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PREFACE

Linear algebra is a beautiful and mature field of mathematics, and mathe-
maticians have developed highly effective methods for solving its problems.
It is a subject well worth studying for its own sake.

More than that, linear algebra occupies a central place in modern math-
ematics. Students in algebra studying Galois theory, students in analysis
studying function spaces, students in topology studying homology and co-
homology, or for that matter students in just about any area of mathematics,
studying just about anything, need to have a sound knowledge of linear al-
gebra.

We have written a book that we hope will be broadly useful. The core of
linear algebra is essential to every mathematician, and we not only treat this
core, but add material that is essential to mathematicians in specific fields,
even if not all of it is essential to everybody.

This is a book for advanced students. We presume you are already famil-
iar with elementary linear algebra, and that you know how to multiply ma-
trices, solve linear systems, etc. We do not treat elementary material here,
though in places we return to elementary material from a more advanced
standpoint to show you what it really means. However, we do not presume
you are already a mature mathematician, and in places we explain what (we
feel) is the “right” way to understand the material. The author feels that one
of the main duties of a teacher is to provide a viewpoint on the subject, and
we take pains to do that here.

One thing that you should learn about linear algebra now, if you have not
already done so, is the following: Linear algebra is about vector spaces and
linear transformations, not about matrices. This is very much the approach
of this book, as you will see upon reading it.

We treat both the finite and infinite dimensional cases in this book,
and point out the differences between them, but the bulk of our attention
is devoted to the finite dimensional case. There are two reasons: First, the

VIl
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strongest results are available here, and second, this is the case most widely
used in mathematics. (Of course, matrices are available only in the finite
dimensional case, but, even here, we almost always argue in terms of linear
transformations rather than matrices.)

We regard linear algebra as part of algebra, and that guides our ap-
proach. But we have followed a middle ground. One of the principal goals
of this book is to derive canonical forms for linear transformations on fi-
nite dimensional vector spaces, i.e., rational and Jordan canonical forms.
The quickest and perhaps most enlightening approach is to derive them as
corollaries of the basic structure theorems for modules over a principal ideal
domain (PID). Doing so would require a good deal of background, which
would limit the utility of this book. Thus our main line of approach does
not use these, though we indicate this approach in an appendix. Instead we
adopt a more direct argument.

We have written a book that we feel is a thorough, though intentionally
not encyclopedic, treatment of linear algebra, one that contains material
that is both important and deservedly “well known”. In a few places we
have succumbed to temptation and included material that is not quite so
well known, but that in our opinion should be.

We hope that you will be enlightened not only by the specific material
in the book but by its style of argument—we hope it will help you learn
to “think like a mathematician”. We also hope this book will serve as a
valuable reference throughout your mathematical career.

Here is a rough outline of the text. We begin, in Chapter 1, by intro-
ducing the basic notions of linear algebra, vector spaces and linear trans-
formations, and establish some of their most important properties. In Chap-
ter 2 we introduce coordinates for vectors and matrices for linear trans-
formations. In the first half of Chapter 3 we establish the basic properties
of determinants, and in the last half of that chapter we give some of their
applications. Chapters 4 and 5 are devoted to the analysis of the structure
of a single linear transformation from a finite dimensional vector space to
itself. In particular, in these chapters, we develop eigenvalues, eigenvec-
tors, and generalized eigenvectors, and derive rational and Jordan canonical
forms. In Chapter 6 we introduce additional structure on a vector space,
that of a (bilinear, sesquilinear, or quadratic) form, and analyze these forms.
In Chapter 7 we specialize the situation of Chapter 6 to that of a positive
definite inner product on a real or complex vector space, and in particular
derive the spectral theorem. In Chapter 8 we provide an introduction to Lie
groups, which are central objects in mathematics and are a meeting place for
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algebra, analysis, and topology. (For this chapter we require the additional
background knowledge of the inverse function theorem.) In Appendix A we
review basic properties of polynomials and polynomial rings that we use,
and in Appendix B we rederive some of our results on canonical forms of a
linear transformation from the structure theorems for modules over a PID.

We have provided complete proofs of just about all the results in this
book, except that we have often omitted proofs that are routine without
comment.

As we have remarked above, we have tried to write a book that will be
widely applicable. This book is written in an algebraic spirit, so the stu-
dent of algebra will find items of interest and particular applications, too
numerous to mention here, throughout the book. The student of analysis
will appreciate the fact that we not only consider finite dimensional vec-
tor spaces, but also infinite dimensional ones, and will also appreciate our
material on inner product spaces and our particular examples of function
spaces. The student of algebraic topology will appreciate our dimension-
counting arguments and our careful attention to duality, and the student of
differential topology will appreciate our material on orientations of vector
spaces and our introduction to Lie groups.

No book can treat everything. With the exception of a short section on
Hilbert matrices, we do not treat computational issues at all. They do not fit
in with our theoretical approach. Students in numerical analysis, for exam-
ple, will need to look elsewhere for this material.

To close this preface, we establish some notational conventions. We will
denote both sets (usually but not always sets of vectors) and linear transfor-
mations by script letters #, B, ..., Z. We will tend to use script letters near
the front of the alphabet for sets and script letters near the end of the alpha-
bet for linear transformations. 7~ will always denote a linear transformation
and J will always denote the identity linear transformation. Some particu-
lar linear transformations will have particular notations, often in boldface.
Capital letters will denote either vector spaces or matrices. We will tend to
denote vector spaces by capital letters near the end of the alphabet, and V'
will always denote a vector space. Also, I will almost always denote the
identity matrix. E and F will denote arbitrary fields and Q, R, and C will
denote the fields of rational, real, and complex numbers respectively. Z will
denote the ring of integers. We will use A C B to mean that 4 is a sub-
set of B and A C B to mean that +4 is a proper subset of B. A = (a;;)
will mean that A is the matrix whose entry in the (i, j) position is a;;.
A =[vy | va|---| vy] will mean that A is the matrix whose ith column
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is v;. We will denote the transpose of the matrix 4 by ‘A (not by A?). Fi-
nally, we will write 8 = {v; } as shorthand for 8 = {v;};e; where [ is an
indexing set, and ) ¢;v; willmean ), ., ¢;v;.

We follow a conventional numbering scheme with, for example, Re-
mark 1.3.12 denoting the 12th numbered item in Section 1.3 of Chapter 1.
We use [ to denote the end of proofs. Theorems, etc., are set in italics, so
the end of italics denotes the end of their statements. But definitions, etc.,
are set in ordinary type, so there is ordinarily nothing to denote the end of
their statements. We use < for that.

Steven H. Weintraub
Bethlehem, PA, USA
January 2010
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CHAPTER 1

VECTOR SPACES AND LINEAR
TRANSFORMATIONS

In this chapter we introduce the objects we will be studying and investigate
some of their basic properties.

1.1 BASIC DEFINITIONS AND EXAMPLES

DEFINITION 1.1.1. A vector space V over a field I is a set IV with a pair
of operations (4, v) +— u + v foru,v € V and (c,u) — cu forc € F,
v € V satisfying the following axioms:

(D) u+veVioranyu,vel.

2 u+v=v+uforanyu,veV.
Bu+@+w)y=w+v)+wforanyu,v,we V.

(4) ThereisaO € V suchthat0 4+ v =v+0=vforanyv € V.

(5) Forany v € V thereisa —v € V such thatv+ (—v) = (—v)+v = 0.
(6) cveViforanyceF,velV.

(7 cu+v)=cu+cvforanyc e F,u,veV.

®) (c+du=cu+duforanyc,d eF,ueV.

9) c(du) = (cd)u forany c,d e F,u e V.

(10) lu =uforanyu € V.
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REMARK 1.1.2. The elements of I are called scalars and the elements of
V are called vectors. The operation (1, v) — u 4+ v is called vector addition
and the operation (c, u) + cu is called scalar multiplication. <&

REMARK 1.1.3. Properties (1) through (5) of Definition 1.1.1 state that V'
forms an abelian group under the operation of vector addition. <&

Lemma 1.14. (1) 0 € V is unique.

(2) Ov =0 foranyv e V.

(3) (=)v = —v foranyv e V.

DEFINITION 1.1.5. Let V' be a vector space. W is a subspace of V if

W C V and W is a vector space with the same operations of vector addition
and scalar multiplicationas V. <&

The following result gives an easy way of testing whether a subset W
of V is a subspace of V.

Lemma 1.1.6. Let W C V. Then W is a subspace of V if and only if it
satisfies the equivalent sets of conditions (0), (1), and (2), or (0'), (1), and
(2):

(0) W is nonempty.

(0') 0e W.
(1) If wy, wp € W then wy + wp € W.
(2) IfweWandc €F, thencw € W.

ExaMPLE 1.1.7. (1) The archetypal example of a vector space is F”, for
a positive integer 7, the space of column vectors

ai
F" = : a; €F
an

We also have the spaces “little F*>°”” and “big F°°”” which we denote by
[ and F°°*° respectively (this is nonstandard notation) that are defined
by

ai
F® = 42 | | g; € F, only finitely many nonzero ¢ ,
man
Fe® =419 |a; €F
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[F°° is a subspace of [F°°.

Let e; denote the vector in F”, F°°, or [F>°*° (which we are considering
should be clear from the context) with a 1 in position i and 0 everywhere
else. A formal definition appears in Example 1.2.18(1).

(2) We have the vector spaces "F”, "IF°°, and "F°°*° defined analo-
gously to F”*, F°°, and F°°* but using row vectors rather than column
vectors.

3) My n(F) = {m-by-n matrices with entries in F}. We abbreviate
M m () by My, (IF).

4) P(F) = {polynomials p(x) with coefficients in I }. For a nonnega-
tive integer n, P,(F) = {polynomials p(x) of degree at most n with
coefficients in F'}. Although the degree of the 0 polynomial is undefined,
we adopt the convention that 0 € P, (F) for every n. Observe that P, (F)
is a subspace of P(IF), and that P,,(FF) is a subspace of P,(F) whenever
m < n. (We also use the notation F[x] for P(F). We use P(F) when we
want to consider polynomials as elements of a vector space while we use
[F[x] when we want to consider their properties as polynomials.)

(5) F is itself an [F-vector space. If E is any field containing F as a
subfield (in which case we say E is an extension field of ), E is an F-
vector space. For example, C is an R-vector space.

(6) If A is a set, {functions f : A — [} is a vector space. We denote it
by F*.

(7) C°(R), the space of continuous functions f : R — R, is a vector
space. For any k > 0, CK(R) = {functions f : R = R | £, f/,..., f®
are all continuous} is a vector space. Also, C*°(R) = {functions f : R —
R | f has continuous derivatives of all orders} is a vector space. <&

Not only do we want to consider vector spaces, we want to consider the
appropriate sort of functions between them, given by the following defini-
tion.

DEFINITION 1.1.8. Let V and W be vector spaces. A function7 : V —
W is a linear transformation if for all v, vy, v, € V and allc € F:

(1) T(cv) =cT (v).
2) Ty +v2) =T (v1) + T (v2). <&

Lemma 1.1.9. Let T : V — W be a linear transformation. Then T (0) =
0.
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DEFINITION 1.1.10. Let V' be a vector space. The identity linear trans-
formation d : V' — V is the linear transformation defined by

J(v) =v foreveryveV. <&

Here is one of the most important ways of constructing linear transfor-
mations.

ExAMPLE 1.1.11. Let A be an m-by-n matrix with entries in F, 4 €
M, (F). Then T4 : F* — F™ defined by

Tav) = Av

18 a linear transformation. o

Lemma 1.1.12. (1) Let A and B be m-by-n matrices. Then A = B if and
onlyif Ty = Jp.

(2) Every linear transformation T : F" — F™ is T4 for some unique
m-by-n matrix A.

Proof. (1) Clearly if A = B, then 74 = Jp. Conversely, suppose 74 = 7p.

Then T4(v) = Tp(v) for every v € F”. In particular, if v = e;, then

Ta(ei) = Tp(ei), i.e., Ae; = Be;. But Ae; is just the i th column of A, and

Be; is just the i th column of B. Since this is true for every i, A = B.
)T = T4 for

A=[T(e) | T(e2) || T (en)]- O

DEFINITION 1.1.13. The n-by-n identity matrix I is the matrix defined
by the equation

d=77. <

It is easy to check that this gives the usual definition of the identity ma-
trix.

We now use Lemma 1.1.12 to define matrix operations.

DEFINITION 1.1.14. (1) Let A be an m-by-n matrix and ¢ be a scalar.
Then D = cA is the matrix defined by Tp = ¢T4.

(2) Let A and B be m-by-n matrices. Then E = A + B is the matrix
defined by Tz = T4 + T3. &

It is easy to check that these give the usual definitions of the scalar
multiple cA and the matrix sum 4 + B.
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Theorem 1.1.15. Let U, V, and W be vector spaces. Let T : U — V and
& : V. — W be linear transformations. Then the composition 8 oT : U —

W, defined by (8 o T)(u) = 8(T (v)), is a linear transformation.
Proof.

(8 0 T)(cu) = 8(T (cu)) = 8(cT (u))
=c8(T W) =c(BoT)m)

and

(S o)y +uz) = 8(T (u1 +uz)) = 8T (u1) + T (u2))
= 8T (u1)) + (7T (u2))
=@ oT)u1) + (8o T)(u2). u

We now use Theorem 1.1.15 to define matrix multiplication.

DEFINITION 1.1.16. Let A be an m-by-n matrix and B be an n-by-p
matrix. Then D = AB is the m-by- p matrix defined by 7p = T4 0 75. <

It is routine to check that this gives the usual definition of matrix multi-
plication.

Theorem 1.1.17. Matrix multiplication is associative, i.e., if A is an m-by-
n matrix, B is an n-by-p matrix, and C is a p-by-q matrix, then A(BC) =
(AB)C.

Proof. Let D = A(BC) and E = (AB)C. Then D is the unique matrix
defined by 7p = T4 0 Tgc = T4 o (Tp o J¢), while E is the unique
matrix defined by 7z = T4p o ¢ = (4 o Tp) o T¢. But composition of

functions is associative, Ty o (Jpo J¢c) = (40 Tp) o Jc,s0 D = E,ie,
A(BC) = (AB)C. I:|

Lemma 1.1.18. Let T : V. — W be a linear transformation. Then T is
invertible (as a linear transformation) if and only if T is 1-1 and onto.

Proof. T is invertible as a function if and only if 7 is 1-1 and onto. It is
then easy to check that in this case the function 7! : W — V is a linear
transformation. O

DEFINITION 1.1.19. An invertible linear transformation 7 : V — W is
called an isomorphism. Two vector spaces V and W are isomorphic if there
is an isomorphism 7 : V — W. <
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REMARK 1.1.20. Itis easy to check that being isomorphic is an equiva-
lence relation among vector spaces. <&

Although the historical development of calculus preceded the histori-
cal development of linear algebra, with hindsight we can see that calculus
“works” because of the three parts of the following example.

ExamMpPLE 1.1.21. Let V = C*(R), the vector spaces of real valued
infinitely differentiable functions on the real line R.

(1) For a real number a, let E; : V — R be evaluation at a, i.e.,
E.(f(x)) = f(a). Then E, is a linear transformation. We also have the
linear transformation E, : V — V, where E, (f(x)) is the constant func-
tion whose value is f(a).

(2) Let D : V — V be differentiation, i.e., D(f(x)) = f’(x). Then D
is a linear transformation.

(3) For areal number a, let I, : V — V be definite integration starting
att = a,ie, L;(f)(x) = fax f(t)dt. Then 1, is a linear transformation.
We also have the linear transformation E; o I, with (E; o I,)(f(x)) =

[ f(x)dx. o

Theorem 1.1.22. (I)Dol, = 4.
2)I,oD =4 —E,.

Proof. This is the Fundamental Theorem of Calculus. O

ExAMPLE 1.1.23. (1) Let V ="F%%° Wedefine L : V — V (left shift)
and R : V — V (right shift) by

L([al,az,a3,...]) = [az,a3,a4,...],
R([al,az,a3,...]) = [0,01,02,...].

Note that L. and R restrict to linear transformations (which we denote
by the same letters) from "F*° to "IF*°. (We could equally well consider
up-shift and down-shift on F>°°° or F*°, but it is traditional to consider
left-shift and right-shift.)

(2) Let [E be an extension field of IF. Then for « € [E, we have the linear
transformation given by multiplication by «, i.e., T(8) = «f for every
B e E.

(3) Let # and B be sets. We have the vector spaces F* = {f : 4 —
F}and F® = {g : B — F}. Let ¢ : 4 — B be a function. Then
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¢* 1 F8 — F# is the linear transformation defined by ¢*(g) = g o ¢, i.c.,
¢*(g) : A — F is the function defined by

9*(9)a) = g(p(a)) fora € A.

Note that ¢* “goes the other way” than ¢. That is, ¢ is covariant, i.e.,
pushes points forward, while ¢* is contravariant, i.e., pulls functions back.
Also, the pull-back is given by composition. This is a situation that recurs
throughout mathematics. <&

Here are two of the most important ways in which subspaces arise.

DEFINITION 1.1.24. Let 7 : V — W be a linear transformation. Then
the kernel of T is

Ker(T)={veV|T(v) =0}
and the image of T is
Im(T) ={we W |w=T(v) forsomev € V}. <

Lemma 1.1.25. In the situation of Definition 1.1.24, Ker(7") is a subspace
of V and Im(T") is a subspace of W.

Proof. 1t is easy to check that the conditions in Lemma 1.1.6 are satisfied.
O

REMARK 1.1.26. If T = T4, Ker(7) is often called the nullspace of A
and Im(7") is often called the column space of A. <&

We introduce one more vector space.

DEFINITION 1.1.27. Let V and W be vector spaces. Then Homp (V, W),
the space of F-homomorphisms from V to W, is

Homg (V, W) = {linear transformations 7 : V" — W}.

IftW = V,weset Endr (V) = Hompg (V, V'), the space of F -endomorphisms
of V. <&

Lemma 1.1.28. For any F-vector spaces V and W, Homg (V, W) is a vec-
tor space.

Proof. Tt is routine to check that the conditions in Definition 1.1.1 are sat-
isfied. (]
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We also have the subset, which is definitely not a subspace, of Endp (V)
consisting of invertible linear transformations.

DEFINITION 1.1.29. (1) Let V' be a vector space. The general linear
group GL(V) is

GL(V) = {invertible linear transformations 7 : V" — V'}.
(2) The general linear group GL, (F) is
GL, (IF) = {invertible n-by-n matrices with entries in [F' }. <

Theorem 1.1.30. Let V = F" and W = F™. Then Homgp (V, W) is iso-
morphic to My, , (F). In particular, Endg (V) is isomorphic to My, (IF). Also,
GL(V) is isomorphic to GL,, ().

Proof. By Lemma 1.1.12, any & € Homp (V, W) is T = T4 for a unique
A € M, »(IF). Then the linear transformation 74 — A gives an isomor-
phism from Homg (V, W) to M,, ,(IF). This restricts to a group isomor-
phism from GL, (F) to GL(V). (]

REMARK 1.1.31. In the next section we define the dimension of a vector
space and in the next chapter we will see that Theorem 1.1.30 remains true
when V' and W are allowed to be any vector spaces of dimensions n and m
respectively. <&

1.2 BASIS AND DIMENSION

In this section we develop the very important notion of a basis of a vector
space. A basis B of the vector space V' has two properties: B is linearly
independent and B spans V. We begin by developing each of these two
notions, which are important in their own right. We shall prove that any two
bases of V have the same number of elements, which enables us to define
the dimension of V' as the number of elements in any basis of V.

DEFINITION 1.2.1. Let 8 = {v;} be a subset of V. A vectorv € V is a
linear combination of the vectors in B if there is a set of scalars {c; }, only
finitely many of which are nonzero, such that

UZZC[U[. <&
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REMARK 1.2.2. If we choose all ¢; = 0 then we obtain

0= ZC;U;‘.

This is the trivial linear combination of the vectors in B. Any other linear
combination is nontrivial. <

REMARK 1.2.3. Incase 8 = { }, the only linear combination we have is
the empty linear combination, whose value we consider to be 0 € V and
which we consider to be a trivial linear combination. <

DEFINITION 1.2.4. Let 8 = {v;} be a subset of V. Then B is linearly
independent if the only linear combination of elements of V' that is equal
to 0 is the trivial linear combination, i.e., if 0 = )_ ¢;v; implies ¢; = 0 for
every i. <&

DEFINITION 1.2.5. Let 8 = {v;} be a subset of V. Then Span(SB) is the
subspace of V' consisting of all linear combinations of elements of 3,

Span(B) = {Zc,-v,- | ¢ eIF}.

If Span(B) = V then B is a spanning set for V (or equivalently, B spans
V). <

REMARK 1.2.6. Strictly speaking, we should have defined Span(8) to be
a subset of V, but it is easy to verify that it is a subspace. <&

Lemma 1.2.7. Let B be a subset of a vector space V. The following are
equivalent:

(1) B is linearly independent and spans V.
(2) B is a maximal linearly independent subset of V.
(3) B is a minimal spanning set for V.

Proof (Outline). Suppose B is linearly independent and spans V. If 8 C
B’, choose v € B, v ¢ B. Since B spans V, v is a linear combination of
elements of B, and so B’ is not linearly independent. Hence 8B is a maximal
linearly independent subset of V. If B’ C 8B, choose v € B, v ¢ B’. Since
B is linearly independent, v is not in the subspace spanned by B’, and
hence B is a minimal spanning set for V.

Suppose that B is a maximal linearly independent subset of V. If 8
does not span V, choose any vector v € V that is not in the subspace
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spanned by 8. Then 8’ = B U {v} would be linearly independent, contra-
dicting maximality.

Suppose that B is a minimal spanning set for V. If B is not linearly in-
dependent, choose v € B that is a linear combination of the other elements
of 8. Then B’ = B — {v} would span V, contradicting minimality. O

DEFINITION 1.2.8. A subset B of V satisfying the equivalent conditions
of Lemma 1.2.7 is a basis of V. <

Theorem 1.2.9. Let V be a vector space and let A and € be subsets of V
with A C €, A linearly independent, and € spanning V. Then there is a
basis B of V with A C B C €.

Proof. This proof is an application of Zorn’s Lemma. Let
Z={8"|AC B C€, B linearly independent},

partially ordered by inclusion. Z is nonempty as #A € Z. Any chain (i.e.,
linearly ordered subset) of Z has a maximal element, its union. Then, by
Zorn’s Lemma, Z has a maximal element 8. We claim that B is a basis for
V.

Certainly B is linearly independent, so we need only show that it spans
V. Suppose not. Then there would be some v € € not in the span of B
(since if every v € € were in the span of B, then 8 would span V', because
€ spans V), and 87 = B U {v} would then be a linearly independent
subset of € with 8 C 81, contradicting maximality. O

Corollary 1.2.10. (1) Let 4 be any linearly independent subset of V. Then
there is a basis B of V with A C B.

(2) Let € be any spanning set for V. Then there is a basis B of V with
B CE

(3) Every vector space V has a basis 8.

Proof. (1) Apply Theorem 1.29 with€ = V.
(2) Apply Theorem 1.2.9 with A = { }.
(3) Apply Theorem 1.2.9 with A = {}and € = V. (]

We now show that the dimension of a vector space is well-defined. We
first prove the following familiar result from elementary linear algebra, one
that is useful and important in its own right.

Lemma 1.2.11. A homogeneous system of m equations in n unknowns with
m < n has a nontrivial solution.
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Proof (Outline). We proceed by induction on m. Let the unknowns be
X1,...,Xp. Ifm=0,setx; =1, x,=---=x, =0.

Suppose the theorem is true for m and consider a system of m + 1
equations in # > m + 1 unknowns. If none of the equations involve xi,
the system has the solution x; = 1, x = -+ = x, = 0. Otherwise,
pick an equation involving x; (i.e., with the coefficient of x; nonzero) and
subtract appropriate multiples of it from the other equations so that none of
them involve x;. Then the other equations in the transformed system are a

system of n — 1 > m equations in the variables x5, ..., x,. By induction it
has a nontrivial solution for x5, ..., x,. Then solve the remaining equation
for x1. O

Lemma 1.2.12. Let 8 = {v1,...,Um} span V. Any subset € of V con-
taining more than m vectors is linearly dependent.

Proof. Let € = {wy, ..., w,} withn > m. (If € is infinite consider a finite
subset containing n > m elements.) Foreachi = 1,...,n
m
wi =) ajiv;.
Jj=1

We show that
m
0= Ej(ywi
i=1

has a nontrivial solution (i.e., a solution with not all ¢; = 0). We have

m m n n m
0= E Ciw; = E Ci E ajivj = E E a;iCi | vy

i=1 i=1 j=1 J=1 \i=1
and this will be true if
n
0= Zaj,-ci foreach j = 1,...,m.
i=1

This is a system of m equations in the » unknowns cq, ..., ¢, and so has a
nontrivial solution by Lemma 1.2.11. O

In the following, we do not distinguish between cardinalities of infinite
sets.
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Theorem 1.2.13. Let V be a vector space. Then any two bases of V have
the same number of elements.

Proof. Let V have bases B and €. If both B and € are infinite, we are
done. Assume not. Let 8 have m elements and € have n elements. Since
B and € are bases, both B and € span V and both 8 and € are linearly
independent. Applying Lemma 1.2.12 we see that m < n. Interchanging B
and € we see that n < m. Hence m = n. O

Given this theorem we may make the following very important defini-
tion.

DEFINITION 1.2.14. Let V be a vector space. The dimensionof V', dim(V),
is the number of vectors in any basis of V, dim(V') € {0,1,2,...} U {oo}.
<&

REMARK 1.2.15. The vector space V' = {0} has basis { } and hence
dimension 0. <

While we will be considering both finite-dimensional and infinite-dimen-
sional vector spaces, we adopt the convention that when we write “Let V' be
an n-dimensional vector space” or “Let V' be a vector space of dimensionn”
we always mean that V is finite-dimensional, so that » is a nonnegative in-
teger.

Theorem 1.2.16. Let V be a vector space of dimension n. Let € be a subset
of V consisting of m elements.

(1) If m > n then € is not linearly independent (and hence is not a basis

of V).
(2) If m < n then € does not span V (and hence is not a basis of V).

(3) If m = n the following are equivalent:

(a) € isa basis of V.
(b) € spans V.
(c) € is linearly independent.

Proof. Let B be a basis of V, consisting necessarily of n elements.

(1) B spans V so, applying Lemma 1.2.12, if € has m > n elements
then € is not linearly independent.

(2) Suppose € spans V. Then, applying Lemma 1.2.12, B has n > m
elements so cannot be linearly independent, contradicting B being a basis
of V.
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(3) By definition, (a) is equivalent to (b) and (c), so (a) implies (b) and
(a) implies (c). Suppose (b) is true. By Corollary 1.2.10, € has a subset of
€’ of m < n elements that is a basis of V. By Theorem 1.2.13, m = n,
so € = €. Suppose (c) is true. By Corollary 1.2.10, € has a superset of
€’ of m > n elements that is a basis of V. By Theorem 1.2.13, m = n, so
€ =€. O

REMARK 1.2.17. A good mathematical theory is one that reduces hard
problems to easy problems. Linear algebra is such a theory, as it reduces
many problems to counting. Theorem 1.2.16 is a typical example. Suppose
we want to know whether a set € is a basis of an n-dimensional vector space
V. We count the number of elements of €, say m. If we get the “wrong”
number, i.e., if m # n, then we know € is not a basis of V. If we get the
“right” number, i.e., if m = n, then € may or may not be a basis of V. While
there are normally two conditions to check, that € is linearly independent
and that € spans V, it suffices to check either one of the conditions. If that
one is satisfied, the other one is automatic. O

ExAamMpPLE 1.2.18. (1) F” has basis &,, the standard basis, given by &, =

{ein,e2,n,-..,enn} Where e; , is the vector in F” whose ith entry is 1 and
all of whose other entries are 0.
F° has basis . = {€1,00,€2,00, - - -.; defined analogously. We will

often write & for &, and e; for e; , when n is understood. Thus F" has
dimension n and F is infinite-dimensional.

(2) F*° is a proper subspace of F>°°°. By Corollary 1.2.10, F°°*° has a
basis, but it is impossible to write one down in a constructive way.

(3) The vector space of polynomials of degree at most n with coef-
ficients in F, P,(F) = {ap + aix + --- + a,x" | a; € F}, has basis
{1, x,...,x"} and dimension n + 1.

(4) The vector space of polynomials of arbitrary degree with coefficients
inF, P(F) = {ap + a1x + arx2 4 -+ | a; € F}, has basis {l,x,xz, .
and is infinite-dimensional.

(5) Let p;(x) be any polynomial of degree i. Then {po(x), p1(x),...,
pn(x)} is a basis for P, (F), and {po(x), p1(x), p2(x), ...} is a basis for
P(F).

(6) M,,,» (IF) has dimension mn, with basis given by the mn distinct
matrices each of which has a single entry of 1 and all other entries 0.

(MHIfV = {f : A — F} for some finite set A = {ay,...,a,}, then
V is n-dimensional with basis {by, ..., by} where b; is the function defined
by bi(a;) =1if j =iand 0if j #i.
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(8) Let E be an extension of I and let o« € [E be algebraic,i.e., a is a root
of a (necessarily unique) monic irreducible polynomial f(x) € F[x]. Let
f(x) have degree n. Then F () defined by F(¢) = {p(@) | p(x) € F[x]}
is a subfield of E with basis {1, «, ..., oc”_l} and so is an extension of [F' of
degree n. <&

REMARK 1.2.19. If we consider cardinalities of infinite sets, we see that
[F*° is countably infinite-dimensional. On the other hand, IF*°* is uncount-
ably infinite-dimensional. If IF is a countable field, this is easy to see: [F *°*°
is uncountable. For F uncountable, we need a more subtle argument. We
will give it here, although it presupposes results from Chapter 4. For con-
venience we consider " [F *°*°
morphic.

Consider R : "F*°*®°® — "[F°°%°_ QObserve that for any ¢ € F, R has
eigenvalue a with associated eigenvector v, = [1,a,a? a>,...]. Buteigen-
vectors associated to distinct eigenvalues are linearly independent. (See
Lemma 4.2.5.) &

instead, but clearly "I °°*° and F°°*° are iso-

Corollary 1.2.20. Let W be a subspace of V. Then dim(W) < dim(V). If
dim(V) is finite, then dim(W) = dim(V) ifand only if W = V.

Proof. Apply Theorem 1.2.16 with € a basis of W. O

We have the following useful characterization of a basis.

Lemma 1.2.21. Let V be a vector space and let 8 = {v;} be a set of
vectors in V. Then B is a basis of V if and only if every v € V can be
written uniquely as v =Y _ ¢;v; for ¢; € F, all but finitely many zero.

Proof. Suppose B is a basis of V. Then B spans V, so any v € V can be
written as v = )_ ¢;v;. We show this expression for v is unique. Suppose
we have v = ) c/v;. Then 0 = } (c/ — ¢;)v;. But B is linearly indepen-
dent,so ¢, —¢; = 0and ¢, = ¢; foreach i.

Conversely, suppose every v € V can be written as v = Y ¢;v; in
a unique way. This clearly implies that 8 spans V. To show B is linearly
independent, suppose 0 = Y_ ¢;v;. Certainly 0 = )_ Ov;. By the uniqueness
of the expression, ¢; = 0 for each i. O

This lemma will be the basis for our definition of coordinates in the
next chapter. It also has immediate applications. First, an illustrative use,
and then some general results.
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ExamMpPLE 1.2.22. (1) Let V = P,_;(R). For any real number a,
B={l,x—a,(x—a)>, ....(x —a)" 1}

is a basis of V, so any polynomial p(x) € V' can be written uniquely as a
linear combination of elements of B,

px) =Y ci(x—a).

Solving for the coefficients ¢; we obtain the familiar Taylor expansion

@ )
()_ZP (a) )1‘

(2) Let V= P,_1(R). For any set of pairwise distinct real numbers
{ai,...,an},

B ={(x—az2)(x —az)---(x —an), (x —a1)(x —az)---(x —an),...,
(x —ar)(x —an) - (x —an—1)}
is a basis of V, so any polynomial p(x) € V' can be written uniquely as a
linear combination of elements of B,

n

p(¥) =) ci(x—ar)---(x —aim1)(x —ait1) -+ (x —an).

i=1
Solving for the coefficients ¢; we obtain the familiar Lagrange interpolation
formula

Y p(ai)
PO = L ) ) —a) @)
x(x—ay)--(x—ai—1)(x —aip1) - (x —an). <

So far in this section we have considered individual vector spaces. Now
we consider pairs of vector spaces V' and W and linear transformations
between them.

Lemma 1.2.23. (1) A linear transformation T : V. — W is specified by its
values on any basis of V.

(2) If {v; } is a basis of V and {w;} is an arbitrary set of vectors in W,
then there is a unique linear transformation T : V. — W with T (v;) = w;
foreachi.



16 1. VECTOR SPACES AND LINEAR TRANSFORMATIONS

Proof. (1) Let B = {v1, v2,...} be abasis of VV and suppose that T : V' —
W and T’ : V — W are two linear transformations that agree on each v;.
Let v € V be arbitrary. We may write v = ) _ ¢;v;, and then

T (v) = T(Zcivi) =Y T (v) =) T (v)
7Y civi) =T,

(2) Let {wy, wy, ...} be an arbitrary set of vectors in W, and define T
as follows: Forany v € V, write v = )_ ¢;v; and let

T =) aT@W)=) ciw.

Since the expression for v is unique, this gives a well-defined function 7 :
V — W with T (v;) = w; for each i. It is routine to check that 7 is a linear
transformation. Then 7 is unique by part (1). (]

Lemma 1.2.24. Let T : V. — W be a linear transformation and let B =
{v1,V2,...} beabasisof V. Let € = {wy, wa,...} = {T(v1), T (v2),...}.
Then T is an isomorphism if and only if € is a basis of W.

Proof. First suppose 7 is an isomorphism.

To show € spans W, let w € W be arbitrary. Since T is an epimor-
phism, w = 7 (v) for some v. As B is a basis of V, it spans V', so we may
write v = )_ ¢;v; for some {c;}. Then

w=TW) =T cv)=Y aTw)=) cw.

To show € is linearly independent, suppose Y ¢c;w; = 0. Then

0= Zciwi = Zci’f(v;) = T(Zcivi) = 7 (v) wherev = Zcivi.

Since T is a monomorphism, we must have v = 0. Thus 0 = > ¢;v;. As
B is a basis of V, it is linearly independent, so ¢; = 0 forall i.
Conversely, suppose € is a basis of W. By Lemma 1.2.23(2), we may
define a linear transformation § : W — V by §(w;) = v;. Then 87 (v;) =
v; for each i so, by Lemma 1.2.23(1), 7 is the identity on V. Similarly
T & is the identity on W so & and 7 are inverse isomorphisms. O
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1.3 DIMENSION COUNTING
AND APPLICATIONS

We have mentioned in Remark 1.2.17 that linear algebra enables us to re-
duce many problems to counting. We gave examples of this in counting
elements of sets of vectors in the last section. We begin this section by de-
riving a basic dimension-counting theorem for linear transformations, The-
orem 1.3.1. The usefulness of this result cannot be overemphasized. We
present one of its important applications in Corollary 1.3.2, and we give a
typical example of its use in Example 1.3.10. It is used throughout linear
algebra.
Here is the basic result about dimension counting.

Theorem 1.3.1. Let V be a finite-dimensional vector space and let T :
V' — W be a linear transformation. Then

dim (Ker(7)) + dim (Im(7)) = dim(V).

Proof. Let k = dim(Ker(7)) and n = dim(V'). Let {v1, ..., vt} be a basis
of Ker(7'). By Corollary 1.2.10, {vy, ..., vi} extends to a basis {vy, ..., Vg,
Vk41s---5Uny Of V. We claim that 8 = {T (vVg+41),..., T (vy)} is a basis
of Im(7).

First let us see that B spans Im(7"). If w € Im(7"), then w = T (v) for
somev € V.Letv =) c¢;v;. Then

n

T (v) = Zci?‘(vi) = Zci’f(vi) + Z i T (vi)

i=1 i=k+1
n
= Z CiT(Ui)
i=k+1
as T (vj) =---= T (vx) = Osince vy, ..., vt € Ker(7).

Second, let us see that B is linearly independent. Suppose that

n

Z ¢i7 (vi) = 0.

i=k+1

'T( Zn: c,-v,-) = 0,

i=k+1

Then
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SO
n
Z civ; € Ker(7),
i=k+1
and hence for some cy, ..., ci, we have
n k
Z CiV; = ZC[U[.
i=k+1 i=1
Then
k n
Z (—C[)U[ + Z civi =0,
i=1 i=k+1
so by the linear independence of {v1,...,v,},¢; = 0 foreach i.
Thus dim(Im(7)) = n — k and indeed k + (n — k) = n. O

Corollary 1.3.2. Let T : V. — W be a linear transformation between
vector spaces of the same finite dimension n. The following are equivalent:

(1) T is an isomorphism.
(2) T is an epimorphism.
(3) T is a monomorphism.

Proof. Clearly (1) implies (2) and (3).
Suppose (2) is true. Then, by Theorem 1.3.1,

dim (Ker (7)) = dim(V) — dim (Im(7"))
= dim(W) — dim (Im(7)) =n—n =0,

so Ker(7) = {0} and T is a monomorphism, yielding (3) and hence (1).
Suppose (3) is true. Then, by Theorem 1.3.1,

dim (Im(7)) = dim(V) — dim ( Ker(7))
= dim(W) — dim (Ker(7)) =n—0 = 0,

soIm(7) = W and T is an epimorphism, yielding (2) and hence (1). [

Corollary 1.3.3. Let A be an n-by-n matrix. The following are equivalent:

(1) A isinvertible.
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(2) There is an n-by-n matrix B with AB = I.

(3) There is an n-by-n matrix B with BA = 1.

In this situation, B = A~L.

Proof. Apply Corollary 1.3.2 to the linear transformation 74. If A is in-
vertible and AB = I, then B = [B = A_I(AB) = A7 = 47!, and
similarly if BA = 1. O

ExaMPLE 1.3.4. Corollary 1.3.2 is false in the infinite-dimensional case:

(1) Let V = "IF°°* and consider left shift L. and right shift R. L is an
epimorphism but not a monomorphism, while R is a monomorphism but not
an epimorphism. We see that L o R = J (so R is a right inverse for L and
L is a left inverse for R) but R o L. ##  (and neither L nor R is invertible).

2)LetV =C*®[R). Then D : V — Vand 1, : V — V are linear
transformations that are not invertible, but D o I, is the identity. <&

REMARK 1.3.5. We are not in general considering cardinalities of in-
finite sets. But we remark that two vector spaces V' and W are isomor-
phic if and only if they have bases of the same cardinality, as we see from
Lemma 1.2.23 and Lemma 1.2.24. <

Corollary 1.3.6. Let V be a vector space of dimension m and let W be a
vector space of dimension n.

(1) If m < n then no linear transformation T : V. — W can be an
epimorphism.

(2) If m > n then no linear transformation T : V. — W can be a
monomorphism.

(3) V and W are isomorphic if and only if m = n. In particular, every
n-dimensional vector space V' is isomorphic to F".

Proof. (1) In this case, dim(Im(7)) < m < n so T is not an epimorphism.

(2) In this case, dim(Ker(7)) > m —n > 0 so 7 is not a monomor-
phism.

(3) Parts (1) and (2) show that if m # n, then V and W are not isomor-
phic. If m = n, choose a basis {vy, ..., vy} of VV and a basis {wq, ..., w;}
of W. By Lemma 1.2.23, there is a unique linear transformation 7~ deter-
mined by 7 (v;) = w; for each i, and by Lemma 1.2.24 7 is an isomor-
phism. O
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Corollary 1.3.7. Let A be an n-by-n matrix. The following are equivalent:
(1) A isinvertible.

(1') The equation Ax = b has a unique solution for every b € F".

(2) The equation Ax = b has a solution for every b € F".

(3) The equation Ax = 0 has only the trivial solution x = 0.

Proof. This is simply a translation of Corollary 1.3.2 into matrix language.
We emphasize that this one-sentence proof is the “right” proof of the
equivalence of these properties. For the reader who would like to see a more
computational proof, we shall prove directly that (1) and (1”) are equivalent.
Before doing so we also observe that their equivalence does not involve
dimension counting. It is their equivalence with properties (2) and (3) that
does. It is possible to prove this equivalence without using dimension count-
ing, and this is often done in elementary texts, but that is most certainly the
“wrong” proof as it is a manipulative proof that obscures the ideas.

(1) =(1"): Suppose A is invertible. Let xo = A~'h. Then Axy =
A(A7'h) = b s0 xg is the solution of Ax = b. If x; any other solution,
then Ax; = b, A=V (Ax1) = A7'b, x; = A7'b = Xy, s0 xg is the unique
solution.

(1")Y=(1): Let b; be a solution of Ax = ¢; fori = 1,...,n, which
exists by hypothesis. Let B = [by | by | -+ | bn]. Then AB = [e; |
es | --- | en] = I. We show that BA = [ as well. (That comes from
Corollary 1.3.3, but we are trying to prove it without using Theorem 1.3.1.)
Let f; = Ae;,i = 1,...,n. Then Ax = f; evidently has the solution
Xo = e;. It also has the solution x; = BAe; as

A(BAe;) = (AB)(Ae;) = 1(Ae;) = Ae; = f;.

By hypothesis, Ax = f; has a unique solution, so BAe; = e; for each i,
giving BA = [e1]ez|---|ex] = 1. O

As another application of Theorem 1.3.1, we prove the following famil-
iar theorem from elementary linear algebra.

Theorem 1.3.8. Let A be an m-by-n matrix. Then the row rank of A and
the column rank of A are equal.

Proof. For a matrix C, the image of the linear transformation 7¢ is simply
the column space of C.
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Let B be a matrix in (reduced) row echelon form. The nonzero rows of
B are a basis for the row space of B. Each of these rows has a “leading”
entry of 1, and it is easy to check that the columns of B containing those
leading 1’s are a basis for the column space of B. Thus if B is in (reduced)
row echelon form, its row rank and column rank are equal.

Thus if B has column rank k, then dim(Im(7)) = k and hence by
Theorem 1.3.1 dim(Ker(7g)) = n — k.

Our original matrix A is row-equivalent to a (unique) matrix B in (re-
duced) row echelon form, so 4 and B may be obtained from each other
by a sequence of row operations. Row operations do not change the row
space of a matrix, so if B has row rank k, then A has row rank k as well.
Row operations change the column space of A, so we can not use the col-
umn space directly. However, they do not change Ker(7y4). (That is why
we usually do them, to solve Ax = 0.) Thus Ker(93) = Ker(74) and so
dim(Ker(74)) = n — k. Then by Theorem 1.3.1 again, dim(Im(74)) = k,
i.e., A has column rank k, the same as its row rank, and we are done. O

REMARK 1.3.9. This proof is a correct proof, but is the “wrong” proof, as
it shows the equality without showing why it is true. We will see the “right”
proof in Theorem 2.4.7 below. That proof is considerably more compli-

cated, so we have presented this easy proof. <&
ExampLE 1.3.10. Let V = P,_{(R) for fixed n. Let ay, ..., a; be dis-
tinct real numbers and let ey, ..., ex be non-negative integers with (e; +
1)+---+ (ex + 1) =n.Define T : V— R” by

_ f(a1) -

f(€1)(a1)
T(f(x) = :
f(ax)
| (ax)

If f(x) € Ker(T),then f®(a;) = 0fori =0,...,e;,s0 f(x)isdivis-
ible by (x —a;)%*! for each i. Thus f(x) divisibleby (x —ap)¢t ... (x —
ar)® 1, a polynomial of degree n. Since f(x) has degree at most n— 1, we
conclude f(x) is the O polynomial. Thus Ker(9") = {0}. Since dimV =n
we conclude from Corollary 1.3.2 that 7 is an isomorphism. Thus for any
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n real numbers b?, e, bf‘, e, bg, e, bZk there is a unique polynomial
£ (x) of degree at most n — 1 with f ) (a;) = bii forj =0,...,e; and for
i =1,...,k. (This example generalizes Example 1.2.22(1), where k = 1,
and Example 1.2.22(2), where ¢; = 0 foreach i.) &

Let us now see that the numerical relation in Theorem 1.3.1 is the only
restriction on the kernel and image of a linear transformation.

Theorem 1.3.11. Let V and W be vector spaces with dimV = n. Let V;
be a k-dimensional subspace of V and let Wy be an (n — k)-dimensional

subspace of W. Then there is a linear transformation T : V. — W with
Ker(7T) = Vi and Im(T) = Va.

Proof. Let B; = {v1,..., i} be a basis of V] and extend 87 to B =

{v1,..., Uy}, a basis of V. Let €1 = {wg41,...,wy} be a basis of Wj.
Define 7 : V — Wby T(v;) = 0fori = 1,...,k and T (v;) = w; for
i=k+1,...,n. O

REMARK 1.3.12. In this section we have stressed the importance and
utility of counting arguments. Here is a further application:

A philosopher, an engineer, a physicist, and a mathematician are sitting
at a sidewalk cafe having coffee. On the opposite side of the street there is
an empty building. They see two people go into the building. A while later
they see three come out.

The philosopher concludes “There must have been someone in the build-
ing to start with.”

The engineer concludes “We must have miscounted.”

The physicist concludes “There must be a rear entrance.”

The mathematician concludes “If another person goes in, the building
will be empty.” <&

1.4 SUBSPACES AND
DIRECT SUM DECOMPOSITIONS

We now generalize the notion of spanning sets, linearly independent sets,
and bases. We introduce the notions of V' being a sum of subspaces W1, ...,
Wi, of the subspaces Wy, ..., W being independent, and of V' being the
direct sum of the subspaces Wi, ..., Wi. In the special case where each
Wi, ..., W consists of the multiples of a single nonzero vector v;, let 8 =
{v1,...,Vr}. Then V is the sum of Wy,..., W, if and only if B spans
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V; the subspaces Wi, ..., Wi are independent if and only if B is linearly
independent; and V is the direct sum of Wy, ..., W if and only if B is a
basis of V. Thus our work here generalizes part of our work in Section 1.2,
but this generalization will be essential for future developments. In most
cases we omit the proofs as they are very similar to the ones we have given.

DEFINITION 1.4.1. Let V be a vector space and let {W1, ..., Wi} be a set
of subspaces of V. Then V isthe sum V = W; + --- 4+ Wy ifeveryv € V
can be writtenas v = w; + ... + wy where w; € W;. <&
DEFINITION 1.4.2. Let V be a vector space and let {W1, ..., Wi} be a set
of subspaces of V. This set of spaces is independent if 0 = wy + -+ + wy
with w; € W; implies w; = 0 for each i. <&
DEFINITION 1.4.3. Let V be a vector space and let {W,..., Wi} be a

set of subspaces of V. Then V is the directsum V = W; @ --- @ Wy if
1) V=w+--+ W, and
(2) {W,..., Wi} is independent. &

We have the following equivalent criterion.

Lemma 1.44. Let {Wi,..., Wi} be a set of subspaces of V. This set of
subspaces is independent if and only if W; N (W + -+ Wiy + W41 +
<o+ Wi) = {0} for each i.

If we only have two subspaces {W;, W} this condition simply states
Wy N W, = {0}. If we have more than two subspaces, it is stronger than
the condition W; N W; = {0} fori # j, and it is the stronger condition we
need for independence, not the weaker one.

Lemma 1.4.5. Let V be a vector space and let {W1, ..., Wi} be a set of
subspaces of V. Then V is the direct sum V = Wy & --- @ Wy if and only
ifv eV can be writtenas v = wy + -+ + wy with w; € W;, foreachi, in
a unique way.

Lemma 1.4.6. Let V be a vector space and let {W1, ..., Wi} be a set of
subspaces of V. Let B; be a basis of W, foreach i, andlet B = B, U---U
By.. Then

(1) B spansV ifand only if V.= W + -+ + Wj.
(2) B is linearly independent if and only if {W1, ..., Wi} is independent.
(3) B isabasisforV ifand only if V=W, & --- & Wg.
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Corollary 1.4.7. Let V be a finite-dimensional vector space and let {W,
<oy Wi} be a set of subspaces withV = Wi @ -+ ® Wy. Then dim(V') =
dim(Wy) + -+ - + dim(W).

Corollary 1.4.8. Let V be a vector space of dimension n and let {W1, ...,
Wi} be a set of subspaces. Let n; = dim(W;).

(1) Ifny + -+ ng > n then {Wy, ..., Wi} is not independent.
(2) Ifny +---+nyp <nthenV # Wy +--- + Wg.
(3) Ifny + -+ + ng = n the following are equivalent:

(@) V=W& - &W.
(b) V =W+ +W
(c) {Wh,..., Wi} is independent.

DEFINITION 1.4.9. Let V' be a vector space and let W} be a subspace of
V. Then W, is a complement of Wy it V.= W) & W,. <&

Lemma 1.4.10. Let V be a vector space and let Wy be a subspace of V.
Then Wi has a complement W5.

Proof. Let B, be a basis of W;. Then B; is linearly independent, so by
Corollary 1.2.10 there is a basis 8 of V' containing B;. Let 8, = 8 — B;.
Then B, is a subset of V, so is linearly independent. Let W, be the span of
B,. Then Bj is a linearly independent spanning set for W5, i.e., a basis for
W,, and so by Lemma 1.4.6 V = W; & W,, and hence W, is a complement
of W1 . O

REMARK 1.4.11. Except when W; = {0} (where W, = V)or W) =V
(where W = {0}), the subspace W, is never unique. We can always choose
a different way of extending $B; to a basis of V, in order to obtain a different
W,. Thus W, is a, not the, complement of W;. O

1.5 AFFINE SUBSPACES
AND QUOTIENT SPACES

For the reader familiar with these notions, we can summarize much of what
we are about to do in this section in a paragraph: Let W be a subspace of
V. Then W is a subgroup of V, regarded as an additive group. An affine
subspace of V' parallel to W is simply a coset of W in V, and the quotient
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space V/W is simply the group quotient V/ W, which also has a vector
space structure.

But we will not presume this familiarity, and instead proceed “from
scratch”.

We begin with a generalization of the notion of a subspace of a vector
space.

DEFINITION 1.5.1. Let V be a vector space. A subset X of V' is an affine
subspace if for some element xo of X,

U={x"—x|x €X}

is a subspace of V. In this situation X is parallelto U . <

The definition makes the element xo of X look distinguished, but that
is not the case.

Lemma 1.5.2. Let X be affine subspace of V parallel to the subspace U.
Then for any element x of X,

U={x'"—x|x"eX}.
REMARK 1.5.3. An affine subspace X of V' is a subspace of V' if and only
if0e X. <

An alternative way of looking at affine subspaces is given by the follow-
ing result.

Proposition 1.5.4. A subset X of V is an affine subspace of V parallel to
the subspace U of V' if and only if for some, and hence for every, element x
of X,

X=x+U={x+uluelU}.

There is a natural definition of the dimension of an affine subspace.

DEFINITION 1.5.5. Let X be affine subspace of V' parallel to the subspace
U . Then the dimension of X is dim(X) = dim(U). <&

Proposition 1.5.6. Let X be an affine subspace of V' parallel to the sub-
space U of V. Let xo be an element of X and let {uy,u», ...} be a basis of
U. Then any element x of X may be written uniquely as

X =Xx0+ E Cillj

for some scalars {c1, c3,...}.
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The most important way in which affine subspaces arise is as follows.

Theorem 1.5.7. Let T : V — W be a linear transformation and let wg €
W be an arbitrary element of W. If T =Y (wo) is nonempty, then T~ (wo)
is an affine subspace of V parallel to Ker(T).

Proof. Choose vy € V withT (vg) = wo.Ifv € T‘l(wo) is arbitrary, then
v=v9+@W—v)=vo+tuandT(u) =T (v —v9) =T () —T (vo) =
wo — wo = 0, sou € Ker(7). Conversely, if u € Ker(7') and v = vo + u,
then 7 (v) = T (vo +u) = T (vo) + T (u) = wo + 0 = wo. Thus we see
that

T_l(wo) = vy + Ker(7)
and the theorem then follows from Proposition 1.5.4. (]

REMARK 1.5.8. The condition in Definition 1.5.1 is stronger than the
condition that U = {x; — x1 | x1,x2 € U}. (We must fix x; and let x,
vary, or vice versa, but we cannot let both vary.) For example, if V' is any
vector space and X = V —{0},then V = {xp —x1 | x1,x2 € X}, but X is
never an affine subspace of V', except in the case that V' is a 1-dimensional
vector space over the field with 2 elements. <&

Let V' be a vector space and W a subspace. We now define the impor-
tant notion of the quotient vector space V/ W, and investigate some of its
properties.

DEFINITION 1.5.9. Let V be a vector space and let W be a subspace of
V. Let ~ be the equivalence relation on V' given by vq ~ vy if vy —v, € W.
Denote the equivalence class of v € V' under this relation by [v]. Then the
quotient V /W is the vector space

V/W = {equivalence classes [v] | v € V}
with addition given by [v1] + [v2] = [v1 + v2] and scalar multiplication
given by c[v] = [cv]. <

REMARK 1.5.10. We leave it to the reader to check that these operations
give V/ W the structure of a vector space. <&

Here is an alternative definition of V// W.

Lemma 1.5.11. The quotient space V/W of Definition 1.5.9 is given by

V/W = { affine subspaces of V parallel to W}



1.5. AFFINE SUBSPACES AND QUOTIENT SPACES 27

Proof. As in Proposition 1.5.4, we can check that for vy € V, the equiva-
lence class [vg] of vy is given by

[vo]={veV v~v)={veV | v—veW}=v+W,

which is an affine subspace parallel to W, and every affine subspace arises
in this way from a unique equivalence class. O

There is a natural linear transformation from V to V/ W.

DEFINITION 1.5.12. Let W be a subspace of V. The canonical projection
7 : V. — V/W is the linear transformation given by 7 (v) = [v] = v+ W.
<

We have the following important construction and results. They improve
on the purely numerical information provided by Theorem 1.3.1.

Theorem 1.5.13. Let T : V — X be a linear transformation. Then T :
V/Ker(T) — X given by T (v + Ker(T)) = T (v) (i.e, by T (n(v)) =
T (v)) is a well-defined linear transformation, and T gives an isomorphism
Sfrom V/Ker(T) toIm(T) C X.

Proof. 1If vi + Ker(7) = vy + Ker(7), then vi = v, + w for some
weKer(7),s0T (1) =T (v2+w) =T () +T(w) =T (v2)+0=
T (v2), and T is well-defined. It is then easy to check that it is a linear
transformation, that it is 1-1, and that its image is Im(7"), completing the
proof. O

Let us now see how to find a basis for a quotient vector space.

Theorem 1.5.14. Let V be a vector space and Wy a subspace. Let B1 =
{w1, wa, ...} be a basis for Wi and extend B to a basis B of V. Let B, =
B—-B1 = {z1, 22, .. .}. Let W, be the subspace of V spanned by B3, so that
W, is a complement Wy in V with basis 8. Then the linear transformation
P Wy — V/ W defined by P (z;) = [z;] is an isomorphism. In particular,
By = {[z1]. [z2]. ...} is a basis for V] Wy.

Proof. 1t is easy to check that & is a linear transformation. We show that
{[z1], [z2], - . .} is a basis for V/ W;. Then, since & is a linear transformation
taking a basis of one vector space to a basis of another, & is an isomor-
phism.

First let us see that B spans V/W;. Consider an equivalence class [v]
in V/W;. Since B is a basis of V, we may write v = ) _c;w; + »_d;z;
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for some {c;} and {d;}. Thenv—) d;z; = Y ciw; € Wi,s0v ~ Y d,z;
and hence [v] = [>_d;z;] =) d;[z].

Next let us see that B, is linearly independent. Suppose Y d;[z;] =
[>°djzj] = 0.Then ) djz; € Wi, s0) djz; =Y c;w; for some {c;}.
But then ) (—c¢;)w; + Y _d;z; = 0, an equation in V. But {wi, wa, ...,
z1,22,...4 = B is a basis of V, and hence linearly independent, so
(cir=co=---=0and)d; =dr,=---=0. O

REMARK 1.5.15. We cannot emphasize strongly enough the difference
between a complement W, of the subspace W; and the quotient V/ W;. The
quotient V/ W is canonically associated to W;, whereas a complement is
not. As we observed, W; almost never has a unique complement. Theo-
rem 1.5.14 shows that any of these complements is isomorphic to the quo-
tient 1/ W;. We are in a situation here where every quotient object V/ W} is
isomorphic to a subobject W,. This is not always the case in algebra, though
it is here, and this fact simplifies arguments, as long as we remember that
what we have is an isomorphism between W, and V/ W1, not an identifica-
tion of W, with V/ Wj. Indeed, it would be a bad mistake to identify V/ W,
with a complement W, of W;. <&

Often when considering a subspace W of a vector space V', what is
important is not its dimension, but rather its codimension, which is defined
as follows.

DEFINITION 1.5.16. Let W be a subspace of V. Then the codimension
of WinV is

codimy W = dim V/W. <

Lemma 1.5.17. Let W; be a subspace of V. Let W, be any complement of
Wi in V. Then codimy Wi = dim W;.

Proof. By Theorem 1.5.14, V/ W, and W, are isomorphic. (]

Corollary 1.5.18. Let V be a vector space of dimension n and let W be a
subspace of V of dimension k. Then dim V/W = codimy W =n — k.

Proof. Immediate from Theorem 1.5.14 and Lemma 1.5.17. (]

Here is one important way in which quotient spaces arise.

DEFINITION 1.5.19. Let 7 : V — W be a linear transformation. Then
the cokernel of T is the quotient space

Coker(7) = W/Im(T). <&
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Corollary 1.5.20. Let V be an n-dimensional vector space and let T :
V' — V be a linear transformation. Then dim(Ker (7)) = dim(Coker(7)).

Proof. By Theorem 1.3.1, Corollary 1.5.18, and Definition 1.5.19,

dim (Ker(7)) = dim(V) — dim (Im(7")) = dim (V/ Im(7"))
= dim ( Coker(7")). O

We have shown that any linearly independent set in a vector space V
extends to a basis of V. We outline another proof of this, using quotient
spaces. This proof is not any easier, but its basic idea is one we will be
using later.

Theorem 1.5.21. Let B, be any linearly independent subset of a vector
space V. Then B, extends to a basis B of V.

Proof. Let W be the subspace of V' generated by B;, and let 7 : V' —
V /W be the canonical projection. Let € = {x;, X2, ...} be a basis of V/ W
and for each i let u; € V with w(u;) = x;. Let By = {u1,uz,...}. We
leave it to the reader to check that 8 = 87 U B, is a basis of V. O

In a way, this result is complementary to Theorem 1.5.14, where we
showed how to obtain a basis of V/ W, starting from the right sort of basis
of V. Here we showed how to obtain a basis of V, starting from a basis of
W and a basis of V/W.

DEFINITION 1.5.22. Let T : V — V be a linear transformation. 7 is
Fredholm if Ker(7') and Coker(7") are both finite-dimensional, in which
case the index of T is dim(Ker(7")) — dim(Coker(77)). <

ExAamMpPLE 1.5.23. (1) In case V is finite-dimensional, every J is Fred-
holm. Then by Corollary 1.5.20, dim(Ker(9)) = dim(Coker(7)), so T
has index 0. Thus in the finite-dimensional case, the index is completely
uninteresting.

(2) In the infinite-dimensional case, the index is an important invariant,
and may take on any integer value. For example, if V = "F®°*° L :V —
V is left shiftand R : V' — V is right shift, as in Example 1.1.23(1), then
L” has index n and R” has index —n.

BV =C*®[R),thenD : V — V has kernel { f(x) | f(x) is a con-
stant function}, of dimension 1, and is surjective, so D has index 1. Also,
I, : V — V is injective and has image { f(x) | f(a) = 0}, of codimen-
sion 1, so I, has index —1. O
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1.6 DUAL SPACES

We now consider the dual space of a vector space. The dual space is easy to
define, but we will have to be careful, as there is plenty of opportunity for
confusion.

DEFINITION 1.6.1. Let V be a vector space over a field IF. The dual V*
of V' is

V* = Homp (V,F) = {linear transformations 7 : V — F}. <

Lemma 1.6.2. (1) If V is a vector space over F, then V is isomorphic to a
subspace of V*.

(2) If V is finite-dimensional, then V is isomorphic to V*. In particular,
in this case dim V = dim V'*.

Proof. Choose a basis 8 of V, B = {vy, va,...}. Let B* be the subset of
V* given by B = {w], w3, ...} where v is defined by w(v;) = 1 and
wi(v;) = 0if j # i. (This defines w} by Lemma 1.2.23.) We claim that
B* is a linearly independent set. To see this, suppose ) ¢; w;‘ = 0. Then
Qe wﬂ;‘)(v) = 0 forevery v € V. Choosing v = v;, we see that ¢; = 0,
foreachi.

The linear transformation g : V — V* defined by $g(v;) = w/
takes the basis B of V' to the independent set B* of V*, so is an injection
(more precisely, an isomorphism from V' to the subspace of V* spanned by
B*).

Suppose V is finite-dimensional and let w* be an element of V' *. Let
w*(v;) = a; foreach i. Let v = Y a;v;, a finite sum since V is finite-
dimensional. For each i, 8g(v)(v;) = w*(v;). Since these two linear trans-
formations agree on the basis B of V, by Lemma 1.2.23 they are equal, i.e.,
8g(v) = w*, and §g is a surjection. O

REMARK 1.6.3. Itis important to note that there is no natural map from
V to V*. The linear transformation §g depends on the choice of basis B.
In particular, if V is finite-dimensional then, although V and V* are iso-
morphic as abstract vector spaces, there is no natural isomorphism between
them, and it would be a mistake to identify them. <&

REMARK 1.6.4. If V = F" with & the standard basis {eq, ..., e,}, then
the proof of Lemma 1.6.2 gives the standard basis §* of V*, §* = {e], ...,
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ey}, defined by

An

REMARK 1.6.5. The basis 8* (and hence the map §g) depends on the
entire basis B. For example, let V = [F? and choose the standard basis &

Rt

Then &* is the basis {e], e} of V'*, with

H(5) R

If we choose the basis B of V' given by

= L =t

then B* = {w}, w;} with

i((rer ()

Thus, even though v; = ey, wi # e}. O

ExAMPLE 1.6.6. If V' is infinite-dimensional, then in general the linear
transformation g is an injection but not a surjection. Let V' = F* with
basis & = {ey, ez, ...} and consider the set §* = {ef, eJ,...}. Any element
w* of the subspace V* spanned by &* has the property that w*(e;) # 0 for
only finitely many values of i. This is not the case for a general element of
V*. In fact, V* is isomorphic to F*°*° as follows: If

a by

v= |49 | eF*® and x* = | b2 | e Fooo®

then we have the pairing x*(v) = Y_ a;b;. (This makes sense for any x*, as
only finitely many entries of v are nonzero.) Any element w* of V* arises
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in this way as we may choose

w*(er)
x* = [ w(e)
Thus in this case the image of g is F*° C %%, <&

REMARK 1.6.7. The preceding example leaves open the possibility that
V might be isomorphic to V* by some other isomorphism than 7. That is
also not the case in general. We have seen in Remark 1.2.19 that F*° is a
vector space of countably infinite dimension and F°°*° is a vector space of
uncountably infinite dimension. <&

REMARK 1.6.8. Just as a typical element of V is denoted by v, a typical
element of V* is often denoted by v*. This notation carries the danger of
giving the impression that there is a natural map from V to V* given by
v = v* (i.e., that the element v* of V* is the dual of the element v of V),
and we emphasize again that that is not the case. There is no such natural
map and that is does not make sense to speak of the dual of an element of V.
Thus we do not use this notation and instead use w* to denote an element
of V'*. <

ExAMPLE 1.6.9 (Compare Example 1.2.22). Let V = P,_;(R) for any
n.

(1) For any a € R, V has basis 8 = {po(x), p1(x), ..., pr—1(x)}
where po(x) = 1and p(x) = (x —a)k/k!fork = 1,...,n— 1. The dual
basis B* is given by 8* = {E;,E, 0D, ..., E, o D" 1},

(2) For any distinctay, . ..,a, € R,V hasbasis € = {g1(x),...,qn(x)}
with g (x) = Il (x — a;)/(ax — a;). The dual basis €* is given by
€* ={E,,,...,Eq,}.

(3) Fix an interval [a, b] and let T : V' — R be the linear transformation

b
7(fe0) = [ fedx.

Then T € V*. Since €* (as above) is a basis of VV*, we have T =
Z?=1 ¢;Eq, for some constants ¢y, ..., Cy.
In other words, we have the exact quadrature formula, valid for every

foev,
b n
| reax =Y ar@.

i=1
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For simplicity, let [a, b] = [0, 1], and let us for example choose equally
spaced points.
For n = 0 choose a; = 1/2.Then ¢; = 1, i.e,,

1
/o f(x)dx = f(1/2) for f € Py(R).

Forn = 1,choosea; =0anda, = 1.Thency = ¢, = 1/2,1e.,

1
| ferar =250 +a/250) torf € PR,
Forn = 2, choose a; = 0,a, = 1/2,a3 = 1. Then ¢; = 1/6,
Cy = 4/6, C3 = 1/6, i.e.,
1
/O f(x)dx = (1/6) f(0) + (4/6) f(1/2) + (1/6) f(1) for f € P>(R).

The next two expansions of this type are

/01 J(x)dx = (1/8)f(0) + 3/8) f(1/3) + (3/8) f(2/3)
+1/8)f(1) for f € P3(R),

/01 J(x)dx = (7/90) f(0) + (32/90) f(1/4) + (12/90) f(1/2)
+(32/90)f(3/4) + (7/90) f(1) for f € P4s(R).

These formulas are the basis for commonly used approximate quadra-
ture formulas: The first three yield the midpoint rule, the trapezoidal rule,
and Simpson’s rule respectively.

(4) Fix an interval [a, b] and for any polynomial g(x) let

b
Tyt = / F(0)g(x) dox.

Then Tgx) € V*. Let D* = {71, T, ..., Ten—1}. We claim that D* is
linearly independent. To see this, suppose that

T=ah+a19x+--+an-1Tmn-1 = 0.

Then T = Ty(x) With g(x) = ap +a1x +-+-+a,—1x"~! € V. To say that
T = 0is to say that 7(f(x)) = O for every f(x) € V. Butif we choose
f(x) = g(x), we find

b
T(f()) = Tex (8(x)) = / g(x)?dx =0



34 1. VECTOR SPACES AND LINEAR TRANSFORMATIONS

which forces g(x) = 0,ie.,a9 = a3 = -+ = ay—1 = 0, and D* is
linearly independent.

Since D* is a linearly independent set of n elements in V*, a vector
space of dimension #n, it must be a basis of V*, so every element of V*
is Tg(x) for a unique g(x) € V. In particular this is true for E. for every
¢ € [a, b]. It is simply a matter of solving a linear system to find g(x). For
example, let [a, b] = [0, 1] and let ¢ = 0. We find

1
£0) = /0 F()gx) dx

forg(x) =1 if f(x) € Py(R),
for g(x) =4 —6x if f(x) € P1(R),
for g(x) = 9 — 36x + 30x> if f(x) € P»(R),
for g(x) = 16 — 120x + 240x2—140x> if f(x) € P3(R),

for g(x) = 25 — 300x + 1050x2 — 1400x> 4+ 630x* if f(x) € P4(R).

Admittedly, we rarely if ever want to evaluate a function at a point by com-
puting an integral instead, but this shows how it could be done.

We have presented (3) and (4) here so that the reader may see some
interesting examples early, but they are best understood in the context of
inner product spaces, which we consider in Chapter 7. <

To every subspace of V' we can naturally associate a subspace of V*
(and vice-versa), as follows.

DEFINITION 1.6.10. Let U be a subspace of V. Then the annihilator
Ann*(U) is the subspace of V* defined by

Amn*(U) = {w* € V* | w*(u) = O forevery u € U}. O

Lemma 1.6.11. Let U be a finite-dimensional subspace of V. Then
V*/ Ann*(U) is isomorphic to U. Consequently,

codim (Ann*(U)) = dim(U).

Proof. Set X* = Ann*(U) and let {x],x},...} be a basis of X*. Let
{uy,...,ur} be a basis for U. Let U’ be a complement of U, so V =
U@U’, andlet {u}, u}, ...} beabasisof U’. Then {u1, ..., ug, uj, ujy, ...}
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isabasisof V.For j =1,... k define y} € V* by

yi(wi) =0 ifi #

i (uj) =1,

Yj (u;,,) =0 forevery m.

We claim {yf, ..., y{, X[, X5,...} is a basis of V*. First we show it
is linearly independent: Suppose ) ¢; y;" + > dmx,, = 0. Evaluating this
function at u; we see it has the value ¢;, so¢; = 0fori = 1,...,k. Then
dm = 0 for each m as {x, xJ, ...} is linearly independent. Next we show
it spans V*: Let w* € V*. For j = 1,...,k, letc; = w*(u;). Let y* =
w* — Zc,y}" Then y*(u;) = 0 for each i, so y* € Ann(U™) and hence
y* =2 dmxy, forsomedy,... . du. Thenw® =} c;y} + 3 dmxy,.

Let Y™ be the subspace of V* spanned by {yf, ..., y;}. Then V* =
X* @ Y*so V*/X™* is isomorphic to Y *. But we have an isomorphism
S :U — Y* givenby S(u;) = y/. (If we let u} be the restriction of y* to
U, then {u7, ..., uz} is the dual basis to {u1, ..., ug}.) O

REMARK 1.6.12. We often think of Lemma 1.6.11 as follows: Suppose we
have k linearly independent elements u1, . .., uj of V, so that they generate
a subspace U of V of dimension k. Then the requirements that a linear
transformation from V to IF be zero at each of uy, . .., uy imposes k linearly
independent conditions on the space of all such linear transformations, so
the subspace of linear transformations satisfying precisely these conditions,
which is Ann*(U), has codimension k. <&

To go the other way, we have the following association.

DEFINITION 1.6.13. Let U* be a subspace of V*. Then the annihilator
Ann(U™) is the subspace of V' defined by

AmU™) ={v eV | w*(v) =0 forevery w* € U*}.

O
REMARK 1.6.14. Observe that Ann*({0}) = V* and Ann*(V) = {0};
similarly Ann({0}) = V and Ann(V*) = {0}. <

If V is finite-dimensional, our pairings are inverses of each other, as we
now see.

Theorem 1.6.15. (1) For any subspace U of V, Ann(Ann*(U)) = U.
(2) Let V be finite-dimensional. For any subspace U™ of V'*,

Ann*(Ann(U™)) = U™,
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So far in this section we have considered vectors, i.e., objects. We now
consider linear transformations, i.e., functions. We first saw pullbacks in
Example 1.1.23(3), and now we see them again.

DEFINITION 1.6.16. Let 7 : V — X be a linear transformation. Then
the dual T* of T is the linear transformation 7* : X* — V* given by
T*(y*) = y* o T,ie., T*(y*) € V* is the linear transformation on V'
defined by

(T*(v*)) ) = (y* o T)(v) = y*(T (), fory* e X*. O

REMARK 1.6.17. (1) Itis easy to check that 7*(y*) is a linear transfor-
mation for any y* € X*. But we are claiming more, that y* +— T*(y*)
is a linear transformation from V* to X*. This follows from checking that
T*O1 +y) =T + T*(yy) and T*(cy™) = cT*(y").

(2) The dual 7* of T is well-defined and does not depend on a choice
of basis, as it was defined directly in terms of 7. <

Now we derive some relations between various subspaces.

Lemma1.6.18. Let T : V — X be a linear transformation. Then Im(T*) =
Ann* (Ker(7)).

Proof. Let w* € V* be in Im(7*), so w* = T*(y*) for some y* € X*.
Then forany u € Ker(7), w*() = (T*(»y*)(u) = y*(T (w)) = y*(0) =
0, so w* is in Ann*(Ker(7")). Thus we see that Im(7*) € Ann*(Ker(7)).

Let w* € V* be in Ann*(Ker(7)), so w*(u) = 0 for every u €
Ker(7). Let V' be a complement of Ker(7), so V = Ker(7) & V'. Then
we may write any v € V uniquely as v = u + v’ with u € Ker(7),
v’ € V'. Then w*(v) = w*(u + v') = w* () + w*(’) = w*(’). Also,
TW)=T),s0T(V)=T(V').Let X' be any complement of 7 (V') in
X,sothat X =T (V') X'.

Since the restriction of 7 to V'’ is an isomorphism, we may write x € X
uniquely as x = 7 (v') + x” with v’ € V' and x’ € X'. Define y* € X* by

y*(x) = w*(@') wherex =T (@) +x',v €V andx’ € X'.

(It is routine to check that y* is a linear transformation.) Then for v € V,
writing v = u 4+ v/, withu € Ker(7) and v’ € V', we have

(T*() @) = y*(TO) = y*(TO)) = w*@) = w*@).

Thus 7*(y*) = w* and we see that Ann*(Ker (7)) € Im(7*). (]
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The following corollary gives a useful dimension count.

Corollary 1.6.19. Let T : V — X be a linear transformation.
(1) If Ker(T") is finite-dimensional, then

codim (Im (77*)) = dim (Coker (7*)) = dim (Ker(7)).
(2) If Coker(T) is finite-dimensional, then
dim (Ker (7)) = dim (Coker(7")) = codim (Im(7)).
Proof. (1)Let U = Ker(7). By Lemma 1.6.11,
dim (Ker (7)) = codim (Ann* (Ker(7))).
By Lemma 1.6.18,
Ann* (Ker(7)) = Im (7).
(2) is proved using similar ideas and we omit the proof.

Here is another useful dimension count.

Corollary 1.6.20. Let T : V — X be a linear transformation.
(1) If dim(V') is finite, then

dim (Im (7)) = dim (Im (7')).
(2) If dim(V) = dim(X) is finite, then
dim (Ker (7*)) = dim (Ker(7)).
Proof. (1) By Theorem 1.3.1 and Corollary 1.6.19,

dim(V) — dim (Im(7)) = dim (Ker(7))
= codim (Im (T*)) = dim (V*) —dim (Im(’f)),

and by Lemma 1.6.2, dim(V'*) = dim(V).
(2) By Theorem 1.3.1 and Lemma 1.6.2,

dim(Ker (7*)) = dim (X*) — dim (Im(7*))

= dim(V) — dim (Im(7")) = dim (Ker(7)).

37
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REMARK 1.6.21. Again we caution the reader that although we have
equality of dimensions, there is no natural identification of the subspaces
in each part of Corollary 1.6.20. <

Lemma 1.6.22. Let T : V — X be a linear transformation.
(1) T is injective if and only if T* is surjective.
(2) T is surjective if and only if T* is injective.

T*

(3) T is an isomorphism if and only if T* is an isomorphism.

Proof. (1) Suppose that T is injective. Let w* € V* be arbitrary. To show
that 7* is surjective we must show that there isa y* € X* with T*(y*) =
w*, ie., y* o7 = w*

Let B = {v1,va,...} beabasisof V and set x; = T (v;). T is injective
0 {X1, X2, ...} is a linearly independent set in X. Extend this set to a basis
€ = {x1,X2,...,x],x5,...} of X and define a linear transformation U :
X — V by U(x;) = v;, ‘U(x}) = 0. Note UT (v;) = v; foreachi so UT
is the identity map on V. Set y* = w* o U. Then T*(y*) = y* o T =
W*oUWU)oT =w*o(UoT) =w™.

Suppose that T is not injective and choose v # 0 with 7 (v) = 0. Then
forany y* € X*, T*(y*)(v) = (y* o T)(v) = y* (T (v)) = y*(0) = 0.
But not every element w* of V'* has w*(v) = 0. To see this, let v; = v and
extend vq to a basis B = {v1, vz, ...} of V. Then there is an element w™* of
V* defined by w*(vy) = 0, w*(v;) = 0 fori # 1.

(2) Suppose that T is surjective. Let y* € X™*. To show that 7* is
injective we must show that if 7*(y*) = 0, then y* = 0. Thus, suppose
T*(y*) = 0, ie., that (T*(»*))(v) = 0 forevery v € V. Then 0 =
T**)W) = (" o T)(w) = y*(T (v)) for every v € V. Choose x €
X. Then, since T is surjective, there isa v € V with x = 7 (v), and so
y*(x) = y*(F (v)) = 0. Thus y*(x) = 0 forevery x € X, ie., y* = 0.

Suppose that T is not surjective. Then Im(7") is a proper subspace of
X. Let {x1,x3,...} be a basis for Im(7") and extend this set to a basis
€ = {x1.x2,...,x],x},...} of X. Define y* € X* by y*(x;) = 0 for all
i, y*(x}) = 1,and y*(x}) = 0for j # 1. Then y* # 0, but y*(x) = 0
for every x € Im(7). Then

(T = ("o T)) =y (Tw) =0

so T*(y*) =0.
(3) This immediately follows from (1) and (2). O

Next we see how the dual behaves under composition.
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Lemma 1.6.23. Let T : V. — W and § : W — X be linear transfor-
mations. Then 8 o T : V — X has dual (8 o T)* : X* — V* given by
(8 07 )* _ -""* o 8*

Proof. Let y* € X* and let x € X. Then

(80 T)* (¥)(x) = v*((8 e TI(x) = y*(8(T())
= (SONT ) = (T*(8(»*)))x)
= (T o 8%) (") ).

Since this is true for every x and y*, (§ o 7)* = T * o §*. O

We can now consider the dual V** of V*, known as the double dual
of V.

An element of V* is a linear transformation from V to IF, and so is a
function from V to [F. An element of VV** is a linear transformation from
V* to IF, and so is a function from V* to F. In other words, an element
of V** is a function on functions. There is one natural way to get a func-
tion on functions: evaluation at a point. This is the linear transformation E,,
(“Evaluation at v”’) of the next definition.

DEFINITION 1.6.24. Let E, € V** be the linear transformation E,
V* — [ defined by E,(w*) = w*(v) for every w* € V*. <&

REMARK 1.6.25. It is easy to check that E, is a linear transformation.
Also, E, is naturally defined. It does not depend on a choice of basis. <&

Lemma 1.6.26. The linear transformation  : V. — V** given by # (v) =
E, is an injection. If V' is finite-dimensional, it is an isomorphism.

Proof. Let v be an element of V' with E, = 0. Now E, is an element of
V**, the dual of V*, so E, = 0 means that for every w* € V*, E,(w*) =
0. But E,(w*) = w*(v). Thus v € V has the property that w*(v) = 0
for every w* € V*. We claim that v = 0. Suppose not. Let v; = v and
extend {vq} to a basis B = {vy,v,,...} of V. Consider the dual basis
B* ={wf, wj,...}of V*. Then wi(v) =1#0.

If V is finite-dimensional, then E, is an injection between vector spaces
of the same dimension and hence is an isomorphism. O

REMARK 1.6.27. As is common practice, we will often write v** =
H(v) in case V is finite-dimensional. The map v + v** then provides a
canonical identification of elements of V' with elements of V **, as there is
no choice, of basis or anything else, involved. <&
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Beginning with a vector space V and a subspace U of V', we obtained
from Definition 1.6.10 the subspace Ann*(U) of V*. Similarly, beginning
with the subspace Ann*(U) of V* we could obtain the subspace
Ann*(Ann*(U)) of V**. This is not the construction of Definition 1.6.13,
which would give us the subspace Ann(Ann*(U)), which we saw in Theo-
rem 1.6.15 was just U. But these two constructions are closely related.

Corollary 1.6.28. Let V be a finite-dimensional vector space and let U be
a subspace of V.. Let K be the linear transformation of Lemma 1.6.26. Then
H : U — Ann*(Ann*(U)) is an isomorphism.

Since we have a natural way of identifying finite-dimensional vector
spaces with their double duals, we should have a natural way of identifying
linear transformations between finite-dimensional vector spaces with linear
transformations between their double duals, and we do.

DEFINITION 1.6.29. Let V and X be finite-dimensional vector spaces.
If 7 : V — X is a linear transformation, its double dual is the linear
transformation 7** : V** — X** given by 7**(v**) = (T (v))**. <&

Lemma 1.6.30. Let V and X be finite-dimensional vector spaces. Then
T+ T**isanisomorphismfromHomg (V, X) = {linear transformations:
V — X} to Homp (V**, X**) = {linear transformations:V** — X**}.

Proof. Ttis easy to check that T — T ** is a linear transformation. Since V'
and V** have the same dimension, as do X and X**, {linear transformations:
V — X} and {linear transformations:V** — X**} are vector spaces of

gk *k

the same dimension. Thus in order to show that 7 — 7 1S an isomor-

phism, it suffices to show that 7 +— 7 ** is an injection. Suppose 7 ** = 0,
ie, 7**(v**) = 0 for every v** € V**. Let v € V be arbitrary. Then
0= T**0W*) = (TW)*™ = H(T (v)). But # is an isomorphism by

Lemma 1.6.26,s0 7 (v) = 0. Since thisis true foreveryv € V,7 = 0. O

REMARK 1.6.31. In the infinite-dimensional case it is in general not true
that V is isomorphic to V**. For example, if V = F° we have seen in
Example 1.6.6 that V* is isomorphic to F*°*°. Also, V* is isomorphic to
a subspace of VV**. We thus see that V' has countably infinite dimension
and V** has uncountably infinite dimension, so they cannot be isomorphic.

&



CHAPTER 2

COORDINATES

In this chapter we investigate coordinates.

It is useful to keep in mind the metaphor:

Coordinates are a language for describing vectors and linear
transformations.

In human languages we have, for example:

[*]English = star, [*]French = étOile, [*]German = Stern,

[_)]English = arrow, [_)]French = ﬂéChe, [_)]German = Pfeil.

Coordinates share two similarities with human languages, but have one

important difference.

ey

@

3

Often it is easier to work with objects, and often it is easier to work
with words that describe them. Similarly, often it is easier and more
enlightening to work with vectors and linear transformations directly,
and often it is easier and more enlightening to work with their descrip-
tions in terms of coordinates, i.e., with coordinate vectors and matrices.

There are many different human languages and it is useful to be able to
translate among them. Similarly, there are different coordinate systems
and it is not only useful but indeed essential to be able to translate
among them.

A problem expressed in one human language is not solved by translat-
ing it into a second langauge. It is just expressed it differently. Coordi-
nate systems are different. For many problems in linear algebra there
is a preferred coordinate system, and translating the problem into that

41
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language greatly simplifies it and helps to solve it. This is the idea be-
hind eigenvalues, eigenvectors, and canonical forms for matrices. We
save their investigation for a later chapter.

2.1 COORDINATES FOR VECTORS

We begin by restating Lemma 1.2.21.

Lemma 2.1.1. Let V be a vector space and let B = {v;} be a set of vectors
in V. Then B is a basis for V if and only if every v € V can be written
uniquely as v =Y _ ¢;v; for ¢; € F, all but finitely many zero.

With this lemma in hand we may make the following important defini-
tion.

DEFINITION 2.1.2. Let V' be an n-dimensional vector space and let B =
{v1,...,Vv,} be a basis for V. For v € V the coordinate vector of v with
respect to the basis B, [v] g, is given as follows: If v = ) ¢;v;, then

1

C2
g =| . |eF". o

Cn
Theorem 2.1.3. Let V be an n-dimensional vector space and let B be a
basis of V. Then T : V — F" by T (v) = [v] g is an isomorphism.
Proof. Let 8 = {v1,...,v,}. Define § : F" — V by

1

8 =Zciv,~.

Cn

It is easy to check that & is a linear transformation, and then Lemma 2.1.1
shows that § is an isomorphism. Furthermore, 7 = §~1. O

EXAMPLE 2.1.4. (1) Let V = " and let 8 = & be the standard basis.
c1
Ifv = [ i|, then v = ) cje; (where & = {e1,...,e,}) and so [v]g =

Cn

1
[ i| That is, a vector “looks like itself” in the standard basis.
Cn

(2) Let V be arbitrary and let B = {by, ..., by} be a basis for V. Then
[bilg = ei.
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G Lety =R et = {[[].[]} = ter. expandter s = {[;].[3]} =

(b1, b}. Then [bi]g = [;] and [bole = [3] (as B] - 1[(1)] ¥ 2[(1)] and

HER R

On the other hand, [e1]g = [ ;] and [e2] g = [_ﬂ (as [(1)] = 7[;] +

o maff] =[] + )

]
Let vy = [ ] Then [v1]e = [ ] Also, [v1]g = [2] where v =

x1b1 + x2b5, ie., [;;] = xl[z] + xz[;]. Solving, we find x1 = 2, x, =

5,80 [v1]lg = [?] Similarly, let v, = [2;] Then [vz]e = [27]. Also,

[12]g = B;] where v, = y1b1 + y2b2, ie., [g] = y1[ ] + y2[3]

Solving, we find y; = 3, y, = 8,50 [v2]g = [g]

@) Let V = P,(R), let By = {1,x,x%}, and let B; = {1, x — 1,
(x — 1)%}. Let p(x) = 3 — 6x + 4x2. Then

3
[p(x)]$0 =|-6
4

Also p(x) =1 +2(x — 1) + 4(x — 1), 50

[p(x)]i),l =(2]. <&

~

2.2 MATRICES FOR LINEAR TRANSFORMATIONS

Let V and W be vector spaces of finite dimensions n and m respectively
with bases 8 = {v1,...,v,} and € = {wy, ..., wytandletT : V — W
is a linear transformation. Then we have isomorphisms § : V' — F” given
by $(v) = [vlgand U : W — F™ given by U(w) = [w]c, and we
may form the composition U 0 T o 87! : F” — F™. Since this is a linear
transformation, it is given by multiplication by a unique matrix. We are thus
led to the following definition.
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DEFINITION 2.2.1. Let V' be an n-dimensional vector space with basis
B = {v1,...,v,} and let W be an m-dimensional vector space with basis
€ ={wy,..., wn}.Let T : V — W be a linear transformation. The matrix
of the linear transformation T with respect to the bases B and €, denoted
[T le g, is the unique matrix such that

[Tleglvlg = [T (v)]e foreveryv e V. &

It is easy to write down [T |e« g (at least in principle).

Lemma 2.2.2. In the situation of Definition 2.2.1, the matrix [T leg is
given by

[Tlews = [[T()]e 1T @2)]e I+ 11T (va) e ]
i.e, [Tle«g is the matrix whose ith column is [T (v;)]e, for each i.
Proof. By Lemma 1.2.23, we need only verify the equation [T e g[v] =
[TW)]e forv = v;,i = 1...,n.But [v;]lg = e; and [T]e—ge; is the
ith column of [T]eg, ie., [TleglVilg = [Tlecgei = [T(vi)]e as

required. O

Theorem 2.2.3. Let V be a vector space of dimension n and let W be a
vector space of dimension m over a field F. Choose bases B of V and € of
W. Then the linear transformation

& : {linear transformations T : V — W}

— {m-by-n matrices with entries in '}

given by 8(T7) = [T le«g is an isomorphism.

Corollary 2.2.4. In the situation of Theorem 2.2.3, {linear transformations
T 1V — W}is avector space over F of dimension mn.

Proof. {m-by-n matrices with entries in [F} is a vector space of dimension
mn, with basis the set of matrices {E;;},1 <i <m,1 < j <n, where E;;
has an entry of 1 in the (i, j) position and all other entries 0. O

Lemma 2.2.5. Let U, V, and W be finite-dimensional vector spaces with
bases B, €, and D respectively. Let T : U — V and 8§ : V — W be
linear transformations. Then 8 o T : U — W is a linear transformation
with

[0 T]pes = [$loe[Tles-
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Proof. Foranyu e W,

(BloelTle—s)uls = [Sloe([TTesluls)
= [8]1)68([7‘(”)]5)
=[8(TwW)]p =[(8T)w)],.

Butalso [ o T pglulg =[(8 o T)u)]p so

[ 0T ]ps = [SloelT]es. O

EXAMPLE 2.2.6. Let A be an m-by-n matrix and let 74 : F* — F™ be
defined by 74(v) = Av. Choose the standard bases &, for F” and &,, for
F™. Write A = [a1 | a2 | --- | an), i.e., a; is the ith column of A. Then
[T4le,, <, is the matrix whose ith column is

[T4(e)]s,, = [Aerlg, = [alg, = ar
so we see that [T4]g,, ¢, = A. That is, multiplication by a matrix “looks
like itself” with respect to the standard bases. <&

The following definition is the most important special case of Defini-
tion 2.2.1, and the case we will concentrate on.

DEFINITION 2.2.7. Let V' be an n-dimensional vector space with basis
B = {v1,...,vppand let T : V — V be a linear transformation. The
matrix of the linear transformation T in the basis B, denoted [T] g, is the
unique matrix such that

[T1slvlg = [T (v)]g foreveryv e V. <&

REMARK 2.2.8. Comparing Definition 2.2.7 with Definition 2.2.1, we see
that we have simplified our notation in this special case: We have replaced
[T]8«3 by [T]s.

With this simplification, the conclusion of Lemma 2.2.2 reads

Tls = [T0)]a | [TO2)g | [TO)]gl  ©

We also make the following observation.

Lemma 2.2.9. Let V be a finite-dimensional vector space and let B be a
basis of V.

(1) If T = d, the identity linear transformation, then [T|g = I, the
identity matrix.

(2) T : V. — V is an isomorphism if and only if [T | g is an invertible
matrix, in which case [T Vg = ([T]g)"".
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EXAMPLE 2.2.10. Let 7 : R — R? be given by 7 (v) = [lfg _zg]v.

65 —24

Then [T']g = [149 55

]. Let B be the basis B = {by, by} with by = B]

and by = [;] Then [T]g = [[vi]g | [v2] 8] where

n =700 ={ 135 5] 2 = 9

and

R et
2T T a9 55 |7] T [62]
We have computed [v1] g and [v2] g in Example 2.1.4(3) where we obtained

1] = [ﬂ and [v2]g = [g} s0[T]g = [ﬁ ;] o

We shall see further examples of matrices of particularly interesting lin-
ear transformations in Example 2.3.18.

2.3 CHANGE OF BASIS

We now investigate how to change coordinates. In our metaphor of coordi-
nates providing a language, changing coordinates is like translating between
languages. We look at translation between languages first, in order to guide
us later.

Suppose we wish to translate from English to English, for example, or
from German to German. We could do this by using an English to English
dictionary, or a German to German dictionary, which would look in part
like:

English | English German | German
star star Stern Stern
arrow arrow Pfeil Pfeil

The two columns are identical. Indeed, translating from any language to
itself leaves every word unchanged, or to express it mathematically, it is the
identity transformation.

Suppose we wish to translate from English to German or from German
to English. We could use an English to German dictionary or a German to
English dictionary, which would look in part like:
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English | German German | English
star Stern Stern star
arrow Pfeil Pfeil arrow

The effect of translating from German to English is to reverse the ef-
fect of translating from English to German, and vice versa. Mathematically,
translating from German to English is the inverse of translating from En-
glish to German, and vice versa.

Suppose that we wish to translate from English to German but we do not
have an English to German dictionary available. However, we do have an
English to French dictionary, and a French to German dictionary available,
and they look in part like:

English | French French | German
star étoile étoile Stern
arrow fleche fleche Pfeil

We could translate from English to German by first translating from
English to French, and then translating from French to German. Mathemat-
ically, translating from English to German is the composition of translating
from English to French followed by translating from French to German.

We now turn from linguistics to mathematics.

Let V' be an n-dimensional vector space with bases B8 = {vy,...,v,}
and € = {wy, ..., wy}. Then we have isomorphisms &§ : V' — [F” given by
8(w) = [v]lg,and T : V — F" given by 7 (v) = [v]e. The composition
7 o871 :F" — F" is then an isomorphism, and 7 o 871 ([v]g) = [v]e.
By Lemma 1.1.12, it isomorphism is given by multiplication by a unique
(invertible) matrix. We make the following definition.

DEFINITION 2.3.1. Let IV be an n-dimensional vector space with bases
B = {v1,...,v,} and € = {wy,...,wy}. The change of basis matrix
Pe g, is the unique matrix such that
Peglv]lg = [v]e
forevery v € V. <&
It is easy to write down, at least in principle, Peg.
Lemma 2.3.2. In the situation of Definition 2.3.1, the matrix Pe_ g is

given by

Pecg =[[vi]e | [va]e |-+ [vn]e].

i.e., Pe g is the matrix whose ith column is [v;]e.



48 GUIDE TO ADVANCED LINEAR ALGEBRA

Proof. By Lemma 1.2.23, we need only verify the equation Peg[v]g =
[vle forv = v;,i = 1,...,n. But [v;]g = e; and Pege; is the ith
column of Pe. g,i.e., Pecglvi]lg = Pegei = [vi]e asrequired. O

REMARK 2.3.3. If we think of 8 as the “old” basis, i.e., the one we are
translating from, and € as the “new” basis, i.e., the one we are translating
to, then this lemma says that in order to solve the translation problem for an
arbitrary vector v € V, we need only solve the translation problem for the
old basis vectors, and write down their translations in successive columns to
form a matrix. Then multiplication by that matrix does translation for every
vector. <&

We have a theorem that parallels our discussion of translation between
human languages.
Theorem 2.3.4. Let V be a finite-dimensional vector space.

(1) For any basis B of V, Pg«g = I is the identity matrix.

(2) For any two bases B and € of V, Pe g isinvertible and (Pe g) ™"

Pgce.
(3) For any three bases B, €, and D of V, Ppg = Ppe Peg.

Proof. (1)Foranyv €V,
[vlg = I[vlg = Pgslvls.
so Pg. g =1.
(2)Foranyv € V,
(PgcPecs)lvlg = Pge(Peglvlg) = Pgelvle = [v]s.

s0 Pg«ePeg = I, and similarly PegPg«e = I so (P€<_;3)_1 =
Pgce.
(3) Ppg is the matrix defined by Pp. g[v]g = [v]p. But

(PpePecg)lvlg = Ppe(Pecglvlg) = Pp—elvle = [v]o,
so Pp«g = PpePecg. O

REMARK 2.3.5. There is no uniform notation for Pe.g. We have chosen
a notation that we feel is mnemonic: Pe. g[v]g = [v]e as the subscript
“B” of [v]g is near the “B” in the subscript “€ <« B” of Peg, and
this subscript goes to “€”, which is the subscript in the answer [v]e. Some
other authors denote Pe. g by PéB and some by Pg. The reader should
pay careful attention to the author’s notation as interchanging the two bases
takes the change of basis matrix to its inverse. <&



2.3. CHANGE OF BASIS 49

REMARK 2.3.6. (1) There is one case in which the change of basis matrix
is easy to write down. Suppose V = F", B = {vy,...,v,} is a basis of V,
and & = {ey, ..., ey} isthe standard basis of V. Then, by Example 2.1.4(1),
[vile = vi, so

Pgeg =[vi|v2]-|va]

Thus, the change of basis matrix into the standard basis is easy to find.

(2) Tt is more often the case that we wish to find the change of basis
matrix out of the standard basis, i.e., we wish to find Pg.g. Then it requires
work to find [e¢;]g. Instead we may write down Pg. g as in (1) and then
find Pgg by Pgg = (Pgg)™".

(3) Suppose we have two bases B and € of " neither of which is the
standard basis. We may find Pe g directly, or else we may find Pe. g by
Pecg = PecgPscs = (Pece) ' Pecg. <&
Lemma 2.3.7. Let P be an n-by-n matrix. Then P is a change of basis
matrix between two bases of F" if and only if P is invertible.

Proof. Let P = (pi;). Choose a basis € = {w1,...,wy} of V. Letv; =
Z/- pijw;. Then 8 = {v1,...,v,} is a basis of V if and only if P is
invertible, in which case P = Pe 3. O

REMARK 2.3.8. Comparing Lemma 2.2.2 and Lemma 2.3.2, we observe
that Peg = [d]eg where d : F" — F” is the identity linear transfor-
mation ( (v) = v for every v in F"). <&

o 20, tav = x,6 = [[1]. 1] wnas = {[1]. [}

Let v; = I:;;i|, so also [v1]e = I:;;i| We computed directly in Exam-

ple 2.1.4(3) that [v1]g = I:Si| Let vp = |:621|’ so also [v2]g = |:621|' We

computed directly in Example 2.1.4(3) that [v2] g = 53;]

We know from Remark 2.3.6(1) that Pg..g = I:; ;] and from Re-

137" 7 =37
mark 2.3.6(2) that Pg. g = [2 7] = [_2 Nt Then we can easily

verify that

i [ e H A R [
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We shall see further particularly interesting examples of change of basis
matrices in Example 2.3.17.

Now we wish to investigate change of basis for linear transformations.
Again we will return to our metaphor of language, and see how linguistic
transformations work.

Let T be the transformation that takes an object to several of the same
objects, T(*x) = x % k- %, T (=) =>—>— -+ —.

This is reflected in the linguistic transformation of taking the plural.
Suppose we wish to take the plural of German words, but we do not know
how. We consult our German to English and English to German dictionar-
ies:

German | English English | German
Stern star star Stern
Sterne stars stars Sterne
Pfeil arrow arrow Pfeil
Pfeile arrows arrows Pfeile

We thus see that to take the plural of the German word Stern, we may
translate Stern into the English word star, take the plural (i.e., apply our
linguistic transformation) of the English word star, and translate this word
into German to obtain Sterne, the plural of the German word Stern. Simi-
larly, the path Pfeil — arrow — arrows — Pfeile gives us the plural of the
German word Pfeil.

The mathematical analog of this conclusion is the following theorem.

Theorem 2.3.10. Let V be an n-dimensional vector space andletT 1V —
V be a linear transformation. Let B and € be any two bases of V. Then

[Tle = PeglT]8Pg<e.
Proof. For any vector v € V,

(PeglT]gPge)lvle = (Pesl[T]ls) Pg—elvle
= (Pe—3[T]s)v]s
= Peg([T]3[v]a)
= Pecs[TW)]g =[TW)]e.

But [T ]e is the unique matrix with
[TTelvle = [T ()]e

forevery v € V, so we see that [T ]e = Peg[T |8 Pge. O
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Corollary 2.3.11. In the situation of Theorem 2.3.10,

lead —1r—
[Tle = (Pg—e) [TlaPsce
- -1
= Pe3g[T)8(Pecs)
Proof. Immediate from Theorem 2.3.10 and Theorem 2.3.4(2). O

We are thus led to the following very important definition. (A priori,
this definition may seem very unlikely, but in light of our development it is
almost forced on us.)

DEFINITION 2.3.12. Two n-by-n matrices A and B are similar if there is
an invertible matrix P with

A= P'BP. <

REMARK 2.3.13. Itiseasy to check that similarity is an equivalence rela-

tion. <
The importance of this definition comes from the following theorem.

Theorem 2.3.14. Let A and B be n-by-n matrices. Then A and B are
similar if and only if they are matrices of the same linear transformation
T :F" — F" with respect to a pair of bases of F".

Proof. Immediate from Corollary 2.3.11. (]

There is an alternate point of view.

Theorem 2.3.15. Let V be a finite-dimensional vector space and let § :
V.— Vand T : V — V be linear transformations. Then 8 and T are
conjugate (i.e, T = R™VER for some invertible linear transformation
RV — V) ifand only if there are bases B and € of V with

[8la = [Tle.
Proof. 1f [8]g = [T e, then by Corollary 2.3.11
(8] = [Tle = PeslTlsPel g

so [8]s and [T]g are conjugate by the matrix Pe. g and hence, since a
linear transformation is determined by its matrix in any basis, & and T are
conjugate. Conversely, if 7 = R~18R then

[Tle = [R'1e[8]e[R]e
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but [R]g, being an invertible matrix, is a change of basis matrix Pe. g for
some basis €. Then

[T]e = Pelel8]1Pewe.
SO

Peg[T)ePele = [Sle.
ie.,

[TTe = [8le. )

65 —24]

EXAMPLE 2.3.16. Let 7 : R? - R?be T = T4, where 4 = [149 55

Let B = {B], [3]}, a basis of R2. Then [T]g = Pg<¢l[T]ePecg =

P§<1_8 [T]e Pa—eg.- Since [T]g = A we see that

e = 1377 65 —241[13] _[23

B727] 149 s550([27] [58)

verifying the result of Example 2.2.10, where we computed [T] g directly.
<

ExAMPLE 2.3.17. Let V = P,(R) and let B and € be the bases
B = {1,x,x(2),x(3),...,x(”)},
where x = x(x — 1)(x —=2)---(x —i + 1), and
€ ={l,x,x% ..., x"}.

Let P = (pij) = Pecg and Q = (qij) = Pge = P~!. The entries
pij are called Stirling numbers of the first kind and the entries g;; are called
Stirling numbers of the second kind. Here we number the rows/columns of
the respective matrices from O to n, not from 1 to n 4 1. For example, if
n =5 we have

[10 0 0 0 O] [10000 0]
01 -1 2-6 24 01111 1
00 1-3 11—50 0013715
P=100 0 126 35| ™ 2=|0001625
00 0 0 1-10 00001 10
00 0 0 0 1] 100000 1]

(The numbers p;; and g;; are independent of n as long as i, j < n.) <&
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EXAMPLE 2.3.18. Let V = Ps(R) with bases 8 = {1, x,...,x®} and
€ =1{l,x,...,x°} as in Example 2.3.17.

(1) Let D : V — V be differentiation, D(p(x)) = p’(x).

Then

(01 -1 2 —6 24] [010000]
00 2—-6 22-100 002000
00 0 3—18—105 000300
Dls=100 0 0 4 —a0| ™ Pe=1550040]|
00 00 0 5 000005
00 0 0 0 o0 (000000

so these two matrices are similar. Indeed,
[Djg = P~'[D]eP = QD0 !

where P and Q are the matrices of Example 2.3.17.
(2) Let A : V — V be the forward difference operator, A(p(x)) =
p(x + 1) — p(x). Then

(0100007 (01111 17
002000 00234 5
000300 0003610
[Alz=1000040| ™ Ale=|0000410
000005 00000 5
1000000] 100000 0]

so these two matrices are similar. Again,
[Alg = P! [AleP = Q[Ale Q™"

where P and Q are the matrices of Example 2.3.17.
(3) Since [D]e = [A]lg, weseethatD : V — Vand A : V — V are
conjugate. <&

2.4 THE MATRIX OF THE DUAL

Let 7 : V — X be a linear transformation between finite-dimensional
vector spaces. Once we choose bases B and € of V' and X respectively, we
can represent 7 by a unique matrix [T ]eg. We also have the dual linear
transformation 7* : X* — V* and the dual bases €* and 8* of X* and

V* respectively, and it is natural to consider the matrix [T *] g+ ¢*.
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DEFINITION 2.4.1. Let 7 : V — X be a linear transformation between
finite dimensional vector spaces, and let A be the matrix A = [T e« g. The
transpose of A is the matrix ' A given by ' A = [T*] g+ e=. &

Let us first see that this gives the usual definition of the transpose of a
matrix.

Lemma 2.4.2. Let A = (a;;) be an m-by-n matrix. Then B ='A = (b;})
is the n-by-m matrix with entries bij =aj,i=1,....m j=1,...,n

Proof. Let 8 = {v1,...,va}, B* = {w],...,w;}, € = {x1,.... Xm},
and €* = {y{,..., yn}. Then, by definition,

m
T (vj) = Zak‘,-xk forj=1,....n

k=1
and .
T () = Zbkin fori =1,...,m.
k=1
Now
V(T (v)) =aiy asyr(xi) =1, yF(x) = Ofork #i
and

(T (7)) (v;) = bji - aswj(v;) =1, wi(v;) = 0fork # .
By the definition of 7%, for any y* € X* andany v € V
(T (")) = y"(T )
so we see bj; = a;;, as claimed. O

REMARK 2.4.3. Every matrix is the matrix of a linear transformation with
respect to a pair of bases, so ’ 4 is defined for any matrix A. Our definition
appears to depend on the choice of the bases B and €, so to see that ' 4 is
well-defined we must show it is independent of the choice of bases. This
follows from first principles, but it is easier to observe that Lemma 2.4.2
gives a formula for ’ A that is independent of the choice of bases. <&

REMARK 2.4.4. It easy to see that '(A; + A3) = "A; + "A; and that
"(cA) = c'A. O

Other properties of the transpose are a little more subtle.
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Lemma 2.4.5. '(4B) ='B'A.

Proof. LetT :V — X with [T]e«g = Bandlet§ : X — Z with
[T]p<«e = A. Then, as we have seen, 0T : V — Z with[§0T |pg =
AB. By Definition 2.4.1 and Lemma 1.6.23,

"(AB) = [(8 0 T)*|grgp+ = [T" 0 8¥]grcpn
= [T*]grwex[8"lerep = 'B'A. O

Lemma 2.4.6. Let A be an invertible matrix. Then, "(A™') = (*A)~L.

Proof. Clearly if 7 : V — V is the identity, then 7* : V* — V* is the
identity, (W* (T (v)) = w*(v) = (T*(w*))(v) if T and T* are both the
respective identities). Choose a basis B8 of V and let R : V' — V be the
linear transformation with [R]g = A. Then [R™1]g = 47!, and

I=[g=["]g = [(R7"o R)*]:B*
= [R*]g.[(RT") ] g ="4"(47").

and

=5 = [1"]g. = [(Ro R)
(R ][R = (A7) A, .

As an application of these ideas, we have a theorem from elementary
linear algebra.

Theorem 2.4.7. Let A be an m-by-n matrix. Then the row rank of A and
the column rank of A are equal.

Proof. LetT = T4 :F" — F™begivenby T (v) = Av.Then [T]g,, ¢, =
A, so the column rank of A, which is the dimension of the subspace of F"?
spanned by the columns of A, is the dimension of the subspace Im(7") of
F™.

Consider the dual 7* : (F™)* — (IF")*. As we have seen, [T *]gx —gx =
"4, so the column rank of ?A is equal to the dimension of Im(7*). By
Corollary 1.6.20, dimIm(7*) = dimIm(J), and obviously the column
space of ' A is identical to the row space of A. O

We have considered the dual. Now let us consider the double dual. In
Lemma 1.6.26 we defined the linear transformation # from a vector space
to its double dual.
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Lemma 24.8. Let T : V — X be a linear transformation between finite-

dimensional F -vector spaces. Let B = {vi,...,v,} be a basis of V and
€ ={x1,...,Xm} be a basis of X.
Let 8** = {vi*, ..., v "} and €** = {x1*,...,x;*}, bases of V**

and X** respectively (where v/™* = J# (v;) and x7* = H(x;)). Then

[T**]f**@.ﬂ** = [T]‘€<—$‘

Proof.  An inspection of Definition 1.6.29 shows that 7 ** is the compo-
sition # o T o H~! where the right-hand # is # : V — V** and the
left-hand # is H : W — W**. But [H]g++«g = [ and [H]e++ce = 1
o)
[T**]f**e,ﬂ** = [%]f**ef[g‘]fe.ﬂ[%_l].@e.@**
=1[Tlecsl ™ =[Tlecs. O
The following corollary is obvious from direct computation but we present

another proof.

Corollary 2.4.9. Let A be an m-by-n matrix. Then ' (*4) = A.

Proof. Let T : V. — W be a linear transformation with [T]e—g = A.
Then by Lemma 2.4.8,

A= [T]€<—§B = [T**]f**egg** = t(t[T]f(_brg) — t(tA),

as 7 ** is the dual of the dual of 7. O



CHAPTER 3

DETERMINANTS

In this chapter we deal with the determinant of a square matrix. The de-
terminant has a simple geometric meaning, that of signed volume, and we
use that to develop it in Section 3.1. We then present a more traditional and
fuller development in Section 3.2. In Section 3.3 we derive important and
useful properties of the determinant. In Section 3.4 we consider integrality
questions, e.g., the question of the existence of integer (not just rational)
solutions of the linear system Ax = b, a question best answered using de-
terminants. In Section 3.5 we consider orientations, and see how to explain
the meaning of the sign of the determinant in the case of real vector spaces.
In Section 3.6 we present an interesting family of examples, the Hilbert
matrices.

3.1 THE GEOMETRY OF VOLUMES

The determinant of a matrix A has a simple geometric meaning. It is the
(signed) volume of the image of the unit cube under the linear transforma-
tion T4.

We will begin by doing some elementary geometry to see what proper-
ties (signed) volume should have, and use that as the basis for the not-so-
simple algebraic definition.

Henceforth we drop the word “signed” and just refer to volume.

In considering properties that volume should have, suppose we are work-
ing in R2, where volume is area. Let A be the matrix A = [v; | v3]. The
unit square in R? is the parallelogram determined by the standard unit vec-
tors e and e;. T4(e;) = vy and T4(e2) = vy, so we are looking at the area
of the parallelogram P determined by v; and v, the two columns of A.

57
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The area of a parallelogram should certainly have the following two
properties:

(1) If we multiply one side of P by a number c, e.g., if we replace P by
the parallelogram P’ determined by v; and cv,, the area of P’ should be ¢
times the area of P.

(2) If we add a multiple of one side of P to another, e.g., if we replace
P by the parallelogram P’ determined by vy and vy + cvq, the area of
P’ should be the same as the area of P. (To see this, note that the area of
a parallelogram is base times height, and while this operation changes the
shape of the parallelogram, it does not change its base or its height.)

Property (1) should in particular hold if ¢ = 0, when one of the sides
becomes the zero vector, in which case the parallelogram degenerates to a
line (or to a point if both sides are the zero vector), and a line or a point has
area 0.

We now consider an arbitrary field IF, and consider n-by-n matrices. We
are still guided by properties (1) and (2), extending them to n-by-n matrices
using the idea that if only one or two columns are changed as in (1) or (2),
and the other n — 1 or n — 2 columns are unchanged, then the volume should
change as in (1) or (2). We are thus led to the following definition.

DEFINITION 3.1.1. A volume function Vol : M,(F) — F is a function
satisfying the properties:

(1) For any scalar c, and any i,

Vol ([vy |+« | vie1 | cvi | vigr |-+ | va])

=cVol ([vy | -+ | vict [ vi | vig1 |-+ | va)).
(2) For any scalar ¢, and any j # i,

VO]([Ul | | Vi—1 |U[+CU‘/' | Vj+1 | |Un])

= Vol ([vy [ -+ vic1 | vi | vig1 |-+ | va]).

Note we have not shown that Vol exists, but we will proceed on the
assumption it does to derive properties that it must have, and we will use
them to prove existence.

As we have defined it, Vol cannot be unique, as we can scale it by an
arbitrary factor. Once we specify the scale we obtain a unique function that
we will denote by Vol;, and we will let the determinant be Vol;. But it is
convenient to work with arbitrary volume functions and normalize the result
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at the end. Vol; (or the determinant) will be Vol scaled so that the signed
volume of the unit n-cube, with the columns arranged in the standard order,
is +1. <&

Lemma 3.1.2. (1) If some column of A is zero, then Vol(A) = 0.
(2) If the columns of A are not linearly independent, then Vol(A) = 0.
In particular, if two columns of A are equal, then Vol(A) = 0.

(3)

ol ([or [ +++1 vy [+ |-+ [ )
=—=Vol ([vi [ ==~ [ vi |-~ | v [--- ] va)).
(4)
VO]([Ul |...|au+bw | |vn])
= aVol ([or |- |-~ | va))
+b Vol ([vr |-+ w |-+ ] va)).

Proof. (1) Let v; = 0. Then v; = Ov;, so by property (1)
Vol([m |- vi| | vn]) :O-Vol([m |- |vi || vn]) =0.

) Letv; = ajvi+azva+---+aj—1vi—1+ai+1Vi+1+---+anvy,. Let
V] = axva+--+a;—1Vi—1+a; 41041+ -+ apVy, sothat v; = ajvy+v).
Then, applying property (2),
Vol ([vy [ =+ | vi |-+ vn]) = Vol ([v1 |-+ | @1vyi +v] | -+ | va])
= Vol ([vy |-+ | v] |-+ va]).

Proceeding in the same way, applying property (2) repeatedly, we obtain

Vol ([or |-+ | vi | -+ | va]) = Vol ([or |-+ [0 ] -+ wa]) = 0.
3
Vol ([or [ ==+ vj |-+ vi | -+ ] va)
= Vol ([vr |-+ |vj [+~ vj4vi || va)
= Vol ([vy [+ |=vi [+ |vj +vi || va])
= Vol ([vy [+ |=vi [ == vj |- | va])
=—Vol ([vy |-+~ vi |-~ |vj|-]va])
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(4) First, suppose {v1,...,V;—1,Vi41,..., Uy} is not linearly indepen-
dent. Then, by part (3), the equation in (4) becomes 0 = @ -0 + b - 0, which
is true.

Now for the heart of the proof. Suppose {v1, ..., Vi—1,Vi+1,..., Un} i8S
linearly independent. By Corollary 1.2.10(1), we may extend this set to a
basis {v1,...,Vi—1, Vi+1,..., Uy, 2z} of F". Then we may write

U=C1V] + -+ Ci—1Vi—1 + Ci+1Vj41 + -+ CpUp + 'z,

w=dy 4+ di—1vi-1 + dig1Vig1 -+ dpvn +d'z.
Let v = au + bw. Then
V=e1vr + o 1ot + €i41Vi41 + o+ eplp +e'z

where ¢’ = ac’ + bd’.
Applying property (2) repeatedly, and property (1), we see that

Vol([v1 |« Jv|--] Un]) — e’Vol([v1 | ooz |- vn])’

VO]([UI | | u | | vn]) — C/VOI([UI | | z | | Un])’

VO]([Ul | | w | | vn]) — d/VOI([Ul | | z | | Un])’
yielding the theorem. O
REMARK 3.1.3. Setting v; = v; = z (z arbiftrary) in Lemma 3.1.2(3)
gives 2Vol([vy | -+ | z | =+ | z | -+ | vy]) = 0 and hence Vol([v; |
<oz ]--]z]|-| va]) = 0if F does not have characteristic z. This
latter condition is stronger if char(IF) = 2, and it is this stronger condition,
coming directly from the geometry, that we need. <&

Theorem 3.1.4. A function f : M,(F) — F is a volume function if and
only if it satisfies:

(1) Multilinearity: If A = [vy | -+ | vu] withv; = au + bw for some i,
then

Sl T |- lva]) =af([or |- [u |- | va])
+bf([v1 |« lw |- vn])

(2) Alternation: If A = [v1 | -+ | vs] withv; = v; for some i # j, then

(ol Tva]) =0.
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Proof. We have seen that any volume function satisfies Lemma 3.1.2(3)
and (4), which gives alternation and multilinearity. Conversely, it is easy to
see that multilinearity and alternation give properties (1) and (2) in Defini-
tion 3.1.1. O

REMARK 3.1.5. The conditions of Theorem 3.1.4 are usually taken to be
the definition of a volume function. <&

REMARK 3.1.6. In characteristic 2, the function f ([§ 3]) = ac is multi-
linear and satisfies f([vz | v1]) = f([v1 | v2]) = —f([v1 | v2]), but is not
alternating. <&

Theorem 3.1.7. Suppose there exists a nontrivial volume function Vol :
M, (F) — F. Then there is a unique volume function Vol satisfying Vol (I)
= 1. Furthermore, any volume function is Vol, for some a € F, where Vol,
is the function Volg(A) = a Vol; (A).

Proof. Let A be a matrix with Vol(A) # 0. Then, by Lemma 3.1.2(2), A
must be nonsingular. Then there is a sequence of elementary column opera-
tions taking A to /. By Definition 3.1.1(1) and (2), and by Lemma 3.1.2(4),
each of these operations has the effect of multiplying Vol(A4) by a nonzero
scalar, so Vol(I) # 0.

Any scalar multiple of a volume function is a volume function, so we
may obtain a volume function Vol; by Vol; (4) = (1/ Vol(7)) Vol(A4), and
clearly Vol (1) = 1. Then set Vol,(A) = a Vol; (A4).

Now let f be any volume function. Set a = f([). If A is singular,
then f(A) = 0. Suppose A is nonsingular. Then there is a sequence of
column operations taking / to A, and each of these column operations has
the effect of multiplying the value of any volume function by a nonzero
constant independent of the choice of volume function. Thus, if we let b be
the product of these constants, we have

fA) =bf()=ba =>bVol,(I) = Vol (A),

so f = Vol,. In particular, if f is any volume function with f(I) = 1,
then f = Volj, which shows that Vol; is unique. O

Note the proof of this theorem does not show that Vol; exists, as a priori
we could choose two different sequences of elementary column operations
to get from / to A and obtain two different values for Vol; (A4). In fact Voly
does exist, as we now see.
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Theorem 3.1.8. There is a unique volume function Vol; : M, (F) — F
with Vol;(I) = 1.

Proof. We proceed by induction on 7. For n = 1 we define det([a]) = a.
Suppose det is defined on (n — 1)-by-(n — 1) matrices. We define det on
n-by-n matrices by

n

det(4) = ) (=)' ay; det(M,;)
j=1

where A = (a;;) and My; is the (n — 1)-by-(n — 1) matrix obtained by
deleting row 1 and column j of A. (M is known as the (1, j)-minor of
A.)

We need to check that the properties of a volume function are satis-
fied. Instead of checking the properties in Definition 3.1.1 directly, we will
check the equivalent properties in Theorem 3.1.4. We use the notation of
that theorem.

We prove the properties of det by induction on n. We assume that det
has the properties of a volume function given in Theorem 3.1.4 for (n — 1)-
by-(n — 1) matrices, and in particular that the conclusions of Lemma 3.1.2
hold for det on (n — 1)-by-(n — 1) matrices.

We first prove multilinearity. In the notation of Theorem 3.1.4, let v; =

au + bw, and let A = (a;;). Then a;; = au' + bw!, where u! and
w! are the first entries of u and w respectively. Also, My; = [vq | -+ |
Vict | vigr | cce | vn]. Inspecting the sum for det(A), and applying

Lemma 3.1.2(4), we see that multilinearity holds.

We next prove alternation. Again follow the notation of Theorem 3.1.4
and let v; = v; forsome i # j.If k # i and k # j, the minor My,
has two identical columns and so by Lemma 3.1.2(2), det(M) = 0. Then,
inspecting the sum for det(A4), we see that it reduces to

det(4) = (=1)"* ay; det (My;) + (=1)'*/ ay; det (M)
withay; = ayj. Leti < j. Then
My =[v1 ] | Vict [ Vigr [ 1 0=t [V | Ujgn | oo | Un]
and

My =[U |- |0 |5 [ Oign |- | T | T |-+ | Tas
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where vV is the vector obtained from v by deleting its first entry, and v; =
;.

We may obtain My; from M;; as follows: First interchange v; with
Vi+1, then interchange v; with v; 45, ..., and finally interchange v; with
Vj—1. There is a total of j — i — 1 interchanges, and by Lemma 3.1.2(3)
each interchange has the effect of multiplying det by —1, so we see that

det(My;) = (—1)7 7"~ det(My;).
Hence, lettinga = ay; and m = det(My;),

det(4) = (=1)"a(=1)/"'m + (=)' am
= (=1)Yam(1 + (-1)) = 0.

Finally, det([1]) = 1 and by induction we have that det(/,) = 1 -
det(l,—1) = 1, where I, (respectively I,_;) denotes the n-by-n (respec-
tively (n — 1)-by-(n — 1)) identity matrix. O

DEFINITION 3.1.9. The unique volume function Vol, is the determinant
function, denoted det(A). <&

Corollary 3.1.10. Let A be an n-by-n matrix. Then det(A) # 0 if and only
if A is nonsingular.

Proof. By Lemma 3.1.2(2), for any volume function Vol,, Vol,(A) = 0
if A is singular. For any nontrivial volume function, i.e., for any function
Vol, with a # 0, we observed in the course of the proof of Theorem 3.1.7
that, for any nonsingular matrix 4, Vol,(4) = ¢ Volg(I) = ca for some

¢ #0. O

REMARK 3.1.11. Let us give a heuristic argument as to why Corollary
3.1.10 should be true, from a geometric viewpoint. Let A = [vy | --- | vy,]
be an n-by-n matrix. Then v; = Ae; = Ty(e;),i = 1,...,n, where I =
[e1 | -+ | en]. Thus the n-parallelogram P spanned by the columns of A
is the image of the unit 7-cube under the linear transformation 74, and the
determinant of A is the signed volume of P.

If det(A) # 0, i.e., if P has nonzero volume, then the translates of P
“fill up” F”, and so for any w € F”, there is a v € F” with T4(v) =
Av = w. Thus in this case Ty is onto ", and hence is an isomorphism by
Corollary 1.3.2, so A is invertible.

If det(4) = 0, i.e., if P has zero volume, then it is a degenerate n-
parallelogram, and so is a nondegenerate k-parallelogram for some k < n,



64 GUIDE TO ADVANCED LINEAR ALGEBRA

and its translates only “fill up” a k-dimensional subspace of F”. Thus in
this case T4 is not onto F”, and hence A is not invertible. O

REMARK 3.1.12. Another well-known and important property of deter-
minants, that we shall prove in Theorem 3.3.1, is that for any two n-by-n
matrices A and B, det(AB) = det(A) det(B). Let us also give a heuristic
argument as to why this should be true, again from a geometric viewpoint.
But we need to change our viewpoint slightly, from a “static” one to a “dy-
namic” one. In the notation of Remark 3.1.11,

det [v1 |-« vn] = det(A) = det(A4) - 1 = det(A) det(])
= det(A) det ([e1 | - | en]).

We then think of the determinant of A as the factor by which the linear
transformation 4 multiplies signed volume when it takes the unit n-cube
to the n-parallelogram P. A linear transformation is homogeneous in that it
multiplies each “bit” of signed volume by the same factor. That is, if instead
of starting with / we start with any n-parallelogram J and take its image Q
under the linear transformation 7, the signed volume of Q will be det(A)
times the signed volume of J.

To apply this we begin with the linear transformation 73 and let J be
the n-parallelogram that is the image of / under 73.

In going from 7 to J, i.e., in taking the image of / under 73, we mul-
tiply signed volume by det(B), and in going from J to Q, i.e., in tak-
ing the image of J under 74, we multiply signed volume by det(A), so
in going from I to Q, i.e., in taking the image of / under 74 o Jp, we
multiply signed volume by det(A)det(B). But 74 o 73 = T4, so T4p
takes I to Q, and so J4p multiplies signed volume by det(4B). Hence,
det(AB) = det(A4) det(B). <

REMARK 3.1.13. The fact that the determinant is the factor by which lin-
ear transformations multiply signed volume is the reason for the appearance
of the Jacobian in the transformation formula for multiple integrals. <&

We have carried our argument this far in order to show that we can ob-
tain the existence of the determinant purely from the geometric viewpoint.
In the next section we present an algebraic viewpoint, which only uses our
work up through Theorem 3.1.4. We use this second viewpoint to derive the
results of Section 3.3. But we note that the formula for the determinant we
have obtained in Theorem 3.1.4 is a special case of the Laplace expression
of Theorem 3.3.6. (The geometric viewpoint is simpler, but the algebraic
viewpoint is technically more useful, which is why we present both.)
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3.2 EXISTENCE AND UNIQUENESS
OF DETERMINANTS

We now present a more traditional approach to the determinant.
Lemma 3.2.1. Let V,, ,, = {multilinear functions f : My ,(F) — F}.
Then Vi, , is a vector space of dimension n™ with basis { f,}, where p :
{1,....m} = {1,...,n} is any function and, if A = (a;;),

Jo(A) = ap),18p@)2 - - - dpm)m-

Proof. We proceed by induction on m. Let m = 1. Then, by multilinearity,
f € Vp,1 is given by

y 1 0 0
! 0 1 0
asy
S . =flan|0|+an|0|+--+am|O
dn1 0 0 1
= 11011 + *** + Cn1dn1
where c11 = f(e1),...,cn1 = f(en), and the lemma holds.

Now for the inductive step. Assume the lemma holds for m and consider
f € Vam+1.Let A € My, 41 and write A’ for the n-by-m submatrix of A
consisting of the first m columns of A. Then, by multilinearity,

A1m+1
4 :

Anm+1

= alm+1f([A/ | 6‘1]) + anm+1f([A/ | en])
But g(4") = f([A’ | e;]) is a multilinear function on m-by-n matrices, so
by induction g(A") = Y ¢y for(A") where p’ : {1,...,m} — {1,...,n},
and so we see that

n
FA) =) e f([A T er])ap - apomymaim+r

i=1
n

=D Colpn),1* Apm+1ym+1
i=1

where p : {l,...,m + 1} — {1,...,n} is given by p(k) = p’(k) for
1 <k <m,and p(m 4+ 1) = i, and the lemma holds. O
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We now specialize to the case m = n. In this case, Vol, being a multi-
linear function, is a linear combination of basis elements. We have not used
the condition of alternation yet. We do so now, in two stages.

We let Py, be the n-by-n matrix defined by P, = (p;;) where p;; =1
ifi = po(j) and p;; = 0if i # po(j). Py, has exactly one nonzero entry
in each column: an entry of 1 in row po(j) of column j. We then observe
that if

FA) =Y cp-apyn - apmns
o

then f(P,)) = cpo. For if p = pg then each factor p,(;,; is 1, so the
product is 1, butif p # pg then some factor Py, ; is 0, so the product is 0.

Lemma 3.2.2. Let f €V, , be alternating and write

F(A) =) cpapayidpmn
o
where p : {1,...,n} — {1,...,n}. If pg is not 1-to-1, then c,, = 0.

Proof. Suppose po is not 1-to-1. As we have observed, f(Pp,) = Cp,- But
in this case P,, is a matrix with two identical columns (columns j; and
J2 where po(j1) = po(j2)), so by the definition of alternation, f(Pp,) =
0. O

We restrict our attention to 1-1 functions p : {1,...,n} — {1,...,n}.
We denote the set of such functions by S, and elements of this set by 0. S,
forms a group under composition of functions, as any o € S, is invertible.
S, is known as the symmetric group, and o € S, is a permutation. (We
think of o as giving a reordering of {1, ... ,n}as {o(1),...,0(n)}.)

We now cite some algebraic facts without proof. A transposition is an
element of S, that interchanges two elements of {1,...,n} and leaves all
the others fixed. (More formally, 0 € S, is a transposition if for some 1 <
i#j<n,o()=j,0()=1i,0(k)=kfork #i,j.)Every element
of S, can be written as a product (i.e., composition) of transpositions. If &
is the product of ¢ transpositions, we define its sign by sign(o) = (—1)".
Though ¢ is not well-defined, sign(o) is well-defined, i.e., if o is written
as a product of #; transpositions and as a product of #, transpositions, then
t; =t (mod?2).
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Lemma 3.2.3. Let f €V, , be alternating and write

f(A) = Z Colg(1),1 " Ao (n),n-

og€eSy,
Then f(Ps,) = sign(op) f(1).

Proof. The matrix Py, is obtained by starting with / and performing ¢ in-
terchanges of pairs of columns, where oy is the product of ¢ transpositions,
and the only term in the sum that contributes is when o0 = 09, so the lemma
follows from Lemma 3.1.2(3). O

Theorem 3.2.4. Any multilinear, alternating function Vol : M, (F) — F is
given by

Vol(A) = Volg (A) = a Z Sign(0)ag(1y.1 * Ao (nym

og€eSy,

for some a € F, and every function defined in this way is multilinear and
alternating.

Proof. We have essentially already shown the first part. Let a = f([).
Then by Lemma 3.2.3, forevery o € S,, c¢; = asign(o).
It clearly suffices to verify the second part when @ = 1. Suppose A =

[vi |-+ | va] and v; = v] + v/ Let
ai by Cli
vi=1| : |, vi=1| |, and v/ =| : [,
ani bni Cni

S0 ax; = bri + cii.
Then

Y sign(@)ao(),1 -+ oGy, - Aoy

g€eSy,

= Z sign(0)do 1,1 -+ (ba(i)i + Co(i)i) - onyn

og€eSy,

= Z Sign(a)aa(l),l T bcr(i),i *Uo(n),n

og€eSy,

+ Y sign(0)ag ()1 -+ Colii ** do(ny.ns

og€eSy,
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showing multilinearity. Suppose columns i and j of A are equal, and let
7 € S, be the transposition that interchanges i and j. To every o € S, we
can associate 6’ = 1o € Sy, and o is associated to ¢’ as 72 is the identity,
and hence 0 = t20 = to’. Write this association as 6’ ~ . Then

Y SiEn@)ao(),1 oGy Ao (), Aoty

og€eSy,

= > (sign(0)ag(),1 - o) Aoy, *** Ao(nyn

o~a’

+ sign(0")dor (1)1 * Ao ()i * Ao’ (j).j Ao’ (n)m)-

But sign(o) = —sign(c”) and the two products of elements are equal be-
cause columns i and j of A are identical, so the terms cancel in pairs and
the sum is 0, showing alternation. O

DeFINITION 3.2.5. The functiondet : M, (F) — F, given by

det(4) = > sign(0)ag(1).1 -+ dgnyn

g€eSy,

is the determinant function. O

3.3 FURTHER PROPERTIES
We now derive some important properties of the determinant.

Theorem 3.3.1. Let A, B € M,,(IF). Then
det(AB) = det(A) det(B).

Proof. Define a function f : M,(F) — F by f(B) = det(AB). It is
straightforward to check that f is multilinear and alternating, so f is a vol-
ume function f(B) = Vol,(B) = adet(B) wherea = f(I) = det(Al) =
det(A). O

Corollary 3.3.2. (1) det(A) # 0 if and only if A is invertible.
(2) If A is invertible, then det(A~') = 1/ det(A). Furthermore, for any
matrix B, det(ABA™') = det(B).

Proof. We have already seen in Lemma 3.1.2 that for any volume function
f, f(A) = 0if A is notinvertible. If A4 is invertible we have 1 = det(/) =
det(AA™") = det(A) det(A~") from which the corollary follows. O
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Lemma 3.3.3. (/) Let A be a diagonal matrix. Then det(A) is the product
of its diagonal entries.

(2) More generally, let A be an upper triangular, or a lower triangular,
matrix. Then det(A) is the product of its diagonal entries.

Proof. (1) If A is diagonal, then there is only one nonzero term in Defini-
tion 3.2.5, the term corresponding to the identity permutation (o (i) = i for
every i), which has sign +1.

(2) If o is not the identity then there is a j with o(j) < j, and a k
with (k) > k, so for a triangular matrix there is again only the diagonal
term. O

Theorem 3.3.4. (1) Let M be a block diagonal matrix,
A0
w=[t0]

Then det(M) = det(A) det(D).
(2) More generally, let M be a block upper triangular or a block lower

A B A0
M_I:OD1| or M—[CD1|.

Then det(M) = det(A) det(D).

triangular matrix,

Proof. (1) Define a function f : M, (F) — F by

jor-([13])

Then f is multilinear and alternating,so f(D) = f(I)det(D).But f(I) =
det ([‘(‘)1 ?]) = det(A). (This last equality is easy to see as any permutation
that contributes nonzero to det ([ 6‘ ? ]) must fix all but (possibly) the first n
entries.)

(2) Suppose M is upper triangular (the lower triangular case is similar).
If A is singular then there is a vector v # 0 with Av = 0. Then let w be the
vector whose first n entries are that of v and whose remaining entries are 0.
Then Mw = 0. Thus M is singular as well, and 0 = 0 - det(D).

Suppose that A is nonsingular. Then

221G )
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The first matrix on the right-hand side has determinant det(A) det(D), and
the second matrix on the right-hand side has determinant 1, as it is upper
triangular, and the theorem follows. O

Lemma 3.3.5. Let’ A be the matrix obtained from A by interchanging the
rows and columns of A. Then det(* A) = det(A).

Proof. Forany o € S,, sign(c™!) = sign(0). Let B = (b;;) ="' A. Then

det(4) = > sign(0)dg(1).1 -+ dan)n

og€eSy,

= Z Sign(a)al,a—l 1) " Ane—1(n)

og€eSy,

Z Sign(a_l)al,cr_l 1) o~ 1(n)

og€eSy,
Z Sign(a_l)bcr—l 1,1°°° bcr—l (n),n
o—leS,

= det(* A). o

Let A;; denote the (i, j)-minor of the matrix A, the submatrix obtained
by deleting row i and column j of A.

Theorem 3.3.6 (Laplace expansion). Let A be an n-by-n matrix, A = (a;;).
(1) For any i,

det(4) = > (=)' a;; det (4;;).
Jj=1

(2) For any j,

n
det(4) = D (=1)"*/ ay; det (Ay;).
i=1
(3) For any i, and for any k # i,

n

0= (=)' ay; det (4;).

Jj=1

(4) For any j, and for any k # j,

0= Z(—l)i_l—jaik det (Aij).

i=1
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Proof. We prove (1) and (3) simultaneously, so we fix k (which may or may
not equal 7).

The sum on the right-hand side is the sum of multilinear functions so is
itself multilinear. (This is also easy to see directly.)

We now show it is alternating. Let A be a matrix with columns p and ¢
equal, where 1 < p < q < n.If j # p,q then A;; is a matrix with two
columns equal, so det(A4;;) = 0. Thus the only two terms that contribute to
the sum are

(—1)'*Pag, det (Aip) + (—1) T ag, det (4;4).
By hypothesis, ax, = agp. Now

Aip = [Ul =+l vp—1 | Vpt1 |-+ [ vg—1 | Vg | Vg+1 ||Un]v

Aiqg = [Ul |+l vp—1 | vp [ Vpg1 |-+ | vg—1 [ Vg1 |-+ ] Un]‘

where v,, denotes column /m of the matrix obtained from A by deleting
row i of A. By hypothesis, v, = vy, so these two matrices have the same
columns but in a different order. We get from the first of these to the second
by successively performing ¢ — p — 1 column interchanges (first switching
vg and vgy_1, then switching v, and vy—», ..., and finally switching v, and
Upt1), 80 det(4;4) = (—1)97P~1 det(4;,). Thus we see that the contribu-
tion of these two terms to the sum is

(=1 " Payp det (Aip) + (—1) M agy (=177~ det (4;)

and since (—1)' T2 and (—1)' *24=P~1 always have opposite signs, they can-
cel.

By our uniqueness result, the right-hand side is a multiple a det(A) for
some a. A computation shows that if A = I, the right-hand side gives 1 if
k =i and 0ifk # i, proving the theorem in these cases.

For cases (2) and (4), using the fact that det(B) = det(* B) for any
matrix B, we can take the transpose of these formulas and use cases (1) and
(3). O

REMARK 3.3.7. Theorem 3.3.6(1) (respectively, (3)) is known as expan-
sion by minors of the jth column (respectively, of the i th row). <&

DefFINITION 3.3.8. The classical adjoint of A is the matrix Adj(A4) de-
fined by Adj(A) = (bi;) where b;; = (—1)'*/ det(A;;). &

Note carefully the subscript in the definition—itis A;;, as written, not
Al'/' .
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Corollary 3.3.9. (1) For any matrix A,
(Adj(A)) = A(Adj(A)) = det(A)].

(2) If A is invertible,

1
-1 _ .
Al = = Adj(A).

Proof. (1) can be verified by a computation that follows directly from The-
orem 3.3.6. Then (2) follows immediately. O

REMARK 3.3.10. We have given the formula in Corollary 3.3.9(2) for its
theoretical interest (and we shall see some applications of it later) but as
a practical matter it should almost never be used to find the inverse of a
matrix. <&

Corollary 3.3.11 (Cramer’s rule). Let A be an invertible n-by-n matrix and

let b be avector in F". Let x be the unique vector in F" with Ax = b. Write
x1

x = | . | Then, for1 <i <n, x; = det(A4;(b))/ det(A), where A; (b) is

Xn
the matrix obtained from A by replacing its ith column by b.

Proof. Let the columns of A be ay, ..., a,. By linearity, it suffices to prove
the corollary for all elements of any basis B of F". We choose the basis
B ={ai,...,an}.

Fix i and consider Ax = a;. Then A;(a;) = A, so the above formula
gives x; = 1. For j # i, A;(a;) is a matrix with two identical columns, so
the above formula gives x; = 0. Thus x = ¢;, the i th standard basis vector,
and indeed Ae; = a;. O

REMARK 3.3.12. Again this formula is of theoretical interest but should
almost never be used in practice. <&

Here is a familiar result from elementary linear algebra.

DEFINITION 3.3.13. If the matrix A has a a k-by-k submatrix with
nonzero determinant, but does not have a (k + 1)-by-(k + 1) submatrix
with nonzero determinant, then the determinantal rank of A is k. <o

Theorem 3.3.14. Let A be a matrix. Then the row rank, column rank, and
determinantal rank of A are all equal.
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Proof. We showed that the row rank and column rank of A are equal in
Theorem 2.4.7. We now show that the column rank of A is equal to the
determinantal rank of A.

Write A = [vy | --- | vu], where A is m-by-n. Let A have a k-by-k
submatrix B with nonzero determinant. For simplicity, we assume that B is
the upper left-hand corner of A. Suppose B is k-by-k. Let 7 : F”" — Fk
be defined by

aq aq
s =
am ag
Then B = [n(v1) | --- | 7 (vg)]. Since det(B) # 0, B is nonsingular,
so {m(v1),...,mw(vg)} is linearly independent, and hence {vy,..., v} is

linearly independent. But then this set spans a k-dimensional subspace of
the column space of A, so A has column rank at least k.

On the other hand, suppose A has k linearly independent columns.
Again, for simplicity, suppose these are the leftmost k columns of A. Now
{v1,..., v} is linearly independent and {ei,...,en} spans F™, so
{v1,...,Vk, €1, ..., en} spans F™ as well. Then, by Theorem 1.2.9, there is
a basis B of F™ with {vy,..., vt} € B C {v1,...,Vk,€1,...,em}. Write
B ={v1,...,Vk, Vk+1, ... Um} and note that, foreach i > k +1,v; = ¢;
for some j. Form the matrix B’ = [vy | «+- | vk | vkx1 | --- | va] and
note that det(B’) # 0. Expand by minors of columns n,n—1,...,k + 1to
obtain 0 # det(B’) = =+ det(B) where B is a k-by-k submatrix of 4, so A
has determinantal rank at least k. O

We have defined the determinant for matrices. We can define the de-
terminant for linear transformations 7 : V — V, where V is a finite-
dimensional vector space.

DEFINITION 3.3.15. Let 7 : V — V be a linear transformation with V'
a finite-dimensional vector space. The determinant det(7) is defined to be
det(7) = det ([(’J‘);g]) where B is any basis of V. <&

To see that this is well-defined we have to know that it is independent of
the choice of the basis 8. That follows immediately from Corollary 2.3.11
and Corollary 3.3.2(2).

We have defined the general linear groups GL, (F) and GL(V) in Defi-
nition 1.1.29.
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Lemma 3.3.16. GL,(F) = {A € M,(F) | det(4) # O}. For V finite

dimensional,
GL(V) = {7 : V = V | det(T) # 0}.
Proof. Immediate from Corollary 3.3.2. O

We can now make a related definition.

DEFINITION 3.3.17. The special linear group SL, (IF) is the group
SL,(F) = {4 € GL,(F) | det(4) = 1}.

For V finite dimensional,
SL,(V) = {T € GL(V) | det(T) = 1}. <&

Theorem 3.3.18. (/) SL,(IF) is a normal subgroup of GL, (F).
(2) For V finite dimensional, SL(V') is a normal subgroup of GL(V).

Proof. SL,(F) is the kernel of the homomorphism det : GL,(F) — F*,
and similarly for SL(V). (By Theorem 3.3.1, det is a homomorphism.) Here
F* denotes the multiplicative group of nonzero elements of IF. O

3.4 INTEGRALITY

While we almost exclusively work over a field, it is natural to ask the ques-
tion of integrality, and we consider that here.

Let R be an integral domain with quotient field F. An element v of R
is a unit if there is an element v of R with uv = vu = 1. (The reader
unfamiliar with quotient fields can simply take R = Z and F = Q, and
note that the units of Z are £1.)

Theorem 3.4.1. Let A be an n-by-n matrix with entries in R and suppose
that it is invertible, considered as a matrix with entries in F. The following
are equivalent:

(1) A7 has entries in R.
(2) det(A) is a unitin R.

(3) For every vector b all of whose entries are in R, the unique solution of
Ax = b is a vector all of whose entries are in R.



3.4. INTEGRALITY 75

Proof. First we show that (1) and (3) are equivalent and then we show that
(1) and (2) are equivalent.
Suppose (1) is true. Then the solution of Ax = b is x = A~ !,

whose entries are in R. Conversely, suppose (3) is true. Let Ax; = e;,
i =1,...,n, where {e;} is the set of standard unit vectors in [F”. Form the
matrix B = [x1 | x2 | --+ | x»]. Then B is a matrix all of whose entries are

inR,and AB = I,s0 B = A~! by Corollary 1.3.3.

Suppose (1) is true. Let det(A) = u and det(A™') = v. Then u and
v are elements of R and uv = det(A4)det(4™') = det(/) = 1,sou is a
unit in R. Conversely, suppose (2) is true, so det(4) = u is a unitin R. Let
uv = 1 withv € R, so v = 1/u. Then Corollary 3.3.9(2) shows that all of
the entries of A~! are in R. (]

REMARK 3.4.2. Let A be an n-by-n matrix with entries in R and sup-
pose that A is invertible, considered as a matrix with entries in F. Let
d = det(A).

(1) If b is a vector in R™" all of whose entries are divisible by d, then
x = A~ b, the unique solution of Ax = b, has all its entries in R.

(2) This condition on the entries of b is sufficient but not necessary. It is
possible to have a vector b whose entries are not all divisible by d with the
solution of Ax = b having all its entries in R. For example, let R = Z and
take A = [ ! 1], a matrix of determinant 2. Then Ax = [!] has solution
X = [(1)] (By Theorem 3.4.1, if d is not a unit, this is not possible for all
b)) <&

We can now generalize the definitions of GL, (') and SL,, (F).

DEFINITION 3.4.3. The general linear group GL, (R) is defined by
GL,(R) = {A € My, (R) | A has an inverse in M, (R)}. <&
Corollary 3.4.4.
GL,(R) = {A € Mu(R) | det(A) is a unit in R}.
DEFINITION 3.4.5. The special linear group SL, (R) is defined by
SL,(R) = {A € GL,(R) | det(A) = 1}. <&
Lemma 3.4.6. SL, (R) is a normal subgroup of GL, (R).

Proof. SL,(R) is the kernel of the determinant homomorphism. O
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REMARK 3.4.7. If R = Z, the units in R are {£1}. Thus SL,(Z) is a
subgroup of index 2 of GL, (Z). <&

It follows from our previous work that for any nonzero vector v € F”
there is an invertible matrix A4 with Ae; = v (where e; is the first vector in
the standard basis of F"*). One can ask the same question over the integers:
Given a nonzero vector v € Z", is there a matrix A with integer entries, in-
vertible as an integer matrix, with Ae; = v? There is an obvious necessary
condition, that the entries of v be relatively prime. This condition turns out

to be sufficient. We prove a slightly more precise result.
ai

Theorem 3.4.8. Letn > 2 andletv = [ ] be a nonzero vector with inte-
a

gral entries. Let d = ged(ay, . .., ay). Thgn there is a matrix A € SL,(Z)
with A(dey) = v.

Proof. We proceed by induction on n. We begin withn = 2. If d =
ged(ar, az), let af = ai/d and b} = bi/d. Then there are integers p
and ¢ witha| p + a5q = 1. Set

/
a —_—
A= [ ! q]
a, p
Suppose the theorem is true for n — 1, and consider v € Z". It is easy
to see that the theorem is true if a; = -+ = a,—; = 0, so suppose not. Let

do = ged(ay, ..., an—1). Then d = ged(do, an). By the proof of the n = 2
case, there is an n-by-n matrix A; with

do
0
Al(del) = :
0
An

(A1 has suitable entries in its “corners” and an (n — 2)-by-(n — 2) identity
matrix in its “middle”.) By the inductive assumption, there is an n-by-n
matrix A, with

[
IN]
—

Ar : =

(e}
S L.
3
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(A, is a block diagonal matrix with a suitable (n — 1)-by-(n — 1) matrix in
its upper left-hand corner and an entry of 1 in its lower right-hand corner.)

Set A = Ay A;. O
ai

Corollary 3.4.9. Letn > 2 and letv = | ] be a nonzero vector with
an

integer entries, and suppose that{ay, . . ., a,} is relatively prime. Then there

is a matrix A € SL,(Z) whose first column is v.
Proof. A is the matrix constructed in the proof of Theorem 3.4.8. O

Let Z /N Z denote the ring of integers mod N. We have the map Z —
Z/NZ by a — a (mod N). This induces a map on matrices as well.

Theorem 3.4.10. For every n > 1, the map ¢ : SL,(Z) — SL,(Z/NZ)
given by the reduction of entries (mod N) is an epimorphism.

Proof. We prove the theorem by induction on n. For n = 1 it is obvious.
Suppose n > 1. Let M € SL,(Z/NZ) be arbitrary. Then there is
certainly a matrix M with integer entries with (M) = M, and then
dettM) =1 (mo;iN). But this is not good enough. We need det(M) = 1.
1

Let v; = | : | be the first column of M. Then M € SL,(Z/NZ)

an
implies ged(ay,...,an, N) = 1.
Let d = ged(ay, ..., an). Then d and N are relatively prime. By The-
orem 3.4.8, there is a matrix A € SL,,(Z) with AM a matrix of the form

d

Ifd =1wemayset M, = M,B = I,and P = AM = BAM,.
Otherwise, let L be the matrix with an entry of N in the (2, 1) position and
all other entries 0. Let M; = M + A™'L. Then

d
N

AM1: O Wa | | Wy
0

and M; = M (mod N).
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As in the proof of Theorem 3.4.8, we choose integers p and g with
dp + Ng = 1. Let E be the 2-by-2 matrix

_| P 4
#= ]
and let B be the n-by-n block matrix
EO0
2=

Then P = BAM, is of the form

Write P as a block matrix

S

Then det(P) = det(M) = 1(mod N), so det(U) = 1 (mod N). U is an
(n — 1)-by-(n — 1) matrix, so by the inductive hypothesis there is a matrix
V e SL,—1(Z) with V = U (mod N). Set

o-[ov]

Q=P =BAM; = BAM (mod N).

Then Q € SL,(Z) and

Thus
R=(BA)'Q0 eSL,(Z) and R= M (modN),

ie., o(R) = o(M) = M, as required. O

3.5 ORIENTATION

We now study orientations of real vector spaces, where we will see the
geometric meaning of the sign of the determinant. Before we consider ori-
entation per se it is illuminating to study the topology of the general linear
group GL, (R), the group of invertible n-by-n matrices with real entries.
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Theorem 3.5.1. The general linear group GL, (R) has two components.

Proof. We have the determinant function det : M, (R) — R. Since a matrix
is invertible if and only if its determinant is nonzero,

GL,(R) = det (R — {0}).

Now R — {0} has two components, so GL, (R) has at least two components,
{matrices with positive determinant} and {matrices with negative determi-
nant}. We will show that each of these two sets is path-connected. (Since
GL, (R) is an open subset of Euclidean space, components and path com-
ponents are the same.)

We know that every nonsingular matrix can be transformed to the iden-
tity matrix by left-multiplication by a sequence of elementary matrices, that
have the effect of performing a sequence of elementary row operations. (We
could equally well right-multiply and perform column operations with no
change in the proof.) We will consider a variant on elementary row opera-
tions, namely operations of the following type:

(1) Left multiplication by a matrix

with a in the (i, j) position, which has the effect of adding a times row j
to row . (This is a usual row operation.)

(2) Left multiplication by a matrix

1

1

with ¢ > 01in the (i, ) position, which has the effect of multiplying row i
by c. (This is a usual row operation, but here we restrict ¢ to be positive.)
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(3) Left multiplication by a matrix

1

with 1 in the (i, j) position and —1 in the (j,{) position, which has the
effect of replacing row i by row j and row j by the negative of row i. (This
differs by a sign from a usual row operation, which replaces each of these
two rows by the other.)

There is a path in GL, (R) connecting the identity to each of these ele-
ments E.

In case (1), we have the path given by

1
E(t) = . ta
1
forO0<r <1.
In case (2), we have the path given by

g -
~ exp (¢ In(c
F) = p (7 1n(c)) 1

- 1_.

forO0<r <1.
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In case (3), we have the path given by

1

. cos (tn/Z) —sin (tn/Z)
E@) =
sin (t7/2) cos (t/2)

forO <t <1.

Now let A be an invertible matrix and suppose we have a sequence
of elementary row operations that reduces A to the identity, so that
Ey---E;E A = I. Replacing each E; by the corresponding matrix E;
we see that Ek -+ E1A =T is a matrix differing by I in at most the sign of
its entries, i.e., ] isa diagonal matrix with each diagonal entry equal to£ 1.
As t goes from O to 1, the product E 1(1)A gives a path from A to E1A; as
t goes from O to 1, Ez(t)ElA gives a path from E1A to E2E1A and so
forth. In the end we have path from A to T,s0 Aand T are in the same path
component of GL, (R). Note that A and T have determinants with the same
sign. Thus there are two possibilities:

(1) A has a positive determinant. In this case T has an even number of
—1 entries on the diagonal, which can be paired Suppose there is a pair of
—1 entries in positions (i,i) and (j, j). If E is the appropriate matrix of
type (3), E EZT will be a matrix of the same form as 7, but with both of these
entries equal to +1 and the others unchanged. As above, we have a path
from 7 to E2]. Continue in this fashion to obtain a path from 7 to I, and
hence a path from A to 1. Thus A is in the same path component as /.

(2) A has a negative determinant. In this case T has an odd number of
—1 entries. Proceeding as in (1), we pair up all but one of the —1 entries
to obtain a path from Tta diagonal matrix with a single —1 entry on
the diagonal and all other diagonal entries equal to 1. If the —1 entry is in
the (1, 1) position there is nothing more to do. If it is in the (i,7) position
for i # 1 (and hence the entry in the (1, 1) position is 1) we apply an
appropriate matrix E of type (3) to obtain the diagonal matrix with —1 as
the first entry on the diagonal and all other entries equal to 1, and hence a
path from A to this matrix, which we shall denote by /_. Thus in this case
A is in the same path component as 7_. O
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We now come to the notion of an orientation of a real vector space. We
assume V is finite dimensional and dim(}") > 0.

DEFINITION 3.5.2. Let 8 = {v1,...,v,} and € = {wy,...,w,} be
two bases of the n-dimensional real vector space V. Then B and € give
the same orientation of V if the change of basis matrix Pe g has positive
determinant, while they give opposite orientations of V if the change of
basis matrix Pe. g has negative determinant. <&

REMARK 3.5.3. Itis easy to check that “giving the same orientation” is an
equivalence relation on bases. It then follows that we can regard an orienta-
tion on a real vector space (of positive finite dimension) as an equivalence
class of bases of V, and there are two such equivalence classes. <&

In general, there is no preferred orientation on a real vector space, but
in one very important special case there is.

DEFINITION 3.5.4. Let 8 = {vy,...,v,} be a basis of R”. Then B
gives the standard orientation of R” if B gives the same orientation as the
standard basis & of R”. Otherwise B gives the nonstandard orientation of
R”™. <
REMARK 3.5.5. (1) & itself gives the standard orientation of R” as Pg. g
= [ has determinant 1.

(2) The condition in Definition 3.5.4 can be phrased more simply. By
Remark 2.3.6(1), Pg.g is the matrix Pg..g = [v1 | v2 | --- | vn]. So B
gives the standard orientation of R” if det(Pg.g) > 0 and the nonstandard
orientation of R” if det(Pgg) < 0.

(3) In Definition 3.5.4, recalling that Pe. g = (Pge) ' Pgg, We
see that B and € give the same orientation of R” if the determinants of the
matrices [vy | va |-+ | vn] and [wy | wa | --- | wy] have the same sign and
opposite orientations if they have opposite signs. <&

Much of the significance of the orientation of a real vector space comes
from topological considerations. We continue to let V' be a real vector space
of finite dimension n > 0, and we choose a basis By of V. For any basis
€ of V we have a map fp : {bases of V} — GL,(R) given by fo(€) =
Pgye. If € = {wi,...,wy,} then fo(€) is the matrix [[wilp, | -+ |
[wr]B,]-) This map is 1-1 and onto. We then give {bases of V'} a topology
by requiring that fo be a homeomorphism. That is, we define a subset @ of
{bases of '} to be open if and only if fy(©) is an open subset of GL,(R).
A priori, this topology depends on the choice of By, but in fact it does
not. For if we choose a different basis 8 and let f1(C) = Pg, ¢, then
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S1(C) = Pfo(€) where P is the constant matrix P = Pg,g,, and
multiplication by the constant matrix P is a homeomorphism from GL,, (R)
to itself.

We then have:

Corollary 3.5.6. Let V be an n-dimensional real vector space and let B
and € be two bases of V. Then B and € give the same orientation of V' if
and only if B can continuously be deformed to €, i.e., if and only if there
is a continuous function p : [0,1] — {bases of V} with p(0) = B and
p(l)y="2¢.

Proof. The bases B and € of V give the same orientation of V' if and only
if Pe g has positive determinant, and by Theorem 3.5.1 this is true if and
only if there is a path in GL, (R) joining / to Pe g.

To be more explicit, let p : [0,1] - GL,(R) with p(0) = I and
p(1) = Peg. For any t between 0 and 1, let B; be the basis defined by
Pg, g3 = p(t). Then Bop = B and B; = C. (]

That there is no corresponding analog of orientation for complex vector
spaces. This is a consequence of the following theorem.

Theorem 3.5.7. The general linear group GL, (C) is connected.

Proof.  We show that it is path connected (which is equivalent as GL, (C)
is an open subset of Euclidean space). The proof is very much like the proof
of Theorem 3.5.1, but easier. We show that there are paths joining the iden-
tity matrix to the usual elementary matrices.

(1) For

we have

p@) =

witha, = ta.
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(2) For

we have

pt) =

(3) For
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tln(r)etie

c with ¢ = reie,
1
1_
c withc; = e
1
1_
1
0 1
1
1
1 0
1
I
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we have
-1 _
1
ay bt
1
pt) = )
1
Cy dt
1
L I
with
a; by| _ [cos (nt/Z) —e™ilgin (nt/Z)_ O
c; di| sin(nt/Z) et cos (nt/Z)_‘

We may also consider the effect of nonsingular linear transformations
on orientation.

DEFINITION 3.5.8. Let V' be an n-dimensional real vector space and let
T : V — V be a nonsingular linear transformation. Let 8 = {vy, ..., v,}
be a basis of V. Then € = {7 (v1),..., T (v,}) is also a basis of V. If B
and € give the same orientation of V' then T is orientation preserving, while
if B8 and € give opposite orientations of V then T is orientation reversing.

&

The fact that this is well-defined, i.e., independent of the choice of basis
B, follows from the following proposition, which proves a more precise
result.

Proposition 3.5.9. Let V be an n-dimensional real vector space and let
T 1V — V be a nonsingular linear transformation. Then T is orientation
preserving if det(7) > 0, and T is orientation reversing if det(7) < 0.

REMARK 3.5.10. Suppose we begin with a complex vector space V of
dimension n. We may then “forget” the fact that we have complex numbers
acting as scalars and in this way regard V as a real vector space Vg of di-
mension 2n. In this situation Vg has a canonical orientation. Choosing any
basis B = {v1,...,v,}of V, we obtain abasis Br = {v1,iv1,..., U, iUy}
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of Vr. It is easy to check that if € is any other basis of V, then €r gives
the same orientation of Vg as Bgr does. Furthermore, suppose we have an
arbitrary linear transformation 7 : V' — V. By “forgetting” the complex
structure we similarly obtain a linear transformation Jg : Vg — VRr. In this
situation det(Ygr) = det(9)det(7). In particular, if 7 is nonsingular, then
TRr is not only nonsingular but also orientation preserving. <&

3.6 HILBERT MATRICES

In this section we present, without proofs, a single family of examples, the
Hilbert matrices. This family is both interesting and important. More infor-
mation on it can be found in the article “Tricks or Treats with the Hilbert
Matrix” by M. D. Choi, Amer. Math Monthly 90 (1983), 301-312.

In this section we adopt the convention that the rows and columns of an
n-by-n matrix are numbered from 0 ton — 1.

DEFINITION 3.6.1. The n-by-n Hilbert matrix is the matrix H = (h;;)
Withhij =1/G+j+1). &

Theorem 3.6.2. (1) The determinant of Hy, is

(1121 = 11)*
m@n-1n

det (H,) =

(2) Let G, = (gij) = Hn_l. Then G, has entries

wmcra e () (L) () ()

REMARK 3.6.3. The entries of H, ! are all integers, and it is known that
det(H,) is the reciprocal of an integer. <&

EXAMPLE 3.6.4. (1)det(H,) = 1/12 and

4 -6
-1 _
By = [—6 12]

(2) det(H3) = 1/2160 and

9 =36 30
Hy'=|-36 192 —180
30 —180 180
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(3) det(H4) = 1/6048000 and

16 —120 240 -—140
—120 1200 —2700 1680
240 —2700 6480 —4200
—140 1680 —4200 2800

(4) det(Hs) = 1/266716800000 and

H' =

25 =300 1050 —1400 630

—300 4800 —18900 26880 —12600

H3' = | 1050 —18900 79380 —117600 56700
—1400 26880 —117600 179200 —88200

630 —12600 56700 —88200 44100

While we do not otherwise deal with numerical linear algebra in this
book, the Hilbert matrices present examples that are so pretty and striking,
that we cannot resist giving a pair.

These examples arise from the fact that, while H}, is nonsingular, its de-
terminant is very close to zero. (In technical terms, H, is “ill-conditioned”.)
We can already see this when n = 3. <

ExXAMPLE 3.6.5. (1) Consider the equation

11/6 [ 1.833...
Hiv = |13/12 | = | 1.0833...
47/60 | 0.7833 ...
It has solution
I
v=|1
1_.

Let us round off the right-hand side to two significant digits and consider
the equation

1.8
Hz;v=| 1.1
0.78
It has solution
0
v = 6
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(2) Let us round off the entries of H3 to two significant figures to obtain
the matrix

1 05033
0.50.33 0.25
0.330.25 0.2

It has inverse

3500 —17500 16100
& —17500 91100 —85000
16100 —85000 80000

Rounding the entries off to the nearest integer, it is

56 —278 256
—278 1446 —1349|. <
256 —1349 1270



CHAPTER 4

THE STRUCTURE OF A
LINEAR TRANSFORMATION |

In this chapter we begin our analysis of the structure of a linear transforma-
tion T : V — V, where V is a finite-dimensional F-vector space.

We have arranged our exposition in order to bring some of the most im-
portant concepts to the fore first. Thus we begin with the notions of eigen-
values and eigenvectors, and we introduce the characteristic and minimum
polynomials of a linear transformation early in this chapter as well. In this
way we can get to some of the most important structural results, including
results on diagonalizability and the Cayley-Hamilton theorem, as quickly
as possible.

Recall our metaphor of coordinates as a language in which to speak
about vectors and linear transformations. Consider a linear transformation
T :V — V,V afinite-dimensional vector space. Once we choose a basis
B of V,i.e., alanguage, we have the coordinate vector [v] g of every vector
vin V, a vector in F”, and the matrix [T] g of the linear transformation 7,
an n-by-n matrix, (where n is the dimension of V') with the property that
[T ()]s = [T]slv]g- If we choose a different basis €, i.e., a different lan-
guage, we get different coordinate vectors [v]e and a different matrix [T e
of T, though again we have the identity [T (v)]e = [T]e[v]e. We have
also seen change of basis matrices, which tell us how to translate between
languages.

But here, mathematical language is different than human language. In
human language, if we have a problem expressed in English, and we trans-
late it into German, we haven’t helped the situation. We have the same prob-
lem, expressed differently, but no easier to solve.

89
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In linear algebra the situation is different. Given a linear transformation
T :V — V,V afinite-dimensional vector space, there is a preferred basis
B of V, i.e., a best language in which to study the problem, one that makes
[T]8 as simple as possible and makes the structure of 7 easiest to under-
stand. This is the language of eigenvalues, eigenvectors, and generalized
eigenvectors.

We first consider a simple example to motivate our discussion.

Let A be the matrix
20
A=
5]

and consider T4 : R? — R? (where, as usual, T4(v) = Av). Also, consider

the standard basis &, so [;]8 = [;] for every vector [;] € R?, and fur-

thermore [T4]e = A. T4 looks simple, and indeed it is easy to understand.
We observe that T4(e;) = 2e;, where e; = [(1)] is the first standard basis

vector in &, and T4(ez) = 3e,, where e; = [(1)] is the second standard

basis vector in &. Geometrically, 74 takes the vector e and stretches it by
a factor of 2 in its direction, and takes the vector e, and stretches it by a
factor of 3 in its direction.

On the other hand, let B be the matrix

—4 14
=37

and consider 73 : R? — R2. Now Tp(e1) = B[(l)] = [_i], and

TB(e2) = B[(l)] = [_194], and Tp looks like a mess. Jp takes each
of these vectors to some seemingly random vector in the plane, and there
seems to be no rhyme or reason here. But this appearance is deceptive, and
comes from the fact that we are studying B by using the standard basis

&, i.e., in the & language, which is the wrong language for the problem.
Instead, let us choose the basis 8 = {by,by} = {[_7], [_?]} Then

3
o) = B[ ] = [12] = 2[ 1] = 261, and Tut2) = B[ 2] =
[_g] = 3[? = 3b,. Thus Tp has exactly the same geometry as Ty:

It takes the vector b; and stretches it by a factor of 2 in its direction, and
it takes the vector b, and stretches it by a factor of 3 in its direction. So
we should study T3 by using the B basis, i.e., in the 8 language. This is



4.1. EIGENVALUES, EIGENVECTORS, AND . . . 91

the right language for our problem, as it makes Jp easiest to understand.
Referring to Remark 2.2.8 we see that

Tola =[5 3| = 7.

This “right” language is the language of eigenvalues, eigenvectors, and
generalized eigenvectors, and the language that lets us express the matrix of
a linear transformation in “canonical form”.

But before we proceed further, let me make two more remarks.

On the one hand, even if V' is not finite dimensional, it is often the
case that we still want to study eigenvalues and eigenvectors for a linear
transformation 7, as these are important structural features of 7 and still
give us a good way (sometimes the best way) of understanding 7.

On the other hand, in studying a linear transformation 7 on a finite-
dimensional vector space, it is often a big mistake to pick a basis B8 and
study [T]g. It may be unnatural to pick any basis at all. 7~ is what comes
naturally and is usually what we want to study, even if in the end we can get
important information about 7~ by looking at [7] g. Let me again emphasize
this point: Linear algebra is about linear transformations, not matrices.

4.1 EIGENVALUES, EIGENVECTORS,
AND GENERALIZED EIGENVECTORS

In this section we introduce some of the most important structural informa-
tion associated to a linear transformation.

DEFINITION 4.1.1. Let 7 : V — V be a linear transformation. Let
A e F. If Ker(T — Ad) # {0}, then A is an eigenvalue of 7. In this
case, any nonzero v € Ker(7 — Ad) is an eigenvector of T, and the sub-
space Ker(7 — Ad) of V is an eigenspace of T . In this situation, A, v, and
Ker(7 — Ad) are associated. <&

REMARK 4.1.2. Letv € V, v # 0.If v € Ker(T — Ad), then
(T = Ad)(v) = 0,ie., T(v) = Av, and conversely, the traditional defi-
nition of an eigenvector. <&

We will give some examples of this very important concept shortly, but
itis convenient to generalize it first.
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DEFINITION 4.1.3. Let 7 : V — V be a linear transformation and let
A € F be an eigenvalue of 7. The generalized eigenspace of T associated
to A is the subspace of V' given by

{v | (T — AJ)k(v) = 0 for some positive integer k}.

If v is a nonzero vector in this generalized eigenspace, then v is a general-
ized eigenvector associated to the eigenvalue A. For such a v, the smallest
positive integer k for which (7 — Ad)¥(v) = 0 is the index of v. <

REMARK 4.1.4. A generalized eigenvector of index 1 is just an eigenvec-
tor. <

For a linear transformation  and an eigenvalue A of 7, we let E,
denote the eigenspace £, = Ker(9 — Ad). For a positive integer k, we let
E i‘ be the subspace EX = Ker(T —Ad)*. We let E 3 denote the generalized
eigenspace associated to the eigenvalue A. We see that E /{ CE /% C ... and
that the union of these subspaces is £7°.

EXAMPLE 4.1.5. (1)Let V ="F* andletL : V — V be left shift. Then
L has the single eigenvalue A = 0 and the eigenspace Ey is 1-dimensional,
Ey = {(a1,a2,...) € V | a; = Ofori > 1}. More generally, E(])‘ =
{(ai,az,...) € V | a; = 0fori > k}, so dim EF = k for every k, and
finally V' = E§°. In contrast, R : V' — V does not have any eigenvalues.

2)Let V ="F®>andletL : V — V be left shift. Then for any
A € F, E; is 1-dimensional with basis {(1,A,12,...)}. It is routine to
check that £ i‘ is k-dimensional for every A € F and every positive integer
k. In contrast, R : V' — V does not have any eigenvalues.

(3) Let I be a field of characteristic 0 and let V' = P(IF), the space of
all polynomials with coefficients in F. Let D : V' — V be differentiation,
D(p(x)) = p’(x). Then D has the single eigenvalue 0 and the correspond-
ing eigenspace Eq is 1-dimensional, consisting of the constant polynomials.
More generally, E(])‘ is k-dimensional, consisting of all polynomials of de-
gree at most k — 1.

(4) Let V= P(IF) be the space of all polynomials with coefficients in
a field of characteristic 0 and let 7 : V' — V be defined by 7 (p(x)) =
xp’(x). Then the eigenvalues of 7 are the nonnegative integers, and for
every nonnegative integer m the eigenspace E,, is 1-dimensional with basis
{x™.

(5) Let V be the space of holomorphic functionson C, and letD : V' —
V be differentiation, D(f(z)) = f’(z). For any complex number A, E;
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is 1-dimensional with basis f(z) = e*?. Also, Ei‘ is k-dimensional with
basis {et?, ze??, ... Zk"1eA7), O

Now we turn to some finite-dimensional examples. We adopt the stan-
dard language that the eigenvalues, eigenvectors, etc. of an n-by-n ma-
trix A are the eigenvalues, eigenvectors, etc. of 74 : F” — F” (where
Ta(v) = Av).

ExXAMPLE 4.1.6. (1) Let Aq,..., A, be distinct elements of IF and let A
be the n-by-n diagonal matrix

A

Az
A=

An

Foreachi = 1,...,n, A; is an eigenvalue of A with 1-dimensional eigenspace
E,,; with basis {e; }.
(2) Let A be an element of IF and let A be the n-by-n matrix

with entries of A on the diagonal, 1 immediately above the diagonal, and
0 everywhere else. For each k = 1,...,n, e is a generalized eigenvector
of index k, and the generalized eigenspace E i‘ is k-dimensional with basis

{er, ..., ex}. &
Now we introduce the characteristic polynomial.

DEFINITION 4.1.7. Let A be an n-by-n matrix. The characteristic poly-
nomial c4(x) of A is the polynomial

ca(x) = det(xI — A). O

REMARK 4.1.8. By properties of the determinant it is clear that c4(x) is
a monic polynomial of degree n. <&

Lemma 4.1.9. Let A and B be similar matrices. Then c4(x) = cp(x).
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Proof. If B = PAP~! thencp(x) = det(x] —B) = det(x] —PAP™!) =
det(P(xI — A)P~') = det(x] — A) = c4(x) by Corollary 3.3.2. O

DEFINITION 4.1.10. Let V be a finite-dimensional vector space and let
T 1V — V be a linear transformation. Let B be any basis of V' and let
A = [T]g. The characteristic polynomial cs(x) is the polynomial

cr(x) = ca(x) = det(xI — A).

&

REMARK 4.1.11. By Corollary 2.3.11 and Lemma 4.1.9, ¢y (x) is well-
defined (i.e., independent of the choice of basis B of V). &

Theorem 4.1.12. Let V be a finite-dimensional vector space and let T :
V. — V be a linear transformation. Then A is an eigenvalue of T if and
only if A is a root of the characteristic polynomial cg (x), i.e., if and only if
cr(A) =0.

Proof. Let 8 be a basis of V and let A = [7]g. Then by definition A is an
eigenvalue of T if and only if there is a nonzero vector v in Ker(7 — Ad),
i.e., if and only if (A — Al )u = O for some nonzero vector u in F” (where
the connection is that v = [v]g). This is the case if and only if A — A is
singular, which is the case if and only if det(A—A/) = 0. Butdet(A—Al) =
(—1)* det(AI — A), where n = dim(V'), so this is the case if and only if
cr(A) = ca(A) = det(Al — A) = 0. O

REMARK 4.1.13. We have defined c4(x) = det(x/ — A) and this is the
correct definition, as we want c4(x) to be a monic polynomial. In actually
finding eigenvectors or generalized eigenvectors, it is generally more con-
venient to work with A — AI rather than A] — A. Indeed, when it comes
to finding chains of generalized eigenvectors, it is almost essential to use
A — Al as using Al — A would introduce spurious minus signs, which
would have to be corrected for. <&

For the remainder of this section we assume that V' is finite dimensional.

DEFINITION 4.1.14. Let 7 : V — V and let A be an eigenvalue of
T . The algebraic multiplicity of A, alg-mult(4), is the multiplicity of A as
a root of the characteristic polynomial cy(x). The geometric multiplicity
of A, geom-mult (1), is the dimension of the associated eigenspace E; =
Ker(7 — Ad). <

We use multiplicity to mean algebraic multiplicity, as is standard.
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Lemma 4.1.15. Let T : V. — V and let A be an eigenvalue of T. Then
1 < geom-mult(4) < alg-mult(1).

Proof. By definition, if A is an eigenvalue of T there exists a (nonzero)
eigenvector, so 1 < dim(E)).

Suppose dim(E)) = d and let {vy,...,vg} = B; be a basis for E).
Extend 8B; to a basis B = {vy,...,v,} of V. Then

Al Bi|:A’

7a ="y 5

a block matrix with the upper left-hand block d-by-d. Then

[xJ—T];g:xI—Azl:XI_AI -B i|:|:(x—)k)l —B]

0 xI-D 0 xI —D
)
cy(x) = det(x] — A) = det ((x - A)I) det(xI — D)
= (x —A)? det(x] — D)
and hence d < alg-mult(A). (]

Corollary 4.1.16. Let T : V — V and let A be an eigenvalue of T with
alg-mult(A) = 1. Then geom-mult(A) = 1.

It is important to observe that the existence of eigenvalues and eigen-
vectors depends on the field I, as we see from the next example.

EXAMPLE 4.1.17. For any nonzero rational number ¢ let A be the matrix

01
At_[t O}a

> [t 0] _
[ -

Let A be an eigenvalue of A; with associated eigenvector v. Then, on the
one hand,

SO

A2(v) = A((A:(v)) = A:(Av) = A4, (v) = A2,
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but, on the other hand,
A2(v) = t1(v) = tv,

soA? =t.
(1) Suppose t = 1. Then A2 = 1, A = %1, and we have the eigenvalue
A = 1 with associated eigenvector v = [1], and the eigenvalue A = —1

1
S

(2) Suppose ¢ = 2. If we regard A as being defined over Q, then there
isno A € Q with A2 = 2, so A4 has no eigenvalues. If we regard A as being

defined over R, then A = :t«/z and A = +/2is an eigenvalue with asso-

. . 1 . . . .
ciated eigenvector [ ﬁ]’ and A = —+/2 is an eigenvalue with associated

with associated eigenvector v =

eigenvector | 5

(3) Suppose t = —1. If we regard A as being defined over R, then there
isno A € R with A2 = —1, so 4 has no eigenvalues. If we regard A as being
defined over C, then A = +i, and A = i is an eigenvalue with associated

eigenvector [l, ], and A = —i is an eigenvalue with associated eigenvector

[ ; ] o
—l
Now we introduce the minimum polynomial.

Lemma 4.1.18. Let A be an n-by-n matrix. There is a nonzero polynomial
p(x) with p(A) = 0.

Proof. The set of matrices {/, 4, ..., A”z} is a set of n2 + 1 elements of a
vector space of dimension 2, and so must be linearly dependent. Thus there
exist scalars co, ..., ¢,2, not all zero, withcol + c1A+---+ anA"2 =0.
Then p(A) = 0 where p(x) is the nonzero polynomial p(x) = C,,zx"2 +
<o+ c1x + Co. O

Theorem 4.1.19. Let A be an n-by-n matrix. There is a unique monic poly-
nomial my(x) of lowest degree with ma(A) = 0. Furthermore, m4(x) di-
vides every polynomial p(x) with p(A) = 0.

Proof. By Lemma 4.1.18, there is some nonzero polynomial p(x) with
p(4) = 0.

If p1(x) and pa(x) are any polynomials with p;(A4) = 0 and p2(A4) =
0, and g(x) = p1(x) + p2(x), then g(4) = pi(4) + p2(4) = 0 +
0 = 0. Also, if p;(x) is any polynomial with p;(A4) = 0, and r(x) is any
polynomial, and g(x) = p1(x)r(x), then g(A) = p1(A)r(4) = 0r(4) =
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0. Thus, in the language of Definition A.1.5, the set of polynomials { p (x) |
p(A) = 0} is a nonzero ideal, and so by Lemma A.1.8 there is a unique
polynomial m4(x) as claimed. O

DEFINITION 4.1.20. The polynomial m4(x) of Theorem 4.1.19 is the
minimum polynomial of A. <&

Lemma 4.1.21. Let A and B be similar matrices. Then m4(x) = mp(x).

Proof. If B = PAP™!, and p(x) is any polynomial with p(4) = 0, then
p(B) = Pp(A)P~! = POP~! = 0, and vice-versa. O

DEFINITION 4.1.22. Let V be a finite-dimensional vector space and let
T : V. — V be a linear transformation. Let B be any basis of V' and
let A = [T]g. The minimum polynomial of T is the polynomial mq (x)
defined by mg (x) = my(x). <&

REMARK 4.1.23. By Corollary 2.3.11 and Lemma 4.1.21, mg (x) is well-
defined (i.e., independent of the choice of basis B of V). Alternatively we
can see that mg (x) is well-defined as for any linear transformation & :
V — V, 8 = 0 (ie., § is the 0 linear transformation) if and only if the
matrix [§]g = 0 (i.e., [§]g is the 0 matrix) in any and every basis B of V.
<

4.2 SOME STRUCTURAL RESULTS

In this section we prove some basic but important structural results about a
linear transformation, obtaining information about generalized eigenspaces,
direct sum decompositions, and the relationship between the characteris-
tic and minimum polynomials. As an application, we derive the famous
Cayley-Hamilton theorem.

While we prove much stronger results later, the following result is so
easy that we will pause to obtain it here.

DEFINITION 4.2.1. Let V be a finite-dimensional vector space and let
T : V — V be a linear transformation. J is triangularizable if there is a
basis 8 of V' in which the matrix [T7] g is upper triangular. <&

Theorem 4.2.2. Let V be a finite-dimensional vector space over the field
F andlet T : V — V be a linear transformation. Then T is triangulariz-
able if and only if its characteristic polynomial cy(x) is a product of linear
factors. In particular, if F is algebraically closed then every T : V. — V is
triangularizable.
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Proof. If [T]g = A is an upper triangular matrix with diagonal entries
di,...,dy, thencq(x) = cq(x) =det(x] —A) = (x—dy1)---(x —dy) is
a product of linear factors.

We prove the converse by induction on n = dim(V'). Let cq(x) =
(x —d1)---(x —dy). Then d; is an eigenvalue of 7 ; choose an eigenvector
vy and let V; be the subspace of V generated by vy. Let V = V/V;. Then
7 induces 7 : V — V with c7(x) = (x—dz) - (x—dy). By induction, V'

has a basis B = {5, ..., 7,} with [J:]§ = D upper triangular. Let v; € V
with w(v;) = v; fori =2,...,n,and let B = {v1,vs,...,v,}. Then

- d C

[T]s = [O D}
for some 1-by-(n — 1) matrix C. Regardless of what C is, this matrix is
upper triangular. O

Lemma 4.2.3. (1) Let v be an eigenvector of T with associated eigenvalue
A and let p(x) € F[x] be a polynomial. Then p(7)(v) = p(A)v. Thus, if
pA) # 0 then p(T)(v) # 0.

(2) More generally, let v be a generalized eigenvector of T of index k
with associated eigenvalue A and let p(x) € F[x] be a polynomial. Then
p(T) (W) = p(A)v+v', where v’ is a generalized eigenvector of T of index
k' < k with associated eigenvector A. Thus if p(A) # 0 then p(T)(v) # 0.

Proof. We can rewrite any polynomial p(x) € F[x] in terms of x — A:
P(x) = an(x = A" +ap_1(x =" 4+ a(x —A) + ao.

Setting x = A we see that ag = p(A4).
(1) If v is an eigenvector of 7 with associated eigenvalue A, then

P = (an(T = 20" + -+ a1(T = 2d) + p(W)I) (v)
= p(M)d ) = p(A)v

as all terms but the last vanish.
(2) If v is a generalized eigenvector of 7 of index k with associated
eigenvalue A, then

P = (an(T = 20" + -+ a1(T = 2d) + p(W)I) (v)

=v' +p
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where
V' = (an(T =AD" + -+ a1 (T — A4))(v)
= (an(T =AD" + -+ a1)(T — 2d)(v)

is a generalized eigenvector of 7~ of index at most k — 1 associated to A. [

Lemma 4.24. Let T : V — V be a linear transformation with cg(x) =
(x — A1) -+ (x — Ay, with Ay, ..., Ay distinct. Let W; = Ei’lo be the
generalized eigenspace of T associated to the eigenvalue A;. Then W; is
a subspace of V of dimension e;. Also, W; = Eii, i.e., any generalized
eigenvector of T associated to A; has index at most e;.

Proof. In proof of Theorem 4.2.2, we may choose the eigenvalues in any
order, so we choose A; first, e; times. Then we find a basis B of V with
[T] 8 an upper triangular matrix

7s = |3 5]
0D]|’
where A is an upper triangular ¢;-by-e; matrix all of whose diagonal entries
are equal to A; and D is an (n —e; )-by-(n —e; ) matrix all of whose diagonal
entries are equal to the other A;’s and thus are unequal to A;. Write 8 =
B1U B where B consists of the first ¢; vectors in B, B1 = {v1. ..., Vg, }.

We claim that W is the subspace spanned by 8.
To see this, observe that

- _[A-nI B
(7 =% _[ 0 D—m]
w0 (A—A1)% B
(7= 2id]g = [ 0 (D—A,»I)ei]

for some submatrix B’ (whose exact value is irrelevant). But A — A; I is an

e;-by-e; upper triangular matrix with all of its diagonal entries 0, and, as

is easy to compute, (4 — A; )% = 0. Also, D — A; [ is an e;-by-e; upper

triangular matrix with none of its diagonal entries 0, and as is also easy to

compute, (D—A; I)¢ is an upper triangular matrix with none of its diagonal

entries equal to 0. Both of these statements remain true for any e > e;.
Thus for any e > ¢;,

-~ e 0 B’
7 =241 = o o]
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with D’ an upper triangular matrix all of whose diagonal entries are nonzero.
Then it is easy to see that for any e > e;, Ker([T — A;d]%) is the subspace
of F” generated by {e1, ..., e;}. Thus W; is the subspace of V' generated by
{vi,...,ve;} = By, and is a subspace of dimension e;. O

Lemma 4.2.5. In the situation of Lemma 4.2.4,
V=W& - ®dW,.

Proof. Since n = degcy(x) = ey + -+ + ep, by Corollary 1.4.8(3) we
need only show that if 0 = w; + -+ 4+ w,, with w; € W; for each i, then
w; = 0 foreach i.

Suppose we have an expression

O=wi+--+w +-+wn

with w; # 0. Let gi(x) = cq(x)/(x — A;)%, so g;(x) is divisible by
(x —A;)% forevery j #i,butg;(A;) # 0. Then

0=gqi(7)0) =qi(T) (w1 + -+ w + -+ wn)
=qi(T)(w1) + -+ qi (T)(wi) + - + ¢ (T)(wm)
=0+ +qT)(w)+--+0
= qi(T)(wi),

contradicting Lemma 4.2.3. (]

Lemma 4.2.6. Let T : V. — V be a linear transformation whose charac-
teristic polynomial cq (x) is a product of linear factors. Then

(1) mg (x) and cy(x) have the same linear factors.

(2) mg (x) divides cg (x).

Proof. (1) Let mg (x) have a factor x — A, and let n(x) = mg(x)/(x — A).
Then n(7) # 0, so there is a vector vg with v = n(7)(vg) # 0. Then
T = Ad) W) = mg(T)(v) = 0,ie., v € Ker(T — Ad), so v is an eigen-
vector of 7~ with associated eigenvalue A. Thus x — A is a factor of ¢4 (x).
Suppose x — A is a factor of ¢ (x) that is not a factor of m¢(x), so that
mqg (1) # 0. Choose an eigenvector v of T~ with associated eigenvector A.
Then on the one hand mg (7)) = 0 so m¢(7)(v) = 0, but on the other
hand, by Lemma 4.2.3, m¢ (7 )(v) = mg(A)v # 0, a contradiction.

) Since V = W) & --- & W, where W; = Eii, we can write any
veVasv=w;+- -+ w, withw; € W,.
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Then
cr (M) = cg(T) (w1 + -+ + Wm)
= cqr(T)(w1) + -+ + ¢ (T) (wm)
=0+ 40=0

as for each 7, ¢y (x) is divisible by (x — ;)% and (T — A;d)% (w;) = 0
by the definition of Eil . But mg (x) divides every polynomial p(x) with
p(T) =0, so mg(x) divides c(x). O

This lemma has a famous corollary, originally proved by quite different
methods.

Corollary 4.2.7 (Cayley-Hamilton theorem). Let V' be a finite-dimensional
vector space and let T : V. — V be a linear transformation. Then

cy(T) =0.
Proof. In case cg(x) factors into a product of linear factors,
cr(x) = (x = A o (x = Am)",

we showed this in the proof of Lemma 4.2.6.

In general, pick any basis B of V and let A = [T]g. Then ¢4 (7) =0
if and only if c4(A4) = 0. (Note c5(x) = ca(x).) Now A is a matrix with
entries in I, and we can consider the linear transformation 74 : F* — F”.
But we may also take any extension field E of F and consider 7 E" -
E” defined by ?(v) = Av. (So T = Ty, but we are being careful to
use a different notation as T is defined on the new vector space E”.) Now
c7(x) = ca(x) = det(x] —A) = ¢ (x). In particular, we may take IE to be
afield in which c4(x) splits into a product of linear factors. For example, we
could take E to be the algebraic closure of I, and then every polynomial
p(x) € F[x] splits into a product of linear factors over E. Then by the
first case of the corollary, C'TV(}’:) = 0, ie., cq(4) = 0,1ie., cqy(T) = 0.
(Expressed differently, A is similar, as a matrix with entries in [E, to a matrix
B for which cg(B) = 0.If A = PBP™!, then for any polynomial f(x),
f(A) = Pf(B)P~!. Also, since A and B are similar, c4(x) = cp(x).
Thus c4(A) = cp(4) = PCB(B)P_1 = POP 1 =0) O

REMARK 4.2.8. For the reader familiar with tensor products, we observe
that the second case of the corollary can be simplified to:

Consider T=T®1:V ®rF E — V ®p E. Then cg(x) = ¢7(x) and
¢7(7) = 0 by the lemma, so ¢ (7)) = 0. <
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REMARK 4.2.9. If F is algebraically closed (e.g., F = C, which is al-
gebraically closed by the Fundamental Theorem of Algebra) then cg(x)
automatically splits into a product of linear factors, and we are in the first
case of the Cayley-Hamilton theorem, and we are done—fine. If not, al-
though our proof is correct, it is the “wrong” proof. We should not have to
pass to a larger field E in order to investigate linear transformations over
F. We shall present a “right” proof later, where we will see how to general-
ize both Lemma 4.2.5 and Lemma 4.2.6 (see Theorem 5.3.1 and Corollary
5.34). <

4.3 DIAGONALIZABILITY

Before we continue with our analysis of general linear transformations, we
consider a particular but very useful case.

DEFINITION 4.3.1. (1) Let V be a finite-dimensional vector space and let
T : V — V be alinear transformation. Then T is diagonalizable if V has
a basis B with [T] g a diagonal matrix.

(2) An n-by-n matrix A is diagonalizable if T4 : F" — F" is diagonal-
izable. <&

REMARK 4.3.2. Inlight of Theorem 2.3.14, we may phrase (2) more sim-
ply as: A is diagonalizable if it is similar to a diagonal matrix. <&

Lemma4.3.3. Let V be a finite-dimensional vector space and letT 1V —
V be a linear transformation. Then T is diagonalizable if and only if V' has
a basis B consisting of eigenvectors of T .

Proof. Let 8 = {v1,...,v,}and let D = [T]g be a diagonal matrix with
diagonal entries w1, ..., 1. Foreach i,

[T (vi)]g =[Tl8[vi]g = Dei = pie; = pifvi] .

so 7 (v;) = u;v; and v; is an eigenvector.
Conversely, if B = {v1, ..., v,} is a basis of eigenvectors, so T (v;) =
wiv; for each i, then

([7)]g [ [T(2)]g ] -]

[[mivi]g [ [rav2]g | -] = [mier | maez | -] = D

[T]s

is a diagonal matrix. O
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Theorem 4.3.4. Let V be a finite-dimensional vector space and let T :
V' — V be a linear transformation. If cy(x) does not split into a product
of linear factors, then T is not diagonalizable. If cy(x) does split into a
product of linear factors (which is always the case if F is algebraically
closed) then the following are equivalent:

(1) T is diagonalizable.

(2) mg (x) splits into a product of distinct linear factors.

(3) For every eigenvalue A of T, E; = E3° (i.e., every generalized
eigenvector of T is an eigenvector of T ).

(4) For every eigenvalue A of T, geom-mult(1) = alg-mult(A).

(5) The sum of the geometric multiplicities of the eigenvalues is equal
to the dimension of V.

(6) If A1, ..., Am are the distinct eigenvalues of T, then

V=E, & -0E,,.

Proof. We prove the contrapositive of the first claim: Suppose 7 is diag-
onalizable and let B be a basis of V' with D = [7]g a diagonal matrix
with diagonal entries i1, ..., Un. Then cq(x) = cp(x) = det(x] — D) =
(v = p1) - (x = in).

Suppose ¢y (x) = (x—p1) -+ (x—p, ). The scalars 1, . .., L, may not
all be distinct, so we group them. Let the distinct eigenvaluesbe A1, ..., Ay,
S0 cq(x) = (x — A1) -+ (x — Ayy)®m for positive integers ey, . . ., €.

Let n = dim(V'). Visibly, e; is the algebraic multiplicity of A;, and
e1 + -+ em = n. Let f; be the geometric multiplicity of A;. Then we
know by Lemma 4.1.15that 1 < f; <e;,so fi +---+ f, = nif and only
if f; = e; for each i, so (4) and (5) are equivalent. We know by Lemma
4.2 4 that ¢; = dim Ei’?, and by definition f; = dim E;_, and E, C Ef{l_o,
so (3) and (4) are equivalent.

By Lemma 4.2.5,V = Ei’? D---P Eoi,so V=E, & --®Eif
andonlyif £, = Ei’? for each i, so (3) and (6) are equivalent.

IfV = E) ®---® Ej,,, let B; be a basis for £, and let 8 =
By U---U Byy. Let T; be the restriction of T to E,,. Then B is a basis for
V and

Ay
[T]s = = A4,

a block diagonal matrix with A; = [7;]g,. Butin this case A; is the ¢;-by-e;
matrix A; I (a scalar multiple of the identity matrix) so (6) implies (1).
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If there is an eigenvalue A; of J for which E,, C Ef{_o, let v; € Ei’o

be a generalized eigenvector of index k > 1, so (7 — A;4)*(v;) = 0 but
(T =A; )~ (v;) # 0. For any polynomial p(x) with p(A;) # 0, p(T)(v;)
is another generalized eigenvector of the same index k. This implies that any
polynomial f(x) with f(7)(v;) = 0, and in particular mg (x), has a factor
of (x — A;)¥. Thus not-(3) implies not-(2), or (2) implies (3).

Finally, let 7 be diagonalizable, [T]g = D in some basis B, where
D is a diagonal matrix with entries (i1, ..., im, and with distinct diagonal
entries A repeated e times, A, repeated e, times, etc. We may reorder B
so that

Ay
(T8 = =4
Am

with A; the e;-by-e; matrix A; . Then A; — A; [ is the zero matrix, and an
easy computation shows (A —A;1)--- (A — A1) = 0, so mg (x) divides,
and is easily seen to be equal to, (x — A1)---(x — Ay,), and (1) implies
(2). O

Corollary 4.3.5. Let V be a finite-dimensional vector space and T : V —
V' a linear transformation. Suppose that cg(x) = (x — A1) -+ (x — Ay) is
a product of distinct linear factors. Then T is diagonalizable.

Proof. By Corollary 4.1.16, alg-mult(4;) = 1 implies geom-mult(A;) = 1
as well. O

4.4 AN APPLICATION TO
DIFFERENTIAL EQUATIONS

Let us look at a familiar situation, the solution of linear differential equa-
tions, and see how the ideas of linear algebra clarify what is going on. Since
we are interested in the linear-algebraic aspects of the situation rather than
the analytical ones, we will not try to make minimal differentiability as-
sumptions, but rather make the most convenient ones.

We let V' be the vector space of C*° complex-valued functions on the
real line R. We let £ be an nth order linear differential operator £ =
an(x)D" 4+ --- 4+ a;(x)D + ao(x), where the a; (x) are functions in V' and
D denotes differentiation: D(f(x)) = f'(x) and D¥(f(x)) = f® (x), the
kth derivative. We further assume that a, (x) # 0 forall x € R.
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Theorem 4.4.1. Let £ be as above. Then Ker(£) is an n-dimensional sub-
space of V. Foranyb(x) € V,{y € V | £(y) = b(x)} is an affine subspace
of V parallel to Ker(£).

Proof. As the kernel of a linear transformation, Ker(&£) is a subspace of V.

Ker(£) = {y € V | £(y) = 0} is just the solution space of the linear
differential equation £(y) = a,(x)y™ + -+ + a1 (x)y’ + ao(x)y = 0.
For x¢ € R define a linear transformation & : Ker(£) — C” by

Y(Xo)
ey =| V)

y(n—l) (xO)

The fundamental existence and uniqueness theorem for linear differen-
tial equations tells us that & is onto (that’s existence—there is a solution for
any set of initial conditions) and that it is 1-1 (that’s uniqueness), so & is an
isomorphism and Ker(£) is n-dimensional. For any b(x) € V this theorem
tells us that £(y) = b(x) has a solution, so now, by Theorem 1.5.7, the set
of all solutions is an affine subspace parallel to Ker(£). O

Now we wish to solve £(y) = 0 or £(y) = b(x).

To solve £(y) = 0, we find a basis of Ker(£). Since we know Ker(£)
is n-dimensional, we simply need to find » linearly independent functions
{y1(x),..., yn(x)} in Ker(£) and the general solution of £(y) = 0 will be
y =c1y1(x) 4+ -+ -+ cnyn(x). Then, by Proposition1.5.6, in order to solve
the inhomogeneous equation £(y) = b(x), we simply need to find a single
solution, i.e., a single function y¢(x) with £(y¢(x)) = b(x), and then the
general solution of £(y) = b(x) willbe y = yo(x) + c1y1(x) +--- +
Cnyn(x).

We now turn to the constant coefficient case, where we can find explicit
solutions. That is, we assume a,, ..., ag are constants.

First let us see that a familiar property of differentiation is a conse-
quence of a fact from linear algebra.

Theorem 4.4.2. Let V be a (necessarily infinite-dimensional) vector space

and let T : V. — V be a linear transformation such that T is onto and

Ker(7) is 1-dimensional. Then for any positive integer k, Ker(T%) is k-

dimensional and is the subspace {p(T)(vk) | p(x) an arbitrary polynomial}
for a single generalized eigenvector vy of index k, (necessarily associated

to the eigenvalue 0).
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Proof. We proceed by induction on k. By hypothesis the theorem is true
for k = 1. Suppose it is true for k and consider 7%*!. By hypothesis,
there is a vector vg 41 with 7 (vg4+1) = vg, and vg 4 is then a generalized
eigenvector of index k+ 1. The subspace { p(7)(vik+1) | p(x) a polynomial}
is a subspace of Ker(7%+1) of dimension k + 1. We must show this subspace
is all of Ker(7%*1). Let w € Ker(7%*1), so 7kt (w) = 7%(T (w)) = 0.
By the inductive hypothesis, we can write 7 (w) = p(7)(vg) for some
polynomial p(x). If we let wo = p(7)(vk+1), then

T (wo) =T p(T) (k1) = p(T)T (Wr+1) = p(T)(0x) = T (w).

Hence w — wo € Ker(7), so w = wy + av; where v; = Tk_l(vk) =

T (ugs1), ien w = (p(T) +aT ) (vg11) = ¢(T) (V1) where g(x) =
p(x) + ax¥, and we are done. O

Lemma 4.4.3. (1) Ker(D¥) has basis {1, x,...,x*71}.
(2) More generally, for any a, Ker(D — a)* has basis {e®*, xe%*, ...,
xk—leax}.

Proof. We can easily verify that
D —a)f(x* e =0 but (D—a) ' (xF1e®) #£0

(and it is trivial to verify that D¥ (x¥=1) = 0 but D*~1(x*~1) # 0). Thus
B = {e?*, xe®, ..., xk71e*} is a set of generalized eigenvectors of in-
dices 1,2, ..., k associated to the eigenvalue a. Hence B is linearly inde-
pendent. We know from Theorem 4.4.1 that Ker((D — a)*) has dimension
k, so B forms a basis.

Alternatively, we can use Theorem 4.4.2. We know Ker(D) consists pre-
cisely of the constant functions, so it is 1-dimensional with basis {1}. Fur-
thermore, D is onto by the Fundamental Theorem of Calculus: If F(x) =
[e f()dt, then D(F(x)) = f(x).

For D — a the situation is only a little more complicated. We can easily
find that Ker(D — a) = {ce?*}, a 1-dimensional space with basis {e?*}. If
we let

F(x) = &% /x e M f(t)dt,

0

the product rule and the Fundamental Theorem of Calculus show that

D —a)(F(x)) = f(x).
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With notation as in the proof of Theorem 4.4.2, if we let v = ¢%* and
solve for vy, vs, ..., recursively, we obtain a basis of Ker(D — a)

{e%*, xe®, (x2/2)e*™, ..., (x* 1/ (k — 1)1)e®}

(or {1,x,x2/2,...,x*71/(k — 1)!} if a = 0) and since we can replace any
basis element by a multiple of itself and still have a basis, we are done. [

Theorem 4.4.4. Let £ be a constant coefficient differential operator with
factorization

£ =apD—A)°" (D — Ap)”

where A1, ..., Ay are distinct. Then
{e'“x, LxaTlehx o pAmx xém~1 X}

is a basis for Ker(&£), so that the general solution of £(y) = 0 is

A —1 4
y=crie’ e xT e

A 1,4
FCmae’ " At O, X MY

If b(x) € V is arbitrary, let yo = yo(x) be an element of V with
L (yo(x)) = b(x). (Such an element yo(x) always exists.) Then the general
solution of £(y) = b(x) is

Y=o+ cr1eM* oo fep e xTeMT

A 1,4
FCmae’ " At O, X MY

Proof. We know that the set of generalized eigenspaces corresponding to
distinct eigenvalues are linearly independent (this follows directly from the
proof of Lemma 4.2.5, which does not require V' to be finite dimensional)
and then within each eigenspace a set of generalized eigenvectors with dis-
tinct indices is linearly independent as well, so this entire set of generalized
eigenvectors is linearly independent. Since there are n of them, they form a
basis for Ker(£). The inhomogeneous case then follows immediately from
Proposition1.5.6. O

REMARK 4.4.5. Suppose £ has real coefficients and we want to solve
£(y) = 0 in real functions. We proceed as above to obtain the general
solution, and look for conditions on the ¢’s for the solution to be real. Since
anx" + -+ + ap is a real polynomial, if the complex number A is a root
of it, so is its conjugate A, and then to obtain a real solution of £(y) = 0
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the coefficient of e** must be the complex conjugate of the coefficient of
e** etc. Thus in our expression for y there is a pair of terms ce** + cer*.
Writingc = ¢; +ic; and A = a + bi,

ce™ 4+ 2e™ = (c1 + ica)(e®*(cos(bx) + i sin(bx)))
+ (c1 —ic2)(e?*(cos(bx) — i sin(bx)))
= d1e%* cos(bx) + dye?* sin(bx)

for real numbers d; and d,. That is, we can perform a change of basis and
instead of using the basis given in Theorem 4.4.4, replace each pair of basis
elements {e**, e**} by the pair of basis elements {¢%* cos(bx), e?* sin(hx)},
etc., and express our solution in terms of this new basis. <&



CHAPTER 5

THE STRUCTURE OF A
LINEAR TRANSFORMATION I

In this chapter we conclude our analysis of the structure of a linear transfor-
mation 7 : V' — V. We derive our deepest structural results, the rational
canonical form of 7 and, when V is a vector space over an algebraically
closed field IF, the Jordan canonical form of 7.

Recall our metaphor of coordinates as giving a language in which to de-
scribe linear transformations. A basis B of V' in which [77] g is in canonical
form is a “right” language to describe the linear transformation 7. This is
especially true for the Jordan canonical form, which is intimately related to
eigenvalues, eigenvectors, and generalized eigenvectors.

The importance of the Jordan canonical form of 7 cannot be overem-
phasized. Every structural fact about a linear transformation is encoded in
its Jordan canonical form.

We not only show the existence of the Jordan canonical form, but also
derive an algorithm for finding the Jordan canonical form of 7 as well as
finding a Jordan basis of V', assuming we can factor the characteristic poly-
nomial cg(x). (Of course, there is no algorithm for factoring polynomials,
as we know from Galois theory.)

We have arranged our exposition in what we think is the clearest way,
getting to the simplest (but still important) results as quickly as possible
in the preceding chapter, and saving the deepest results for this chapter.
However, this is not the logically most economical way. (That would have
been to prove the most general and deepest structure theorems first, and
to obtain the simpler results as corollaries.) This means that our approach
involves a certain amount of repetition. For example, although we defined

109
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the characteristic and minimum polynomials of a linear transformation in
the last chapter, we will be redefining them here, when we consider them
more deeply. But we want to remark that this repetition is a deliberate choice
arising from the order in which we have decided to present the material.

While our ultimate goal in this chapter is the Jordan canonical form, our
path to it goes through rational canonical form. There are several reasons
for this: First, rational canonical form always exists, while in order to obtain
the Jordan canonical form for an arbitrary linear transformation we must be
working over an algebraically closed field. (There is a generalization of
Jordan canonical form that exists over an arbitrary field, and we will briefly
mention it though not treat it in depth.) Second, rational canonical form is
important in itself, and, as we shall see, has a number of applications. Third,
the natural way to prove the existence of the Jordan canonical form of T is
first to split V' up into the direct sum of the generalized eigenspaces of T
(this being the easy step), and then to analyze each generalized eigenspace
(this being where the hard work comes in), and for a linear transformation
with a single generalized eigenspace, rational and Jordan canonical forms
are very closely related.

Here is how our argument proceeds. In Section 5.1 we introduce the
minimum and characteristic polynomials of a linear transformation 7
V' — V, and in particular we derive Theorem 5.1.11, which is both very
useful and important in its own right. In Section 5.2 we consider 7 -invariant
subspaces W of V and the map 7 induced by 7 on the quotient space
V/W . In Section 5.3 we prove Theorem 5.3.1, giving the relationship be-
tween the minimum and characteristic polynomials of 7, and as a corollary
derive the Cayley-Hamilton Theorem. (It is often thought that this theo-
rem is a consequence of Jordan canonical form, but, as you will see, it is
actually prior to Jordan canonical form.) In Section 5.4 we return to invari-
ant subspaces, and prove the key technical results Theorem 5.4.6 and The-
orem 5.4.10, which tell us when 7 -invariant subspaces have J -invariant
complements. Using this work, we quickly derive rational canonical form
in Section 5.5, and then we use rational canonical form to quickly derive
Jordan canonical form in Section 5.6. Because of the importance and utility
of this result, in Section 5.7 we give a well-illustrated algorithm for find-
ing the Jordan canonical form of 7, and a Jordan basis of V', providing
we can factor the characteristic polynomial of 7. In the last two sections
of this chapter, Section 5.8 and Section 5.9, we apply our results to derive
additional structural information on linear transformations.
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5.1 ANNIHILATING, MINIMUM, AND
CHARACTERISTIC POLYNOMIALS

Let V be a finite-dimensional vector space and let 7 : V' — V' be a linear
transformation. In this section we introduce three sorts of polynomials asso-
ciated to 7 : First, for any nonzero vector v € V, we have its 7 -annihilator
mg ,(x). Then we have the minimum polynomial of 7, mg (x), and the
characteristic polynomial of 7, cg(x). All of these polynomials will play
important roles in our development.

Theorem 5.1.1. Let V be a vector space of dimensionn andletv € V be a
vector, v # 0. Then there is a unique monic polynomial mg ,(x) of lowest
degree with mg (7 )(v) = 0. This polynomial has degree at most n.

Proof. Consider the vectors {v, 7 (v),...,7"(v)}. This is a set of n + 1
vectors in an n-dimensional vector space and so is linearly dependent, i.e.,
there are ay, . . . , a, not all zero such that agv + a1 T (v)+---4+a,T"(v) =
0. Thus if p(x) = apx" + --- + ap, p(x) is a nonzero polynomial with
p(TM)(w) =0.Now & = {f(x) e F[x] | f(T)(v) = 0} is a nonzero ideal
in F[x] (if £(T)(v) = 0and g(7)(v) =0, then (f + g)(T)(v) = 0 and
if f(T)(v) = 0then (cf)(T)(v) = 0, and p(x) € &, so & is a nonzero
ideal.) Hence by Lemma A.1.8 there is a unique monic polynomial mg , (x)
of lowest degree in §. O

DEFINITION 5.1.2. The polynomial mg ,(x) is called the T -annihilator

of the vector v. <&
ExaMPLE 5.1.3. Let V have basis {v1, ..., v,} and define T by T (v1) =
0and 7 (v;) = v;—1 fori > 1. Then mg , (x) = xk fork =1,...,n.
This shows that mg , (x) can have any degree between 1 and n. <&

ExAMPLE 5.1.4. LetV ="F* andletL : V — V be left shift. Consider
v € V,v # 0. For some k, v is of the form (a1, az,...,a;,0,0,...) with
ax # 0, and then mg , (x) = xK If R: V — V is right shift, then for any
vector v # 0, the set {v, R(v), R?(v), ...} is linearly independent and so
there is no nonzero polynomial p(x) with p(7)(v) = 0. <&

Theorem 5.1.5. Let V be a vector space of dimension n. Then there is a
unique monic polynomial mg (x) of lowest degree with mg (7 )(v) = 0 for
every v € V. This polynomial has degree at most n?.

Proof. Choose abasis 8 = {vq,...,v,} of V. Foreach vy € B we have its
T -annihilator pg(x) = mg y, (x). Let g(x) be the least common multiple
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of p1(x),..., pn(x). Since pi(x) divides g(x) for each k, (T )(vk) = 0.
Hence g¢(7)(v) = 0 forevery v € VV by Lemma 1.2.23. If r(x) is any poly-
nomial with 7 (x) not divisible by pg(x) for some k, then for that value of
k we have r(7)(vr) # 0. Thus m¢(x) = ¢g(x) is the desired polynomial.
mg (x) divides the product py(x)p2(x)--- pu(x), of degree n?, so mg (x)
has degree at most 12. O

DEFINITION 5.1.6. The polynomial mg (x) is the minimum polynomial

of T. &
REMARK 5.1.7. As we will see in Corollary 5.1.12, m¢ (x) has degree at
most 7. <&
ExAMPLE 5.1.8. Let V be n-dimensional with basis {vy, ..., v,} and for

any fixed value of k between 1 and n, define 77 : V — V by 7 (v1) = 0,
T(vi) =vi—yfor2 <i <k, T(v;) =0fori > k. Then mq(x) = xk.
This shows that mg(x) can have any degree between 1 and n (compare
Example 5.1.3). <&

ExAMPLE 5.1.9. Returning to Example 5.1.4, we see that if T = R,
given any nonzero vector v € V there is no nonzero polynomial f(x)
with f(7)(v) = 0, so there is certainly no nonzero polynomial f(x) with
f(T) = 0. Thus T does not have a minimum polynomial. If 7 = L, then
mg ,(x) exists for any nonzero vector v € V, i.e., for every nonzero vector
v € V there is a polynomial fy(x) with f,(7)(v) = 0. But there is no
single polynomial f(x) with f(7)(v) = 0 for every v € V, so again T
does not have a minimum polynomial. (Such a polynomial would have to
be divisible by x* for every positive integer k.) Let T : V — V be defined
by T (a1,a»,as,as,...) = (—ai,az,—as,as,...). fvg = (ay,az,...)
with a; = 0 whenever i is odd, then 7 (vg) = vg 80 Mg 4,(x) = x — 1. If

vy = (ay,as,...) with @; = 0 whenever i is even, then 7 (v{) = —v;
so mg p,(x) = x + 1. If v is not of one of these two special forms,
then mg ,(x) = x? — 1. Thus T has a minimum polynomial, namely
mg(x) = x2 — 1. <&
Lemma 5.1.10. Let V be a vector space and let T : V. — V be a linear
transformation. Let vy, ..., vg € V with T -annihilators p; (x) = mg ., (X)
fori =1,...,k and suppose that pi(x), ..., pr(x) are pairwise relatively

prime. Let v = vy + -+ 4+ vg have T -annihilator p(x) = mg 4, (x). Then
p(xX) = p1(x) -+ pr(x).

Proof. We proceed by induction on k. The case k = 1 is trivial. We do the
crucial case k = 2, and leave k > 2 to the reader.
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Let v = vy + v where p1(7)(v1) = p2(7)(v2) = 0 with p;(x) and
p2(x) relatively prime. Then there are polynomials g1 (x) and g2 (x) with
p1(x)q1(x) + p2(x)g2(x) = 1, 50

v=4Jv=(p1(T)q1(T) + p2(T)q2(T))(v1 + v2)
= p2(T)q2(T)(v1) + p1(T)q1(T)(v2)
= w; + Wa.

Now
p1(T)(w1) = p1(T)(p2(T)q2(T)(v1))
= (p2(T)q2(T)) (p1(T)(v1)) = 0,

so w; € Ker(p1(7)) and similarly w, € Ker(p2(7)).

Let r(x) be any polynomial with r (7)(v) = 0.

Now v = w1 + w2 0 p2(T)(v) = p2(T) (w1 + w2) = p2(T)(wr),
50 0 = r(7)(v) gives 0 = r(7) p2(T)q2(T)(w1). Also, p1(T)(w1) = 0
so we certainly have 0 = r(7) p1(7)q1(7)(w1). Hence

0= r(M)(p1(T)g1(T) + p2(T)q2(T)) (w1)
=r(7)(4)(w1)
=r(7)(w1)

(as p1(X)q1 (x) + p2(x)g2(x) = 1), and similarly 0 = r(T) (w2).

Now

r(M)(w1) = () (p2(T)g2(T))(v1).

But p;(x) is the T -annihilator of v, so by definition p;(x) divides
r1(x)(p2(x)g2(x)). From 1 = p1(x)q1(x)+ p2(x)q2(x) we see that p; (x)
and p,(x)g2(x) are relatively prime, so by Lemma A.1.21, p;(x) divides
r(x). Similarly, considering r () (w2 ), we see that p,(x) divides r (x). By
hypothesis pi(x) and p,(x) are relatively prime, so by Corollary A.1.22,
p1(x)p2(x) divides r (x).

On the other hand, clearly

(P1(M)p2(T) W) = (p1(T)p2(T))(v1 + v2) = 0.
Thus p1(x)p2(x) is the T -annihilator of v, as claimed. O

Theorem 5.1.11. Let V be a finite-dimensional vector space and let T
V' — V be a linear transformation. Then there is a vector v € V such that
the T -annihilatormg , (x) of v is equal to the minimum polynomial mg (x)

of T.
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Proof. Choose a basis 8 = {vy,...,v,} of V. As we have seen in Theo-
rem 5.1.5, the minimum polynomial m4 (x) is the least common multiple of
the 7 -annihilators mg ,,, (x), ..., mg 4, (x). Factor mg (x) = pl(x)fl
Dk (x)f K where pi(x),..., px(x) are distinct irreducible polynomials, and
hence p; (x)f L Dk (x)f k are pairwise relatively prime polynomials. For
each i between 1 and k, p; (x)fi must appear as a factor of mg ., (x) for
some j. Write mg 5, (x) = p; (x)fiq(x). Then the vector u; = q(7)(v;)
has 7 -annihilator p; (x)fi. By Lemma 5.1.10, the vector v = uy 4 -+ -4+ ug
has 7 -annihilator p;(x)/1 -+ pr(x)/% = my(x). O

Not only is Theorem 5.1.11 interesting in itself, but it plays a key role in
future developments: We will often pick an element v € V withmg , (x) =
mg (x), and proceed from there.

Here is an immediate application of this theorem.

Corollary 5.1.12. Let T : V — V where V is a vector space of dimension
n. Then mg(x) is a polynomial of degree at most n.

Proof. mg(x) = mg ,(x) forsome v € V. But forany v € V, mg ,(x)
has degree at most 7. O

We now define a second very important polynomial associated to a lin-
ear transformation from a finite-dimensional vector space to itself.
We need a preliminary lemma.

Lemma 5.1.13. Let A and B be similar matrices. Then det(x] — A) =
det(xI — B) (as polynomials in F[x]).
Proof. 1f B = PAP~! then

xI —B =x(PIP™') —(PAP™Y)
= P(xI)P™! — PAP™! = P(xI — A)P7!,

SO

det(x] — B) = det(P(x] — A)P~') = det(P) det(x] — A)det(P™1)
= det(P)det(x] — A)det(P)~! = det(xI — A). O

DEFINITION 5.1.14. Let A be a square matrix. The characteristic poly-
nomial c4(x) of A is the polynomial c4(x) = det(x/ — A). Let V be a
finite-dimensional vector space and let 7 : V' — V be a linear transfor-
mation. The characteristic polynomial cg(x) is the polynomial defined as
follows. Let B be any basis of V' and let A be the matrix A = [T]g. Then
cy(x) =det(xI — A). O
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REMARK 5.1.15. We see from Theorem 2.3.14 and Lemma 5.1.13 that
cg(x) is well defined, i.e., independent of the choice of basis 8. O

We now introduce a special kind of matrix, whose importance we will
see later.

DEFINITION 5.1.16. Let f(x) = x" + An_1x™ 1+ .-+ a1x + ag be
a monic polynomial in F[x] of degree n > 1. Then the companion matrix
C(f(x)) of f(x) is the n-by-n matrix

—dy_1 10 -0
—dp2 01 -0
C(f(x) = Do
—a; 00 -1
—ap 00 ---0
(The 1’s are immediately above the diagonal.) <&

Theorem 5.1.17. Let f(x) = x" + ap_1x"~' + --- 4 ag be a monic
polynomial and let A = C(f(x)) be its companion matrix. Let V. = F"
and let T = T4 : V. — V be the linear transformation T (v) = Av.
Let v = e, be the nth standard basis vector. Then the subspace W of V
defined by W = {g(T)(v) | g(x) € F[x]} is V. Furthermore, mg(x) =
mT,v(x) = f(x)

Proof. We see that T (e,) = en—1, Tz(en) = T (en—1) = ep—2, and in
general 7¥(e,) = e,_j for k < n — 1. Thus the subspace W of V' contains
the subspace spanned by {7" 1 (v),...,T(v),v} = {e1,....en_1.€n}
which is all of V. We also see that this set is linearly independent, and
hence that there is no nonzero polynomial p(x) of degree less than or equal
ton — 1 with p(7)(v) = 0. From

T"(v) =T (e1) = —an—1€1 — Gn—2€2 " — a1€p—1 — doen

= —ap 1 T" W) —an 2T 2() — - — a1 T (V) — agv
we see that
0=a,7"()+ -+ a1 T () + apv,

ie., f(7)(v) = 0.Hence my ,(x) = f(x).
On the one hand, mg ,(x) divides mg(x). On the other hand, since
every w € Vis w = g(7)(v) for some polynomial g(x),

my o (T)(w) = mg o(T)g(T)(v) = g(T)mg (7)) = g(T)(0) =0,
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for every w € V, and so mg (x) divides mg , (x). Thus
my (x) = my (x) = f(x). O

Lemma 5.1.18. Let f(x) = x" 4+ ay—1x"~ ' +---+ ag be a monic polyno-
mial of degree n > 1 and let A = C(f(x)) be its companion matrix. Then
ca(x) = det(x] — A) = f(x).

Proof. We proceed by induction. If n = 1 then A = C(f(x)) = [—ao] so
xI — A = [x + ao] has determinant x + ay.

Assume the theorem is true for k = n — 1 and consider k = n. We
compute the determinant by expansion by minors of the last row

x+ap1 -1 0--- 0

an—2» x—-1--- 0
det : —
aq 0 —1
ao 0 -.-- X
-1 0--- O X+an_1 =1 0. 0
x —=1.- 0 An—2 x—-1-- 0
= (-1)""agdet| 0 x . 0|+ xdet : ‘ :
: as 0-- —1
0 x —1 a1 0. X

= (=) Mag(=1)""" + x(x" ' + ap1 X" 4 -+ azx + ay)
=x"+ap X" 4t aix +ag = f(x). O

5.2 INVARIANT SUBSPACES
AND QUOTIENT SPACES

Let V be a vector space and let 7 : V' — V be a linear transformation. A
T -invariant subspace of V' is a subspace W of V such that 7 (W) € W.In
this section we will see how to obtain invariant subspaces and we will see
that if W is an invariant subspace of V/, then we can obtain in a natural way
the “induced” linear transformation 7 : V/W — V/W. (Recall that V/ W
is the quotient of the vector space V' by the subspace W. We can form V/ W

for any subspace W of V, but in order for 7 to be defined we need W to be
an invariant subspace.)
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DEFINITION 5.2.1. Let 7 : V — V be a linear transformation. A sub-
space W of V is T -invariant if T(W) C W, ie., if T(v) € W for every
veWw. O

REMARK 5.2.2. If W is a T -invariant subspace of V, then for any poly-
nomial p(x), p(T)(W) C W. <&

Lemma 5.2.4 and Lemma 5.2.6 give two basic ways of obtaining 7 -
invariant subspaces.

DEFINITION 5.2.3. Let 7 : V — V Dbe a linear transformation. Let
B = {v1,..., v} beasetof vectors in V. The T -span of B is the subspace

k
W =133 pi(M)(vi) | pi(x) e Flx]g .

i=1
In this situation B is said to T -generate W'. <&

Lemma 5.2.4. [n the situation of Definition 5.2.3, the T -span W of B is a
T -invariant subspace of V' and is the smallest T -invariant subspace of V
containing B.

In case B consists of a single vector we have the following:

Lemma5.2.5. Let V be a finite-dimensional vector space and letT : V —
V be a linear transformation. Let w € V and let W be the subspace of V
T -generated by w. Then the dimension of W is equal to the degree of the
T -annihilatormg 4, (x) of w.

Proof. 1t is easy to check that mg ., (x) has degree k if and only if
{w, T (w),..., Tk (w)} is a basis of W. O

Lemma 5.2.6. Let T : V — V be a linear transformation and let p(x) €
F[x] be any polynomial. Then

Ker (p(7)) ={v eV | p(T)(v) = 0}
is a T -invariant subspace of V.

Proof. If v € Ker(p(7)), then
p(M(T () =T (pT)) =7(0) =0. O

Now we turn to quotients and induced linear transformations.
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Lemma 5.2.7. Let T : V — V be a linear transformation, and let W C V
be a T -invariant subspace. Then T : V/W — VW givenby T (v+W) =
T (v) + W is a well-defined linear transformation.

Proof. Recall from Lemma 1.5.11 that V// W is the set of distinct affine
subspaces of V' parallel to W, and from Proposition 1.5.4 that each such
subspace is of the form v + W for some element v of V. We need to check
that the above formula gives a well-defined value for T (v + W). Let v and
v’ be two elements of V withv+W = v+ W .Thenv—v' = w € W, and
then T (v) — T (') =T (v—2") = T(w) = w' € W, as we are assuming
that W is J -invariant. Hence

TO+W)=T)+W=T@)+W=T0"+W).
It is easy to check that T is linear. (]

DEFINITION 5.2.8. In the situation of Lemma 5.2.7, wecall T : V/W —
V/ W the quotient linear transformation. <&

REMARK 5.2.9. If 7 : V — V/W is the canonical projection (see Defi-
nition 1.5.12), then T is given by 7 (7w (v)) = 7 (T (v)). <&

When V is a finite-dimensional vector space, we can recast our discus-
sion in terms of matrices.

Theorem 5.2.10. Let V be a finite-dimensional vector space and let W
be a subspace of V. Let 81 = {v1,...,v} be a basis of W and ex-
tend By to B = {V1,..., V%, Vgt1,.-.,VUn}, @ basis of V. Let B, =
{Vkg1,....Vn). Let w1 : V — V/W be the quotient map and let B, =
{m(Wk+1),...,m(vn)}, a basisof V/W.

Let T : V. — V be a linear transformation. Then W is a T -invariant
subspace if and only if [T g is a block upper triangular matrix of the form

e = (072
B = oD)’
where A is k-by-k.

In this case, let T : V/W — V/W be the quotient linear transforma-
tion. Then

[T 1z = D.
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Lemma 5.2.11. In the situation of Lemma 5.2.7, let V be finite dimensional,
let v € V/W be arbitrary, and let v € V be any element with w(v) = v.
Then mz -(x) divides mg (x).

Proof. We have v = v 4+ W. Then
mg o (T)(@) = mg o (T + W) =mg o (T)(0) + W =0+ W =0,

where 0 = 0 + W is the 0 vector in V/W.
Thus mg , (x) is a polynomial with mg , (v) = 0. But mz 5 (x) divides
any such polynomial. O

Corollary 5.2.12. In the situation of Lemma 5.2.11, the minimum polyno-
mial mz(x) of T divides the minimum polynomial m (x) of T

Proof. 1t easily follows from Remark 5.2.9 that for any polynomial p(x),
p(TM)((v)) = 7(p(T)(v)). In particular, this is true for p(x) = mqg(x).
Anyv e V/W isv = z(v) forsome v € V, so

mg (T)(@) = 7(mg (T)(v)) = 7(0) = 0.

Thus m (7)) = 0 for every v € V/W,ie., my(T) = 0. But mz(x)
divides any such polynomial. O

5.3 THE RELATIONSHIP BETWEEN
THE CHARACTERISTIC AND
MINIMUM POLYNOMIALS

In this section we derive the very important Theorem 5.3.1, which gives the
relationship between the minimum polynomial m¢ (x) and the character-
istic polynomial ¢ (x) of a linear transformation 7 : V' — V, where V
is a finite-dimensional vector space over a general field F. (We did this in
the last chapter for I algebraically closed.) The key result used in proving
this theorem is Theorem 5.1.11. As an immediate consequence of Theo-
rem 5.3.1 we have Corollary 5.3.4, the Cayley-Hamilton theorem: For any
such 7, cq(7) = 0.

Theorem 5.3.1. Let V be a finite-dimensional vector space and let T :
V' — V be a linear transformation. Let mq (x) be the minimum polynomial
of T and let cg(x) be the characteristic polynomial of T. Then
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(1) mg(x) divides cg(x).
(2) Every irreducible factor of cg(x) is an irreducible factor of mg (x).

Proof. We proceed by induction on n = dim(}'). Let mg(x) have degree
k < n.Letv € V be a vector with mg ,(x) = mg(x). (Such a vector v
exists by Theorem 5.1.11.) Let W be the 7 -span of v. If we let vy = v
and v_; = ’J'i(v) for i < k — 1 then, as in the proof of Theorem 5.1.17,
Bi = {v1,.... vk} is a basis for W; and [T |Wi]g, = C(mg(x)), the
companion matrix of mg (x).

If k = nthen Wi = V,so [T]g, = C(mg(x)) has characteristic
polynomial mg (x). Thus ¢y (x) = mg (x) and we are done.

Suppose k < n. Then Wj has a complement V5, so V = W) & V5. Let
B, be abasis for 1, and B = B; U B, abasis for V. Then [T7] g is a matrix

of the form
Tls =42
)]

where A = C(mq (x)). (The 0 block in the lower left is due to the fact that
Wy is T -invariant. If V, were 7 -invariant then we would have B = 0, but
that is not necessarily the case.) We use the basis B to compute ¢ (x).

cr(x) =det (xI —[T]g) = det [“ -4 -5 }

0 xI-D
= det(x/ — A)det(x] — D)
= mg(x)det(x] — D),

so mq (x) divides ¢ (x).

Now we must show that mg (x) and cq (x) have the same irreducible
factors. We proceed similarly by induction. If mg(x) has degree n then
mg(x) = cg(x) and we are done. Otherwise we again have a direct sum
decomposition V' = W & V, and a basis 8 with

715 = [g fj]

In general we cannot consider the restriction 7| V3, as V> may not be
invariant. But we can (and will) consider 7 : V/W; — V/Wi. If we let
B = 7(B), then by Theorem 5.2.10,

[T Iz =Dl
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By the inductive hypothesis, m#(x) and cz(x) have the same irre-
ducible factors. Since mg (x) divides cy(x), every irreducible factor of
mg(x) is certainly an irreducible factor of cs(x). We must show the other
direction. Let p(x) be an irreducible factor of cg (x). As in the first part of
the proof,

cg(x) = det(x] — A)det(x] — D) = mg (x)cz(x).

Since p(x) is irreducible, it divides one of the factors. If p(x) divides the
first factor mg (x), we are done. Suppose p(x) divides the second factor. By
the inductive hypothesis, p(x) divides mz(x). By Corollary 5.2.12, m#(x)
divides mg (x). Thus p(x) divides ms (x), and we are done. O

Corollary 5.3.2. In the situation of Theorem 5.3.1, let mg (x) = p1(x)¢' ---
Ppr(x)¢k for distinct irreducible polynomials p1(x), ..., px(x), and posi-
tive integers ey, ..., ex. Then cg(x) = py(x)1 - pr(x)’* for integers
fis.., fx with f; > e; foreachi.

Proof. This is just a concrete restatement of Theorem 5.3.1. O

The following special case is worth pointing out explicitly.

Corollary 5.3.3. Let V be an n dimensional vector space andlet T : V —
V be a linear transformation. Then V is T -generated by a single element if
and only if mg (x) is a polynomial of degree n, or, equivalently, if and only
ifmg(x) = cg(x).

Proof. Forw € V,let W be the subspace of V' T -generated by w. Then the
dimension of W is equal to the degree of mg ,, (x), and mg ,, (x) divides
mg (x). Thus if mg (x) has degree less than n, W has dimension less than
nandsoW C V.

By Theorem 5.1.11, there is a vector vo € V with mg 5, (x) = mg (x).
Thus if mg(x) has degree n, the subspace Vy of V' generated by vg has
dimension# andso Vo = V.

Since mg(x) and cy(x) are both monic polynomials, and mg (x) di-
vides ¢y (x) by Theorem 5.3.1, then mqg(x) = cy(x) if and only if they
have the same degree. But ¢ (x) has degree 7. O

Theorem 5.3.1 has a famous corollary, originally proved by completely
different methods.
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Corollary 5.3.4 (Cayley-Hamilton Theorem). (1) Let V' be a finite-dimen-
sional vector space and let T : V. — V be a linear transformation with
characteristic polynomial cg(x). Then c3(T) = 0.

(2) Let A be an n-by-n matrix and let c4(x) be its characteristic poly-
nomial c4(x) = det(xI — A). Then c4(A) = 0.

Proof. (1) mg(7) = 0 and mq (x) divides cy(x), so cq(7) = 0.
(2) This is a translation of (1) into matrix language. (Let T=74.) O

REMARK 5.3.5. The minimum polynomial mg (x) has appeared more
prominently than the characteristic polynomial cg (x) so far. As we shall
see, mqg (x) plays a more important role in analyzing the structure of 7
than cq(x) does. However, cy(x) has the very important advantage that
it can be calculated without having to consider the structure of 7. It is a
determinant, and we have methods for calculating determinants. <&

5.4 INVARIANT SUBSPACES AND
INVARIANT COMPLEMENTS

We have stressed the difference between subspaces and quotient spaces. If
V is a vector space and W is a subspace, then the quotient space V/ W is
not a subspace of V. But W always has a complement W' (though except in
trivial cases, W’ is not unique), V. = W @ W’,andif r : V — V/W is the
canonical projection, then the restriction 7/ W gives an isomorphism from
W' to V/W. (On the one hand this can be very useful, but on the other hand
it makes it easy to confuse the quotient space V/ W with the subspace W’.)

Once we consider 7 -invariant subspaces, the situation changes markedly.
Given a vector space V, a linear transformation & : V' — V, and a T -
invariant subspace W, then, as we have seen in Lemma 5.2.7, we obtain
from 7 in a natural way a linear transformation 7 on the quotient space
V/ W . However, it is not in general the case that W has a T -invariant com-
plement W',

This section will be devoted investigating the question of when a 7 -
invariant subspace W has a 7 -invariant complement W’. We will see two
situations in which this is always the case—Theorem 5.4.6, whose proof
is relatively simple, and Theorem 5.4.10, whose proof is more involved.
Theorem 5.4.10 is the key result we will need in order to develop rational
canonical form, and Theorem 5.4.6 is the key result we will need in order
to further develop Jordan canonical form.



5.4. INVARIANT SUBSPACES AND INVARIANT COMPLEMENTS 123

DEFINITION 5.4.1. Let 7 : V — V be a linear transformation. Then
V=W &---& Wy is a T -invariant direct sum if V. = Wy & --- d Wi
is the direct sum of Wi, ..., Wy and each W, is a T -invariant subspace. If
V = W), & W, is a T -invariant direct sum decomposition, then W, is a
T -invariant complement of W;. <&

EXAMPLE 5.4.2. (1) Let V be a 2-dimensional vector space with basis
{vi,v2} andlet T : V — V be defined by T (v;) = 0, T (v2) = v,. Then
Wy = Ker(T) = {c1v1 | ¢1 € F}is a T-invariant subspace, and it has
T -invariant complement W, = Ker(7 — d) = {cov2 | c2 € F}.

(2)Let V beasinpart (1)andlet T : V' — V be defined by 7 (v{) = 0,
T (v2) = vi. Then Wy = Ker(7) = {c1v1 | c1 € F}is again a T -invariant
subspace, but it does not have a T -invariant complement. Suppose W, is
any J -invariant subspace with V' = W; + W,. Then W, has a vector of the
form ¢y v1 + cov, for some ¢y # 0. Then T (c1v1 4 c2v2) = cov; € Wa, 50
W, contains the subspace spanned by {cov1, c1v1 + cv2}, 16, Wo =V,
and then V is not the direct sum of W; and W5. (Instead of Wy N W, = {0},
as required for a direct sum, W N W, = Wj.) <&

We now consider a more elaborate situation and investigate invariant
subspaces, complements, and induced linear transformations.

ExXAMPLE 5.4.3. Let g(x) and &(x) be two monic polynomials that are
not relatively prime and let f(x) = g(x)h(x). (For example, we could
choose an irreducible polynomial p(x) and let g(x) = p(x)" and h(x) =
p(x)/ for positive integers i and j, in which case f(x) = p(x)* where
k=i+7j.)

Let V be a vector space and 7 : V' — V a linear transformation with
mg (x) = cg (x) = f(x).

Let vo € V be an element with mg ,,(x) = f(x), so that V is T -
generated by the single element vo. Let Wy = A(7)(V'). We claim that W;
does not have a 7 -invariant complement. We prove this by contradiction.

Suppose that V = W, & W, where W, is also T -invariant. Denote the
restrictions of 7 to W; and W, by 77 and 7, respectively. First we claim
that mg, (x) = g(x).

If w; € Wi, then wy = h(7)(vy) for some vy € V. But vy T -generates
V,s0 vy = k(T )(vo) for some polynomial k(J”), and then

g(T)(w1) = (@) (AT (v1)) = gT)(A(T)(k(T)(v0)))

g
= k(T)(8(T)(A(T)(v0)))
= k(T)(F(T)(v0)) = k(T)(0) = 0.



124 GUIDE TO ADVANCED LINEAR ALGEBRA

Thus g(7)(w1) = O for every wy; € Wi, so mg, (x) divides g(x). If we
let wo = h(7)(vo) and set k(x) = mg; 4o (x), then 0 = k(T )(wo) =
k(T)h(T )(vo), so mg o (x) = g(x)h(x) divides k(x)h(x). Thus g(x)
divides k(x) = mg; 4, (x), which divides mg, (x).

Next we claim that mg, (x) divides 2 (x). Let wo € W,. Then h(T)(w2)
€ Wy (as h(T)(v) € W for every v € V). Since W, is T -invariant,
h(T)(wz) € Wa, so h(T)(wz) € Wi N Ws. But Wy N W, = {0} by the
definition of a direct sum, so A(7)(wz) = 0 for every w, € W,, and hence
mg, (x) divides h(x). Set h1(x) = mg, (x).

If V = Wy & W, then vy = wy + w, for some wy € Wi, wy € Wh.
Let k(x) be the least common multiple of g(x) and A(x). Then k(7 )(vo) =
k(T)(wr + wz) = k(T)(w1) + k(T)(w2) = 0+ 0as mg (x) = g(x)
divides k(x) and mg, (x) = hi(x) divides A (x), which divides k(x). Thus
k(x) is divisible by f(x) = mg 4,(x). But we chose g(x) and i(x) to not
be relatively prime, so their least common multiple k(x) is a proper factor
of their product f(x), a contradiction. <

EXAMPLE 5.4.4. Suppose that g(x) and A(x) are relatively prime, and
let f(x) = g(x)h(x). Let V be a vector space and let 7 : V — V a
linear transformation with m¢(x) = cy(x) = f(x). Let vo € V with
mg 4, (x) = mg(x), so that V' is T -generated by vo. Let Wi = h(T)(V).
We claim that W, = g(7)(V) is a T -invariant complement of W .

First we check that W3 N W, = {0}. An argument similar to that in
the previous example shows that if w € Wi, then mg, 4, (x) divides g(x),
and that if w € W,, then mg, 4, (x) divides i(x). Hence if w € Wi N W,
mg 4 (x) divides both g(x) and i (x), and thus divides their gcd. These two
polynomials were assumed to be relatively prime, so their gcd is 1. Hence
lw =0,ie.,w =0.

Next we show that we can write any vector in V' as a sum of a vector in
W, and a vector in W5. Since vy T -generates V, it suffices to show that we
can write vo in this way. Now g(x) and i (x) are relatively prime, so there
are polynomials 7 (x) and s(x) with g(x)r(x) + s(x)h(x) = 1. Then

vo = lvg = (K(T)s(T) + g(T)r(T))(vo)
= W(T)(s(T)(vo)) + g(T)(r(T)(vo)) = w1 + w2
where
wy = h(T)(s(T)(vo)) € L(T)(V) =W

and

wy = g(7)(r(T)(vo)) € g(T)(V) = Wa. <
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EXAMPLE 5.4.5. Let g(x) and h(x) be arbitrary polynomials and let
f(x) = g(x)h(x). Let V be a vector space and T : V — V a lin-
ear transformation with mg(x) = cq(x) = f(x). Let vo € V with
mg o (x) = mg (x) so that V' is 7 -generated by vy.

Let Wi = A(T)(V). Then we may form the quotient space vV, =

V/ Wi, with the quotlent linear transformation 7 : V; — V7, and 77 :
V — V. Clearly V, is 7 -generated by the single element v; = 1 (vo).
(Since any v € V can be written as v = k(7)(vg) for some polyno-

mial k(x), then v + W1 = k(T)(vo) + Wi.) We claim that mz 5 (x) =
c7 5, (x) = h(x). We see that WT)W1) = h(T)(vo) + Wi = 0+ Wi as
h(T)(vo) € W1. Hence mz 5 (x) = k(x) divides /1(x). Now k(T) (@) =
0+ Wi, ie., k(T)(wo) € Wi = h(T)(V), so k(T )(vo) = h(T)(uy) for
some uy € V. Then g(T)k(T)(vo) = g(T)A(T)(v1) = f(T)uy) = 0
since mg (x) = f(x). Then f(x) = g(x)h(x) divides g(x)k(x), so h(x)
divides k(x). Hence mz 5 (x) = k(x) = h(x).

The same argument shows that if Wo = g(7)(V) and V, = V/ W5 with
T - V, — V, the induced linear transformation then V5 is 7~ -generated
by the single element v, = 72(vo) withmz 5 (x) = g(x). <&

We now come to the two most important ways we can obtain 7 -invariant
complements (or direct sum decompositions). Here is the first.

Theorem 5.4.6. Let V be a vector space and let T : V — V be a linear
transformation. Let T have minimum polynomial mg(x) and let mg (x)
factor as a product of pairwise relatively prime polynomials, mgy(x) =
p1(x) - pr(x). Fori = 1,....k, let W; = Ker(p; (T)). Then each W; is
a T -invariant subspace and V. =W, & --- @ Wg.

Proof. For any i, let w; € W;. Then
pi(M)(T (wi)) =T (pi(T)(w;)) =T(0) =0

o 7 (w;) € W; and W; is T -invariant.
For each 7, let g; (x) = mg(x)/ pi (x). Then {g1(x), ..., qx(x)} is rela-
tively prime, so there are polynomials r1(x), ..., rg(x) with g1 (x)r1(x) +
o+ qre()re(x) = 1.
Let v € V. Then

<
|

=Jv = (q(T)r(T) + -+ q(T)re(7)) (v)
=wy + - 4wy
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with w; = ¢; (7)r; (7)(v). Furthermore,

pi (M) (wi) = pi (T)gqi (T)ri(T)(v)
=mg (T)ri(T)(v) =0 asmg (7) =0

by the definition of the minimum polynomial m4 (x), and so w; € W;.

To complete the proof we show that if 0 = w; +--- 4+ wg withw; € W;
for each i, then w; = -+ = wx = 0. Supposei = 1. Then0 = w; + -+
W SO

0=q1(T)(0) = g1 (T ) (w1 + -+ wi)
=q(M)w1)+0+---+0=q1(7)(w1)

as p;(x) divides g (x) forevery i > 1. Also p1(7)(w1) = 0 by definition.
Now p1(x) and ¢; (x) are relatively prime, so there exist polynomials f(x)
and g(x) with f(x)p1(x) + g(x)g1(x) = 1. Then

wi =dJwi = (f(T)p1(7) + g(T)gq1(T))(w1)
= f(M)(p1(T)(w1) + g(T)(g1(T)(w1))
= f(7)0) +g(T)(0) =0+0=0.

Similarly, w; = 0 for each i. O

As a consequence, we obtain the 7 -invariant subspaces of a linear trans-
formation 7 : V — V.

Theorem 54.7. Let T : V. — V be a linear transformation and let
mg(x) = p1(x)° .- pp(x)° be a factorization of the minimum poly-
nomial of T into powers of distinct irreducible polynomials. Let W; =
Ker(p; (7)), sothat V.= W1 @- - -@® Wy, a T -invariant direct sum decom-
position. Fori = 1, ...k, let U; be a T -invariant subspace of W; (perhaps
Ui =1{0}). ThenU = Uy & --- @ Uy is a T -invariant subspace of V, and
every T -invariant subspace of V arises in this way.

Proof. Wehave V =W, & ---@ Wy, by Theorem 5.4.6. It is easy to check
that any such U is T -invariant. We show that these are all the 7 -invariant
subspaces.

Let U be any 7 -invariant subspace of V. Let ; : V — W, be the
projection and let U; = m; (U). Weclaim that U = U; @ - - - @ Uy. To show
that it suffices to show that U; € U for each i. Let u; € U;. Then, by the
definition of U;, there is an element u of U of the formu = u; +---+u; +
-++ 4+ uy, for some elements u; € U;, j #i.Let q;(x) = mg(x)/p;i (x)%.
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Since p;(x)% and g; (x) are relatively prime, there are polynomials r; (x)
and s; (x) with r; (x) p; (x)% 4 s; (x)g; (x) = 1. We have g; (7)(u;) = 0 for
Jj #iand p; (7)% (u;) = 0. Then

u; = lu; = (1 —ri(T)pi(T)ei)(ui)
= 5i(T)qi (T)(u;)
=0+4+...+85 (Mg (T)(ui) +...+0
=5i(T)qi (T)(u1) + ... + 5 (Mg (T i) + ... + 5 (Tqie (T)(ui)
= si(T)qi(T)(ul + ..o 4ui+..+ uk) = 5;(7)gqi (T)(u).

Since U is T -invariant, s; (7)q; (7)(u) € U,i.e.,u; € U, as claimed. [

Now we come to the second way in which we can obtain 7 -invariant
complements. The proof here is complicated, so we separate it into two
stages.

Lemma5.4.8. Let V be a finite-dimensional vector space and letT : V —
V be a linear transformation. Let wy € V be any vector with mg ,,, (x) =
mg (x) and let W1 be the subspace of V' T -generated by w. Suppose that
W\ is a proper subspace of V and that there is a vector vy € V such that
V is T -generated by {w1, v2}. Then there is a vector wp € V such that
V = W1 @ Wa, where W, is the subspace of V T -generated by w».

Proof. Observe that if V, is the subspace of V' that is 7 -generated by v,
then V, is a 7 -invariant subspace and, by hypothesis, every v € V can
be written as v = w] + v for some w] € W and some v, € V5. Thus
V = Wi + V,. However, there is no reason to conclude that W; and V, are
independent subspaces of V', and that may not be the case.

Our proof will consist of showing how to “modify” v, to obtain a vector
w, such that we can still write every v € V as v = w’1 + w’2 with w’1 e W
and w’2 € W,, the subspace of V' T -generated by w,, and with W N W, =
{0}. We consider the vector v, = v, + w where w is any element of W;.
Then we observe that {w1, v5} also T -generates V. Our proof will consist
of showing that for the proper choice of w, wo = v, = v2+w is an element
of V with Wi N W, = {0}. Let V have dimension n and let mq¢(x) be a
polynomial of degree k. Set j = n — k. Then W has basis

Br = {ur, .. uy ={TF Y (wy), ..., T (wy), w}.
By hypothesis, V' is spanned by

{wy, T(w1),...} U, T()),...},
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so V is also spanned by
{wy, T(wy), ... T (w)} U v, Th). ...}
We claim that
{wi, T(wy),.... T w)y Ul T@h)..... T/ ()}

is a basis for V. We see this as follows: We begin with the linearly indepen-
dent set {wy, ..., Fhk-1 (w1)} and add v}, T (v5), . .. as long as we can do so
and still obtain a linearly independent set. The furthest we can go is through
7771(v}), as then we have k + j = n vectors in an n-dimensional vector
space. But we need to go that far, as once some 7 (v}) is a linear com-
bination of B; and {v), ..., Ti_l(v’z)}, this latter set, consisting of k + i
vectors, spans V', soi > j. (The argument for this uses the fact that W is
T -invariant.) We then let

By = (U sty =T Wh), ..., vhy and B' = B, U B,

Then B’ is a basis of V.
Consider 7/ (u},). It has a unique expression in terms of basis elements:

k j—1
T/ (uy) = D biwi + Y (= ci)up.
i=0

i=1

If we let p(x) = x! + cj_lxj_l + --- 4+ cg, we have that

k
u = p(T)(vy) = p(T)(u,) = Y biui € Wi.

i=1

Case I (incredibly lucky): ¥ = 0. Then 7/ (v}) € V;, the subspace
7 -spanned by v), which implies that 7/ (v}) € VJ for every i, so Vj is
T -invariant. Thus in this case we choose w, = v5, 80 Wo = V5, T =
W1 & W,, and we are done.

Case II (what we expect): u # 0. We have to do some work.

The key observation is that the coefficients by, bx_1, ..., bg_ ;41 are all
0,and hence u = Zf:{ biu;. Here is where we crucially use the hypothesis
that mg ,,, (x) = mg (x). We argue by contradiction. Suppose b, # 0 for
some m > k — j + 1, and let m be the largest such index. Then

Tm_l(”) = bpuy, Tm_z(”) = bpus + bp_1u1,
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Thus we see that

[T @) (v5), T2 p(T)(v5), -, P(T)(vh),
T/ (), T2 (v5), - v

is a linearly independent subset of V), the subspace of V T -generated by
v5, and hence V, has dimension at least m + j > k 4+ 1. That implies
that my (x) has degree at least k + 1. But m (x) divides mg(x) =
mg 4, (x), which has degree k, and that is impossible.

We now set

k—1
w = —ZbiuH_j

i=1
and wy = v5 + w,

By ={u1,...,ux} = {Tk_l(wl),...,wl} (as before),
By = {1, ... unt ={T/ Y (wn),..., wa}, and B = B; U B>.

We then have

= biui+Z(—b,~u,~)=O

i=1 i=

and we are back in Case I (through skill, rather than luck) and we are done.
O

Corollary 5.4.9. In the situation of Lemma 5.4.8, let n = dimV and let
k = degmg (x). Then n < 2k. Suppose thatn = 2k. If V, is the subspace
of V T -generated by vy, then V.= W1 @ V.

Proof. From the proof of Lemma 5.4.8 we see that j = n —k < k. Also, if
n = 2k, then j = k, so by, bg—_1,...,b; are all zero. Then u = 0, and we
are Case 1. O

Theorem 5.4.10. Let V be a finite-dimensional vector space and let T :
V. — V be a linear transformation. Let wy € V be any vector with
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mg , (x) = mg(x) and let Wy be the subspace of V T -generated by
wi. Then Wy has a T -invariant complement W,, i.e., there is a T -invariant

subspace Wy of V with V. = Wy & W,.

Proof. If Wi = V then W, = {0} and we are done.

Suppose not. W, = {0} is a T -invariant subspace of V' with W; N
W, = {0}. Then there exists a maximal J -invariant subspace W, of V' with
Wi N W, = {0}, either by using Zorn’s Lemma, or more simply by taking
such a subspace of maximal dimension. We claim that W; & W, = V.

We prove this by contradiction, so assume W; & W, C V.

Choose an element v, of V with v, ¢ Wi @ W,. Let V5 be the subspace
T -spanned by v, and let Uy = W, + V5. If Wi N U, = {0} then U, is
a T -invariant subspace of V with Wy N U, = {0} and with U, D W,
contradicting the maximality of W,.

Otherwise, let V/ = Wj + U,. Then V' is a T -invariant subspace of
V so we may consider the restriction 7" of 7 to V', 7" : V! — V’. Now
W is a T'-invariant subspace of ¥/, so we may consider the quotient linear
transformation 7/ : V// Wy — V'/W>.Set X = V'/W> and 8 = T. Let
7 : V' — X be the quotient map. Let w; = n(w) and let v, = 7w(vy).
Let Y1 = n(W;) C X and let Z, = n(Uz) C X. We make several
observations: First, Y; and Z, are §-invariant subspaces of X. Second, Y
is T -spanned by w; and Z, is 7 -spanned by v3, so that X is 7 -spanned
by {wy, v, }. Third, since Wy N W, = {0}, the restriction of 7 to Wy, 7 :
W1 —> Yl, is 1-1.

Certainly mg~(x) divides mg (x) (as if p(7)(v) = O forevery v € V,
then p(7)(v) = O for every v € V’) and we know that mg(x) divides
mg(x) by Corollary 5.2.12. By hypothesis mg ,, (x) = mg (x), and, since
7 Wi = Yiis 1-1, mg g, (x) = mg 4, (x). Since wy € V/, mg 4, (X)
divides mg-(x). Finally, m g %, (x) divides mg(x). Putting these together,
we see that

mgw, (x) =mg(x) = mg/(x) = mg(x) = mg 4, (x).

We now apply Lemma 5.4.8 with T = §, V = X, w; = wy, and
v2 = V3. We conclude that there is a vector, which we denote by w>, such
that X = Y; & Y5, where 1> is the subspace of X generated by w,. Let w’2
be any element of V'’ with (wj}) = W>, and let V, be the subspace of V'
T'-spanned by wj, or, equivalently, the subspace of V' T -spanned by wy.
Then 7 (V,) = Ys.
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To finish the proof, we observe that
Vi/Wa=X=Y14+Z,=Y1®Y>,
so, setting Uy = W, + V75,
V=Wi+V,+Woa=W+ W2+ V;) =W +U;.

Also, Wy NU; = {0}. Forif x € Wi N U, n(x) € (W) Nn(Uy) =
Y1 NY, = {0} (as w(w2) = {0}). Butif x € W; N Uy, then x € Wi, and
the restriction of 7 to Wi is 1-1, so w(x) = 0 implies x = 0.

Hence V' = W) @ Uj and U; D W, contradicting the maximality of
w;. O

We will only need Theorem 5.4.10 but we can generalize it.

Corollary 5.4.11. Let V be a finite-dimensional vector space and let T :
V' — V be a linear transformation. Let wy, ..., wr € V and let W; be
the subspace T -spanned by w;, i = 1,... k. Suppose that mg y,, (x) =
mg(x) fori = 1,...,k, and that {Wy,..., Wi} is independent. Then
Wy & --- ® Wy has a T -invariant complement, i.e., there is a T -invariant

subspace W of V withV = W1 & ---® W, @ W'.

Proof. We proceed by induction on k. The k& = 1 case is Theorem 5.4.10.
For the induction step, consider 7 : V — V where V = V/ Wj.

We outline the proof.

Let Wy, be a maximal T -invariant subspace of V' with

W @@ Wi) N Wiy = {0}

We claim that W) @ --- @ Wiry+1 = V. Assume not. Let W; = T(W;)
fori = 2,...,k. By the inductive hypothesis, W, @& Wk has a T -
invariant complement Y ; containing 7(Wj ). (This requires a slight
modification of the statement and proof of Theorem 5.4.10. We used our
original formulation for the sake of simplicity.) Let Yx; be a subspace
of V with Yx 11 2 Wiyq and 7(Yg41) = Yiyy. Certainly (Wo @ --- &
Wi) N Yry1 = {0}. Choose any vector y € Yiy1, v ¢ Wisy. If the
subspace Y 7 -generated by y is disjoint from W;,set x = yand X =Y.
Otherwise, “modify” ¥ as in the proof of Lemma 5.4.8 to obtain x with X,
the subspace T -generated by x, disjoint from W;. Set W/ = Wy, @ X.
Then W’ O W41 and W is disjoint from W) & --- & Wy, contradicting
the maximality of Wy ;. O
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5.5 RATIONAL CANONICAL FORM

Let V' be a finite-dimensional vector space over an arbitrary field IF and let
T 1V — V be a linear transformation. In this section we prove that 7 has
a unique rational canonical form.

The basic idea of the proof is one we have seen already in a much sim-
pler context. Recall the theorem that any linearly independent subset of a
vector space extends to a basis of that vector space. We think of that as say-
ing that any partial good set extends to a complete good set. We would like
to do the same thing in the presence of a linear transformation 7 : Define a
partial 7 -good set and show that any partial 7 -good set extends to a com-
plete 7-good set. But we have to be careful to define a 7-good set in the
right way. We will see that the right kind of way to define a partial 7-good
set is to define it as the right kind of basis for the right kind of 7 -invariant
subspace W. Then we will be able extend this to the right kind of basis for
all of V' by using Theorem 5.4.10.

DEFINITION 5.5.1. Let V be a finite-dimensional vector space and let
T : V — V be alinear transformation. An ordered set € = {wy,..., wg}
is a rational canonical T -generating set of V if the following conditions
are satisfied:

(1) V=W ®---® Wi where W, is the subspace of V that is T -generated
by wj

(2) pi(x) is divisible by p;y1(x) fori = 1,...,k — 1, where p;(x) =
Mg 4, (x) is the T -annihilator of w;. <&

When 7 = 4, any basis of V is a rational canonical 7 -generating set
and vice-versa, with p;(x) = x — 1 for every i. Of course, every V has a
basis. A basis for V is never unique, but any two bases of V' have the same
number of elements, namely the dimension of V.

Here is the appropriate generalization of these two facts. For the second
fact, we have not only that any two rational canonical 7 -generating sets
have the same number of elements, but also the same number of elements
of each “type”, where the type of an element is its 7 -annihilator.

Theorem 5.5.2. Let V be a finite-dimensional vector space and let T :
V' — V be a linear transformation. Then V has a rational canonical T -
generating set € = {wy, ..., w}. If €' = {w),..., w;} is any rational
canonical T -generating set of V, then k = | and p(x) = p;(x) fori =
1,....k, where pi(x) = mg 1 (X) and pi(x) = mg u, (x).
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Proof. First we prove existence and then we prove uniqueness.

For existence we proceed by induction on n = dim(}’). Choose an
element wy of V' with mg 4, (x) = mg (x) and let Wy be the subspace of
V T -generated by w;. If W) = V we are done.

Otherwise, let W’ be a T -invariant complement of W in V', which exists
by Theorem 5.4.10. Then V.= W @ W’. Let 7' be the restriction of T to
W', 7" : W — W’. Then mg(x) divides mg(x). (Since m¢(7)(v) = 0
forallv € V, mg(T)(v) = 0 for all v in W'.) By induction, W’ has a
rational canonical 7’-generating set that we write as {wo, ..., wx}. Then
{wi, ..., wg} is a rational canonical T -generating set of V.

For uniqueness, suppose V' has rational canonical 7 -generating sets
€ ={wy,...,wi}and € = {wi,..., w;} with corresponding T -invariant
direct sum decompositions V' = W1 @---@ Wy and V = W[/ ®---® W/ and
corresponding 7 -annihilators p; (x) = mg 4, (x) and p(x) = mg ,(x).
Let these polynomials have degree d; and d/ respectively, and let V' have
dimension n. We proceed by induction on k.

Now pi(x) = mg (x) and p}(x) = mg(x), s0 p}(x) = p1(x). If k =
L,V = W, dim(V) = dim(W1), n = d,. But then n = d| = dim(W]) so
V =W/.Then! = 1, pj(x) = pi(x), and we are done.

Suppose for some k > 1 we have p/(x) = p;(x) fori =1,... k. If
V=W& --@Wcthenn=d + - +dy=d{ +--+d soV =
W/ @---®@W, as well,l =k, p;(x) = p;(x) and we are done, and similarly
if V.= W/ @--- @ W,. Otherwise consider the vector space pi11(7)(V),
a J -invariant subspace of V. Since V=W, & ---® Wy & W1 & --- we
have that

P (DY) = prgr (T (W) & -+ & preger (T)(Wi)
® prs1 (M) (Wigr) & -+

Let us identify this subspace further. Since pi41(x) = mg ., (x), we
have that pgy1(7)(wig+1) = 0, and hence pry1(T)(Wi4+1) = 0. Since
Pi+i (x) divides pgy1(x) fori > 1, we also have that pg 11 (7 )(wg+i) =0
and hence pg4+1(7)(Wi4;) = 0fori > 1. Thus

Pis1(DV) = prgr (T (W) @ -+ @ pres1 (T)(Wa).

Now pi41(x) divides p;(x) for i < k, 30 pry1(9)(W;) has dimension
di — dg+1, and hence pi41(7)(V) is a vector space of dimension d =
(d1 — dk+1) + (d2 — dk+1) + -+ + (dr — di+1). (Some or all of these
differences of dimensions may be zero, which does not affect the argument.)
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Apply the same argument to the decomposition V' = W/®- - -@ W] to obtain

Pe1(DV) = prest (T (W) @ -+ @ pres1 (T)(Wy)
@ Pr1(T)(Wesr) ® -

which has the subspace pgy1(7)(W)) ® --- @ piy1(T)(W)) of dimen-
sion d as well (since p;(x) = p;(x) fori < k). Thus this subspace must
be the entire space, and in particular py1(7)(W, +1) = 0, or, equiva-
lently, pr+1(T)(W{,,) = 0. But w; | has 7 -annihilator p;_,(x), so
pl’H_1 (x) divides pg1(x). The same argument using pl/c+1(T)(V) instead
of pr4+1(7)(V) shows that pryq(x) divides pl’H_l(x), so we see that
pl’H_l(x) = pi(x). Proceeding in this way we obtain p/(x) = p;(x) for
every i, and [ = k, and we are done. O

We translate this theorem into matrix language.

DEFINITION 5.5.3. An n-by-n matrix M is in rational canonical form if
M 1is a block diagonal matrix

C(p1(x))
C(p2(x))

C(pk(x))

where C(p; (x)) denotes the companion matrix of p; (x), for some sequence
of polynomials pj(x), p2(x),..., px(x) with p;(x) divisible by p;+1(x)
fori =1,...,k—1. &

Theorem 5.5.4 (Rational Canonical Form). (1) Let V' be a finite-dimensional
vector space, and let T : V. — V be a linear transformation. Then V has a
basis B such that [T|g = M is in rational canonical form. Furthermore,
M is unique.

(2) Let A be an n-by-n matrix. Then A is similar to a unique matrix M
in rational canonical form.

Proof. (1) Let € = {wy, ..., w} be arational canonical T -generating set
for V, where p; (x) = mr,y, (x) has dimension d;. Then

B = {Td‘_l(wl), R T sz_l(wz), W, Tdk_l(wk), el wk}

is the desired basis.
(2) Apply part (1) to the linear transformation 7 = J4. (]
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DEFINITION 5.5.5. If 7 has rational canonical form with diagonal blocks
C(p1(x)),C(p2(x)),...,C(pr(x)) with p;(x) divisible by p;+1(x) for
i = 1,...,k — 1, then pi(x),..., pr(x) is the sequence of elementary
divisors of T . <&

Corollary 5.5.6. (1) T is determined up to similarity by its sequence of
elementary divisors p1(x), ..., pr(x)

(2) The sequence of elementary divisors p1(x), . .., pg(x) is determined
recursively as follows: p1(x) = mr(x). Let w be any element of V' with
mg .y, (x) = mg(x) and let Wy be the subspace T -generated by w;. Let
T :V/Wy — V/Wi. Then ps(x) = mz(x), etc.

Corollary 5.5.7. Let T have elementary divisors {p1(x), ..., px(x)}. Then
(1) my(x) = p1(x)

(2) cg(x) = pr(x)p2(x) -+ pr(x).

Proof. 'We already know (1). As for (2),

cg (x) = det(C(p1(x))) det(C(p2(x))) --- = p1(x)pa(x) -+ pr(x). O

REMARK 5.5.8. In the next section we will develop Jordan canonical
form, and in the following section we will develop an algorithm for find-
ing the Jordan canonical form of a linear transformation 7 : V' — V, and
for finding a Jordan basis of V, providing we can factor the characteristic
polynomial of 7.

There is an unconditional algorithm for finding a rational canonical 7 -
generating set for a linear transformation 7 : V' — V/, and hence the ratio-
nal canonical form of 7. Since it can be tedious to apply, and the result is
not so important, we will merely sketch the argument.

First observe that for any nonzero vector v € V, we can find its 7 -
annihilator mg ,(x) as follows: Successively check whether the sets
w3 {v, T()}, {v, T(v), T?(v)},..., are linearly independent. When we
come to a linearly dependent set {v, 7 (v), ..., 7% (v)}, stop. From the lin-
ear dependence we obtain the 7 -annihilator mg (x) of v, a polynomial of
degree k.

Next observe that using Euclid’s algorithm we may find the gcd and lem
of any finite set of polynomials (without having to factor them).

Given these observations we proceed as follows: Pick a basis {vy, ..., v,}
of V. Find the T -annihilators mg ,, (x), ..., mg ,, (x). Knowing these, we
can find the minimum polynomial m¢(x) by using Theorem 5.1.5. Then
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we can find a vector wy; € V with mg ,,, (x) = mg(x) by using Theo-
rem 5.1.11.
Let I} be the subspace of V' T -generated by w;. Choose any comple-

ment V, of V, so that V = W @ V3, and choose any basis {vs, ..., v}
of V5. Successively “modify” va, ..., vy to Us, ..., Uy as in the proof of
Lemma 5.4.8. The subspace U, spanned by {us, ..., u,} is a T -invariant

complement of Wy, V = W) @ U,. Let T’ be the restriction of 7 to Us, so
that 7/ : U, — U,. Repeat the argument for U,, etc.

In this way we obtain vectors wy, wy, ..., Wk, with € = {wy, ..., wi}
being a rational canonical 7 -generating set for V', and from € we obtain a
basis B of V' with [T] g the block diagonal matrix whose diagonal blocks
are the companion matrices C(mg y, (X)), ..., C(mg 4, (x)), a matrix in
rational canonical form. <&

5.6 JORDAN CANONICAL FORM

Now let F be an algebraically closed field, let V' be a finite-dimensional
vector space over [F, and let 7 : V' — V be a linear transformation. In
this section we show in Theorem 5.6.5 that 7 has an essentially unique Jor-
dan canonical form. If F is not algebraically closed that may or may not
be the case. In Theorem 5.6.6 we see the condition on 7 that will guaran-
tee that it does. At the end of this section we discuss, though without full
proofs, a generalization of Jordan canonical form that always exists (Theo-
rem 5.6.13).

These results in this section are easy to obtain given the hard work we
have already done. We begin with some preliminary work, apply Theo-
rem 5.4.6, use rational canonical form, and out pops Jordan canonical form
with no further ado!

Lemma 5.6.1. Let V be a finite-dimensional vector space and letT 1V —
V be a linear transformation. Suppose that my(x) = cg(x) = (x — a)¥.
Then V is T -generated by a single element wy and V has a basis 8 =
{v1,..., vk} where vy = wandv; = (T —ad)(vi4+1) fori =1,..., k—1.

Proof. We know that there is an element w of V with mg ,, (x) = mg(x).
Then w T -generates a subspace W of ¥V whose dimension is the degree k
of mqg (x). By hypothesis mg(x) = cg(x), so cg(x) also has degree k. But
the degree c7(x) is equal to the dimension of V, so dim(W;) = dim(V)
and hence W) = V.
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Setvy = wandforl <i < k,setv; = (T — aJ)k_i(vk). Then
vi = (T —ad)* () = (T —ad)(T —ad) " (vp) = (T —ad)(i+1).
It remains to show that 8 = {vq,..., vt} is a basis. It suffices to show

that this set is linearly independent. Suppose that civ; + -+ + cpvr = 0,
ie., c1(T —ad)*'vg + -+ 4+ cxvg = 0. Then p(7)(vx) = O where
p(x) = ci1(x —a)* '+ ca(x —a)k "2 -4 cx. Now p(x) is a polynomial
of degree at most k — 1, and mg ,, (x) = (x — a)k is of degree k, so p(x)
is the zero polynomial. The coefficient of x*~! in p(x) is ¢y, so ¢; = 0;
then the coefficient of x*¥~2 in p(x)iscy,s0cy =0,etc. Thus ¢y = ¢ =
-+« = ¢ = 0 and B is linearly independent. O

Corollary 5.6.2. Let T and B be as in Lemma 5.6.1. Then

al
a 1

(T8 = .

a

a k-by-k matrix with diagonal entries a, entries immediately above the di-
agonal 1, and all other entries 0.

Proof. (T —ad)(v1) = 0so T(vy) = v1; (T —ad)(vit1) = v; so
T (vi+1) = vi + avjt1, and the result follows from Remark 2.2.8. O

DEFINITION 5.6.3. A basis B of V' as in Corollary 5.6.2 is called a Jordan
basis of V.

IfV =V, &---® V; and V; has a Jordan basis B;, then B8 = B; U
--- U B is called a Jordan basis of V. <&

DEFINITION 5.6.4. (1) A k-by-k matrix

al
a 1

1
a

as in Corollary 5.6.2 is called a k-by-k Jordan block associated to the eigen-
value a.
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(2) A matrix J is said to be in Jordan canonical form if J is a block
diagonal matrix
Ji
J2

Ji
with each J; a Jordan block. O

Theorem 5.6.5 (Jordan canonical form). (1) Let F be an algebraically
closed field and let V be a finite-dimensional IF -vector space. Let T : V —
V be a linear transformation. Then V has a basis B with [T]g = J a
matrix in Jordan canonical form. J is unique up to the order of the blocks.

(2) Let F be an algebraically closed field and let A be an n-by-n matrix
with entries in F. Then A is similar to a matrix J in Jordan canonical form.
J is unique up to the order of the blocks.

Proof. Let T have characteristic polynomial
cr(x) = (x —a)® - (x —am)™".

Then, by Theorem 5.4.6, we have a T -invariant direct sum decomposition
V=VIg---®& V" where Vi = Ker(T —a; d)% . Let J; be the restriction
of T to V. Then, by Theorem 5.5.2, Vi has a rational canonical T -basis
C = {w’i, ey wf{l_} and a corresponding direct sum decomposition V' =
W @& ngi. Then each W/’ satisfies the hypothesis of Lemma 5.6.1, so
Wji has a Jordan basis i)’; Then

B=BjU---UB U---UBI"U---UB

is a Jordan basis of V. To see uniqueness, note that there is unique factor-
ization for the characteristic polynomial, and then the uniqueness of each of
the block sizes is an immediate consequence of the uniqueness of rational
canonical form.

(2) Apply part (1) to the linear transformation 7 = 74. (]

We stated Theorem 5.6.5 as we did for emphasis. We have a more gen-
eral result.

Theorem 5.6.6 (Jordan canonical form). (1) Let V be a finite-dimensional
vector space over a field ¥ and let T : V. — V be a linear transforma-
tion. Suppose that cg (x), the characteristic polynomial of T, factors into a
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product of linear factors, cg(x) = (x —ap)®' -+ (x —am)®”. Then V has
a basis B with [vlg = J a matrix in Jordan canonical form. J is unique
up to the order of the blocks.

(2) Let A be an n-by-n matrix with entries in a field F. Suppose that
ca(x), the characteristic polynomial of A, factors into a product of linear
factors, ca(x) = (x —a1)t - (x —am)®. Then A is similar to a matrix
J in Jordan canonical form. J is unique up to the order of the blocks.

Proof. 1dentical to the proof of Theorem 5.6.5. (]

REMARK 5.6.7. Let us look at a couple of small examples. Let 4; =
[(1) g] Then A is already in Jordan canonical form, but its rational canon-
ical form is M; = [_% (1)] Let Ay = [(3) %] Then A, is already in Jordan
canonical form, but its rational canonical form is M, = [_g (1)] In both of
these two (one diagonalizable, one not) we see that the rational canonical
form is more complicated and less informative than the Jordan canonical
form, and indeed in most applications it is the Jordan canonical form we are
interested in. But, as we have seen, the path to Jordan canonical form goes
through rational canonical form. <&

The question now naturally arises as to what we can say for a linear
transformation 7 : V' — V where V is a vector space over ' and cy (x)
may not factor into a product of linear factors over F. Note that this makes
no difference in the rational canonical form. Although there is not a Jordan
canonical form in this case, there is an appropriate generalization. Since it is
not so useful, we will only state the results. The proofs are not so different,
and we leave them for the reader.

Lemma 5.6.8. Let V be a finite-dimensional vector space and letT : V —
V be a linear transformation. Suppose that my(x) = cy(x) = p(x),
where p(x) = x? 4+ ag_1x97' 4+ -+ + aq is an irreducible polynomial
of degree d. Then V is T -generated by a single element w, and V has a
basis B = {vll,...,vf,v%,...,vg,...,vli,...,vl‘f}wherev,‘f =wandT
is given as follows: For any j, and fori > 1, T(v;) = v;._l. For j =1,
and fori =1, T(vll) = —aovl1 —alvf —---—ad_lvf. For j > 1, and for

. T(n1y — 1 _ 2 ... d d
i=17 (vj) = —aov; —a1v; ag—1v; +vi_;.

REMARK 5.6.9. This is a direct generalization of Lemma 5.6.1, as if
my(x) = cr(x) = (x —a)¥, then d = 1 so we are in the case i = 1.
the companion matrix of p(x) = x — a is the 1-by-1 matrix [a¢] = [—a],
and then 7 (v]) = av} and T(v}) = av} + v}_l for j > 1. <&
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Corollary 5.6.10. In the situation of Lemma 5.6.8,

C N

C N
[T]s = ) )

C

where there are k identical d-by-d blocks C = C(cy(x)) along the diago-
nal, and (k —1) identical d-by-d blocks N immediately above the diagonal,
where N is a matrix with an entry of 1 in row d, column 1 and all other
entries 0.

REMARK 5.6.11. If p(x) = (x — a) this is just a k-by-k Jordan block.
&

DEFINITION 5.6.12. A matrix as in Corollary 5.6.10 is said to be a gen-
eralized Jordan block. A block diagonal matrix whose diagonal blocks are
generalized Jordan blocks is said to be in generalized Jordan canonical
form. <&

Theorem 5.6.13 (Generalized Jordan canonical form). (1) Let V' be a finite-
dimensional vector space over the field F and let cT (x) factor as ¢ (x) =
p1(x)¢' -+ pm(x)®™ for irreducible polynomials p1(x), ..., pm(x). Then
V has a basis B with [V]g a matrix in generalized Jordan canonical form.
[V]g is unique up to the order of the generalized Jordan blocks.

(2) Let A be an n-by-n matrix with entries in F and let c4(x) factor
as ca(x) = p1(x)¢' -+ pm(x)®™ for irreducible polynomials pi(x),...,
Pm(x). Then A is similar to a matrix in generalized Jordan canonical form.
This matrix is unique up to the order of the generalized Jordan blocks.

5.7 AN ALGORITHM FOR JORDAN
CANONICAL FORM AND JORDAN BASIS

In this section we develop an algorithm to find the Jordan canonical form
of a linear transformation, and a Jordan basis, assuming that we can factor
the characteristic polynomial into a product of linear factors. (As is well
known, there is no general method for doing this.)

We will proceed by first developing a pictorial encoding of the informa-
tion we are trying to find. We call this picture the labelled eigenstructure
picture or LESP, of the linear transformation.



5.7. JORDAN CANONICAL FORM AND JORDAN BASIS 141

DEFINITION 5.7.1. Let uj be a generalized eigenvector of index k cor-
responding to an eigenvalue A of a linear transformation 7 : V' — V. Set
Uit = (T =) i), iz = (T = AD)@tg—1); ..o us = (T = Ad)(u2).
Then {u,...,ux} is a chain of generalized eigenvectors. The vector uy is
the fop of the chain. <&

REMARK 5.7.2. If{uy,...,u} is a chain as in Definition 5.7.1, then for
each 1 <i <k, u; is a generalized eigenvector of index i associated to the
eigenvalue A of 7. <

REMARK 5.7.3. A chain is entirely determined by the vector uj at the
top. (We will use this observation later: To find a chain, it suffices to find
the vector at the top of the chain.) <&

We now pictorially represent a chain as in Definition 5.7.1 as follows:

k u

k

k-1 u

If {u1,...,ux} forms a Jordan basis for a k-by-k Jordan block for the
eigenvalue A of T, the vectors in this basis form a chain. Conversely, from
a chain we can construct a Jordan block, and a Jordan basis.

A general linear transformation will have more than one Jordan block.
The {ESP of a linear transformation is the picture we obtain by putting its
chains side by side.

The eigenstructure picture, or ESP, of a linear transformation, is ob-
tained from the £ESP by erasing the labels. We will usually think about this
the other way: We will think of obtaining the £ESP from the ESP by putting
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the labels in. From the Jordan canonical form of a linear transformation we
can determine its ESP, and conversely. Although the ESP has less informa-
tion than the £ESP, it is easier to determine.

The opposite extreme from the situation of a linear transformation whose
Jordan canonical form has a single Jordan block is a diagonalizable linear
transformation.

Suppose T is diagonalizable with eigenvalues A, ..., A, (not necessar-
ily distinct) and a basis {v1, ..., v,} of associated eigenvectors. Then 7 has
LESP

Vl VZ V} Vn
1 ° ° ° °
/11 /12 /13 /ln

We have shown that the Jordan canonical form of a linear transformation
is unique up to the order of the blocks, so we see that the ESP of a linear
transformation is unique up to the order of the chains. As Jordan bases are
not unique, neither is the {ESP.

The {ESP is easier to illustrate by example than to define formally. We
have just given two general examples. For a concrete example we advise the
reader to look at the beginning of Example 5.7.7.

We now present our algorithm for determining the Jordan canonical
form of a linear transformation. Actually, the algorithm we present will be
an algorithm for ESP.

To find the ESP of T what we need to find is the positions of the nodes at
the top of chains. We envision starting at the top, i.e., the highest index, and
working our way down. From this point of view, the nodes we encounter
at the top of chains are “new” nodes, while nodes that are not at the top of
chains come from nodes we have already seen, and we regard them as “old”
nodes.

Let us now imagine ourselves in the middle of this process, say at height
(= index) j, and suppose we see part of the ESP of T for the eigenvalue A:
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Each node in the ESP represents a vector in the generalized eigenspace
E?°, and together these vectors are a basis for E£7°. More precisely, the

vectors corresponding to the nodes at height j or less form a basis for E s
the subspace of E7° consisting of eigenvectors of index at most j (as well
as the 0 vector). Thus if we let d;(1) be the number of nodes at height at
most j, then

d;j(A) = dim E}.

As a first step toward finding the number of new nodes at index j, we
want to find the number of all nodes at this index. If we let d;”‘(k) denote
the number of nodes exactly at level j, then

d*(X) = d;j(A) —dj-1().

(That is, the number of nodes at height exactly j is the number of nodes at
height at most j minus the number of nodes at height at most j — 1.)

We want to find d /'.“’W()k), the number of new nodes at height j. Every
node at height j is either new or old, so the number of new nodes at height

jis
a4 0) = d ) - di, ()

as every old node at height j comes from a node at height j + 1, and there
are exactly d;”‘H (4) of those.
This gives our algorithm:

Algorithm 5.7.4. Let A be an eigenvalue of T : V — V.

Step 1. For j = 1,2,..., compute
dj () = dim E{ = dim(Ker(T — Ad)”).

Stop when d;(A) = dw(A) = dim ES°. Recall from Lemma 4.2.4 that
doo(A) = alg-mult(A). Denote this value of j by jmax(X). (Note also that
Jmax(A) is the smallest value of j for which d;j(A) = d;j_1(A).)

Step 2. For j = 1,.... jmax(A) compute di*(1) by

di*(A) = di (),
d5*(A) = d;j(A) —dj(A)  forj > 1.
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Step 3. For j =1,..., jmx(A) compute d'?ew(k) by

di™ () = A W) =7 Q) for j < jma(A).
di () = dXR) for j = jma(R).

We now refine our argument to use it to find a Jordan basis for a linear
transformation. The algorithm we present will be an algorithm for {ESP,
but since we already know how to find the ESP, it is now just a matter of
finding the labels.

Again we us imagine ourselves in the middle of this process, at height
J for the eigenvalue A. The vectors labelling the nodes at height at most j
form a basis for £ /{ and the vectors labelling the nodes at height at most
j — 1 form a basis for £ /{ ~!. Thus the vectors labelling the nodes at height
exactly j are a basis for a subspace F /{ of E /{ that is complementary to
E ;{_1. But cannot be any subspace, as it must contain the old nodes at
height j, which come from one level higher, i.e., from a subspace F /{ 1
of E ;{H that is complementary to £ /{ But that is the only condition on the
complement F' J , and since we are working our way down and are at level j,
we may assume we have successfully chosen a complement F /{ 1 at level
J+ L

With a bit more notation we can describe our algorithm. Let us denote
the space spanned by the old nodes at height j by Ai (We use A because
it is the initial letter of alt, the German word for old. We cannot use O
for typographical reasons.) The nodes in A*/{ come from nodes at height
Jj + 1, but we already know what these are: they are in F /{ *1 Thus we set
A‘/{ = (T - AJ)(F/{H). Then A‘/{ and E;{_l are both subspaces of'Ej,
and in fact they are independent subspaces, as any nonzero vector in A‘i has
height j and any nonzero vector in £ ;{_1 has height at most j — 1. We then
choose N/{ to be any complement of E;{_l ® A‘/{ 'in E/{ (For j =1 the
situation is a little simpler, as we simply choose N /{ to be a complement of
Al in E{)

This is a space of new (or, in German, neu) vectors at height j and is
precisely the space we are looking for. We choose a basis for N; / and label
the new nodes at height j with the elements of this ba31s In practice, we
usually find N’ as follows: We find a basis B; of E’ , a basis B, of
Ai, and extend 87 U B, to a basis B of E/{ Then 8 — (B U By) is a
basis of N /{ . So actually we will find the basis of N /{ directly, and that is the

information we need. Finally, we have just obtained £ /= E /{ ! EBA‘/{ &N /{
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so we set F /{ = A*/{ G N /{ and we are finished at height j and ready to drop
down to height j — 1. (When we start at the top, for j = jp.x(A), the
situation is easier. At the top there can be no old vectors, so for j = jnax
we simply have E/ = E;{_l &) N/{ and F/{ = N/{.)

We summarize our algorithm as follows:

Algorithm 5.7.5. Let A be an eigenvalue of T : V — V.
Step 1. Forj = 1,2, ..., jmax(R) find the subspace E/ = Ker((7 —Ad)7).
Step 2. For j = jmux(A),...,2,1:

(a) If j = jmax(k), let N/{ be any c"omplement of E;{_l in E/{ Ifj <
Jmax(A), let A‘i = (T - AJ)(F/{H). Let N/{ be any complement of
E;{_l &) A‘/{ in E/{ if j > 1, and let N/{ be any complement ofA‘/{ in
E/{ ifj =1

(b) Label the new nodes at height j with a basis ofN/{.

(c) Let F] = A} @ Nj.

There is one more point we need to clear up to make sure this algorithm
works. We know from our results on Jordan canonical form that there is
some Jordan basis for A4, i.e., some labelling so that the £ESP is correct.
We have made some choices, in choosing our complements N / and in
choosing our basis for N /{ . But we can see that these choices all yield the
same ESP (and hence one we know is correct.) For the dimensions of the
various subspaces are all determined by the Jordan canonical form of A, or
equivalently by its ESP, and different choices of bases or complements will
yield spaces of the same dimension.

REMARK 5.7.6. There are lots of choices here. Complements are almost
never unique, and bases are never unique except for the vector space {0}.
But no matter what choice we make, we get labels for the ESP and hence
Jordan bases for V. (It is no surprise that a Jordan basis is not unique.) <

In finding the ¢ESP (or, equivalently, in finding a Jordan basis), it is
essential that we work from the top down and not from the bottom up. If
we try to work from the bottom up, we have to make arbitrary choices and
we have no way of knowing if they are correct. Since they almost certainly
won’t be, something we would only find out at a later (perhaps much later)
stage, we would have to go back and modify them, and this rapidly becomes
an unwieldy mess.
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We recall that if A is a matrix and B is a Jordan basis for V, then
A = PJP~! where J is the Jordan canonical form of 4 and P is the ma-
trix whose columns consist of the vectors in 8 (taken in the corresponding
order).

ExAMPLE 5.7.7. Here is an example for a matrix that is already in Jordan
canonical form. We present it to illustrate all of the various subspaces we
have introduced, before we move on to some highly nontrivial examples.
Let

[6 10

061

006

6
A= 6 ,
71
07
7

with characteristic polynomial c4(x) = (x — 6)°(x — 7)3.
We can see immediately that A has {ESP

3 e,
2 ez 27
e e, e; e e,
1 o - o
6 6 6 7 7

E61 = Ker(A4 — 61) has dimension 3, with basis {el, eq, es}.

E62 = Ker(4 — 61)2 has dimension 4, with basis {el, e, ey, es}.
E63 = Ker(4 — 61)3 has dimension 5, with basis {el, e, e3, ey, es}.
E71 = Ker(A —71) has dimension 2, with basis {6‘6, eg}.

E72 = Ker(4 — 7])2 has dimension 3, with basis {6‘6, e7, eg}.
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Thus
d1(6) = 3, d,(6) =4, dz(6) =5,

SO

d6) =3, d$N6)=4-3=1  d6) =5-4=1,

and

ArV6) =3—-1=2,  di6)=1-1=0,  d¥¥(6)=1.

Also
di(7) =2, d»(7) = 3,
SO
di*(7) =2, ds5*(7) =3-2=1,
and

AN =2-1=1,  di*0) =1,

and we recover that A has 1 3-by-3 block and 2 1-by-1 blocks for the eigen-
value 6, and 1 2-by-2 block and 1 1-by-1 block for the eigenvalue 7.
Furthermore,

EZ has a complement in EZ of NZ with basis {6‘3}.

Set F2 = N2 with basis {e3}.
A2 = (A — 61)(FY) has basis {e>}, and E} & A2 has complement in
EZ of N2 = {0} with empty basis. Set

F¢ = AZ & NZ with basis {e,}.

Al = (A — 61)(F?) has basis {e1}, and A} has complement in E} of
Nsl with basis {ey, e5}.
Also

E}  has complement in EZ of N7 with basis {6‘7}.

Set F2 = N2 with basis {e7}.

A} = (A —71)(F?) has basis {eg}, and A} has complement in E} of
N with basis {eg}.

Thus we recover that e3 is at the top of a chain of height 3 for the
eigenvalue 6, e4 and es are each at the top of a chain of height 1 for the
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eigenvalue 6, e7 is at the top of a chain of height 2 for the eigenvalue 7, and
eg is at the top of a chain of height 1 for the eigenvalue 7.
Finally, since e; = (A — 61)(e3) and e; = (A — 61)(ez), and eg =
(A—7I)(e7), we recover that {ey, €2, €3, €4, €5, €6, €7, eg} is a Jordan basis.
<&
EXAMPLE 5.7.8. We present a pair of (rather elaborate) examples to illus-
trate our algorithm.

(1) Let A be the 8-by-8 matrix

(330 0 0-10 2]
3 41-1-1 01 -1
063 0 0-20 —4
—2 40 1-1 02 -5
-3 21-1 2 01 =2
-1 10-1-1 31 —1
~5101 -3 =2 —1 6 —10
3 21-1-1 01 1]

with characteristic polynomial c4(x) = (x — 3)7(x —2).

The eigenvalue A = 2 is easy to deal with. We know without any fur-
ther computation that d1(2) = dwo(2) = 1 and that Ker(4 — 27) is 1-
dimensional.

For the eigenvalue A = 3, computation shows that A — 3/ has rank
5, so Ker(A — 31) has dimension 3 and d;(3) = 3. Further computation
shows that (4 — 37)? has rank 2, so Ker(4 — 37)? has dimension 6 and
d»(3) = 6. Finally, (A — 31)3 has rank 1, so Ker(4 — 37) has dimension
7 and d3(3) = do(3) = 7.

At this point we can conclude that A has minimum polynomial m4(x) =
(x =3)3(x —2).

We can also determine the ESP of A. We have

d$*(3) = di(3) = 3
dy*(3) =d2(3) —d1(3) =6—-3=3
d5*(3) = d3(3) —d2(3) =7-6=1
and then
d3*¥(3) =d5*(3) =1
dy"(3) =d5*(3) —d5*(3) =3—-1=2
di™(3) =d;i*(3) —d;*(3) =3-3=0.
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Thus we see that for the eigenvalue 3, we have one new node at level 3,
two new nodes at level 2, and no new nodes at level 1. Hence A has {ESP

3 ®u,
2 ® u, Vv, w,
ul Vl W] xl
1 ? 3 ’ 3 ®
3 3 3 2

with the labels yet to be determined, and thus A has Jordan canonical form

(310
031
003
31
03
31
03
2

Now we find a Jordan basis.

Equivalently, we find the values of the labels. Once we have the labels
U3, V3, Wy, and x; on the new nodes, the others are determined.

The vector x; is easy to find. It is any eigenvector corresponding to the
eigenvalue 2. Computation reveals that we may choose

30]
~12
68
18
1
—4
66
1

X1 =
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The situation for the eigenvalue 3 is more interesting. We compute that

1 0 0 0 0 0]1]0
0 1 0 0 0 0]1]0
0 0 1 0 0 0|0
_ 3 . 0 0 0 1 0 0|0
Ker(A — 31)” has basis ol lol 1ol lol 111 1ollo
0 0 0 0 0 1{|0
0 0 0 0 0 0|1
0] [1f 0] [O0f] [O0] [O] O]
177 [o] [0 [0 [o] [0]
0 1 0 0 0 0
2 0 0 0 0 0
0 0 1 0 0 0
— 2 1
Ker(A — 317)“ has basis ol lol 1ol 11l 1ol 10 ,
0 0 0 0 1 0
0 0 0 0 0 1
0] [1f 0] [O0] [O0] |O]
17 [0 [0
0 1 0
2 0 0
0 0 1
d Ker(A — 37) has basi
and Ker( 37) has basis ol 11l 1o
0 1 0
1 1 1
10 1] |O]

For u3 we may choose any vector u3 € Ker(A — 31)3, uz ¢
Ker(A — 31)?. Inspection reveals that we may choose

Uz =

S O O OO oo -
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Then
- o o
-3 0
0 —4
] 0
Uy = (A—-30Nus = 3 and uy = (A—-3Nu, = 0
—1 0
-5 -2
-3 0

For v,, w, we may choose any two vectors in Ker(A4 — 37)2 such that the
set of six vectors consisting of these two vectors, u», and the given three
vectors in our basis of Ker(A — 37) are linearly independent. Computation
reveals that we may choose

1 0
0 1
2 0
0 0
vy = 0 and w,; = 0
0 0
0 0
Then
- o -
-1 0
0 2
) —1
vy =(A—-30Nvy, = 1 and w; = (A -3w, =

|
—_
oo oo
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Then

{u1,uz, U3, v1, V2, w1, W2, X1}

27 [ o] [t [ o] [1] [ 1] [o] [ 30]
0 =3 0 -1 0 0 1 -12
—4 0 0 0 2 2 0 68
_ 0 -2 0 -2 0 -1 0 18
N o =370 |=1]"]0]| | O] [0} 1
0 -1 0 -1 0 0 0 —4
-2 -5 0 =3 0 0 0 66
| O] [-3] [0 [-1] [O] [ Of |1] [ 1]
is a Jordan basis. <&
(2) Let A be the 8-by-8 matrix
3 1.0 0 0 0 0-—I]
34 1-1-1 1-3 3
-1 0 3 1 2-2 6-1
A= 6 0 0 2 0 0 0 6
|l 1-1 0 0 4 0 0 1
3—-1-2 0 4 012 3
1 0-1 0 2-210 1
| 4-1 0-1 0 O O &
with characteristic polynomial c4(x) = (x — 4)(x — 5).
For the eigenvalue A = 5, we compute that A — 5/ has rank 7, so

Ker(A — 57) has dimension 1 and hence d;(5) = 1, and also that Ker(A4 —
5I)? has dimension 2 and hence d2(5) = deo(5) = 2.

For the eigenvalue A = 4, we compute that A — 4/ has rank 5, so
Ker(A —41) has dimension 3 and hence d; (4) = 3, that (4 —41)? has rank
4, 50 Ker(A — 41)? has dimension 4 and hence d»(4) = 4, that (4 — 41)3
has rank 3, so Ker(A — 417)3 has dimension 5 and hence that d3(4) = 5 and
that (4 — 417)* has rank 2, so Ker(4 —41)* has dimension 6 and hence that
ds(4) = doo(4) = 6.

Thus we may conclude that m4(x) = (x — 4)*(x — 5)2.
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Furthermore

di'(4) = di(4) =3

dy'(4) =d2(4) —d1(4) =4-3 =1
ds*(4) = ds3(4) —dx(4) =5—-4=1
d;*(4) =ds(4) —d3(4) =6-5=1

and then
div4)=d =1
d3*"(4) =d5’(4) —df(4) =1-1=0
dy"(4) =d5*(4) —d4)=1-1=0
di™(4) =d{"(4) —dy*(4) =3-1=2.
Also
di*(5) =di(5) =1
d5*(5) =d2(5)—di(5)=2—-1=1
and then

d3(5) = d3*(5) =1
di™(5) = df*(5) —d5*(5) =1—-1=0.

153

Hence A has £ESP as on the next page with the labels yet to be deter-

mined. In any case A has Jordan canonical form

(4100
0410
0041
0004

51
05 ]
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Now we find the labels. Ker(4 — 41)* has basis

Ker(A — 41)3 has basis
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Ker(A — 41)? has basis

S O = = O O OO
S = W O O o oo

—_ 0 O O O o o -
S O OO O O~ O

and Ker(A — 47) has basis

—_ 0 O O O o o -
S O = = O O OO
S = LW O O o oo

Also, A — 512 has basis

S =N O O = OO

—_ o O O N O = O

and Ker(A — 517) has basis

S =N OO = OO
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We may choose for uy any vector in Ker(A — 47)* that is not in
Ker(A — 41)3. We choose

0 -1
0 0
0 2
Uy = (3) , sous = (A—4l)uy = (1) ,
0 3
0 1
_1_ - 1_
o -
1 0
0 0
0 0
M2=(A—4I)M3= 0 s u1=(A—4I)u2= 1
0 -1
0 0
_O_ __1_

Then we may choose v and w; to be any two vectors such that u;, vy, and
w; form a basis for Ker(4 — 47). We choose

1 0

0 0

0 0

v = 8 and wp = 8
0 3

0 1
__1_ _O_

We may choose x to be any vector in Ker(A — 51)? that is not in
Ker(A — 51). We choose

0 0
1 0
0 1
Xp = g so x1=(A-51)x; = 8
0 2
0 1
_1_ _O_
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Thus we obtain a Jordan basis

{ur, Uz usz, us, v1, Wi, X1, X2}

1 0 —1

—_0 O O W o O O
S O O O O o
S = LW O O o oo
S =N O O = OO

—_ o O O N O~ O

|
—_
S o oo oo~

5.8 FIELD EXTENSIONS

Suppose we have an n-by-n matrix A with entries in F and suppose we have
an extension field E of F. An extension field is a field E 2 . For example,
we mighthave E = C and F = R. If 4 is similar over F to another matrix
B,ie., B = PAP~! where P has entries in IF, then A is similar to B over
E by the same equation B = PAP ™!, since the entries of P, being in IF,
are certainly in E. (Furthermore, P is invertible over F if and only if it is
invertible over [E, as we see from the condition that P is invertible if and
only if det(P) # 0.) But a priori, the converse may not be true. A priori, A
might be similar to B over E, i.e., there may be a matrix Q with entries in
E with B = QAQ~!', though there may be no matrix P with entries in F
with B = PAP™!. In fact, this does not occur: A and B are similar over
F if and only if they are similar over some (and hence over any) extension
field E of F.

Lemma 5.8.1. Let {vy, ..., vx} be vectors in " and let | be an extension
of F. Then {v1, ..., v} is linearly independent over F (i.e., the equation
civ1 + -+ + cxvg = 0 with each c¢; € F only has the solution ¢y =

- = ¢ = 0) if and only if it is linearly independent over E (i.e., the
equation c1v1 + --- + cxvx = 0 with each ¢; € E only has the solution
cir=---=c=0)

Proof. Certainly if {vy, ..., vi} is linearly independent over E, it is linearly
independent over [F.

Suppose now that {vi,..., vk} is linearly independent over IF. Then
{v1,..., v} extends to a basis {vy,...,v,} of F". Let & = {e1,...,en}

be the standard basis of [F”. It is the standard basis of [E” as well. Since
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{v1,..., v} is a basis, the matrix P = [[vi]g|---|[vn]e] is nonsingular
when viewed as a matrix over . That means det(P) # 0. If we view
P as a matrix over E, P remains nonsingular as det(P) # 0. (det(P) is
computed purely from the entries of P.) Then {vy, ..., v,} is a basis for V
over E, so {vy, ..., vg} is linearly independent over E. O

Lemma 5.8.2. Let A be an n-by-n matrix over F, and let E be an extension
of F.

(1) For any v € F", my(x) = Man(x) where mg ,(x) (respectively
map(x)) is the A-annihilator of v regarded as an element of F"
(respectively of E").

(2) ma(x) = ma(x) where mg(x) (respectively mia(x)) is the minimum
polynomial of A regarded as a matrix over [F (respectively over E).

(3) ca(x) = Ca(x) where ca(x) (resp. ¢4(x)) is the characteristic poly-
nomial of A regarded as a matrix over I (resp. over E).

Proof. (1) ny(x) divides any polynomial p(x) with coefficients in E for
which p(A4)(v) = 0 and my4,,(x) is such a polynomial (as its coefficients
liein F C E). Thus 77i4,,(x) divides my4 ,(x).

Let m4 ,(x) have degree d. Then {v, Av, ..., A%~ 1v} is linearly inde-
pendent over [F, and hence, by Lemma 5.8.1, over E as well, so 774,y (x)
has degree at least d. But then 7114 4 (x) = Mi4,,(x).

(2) Again, m 4 (x) divides m4(x). There is a vector v in F” withmy4 (x) =
ma,p(x). By (1), 14, (x) = ma y(x). But g, (x) divides mi4(x), so they

are equal.
(3) ca(x) = det(x] — A) = C4(x) as the determinant is computed
purely from the entries of A. O

Theorem 5.8.3. Let A and B be n-by-n matrices over F and let E be an
extension field of F. Then A and B are similar over E if and only if they are
similar over F.

Proof. 1If A and B are similar over F, they are certainly similar over E.
Suppose A and B are not similar over F. Then A4 has a sequence of elemen-
tary divisors p1(x), ..., px(x) and B has a sequence of elementary divisors
q1(x), ..., pr(x) that are not the same. Let us find the elementary divisors
of A over E. We follow the proof of rational canonical form, still working
over I, and note that the sequence of elementary divisors we obtain over
F is still a sequence of elementary divisors over E. (If {wy, ..., wg} is a
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rational canonical 7 -generating set over I, it is a rational canonical 7 -
generating set over E; this follows from Lemma 5.8.2.) But the sequence of
elementary divisors is unique. In other words, p1(x), ..., px(x) is the se-
quence of elementary divisors of A over E, and similarly g;(x), ..., g;(x)
is the sequence of elementary divisors of B over E. Since these are differ-
ent, A and B are not similar over E. O

We have stated the theorem in terms of matrices rather than linear trans-
formation so as not to presume any extra background. But it is equivalent to
the following one, stated in terms of tensor products.

Theorem 5.8.4. Let V be a finite-dimensional F-vector space and let § :
V.- VandT : V — V be two linear transformations. Then 8 and T
are conjugate if and only if for some, and hence for any, extension field E
ofF, 51 : VQFE >V QRQFEandT ®1:V QRQFE - V Qf E are

conjugate.

5.9 MORE THAN ONE LINEAR
TRANSFORMATION

Hitherto we have examined the structure of a single linear transformation.
In the last section of this chapter, we derive three results that have a common
theme: They deal with questions that arise when we consider more than one
linear transformation.

To begin,let T : V — W and § : W — V be linear transformations,
with V' and W finite-dimensional vector spaces. We examine the relation-
ship between 87 : V — Vand 78 : W — W.

If V = W and at least one of § and T are invertible, then 87 and 7§
are conjugate: 87 = 7 Y(T8)T or T8 = 8§ 1(87)8. In general we
have

Lemma5.9.1. LetT : V — Wand 8 : W — V be linear transformations
between finite-dimensional vector spaces.

Let p(x) = a;x' + --- + ag € F[x] be any polynomial with constant
term ag # 0. Then

dim (Ker (p(é”f'))) = dim (Ker (p(TS))).

Proof. Let {vi,...,vx} be a basis for Ker(p(87)). We claim that
{T (v1),...,T (vg)} is linearly independent. To see this, suppose

c1T () + -+ cxT(vg) =0.
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Then T (civ; + -+ + cxvg) = 0,50 8T (civy + -+ + cxvr) = 0. Let
vV = c1V1 + -+ kg, 50 §T (v) = 0. But v € Ker(p(87)), so 0 =
(@ (8T +--+a1(8T)+apl)(v) =0+ ---+ 0+ apv = agv and
hence, since ag # 0, v = 0. Thus c;vy + -+ cxvr = 0. But {vy, ..., vg}
is linearly independent, so ¢; = 0 for all i, and hence {7 (v1), ..., T (vk)}
is linearly independent.

Next we claim that 7 (v;) € Ker(p(7&)) for each i. To see this, note
that

T8T=T8) - [THT =TET)--- BT =T8T’
for any s. Then

PT 8T () = (@(T8) + -+ apd)(T ()
= (T@(STY + -+ aod) (i)
= T(pST)(w) = T(0) = 0.

Hence {7 (v1), ..., T (vg)} is alinearly independent subset of Ker(p (T §)),
so dim(Ker(p(78))) > dim(Ker(p(87))). Interchanging § and 7 shows
that the dimensions are equal. O

Theorem 5.9.2. Let T : V — W and 8 : W — V be linear transforma-
tions between finite-dimensional vector spaces over an algebraically closed
fieldF. Then 8T and T & have the same nonzero eigenvalues, and for each
common eigenvalue A # 0 8T and T8 have the same ESP at A and hence
the same Jordan block structure at A (i.e., the same number of blocks of the
same sizes).

Proof. Apply Lemma 5.9.1 to the polynomials p, ;(x) = (x — A)" for
t = 1,2,..., noting that the sequence of integers {dim(Ker(p; 1(R))) |
t = 1,2,...} determines the ESP of a linear transformation R at A, or,
equivalently, its Jordan block structure at A. O

Corollary 59.3. Let T : V — V and 8 : V. — V be linear transforma-
tions on a finite-dimensional vector space over an arbitrary field F. Then
8T and T8 have the same characteristic polynomial.

Proof. First suppose that that I is algebraically closed. If dim(V') = n and
87T, and hence 7§, has distinct nonzero eigenvalues A1, ..., A; of multi-
plicities ey, . . ., ex respectively, then they each have characteristic polyno-
mial x (x — A1)¢1--- (x — Ar) whereeg =n — (e1 + - -+ + ex).
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In the general case, choose an arbitrary basis for V' and represent § and
T by matrices A and B with entries in F. Then regard A and B as having
entries in I, the algebraic closure of IF, and apply the algebraically closed
case. O

Theorem 5.9.2 and Corollary 5.9.3 are the strongest results that hold in
general. It is not necessarily the case that §7 and T & are conjugate, if &
and 7 are both singular linear transformations.

ExampLE 5.9.4. (I)Let A = [§8]and B = [ §] Then AB =[J}]
and BA = [8 8] are not similar, so 747 = Tap and TpT4 = Tp4 are not
conjugate, though they both have characteristic polynomial x2.

(2)Let A = [_{ 8] and B = H {] Then AB = [_{ _H and BA =
[8 8] are not similar, so 747 = T4p and T3T4 = T4 are not conjugate,
though they both have characteristic polynomial x2. (In this case 74 and T3
are both diagonalizable.) <&

Let 7 : V — V be a linear transformation, let p(x) be a polynomial,
and set § = p(7). Then & and T commute. We now investigate the ques-
tion of under what circumstances any linear transformation that commutes
with 7 must be of this form.

Theorem 5.9.5. Let V be a finite-dimensional vector space and let T :
V' — V be a linear transformation. The following are equivalent:

(1) V is T -generated by a single element, or, equivalently, the rational
canonical form of T consists of a single block.

(2) Every linear transformation 8§ : V. — V that commutes with T can be
expressed as a polynomial in T .

Proof. Suppose (1) is true, and let vy be a T -generator of V. Then every

element of V' can be expressed as p(7)(vo) for some polynomial p(x). In

particular, there is a polynomial pg(x) such that §(vo) = po(7)(vo).
Foranyv € V,letv = p(7)(vp). If § commutes with T,

8(v) = 8(p(T)(vo)) = p(T)(8(v0)) = p(T)(Po(T)(v0))
= po(T)(p(T)(v0)) = po(T)(v):
s0 8 = po(T). (We have used the fact that if & commutes with 77, it com-

mutes with any polynomial in 7. Also, any two polynomials in 7 commute
with each other.) Thus (2) is true.
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Suppose (1) is false, so that V' has a rational canonical 7 -generating set
{v1,..., v} with k > 1. Let p;(x) be the T -annihilator of v;, so pi(x)
is divisible by p;(x) for i > 1. Then we have a J -invariant direct sum
decomposition V.= V; @ --- @ Vg. Define § : V — V by §(v) = 0
ifveViandSw) =vifv e V; fori > 1. It follows easily from the
T -invariance of the direct sum decomposition that § commutes with 7.
We claim that § is not a polynomial in 7. Suppose § = p(7) for some
polynomial p(x). Then 0 = s(vi) = p(7)(v1) so p(x) is divisible by
p1(x), the T -annihilator of v;. But p; (x) is divisible by p; (x) fori > 1, s0

p(x) is divisible by p;(x) fori > 1, and hence §(v;) =--- = 8(vg) = 0.
Thus $(v) # vif 0 # v € V; fori > 1, a contradiction, and (2) is
false. O

REMARK 5.9.6. Equivalent conditions to condition (1) of Theorem 5.9.5
were given in Corollary 5.3.3. <

Finally, let & and 7 be diagonalizable linear transformations. We see
when § and 7 are simultaneously diagonalizable.

Theorem 5.9.7. Let V be a finite-dimensional vector space and let § :
V.- Vand T : V — V be diagonalizable linear transformations. The
following are equivalent:

(1) 8 and T are simultaneously diagonalizable, i.e, there is a basis B of
V with [8]g and [T'|g both diagonal, or equivalently, there is a basis
B of V consisting of common eigenvectors of 8 and T .

(2) 8 and T commute.

Proof. Suppose (1) is true. Let B = {v1,...,v,} where 8(v;) = A;v;
and T (v;) = p;v; for some A;, u; € F. Then 8(7 (v;)) = $(uiv;) =
Aipivi = pirivi = T (A (v;)) = T(8(v;)) for each i, and since B is a
basis, this implies § (7 (v)) = T (8(v)) forevery v € V, i.e., that § and T
commute.

Suppose (2) is true. Since T is diagonalizable, V = V; & --- @ Vi
where V; is the eigenspace of 7 corresponding to the eigenvalue p; of 7.
Forv € Vi, T(8(w) = $(T (1)) = 8(uivi) = i $(vi), s0 $(vy) € Vi
as well. Thus each subspace V; is §-invariant. Since & is diagonalizable, so
is its restriction §; : V; — V;. (mg, (x) divides m g (x), which is a product
of distinct linear factors, so m.g; (x) is a product of distinct linear factors as
well.) Thus V; has a basis B; consisting of eigenvectors for §. Since every
nonzero vector in V; is an eigenvector of 7, $B; consists of eigenvectors of
T ,aswell. Set B = B; U---U By. O
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REMARK 5.9.8. Itis easy to see thatif § and 7 are both triangularizable
linear transformations and § and I~ commute, then they are simultaneously
triangularizable, but it is even easier to see that the converse is false. For

example,takeé’:[(l)%] andT:[(l)g]. O






CHAPTER 6

BILINEAR, SESQUILINEAR,
AND QUADRATIC FORMS

In this chapter we investigate bilinear, sesquilinear, and quadratic forms, or
“forms” for short. A form is an additional structure on a vector space. Forms
are interesting in their own right, and they have applications throughout
mathematics. Many important vector spaces naturally come equipped with
a form.

In the first section we introduce forms and derive their basic properties.
In the second section we see how to simplify forms on finite-dimensional
vector spaces and in some cases completely classify them. In the third sec-
tion we see how the presence of nonsingular form(s) enables us to define
the adjoint of a linear transformation.

6.1 BASIC DEFINITIONS AND RESULTS

DEFINITION 6.1.1. A conjugationon a field F isamap ¢ : F — F with
the properties (where we denote c(f) by f):

(1 ?: f forevery f €F,
2 i+ 12 :E+Ef0revery fi, f2 €F,
3) m: fﬁferevery fi, f> €F.

The conjugation ¢ is nontrivial if ¢ is not the identity on F.
A conjugation on a vector space V over IF isamap ¢ : V' — V with the
properties (where we denote c(v) by v ):

(1) V=0 forevery v € V,

165
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(2) v1 + vy =7v1 + V3 forevery vy,v2 € V,
(3) fu= foforevery f eF,veV.
<&

REMARK 6.1.2. The archetypical example of a conjugation on a field is
complex conjugation on the field C of complex numbers. <

DEFINITION 6.1.3. Let IF be a field with a nontrivial conjugation and let
V and W be F-vector spaces. Then 7 : V' — W is conjugate linear if

(1) Ty +v2) =T (v1) + T (v2) forevery vi,v, € V
2) T(cv)=¢cT (v) foreveryc e F,veV.
<&

Now we come to the basic definition. The prefix “sesqui” means “one
and a half”.

DEFINITION 6.1.4. Let V be an F-vector space. A bilinear form is a
functiong : V xV — F, ¢(x, y) = (x, y), that is linear in each entry, i.e.,
that satisfies

(1) {c1x1 + cax2,y) = c1{x1,y) + c2{x2, y) for every ¢1,c2 € F, and
X1,X2,y €V

(2) (x,c1y1 + c2y2) = c1{x, y1) + c2(x, y2) for every c1,c2 € F, and
X,y1,y2 € V.

A sesquilinear formis a functiong : V xV — F, ¢(x,y) = (x, y), thatis
linear in the first entry and conjugate linear in the second, i.e., that satisfies
(1) and (2):

(2) (x,c1y1 + c2y2) = €1(x, y1) + ¢2(x, y2) for every c1,c, € F, and
X, y1,y2€V

for a nontrivial conjugationc + c on F. <&

ExaMPLE 6.1.5. (1)Let V = R".Then (x, y) = “xy isabilinear form. If
V = C", then (x, y) = x is a sesquilinear form. In both cases this is the
familiar “dot product.” Indeed for any field ' we can define a bilinear form
onF” by (x, y) = ‘xy and for any field F with a nontrivial conjugation we
can define a sesquilinear form on F” by (x, y) = x7.

(2) More generally, for an n-by-n matrix A with entries in F, (x, y) =

'xAy is a bilinear form on F”, and (x, y) = ‘xAY is a sesquilinear form
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on F”. We will see that all bilinear and sesquilinear forms on F” arise this
way, and, by taking coordinates, that all bilinear and sesquilinear forms on
finite-dimensional vector spaces over I arise in this way.

B)Let V. ="F* and let x = (x1,x2,...), ¥y = (V1,2,...). We
define a bilinear form on V by (x,y) = Y x;y;. If F has a nontrivial
conjugation, we define a sesquilinear form on V by {x, y) = Y_ x; ;.

(4) Let V be the vector space of real-valued continuous functions on
[0, 1]. Then V has a bilinear form given by

1
(f(x), g(x)) =/0 f(x)g(x)dx.

If V is the vector space of complex-valued continuous functions on
[0, 1], then V' has a sesquilinear form given by

1
(f(x).g(x0)) = /0 f(x)g(x)dx.

Let us see the connection between forms and dual spaces.

Lemma 6.1.6. (1) Let V be a vector space and let (x,y) = (x,y) be a
bilinear formon V. Then oy 1 V — V* defined by ay,(¥)(x) = (x,y) isa
linear transformation.

(2) Let V be a vector space and let (x,y) = (x,y) be a sesquilin-
ear formon V. Then ay : V. — V* defined by a,(y)(x) = (x,y) isa
conjugate linear transformation.

REMARK 6.1.7. In the situation of Lemma 6.1.6, a,(y) is often written
as (-, ), so with this notation oy, : y > (-, ). <

DEFINITION 6.1.8. Let V' be a vector space and let ¢ be a bilinear (re-
spectively sesquilinear) form on V. Then ¢ is nonsingular if the map o, :
V — V* is an isomorphism (respectively conjugate isomorphism). <

REMARK 6.1.9. In more concrete terms, ¢ is nonsingular if and only if
the following is true: Let 7 : V' — [ be any linear transformation. Then
there is a unique vector w € V such that

T)=¢,w)=(v,w) foreveryveV.
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In case V is finite dimensional, we have an easy criterion to determine
if a form ¢ is nonsingular.

Lemma 6.1.10. Let V be a finite-dimensional vector space and let ¢(x, y) =
(x,y) be a bilinear or sesquilinear form on V. Then ¢ is nonsingular
if and only if for every y € V, y # 0, there is an x € V such that

(x,y) = p(x,y) #0.

Proof. Since dimV* = dimV, o, is an (conjugate) isomorphism if and
only if it is injective.

Suppose that «,, is injective, i.e., if y 7# 0, then oy, (y) # 0. This means
that there exists an x € V with ay,(y)(x) = ¢(x, y) # 0.

Conversely, suppose that for every y € V, y # 0, there exists an x with
2y (¥)(x) = @(x,y) # 0. Then forevery y € V, y # 0, ay(y) is not the
zero map. Hence Ker(e,) = {0} and «,, is injective. (]

Now we see how to use coordinates to associate a matrix to a bilinear or
sesquilinear form on a finite-dimensional vector space. Note this is different
from associating a matrix to a linear transformation.

Theorem 6.1.11. Let ¢(x, y) = (x, y) be a bilinear (respectively sesquilin-
ear) form on the finite-dimensional vector space V andlet B = {v1, ..., vy}
be a basis for V. Define a matrix A = (a;;) by

ajj = (Ul', Uj) i,j = 1, Lo, n.

Then forx,y €V,

(x,) =" [x]gAlylg (respectively '[x]g A[y]g)-

Proof. By construction, this is true when x = v; and y = v, (as then
[x] = e; and [y] = e;) and by (conjugate) linearity that implies it is true
for any vectors x and y in V. (]

DEFINITION 6.1.12. The matrix A = (a;;) of Theorem 6.1.11 is the
matrix of the form ¢ with respect to the basis 8. We denote it by [¢p]g. <

Theorem 6.1.13. The bilinear or sesquilinear form ¢ on the finite dimen-
sional vector space V' is nonsingular if and only if matrix [¢] g in any basis
B of V is nonsingular.
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Proof. We use the criterion of Lemma 6.1.10 for nonsingularity of a form.
Suppose A = [¢] g is a nonsingular matrix. For x € V, x # 0, let

1
[x]g =

Cn

Then for some i, c; # 0.Letz = A7 'e; € F,andlet y € V with[y]g = z
(or [y]g = Z). Then ¢(x,y) = xAA te; = ¢; # 0.

Suppose A is singular. Let z € F”, z # 0, with Az = 0. Thenif y € V
with [y]g = z (or [y]lg = Z), then ¢(x, y) = x4z = x0 = 0 for every
xeV. O

Now we see the effect of a change of basis on the matrix of a form.

Theorem 6.1.14. Let V be a finite-dimensional vector space and let ¢ be
a bilinear (respectively sesquilinear) form on V. Let B8 and € be any two
bases of V. Then

[ple = ‘PgelplgPae (respectively 'Pgeclp]lgP ge).

Proof.  'We do the sesquilinear case; the bilinear case follows by omitting
the conjugation.
By the definition of [¢]e,

o(x,y) = TxlelgleDTe
and by the definition of [¢] g,
o(x,y) = xlsl¢lsl]s-
But [x]g = Pg«e[x]e and m$ = F;B(_gmf. Substitution gives

TeleleleDle = ¢(x.7) = [¥)slelsDls
= ’(PB(_f[x]e)M@(?&—fmf)
= xle("PgelplgP gc)D]e-

Since this is true for every x, y € V,
[ple = 'PaelplaP zec. O

This leads us to the following definition.
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DEFINITION 6.1.15. Two square matrices A and B with entries in F
are congruent if there is an invertible matrix P with ‘PAP = B, and are
conjugate congruent if there is an invertible matrix P with ‘PAP =B. <

It is easy to check that (conjugate) congruence is an equivalence rela-
tion. We then have:

Corollary 6.1.16. (1) Let ¢ be a bilinear (respectively sesquilinear) form
on the finite-dimensional vector space V. Let B and € be bases of V. Then
[p] 8 and [@]e are congruent (respectively conjugate congruent).

(2) Let A and B be congruent (respectively conjugate congruent) n-by-
n matrices. Let V be an n-dimensional vector space over F. Then there is a
bilinear form (respectively sesquilinear form) ¢ on V and bases B and €

of V with [plg = A and [p]e = B.

6.2 CHARACTERIZATION AND
CLASSIFICATION THEOREMS

In this section we derive results about the characterization and classification
of forms on finite-dimensional vector spaces.

Our discussion so far has been general, but almost all the forms encoun-
tered in mathematical practice fall into one of the following classes.

DEFINITION 6.2.1. (1) A bilinear form ¢ on V' is symmetric if (x,y) =
¢(y,x) forallx,y e V.

(2) A bilinear form ¢ on V is skew-symmetric if ¢(x,y) = —¢(y, x)
forall x,y € V, and ¢(x, x) = O for all x € V (this last condition follows
automatically if char(IF) # 2).

(3) A sesquilinear form ¢ on V' is Hermitian if ¢(x,y) = ¢(y, x) for
allx,y eV.

(4) A sesquilinear form ¢ on V' is skew-Hermitian if char(F) # 2 and
o(x,y) = —@(y,x) forall x,y € V. (If char(F) = 2, skew-Hermitian is
not defined.) <&

Lemma 6.2.2. Let V be a finite-dimensional vector space over F and let ¢
be a form on V. Choose a basis B of V and let A = [¢]g. Then

(1) ¢ is symmetric if and only if 'A = A.

(2) ¢ is skew-symmetric if and only if 'A = —A (and, if char(F) = 2,
the diagonal entries of A are all 0).

(3) @ is Hermitian if and only if 'A = A.

(4) ¢ is skew-Hermitian if and only if A = —A (and char(F) # 2).
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DEFINITION 6.2.3. Matrices satisfying the conclusion of Lemma 6.2.2
parts (1), (2), (3), or (4) are called symmetric, skew-symmetric, Hermitian,
or skew-Hermitian respectively. <&

For the remainder of this section we assume that the forms we consider
are one of these types: symmetric, Hermitian, skew-symmetric, or skew-
Hermitian, and that the vector spaces they are defined on are finite dimen-
sional.

We will write (V, @) for the space V' equipped with the form ¢.

The appropriate notion of equivalence of forms is isometry.

DEFINITION 6.2.4. Let V' admit a form ¢ and W admit a form . Then
a linear transformation 7 : V. — W is an isometry between (V, ¢) and
(W, ) if T is an isomorphism and furthermore

¥ (T (v1). T (v2)) = ¢(v1.v2) forevery vy, vz € V.
If there exists an isometry between (V, ¢) and (W, ¥) then (V, ¢) and (W, ¥)
are isometric. &

Lemma 6.2.5. In the situation of Definition 6.2.4, let V have basis B and
let W have basis €. Then T is an isometry if and only if M = [T Je—g is
an invertible matrix with

'"M[y]eM = [¢]g in the bilinear case, or
"M[Y]eM = [¢]g in the sesquilinear case.

Thus V and W are isometric if and only if [ ]e and [¢]g are congruent, in
the bilinear case, or conjugate congruent, in the sesquilinear case, in some

(or any) pair of bases B of V and € of W.

DEFINITION 6.2.6. Let ¢ be a bilinear or sesquilinear form on the vector
space V. Then the isometry group of ¢ is

Isom(p) = {T : V — V isomorphism |
T is an isometry from (V, ¢) to itself}. <&

Corollary 6.2.7. In the situation of Definition 6.2.6, let B be any basis of
V. Then T + [T g gives an isomorphism

Isom(p) — {invertible matrices M |
MiplaM = [¢plg or 'MplaM = [¢]a}.

Now we begin to simplify and classify forms.
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DEFINITION 6.2.8. Let V' admit the form ¢. Then two vectors v and v,
in V are orthogonal (with respect to @) if
go(vl, vz) = go(vz, vl) =0.
Two subspaces V; and V, are orthogonal (with respect to ¢) if
go(vl, vz) = go(vz, vl) =0 forallvy € Vi, vy € V5. <&

We also have an appropriate notion of direct sum.

DEFINITION 6.2.9. Let V' admit a form ¢, and let V; and V, be subspaces
of V. Then V is the orthogonal direct sum of Vi and Vo, V = Vi L Vs,
ifV =V, &V, (ie., V is the direct sum of V; and V) and V7 and V5
are orthogonal with respect to ¢. This is equivalent to the condition: Let
v, v’ € V and write v uniquely as v = vy + vy with vy € Vj and vy € V5,
and similarly v' = v| + v5 with v € V; and v}, € V5.

Let ¢; be the restriction of ¢ to V; x V;, and ¢, be the restriction of ¢
to V5 x V5. Then

p(v,v") = @1 (v, v]) + @2(v2. v3).
In this situation we will also write (V, ¢) = (V1,¢1) L (Va, ¢2). O

REMARK 6.2.10. Translated into matrix language, the condition in Def-
inition 6.2.9 is as follows: Let B; be a basis for V7 and B, be a basis for
Vo.Let A1 = [¢1]g, and A> = [¢2]g,. Let B = B1 U B, and 4 = [¢] 3.

Then
Ay O
A=
[ 0 A21|
(a block-diagonal matrix with blocks A; and A45). <&

First let us note that if ¢ is not nonsingular, we may “split off” its sin-
gular part.

DEFINITION 6.2.11. Let ¢ be a form on V. The kernel of ¢ is the sub-
space of V' given by

Ker(p) = {v eV e, w)=¢w,v)=0 forallwe V}. <

REMARK 6.2.12. By Lemma 6.1.10, ¢ is nonsingular if and only if
Ker(¢) = 0. &
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Lemma 6.2.13. Let ¢ be aformon V. Then V is the orthogonal direct sum
V =Ker(p) L 11

for some subspace Vi, with o1 = ¢|V1 a nonsingular form on Vi, and
V1, ¢1) is well-defined up to isometry.

Proof. Let V7 be any complement of Ker(¢), so that V' = Ker(¢) & Vi,
and let ¢; = ¢|V;. Certainly V = Ker(¢) L V;. To see that ¢; is nonsin-
gular, suppose that v; € V; with p(vy, w;) = 0 for every w; € Vj. Then
@1, w) = 0 forevery w € V, sov; € Ker(p), i.e., v € Ker(p) N V1 =
{0}.

There was a choice of V7, but we claim that all choices yield isometric
forms. To see this, let V'’ be the quotient space V/ Ker(p). There is a well-
defined form ¢’ on V' defined as follows: Let & : V — V/ Ker(¢) be the
canonical projection. Let v, w” € V’, choose v, w € V with v’ = 7(v) and
w’ = 7w(w). Then ¢’ (v', w’) = ¢(v, w). It is then easy to check that 7/ V;
gives an isometry from (V1, ¢1) to (V', ¢'). O

In light of this lemma, we usually concentrate on nonsingular forms.
But we also have the following well-defined invariant of forms in general.

DEFINITION 6.2.14. Let V be finite dimensional and let V' admit the form
@. Then the rank of ¢ is the dimension of V;, where V; is the subspace given
in Lemma 6.2.13. <&

DEFINITION 6.2.15. Let W be a subspace of V. Then its orthogonal
subspace is the subspace

le{veV|g0(w,v)=Of0rallweW}. <&

Lemma 6.2.16. Let V be a finite-dimensional vector space. Let W be a
subspace of V and let y = @|W. If { is nonsingular, then V.=W L W+
If ¢ is nonsingular as well, then Y+ = @|W= is nonsingular:

Proof. Clearly W and W+ are orthogonal, so to show that V =W 1 W+
it suffices to show that V. =W @ W+.

Let vg € W N W, Then vg € W, so o(w,vg) =0forallw € W.
But vgp € W as well, so ¥ (w, vg) = ¢(w, vo) and then the nonsingularity
of ¥ implies vy = 0.

Let vo € V. Then T (w) = ¢(w, vp) is a linear transformation T :
W — T, and we are assuming v is nonsingular so by Remark 6.1.9 there
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isawy € W with T(w) = ¥(w,wy) = @(w,wyp) for every w € W.
Then ¢(w,v9 — wg) = 0 for every w € W, so vg — wog € W+, and
vy = Wo + (Vo — Wo).

Suppose ¢ is nonsingularand let vy € W+. Then thereis a vectorv € V
with ¢(v, vg) # 0. Write v = wy + w, withw; € W, w; € W+, Then

0 # ¢(v,v0) = (w1 + w2, vo) = @(w1, v1) + ¢(w2., vo) = ¢ (w2, vo),
s0 | W= is nonsingular. O

REMARK 6.2.17. The condition that ¢|W be nonsingular is necessary.
For example, if ¢ is the form on F? defined by

o, w) =" [(1) (1)i| w

and W is the subspace

then W = W+, &

Corollary 6.2.18. Let V be a finite-dimensional vector space and let W be
a subspace of V with |W and ¢|W+* both nonsingular. Then (W L)+ =
w.

Proof. Wehave V.=W 1L W+ = WL 1 (W)L Itis easy to check that
(W)t 2 W, so they are equal. O

Our goal now is to “simplify”, and in favorable cases classify, forms on
finite-dimensional vector spaces. Lemma 6.2.16 is an important tool that
enables to apply inductive arguments. Here is another important tool, and a
result interesting in its own right.

Lemma 6.2.19. Let V be a vector space over F, and let V' admit the non-
singular form @. If char(IF) # 2, assume ¢ is symmetric or Hermitian. If
char(F) = 2, assume ¢ is Hermitian. Then there is a vector v € V with

¢(v.v) #0.

Proof. Pick a nonzero vector vy € V. If ¢(vq,v1) # 0, then set v = vy.
If (v1,v1) = O, then, by the nonsingularity of ¢, there is a vector v,
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with b = ¢(v1,v2) # 0. If p(va,v2) # 0, set v = v,. Otherwise, let
v3 = av] + v where a € T is an arbitrary scalar. Then

go(v3, v3) = avy + vp,avy + vz)
avy,avi) + ¢(avi, v2) + ¢(v2, avi) + ¢(v2, v2)
avy, vz) + go(vz, avl)

ab if ¢ is symmetric

I
N 8 € 8
—_—~ o~~~

=ab +ab if ¢ is Hermitian.

In the symmetric case, choose a # 0 arbitrarily. In the Hermitian case,
let a be any element of F with ab # —ab. (If char(F) # 2 we may choose
a = b~!. If char(F) = 2 we may choose a = b~!c where ¢ € F with
¢ # c.) Then set v = v3 for this choice of a. O

REMARK 6.2.20. The conclusion of this lemma does not hold if char(F) =
2. For example, let I be a field of characteristic 2, let V = F2, and let © be
the form defined on V by

o, w) =" [(1) (1)1| w.

Then it is easy to check that ¢ (v, v) = 0 forevery v € V. <&
Thus we make the following definition.

DEFINITION 6.2.21. Let V' be a vector space over a field F of charac-
teristic 2 and let ¢ be a symmetric bilinear form on V. Then ¢ is even if
¢(v,v) = 0 forevery v € V, and odd otherwise. <

Lemma 6.2.22. Let V be a vector space over a field F of characteristic 2
and let ¢ be a symmetric bilinear form on V. Then V is even if and only if
for some (and hence for every) basis B = {vi,va, ...} of V, (vi,v;) =0
for every v; € B.

Proof. This follows immediately from the identity

(v +w,v+w)=9,v) + ¢, w) + o(w,v) + p(w, w)
=¢((v,v) + 20, w) + p(w, w)
=9, v) + p(w, w). O

Here is our first simplification.
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DEFINITION 6.2.23. Let V be a finite-dimensional vector space and let ¢
be a symmetric bilinear or a Hermitian form on V. Then ¢ is diagonalizable
if there are 1-dimensional subspaces Vi, V5, ..., V, of V such that

V=ViLlVol--- LV, <

REMARK 6.2.24. Let us see where the name comes from. Choose a nonzero
vector v; in V; for each i (so {v;} is a basis for V;) and let a; = ¢(v;, v;).
Let 8B be the basis of V' given by 8 = {v1,..., v,}. Then

ap
an 0
lpls =
7
is a diagonal matrix. Conversely if V' has a basis 8 = {v1,...,v,} with
[¢] s diagonal, then V = V; L --- 1V, where V; is the subspace spanned
by v;. <&

REMARK 6.2.25. We will let [a] denote the bilinear or Hermitian form
on F (an [F-vector space) with matrix [a], i.e., the bilinear form given by
¢(x,y) = xay, or the Hermitian form given by ¢(x, y) = xay. In this
notation a form ¢ on V is diagonalizable if and only if it is isometric to
[a1] L--- L [a,] forsomeay,...,a, €F. <&

Theorem 6.2.26. Let V be a finite-dimensional vector space over a field
F of characteristic # 2, and let ¢ be a symmetric or Hermitian form on
V. Then ¢ is diagonalizable. If char(F) = 2 and ¢ is Hermitian, then ¢ is
diagonalizable.

Proof. We only prove the case char(F) # 2.

By Lemma 6.2.13, it suffices to consider the case where ¢ is nonsingu-
lar. We proceed by induction on the dimension of V.

If V is 1-dimensional, there is nothing to prove. Suppose the theorem is
true for all vector spaces of dimension less than n, and let V' have dimen-
sion n.

By Lemma 6.2.19, there is an element v; of V with ¢(v1, v1) = a1 # 0.
Let V; = Span(v;). Then, by Lemma 6.2.16, V = V; L V- and ¢| Vit is
nonsingular. Then by induction VIJ- =V, L..- LV, for 1-dimensional
subspaces Va,..., Vy,soV =V, LV, L ... LV, as required. O

The theorem immediately gives us a classification of forms on complex
vector spaces.
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Corollary 6.2.27. Let ¢ be a nonsingular symmetric bilinear form on V,
where V' is an n-dimensional vector space over C. Then ¢ is isometric to
[1] L --- L [1]. In particular, any two such forms are isometric.

Proof. By Theorem 6.2.26, V = V; L --- L V,, where V; has basis {v;}.
Let a; = @(v;, v;). If b; is a complex number with bl.2 = 1/a; and B is the
basis B = {bqvy,...,byv,} of V, then

1 0

kla=| . |- O
0 1

The classification of symmetric forms over R, or Hermitian forms over
C, is more interesting. Whether we can solve bl.2 = 1/a; over R, or bib; =
1/a; over C, comes down to the sign of a;. (Recall that in the Hermitian
case a; must be real.)

Before developing this classification, we introduce a notion interesting
and important in itself.

DEFINITION 6.2.28. Let ¢ be asymmetric bilinear form on the real vector
space V, or a Hermitian form on the complex vector space V. Then ¢ is
positive definite if p(v,v) > 0 forevery v € V, v # 0, and ¢ is negative
definite if (v, v) < 0 for every v € V, v # 0. It is indefinite if there are
vectors vy, vy € V with ¢(vy, v1) > 0and ¢ (v, v2) < 0. <&

Theorem 6.2.29 (Sylvester’s law of inertia). Let V be a finite-dimensional
real vector space and let ¢ be a nonsingular symmetric bilinear form on
V, or let V be a finite-dimensional complex vector space and let ¢ be a
nonsingular Hermitian form on V. Then ¢ is isometric to p[1] L q[—1] for
well-defined integers p and q with p + q = n = dim(V).

Proof. As in the proof of Corollary 6.2.27, we have that ¢ is isometric to
p[1] L g[—1] for some integers p and ¢ with p + g = n. We must show
that p and ¢ are well-defined.

To do so, let V4 be a subspace of V' of largest dimension with ¢| V4
positive definite and let V_ be a subspace of V of largest dimension with
@|V_ negative definite. Let pp = dim(V5) and go = dim(V_). Clearly po
and go are well-defined. We shall show that p = po and ¢ = qo. We argue
by contradiction.

Let B be a basis of V with [p]g = p[1] L ¢[-1].1f B = {v1,...,vs},
let By = {vi,...,vp} and B_ = {vp41,...,Vn}. If W, is the space
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spanned by B, then ¢|W, is positive definite, so po > p. If W_ is the
space spanned by B_, then ¢|W_ is negative definite, so go > ¢. Now
p +q = n,s0 po + qo > n. Suppose it is not the case that p = po and
q = qo- Then pg+qo > n,i.e.,dim(V4)+dim(V_) > n. Then V4 NV_ has
dimension at least one, so contains a nonzero vector v. Then ¢(v, v) > 0 as
v e Vy,bute(v,v) <0asv e V_, which is impossible. O

We make part of the proof explicit.

Corollary 6.2.30. Let V and ¢ be as in Theorem 6.2.29. Let po be the
largest dimension of a subspace Vi of V with ¢|Vy positive definite and
let qo be the largest dimension of a subspace V_ of V with ¢|V_ negative
definite. If ¢ is isometric to p[1] L q[—1], then p = po and g = qo. In
particular, ¢ is positive definite if and only if ¢ is isometric to n[1].

We can now define a very important invariant of these forms.

DEFINITION 6.2.31. Let V, ¢, p, and ¢ be as in Theorem 6.2.29. Then
the signature of ¢ is p — q. <&

Corollary 6.2.32. A nonsingular symmetric bilinear form on a finite-dimen-
sional vector space V over R, or a nonsingular Hermitian form on a finite-
dimensional vector space V over C, is classified up to isometry by its rank
and signature.

REMARK 6.2.33. Here is one way in which these notions appear. Let
f :R™ — R be a C? function and let xg be a critical point of f. Let H
be the Hessian matrix of f at xo. Then f has a local minimum at xo if H
is positive definite and a local maximum at x¢ if H is negative definite. If
H is indefinite, then x is neither a local maximum nor a local minimum
for f. <&

We have the following useful criterion.

Theorem 6.2.34 (Hurwitz’s criterion). Let ¢ be a nonsingular symmet-
ric bilinear form on the n-dimensional complex vector space V. Let B =
{v1,...,vn} be an arbitrary basis of V and let A = [¢]g. Let §o(A) =1
and for 1 <k < n let §x(A) = det(Ay) where Ay, is the k-by-k submatrix
in the upper left corner of A. Then

(1) @ is positive definite if and only if 83 (A) > O fork = 1,...,n.

(2) @ is negative definite if and only if (=1)%8;(A) > O fork = 1,....n.



6.2. CHARACTERIZATION AND CLASSIFICATION THEOREMS 179

(3) If 6 (A) # O fork = 1,...,n, then the signature of ¢ is r — s, where

r= #{k | 8% (A) and §x—1(A) have the same sign}
s = #{k | 8% (A) and §x—1(A) have opposite signs}.

Proof. We prove (1). Then (2) follows immediately by considering the form
—@. We leave (3) to the reader; it can be proved using the ideas of the proof
of (1).

We prove the theorem by induction on n = dim(V). If n = 1, the
theorem is clear: ¢ is positive definite if and only if [p]g = [a1] witha; >
0. Suppose the theorem is true for all forms on vector spaces of dimension
n — 1 and let V' have dimension n. Let V;,_; be the subspace of V' spanned
by Bn—1 ={v1,...,Un—1},s0 that A1 = [¢|Va-1l8,_,-

Suppose ¢ is positive definite. Then ¢|V,,—; is also positive definite (if
@(v,v) > 0 forall v # 0in V, then ¢(v,v) > O forall v € V,_1). By
the inductive hypothesis §;(A),...,d8,—1(A) are all positive. Also, since
8n—1(A) # 0, ¢|V,—1 is nonsingular. Hence V = V,_; L an;l, where
VnJ; | is a 1-dimensional subspace generated by a vector wy,. Let b,, =
@(Wy, Wy), 80 byy > 0.

Let 8B’ be the basis {vy, ..., Vy—1, Wy }. Then

det([¢]lg’) = Sn—1(A)bpn > 0.
By Theorem 6.1.14, if P is the change of basis matrix Pg/ g, then

det ([go];gf) = det(P)? det(4) = det(P)?8,(A) if ¢ is symmetric
= det(P)det(P) det(A) = |det(P)|28n(A) if ¢ is Hermitian

and in any case 8, (A) has the same sign as det([¢]3/), s0 8,(A4) > 0.
Suppose that §;(A), ..., 8,—1(A) are all positive. By the inductive hy-
pothesis ¢|V,,—; is positive definite. Againlet V = V,,_; L an;l with wy,
as above. If b,, = @(wy,,w,) > 0 then ¢ is positive definite. The same
argument shows that 8,1 (A4)by, has the same sign as 6, (A). But ,—1(A)
and §, (A) are both positive, so by, > 0. O

Here is a general formula for the signature of ¢.

Theorem 6.2.35. Let ¢ be a nonsingular symmetric bilinear form on the
n-dimensional real vector space V or a nonsingular Hermitian form on
the n-dimensional complex vector space V. Let B be a basis for ¢ and let
A = [¢]g. Then
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(1) A has n real eigenvalues (counting multiplicity), and

(2) the signature of ¢ is r —s, where r is the number of positive eigenvalues
and s is the number of negative eigenvalues of A.

Proof. To prove this we need a result from the next chapter, Corollary 7.3.20,
that states that every symmetric matrix is orthogonally diagonalizable and
that every Hermitian matrix is unitarily diagonalizable. In other words, if
A is symmetric then there is an orthogonal matrix P, i.e., a matrix with
'p = P71 suchthat D = PAP 1is diagonal, and if A is Hermitian there
is a unitary matrix P, i.e., a matrix with P = Pp~1 suchthat D = PAP!
is diagonal (necessarily with real entries). In both cases the diagonal entries
of D are the eigenvalues of A and D = [¢]e for some basis €.

Thus we see that r — s is the number of positive entries on the diagonal
of D minus the number of negative entries on the diagonal of D.

Let € = {v1,...,v,}. Reordering the elements of € if necessary, we
may assume that the first r diagonal entries of D are positive and the re-
maining s = n —r diagonal entries of D are negative. Then V = W; L W,
where W is the subspace spanned by {v1, ..., v,} and W, is the subspace
spanned by {v, 1, ..., v, }. Then ¢| W is positive definite and ¢| W is neg-
ative definite, so the signature of ¢ is equal to dim(W;) — dim(W,) =
r—s. (]

Closely related to symmetric bilinear forms are quadratic forms.

DEFINITION 6.2.36. Let V' be a vector space over F. A quadratic form
on V is a function ® : V' — F satisfying

(1) ®(av) = a?>®(v) foranya € F,v € V
(2) the function ¢ : V x V — F defined by

p(x,y) = O(x + y) — P(x) — O(y)

is a (necessarily symmetric) bilinear form on V. We say that ® and ¢ are
associated. <&

Lemma 6.2.37. Let V be a vector space over F with char(F) # 2. Then
every quadratic form ® is associated to a unique symmetric bilinear form,
and conversely.

Proof. Clearly ® determines ¢. On the other hand, suppose that ¢ is as-
sociated to ®. Then 4®(x) = P(2x) = P(x + x) = 2D(x) + ¢(x, x)
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SO
1
O(x) = J¢(x. x)
and ¢ determines ® as well. O

In characteristic 2 the situation is considerably more subtle and we sim-
ply state the results without proof. For an integer m let e(m) = 2"~ 1(2™ +
1) and o(m) = 2m~1 (2™ —1).

Theorem 6.2.38. (1) Let ¢ be a symmetric bilinear form on a vector space
V' of dimension n over the field F of 2 elements. Then ¢ is associated
to a quadratic form ® if and only if ¢ is even (in the sense of Defini-
tion 6.2.21). In this case there are 2" quadratic forms associated to ¢. Each
such quadratic form ® is called a quadratic refinement of ¢.

(2) Let ¢ be a nonsingular even symmetric bilinear form on a vector
space V of necessarily even dimension n = 2m over F, and let ® be a
quadratic refinement of ¢.

The Arf invariant of ® is defined as follows: Let | - | denote the cardi-
nality of a set. Then either

|@71(0)| =e(m) and |®7'(1)| = o(m), inwhich case Arf(®) =0,
or
|@71(0)| =o(m) and |®7'(1)| = e(m), inwhich case Arf(®) = 1.

Then there are e(m) quadratic refinements ® of ¢ with Arf(®) = 0 and
o(m) quadratic refinements ® of ¢ with Arf(®) = 1.

(3) Quadratic refinements of a nonsingular even symmetric bilinear
form on a finite-dimensional vector space V are classified up to isometry
by their rank (= dim(V)) and Arf invariant.

Proof. Omitted. O

EXAMPLE 6.2.39. We now give a classical application of our earlier re-
sults. Let

V:]P‘n: E b
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F a field of characteristic # 2, and suppose we have a function Q : V — F
of the form

X1
1
211 ]=3 Do aix? + Y aixix;.
Xn i i<j
Then Q is a quadratic form associated to the symmetric bilinear form ¢
where [g]e is the matrix A = (a;;). Then [g]¢ is diagonalizable, and that

provides a diagonalization of Q in the obvious sense. In other words, there
is a nonsingular change of variable

X1 1 J1
e such that Q = Z biiy?
Xn Yn Yn !

for some b11, b2z, ...,by, € F.If F = R we may choose each b;; = +1.
Most interesting is the following: Let F = R and suppose that

X1 X1 0
0 >0 whenever | : | #

Xn Xn 0

Then g is positive definite, and we call Q positive definite in this case as
well. We then see that for an appropriate change of variable

X1

ol =20

Xn i=1

That is, over R every positive definite quadratic form can be expressed
as a sum of squares. <

Let us now classify skew-symmetric bilinear forms.

Theorem 6.2.40. Let V be a vector space of finite dimension n over an
arbitrary field F, and let ¢ be a nonsingular skew-symmetric bilinear form
on V. Then n is even and ¢ is isometric to (n/Z)[ _(1) (1)], or, equivalently, to

[—(I) é], where I is the (n/2)-by-(n/2) identity matrix.

Proof. We proceed by induction on n. If n = 1 and ¢ is skew-symmetric,
then we must have [¢]g = [0], which is singular, so that case cannot occur.
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Suppose the theorem is true for all vector spaces of dimension less than n
and let V' have dimension n.

Choose vy € V, vy # 0. Then, since ¢ is nonsingular, there exists
w € V with ¢(w,v1) = a # 0, and w is not a multiple of vy as ¢ is
skew-symmetric. Let v, = (1/a)w, let 81 = {v1, v2}, and let V7 be the
subspace of V spanned by 8. Then [¢|Vi]g, = [_9 }]. V1 is anonsingular
subspace so, by Lemma 6.2.16, V = 7} L VIJ-. Now dim(VIJ-) =n-2
so we may assume by induction that V- has a basis B, with [p|V}]s, =
(n—=2)/2)[_9§]. Let B = B1 U B,. Then [p]g = (n/2)[_9 ]

Finally, if 8 = {v1,..., vy}, let B'= {v1,v3, ..., Uyp—1, V2, V4, ..., Up}.
Then [¢]lg =[_% I]. O

Finally, we consider skew-Hermitian forms. In this case, by convention,
the field IF of scalars has char(IF) # 2. We begin with a result about [ itself.

Lemma 6.2.41. Let F be a field with char(F) # 2 equipped with a nontriv-
ial conjugation ¢ — ¢. Then:

(1) Fo ={c €F | ¢ = c}isasubfield of F.
(2) There is a nonzero element j € F with j = —j.

(3) Every element of F can be written uniquely as ¢ = c1 + jca with
c1,¢2 € F (so that F is a 2-dimensional Fy-vector space with basis
{1, j}). In particular, ¢ = —c if and only if c = caj for some c5 € Fy.

Proof. (1) is easy to check. (Notethat 1 = (1-1) =1-1s01 =1.)

(2) Let ¢ be any element of IF withc # c and let j = (¢ —¢)/2.

(3) Observe that ¢ = ¢+ jcp withey; = (¢c+¢)/2and c2 = (c—¢)/2).
It is easy to check that ¢y, ¢, € Fy.

Also, if ¢ = ¢1 + ¢3j withey, ¢y € Fy, thenc = ¢; — jc, and, solving
for ¢; and ¢,, we obtain ¢y = (¢ +¢)/2and ¢, = (¢ —¢)/2j. (]

REMARK 6.2.42. IfF = C and the conjugation is complex conjugation,
Fo = R and we may choose j =i. <&

Theorem 6.2.43. Let V be a finite-dimensional vector space and let ¢ be
a nonsingular skew-Hermitian form on V. Then ¢ is diagonalizable, i.e.,
@ is isometric to [a1] L ... L [ay] witha; € F, a; # 0, a; = —a;, or
equivalently a; = jb; with b; € o, b; # 0, for each i.

Proof. First we claim there is a vector v € V with ¢(v,v) # 0. Choose
vy € V, v # 0, arbitrarily. If ¢(vy, v1) # 0, choose v = v;. Otherwise,
since ¢ is nonsingular there is a vector v, € V with ¢p(vy,v2) = a # 0.
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(Then ¢(va,v1) = —a.) If ¢(va,v2) # 0, choose v = v,. Otherwise,

for any ¢ € F, let v3 = v; + cvy. We easily compute that ¢(v3, v3) =

ac —ac = ac — (ac). Thus if we let v = vy + (j/a)va, (v, v) # 0.
Now proceed as in the proof of Theorem 6.2.26. O

Corollary 6.2.44. Let V be a complex vector space of dimension n and
let ¢ be a nonsingular skew-Hermitian form on V. Then ¢ is isometric to
rli] L s[—i] for well-defined integers r and s withr + s = n.

Proof. By Theorem 6.2.43, V has abasis 8 = {vy, ..., v,} with [p] g diag-
onal with entries i by, ..., i b, for nonzero real numbers by, ..., b,. Letting
B = {v],....v,} withv] = (y/1/]bi|)v; we see that [¢]g’ is diagonal
with all diagonal entries £i. It remains to show that the numbers r of +i
and s of —i entries are well-defined.

The proof is almost identical to the proof of Theorem 6.2.29, the
only difference being that instead of considering ¢(v,v) we consider

1/, v). O

6.3 THE ADJOINT OF A
LINEAR TRANSFORMATION

We now return to the general situation. We assume in this section that (V, ¢)
and (W, ) are nonsingular, where the forms ¢ and ¥ are either both bilin-
ear or both sesquilinear. Given a linear transformation 7 : V. — W, we
define its adjoint 724 : W — V. We then investigate properties of the
adjoint.

DEFINITION 6.3.1. Let 7 : V — W be a linear transformation. The
adjoint of 7 is the linear transformation 724 : W — V defined by

V(T (x),y) = @(x, T(y)) forallx eV, y € W. <&

This is a rather complicated definition, and the first thing we need to see
is that it in fact makes sense.

Lemma 6.3.2. 7% : W — V, as given in Definition 6.3.1, is a well-
defined linear transformation.

Proof.  We give two proofs, the first more concrete and the second more
abstract.

The first proof proceeds in two steps. The first step is to observe that the
formula ¢(x,z) = ¥ (T (x),y), where x € V is arbitrary and y € W is
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any fixed element, defines a unique element z of V, since ¢ is nonsingular.
Hence 7%4(y) = z is well-defined. The second step is to show that 724 is
a linear transformation. We compute, for x € V arbitrary,

o(x, Tyt + y2)) = V(T (x). y1 + y2) = ¥(T (). y1) + V(T (x). y2)
= o(x, 7)) + ¢(x, T*(y2))

and

o(x, T*%(cy)) = ¥(T(x).cy) =cy(T(x).y)
=Co(x, 7)) = (x,cT*(y)).

For the second proof, we first consider the bilinear case. The formula in
Definition 6.3.1 is equivalent to

ot (T (1)) () = ey (I(T (x)) = Ty () (),
where 7* : W* — V* is the dual of T, which gives

T9=a, o T*oay.

In the sesquilinear case we have a bit more work to do, since «, and
oy are conjugate linear rather than linear. The formula in Definition 6.3.1
is equivalent to ¥ (7 (x), y) = ¢(x, T2i(y)). Define oz by ag(y)(x) =
@(x, y), and define o similarly. Then o and oy are linear transformations
and by the same logic we obtain

qadj _ ,—1 g% -

T =agz oT™ oay. O
REMARK 6.3.3. 7% is often denoted by 7*, but we will not use that nota-
tion in this section as we are also considering 7 *, the dual of 7, here. <

Suppose V and W are finite dimensional. Then, since 7%V : W — V is
a linear transformation, once we have chosen bases, we may represent 7%
by a matrix.

Lemma 6.3.4. Let B and € be bases of V and W respectively and let
P = [¢]lg and Q = [V]e. Then

[Tadj]ﬂ(_f =P ' TlecsQ ifpandy are bilinear,
and

[(J‘adj]:g(_g _p! [Tleg QO if g andy are sesquilinear.
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In particular, if V.= W, ¢ = and B =€, and P = [¢]g, then
[Tadj].fB =P Y T)gP ifg isbilinear,
and
[7%9] 5 = P! "[TlgP if is sesquilinear.

Proof. Again we give two proofs, the first more concrete and the second
more abstract.
For the first proof, let [T e« g = M and [T*%]¢._g = N. Then

Y(T(x).y) =(Tx).y) ="(M[x]g) Olyle = ‘[xla " MO[yle
and
o(x. T*(y)) = {x. T*(y)) ="[x]gP (NDle) = ‘[x]a PN Dle
from which we obtain
'MQ = PN andhence N =P 'IMQ.

For the second proof, let 8 = {vy, vs,...} and set B = {v1,02,...}.
Then, keeping track of conjugations, we know from the second proof of
Lemma 6.3.2 that

7-adj _ _ —lro _

[T ge = (wlzcg) [Tz = lowle e
But [aglg+, 5 = P, logle e = 0, and from Definition 2.4.1 and
Lemma 2.4.2 we see that [T*]z+ &+ =[Tlg. 5 =[T]e<s- O

In one very important case this simplifies.

DEFINITION 6.3.5. Let V be a vector space and let ¢ be a formon V. A
basis 8 = {v1, v2, ...} of V is orthonormal if p(v;, v;) = ¢(v;,v;) = 1if
i=jand0ifi # j. <
REMARK 6.3.6. We see from Corollary 6.2.30 that if F = R or C then
V has an orthonormal basis if and only if ¢ is real symmetric or complex
Hermitian, and positive definite in either case. <&

Corollary 6.3.7. Let V and W be finite-dimensional vector spaces with
orthonormal bases B and € respectively. Let T : V. — W be a linear
transformation. Then

[(J‘adj].fBef — ’["j’]€<_$ if ¢ and  are bilinear
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and
[T gce =[Tlees if ¢ and y are sesquilinear.
In particular, if T : V — V then
[T g ="[T]a ify isbilinear
and
[T g =[Tlg ife is sesquilinear.
Proof. In this case, both P and Q are identity matrices. O

REMARK 6.3.8. There is an important generalization of the definition of
the adjoint. We have seen in the proof of Lemma 6.3.2 that 7% is defined by
az0T % = Toq 7 Suppose now that o, or equivalently «y, is injective but
not surjective, which may occur when V is infinite dimensional. Then 72
may not be defined. But if 724 i5 defined, then it is well-defined, i.e., if there
is a linear transformation § : W — V satistying (7 (x), y) = ¥ (x, 8(»))
for every x € V, y € W, then there is a unique such linear transformation
8, and we set 724 = §. <&

REMARK 6.3.9. (1) It is obvious, but worth noting, that if «, is injective
the identity 4 : V' — V has adjoint * = 4, as ¢(d(x),y) = ¢(x,y) =
¢(x,d(y)) forevery x,y € V.

(2) On the other hand, if «,, is not injective there is no hope of defining
an adjoint. For suppose Vy = Ker(e,) # {0}. Let P : W — V be
any linear transformation with Po(W) C V. If § : W — V is a linear
transformation with ¥ (7 (x), y) = ¢(x,8(y)), then 8’ = 8 + Py also
satisfies ¥ (7 (x),y) = ¢(x,8'(y)) forx e V,y € W. <

We state some basic properties of adjoints.

Lemma 6.3.10. (/) Suppose 71 : V. — W and T, : V. — W both have
adjoints. Then 71 + T, : V. — W has an adjoint and (97 + )i =
,rrladj + ,\'rzadj.

(2) Suppose T : V. — W has an adjoint. Then ¢T : V — W has an
adjoint and (cT)*Y = ¢ T34,

(3) Suppose 8 : V. — W and T : W — X both have adjoints. Then
T o8 :V — X has an adjoint and (T o 8)* = 834 o g7adj,

(4) Suppose T : V. — V has an adjoint. Then for any polynomial
p(x) € F[x], p(7) has an adjoint and (p(T))* = p(T%).
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Lemma 6.3.11. Suppose that ¢ and  are either both symmetric, both Her-
mitian, both skew-symmetric, or both skew-Hermitian. If T : V — W has
an adjoint, then 79 : W — V has an adjoint and (7°9)*4 = T

Proof. We prove the Hermitian case, which is typical. Let § = 724, By
definition, ¥ (7 (x),y) = ¢(x,8(y)) forx € V,y € W.Now & has an
adjoint R if and only if (& (y), x) = ¥ (y, R(x)). But

9(8(3).x) = o(x.8() = ¥(T(x).y) =¥ (y. T(x))

soR =7T,ie., (’J"‘ﬁ‘dj)‘ﬁldj =7. O

We will present a number of interesting examples of and related to ad-
joints in Section 7.3 and in Section 7.4.



CHAPTER 7

REAL AND COMPLEX INNER
PRODUCT SPACES

In this chapter we consider real and complex vector spaces equipped with
an inner product. An inner product is a special case of a symmetric bilinear
form, in the real case, or of a Hermitian form, in the complex case. But it is
a very important special case, one in which much more can be said than in
general.

7.1 BASIC DEFINITIONS

We begin by defining the objects we will be studying.

DEFINITION 7.1.1. An inner product ¢(x,y) = (x,y) on a real vector
space V' is a symmetric bilinear form with the property that (v, v) > 0 for
everyv e V,v #0.
An inner product ¢(x,y) = (x,y) on a complex vector space V is a
Hermitian form with the property that (v, v) > 0 forevery v € V, v # 0.
A real or complex vector space equipped with an inner product is an
inner product space. <

ExAMPLE 7.1.2. (1) The cases F = R and C of Example 6.1.5(1) give
inner product spaces.

(2) Let F = R and let 4 be a real symmetric matrix (i.e., ‘4 = A),
orlet F = C and let A be a complex Hermitian matrix (i.e., ‘4 = A) in
Example 6.1.5(2). Then we obtain inner product spaces if and only if A is
positive definite.

(3) Let F = R or C in Example 6.1.5(3).

(4) Example 6.1.5(4). &

189
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In this chapter we let F be R or C. We will frequently state and prove
results only in the complex case when the real case can be obtained by
ignoring the conjugation.

Let us begin by relating inner products to the forms we considered in
Chapter 6.

Lemma 7.1.3. Let ¢ be an inner product on the finite-dimensional real
or complex vector space V. Then ¢ is nonsingular in the sense of Defini-
tion 6.1.8.

Proof. Since ¢(y,y) > 0 forevery y € V, y # 0, we may apply Lemma
6.1.10, choosing x = y. O

REMARK 7.1.4. Inner products are particularly nice symmetric or Hermi-
tian forms. One of the ways they are nice is that if ¢ is such a form on a vec-
tor space V', then not only is ¢ nonsingular but its restriction to any subspace
W of V is nonsingular. Conversely, if ¢ is a form on a real or complex vector
space V' such that the restriction of ¢ to any subspace W of V is nonsingu-
lar, then either ¢ or —¢ must be an inner product. For if neither ¢ nor —¢ is
an inner product, there are two possibilities: (1) There is a vector wo with
@(wo, wo) = 0, or (2) There are vectors wy and w, with (w1, wy) > 0and
(w2, wz) < 0.Inthiscase f(t) = e(tw; + (1 —)wz, twy + (1 —1t)wy) is
a continuous real-valued function with f(0) > 0 and f(1) < 0, so there is
a value tg with f(¢9) = 0, i.e., p(wg, wo) = 0 for we = towy + (1 —to)w>.
Then ¢ is identically 0 on Span({wo}). <

We now turn our attention to norms of vectors.

DEFINITION 7.1.5. Let V' be an inner product space. The norm ||v|| of a
vector v € V' is

o]l = v/ (v, v). o

Lemma 7.1.6. Let V be an inner product space.

(1) |lcv|| = le|llv| for any ¢ € F and any v € V.

(2) |v]l = 0 forallv e V and ||v|| = 0 if and only if v = 0.

(3) (Cauchy-Schwartz-Buniakowsky inequality) |(v, w)| < |[v||||w]|| for
allv,w € V, with equality if and only if {v, w} is linearly dependent.

(4) (Triangle inequality) |v + w|| < ||v|| + ||w| forall v,w € V, with
equality if and only if w = 0 or v = pw for some nonnegative real number

p.
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Proof. (1) and (2) are immediate.

For (3), if {v, w} is linearly dependent then w = 0 or w # 0 and
v = cw for some ¢ € F, and it is easy to check that in both cases we have
equality. Assume that {v, w} is linearly independent. Then for any ¢ € T,
X = v —cw # 0, and then direct computation shows that

0 < |lx||? = (x,x) = (v,0) + (—cw,v) + (v, —cw) + (—cw, —cw)

= (v,v) —c(v,w) — (v, w) + |c|*(w, w).
Setting ¢ = (v, w)/{w, w) gives
0 < (v, ) = [(v, w) [/ (w, w),

which gives the inequality.
For (4), we have that

||v+w||2=(v+w,v+w)
= (v,v) + (v, w) + (w, v) + (w, w)
= loI* + ((v, w) + (v, w)) + [[w]
< vl* + 2|(v, w)| + lw]|?
< I +2lvlllwl + lwl? = (loll + wl])?.

which gives the triangle inequality. The second inequality in the proof is the
Cauchy-Schwartz-Buniakowsky inequality. The first inequality in the proof
holds because for a complex number ¢, ¢ + ¢ < 2|c|, with equality only if
¢ is a nonnegative real number.

To have [[v+w||? = (||v]|+]w]|)? both inequalities in the proof must be
equalities. The second one is an equality if and only if w = 0, in which case
the first one is, too, or if and only if w # 0 and v = pw for some complex
number p. Then (v, w) + (w, v){pw, w) + (w, pw) = (p + P)||w||* and
then the first inequality is an equality if and only if p is a nonnegative real
number. O

If V is an inner product space, we may recover the inner product from
the norms of vectors.

Lemma 7.1.7 (Polarization identities). (1) Let V' be a real inner product
space. Then for any v,w € V,

(v.w) = 1/l + w|® = 1/9)]v - w]?.
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(2) Let V be a complex inner product space. Then for any v,w € V,

(v.w) = 1/Hllv +w|? + (/D] +iw]?
— /Ml —w)? = @/l —iw]>.

For convenience, we repeat here some earlier definitions.

DEFINITION 7.1.8. Let V be an inner product space. A vector v € V is a
unit vector if ||v|| = 1. Two vectors v and w are orthogonal if (v, w) = 0.
A set B of vectors in V, B = {v1, va, ...}, is orthogonal if the vectors in
B are pairwise orthogonal, i.e., if (v;, v;) = 0 whenever i # j. The set 8
is orthonormal if 8 is an orthogonal set of unit vectors, i.e., if (v;, v;) = 1
for every i and (v;,v;) = O forevery i # j. <

ExAMPLE 7.1.9. Let (, ) be the standard inner product on F”, defined by
(v, w) = "w. Then the standard basis & = {e1, ..., ey} is orthonormal. <

Lemma 7.1.10. Let 8 = {v1, va, ...} be an orthogonal set of nonzero vec-
torsin V. Ifv € V is a linear combination of the vectors in 8, v = Zi civ;,
then c; = (v,v;)/|v;|? for each j. In particular, if B is orthonormal then
cj = (v, v;) foreach j.

Proof. For any j,

v v, <chv,,v,> Zci(vi,v‘;)=c‘/(v‘/,v‘/>

as (v;,vj) = 0fori # j. O

Corollary 7.1.11. Let B = {v1,va2,...} be an orthogonal set of nonzero
vectors in V. Then B is linearly independent.

Lemma 7.1.12. Let B = {v1,v2,...} be an orthogonal set of nonzero
vectors in V. If v € V is a linear combination of the vectors in 8, v =
> civi, then |[v||? = Y, |ei*|vil|?. In particular if B is orthonormal
then |v]2 = ¥ le .

Proof. 'We compute

2 = <chvl,zc/v/>
2
—Zc,c, vl,v, Z|Ci| (Uiavi>- O
i
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Corollary 7.1.13 (Bessel’s inequality). Let B = {v1, va, ..., vy} be afinite
orthogonal set of nonzero vectors in V. For any vector v € V,

n
S w2/ oi | < vl
i=1

with equality if and only if v =Y ¢ _, (v, v;)v;.
In particular, if B is orthonormal then

& 2
> lvaw)|” < vl
i=1

with equality if and only if v = Y i (v, vi)v;.

Proof. Letw = Y "_ ({(v, v;)/||vi||*)v; and let x = v—w. Then (v, v;) =
(w, v;) for each i, so (x, v;) = 0 for each i and hence (x, w) = 0. Then

Il = (v,v) = (w + x, w+x) = [[w]* + x| = w]?
n
2 2
=2 M.l 7/ i
i=1
with equality if and only if x = 0. (]

We have a more general notion of a norm.

DEFINITION 7.1.14. Let V be a vector space over F. A norm on V is a
function || - || : V — R satisfying:

(a) |lv]l = 0 and |v| = 0ifand only if v = 0,
(b) |lev| = |c|||v]| forc e Fandv € V,
© llv+wl <[l + [lw] forv,w € V. %
Theorem 7.1.15. (1) Let V be an inner product space. Then
vl = v/ (v, v)

is a norm in the sense of Definition 7.1.14.
(2) Let V be a vector space and let | - || be a norm on V. There is an
inner product (, ) on V such that |v|| = /{v, v) if and only if || - || satisfies

the parallelogram law

v+ wl*+ lv—w|?® = 2(||v||2 + ||w||2) Sforallv,w e V.
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Proof. (1) is immediate. For (2), given any norm we can define (, ) by use
of the polarization identities of Lemma 7.1.7, and it is easy to verify that
this is an inner product if and only if || - || satisfies the parallelogram law.
We omit the proof. O

EXAMPLE 7.1.16. If

X1
vV =
Xn
define || - || on F” by [lv|| = |x1| + -4 |xx|. Then || - || is a norm that does
not come from an inner product. <&

We now investigate some important topological properties.

DEFINITION 7.1.17. Twonorms || - ||; and || - |2 on a vector space V are
equivalent if there are positive constants a and A such that

allvlli < |lvll2 < A|lv||1 forevery v € V. <&

REMARK 7.1.18. Itis easy to check that this gives an equivalence relation
on norms. <

Lemma 7.1.19. (1) Let | - || be any norm on a vector space V. Then d (v, w)
= ||v — w|| is a metricon V.

(2) If || - |1 and || - ||2 are equivalent norms on V, then the metrics
di(v,w) = ||lv—w]|1 and d2(v, w) = ||v —w||2 give the same topology on
V.

Proof. (1) A metric on a space V is a functiond : V x V — V satisfying:
(a) d(v,w)>0and d(v,w) =0ifand only if w = v

(b) d(v,w) = d(w,v)

() div,x) <d@,w)+ d(w, x).

It is then immediate that d(v, w) = ||v — w|| is a metric.

(2) The metric topology on a space V' with metric d is the one with a
basis of open sets B.(vo) = {v | d(v,vg) < ¢} for every vg € V and every
& > 0. Thus || - ||; gives the topology with basis of open sets B (vg) = {v |
lv —volli < €} forvg € V and ¢ > 0, for i = 1,2. By the definition
of equivalence BEZ/A(UO) - le (vo) and Bgl/a (vg) C Bsz(vo) so these two
bases give the same topology. O
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Theorem 7.1.20. Let V be a finite-dimensional F -vector space. Then V
has a norm, and any two norms on V are equivalent.

Proof. First we consider V' = F". Then V has the standard norm

loll = (v.v) = Vv
coming from the standard inner product (-, -).
It suffices to show that any other norm || - ||, is equivalent to this one.
By property (b) of a norm, it suffices to show that there are positive
constants a and A with

a <|v|2 <A foreveryv e V with|v| = 1.
First suppose that || - |2 comes from an inner product { , ). Then
(v,v)2 = "WBY for some matrix B, and so we see that f(v) = (v,v),

is a quadratic function of the entries of v (in the real case) or the real and
complex parts of the entries of v (in the complex case). In particular f(v) is
a continuous function of the entries of v. Now {v | ||v]| = 1} is a compact
set, and so f(v) has a minimum a (necessarily positive) and a maximum A
there.

In the general case we must work a little harder. Let

m =min (|ler]|,.....|len],) and M =max(|er],.....|en],)
where {eq, ..., e,} is the standard basis of F”.
X1
Letv = [ i| with |[v|| = 1. Then |x;| < 1 for each i, so, by the
Xn

properties of a norm,

vl = ||x1e1 R i 7 ||2
< |xiea]y + oo+ xnenl,
= Frallesl, + -+ bl eal,
<1l-M+---+1-M =nM.

We prove the other inequality by contradiction. Suppose there is no such
positive constant a. Then we may find a sequence of vectors vy, va, . .. with

lvill = 1 and ||v;||2 < 1/ for each i.

Since {v | ||v] = 1} is compact, this sequence has a convergent sub-
sequence wi, Wy, ... with [|w;|| = 1 and |Jw;||2 < 1/i for each i. Let
Woo = lim;j_00 wj, and let d = ||Woo|2. (We cannot assert that d = 0

since we do not know that || - ||, is continuous.)
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For any § > 0, let w € V be any vector with ||w — ws|| < §. Then
d = [wool, = Jweo —wl, + [Jw], = 8nM + w2

Choose § = d/(2nM). Then ||w — weo| < § implies, by the above in-
equality, that

lwl>d —8nM =d)2.

Choosing i large enough we have ||w; — weo| < & and |w;|l2 < d/2, a
contradiction.
This completes the proof for V' = F”. For V' an arbitrary vector space

of dimension 7, choose any basis B of V' and define | - || on V by
lll = [[vlg]|
where || - || is the standard norm on F”. (]

REMARK 7.1.21. Itis possible to put an inner product (and hence a norm)
on any vector space V, as follows: Choose a basis 8 = {v, va,...} of V
and define (, ) by (v;,v;) = 1ifi = j and Oifi # j, and extend (, ) to
V by (conjugate) linearity. However, unless we can actually write down the
basis B, this is not very useful. <&

ExAaMPLE 7.1.22. If V is any infinite-dimensional vector space then V'
admits norms that are not equivalent. Here is an example. Let V' = "F*°.
Let v = [x1,x2,...] and w = [y1, y2,...]. Define (, ) on V by (v, w) =
Y721 X;¥; and define (, ) on V by (v, w) = Y7, x;7;/2/. Then (, )
and (, ) give norms || - | and || - ||’ that are not equivalent, and moreover
the respective metrics d and d’ on V define different topologies, as the
sequence of points {e1, 2, ...} does not have a limit on the topology on V'
given by d, but converges to [0, 0, .. .] in the topology given by d’. <

7.2 THE GRAM-SCHMIDT PROCESS

Let V be an inner product space. The Gram-Schmidt process is a method
for transforming a basis for a finite-dimensional subspace of V' into an or-
thonormal basis for that subspace. In this section we introduce this process
and investigate its consequences.

We fix V, the inner product { , }, and the norm | - || coming from this
inner product, throughout this section.
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Theorem 7.2.1. Let W be a finite-dimensional subspace of V, dim(W) =
k, andlet B = {v1, V3, ..., v} be a basis of W. Then there is an orthonor-
mal basis € = {wi, wy, ..., Wk} of W such that Span({wq, ..., w;}) =
Span({vy,...,v;}) for each i = 1,...,k. In particular, W has an or-
thonormal basis.

Proof. By Lemma 7.1.3 and Theorem 6.2.29 we see immediately that W
has an orthonormal basis. Here is an independent construction.
Define vectors x; inductively:

X1 = Wi,
X; = v; — (vi’x‘i)x,- fori > 1.
o b))
Then set
w; = x;/||xi| foreachi. O

DeFINITION 7.2.2. The basis € of W obtained in the proof of Theo-
rem 7.2.1 is said to be obtained from the basis 8 of W by applying the
Gram-Schmidt process to B. <&

REMARK 7.2.3. The Gram-Schmidt process generalizes without change
to the following situation: Let W be a vector space of countably infinite di-
mension, and let 8 = {v1, va, ...} be a basis of V' whose elements are in-
dexed by the positive (or nonnegative) integers. The proof of Theorem 7.2.1
applies to give an orthonormal basis € of W. <

We recall another two definitions from Chapter 6.
DEFINITION 7.2.4. Let W be a subspace of V. Its orthogonal complement
W is the subspace of V' defined by
WJ‘={x€V|(x,w):OforeveryweW}. <

DEFINITION 7.2.5. V is the orthogonal direct sum V = W; L W, of
subspaces Wy and W, if (1) V' = W; @ W, is the direct sum of the subspaces
W, and W, (2) W; and W, are orthogonal subspaces of V. Equivalently, if
v = wi + wy with w; € W; and w, € W,, then

llI? = llwill? + [[wa]l. s

Theorem 7.2.6. Let W be a finite-dimensional subspace of V. Then V is
the orthogonal direct sum V. =W 1L W+,



198 GUIDE TO ADVANCED LINEAR ALGEBRA

Proof. If V finite-dimensional, then, by Lemma 7.1.3, ¢|W is nonsingular
(as is ¢ itself), so, by Lemma 6.2.16, V = W L wt.

Alternatively, let dim(V') = n and dim(W) = k. Choose a basis B; =
{v1,..., v} of W and extend it to a basis B = {v1,...,v,} of V. Apply
the Gram-Schmidt process to B to obtain a basis € = {wq,...,w,} of V.
Then €; = {wy,..., Wi} is a basis of W. It is easy to check that €, =
{Wk+1,..., Wy} is a basis of W+, from which it follows that V = W L
Wt

In general, choose an orthogonal basis € = {wy,..., wr} of W. For
veVletx =) (v,w)w. Then x € W and (x,w;) = (v, w;) for
i = 1,...,k, which implies (x,w) = (v, w) for every w € W. Thus
(v—x,w) = 0forevery w € W, andso v—x € W, Since v = x4+ (v—x),
we see that V = W4+ W+ . Now (y,z) = O whenever y € W andz € W+,
Ifwe WNW=, sety = wand z = w to conclude that (w, w) = 0, which
implies that w = 0. Thus V = W @ W. Finally, if V = W @ W+ then
V = W L W+ by the definition of W=. O

Lemma 7.2.7. Let W be a subspace of V and suppose that V. =W L W+,
Then (WL): = W.

Proof. If V is finite-dimensional, this is Corollary 6.2.18. The following
argument works in general.

It is easy to check that (W)~ 2 W.Letv € (W)L, Since v € V,
we may write v = x + y withx € Wand y € WL. Then 0 = (v, y) =
(x+y,9)=(x,»)+ (y,y) = (»y,y) so y =0, and hence v = x. Thus
wHt =w. O

Corollary 7.2.8. Let W be a finite-dimensional subspace of V. Then
whHt =w.

Proof. Immediate from Theorem 7.2.6 and Lemma 7.2.7. (]
EXAMPLE 7.2.9. Let V' C "F°° be the subspace consisting of all ele-

ments [x1, Xz, ...] with {x;} bounded (i.e., such that there is a constant M
with |x;| < M for each 7). Give V' the inner product

(x1ox2. e ya. ) =D x5,/27.
j=1

Let W ="F* and note that W is a subspace of V. If y =[yy, y2,...]e W+
then, since e; € W foreachi,0 = (e;, y) = y;/2",s0 y = [0,0,...]. Thus
W+ =1{0}, and we see that V# W L W+ and that (W)L £W. &
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DEFINITION 7.2.10. Let W be a subspace of V' and suppose that V =
W L W+. The orthogonal projection Ty is the linear transformation de-
fined by Iy (v) = x where v = x 4+ y withx € Wandy € W+, <

Lemma 7.2.11. Let W be a finite-dimensional subspace of V and let € =
{w1, ..., Wk} be an orthonormal basis of W. Then

k
Ow) = Z(v, w,-)w,- forevery v e V.

i=1

Proof. Immediate from the proof of Theorem 7.2.6. O

Corollary 7.2.12. Let W be a finite-dimensional subspace of V and let
€ = {wi,....wi} and € = {wy, ..., w;} be two orthonormal bases of
W. Then

k k

Z(v, wiw; = Z(v, wi)w; foreveryv € V.

i=1 i=1

Proof. Both are equal to [Ty (v). O

Lemma 7.2.13. Let W be a subspace of V such that V.= W L W+, Then
H%V =lw, Oy =4 —w,and Ny Oy = Ny Iy =0.

Proof. This follows immediately from Definition 7.2.10. O

REMARK 7.2.14. Suppose that V is finite-dimensional. Let T = Iy .
By Lemma 7.2.13, 72 = T so p(7) = 0 where p(x) is the polynomial
p(x) = x> —x = x(x —1). Then the minimum polynomial mg (x) divides
p(x). Thus mg (x) = x, which occurs if and only if W = {0}, or m¢ (x) =
x—1, which occurs if and only if W = V| or mg(x) = x(x—1). In this last
case W is the 1-eigenspace of ITy and W+ is the 0-eigenspace of Iy . In
any case 1w is diagonalizable (over R or over C), as mg(x) is a product
of distinct linear factors. <

Let us revisit the Gram-Schmidt process from the point of view of or-
thogonal projections. First we need another definition.

DEFINITION 7.2.15. The normalizationmap N : V —{0} —> {v € V|
|lv|| = 1} is the function N(v) = v/||v]|. <&
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Corollary 7.2.16. Let W be a finite-dimensional subspace of V and let
B = {v1,..., v} beabasis of W. Let

Wo ={0} and W; = Span({vy,...,v;})

for1 <i < k. Then the basis € = {w, ..., wx} of W obtained from V by
the Gram-Schmidt procedure is given by

wi=N(Tyo (w)) fori=1.....k

The Gram-Schmidt process has important algebraic and topological con-
sequences.

DeFINITION 7.2.17. Let F = R or C. A k-frame in F" is a linearly
independent k-tuple {vy, ..., v} of vectors in F”. An orthonormal k -frame
in F” is an orthonormal k-tuple {v1, ..., vg} of vectors in F”. Set

Gk (F) = {k-frames in IF"}
and
S k(F) = {orthonormal k-frames in IF"}

By identifying {v1, ..., v, } with the n-by-k matrix [vy] - - - |vg] we iden-
tify G, x (F) and &, x (IF) with subsets of M,, 1 (IF). Let F"* have its usual
topology. The natural identification of M,, ¢ (IF) with "k gives a topology
on M, x (IF) and hence on §,  (IF) and &, () as well. &

In order to formulate our result we need a preliminary definition.

DEFINITION 7.2.18. Let A;’ ={k-by-k diagonal matrices with positive
real number entries}. For F = R or C, let N () ={k-by-k upper trian-
gular matrices with entries in F and with all diagonal entries equal to 1}.
Topologize :A]i' and N () as subsets of Fk*, <&

Lemma 7.2.19. With these identifications, any matrix P € §, ; (R) can
be written uniquely as P = QAN where Q € 8,y(R), A € :A;', and
N € N (R), and any matrix P € 8, (C) can be written uniquely as
P = QAN where Q € 8,4(C), A€ A, and N € N (C).

Proof. The proof is identical in both cases, so we let F = R or C.

Let P = [vy]|---|vy]. In the notation of the proof of Theorem 7.2.1,
we see that for each i = 1,...,k, x; is a linear combination of v; and
X1,...,Xij—1, which implies that v; is a linear combination of xq, ..., Xx;.
Also we see that in any such linear combination the x;-coefficient of v;
is 1. Thus P = Q’'N where Q' = [x1]|---|xx] and N € N (F). But
xi = ||xillw; so Q' = QA where Q = [wy]---|wg] and 4 € :A]i' is the
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diagonal matrix with entries ||x1], ..., ||xk||. Hence P can be written as
P = QAN.

To show uniqueness, suppose P = Q1 A1 N1 = Q2A>2N;,. Let My =
AiN; and M, = A, N,. Then Q1M1 = Q2M2 NeJ Q1 = QzMle_l,
where M> M~ 1is upper triangular with positive real entries on the diagonal.
Let Q1 = [wi|wz|---|wi] and Qo = [w]lw}|---|w}]. If MoM{ " had a
nonzero entry in the (i, j) position with i < j, then, choosing the smallest
such j, (w;,w;) # 0, which is impossible. Thus M>M;! is a diagonal
matrix. Since (w;, w;) = 1 for each i, the diagonal entries of Mle_l
all have absolute value 1, and since they are positive real numbers, they
are all 1. Thus Mle_l = [I. Then M, = M; and hence Q, = Q;.
Hence M = M, and Q = Q; are uniquely determined. For any matrices
A e :A]i' and N € N (F), the diagonal entries of AN are equal to the
diagonal entries of A, so the diagonal entries of A are equal to the diagonal
entries of M. Thus A, being a diagonal matrix, is also uniquely determined.
Then N = A~!' M is uniquely determined as well. O

Theorem 7.2.20. With the above identifications, the multiplication maps

m: 8, (R) x A;’ X Ng(R) — G,k (R)
and

m: 8, ,(C) x A;’ X N (C) — 6, 1 (C)
givenby P = m(Q, A, N) = QAN are homeomorphisms.

Proof. In either case, the map m is obviously continuous, and Lemma 7.2.19
shows that it is 1-to-1 and onto. The proof of Theorem 7.2.1 shows that
m~!: P — (Q, A, N) is also continuous, so m is a homeomorphism. [

Corollary 7.2.21. With the above identifications, §, x(R) is a strong de-
formation retract of §,  (R) and 8,  (C) is a strong deformation retract of
Gn ke (C).
Proof. LetF = R or C. &, (F) is a subspace of G, x(IF) and, in the
notation of Lemma 7.2.19, we have Q = QI where the first [ is in :A]i'
and the second is in N (IF).

A subspace X of a space Y is a strong deformation retract of Y if there
is a continuous function R : ¥ x [0, 1] — Y with

(a) R(y,0)=yforeveryye?,
(b) R(x,t) = xforevery x € X, t € [0, 1],
(¢) R(y,1) € X forevery y €Y.
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(We think of ¢ as “time” and set R,(y) = R(y.t). Then Ry is the identity
onY, Ry : Y — X, and F,(x) = x for every x and 7, so points in X
“never move”.

In our case, the map R is defined as follows. If P = QAN then

R(P,t) = QA9 (eI + (1 -1)N). O

7.3 ADJOINTS, NORMAL LINEAR
TRANSFORMATIONS, AND THE
SPECTRAL THEOREM

In this section we derive additional properties of adjoints in the case of inner
product spaces. Then we introduce the notion of a normal linear transfor-
mation 7 : V' — V and study its properties, culminating in the spectral
theorem.

We fix V, the inner product ¢(x,y) = (x,y), and the norm || x|| =
(x, x), throughout.

Let 7 : V — W be a linear transformation between inner product
spaces. In Definition 6.3.1 we defined its adjoint 724, We here follow com-
mon mathematical practice and denote 7% by 7 *. (This notation is am-
biguous because T * also denotes the dual of 77, T7* : W* — V* but
in this section we will always be considering the adjoint and never the
dual.) Lemma 6.3.2 guaranteed the existence of 7* only in case V is finite-
dimensional, but we observed in Remark 6.3.8 that if 7* is defined, it is
well-defined.

We first derive some relationships between 7 and 7 *.

T*

Lemma 7.3.1. Let V and W be finite-dimensional inner product spaces
andlet T : V — W be a linear transformation. Then

(1) Im(7*) = Ker(7)* and Ker(T*) = Im(T)*
(2) dim(Ker(7*)) = dim(Ker (7))
(3) If dim(W) = dim(V) then dim(Im(7 *)) = dim(Im(7)).

Proof. Let U = Ker(7). Let dim(V) = nand dim(U) = k, so dim(U~) =
n — k. Then, forany u € U and any v € V,

(u, T*()) = (T (), v) = (0,v) =0,
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so Im(7*) € U~. Hence dim(Ker(7*)) > k = dim(Ker(7)). Replacing
T by T* we obtain dim(Ker(7**)) > dim(Ker(7 *)). But 7** = T, so
dim(Ker(7*)) = dim(Ker(7)) and Im(7*) = Ker(7)*. The proof that
Ker(7*) = Im(7)* is similar. Then (3) follows from Theorem 1.3.1. I

Corollary 7.3.2. Let V be a finite-dimensional inner product space and
let T : V. — V be a linear transformation. Suppose that T has a Jordan
Canonical Form over F (which is always the case if F = C). Then T*
has a Jordan Canonical Form over F. The Jordan Canonical Form of T*
is obtained from the Jordan Canonical Form of T by taking the conjugate
of each diagonal entry if & = C and is the same as the Jordan Canonical

Form of T if F = R.

Proof. By Lemma 6.3.10, (T —Ad)* = 7* —AdJ. Apply Lemma 7.3.1 with
7 replaced by (7 — Ad)¥ to obtain that the spaces Ei‘ of T and E% of T*
have the same dimension for every eigenvalue A of 7 and every positive
integer k. These dimensions determine the Jordan Canonical Forms. O

Corollary 7.3.3. Let V be a finite-dimensional inner product space and let
T :V — V be a linear transformation. Then

(1) mg=(x) = mg(x)

(2) cq=(x) = c7(x).

Proof. (1) Follows immediately from Lemma 6.3.10 and Lemma 7.3.1.

(2) Follows immediately from Corollary 7.3.2 in case F = C. In case
F = R, choose a basis of V, represent T in that basis by a matrix, and then
regard that matrix as a matrix over C. O

Now we come to the focus of our attention, normal linear transforma-
tions.

DEFINITION 7.3.4. A linear transformation 7 : V — V is normal if

(1) 7 has an adjoint T*

(2) T commutes with 7*,ie., T o T*=T*o 7. &
Let us look at a couple of special cases.

DEFINITION 7.3.5. A linear transformation 7 : V' — V is self-adjoint if
T has an adjoint 7* and T* = 7. o
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We also recall the definition of an isometry, which we restate for con-
venience in the special case we are considering here, and establish some
properties of isometries.

DEFINITION 7.3.6. Let V' be an inner product space. An isometry T :
V — V is an invertible linear transformation such that (7 (v), T (w)) =
(v,w) forallv,w e V. <&

We observe that sometimes invertibility is automatic.

Lemma 7.3.7. Let T : V — V be a linear transformation. Then
(T().T W) = (v, w)

forallv,w € V if and only if |T(v)|| = ||(v)| for all v € V. If these
equivalent conditions are satisfied, then T is an injection. If furthermore V
is finite dimensional, then T is an isomorphism.

Proof. Since ||T (v)||? = (T (v), T (v)), the first condition implies the sec-
ond, and the second implies the first by the polarization identities.

Suppose these conditions are satisfied. Let v € V, v # 0. Then 0 #
lvll = 1T ()]l so T(v) # 0 and T is an injection. Any injection from a
finite-dimensional vector space to itself is an isomorphism. O

ExAMPLE 7.3.8. Let IV = "IF*> with the standard inner product

(b1 x2. . L ey ) = DX

Then right-shift R : V' — V satisfies (R(v), R(w)) = (v, w) for every
v, w € V and R is an injection but not an isomorphism. <&

Lemma 7.3.9. Let T : V — V be an isometry. Then T has an adjoint T*
and T* = T~

Proof.  If there is a linear transformation § : V' — V such that
(T(v), w) = (v, S(w)) forevery v,w €V,
then § is well-defined and § = 7*. Since T is an isometry, we see that
(v. 77 W) = (T (). T(T (w))) = (T (v), w). O

Corollary 7.3.10. (1) If T is self-adjoint then T is normal.
(2)If T is an isometry then T is normal.
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We introduce some traditional language.

DEFINITION 7.3.11. If VV is a real inner product space an isometry of V'
is orthogonal. If V' is a complex inner product space an isometry of V' is
unitary. O

DEFINITION 7.3.12. A matrix P is orthogonal if 'P = P~!. A matrix
P is unitary if ‘P = P, O

Corollary 7.3.13. Let V be a finite-dimensional inner product space and
let T : V — V be a linear transformation. Let € be an orthonormal basis
of V and set M = [T Je.

(1) If V is a real vector space, then
(a) If T is self-adjoint, M is symmetric.
(b) If T is orthogonal, M is orthogonal.
(2) If V is a complex vector space, then
(a) If T is self-adjoint, M is Hermitian.
(b) If T is unitary, M is unitary.
Proof. Immediate from Corollary 6.3.7. (]

Let us now look at some interesting examples on infinite dimensional
vector spaces.

ExAMPLE 7.3.14. (1) Let V ="F*.Let R: V — V be right shift, and
L :V — V be left shift. Let v = [x1, X2,...] and w = [y1, Y2, ...]. Then
(R(v), w) = x1¥, + X275 + --- = (v, L(w))
so L = R*. Similarly,
(L(v), w) = x27; + x37, +--- = (v, R(w))

so R = L* (as we expect from Lemma 6.3.11). Note that LR = J but
RL # J so L and R are not normal. Also note that 1 = dim(Ker(L)) # 0 =
dim(Ker(R)), giving a counterexample to the conclusion of Lemma 7.3.1 in
the infinite-dimensional case.

(2) Let V be the vector space of doubly infinite sequences of elements
of F only finitely many of which are nonzero

V =A[...,x_2,x-1, X0, X1, X2, ...] | x; = 0 for all but finitely many i}.
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V has the inner product (v, w) = > x;¥; (in the obvious notation) and
linear transformations R (right shift) and L (left shift) defined in the obvious
way. Then L and R are both isometries, and are inverses of each other.
Direct computation as in (1) shows that L. = R* and R = L*, as we expect
from Lemma 7.3.9.

B)LetV ="F>®andletT : V — V be defined as follows:

T([xl,xz,x3,...]) = [ZX{,0,0,...].

i>1
We claim that 7 does not have an adjoint. We prove this by contradiction.
] p y

Suppose T* existed. Let T*(e;) = [a1,4a2,as3,...]. Then for each k =
1,2,3,...,

1= ((ex).e1) = (ex, T*(e1)) = a.

which is impossible as 7 *(e;) € V' has only finitely many nonzero entries.

&

We may construct normal linear transformations as follows.

EXAMPLE 7.3.15. Let A1,..., A; be distinct scalars and let Wy, ..., Wi
be nonzero subspaces of V withV =W, L ... L Wy.DefineT : V — V
as follows: Let v € V and write v uniquely as v = vy + --+ + v with
v; € W;. Then

T) =Avyg + -+ Agvg.
(Thus Aq, ..., Ay are the distinct eigenvalues of 7~ and W, ..., Wy are the
associated eigenspaces.) It is easy to check that

T*() = Avg + -+ + Agvg

(so Xl, e, Xk are the distinct eigenvalues of 7* and Wy, ..., Wy are the
associated eigenspaces). Then

T*T (v) = [M o1+ + Mg = TT*(v),

so 7 is normal. Clearly T is self-adjoint if and only if A; = A; for each i,
i.e., if and only if each A; is real. O

Our next goal is the spectral theorem, which shows that on a finite-
dimensional complex vector space V, every normal linear transformation is
of this form, and on a finite-dimensional real vector space every self-adjoint
linear transformation is of this form.

We first derive a number of properties of normal linear transformations
(on an arbitrary vector space V).
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Lemma 7.3.16. Let T : V — V be a normal linear transformation. Then

T* is normal. Furthermore,

(1) p(T) is normal for any polynomial p(x) € C[x]. If T is self-adjoint,
p(T) is self-adjoint for any polynomial p(x) € R[x].

(2) |T )| = ||T*@)| forevery v € V. Consequently Ker(T) = Ker(T*).

(3) Ker(7) = Im(T)* and Ker(T*) = Im(7*)*.

(4) If T?(v) = 0 then T (v) = 0.

(5) The vector v € V is an eigenvector of T with eigenvalue A if and only

T A

v is an eigenvector of T* with eigenvalue A.

(6) Eigenspaces of distinct eigenvalues of T are orthogonal.

Proof. By Lemma 6.3.11, 7* has adjoint 7** = 7T, and then 7*7** =
T*T =

(1) follows from Lemma 6.3.10.
For (2), we compute

TT* = T*T*,

70| = (T),T0) = (v, T*T @) = (v, TT*@))
= (v, T**T* () = (T*), T*)) = |T*®)|*.

Also, we observe that v € Ker(7) < T(v) =0 & [|[T(v)|| =0.

For (3), u € Ker(7) < u € Ker(7%), by 2), & (7*(u),v) = 0 for
all v & (u, T(v)) = 0forallv & u € Im(7)*, yielding the first half
of (3), and replacing 7 by 7 *, which is also normal, we obtain the second
half of (3).

For (4), let w = T (v). Then w € Im(7). But 7 (w) = T2(v) = 0, so
w € Ker(7). Thus w € Ker(7) N Im(7) = {0} by (3).

For (5), v is an eigenvector of T~ with eigenvalue A < v € Ker(7 —
Ad) & v e Ker((T — Ad)*) by (2) = Ker(7* — A4) by Lemma 6.3.10(4).

For (6), let v; be an eigenvector of T~ with eigenvalue A; and let v, be
an eigenvector of 7~ with eigenvalue A, with A; # A1.Set 8 = T — A1 4.
Then §(v;) = 0 so

0=(8(v1).v2) = (v1. 8%(v2)) = (v1. (T* — X14) (v2))
= (v, (Xz - X1)1)2) (by (5))
= (A2 — 1) {v1. v2)

so (v1, v2) = 0. (|
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Corollary 7.3.17. Let V be finite-dimensional and let T : V. — V be a
normal linear transformation. Then Im(T) = Im(77*).

Proof. By Corollary 7.2.8 and Lemma 7.3.16(2) and (3),
Im(7) = Ker(7)* = Ker (7*)" = Im (T*). O

While Lemma 7.3.16 gives information about the eigenvectors of a nor-
mal linear transformation 7 : V — V, when V is infinite dimensional T
may have no eigenvalues or eigenvectors.

ExaMPLE 7.3.18. Let R be right shift, or L left shift, on the vector space
V' of Example 7.3.14(2). It is easy to check that, since every element of
V' can have only finitely many nonzero entries, neither R nor L has any
eigenvalues or eigenvectors. <&

By contrast, in the finite-dimensional case we may obtain strong infor-
mation about the structure of 7.

Lemma 7.3.19. Let V be a finite-dimensional inner product space and let
T : V. — V be a normal linear transformation. Then the minimum poly-
nomial mg (x) is a product of distinct irreducible factors. If V' is a complex
vector space, or if V is a real vector space and T is self-adjoint, every
irreducible factor of mg (x) is linear.

Proof. Let p(x) be an irreducible factor of mg (x). We prove that p?(x)
does not divide mg (x) by contradiction. Suppose p2(x) divides mg (x).
Then there is a vector v € V with p2(7)(v) = 0 but p(7)(v) # 0. Let
& = p(T). Then & is normal and $2(v) = 0 but §(v) # 0, contradicting
Lemma 7.3.16(4).

If V is a complex vector space there is nothing further to do, as every
complex polynomial is a product of linear factors.

Suppose that V' is a real vector space. Then every real polynomial is a
product of linear and irreducible quadratic factors, and we must show none
of the latter occur. Again we argue by contradiction. Suppose p(x) = x2 +
bx + c is an irreducible factor of mq¢ (x), and let v € V be a nonzero vector
with p(7)(v) = 0. We can write p(x) = (x + b/2)?> + d? where d is the
real number d = (/c2 —b2/4.Set 8 = T + (b/2)d,s0 (82 +d?*d)(v) =
0,1e., 82(1)) = —d?v. Then, as § is self-adjoint,

0 < (8(v),8)) = (v, 8*8(v)) = (v, 8%(v)) = —d*(v,v),

which is impossible. O
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Corollary 7.3.20 (Spectral theorem). (1) Let V be a finite-dimensional
complex inner product space and let T : V. — V be a normal linear trans-
Sformation. Then V' has an orthonormal basis of eigenvectors of T .

(2) Let V be a finite-dimensional real inner product space and let T :
V' — V be a self-adjoint linear transformation. Then V has an orthogonal
basis of eigenvectors of T .

Proof. The proof in both cases is identical. By Lemma 7.3.19, mg (x) is a
product of distinct linear factors. Let A1, ..., Ax be the roots of m¢(x), i.e.,
by Lemma 4.2.6, the eigenvalues of 7. Let £, be the associated eigenspace
of 7, for each i. By Theorem 434,V = E, & ---® Ej,, and then by
Lemma 7.3.16(6), V = E;, L --- L E,,. By Theorem 7.2.1, each Ej,
has an orthonormal basis €;. Then € = €; U .-- U € is an orthonormal
basis of eigenvectors of 7. (]

We restate this result in matrix terms.

Corollary 7.3.21. (1) Let A be a Hermitian matrix. Then there is a unitary
matrix P and a diagonal matrix D with

A= PDP"'=PD'P.

(2) Let A be a real symmetric matrix. Then there is a real orthogonal
matrix P and a diagonal matrix D with real entries with

A= PDP ! =PD'P.

We have a third formulation of the spectral theorem, in terms of orthog-
onal projections.

Corollary 7.3.22. Under the hypotheses of the spectral theorem, there are
distinct complex numbers Ay, ..., Ay, which are real in case T is self-
adjoint, and subspaces Wy, ..., Wi, such that

() V=W, L-r LW

(2) If T; = Ilw, is the orthogonal projection of V onto the subspace W;,
then?}z =757 =77 =0fori # j,andd =T + -+ T¢.
Furthermore,

T=MT+ -+ ATk

Proof. Here A1, ..., Ay are the eigenvalues of 7 and the subspaces W1, ...,
W) are the eigenspaces E) ..., Ey, . O
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Corollary 7.3.23. In the situation of, and in the notation of, Corollary 7.3.22,
T =0T+ + T

Corollary 7.3.24. Let V be a finite-dimensional inner product space and let
T : V. — V be a linear transformation. Suppose that mg(x) is a product
of linear factors over F (which is always the case if F = C). Then T is an
isometry if and only if |A| = 1 for every eigenvalue A € F of d.

Let us compare arbitrary and normal linear transformations.

Theorem 7.3.25 (Schur’s theorem). Let V be a finite-dimensional inner
product space and let T : V. — V be an arbitrary linear transformation.
Then V has an orthonormal basis € in which [T |e is upper triangular if
and only if the minimum polynomial mg (x) is a product of linear factors
(this being automatic if F = C).

Proof. The “only if” direction is clear. We prove the “if”” direction.
For any linear transformation 7, if W is a T -invariant subspace of V'
then W= is a 7 *-invariant subspace of V, because for any x € W and

yewt
0=(T(x).y)=xT").

We prove the theorem by induction on n = dim(V). If n = 1 there is
nothing to prove. Suppose the theorem is true for all inner product spaces
of dimension n — 1 and let V' have dimension 7.

Since mg(x) is a product of linear factors, so is mg=(x), by Corol-
lary 7.3.3. In particular 7* : V' — V has an eigenvector v,, and we may
assume v, || = 1. Let W be the subspace of V spanned by {v,}. Then W+
is a subspace of V' of dimension n — 1 that is invariant under 7** = 7. If
8 is the restriction of T to W, then mg(x) divides mg (x), so mg(x) is
a product of linear factors. Applying the inductive hypothesis, we conclude
that W+ has an orthonormal basis €; = {v1, ..., v,—1} with [8]e, upper
triangular. Set € = {vy,..., v,}. Then [T ]e is upper triangular. O

Theorem 7.3.26. Let V be a finite-dimensional inner product space and let
T : V. — V be a linear transformation. Let € be any orthonormal basis
of V with [T e upper triangular. Then T is normal if and only if [T e is
diagonal.

Proof. The “if” direction is clear. We prove the “only if” direction. Let
E = [T]e. By the spectral theorem, Corollary 7.3.21, V has a basis €;
with D = [T]e, diagonal. Then E = PDP~! where P = Peceg, is
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the change of basis matrix. We know P = Q"' R where Q = Pg_¢ and
R = Pge,. Since € and €; are both orthonormal, Q and R are both
isometries, and hence P is an isometry, ‘P = P ~1 in the real case and
tp = P " in the complex case. Thus ‘E = PDP~') = (PD 'P) =
P 'D'P = PDP~! = E in the real case, and similarly /E = E in the
complex case. Since E is upper triangular, this forces E to be diagonal. [

7.4 EXAMPLES

In this section we present some interesting and important examples of inner
product spaces and related phenomena. We look at orthogonal or orthonor-
mal sets, linear transformations that do or do not have adjoints, and linear
transformations that are or are not normal.

Our examples share a common set-up. We begin with an interval / € R
and a “weight” function w(x) on /. We further suppose that we have a
vector space V' of functions on I with the properties that

(@ [; f(x)g(x)w(x) dx is defined for all f(x), g(x) € V

® [ f (x) f (x)w(x) dx is a nonnegative real number for every f(x) €
V, and is zero only if f(x) = 0.

Then V together with

(f(). g(0) = /I FEOFE W) dx

is an inner product space.

Except in Examples 7.4.3 and 7.4.4, we restrict our attention to the real
case. This is purely for convenience, and the results generalize to the com-
plex case without change.

EXAMPLE 7.4.1. (1) Let V = P (R), the space of all real polynomials.
Then 1
o(0.80) = (700 60) = [ Fgrdn

gives V' the structure of an inner product space.
We claim that the map o, : V' — V'* is not surjective, where

2p(g(x) f(x)) = ¢(f(x), g(x)).

For any a € [0, 1], we have the element E, of V* given by E,(f(x)) =
f(a). We claim that for any finite set of points {a1,..., ax} in [0, 1] and
any constants {cy, . .., cg}, not all zero, Y ¢iEq; isnotin ay, (V). We prove
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this by contradiction. Suppose ) ¢;Es; = a,(g(x)) for some g(x) € V.
Then for any polynomial f(x) € V,

1 k
| ree = Yeif (@),
i=1
Clearly g(x) # 0.
Choose

k
2
flx) = (]_[ (x —a;) ) g(x).
i=1

The left-hand side of this equation is positive while the right-hand side
is zero, which is impossible.

(2) For any n, let V= P,_;(R), the space of all real polynomials of
degree at most n. Again

1
o(f@). () = [£(x). gx)) = /0 F()g()dx

gives V the structure of an inner product space. Here dim(V) = n so
dim(V*) = n as well.

(a) Any n linearly independent elements of V* form a basis of V*.
In particular {E,,, ..., E4,} is a basis of V* for any distinct set of points
{ai,...,a,} in [0, 1]. Then for any fixed g(x) € V, a,(g(x)) € V*, so
2, (g(x)) is a linear combination of {E,,, ..., Eg4,}. In other words, there
are constants ¢, ..., ¢, such that

1 n
/0 F)godx = e f (@),

i=1
In particular, we may choose g(x) = 1, so there are constants cy, ...,y
with

1 n
/ f(x)dx = Zciﬁ(ai) for every f(x) € Py—1(x).
0 i=1
(b) Since «, is an injection and V is finite-dimensional, it is a surjection.
Thus any element of V'* is &, (g(x)) for a unique polynomial g(x) € Py—;.
In particular, this is true for E,, for any a € [0, 1]. Thus there is a polyno-
mial g(x) € P,—1(x) such that

1
fla) = /0 F()g()dx  forevery £(x) € Pa_y(x).
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Concrete instances of both parts (a) and (b) of this example were given
in Example 1.6.9(3) and (4). &

EXAMPLE 7.4.2. Welet V = Py (R) and we choose the standard basis

€= {po(X), pl(x)’ pZ(x)’ .. } = {vaxzv .. }

of V. We may apply the Gram-Schmidt process to obtain an orthonormal ba-
sis € = {qo(x), q1(x),g2(x), ...} of V. Actually, we will obtain an orthog-
onal basis € of V, but we will normalize the basis elements by | ¢; (x)||* =
h; where {hg, h1, hs, ...} is not necessarily {1, 1, 1,...}. This is partly for
historical reasons, but mostly because the purposes for which these func-
tions were originally derived made the given normalizations more useful.

(1) Let I = [-1,1] and w(x) = 1. Let h, = 2/(2n + 1). The se-
quence of polynomials we obtain in this way are the Legendre polynomials
Py(x), P1(x), P2(x),.... The first few of these are

P()(x) =1
Pi(x)=x

1
Po(x) = (= 1+3x%)
1
Py(x) = 5(=3x + 5x3)
1
Pu(x) = g(3 —30x% + 35x%),
and, expressing the elements of & in terms of them,

1 = Poy(x)
x = Pi(x)
¥ = 2(Bo) + Pa()
1

x3 = s (3P1(x) + 2P3(x))
x4 = %(7P0(x) + 20P>(x) + 8Pa(x)).

2)Let I = [-1,1]and w(x) = 1/+/1—x2. Let hg = 7 and h, =
/2 forn > 1. The sequence of polynomials we obtain in this way are the
Chebyshev polynomials of the first kind To(x), T1(x), T2(x), . ... The first
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few of these are given by
To(x) =1
Ti(x) =x
To(x) = —1 4 2x2
T3(x) = —3x + 4x3
Ta(x) = 1 — 8x2 + 8x*,
and, expressing the elements of & in terms of them,
1 = To(x)
x = Ti(x)

@ = 2(To(0) + Ta()

x3 = %(3T1(x) + T3(x))
xt = é(3To(x) + 4T2(x) + Ta(x)).

3)Let I = [-1,1] and w(x) = ~1—x2. Let h, = m/2 for all
n. The sequence of polynomials we obtain in this way are the Chebyshev
polynomials of the second kind Up(x), U1(x), Ua(x), .... The first few of
these are

Up(x) =1

Ui(x) =2x

Up(x) = —1 4 4x?

Us(x) = —4x + 8x3
Us(x) =1— 12x2 + 16x*,

and, expressing the elements of & in terms of them,
1 = Up(x)
1
=-U
x=5Ui1(x)
1
x? = Z(Uo(x) + Ua(x))

x3 = é(ZUl(x) + U3(x))

x4 = 1—16(2U0(x) + 3Us(x) + Us(x)).
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(4)Let I = Rand w(x) = e Let hy = /m2"n!. The sequence
of polynomials we obtain in this way are the Hermite polynomials Ho(x),
H(x), Hy(x),.... The first few of these are

Ho(x) =1

Hi(x) =2x

Hy(x) = =2 + 4x?

Hi(x) = —12x + 8x3
Hy(x) = 12 — 48x2 + 8x*

and, expressing the elements of & in terms of them,
1 = Ho(x)
1
=-H
x = S Hi(x)
1
x2 = Z(ZHO(X) + Ha(x))
1
x3 = §(6H1(x) + Hi(x))

x* = 11—6(12H0(x) + 12H,(x) + Ha(x)). o

ExXAMPLE 7.4.3. We consider an orthogonal (and hence linearly inde-
pendent) set € = {qo(x), ¢1(x), g2(x), ...} of nonzero functions in V. Let
hy = ||¢n| for each n.

Let f(x) € V be arbitrary. Foreach n = 0, 1,2, ... let

Cn = (1/hn)(f(X), qn(X)>,

the Fourier coefficients of f(x) in terms of €, and form the sequence of
functions {go(x), g1(x), g2(x), ...} defined by

gn(X) =Y crqi(x).
k=1

Then for any m,

(gm(x). gn(x)) = (f(x).gn(x)) foralln <m

and of course

(gm(x),gn(x)) =0 foralln > m.
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We think of {go(x), g1(x), g2(x), ...} as a sequence of approximations
to f(x), and we hope that it converges in some sense to f(x). Of course,
the question of convergence is one of analysis and not linear algebra. <

We do, however, present the following extremely important special case.

EXAMPLE 7.4.4. Let V = L?([—n, nr]). By definition, this is the space of
complex-valued measurable function f(x) on [—z, ] such that the Lebesgue
integral

| lreopax

is finite.
Then, by the Cauchy-Schwartz-Buniakowsky inequality, V' is an inner
product space with inner product

(f(x). g(x)) = % /_ f(x)g(x)dx.

For each integer n, let p,(x) = e!™*. Then {p,(x)} is an orthonormal
set, as we see from the equalities

[Pao)]” = L/n e"reT M dx = L/n ldx =1
" 2 J_» 21 J_,

and, for m # n,

| B : .
(pm(x), P (x)> - eiMmXp=inx g el(m—n)x
2 J_» 2 J_»
— 1 i(m—n)x 4 =0
2mi(m —n) - ’

For any function f(x) € L?([—m, ]) we have its classical Fourier
coefficients

7 L[ 1 (7 ,
f(n) = (f(x)v Pn(x)> = E/; f(X)ﬁ(x)dx = E/; f(x)e_lnxdx

for any integer n, and the Fourier expansion

g =Y Fmpa().

n=—oo
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It is a theorem from analysis that the right-hand side is well-defined,
i.e., that if for a nonnegative integer m we define

gn(x) =Y Fm)pa(x).

n=—m

then g(x) = lim—o00 gm(x) exists, and furthermore it is another theorem
from analysis that, as functions in L?([—, ]),

fx) = gx).
This is equivalent to limy, 0 || f(X) — gm(x)|| = 0, and so we may regard
go(x), g1(x), g2(x),... as a series of approximations that converges to
f(x) (in norm). <&

Now we turn from orthogonal sets to adjoints and normality.

ExAMPLE 7.4.5. (1) Let V = C§°(R) be the space of real valued in-
finitely differentiable functions on R with compact support (i.e., for every
f(x) € C(R) there is a compact interval / € R with f(x) = 0 for
x ¢ I). Then V is an inner product space with inner product given by

(f(x), g(x)) =/_ f(x)g(x)dx.

LetD : V — V be defined by D( f(x)) = f’(x). Then D has an adjoint
D* : V — V given by D*(f(x)) = E(x) = —f'(x), i.e, D* = —D. To
see this, we compute

(D(f (). 200) — (£ (0. E(g()))
- / F/0)g)dx - / F)(— ¢ (0))dx

Z/_ (/' (0)g(x) + f(x)g (x))dx

o0

| (@) dx = st =0

oo

where the support of f(x)g(x) is contained in the interval [a, b].
Since D* = —D, D* commutes with D, so D is normal.
2)Let V=C*®[R) or V= Px(R), with inner product given by

1
(f(x).g(x)) =/0 f(x)g(x)dx.
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We claim that D : V — V defined by D(f(x)) = f’(x) does not
have an adjoint. We prove this by contradiction. Suppose D has an adjoint
D* = E. Guided by (1) we write E(f(x)) = —f'(x) + F(f(x)). Then
we compute

(D(/(x)). g()) = (f(x). E(g(x)))

1
0

1
- / (f()g(x)) dx — /0 FOF(g(0)) dx

1
= £(1)g(1) — £(0)g(0) /0 FOF (8()) dx.,

true for every pair of functions f(x), g(x) € V. Suppose there is some
function go(x) with F(go(x)) # 0. Setting f(x) = x2(x — 1)2F(go(x))
we find a nonzero right-hand side, so E is not an adjoint of D. Thus the
only possibility is that F(f(x)) = O for every f(x) € V, and hence
that E(f(x)) = —f'(x). Then f(1)g(1l) — f(0)g(0) = 0 for every pair
of functions f(x),g(x) € V, which is false (e.g., for f(x) = 1 and
g(x) = x).

(3) For any fixed n let V' = P,_; (R) with the same inner product. Then
V is finite-dimensional. Thus D : V' — V has an adjointD* : V' — V. In
casen = 1,D = 0 so D* = 0, and D is trivially normal. For n > 1, D is
not normal: Let f(x) = x. Then D?(f(x)) = 0 but D(f(x)) # 0, so D
cannot be normal, by Lemma 7.3.16(4).

Let us compute D* for some small values of n. If we set D*(g(x)) =
h(x), we are looking for functions satisfying

1 1
/ f(x)g(x)dx =/ f(x)h(x)dx forevery f(x) € V.
0 0

Since D* is a linear transformation, it suffices to give the values of D* on
the elements of a basis of V. We choose the standard basis &.
On Py(R):

D*(1) = 0.
On P (R):

D*(1) = —6 + 12x
D*(x) = =3 + 6x.
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On P, (R):
D*(1) = —6 + 12x
D*(x) = 2 — 24x + 30x>
D*(x?) = 3 —26x + 30x>. o

7.5 THE SINGULAR VALUE DECOMPOSITION

In this section we augment our results on normal linear transformations
to obtain geometric information on an arbitrary linear transformation 7 :
V' — W between finite dimensional inner product spaces. We assume we
are in this situation throughout.

Lemma 7.5.1. (1) T*T is self-adjoint.
(2) Ker(T*T) = Ker(T).

Proof. For (1), (T*T)* =T*T** =7*7T.
For (2), we have Ker(7*7) 2 Ker(7). On the other hand, let v €
Ker(7*7). Then

0= (v,0) = (v, T*T (v)) = (T (v), T (v))
0 7 (v) = 0 and hence Ker(7*7) < Ker(7). O

DEFINITION 7.5.2. A linear transformation § : V' — V is nonnegative
(respectively positive) if § is self-adjoint and (§(v), v) > 0 (respectively
(8(v),v) > 0) forevery v € V,v # 0. <

Lemma 7.5.3. The following are equivalent:
(1) 8 :V — V is nonnegative (respectively positive).

(2) 8 :V — Visself-adjointand all the eigenvalues of 8 are nonnegative
(respectively positive).

(3) 8 = T*T for some (respectively some invertible) linear transforma-
tionT :V — V.

Proof. (1) and (2) are equivalent by the spectral theorem, Corollary 7.3.20.

If & is self-adjoint with distinct eigenvalues A1, ..., Ax, all > 0, then in
the notation of Corollary 7.3.22 we have § = A1 77 + - - - 4+ A T%. Choosing
T =R =VATi + -+ VA Tk, we have T* = R as well, and then
T*T = R? = 8, 50 (2) implies (3).
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Suppose (3) is true. We already know by Lemma 7.5.1(1) that T*T
self-adjoint. Let A be an eigenvalue of 7*7, and let v be an a33001ated

eigenvector. Then

Ao, v) = (v, Av) = (v, T*T (v)) = (T (v), T (v)).

so A > 0. By Lemma 7.5.1(2), 7*7T is invertible if and only if T is invert-
ible, and we know that 7 is invertible if and only if all its eigenvalues are
nonzero. Thus (3) implies (2). O

Corollary 7.5.4. For any nonnegative linear transformation 8 : V. — V
there is a unique nonnegative linear transformation R : V. — V with

Rr= 8.

Proof. R is constructed in the proof of Lemma 7.5.3. Uniqueness follows

easily by considering eigenvalues and eigenspaces. O
DEFINITION 7.5.5. Let 7 : V — W have rank r. Let A1,...,A, be
the (not necessarily distinct) nonzero eigenvalues of 7*J (all of Wthh are
necessarily positive) ordered so that Ay > A, > ... > A,. Then 07 =
VA1, ..., 0r = /A, are the singular values of T . o
Theorem 7.5.6 (Singular value decomposition). Let T : V. — W have
rank r, and let 01, ..., 0r be the singular values of T . Then there are or-

thonormal bases € = {vy,...,vp} of V and D = {w1,...,wy} of W
such that

T(v,-)za,-w,- fori=1,....r andT(vi)zO fori >r.

Proof. Since T*7T is self-adjoint, we know that there is an orthonormal

basis € = {vy, ..., v,} of VV of eigenvectors of 7*7 and we order the basis
so that the associated eigenvalues are A, ...,A,,0,...,0.Fori = 1,...,r,
let

= (1/0i)7 (vi).
We claim €1 = {w1, ..., w,} is an orthonormal set. We compute
(wiswi) = (1/03) (T (v). T (v)) = (1/07)*2; = 1
and fori # j
(wi, wj) = (1/0:0;)(T (vi). T (v;)) = (1/0:07){vi. T*T (v;))
= (1/0i0){vi, A;v;) = (A;/0i0;){vi, v;) = 0.

Then extend € to an orthonormal basis € of W. O
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REMARK 7.5.7. This theorem has a geometric interpretation: We choose
new letters to have an unbiased description. Let X be an inner product space
and consider an orthonormal set 8 = {x1,..., x,} of vectors in X. Then
for any positive real numbers ay, ..., ak,

X =cC1X1 + 0+ CpXg

k
> Jef'sa = 1

i=1

defines an ellipsoidin X. If k = dim(X) and a@; = 1 for each i this ellipsoid
is the unit sphere in X.

The singular value decomposition says that if 77 : V' — W is a lin-
ear transformation, then the image of the unit sphere of V' under 7 is an
ellipsoid in W, and furthermore it completely identifies that ellipsoid. <

We also observe the following.

Corollary 7.5.8. 7 and T* have the same singular values.
Proof. This is a special case of Theorem 5.9.2. O

Proceeding along these lines we now derive the polar decomposition of
a linear transformation.

Theorem 7.5.9 (Polar decomposition). Let T : V — V be a linear trans-
formation. Then there is a unique positive semidefinite linear transforma-
tion R V. — V and an isometry @ : V. — V withT = QR. If T is
invertible, Q is also unique.

Proof. Suppose T = @QR. By definition, @* = @~ ! and R* = R. Then
T*T = (QR)* QR = R*(Q*Q)R = RIR = R%.

Then, by Corollary 7.5.4, R is unique.

Suppose that 7 is invertible, and define R as in Corollary 7.5.4. Then
R is invertible, and then & = QR for the unique linear transformation
@ = 7 R~ It remains to show that @ is an isometry. We compute, for any
vev,

*

Q). QW)= (TR ). TR ') = . (TR TR (v))
— (U, (ﬁ—l)*T*Tﬁ—l(v» — (U, R_I(T*T)R_I(U»
= (v, RT'RZR T (v)) = (v, v).
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Suppose that 7 is not (necessarily) invertible. Choose a linear transfor-
mation & : Im(R) — V with RS = 4 : Im(R) — Im(R).
By Lemma 7.5.1 we know that Ker(7*7") = Ker(7") and also that

Ker(R) = Ker(R*R) = Ker(R?) = Ker(T*7).

Hence ¥ = Im(R)L and Z = Im(7)* are inner product spaces of the
same dimension (dim(Ker(77))) and hence are isometric. Choose an isom-
etry @o : Y — Z. Define @ as follows: Let X = Im(R),soV =X LY.
Then

Q) = T(S(x)) + @o(y) wherev=x+y, xeX, yet.

(In the invertible case, 8§ = R~ and @ : {0} — {0}, so @ is unique,
@ = TR~L In general, it can be checked that @ is independent of the
choice of &, but it depends on the choice of @y, and is not unique.)

We claim that @ R = T and that @ is an isometry.

To prove the first clalm, we make a preliminary observation. For any
veVletx = R(). Then R(E(x) —v) = RE(Xx)—R(@v) =x—x =0,
ie., (x) —v € Ker(R). But Ker(R) = Ker(7), so 8(x) —v € Ker(7),

T(E(x)—v) = 0,50 T(8(x)) = T(v). Using this observation we
compute that for any v € V,

ARW)=Qx+0)=T8(x)+ Qo(0) =T () +0=7().
To prove the second claim, we observe that for any v € V,
(R@), R)) = (v, R*RW)) = (v, R2(v)) = (v, T*T (v)) = (T (v), T (v)).

Then, using the fact that Im(Qp) € Z = Im(7)*, and writing v =
x + y as above,

(@), Q) = (x) + Qo(»). T8(x) + Qo())
(x), T8(x)) + (Qo(»). Qo (»))
(v), (U)) (y.y) = (R@), RO)) + (y.y)

x,x)+{(y,y)=x+y,x+y)=(v,v). O

(T8
= (T8()
=(7
=



CHAPTER 8

MATRIX GROUPS
AS LIE GROUPS

Lie groups are central objects in mathematics. They lie at the intersection
of algebra, analysis, and topology. In this chapter, we will show that many
of the groups we have already encountered are in fact Lie groups.

This chapter presupposes a certain knowledge of differential topology,
and so we will use definitions and theorems from differential topology with-
out further comment. We will also be a bit sketchy in our arguments in
places. Throughout this chapter, “smooth” means C *°. We use ¢;; to denote
a matrix entry that may be real or complex, x;; to denote a real matrix entry
and z;; to denote a complex matrix entry, and we write z;; = X;; + y;;
where x;; and y;; are real numbers. We letF = R or C and dr = dimg F,
sothat dg = 1 and d¢ = 2.

8.1 DEFINITION AND FIRST EXAMPLES
DEFINITION 8.1.1. G is aLie group if

(1) G is a group.

(2) G is a smooth manifold.

(3) The multiplicationmap m : G xG — G by m(g1, g2) = g182 and the
inversion mapi : G— G by i(g)=g~! are both smooth maps. <&

ExAMPLE 8.1.2. (1) The general linear group
GL, (IF) = {invertible n-by-n matrices with entries in [F'}.
GL, (F) is a Lie group: It is an open subset of F* as
GL,(F) = det™" (F — {0}),

223
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so it is a smooth manifold of dimension dpn?. It is noncompact for every
n > 1 as GL;(IF) contains matrices [c] with |c| arbitrarily large. GL, (R)
has two components and GL,(C) is connected, as we showed in Theo-
rem 3.5.1 and Theorem 3.5.7. The multiplication map is a smooth map as
it is a polynomial in the entries of the matrices, and the inversion map is
a smooth map as it is a rational function of the entries of the matrix with
nonvanishing denominator, as we see from Corollary 3.3.9.
(2) The special linear group

SL, (F) = {n-by-n matrices of determinant 1 with entries in [ }.

SL,(F) is a Lie group: SL,, (F) = det™'({1}). To show SL, (F) is a smooth
manifold we must show that 1 is a regular value of det. Let M = (c;),
M € SL,(F). Expanding by minors of row i, we see that

1 =det(M) = (=1)" T det(M;1) + (=1)' T2 det(M;n) + -+,

where M;; is the submatrix obtained by deleting row i and column j of M,
so at least one of the terms in the sum is nonzero, say c;;(—1)'*/ det(M;; ).
But then the derivative matrix det’ of det with respect to the matrix en-
tries, when evaluated at M, has the entry (—1)'*/ det(M;;) # 0, so this
matrix has rank dp everywhere. Hence, by the inverse function theorem,
SL,(F) is a smooth submanifold of F”*. Since {1} € F has codimension
dr, SL, (F) has codimension df in IF”z, S0 it is a smooth manifold of di-
mension dr (n? — 1).

SL;(F) = {[1]} is a single point and hence is compact, but SL, (F) is
noncompact for n > 1, as we see from the fact that SL, (IF) contains matri-
ces of the form [8 1(/) ¢ ] with |c| arbitrarily large. An easy modification of the
proofs of Theorem 3.5.1 and Theorem 3.5.7 shows that SL, (F) is always
connected. Locally, SL, () is parameterized by all but one matrix entry,
and, by the implicit function theorem, that entry is locally a function of the
other n? — 1 entries. We have observed that multiplication and inversion
are smooth functions in the entries of a matrix, and hence multiplication
and inversion are smooth functions of the parameters in a coordinate patch
around each element of SL, (F), i.e., m = SL,(F) x SL,(F) — SL,(F)
and i : SL, (F) — SL, (F) are smooth functions. <&

8.2 ISOMETRY GROUPS OF FORMS

Our next family of examples arises as isometry groups of nonsingular bi-
linear or sesquilinear forms. Before discussing these, we establish some
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notation:
I, is the n-by-n identity matrix.
For p + q = n, I, 4 is the n-by-n matrix [Ié’ _(}q ]

For n even, n = 2m, J, is the n-by-n matrix [—?m I(r)n ]

For a matrix M = (c;;), we write M = [my | --+ | my], so that m; is
Clj
, e2i
theithcolumnof M, m; =| - |.
Cni

ExAMPLE 8.2.1. Let ¢ be a nonsingular symmetric bilinear form on a
vector space V' of dimension n over F. We have two cases:

(1) F = R. Here, by Theorem 6.2.29, ¢ is isometric to p[1] L g[—1]
for uniquely determined integers p and g with p + g = n. The orthogonal

group
0,,R) = {M eGL,(R) | 'MI,,M = Ip,q}.
In particular if p = n and g = 0 we have
0n(R) = Ono(R) = {M € GL,(R) | 'M = M~"}.

(2) F = C. In this case, by Corollary 6.2.27, ¢ is isometric to n[1]. The
orthogonal group

04(C) = {M € GL,(C) |'M = M~"}.

(The term “the orthogonal group” is often used to mean O, (R). Compare
Definition 7.3.12.)

Let G = Op4(R), O, (R), or O,(C). G is a Lie group of dimension
dgn(n — 1)/2. G has two components. Letting SG = G N SL,(IF), we
obtain the special orthogonal groups. For G = O, (R) or 0,(C), SG is the
identity component of G, i.e., the component of G containing the identity
matrix. If G = O,(R) then G is compact. O;(C) = O1(R) = {X[1]}. If
G = 04(C) forn > 1,0or G = Op 4(R) with p > 1 and ¢ > 1, then G is
not compact.

We first consider the case G = Op 4 (R), including G = O, (R) =

a by
0, (R). For vectors v = [ } and w = [ }, let

an bn

n

p
(va) = Zaibi — Z a;b;.

i=1 i=p+1
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Let M = [m; | --- | my]. Then M € G if and only if
fii(M)z(mi,mi):1 fori =1,...,p
ﬁi(M)z(mi,mi)z—l fori=p+1,...,n
Sfij(M) :(m,',mj)zO forl <i <j <n.

Thus if we let F : M,(R) = RN, N =n(n + 1)/2, by

F(M) = (fuu(M), faa(M), ..., fan(M), fi2(M),
f1zs(M), ..., fin(M), ..., fn_l,n(M))

then
G = FY(ty) wheretg=(1,...,—1,0,...,0).

We claim that M = [ is aregular point of F. List the entries of M in the
orderxn, X225+ s Xnns X125 -« s X1ns - o+ s Xn—1,n5 X215 -+« s Xpls o+« s Xn,n—1-
Computation shows that F’(I), the matrix of the derivative of F evaluated
at M = I, which is an N-by-n? matrix, has its leftmost N -by-N submatrix
a diagonal matrix with diagonal entries 2 or 1. Thus F’(/) has rank N,
and / is aregular point of F'. Hence, by the inverse function theorem, there
is an open neighborhood B(7) of I in M, (R) such that F~!(zy) N B(I)
is a smooth submanifold of B(/) of codimension N, i.e., of dimension
N2 —n = n(n — 1)/2. But for any fixed My € GL, (R), multiplication by
M, is an invertible linear map, and hence a diffeomorphism, from M, (R)
to itself. Thus we know that Mo (F~1(t9) N B(I)) is a smooth submanifold
of MyB([I), which is an open neighborhood of My in M, (R). But, since G
is a group, MOF_I(IO) =MyG =G = F_l(to). Hence we see that G is a
smooth manifold. Again we apply the implicit function theorem to see that
the group operations on G are smooth maps.

Finally, we observe that any M = (c;;) in O,(R) has |¢;;| < 1 for
every i, j, so O,(R) is a closed and bounded, and hence compact, sub-
space of R". On the other hand, the group Oy,; (R) contains the matrices
[“/xiﬁ Jﬁ] for any x € R, so it is an unbounded subset of R"* and

hence it is not compact, and similarly for O, ,(R) with p > 1 and ¢ > 1.
A very similar argument applies in case G = O, (C). We let

fij(M) =Re ((mi, m,)) and g;;(M) =1Im ((mi, m,))

where Re(-) and Im(-) denote real and imaginary parts respectively. We then
let F : M,(C) — R?V by

F(M) = (fi1(M), g11(M), f22(M), g22(M), ...),
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and we identify M, (C) with R2? by identifying the entry z;; = x;; +iy;;
of M with the pair (x;;, y;;) of real numbers. Then

G = F~'(to) whereto =(1,0,1,0,...,1,0,0,...,0).

Again we show that M = [ is a regular point of F', and the rest of the
argument is the same, showing that G is a smooth manifold of dimension
2N —2n? = n(n — 1), and that the group operations are smooth. Also,

. . P2 ..
0,(C) contains the matrices [’ -l =x ] for any x € R, so it is not
2(0) «iveeor] forany

compact, and similarly for O, (C) forn > 2. <
EXAMPLE 8.2.2. Let ¢ be a nonsingular Hermitian form on a vector space
V' of dimension n over C. Then, by Theorem 6.2.29, ¢ is isometric to
p[1] L g[—1] for uniquely determined integers p and ¢ with p + g = n.
The unitary group

Upq(C) ={M € GL,(C) | 'MI, oM = I,4}.
In particular if p = n and ¢ = 0 we have
Un(C) = {M € GL,(C) |'M = M~"}.

(The term “the unitary group” is often used to mean U, (C). Compare Def-
inition 7.3.12.)

Let G = U,(C) or Uy, 4(C). G is a Lie group of dimension n2. G is
connected. If G = U, (C) then G is compact. If G = U, 4,(C) with p > 1
and ¢ > 1, then G is not compact. Letting SG = G N SL,(R), we obtain
the special unitary groups, which are closed connected subgroups of G of
codimension 1.

The argument here is very similar to the argument in the last example.

ai by
For vectors v = [ i|andw = [ : i|welet

an bn

)4 n

(U, w) = Za,@i — Z aiEi.
i=1 i=p+1
Let M = [m; | ---| my]. Then M € G if and only if

(mi,mi)zl fori =1,...,p
mi,mj)=—1 fori=p+1,...,n
mi, mi) p

(m,',mj)zO forl <i<j<n.
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Let fi;;(M) = (m;, m;), which is always real valued. For i # j, let
fij (M) = Re((m;,mj)) and g;; = Im({m;,m;}).
Set N =n+2mn—1)/2) =n?. Let F = M,(C) - RY by

F(M) = (fuu(M),.... fan(M), f12(M), g12(M), ....).

Then
G = F'(to) wheretg=(1,...,—1,0,...,0).

Identify M, (C) with R2"* as before. We again argue as before, showing
that / is a regular point of F and then further that G is a smooth manifold
of dimension 212 — n?
argument shows that U, (C) is compact but that U, 4 (C) is not compact for

p>landg > 1. <&

= n?, and in fact a Lie group. Also, a similar

EXAMPLE 8.2.3. Let ¢ be a nonsingular skew-symmetric form on a vector
space V' of dimension n over F. Then, by Theorem 6.2.40, ¢ is isometric to
[_OI 6 ] The symplectic group

Sp(n.F) = {M € GL,(F) | 'MJ,M = J,}.

Let G =Sp(n, R) or Sp(n, C). G is connected and noncompact. G is a Lie
group of dimension dr (n(n + 1)/2). We also have the symplectic group

Sp(n) = Sp(n, C) NU(n, C).

G = Sp(n) is a closed subgroup of both Sp(n, C) and U(n, C), and is
a connected compact Lie group of dimension n(n + 1)/2. (The term “the
symplectic group” is often used to mean Sp(n).)

We consider G = Sp,,(F) forF = R or C.

ai by
The argument is very similar. For V' = [ i| and w = [ i|, let

an bn

n/2
(v,w) = Z(aibi+n/2 —Qitn/2bi).

i=1
IfM =[m;|---| my] then M € G if and only if

(mi,mi+n/2)=l fori =1,...,n/2
(m,',mj)zO forl <i<j<n, j#i+n/2.
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Let fi;(M) = (m;,mj) fori < j.Set N = n(n —1)/2. Let F :
M, (F) — F¥ by

F(M) = (fiz(M), ..., fu—1,a(M)).

Then
G = F~Y(ty) wheretg = (0,....,1,...).

Again we show that [ is a regular point for F', and continue similarly, to
obtain that G is a Lie group of dimension dgn? —dg N = dp (n(n +1)/2).
Sp,(F) contains the matrices [)6 I?x] for any x # 0 € R, showing that
Sp,, () is not compact for any n.

Finally, Sp(,y = Sp,(C)NU(n, C) is a closed subspace of the compact
space U(n, C), so is itself compact. We shall not prove that it is a Lie group
nor compute its dimension, which is (n? + n)/2, here. <&

REMARK 8.2.4. A warning to the reader: Notation is not universally
consistent and some authors index the symplectic groups by n/2 instead
of n. <

Finally, we have a structure theorem for GL, (R) and GL,(C). We de-
fined :Aj\}, M, (R) and N, (C) in Definition 7.2.18, and these are obviously
Lie groups.

Theorem 8.2.5. The multiplication maps

m:0(n,R) x AT x Ny, (R) = GL, (R)

and

m :U(n,C) x A x N, (C) — GL,(C)
given by m(P, A, N) = PAN are diffeomorphisms.

Proof. The special case of Theorem 7.2.20 with k = n gives that m is a
homeomorphism, and it is routine to check that m and m ™! are both differ-
entiable. O

REMARK 8.2.6. We have adopted our approach here on two grounds: first,
to use elementary arguments to the extent possible, and second, to illustrate
and indeed emphasize the linear algebra aspects of Lie groups. But it is
possible to derive the results of this chapter by using more theory and less
computation. It was straightforward to prove that GL,(R) and GL, (C) are
Lie groups. The fact that the other groups we considered are also Lie groups
is a consequence of the theorem that any closed subgroup of a Lie group is
a Lie group. But this theorem is a theorem of analysis and topology, not of
linear algebra. <&






CHAPTER A

POLYNOMIALS

In this appendix we gather and prove some important facts about polyno-
mials. We fix a field F and we let R = [F[x] be the ring of polynomials in
the variable x with coefficients in IF,

R={apnx"+---4+a1x+ao|a; €F, n>0}.

A.l BASIC PROPERTIES

We define the degree of a nonzero polynomial to be the highest power of x
that appears in the polynomial. More precisely:

DEFINITION A.1.1. Let p(x) = apx" + --- + ao with a, # 0. Then the
degree deg p(x) = n. <&

REMARK A.1.2. The degree of the 0 polynomial is not defined. A polyno-
mial of degree 0 is a nonzero constant polynomial. <&

The basic tool in dealing with polynomials is the division algorithm.

Theorem A.1.3. Let f(x),g(x) € R with g(x) # 0. Then there exist
unique polynomials q(x) (the quotient) and r (x) (the remainder) such that
f(x) = g(x)q(x) + r(x), where r(x) = 0 or deg r(x) < deg g(x).

Proof. We first prove existence.

If f(x) = 0 we are done: choose ¢(x) = 0 and r(x) = 0. Otherwise,
let f(x) have degree m and g(x) have degree n. We fix n and proceed by
complete induction on m. If m < n we are again done: choose g(x) = 0
and 7 (x) = f(x).

Otherwise, let g(x) = a,x" + -+ ag and f(x) = by x™ + -+ + by.
If go(x) = (bm/an)x™ ", then f(x) — g(x)qo(x) has the coefficient of

231
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x™ equal to zero. If f(x) = g(x)qgo(x) then we are again done: choose
q(x) = go(x) and r(x) = 0. Otherwise, f1(x) = f(x) — g(x)go(x) is a
nonzero polynomial of degree less than m. Thus by the inductive hypothesis
there are polynomials g1 (x) and r;(x) with fi(x) = g(x)g1(x) + r1(x)
where r1(x) = 0 or degri(x) < degg(x). Then f(x) = g(x)qo(x) +
J1(x) = g(¥)qo(x)+g(x)q1 (x)+r1(x) = g(x)g(x)+r(x) where g (x) =
qo(x)+q1(x) and r(x) = r1(x) is as required, so by induction we are done.

To prove uniqueness, suppose f(x) = g(x)qi(x) + r1(x) and f(x) =
g(x)g2(x) + ra(x) with r(x) and rp(x) satisfying the conditions of the
theorem. Then g(x)(q1 (x) — g2(x)) = ra(x) — r1(x). Comparing degrees
shows r2(x) = r1(x) and g2(x) = q1(x). O

REMARK A.1.4. The algebraically well-informed reader will recognize the
rest of this appendix as a special case of the theory of ideals in a Euclidean
ring, but we will develop this theory from scratch for polynomial rings. <

DEFINITION A.1.5. A nonempty subset J of R is an ideal of R if it has
the properties

(1) If p1(x) € ¢ and p2(x) € &, then p1(x) + p2(x) € &.
(2) If p1(x) € 4 and g(x) € R, then p1(x)q(x) € . <

REMARK A.1.6. Note that § = {0} is an ideal, the zero ideal. Any other
ideal (i.e., any ideal containing a nonzero element) is a nonzero ideal. <

ExAMPLE A.1.7. (1) Fix a polynomial po(x) and let g be the subset of
R consisting of all multiples of po(x), § = {po(x)q(x) | g(x) € R}.Itis
easy to check that ¢ is an ideal. An ideal of this form is called a principal
ideal and pg(x) is called a generator of &, or is said to generate §.

(2) Let {p1(x), p2(x), ...} be a (possibly infinite) set of polynomials in
Randlet g = {3 pi(x)qi(x) | only finitely many g; (x) # 0}.Itis easy to
check that ¢ is an ideal, and {p1(x), p2(x), ...} is called a generating set
for ¢ (or is said to generate &). <&

A nonzero polynomial p(x) = a,x" + --- + ao is called monic if the
coefficient of the highest power of x appearing in p(x) is 1, i.e., ifa, = 1.

Lemma A.1.8. Let § be a nonzero ideal of R. Then § contains a unique
monic polynomial of lowest degree.

Proof. The set {deg p(x) | p(x) € &, p(x) # 0} is a nonempty set of
nonnegative integers, so, by the well-ordering principle, it has a smallest
element d. Let po(x) be a polynomial in § with deg po(x) = d. Thus
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Po(x) is a polynomial in § of lowest degree, which may or may not be
monic. Write Po(x) = dgx¢ + --- + dp. By the properties of an ideal,
po(x) = (1/@q)Po(x) = x? + -+ + [@o/dq) = x? + -+ + ag is in
4. This gives existence. To show uniqueness, suppose we have a different
monic polynomial p; (x) of degree d in &, p1(x) = x¢ 4---4 bo. Then by
the properties of an ideal (x) = po(x)— p1(x) is a nonzero polynomial of
degree e < d in ¢, q(x) = Cex®+---+¢Cp. Butthen g(x) = (1/¢ce)q(x) =
x¢4---+(Co/Ce) is amonic polynomial in § of degree ¢ < d, contradicting
the minimality of d. O

Theorem A.1.9. Let § be any nonzero ideal of R. Then & is a principal
ideal. More precisely, & is the principal ideal generated by po(x), where
po(x) is the unique monic polynomial of lowest degree in §.

Proof. By Lemma A.1.8, there is such a polynomial po(x). Let o be the
principal ideal generated by po(x). We show that $o = .

First we claim that $o € &. This is immediate. For, by definition, Jg
consists of polynomials of the form po(x)q(x), and, by the properties of an
ideal, every such polynomial is in .

Next we claim that § C £o. Choose any polynomial g(x) € £. By
Theorem A.1.3, we can write g(x) = po(x)g(x) + r(x) where r(x) = 0
or degr(x) < degpo(x). If r(x) = 0 we are done, as then g(x) =
po(x)g(x) € Fo. Assume r(x) # 0. Then, by the properties of an ideal,
r(x) = g(x) — po(x)g(x) € F. (po(x) € & so po(x)(—¢q(x)) € &;
then also g(x) € & so g(x) + po(x)(—¢qo(x)) = r(x) € §). Now r(x)

is a polynomial of some degree ¢ < d, r(x) = a.x + --- + aop, S0
(1/ae)r(x) = x¢ 4+ --- + (ap/a.) € &. But this is a monic polynomial
of degree e, contradicting the minimality of d. (]

We now have an important application of this theorem.

DEFINITION A.1.10. Let {p1(x), p2(x),...} be a (possibly infinite) set
of nonzero polynomials in R. Then a monic polynomial d(x) € R is a
greatest common divisor (ged) of { p1(x), p2(x), ...} if it has the following
properties

(1) d(x) divides every p;(x).

(2) If e(x) is any polynomial that divides every p; (x), then e(x) divides
d(x). <
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Theorem A.1.11. Let {pi(x), p2(X),...} be a (possibly infinite) set of
nonzero polynomials in R. Then {p1(x), p2(x), ...} has a unique gcd d(x).
More precisely, d(x) is the generator of the principal ideal

g = {Z pi(x)qi (x) | gi (x) € R only finitely many nonzero}.

Proof. By Theorem A.1.9, there is unique generator d(x) of this ideal. We
must show it has the properties of a ged.

Let o be the principal ideal generated by d(x), so that o = &.

(1) Consider any polynomial p;(x). Then p;(x) € &, so pi(x) € o.
That means that p; (x) = d(x)g(x) for some g(x), so d(x) divides p;(x).

(2) Since d(x) € &, it can be written as d(x) = Y_ pi (x)g; (x) for some
polynomials {g; (x)}. Let e(x) be any polynomial that divides every p;(x).
Then it divides every product p;(x)g; (x), and hence their sum d(x).

Thus we have shown that d(x) satisfies both properties of a ged. It re-
mains to show that it is unique. Suppose d;(x) is also a ged. Since d(x)
is a ged of {p1(x), p2(x), ...}, and d1(x) divides each of these polynomi-
als, then d; (x) divides d(x). Similarly, d(x) divides d1 (x). Thus d(x) and
di(x) are a pair of monic polynomials each of which divides the other, so
they are equal. O

We recall an important definition.

DEFINITION A.1.12. A field F is algebraically closed if every noncon-
stant polynomial f(x) in F[x] has a rootin I, i.e., if for every nonconstant
polynomial f(x) in [F[x] there is an element r of F with f(r) = 0. <&

We have the following famous and important theorem, which we shall
not prove.

Theorem A.1.13 (Fundamental Theorem of Algebra). The field C of com-
plex numbers is algebraically closed.

ExAMPLE A.1.14. Let [F be an algebraically closed field and leta € F.
Then § = {p(x) € R | p(a) = 0} is an ideal. It is generated by the
polynomial x — a. <

Here is one of the most important applications of the gcd.

Corollary A.1.15. Let F be an algebraically closed field and let { p1(x), . ..,
Pn(x)} be a set of polynomials not having a common zero. Then there is a
set of polynomials {q1(x), ..., qn(x)} such that

P1(x)q1(x) + -+ pp(x)gn(x) = 1.
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Proof. Since {pi(x), ..., pn(x)} have no common zero, they have no non-
constant polynomial as a common divisor. Hence their gcd is 1. The corol-
lary then follows from Theorem A.1.11. O

DEFINITION A.1.16. A set of polynomials {pi(x), p2(x),...} is rela-
tively prime if it has ged 1. <&

We often phrase this by saying the polynomials p;(x), p2(x),... are
relatively prime.

REMARK A.1.17. Observe that {p1(x), pa(x), ...} is relatively prime if
and only if the polynomials p; (x) have no nonconstant common factor. <

Closely related to the greatest common divisor (gcd) is the least com-
mon multiple (Icm).

DEFINITION A.1.18. Let {pi(x), p2(x),...} be a set of polynomials.
A monic polynomial m(x) is a least common multiple (Icm) of {p1(x),
p2(x), ...} if it has the properties

(1) Every p;(x) divides m(x).

(2) If n(x) is any polynomial that is divisible by every p; (x), then m(x)
divides n(x). <

Theorem A.1.19. Let {p1(x), ..., pr(x)} be any finite set of nonzero poly-
nomials. Then {p1(x), ..., px(x)} has a unique lcm m(x).

Proof. Let § = {polynomials n(x) | n(x) is divisible by every p; (x)}. Itis
easy to check that ¢ is an ideal (verify the two properties of an ideal in Defi-
nition A.1.5). Also, § is nonzero, as it contains the product p;(x) - - - pg (x).

By Theorem A.1.9, ¢ is generated by a monic polynomial m(x). We
claim m(x) is the lem of { p1(x), ..., px(x)}. Certainly m(x) is divisible by
every p;(x),asm(x)isin g. Also, m(x) divides every n(x) in § because J,
as the principal ideal generated by m(x), consists precisely of the multiples
of m(x). (]

REMARK A.1.20. By the proof of Theorem A.1.19, m(x) is the unique
monic polynomial of smallest degree in . Thus the lcm of {p;(x),...,
pr(x)} may alternately be described as the unique monic polynomial of
lowest degree divisible by every p; (x). <

Lemma A.1.21. Suppose p(x) divides the product q(x)r(x) and that p(x)
and q(x) are relatively prime. Then p(x) divides r(x).
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Proof. Since p(x) and g(x) are relatively prime there are polynomials f(x)
and g(x) with p(x) f(x) + ¢(x)g(x) = 1. Then

p)f)r(x) +q(x)g(x)rx) = rx).

Now p(x) obviously divides the first term p(x) f(x)r(x), and p(x) also
divides the second term as, by hypothesis p(x) divides g(x)r(x), so p(x)
divides their sum 7 (x). O

Corollary A.1.22. Suppose p(x) and q(x) are relatively prime. If p(x)
divides r(x) and q(x) divides r (x), then p(x)q(x) divides r(x).

Proof. Since g(x) divides r(x), we may write 7 (x) = g(x)s(x) for some
polynomial s(x). Now p(x) divides r(x) = g(x)s(x) and p(x) and g(x)
are relatively prime, so by Lemma A.1.21 we have that p(x) divides s(x),
and hence we may write s(x) = p(x)t(x) for some polynomial #(x). Then
r(x) = q(x)s(x) = q(x)p(x)t(x) is obviously divisible by p(x)g(x). O

Corollary A.1.23. If p(x) and q(x) are relatively prime monic polynomi-
als, then their lem is the product p(x)q(x).

Proof. If their lem is m(x), then on the one hand m (x) divides p(x)g(x), by
the definition of the lcm. On the other hand, since both p(x) and g (x) divide
m(x), then p(x)q(x) divides m(x), by Corollary A.1.22. Thus p(x)g(x)
and m(x) are monic polynomials that divide each other, so they are equal.

O

A.2 UNIQUE FACTORIZATION

The most important property that R = F[x] has is that it is a unique factor-
ization domain.
In order to prove this we need to do some preliminary work.

DEFINITION A.2.1. (1) The units in [F[x] are the nonzero constant poly-
nomials.
(2) A nonzero nonunit polynomial f(x) is irreducible if

f(x) = g(x)h(x) with g(x)h(x) € F(x)

implies that one of g(x) and /(x) is a unit.

(3) A nonzero nonunit polynomial f(x) in F[x] is prime if whenever
f(x) divides a product g(x)h(x) of two polynomials in [F[x], it divides (at
least) one of the factors g(x) or h(x).
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(4) Two nonzero polynomials f(x) and g(x) in F[x] are associates if
f(x) = ug(x) for some unit u. <&

Lemma A.2.2. A polynomial f(x) in F[x] is prime if and only if it is irre-
ducible.

Proof. First suppose f(x) is prime, and let f(x) = g(x)h(x). Certainly
both g(x) and A(x) divide f(x). By the definition of prime, f(x) divides
g(x) or h(x). If f(x) divides g(x), then f(x) and g(x) divide each other,
and so have the same degree. Thus /(x) is constant, and so is a unit. By the
same argument, if f(x) divides i(x), then g(x) is constant, and so a unit.
Suppose f(x) is irreducible, and let f(x) divide g(x)A(x). To show
that f(x) is prime, we need to show that f(x) divides one of the factors.
By Theorem A.1.11, f(x) and g(x) have a gcdd(x). By definition,
d(x) divides both f(x) and g(x), so in particular d(x) divides f(x), f(x) =
d(x)e(x). But f(x) isirreducible, so d(x) or e(x) is a unit. If e(x) = u is
a unit, then f(x) = d(x)u so d(x) = f(x)v where uv = 1. Then, since
d(x) divides g(x), f(x) also divides g(x). On the other hand, if d(x) = u
is a unit, then d(x) = 1 as by definition, a ged is always a monic poly-
nomial. In other words, by Definition A.1.16, f(x) and g(x) are relatively
prime. Then, by Lemma A.1.21, f(x) divides A(x). O

Theorem A.2.3 (Unique factorization). Let f(x) € F[x] be a nonzero poly-
nomial. Then

S(x) =ugi1(x)---gr(x)

for some unit u and some set {g1(x), ..., gk (x)} of irreducible polynomi-
als. Furthermore, if also

Sf(x) = vhy(x)---hi(x)

for some unit v and some set {h1(x), ..., hj(x)} of irreducible polynomials,
then | = k and, after possible reordering, h;(x) and g;(x) are associates
foreachi =1,... k.

Proof. We prove this by complete induction on n = deg f(x). First we
prove the existence of a factorization and then we prove its uniqueness.
For the proof of existence, we proceed by induction. If » = 0 then
f(x) = u is a unit and there is nothing further to prove. Suppose that we
have existence for all polynomials of degree at most n and let f(x) have
degree n + 1. If f(x) is irreducible, then f(x) = f(x) is a factorization
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and there is nothing further to prove. Otherwise f(x) = fi(x) f>(x) with
deg fi(x) < n and deg f2(x) < n. By the inductive hypothesis fi(x) =
u1g1,1(x) - g1,s(x) and fo(x) = uzg82,1(x)---g2,+(x) so we have the
factorization

Fx) = (uru2)g1,1(x) - g1,s(X)g2,1(x) -+~ g2, (x),

and by induction we are done.

For the proof of uniqueness, we again proceed by induction. If n = 0
then f(x) = wu is a unit and again there is nothing to prove. ( f(x) can-
not be divisible by any polynomial of positive degree.) Suppose that we
have uniqueness for all polynomials of degree at most 7 and let f(x) have
degree n + 1. Let f(x) = ugi(x)---gx(x) = vhi(x)---hy(x). If f(x)
is irreducible, then by the definition of irreducibility these factorizations
must be f(x) = ugi(x) = vhi(x) and then g;(x) and h;(x) are asso-
ciates of each other. If f(x) is not irreducible, consider the factor g (x).
Now gx(x) divides f(x), so it divides the product vhi(x)---h;(x) =
(hy(x)---hj—1(x))h;(x). Since g (x) is irreducible, by Lemma A.2.2 it
is prime, so gx(x) must divide one of these two factors. If gz (x) divides
hi(x), then, since /;(x) is irreducible, we have h;(x) = g (x)w for some
unit w, in which case g (x) and h;(x) are associates. If not, then g (x) di-
vides the other factor vhy(x)---hj—; = (Whi(x)---hj—2(x))h;_1(x) and
we may repeat the argument. Eventually we may find that g (x) divides
some h;(x), in which case g (x) and h; (x) are associates. By reordering
the factors, we may simply assume that gi(x) and A;(x) are associates,
hi(x) = gr(x)w for some unit w. Then f(x) = ugi(x)---grx(x) =
vhi(x)---hy(x) = (w)hi(x) - hi—1(x)g(x). Let fi(x) = f(x)/g(x).
We see that

S1(x) = ug1(x) -+ ge—1(x) = (Vw)hi(x)---hj—1(x).

Now deg f1(x) < n, soby the inductive hypothesisk—1 = [—1,i.e.,k = [,
and after reordering g; (x) and h; (x) are associates fori = 1,...,k — 1.
We have already shown this is true for i = k as well, so by induction we
are done. (]

There is an important special case of this theorem that is worth observ-
ing separately.
Corollary A.2.4. Let F be algebraically closed and let f(x) be a nonzero
polynomial in F[x]. Then f(x) can be written uniquely as

f)y=u(x—ri)-(x —rn)
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withu # 0andry, ..., ry elements of F.

Proof. If F is algebraically closed, every irreducible polynomial is linear,
of the form g(x) = v(x —r), and then this result follows immediately from
Theorem A.2.3. (This special case is easy to prove directly, by induction on
the degree of f(x). We leave the details to the reader.) O

REMARK A.2.5. By Theorem A.1.13, Corollary A.2.4 applies in particular
when F = C. <

A.3 POLYNOMIALS AS EXPRESSIONS
AND POLYNOMIALS AS FUNCTIONS

Let p(x) € F[x] be a polynomial. There are two ways to regard p(x): as an
expression p(x) = ap+ai1x +---+a,x",and as afunction p(x) : F — F
by ¢ — p(c). We have at times, when dealing with the case F = R or C,
conflated these two approaches. In this section we show there is no harm in
doing so. We show that if [F is an infinite field, then two polynomials are
equal as expressions if and only if they are equal as functions.

Lemma A.3.1. Let p(x) € F[x] be a polynomial and let ¢ € F. Then
p(x) = (x —c)q(x) + p(c) for some polynomial q(x).

Proof. By Theorem A.1.3, p(x) = (x —c)q(x) + a for some a € F. Now
substitute x = ¢ to obtaina = p(c). O

Lemma A.3.2. Let p(x) be a nonzero polynomial of degree n. Then p(x)
has at most n roots, counting multiplicities, in F. In particular, p(x) has at
most n distinct roots in F.

Proof. We proceed by induction on n. The lemma is clearly true forn = 0.
Suppose it is true for all polynomials of degree n. Let p(x) be a nonzero
polynomial of degree n + 1. If p(x) does not have a root in IF, we are done.
Otherwise let r be a root of p(x). By Lemma A.3.1, p(x) = (x — r)q(x),
where ¢(x) has degree n. By the inductive hypothesis, ¢ (x) has at most n
roots in I, so p(x) has at most n + 1 roots in F, and by induction we are
done. (]

Corollary A.3.3. Let p(x) be a polynomial of degree at most n. If p(x) has
more than n roots, then p(x) = 0 (the 0 polynomial).
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Corollary A.3.4. (1) Let f(x) and g(x) be polynomials of degree at most
n. If f(c) = g(c) for more than n values of c, then f(x) = g(x).
(2) Let F be an infinite field. If f(x) = g(x) for every x € F, then

f(x) = gx).
Proof. Apply Corollary A.3.3 to the polynomial p(x) = f(x)—g(x). O

REMARK A.3.5. Corollary A.3.4(2) is false if F is a finite field. For exam-
ple, suppose that [ has n elements c1, ..., c,. Then f(x) = (x —c1)(x —
¢2)-+-(x —cp)has f(c) = 0forevery ¢c € F,but f(x) #0. <



CHAPTER B

MODULES OVER PRINCIPAL
IDEAL DOMAINS

In this appendix, for the benefit of the more algebraically knowledgable
reader, we show how to derive canonical forms for linear transformations
quickly and easily from the basic structure theorems for modules over a
principal ideal domain (PID).

B.1 DEFINITIONS AND STRUCTURE THEOREMS
We begin by recalling the definition of a module.

DEFINITION B.1.1. Let R be a commutative ring. An R-module is a set
M with a pair of operations satisfying the conditions of Definition 1.1.1
except that the scalars are assumed to be elements of the ring R. <&

One of the most basic differences between vector spaces (where the
scalars are elements of a field) and modules (where they are elements of a
ring) is the possibility that modules may have torsion.

DEFINITION B.1.2. Let M be an R-module. An element m # 0 of M is
a torsion element if rm = 0 for some r € R, r # 0. If m is any element of
M its annihilator ideal Ann(m) is the ideal of R given by

Ann(m) = {r € R | rm = 0}.

(Thus Ann(0) = R and m # 0 is a torsion element of M if and only if
Ann(m) # {0}.)

If every nonzero element of M is a torsion element then M 1is a torsion
R-module. <

241
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REMARK B.1.3. Here is a very special case: Let M = R and regard M
as an R-module. Then we have the dual module M * defined analogously to
Definition 1.6.1, and we can identify M * with R as follows: Let f € M*,
so f : M — R. Then we let f + f(1). (Otherwise said, any f € M™* is
given by multiplication by some fixed element of R, f(r) = ror, and then
f > ro.) For 5o € R consider the principal ideal J = soR = {sor | r €
R}.Let N = J and regard N as a submodule of M. Then

Ann (so) = Ann*(N)

where Ann*(N) is the annihilator as defined in Definition 1.6.10. <
Here is the basic structure theorem. It appears in two forms.

Theorem B.1.4. Let R be a principal ideal domain (PID). Let M be a
finitely generated torsion R-module. Then there is an isomorphism

MM &--- &M

where each M; is a nonzero R-module generated by a single element wj,
and Ann(wy) C --- € Ann(wg). The integer k and the set of ideals
{Ann(wy), ..., Ann(wg)} are well-defined.

Theorem B.1.5. Let R be a principal ideal domain (PID). Let M be a
finitely generated torsion R-module. Then there is an isomorphism

Mx=N&---®&N

where each Nj; is a nonzero R-module generated by a single element Xx;,
and Ann(x;) = piei R is the principal ideal of R generated by the element
pfi, where p; € R is a prime and e; is a positive integer. The integer | and
the set of ideals {p{'R, ..., p;' R} are well-defined.

REMARK B.1.6. In the notation of Theorem B.1.4, if Ann(w;) is the prin-
cipal ideal generated by the element r; of R, the condition Ann(w;) <
.-+ C Ann(wg) is that r; is divisibleby r;j 11 foreachi =1,...,k—1. <

B.2 DERIVATION OF CANONICAL FORMS

We now use Theorem B.1.4 to derive rational canonical form, and Theo-
rem B.1.5 to derive Jordan canonical form.

We assume throughout that V' is a finite-dimensional [F -vector space and
that 7 : V — V is a linear transformation.
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We let R be the polynomial ring R = F[x] and recall that R is a PID.
We regard V' as an R-module by defining

p(x)(v) = p(T)(v) forany p(x) € Randanyv € V.

Lemma B.2.1. V is a finitely generated torsion R-module.

Proof. V is a finite-dimensional [F-vector space, so it has a finite basis 8 =

{v1,...,Vy}. Then the finite set B generates V' as an [F-vector space, so
certainly generates V' as an R-module.

To prove that v # 0 is a torsion element, we need to show that p(7T") (v) =

0 for some nonzero polynomial p(x) € R. We proved this, forevery v € V,

in the course of proving Theorem 5.1.1 (or, in matrix terms, Lemma 4.1.18).

(]

To continue, observe that Ann(v), as defined in Definition B.1.2, is the
principal ideal of R generated by the monic polynomial mg ,(x) of Theo-
rem 5.1.1, and we called this polynomial the 7 -annihilator of v in Defini-
tion 5.1.2.

We also observe that a subspace W of V' is an R-submodule of V' if and
only if it is 7 -invariant.

Theorem B.2.2 (Rational canonical form). Let V be a finite-dimensional
vector space and let T : V. — V be a linear transformation. Then V has a
basis B such that [T)g = M is in rational canonical form. Furthermore,
M is unique.

Proof. We have simply restated (verbatim) Theorem 5.5.4(1). This is the
matrix translation of Theorem 5.5.2 about the existence of rational canoni-
cal T -generating sets. Examining the definition of a rational canonical 7 -
generating set in Definition 5.5.1, we see that the elements {w;} of that
definition are exactly the elements {w;} of Theorem B.1.4, and the ide-
als Ann(w;) are the principal ideals of R generated by the polynomials
mq w; (x) O

Corollary B.2.3. In the notation of Theorem B.1.4, let f;(x) = mg y, (x).
Then

(1) The minimum polynomial mg(x) = f1(x).
(2) The characteristic polynomial cg(x) = f1(x)--+ fr(x).

(3) mg(x) divides cg(x).
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(4) mg(x) and cg(x) have the same irreducible factors.
(5) (Cayley-Hamilton Theorem) ¢y (7) = 0.

Proof. For parts (1) and (2), see Corollary 5.5.6. Parts (3) and (4) are then
immediate. For (5), m¢ () = 0 and mq (x) divides cg(x), so cq(T) =
0. O

REMARK B.2.4. We have restated this result here for convenience, but the
full strength of Theorem B.2.2 is not necessary to obtain parts (2), (4), and
(5) of Corollary B.2.3—see Theorem 5.3.1 and Corollary 5.3.4. <&

Theorem B.2.5 (Jordan canonical form). Let F be an algebraically closed
field and let V be a finite-dimensional F-vector space. Let T : V. — V be
a linear transformation. Then V has a basis B with [T|g = J a matrix in
Jordan canonical form. J is unique up to the order of the blocks.

Proof. We have simply restated (verbatim) Theorem 5.6.5(1). To prove this,
apply Theorem B.1.5 to V' to obtain a decomposition V = N; & --- & N;
as R-modules, or, equivalently, a 7 -invariant direct sum decomposition of
V. Since F is algebraically closed, each prime in R is a linear polynomial.
Now apply Lemma 5.6.1 and Corollary 5.6.2 to each submodule N;. O

REMARK B.2.6. This proof goes through verbatim to establish Theo-
rem 5.6.6, the existence and essential uniqueness of Jordan canonical form,
under the weaker hypothesis that the characteristic polynomial ¢ (x) fac-
tors into a product of linear factors. Also, replacing Lemma 5.6.1 by Lemma
5.6.8 and Corollary 5.6.2 by Corollary 5.6.10 gives Theorem 5.6.13, the ex-
istence and essential uniqueness of generalized Jordan canonical form. <
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projection
canonical, 27

quotient, 26

R-module, 241

rank, 173

refinement
quadratic, 181

relatively prime, 235

Schur’s theorem, 210
self-adjoint, 203
shift
left, 6
right, 6
signature, 178
similar, 51
singular value decomposition, 220
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singular values, 220
skew-Hermitian, 171
skew-symmetric, 171
spanning set, 9
spectral theorem, 209
Stirling numbers, 52
subspace

affine, 25

orthogonal, 173
sum, 23

direct, 23
Sylvester’s law of inertia, 177
symmetric, 171
symmetric group, 66
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T -generate, 117
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rational canonical, 132
J -invariant, 117
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torsion, 241
transpose, 54
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triangularizable, 97

unique factorization, 237
unit vector, 192

unitary, 205
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volume function, 58, 60
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