the term 4 signifies that the energy cost is also inversely proportional 
to the compression ratio. 

We now illustrate the tradeoffs between computation and communica
tion energy using the example of a one-hop link. Let e = (Vi, V2) denote 
the link, where V\ generates one unit of data that needs to be transmitted 
to V2, after appropriate compression by V\. Let / denote the output data 
size, i.e., the flow over e, which is lower bounded by the entropy of the unit 
of data, denoted as p. Let we denote the cost of transmitting a unit data 
packet over e. The overall energy costs, denoted as e(/) can be modeled as 
a function of / : 

<f) = 1
f+f-we. (3.8) 
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(b) Computation energy vs communication en
ergy tradeoffs on a single link (we = 1, 7 = 0.1) 

Fig. 3.4 Energy tradeoffs by tunable compression. 

We plot e ( / ) in Figure 3.4(b), with we = 1, 7 = 0.1 and varying / from 
0.1 to 1 (we omit the boundary effect of p for now). Intuitively, we = 1 
means tha t t ransmit t ing one unit of da ta costs one unit of energy. Since 
the energy of t ransmit t ing one bit is typically comparable to the energy of 
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executing 500 - 1000 instructions with contemporary hardware [16; 166], 
the realistic meaning behind 7 = 0.1 is that around 50 - 100 instructions 
need to be executed to generate each bit in the output. 

Clearly, e(/) is convex, and the minimum is achieved when e'(/) = 0, 
where e'(/) is the first derivative of e(/). Let / 0 denote the desired flow 
with e'(fo) = 0. By simple algebra manipulation, we have /o = \ / J -
Considering the boundary effects of p, the optimal value of / equals /o if 
e'(p) < 0 and e'(l) > 0, or p if e'(p) > 0, or 1 if e'(l) < 0. 



Chapter 4 

Information Processing within a 
Collocated Cluster 

4.1 Overview 

4.1.1 Motivation 

While information processing in wireless sensor networks is distributed 
throughout the network, a practical strategy is to organize geographically 
proximal nodes into small groups as basic units for the collaborative pro
cessing of gathered information. For instance, in a target tracking ap
plication, up to thousands of sensor nodes are dispersed over a specific 
area of interest. The sensor nodes are usually organized into clusters [72; 
208], each consisting of tens of sensor nodes. Distributed signal detection 
and collaborative data processing are performed within each cluster for 
detecting, identifying, and tracking vehicles. Some of the operations in
volved in such data processing include the LU factorization [42] and the 
Fast Fourier Transformation (FFT) [44]. 

In this chapter, we consider clusters consisting of a collocated network 
of sensor nodes. We consider a general scenario where all sensor nodes are 
equipped with both voltage scaling and rate adaptation. Also, multiple 
channels are available for communication within the cluster. 

The information processing within the cluster is abstracted as a peri
odic application graph with delay constraint. We use three components to 
specify the resulting execution of the application: (1) the assignment of 
computation tasks to sensor nodes and communication tasks to channels, 
(2) the voltage settings for computation tasks and the data rate setting for 
communication tasks, and (3) the scheduling of computation and commu
nication tasks. We refer to the combination of instantiations of these three 
components as a task allocation. 

55 
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Besides latency, we consider two more constraints. The first one is the 
exclusive access constraint, which specifies that a non-preemptive schedul
ing policy is employed by each sensor node and each wireless channel. Also, 
at any time, a sensor node can receive or send data by using at most one 
channel. We also consider the task placement constraint, which is typically 
required when certain tasks for sensing the raw data must be allocated to 
different sensor nodes. 

We assume that sensor nodes are completely shut down in the idle state 
when there are no computation and communication tasks to be executed. 
Thus, we only need to consider the energy cost for executing computation 
and communication tasks. To synchronize the communication between sen
sor nodes, we assume that sleeping sensor nodes can be awakened for packet 
transmission by using a full duty cycle, ultra-low power wakeup radio with 
almost no delay or energy penalties. One promising technique to realize 
wakeup radios is discussed by Zhong et al. [215]. 

Our general goal is to find a task allocation such that the lifetime of the 
cluster is maximized. To realize this goal, we propose an energy-balanced 
execution scenario to minimize the maximal energy dissipation among all 
sensor nodes, subject to the latency constraint, exclusive access, and task 
placement constraints. 

4.1.2 Technical Overview 

We propose the concept of energy-balanced task allocation for information 
processing with a cluster of collocated sensor nodes. As we shall see in 
Section 4.2, most of the previous efforts in energy-aware task allocation 
or resource management try to minimize the overall energy dissipation of 
the system. This strategy may not be suitable in the context of WSNs, 
since each sensor node is equipped with its own energy source. Moreover, 
for event-driven systems, applications often need to be executed after the 
system has been working for some time. In such a case, an energy-balanced 
task allocation should also consider the fact that the remaining energy can 
vary among sensor nodes. 

To the best of the authors' knowledge, this is the first work for task 
allocation in WSNs that considers the time and energy costs of both com
putation and communication. We present an integer linear programming 
(ILP) formulation of our problem. The optimal solution of the problem can 
be obtained by using a commercial software package such as [106], though 
the running time can be long. While this ILP formulation can be used 
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as a performance benchmark for small scale problems, we also propose a 
polynomial time 3-phase heuristic for solving large scale problems. 

Our simulation results show that for small scale problems, up to 5x life
time improvement is achieved by the ILP-based approach, compared to the 
case where no voltage scaling is used. Also, the 3-phase heuristic achieves 
up to 63% of the system lifetime obtained by the ILP-based approach. For 
large scale problems, the 3-phase heuristic achieves up to 3.5x lifetime im
provement when only voltage is used. By incorporating rate adaptation, up 
to lOx lifetime improvement was observed. Simulations were also conducted 
for application graphs from two real world problems - LU factorization and 
FFT. We observed a lifetime improvement of up to 8x for the LU factor
ization algorithm and up to 9x for FFT. 

4.1.3 Chapter Organization 

We discuss related work in Section 4.2. The energy-balanced task allocation 
problem is defined in Section 4.3. The ILP formulation of the problem is 
given in Section 4.4. The 3-phase heuristic is described in Section 4.5. 
Simulation results are demonstrated in Section 4.6. In Section 4.7, we give 
a summary of the chapter. 

4.2 Related Work 

Extensive research efforts have studied the problem of energy-efficient task 
allocation and scheduling with voltage scaling in uni-processor real-time 
systems [14; 79; 163; 204]. Recently, research interests have shifted to multi
processor systems. A list-scheduling based heuristic is proposed by Gruian 
and Kuchcinski to recalculate dynamically the priority of communicating 
tasks [69]. Also, static and dynamic variable voltage scheduling heuristics 
for real-time heterogeneous embedded systems are proposed by Luo and 
Jha [112]. An approach based on critical-path is used for selecting the 
voltage settings of tasks. However, both papers assume that the task as
signment is given. A similar problem to the one studied in this paper is 
investigated by Zhang et al. [213]. A two-phase framework is presented 
to determine first the allocation of tasks to processors and then the volt
age settings of tasks using convex programming. In the work by Zhu et 
al. [217], a dynamic processor voltage adjustment mechanism for a homo
geneous multi-processor environment is discussed. However, the time and 
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energy costs for communication activities are not addressed in most existing 
work. 

The goal of all the above research efforts is to minimize the overall en
ergy dissipation of the system. While this goal is reasonable for tightly 
coupled systems, it does not capture the nature of WSNs. The reason is 
that to minimize the overall energy dissipation can lead to heavy use of 
energy-effective sensor nodes, regardless of their remaining energy. The 
consequently short lifetime of such sensor nodes will very likely hinder the 
system in delivering required performance. This weakness is a major moti
vation for the proposed energy-balanced task allocation. 

Our work considers the energy and time costs of both computation and 
communication activities. As indicated by several research efforts, wireless 
communication is a major source of energy dissipation in WSNs. By incor
porating techniques such as rate adaptation, we can greatly improve the 
energy-efficiency of the system. 

Energy-balanced task allocation bears some resemblance to load-
balancing in distributed computing. However, the communication activ
ities over the same wireless channel need to be serialized so that run-time 
contentions can be avoided. The serialization imposes new challenges that 
distinguish our problem from most of the existing works for load-balancing 
or real-time scheduling in distributed systems. 

4.3 Problem Definition 

4.3.1 System Model 

Let v denote the number of sensor nodes. Let NG =< V,L > denote 
the network graph for the cluster, where V = {Vi : i € [«]}. We consider a 
collocated network, i.e., NG is a complete graph. We assume that all sensor 
nodes in V have the same processing and communication capabilities. Let 
K denote the number of communication channels that are of the same 
bandwidth. The remaining energy of the sensor nodes can vary. Let i?; 
denote the remaining energy of Vi. 

We consider discrete voltage settings for sensor nodes. This is realistic, 
as most commercial processors do not provide continuous voltage scaling. 
Specifically, each sensor node is equipped with d discrete voltage levels, de
noted as {Di : i £ [d]}, in decreasing order. As discussed in Section 3.2.1, 
for processing a specific task, each voltage level corresponds to a processing 
speed in terms of the number of cycles per unit time. This processing speed 
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in turn determines the processing delay and energy cost. More importantly, 
the energy cost is a convex and monotonically decreasing function of pro
cessing delay. Depending on their size and instruction components, such a 
function may vary for different tasks 

We also consider discrete transmission rates for wireless communica
tion. This is practical, since the modulation setting in (3.4) is usually set 
to positive even integers in real systems. Specifically, the radio on each 
sensor node can transmit by choosing one level from a list of / modulation 
levels {F{ : i G [/]}, in decreasing order. Based on our discussion in Sec
tion 3.2.2, for a given packet of fixed size, each rate level corresponds to a 
transmission delay and energy cost. For ease of presentation, we ignore the 
non-monotonicity discussed in Section 3.2.2. In other words, we assume 
that the output power always dominates the circuitry power. Hence, the 
energy cost for sending the packet is a convex and monotonically decreasing 
function of transmission delay, while the energy cost for receiving a packet 
is a linear function of transmission delay. These functions may vary for 
different links, depending on the packet size. 

In the above discussion, we have emphasized high level models that 
abstract the tradeoffs between energy and delay. Although technical details 
behind these models can be found in Chapter 3, it suffices to understand 
the problem and approach in this chapter simply based on these models. 

Regarding the exclusive access constraint, we assume that a non-
preemptive scheduling policy is employed by each sensor node and each 
wireless channel. In other words, the time duration scheduled for different 
computation (communication) activities over the same sensor node (wire
less channel) cannot overlap with each other. 

For ease of analysis, we assume that the processors and radios are com
pletely shut down in the idle state. We note that to shut down the proces
sor/radio whenever idle may not always save energy, since the energy for 
shutting down and restarting the processor/radio can be larger than the 
energy cost for keeping the processor/radio on during the idle state. Meth
ods for determining the optimal decision during the idle state for energy 
savings can be found in [170], and is beyond the scope of this book. We 
assume that sleeping sensor nodes can be awakened for packet transmis
sion using a full duty cycle, ultra-low power wakeup radio, which can be 
realized using the techniques proposed by Zhong et al. [215]. In the case of 
heavy-duty computation and communication applications, as considered in 
this chapter, it is fair to ignore the delay and energy penalties for wakeup 
radios. 
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4.3.2 Application Model 

We consider a periodic application with latency constraint T for each ex
ecution of the application. We use the application graph AG = < C, Q > 
to represent the relationship between the computation and communication 
tasks, where C = {Cj : i G [c]} is the set of c computation tasks, and 
Q = {Qj : i G [q]} is the set of q communication tasks. 

We consider applications that collect single-modal information. For such 
applications, it does not make sense to place more than one source task on 
the same sensor node. Thus, we define a task placement constraint: no two 
source tasks can be assigned to the same sensor node. Nevertheless, our 
model and approach are extendible to general cases where any pair of tasks 
must be or must not be assigned to the same sensor node. 

For any task C{ G C, let Wi denote its workload in terms of the worst-
case number of required computation cycles. Based on our discussion in 
Section 4.3.1, we can calculate the processing delay and energy cost for d 
at each voltage level. Let Tij denote the processing delay at the j - t h voltage 
level, with e^ denoting the corresponding energy cost. 

We assume that all communication tasks are performed by transmitting 
exactly one data packet with variable size. For any task Qi G Q, let weight 
Si denote the size of the packets to be transmitted. Different edges incident 
from the same node may have different weights. For a communication task 
Qi = (i) k), if both Cj and Ck are assigned to the same sensor node, the 
time and energy cost of Qi is zero. Otherwise, let T[A denote the time 
cost of Qi when the j - t h modulation level is chosen for the transmission, 
with ef • denoting the corresponding sending energy and, e[- denoting the 
corresponding receiving energy. 

All the values of T^ , e^, r? •, ef̂  and e£ • can be calculated based on the 
system and application models. Thus, we assume they are given a priori 
in the following discussion. 

4.3.3 Task Allocation 

Based on the above system and application models, a task allocation is 
defined as (1) the assignment of computation tasks to sensor nodes and 
communication tasks to channels, (2) the voltage settings of computation 
tasks and the data rate setting of communication tasks, and (3) the schedul
ing of computation and communication tasks. Each task can be assigned 
to exactly one sensor node with a fixed voltage setting. Also, each commu-
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nication activity can be assigned to exactly one channel with a fixed rate 
level. An allocation is feasible if it satisfies the latency, exclusive access, 
and task placement constraints. 

The system lifetime is defined as the duration from when the application 
starts, to the time when any sensor node in the cluster fails due to depleted 
energy. A general solution to maximize the system lifetime is to allow 
variable task allocations in different periods. Consequently, the energy cost 
for each sensor node may vary in different periods. However, due to the high 
complexity raised by such a solution, we assume that the task allocation 
remains the same for all application periods. That is, the behavior of the 
system repeats for each period and every sensor node spends the same 
energy during each period. Let £t denote the energy dissipation of V% G V 
during each application period. Given an allocation, the system lifetime (in 
number of periods) can be calculated as minjIL^J}. A feasible allocation 
is optimal if the corresponding system lifetime is maximized among all the 
feasible allocations. 

Note that a more complex definition of the system lifetime would be 
the time period from the beginning of the application execution to the 
time when not enough sensor nodes are alive to deliver the required per
formance. For example, it is shown that to perform the LOB algorithm 
at an acceptable accuracy requires at least three sensor nodes. However, 
such a definition is quite application-specific. Thus, a simple but general 
definition of the system lifetime is adopted in this chapter. Intuitively, to 
optimize the system lifetime with the above, more complex definition, we 
may recursively apply the proposed optimization approaches to the result
ing systems after sensor nodes die out. Now, our task allocation problem 
can be informally stated: 

Find an allocation of a set of communicating tasks to a single-hop clus
ter that minimizes the maximal energy cost among all sensor nodes during 
each application period, normalized by their remaining energy. 

4.4 Integer Linear Programming Formulation 

In this section, we present an ILP formulation of our task allocation problem 
that captures the behavior of the system during one application period. We 
first list the notations used in the formulation in Table 4.1. 

To capture the relative order imposed by the precedence constraints 
among activities, we define the Constraint Set 1 shown in Figure 4.1. It 
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Table 4.1 List of notations for ILP formulation. 

r Latency constraint for each execution of the application 

Tij, eij Time and energy costs of executing task Ci using voltage level Vj 

Time and energy costs of communication task Qi = (j, fc), if Cj and Cj, are 
not assigned to the same sensor node, and the j-th modulation level is used 
for the transmission 

a\\b No dependency relationship exists between tasks a and b 

{%ij} A set of 0-1 variables such that Xij equals one iff Ci is assigned to Vj 

{ilij} A set of 0-1 variables such that yij equals one iff the voltage of Ci is set to Vj 

{zij} A set of 0-1 variables such that Zij equals one iff Qi is assigned to the j-th 

channel 

{uij} A set of 0-1 variables such that Uij equals one iff Qi is transmitted at the 

.j-th modulation level 

{rij} A set of 0-1 variables such that r y equals one iff Ci and Cj are assigned to 

the same sensor node 

{stj} A set of 0-1 variables such that Sij equals one iff Qi and Qj are assigned to 

the same channel 

{a(i)} A set of real variables indicating the time when C'i starts execution 

{/3(i)} A set of real variables indicating the time when d completes execution 

{"f(i)} A set of real variables indicating the time when Qi starts transmission 

{(5(i)} A set of real variables indicating the time when Qi completes transmission 

{pij} A set of 0-1 variables such that ptj equals one iff the execution of Ci finishes 

before Cj starts 

{qij} A set of 0-1 variables such that qij equals one iff the transmission of Qi 
finishes before Qj starts 

is easy to verify that the exclusive access constraint for activities with 
precedence constraints is also enforced by Constraint Set 1. However, for 
activities that do not have precedence constraints between them, an extra 
set of constraints are needed (Constraint Set 2 in Figure 4.2), to enforce 
the exclusive access constraint. In addition, the task placement constraint 
is captured by the Constraint Set 3 in Figure 4.2. 

The complete ILP formulation is given in Figure 4.3, where £ is an 
auxiliary variable. In the figure, the term J2dec{Xik J2j(yij€ij)} gives the 
energy cost for computation tasks on Vk- The term Y^o =(a b)e<o{Xak(^ ~ 
Xbk) Y2j(.uiieij) + (1 ~ xak)Xbk Y2j(uijerij)} gives the energy costs for all the 
communication tasks that involve Vk-

Clearly, the presented formulation is non-linear. It can be transformed 
into an ILP formulation using standard linearization techniques [196]. Due 
to space limitations, we omit the details of linearization. 
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Constraint Set 1: 

vc.ec 
^2j xij = 1 / / every task can be assigned 

/ / t o exactly one sensor node 
J2j Vij = 1 / / every task can be executed 

/ / using exactly one voltage level 
ct(i) > maxQ!=(j)i)6Q{<5(2)} / / C; starts execution 

/ / after receiving all inputs 
/3(i) = a(i) + ^AyijTij) 1/ execution time of d depends 

/ / on the voltage level 
\fd,Cj e c 

rtj = 1 iff Vfc = 1 , . . . , v, Xik = Xjk J) rtj equals one if d and Cj are 
/ / assigned to the same node 

VQi = (a , fe)eQ 
Ylj zij = 1 11 Qi c a n D e assigned to 

/ / exactly one channel 
XL uij = 1 11 Qi c a n be transmitted at 

/ / exactly one rate 
7(2) > P{a) II Qi starts transmission after 

/ / Ca finishes 
5{i) = "/(i) + J2j(uijTij)(l ~ rab) II the transmission time of Qi 

II depends on the locations of 
/ / Ca and Cb and its rate 

for any source tasks Ci 
a(i) > 0 / / all source tasks can start 

/ / execution at time 0 
for any sink task d 

P(i) < T / / all sink tasks must complete 
/ / within the latency constraint 

Fig. 4.1 Constraint Set 1 for the ILP formulation. 

4.5 Heur i s t i c A p p r o a c h 

In this section, we describe an efficient 3-phase heuristic for solving the 

task allocation problem. Initially, we set the voltage and rate levels for 

all tasks to the highest option. In the first phase, the tasks are grouped 

into clusters with the goal of minimizing the overall execution t ime of the 

application. In the second phase, task clusters are assigned to sensor nodes 

in such a way tha t the highest energy dissipation among all sensor nodes, 

normalized by their remaining energy, is minimized. In the last phase, the 
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Constraint Set 2: 
VCi, Cj € C, such that i / j and Ct\\Cj 

Pij = 1 — Pji 

VQi,Qj e Q, such that Qi = (a, b), 
Qj = (a!', 6'), either a = a' or 6 = b' 

Qij = 1 — Qji 

70') > Qui1 ~ ro6)(l - ra,b,)5{i) 

VQi,Qj € Q, such that Q, = (a, 6), 
Qi = (a', b'), a^a',b^ b', and QiWQj 

1 - qji 
1 iff Vk •• 1,- • A". •^z/c — ^ j fc 

70') > 9y (1 - rab){l - ra,b,)sij5(i) 

II p^ is the inverse of pji 
II if d and Cj are assigned to 
/ / the same node, C, completes 
/ / before Cj starts execution 

/ / i f f p y = 1 
/ / Communiation tasks from or 
/ / to the same computation task 
/ / qij is the inverse of qji 
II Qi completes before Qj starts 
/ / transmission iff qij = 1 
/ / Communication tasks between 
/ / two different pair of 
/ / computation tasks 
/ / Qij is the inverse of qji 
II Sij equals one if Qi and Qj 
II are assigned to the same 
/ / channel 
/ / if Qi and Qj are assigned to 
/ / the same channel, Qi 
II completes before Qj starts 
/ / transmission iff qij = 1 

Constraint Set 3: 
VCi, Cj € C, such that d and Cj are source tasks and i ^ j 

Tij = 0 / / any two source tasks cannot be assigned to the 
same sensor node 

Fig. 4.2 Constraint Sets 2 and 3 for the ILP formulation. 

system lifetime is maximized by lowering the voltage levels of tasks. The 

details of the heuristic are as follows. 

4.5.1 Phase 1 

A task cluster is defined as a set of tasks assigned to the same sensor node 

with a specific execution order. Communication between tasks within a 

cluster costs zero time and energy. In this phase, we assume an unlim

ited number of sensor nodes, implying that the number of clusters is also 

unlimited. The main purpose of this phase is to eliminate communication 

activities in order to reduce the overall execution time of the application. 
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Minimize £ 
Subject to 

T,Qi = (a,,b-)€®{xal*(1-xbk)'E.j('"ij£ij) + ('l--Xak)xbkT,j(uij£ij)} . ~ 

and Constraint Sets 1, 2, and 3 

Fig. 4.3 ILP formulation for the energy-balanced task allocation problem. 

The idea of Phase 1 is similar to the algorithm proposed in [152]. How

ever, tradit ional approaches for task clustering usually assume a full, wired 

connection among processors, so tha t all communication can be parallelized, 

whereas in our problem, communication activities over the same channel 

must be serialized. Thus, a new challenge is to select a policy for the serial

ization tha t facilitates the reduction of the execution t ime of the application. 

We use a simple first-come-first-serve policy to order the communication ac

tivities ready at different times. Activities ready at the same time (such as 

those initiated by the same task) are executed in a non-decreasing order of 

their communication loads. Nevertheless, more sophisticated policies are 

also applicable. 

Begin 
1. Each task is assumed to constitute a cluster by itself 
2. Set Q as the list of communication tasks in a non-decreasing order 

of their weights 
3. $ <- Travese() 
4. While Q is not empty D o 
5. Remove the first edge from Q, denoted as (i, j) 
6. $ ' <— Traverse() as if CL(i) and CL(j) are merged 
7. If <&' < $ and to merge CL(i) and CL(j) does not violate the 

task placement constraint 
8. Merge CL(i) and CL(j) 
9. $ <- $ ' 
10. If $ > T, Return failure 
End 

Fig. 4.4 Pseudo code for Phase 1. 
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The pseudo code for Phase 1 is shown in Figure 4.4. In the code, $ 
denotes the overall execution time of the application, and CL(i) denotes the 
cluster that contains task d. Initially, every task is assumed to constitute 
a cluster by itself. We then examine all the edges in a non-increasing order, 
with respect to their weights. For each edge, (i,j), if the execution time 
of the application can be reduced by merging CL{i) with CL(j) without 
violating the task placement constraint, we perform the merge. Otherwise, 
Ci and Cj remain in two different clusters. In Lines 3 and 6, the function 
TraverseQ is called to traverse the DAG, in order to determine the schedule 
of the tasks, and therefore <&. 

The pseudo code for TraverseQ is shown in Figure 4.5. In the code, we 
maintain a queue of activities, A, which stores all the ready computation 
or communication activities in their expected execution order. We also 
maintain a timestamp for each task cluster that indicates the finish time for 
all scheduled tasks within the cluster. Similarly, we maintain a timestamp 
for each channel that indicates its nearest available time. The timestamps 
are used to schedule the computation and communication activities in Lines 
7, 13, and 14. In Lines 9 and 16, the timestamps are updated based on the 
execution time of the scheduled activities. The actions in Lines 17 and 18 
ensure that the radio can be tuned to at most one channel at any time. 

4.5.2 Phase 2 

In this phase, we assign the task clusters from Phase 1 to the actual sensor 
nodes in V. Note that multiple clusters can be assigned to the same sensor 
node. Based on the contained tasks and the corresponding communication 
activities, we first calculate the energy cost of each cluster. Let m denote 
the number of clusters obtained from Phase 1. Let 7r = {-Ki : i £ [m]} 
denote the list of all tasks clusters and £j denote the energy dissipation of 
7Tj. The normalized energy dissipation (norm-energy for short) of a sensor 
node is given as the sum of the energy dissipation of the clusters assigned 
to the sensor node, normalized by the remaining energy of the sensor node. 

The pseudo code of Phase 2 is shown in Figure 4.6. Initially, n is sorted 
into a non-increasing order of clusters, by energy dissipation. Then, for 
each cluster in TT, we calculated the norm-energy of every sensor node as if 
the cluster is assigned to the sensor node (called expected norm-energy). We 
then assign the cluster to the sensor node that gives the minimal expected 
norm-energy. In the code, the function TraverseAssigned() is used to find 
the execution time of the application, based on the resulting assignment. 
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Begin 
1. Initialize A 
2. Set the timestamps for all task clusters and channels to zero 
3. Append all source tasks to A with ready time set to zero 
4. While A is not empty D o 
5. Remove the first activity from A 
6. If the removed activity is a computation task, denoted as d 
7. Set a(i) <— max{ready time of Cj, timestamp of CL(i)} 
8. (3{i) <- a{i) + m 
9. Set the timestamp of CL(i) to /3(i) 
10. Insert all communication tasks initiated by Ci into A with 

ready time set to /3(i), in a non-decreasing order of their 
communication loads 

11. Else 
12. Let Qi = (Ca, Cb) denote the removed communication task 
13. Find the channel with the smallest timestamp, say the j - t h 

channel 
14. Set j(i) <— max{ready time of Qi, timestamp of the j - t h 

channel} 

15. 5 ( 0 - 7 ( 0 + ^ 
16. Set the timestamp of the j - t h channel to 5(i) 
17. Set the ready time of any unscheduled communication tasks 

from Ca to S(i) 
18. Set the ready time of any unscheduled communication tasks 

to Cb to S(i) 
19. If all the communication activities to Cb have been scheduled 
20. Insert Cb into A with ready time set to 5(i) 
21. Return the largest timestamp among all clusters 
End 

Fig. 4.5 Pseudo code for function Traverse(). 

TraverseAssigned() differs from TraverseQ in tha t , in Line 7 of Figure 4.5, 

each computat ion activity is scheduled on the sensor node to which it is 

assigned. Thus, t imestamps are maintained for all sensor nodes, instead of 

clusters. 

4 .5 .3 Phase 3 

In this phase, the voltage levels of computat ion tasks and the da t a rates 

of communication tasks are adjusted to maximize the system lifetime. An 
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Begin 
1. Sort 7r in a non-increasing order of the energy dissipation of clusters 
2. While IT is not empty D o 
3. Choose the first element, 7Ti, in n 
4. Calculate the expected norm-energy for each sensor node (set to 

infinity if two source tasks are assigned to the same sensor node) 
5. Assign 7Ti to the sensor node that gives the minimal expected 

norm-energy 
6. Update the norm-energy of the sensor node 
7. Remove 7ri from IT 
8. <J? <— TraverseAssigned() 
9. If $ > T, Return failure 
End 

Fig. 4.6 Pseudo code for Phase 2. 

iterative greedy heuristic is used (shown in Figure 4.7). Let £ denote the 

maximum norm-energy among all sensor nodes. The sensor node tha t de

termines £ is called the critical node. In each iteration, we find the task 

tha t , by decrementing its current voltage level, £ can be decreased the 

most. The increased latency caused by decreasing the voltage or rate level 

is added to $ . Since the schedule of activities can be changed by the latency 

increment, <fr is re-computed by traversing the DAG every time it reaches 

T (in Line 15). 

For each VJ £ V, we create a list of computat ion and communication 

tasks tha t involve Vi, denoted as 7$. For each task in tj € Tj, we also 

associate two quantities with tj, which indicate the reduction in energy 

cost and increment in latency if the voltage or transmission rate of tj is 

decremented. Let edj denote the reduction in energy and tdi denote the 

increment in latency. Also, let EDi denote the list of edj's for all tasks in 

Ti. 

One concern is tha t to decrease the transmission energy at the sender, we 

actually increase the receiving energy at the receiver. Thus, in Lines 13 and 

14 of Figure 4.7, we ensure tha t the modulation scaling is performed only 

when the increase in the reception energy does not cause the value of £ to 

increase. By doing so, our heuristic can handle the situation in highly dense 

WSNs, where the receiving energy is comparable to the sending energy. 

T i m e C o m p l e x i t y Analys i s : In Phase 1 (Figure 4.4), the W h i l e iter-
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Begin 
1. For each Vi &V, sort EDi in a non-increasing order 
2. D o 
3. z<- 1 
4. Let Vr denote the critical sensor node 
5. While i < \EDT\ D o 
6. Select the i-th component in EDr; let a denote the 

corresponding task in Tr 

7. If $ + tda > T, i = i + 1 
8. Else 
9. $ «- $ + tda 

10. If o is a computatin task 
11. Lower the voltage level of a to the next available 

option 
12. Else 
13. If to lower the modulation level of a to the next 

available option does not increase 8 
14. Lower the modulation level of a to the next 

available option 
15. Else i*-i + l 
16. If any voltage or modulation scaling is performed 
17. Update eda and tda; resort EDr if necessary 
18. Find the new critical sensor node, Vri; update £ 
19. I f r / r ' 
20. r <- r'; i <- 1 
21. $ <— TraverseAssigned() 
22.Until £ can not be reduced any more 
End 

Fig. 4.7 Pseudo code for Phase 3. 

at ion is executed q t imes (recall t ha t q is the number of communication 

tasks). Function Traverse() in Line 6 takes 0(c + q) t ime (recall tha t c is 

the number of computat ion tasks). Thus, Phase 1 needs 0(q(c + q)) t ime. 

In Phase 2 (Figure 4.6), the ordering in Line 1 takes O ( m l o g m ) time (recall 

t ha t m is the number of clusters obtained after Phase 1). The outer iter

ation is executed m t imes. The results of v possible assignments are com

pared in Line 5 (recall t ha t v is the number of sensor nodes). The traversal 

in Line 8 takes 0(c + q) t ime. Thus, Phase 2 takes 0(m log m + vm + c + q) 

t ime. In Phase 3 (Figure 4.7), the sorting in Line 1 takes 0((c+q) log(c+q)) 

t ime. The number of voltage switches in Line 11 is bounded by dc (recall 
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that d is the number of voltage options). The number of rate switches in 
Line 14 is bounded by fq (recall that / is the number of available rate 
options). To update EDr in Line 10 requires 0(log(c + q)) time. Let <j> de
note the number of times TraverseAssignedQ is called in Line 15. The time 
complexity of Phase 3 is 0((c + q) log(c + q) + (dc+fq) log(c + q) + (p(c + q)) 
= 0(dc + fq) log(c + q) + p(c + q). Although <j) equals dc + fq in the worst 
case, it was observed in our simulations that <p is usually less than 5. 

Thus, the overall time complexity of the heuristic is O(q(o + q) + 
(TOlogm + vm + c + q) + (dc + fq) log(e + q) + p(c + q). Since m < c 
and p < dc + fq, the worst case time complexity can be simplified to 
0((dc + fq)(c + q + log(c + q)) + (q + v)c). Assuming that the number of 
voltage and rate options are fixed for given sensor node hardware, the run
ning time scales quadratically with the number of tasks and linearly with 
the number of sensor nodes. 

An Example: We illustrate the execution of the above heuristic with a 
simple example. We assume a cluster of 3 sensor nodes connected by 2 
channels. Each sensor node has two voltage levels, Dh and Di, with the 
speed for D^ equal to 1, and the speed for Di equal to 0.3. We assume that 
rate adaptation is not available, and it costs one time and energy units to 
transmit one data unit over any channel. The application graph is shown 
in Figure 4.8(a), with each circle representing a task. The number close to 
each circle is the required workload, while the number on each edge is the 
weight of the edge. The time and energy costs for executing tasks at the 
two voltage levels are given in Figure 4.8(b). We assume that F = 250 time 
units. 

In Phase 1, the voltage levels of all tasks are set to Dh- The sorted edge 
list with respect to edge weights is {(C4, C%), (Ci, C2), (C3, C&), (Ce, C7), 
(C2,Cr),(C5,Ce),(Ci,C3)}. Table 4.2 traces the execution of Phase 1, 
where $j is the execution time of the application at the completion of step 
i. The clustering steps are also illustrated in Figure 4.9. The sub-figures 
(a) through (d) correspond to the application graph at the completion of 
steps 1, 2, 3, and 5, respectively. The clusters are marked with polygons in 
dash line. Note that in steps 6 and 7, the clustering is not performed, due 
to the task placement constraint. 

During Phase 2, we first calculate the energy costs for each cluster -
190 energy units for cluster ni = {Ci,C2,C7}, 100 for the cluster -K2 = 
{63,64, Ce}, and 50 for cluster ir3 = {C5}. Since the remaining energy for 
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(a) Application graph 

Task Time cost Energy cost 

Ci 

c2 
c3 
Ci 

c5 
C6 

c7 

Dh 

10 
60 
10 
10 
20 
10 
10 

A 
33 
199 
33 
33 
66 
33 
33 

Dh 

20 
120 
20 
20 
40 
20 
20 

D, 
6 
36 
6 
6 
12 
6 
6 

(b) Time and energy costs for ex
ecuting tasks at voltage levels D/, 
and Di 

Fig. 4.8 An application example. 

each of the three sensor nodes is the same, we simply assign it\ to V\, 7T2 
to Vz, and nz to V3. 

Finally, we adjust the voltage levels of the tasks. Since Vi is the critical 
node, we first set the voltage level of Ci to VJ, which reduces E\ to 106, 
and increases $ from 80 to 219. Next, we set the voltage level of C\ to Vi, 
which further decreases £\ to 92, and increases i> to 242. After this step, 
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Fig. 4.9 Clustering steps for the application in Figure 4.8. 

the critical node becomes V2 with £2 = 0.1. Since the latency constraint is 
250, our heuristic terminates. 

In the above example, we decrease the norm-energy of the critical sensor 
node from 0.19 to 0.1, implying a system lifetime improvement by approx
imately a factor of 2. 



Information Processing within a Collocated Cluster 73 

Table 4.2 Trace of clustering steps in Figure 4.9. 

Step i 
0 
1 
2 
3 
4 
5 
6 
7 

Edge examined 

(.Ci,C6) 
(Ci.'Ca) 
{C3,C6) 
(C6,C7) 
(C2,C7) 
(C 5 ,C 6 ) 

(C i .Cs ) 

<& if clustering 

135 
120 
100 
100 
80 

Clustering? 

Yes 
Yes 
Yes 
No 
Yes 
No 
No 

* i 

145 
135 
120 
100 
100 
80 
80 
80 

4.6 Simulation Results 

A simulator, based on the system and application models presented in Sec
tion 4.3, was developed to evaluate the performance of our approach, using 
application graphs from a synthetic approach, as well as real world prob
lems. The goals of our simulations are (1) to measure and compare the 
performance of the 3-phase heuristic against the ILP-based approach, and 
(2) to evaluate the impact of the variations in several key system parameters 
on the performance of the heuristic, including the tightness of the latency 
constraint, the relative time and energy costs of communication activities 
compared to computation activities, and the number of voltage levels. 

The evaluation metrics are based on the system lifetime obtained by 
different approaches. Let LTILP and LTheu denote the system lifetime 
obtained by the ILP-based approach and the 3-phase heuristic, respectively. 
In addition, let LTraw denote the system lifetime obtained by assuming that 
no voltage or modulation scaling is available (i.e., every sensor node runs 
and transmits data at the highest speed). Since we do not have a stand
alone approach to obtain LTraw, LTraw was calculated based on the value 
of £ obtained after phase 2 of the 3-phase heuristic. 

Unless otherwise stated, all the data presented in this section is averaged 
over more than 100 instances, so that a 95% confidence interval with 10% 
(or better) precision is achieved. 

4.6.1 Synthetic Application Graphs 

We first show a set of results where only voltage scaling is considered. This 
is followed by results that incorporate rate adaptation. 
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4.6.1.1 Simulation Setup 

The structure of the application graph was generated using a method similar 
to the one described in [53]. The only difference was that we enforced 
multiple source tasks in the generation of the DAG. 

Since we were concerned with computation-intensive applications, we 
extracted parameters about the energy cost of computation and commu
nication from the Rockwell Science Center (RSC) WINS node [197]. The 
power consumption of an Intel StrongARM 1100 processor with 150 MIPS 
was approximately 200 mW. This implied that the time and energy costs 
per instruction were about 5 nSec and 1 nJ, respectively. Also, the power 
of the radio module used in WINS was 100 mW at 100 Kbps, implying 
that the time and energy costs for transmitting a bit were approximately 
10 //Sec and 1 /zJ, respectively. We set the parameters for our simula
tor so that the time and energy costs for computation and communication 
activities roughly followed the above data. 

We set the maximum computation speed of each sensor node to 102 

Mcps (million cycles per second) and the minimum speed to 0.3 x 102 

Mcps. It was assumed that other levels of computation speed were uni
formly distributed between the maximum and minimum speeds. The com
putation requirements of the tasks followed a gamma distribution with 
a mean value of 2 x 105 and a standard deviation of 105. Prom [30; 
121], the power consumption of the processor was modeled as a polyno
mial function of processing speed, g(SP) of at least degree 2. Thus, we 
set the power function of task Ci to be aj • (fj|r)6i, where at and hi were 
random variables with uniform distribution between 2 and 10, and 2 and 
3 [121], respectively. For example, suppose di = bi = 2. Then, to execute 
a task of 2 x 105 instructions costs 2 mSec and 4 mJ at the highest speed, 
and 6.7 mSec and 1 mJ at the lowest speed. 

The time and energy costs of communication activities were determined 
by the number of data units to transmit and the values of r and e. Based 
on the data for WINS, we assumed that the time for transmitting one bit 
was 10 /xSec, and the corresponding energy cost was 1 //J. To focus on 
the main issues, we set the startup energy dissipation of the radio to be 
zero. To study the effect of different communication loads with respect 
to the computation load, the number of bits per communication activity 
followed a uniform distribution between 200CCR(1 ± 0.2), where CCR 
(communication to computation ratio) was a parameter indicating the ratio 
of the average execution time of the communication activities to that of 
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the computation activities. Intuitively, a larger value of CCR implied a 
relatively heavier communication load compared to the computation loads. 
Note that by varying CCR, we abstracted not only the variations in the 
amount of transmitted data, but also the variations in the relative speed 
of computation and communication devices. In our simulations, CCR was 
varied within [0,20]. 

The period of the application, T, was generated in the following way. 
We first defined the distance of a node in the application DAG as the 
number of edges in the longest path from the source to the node. Nodes 
were then divided into layers, with nodes in each layer having the same 
distance. Since the average time to execute a task at the highest speed 
was 2 mSec, the computation time required for a layer was estimated to 
be 2 [ - ] mSec, where K was the number of tasks in the layer. By doing so, 
we implicitly assumed full parallelism in executing the tasks at each layer. 
In addition, the expected number of communication activities initiated by 
a task was estimated as its out-degree minus 1. Assuming there were in 
total rj communication activities requested by all the tasks in a specific 
layer, the corresponding time cost was estimated to be 2CCR\j^~\ mSec. T 
was then set to the sum of the computation and communication time cost 
of all layers over u, where u e [0,1] was a parameter that approximates 
the overall utilization of the system. The setting of u was important, as 
it determined the latency laxity for trading against energy. Intuitively, a 
larger value of u implied a tighter latency constraint, and thus less latency 
laxity. 

The remaining energy of the sensor nodes followed a uniform distribu
tion between Emean(l ± 0.3), where Emean was a fairly large number. 

4.6.1.2 Small Scale Problems 

We first conducted simulations for small scale problems, with 3 sensor 
nodes, 3 voltage levels, 2 channel, and 7 - 1 0 computation tasks. The 
number of source tasks in the application graph was set to 2, while the 
maximal in-degree and out-degree for each node were set to 3. A commer
cial software package, LINDO [106], was used to solve the ILP problems. 
Due to the large running time for solving some problem instances, LINDO 
was interrupted after two hours of execution if the optimal solution had 
not yet been found. Then, the best solution obtained in that time was 
returned. We observed that in most cases, LINDO was able to find the 
optimal solution within two hours. 
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Fig. 4.10 Lifetime improvement of our approaches for small scale problems (3 sensor 
nodes, 3 voltage levels, 2 channels, CCR = 1). 

The data shown in Figure 4.10 is averaged over more than 70 instances. 
In Figure 4.10(a), we illustrate the lifetime improvement achieved by the 
ILP-based approach, which was calculated as L^UF — 1- We can observe an 
improvement around 3x - 5x. Figure 4.10(b) shows the performance ratio 
of the 3-phase heuristic over the ILP-based approach, i.e., jffi1"' . We see 
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that the 3-phase heuristic achieved up to 63% of the solution obtained by 
the ILP-based approach for the conducted simulations. 

While the running time of the heuristic was approximately zero, the 
average running time of the ILP-based approach ranged from 550 Sec (c = 7, 
u = 0.5) to 5900 Sec (c = 10, u = 0.8) on a Sun BladelOOO machine with 
an UltraSparc III 750 Mhz CPU. 

4.6.1.3 Large Scale Problems 

A set of simulations was conducted to evaluate the performance of the 
3-phase heuristic for problems with 10 sensor nodes, 8 voltage levels, 4 
channels, 60 - 100 computation tasks, CCR G [0,20], and u G [0,1]. The 
number of source tasks in the application graph was set to 6. The maximal 
in-degree and out-degree for each node were set to 5. Due to the large size 
of the problems, it was impractical to obtain the optimal solutions by using 
the ILP-based approach. Thus, we used the lifetime improvement achieved 
by the 3-phase heuristic as the evaluation metric, which was calculated as 
fffi6U — 1. The simulation results are shown in Figure 4.11. 

An improvement of up to 3.5x in the system lifetime is observed in Fig
ure 4.11(a). We can see that the improvement increased when u decreased, 
as the latency laxity increased accordingly. The lifetime improvement satu
rated when u approached 0, i.e., the latency constraint approached oo. The 
curve with u = 0.0 gives the upper bound of the improvement that could 
be achieved by our heuristic with respect to variations in CCR. 

The effect of CCR was more complicated. For example, when u = 0.5, 
the lifetime improvement increased when CCR < 6 and decreased when 
CCR went beyond 6. This was because, when CCR was small, the com
putation activities dominated the overall energy costs of the application. 
By increasing CCR, we actually increased the latency constraint without 
increasing the computation load, which in turn could be traded for life
time improvement. However, when CCR reached some threshold value, 
the communication energy cost became more significant than that of the 
computation activities. Thus, the lifetime improvement achieved by re
ducing computation energy became limited. We shall see later that this 
shortcoming can be overcome by incorporating modulation scaling into our 
heuristic. 

Figure 4.11(b) shows the lifetime improvement with the number of com
putation tasks, c, varying from 60 to 100. We see that the performance of 
our approach was quite stable with respect to variations in c. 
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Fig. 4.11 Lifetime improvement of the 3-phase heuristic for large scale problems (10 
sensor nodes, 8 voltage levels, 4 channels, 60-100 tasks). 

The miss rate (defined as the ratio of the number of instances that an 
approach fails to find a feasible solution to the total number of instances), 
of a heuristic is another key issue. Note that in our simulations, not all 
instances were guaranteed to have feasible solutions. We observed that the 
miss rate of the 3-phase heuristic was significant only when CCR was close 
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to zero. Thus, we show the miss rate with CCR = 0 in Figure 4.12. Also, 
the running time of the heuristic was approximately 0.5 mSec on a Sun 
BladelOOO machine with an UltraSparc III 750 Mhz CPU. 
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Fig. 4.12 Miss rate of the 3-phase heuristic (10 sensor nodes, 8 voltage levels, 4 channels, 
60 computation tasks, CCR = 0). 

4.6.1.4 Impact of the Number of Voltage Levels 

We also studied the impact of the variations in the number of voltage levels. 
Simulations were conducted with 10 sensor nodes, 60 computation tasks, 4 
channels, CCR = 2,uG {0.2,0.5,0.8,1.0}, and 1 to 10 voltage levels. The 
results are presented in Figure 4.13. 

The plots show that when u > 0.2, the performance of the heuristic 
could be significantly improved by increasing the number of voltage levels 
from 1 to 4. Further increase in the number of voltage levels did not improve 
the performance much. This is understandable, since the energy behaves as 
a monotonically increasing and strictly convex function of the computation 
speed. The first derivative of the energy function tends to oo when the 
speed tends to oo. Thus, the largest portion of energy saving is obtained 
by changing the speed from the highest option to some lower options, which 
can be efficiently achieved with 4 voltage levels per sensor node. 

When u = 0.2, the latency laxity was so large that the voltage level of 
most computation tasks could be set to the lowest option. Thus, there was 
almost no improvement by increasing the number of voltage levels beyond 
2. 
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Fig. 4.13 Impact of variation in number of voltage levels (10 sensor nodes, 4 channels, 
60 computation tasks, CCR = 2). 

4.6.1.5 Incorporating Rate Adaptation 

We used modulation scaling in Section 3.2.2 to illustrate the incorporation 
of rate adaptation. Due to the underlying single-hop connection, we as
sumed that all sensor nodes had the identical settings for parameters Ctr, 
Ceie, and Rs- From [157], we set Cete = 10 - 7 . To investigate the impact 
of different energy/time ratios for data transmission, we set Ctr = 10 
and 10~6 as two different simulation scenarios. The modulation level, b, 
was set to even numbers between 2 and 6. For a fair comparison with the 
results in Section 4.6.1.3, we set R„ = 1.7 x 104, so that when b = 6, it took 
roughly 10 /^Sec and 1 fii to transmit a bit when Ctr = 10 - 7 (as shown in 
Figure 4.14). 

The simulations were conducted with 10 sensor nodes, 8 voltage 
levels, 3 modulation levels ({2,4,6}), 60 computation tasks, u € 
{0.0,0.2,0.5,0.8,1.0}, and CCR € [0,20]. Compared with Figure 4.11, we 
observe a significant amount of performance improvement in Figure 4.15. 
For example, when u = 0.5, the highest lifetime improvement increased 
from 3x in Figure 4.11(a) to 6x in Figure 4.15(a), and even lOx in Fig
ure 4.15(b). The difference in performance improvement between Fig
ures 4.15(a) and 4.15(b) is because a larger Ctr led to a larger energy/time 
ratio of communication activities. This, in turn, gave more advantage in 
reducing the communication energy by utilizing modulation scaling. 

Similar to Figure 4.11, larger improvements were observed when u be-
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Fig. 4.14 Energy vs latency tradeoffs for transmitting one bit of data. 

came smaller. In addition, the miss rate of the heuristic exhibited a similar 
trend as in the cases with only voltage scaling. 

4.6.2 Application Graphs from Real World Problems 

In addition to synthetic application graphs, we also considered application 
graphs of two real world problems: the LU factorization algorithm [42] 
and the Fast Fourier Transformation [44]. These two algorithms are widely 
used as kernel operations for various signal processing applications, such as 
beamforming [127]. 

4.6.2.1 LU Factorization 

Figure 4.16(a) gives the sequential program for the LU factorization without 
pivoting, where s denotes the dimension of the matrix. The application 
graph of the algorithm for the special case of s = 5 is given in Figure 4.16(b). 
Each Ck,k represents a pivot column operation and each Ckj represents an 
update operation. The total number of computation tasks in the application 
graph equals -+

2
S~2 . Also, we assume the input matrix is available at the 

sensor node where task Ci,i is assigned. 

We performed simulations with 10 sensor nodes, 8 voltage levels, 4 chan
nels, 3 modulation levels, Ctr = 10 - 6 , and the matrix dimension, s, varying 
from 5 to 20. It is easy to verify that the computation requirement of any 
task, Ck,j, was s — k ALU operations. Further, for any task, Ck,j, the size 
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Fig. 4.15 Lifetime improvement of the 3-phase heuristic, with modulation scaling (10 
sensor nodes, 8 voltage levels, 4 channels, 3 modulation levels, 60 computation tasks). 

of data transmitted by any communication activity to the task was s - k 
units in the matrix. We examined two cases with u set to 0.5 and 0.8. In 
both cases, CCR was selected from {1.0,3.0,5.0,8.0,10.0}. 

The lifetime improvement achieved by our 3-phase heuristic for the LU 
factorization algorithm is shown in Figure 4.17. The performance of the 
heuristic improved when CCR increased or u decreased. The lifetime im-



Information Processing within a Collocated Cluster 

LU-Factorization(a) 

1. For k = 1 to s - 1 Do 

2. For t = Hl tosDo / / Tktk 

3. ctik = cbik/akk 

4. For j = k + 1 to s Do 

5. For i = fc + 1 to s Do / / Tftjj 

6. ay = ay — dik/dkj 

(a) Sequential algorithm 

(b) Example application graph with a 4 X 4 ma
trix 

Fig. 4.16 Matrix factorization algorithm. 

provement approached 8x when CCR = 10.0. Also, very little improve
ment was observed during our simulations when setting CCR beyond 10.0. 
The least amount of lifetime improvement was about 15%, when u = 0.8, 
CCR = 1.0, and s = 20. 

4.6.2.2 Fast Fourier Transformation (FFT) 

The recursive, one-dimensional FFT Algorithm is given in Figure 4.18(a). 
In the figure, A is an array of length I, which holds the coefficients of 
the polynomial, and array Y is the output of the algorithm. The algorithm 
consists of two parts: recursive calls (Lines 3-4), and the butterfly operation 
(Lines 6-7). For an input vector of size I, there are 2x1 — 1 recursive call 
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Pig. 4.17 Lifetime improvement for the matrix factorization algorithm (10 sensor nodes, 
8 voltage levels, 4 channels, 3 modulation levels). 

tasks and I x \ogl butterfly operation tasks (we shall assume I = 2k for 
some integer k). For example, the application graph with four data points 
is given in Figure 4.18(b) . The seven tasks above the dashed line are 
the recursive call tasks, while the eight tasks below the line are butterfly 
operation tasks. 

We performed simulations using 10 sensor nodes, 8 voltage levels, 4 
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FFT(A, u) 
1. Set / = length(A) 
2. If Z = 1, return A 
3. y(°) = FFT((A[0], A[2],.. . ,A[l - 2]),ui2) 
4. y W =FFT((A[l],A[3],...,A[l-l]),u2) 
5. For i = 0 to 1/2 - 1 Do 
6. Y[i] = YW\i]+ujixYW[i] 
7. Y[i + 1/2] = Y(°) [t] - wi x y C1) [i] 
8. Return Y 

(a) Sequential algorithm 

(b) Example application graph with 4 points 

Fig. 4.18 Fast Fourier Transformation (FFT) algorithm. 

channels, 3 modulation levels, and Ctr = 10 - 6 . The vector size was var
ied from 4 to 64 incrementing by powers of 2. We also examined two 
cases with u set to 0.5 and 0.8. In both cases, CCR was selected from 
{1.0,3.0,5.0,8.0}. 

The lifetime improvement achieved by our 3-phase heuristic for the FFT 
algorithm is shown in Figure 4.19. Again, the performance of the heuristic 
improved when CCR increased or u decreased. The lifetime improvement 
was close to lOx when CCR = 8.0 and Z = 64. The least amount of lifetime 
improvement was around 75%, when u = 0.8, CCR = 1.0, and I = 4. 
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Fig. 4.19 Lifetime improvement for the F F T algorithm (10 sensor nodes, 8 voltage 
levels, 4 channels, 3 modulation levels). 

N o t e t h a t t h e a b o v e t w o e x a m p l e a p p l i c a t i o n s h a v e e x a c t l y o n e s o u r c e 

task that initially holds the entire data set, implying that data dissemina
tion within the cluster is required. However, our technique is also applicable 
to cases where data are locally sensed or gathered at each individual sensor 
node. For example, in Figure 4.18(b), input data can be generated by tasks 
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CA to Cj through local sensing. Thus, the recursive calls above the dashed 
line to disseminate the data become unnecessary. 

4.7 Summary 

In this chapter, we have investigated the problem of allocating a periodic 
real-time application to a single-hop cluster of homogeneous sensor nodes 
with multiple wireless channels. The key technique was to explore the 
tradeoffs between energy vs latency for both computation and communica
tion tasks, via voltage and modulation scaling. A new performance metric 
has been proposed to balance the energy dissipation among all the sensor 
nodes. We have presented both an ILP formulation and a polynomial time 
heuristic. 

We have demonstrated, using simulations, that for small scale prob
lems, a lifetime improvement of up to 5x was achieved by the ILP-based 
approach, compared to the case where no voltage scaling is used. Also, 
the performance of the 3-phase heuristic achieved up to 63% of the system 
lifetime obtained by the ILP-based approach. For large scale problems, a 
lifetime improvements of up to lOx was observed when both voltage and 
modulation scaling were used. Simulations were also conducted for applica
tion graphs from LU factorization and FFT. The 3-phase heuristic achieved 
a lifetime improvement of up to 8x for the LU factorization algorithm, and 
an improvement of up to 9x for the FFT algorithm. 





Chapter 5 

Information Transportation over a 
Tree Substrate 

5.1 Overview 

5.1.1 Motivation 

In the last chapter, we showed the application of voltage scaling and rate 
adaptation for information processing within a cluster of collocated sen
sor nodes. In many scenarios, users can access the results of information 
processing (in general, not necessarily from cluster-based processing) only 
after they are routed to the base station. As stated in Chapter 2, typi
cal communication patterns for such information routing involve multiple 
source nodes and one sink node. Thus, the corresponding packet flow re
sembles a reverse-multicast structure — the data gathering tree. It is also 
well-known that data aggregation by each internal node over the tree is 
crucial for eliminating redundancy among source data, thus reducing the 
communication load. 

For applications with small volumes of data and simple aggregation 
operations, communication is a significant source of energy dissipation in 
the process of information routing. It is therefore important to design 
energy-efficient communication strategies. As we pointed out in Chapter 
2, rate adaptation is an important technique for improving the energy effi
ciency of communication. Therefore, in this chapter, we study the problem 
of scheduling packet transmissions over a data gathering tree, using rate 
adaptation. 

We consider a real-time mission-critical scenario, where the raw data 
gathered from the source nodes must be aggregated and transmitted to the 
sink within a specified latency constraint. Our objective is to minimize the 
overall energy cost of the sensor nodes in the data gathering tree, subject 
to the latency constraint. Although our problem is formulated as a convex 

89 
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programming problem, which is solvable in polynomial time by using gen
eral optimization tools, we propose a more time-efficient algorithm in this 
chapter, which exploits special properties of the problem. Such properties 
include the convexity of the energy function of wireless communication and 
the tree structure of the underlying communication substrate. 

It is important to evaluate the usefulness of the latency-energy tradeoffs 
by examining the sources of latency and energy costs for data gathering 
in WSNs. We assume a low-duty cycle WSN with sleep scheduling, so 
that nodes are completely shut down in their idle state. In such a system, 
besides the time cost for packet transmission, the latency for data gathering 
can be further decomposed into queuing delay, channel access delay, re
transmission delay, and the delay for waking up sleeping nodes. We believe 
that under several reasonable assumptions, the packet transmission delay 
is significant and should be traded for energy efficiency. 

First, due to the application-specific design of WSNs, most traffic 
throughout the network is to transport the gathered data to the base 
station. It is also anticipated that many applications for WSNs require 
the transmission of tens to hundreds of bytes per second [191]. In such 
a light-traffic scenario, queuing delay is not such a major concern as it 
is in traditional wireless ad hoc networks. Second, we assume the avail
ability of multi-packet reception (MPR) techniques [176; 186], so that 
channel access delay due to collision detection and avoidance is negligi
ble. Third, the number of expected re-transmissions is actually a function 
of the Bit Error Rate at the receiving node, which in turn determines the 
tradeoffs of energy vs latency for packet transmission (see Section 3.2.2 for 
details). Thus, it is convenient to incorporate explicitly the tradeoffs be
tween the expected number of re-transmissions and energy into our work. 
Fourth, we assume the availability of an ultra-low power wakeup radio [215; 
16l], which has been discussed in Chapter 4. This wakeup radio can be used 
to synchronize packet transmission between sensor nodes with almost no 
delay or energy penalties. Also, the typical startup time for sensor nodes 
is around 100 /xSec [191], while the time for transmitting a packet of 200 
bytes using 1 Mbps is 200 fiSec. Based on the above observations, the 
time for packet transmission in light-traffic WSN applications constitutes 
a significant portion of the overall delay. 

Since we assume that sensor nodes are completely shut down in idle 
state, the main source of energy cost is due to packet transmission for data 
gathering. It is therefore crucial to explore the tradeoffs between the energy 
and latency of packet transmission in such a context. 
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5.1.2 Technical Overview 

We solve the considered problem using two different but related approaches. 
In the first approach, we assume a continuously tunable transmission time. 
A numerical optimization algorithm is developed for solving the off-line ver
sion of our problem, where the structure of the data gathering tree and the 
energy characteristics of all sensor nodes are known a priori. Based on this 
numerical optimization technique, we are able to analyze the energy gain 
of our approach for a special case with a complete binary data gathering 
tree. 

In the second approach, we approximate the continuous transmission 
time using a set of discrete values. We then derive a recursive presentation 
of the considered problem, which naturally leads to a dynamic programming 
based algorithm (DP-Algo) for solving the off-line problem. For a given 
number of discrete values for the transmission time, DP-Algo solves the 
off-line problem in polynomial time. 

Furthermore, a simple, localized, on-line protocol is developed based on 
discretized transmission time. The key idea is to identify iteratively the 
sensor node with the highest potential energy reduction in the gathering 
tree (to be explained later), and reduce its energy cost when allowed by the 
latency constraint. In this protocol, each sensor node only needs to per
form simple operations based on its local information and the piggybacked 
information from data messages. The protocol is designed with the aim 
of self-adaptation to various dynamics in the system, including changes of 
packet size and latency constraint. 

Finally, we evaluate the performance of our algorithms and protocol 
extensively with simulations, for both long and short-range communica
tions described in Chapter 3. We consider two models of source placement, 
namely the random source and the event radius source placements [100]. 
We use the baseline where all sensor nodes transmit the packets at the 
highest speed (8 bits/symbol), and shut down their radios afterward. Our 
simulation results from the studied scenarios show that, compared to this 
baseline, up to 90% energy savings can be achieved by our off-line algo
rithms and the on-line protocol. We also investigate the impact of several 
key network and radio parameters. Furthermore, the adaptability of the 
protocol is demonstrated with two run-time scenarios. 
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5.1.3 Chapter Organization 

We briefly discuss the related work in Section 5.2. We describe our underly
ing network model in Section 5.3. The packet transmission problem is then 
denned in Section 5.4. Off-line algorithms for the problem are presented 
in Section 5.5. In Section 5.6, a distributed on-line protocol is described. 
Simulation results are shown in Section 5.7. The chapter is summarized in 
Section 5.8. 

5.2 Related work 

The data gathering tree is common to data-centric information routing in 
WSNs [85; 100]. The construction of the data gathering tree has been stud
ied under various circumstances, as previously summarized in Section 2.4.4. 
For example, several localized tree topology generation mechanisms are 
compared by Zhou et. al. using metrics including node degree, robustness, 
and latency [216]. A randomized logarithmic approximation algorithm is 
developed by Goel et. al., for the case when the joint entropy of multi
ple information sources is modeled as a concave function of the number 
of sources [67]. By considering a simplified compression model, where the 
entropy conditioning at nodes depends only on the availability of side in
formation, a hybrid scheme of Shortest Path Tree and Traveling Salesman 
Path is proved to provide 2-approximation performance for minimizing the 
overall cost of the data gathering tree [47]. An analysis of the impact of 
spatial correlation on several practical schemes for tree construction [135] 
indicates that a simple cluster-based routing scheme performs well, regard
less of the correlation among sources. All these works provide the under
lying communication substrate, above which our algorithms and protocols 
can be applied for energy minimization. 

From a wireless communication perspective, rate adaptation has been 
widely studied to optimize spectral efficiency (e.g., network throughput), 
subject to the channel conditions in cellular networks [5; 15; 188], or local-
area wireless networks [6; 77; 211]. Several recent works [64; 143; 146; 
157; 158; 209] have studied the application of rate adaptation to energy 
conservation, which is closely related to our work. 

For a single-hop link, the problem of minimizing the energy cost of trans
mitting a set of packets subject to a specified latency constraint is studied 
by Prabhakar et. al. [143]. An extension of the problem [64] investigates 
the packet transmission from a single transmitter to multiple receivers. In 
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both [143] and [64], optimal off-line algorithms and near-optimal on-line so
lutions are provided. The concept of modulation scaling was first proposed 
by Schurgers et. al. [157]. For a single-hop link, policies for adjusting the 
modulation level are developed for cases where no real-time requirements 
are imposed [157], or each packet delivery has a deadline to meet [158]. 
Moreover, modulation adaptation is integrated into multi-packet schedul
ing with deadlines for each packet [158], and also the Weighted Fair Queu
ing (WFQ) scheduling policy [146]. For a multi-hop communication path, 
modulation scaling is used to balance the energy cost of all nodes along the 
path [209]. 

Similar to the work presented in Chapter 4, the real-time latency 
constraint considered in this chapter requires the use of global time-
synchronization schemes [57]. Our scenario is similar to the epoch-based 
data gathering scheme [115], where the length of each epoch actually plays 
the role of latency constraint. However, prior work has not considered 
the possibility of using packet-scheduling techniques that trade latency for 
energy in such a scenario. 

The challenges of our problem are multi-fold. Firstly, the energy func
tions can vary for different links. It is therefore necessary to develop gen
eral optimization techniques instead of explicit solutions. Secondly, the 
latency constraint for data gathering in real applications is typically given 
by considering the aggregation tree as a whole. It is difficult to apply the 
techniques in [64] and [143] directly, as they require explicit latency con
straints over each link. Lastly, as described in Section 3.2.2, we consider 
the non-monotonic energy function of rate adaptation, which is unique to 
short distance communications in WSNs. This point has not been ad
dressed in previous works. Albeit the above challenges, the tree structure 
leads us to an extension of the numerical optimization algorithm proposed 
in [64] as well as a recursive representation of the problem to apply dynamic 
programming. 

5.3 Models and Assumptions 

In this section, we first describe the underlying network model, the data 
gathering tree. We then explain our scheme of computing data aggregation 
along the tree. For the sake of clarity, we list in Table 5.1 a summary of 
notations used in this chapter. 
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Table 5.1 List of notations. 

T = < V, L > The data gathering tree composed by the set of v sensor nodes V and 
the set of communication links L 

{Vi,...,VM} The set of the M leaf nodes in T 
Vn The sink node of T 
Ti The subtree rooted at Vj 
r The latency constraint for data gathering over T 
Si The size of packet transmitted by Vi to its parent 
Ti The transmission time of s, 
Pi The path from a leaf node Vj to the sink 
$ j The length of pi, in the metric of transmission time 
Wi(ri) The energy function for packet transmission by Vi 
mi The value of TJ over (0, T] that minimizes Wi{ri) 
f A schedule of packet transmission, f = {r i , T2 , . . . , rn—i} 
D The approximation accuracy of DP-Algo 
Xi The latency laxity of V, 
p, c The connectivity and correlation parameters used by our simulation 
N The number of source nodes used by the random source model 
5 The sensing range used by the event radius model 

5.3.1 Data Gathering Tree 

We abstract the underlying structure of the network as a data gathering 
tree. This is essentially a tree that gathers and aggregates information from 
multiple sources en route to a single sink. While there may be transients 
during the route creation phase, we assume that this tree, once formed, 
lasts for a reasonable period of time and provides the routing substrate, 
over which aggregation can take place during data gathering. 

Since the information flow over the tree is from leaves to sink, we use a 
directed graph representation. Let T =< V, L > denote the data gathering 
tree, where Y — {Vi : i € [v]} denotes the set of v sensor nodes and 
L = {Li : i £ [ti - 1]} denotes the set of directed communication links 
between the sensor nodes. Let M denote the number of leaf nodes in 
the tree. Without loss of generality, we assume that the sensor nodes are 
indexed in the topological order with V\,..., VM denoting the M leaf nodes 
and Vv denoting the sink node. For each directed link (i,j), we refer to i 
as a child of j , and j as the parent of i. 

Let Tj denote the subtree rooted at any node, Vi, with Tv =T. A path 
in T is defined as a series of alternate nodes and edges from any leaf node, 
Vi,i £ { 1 , . . . , M}, to Vn, denoted as pi. We use the notation Vj £ Pi to 
signify that node Vj is an intermediate node of path pi. 

Raw data is generated by a set of source nodes from V (not necessarily 
leaf nodes). Data aggregation is performed by all non-sink and non-leaf 
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nodes (referred to as internal nodes hereafter). We assume tha t aggregation 

at an internal node is performed only after all input information is available 

at the node - either received from its children, or generated by local sensing 

if the node is a source node. The aggregated da ta is then t ransmit ted to 

the parent node. Let Sj denote the size of the packet t ransmit ted by Vi to 

its parent. We discuss the computat ion of da ta aggregation to determine 

Si in the next section. 

For ease of analysis, it is assumed tha t raw da ta is available at all source 

nodes at time 0. Let T denote the latency constraint, within which da ta 

from all source nodes needs to be aggregated and t ransmit ted to the sink 

node. 

We assume a simplified communication model with a medium access 

control (MAC) layer tha t ensures no collision or interference at a node, 

which can be realized by multi-packet reception (MPR) techniques through 

frequency, code, or spatial diversity [176; 186]. We also assume tha t sensor 

nodes are completely shut down in the idle state, and can be awakened for 

packet transmission using an ultra-low power wakeup radio [215; 161], with 

almost no delay or energy penalties. The sensing and computat ion cost for 

da ta aggregation are considered to be negligible. 

5.3.2 Data Aggregation Paradigm 

Various techniques have previously been proposed for computing aggre

gates, or joint information entropy, from multiple source nodes. In our 

study, we adopt the model proposed by Pa t t e rn et. al. [135], where the 

joint entropy (or to ta l compressed information) from multiple information 

sources is modeled as a function of the inter-source distance d, and a pre-

specified correlation factor c, t ha t characterizes the extent of spatial correla

tion between data. Specifically, let H\ denote the da ta size generated from 

any single source. The compressed information of two sources is calculated 

as [135]: 

H2 = H1 + - ^ - t f i (5.1) 
a + c 

We assume tha t the correlation parameter c is the same for any set 

of sources. Based on (5.1), a recursive calculation of the total compressed 

information of multiple sources can be developed [135]. We omit the details 

here. (Interested readers may refer to [135].) 

Although we use (5.1) as a typical aggregation function, our technique 
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is not limited to this function alone. The only requirement is that we can 
derive the values of Si, for all i, based on the functions. Thus, even different 
functions can be used to specify the aggregation at different sensor nodes. 

5.4 Problem Definition 

A schedule of packet transmission is defined as a vector f = {TJ : i 6 [v — 1]}, 
where Tj is the time duration of packet transmission from sensor node i to 
its parent. Since a sensor node can transmit its packet only after receiving 
all input packets from its children, the start time of each transmission is 
implicitly determined by f. The transmission latency of a path, pi, is 
denoted as 3>, and calculated as $ , = Ylj-v £Pi

 Tr ^ schedule is feasible if, 
for any pt £ T, we have 3>j < F. 

While our goal is to improve the energy-efficiency of the system, various 
objective functions can be developed for interpreting energy-efficiency. For 
ease of analysis, our objective function is to minimize the overall energy 
cost of packet transmission of all the sensor nodes in the data gathering 
tree. 

We use the energy model described in Section 3.2.2. We re-write the 
equations for determining the time and energy costs of transmitting a packet 
of size s: 

' = nt- (5-2) 

W(r) = [Ctr • ( 2 ^ - 1) + Cele] • T • Rs , (5.3) 

where b is the modulation level, Rs is the symbol rate, Ctr is determined 
by the quality of transmission (in terms of Bit Error Rate) and the noise 
power, and Ceie is a device-dependent parameter that determines the power 
consumption of the electronic circuitry of the sender. 

Let Wi{ri) denote the energy function of Vi with potentially variable 
values of parameters Ctr, Ceie, and Rs for different links. Let mi denote 
the value of n € (0,r] when «;»(•) is minimized. Note that IUJ(-) may vary 
for different nodes due to variations in packet size and transmission radius 
(in other words, such information is implicitly embedded into Wi(-)). 
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We now formally state the packet transmission problem (PTP): 
Given: 
a. a data gathering tree T consisting of n sensor nodes, 
b. energy functions for each link (i,j) 6 L, tUt(rj), 
c. the latency constraint, T; 
find a schedule of packet transmission, r = {r^ : i € [v — 1]}, that minimizes 

n-l 

f(r) = J 2 w ^ (5-4) 
»=i 

subject to 

VPimT,$i= J2 Ti^T- (5-5) 

We consider both an off-line version and an on-line version of PTP. In 
the off-line version, the structure of the data gathering tree and the energy 
functions for all sensor nodes are known a priori. Centralized algorithms 
can be developed for solving the off-line version. In the on-line version, 
each sensor node has only local knowledge of its own radio status, and 
can communicate with its parent and children. Thus, distributed on-line 
protocols are needed to adapt the transmission time of each sensor node 
locally, to achieve global energy minimization. 

5.5 Off-Line Algorithms for P T P 

In this section, we consider an off-line version of PTP (called OPTP) by 
assuming that the structure of the aggregation tree and the energy functions 
for all sensor nodes are known a priori. We first describe an extension of 
the MoveRight algorithm [64] to get optimal solutions for OPTP. A faster 
dynamic programming based approximation algorithm is then presented. 
Techniques for handling interference are also discussed. 

5.5.1 A Numerical Optimization Algorithm 

Since we must have T» < m* in an optimal solution to OPTP, the latency 
of a path does not necessarily equal I\ Moreover, let Vj denote an internal 
node. For any optimal solution to OPTP, we show that the first derivative 
of the energy function of V* equals the sum of the first derivatives of the 
energy functions of all children of V*. 
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Lemma 5.1 A schedule, T* , is optimal for OPTP if and only if 

(1) for any node Vi with T* < rrii, the length of at least one path that 
contains Vi is equal to V; and 

(2) for any internal node, Vi, we have 

MO = £ WJ(T;) . (5.6) 

The proof of the lemma is presented in Appendix A. 
The problem proposed in [64] is to schedule multiple packet transmis

sion over a single transmitter/multiple receiver connection, where the ready 
time of packets can differ from each other. A special case of the problem 
is to assume all packets are of equal size and ready at time 0. This special 
case can also be regarded as a special case of the proposed OPTP prob
lem where (1) the aggregation tree degenerates into a pipeline of sensor 
nodes - the latency constraint is imposed over exactly one path; and (2) all 
energy functions are monotonically decreasing. The MoveRight algorithm 
proposed in [64] can be directly applied to solve such a special case. 

We now extend the MoveRight algorithm to solve OPTP in a general-
structured aggregation tree with non-monotonic energy functions. The 
pseudo code for the extended MoveRight algorithm (EMR-Algo) is shown 
in Figure 5.1. In the figure, rf denotes the value of r% in the fc-th iteration. 
Initially, we set the starting time for all packet transmission to zero - the 
transmission time for all the links to the sink is set to min{r, rrii}, while the 
transmission time for the rest of the links is set to 0 (Steps 2 and 3). The 
main idea is to increase (move right) iteratively the starting times of packet 
transmissions, so that each move locally optimizes our objective function. 
This iterative local optimization leads to a globally optimal solution. 

The best(-) function returns the transmission time for node V, and its 
children, so that Lemma 5.1 holds for the subtree formed by Vi and its 
parent and children, with respect to the invariant that T* < rrij for any 
node Vj in the subtree. When the best(-) function is called upon the subtree 
around Vi, the transmission for all the links not within the subtree remains 
fixed. That is to say, the starting time of transmissions from the children of 
Vi and the ending time of the transmission from Vi are fixed. We can prove 
that the starting time of the transmission from Vi will never be decreased 
by calling the best(-) function (refer to Appendix A). Hence, in the best(-) 
function, the locally optimal starting time of the transmission from Vi is 
obtained by a binary search between the original starting time and the 
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10. 

11. 
12. 

({^} W ,o e L,T 4
f c )^ b e s t i r * " 1 } , r* 

For (i, v) e L 
Ti <— min{mi, r - (maxvigp^Lj} -

Begin 
1. k <— 0 / / initialize iteration counter 
2. For (i, t ) ) 6 L / / initialize transmission time 
3. T^ <— min{r, m;} / / for links to the sink 
4. For (i,j) € L such that j ^ n / / initialize transmission time for 
5. ^ <- 0 / / other links 
6. /Zag <— 0 / / flag for convergence 
7. While flag = 0 
8. k <— fc + 1 / / increment the iteration counter 
9. For each Vi with i from t> — 1 downto M + l / / local optimization 

/ / for internal nodes 
"1) / / move right the start 

/ / time of transmission 
/ / from Vi 

Ti)} II increase the 
/ / transmission time 
/ / for links 
/ / to the sink 

13. If Tk = fk~1, flag <— 1 / / check convergence 
End 

Fig. 5.1 Pseudo code for EMR-Algo. 

ending time of the transmission. Step 10 moves right the complete t ime of 

transmissions on links to the sink. This movement stops when the latency 

constraint is reached. 

The correctness of EMR-Algo can be proved by exploring the convexity 

property of the energy functions. Let r* = { T * , . . . , T * _ I } be the optimal 

schedule. Let 9* = 0, for i = 1 , . . . , M ; and 6* = maxy ] i ) e L (^* + r* ) , for 

i = M,...,v — 1. As previously stated, {rf : k = 1,... ,v — 1} indicate 

the transmission t ime of nodes Vy,... ,Vv-i after the fc-th pass of EMR-

Algo. Let B\ = 0, for i = 1 , . . . , M , and 9^ = m a x y , , ) S L ( ^ + TJ), for 

i = M,...,v-l. 

T h e o r e m 5.1 Let 9\ and 9*, i = 1 , . . . , n — 1 be defined as before. Then 

(i) ef < e^1; 
(2) 9\ < 9*; and 

(3) 9°° =6*. 
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The proof of Theorem 5.1 is detailed in Appendix A. 

5.5.2 Performance Analysis for a Special Case 

We consider a special case where the data gathering tree is a complete 
binary tree, where all the leaf nodes are source nodes. Let d denote the 
depth of the tree, with 2% nodes at depth i < d. Let s denote the size of 
data packet from all sources. We assume a perfect data aggregation at all 
nodes, such that the packets on all edges are of size s. 

For simplicity, we assume that the communication environments and 
radio devices for all nodes are identical in terms of parameters Rs and Ctr • 
We assume a long-range communication scenario where F is negligible. Due 
to the structure of a complete binary tree, it can be inferred that nodes at 
the same depth shall have the same transmission duration in the optimal 
solution. Let n denote the transmission time of nodes at depth i, where 
l<i<d. 

Based on (5.3), the PTP problem in this special case (denoted PTP-SP), 
is to find a schedule {TJ : i = 1 , . . . , d} in order to: 

d 

minimize ^ 2 ^ 6 ^ ( 2 ^ - 1) • n • Rs] (5.7) 
i = i 

d 

subject to ^ n < T . (5.8) 
i=i 

As F —• oo, the lower bound on the cost of PTP-SP approaches (2d+1 — 
2)sC( rln2. Thus, we set Y in the range [^-, ^ - ] to avoid this trivial 
case. The boundaries of the range are obtained by setting the modulation 
level of all sensor nodes to 8 and 2, respectively. We also consider the 
baseline, where all sensor nodes transmit with a modulation level of 8 and 
shut down afterward, i.e., r, = ^- for all i < d. The cost of such a baseline 
is (2d+1 - 2) 255s

s
ctr; w h i c n i s a n u p p e r bound on the cost of PTP-SP. 

Based on Lemma 5.1, it can be shown that the optimal schedule to 
PTP-SP satisfies 

2i-Ctr-Rs(2^k7 _ i _ 2 ^ 7 - l n 2 - - ^ - ) = A (5.9) 

where A is Lagrange multiplier determined by the constraint Yli=i ri = 

r . Let bi = —%- be the modulation level for nodes at depth i. Since 
bi > 2, we can approximate (5.9) as 2hi = 2i(J

x
 R . This approximation 
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is similar to the inverse-log scheduling in [205], which is shown to be a 
close approximation for (5.9) when 6j is large. This approximation leads to 
Ti = flaioE

S. J _~' w n e r e * i s determined by £ \ = 1 n = T. 
' 2iCtrRB 

To solve A, let x = log c
 X

R and re = ^-j*-- The constraint J]i=i r i = T 
can be written as 

Er i7 = «- (5-10) 
a; — i 

which is essentially a polynomial equation in x of degree d. Since Tj > 0 for 
all i < d, we consider the only root that satisfies x > d. Let Harm(i) = 1 + 
\ + • • - + \ denote the Harmonic function. We have Y^i=i JZJ ~ Harm(x — 
1) — Harm{x — d — 1). We use the approximation Harm(i) = ln(i + \) + 7 
for large i, where 7 is the Euler-Mascheroni constant. Thus, we derive 

_ (2d+l)eK - 1 
X ~ 2(e* - 1) ' 

When d is large, we have an approximated optimal schedule: 

s 
Rs(x-i) 

for i = 1 , . . . , d, with an energy cost Cappr: 

d 

^appr — y ^ ^tr\^ * s lJ7"i-*£s 
i—1 

2i(2
x~i - 1) 

(5.11) 

(5.12) 

S C ^ X — I 
i=l 

sCtr2
x 2_, '• (when d is large) 

i—l 

= sCtr2
xK (from (5.10)) , (5.13) 

where re = ^SL a n ci x \s given by (5.11). This gives an improvement over 

the baseline by a factor of approximately —-—. 
In Figure 5.2(a), with Ctr = 6 x 10"9, Rs = 106, s = 200, and d = 6, we 

plot Cappr and the cost obtained by EMR-Algo as a function of T as well 
as the lower and upper bounds on the cost of PTP-SP. We observe that 
when T is small, CavvT and the cost of EMR-Algo are nearly equal. When 
T is large, although there is noticeable difference between Cappr and the 



102 Information Processing and Routing in Wireless Sensor Networks 

3 4 5 6 
Latency constraint (0 „ ^ 

(a) Comparison between Eappr and the cost 
of EMR-Algo 

3 4 5 
Latency constraint (r) 

(b) Sensor node transmission time 

Fig. 5.2 Performance analysis for a special case over a complete binary data gathering 
tree. 

cos t of E M R - A l g o , t h e r a t i o s of t h e i r i m p r o v e m e n t over t h e u p p e r b o u n d 

are actually quite similar. Notice that when T is at the minimum, there 
is still improvement by CappT and EMR-Algo over the upper bound. This 
is because, for Cappr and EMR-Algo, we have relaxed the constraint that 
bi must lie within [2,8]. We will show in Section 5.7.3 that for our on-line 
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protocol, which considers such a constraint, the resulting energy savings 
are still comparable to that of EMR-Algo. 

We also plot the energy conservation of Eappr, which is defined as the 
percentage of energy savings by Eappr over the upper bound. We observe an 
energy conservation from 30% to 90% for Eappr. Although these numbers 
are based on the above special case, they confirm our simulation results 
for general trees in Section 5.7 very well. Our analysis on this special case 
gives meaningful insight into the energy conservation that can be achieved 
by our technique in general scenarios. 

In Figure 5.2(b), we also plot Tj with respect to variations in T given 
by (5.12). It is observed that when T increases, the transmission time of 
nodes with larger depth increases faster than that of nodes with smaller 
depth. This is because the number of nodes increases exponentially with 
depth. Thus, more transmission time is desired for nodes with large depth, 
to sustain Lemma 5.1. 

5.5.3 A Dynamic Programming-Based Approximation 
Algorithm 

The convergence speed of EMR-Algo depends on the structure of the ag
gregation tree and the exact form of the energy functions. It is therefore 
difficult to give a theoretical bound on the number of iterations. In Sec
tion 5.7, we show the EMR-Algo running time for simulated problems. 
However, by approximating Wi(r) with a set of interpolated discrete val
ues, we develop a much faster approximation algorithm based on dynamic 
programming, which is presented in this section. 

For ease of analysis, we assume that for each sensor node, D discrete 
values of T are evenly distributed over [0, T]. Let e be the difference between 
two adjacent values, that is, e = 4y. Hereafter, D is called the approxima
tion accuracy. A higher value of D leads to a more accurate approximation 
of the energy function. By changing D, we can explore the tradeoffs be
tween the quality of the solution and the time cost of the algorithm. 

Let g{Vi,t) denote the minimal overall energy dissipation of a subtree 
rooted at Vi within latency constraint t. The original OPTP problem can be 
expressed as g(Vv,T). It is clear that for any sensor node Vi, g(Vi,t) can be 
computed as the sum of (a) the energy dissipation for packet transmission 
by the children of Vi, and (b) the energy dissipated by transmitting packets 
within the subtrees rooted at each child of Vi. The packet transmission 
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time from any child of Vi can take ~ values, namely e,2e,...,t. Therefore, 
we have the following recursive representation of g(V,, t): 

g(Yi,t)= { 

Wi(t), for 1 < i < M (5.14a) 

y^ (m.m{wk(J£) + g(Vk,t — je)}), otherwise (5.14b) 
Z — ' 7 = 1 

(fc,i)€L 

r 

j*> 

2s 

e 

o(V ^ 
s K' '• •-1 

giVpjs) 

g(V„ 3s) 

g(V„ 2s) 

g(V„ s) g(V2,s) 

• giVJs) 

... g(v_e) .... 

e(V T\ 
« ' , ! ' - 1 

• - g{V„ s) 

v, V: 

Fig. 5.3 The #(•) table computed by DP-Algo. 

The above representation is suitable for a dynamic programming-based 
algorithm (DP-Algo for short). DP-Algo can be viewed as a procedure to 
build a table of size D x v (Figure 5.3). The i-th column from the left side 
corresponds to sensor node Vi, while the j-th row from bottom corresponds 
to je. In the output of the DP-Algo, the cell crossed by the j - t h row and 
the i-th column contains the value of g(Vi,je). 

To build the table, we start from the bottom-left cell, which contains 
g(Vi,e) = 101(e). The table is then completed column by column, from left 
to right. To calculate the value of g(Vi,je) for i > M, we need to compare, 
for each child of Vi, j different values by varying the packet transmission 
time of the child. Therefore, the time cost for building up the table is 
0(D2(v +1)), which is polynomial with respect to v and l for a fixed D. 

A Special Case for Modulation Scaling: In practice, the modulation 
levels are typically set to positive even integers. Based on equation 5.2, it 
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can be verified that the values of n resulting from different modulation lev
els are not evenly distributed over [0, T}. Thus, DP-Algo cannot be directly 
applied. However, one practical method is, for each i, to set r» obtained 
by EMR-Algo or DP-Algo to the largest time duration below Tj that can 
be achieved by an available modulation level. We call this method the 
rounding procedure. The rounding procedure may affect the performance of 
DP-Algo. As shown in Section 5.7, the performance degradation is around 
10% for loose latency constraints, and 50% for stringent latency constraints. 

Another issue with modulation scaling is that the maximum or minimum 
transmission times can be bounded, due to the lowest and highest settings 
for the modulation level. Such boundaries can be achieved by assigning 
infinity to the corresponding cells in the table. 

5.6 A Distributed On-Line Protocol 

The algorithms presented in Section 5.5 all assume a complete knowledge of 
the data gathering tree. However, the discrete approximation of the energy 
function motivates a simple on-line distributed protocol that relies on only 
local information from sensor nodes. 

We define the energy gradient of a sensor node as the amount of energy 
that can be saved by increasing its transmission time to the next level. 
The key idea of the protocol is to identify iteratively the sensor nodes with 
the largest positive energy gradient, and increase their transmission time if 
the latency constraint allows. We repeat the above procedure until either 
the latency constraint is reached for all paths, or the energy cost of the 
gathering tree is minimized. 

To facilitate the on-line scheduling, we make the following assumptions: 

(1) Some local unique neighbor identification mechanisms are available at 
each sensor node for identifying the parent and children. 

(2) Every node Vi can derive the time cost for data gathering within the 
subtree rooted at V*. 

(3) Every sensor node can measure its current power consumption, and 
therefore its energy gradient - the energy gain by increasing the trans
mission time of the node by e. 

(4) Interference among sensor nodes is handled with MPR techniques. 

The local identifier in Assumption 1 is commonly implemented in pro
tocols such as Directed Diffusion [85]. Assumption 2 can be fulfilled by 
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attaching a time stamp to each packet from the leaf nodes (we shall assume 
that time synchronization schemes, such as [57], are available). In Assump
tion 3, the power consumption and energy gradient of a sensor node can 
be determined using the system parameters provided by the hardware ven
dors and the operating configuration of the system (e.g., the modulation 
level). Assumption 4 can be satisfied by intentionally setting the latency 
constraint to be tighter than the actual constraint for accommodating the 
incurred time cost, so as to resolve collisions. 

We define the latency laxity of a node as the maximal amount of time 
that can be used to increase the transmission time of the node without 
violating the latency constraint. Let Xi denote the latency laxity of Vi. The 
latency laxity of each node is dynamically maintained during the protocol 
to verify if the transmission time of the node can be safely increased. 

We first describe the local data structure maintained at each sensor 
node. A distributed adaptation policy for minimizing the energy cost is 
then presented. 

Local Data Structure: Each sensor node, Vi, maintains a simple local 
data structure (r, Ti, Td). The flag r equals one if V, is the node with the 
highest positive energy gradient in subtree Ti, and zero otherwise. Field Ti 
is the time cost for transmitting the packet from Vi to its parent, while Td 
records the time cost of the longest path, excluding Ti, in Tj. 

The local data structure is maintained as follows. Every leaf node pig
gybacks its energy gradient to the outgoing packet. Once a sensor node, 
Vi, receives packets from all of its children, the node compares the energy 
gradients piggybacked to each packet to its own. The value of r at Vi is 
then set accordingly. If Vi is not the sink, the largest energy gradient from 
the above comparison is piggybacked to the packet sent to the parent of Vi. 
This procedure continues until all the sensor nodes have the correct values 
of r. Fields Ti and Td can be easily maintained based on Assumption 2. 

Adaptation Policy: The sink node periodically disseminates a feedback 
packet to its children that contains the value of its local Td, and the differ
ence between V and Td, denoted as 5. Basically, 5 is the latency laxity of 
nodes on the longest path of the data gathering tree. 

Once a sensor node V, receives the feedback packet from its parent, it 
performs the following adaptation. To distinguish from the field Td in V '̂s 
local data, let Td denote the field Td in the feedback packet. First, the 
latency laxity of Vi can be calculated as s; = S + Tr

d — (TJ + Td)- This is 
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because r, + T& is the time cost of Ti; r'd is the time cost of the longest path 
in the subtree rooted at Vi's parent (excluding the transmission time of Vj's 
parent); and 5 is the latency laxity of nodes along this longest path. Node 
Vi then takes one of the following actions. 

(1) If S < 0, the transmission time for a packet from Vi is decreased by a 
factor of P, where (3 is a user-specified parameter. The feedback packet 
is then forwarded to all of V^s children. 

(2) If r = 1 and Xi > e, the transmission time of Vi is increased by e. The 
local data structure at Vi is updated accordingly; and the feedback 
packet is suppressed. 

(3) The feedback packet is updated by setting 6 = Xi and r'd = T&. The 
updated packet is then forwarded to all children of Vi. 

The rationale behind this adaptation policy is that when the latency 
constraint is violated, all the sensor nodes send out packets with an in
creased rate (action 1). If Vi is the node with the largest positive energy 
gradient in Xi and the latency laxity allows, the transmission time of Vi 
is increased (action 2). Otherwise, the latency laxity of V, is recorded in 
the feedback packet, and the sensor nodes in Ti are recursively examined 
(action 3). 

Discussion: During each dissemination of the feedback packet, the pro
posed on-line protocol increases the transmission time for at most one sen
sor node per path. This increment is guaranteed not to violate the latency 
constraint. Therefore, the on-line protocol converges after the latency con
straint is reached by all paths, or r» = m,, for each Vi G V. We assume that 
each sensor node has q discretized transmission times. Before the protocol 
converges, a feedback packet increases the transmission time for at least one 
sensor node when it traverses the data gathering tree. Thus, the protocol 
converges after the dissemination of at most nq feedback packets, where n 
is the number of sensor nodes in the tree. 

Various tradeoffs can be explored when implementing the protocol. Ide
ally, the adaptation should be performed in a stable system state. Thus, 
the period a for disseminating the feedback packet should be large enough 
to accommodate oscillations in the system performance. However, a larger 
period means a longer convergence process, with greater energy cost. There 
is also a tradeoff involved in selecting the value of (3. A larger value of j3 
leads to higher transmission speed when the latency constraint is violated. 
However, extra energy is lost if the violation is not dramatic. Intuitively, j3 
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should be related to the severity of the violation, which is indicated by the 
value of S. 

Another option to handle latency violations is to reduce repeatedly the 
transmission time of the sensor nodes with the smallest energy gradient, 
until the latency constraint is satisfied. This option is more aggressive than 
the proposed protocol, in the sense of reducing the incurred increment in 
energy cost. However, it requires more sophisticated control protocol, and 
more importantly, increases the response time in handling latency viola
tions. 

The above protocol actually does not require the discretized transmis
sion time to be evenly distributed with distance e. In the example of mod
ulation scaling, the set of transmission times is generated based on ^ - , by 
varying b within [2,4,6,...] . The distance between adjacent transmission 
times decreases with b. This can be handled by the following modification 
to the protocol. First, in Action 1, after decreasing by a factor of /?, the 
transmission time is rounded down to the closest transmission duration. 
Second, in Action 2, the latency increment is determined by the current 
value of b, instead of being a fixed e. We will use this modified protocol for 
our on-line simulation in Section 5.7. 

5.7 Simulation Results 

To conduct the tests, a simulator was developed using the PARSEC [134] 
software, which is a discrete-event simulation language. The purposes of 
the simulations were (1) to demonstrate the energy gain achieved by our 
algorithms compared to the baseline; (2) to evaluate the impact of several 
key system parameters to the performance of our algorithms; and (3) to 
evaluate the energy savings and the adaptation capability of our on-line 
protocol in various run-time scenarios. 

5.7.1 Simulation Setup 

The transmission speed of sensor nodes was continuously tunable by setting 
the modulation level within [2,8], except for the special case of modulation 
scaling where the modulation level could only be even integers between 2 
and 8. Hence, for all sensor nodes, the highest data rate was 8 Mbps and 
the lowest data rate was 2 Mbps. The baseline in our simulations was to 
transmit all packets at the highest speed (i.e., 8 Mbps), and shutdown the 
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radios afterward. This policy is used, for example, in the PAMAS [145] 
and the D-MAC protocols [109]. In our simulations, the performance met
ric was defined as the percentage of energy savings achieved by using our 
techniques, compared to the baseline. 

(a) Random sources model (number of 
sources N = 30) 

0.1 02 0.3 0.4 OS 06 0.7 OB 0.0 I 

(b) Event radius model (sensing range 5 = 
0.2) 

Fig. 5.4 Two example da ta gathering trees generated by the random sources and event 
radius models, respectively (connectivity parameter p = 0.15). 
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A sensor network was generated by randomly scattering 200 sensors in a 
unit square. The sink node was put at the bottom-left corner of the square. 
The neighbors with which a sensor node could directly communicate were 
determined by a connectivity parameter, p 6 (0,1]. Specifically, two sensor 
nodes could communicate with each other only if the distance between them 
was within p. Note that p was a purely relative measurement in the unit 
square. Consider the example when p = 0.1. In the case of short-range 
communication, p was translated to 7 m when the square scaled to 70 m x 
70 m. In the case of long-range communication, p was translated to 30 m 
when the square scaled to 300 m x 300 m. The size of raw data from all 
source nodes was set to 200 bits. 

We used two models to generate the location of the data sources, namely 
the random sources (RS) model and the event radius (ER) model. In the 
RS model, N (the number of sources) out of 200 sensor nodes were ran
domly selected to be the sources, whereas in the ER model, all sources were 
located within a distance S (essentially the sensing range) of a randomly 
chosen "event" location. For both models, the Greedy Incremental Tree 
(GIT) algorithm [100] was used for constructing the data gathering tree. 
In Figure 5.4, we illustrate two example data gathering trees generated 
based on the RS and ER models. 

The energy function used in the simulation was in the form of (5.3). 
Unless otherwise stated, Rs = 106 and Ce;e = 10 - 8 for all the sensor nodes, 
while the value of Ctr of a sensor node was determined by the distance from 
the node to its parent in the tree. Specifically, we assumed a d2 power loss 
model, where d was the distance between a node and its parent. Then, for 
node Vi, we had its Ctr = C(,ase-(-)2. Based on our analysis in Section 3.2.2, 
Chase was set to 6 x 10~9 for the long-range communication, and 3 x 10 - 1 0 

for the short-range communication. 
During our simulation, the latency constraint T was determined as fol

lows. We define the shortest time cost, Tmin of a gathering tree as the 
transmission latency of the longest path in the tree when all sensor nodes 
transmit at the highest speed (8 Mbps). On the other hand, the longest 
time cost, Tmax of the gathering tree is defined as the transmission latency 
of the longest path in the tree when every sensor node Vi sends its packet 
using time min{?7ij, y-}. The term m, comes from the fact that it is not 
energy beneficial for Vi to transmit its packet using time beyond m*. The 
term y is due to the lower bound of modulation level in our simulation. 
Therefore, F was adjusted between Ymin and Fmax. 
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The presented data is averaged over more than 150 problem instances, 
and has a 95% confidence interval with a 10% (or better) precision. 

5.7.2 Performance of the Off-Line Algorithms 

10Or 

Fig. 5.5 Performance of our off-line algorithms (c: correlation parameter, p: connectiv
ity parameter, N: number of sources, S: sensing range). 

5.7.2.1 Performance Overview 

In Figure 5.5, we show the performance of algorithms, including EMR-Algo, 
DP-Algo and the special case of DP-Algo for modulation scaling (denoted as 
MS in the figure), when varying Y from Tmin to r m a i . The approximation 
accuracy for DP-Algo, D was set to 100. 

As T approached Tmax, our algorithms achieved more than 90% energy 
savings for the long-range communication, and around 50% for the short-
range communication. When T = Tmin, EMR-Algo and DP-Algo could 
still save more than 30% of the energy for long-range communication, and 
20% for short-range communication. 

The reason for successful energy savings when T = Tmi„ is because T 
equals the transmission time of the longest path in the data gathering tree. 
Thus, energy can still be reduced for nodes not on the longest path. On 
one hand, when there exists only one path in the tree, no energy can be 
saved when T = Tmin. On the other hand, when the tree forms a star-like 
structure, all links, except the longest ones, can be optimized for energy 
savings when T = rm*n . This also explains the performance degradation of 
our algorithms in the ER model, compared to the performance in the RS 
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model. Specifically, as illustrated in Figure 5.4, the gathering tree for the 
ER model forms a small cluster connected to the sink by a linear array of 
sensor nodes, while the tree for the RS model is more like a star structure. 

The plot shows that the performance of DP-Algo was quite similar to 
the performance of EMR-Algo. However, the performance of MS quickly 
degraded as T decreases. From Figure 3.3, the first derivative of the energy 
function decreased quickly as r approached 0. Thus, when T was small, the 
rounding procedure for solutions with high modulation levels led to large 
performance loss. 

During our simulation, we also observed that when T = Tmin, MS failed 
to find feasible solutions for some problem instances, due to the rounding 
procedure of the approximated solutions from DP-Algo. The ratio of in
stances that MS fails over the total number of instances (the miss rate), is 
given in Table 5.2. 

Table 5.2 The miss rate of MS (based on simulated instances for Figure 5.5). 

Source 
model 

RS 

ER 

Communication 
scenario 

Long-distance 
Short-distance 
Long-distance 
Short-distance 

# of successful 
instances 

102 
104 
324 
352 

# of failed 
instances 

28 
16 
66 
38 

Total number 
of instances 

130 
120 
390 
390 

Miss 
rate (%) 

21 
13 
17 
10 

The simulation was performed on a SUN BladelOOO with a 750 MHz 
SUN UltraSPARC III processor. The running time of EMR-Algo was be
tween 0.5 and 3 seconds, whereas the running time of DP-Algo was around 
0.01 second. 

5.7.2.2 Impact of Radio Parameters 

We studied the impact of radio parameters, including Cbase, Rs, the highest 
modulation level, and the start-up energy. In Figure 5.6(a), we show the 
impact of radio parameter Cbase on the performance of DP-Algo. In the 
figure, the x-axis represents the value of Cbase from 3 x 10~10 to 6 x 10 - 9 

in logarithmic scale. As expected, the energy conservation achieved by DP-
Algo increased with Cbase- Also, when T = Tmax, there was almost no 
difference in the performance of DP-Algo under either RS or ER models; 
whereas when V = Fmj„, a performance degradation of 9-14% was observed 
for the ER model compared to the RS model. 

To evaluate the impact of symbol rate Rs, we varied Rs from 10 KBaud 
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(b) Impact of the highest modulation level 

Fig. 5.6 Impact of radio parameters (correlation parameter c = 0.5, connectivity pa
rameter p = 0.15, number of sources N = 30, sensing range S = 0.2). 

to 1 MBaud. Consider the modulation level within [2,8], the above range 
of Rs reflected a bit rate of 20 to 80 Kbps when Rs = 10 KBaud, and 2 to 
8 Mbps when Rs = 1 MBaud. We observed that the energy savings were 
almost the same throughout the variation of Rs. This was understand-
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able since, from (5.3), the performance ratio of DP-Algo to the baseline is 
determined by b, not Rs. 

We further investigated the performance of DP-Algo under different 
settings of the highest modulation level of the radio. In Figure 5.6(b), we 
show the energy savings achieved by DP-Algo in RS model when the highest 
modulation level was varied from 4 to 8. As expected, a lower highest 
modulation level resulted in less energy savings. When the modulation 
level was restricted to [2, 4], less than 20% energy savings were achieved 
for both long and short range communication. 

We have also studied the impact of radio start-up energy, which was 
estimated to be 1 f/3 [147). In each epoch, the radio of each sensor node 
was started exactly once. Our simulation results showed that the impact of 
the start-up energy to the long-range communication was almost negligible. 
However, compared to Figure 5.5, we observed a decrease of 6-15% in energy 
conservation for the short-range communication. This was because the 
start-up energy was comparable to the transmission energy for short-range 
communication. 

100 

I latency constraint, r r 
mm ' ' mi 

Pig. 5.7 Performance of the on-line protocol (correlation parameter c = 0.5, connectiv
ity parameter p = 0.15, number of sources N = 30, sensing range S = 0.2). 

5.7.3 Performance of the On-Line Protocol 

We focus on the results for the RS model; similar analysis can be made for 
the ER model. 
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5.7.3.1 Performance Overview 

The energy conservation achieved by the on-line protocol is illustrated in 
Figure 5.7. The simulated on-line protocol was based on modulation scaling 
where available modulation levels were even integers within [2,8]. In each 
instance, we generated a sensor network with 200 randomly dispersed sensor 
nodes. After randomly selecting 20 source nodes, the data gathering tree 
was generated using GIT. 

When the latency constraint approached F m j n , there was slight perfor
mance degradation, compared to DP-Algo from Figure 5.5. Specifically, for 
the RS model, we observed around 4% less energy conservation for long-
range communication, and 3% for short-range communication. This was 
reasonable, considering that only 4 values were available for the transmis
sion time of each sensor in the on-line protocol, instead of the fine gran
ularity adjustment of the transmission time in DP-Algo. The on-line pro
tocol actually outperformed the modulation scaling case (MS) shown in 
Figure 5.5, implying a large performance degradation of the rounding tech
nique used by MS. 

5.7.3.2 Impact of Network Parameters 

We investigated the impact of network parameters on the performance of 
the on-line protocol. These parameters included correlation factor c, num
ber of sources N, sensing range S, and the connectivity parameter p. 

Figure 5.8(a) shows the energy conservation achieved by our online pro
tocol with respect to variations in c and T. It was observed that, for a fixed 
F, the resulting energy gain slightly increased with c. This was because a 
smaller value of c caused larger data packets after aggregation. Thus, the 
energy cost of links close to the sink node dominated the overall energy 
cost of the tree. It was, however, difficult to reduce the energy cost of these 
links, since they had a high likelihood of lying on the longest path of the 
tree. 

Figure 5.8(b) plots the performance of our protocol with respect to 
variations in N and F. It can be seen that when T was close to r m j n , the 
energy gain of the protocol increased with the number of sources. This 
was because a larger number of sources offers more opportunities for the 
optimization of links on paths other than the longest one. 

Figure 5.8(c) illustrates the performance of our protocol with respect 
to variations in p and I\ The energy savings increased with p. This was 
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(a) Impact of the correlation param
eter c(p = 0.15, N = 30, S = 0.15) 

(b) Impact of the number of sources 
N or sensing range S (c = 0.5, p = 
0.15, ) 
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Fig. 5.8 Performance of the on-line protocol (c: correlation parameter, p: connectivity 
parameter, N: number of sources, S: sensing range). 

understandable, since a large p reduced the height of the data gathering 
tree (the extreme case is a star-like tree formed by setting p = 1). 

5.7.3.3 Adaptability to System Variations 

Our simulations were performed based on the tree shown in Figures 5.4(a), 
which had 44 sensor nodes. Thirty of these nodes were chosen as source 
nodes. Again, we assumed that modulation scaling was used by all the 
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nodes with the available modulation levels being even numbers between 2 

and 8. The da ta gathering was requested every 2 milliseconds. For the 

sake of illustration, we set a = 4 milliseconds, and j3 = 10. Two run-time 

scenarios, A and B, were investigated to demonstrate the efficiency and 

adaptabil i ty of our protocol. 

Scenario A: We fixed s at 200 bits, with Tmin ~ 1.5 milliseconds and 

Tmax ~ 4.5 milliseconds. We set V to 2.4, 3, 2.1, 1.8, 2.1, 2.7, 2.1 millisec

onds at 0, 0.5, 1, 1.5, 2, 2.5, and 3.5 seconds, respectively. In reality, such 

variations can be caused, for example, by changes in user requests. 

We depict the energy cost and latency for da ta gathering over 4 seconds 

in Figure 5.9(a), where the optimal solutions were obtained using EMR-

Algo. When T was fixed, the actual energy cost gradually decreased until it 

was close to the optimum, while the latency approached the constraint. At 1 

second, F was varied from 3 milliseconds to 2.1 milliseconds, which caused 

a violation of the latency constraint. Due to the feedback mechanism, 

the transmission latency dramatically decreased as the modulation settings 

of all the sensor nodes were restored to higher levels. Consequently, the 

energy cost was increased. After tha t , the energy cost dropped again as 

time advanced. Moreover, by setting (3 = 10, the modulation levels of 

the sensor nodes were restored to the highest levels when a violation was 

detected, reflected by the high peaks in the energy curve. 

Scenario B: We set T = 2.1 milliseconds, while setting s to 200, 250, 

300, 200, 150, 200, and 250 at 0, 0.5, 1, 1.5, 2, 2.5, and 3.5 seconds, respec

tively. In reality, the change of packet size may be caused by variations in 

gathered information, or the correlation parameter at sensor nodes. The 

results are illustrated in Figure 5.9(b), where the optimal solutions were 

also obtained using EMR-Algo. An analysis similar to tha t in scenario A 

can be performed. 

In short, our on-line protocol was capable of saving significant energy 

in the studied scenarios. The ability of the protocol to adapt the packet 

transmission t ime with respect to the changing system parameters was also 

demonstrated. 

5.8 S u m m a r y 

In this chapter, we have studied the problem of scheduling packet transmis

sions over a da ta aggregation tree, by exploring the tradeoffs of energy vs 

latency using rate adaptat ion. For the off-line version of the problem, we 
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have provided (a) a numerical algorithm for optimal solutions, and (b) a 
faster approximation algorithm based on dynamic programming. We have 
also analyzed the performance of the numerical algorithm for a special case 
over a complete binary data gathering tree, which matches our simulation 
results very well. Further, we have proposed a distributed on-line protocol 
that relies on only local information. 

We have presented extensive simulation results for both the off-line and 
on-line techniques, with respect to variations in several key system parame
ters. Our simulation results show that between 15% to 90% energy savings 
can be achieved by the proposed techniques. We have also demonstrated 
the ability of the protocol to adapt the packet transmission time to varia
tions in the system parameters through two run-time scenarios. 
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Fig. 5.9 Adaptability of the on-line protocol (correlation parameter c = 0.5, connectiv
ity parameter p = 0.15). 





Chapter 6 

Information Routing with Tunable 
Compression 

6.1 Overview 

In the last chapter, we assumed that maximum compression was used for 
data aggregation. In other words, the data was compressed as much as pos
sible to reduce communication load. This method is reasonable for applica
tions with small amount of data volume and simple compression operations 
(e.g., temperature sensing), indicating that communication cost dominates 
the computation cost. However, in cases of more advanced and computa
tionally intensive applications with heavy data flow (including streaming 
media, video surveillance, and image-based tracking), compression of a com
plex data set is envisioned to have an energy cost comparable to that of 
wireless communication. A similar situation arises when temporal compres
sion is applied to a large volume of data gathered over a long time period. 
In the above cases, decreasing communication energy cost by compression 
is gained at the expense of computation cost for compression. Thus, maxi
mum compression may not always lead to minimal energy cost. Alternative 
methods for performing data compression need to be exploited, so that the 
computation cost can be efficiently traded for the communication cost. 

To this end, we use the technique of tunable compression, described in 
Section 3.2.3, to achieve balanced computation and communication costs 
for information routing. Specifically, we study the problem of construct
ing a data gathering tree spanning a set of source nodes, and determining 
the flow from each source node to the sink, with the goal of minimizing the 
sum of both computation and communication energy costs over all nodes in 
the tree. We refer to this problem as the Tunable Data Gathering (TDG) 
problem. As mentioned in Chapter 2, two important data compression 
schemes have been previously investigated in literature: distributed source 

121 
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coding [172] and compression with explicit communication [47]. The tech
niques discussed in this chapter are based on the second scheme — to 
perform joint data compression requires the availability of side information 
from other sources via explicit communication. 

When lossy compression is considered, techniques such as the JPEG 
compression algorithm typically involve three stages: sampling, scalar 
quantization, and lossless binary encoding. By tuning the parameters re
lated to the effective sampling size at the sampling stage, and the quantiza
tion scaling at the scalar quantization stage, prior efforts have studied the 
tradeoffs between the quality of the compressed image, and the computa
tion and communication energy costs [182]. Our research complements past 
work by further exploring the tradeoffs between computation and commu
nication energy at the lossless binary encoding stage. 

6.1.1 Technical Overview 

While most prior work on data gathering focuses on minimizing the commu
nication cost only, our distinguishing goal is to minimize the sum of both 
computation and communication costs by utilizing tunable compression. 
To facilitate the tuning of data compression over the data gathering tree, 
we propose a flow based model, where data from each source is compressed 
and transmitted as a data flow over the corresponding path from the source 
to the sink. The TDG problem involves two related subproblems: (1) to 
construct a data gathering tree and (2) to determine the flow over all paths 
in the tree. Consider the special case of TDG, where computation energy 
is negligible, and every node always compresses all of its incoming data to 
one unit. Since such a case is exactly the Minimal Steiner Tree (MST) 
problem, TDG is generally NP-Hard. 

We handle the TDG problem by decoupling tree construction and flow 
determination. We first show how the optimal flow can be determined for 
a given tree structure. By assuming a grid deployment of sensor nodes, we 
then model and analyze the performance of two existing tree construction 
methodologies, namely the Shortest Path Tree (SPT), and MST. The re
sults indicate that, while SPT performs well when the relative computation 
cost compared with communication cost is high, MST is preferred when the 
relative computation cost is low and data correlation is high. Moreover, 
MST provides a constant-factor approximation for the grid deployment, 
regardless of the relative computation cost and data correlation. 

We also examine the performance of an approximated MST (referred 
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to as A-MST, due to the NP-Hardness of MST for general graphs) and 

S P T for general graphs through simulation. Our results further reveal the 

tradeoffs between A-MST and S P T with respect to several key system pa

rameters, including spatial correlation among source data , relative compu

tat ion cost, number of source nodes, and communication radius. Moreover, 

A-MST demonstrates acceptable average performance in the studied sce

narios, which leads to the conclusion tha t , due to its simplicity, A-MST 

is suitable as a practical solution. For theoretical completeness, we also 

present a randomized tree construction methodology tha t achieves poly-

logarithmic approximation for general graphs. 

6.1 .2 Chapter Organization 

Related work is briefly discussed in Section 6.2. In Section 6.3, we give 

assumptions and models of our problem, which is formally defined in Sec

tion 6.4. We then show how to determine the optimal flow for a given tree 

in Section 6.5, which enables the performance analysis of S P T and MST on 

a grid deployment in Section 6.6. In Section 6.7, a randomized approxima

tion algorithm is described. Simulation results are presented in Section 6.8. 

We summarize this chapter in Section 6.9. 

6.2 R e l a t e d W o r k 

The problem of constructing an energy-efficient da ta gathering tree in wire

less sensor networks, while considering da ta compression, is gaining increas

ing research attention. A description of several practical schemes for tree 

construction is presented in [135]. These schemes include routing-driven 

compression (RDC), compression-driven routing (CDR), and cluster based 

routing. Essentially, RDC involves opportunistic da ta compression over an 

SPT; CDR performs the maximum possible compression using an MST-like 

routing among source nodes before routing to the sink; and cluster based 

routing is a hybrid scheme of RDC and CDR. The performance metric is 

the accumulated number of bits t ransmit ted over each hop. Assuming tha t 

each source node generates one unit of information, the study is motivated 

by two extreme cases. In the case of zero da ta correlation, by selecting the 

shortest pa th from each source node to the sink node, the optimal solution 

is the SPT. In the case of perfect da ta aggregation, exactly one unit of da ta 

is routed along each edge of the tree, implying tha t the optimal solution 
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is the MST. Between these two extreme cases, the optimal tree structure 
resembles a hybrid scheme of SPT and MST. Since data correlation is usu
ally high within a small natural cluster-based scheme is to use an 
MST structure within each cluster, and an SPT to route compressed data 
from each cluster to the sink. A surprising result is that, in a grid-based 
scenario, while the optimal cluster size depends on the correlation factor, 
a near-optimal cluster size can be analytically determined purely based on 
the network topology, and is insensitive to the correlation factor. 

The idea of a hybrid routing scheme is confirmed by several other results, 
under various assumptions to model the data correlation. Cristescu et al. 
assumes a simplified compression model, where the aggregation factor of a 
piece of information depends only on the availability of side information [47]. 
Assume that each sensor node in the network generates one unit size of 
information. Whenever there is side information transported to a source 
node, no matter the sources and size of this side information, the output 
of the source node after joint compression with the side information is a 
fixed value p 6 (0,1]. To minimize the cost of a routing tree, we need 
to minimize the cost of routing information from all internal nodes to the 
sink, which prefers an SPT structure. On the other hand, we also need to 
minimize the cost of routing side information from a leaf node to the set of 
internal nodes that utilize this side information, and also to the sink, which 
favors a Minimal Spanning Tree (MSP). Therefore, the optimal solution 
lies between an SPT and an MSP. In fact, the Shallow Light Tree (STL) 
proposed by Bharat-Kumar et al. [23] can be used to provide a constant 
factor approximation of the considered problem. 

While STL provides an approximation for both SPT and MSP, the 
situation becomes different if the source nodes are a subset of the sensor 
nodes, instead of all sensor nodes. In this case, we need a tree structure 
that simultaneously approximates SPT and MST. Consider a more general 
objective function that minimizes the sum of the cost of the tree and the 
accumulated length from each source node to the sink node, where the 
cost and length can be defined based on two independent metrics. An 
approximation algorithms is proposed by Meyerson et al. [123] to achieve 
a log k performance bound, where k is the number of source nodes. 

A simplified version of the algorithm in [123] is used to solve the problem 
of transporting information from a set of source nodes to the sink node 
when the joint entropy of a set of source nodes is assumed to be a concave, 
but unknown function of the number of source nodes [67]. The network 
topology is assumed to be a complete graph, with the shortest path distance 
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being the edge cost, if necessary. The algorithm constructs a hierarchical 
matching tree using an iterative method that provides a log k approximation 
to the optimal solution. It is noted that the concavity assumption for 
data aggregation function essentially leads to an identical abstraction of 
the information routing problem with that of a single-source buy-at-bulk 
problem [13]. The key point is that the transmission cost spent on each edge 
is a concave function of the number of source nodes that use this edge to 
communicate with the sink. Another randomized algorithm for information 
routing on a grid of sensor nodes is proposed by Enachescu et al. [59], which 
is proved to have a constant approximation of the optimal performance. 

Very few previous papers have explored the tradeoffs between computa
tion and communication for data gathering [3]. For prediction-based data 
gathering over a one-dimensional random Gaussian field, such tradeoffs are 
enabled by adjusting the group size, within which prediction is performed — 
large groups increase computation cost but decrease communication cost [3]. 
Simulation results indicate that the optimal group size increases with its 
distance to the sink. To the best of the authors' knowledge, the technique 
presented in this chapter is the first work that formally models and studies 
the tradeoffs between computation and communication energy in a general 
problem setting. This problem is important to study, as more advanced and 
complex applications are being designed on sensor networks, which would 
require increased computation complexity over a large volume of data. 

Although we still model joint entropy to be a concave function of the 
number of source nodes, the results in [67] and [13] cannot be directly 
applied to our problem. This is because when the computation energy is 
considered, the overall cost on each edge may not be a concave function of 
the number of sources using this edge to communicate to the sink. Our work 
shows that by using the notion of probabilistic metric approximation [18], 
a randomized algorithm gives an expected 0(log2 v) approximation of the 
optimal solution, where v is the number of sensor nodes in the network. It 
is worth noting that the approximation bound can be further improved to 
log v log log v [19] or logw [62]. However, our major purpose is to illustrate 
the tradeoffs between SPT and MST, hence the results in [18] suffices. 

6.3 Models and Assumptions 

6.3.1 Nomenclature 

A list of notations used in this chapter is given in Table 6.1. 
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Table 6.1 List of notations. 

NG = < V, L > The graph representing the underlying network 
R Set of source nodes, I C Y 
u>i Weight of edge Lj € L 
sink The sink node in V 
5i Number of source nodes in a subtree rooted at Vi £ V 
Pi The path from Vi £ M to sink 
Zi The last edge on pi, i.e., edge on pt that connects to sink 

a -<b a is a predecessor of b on a path 
7 Relative computation energy cost normalized by the communication 

energy cost 
/ " Flow from node u on edge e, sometimes simplified to fe or / 
g(s, / ) The computation energy for compressing input data of size s to 

an output of size / 
Hi Joint entropy of i > 1 unit data 
p Date entropy rate, i.e., p = Hi, lower bound on the output of 

compressing one unit data 
Bi When jointly compressed with i — 1 pieces of unit data, i.e., Bj = —A 

M, N Metric spaces on node set V 
OIM{UI,U2) Distance between nodes u\ and ui on metric space M 

6.3.2 Network Model 

We assume a simplified communication mechanism with a medium access 
control (MAC) protocol that ensures no packet collisions or interference 
in the network [176; 148]. Thus, the underling network is modeled as 
an arbitrary network topology (Section 3.1.2): A graph representation 
NG = < V, L > is used to abstract the underlying network with v sensor 
nodes and I communication links between nodes. As described in Sec
tion 3.1.2, the communication cost over each link is simply abstracted as 
a scalar valued weight associated with the link, which indicates the energy 
cost of sending a data packet of unit size over the link. Let wjJi, or simply 
Wi, denote the weight of link L^. Let sink G V denote the sink node and 
1 C V denote the set of source nodes. 

A data gathering tree is a subtree of NG rooted at sink that contains 
R, denoted as T = < V , L' >, where K C V C V and L' C L. Let ^ denote 
the number of source nodes in the subtree rooted at V}. Also, let pi denote 
the path from Vi to sink, with u G pi (e G pi) signifying that node u (edge 
e) is along the path. Recall our definition in Section 3.1.1, for two nodes 
Vi, V2 G V , V\ •< y2 indicates that V\ is a predecessor of V2. Similarly, for 
two edges L\,L% G L', L\ < L2 indicates that L\ is a predecessor of Li-
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6.3.3 Flow-Based Data Gathering 

Given a data gathering tree over a sensor network, we model data transmis
sion over the tree as a composition of different data flows from each source 
node to sink. That is, each path from a source node to sink in the tree 
corresponds to a data flow over the path. The flow size may change along 
its corresponding path due to data compression performed by intermediate 
nodes. The energy cost of the system is the sum of the computation and 
communication costs of all paths in the tree. 

Consider an arbitrary path pi in the tree, from a source node Vi £ R 
to sink. Let /* denote the flow over e € pi and Zi denote the last edge in 
Pi, i.e, the edge incident to sink in pi. In the following discussion, since we 
only consider path pi, we simplify /* to fe. We assume that the total energy 
spent on data compression over the path Pi is determined by the flow on 
Zi, i.e., the total energy cost for data compression over pi is calculated as 
j - . We will justify this assumption in Section 6.3.4. 

For a given node in the tree, the number of incoming flows equals the 
number of source nodes in its subtree. The output size for compressing 
each incoming packet is lower bounded by the joint entropy of these source 
nodes. Following the entropy model in [67] (which also effectively abstracts 
the entropy models in [47; 135]), we assume that the joint entropy of any 
i source nodes, Hi, is a non-decreasing and concave function of i, with 
Hi = p, where p 6 (0,1] is the entropy of one unit of data. We assume that 
the compression of i incoming data flows at all nodes can be performed 
in such a way that the lower bound for compressing each data flow equals 
Bi = S±, with B\ = H\ = p. In other words, we assume that when 
maximum compression is performed on i pieces of source information, the 
fraction of compressible data of each piece is the same. 

From the above flow-based data gathering and joint entropy model, for 
any e = (a,b) e Pi, we have fe > Bga = -^ (recall that 5a is the number 
of source nodes in the subtree rooted at a). We also assume that Hi has 
the property such that Bi > _B,+i for i > 1. Thus, when a data flow is 
compressed and transmitted along pit the lower bound on the flow decreases 
as the packet approaches sink. 
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6.3.4 Discussion 

We discuss the motivation and reasoning for several key assumptions in 
the TDG problem. These assumptions are used to specify the compression 
energy model, the data flow model, and the joint entropy model. 

First, although the energy function for tunable compression is given 
by (3.7) in Section 3.2.3, our analysis is not restricted to a specific g(f). 
In fact, while the energy characteristics of various compression algorithms 
have been studied in [16], to develop accurate models for abstracting the 
energy cost of tunable compression is still an open problem. We note that 
the tradeoffs between computation and communication energy costs es
sentially depend on the convexity of the total energy cost function (e.g., 
Figure 3.4(b)). By using (3.7), the abstraction that the energy cost is in
versely proportional to the compression ratio leads to such a convexity. We 
expect other models to be investigated in this context. 

Second, the above flow model naturally models the data streaming from 
sources to the sink, and facilitates the computation of compression energy 
cost. This chapter considers only energy cost under this flow model. Other 
performance metrics, such as delivery latency, can be defined by virtually 
combining different outgoing flows from a node as a whole and assessing 
the resulting time cost accordingly. 

The presented techniques are based on the simplified assumption that 
the joint entropy of any set of i sources is Hi, and the flow from any of the 
i sources is lower bounded by Bi after joint compression. To incorporate 
other more sophisticated joint entropy models is the goal of future work. 
We have assumed that Hi is a convex function of i. In the special case 
of a stationary Gaussian random field with independent sources, Hi grows 
linearly with i. Since joint data compression does not help reduce the data 
volume in such a case, SPT is the optimal tree structure. The optimal flow 
on the SPT can be determined by the techniques presented in Section 6.5. 

Third, the assumption of determining the compression energy over a 
path based solely on the flow on the last edge in the path ignores the cost 
of possible decompression or re-compression at different nodes along the 
path. This assumption is justified by two reasons. First, based on the study 
in [16], techniques such as gzip consume very little time for decompression, 
compared to the cost of compression. Second, since the flow on a path 
decreases as it approaches the sink, the total compression energy along the 
path can be approximated by calculating the energy cost based on the flow 
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on the last edge. To model the computation cost more accurately is part 
of our future research. 

Fourth, since our problem is to minimize the overall energy cost, the 
receiving energy of sensor nodes can be easily incorporated into the TDG 
problem by adjusting the edge weights. 

6.3.5 An Example 

Routing tree example 
V, 

V4(sink) 

Path from V! to V4 

f ^ B j f2>B2 f3>B3 

V1# • • • • • • V4 (sink) 
v2 v3 

Fig. 6.1 An example data gathering tree and a path within it. 

To illustrate the flow model in Section 6.3.3, consider the data gathering 
tree given in Figure 6.1, where nodes Vi, Vs, V§, and V7 are source nodes, 
nodes V2 and V3 are relaying nodes, and V4 is sink. We have a total of 4 
paths in this tree. 

Consider the path from V\, denoted as {Vi,V2, Vs, V4}. Based on the 
structure of the tree, there is 1 source node in the subtree rooted at V\ (Vi 
itself), 2 source nodes (Vi and V5) in the subtree rooted at V2, and 3 source 
nodes (Vi, V5, and Ve) in the subtree rooted at V3. The lower bound of 
flow on the path can be calculated as Bsv = B\ = H\ on link (Vi,V2), 
BSv2 = B2 = f- on link (V2,V3), and Bs^ = B3 = & on link (V3, V4). 
The path, together with the lower bounds of flow on each link, are also 
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illustrated in Figure 6.1 (the superscript for / / is omitted in the figure). 
Based on our model, we also have B\ > B-i > B%. 

Similarly, the flow on the path from V5 to sink is lower bounded by B\ 
on link (V5, V2), B2 on link (V2,V3), and B3 on link (V3, V4). The flow on 
the path from VQ to sink is lower bounded by B\ on link (VQ, V3) and B3 
on link (V3, V4). The flow on the link from V? to sink is lower bounded by 
Bi. 

6.4 Problem Definition 

Based on the models and notations in Section 6.3, our Tunable Data Gath
ering (TDG) problem is formally defined: 
Given: 
(i) a weighted graph NG =< V, L > with weight u>i for each Li G L, 
sink G V, K C V, 
(ii) an energy function for data compression characterized by parameter 7, 
and 
(Hi) the joint entropy of i sources, Hi and Bi = -[>•; 
find a subtree T = < V',L' > that contains sink and all » e l , and flow 
from all v eR to sink, so as to minimize 

E ("ST" + E /a"-) (6-1) 

subject to 

\/Vi £R,Ve = (a, b) £ Pi ^> fe> B5a , and (6.2) 

W G R, Vei -< e2 G p(v) => fv
ei > f^ , (6.3) 

where 5a is the number of source nodes in the subtree rooted at sensor node 
a. 

We consider two special cases of the TDG problem. In the first case, we 
assume 7 = 00 or Hi — i, i.e., when computation energy is arbitrarily high 
or data is uncorrelated. Either condition leads to the obvious solution that 
no compression is performed in the data gathering tree. We construct the 
SPT of G by combining the shortest weighted path from every node in R 
to sink. Clearly, SPT is the optimal tree construction in this case. In the 
second case, we assume 7 = 0 and Hi = 1. In other words, computation 
energy is negligible and the joint entropy of any arbitrary i source nodes is 
always one. The desired flow on all edges of the tree is unity. Apparently, 
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MST gives the optimal tree construction. Obviously, certain tradeoffs exist 
between SPT and MST. 

Since the second special case requires the construction of an MST, the 
TDG problem is generally NP-Hard. To cope with this NP-Hardness, we 
begin our study by decoupling the two subproblems of selecting the tree 
construction and determining the flow from each source node to the sink. 
In the next section, we show the optimal tunable compression strategy for 
a path in a given tree. 

6.5 Optimal Flow in a Given Tree 

Given a data gathering tree and an arbitrary source node « e l , consider 
the path from the source node to the sink. Without loss of generality, let 
p — {Vi, V2,. . . , Vk} denote the path, where V\ = u, Vk = sink, and k is 
the number of nodes along the path. We need to compress and transmit 
a packet of unit size from V\ to Vk using the minimal computation and 
communication energy costs. Let / denote a vector of flow along the path, 
i.e., / = {/^,. . . , flk_x }• Since we are considering the specific path from 
Vi, we omit the superscript of elements in vector / , as well as e in the 
subscript. Hence, we use / = {/1 , . . . , fk-i} to denote the flow vector. 

To simplify the notation, let /% to denote the lower bound of /*, where 
i G [n — 1]. Since the path is extracted from a given tree, we can calculate 
& based on the structure of the tree (as shown by the example in Sec
tion 6.3.5). That is, /% = Bsv., where 6vt is the number of source nodes 
in the subtree rooted at V,. Based on our model in Section 6.3.3, we have 
A < A-i-

Let Wi denote the weight of e, = (Vi, Vi+i), where i 6 [n — 1]. Let Wj 
denote the path length from e» to ek-i, i.e., W» = 5Z7=i wj- We slightly 
abuse the notation by letting (3Q = 1 and Wk = 0. 

We first gain insight into the optimal flow on the path by revisiting the 
example in Section 6.3.5. Then, we will formally prove the optimal flow. 

6.5.1 Example Revisited 

We consider the flow on path V\ to V4 in Figure 6.1. Denote the flow as 
/ = {/1. hi h}- F o r this flow, we have /?i = B\, /32 = B2, and /33 = B3. 

Intuitively, as the relative computation cost increases, the optimal so
lution performs less compression. In the trivial case when the computation 
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cost is prohibitively high, i.e., 7 > W\, no compression is performed, and 
we have the optimal flow as /1 = 7*2 = 7*3 = 1. Otherwise, the optimal flow 
can be obtained by examining the following three cases, depending on the 
relative cost of computation, which is reflected by 7 and Wi\ 

(1) The cost of compressing the input down to fa at node V\ is more 
expensive than routing data of volume fa along the path. In this case, 
the optimal solution is to let V\ compress the data to some x £ [/?i, 1] 
and set f1=f2 = f3= x. 

(2) Otherwise, another compression at node V2 is necessary for reducing 
the total cost. If the cost of compressing the input at V2 to fa is more 
expensive than the communication cost of routing fa over e2 and e%, 
the optimal solution is to set f\ = fa and 7*2 = 7*3 G [fa, fa]. 

(3) The compression is so cheap that it is also beneficial to perform one 
more compression at node V3. In this case, the optimal flow is /1 = fa, 
f2=P2,andf3e[fa,fa]. 

The optimal flow behaves as a piece-wise function of 7 and Wi, which 
abstracts the relative cost of computation. The optimal flow for the above 
example is summarized in Table 6.2. 

Table 6.2 Optimal flow for the example path. 

Case 
1 
2 

3 

4 

Condition 
7 > Wi 

7 < W-i and jL >piW2 

jL<PiW2 and ^ > P2W3 

% < frWs 

Optimal flow 

h = h = /3 = l 
fi=f2=f3e[0i,l] 

/2 = / 3 e [ /3 2 , / 3 i ] 
/ i = / 3 i , / 2 = / 3 2 , 

/3e[ /3 3 , /3 2] 

6.5.2 Determining the Optimal Flow 

Based on the above intuition, we develop the following theorems for deter
mining the optimal / . 

Lemma 6.1 For any optimal flow f over the path p = {Vi, V<i,..., Vk}, 
if fi+i < fi, we have / , = fa. 

Proof. Otherwise, decreasing /j to fa does not change the cost for com
pression over p, since the compression energy is determined by the flow on 
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the last link (Vk-i,Vk). However, this reduces the cost of communication 
over ei, contradicting the optimality of the flow. • 

Theorem 6.1 Given a path p = {Vi, V2, •. •, 14}, if 7 > W\, the op
timal flow is of unit size on all links. Otherwise, suppose that 7 € 
[Wi+i(3f, Wi0$_^\ for some i £ [k — 1]. Then, the optimal flow f is: 

fd) = {/Ji,ft, • •., A-2, A - ^ / V ^ T } , (6.4) 
fc — 2 

w/iere /* = max{/3i; J^r}-

Proof. 
If 7 > W\, then any compression is more expensive than transmitting 

the original data along the path. Thus, the optimal solution is simply to 
transmit the data packet without any compression. Otherwise, the proof is 
as follows. 

First, since both Wi and /% decreases with i, i.e., Wj+i < Wi and 
A < Pi-i, the condition for 7 is valid. Also, since Wkfi\-\ = ® an(^ 
Wx$l = Wi, the range of 7 is [0, Wx]. 

Suppose that 7 € [Wi+i/3^, Wi(5\_-^\ for some j 6 [k — 1]. Suppose that 
x = {x i , . . . ,Xfc_i} is the vector of the optimal flow with cost ex. Let 
/* denote max{/3i, \/^r}- Let / denote the flow constructed by setting 
fj = Xj for 1 < j < i and fj = f*iori<j<k — l. Let e/ denote the cost 
of / . We have 

fc-l i-l fc-l 

£x - £/ = (- + X ! ^WJ') "" (77 + X x ^ ' + ?* X ^') 
X f c - 1 i = i J i=i j=i 

fc-i 

> ( ^ - + X f c - i W i ) - ( - ^ + r W i ) . (6.5) 
Xk-l f 

We define an optimization problem, P(y): 

min P(y) = ^+yWi 
y 

subject to y > pi . 

Equation (6.5) is actually P(xk-i) — P{f*)- It is easy to verify that P(y) 
is a convex function. We consider two cases for 7 e [Wi+i[3f, Wi0f_x\. 
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Case (i): When 7 G [Wift2, Wj/Jf.J, we have , / ^ > ft, implying that 

/* = A/iFr- For the above optimization problem P{y), we have -P'(ft) Wi' 

-%i + Wi < 0 and P ' ( f t - i ) = -75^- + W, > 0, where P'(y) is the first 
Pi Pi — 1 

derivative of P(y). Therefore, the optimal y that leads to P'(y) = 0 lies 
within [ft,ft_i]. By solving P'(y) = 0, we know that the optimal value of 
y actually equals /*. Thus, ex — e/ = P(xk-i) — P(f*) > 0, implying that 
/ is optimal. From Lemma 6.1, and the fact that /* G [ft , f t- i] , we have 
ft = 0j for 1 < j < i. 
Case (ii): When 7 G [Wj+ift2, Wi0f], we have y ^ < ft, implying /* = ft. 
Also, we have P'(ft) = — jfe + Wi > 0. This means that P(y) is an 
increasing function when y > ft. Thus, the value of y that minimizes -P(y) 
is ft. Again in this case, we have ex — e/ > 0, implying that / is also 
optimal. 

Finally, we can combine the above two cases using a max function for 
/*• • 

From Theorem 6.1, the optimal flow is trivial when 7 > W\. Therefore, 
we focus on the case when 7 < W\ in the following discussion. 

Theorem 6.1 reveals the fact that, for an optimal flow from V\ to sink, 
if 7 G [Wi+i(3f, Wi0%_i\ for some i G [k — 1], the flow on the last k — i 
edges is equal to /*. For a closer understanding of /*, in Figure 6.2, we 
plot /* as a function of 7 for the example path from V\ to V4 (Figure 6.1), 
by setting w\ = W2 = W3 = 1, ft = 0.7, ft = 0.6, and ft = 0.5. The labels 
on the x-axis are a\ = W3/3I, (12 = W%{3\, 03 = Wi{3\, a± = W^ft2, and 
05 = WiPi- It can be observed, for example, that when 7 G [as, Wi], /* 
equals \ w~- When 7 is decreased to within [04,05], /* is, however, lower 
bounded by ft, as indicated by Theorem 6.1. 

Let Diam(sink, M) denote the weighted diameter of G with respect to 
R and sink, i.e., the maximum among the shortest weighted path from any 
node in R to sink. 

Corollary 6.1 Given G, ifj> Diam(sink,R) x B\, the Shortest Path 
Tree is the optimal tree for the TDG problem, with the flow specified by 
Theorem 6.1. 

Proof. From Theorem 6.1, the optimal flow from any u G M. along its 
shortest path to sink equals some fixed value within [1,-Bi] for all edges 
along the path. Thus, joint data compression from u with other source 
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relative compulation cost, y 

Fig. 6.2 / * for the example path in Figure 6.1 as a function of 7. 

information only decreases the lower bound of the feasible flow, but never 
reduces the cost. • 

Let 7* = Diam{sink,R)Bi. We refer to 7* as the critical point of the 
problem. 

6.6 Analytical S tudy of SPT and MST 

6.6.1 Analysis for a Grid Deployment 

For analytical tractability, we assume a grid deployment of size r x 2r, where 
r source nodes at the leftmost column need to send information to the sink, 
located at the bottom right corner of the grid (similar network deployments 
have also been studied in [135; 156] for tractable analysis). Each sensor 
node can communicate with its one hop neighbors, i.e., 8 neighbors when 
ignoring boundary effects. We also assume wi = 1 for all e* € E. 

The routing constructed by SPT and MST are illustrated in Figure 6.3. 
Note that although to find an MST for a general graph is NP-Hard, the MST 
for the specific grid deployment in Figure 6.3 is trivial. From Corollary 6.1. 
the SPT is optimal when 7 > 7* = (2r - l)B\. We are therefore only 
interested in the performance of the SPT and MST for 7 € [0,7*]. 

Z"I7\ 
J l l 
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Fig. 6.3 SPT and MST routing schemes for a grid. 

Let SSPT denote the energy cost for SPT and EMST for MST. Using 
Theorem 6.1, ESPT can be calculated as: 

^SPT = \ 

r{r - l)Bi i-l 

2 

1r-i-\ 

+ £ 
when 

T n r* -T J \ 

(jj+jf), 

7 G [(2r - i -

for some 1 < i < r 

r(r - l)B] 

2 

j 

l ) ^ 2 , (2r -

r - 1 

- + !> '% 

= 1 

i)BU 

i = i 

when 7 G [0, (r - l)B?} 

(6.6a) 

3.6b) 

where /* = m&x{Bi, ^ r j} ) and / ' = min{Bi, ?} . Note that for (6.6a), the 
upper bound of 7 equals (2r — 1) when i = 1, which is slightly larger than 
7*. However, this does not affect our further analysis. 

Intuitively, (6.6a) can be understood by the example shown in Fig
ure 6.4. The cost r^r

 2 '
 1 is for packet transmission over edges in triangle 

Ai. The term i^h- corresponds to the computation cost of the i source nodes 
circled in area A2, which have an optimal flow ended with /* on their paths 
to the sink. The cost i(2r — i)f* is for transmitting flow /* from the i source 
nodes in A2 over their last 2r — i hops in A\. The cost ]T]j=i JBj *s f° r 
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2r 

Fig. 6.4 Decomposition of SSPT-

packet transmission from the i nodes in A 2 over edges in A3. The term 
~Y^j=r~ {~h +jf) is the compression cost for the r — i source nodes not in 
A 2, plus the cost of packet transmission from these source nodes over edges 
in A4. The min function in / ' is due to constraint (6.3). 

Let q = 3r — 1. Let i* be the smallest integer such that (q — i*)Bf._1 > 
7*. We also calculate £MST as: 

SMST = < 

q—i—1 »—1 

2 ^ £ V̂  + E ^ 
j=2r—1 j = l 

+«j; + n<l-i)), 
when 7 e [{q - i - 1)5 2 , (g - i ) ^ ] 

for some i* < i < r 
r-l 

g- + Y/jBj+r(2r-l)Br, 
3=1 

when 7 G [0, 2rB2 

(6.7a) 

(6.7b) 

where /* = max{B,, w - ^ } . 

Also, the minimal cost of the TDG problem is lower bounded by replac
ing constraint (6.2) with Wv G R, Ve G p(v),f" < -B|R|, with |R| = r in this 
particular case. In other words, we assume that distributed source coding 
among all source nodes is available at no extra cost. It can be verified that 
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the optimal routing for such a lower bound case forms exactly an SPT. 
Thus, the energy costs for the lower bound, ELB can be calculated as 

£LB 

' 2r^/j(2r - 1), 

for (2r - l)B2
r < 7 < 7* (6.8a) 

g-+r(2r-l)Br, 

for 0 < 7 < (2r - l)B2
r (6.8b) 

Using the example of £SPT, the explanation of SMST and ELB is simple, 
and omitted here. 

Based on the above results, we make the following observation about 
the performance bound of SPT and MST on the specific grid deployment. 

Observation 1 For the grid deployment in Figure 6.3, we have the follow
ing performance bound regarding SPT and MST (refer to Appendix B for 
proof): 

lim ^ ^ = 0(1) (6.9) 
7 ^ 7 * ELB 

i i m ^ l = 0 ( J L ) (6.10) 
7-+0 eLB nr 

lim ^ ^ = 0(1) (6.11) 
7-*7* ELB 

lim ^ ^ = 0(1) . (6.12) 
7 - 0 £LB 

where 7* = (2r — l)B\ is the critical point of the system. 

The main lesson from this observation is that, for this particular grid 
deployment, the energy cost of MST is a constant approximation of the 
optimal cost, regardless of the form of Hi and the relative energy cost 
7. Although theoretically the performance of MST for general graphs is 
unbounded in the worst case, it is natural to conjecture that MST might 
also perform well on average. In fact, our simulation results suggest that an 
approximated MST can be used as a practical routing scheme for solving 
the TDG problem with acceptable performance on average. 

We also notice that when 7 approaches 0, the ratio of ESPT to ELB 

is O(jj-), which indicates that the performance of SPT improves when 
correlation among sources decreases. In the special case when Hr = 0( r ) , 
SPT becomes the optimal structure. 

We verify the above observation through numerical results in the next 
section. 
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6.6.2 Tradeoffs Between SPT and MST 

For the purpose of demonstration, we instantiate Hi using a set of practi
cal joint entropy models from [117]. Specifically, we consider a stationary 
Gaussian random process using a scalar quantizer, with uniform step size 
and an infinite number of levels. Our entropy models fall into 3 classes, 
where d is the distance between source nodes: 

E l : When the correlation coefficient is e~d , H, scales as O(logi) as i —> 
oo [117]. 

E2: When the correlation coefficient is e~d, Hi scales as 0 ( \A log f) as i —> 
oo [117]. 

E3: When all sources are independent of each other, Hi scales as 0(i) as 
i —• oo. 

20 40 60 80 
number of sources 

100 

Fig. 6.5 Entropy models E l , E2, and E3. 

We set Hi = p, where p is the data entropy rate. According to the 
lossless compression ratio for CCITT test images [41], we set p = 0.1. For 
i > 1, we set Hi to plogi for El , py/ilogi for E2, and ip for E3. 1 The three 
entropy functions are depicted in Figure 6.5. Intuitively, the correlation 
among sources is highest in the case of El , and lowest in the case of E3. 

1 While Hi is asymptotically bounded by these functions, we set B , to B,+i if B, < 
Bt+i for small i 's in our numerical calculation to sustain our assumption that Bi > Bj+i . 
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We shall see that this difference does affect the tradeoffs between SPT and 
MST according to Observation 1. 

6.6.2.1 Tradeoffs for Entropy Model El 

In Figure 6.6, we plot £SPT, £MST> and £LB for E l , with r = 40 and 7 
varied between 0 and 0.4 (note that in this case 7* = (2r - l )p2 ss 0.8). 

600 r 11.2 

0.1 0.2 0.3 
relative computation cost (y) 

Fig. 6.6 Performance of SPT and MST for grid deployment with entropy model E l . 

From Figure 6.6, we observe the tradeoffs between SPT and MST with 
respect to variations in 7. When 7 is large, SPT outperforms MST with 
£SPT approaching £LB- This is because large computation cost discourages 
data compression, hence shortest paths from source nodes to sink are pre
ferred for saving communication costs. However, the performance of MST 
is also quite satisfactory when 7 = 0.4, with no more than 10% increase over 
SPT (from our results, £MST is also within 15% off ESPT when 7 = 0.8). 

On the other hand, when 7 approaches to zero, MST provides up to 60% 
energy reduction compared to SPT. This is because when the computation 
costs are low, compressing data from multiple sources before routing to 
the sink provides higher gains by reducing the flow on the tree. In the 
special case of 7 = 0, our problem becomes similar to the scenario studied 
in [135], where tradeoffs between MST and SPT exist due to variations 
in spatial correlation among source nodes — MST outperforms SPT when 
the correlation is high and SPT outperforms MST when the correlation is 
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low. In the case of E l , the spatial correlation captured by Hi = O(logi) 
determines that MST outperforms SPT when 7 = 0, which keeps with the 
results in [135]. 

We also examined different scenarios by varying r from 5 to 150; very 
similar tradeoffs between SPT and MST were observed. 

6.6.2.2 Tradeoffs for Entropy Model E2 

The tradeoffs between SPT and MST are more complicated in the case 
of E2. Based on Observation 1, the asymptotic ratio e^PT, as 7 —> 0, 

approaches •%-, which is 0(^£?) in the case of E2. Compared with the 
0(j-!—) ratio in case of E l , there is an improvement by a factor of 0(y/r), as 
shown by the following numerical results. Moreover, the ratio •&• increases 
with r, which is also verified by our results. 

0 0.2 0.4 0.6 0.8 
relative computation cost (y) 

Fig. 6.7 Performance of SPT and MST for grid deployment with entropy model E2. 

In Figure 6.7, we illustrate the performance of SPT and MST with 
respect to variations in both 7 and r. In this figure, we vary r from 60 
to 140 in increments of 40, and 7 from 0 to 0.8. When r = 60, both 
the performance of SPT and MST is very close to ELB- However, as r 
increases, we can see the degradation of the performance of SPT. When 
r = 140, the tradeoffs between SPT and MST are apparent, and similar to 
those in Figure 6.6. 
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6.6.2.3 SPT is optimal for Entropy Model E3 

In the case of E3, there is no correlation between any sources. Thus, SPT 
is the optimal solution. This conclusion is true for not only the analyzed 
grid deployment, but general graphs as well. 

6.6.3 Summary of Grid Deployment 

Based on the analysis and numerical results for a grid deployment, we draw 
the following insights about the choice of SPT or MST as a routing sub
strate, under different variations of correlation among source information 
and the relative cost of computation. 

(1) When the relative cost of computation is expensive, SPT is preferred. 
(2) When the correlation among source information is high and the relative 

cost of computation is cheap, MST is favored. 
(3) When the correlation among source information is low and the relative 

cost of computation is cheap, the choice depends on the exact charac
teristics of correlation and number of sources. 

In spite of these differences between SPT and MST under various cir
cumstances, Observation 1 indicates that MST delivers constantly bounded 
performance compared to the optimum, regardless of the variations in 7 and 
Hi. Although the above analysis and numerical results are based on a spe
cific grid topology, they imply reasonably good performance of MST for 
general graphs, which is demonstrated in Section 6.8. 

Another important insight is that when 7 varies, the optimal routing 
scheme to TDG shall explore the tradeoffs between SPT and MST. Along 
this direction, we exploit in next section a hierarchically clustered tree 
structure for solving the TDG problem. 

6.7 A Randomized 0 ( l o g 2 v) Approximation 

In this section, we show a randomized algorithm with an expected 0(log2 v) 
approximation performance based on the fc-hierarchically well-separated 
tree (fc-HST) proposed in [18]. The key idea is to approximate the graph 
NG with a set of fc-HST's, such that the routing selected according to a 
randomly chosen fc-HST is expected to have a cost of at most 0(log v) 
times the optimum. 
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We first give the notion of probabilistic metric approximations from [18]. 
Given V denoting a set of v points, let M denote a metric space over V 
where the distance between 1/1,1/2 6 V is denoted by CZM (1/1,1/2)-

Definition 6.1 A metric space N over V dominates a metric space M 

over V, if for every 1/1,1x2 £ V, djv (1/1,1x2) > (IM{UI,U2). 

Definition 6.2 A metric space N over V a-approximates a metric space 
M over V, if it dominates M, and for every 111,1/2 G V, djv(iti,W2) < 
a-dM(u1,u2). 

Definition 6.3 A set of metric spaces S over V a-probabilistically-
approximates a metric space M over V, if every metric space in <S dominates 
M, and there exists a probability distribution over metric spaces TV G S, 
such that, for every 1x1,1/2 € V, E{dw(1/1,1/2)) < a • ^M(1/111/2)-

Definition 6.4 A fc-hierarchically well-separated tree (fc-HST) is defined 
as a rooted, weighted tree with the following properties: 

• The edge weight from any node to each of its children is the same. 
• The edge weights along any path from the root to a leaf are decreasing 

by a factor of at least fc. 

In the above definition, k > 1 is a pre-specified constant. The main 
results in [18] can be simply stated as follows: 

Theorem 6.2 Every weighted connected graph NG with v vertices can be 
a-probabilistically-approximated by a set of k-HST's constructed from NG, 
denoted as S, where a = 0(log v). Moreover, the probability distribution 
over S is computable in polynomial time. 

The construction of the fc-HST's is based on a randomized recursive 
partitioning algorithm. Regarding TVG as a cluster of nodes, the algorithm 
starts by randomly partitioning TVG into a set of sub-clusters, with each 
sub-cluster having a diameter at most l/k of the diameter of TVG. A set of 
nodes are then created for TVG and each of the sub-clusters. These nodes 
form a tree rooted at the node created for TVG with all the edge weights 
set to 1/fc of the diameter of TVG. The above procedure is recursively 
performed for each sub-cluster, until each sub-cluster contains only one 
node from TVG. Details of the construction of the set of fc-HST's can be 
found in [18]. 

Using these metric approximations, we can claim the following theorem. 
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Theorem 6.3 Given a TDG problem on graph NG with optimal cost C, 
there is a feasible solution on the set of k-HST's that a-probabilistically-
approximates NG with the expected cost (over the distribution on the k-
HST's) to be at most aC. 

Proof. Consider an arbitrary path from the optimal tree to the TDG 
problem, denoted T*. Without loss of generality, let let p = {Vi, V2, • • •, Vk} 
denote the path from V\ to sink, where V\ is the source node, k is the 
number of nodes on the path, and Vk is the sink. We use the notations 
in Theorem 6.1. Let fj denote the flow on link ej = (Vj,Vj+i), where 
j G [k — 1]. Prom Theorem 6.1, the cost of p, C(p) can be calculated as: 

i - l fc-l 

3=1 j j=i 

where 7 G [Wi+1/3f, Wj/^-i] for some i, and /* G [A.f t - i ] . 
Consider any edge ej = (Vj, Vj+i) on p. We associate with the edge, 

in an arbitrary tree M G S, a path Mej between Vj and Vj+\ of length 
^M(^j) = WiOLM, where E(OLM) = 0(a). Thus, the path p is associated with 
a path in M, denoted as PM = {Mei,Me2,... ,Mek_1}. In the following, 
we construct a feasible flow on PM and bound the cost of this flow by 0(a) 
times the cost of p. Note that the path PM may not be simple, but this 
does not affect the construction of a flow on the path, or the calculation of 
the cost of the flow. 

For each path in Mej G M that corresponds to an edge in ej G T*, let 
P'k denote the lower bound of the flow over each link e'k along Mej. Now 
consider the optimal tree T* and the tree composed of all Me. 's, denoted as 
TM- Since the number of source nodes that have their flow going through 
e'k in TM cannot be less than the number of flows going through ej in T*, 
we have j3'k < f3j. Recall that fj is the flow on edge ej over p in the optimal 
solution. Thus, setting the flow on each edge of Mej to be fj gives a feasible 
flow on PM- Moreover, the expected cost of this flow can be calculated as: 

i - l fe-l 

C(PM) = J2 dM(ej)Pj + -J + /* E dM(ej) 
j=i J j=i 

i - l fe-l 

<aM^2wi$i + 7^ + aMf* ^2Wj 
j=\ * j=i 

< aMC(p) 
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where 7 e [Wi+i/??, Wi^JLj] for some i, and /* G [A,A-i]-
The above result indicates that for each path in T*, we can construct 

a feasible path in an arbitrary M G S, with the cost of the path to be 
bounded by CXM- Since the cost of T* is the sum of C(p) over all nodes in 
R and E(O<M) = 0(a), the theorem is proved. • 

The optimal solution to a TDG problem over a tree T is simply the 
composition of routes from each node in R to sink on T. By mapping each 
route in T to a path in NG, we can construct the data gathering tree in 
NG. The problem with the mapping is that from the construction of T, 
every node in NG actually corresponds to a leaf in T, which means we 
need to map every internal node in T to a node in NG. To handle this 
issue, we simply map each internal node in T to an arbitrary node in the 
cluster corresponding to the internal node. Prom the fact that the weight 
of any edge incident from the internal node is 1/k of the diameter of the 
corresponding cluster, the possible increase in path length resulting from 
the above mapping is bounded by a factor of fc. 

We therefore have the following algorithm: 

(1) Choose at random a tree T G S. 
(2) Map the route from each Vi € M to sink on T to a path on NG (which 

is also from Vi to sink) as described in Theorem 6.3. 
(3) Determine the optimal flow on each path, based on Theorem 6.1. 

Theorem 6.4 Given a TDG problem on a graph G, the above randomized 
algorithm gives a 0(log v) approximation. 

6.8 Simulation Results 

6.8.1 Simulation Setup 

A sensor network was generated by randomly scattering v sensors in a unit 
square with a uniform distribution. The communication range of the radios 
was set to r, which indicates that the average number of neighbors for each 
sensor node was virr2 (ignoring the boundary effect). The weight on each 
edge could be modeled by using various path-loss models from wireless 
communications. In our simulation, we set the weight on each edge to be 
the geometric distance between the two nodes incident to the edge. The 
sink node was fixed at the left-bottom corner of the square, while the source 
nodes were randomly selected from all the nodes in the square. Since SPT 
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is always the optimal solution in E3, we present results for both El and E2 
entropy models with an emphasis on El . 

The performance of the 3 tree construction methods, SPT, MST, and 
A;-HST (or simply HST hereafter), was studied in our simulations. While 
SPT and HST can be constructed based on polynomial time algorithms, the 
construction of MST is NP-Hard for general graphs. We used the Greedy 
Incremental Tree (GIT) algorithm [100], which gave a 2-approximation 
MST [180], with A-MST denoting the resulting approximated MST. The 
lower bound of the TDG problem was obtained using the relaxation method 
described in Section 6.6. 

All the data shown in this section was averaged over more than 300 
instances, such that they have a 95% confidence interval with a < 2% 
precision. For each instance, the sensor field was randomly generated using 
the above procedure. 

6.8.2 Results 

6.8.2.1 Main Results 

For the results shown in Figure 6.8, we fixed v = 600 and r = 0.2, while 
varying 7 within [0,0.003] so that we could focus on the tradeoffs between A-
MST and SPT. We observed that the simulation results for general graphs 
confirmed the analytical tradeoffs between SPT and A-MST in Section 6.6. 
In the case of entropy model El , the performance of SPT approached the 
lower bound as 7 increased, while A-MST outperformed SPT when 7 tended 
to zero. As expected, HST performed in between SPT and A-MST through
out the variations in 7. More importantly, A-MST demonstrated accept
able performance throughout the variations in 7. The curve of EMST/ZSPT 

clearly showed that A-MST offered 50% energy savings over SPT when 
7 = 0, and < 15% increase over SPT at high 7. 

In the case of entropy model E2, we observed the expected performance 
improvement of SPT over the case of El . For the sub-case of 200 source 
nodes, the performances of SPT and A-MST were very close to the lower 
bound. When the number of sources was increased to 400, the tradeoffs 
between SPT and A-MST became observable. This conformed with the 
analytical results for the grid deployment in Figure 6.7, which indicate that 
the choice between A-MST and SPT depends on the exact entropy model, 
as well as the number of sources. 
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Fig. 6.8 Main simulation results (v = 600, r = 0.2). 

We also conducted simulations using other values of v, with similar 
performance trends observed. 

The simulation results presented here indicate that when the entropy 
model and relative computation cost 7 are known, either SPT or A-MST 
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can be selected accordingly as a practical routing scheme. When 7 is un
known or demonstrates high variations, HST can be used to provide an 
approximation with a theoretically guaranteed performance bound. Never
theless, in practice, the simple A-MST performs well on average, with only 
slight degradation compared to SPT when 7 is large, or the correlation 
among sources is low. 

In the following, we focus on the results for entropy model El . 

6.8.2.2 Impact of the number of source nodes |R| 

For the results shown in Figure 6.9, we fixed v = 600, r = 0.2, while setting 
|M| to 25 or 100 and varying 7 within [0,0.003]. The energy costs of all tree 
structures increased with |M|. Nevertheless, the tradeoffs between SPT, 
A-MST, and HST still held for different values of |M|. 

6.8.2.3 Impact of the communication range r 

For the results shown in Figure 6.10, we fixed v = 600, |R| = 50, while 
setting r to 0.1 or 0.3 and varying 7 within [0,0.003]. The tradeoffs between 
SPT, A-MST, and HST were still apparent for different r. We also observed 
that increasing r led to a very similar impact on the performance of different 
tree structures as when v increased. This is because increasing r also results 
in an increased number of neighbors, which in turn offers opportunities for 
better tree construction. However, since SPT always routes through the 
shortest path, which may hinder data aggregation, SSPT increased with r 
when 7 = 0. 

6.9 Summary 

In this chapter, we have studied the Tunable Data Gathering (TDG) prob
lem of constructing a data gathering tree in wireless sensor networks, while 
taking both computation and communication energy into consideration. 
Such problems are important for the development of advanced and complex 
applications for sensor networks that involve increasingly high computation 
energy costs. In the TDG problem, tunable compression is applied to re
alize the fundamental tradeoffs between computation and communication 
energy. 

We have developed a suitable energy model for tunable compression, 
and a flow based model for gathering information from correlated sources. 
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(b) |R| = 100 

Fig. 6.9 Impact of the number of source nodes, |R|, and the relative computation cost, 
7, on energy costs (y = 600, r = 0.2). 

We have derived the optimal solution for scheduling tunable compression at 
different nodes on a given data gathering tree. Based on this, we have both 
analytically and empirically illustrated the tradeoffs between two data gath
ering trees, namely the Shortest Path Tree (SPT) and the Minimal Steiner 
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Fig. 6.10 Impact of the communication range, r, on energy costs (v = 600, |R| = 50). 

Tree (MST). We showed that SPT performs close to optimal when the rela
tive computation cost 7 is high, while MST performs better when 7 is low. 
Thus, the availability of such information would help the network designers 
to select the appropriate routing scheme. When information about 7 is un
known, or if it shows large application-specific spatio-temporal variations, a 
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randomized algorithm can be used to provide a guaranteed poly-logarithmic 
approximation. However, we have shown that the simple (greedy) approxi
mation of MST (A-MST) provides a constant-factor approximation for the 
grid deployment and acceptable performance on average for general graphs. 
Due to its simple implementation, the A-MST is attractive for practical ap
plications. 

One important piece of future work is to identify suitable techniques 
or algorithms that can be used to realize tunable compression for data 
gathering, such as for algorithms intended for multimedia processing. It 
is crucial to develop accurate energy models for these techniques to apply 
the algorithms described in this chapter. We are interested in exploiting 
resource-intensive advanced sensor network applications that may actually 
gain benefits from our work. 





Chapter 7 

Conclusions 

7.1 Concluding Remarks 

We have presented techniques for three specific topics centered around 
cross-layer optimization for energy-efficient information processing and 
routing in wireless sensor networks. These three topics include data process
ing within a collocated cluster, data transportation over a data gathering 
tree, and information routing with tunable compression. We summarize 
the three topics along four dimensions: their functionalities, objectives, 
performance constraints, and the involved tradeoffs. 

From the perspective of application level functionality, the three topics 
cover various stages of information processing and routing, including in-
cluster information processing, information transportation over a given tree 
substrate, and the construction of a routing tree. As pointed out in Chap
ter 1, these three topics are particularly suitable for certain cluster-based 
network infrastructure [72; 167; 207; 208]. In such infrastructures, infor
mation sensing and processing is performed in a localized fashion in each 
cluster, while the outputs from all clusters are routed to the base station. 
By addressing these various stages of information processing and routing, 
we believe our work provides a framework over which various extensions 
can be further explored. We are also aware of other schemes for informa
tion processing and routing, such as the network flow-based scheme [78; 80; 
92]. To apply the presented optimization techniques in the context of such 
schemes is a very interesting topic. 

From the perspective of optimization objectives, we aim to (1) balance 
the energy cost of sensor nodes for the topic of in-cluster processing, and (2) 
minimize the overall energy costs for the other two topics — information 
transportation and routing. While both objectives can be used to improve 
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the energy-efficiency of the system, their advantages and disadvantages still 
have not been well quantified by any research efforts at this time. In general, 
balancing the energy cost can provide fairness in the lifetime of sensor 
nodes. By avoiding the so-called "hot spots" in the network (heavily loaded 
sensor nodes that die earlier than other nodes due to depleted energy), we 
gain advantages in terms of network connectivity and coverage. However, 
balancing the energy cost may not lead to a minimal overall energy cost, and 
therefore a reduced system lifetime. It has been suggested that in a highly 
dense network, energy-balance can be realized by other system knobs, such 
as sleep scheduling. Therefore, we can simply minimize the total energy 
cost of waking sensor nodes, while still achieving a certain degree of energy 
balance across the system through sleep scheduling. Future work is needed 
to justify the tradeoffs between balancing the energy cost and minimizing 
the overall energy costs. 

From the perspective of performance constraints, we have considered 
real-time latency constraints for both in-cluster processing and information 
transportation over a given tree substrate. Optimization under such con
straints is important for many mission-critical applications envisioned in 
the near future [22; 25; 115]. One of the unsolved issues is that the la
tency constraint for the above two operations is normally given as a whole 
from the user. It is not clear how to break the constraint into two parts, 
and apply them separately. In the topic of information transportation over 
a given tree, the impact of joint information entropy is addressed by as
suming a given aggregation function. The constraint of joint information 
entropy is explicitly considered while constructing a routing tree with tun
able compression. The latency constraint, however, is not considered in 
this topic, due to its high complexity. We also note that there are other 
performance metrics, including throughput and information fidelity, which 
can be considered in the future. 

From the perspective of the involved system knobs, we have presented 
a unified scheme for the voltage scaling and rate adaptation of in-cluster 
processing to explore the tradeoff of energy vs latency. A similar tradeoff is 
explored for information transportation over a given tree. Although not ex
plicitly emphasized, the work on in-cluster processing also achieves a certain 
balance between the computation and communication energy costs. Such 
a balance is explicitly addressed using tunable compression in information 
routing. When other performance metrics are considered, we can imagine 
a larger tradeoff space by employing different system knobs accordingly, 
including those to be discussed in the next section. 
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7.2 Future Work 

There are several possible directions, in which to extend the research pre
sented in this book. We first discuss in detail the notion of adaptive fidelity 
algorithms, an interesting system knob that is closely related to the pre
sented work. We then identify a set of future directions in a broad context 
of information processing and routing for sensor networks. These avenues 
of research are chosen to address issues including node mobility, wireless 
communication reliability, and integration with existing technologies. 

7.2.1 Adaptive Fidelity Algorithms 

Adaptive fidelity algorithms were briefly mentioned in Chapter 6. Accord
ing to the definition by Estrin et al. [60], "an adaptive fidelity algorithm is 
one where the quality (fidelity) of the answer can be traded against battery 
lifetime, network bandwidth, or number of active sensors." At a higher 
level of abstraction, the fidelity of the information delivered to end users is 
one of the application-level performance metrics that can be traded with 
others, including computation and communication capabilities and energy 
cost. By considering the adaptive fidelity algorithm, we enlarge the design 
space of cross-layer optimization by one more dimension. 

One example given by Estrin et al. [60] is selectively switching off a cer
tain portion of sensor nodes during object localization. While the precision 
of the object location may be compromised due to fewer sensor nodes being 
involved in the triangulation process, the energy costs of the localization 
is also reduced. Consider another example of JPEG in image compression. 
Studies have shown that by tuning two parameters — quantization level 
and Virtual Block Size (VBS) — it is possible to trade image quality with 
both processing delay and compression output size [182]. While process
ing delay can be linearly translated to computation energy, the output size 
can also be translated to either bandwidth requirement or communication 
energy. 

To apply adaptive fidelity algorithms in the context of information pro
cessing and routing in sensor networks involves several challenges. The 
major challenge is to identify the suitable system knobs to realize graceful 
tradeoffs between the information fidelity and energy costs. This identifi
cation is application-specific, as illustrated by the following two examples. 

The first example is the so-called energy scalable algorithm proposed 
by Sinha et al. [171]. An algorithmic transform is performed such that 
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a graceful energy vs quality scaling can be achieved for a specific set of 
computations. Consider the simple example of calculating the sum of a 
list of numbers. The key idea of the transform is to sort the vectors so 
that the numbers that might dominate the final sum are accumulated first. 
Intuitively, if the energy budget is not sufficient for performing all the re
quired adding operations, the last several numbers are least significant, 
and ignored. By doing so, the accuracy of the final sum can be sacrificed 
for energy cost. Such a transform may be more complicated for other ap
plications. Moreover, the overhead of the transform should be relatively 
small. (The reader may refer to [171] for several examples pertinent to real 
applications.) 

When image compression is involved in video surveillance applications, 
the aforementioned two system parameters — quantization level and VBS 
— can be used to adjust the quality of the delivered image in terms of both 
computation and communication energy costs. Intuitively, the quantiza
tion level affects the precision of the sampling, while the VBS tunes the 
fraction of pixels that are sampled by the compression algorithm. Either 
increasing the quantization level or decreasing the VBS leads to degraded 
image quality, and a smaller output size after compression. 

Another challenge lies in the relationship between adaptive fidelity al
gorithms and other system knobs, including the three investigated in this 
book. For instance, it is not clear yet how the above algorithmic transform 
can be integrated with voltage scaling to further reduce energy costs. 

Moreover, it is understood that the integration of adaptive fidelity al
gorithms with other system knobs should also be quite application-specific. 
Thus, identifying the set of applicable system knobs for a specific appli
cation scenario is a crucial step (which in fact already holds in the broad 
context of cross-layer optimization). 

7.2.2 A Broad View of Future Research 

7.2.2.1 Mobile Sensor Nodes 

The work presented in the book is based on static networks, where the 
mobility of sensor nodes is not considered. Another trend in WSNs is the 
integration of mobile nodes into a static network [81]. The presence of 
mobile nodes changes the basic method for routing information across the 
network, implying a possible integration of existing results in mobile ad hoc 
networks with coding techniques for correlated information sources. 
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An interesting approach for information processing and routing in mo
bile WSNs is to use mobile nodes to transport and gather information from 
stationary nodes, which in most cases are sparsely dispersed. In such an 
approach, mobile nodes affect the decomposition of system energy costs. 
A large portion of the system energy is spent moving the mobile nodes. 
Thus, carefully scheduled node movements are crucial to maximize the sys
tem lifetime. Information availability and correlation among sources can 
be used to schedule the movements, so that energy is saved by avoiding 
visiting nodes with no new information. 

Various tradeoffs between the energy costs and the quality of the gath
ered information can be explored. In the case of unlimited storage at all 
stationary nodes, the quality of the information can be captured by the 
timeliness of the gathering process. In the case of limited storage, stale 
information at stationary nodes needs to be discarded when the storage ca
pacity is approached. The quality of the information can also be evaluated 
by its completeness. 

There are also types of WSNs where all nodes are mobile, and need to 
cover the monitoring environment autonomously [81]. In this case, tradeoffs 
between the energy cost of the system and its coverage can be explored. 

7.2.2.2 Routing Diversity 

Routing diversity has been considered in various studies [66; 70; 97; 104; 
126]. Two models have been considered, each with different focuses. When 
multi-path routing is considered at the routing layer, a simple disk model is 
often used to abstract the wireless transmission [66]. The key is to identify 
a set of disjoint paths by which to route the packets, so that a reliable 
packet delivery can be achieved despite unreliable wireless communication. 
Besides opportunistic data aggregation, existing techniques for multi-path 
routing have not formally addressed the issues of collaborative information 
processing with routing. Addressing these issues is challenging, due to the 
fact that multiple information flows from the same source become possible 
in the network. However, to perform data aggregation efficiently is crucial 
to reduce the relatively high cost of multi-path routing. 

At the physical layer, routing diversity considers the exact behavior of 
fading channels using probabilistic models, and exploits the broadcast prop
erty of wireless transmission to provide increased throughput and reliabil
ity [70; 97; 104; 126]. For example, the transmission of the same packet from 
multiple nodes can be coordinated to achieve the effect of multi-antenna 
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transmission [97]. However, existing studies on routing diversity at the 
physical layer have not considered the collaboration between information 
processing and routing, which is an interesting and challenging topic for 
future work. 

7.2.2.3 Sleep Scheduling 

Sleep scheduling is also an important and widely used technology for low-
traffic scenarios. It has been applied to various layers for different purposes, 
including reducing interference at the physical layer, optimizing packet 
scheduling at the MAC layer, enabling topology and routing control at the 
routing layer, and tuning sensing coverage at the application layer. It is not 
clear, however, how to integrate the techniques proposed in this book with 
the sleep scheduling of nodes. In the following, we discuss several relevant 
issues. 

From the perspective of the entire system, the topology and routing con
trol at the routing layer leads to a possible re-construction of the network 
infrastructure, including clustering and routing tree topology. Thus, there 
should be certain mechanisms to signal the changes in cluster members, 
or the structure of the routing tree. Subsequent operations to schedule 
the computation and communication tasks accordingly are also necessary, 
in light of such changes. For example, for the problem of information 
transportation over a tree substrate, our on-line protocol can also be used 
to handle changes in the tree structure based on its feedback mechanism. 
However, for the problem of in-cluster processing, an on-line adaptation 
mechanism is missing. A basic approach is to re-calculate the task assign
ment every time changes in the cluster occur, with the hope of amortizing 
the cost of re-calculation in the case that such changes are rare. More 
efficient approaches are expected for real systems. 

From the perspective of individual nodes, it is not clear how our rate 
adaptation based techniques can co-exist with sleep scheduling based proto
cols on a specific node. In fact, it is not clear how sleep scheduling policies 
designed at different layers can co-exist in the first place. It seems that 
coordination among these techniques is needed to provide an arbitration 
policy, so that decisions for the most significant functionality can override 
decisions for less critical needs. Considering the fact that there could poten
tially be multiple applications simultaneously running in the system, this 
kind of coordination is not always easy. For example, using rate adaptation 
on a sensor node may reduce both space and time re-usability for nodes in 
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proximity, which may affect the behavior and performance of certain sleep 
scheduling based protocols. 
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Appendix A 

Correctness of EMR-Algo 

Proof of Lemma 5.1: => Condition (1) trivially holds for an optimal solu

tion. Otherwise, we can always increase r* without violating the latency 

constraint, and thus decrease the energy dissipation of V*. Note tha t this 

condition does not mean the length of all paths containing Vi equals T, as 

demonstrated by the second example in the comments after the proof. 

Let A denote a matr ix of size M x v, where ^4[i][j] = 1 if and only if 

Vj € pi- Intuitively, the l 's in the z-th row of A indicate the set of nodes on 

pa th pi. Let f be a M x 1 vector with all elements equal to I \ Then O P T P 

is the minimization of / ( r ) , subject to AT — Y. Based on the first-order 

necessary condition for linearly constrained problems [119], there exists a 

vector of values A = ( A i , . . . , \M)T , such tha t 

Vf(T*) + AT\ = 0 (A.l) 

where V / ( T * ) is a column vector with the part ial derivative gT
r» ' = Wi(r?) 

as the i-th element. By solving equation A. l , we have, for any internal node, 

Vi, 

MO+ E xi = ° (A-2) 
r-Viepj 

The sum in equation A. 2 sums up Aj's such tha t pa th pj passes through 

Vi. Since any pa th containing the children of Vi must also pass through Vi, 

we have 

E xi = E { E M (A-3) 
j.ViEpj (k,i)eE j:VkePj 

Thus, the necessary condition of optimality can be obtained by adding 

equations A.2 for all the children of V, and subtracting equation A.2 for Vi. 
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<= The proof follows the fact that the feasible space of OPTP is convex 
and compact. • 

Comments: We examine Lemma 5.1 in three interesting examples. 
In the first example, consider a linear array of v sensor nodes. Assume 

that the latency constraint is tight enough so that J^i rni > > T. Let T* 
denote the optimal schedule. It is understood from Lagrangian relaxation 
that for the optimal solution, the first derivatives of the energy function on 
all edges shall be equal to each other and Y1V Tt = ^- Hence, Lemma 5.1 
holds. 

In the second example, consider an aggregation tree T = (V, L) where 
V = {V1,V2,V3,Vi} and L = {(1,3), (2,3), (3,4)}. Let r* denote the opti
mal schedule of such a problem. Assume that m^ + m^ > V and mi is far 
smaller than 7712, m^, and T, such that we have rj* = mi < T% in the optimal 
schedule. In this case, we have W\(T*) = 0. Moreover, since the transmis
sion time over (1,3) is dominated by the transmission time over (2,3), it 
suffices to find an optimal schedule for the sub-problem that consists of 
edges (2,3), (3,4) only. From the first example, we have W2(T%) = 103(7-3) 
and T£ + T£ = r for the optimal solution, which follows from Lemma 5.1. 
Also note that in this case, the length of path {Vi, V3, V4} is less than T. 

In the third example, consider an OPTP problem with an extremely 
large latency constraint (e.g., T = 00) such that the optimal schedule is 
obtained by setting T? = rrii for i = 1 , . . . , n — 1. In such a case, we have 
Wi(r*) = 0 for i = 1 , . . . , n — 1, which again respects Lemma 5.1. 

More importantly, we note the following fact in the optimal solution for 
the third example. Let 6i denote the start time for packet transmission from 
Vi. Ideally, di can be determined as maxQ^eE(9j +r*j). However, due to 
the laxity in the latency constraint, we can safely increase the start time of 
packet transmissions to some extent without compromising the optimality 
of the schedule. To prevent such situations, we adopt a strict definition of 
6i in the proof of Lemma A.l and Theorem 5.1 such that 9i must equal 
max(;M)61L(0j +r*j). 

Corollary A . l Consider an optimal schedule, T*, of OPTP; the follow
ing hold: 

(1) Suppose T* = rrii for some V, G V, we have r* = m,j for all sensor 
nodes in Tj. 

(2) Suppose T* < rrii for some 7; 6 V, we have r* < rrij for all ancestors 
ofVi. 
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Proof of Corollary A.l: 

(1) Since r* = m» implies S ^ e L ^ C 7 ' / ) = ^ ( r * ) = °. w e n a v e r / m i 

mj for all sensor nodes in for all children of Vi- Thus, we have T 
the subtree rooted at Vi. 

(2) Let Vj denote the parent of Vi. r* = rrii implies WJ(T*) < Wi(r*) < 0; 
therefore r* < rrij. D 

V, V 

Pig. A.l A problem instance of 2-Lev-OPTP 

We now define the level of a tree as the greatest number of edges con
tained by any path in the tree. We consider an OPTP problem with a two-
level aggregation tree with exactly one internal node that has p children (see 
Figure A.l). We call the above problem 2-Lev-OPTP. Let Vp+i denote the 
internal node, with Vp+2 denoting its parent and C = {Vi,..., Vp} denoting 
its children. Assume that for any Vi G C, a packet is ready to transmit at 
time Si and 14+2 must receive aggregated information from Vp+i by time 
t. We first prove the following lemma: 

Lemma A . l Let r* = {T-J*, . . . ,T*+1} denote an optimal schedule to the 
2-Lev-OPTP problem as defined above; the following hold: 

(1) The schedule T* is unique. 
(2) Let sp+i denote the start time of packet transmission from Vp+i to 14+2 

in the optimal schedule, i.e., sp+i — max.Vi&c(si+T*). Then sp+i never 
decreases when (a) some Sj 's, Vi € C, increase, holding t fixed; or (b) t 
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increases, holding st 's fixed, for all Vi G C; or (c) both some Si's and t 
increase. 
Let T> denote the set of sensor nodes that increase their transmission 
start time in cases (a) and (c). Then, in particular, sp+i increases in 
case (a) if for any Vi £ D , we have sp+i — Si < rrii; or in case (b) we 
have t — sp+i < m p+i; or in case (c) we have either of the previous two 
conditions hold. 

(3) Sp+i never increases when (a) some (> 1) s, 's, Vi € C, decrease, hold
ing t fixed; or (b) t decreases, holding Si's fixed, for all Vi G C; or (c) 
both some Sj 's and t decrease. 
Let T>' denote the set of sensor nodes that decrease their transmission 
start time in cases (a) and (c). Then, in particular, sp+i decreases in 
case (a) if for any Vi G V, we have sp+i — Si < ma or in case (b) we 
have t — sp+i < mp+\; or in case (c) we have either of the previous two 
conditions hold. 

Proof of Lemma A.I: 

(1) The uniqueness of the optimal solution follows the strict convexity of 
the energy functions. 

(2) From Lemma 5.1, the optimal schedule r* must satisfy Y^=i ^i(Ti) = 

WP+\(T*+1). Moreover, we have r* < m, for i = 1 , . . . ,p + 1. In the 
following, we prove property (a). 
We first assume that the transmission start time of exactly one child of 
Vp+i increases. That is, for some Va G C, sa increases to s'a. Let sp+i 
denote the start time of packet transmission from Vp+i in the resulting 
optimal schedule. We consider the following two cases. 
Case (i): Suppose that in schedule T*, T* < ma. This implies that 
sP+i = sa + T*. Otherwise, a schedule with less energy dissipation 
than T* can be constructed by increasing r* by S < min{sp + 1 — (sa + 
T*), ma — T*} without affecting T*+1 or violating the latency constraint. 
Similarly, we have T*+ 1 < mp+i and sp+i + T*+ 1 = t. 
Now we consider the problem resulting from increasing sa to s'a. Sup
pose that in the new packet schedule, we still enforce the transmission 
by Vp+i to start at sp+i, we have: 

wa{rl -{s'a-sa))+ Yl Wi{r*) < Y Wi{r*) 
Vi£CAiy£a ViEC 

= WP+1(T;+1). (A.4) 
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The above inequality comes from the fact that the first derivative of an 
energy function is strictly increasing, due to its strict convexity. 
Or, we may start the transmission by Vp+\ at sp + i + (s'a — sa) in the 
new schedule. Since T*+ 1 < mp+\, we have: 

^ O ( T * ) + ^2 Wi(min{r*+ (s'a-sa),mi} 
VieCAi^a 

> E *<(<) 
Vi€C 

= WP+1(T*+1) 

> ™P+l(Tp+l ~ (s'a - sa)) • (A.5) 

Equations A.4 and A.5, and the uniqueness of the optimal schedule, 
imply that sp+i < sp+1 < sp+i + (s'a - sa). 
Case (ii): Suppose that in schedule r*, T* — ma; hence, we have 
sp + i — sa > ma- If sp+i — s'a< ma, a similar analysis as in Case (i) can 
be carried out to show that (sp+i < sp+i < sp+i + (s'a — sa). Otherwise, 
T* remains an optimal schedule, implying that sp+i = sp+i. 
In the case when multiple Sj's {Vi G C) increase, it can handled by in
creasing these Si's one after another, and the lemma still holds. Prop
erty (b) can be analyzed in a similar fashion. Also, Property (c) can 
be handled by first increasing Sj's and then increasing t. 

(3) This part of the lemma is actually an inverse case of part (2) and can 
be easily proved by contradiction. • 

Now we present the proof of Theorem 5.1. 
Proof of Theorem 5.1: 

(1) Recall that EMR-Algo works in iterations: for each iteration k, the 
algorithm determines s^ by decreasing i from v — ltoM+1. Since the 
EMR-Algo initializes s* = 0 for i = 1 , . . . , v — 1, it follows that s? < 5̂  
for each i = 1 , . . . ,v — 1. Suppose that i' > 1 and k' > 1 is the first 
time that there is a violation; that is, sf, > s*, + 1 . 
Consider the 2-level aggregation tree formed by Vj' together with its 
parent, denoted as Vp, and its children, denoted as set C. We have 
sp < Sp'+1, and s* _ 1 < sf, for each Vi e C. 

From line 8 in EMR-Algo, the time stamps sp and s^ _ 1 ' s actually give 
the boundaries within which EMR-Algo determines s^ . Similarly, the 
time stamps sp

+1 and s^ 's give the boundaries within which EMR-
Algo determines s^ + 1 . From part (2) of Lemma A.l, we have s* < 
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gk +i_ rpĵ g c o n t r a c j icts the assumption s\, > s^, + 1 and hence property 
(1) holds. 

(2) It is obvious that S® < s*, for each i = 1,... ,v — 1. Similar to the proof 
for property (1), suppose that %' > 1 and k' > 1 is the first time that 
there is a violation; that is, s% > s*,. 
Again, consider the 2-level aggregation tree formed by Vi> together with 
its parent, denoted as Vp, and its children, denoted as set C. We have 
st < Sp, and si ~ < s*, for each Vi G C. The time stamps sp and 
s'l _ 1 ' s actually give the boundaries within which EMR-Algo deter
mines sf, . Similarly, the time stamps s* and s?'s give the boundaries 
within which EMR-Algo determines s*,. Part (2) of Lemma A.l again 
leads to the contradiction that s^, < s*, and proves property (2). 

(3) We prove by contradiction, and hence assume that j = max{i : s?° < 
s*}. Let Vp denote the parent of Vj and Vg denote the parent of Vp. 
We have s£° = s* and s^° = s*. Since r? is optimal, we have T* < rrij. 
We consider two cases: 
Case (i): We suppose that T* < rrij. Considering the 2-level tree 
formed by Vp, Vg and the children of Vp, denoted as C, we have s^° < si-
and s?° < s*, for each Vi G C A i =/= j . Suppose that we run EMR-Algo 
for one more pass, and let sp denote the resulting start time for the 
transmission from Vp to Vg. From part (3) of Lemma A.l, we have 
s£° - (s* — s^°) < §p < s^° = s*, contradicting both property (1) for 
Vp and the definition of j . 
Case (ii): We assume that T* = rrij. From part (1) of Corollary A.l, 
we have r* = m, for any Vi G Tj. Moreover, we have sp^ — s^ > 
sp — s* = T* = rrij. Obviously, we shall have r?° = rrij. Again from 
part (1) of Corollary A.l, we have T?° = rrii for any Vi G Tj. Based on 
the definition of s^° and s*j, we obtain the contradiction that sf = s*. 
U 



Appendix B 

Performance Bound of SPT and MST 
for TDG problem with grid 

deployment 

Proof. 
We first lower bound the optimal cost. From (6.8a) and the fact 7* 

(2r - l)L\ = Q(r), we have 

lim^ ELB = ^{ry/yr) = fl(r2) and 

lim eLB = fl(r2Lr) = Q,{rHr) 
7—>0 

Equation (6.9) directly follows from Corollary 6.1. To prove (6.10), we 
bound the cost of SPT based on (6.6b). From the condition in (6.6b), we 
have Y~ < rLr = Hr and thus 

r(r _ ]_)Li r~1 

lim eSPT < n + 2rHr + V Hj 
3=1 

= 0(r2) + 0(rHr) . 

Hence, (6.10) follows. 
From the condition in (6.7a), 7 —> 7* implies i —> i*. Also, we have 
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"?t + f*{q — i) < jj1—\-Li-i{q — i) < 0(Li-i(q — i)). The second inequality 

comes from the boundary of 7 in (6.7a). Since 7* = (2r — l)Lf, we have 

q—i* — 1 i* — 1 

lim^ EMST = 0{Jr ^ A/7) + ^ #,-
7 ^ 7 j = 2 r - l j=l 

+ 0 ( i * ( g - i * ) L i . _ i ) 
- 1 

Thus, 

0 ( r 2 ) + X ) ^ + 0 ( ( 9 - n ^ i - - i ) 
i= i 

0( r 2 ) + 0(7\H,.). 

lim £MST - ° ( r 2 ) + ° ( r f f r ) 

7^7* £LB f2(r2) 

= 0(1) + 0 ( ^ ) = 0(1) 

Lastly, we bound the cost of lim7^o £MST- From the condition in (6.7b), 
we have -g- < 2rLr. Hence, 

r - l 

lim eMST < 2r2Lr + V Hj + r(2r - l)Lr 

= 0(rHr) 

and (6.12) follows. D 
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