
Andreas Fink and Franz Rothlauf (Eds.)

Advances in Computational Intelligence in Transport, Logistics, and Supply Chain
Management

Studies in Computational Intelligence,Volume 144

Editor-in-Chief
Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series can be found on our homepage:
springer.com

Vol. 123. Shuichi Iwata,Yukio Ohsawa, Shusaku Tsumoto, Ning
Zhong,Yong Shi and Lorenzo Magnani (Eds.)
Communications and Discoveries from MultidisciplinaryData,
2008
ISBN 978-3-540-78732-7

Vol. 124. Ricardo Zavala Yoe
Modelling and Control of Dynamical Systems: Numerical
Implementation in a Behavioral Framework, 2008
ISBN 978-3-540-78734-1

Vol. 125. Larry Bull, Bernadó-Mansilla Ester
and John Holmes (Eds.)
Learning Classifier Systems in Data Mining, 2008
ISBN 978-3-540-78978-9

Vol. 126. Oleg Okun and Giorgio Valentini (Eds.)
Supervised and Unsupervised Ensemble Methods
and their Applications, 2008
ISBN 978-3-540-78980-2

Vol. 127. Régie Gras, Einoshin Suzuki, Fabrice Guillet
and Filippo Spagnolo (Eds.)
Statistical Implicative Analysis, 2008
ISBN 978-3-540-78982-6

Vol. 128. Fatos Xhafa and Ajith Abraham (Eds.)
Metaheuristics for Scheduling in Industrial and Manufacturing
Applications, 2008
ISBN 978-3-540-78984-0

Vol. 129. Natalio Krasnogor, Giuseppe Nicosia, Mario Pavone
and David Pelta (Eds.)
Nature Inspired Cooperative Strategies for Optimization
(NICSO 2007), 2008
ISBN 978-3-540-78986-4

Vol. 130. Richi Nayak, Nikhil Ichalkaranje
and Lakhmi C. Jain (Eds.)
Evolution of the Web in Artificial Intelligence Environments,
2008
ISBN 978-3-540-79139-3

Vol. 131. Roger Lee and Haeng-Kon Kim (Eds.)
Computer and Information Science, 2008
ISBN 978-3-540-79186-7

Vol. 132. Danil Prokhorov (Ed.)
Computational Intelligence in Automotive Applications, 2008
ISBN 978-3-540-79256-7

Vol. 133. Manuel Graña and Richard J. Duro (Eds.)
Computational Intelligence for Remote Sensing, 2008
ISBN 978-3-540-79352-6

Vol. 134. Ngoc Thanh Nguyen and Radoslaw Katarzyniak (Eds.)
New Challenges in Applied Intelligence Technologies, 2008
ISBN 978-3-540-79354-0

Vol. 135. Hsinchun Chen and Christopher C.Yang (Eds.)
Intelligence and Security Informatics, 2008
ISBN 978-3-540-69207-2

Vol. 136. Carlos Cotta, Marc Sevaux
and Kenneth Sörensen (Eds.)
Adaptive and Multilevel Metaheuristics, 2008
ISBN 978-3-540-79437-0

Vol. 137. Lakhmi C. Jain, Mika Sato-Ilic, Maria Virvou,
George A. Tsihrintzis,Valentina Emilia Balas
and Canicious Abeynayake (Eds.)
Computational Intelligence Paradigms, 2008
ISBN 978-3-540-79473-8

Vol. 138. Bruno Apolloni,Witold Pedrycz, Simone Bassis
and Dario Malchiodi
The Puzzle of Granular Computing, 2008
ISBN 978-3-540-79863-7

Vol. 139. Jan Drugowitsch
Design and Analysis of Learning Classifier Systems, 2008
ISBN 978-3-540-79865-1

Vol. 140. Nadia Magnenat-Thalmann, Lakhmi C. Jain
and N. Ichalkaranje (Eds.)
New Advances in Virtual Humans, 2008
ISBN 978-3-540-79867-5

Vol. 141. Christa Sommerer, Lakhmi C. Jain
and Laurent Mignonneau (Eds.)
The Art and Science of Interface and Interaction Design, 2008
ISBN 978-3-540-79869-9

Vol. 142. George A. Tsihrintzis, Maria Virvou, Robert J. Howlett
and Lakhmi C. Jain (Eds.)
New Directions in Intelligent Interactive Multimedia,2008
ISBN 978-3-540-68126-7

Vol. 143. Uday K. Chakraborty (Ed.)
Advances in Differential Evolution, 2008
ISBN 978-3-540-68827-3

Vol. 144.Andreas Fink and Franz Rothlauf (Eds.)
Advances in Computational Intelligence in Transport, Logistics,
and Supply Chain Management, 2008
ISBN 978-3-540-69024-5

Andreas Fink
Franz Rothlauf
(Eds.)

Advances in Computational
Intelligence in Transport,
Logistics, and
Supply Chain Management

123

Prof. Dr.Andreas Fink
Faculty of Economics and Social Sciences
Helmut-Schmidt-University Hamburg
Holstenhofweg 85
22043 Hamburg
Germany
Email: andreas.fink@hsu-hamburg.de

Prof. Dr. Franz Rothlauf
Lehrstuhl für Wirtschaftsinformatik
Johannes-Gutenberg-Universität Mainz
Jakob Welder-Weg 9
D-55099 Mainz
Germany
Email: rothlauf@uni-mainz.de

ISBN 978-3-540-69024-5 e-ISBN 978-3-540-69390-1

DOI 10.1007/978-3-540-69390-1

Studies in Computational Intelligence ISSN 1860949X

Library of Congress Control Number: 2008927876

c© 2008 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data
banks.Duplication of this publication or parts thereof is permitted only under the provisions of
the German Copyright Law of September 9, 1965, in its current version, and permission for use
must always be obtained from Springer.Violations are liable to prosecution under the German
Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

Typeset & Cover Design: Scientific Publishing Services Pvt. Ltd., Chennai, India.

Printed in acid-free paper

9 8 7 6 5 4 3 2 1
springer.com

Preface

Logistics and supply chain management deal with managing the flow of goods
or services within a company, from suppliers to customers, and along a supply
chain where companies act as suppliers as well as customers. As transportation
is at the heart of logistics, the design of traffic and transportation networks
combined with the routing of vehicles and goods on the networks are important
and demanding planning tasks. The influence of transport, logistics, and sup-
ply chain management on the modern economy and society has been growing
steadily over the last few decades. The worldwide division of labor, the connec-
tion of distributed production centers, and the increased mobility of individuals
lead to an increased demand for efficient solutions to logistics and supply chain
management problems. On the company level, efficient and effective logistics
and supply chain management are of critical importance for a company’s suc-
cess and its competitive advantage. Proper performance of the logistics functions
can contribute both to lower costs and to enhanced customer service.

Computational Intelligence (CI) describes a set of methods and tools that
often mimic biological or physical principles to solve problems that have been
difficult to solve by classical mathematics. CI embodies neural networks, fuzzy
logic, evolutionary computation, local search, and machine learning approaches.
Researchers that work in this area often come from computer science, operations
research, or mathematics, as well as from many different engineering disciplines.
Popular and successful CI methods for optimization and planning problems are
heuristic optimization approaches such as evolutionary algorithms, local search
methods, and other types of guided search methods. Such methods do not enu-
merate all possible solutions but move “heuristically” through the search space
searching for superior solutions. Heuristic optimization approaches must balance
intensification, which focuses the search on high-quality solutions (exploitation),
and diversification, which ensures that the search can escape from local optima
and does not focus on small parts of the search space (exploration).

The book at hand presents a careful selection of relevant applications of CI
methods for transport, logistics, and supply chain management problems. The
chapters illustrate the current state-of-the-art in the application of CI methods

VI Preface

in these fields and should help and inspire researchers and practitioners to apply
and develop efficient methods. A few contributions in this book are extended ver-
sions of papers presented at EvoTransLog2007: The First European Workshop
on Evolutionary Computation in Transportation and Logistics which was held
in Valencia, Spain, in 2007. The majority of contributions are from additional,
specially selected researchers, who have done relevant work in different areas of
transport, logistics, and supply chain management. The goal is to broadly cover
representative applications in these fields as well as different types of solution ap-
proaches. On the application side, the contributions focus on design of traffic and
transportation networks, vehicle routing, and other important aspects of supply
chain management such as inventory management, lot sizing, and lot scheduling.
On the method side, the contributions deal with evolutionary algorithms, local
search approaches, and scatter search combined with other CI techniques such
as neural networks or fuzzy approaches.

The book is structured according to the application domains. Thus, it has
three parts dealing with traffic and transportation networks, vehicle routing,
and supply chain management.

The majority of the contributions of Part I focus on road traffic in urban
settings. The first contribution on “Combined Genetic Computation of Micro-
scopic Trip Demand in Urban Networks” by T. Tsekeris, L. Dimitriou, and
A. Stathopoulos presents an approach to predicting the expected trip demand
in urban networks. A proper estimation of dynamic origin-destination demands
is fundamental for all network design and routing decisions. The authors for-
mulate the multi-objective problem and present an evolutionary computation
approach combined with a microscopic simulation model for estimating the ex-
pected traffic flow.

The next two contributions focus on design of road networks. The chapter
“Genetically Optimized Infrastructure Design Strategies in Degradable Trans-
port Networks” by the same authors builds on their first contribution. The au-
thors take the origin-destination demands as given and formulate the stochastic
equilibrium network design problem as a game-theoretic, combinatorial bi-level
program. The design process of a transport network is considered as a game
between the network designer and the network user. The system designer is the
leader in a two-stage leader-follower Stackelberg game. He modifies the struc-
ture of the road network to optimize the system performance, while the users
are the followers reacting to alternative design plans. The options of the system
designer are either to build new roads or to add additional lanes to existing
roads. To solve the problem, the authors again combine evolutionary algorithms
with simulation.

The contribution “Genetic Algorithm for Constraint Optimal Toll Ring De-
sign” by A. Sumalee focuses on design of toll rings. A toll ring is a ring of roads
which encloses a specific area (e.g. city center) such that all vehicles travelling
to the area must use a road that is part of the toll ring at least once. The author
presents an evolutionary algorithm combined with a traffic simulator to find a

Preface VII

toll ring such that the benefits gained less the costs of implementing the toll ring
are maximized.

The final contribution in the context of road networks “Real Time Iden-
tification of Road Traffic Control Measures” by K. Almejalli, K. Dahal, and
M. A. Hoasain deals with control of road traffic and presents a system for deter-
mining appropriate road traffic control options. The options are chosen according
to different traffic states. The performance of the control actions is determined
by travel time, fuel consumption, and average length of traffic jams. To solve the
problem, the authors combine several CI approaches, namely fuzzy logic, neural
networks, and evolutionary algorithms.

The contribution “Simultaneous Airline Scheduling” by T. Grosche and
F. Rothlauf forms the bridge between Part I and Part II of the book. It ad-
dresses both design of transportation networks and routing of vehicles (airplanes)
on those networks. The authors present a novel and integrated approach for air-
line scheduling which allows airlines simultaneously to determine an optimal
structure of the flight network, routing of the airplanes on the flight network,
and scheduling of flights. The optimization goal is to maximize the revenue of
an airline. Since the problem is too complex to be efficiently solved by classical
optimization methods, different types of heuristic optimization methods such as
evolutionary algorithms and threshold accepting are studied. Important for a
high performance of the heuristic optimization methods are the proper choice of
the representation/operator combination, repair operators, fitness function, and
initial solution.

Part II of the book starts with three contributions on vehicle and arc routing.
The contribution “GRASP with Path Relinking for the Capacitated Arc Routing
Problem with Time Windows” by N. Labadi, C. Prins, and M. Reghioui combines
several heuristic search approaches such as greedy randomized search, a tour-
splitting algorithm which diversifies the search process, a local search, and an
optional path relinking process to solve the undirected capacitated arc routing
problem with time windows. The proposed approach finds new optimal solutions
for the problem and is as effective as state-of-the-art algorithms, while being
significantly faster.

The second contribution “A Scatter Search Algorithm for the Split Delivery
Vehicle Routing Problem” by V. Campos, A. Corberán, and E. Mota deals with
a similar problem and presents a scatter search approach for vehicle routing
problems where the demands of clients can be split, this means any client can be
served by more than one vehicle. Again, the computational experiments indicate
that the proposed heuristic results in similar performance to state-of-the-art
methods.

The third contribution on vehicle routing, “Stochastic Local Search Proce-
dures for the Probabilistic Two-Day Vehicle Routing Problem” by K. F. Doerner,
W. J. Gutjahr, R. F. Hartl, and G. Lulli, describes a vehicle routing problem
where two types of service are provided: an urgent service that delivers within
one day and a regular service that needs two days but comes at a lower price. To
exploit synergies in building the delivery tours regular orders may be delivered

VIII Preface

immediately (like urgent services). Assuming a dynamic (online) problem setting
with a rolling planning horizon, the problem is formalized as a stochastic problem
and solved using an approach based on ant colony optimization.

The contribution “The Oil Drilling Model and Iterative Deepening Genetic
Annealing Algorithm for the Traveling Salesman Problem” by H. C. Lau and
F. Xiao presents a hybrid approach, which imitates the oil drilling process: Search
takes place in many places (a population of candidate solutions) and each place is
evaluated by drilling (performing a local search). Search diversification is mainly
provided by genetic algorithm concepts, while simulated annealing is used for
intensification by means of local search. In the course of the search process the
population shrinks and the local search is intensified (drilling deeper). That is,
the balance shifts from diversification to intensification. Results show that a
proper combination of intensification and diversification elements outperforms a
straightforward hybrid algorithm as well as using local or recombination-based
search alone.

The contribution “Online Transportation and Logistics Using Computation-
ally Intelligent Anticipation” by P. A. N. Bosman and H. L. Poutré forms the
bridge between Part II and Part III of the book. It discusses the importance of
anticipation in online decision making and describes how CI can be used to de-
sign approaches that perform anticipation. The proposed methods are designed
such that they learn from the consequences of previous decisions, which leads to
an auto-adaptive design. The authors present two applications: dynamic vehicle
routing, which assumes that the loads to be transported are announced while the
vehicles are already en route, and inventory management where higher customer
satisfaction leads to an increased number of transactions.

The final Part III on supply chain management starts with a contribution on
“Supply Chain Inventory Optimisation with Multiple Objectives: An Industrial
Case Study” by L. Amodeo, H. Chen, and A. E. Hadji. The authors optimize sup-
ply chain inventory policies using a multi-objective optimization approach that
combines genetic algorithms with a Petri net-based simulation tool for perfor-
mance evaluation. In a real-world study, the authors use inventory cost, customer
service level, and computation time as optimization goals.

The contribution “Decomposition of Dynamic Single-Product and Multi-
Product Lotsizing Problems and Scalability of EDAs” by J. Grahl, S. Minner,
and F. Rothlauf shows that certain lotsizing problems are decomposable. Thus,
such problems can be solved efficiently by evolutionary algorithms such as es-
timation of distribution algorithms (EDA). A scalability analysis for EDAs on
the dynamic single-product and multi-product lotsizing problem confirms ex-
isting scalability theory and shows that solution effort grows with a low-order
polynomial depending on the problem size.

The final contribution “Hybrid Genetic Algorithms for the Lot Production and
Delivery Scheduling Problem in a Two-Echelon Supply Chain” by S. A. Torabi,
M. Jenabi, and S. A. Mansouri considers a single supplier who produces items on
a flexible flow line under a cyclic policy and delivers them directly to an assem-
bly facility. The authors formulate the problem as a mixed zero-one nonlinear

Preface IX

program and minimize the average setup, inventory-holding, and delivery costs.
For solving the problem, a hybrid approach is proposed which combines genetic
algorithms and neighborhood search.

In closing we wish to thank all authors who contributed to this book. Without
their work and passion, this book would not have been possible. In addition, we
thank all reviewers for their help in improving the quality of the contributions
in the book. We also want to thank Inka Lölfer for proofreading parts of the
book, as well as Jens Czogalla for helping with the technical preparation of
some chapters. Last, but not least, we want to thank the editor of this book
series, Janusz Kacprzyk, for making this book possible and Thomas Ditzinger
who fully supported the project.

Hamburg and Mainz (Germany) Andreas Fink
March 2008 Franz Rothlauf

Contents

Part I: Traffic and Transport Networks

Combined Genetic Computation of Microscopic Trip Demand
in Urban Networks
Theodore Tsekeris, Loukas Dimitriou, Antony Stathopoulos 3

Genetically Optimized Infrastructure Design Strategies in
Degradable Transport Networks
Loukas Dimitriou, Theodore Tsekeris, Antony Stathopoulos 23

Genetic Algorithm for Constraint Optimal Toll Ring Design
Agachai Sumalee . 45

Real Time Identification of Road Traffic Control Measures
Khaled Almejalli, Keshav Dahal, M. Alamgir Hossain 63

Simultaneous Airline Scheduling
Tobias Grosche, Franz Rothlauf . 81

Part II: Vehicle Routing

GRASP with Path Relinking for the Capacitated Arc Routing
Problem with Time Windows
Nacima Labadi, Christian Prins, Mohamed Reghioui 111

A Scatter Search Algorithm for the Split Delivery Vehicle
Routing Problem
Vicente Campos, Angel Corberán, Enrique Mota . 137

XII Contents

Stochastic Local Search Procedures for the Probabilistic
Two-Day Vehicle Routing Problem
Karl F. Doerner, Walter J. Gutjahr, Richard F. Hartl,
Guglielmo Lulli . 153

The Oil Drilling Model and Iterative Deepening Genetic
Annealing Algorithm for the Traveling Salesman Problem
Hoong Chuin Lau, Fei Xiao . 169

Online Transportation and Logistics Using Computationally
Intelligent Anticipation
Peter A.N. Bosman, Han La Poutré . 185

Part III: Supply Chain Management

Supply Chain Inventory Optimisation with Multiple
Objectives: An Industrial Case Study
Lionel Amodeo, Haoxun Chen, Aboubacar El Hadji . 211

Decomposition of Dynamic Single-Product and Multi-product
Lotsizing Problems and Scalability of EDAs
Jörn Grahl, Stefan Minner, Franz Rothlauf . 231

Hybrid Genetic Algorithms for the Lot Production and
Delivery Scheduling Problem in a Two-Echelon Supply Chain
S. Ali Torabi, Masoud Jenabi, S. Afshin Mansouri . 253

Author Index . 277

Part I

Traffic and Transport Networks

Combined Genetic Computation of Microscopic
Trip Demand in Urban Networks

Theodore Tsekeris1, Loukas Dimitriou2, and Antony Stathopoulos2

1 Centre for Planning and Economic Research, Amerikis 11, 10672 Athens, Greece
tsek@kepe.gr

2 Department of Transportation Planning and Engineering, School of Civil
Engineering, National Technical University of Athens, Iroon Polytechniou 5,
15773 Athens, Greece
lucdimit@central.ntua.gr, astath@transport.ntua.gr

Summary. This chapter describes a combined genetic computation approach for esti-
mating time-varying Origin-Destination (O-D) trip demand matrices from traffic counts
in urban networks. The estimation procedure combines a microscopic model simulat-
ing traffic flow conditions with a genetic algorithm to synthesize the network O-D trip
matrix, through determining the turning flow proportions at each intersection. The
proposed approach avoids the restrictions involved in employing a user-optimal Dy-
namic Traffic Assignment (DTA) procedure and carries out a stochastic global search
of the optimal O-D trip and turning flow distributions. The multi-objective, single-
level optimization formulation of the problem provides a mutually consistent solution
between the resulting O-D matrix and path/link flow pattern, which minimizes the
difference between estimated and observed link flows. The model implementation into
a real arterial sub-network demonstrates its ability to microscopically estimate trip
demand with satisfactory accuracy and fast computing speeds which allow its usage in
dynamic urban traffic operations.

Keywords: Genetic computation, Trip demand, Urban networks, Traffic flows, Micro-
scopic simulation.

1 Introduction

The time-varying (dynamic) Origin-Destination (O-D) trip demand matrices
provide a crucial input for the simulation, management and control of urban
road transportation networks. A dynamic O-D matrix specifies the aggregate
demand for trip interchange between specific traffic zones of the network over a
series of time intervals. The dynamic O-D matrix estimation is commonly based
on two sources of information, i.e. measured traffic flow time series (counts) at
selected network links and a prior O-D matrix to guide the solution procedure.
The resulting O-D matrices are mostly used as input to a Dynamic Traffic As-
signment (DTA) procedure for mapping the estimated trip demand into a set
of path and link traffic flows. In the DTA procedure, a number of additional
constraints can be imposed in order to improve the observability of the dynamic

A. Fink and F. Rothlauf (Eds.): Advances in Computational Intelligence, SCI 144, pp. 3–21, 2008.
springerlink.com © Springer-Verlag Berlin Heidelberg 2008

4 T. Tsekeris, L. Dimitriou, and A. Stathopoulos

O-D matrices, such as constraints on the turning flow proportions at network
intersections. However, the use of a DTA-based solution is typically subject to
strong assumptions concerning the quality of input demand information and
route choice behavior of users, while it induces severe computational burden for
the real-time estimation of dynamic O-D matrices in realistic-size urban net-
works. Moreover, existing methods for dynamic O-D matrix estimation provide
the aggregate demand for interchange between O-D pairs. Such an aggregate
treatment does not permit the complete monitoring of the network traffic state,
in terms of the knowledge of the spatio-temporal trajectory of each vehicle in
the network.

The present study addresses the aforementioned problems through employing
a combined genetic computation method, which combines a microscopic traffic
simulation model with a genetic algorithm (GA) for the non-DTA-based solution
of the dynamic O-D matrix estimation from traffic counts in urban networks.
The proposed method, which was originally formulated and briefly analyzed in
[25], exploits the hierarchical structure of the network, which is composed of a
set of signalized intersections (nodes) connected each other with arterial links.
The current approach substitutes the DTA procedure with a series of O-D flow
estimation sub-problems at the level of each intersection for the network-wide
O-D matrix estimation. The simulation model used here enables to microscopi-
cally represent the intricate features of traffic flow and, hence, it allows tracking
network O-D trip flows at the basic demand unit of an individual vehicle. The
GA-based process carries out a stochastic global search for simultaneously esti-
mating the optimal distribution of turning flows at each intersection and O-D
trip flows at the whole network. The GA provides a suitable approach for han-
dling the uncertainty of input information in the estimation procedure and helps
reach an optimal (or satisfactory sub-optimal) solution.

The following section provides a general description of the issues and exist-
ing approaches involved in estimating turning flow proportions at intersection
level and O-D trip flows at network level, and the formulation of the problem
as a multi-objective, single-level estimation procedure. Section 3 describes the
microscopic model of traffic simulation and the combined genetic computation
method. Section 4 provides information about the experimental setup of the
study. Section 5 presents numerical results which demonstrate the accuracy and
computational efficiency of the model through its implementation into a real
urban arterial sub-network, and Sect. 6 summarizes and concludes.

2 Description of the Dynamic Network O-D Matrix
Estimation

2.1 The Problem of Dynamic Network O-D Matrix Estimation

The estimation of dynamic network O-D matrices typically employs optimization
procedures which consider the relationship between travel demand and path/link
flow loading pattern as fixed, based on the equilibrium assignment of the prior O-
D matrix onto the network. This relationship is defined by the fractions, known

Combined Genetic Computation of Microscopic Trip Demand 5

as link use proportions, of each O-D trip population traversing the observed links,
and constitute the elements of the assignment matrix. In this case, the problem
of inconsistency appears between the initial assignment matrix, on which the
estimation process relies, and the final assignment matrix resulting from the es-
timated demand pattern. Methods that have been hitherto considered for solving
the dynamic O-D matrix estimation problem with fixed (multi-path) assignment
matrix include the Generalized Least Squares (GLS) [4], the Kalman filtering
[1], maximum likelihood [14] and entropy maximization [26].

The development of bi-level programming approaches aimed at treating the
inconsistency between the resulting O-D trip matrix and the assignment matrix,
by estimating these two separate problems in a common optimization framework
[29]. Such approaches include the iterative bi-level optimization approach, where
the O-D matrix and DTA problems are solved in a sequential manner, and
the simultaneous optimization approach, where both the O-D matrix and DTA
problems are formulated by using a single (composite) objective function and
simultaneously solved in each updating iteration as a single-level optimization
problem (see Sect. 2.3). The latter approach is concisely referred to here as
simultaneous dynamic O-D matrix estimation. The iterative and simultaneous
optimization approaches were originally developed for the case of static O-D
matrix estimation (see, respectively, [10] and [29]) and later extended through
a GLS framework for the estimation of dynamic O-D matrices in simplified test
networks (see, respectively, [24] and [27]).

The simultaneous optimization approach can ensure the convergence of the
estimation procedure and the mutual consistency of the resulting O-D matrix
with the path and link loading pattern, as reflects the time-varying assignment
matrix, in comparison to the iterative optimization approach. In addition, it can
inherently express through a single objective function the relative contribution
of different errors in the resulting O-D trips and traffic flows to the performance
of the simultaneous estimation procedure. Nevertheless, the solution of the DTA
problem mostly involves increased complexity and heavy computational burden
in realistic urban networks. Besides, the simultaneous optimization requires the
estimation of partial derivatives, the Hessian matrix of the single objective func-
tion and the evaluation of this function in each updating iteration of the solution
procedure ([11], [30]). These problems restrict the applicability of the results of
the simultaneous O-D matrix estimation for practical traffic operation purposes.
Such purposes can primarily involve the online deployment of real-time route
guidance information and area-wide traffic signal control systems.

Furthermore, the intractability of DTA-based approaches for the dynamic
O-D matrix estimation can be attributed to their inability to replicate actual
urban traffic flow conditions. Particularly for the complex case of congested ar-
terial networks, the actual traffic conditions can significantly depart from the
user-optimal traffic conditions that are typically sought to be estimated by the
DTA models. The inaccuracy of the results of the dynamic assignment proce-
dure, in combination with the uncertainty of the prior demand information and

6 T. Tsekeris, L. Dimitriou, and A. Stathopoulos

missing flow information, tend to significantly increase the discrepancy between
estimated (assigned) and measured link flows.

Stochastic global search techniques, such as Genetic Algorithms (GAs), can
suitably address problems of uncertain and missing information in O-D matrix
estimation. However, their usage is particularly limited in the literature and
restricted to the case of static traffic networks ([16], [23]). In addition, the use of
microscopic simulation models could enhance the accuracy of the resulting O-D
matrices. Nonetheless, the micro-simulation models are typically used only for
the estimation of disaggregate O-D flows at intersections, while their application
in network-wide problems involves the use of DTA-based procedures for the
estimation of aggregate O-D trip flows [3].

In order to address the problems mentioned previously, the current study
describes a non-DTA-based solution of the simultaneous dynamic O-D matrix
estimation with traffic counts in urban networks. The DTA procedure is sub-
stituted here with a series of intersection O-D matrix estimation sub-problems,
which are solved with a micro-simulation model augmented with a genetic algo-
rithm. This combined genetic approach carries out a stochastic global search and
simultaneous estimation of the optimal distribution of turning movement flows
at each intersection and O-D trip flows at the whole network. The following
subsection presents the problem of intersection O-D movement estimation.

2.2 The Problem of Intersection O-D Movement Estimation

The estimation of intersection O-D matrices of turning movements, in terms
of the proportions of traffic from each entrance going to a given exit, at sig-
nalized intersections plays an increasingly important role in a number of traffic
simulation and control procedures in urban networks. These proportions have
been historically estimated by manual counting. However, the advent of the
third generation of Urban Traffic Control Systems (UTCS), through the on-line,
traffic-responsive signal control systems operating on a cycle-by-cycle basis, such
as the SCAT, SCOOT [18] and TUC [7], and the real-time traffic adaptive con-
trol systems, such as the OPAC [12], indicated the importance of automatically
estimating intersection turning proportions from traffic count data. In addition
to the UTCS, the estimation of intersection O-D turning flows can support a
range of other operations involved in the deployment of the Advanced Traffic
Management Systems (ATMS) and the Advanced Traveler Information Systems
(ATIS) in urban areas. Such operations include the estimation of O-D trip matri-
ces and the dynamic assignment of demand onto the network, and, subsequently,
the deployment of individual (in-vehicle) and collective (e.g., Variable Message
Sign or web-based) route guidance systems. Moreover, data on turning flow pro-
portions at signalized intersections can provide valuable information for traffic
simulation studies, such as those based on the well-known TSIS platform [9],
which are used for generating and evaluating alternative traffic scenarios.

The collection and processing of detector data for estimating turning propor-
tions at signalized intersections of realistic urban networks tend to be highly
expensive and time-consuming. For instance, the modeling effort involved in the

Combined Genetic Computation of Microscopic Trip Demand 7

Fig. 1. Turning movements on consecutive intersections of two-way streets

case of a small part of an urban network, composed of a set of two intersec-
tions and two-way streets (see Fig. 1), requires six entry flows and twenty four
turning flow proportions, apart from the data needed to represent the geometric
characteristics, the signal control strategy and other special features, including
the characteristics of vehicles and the behavior of drivers. Also, the amount of
detector data actually available is typically much less than the amount of data
required for measuring the complete set of turning proportions at all signalized
intersections, even for the case of an isolated urban arterial.

This fact implies that the problem is underspecified and strongly dependent on
the availability, quality and variability of the partial aggregate information about
the entry flows and turning proportions. The estimation of turning proportions
at signalized intersections with partial traffic counts can be expressed through
different types of optimization problems. Such problems include non-recursive
(constrained) Least Squares [6], (discounted) recursive Least Squares, Kalman
filtering [20], iterative maximum likelihood technique [21], linear programming
[19] and prediction error minimization [17]. Nonetheless, the performance of such
heuristic optimization methods cannot adequately address the aforementioned
problems. Specifically, it has been found to decrease when observed traffic flows
are time-dependent and of increased variability, as it typically occurs for the case
of real urban arterial networks. Furthermore, it is typically affected by several
complicated but crucial modeling tasks, including those corresponding to the
representation of queues and platoon dispersion and the appropriate selection of
time intervals involved in the estimation process [2].

The adoption of intelligent computational approaches is promising for ad-
dressing the above limitations, since they can reduce the level of dependency
of the resulting turning proportions on the size and quality of input data. This
study employs a stochastic meta-heuristic estimation model of global optimiza-
tion, which refers to a GA for estimating intersection O-D turning movements,
by using as input a partial set of readily available aggregate traffic flows, as
obtained from automatic detector measurements (see Sect. 4). The objective
function of the turning movement estimation sub-problem at each intersection

8 T. Tsekeris, L. Dimitriou, and A. Stathopoulos

is incorporated here in the overall (composite) objective function of the global
time-varying O-D matrix estimation problem at network level. This objective
function is expressed by a metric of the difference between estimated and ob-
served flows, which is sought to be minimized subject to a set of constraints.
These constraints are related to the nature of the different types of input data
and the natural constraints on the permissible values of the turning proportions
(see Sect. 2.3).

The estimation of each intersection turning movement sub-problem is carried
out through employing a microscopic traffic simulation approach (see Sect. 3.1),
which is combined with the GA. This combination, which was originally devel-
oped in [8], enables a better treatment of data requirements associated with
more detailed and disaggregated information about vehicle characteristics and
drivers’ behavior in each arterial link and signalized intersection. In addition,
the micro-simulation model allows representing the interaction between individ-
ual vehicles and the modeling of the driving behavior of users when moving in
the network. In this way, it offers a sound behavioral underpinning to the solu-
tion of each intersection O-D matrix sub-problem, in comparison to the existing
methods for estimating turning proportions. The following subsection describes
the simultaneous optimization formulation of the network-wide dynamic O-D
matrix estimation problem.

2.3 Formulation of the Simultaneous Dynamic O-D Matrix
Estimation

The simultaneous optimization approach has been considered to address a num-
ber of transportation network problems, which can be provided through a bi-level
programming formulation (see [28]), including O-D trip matrix estimation. The
present formulation ensures a mutually consistent solution between the result-
ing O-D matrices, link flows and intersection turning proportions at a one-step
process. Consider a network composed of G nodes, E directed links, L and M
be the number of origins and destinations from and to which vehicular trips
are allocated and W be the amount of O-D pairs traversed by flows. Let x be
the (unknown) network O-D matrix whose elements x̃τ

lm denote the number of
vehicular trips departing from origin l = 1, . . . , L to destination m = 1, . . . , M
during estimation interval τ ∈ T and contributing to the flows traversing links
during count interval t ∈ τ , where T is the study period that typically refers to
the (morning or afternoon) peak travel period. The trip demand x̃τ

lm gives rise
to path flows pτ

lm between each l −m pair. Also, consider J be the total number
of observed links, which are equipped with a traffic counter and are traversed by
flows that have exited from the upstream node g ∈ G∗

lm, with G∗
lm be the set of

nodes traversed by the feasible O-D paths between l − m pair, and ht
lmi be the

flows between l−m pair traversing a link ending at node entrance i during t, with
I be the number of node entrances. Moreover, yt

j and ỹt
j denote respectively the

variables of the measured and estimated (assigned)flows traversing the observed
link j during count interval t and blmt

ij are the proportions of flow between l −m
pair turning from entrance i to link j at interval t.

Combined Genetic Computation of Microscopic Trip Demand 9

Then, the simultaneous dynamic O-D matrix estimation at an interval τ ∈ T
can be expressed as a multi-objective optimization problem, through minimizing
a composite function F , i.e., a weighted function composed of the Mean Absolute
Relative Error (MARE) of the resulting O-D trip matrix and link flow estimates,
as follows:

min F (x, ỹ,b) =
{

γ1

[
1
W

∑L

l

∑M

m

|xτ
lm − x̃τ

lm|
xτ

lm

]

+ γ2

[
1
Z

∑
t∈τ

∑J

j

∣∣yt
j − ỹt

j

∣∣
yt

j

]}
(1)

subject to the constraints:

x̃τ
lm =

∑L

l

∑M

m
pτ

lm (2)

pτ
lm =

∑
t∈τ

∑
g∈G∗

lm

∑I

i
ht

lmi (3)

ht
lmi =

∑L

l

∑M

m

∑K

k
ỹt

k (4)

ỹt
j =

∑L

l

∑M

m

∑I

i
blmt
ij ht

lmi (5)

∑J

j
ỹt

j ≤
∑K

k
ỹt

k (6)

0 ≤ blmt
ij ≤ 1 (7)

∑K

k �=i
blmt
ik = 1 (8)

The scalar Z in function F is given as Z = JT ×V , with JT be the sum of all
links traversed by observed flows that have exited from an upstream node and V
be the traffic flow variables (e.g., volume, occupancy, speed) measured by traffic
counters. The index k denotes any (observed or unobserved) link traversed by
flows that have exited from a node g ∈ G∗

lm, with K ≥ J be the total number
of links traversed by flows exited from that node. The reliability weights γ1
and γ2 express the relative confidence assigned to each of the two sources of
information, i.e. the prior network O-D matrix, with elements xτ

lm (see Sect. 3),
and the traffic counts respectively, on the performance of the estimation process.
The objective function (1) incorporates the effects of changes in the amount of
O-D pairs and traffic counters, the size of O-D demand and measured traffic flow,
and the type of traffic flow variable. The equation constraint (2) imposed on O-D
trip flows x̃τ

lm, equation constraints (3)–(6) imposed on link traffic flows ỹt
j and

physical constraints (7)–(8) imposed on turning flow proportions blmt
ij ensure the

10 T. Tsekeris, L. Dimitriou, and A. Stathopoulos

simultaneous production of a mutually consistent solution between these three
variables in each set of count intervals t wherein an estimation interval τ is
partitioned.

The above problem formulation circumvents the need for estimating the dy-
namic user equilibrium (UE) conditions pertaining to the DTA procedure, which
are related to the equalization of the travel costs (times) experienced by travel-
ers in all used paths of each l − m pair. In particular, the estimation of the blmt

ij

proportions in each node g ∈ G∗
lm allows the endogenous construction of the

travel path flows and, hence, the trip demand between each l − m pair, without
relying on the degree to which the UE-based paths connecting the various O-D
pairs contribute to the observed flow at link j, as occurs in the DTA-based meth-
ods. The turning proportion estimation and the endogenous path construction
are achieved here through a dynamic non-equilibrium procedure of microscopic
traffic simulation augmented with a genetic algorithm, as they are described in
the following section.

3 A Combined Genetic Computation Approach

3.1 The Microscopic Traffic Simulation Procedure

The present study employs a microscopic simulation model to enable the detailed
representation of the urban traffic flow characteristics at the level of each vehicle.
The simulation logic of the model relates to the similarity between traffic flow
and moving particles and the use of simplified rules to represent the movement
and interaction between vehicles. Such an approach can more efficiently handle
the information requirements of dynamic traffic operations in urban networks of
realistic size, in comparison to the coarse use of macroscopic and analytical traffic
assignment models (see [31]). The current approach involves a well-documented
traffic micro-simulation procedure for tracking the spatial and temporal trajec-
tory of each vehicle, based on a car-following (acceleration/deceleration) model
of collision avoidance logic, as coded in the NETSIM platform [9]. The model
also performs detailed representation of other behavioral features of drivers, such
as lane changing and gap acceptance.

The use of such a model can better address complexity pertaining to the op-
erational and geometric characteristics and the underlying traffic dynamics of
signalized arterial networks. In particular, it enables the coding of such network
characteristics as signalized traffic control strategies, transit operations, pedes-
trian and parking activities. The loading of the network is carried out through
providing information about three different types of input data: (a) network-
wide data, including network topology, behavioral characteristics of drivers and
composition of traffic, (b) partial set of real-time measurements of flows at the
entry nodes, including the origin and destination zones, and turning proportions
at each node, and (c) signal control strategies. The resulting path flow pattern
can involve the use of alternative feasible routes between an O-D pair, which
intrinsically reflects the existence of different cost perceptions of travelers. This
stochastic dispersion of path flows can be considered as a more realistic route

Combined Genetic Computation of Microscopic Trip Demand 11

choice assumption, in comparison to that relying on the deterministic (shortest
path-based) behavior.

3.2 Description of the Genetic Computation Procedure

The present optimization problem, as described in Sect. 2.3, is convex and, hence,
it may ensure a feasible and unique solution for the network O-D matrix estima-
tion process. Nonetheless, the intricate nature of the solution procedure, prin-
cipally due to the increased dimensionality, complexity of the search space and
existence of many local minima in realistic urban networks, imposes an uncer-
tainty in reaching an optimal (or satisfactory sub-optimal) solution. The use of
evolutionary computing techniques, such as the GA presented here, can address
this uncertainty by relaxing the solution dependencies on the availability, quality
and variability of the prior demand and traffic count information, in contrast to
the traditional greedy search algorithms. Moreover, the event-based simulation
procedure (see Sect. 3.1) employed for processing the movement trajectories of
individual vehicles makes the problem highly complex and non-linear so that
favors the application of evolutionary computing techniques, instead of using
gradient-based methods which commonly appear in the existing literature (see
Sect. 2.1).

The combination of the GA with the micro-simulation model (see Sect. 3.1)
can provide a powerful computational tool for the given optimization problem.
More specifically, the population-based global search process of the GA can ad-
dress the imfluence of uncertainty (or variability) of entry flows, missing informa-
tion about turning proportions and high non-linearity and complexity involved
in simulating traffic flow on the resulting solution. In this way, GA can eliminate
(or reduce) the effect of such sources of bias in the estimation process and help
reach an optimal (or satisfactory sub-optimal) solution.

The solution procedure is performed here with the repeated execution of two
stages at each count interval t ∈ τ , until achieving a satisfactory level of accuracy,
as this is expressed by some performance measure (see below). These two stages,
which are illustrated in Fig. 2, correspond to (i) the simulation-based microscopic
estimation of the link traffic flows and O-D flows are compared with the measured
ones (convergence test), and (ii) the execution of the GA operations. Following
the initialization of the algorithm, at the first stage the micro-simulation model
utilize an initial population of intersection turning flows and O-D trip flows.

In the case where the convergence (or stopping) criterion is satisfied, then,
the currently estimated network O-D matrix is the final one, and the algorithm
proceeds to the next interval. Otherwise, a ‘genetically improved’ population of
turning proportions for each intersection is produced by the GA operations in
order to feed the micro-simulation model. The fitness function provides a metric
of the difference between the observed and estimated (simulated) traffic flows at
certain measurement locations (sections) of the network. The objective function
of the intersection O-D matrix sub-problem refers to the minimization of the
fitness function, which is expressed here with the measure of the Mean Absolute
Relative Error (MARE), i.e. the second component of function F in equation

12 T. Tsekeris, L. Dimitriou, and A. Stathopoulos

(1). GA structures like the present one have been extensively used for addressing
problems with composite objective functions, such as multi-objective problems
[13].

Since the existing literature concerning the theory, design and implementation
of GAs is extensive (e.g., see [5], [13], [15], [22]), the description of the present GA
operators will only focus on the current application. Specifically, the GA utilizes
a set (population) of strings called chromosomes, each representing a feasible
matrix of blmt

ij proportions and, consequently, a feasible solution to the problem.
Every entry in the chromosome is called allelic value. The representation of the
chromosomes and the assignment of allelic values are based on a binary {0, 1}
coding scheme (see Sect. 4) to enhance explorability, although a real-numbered
coding scheme could be also used. The members of the initial population are
created by random perturbation, across a specific range, of those blmt

ij values
obtained through the simulation-based assignment of the prior O-D matrix onto
the network.

START

 Random production of
 the initial population

 MICRO-SIMULATION PROCEDURE Genetic production of
 ‘improved’ population:

Estimation of Estimation of

 link flows network O-D SELECTION

 trip flows
 CROSSOVER

 MUTATION
 No

Convergence ?

 Yes

STOP

Fig. 2. Flowchart of the combined genetic computation procedure of the model

Combined Genetic Computation of Microscopic Trip Demand 13

The algorithm commences with an initial random population of solution sets.
Then, the fitness function value fs is calculated for each string (member) s of
the population, which represents a solution set. In the present application, the
initial population size is empirically chosen to be rather small (50 individuals).
The setup of the GA initialization relies on ensuring a favorable tradeoff between
convergence speed and population size for the problem at hand, as it is described
in [13]. Namely, the larger the size of the population is, the longer the time
required for the calculation of the fitness function in each generation. On the
other hand, the probability of convergence increases with the population size.
The GA processes carried out in the current application include three phases,
i.e. selection, crossover and mutation, as they are analytically described below.

Selection
The survival of a string s according to the value fs of its fitness function implies
that strings with a high value have a higher probability of contribution to one
or more offspring in the next generation. The easiest way to implement the
reproduction operator is to create a biased roulette wheel, where each string
in the current population has a roulette wheel slot sized proportionally to its
fitness function value. Given a population with n members, the following formula
can be used to calculate the slot size in the roulette wheel with respect to the
reproduction probability:

Πs =
fs∑n
s fs

(9)

where Πs is the probability of a string s to participate in the production of the
new generation.

Crossover
The crossover operation enables the exchange of genetic information between
the old population members in order to obtain the new ones. This exchange is
carried out by randomly selecting slots among the strings and swapping the char-
acters between the selected positions. Figure 3 illustrates the crossover operator
improvement scheme. In relation to the common practice [13], a relatively high
rate of crossover is often selected (>50%), which denotes the probability of the
selected individuals to exchange genetic information. A crossover rate equal to
70% is chosen here in order to enhance the probability of the selected individuals
to exchange genetic information.

Mutation
The mutation operator plays a secondary role with respect to the selection and
crossover operators. Nevertheless, mutation is needed to prevent an irrecover-
able loss of potentially useful information, which can be occasionally caused by
reproduction and crossover. Therefore, it can enhance the possibility of explor-
ing the whole search space, reducing the dependence from the initial population
and the probability of finding a false peak. This operator provides an occasional

14 T. Tsekeris, L. Dimitriou, and A. Stathopoulos

Selected strings Enhanced crossover New strings

1 0 1 1 0 1 0 1 1 0 1 0 0 0 0

1 1 0 0 1 1 1 0 0 1 1 1 1 1 1

Fig. 3. Illustration of the crossover operation

random alteration of the allelic value of a gene with a small probability, which
is set equal to 5% in the present application.

4 Experimental Setup

The area of the present application corresponds to a part of the urban road
network of Athens, Greece. This area is located in the periphery of the city
centre and covers a major arterial sub-network (Alexandras Avenue), which is
controlled with a fixed time signal strategy (1.5 Generation). The specific arterial
network (see Fig. 4) is composed of 46 links and 32 nodes, 16 of which are entry-
exit nodes and 16 are internal nodes. Hence, the dimensions of the O-D matrix
are 16 × 16 and those of the matrix of turning proportions are 46 × 4, where 4
corresponds to the total number of possible turning movements, i.e. left, through,
right and diagonal (see Table 1).

Due to the absence of diagonal movements and prohibitions on several left
turning movements, the number of (unknown) turning proportions reduces from
46×4 = 184 to 66 (excluding proportions equal to 0 and 100). The GA population
is composed of 50 individuals and the coded values for each turning movement
lie between 255 (11111111) and 1 (00000001), since a number of 8 alleles is
adopted to correspond to each link and turning proportion at each node. Thus,
the length of each chromosome is 66 × 8 = 528 alleles. The coded values of the
turning movements are finally transformed to turning flow proportions.

The estimation process utilizes loop detector measurements corresponding
to entry flows at the 16 entry-exit nodes and to link traffic flows traversing 4
selected sections along the major arterial, for both flow directions, i.e. JT =
8. The link flow measurements refer to both smoothed volume and occupancy
values, namely, V = 2. These four measurement sections, whose location is
shown by the markings of Fig. 4, facilitate the constant monitoring of traffic
operating conditions along the entire length of the sub-network. The traffic data
are collected at the end of every 90-sec signalization cycle and are transmitted
to the Traffic Control Center of the city. The traffic measurements of the current
data set are aggregated at 3-min count intervals and correspond to a typical
peak hour of the morning travel period of the day. A time-partitioned (partial)
O-D matrix corresponds here to a typical estimation interval τ of 15 min, since

Combined Genetic Computation of Microscopic Trip Demand 15

Table 1. The matrix of turning proportions in the study area

Upstream Downstream Proportion of Flow Turning:
Link No Node Node Left Through Right Diagonal

1 801 69 35 65 0 0
2 802 69 0 36 64 0
3 69 58 6 94 0 0
4 58 57 0 100 0 0
5 57 56 0 81 19 0
6 56 55 0 83 17 0
7 55 54 0 100 0 0
8 54 53 6 94 0 0
9 53 52 0 100 0 0
10 52 51 0 90 10 0
11 51 50 0 96 4 0
12 50 49 0 100 0 0
13 49 48 0 85 15 0
14 48 47 0 100 0 0
15 47 46 0 100 0 0
16 46 45 0 95 5 0
17 45 43 37 55 8 0
18 43 45 7 93 0 0
19 45 46 0 100 0 0
20 46 47 0 100 0 0
21 47 48 5 91 4 0
22 48 49 0 100 0 0
23 49 50 20 80 0 0
24 50 51 0 100 0 0
25 51 52 0 100 0 0
26 52 53 0 75 25 0
27 53 54 0 100 0 0
28 54 55 36 64 0 0
29 55 56 0 100 0 0
30 56 57 0 100 0 0
31 57 58 0 93 7 0
32 58 69 44 0 56 0
33 804 58 0 79 21 0
34 805 57 58 0 42 0
35 808 54 51 0 49 0
36 809 52 100 0 0 0
37 810 51 3 65 33 0
38 812 49 32 0 68 0
39 813 50 37 34 29 0
40 814 48 26 27 47 0
41 815 47 0 0 100 0
42 820 45 29 71 0 0
43 819 45 7 65 27 0
44 821 43 6 94 0 0
45 823 43 0 97 3 0
46 822 43 0 69 31 0

such a duration can be considered as adequate for a user to traverse the given
part of the network.

The convergence (or termination) of the GA is based on two different empir-
ical criteria. The first criterion refers to the estimation accuracy of the solution
procedure, which is set equal to a small value of objective function F = 0.05 (or
5%) for the computational purposes of the given problem. The second (stopping)
criterion is related to the intended practical usage of the model. The current
application concerns the real-time deployment of an area-wide network traffic

16 T. Tsekeris, L. Dimitriou, and A. Stathopoulos

Fig. 4. The layout and coding of Alexandras sub-network

monitoring and control system. For this reason, each partial O-D matrix is reg-
ularly updated on a rolling horizon framework, according to the frequency of
collecting and processing traffic flow information. In the present study, this fre-
quency refers to a count interval t of 3 min. Thus, a maximum running time of
3 min is set as the stopping criterion for the purposes of the specific application.

The prior O-D matrix was synthesized through the offline implementation
of the proposed simultaneous optimization process by using a set of ‘typical’
(average) traffic flows over the observed links for the given study period. These
‘typical’ flows were obtained from averaging a series of volumes and occupancies
corresponding to the specific period-of-the-day of the past four weeks. This study
uses the assumption of the similar reliability and equal contribution of the prior
demand and traffic count information on the performance of the estimation
process, i.e. γ1 = γ2 = 0.5. The O-D trip flows are expressed here in the form
of trip rates, as obtained by the ratio of the trip demand across a specific O-D
pair to the total demand size in the network. Such a transformation helps relax
the dependency of the solution on the scale of demand.

5 Computational Results

The performance of the estimation procedure is investigated with regard to both
the solution accuracy and the convergence speed, based on the convergence crite-
ria described in Sect. 4. The micro-simulation of the present network processed a
total amount of approximately 2000 vehicle-trips during the given study period.
The GA, which was coded in FORTRAN 90/95 workstation, is found to reach
a stable solution with the desired level of accuracy, i.e. F = 5%, in an average
computing duration of less than 3 min, requiring at most a number of about
2000 runs / fitness evaluations (or 40 generations).

The typical convergence behavior of the GA involves a number of 20–30 gen-
erations, while a maximum number of 40 generations is only required for cases
of population members of poor quality, i.e. with very small initial fit (less than
5% of the cases). Figure 5 indicates the best value and the mean value of the

Combined Genetic Computation of Microscopic Trip Demand 17

0

0.1

0.2

0.3

0.4

0.5

0.6

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Generation Series

M
A

R
E

Va
lu

e

Best Value of F function
Optimal Path of F function
Mean value of F function

Fig. 5. Results of the objective function F of the GA

0.0

0.1

0.2

0.3

0.4

0.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
Generation Series

M
A

R
E

Va
lu

e

Link flow estimation component

O-D trip estimation component

Fig. 6. Results of the O-D matrix and link flow estimation components of the objective
function

objective function F in each generation as well as its optimal path across the se-
ries of generations for the first (15-min) estimation interval of the study period.
The graph shows that the GA performance, in terms of the reduction of the F
function, is steadily increasing in the first 20 generations, while convergence is
achieved after 30 generations.

Figure 6 illustrates the convergence behavior of the two different components
of the objective function, i.e. those of the O-D trip matrix and link flow estima-
tion. The graph indicates a tradeoff mechanism between the MARE of the two
components across generations. Nonetheless, the MARE of both components
reduces considerably, in the context of the given application, reaching finally a
similar level of accuracy, as the GA approaches to convergence. Specifically, the
MARE of the O-D matrix estimation component presents an average reduction
of 77%, while the MARE of the link flow estimation component presents an
average reduction of 88%.

This outcome signifies the fact that the mutually consistent solution achieved
through the simultaneous optimization process does not lead to the loss of accu-
racy of the resulting O-D matrix, in favor of the link flow solution accuracy, as it

18 T. Tsekeris, L. Dimitriou, and A. Stathopoulos

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
Generation Series

M
AR
E

 V
al

ue

Link #1 Link #2

Link #3 Link #4

(a)

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
Generation Series

M
AR
E

 V
al

ue

Link #1 Link #2

Link #3 Link #4

(b)

Fig. 7. Convergence results of the link traffic flow estimation at measurement sections
of (a) the west-east direction and (b) the east-west direction of the study arterial

typically occurs in the case of the iterative optimization process [24]. In particu-
lar, the average improvement of the accuracy of the link flow solution, in terms
of the MARE, is found to exceed 75% for all measurement sections considered
in the study. Figures 7(a) and 7(b) present in detail the GA convergence proce-
dure in terms of the link flow estimation corresponding to the four measurement
sections on each direction (west-east and east-west) along the major arterial.

6 Conclusions

This chapter presented a combined genetic computation method for solving the
problem of the simultaneous dynamic O-D trip matrix estimation from traffic
counts in urban networks. The current approach can ensure the production of
a mutually consistent solution between the O-D matrix and the path/link flow
loading pattern, circumventing the use of a DTA procedure. In particular, the
proposed method relies on the real-time estimation of the turning movements at

Combined Genetic Computation of Microscopic Trip Demand 19

each intersection, employing data about the prior O-D matrix structure, mea-
surements on entry node flows and link traffic flows, and network loading in-
formation obtained from a micro-simulation model. This model is augmented
with a genetic algorithm (GA) in order to carry out a stochastic global search
and simultaneously estimate the optimal distribution of the intersection O-D
turning flows and network O-D trip flows. Such an approach can suitably handle
the uncertainty of input information and the complexity of the traffic simulation
procedure, and it helps reach an optimal (or satisfactory sub-optimal) solution.
The microscopic representation of traffic flows allows tracking the O-D trip de-
mand between each entry-exit node pair at the level of individual vehicle and,
hence, it provides the possibility of full monitoring of the network traffic state.

The empirical results from the model implementation into a real urban arterial
sub-network showed that the GA is capable of providing substantial gains to
both the network O-D matrix and link flow estimation accuracy, in comparison
to the initial solution based on the prior demand information. In addition, the
computing speed of the algorithm can be considered as satisfactory, taking into
account the complexity and processing requirements of the micro-simulation
model and the realistic size of the subarea network. The high accuracy of both
the resulting O-D trip matrix and link traffic flows, in conjunction with the fast
computing speed, indicate the potential of implementing the suggested procedure
for purposes of real-time monitoring and control of urban network conditions.
In addition, the present approach can be used as a prototype to support the
design and evaluation of individual responses to a number of dynamic traffic
management strategies. Such strategies can include the deployment of signal
plan coordination along urban arterial corridors or subarea networks, collective
or personalized route guidance information systems, road pricing and network
access control schemes and integrated traffic management measures including
combinations of the above strategies.

References

1. Ashok, K., Ben-Akiva, M.E.: Dynamic O-D matrix estimation and prediction for
real-time traffic management systems. In: Daganzo, C.F. (ed.) Proceedings of the
12th International Symposium on Transportation and Traffic Theory, pp. 465–484.
Elsevier, New York (1993)

2. Bell, M.G.H.: The real time estimation of origin-destination flows in the presence
of platoon dispersion. Transportation Research, Part B: Methodological 25(2/3),
115–125 (1991)

3. Ben-Akiva, M., Bierlaire, M., Burton, D., Koutsopoulos, H.N., Mishalani, R.: Net-
work state estimation and prediction for real-time traffic management. Networks
and Spatial Economics 1, 293–318 (2001)

4. Cascetta, E., Inaudi, D., Marquis, G.: Dynamic estimators of origin-destination
matrices using traffic counts. Transportation Science 27, 363–373 (1993)

5. Coello, C.A., Lamont, G.B., van Veldhuizen, D.A.: Evolutionary Algorithms for
Solving Multi-Objective Problems. Springer, New York (2006)

20 T. Tsekeris, L. Dimitriou, and A. Stathopoulos

6. Cremer, M., Keller, H.: A new class of dynamic methods for the identification of
origin-destination flows. Transportation Research, Part B: Methodological 21(2),
117–132 (1987)

7. Diakaki, C., Papageorgiou, M., Aboudolas, K.: A multivariable regulator ap-
proach to traffic-responsive network-wide signal control. Control Engineering Prac-
tice 10(2), 183–195 (2002)

8. Dimitriou, L., Tsekeris, T., Stathopoulos, A.: Genetic-algorithm-based micro-
simulation approach for estimating turning proportions at signalized intersections.
In: van Zuylen, H., Middelham, F. (eds.) Proceedings of the 11th IFAC Symposium
on Control in Transportation Systems, pp. 159–164. Delft, The Netherlands (2006)

9. Federal Highway Administration. Traffic Network Analysis with NETSIM – A User
Guide. Federal Highway Administration, U.S. Dept. of Transportation, Washington
(1980)

10. Fisk, C.S.: On combining maximum entropy trip matrix estimation with user opti-
mal assignment. Transportation Research, Part B: Methodological 22, 69–73 (1988)

11. Florian, M., Chen, Y.: A coordinate descent method for the bi-level O-D matrix
adjustment problem. International Transactions in Operational Research 2, 165–
179 (1995)

12. Gartner, N.H., Pooran, F.J., Andrews, C.M.: Implementation of the OPAC adap-
tive control strategy in a traffic signal network. In: Proceedings of the 4th IEEE
Conference on Intelligent Transportation Systems, pp. 197–202. IEEE, Oakland
(2001)

13. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley, Reading (1989)

14. He, R.R., Kornhauser, A.L., Ran, B.: Estimation of time-dependent O-D demand
and route choice from link flows. In: Proceedings of the 81st Annual Meeting of the
Transportation Research Board, National Research Council, Washington (2002)

15. Holland, J.H.: Adaptation in Natural and Artificial Systems, 2nd edn. MIT Press,
Cambridge (1992)

16. Kim, H., Baek, S., Lim, Y.: Origin-destination matrices estimated with a genetic
algorithm from link traffic counts. Transportation Research Record 1771, 156–163
(2001)

17. Lan, C.J., Davis, G.A.: Real-time estimation of turning movement proportions from
partial counts on urban networks. Transportation Research, Part C 7(5), 305–327
(1999)

18. Luk, J.Y.K.: Two traffic-responsive area traffic control methods: SCAT and
SCOOT. Traffic Engineering and Control 25, 14–22 (1984)

19. Martin, P.T.: Turning movement estimation in real time. Journal of Transportation
Engineering 123(4), 252–260 (1997)

20. Nihan, N.L., Davis, G.A.: Recursive estimation of origin-destination matrices from
input/output counts. Transportation Research, Part B: Methodological 21(2), 149–
163 (1987)

21. Nihan, N.L., Davis, G.A.: Application of prediction-error minimization and max-
imum likelihood to estimate intersection O-D matrices from traffic counts. Trans-
portation Science 23(2), 77–90 (1989)

22. Reeves, C.R., Rowe, J.E.: Genetic Algorithms – Principles and Perspectives: A
Guide to GA Theory. Kluwer, Boston (2002)

23. Stathopoulos, A., Tsekeris, T.: Hybrid meta-heuristic algorithm for the simulta-
neous optimization of the O-D trip matrix estimation. Computer-Aided Civil and
Infrastructure Engineering 19, 421–435 (2004)

Combined Genetic Computation of Microscopic Trip Demand 21

24. Tavana, H., Mahmassani, H.: Estimation of dynamic origin-destination flows from
sensor data using bi-level optimization method. In: Proceedings of the 80th An-
nual Meeting of the Transportation Research Board, National Research Council,
Washington (2001)

25. Tsekeris, T., Dimitriou, L., Stathopoulos, A.: A simultaneous origin-destination
matrix estimation in dynamic traffic networks with evolutionary computing. In:
Giacobini, M., et al. (eds.) EvoWorkshops 2007. LNCS, vol. 4448, pp. 668–677.
Springer, Berlin (2007)

26. Tsekeris, T., Stathopoulos, A.: A real-time dynamic origin-destination matri-
ces from link traffic counts on congested networks. Transportation Research
Record 1857, 117–127 (2003)

27. van der Zijpp, N., Lindveld, C.D.R.: Estimation of origin-destination demand for
dynamic assignment with simultaneous route and departure time choice. Trans-
portation Research Record 1771, 75–82 (2001)

28. Yang, H., Bell, M.G.H.: Transport bilevel programming problems: Recent method-
ological advances. Transportation Research, Part B: Methodological 35, 1–4 (2001)

29. Yang, H., Sasaki, T., Asakura, Y.: Estimation of origin-destination matrices
from link traffic counts on congested networks. Transportation Research, Part B:
Methodological 26, 417–434 (1992)

30. Zhang, X., Maher, M.: An algorithm for the solution of bi-level programming prob-
lems in transport network analysis. In: Griffiths, J.D. (ed.) Mathematics in Trans-
port Planning and Control, pp. 177–186. Pergamon, Oxford (1998)

31. Ziliaskopoulos, A.K., Peeta, S.: Review of dynamic traffic assignment models. Net-
works and Spatial Economics 1, 233–267 (2001)

Genetically Optimized Infrastructure Design
Strategies in Degradable Transport Networks

Loukas Dimitriou1, Theodore Tsekeris2, and Antony Stathopoulos1

1 Department of Transportation Planning and Engineering, School of Civil
Engineering, National Technical University of Athens, Iroon Polytechniou 5,
15773 Athens, Greece
lucdimit@central.ntua.gr, astath@transport.ntua.gr

2 Centre for Planning and Economic Research, Amerikis 11, 10672 Athens, Greece
tsek@kepe.gr

Summary. This chapter examines the problem of the resource allocation in degrad-
able road transport networks within a stochastic evolutionary optimization framework.
This framework expresses the stochastic equilibrium Network Design Problem (NDP)
as a game-theoretic, combinatorial bi-level program. Both the discrete and continu-
ous versions of the reliable NDP are considered in order to address different strate-
gies of network infrastructure investment. The estimation procedure employs a Latin
Hypercube sampling method for simulating degradation-inducing variations in users’
attributes and system characteristics, and hence evaluates the network travel time reli-
ability which constrains the solution. This simulation-based risk assessment technique
is combined with a genetic algorithm to handle the complex, non-convex nature of the
NDP adequately. The test implementation of the proposed framework demonstrates
the significant role of incorporating the stochasticity and reliability requirements in
the design process to facilitate the selection of the optimal investment strategies in
degradable road networks.

Keywords: Degradable transport networks, Discrete and continuous system struc-
tures, System reliability, Stochastic optimum network design, Game theory, Latin
hypercube sampling, Genetic algorithms.

1 Introduction

The design of transport networks involves the optimal allocation of infrastruc-
ture investments according to specific social, economic, operational and physical
criteria. In the context of contemporary metropolitan areas, the road network
design is vital to ensure the efficient and safe mobility of people as well as goods.
Such a design process typically encompasses several conflicting objectives, in-
cluding the minimum possible consumption of available land and public fund
resources, and the maximum possible provision of infrastructure resources to
satisfy the increased demand for passenger and freight transport. Although the
provision of infrastructure resources is commonly regarded solely with respect to
road capacity expansion, the requirement to ensure a minimum level of service
reliability has received an ongoing attention in the literature of the last decade,

A. Fink and F. Rothlauf (Eds.): Advances in Computational Intelligence, SCI 144, pp. 23–43, 2008.
springerlink.com © Springer-Verlag Berlin Heidelberg 2008

24 L. Dimitriou, T. Tsekeris, and A. Stathopoulos

particularly since the seminal study of Du and Nicholson [13]. The present study
uses the concept of the Total Travel Time (TTT) reliability, which denotes the
network’s ability to respond to the various states of the system variables. This
ability can be manifested both in everyday operating conditions and especially
during incidents or unpredictable events, like man-made or physical disasters,
which potentially degrade the expected (planned) performance of the network.
Particularly in the latter case, a reliable design process is supposed to ensure the
provision of the sufficient lifelines to support various emergency (for instance,
evacuation) operations.

Nonetheless, existing studies mostly merely consider the reliability of one
single component of the transport system, such as the one of capacity or travel
time (see Sect. 3). The current study provides a unified modeling framework for
the evaluation of the way the degradation-inducing events impact on the design
process. Specifically, this framework examines the effects of fluctuations in link
capacities and hence travel times on condition of demand uncertainty, on system
reliability in terms of the network TTT . Furthermore, this study recognizes that
alternative infrastructure investment policies can give rise to different design
processes. For this reason, the problem of determining the optimum network
design known as the Network Design Problem (NDP) is formulated, estimated
and analyzed in two different mathematical forms. These forms, whose general
reviews can be found in [24], [15], refer to the Continuous-NDP (C-NDP) and
the Discrete-NDP (D-NDP).

The C-NDP represents the capacity of the system as a continuous variable,
which can be expressed in terms of vehicles, passengers and unit loads. The D-
NDP is formulated in terms of discrete (integer or binary) variables, such as the
number of new links in the case of network expansion, or the number of lane
additions in the case of network enhancement. The selection of the mathematical
form of the NDP can rely on different infrastructure investment decision-making
mechanisms and planning needs. In particular, the C-NDP is service-oriented, as
it refers to the demand units to be served in the network. On the contrary, the
D-NDP is infrastructure oriented, as it refers to the number of added lanes and
new links to be constructed. The majority of the existing studies deals with the
C-NDP, which can be regarded as a relaxation of the D-NDP. Moreover, although
several reliability considerations have been incorporated into the structure of the
C-NDP [37], [39], [34], no such attempt has been made for the case of the D-
NDP. Therefore, there is a need to jointly consider and comparatively evaluate
both the discrete and continuous versions of the reliable NDP, that is, the NDP
with reliability requirements.

This study formulates the two versions of the reliable NDP within a game-
theoretic, combinatorial bi-level optimization framework, which can help repre-
sent conflicting objectives involved in the network design process (see Sect. 2).
The evaluation of the TTT reliability is carried out by use of mathematical simu-
lation, i.e. the Latin Hypercube sampling method, which represents the stochas-
tic nature of the system variables (see Sect. 3). A genetic optimization procedure
is then suggested (see Sect. 4), which is combined with the simulation-based risk

Genetically Optimized Infrastructure Design Strategies 25

assessment technique, for addressing the increased complexity of the solution of
the continuous and discrete NDP. Section 5 includes the results obtained by the
application of the method to a test network with typical urban road settings,
and Sect. 6 concludes.

2 Description of the Equilibrium NDP with Reliability
Constraints

As in many other transport planning problems, the network design process is
influenced by decisions made on multiple hierarchical levels, concerning both
the demand and supply properties of the system [14]. The design process of a
transport network (system) can be considered as a game among two players,
namely the system designer and the system users, whose individual decisions af-
fect the other’s performance. Here, the structure of this game takes the form of
a two-stage leader-follower Stackelberg game with perfect information. Specifi-
cally, the system designer is the leader who imposes modifications on the network
to optimize the system performance, while the users are the followers reacting
to alternative design plans. The formulation of such games receives usually the
form of bi-level programming problems. For these problems, optimum strategies
are sought by taking a number of constraints into account, including those of
physical feasibility and budget availability, while regarding the system’s demand
and supply attributes as known but not necessarily fixed. This study expands
the standard game-theoretic, bi-level programming formulation of both C-NDP
and D-NDP, so that they include reliability requirements.

Consider a network composed of L links, R origins and S destinations. The
travel demand qrs gives rise to equilibrium flows f rs

k along path k ∈ Krs con-
necting r − s pair and to equilibrium flows xα(y) along link α, with δrs

αk be the
path-link incidence variable and ck

rs ∈ Crs be the cost of traveling along the k
th path between r − s pair. The travel cost at equilibrium state of some link α
with capacity yα is denoted as cα(xα(y)), with y be the maximum link capac-
ity. The maximum capacity is given as y = yα + wα, where yα stands for the
existing link capacity and wα for the capacity addition on link α. In the case
of the D-NDP, wα can be expressed as a function of the link or lane capacity,
i.e., wα = nαL, where nα is the number of lanes which will be added on link
α, and L is the effective capacity of an individual lane. Furthermore, Vα(wα)
denotes the monetary expenditures for adding a link α or a lane on link α, B is
the total available construction budget for network capacity improvement, and
θ is a factor converting monetary values into travel times. Then, the Upper-Level
Problem, which comprises the objectives of the optimum NDP, and the Lower-
Level Problem, which provides the path and link equilibrium flows, can be given
as follows:

Upper-Level Problem

min
y

F (x, y) =
∑
α∈A

(E[cα(xα(y), wα)xα(y)] + θVα(wα)) (1)

26 L. Dimitriou, T. Tsekeris, and A. Stathopoulos

subject to nα ≤ Nα, ∀α ∈ A (for the D-NDP) (a)
wα ≤ Wα, ∀α ∈ A (for the C-NDP) (b)

(2)

∑
α∈A

(Vα(wα)) ≤ B, ∀α ∈ A (3)

P

(∑
α∈A

(cα(xα(y), wα)xα(y)) ≤ T

)
≤ Z, ∀α ∈ A (4)

Lower-Level Problem

min
x

G(x) = −
∑
rs

qrsE

[
min

k∈Krs

{
ck
rs

}
|Crs(x)

]

+
∑
α

xαcα(xα) −
∑
α

∫ xα

0
cα(ω)dω (5)

subject to

f rs
k = P rs

k qrs ∀ k, r, s (6)

xα =
∑
rs

∑
k

f rs
k δrs

αk ∀α ∈ A (7)

f rs
k , xα ≥ 0 ∀α ∈ A (8)

In the Upper-Level Problem, F (x, y) represents the objective function of the
NDP, wherein the first component refers to the travel cost expressed in terms
of the expectation E of network Total Travel Time (TTT), and the second
component corresponds to the total expenditures (in time units) for capacity
improvements. The choice set defined in the alternative relationships (2a) and
(2b) reflects the physical restrictions of the link capacity improvements for each
type of NDP, with Nα be the maximum allowable number of lanes to be added on
link α and Wα be the maximum allowable capacity to be added on link α, while
relationship (3) imposes budgetary restrictions. The reliability requirements are
introduced in constraint (4) by restricting the probability of the TTT to be lower
than or equal to a pre-specified upper limit T , with Z defining the acceptable
confidence interval (0 ≤ Z ≤ 1) for this hypothesis. Essentially, such a condition
depicts the system’s stability [2].

The Lower-Level Problem, which consists of functions (5) to (8), performs the
trip demand assignment process, based on the expected (perceived) value E of
the path travel cost ck

rs. Specifically, it estimates the response of users to the
capacity improvements made at the Upper-Level Problem, by determining the
probability P rs

k that a traveler chooses to use path k between r − s pair. The
Stochastic User Equilibrium (SUE) model [30] is used here for the assignment
of demand onto the network and the solution Method of Successive Averages
(MSA) is employed to calculate equilibrium flows.

Genetically Optimized Infrastructure Design Strategies 27

3 Stochastic Modeling of Network Reliability

3.1 The Stochastic Nature of System Variables

The reliability of transport networks has been examined in literature with the
help of a number of definitions, such as travel time reliability, connectivity re-
liability, network flexibility, network variability and others (e.g., see [2], [25],
[33]). These definitions refer to different aspects of the uncertainty involved in
the operation of transport systems. As mentioned above, the current study in-
vestigates the optimum network design problem subject to Total Travel Time
(TTT) reliability requirements. Such a measure of reliability seeks to ensure the
stable operation of the system within a pre-specified Level of Service (LoS), since
it is defined as the probability that network total travel time will be less than
some predefined bound (see Sect. 2). The methodology suggested here employs
a holistic approach for modeling the network reliability, in terms of all possible
sources of uncertainty pertaining to the system operation.

The operational performance of transport systems typically relies on variables
of uncertain nature, as their values are influenced by random events and human
decision-making processes. The risk involved in the operation of transport net-
works can be mainly attributed to the uncertainty incorporated into four differ-
ent components: demand, supply (capacity), level of service (link travel time)
and the users’ characteristics (route choice behavior). By and large, travel de-
mand patterns in urban transport networks can be considered as recurrent at
typical operating conditions [32]. Nonetheless, demand patterns may experience
several disturbances during the operational life of a network, causing significant
fluctuations in link travel times. These disturbances can be caused by spatial
and temporal (random or non-random) variations of trip flows between Origin-
Destination (O-D) pairs, special events in certain network localities, link closures
or failures and the nature of the day-to-day route choice process of users. They
are additionally influenced by various behavioral features of travelers, which
are mostly related to factors involved in the route choice decision-making pro-
cess, including the perception of travel cost, value of travel time and driving
behavior.

Moreover, the variations of supply (capacity) can be considered as a common
phenomenon in transport networks. There are several factors influencing capac-
ity, including the composition of traffic, congestion effects, road works, special
events, and random phenomena like incidents and adverse weather conditions.
Since the link and path travel times are closely related to link capacities, the
travel time reliability depends on the fluctuations of link capacities, which are
usually referred to as link capacity degradation. The problem of considering
network reliability in terms of the link capacity degradation has been exten-
sively investigated in literature [13], [38], [5], [7]. These studies have shown that
fluctuations in link capacities lead to fluctuations in the total network capac-
ity and, subsequently, decrease the total travel time reliability. The following
subsection presents a mathematical simulation methodology for evaluating the

28 L. Dimitriou, T. Tsekeris, and A. Stathopoulos

TTT reliability in relation to the aforementioned components of uncertainty in
the operation of transport networks.

3.2 Latin Hypercube Simulation Methodology for Reliability
Assessment

The stochastic properties and, in turn, the fluctuations of the values of system
variables (i.e. demand, supply and travel time, which affect the network perfor-
mance) are represented here by the use of a mathematical simulation framework.
In particular, the demand is considered as a random variable following the nor-
mal distribution N(μrs, σ

2
rs), with μrs denoting its mean for each r − s pair and

σ2
rs denoting its variance. Despite the fact that travel time can be also described

by the normal distribution [2], an alternative, more explanatory assumption is
made here, assuming that link speeds follow a multinomial normal distribution
correlated with the speeds of the neighboring links. A similar assumption is
adopted for the distribution of link capacities.

The current framework connects link travel time to link speed and capac-
ity fluctuations, and it allows the expression of the interacting travel costs of
neighboring links. In this way, link travel time variability (which is the result) is
intrinsically modeled in the structure of the C-NDP and D-NDP with regard to
its causal phenomenon (which is the link capacity and speed variability). More
specifically, the Lower-Level Problem enables the estimation of the statistical
properties of the TTT , i.e. its mean value and variance, which are subsequently
fed to the Upper-Level problem through iterating the solution of the assignment
procedure, comprising the set of link and path equilibrium flows, the values
of origin-destination demand, link capacity, and the link free flow travel time,
in accordance with the stochastic characteristics assigned to these variables, as
described previously.

The estimation of the statistical properties of TTT and, hence, the reliability
assessment, are performed through the simulation method of the Latin Hyper-
cube sampling. In comparison to other simulation methods, such as that of the
Monte Carlo simulation, Latin Hypercube is based on a stratified random proce-
dure which provides an efficient way to capture the properties of the stochastic
variables from their distributions, namely, it produces results of higher accu-
racy without the need for increasing the sampling size, and it allows to model
correlations among different variables. In particular, the procedure of Iman and
Conover [20] is followed here in order to produce correlated random numbers
from the normal distribution, based on the Cholesky decomposition of the cor-
relation matrix. The assumptions concerning the usage of the simulation method
in the network design process are:

• The duration of changes in link speeds and capacities allows users to re-
estimate route choices, and

• Link speed reduction is due to random events (like accident, physical disaster
or other) which affect a locality of the network and, hence, link capacities
and speeds are correlated with those of neighboring ones.

Genetically Optimized Infrastructure Design Strategies 29

4 Genetic Optimization of Reliable Network Resource
Allocation

4.1 Current Estimation Procedures for the NDP

Both C-NDP and D-NDP can be generally characterized as problems of
increased computational complexity. This complexity arises from the fact that bi-
level programming problems, even for simple linear cases, are Non-deterministic
Polynomial-time (NP)-hard problems [3]. In particular, the stochastic equilib-
rium NDP is a NP -hard, non-convex combinatorial problem [27], since its set
of constraints involves non-linear formulations, such as those of the SUE assign-
ment of the Lower-Level Problem (see Sect. 2). Several algorithms, appropriate
for addressing complex, combinatorial optimization problems, have been hith-
erto proposed and implemented to solve the continuous and discrete form of the
NDP. These algorithms can be generally distinguished into: (i) gradient-based
methods, and (ii) derivative-free (meta-)heuristic methods.

In the case of C-NDP, a number of gradient-based methods have been pro-
posed in [6], while derivative-free heuristic approaches include the Hooke and
Jeeves technique [1] and equilibrium decomposed optimization procedures [35].
Applications of meta-heuristic techniques for solving the C-NDP include the use
of Simulated Annealing [16] and Genetic Algorithms ([9], [40]). All these ap-
proaches employ static assignment procedures to calculate the traffic flows after
having improved the network. Furthermore, models for traffic flow estimation at
dynamic disequilibrium states [17] and dynamic equilibrium algorithms [21] have
been proposed and tested. A few models have also been considered for treating
the uncertainty in various system attributes, such as the demand [37] and travel
time [39]. In addition, the C-NDP with travel time reliability requirements has
been studied in [34] by the use of approximation methods in order to estimate
the statistical properties of the system attributes and, especially, the Probability
Density Function (PDF) of the TTT , which ends up with solving a sequential
quadratic programming problem.

In the case of D-NDP, suggested estimation procedures include the branch-
and-bound method [23], Lagrange relaxation and dual ascent procedures [24], de-
composition quasi-optimization methods [31], and support function approaches
[18]. Meta-heuristic approaches for solving the D-NDP refer to a Tabu-based
search strategy [26], an ant-system method [28] and genetic algorithms, such as
those implemented in ([12], [22], [29]). Furthermore, GAs have been applied for
the solution of NDP combining continuous and discrete decision variables in ([4],
[36]).

The incorporation of reliability requirements in the continuous and discrete
form of the NDP and the explicit representation of the uncertainty of the sys-
tem attributes, as they are proposed in this chapter, increase the complexity of
the estimation procedure. This is because some units of the system are treated as
stochastic variables and a simulation-based risk assessment is incorporated in the
set of problem constraints. Since the current problem is highly nonlinear and com-
plex, its solution cannot be obtained by using classic derivative-based optimization

30 L. Dimitriou, T. Tsekeris, and A. Stathopoulos

procedures.Global optimization methods which aremeta-heuristic and stochastic,
such as Genetic Algorithms (GAs) [19], have proved to be able to tackle NP -hard,
combinatorial problems of increased complexity, like the present one.

The wide applicability of GAs can be attributed to their convenience in han-
dling variables of stochastic nature and multiple constraints in a seamless way,
without requiring information about the nature of the problem but only about
the performance of a ‘fitness’ function for various candidate states. Particularly,
GAs have been widely used in solving various bi-level programming problems
[8] and they can reach optimal (or adequately near-optimal) solutions, avoiding
the possibility of missing the true optimal alternative investment plan when the
Braess paradox occurs [22]. For these reasons, a suitable GA is employed here
within the framework of the reliable NDP. The present application constitutes a
continuation of previous work undertaken in [10] and [11] for using a GA-based
evolutionary optimization methodology to solve the reliable C-NDP and D-NDP
respectively. The next subsection provides a description of the solution algorithm
used for the reliable NDP.

4.2 Description of the Solution Algorithm

GAs are population-based, stochastic, global search methods following the prin-
ciple of natural evolution. According to it, solutions with increased performance,
in terms of the values of the objective function, have also an increased proba-
bility to be selected in order to provide the new improved solution population.
Each ‘individual’ of the population is a coded set of the problem variables and
forms a string of the variable values, referred to as chromosome. In the current
study, the values of the variables follow the binary arithmetic coding scheme,
that is, each chromosome is a string of ‘0s’ and ‘1s’, which are called allelic val-
ues. In the case of C-NDP, the individuals of the GA population correspond to
alternative codings (candidate solutions) referring to the capacity improvements
which should be made to the network links. In the case of D-NDP, the individ-
uals of the population correspond to alternative binary codings of the link and
lane additions.

The current iterative procedure for solving each form of the reliable NDP
combines the use of the mechanics of natural evolution, as it is based on a GA,
with the Latin Hypercube sampling methodology (see Sect. 3.2) for modeling
the stochastic variables and performing the risk assessment in relation to the
reliability requirements. For every individual of the population, a Latin Hyper-
cube simulation is performed, altering the travel demand, link travel time and
capacities in order to estimate TTT reliability. The mechanism of the population
evolution is based on three genetic operations, i.e. reproduction, crossover and
mutation (see below). The steps of the solution algorithm are as follows:

1. Initialization:
Produce an initial random population of candidate feasible solutions (link
capacity improvements for the C-NDP, or link and lane additions for the
D-NDP) and define the parameters of the genetic operators;

Genetically Optimized Infrastructure Design Strategies 31

DO UNTIL CONVERGENCE:
2. Path Enumeration, applied only on the D-NDP:

Perform path enumeration for every candidate solution;
3. Simulation:

Estimate the TTT reliability for every candidate solution by Latin Hyper-
cube simulation;

4. Genetic Evolution Process:
a) Check for the consistency of constraints and estimate the “fitness func-

tion” of each candidate solution;
b) Perform a stochastic selection of the “fittest” solution set and the

crossover operation among the selected “individuals”;
c) Perform the mutation of individuals;
d) Produce a new population of genetically improved candidate solutions.

The reproduction operator performs the reproduction of an intermediate pop-
ulation, referred to as mating population, which will produce a new, genetically
improved population. The mating population is generated by a selected subset
of the current population (parent population) based on the performance of each
individual concerning the fitness function. There are various methods for the se-
lection of the individuals from the parent population, such as the roulette wheel
and tournament selection. In this study, the tournament selection method is
adopted. In this method, the mating population is formed by choosing the most
‘powerful’ amongst a number of randomly selected individuals from the parent
population. After selecting the mating population, the exchange of genetic ma-
terial, i.e. the crossover operation, is performed among the member individuals.
This is a mechanism which leads to the production of a new, improved pop-
ulation. The crossover is performed by randomly mating the individuals and
exchanging parts of their chromosomes, according to a pre-specified pattern and
rate (probability of two mates to crossover), which is typically selected to be
larger than 50%. The current application uses a scattered crossover pattern,
wherein randomly selected parts of each chromosome are exchanged to allow the
transmission of genetic information among individuals. Finally, the mutation op-
eration provides a mechanism for preventing local convergence through randomly
altering some allelic values according to a pre-specified (typically small, such as
<5%) rate. Though the extended use of meta-heuristic techniques such as GAs for
solving complex problems, the their solutions have met some skepticism. This is
mainly because of their dependence on initial conditions and their incorporated
random search processes. For this reason, multiple runs of the GA are performed
in this study through altering the starting point (the initial population) of the
procedure to obtain evidence that the solutions obtained for both the C-NDP
and D-NDP do not depend on the initial state and, hence, it can be expected
that they are optimal (or adequately near-optimal) with an increased probabil-
ity. It should be kept in mind that GAs belong to the stochastic approximation
class of optimization methods, which implies that no guarantee of optimality can
be provided for the final solution. Instead, the final solution should be viewed as

32 L. Dimitriou, T. Tsekeris, and A. Stathopoulos

the most probable optimal state obtained from a genetically organized sampling
procedure in the search space.

5 Model Implementation and Analysis of Results

5.1 Description of the Numerical Experiments

The proposed methodology for solving the C-NDP and D-NDP with reliability
requirements is implemented into two different versions of a test network (see
Figs. 1(a) and 1(b) respectively). The specific network layout has been used in
[18] and is selected here, since it encompasses geometric and operational settings
typically found in urban road transport systems. It is composed of a single origin-
destination pair (from node #1 to node #12) and 12 nodes. There are 23 links,
6 of which (figured #18-23) are regarded as candidate new links for the case of
the D-NDP. These links give rise to a total of 25 paths, after having made all
possible improvements.

1 2 3 4

5 6 7 8

9 10 11 12

1 2 3

4 5 6 7

8 9 10

11 12 13 14

15 16 17

21 22 23

18 19 20

1 2 3 4

5 6 7 8

9 10 11 12

1 2 3

4 5 6 7

8 9 10

11 12 13 14

15 16 17

21 22 23

18 19 20

(a) (b)

Fig. 1. The test network layout for (a) the C-NDP, and (b) the D-NDP, where existing
links available for lane additions are shown in solid lines, and potential new links are
shown in dashed lines

The network is considered as fully degradable in the sense that all links exhibit
fluctuations in travel speed and capacity. The C-NDP, which is composed of
23 control variables for the given network, can be regarded as complex since it
considers possible enhancements in the whole network configuration. Also, the D-
NDP forms a complex combinatorial problem, since despite the small scale of the
given network it yields 2L = 223 = 8388608 possible combinations (alternative
construction plans) of a network capacity improvement. In the current study,
the link travel time tα at some link α is expressed as a function of the random
free-flow travel time tfα, traffic flow xα and random capacity yα at this link, and
it is calculated by using the standard formulation of the Bureau of Public Roads
(BPR), as follows:

tα = tfα

(
1 + β

(
xα

yα

)m)
(9)

Genetically Optimized Infrastructure Design Strategies 33

where β and m are scale parameters depending on the operational characteristics
of the network, which have been set here equal to β = 0.15 and m = 4. Although
the estimation of the link travel time is based here on the BPR formula, which
typically applies to uncongested road networks, other formulations could also be
adopted for taking into account the congestion effects, like queues or bottlenecks
in the links of the network.

The capacity of each of the existing links is set equal to yα = 20 vehicles
per hour (veh/hr). In the D-NDP, the link capacity reaches its maximum level,
which is set equal to y=30 veh/hr, after a lane addition, while the maximum
capacity of each new link is set equal to 20 veh/hr. In the C-NDP, the maximum
link capacity is set equal to y=30 veh/hr. The demand between the origin-
destination pair is set equal to q=80 veh/hr. The cost of a lane addition to each
of the existing links is set equal to 30 monetary values, while the construction
cost of each new link is set equal to 50 monetary values. This study adopts a
conversion factor θ = 1. The free-flow travel time, which is proportional to the
link length, is set equal to tfα = 1 min for the existing links, and tfα = 1.4 min
for the new links.

In the D-NDP, the complete reconstruction of the given network, which re-
quires the maximum allowable network capacity improvements in terms of the
link and lane additions, amounts to a total of 810 monetary values. Nonetheless,
such a scenario may be considered as too expensive and hence impractical in
real-world situations. For this reason, half of this amount, i.e. 400 monetary val-
ues, is set as the total available construction budget B, which can be regarded
as sufficient to enhance the capacity of the existing network. In the C-NDP, the
total available construction budget B for network construction plans equals 350
monetary units, which corresponds to the share of the amount needed to expand
the capacity of all links to the upper bound.

The convergence of the algorithm to the SUE conditions using the MSA heav-
ily depends on the network configuration and, particularly, the network size, the
number of alternative paths connecting the O-D pair and the congestion level.
The increase of the number of network links gives rise to more alternative paths
between the O-D pair, which, in turn, complicates the route choice problem,
since it augments the interaction among the network users. Correspondingly,
the increase of the travel demand renders the convergence to the SUE state
more difficult, since, particularly under congested conditions, small alterations
in the users’ path choices can heavily influence the travel cost incurred among
alternative paths.

Based on the factors above, various alterative network settings will be em-
ployed in terms of the network layouts and demand profiles. During the imple-
mentation of the solution algorithm (see Sect. 4.2), an analysis is made in order
to ensure that an adequate number of MSA iterations is used for the convergence
to the SUE conditions. Figure 2 presents the path choice probabilities and path
flows for each MSA iteration, based on a scenario of increased demand (q=120

34 L. Dimitriou, T. Tsekeris, and A. Stathopoulos

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Iteration

P
at

h
C

ho
ic

e
P

ro
ba

bi
lit

y

0

10

20

30

40

50

60

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Iteration

Pa
th

 F
lo

w
s

(v
eh

/h
r)

(a) (b)

Fig. 2. (a) Path choice probabilities and (b) path flows estimated at each MSA iteration

0

5000

10000

15000

20000

25000

30000

35000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Iteration

To
ta

l T
ra

ve
l T

im
e

(v
eh

-m
in

)

Fig. 3. Convergence of the network traffic assignment problem to a SUE condition

veh/hr), which is the 50% increment of the mean value, for the case where
all the 23 links exist in the network in their maximum capacity. Even in this
extreme case, wherein the congested network links form 25 alternative paths, the
convergence is achieved within almost the first 15 MSA iterations (see Fig. 3). In
the current study, a total of 50 MSA iterations is employed to achieve a stable
solution to the Lower-Level Problem for the given test network.

Moreover, the distribution of the TTT is analyzed with respect to different
levels of link capacity variation. Figure 4 shows that the TTT is significantly
influenced by the size of the link capacity variability for the complete network
configuration. In particular, when the dispersion of link capacity increases (in
terms of the variance) from 10% to 25%, the dispersion of the TTT increases
substantially, dropping the reliability of the whole system. Each of the plots
below shows the log-normal distribution (and its characteristic values) of the
TTT, as it is fitted to the results of the simulation for comparative purposes.
The current study adopts the rather conservative assumption that both demand
and link capacity variance are equal to 10% of the mean value.

Genetically Optimized Infrastructure Design Strategies 35

Lognorm(24.237; 6.1725) Shift=+366.040

0

1

2

3

4

5

6

7

8

370 380 390 400 410 420 430

 TTT in veh-min

V
al

ue
s

x
10

^-
2

Lognorm(24.878; 11.803) Shift=+369.731

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

370 380 390 400 410 420 430 440 450

 TTT in veh-min

V
al

ue
s

x
10

^-
2

(a) (b)

Lognorm(52.257; 31.382) Shift=+370.931

0

0.5

1

1.5

2

2.5

350 400 450 500 550 600 650

 TTT in veh-min

V
al

ue
s

x
10

^-
2

Lognorm(47.329; 42.767) Shift=+369.262

0

0.5

1

1.5

2

2.5

350 400 450 500 550 600 650 700 750 800

 TTT in veh-min

V
al

ue
s

x
10

^-
2

(c) (d)

Fig. 4. Log-normal distribution fit of the TTT hypothesizing a link capacity variance
equal to (a) 10%, (b) 15%, (c) 20% and (d) 25% of the mean capacity

5.2 Effects of the Design Process on Network Configuration

Before applying the proposed method to the test network, a sensitivity analysis
is performed in order to trace those links which mostly influence the TTT. The
sensitivity analysis examines the effect that one standard deviation increment of
the capacity of each link can have on the standard deviation of TTT. Figure 5
presents the ranking of the links of the complete network configuration with
the largest impact on TTT, in terms of the correlation coefficient between the
increment of link capacity by one standard deviation and the standard deviation
of TTT. As it may be expected, the links, which can be considered as the most
critical components of the system, are, in order of significance, #17, #1, #9,
#4, #14, #18 and #13, since they are servicing the largest portions of demand
between the O-D pair.

An initial solution is first obtained by solving the C-NDP without reliability
requirements, as described in constraint (4). The assignment of travel demand
onto the initial network (without link improvements) results in a TTT equal
to 549 veh-min. The solution refers to a construction plan composed of im-
provements on links #17, #1, #9 and #4, which results in the reduction of
the expected TTT from 549 veh-min to 402 veh-min (≈ 27 % reduction). The
construction plan obtained from this solution essentially corresponds to the en-
hancement of those 4 links which are the most influential to the value of TTT,
based on the results of the sensitivity analysis (see Fig. 5). An amount of 40.8

36 L. Dimitriou, T. Tsekeris, and A. Stathopoulos

- .061

- .093

- .127

- .159

- .286

- .522

- .548

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

Link #17

Link #9

Link #1

Link #4

Link #14

Link #18

Link #13

Correlation Coefficients

3 4

5 7 8

9 10 11 12

3

4 5 6 7

10

11 12 13 14

15 16 17

21 22 23

18 19 20

6

Fig. 5. Sensitivity analysis and classification of the link capacity increment impact on
the Total Travel Time, in terms of the correlation coefficients of one standard deviation
increment of link capacity with the standard deviation of the TTT

monetary units has been used as construction cost (corresponding to 40.8 veh-
min, since θ=1), which in turn leads to a total social cost (TTT + construction
cost) equal to 402+40.8=442.8 veh-min.

A new construction plan is then formed by the C-NDP, through adding a re-
liability requirement, i.e. the probability of the TTT to exceed T=450 veh-min
to be less than 5%. This upper limit value expresses approximately the 10%
increment of the TTT value (402 veh-min) obtained from the initial problem
solution. The new solution refers to a construction plan composed of improve-
ments on links #17, #1, #9, #4, #18, #14, #3, #15, #5, #2, #13, #21, #19,
#12, #22. Figures 6(a) and 6(b) indicate the capacity improvements resulting
from the solution of the C-NDP with and without reliability requirements re-
spectively. By comparing these two graphs, it can be observed that the capacity
improvements corresponding to the reliable C-NDP encompass a much larger
number of network links in comparison to the improvements corresponding to
the C-NDP without reliability requirements. This outcome verifies the expecta-
tion that more capacity is required in order to increase the network reliability
and is consistent with the concept of sparse network capacity, or that of in-
creased system redundancy, in engineering terms. More specifically, the total
construction cost of the new solution is raised to 67.73 monetary units, while
the expected TTT is reduced to 387 veh-min, leading to a total social cost of
387+67.73=454.73 veh-min, which is slightly higher than the total social cost
when excluding reliability requirements (442.8 veh-min).

Similar to the C-NDP, an initial solution is first obtained by solving the D-
NDP without reliability requirements. The assignment of the travel demand onto

Genetically Optimized Infrastructure Design Strategies 37

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Link No

C
ap

ac
ity

 Im
pr

ov
em

en
t

(v
eh

/h
r)

(a)

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Link No

C
ap

ac
ity

 Im
pr

ov
em

en
t

(v
eh

/h
r)

(b)

Fig. 6. Construction plans for the case of C-NDP (a) without reliability requirements
and (b) with reliability requirements

the initial network (with no link or lane additions) results in a TTT equal to 886
veh-min. The initial solution provides a construction plan which encompasses the
addition of the new links #18 and #23 and lane addition to the existing links
#1, #9 and #17. The resulting construction cost amounts to 190 veh-min, which
is lower than the total available budget (400 veh-min). The TTT reduces from
886 veh-min to 449 veh-min. Hence, the total social cost comes to 449+190=639
veh-min. Figure 7 presents the contribution of each new link to be added, or each
existing link with a new lane to be added, in the order of selection, to the TTT
and total social cost. As it can be observed, after the 6th sequential addition of
a new link or lane, the total social cost increases, although the TTT is reduced,
thus leading to inefficient solutions in terms of the social benefit.

The D-NDP provides a new solution by imposing, as reliability requirementm,
the probability of the TTT to exceed T =500 veh-min to be less than 10%. This
upper limit value represents about the 10% increment of the TTT value (449
veh-min) obtained from the initial solution of the D-NDP. The new solution
leads to the construction of two more links, i.e. link #19 and #22, in addition to
the improvements resulting from the initial solution. The TTT is further reduced
from 449 veh-min to 423 veh-min, while the construction cost is raised to 290
monetary values, which is still less than the total available construction budget
(400 monetary values). The new solution results in the increase of the total social
cost from 639 veh-min to 423+290=713 veh-min.

38 L. Dimitriou, T. Tsekeris, and A. Stathopoulos

0

100

200

300

400

500

600

700

800

900

1,000

1 2 3 4 5 6 7 8

Total Travel Time
Total Social Cost

Li
nk

 1

Li
nk

 9

Li
nk

 1
7

Li
nk

 1
8

Li
nk

 2
3

Li
nk

 2
2

Li
nk

 1
9

C
os

t (
ve

h-
m

in
)

Link Addition

Fig. 7. Impact of capacity expansions on Total Travel Time and total social cost

The above-named results show the existence of a considerable remaining (not
allocated) portion of the total available construction budget, which is equal to
350-40.8=309.2 monetary values for the C-NDP and 400-190=210 monetary val-
ues for the D-NDP, when ignoring reliability requirements, and 350-67.73=282.27
monetary values for the C-NDP and 400-290=110 monetary values for the D-
NDP, when including reliability requirements. This portion can be attributed
to the fact that there is a threshold beyond which capacity improvements are
regarded as too expensive, with respect to the increase of the total social cost, in
comparison to their contribution to the reduction of the expected TTT . Yet, the
total available construction budget is much higher than the construction cost
obtained from the solution. In terms of the composite objective function, after
F value exceeds that specific point (threshold), additional investments in a bet-
ter link capacity increase the component of the construction cost proportionally
more than the reduction caused to the TTT component, independently from the
link the investments are made in.

5.3 Effects of the Design Process on Network Reliability

This subsection concentrates on the analysis of the effects of solving the reliable
C-NDP and D-NDP on the distribution of the TTT . Figures 8(a) and 8(b) show
the resulting TTT distribution, as it is obtained from the solution of the C-NDP,
in the cases of ignoring and including reliability requirements respectively. The
resulting probability of the TTT to be higher than 450 veh-min was estimated
to 9.97%, which is lower than the acceptable upper bound of 10%. As it is
shown in the two histograms of Fig. 8, the dispersion of the TTT obtained
from the initial solution of the C-NDP without reliability requirements, having
P (TTT ≥ 450veh − min) ≈ 0.2 (see left diagram) is significantly wider than

Genetically Optimized Infrastructure Design Strategies 39

0,000
0,005
0,010
0,015
0,020
0,025
0,030
0,035
0,040

350 400 450 500 550 600 650
 TTT in veh-min

 P
ro

ba
bi

lit
y

of
 O

cc
ur

en
ce

0,000
0,005
0,010
0,015
0,020
0,025
0,030
0,035
0,040

350 400 450 500 550 600 650
 TTT in veh-min

 P
ro

ba
bi

lit
y

of
 O

cc
ur

en
ce

(a) (b)

0
0,001
0,002
0,003
0,004
0,005
0,006
0,007
0,008
0,009
0,01

350 400 450 500 550 600 650 700 750 800
 TTT in veh-min

P
ro

ba
bi

lit
y

of
 o

cc
ur

re
nc

e

0
0,001
0,002
0,003
0,004
0,005
0,006
0,007
0,008
0,009
0,01

350 400 450 500 550 600 650 700 750 800
 TTT in veh-min

P
ro

ba
bi

lit
y

of
 o

cc
ur

re
nc

e

(c) (d)

Fig. 8. Distribution of the TTT obtained from the C-NDP (a) without reliability
requirements and (b) with reliability requirements, and obtained from the D-NDP (c)
without reliability requirements and (d) with reliability requirements

the dispersion of the TTT obtained from solving the reliable C-NDP, having
P (TTT ≥ 450veh − min) < 0.1 (see right diagram).

Correspondingly, Figs. 8(c) and 8(d) indicate the resulting TTT distribution,
as obtained from the solution of the D-NDP, in the cases of ignoring and includ-
ing reliability requirements respectively. The resulting probability of the TTT
to be higher than 500 veh-min was estimated to 9.94%, which is lower than
the acceptable upper bound of 10%. The two histograms demonstrate that the
dispersion of the TTT obtained from the initial solution of the D-NDP with-
out reliability requirements, having P (TTT ≥ 500veh − min) ≈ 0.25 (see left
diagram) is considerably wider than the dispersion of the TTT obtained from
solving the reliable D-NDP, having P (TTT ≥ 500veh − min) < 0.1 (see right
diagram). The resulting narrower dispersion of the TTT signifies that both the
continuous and the discrete forms of the reliable NDP produce a system with
increased stability, i.e., a greater ability to respond to the various states of its
variables, in comparison to the NDP without reliability requirements.

The proposed optimization framework can be regarded as computational in-
tensive, considering its ability to handle such complex problems. This is because
the combination of three procedures, namely the GA combined with the Latin
Hypercube random sampling and the traffic assignment, requires a substantial
computational effort. In particular, the estimation of the stochastic properties of
the system attributes with the Latin Hypercube sampling requires almost 2 min
of CPU time for the given networks, using a PC with modest capabilities. Hence,
the CPU time required for each generation is equal to 2 min × 50 individuals =

40 L. Dimitriou, T. Tsekeris, and A. Stathopoulos

100 min, and the completion of an experiment utilizing a set of 200 generations
(as adopted here) necessitates several days of CPU time. It is straightforward to
recognize that the computational effort increases substantially with the problem
size. However, this is not an obstacle for adopting the proposed framework into
real-size cases, since the NDP relates to strategic decisions of the designer in
the planning horizon, where computational burden is irrelevant in relation to
the utilization of the results. Nevertheless, advanced methods of computing (e.g.
distributed computing) could be further employed to decrease the CPU time in
cases where the economy of computational resources is a matter of concern.

6 Summary and Conclusions

This chapter described a game-theoretic, bi-level formulation and a solution algo-
rithm for addressing the reliable Continuous-Network Design Problem (C-NDP)
and the reliable Discrete-Network Design Problem (D-NDP) within a stochastic
evolutionary optimization framework. The problem formulation seeks the opti-
mal capacity enhancements (for the C-NDP) or the optimal selection of link and
lane additions (for the D-NDP) in a degradable transport network, subject to
budgetary and physical restrictions, and, additionally, reliability requirements,
in terms of the probability of the Total Travel Time (TTT) to be less than a
pre-specified value. The model enables the inclusion of four different sources of
uncertainty (i.e. demand, capacity, link travel time and route choice) into the
reliability assessment, through applying the Latin Hypercube sampling simula-
tion method. The estimation procedure employs a Genetic Algorithm, since the
incorporation of simulation techniques into such complex optimization problems
renders the use of traditional approaches inappropriate. The implementation of
the model into a test network with typical urban road settings demonstrated the
ability of the solution algorithm to converge to a stable solution, which, at the
lower-level problem, corresponds to the achievement of Stochastic User Equilib-
rium (SUE) conditions through employing the Method of Successive Averages
(MSA).

The results signify the beneficial impact of incorporating reliability require-
ments into the standard bi-level programming formulation of the continuous and
discrete NDP. In particular, the solutions of the reliable C-NDP and D-NDP di-
minish the expected TTT as well as the dispersion of the TTT , which implies
their favorable effect on the stability of the system, in comparison to the solu-
tions of the C-NDP and D-NDP without reliability requirements. These benefits
are attained while keeping the required construction costs well below the total
available construction budget for both forms of the NDP. The solution of the
reliable D-NDP was found to provide larger travel time savings but also higher
construction costs than the reliable C-NDP for the current test network settings.
The proposed modeling framework facilitates the resource allocation decision-
making involved in alternative infrastructure investment strategies, which give
rise to different design processes.

Genetically Optimized Infrastructure Design Strategies 41

The current study can be extended into several research directions. This in-
cludes the consideration of various classes of users, e.g. with different values
of time and information acquisition mechanisms, in multi-modal networks. The
extension above could allow the examination of the road space allocation ac-
cording to such criteria as social equity, energy conservation and environmental
sustainability. This examination could be favored by the adoption of models for
capturing more detailed features of the traffic flow process at the microscopic
level. Moreover, the current framework could be enriched through incorporat-
ing other types of uncertainty which affect network reliability, including those
concerning the departure time and schedule delays, and day-to-day (or period-
to-period) learning and behavioral adjustments of users.

References

1. Abdulaal, M., LeBlanc, L.J.: Continuous equilibrium network design models.
Transportation Research, Part B: Methodological 13, 19–32 (1979)

2. Bell, M.G.H., Iida, Y.: Transportation Network Analysis. Wiley, Chichester (1997)
3. Ben-Ayed, O., Boyce, D.E., Blair, C.E.: A general bi-level programming formu-

lation of the network design problem. Transportation Research, Part B: Method-
ological 22, 311–318 (1988)

4. Cantarella, G.E., Vitetta, A.: The multi-criteria road network design problem in
an urban area. Transportation 33, 567–588 (2006)

5. Chen, A., Yang, H., Lo, H.K., Tang, W.H.: Capacity reliability of a road network:
An assessment methodology and numerical results. Transportation Research, Part
B: Methodological 36, 225–252 (2002)

6. Chiou, S.-W.: Bilevel programming for the continuous transport network design
problem. Transportation Research, Part B: Methodological 39, 361–383 (2005)

7. Cho, D.J.: Three Papers on Measuring the Reliability and Flexibility of Trans-
portation System Capacity. PhD Thesis, University of Pennsylvania, Philadelphia
(2002)

8. Colson, B., Marcotte, P., Savard, G.: Bilevel programming: A survey. 4OR: Quar-
terly Journal of Operations Research 3, 87–107 (2005)

9. Cree, N.D., Maher, M.J., Paechter, B.: The continuous equilibrium optimal network
design problem: A genetic approach. In: Selected Proceedings of the 4th EURO
Transportation Meeting, Newcastle, pp. 175–193 (1998)

10. Dimitriou, L., Stathopoulos, A., Tsekeris, T.: Reliable stochastic design of road
network systems. International Journal of Industrial Systems Engineering 3 (forth-
coming, 2008)

11. Dimitriou, L., Tsekeris, T., Stathopoulos, A.: Evolutionary combinatorial program-
ming for discrete road network design with reliability requirements. In: Giacobini,
M., et al. (eds.) EvoWorkshops 2007. LNCS, vol. 4448, pp. 678–687. Springer,
Heidelberg (2007)

12. Drezner, Z., Wesolowsky, G.O.: Network design: Selection and design of links and
facility location. Transportation Research, Part A: Policy and Practice 37, 241–256
(2003)

13. Du, Z.P., Nicholson, A.: Degradable transportation systems: Sensitivity and re-
liability analysis. Transportation Research, Part B: Methodological 31, 225–237
(1997)

42 L. Dimitriou, T. Tsekeris, and A. Stathopoulos

14. Fisk, S.C.: A conceptual framework for optimal transportation systems planning
with integrated supply and demand models. Transportation Science 20, 37–47
(1986)

15. Friesz, T.L.: Transportation network equilibrium, design and aggregation: Key de-
velopments and research opportunities. Transport Reviews 18, 257–278 (1985)

16. Friesz, T.L., Cho, H.-J., Metha, N.J., Tobin, R.L., Anandalingam, G.: A simulated
annealing approach to the network design problem with variational inequality con-
straints. Transportation Science 26, 18–26 (1992)

17. Friesz, T.L., Shah, S.: An overview of nontraditional formulations of static and
dynamic equilibrium network design. Transportation Research, Part B: Method-
ological 35, 5–21 (2001)

18. Gao, Z., Wu, J., Sun, H.: Solution algorithm for the bi-level discrete network design
problem. Transportation Research, Part B: Methodological 39, 479–495 (2005)

19. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley, Reading (1989)

20. Iman, R.L., Conover, W.J.: A distribution-free approach to inducing rank correla-
tion among input variables. Communications in Statistics B11, 311–334 (1982)

21. Karoonsoontawong, A., Waller, T.S.: Dynamic Continuous Network Design Prob-
lem: Linear Bilevel Programming and Metaheuristic Approaches. Transportation
Research Record 1964, 104–117 (2006)

22. Kim, B., Kim, W.: An equilibrium network design model with a social cost function
for multimodal networks. The Annals of Regional Science 40, 473–491 (2006)

23. Leblanc, L.J.: An algorithm for the discrete network design problem. Transporta-
tion Science 9, 183–199 (1975)

24. Magnanti, T.L., Wong, R.T.: Network design and transportation planning: Models
and algorithms. Transportation Science 18, 1–55 (1984)

25. Morlok, E.K., Chang, D.J.: Measuring capacity flexibility of a transportation sys-
tem. Transportation Research, Part A: Policy and Practice 38, 405–420 (2004)

26. Mouskos, K.: A Tabu-Based Heuristic Search Strategy to Solve a Discrete Trans-
portation Equilibrium Network Design Problem. Ph.D. Dissertation, The Univer-
sity of Texas at Austin (1992)

27. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and
Complexity. Dover Publications, Mineola (1998)

28. Poorzahedy, H., Abulghasemi, F.: Application of ant system to network design
problem. Transportation 32, 251–273 (2005)

29. Poorzahedy, H., Rouhani, O.M.: Hybrid meta-heuristic algorithms for solving net-
work design problem. European Journal of Operational Research 182, 578–596
(2007)

30. Sheffi, Y.: Urban Transportation Networks: Equilibrium Analysis with Mathemat-
ical Programming Methods. Prentice-Hall, Englewood Cliffs (1985)

31. Solanki, R.S., Gorti, J.K., Southworth, F.: Using decomposition in large-scale high-
way network design with a quasi-optimization heuristic. Transportation Research,
Part B: Methodological 32, 127–140 (1998)

32. Stathopoulos, A., Karlaftis, M.: Temporal and spatial variations of real-time traffic
data in urban areas. Transportation Research Record 1768, 135–140 (2001)

33. Stathopoulos, A., Tsekeris, T.: Methodology for processing archived ITS data for
reliability analysis in urban networks. IEE Proceedings Intelligent Transport Sys-
tems 153, 105–112 (2006)

34. Sumalee, A., Walting, D.P., Nakayama, S.: Reliable network design problem: Case
with uncertain demand and total travel time reliability. Transportation Research
Record 1964, 81–90 (2006)

Genetically Optimized Infrastructure Design Strategies 43

35. Suwansirikul, C., Friesz, T.L., Tobin, R.L.: Equilibrium decomposed optimization:
A heuristic for the continuous equilibrium network design problem. Transportation
Science 21, 254–263 (1987)

36. Ukkusuri, S.V., Mathew, T.V., Waller, S.T.: Robust transportation network design
under demand uncertainty. Computer-Aided Civic Infrastructure Engineering 22,
6–18 (2007)

37. Waller, S.T., Ziliaskopoulos, A.K.: Stochastic dynamic network design problem.
Transportation Research Record 1771, 106–113 (2001)

38. Yang, H., Bell, M.G.H.: A capacity paradox in network design and how to avoid
it. Transportation Research, Part A: Policy and Practice 32, 539–545 (1998)

39. Yin, Y., Iida, H.: Optimal improvement scheme for network reliability. Transporta-
tion Research Record 1783, 1–6 (2002)

40. Zhang, G., Lu, J.: Genetic algorithm for continuous network design problem. Jour-
nal of Transportation Systems Engineering and Information Technology 7, 101–105
(2007)

Genetic Algorithm for Constraint Optimal Toll
Ring Design

Agachai Sumalee

Department of Civil and Structural Engineering, The Hong Kong Polytechnic
University, Hung Hom, Kowloon, Hong Kong
ceasumal@polyu.edu.hk

Summary. This chapter considers the optimal toll ring design problem in a general
urban traffic network. Several constraints on outcomes of the toll ring scheme are im-
posed on the design (e.g., equity impact or revenue). In this chapter, the GA based
algorithm proposed by [13] is integrated with a penalty based approach to tackle the
problem. Three penalty methods including static, dynamic, and self-adaptive penalties
are investigated. The algorithm is tested with a realistic traffic network.

Keywords: Road pricing, Optimal toll location, Genetic algorithms, Constraint
handling.

1 Introduction

Road pricing is a fiscal policy for managing the demand of road usage. There
are several types of road pricing schemes including point-based (which charge
for crossing a designated point), area-based (which charge for traveling inside a
specific area), distance-based (which charge per distance traveled), time-based
(which charge per time spent traveling), and toll ring ones (which charge for
crossing a designated cordon line). From these possible schemes, May et al. [6]
report that the toll ring based scheme is the most favored option by practitioners
thanks to its simplicity. A toll ring is composed of a number of tolled roads
surrounding a designated area. Drivers traveling from the outside of the toll ring
cannot enter the designated area without paying the toll.

The main objective of road pricing is to apply an appropriate toll scheme
to control the travel demand and traffic distribution in order to maximize the
system’s performance (normally measured by the social welfare index). Nev-
ertheless, an inappropriate design of the scheme may decrease its benefit or
even degrade social welfare [6]. In practice, apart from the main objective of
social welfare maximization, the design of a toll ring scheme must also take sev-
eral outcome constraints into account (e.g., equity impact, generated revenue,
or congestion reduction) to enhance the practicality and acceptability of the
scheme [12].

There are several approaches for solving the optimal toll ring design prob-
lem (see, e.g., [13, 14, 18]). However, none of these approaches have explicitly

A. Fink and F. Rothlauf (Eds.): Advances in Computational Intelligence, SCI 144, pp. 45–61, 2008.
springerlink.com © Springer-Verlag Berlin Heidelberg 2008

46 A. Sumalee

considered the outcome constraints of the design. The main focus of this chapter
lies thus on the development of an algorithm to design an optimal toll ring scheme
subjected to several outcome constraints. The Genetic Algorithm (GA) based
method proposed by [13] is extended to consider different outcome constraints.

There are three main groups of the methods for handling the constraint
in GA including (i) penalty based methods, (ii) search restrictions, and (iii)
hybrid methods. An excellent review on these methods can be found in [2].
This chapter studies the different methods and focuses on the most flexible and
particularly appropriate ones for the considered problem. Constraints are consid-
ered by including a penalty in the objective function to penalize infeasible solu-
tions. Three types of penalty functions can be adopted including static, dynamic,
and self-adaptive penalty functions. This chapter applies these three approaches
and compares their performances. The chapter is structured into five sections.
The next section presents the mathematical formulation of the optimal toll ring
design problem with constraints, and defines the indicators for different out-
comes. Section 3 presents the branch-tree concept proposed by [13] which is used
to encode a toll ring using a string-based representation. Section 4 introduces
the GA-based method for solving the optimal toll ring design with constraints.
Section 5 presents numerical results for a real-world problem. The final section
concludes the chapter.

2 Problem Formulation and Outcome Indicators

2.1 Optimal Toll Ring Design Problem with Constraints

The optimal toll ring design problem (OTP) involves selecting roads and toll
levels to charge drivers for using roads. The set of tolled roads must form a toll
ring. Topologically, a toll ring surrounds a designated area (e.g., city centre) so
that all trips from the outside of the toll ring to the area inside the toll ring
are charged. Usually, drivers respond to the introduction of tolls by rerouting,
switching mode, or giving up their trips. Thus, the responses of the drivers to
the toll must be considered in the evaluation of the benefit and outcomes of a
toll ring scheme.

The assumption of Wardrop’s user equilibrium [16] is normally used to model
travelers’ responses to the toll. Several off-shelf traffic modeling software for
finding equilibrium traffic flows are available; see, e.g., SATURN [15]. We do not
discuss the details of the equilibrium assignment here but refer to [11].

For the purpose of this chapter, the equilibrium assignment is viewed as a
mapping from a toll vector to the equilibrium demand and route flow vectors.
In this chapter, two types of response from the drivers are considered, namely
rerouting and elastic demand. The elastic demand represents the drivers’ deci-
sions to make or give up their trips (if the travel cost is too high). Let T(τ)
and F(τ) be the vector mapping from a toll vector τ ∈ �J to equilibrium origin-
destination (OD) demand flows and path flows T ∈ �I and F ∈ �P , respectively.
J , I , and P are the total numbers of links, OD pairs, and routes in the network
in that order.

Genetic Algorithm for Constraint Optimal Toll Ring Design 47

Let ε ∈ {1, 0}J be a binary vector, where εj = 1 indicates that link j is tolled.
An additional constraint τj = toll×εj (where toll is the toll for all links included
in the toll ring) is imposed on all τj to ensure that the toll is only implemented on
the tolled links. Thus, the OTP involves choosing ε and toll so that the objective
function W(T(τ),F(τ), ε) is maximized subject to several outcome constraints
he(T(τ),F(τ), ε) ≤ 0:

max
(toll,ε)

W(T(τ),F(τ), ε)

s.t. ε ∈ Ψ
τj = toll · εj ∀j
he(T(τ),F(τ), ε) ≤ 0 ∀e
0 ≤ toll ≤ M,

(1)

where Ψ ⊂ {1, 0}J is an arbitrary set of all feasible combinations of tolled links
which form toll rings. M is the upper bound of the toll. The objective function
of the OTP maximizes the net social benefit which is the social welfare deducted
by the costs of the scheme (i.e., implementation and operation costs). This can
be defined as:

W =
∑

i

∫ Ti(τ)

0
D−1

i (x)dx −
∑

j

∑
p

δjp · Fp(τ) · tj(vj) −
∑

j

εjsj , (2)

where D−1
i is the inverse demand function for OD pair i, tj(vj) is the link travel

time function of link j (as a monotone function of the link flow vj), sj is the cost
for implementing the toll on link j, and δjp is a binary parameter in which δjp = 1
if link j is on route p, and δjp = 0 otherwise. Note that vj =

∑
p δjpFp(τ), i.e.,

link flow is equal to the sum of all route flows using that link. The next section
defines of the outcome constraint, he(T(τ),F(τ), ε) ≤ 0.

2.2 Outcome Indicators and Constraints

This section defines two particular outcome constraints, h1 and h2. First, h1
lies on the revenue of the toll scheme. In some cases, one needs to guarantee a
certain level of revenue generated from the toll scheme to ensure that the scheme
is self-financed (for its implementation and operation) and can provide sufficient
funds for other infrastructure projects. The revenue of a particular toll scheme is
defined as

∑
j τjvj(τ). Thus, h1 ≡ Rev −

∑
j τjvj(τ), where Rev is the minimum

required revenue. h1 ≤ 0 implies that Rev ≤
∑

j τjvj(τ).
Second, h2 addresses negative effects of the road pricing scheme which is the

equity impact. The equity impact describes unequally distributed social benefits
over different groups of the population from different areas. If a toll scheme
favors some groups of people from selected areas, the toll ring scheme is unfair
and can be viewed as an inequitable policy.

In economics, the Gini coefficient is commonly used to measure income in-
equality. Figure 1 depicts the Lorenz curve or empirical distribution which repre-
sents the actual income distribution over the population and the equality curve or

48 A. Sumalee

Fig. 1. Lorenz distribution and Gini coefficient

uniform distribution line (representing equal income distribution). The Gini co-
efficient is the ratio between the area between the Lorenz curve and the uniform
distribution curve and the area below the uniform distribution curve. Therefore,
the value of the Gini coefficient lies between 0 and 1. Low Gini coefficients lead
to a more equal income or wealth distribution.

In this chapter, the Gini coefficient is adopted to measure the spatial distri-
bution of the social benefit caused by the toll scheme. Let Wi =

∫ Ti

0 D−1
i (x)dx−

Ti · πi be the social benefit for OD pair i, where πi denotes the minimum travel
time for OD pair i (calculated by the traffic assignment). The Gini coefficient G
can then be calculated as

G(τ) =
1

2 · T 2 · W
·

I∑
i=1

I∑
r=1

Ti · Tr|Wi − Wr|, (3)

where 0 ≤ G(τ) ≤ 1, T is the total demand in the no-toll scenario and W is the
average value of Wi. Thus, the second outcome constraint can be defined as a
constraint on the equity impact, i.e., h2 ≡ G(τ) − Eqi, in which h2 ≤ 0 implies
G(τ) ≤ Eqi. Eqi denotes the acceptable level of equity impact.

3 Branch Tree Framework for Toll Ring Representation

A Genetic Algorithm (GA) is used to solve the above-described OTP. The OTP’s
phenotype is the toll ring and its corresponding toll. The genotype is based on the
branch-tree framework proposed by [13]. The problem-specific crossover and mu-
tation operators (see Sects. 4.6 and 4.7) are applied to branch-trees to produce new

Genetic Algorithm for Constraint Optimal Toll Ring Design 49

branch-trees. The branch-tree structure and the design of the GA operators ensure
that the constraints are always satisfied during the GA optimization process.

A toll ring surrounds a designated area and imposes a toll on all drivers trav-
eling from the outside of the toll ring to its insides. From the network structure,
all routes originating from all zones outside the toll ring passing through one of
the nodes inside the toll ring must be tolled at least once.

3.1 Notation

Let G(A,N) be a directed graph representing an urban traffic network where A
and N are sets of links and nodes, respectively. A link connects two nodes, i and
j, where i �= j. The link direction is from i to j. i is a tail node of j and j is a
head node of i. Ξj = { i| i is a tail node of j} is defined as a set of all tail nodes
of j, where ‖Ξj‖ is the size of set Ξj (total number of tail nodes of j).

Let βs = {(j, dj)} be a set whose members are the pairs of nodes, j, and
its degree, dj . The nodes included in the set βs are included in the branch-
tree rooted from node s. The degree of j is the number of children nodes of j
included in the branch-tree. For node j, only node i ∈ Ξj can be included as
a child node of node j in the branch-tree. In the branch-tree framework dj can
only be either 0 or ‖Ξj‖. This implies that in the branch-tree framework each
node j can either have no children node or include all of its tail nodes (∀i ∈ Ξj)
as its children nodes in the branch-tree. If dj = 0, then j is denoted as leaf node.
Figure 2 shows an example of a branch-tree. This branch-tree consists of five
nodes. The root node of this branch is node A. Nodes B and C are children
of node A. This implies that links (B, A) and (C, A) exist in the full traffic
network. Similarly, nodes D and E are children of node B. Thus, the degrees
of nodes A and B are two. Nodes C, D, and E have no children and hence
have degree zero since they are leaf nodes. This branch-tree can be defined as
βA = {(A, 2), (B, 2), (D, 0), (E, 0), (C, 0)}.

A

B C

D E

Fig. 2. Example of a branch tree

A branch-tree can be expanded by including all tail nodes of a selected
leaf node into the branch-tree. This process is named branching process. At
node (j, 0) in the branch-tree (which is one of the leaf nodes) the branch-
tree can be expanded by changing the degree of node j from 0 to ‖Ξj‖ and
adding nodes ∀i ∈ Ξj to the branch-tree. Figure 3 illustrates the branching
process. The whole traffic network for this example is shown in Fig. 3a. In

50 A. Sumalee

 (3a) (3b) (3c)

A

B C

D E F G

H

A

B C

D E F G

A

B C

D E

Fig. 3. Example of the branching process

B

D E

Fig. 4. Example of a sub-branch

this example, the current branch-tree is shown in Fig. 3b. A new branch-
tree (associated with a new toll ring) is created by applying the branching
process to node C. Thus, the new branch-tree can be constructed by setting
dC = 2 and including (F, 0) and (G, 0) into βA. The new branch-tree is then
βA = {(A, 2), (B, 2), (D, 0), (E, 0), (C, 2), (F, 0), (G, 0)} as shown in Fig. 3c.

The last notation to be introduced is the sub-branch. For a branch-tree βs, a
sub-branch βj ⊂ βs is defined as a branch-tree rooted from node j ∈ βs. Figure 4
shows βB which is a sub-branch rooted from node B of the branch βA shown in
Fig. 2.

3.2 Branch-Trees and Toll Rings

For a given βs = {(j, dj)}, the tolled links for the toll ring represented by this
branch-tree are defined by the set of leaf nodes and their head nodes in the
branch-tree. For instance, from the branch-tree in Fig. 2, the tolled links from
this branch-tree are (C, A), (D, B), and (E, B). The set of tolled links form a
toll ring. This is based on the branching rule in which dj = 0 or dj = ‖Ξj‖. In
the beginning, an initial toll ring should be provided and then a new toll ring
can be created based on this initial toll ring by using the branching process as
shown in Fig. 3. With the initial toll ring, all routes passing through the nodes
in the branch-tree are tolled at the tolled links defined by the leaf nodes and
their associated head nodes. By branching out at node C, additional tolled links
are (F, C) and (G, C) and all routes passing through node C are still tolled. This
guarantees that all routes passing the nodes in the branch-tree are still tolled,
and hence the new branch-tree represents a new valid toll ring.

Figure 5a illustrates the relationship between the branch-tree and toll ring.
Cordon 1 in Fig. 5a is defined as the initial toll ring. From this initial toll ring,
a virtual root node (named C1), representing nodes A, B, C, and D in the

Genetic Algorithm for Constraint Optimal Toll Ring Design 51

(5a)

(5c)

(5b)

(5d)

A

B

C

D

E

G

I

K

F H

L J

M

T

N O

P

Q

S R

Cordon 1
Cordon 2
Cordon 3

C1

F G H I J KE L

C1

F G H I J KE L

M T

C1

F G H I J KE L

N O

Fig. 5. Demonstration of the relationship between branch trees and closed cordons

network, is defined as root node for the branch-tree. Nodes A, B, C, and D are
predefined by the user and are named target nodes. The nodes at the next level
of C1 are all tail nodes of A, B, C, and D (as shown in Fig. 5b). The branch-tree
in Fig. 5b is then expanded at nodes E and G to create two new branch-trees
as shown in Figs. 5c and 5d, respectively. These two new branch-tress represent
Cordon 2 and Cordon 3 shown in Fig. 5a. Those interested in further details of
the branch-tree framework should consult [13]. In addition, an extension of the
branch-tree framework for multiple toll rings can be found in [14].

4 Applying Genetic Algorithms to Solve the OTP

Each GA chromosome encodes a toll ring (as a branch-tree) and its uniform toll.
The fitness of each chromosome can be found by finding the user equilibrium
(UE) demand and link flows (by running any traffic assignment software with
the toll scheme) and then evaluating (Equation 2). The GA iteratively applies
selection and search operators (crossover and mutation) to evolve the population.
In this section, the chromosome encoding as well as the search operators are
described. The GA based algorithm is based on GA-AS proposed by [13]. Figure 6
shows the overall procedure of GA-AS.

4.1 Chromosome Design

A solution is encoded as a string. Each solution consists of three parts: the node
string, degree string, and toll string. The node and degree strings represent a
branch-tree (and the toll ring). The toll string represents the toll level of the toll
ring. The node string contains all nodes included in a branch-tree, i.e., ∀j ∈ βs.

52 A. Sumalee

INITIALIZATION

Generate a set of toll rings and associated uniform toll for the first generation

EVALUATION

Predict traffic responses using a traffic assignment software and evaluate the
net social benefit (fitness) of each solution (chromosome)

SELECTION

Select survival solutions (chromosomes) based on their net social benefits (fitness)

GA OPERATORS

Apply crossover and mutation to survival solutions (chromosomes)

A set of solutions (chromosomes) for the next generation

Reach maximum
generation?

Terminate

YES

NO

Fig. 6. Overall process of GA-AS

Let η(s) = [ncol] denote the node string (row vector) of the branch-tree s where
ncol is the node number in column col of the string. The degree string contains
the degree of the node in the corresponding column in the node string. Let
Λs = [θcol] be the degree string for the branch-tree s, where θcol is the value
in column col of the string, i.e., θcol = dncol

. Figure 7 exemplifies the node and
degree strings of a branch-tree. In this example, the branch-tree comprises of
nodes A, B, D, E, and C with the degrees of 2, 2, 0, 0, and 0 in that order.
A recursive program is used to encode and decode the branch-tree from the
genotype.

Recursive program for encoding the branch-tree

1. Consider a branch-tree βA = {(j, dj)}. Set col = 1. Set j = 1. Let A be the
root node and dA = ‖ΞA‖. Set ncol = A and θcol = dA.

2. If dncol
= ‖Ξncol

‖ then set Pj = Ξncol
; otherwise set Pj = ∅. Set P̄j = ∅, and

go to step 3.

Genetic Algorithm for Constraint Optimal Toll Ring Design 53

A B D E C

2 2 0 0 0

Node string

Degree string

A

B C

D E

Fig. 7. Chromosome structure of a branch tree

3. If P̄j = Pj , then set j = j −1 and then go to step 7. Otherwise, go to step 4.
4. Set col = col + 1.
5. Set o = n ∈ {Pj − P̄j} (i.e., pick one node which is in Pj but not in P̄j). Set

ncol = o. Set θcol = do. P̄j = P̄j + o.
6. If do = 0 then go to Step 3. Otherwise, set j = j + 1 and go to step 2.
7. If j = 0, then terminate. Otherwise, go to step 3.

The toll string is binary encoded and indicates the toll level. A set of possible
tolls is defined a priori. Suppose that there are seven different toll levels, namely
(i) £0.50, (ii) £0.75, (iii) £1.00, (iv) £1.25, (v) £1.50, (vi) £2.00, and (vii) £3.00.
A toll string of 101 represents the fifth toll level which is equivalent to £1.50.

4.2 Initialization

The recursive program explained in the previous section is used to randomly
generate a set of toll rings. The variable Prop is defined as the probability of a
node to be expanded, i.e., by applying the branching process to this node. As
discussed, a set of tolled links must be defined to set up an initial toll ring. The
tail nodes of these tolled links become the target nodes (see Fig. 5). A random
number x, is generated for each leaf node in turn. If x ≤ Prop, the branching
process is applied to this leaf node. For the toll level, a random binary toll string
is generated for each toll ring.

4.3 Fitness Evaluation

The fitness of each chromosome is measured by the social benefit of the toll ring
as defined in Equation 2. A traffic assignment model is used to compute the
equilibrium demands and link flows. The travel demands and link flows are used
in Equation 2. In addition, the outcome constraints h1 and h2 are considered.

4.4 Penalty-Based Approach for Constraint Handling

The constrained problem is transformed into an unconstrained one by introduc-
ing the auxiliary fitness function

Ŵ = W −
m∑

e=1

(κe · max (he, 0)) , (4)

54 A. Sumalee

where κe is the penalty applied to the fitness function if constraint he is violated.
If he ≥ 0, then max(he, 0) = he and W is reduced by (κe × he). Otherwise,
he ≤ 0 ⇒ max(he, 0) = 0, and no penalty is applied.

The adjustment of the penalty factor is crucial to the success of the algorithm
[9]. Choosing a penalty which is too low may cause the search to waste too much
time searching in infeasible regions. On the other hand, using a high penalty
restricts the search region and traps the search at a local optimum [3]. Three
types of penalty functions are considered in this chapter: (i) the static penalty,
(ii) dynamic penalty, and (iii) self-adaptive penalty.

For the static penalty, the penalty term κe does not change according to the
generation numbers of the GA. In most cases, the user defines κe as a constant.
In contrast to the static penalty, the dynamic penalty function changes from one
generation to another. Joines and Houck [5] proposed a simple dynamic penalty
function in which the penalty term increases with the GA generations. A more
complex dynamic penalty function was proposed by Michalewicz and Attia [8]
based on the idea of simulated annealing. The self-adaptive penalty function is
another class of the dynamic penalty function. The self-adaptive penalty function
incorporates some characteristics of current population (e.g., average fitness) to
adjust the penalty for the next generation [4, 9].

4.5 Selection Process

The selection process is based on “stochastic universal sampling” which uses a
single wheel spin [7]. The so called “roulette wheel” is constructed where each
chromosome is assigned to one slot. The probability for each chromosome to
be selected is defined by the linear ranking approach proposed by Whitley [17].
The chromosomes are first ranked in descending order by their fitness values, i.e.,
the first rank chromosome possesses the highest fitness value in that generation.
Then, the probability of the chromosome with rank r to be selected is defined
as

pr =
1

‖P‖ ·
(

2 − c + (2c − 2) ·
(

‖P‖ − r

‖P‖ − 1

))
, (5)

where pr denotes the selection probability of the chromosome with the rank r,
‖P‖ is the population size, and 1 ≤ c ≤ 2 is the selection bias. The higher the
values of c, the more deterministic is the selection process (i.e., focus on selecting
fitter chromosomes). The fittest and weakest chromosomes are thus associated
with the selection probabilities of c

‖P‖ and 2−c
‖P‖ respectively. In addition to the

stochastic selection, the elitism selection is employed to ensure the survival of
the fittest chromosomes.

4.6 Crossover Operator

When recombining two chromosomes, a set of common nodes included in both
chromosomes is identified. If a random number is less than the probability of
crossover Prcross, the crossover operator is applied to these mated chromosomes.

Genetic Algorithm for Constraint Optimal Toll Ring Design 55

(8a) (8b) (8c) (8d)

A

B C

D E F G

A

B C

D E F G

H LKJI

C

F G

A

B

D E

H

A

B C

D E

I

F G

LKJ

Fig. 8. Illustration of crossover process with branch trees in GA-AS

The crossover operator randomly selects one of these common nodes. The sub-
branches (see Sect. 3.1) rooted from the selected common node are defined. The
crossover operator swaps these two sub-branches. For the toll string, a simple
two-points crossover method is applied. Figure 8 illustrates the crossover process.
In this example, there are two mated branch-trees (as shown in Figs. 8a and 8b).
The set of common nodes is {A, B, C, D, E, F, G}. Suppose that node C is ran-
domly selected by the crossover operator. The sub-branches in both branch-trees
rooted from node C are shown in the dash-line boxes in Figs. 8a and 8b. These
two sub-branched are then swapped, creating two new branch-trees as shown in
Figs. 8c and 8d.

4.7 Mutation Operator

The mutation operator randomly selects one node from the branch-tree. If a
random number is less than the predefined probability of mutation Prmut, mu-
tation is applied to this node. If the selected node is a leaf node, the branching
process is applied to this node to expand the branch-tree. On the other hand,
if the selected node is not a leaf node, then that node is changed to a leaf node
by removing the sub-branch rooted from that node and changing the degree of
that node to 0. Figure 9 illustrates the mutation process. The two branch-trees
on the left side of the figure illustrate the mutation at node F (non-leaf node).
The two branch-trees on the right hand side demonstrate the mutation at node
I (leaf node).

A

B

D E

I

C

F

KJ

A

B

D E

I

C

F G

LKJ

A

B

D E

I

C

F G

LKJ

A

B

D E

I

C

F G

L

M N O

G

L

Fig. 9. Illustration of mutation process in GA-AS

56 A. Sumalee

5 Numerical Tests with the Edinburgh Network

This section presents the tests of the GA-AS with a realistic urban traffic net-
work. Two sets of tests are presented. The first set in Sect. 5.1 compares the
behaviors of different penalty methods (i.e., static, dynamic, and self-adaptive).
The second set in Sect. 5.2 applies the modified GA-AS with the self-adaptive
penalty to the OTP. The tests are carried out with the network of Edinburgh
(see Fig. 13) which was also used in [13]. The GA parameters are set as follows
[12]: population number = 50, generation number = 200, probability of crossover
= 0.35, probability of mutation = 0.05, and number of elitist individuals = 5.

5.1 Comparison between Static, Dynamic, and Self-adaptive
Penalty Methods

The tests involve solving the OTP using three different penalty methods to deal
with a constraint on the revenue, i.e., h1 ≤ 0 where Rev =£50k. This implies
the revenue should be greater than or equal to £50k. The static penalty method
is adopted in this test with the penalty function

Ŵ = W −
m∑

e=1

κe(he) · min(he, 0) (6)

where κe(he) are the penalty coefficients for the constraint e. Note that the level
of the penalty coefficient depends on the level of violation of that constraint.
In this test, three levels of violation are defined and the penalty coefficients for
different violation levels are given in Table 1.

Table 1. Levels of violations and penalty coefficients for static penalty function

Level of violation Penalty coefficient (κe(he))
net revenue < £19,000 0.8
£19,000 ≤ net revenue < £38,000 0.1
£38,000 ≤ net revenue < £50,000 0.05

This chapter adopts the dynamic penalty function proposed by Joines and
Houck [5]:

Ŵ = W −
(

(C × gen)α ·
m∑

e=1

min(he, 0)β

)
(7)

where C, α, and β are parameters given by the user (C = 0.005, α = 1, and
β = 1 in this test), and gen is the generation number. With β = 1, the tested
dynamic penalty is a linear function of gen.

Genetic Algorithm for Constraint Optimal Toll Ring Design 57

The self-adaptive penalty function is

Ŵ = W −
(

μ ·
(gen

Gen

)ρ

· W gen−1 ·
∑

e

min(he, 0)

)
, (8)

where Gen is the total number of generations, W gen−1 is the average fitness
(without being penalized) in the generation gen-1, and ρ and μ are parame-
ters given by the user. In this test, ρ and μ are set to be 0.95 and 0.0000005
respectively.

Figures 10–12 show the average net benefits and average net revenues in
different generations (not the best found) for the tests with static, dynamic,
and self-adaptive penalties respectively. All three methods converge to the same
best found solution with the net benefit of around £7k per peak hour and the
net revenue of around £57k per peak hour which satisfies the constraint. It is
noteworthy that the result of this test does not imply any conclusive comparison
of these three methods. The main purpose of this test is only to illustrate different
behaviors of different penalty functions.

The trends of the average net benefits and net revenues in Fig. 10 for the static
penalty are relatively flat. With the static penalty, the chromosomes violating
the constraint are immediately penalized in early generations and hence have
low probabilities to survive. On the other hand, as shown in Figs. 11 and 12, the
dynamic and self-adaptive penalties gradually increase the penalties, which pro-
vides higher chances for infeasible chromosomes to survive in early generations.

The dynamic penalty increases linearly with the generation number (regard-
less of the change in the average net benefit) which gradually forces the average

Fig. 10. Average net benefits (dash line) and net revenues (static penalty method)

58 A. Sumalee

Fig. 11. Average net benefits (dash line) and net revenues (dynamic penalty method)

Fig. 12. Average net benefits (dash line) and net revenues (self-adaptive penalty)

net revenue to around the level of the constraint set (i.e., only the feasible chro-
mosomes can survive). On the contrary, the self-adaptive penalty responds to
the change in the average net benefit. In early generations, the low average net
benefit signals the GA to apply a lower penalty. Once the average fitness of the

Genetic Algorithm for Constraint Optimal Toll Ring Design 59

population increases, the self-adaptive penalty increases to penalize the infeasible
solutions to ensure the feasibility of the solutions.

5.2 Results of the OTP

Two different outcome constraints are included in the tests: h1 ≤ 0 and h2 ≤ 0.
Three different tests are set up:

1. Maximize net benefit with revenue constraint (£50k ≤ Net revenue)
2. Maximize net benefit with equity constraint (G ≤ 0.30)
3. Maximize net benefit with equity and revenue constraints (G ≤ 0.30 and

Net revenue≤£45k)

Table 2 shows the results of all tests. The optimal toll rings found for the tests
1–3 are shown in Fig. 13 (named CON-REV, CON-GINI, and CON-REV-GINI
respectively). OPC1 is the optimal toll ring without any outcome constraint as
reported in [13].

Table 2. Overall results for constrained cordon designs

Cordon Optimal toll
(£)

No of toll
points

Net benefit
(£k/hr)

Net revenues
(£k/hr)

Gini

OPC1 £1.50 13 7.21 43.70 0.41
CON-REV £2.00 13 6.99 56.44 0.40
CON-GINI £0.75 14 5.79 27.16 0.28
CON-REV-
GINI

£1.50 17 4.38 48.55 0.29

CON-REV

CON-GINI-REV

CON-GINI

Fig. 13. Optimal cordon locations

60 A. Sumalee

The results show significant trade-offs between the scheme benefit and the
introduction of the outcome constraints. From the tests, the revenue constraint
does not seem to reduce the benefit of the scheme substantially. On the other
hand, the benefit drops significantly when the equity constraint is introduced.
Introducing both constraints further reduces the scheme benefit. The optimal
uniform toll of CON-GINI is also substantially lower than the optimal toll of
the unconstrained case (OPC1). In contrast, the optimal toll for CON-REV is
higher than the toll of OPC1.

6 Conclusion

This chapter presents a GA based algorithm for solving the optimal toll ring
design with outcome constraints. The problem involves the selection of a com-
bination of tolled roads forming a toll ring or cordon line so that the social
benefit is maximized. Furthermore, additional outcome constraints are consid-
ered. A branch-tree framework [13] is used to encode toll rings. This encoding,
together with the problem-specific GA operators, guarantees that new chromo-
somes represent valid toll rings. Three penalty methods (static, dynamic, and
self-adaptive) are used to handle the outcome constraints of the design. An aux-
iliary fitness function is introduced in which the fitness is penalized if some of
the constraints are violated.

The GA based method is tested for a real-world problem, the Edinburgh net-
work. The test results illustrate different behaviors of the three penalty functions.
Further tests show a satisfactory performance of the proposed method in finding
the optimal design given additional outcome constraints. Future studies should
look into the performance and effect of different penalty functions and the chro-
mosome structure. In particular, the issue of the chromosome structure’s locality
(see, e.g., Sect. 3.3 in [10]) should be investigated, in which a small perturbation
of the chromosome structure may result in a significant change in the shape of
the toll ring.

References

1. Bard, J.F.: Practical Bilevel Optimization: Algorithms and Applications. Kluwer
Academic Publishers, Boston (1998)

2. Coello, C.A.C.: Theoretical and numerical constraint-handling techniques used
with evolutionary algorithms: A survey of the state of the art. Computer Methods
in Applied Mechanics and Engineering 191(11-12), 1245–1287 (2002)

3. Coello, C.C.: Use of a self-adaptive penalty approach for engineering optimization
problems. Computers in Industry 41(2), 113–127 (2000)

4. Coit, D.W., Smith, A.E., Tate, D.M.: Adaptive penalty methods for genetic opti-
mization of constrained combinatorial problems. INFORMS Journal on Comput-
ing 8(2), 173–182 (1996)

5. Joines, J., Houck, C.: On the use of non-stationary penalty functions to solve non-
linear constrained optimization problems with GAs. In: The First IEEE Conference
on Evolutionary Computations, pp. 579–584. IEEE, Los Alamitos (1994)

Genetic Algorithm for Constraint Optimal Toll Ring Design 61

6. May, A.D., Liu, R., Shepherd, S.P., Sumalee, A.: The impact of cordon design on
the performance of road pricing schemes. Transport Policy 9, 209–220 (2002)

7. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs.
Springer, New York (1992)

8. Michalewicz, Z., Attia, N.F.: Evolutionary optimization of constrained problems.
In: The 3rd Annual Conference on Evolutionary Programming, pp. 98–108 (1994)

9. Richardson, J.T., Palmer, M.R., Liepins, G., Hilliard, M.: Some guidelines for
genetic algorithms with penalty functions. In: Schaffer, J. (ed.) Proceedings of
the 3rd International Conference on Genetic Algorithms. Morgan Kaufmann, San
Francisco (1989)

10. Rothlauf, F.: Representations for Genetic and Evolutionary Algorithms. Springer,
New York (2006)

11. Sheffi, Y.: Urban Transportation Networks: Equilibrium Analysis with Mathemat-
ical Programming Methods. Prentice-Hall, Englewood Cliffs (1985)

12. Sumalee, A.: Optimal Road Pricing Scheme Design. PhD Thesis, University of
Leeds, Leeds (2004)

13. Sumalee, A.: Optimal road user charging cordon design: A heuristic optimisa-
tion approach. Computer-Aided Civil and Infrastructure Engineering 19, 377–392
(2004)

14. Sumalee, A.: Multi-concentric optimal charging cordon design. Transportmet-
rica 3(1), 41–71 (2004)

15. Van Vliet, D.: SATURN – A modern assignment model. Traffic Engineering and
Control 23(12), 578–581 (1982)

16. Wardrop, J.G.: Some theoretical aspects of road traffic research. In: Proceedings
of the Institute of Civil Engineers, PART II, vol. 1, pp. 325–378 (1952)

17. Whitley, D.: The GENITOR algorithm and selection pressure: Why rank based
allocation of reproductive trial is best. In: Schaffer, J. (ed.) Proceedings of the 3rd
International Conference on Genetic Algorithms. Morgan Kaufmann, San Fran-
cisco (1989)

18. Zhang, X., Yang, H.: The optimal cordon-based network congestion pricing prob-
lem. Transportation Research 38B(6), 517–537 (2004)

Real Time Identification of Road Traffic
Control Measures

Khaled Almejalli, Keshav Dahal, and M. Alamgir Hossain

MOSAIC Research Group, School of Informatics, University of Bradford,
Great Horton Road Bradford, BD7 1DP, United Kingdom
{k.a.al-mejalli,k.p.dahal,m.a.hossain1}@bradford.ac.uk

Summary. The operator of a traffic control centre has to select the most appropriate
traffic control action or combination of actions in a short time to manage the traffic
network when non-recurrent road traffic congestion happens. This is a complex task,
which requires expert knowledge, much experience and fast reaction. There are a large
number of factors related to a traffic state as well as a large number of possible control
actions that need to be considered during the decision making process. The identifi-
cation of suitable control actions for a given non-recurrent traffic congestion can be
tough even for experienced operators. Therefore, simulation models are used in many
cases. However, simulating different traffic actions for a number of control measures in
a complicated situation is very time-consuming. This chapter presents an intelligent
method for the real-time identification of road traffic actions which assists the human
operator of the traffic control centre in managing the current traffic state. The pro-
posed system combines three soft-computing approaches, namely fuzzy logic, neural
networks, and genetic algorithms. The system employs a fuzzy-neural network tool
with self-organization algorithm for initializing the membership functions, a genetic
algorithm (GA) for identifying fuzzy rules, and the back-propagation neural network
algorithm for fine tuning the system parameters. The proposed system has been tested
for a case-study of a small section of the ring-road around Riyadh city in Saudi Ara-
bia. The results obtained for the case study are promising and demonstrate that the
proposed approach can provide an effective support for real-time traffic control.

Keywords: Road traffic control, Fuzzy logic, Neural networks, Genetic algorithms.

1 Introduction

The traffic congestion problem becomes alarming as the number of vehicles and
the need for transportation grow. Traffic congestions do not only cause consider-
able costs due to unproductive time losses, but they also increase the probability
of accidents and have a negative impact on the environment (air pollution, lost
fuel) and on the quality of life (health problems, noise, stress) [9]. Therefore, traf-
fic management and control have been a major problem in developing as well as
in developed countries. Governments have been spending hefty amounts to de-
velop the traffic control centres using different methodologies using the benefits
of advanced information technology.

A. Fink and F. Rothlauf (Eds.): Advances in Computational Intelligence, SCI 144, pp. 63–80, 2008.
springerlink.com © Springer-Verlag Berlin Heidelberg 2008

64 K. Almejalli, K. Dahal, and M.A. Hossain

TV Camera

Variable Message

Panel

Environmental

Data

Transmission

Data Network

slow traffic
ahead

80

Traffic Control Center

Vehicle Detectors

Fig. 1. Typical information infrastructure for real-time traffic control [26]

Modern traffic control centres are connected to monitoring devices such as de-
tectors, weather sensors, and cameras to record data related to the traffic state
on-line, e.g., speed, flow, demand, environmental conditions, etc. Moreover, the
control centres use advanced dynamic control devices such as ramp metering, dy-
namic route information panels (DRIPs) and/or variable message signs (VMSs).
Figure 1 shows a typical form of infrastructure for real-time traffic control which
can be found in different cities [26].

When non-recurrent congestion happens, the operator of the traffic control
centre has to assess the severity of the situation, predict the most probable evo-
lution of the state of the network, and quickly select the most appropriate control
actions [12]. This complex task requires expert knowledge and much experience
which can often only be obtained after an extensive training. There is a large
number of factors related to a traffic state and a large number of possible control
measures that need to be considered during the decision-making process. The
identification of suitable control actions for a given non-recurrent traffic conges-
tion can be tough even for experienced operators [8]. Therefore, one needs an

Real Time Identification of Road Traffic Control Measures 65

advanced traffic control system that integrates the traffic state data with traffic
monitoring and control software to help operators in their decision-making. Road
traffic simulation models are used in many cases. However, simulating different
traffic actions for a number of control measures in a complicated situation can
be very time-consuming [8].

Our previous work [1] reported the preliminary research on the development
of an intelligent support system which controls road traffic using a number of
machine-learning techniques. A learning algorithm was developed in [2] for the
machine-learning techniques and tested for a number of different applications.
This investigation deepens their works by combining the learning algorithm with
the machine-learning techniques for road-traffic management.

This chapter presents an intelligent real-time traffic control identification sys-
tem to assist the human operator of the traffic control centre to manage traffic on
highways and urban ring roads. The inputs of the system are the current traffic
state and the available control actions, and the output is a ranked list of all pos-
sible of control actions. The proposed system is based on a fuzzy logic approach
in combination with other soft-computing approaches: neural networks and ge-
netic algorithms. These approaches within the identification system provide the
initialization and self-organization of the membership functions for fuzzy input
variables, identification of fuzzy rules, and fine tuning of the system parameters.
The learning algorithm presented in [2] has been used to generate the fuzzy rules
to the fuzzy neural network tool. We have tested the system for a case-study of
a small section of the ring-road around Riyadh city in Saudi-Arabia.

The chapter is organized as follows. The next section reviews the related
work published in the literature. Section 3 describes the proposed Road-Traffic
Decision Support System (RTDSS), its design and functions. This is followed by
the application of the developed identification system for a case study in Sect. 4.
The conclusions and future works of this research work are given in Sect. 5.

2 Related Work

Different intelligent approaches have employed to develop decision support sys-
tems for road traffic control [26, 12, 8, 31, 41, 7, 35, 4, 42]. Some of these ap-
plications used the fuzzy logic technique in their decision process [12, 8], while
others used neural networks [35, 42]. The TRYS system described in [26, 7]
is an agent-based environment for building intelligent traffic management sys-
tems applications for urban, interurban and mixed traffic areas. TRYS system
is based on knowledge frames, and some of these frames use fuzzy logic. Other
knowledge-based real-time decision support systems for road traffic management
are described in [31, 41]. Hegyi et al. [12] have presented a fuzzy logic based traf-
fic control system for efficiently managing non-recurrent congestions, which later
has been extended by De Schutter et al. in [8] as a multi-agent traffic control
system. The presented fuzzy traffic control system is part of a larger traffic sup-
port system which uses a case base and fuzzy logic to generate a ranked listing
of combinations of traffic control measures and their estimated performance for

66 K. Almejalli, K. Dahal, and M.A. Hossain

a given traffic situation. Since the proposed system does not use any knowledge
from experts or heuristic rules and it is only based on a case based reasoning
system, therefore, the quality of its result depends basically on the quality of the
case base.

Ramp controlling or ramp metering is a traffic control technique used to con-
trol the traffic inflow into a freeway by limiting the number of vehicles entering
the freeway. Usually, the main goal of the ramp metering system is to avoid con-
gestion and reduce vehicle’s total travel time. For solving freeway ramp-metering
control problems, Wei [35] has developed artificial neural network models. Inputs
to neural network models are traffic states in each time period on the freeway
segments while outputs are the desired metering rate at each entrance ramp.
Also Zhang et al. [42] have used the neural network technique for ramp con-
trol, while Bogenberger et al. [4] have applied adaptive fuzzy logic system for
ramp controlling problem. The adaptive fuzzy logic algorithm has been used to
determine the traffic responsive metering rate.

Traffic signal control is another traffic control problem with a number of
complex and sometimes conflicting variables and objectives. Therefore, different
kinds of traffic signal control methods have been presented. For example, Wei
et al. [36] have presented a fuzzy logic adaptive traffic signal controller for an
isolated four-approaches intersection with through and left-turning movements.
The controller has the ability to make adjustments to signal timing in response
to observed changes. Other traffic signal control systems are described in [34, 3].

Fuzzy Neuron Network has been employed in the traffic management field
in several papers. For example, Henry et al. [13] have developed a neuro-fuzzy
control method for controlling of traffic lights of an intersection. The system
offered good results for simple and medium-complexity intersections but poor
performance on a complex intersection. Another fuzzy neuron network system
has been proposed in [27] to the analysis and prediction of traffic flow. The
system has been fully trained and subsequently used for short-term traffic flow
prediction. The prediction results are shown to be promising.

3 The Proposed Decision Support System

3.1 Overall Framework

As mentioned earlier a large number of factors that determine the current traffic
state need to be considered in the decision making process. These input factors
are usually measured by the on-line monitoring system using sensors, detectors
and cameras (alternatively, the traffic state can be forecasted by a traffic flow
simulation model). These input factors include traffic densities, average speeds,
traffic demand, etc. Similarly, there are many possible control actions that can be
employed to control the road network depending on the nature of traffic problems
and available road control facilities. The proposed system receives the current
values of the input factors (e.g., from monitoring system) and all possible control
actions. The RTDSS then outputs a ranked list of the control actions to assist

Real Time Identification of Road Traffic Control Measures 67

Fuzzy Neural
Network Tool

Ranked List of
Control Actions

Traffic Operator

Possible
Control Actions

Traffic
State

Database
Historical Data

Road Control
Facilities

Fig. 2. Structure of the Road-Traffic Decision Support System (RTDSS)

the human operator of the traffic control centre to manage the traffic network
in real-time. The overall structure of the proposed RTDSS is depicted in Fig. 2.

In general, the proposed intelligent system works as follows. Let S be the
set of all possible control actions, which can be used to control the considered
road network. S is created for a given road network off-line using the available
road control facilities, the traffic operator’s experience, and historical data. This
also considers the interrelations between the traffic control measures at different
locations in the network. Control action (ci ∈ S) can be one control measure
such as lane closure, ramp, etc., or a combination of the control measures.

Given a current traffic state from the on-line monitoring system and set of all
possible control actions (S) for the given road network, the RTDSS employs a pre-
trained fuzzy-neural network tool (FNN Tool) (see details in the next section) to
predict the performance of each ci for the current traffic state. Then the system
provides the operator with a ranked list of the control actions in real-time. The
following pseudo-code summarizes the main functions of the proposed RTDSS:

Identify S = {c1, c2, c3, ..., cn};
For (i=1; i<=n; i++) do

{
Set Control_Input = ci;
Run FNN_Tool(Traffic_State_Input, Control_Input);
Calculate the Aggregated Performance of ci;

}
Rank S;
Show ranked list;

68 K. Almejalli, K. Dahal, and M.A. Hossain

3.2 Performance Prediction

There is a range of traffic criteria such as queue lengths, total travel times, the
number of vehicles entering the network, number of vehicles leaving the network,
etc., which can be considered to assess the performance of a control action. These
performance criteria can be calculated using a traffic simulation model such as
METANET [25]. The aggregated performance of each control action ci can be
calculated by considering one or more of the performance criteria, or by using a
weighted sum [8], which is defined as:

Pci =
N∑

k=1

(wk ∗ Ek,ci) (1)

where Pci is the aggregated performance of control action ci for the given traffic
state ; Ek,ci is the evaluation of control action ci over performance criterion k for
the given traffic state; wk is the weight of the performance criterion k; and N is
the number of considered performance criteria. These weights (wk) are usually
selected by the operators based on current traffic management policies and other
considerations.

3.3 Fuzzy Neural Network Tool (FNN Tool) Structure

In principle a simple neural network can be used as a decision support tool within
the proposed framework. It can give an accurate output provided it is trained
on all possible cases. However, given the high-dimensionality of the prediction
problem addressed here, training a neural network on all possible traffic cases is
impossible. For example, if the conditions in a network are described by the time
of day, densities of its links, traffic demands on the network boundaries, control
actions that have been applied, and the incident status, then the description of
the conditions on a 25 link network will yield approximately 1024 cases. Clearly,
it is unfeasible to consider such a number of traffic cases in the training process
[15]. Therefore, fuzzy neural network is used to address this problem.

Fuzzy neural networks are hybrid intelligent systems which combine the ad-
vantages of both neural networks and fuzzy logic. The neural fuzzy system is a
fuzzy system that uses the learning ability of the neural networks to determine
fuzzy sets, fuzzy memberships and fuzzy rules. The neural network provides the
fuzzy systems a self-adaptive capability to elicit membership function, map fuzzy
sets to fuzzy rules, and implement defuzzification [22, 33].

The structure of the neural fuzzy network tool (FNN Tool) used in our pro-
posed system is similar to the structure proposed in [27]. It is a five-layer struc-
ture, as shown in Fig. 3, where each layer performs an operation to build the
fuzzy system. The inputs of our FNN Tool are the current traffic state which is
characterized by input factors (e.g., densities, average speeds, traffic demand)
and all possible control actions. The outputs of the FNN Tool are the evalua-
tion of those control actions for the current traffic state according to a number

Real Time Identification of Road Traffic Control Measures 69

L2

L3

Ln

L1

IL1,1

IL1,2

IL1,m

IL2,1

IL2,2

IL2,m

ILn,1

ILn,2

ILn,m

C1

C2

Cn

R1

R2

R3

Rn

OL1,1

OL1,2

OL1,m

OL2,1

OL2,2

OL2,m

D1

D2

Input Layer Condition Layer Fuzzy-Rules
Layer

Consequence
Layer

Output Layer

OLn,1

OLn,2

OLn,m

Dn

X1

X2

Xn

Ci

Y2

Yn

Y1

Fig. 3. Structure of the fuzzy neural tool (FNN Tool)

of performance criteria such as queue lengths, total travel times, waiting times,
etc. The process of each layer is described below (see Fig. 3):

Layer 1: is the input layer. Neurons in this layer represent input linguistic vari-
ables such as “speed”, “density”, and “control action” and directly transmit
non-fuzzy input values to the next layer. In our case, the neuron inputs rep-
resent the Traffic input of the current traffic state, which are represented as
vectors XT = [x1, x1, x2, ..., xn], and the Control input of the road network,
which is represented as ci. The link weight wi between this layer and the next
layer is 1. The input and the output of this layer are given as follows:

o
(1)
i = i

(1)
i (2)

where i
(1)
i is the input and o

(1)
i is the output of input neuron i in layer 1.

Layer 2: is the fuzzification layer, which defines the fuzzy sets and membership
for each of the input factors. Neurons in this layer act as a membership func-
tion and represent the terms of the respective linguistic variable, such as “low”,
“high”, and “action 1”. In our model the neurons of this layer are modeled as
a common bell-shaped membership function [32], so that the input i

(2)
i,j and the

output o
(2)
i,j of fuzzification neuron i in the layer 2 are given as follows:

o
(2)
i,j = e

− (i
(2)
i,j

−mi,j)2

σi,j (3)

70 K. Almejalli, K. Dahal, and M.A. Hossain

where mi,j and σi,j are the centres and the widths of the membership function
for the input-label neuron LIi,j respectively.

Layer 3: is the fuzzy rule layer, which defines all possible fuzzy rules to specify
qualitatively how the output parameter is determined for various instances of
the input parameters. Each neuron in this layer represents a fuzzy rule, for
example, “if the time is morning, the average speed high, the density low and
the control action is “action 1”, then the total travel time is medium and the
waiting time is low”. Different approaches are used to identify the fuzzy rules in
the fuzzy neural networks, such as using experts’ linguistic information [40, 20],
using unsupervised learning algorithms [24, 29], and using supervised leaning
algorithm (such as the backpropagation technique) [21]. In this research we have
proposed a GA based learning algorithm to identify fuzzy rules (see Sect. 3.5 for
details). The input and the output of a rule neuron in the layer 3 are given as
follows:

y
(3)
i = min

(
x

(3)
k,i

)
(4)

where x
(3)
k,i are the inputs, and y

(3)
i is the output of fuzzy rule i in layer 3.

Layer 4: is the consequence layer (or the output membership layer). Neurons
in the consequence layer represent fuzzy sets (such as “low”, “medium”, and
“high”) used in the consequent part of a fuzzy rule. The input and output of a
consequence neuron in layer 4 are given as follows:

y
(4)
i = min

(
1,

∑
l

x
(4)
l,i

)
(5)

where x
(4)
l,i is the input (the output of neuron l in the fuzzy rule layer), and y

(4)
i

is the output of membership neuron i in the layer 4.

Layer 5: is the output layer (or the defuzzification layer). Each neuron in the
output layer represents a single output variable such as “average speed” and
“travel time”. The input and the output of an output neuron in layer 5 are given
as follows:

x
(5)
i = Σ (ac,i/bc,i) y

(4)
i (6)

y
(5)
i =

x
(5)
i∑

i=1

(
y
(4)
i /bc,i

) (7)

where x
(5)
i is the input and y

(5)
i is the output of neuron i in layer 5, ac,i and bc,i

are the centre and width of the fuzzy set respectively.

Real Time Identification of Road Traffic Control Measures 71

3.4 Learning Process of the Proposed Intelligent System

There is a wide variety of fuzzy neural systems. In general, we can subdivide the
existing fuzzy neural networks based on their construction and learning tech-
niques into two types, as follows:

Class I: fuzzy neural networks which are constructed using linguistic information
provided by human beings and whose learning process is achieved by using neural
network techniques [28].

In this case, experts are required to provide a clear description of the mem-
bership functions and fuzzy rules used in the system. Although this type of
fuzzy neural networks can converge faster during the learning process and per-
forms better in decision making, the design of such a fuzzy neural network is
rather subjective, since linguistic information from experts may vary depending
on the person and the time. In addition, linguistic information is too general
and wide-ranging to focus on certain situations [28]. Several researchers’ efforts
concentrated on this class of fuzzy neural systems such as [40, 20, 30].

Class II: fuzzy neural networks which are constructed using numerical informa-
tion and whose learning process is achieved by using neural network techniques
[28].

This class of fuzzy neural networks is similar to the previous one as regards the
tuning and configuration of the parameters and structures. However, the initial
set of parameters and the structure of such fuzzy neural networks are not derived
from linguistic information. Instead, they are constructed using an unsupervised
learning algorithm from a set of training data and are fine-tuned on the basis
of the numerical information. This type of fuzzy neural networks is suitable for
the applications where one may have direct observations from the system but is
unable to find experts who can provide an organized description of the system.
However, since the set of training data is the only source of information employed
in this type of fuzzy neural networks, it has to be representative of the system’s
behavior [28]. Several authors have presented this type of fuzzy neural networks,
such as [39, 6, 5].

Our proposed FNN Tool belongs to the second class of fuzzy neural network.
We suggest three stages of learning. The first stage is the initialization of the
membership functions of both input and output variables by determining their
centres and widths. To perform this stage, we have employed a self-organizing
algorithm [19] as in other works [27, 24, 37]. A GA-based learning algorithm is
performed in the second stage to identify the fuzzy rules that are supported by
the set of training data. In the last stage, the derived structure and parameters
are fine tuned by using the back-propagation learning algorithm [32]. During
this stage, all adjustable parameters (i.e., centroids and widths of input-label
membership functions, centroids and widths of output-label membership func-
tions, and weights of fuzzy rules nodes) are fine tuned. All those three stages of
learning process are done off-line.

72 K. Almejalli, K. Dahal, and M.A. Hossain

3.5 GA-Based Learning Algorithm

An important topic of a fuzzy neural network design is the identification of
appropriate fuzzy rules. However, there is no systematic design procedure at
present [27]. The recent research direction in the identification of the fuzzy rules
in fuzzy neural networks is to learn and modify the rules from past experience
[29]. In this section we propose a GA-based learning algorithm to make use of the
known membership function to identify the fuzzy rules. This GA-based learning
algorithm belongs to the unsupervised learning algorithms.

GA is a class of evolutionary algorithms which applies operators inspired by
the mechanics of natural selection to a population of solutions encoding the
parameter space at each generation [14, 10]. Several authors have proposed
genetic algorithms (GAs) for fuzzy neural parameters optimization to adjust
the control points of membership functions or to tune the weightings such as
[18, 16, 17, 23]. The pioneer was Karr [18], who used GAs to adjust membership
functions. Ishibuchi et al. [16] proposed a genetic-based method for selecting a
small number of significant fuzzy rules to construct a compact fuzzy classification
system with high classification power. Ishibuchi and Yamamoto further devel-
oped this idea by using mult-objective genetic local search algorithms in [17].
Lin [23] proposed a GA-based hybrid learning algorithm for parameter learning.
The hybrid algorithm used GA to tune membership functions at the precondi-
tion part of fuzzy rules, while the least-squares estimate method was used to
tune parameters at the consequent part.

To explain the design of the proposed GA-based learning algorithm for gen-
erating fuzzy rules, we consider a simple example of FNN Tool with two input
linguistic variables x1 and x2, and one output linguistic variable y. After per-
forming the self-organization learning algorithm, each linguistic variable has a
number of fuzzy sets, say we have three fuzzy sets low (L), medium (M), high
(H). The proposed GA learning algorithm considers all possible rules as shown
in Fig. 4. In our simple example there are a total of twenty seven possible rules.
In fact these rules are made of nine possible antecedents (preconditions). These
antecedents of fuzzy rules are represented by neurons R1...R9 of the Fuzzy-Rules
Layer. Each antecedent is linked to three possible decision fuzzy sets (neurons
in Consequence Layer: L, M and H). For example, the three possible fuzzy rules
associated with neuron R1 are:

If x1 is L and x2 is L, then y is L.
If x1 is L and x2 is L, then y is M.
If x1 is L and x2 is L, then y is H.

In this way the total number of fuzzy rules includes all possible fuzzy rules
associated with all neurons. However, some of these rules can be redundant and
are not used for making decisions. Filtering out these redundant rules will reduce
the computational time in the decision- making process. We use a GA-based
learning approach to identify the appropriate and relevant rules.

A number of decisions must be made in order to implement the GA to generate
appropriate fuzzy rules. There are problem specific decisions which are concerned

Real Time Identification of Road Traffic Control Measures 73

x1

x2

L

M

H

L

M

H

R1

R2

R3

R4

R5

R6

R7

R8

R9

y

L

M

H

Input Layer Condition Layer Fuzzy-Rules Layer Consequence Layer Output Layer

Fig. 4. FNN Tool with two inputs variable and one output variable with all possible
fuzzy rules

with the search space (and thus the representation) and the form of the fitness
function.

The encoding of the problem using an appropriate representation is a crucial
aspect of the implementation of the GA technique. The encoding used to rep-
resent chromosomes (solutions) defines the size and the structure of the search
space. Here we propose integer strings as chromosomes to represent candidate
solutions of the problem. The string is given by t1, t2, ti, ..., tn, where ti is an
integer 0 ≤ ti ≤ m which indicates the link of neuron Ri (i.e., neurons in Fuzzy-
Rules Layer) with output neurons (i.e., neurons in Consequence Layer). n is the
number of neurons in the Fuzzy-Rules Layer and m is the number of neurons
in the consequence Layer. For our example, the chromosome has nine integers,
and 0 ≤ ti ≤ 3. ti = 0 indicates that there is no link of Ri with output neuron;
ti = 1 indicates that there is a link with L neuron in the consequence Layer and
so on. (An example of decoding a chromosome is shown in Fig. 5).

The correctness of every chromosome is evaluated by using a fitness function.
The fitness function can be any nonlinear, nondifferentiable, or discontinuous
positive function, because the GA only needs a fitness value assigned to each
chromosome. We use a set of training data to calculate the fitness of each chro-
mosome based on the following fitness function:

FIT (i) =
1

RMS ERROR (i)
(8)

where RMS ERROR (i) represents the root-mean-square error between the
fuzzy-neural network outputs and the desired outputs for the the fuzzy rule
set represented by ith GA string. The GA aims to maximize the fitness function

74 K. Almejalli, K. Dahal, and M.A. Hossain

x1

x2

L

M

H

L

M

H

R1

R2

R3

R4

R5

R6

R7

R8

R9

y

L

M

H

2

t5

1

t4

0

t3

1

t2

3 3 2 3 1

t8 t9 t7 t6 t1

Ch i

Decoding

Fig. 5. An example of decoding a chromosome

(8) to minimize the error value (e). This error value depends on the selected fuzzy
rules. A gene in a GA string with ti �= 0 represents a fuzzy rule to be considered
by the tool and with ti = 0 suggests a fuzzy rule to be ignored. The weight for
all rules is assumed to be 1 at this stage. However, our experiment showed that
the inclusions of some of the rules suggested for ignoring (i.e., ti �= 0) with low
weightings can still improve the error value.

In order to correctly identify the minimum number of the appropriate fuzzy
rules without ignoring any relevant rule that might improve the error value, the
fitness value of a chromosome is calculated in two stages: Firstly, a chromo-
some is evaluated as given by GA (fit 1), i.e., the fitness of the chromosome is
calculated considering all rules represented by (ti �= 0) (taking weight 1), and
rules represented by (ti = 0) are ignored. Secondly, for each rule (R) represented
by (ti = 0), the fitness of the chromosome is calculated again considering a low
weight LW (e.g., 0.01) for each possible rule associated with that rule (Ri) (in
our example there are three possible rules) and then the best one is selected
(fit 2). Then these two fitness values (fit 1, f it 2) are compared and the best
fitness value is taken. The chromosome is adjusted if the second fitness (fit 2)
appeared to be the better one.

Based on our previous experience with GA and a number of experiments, we
have selected GA operators and their parameters to be used in this application.

Real Time Identification of Road Traffic Control Measures 75

The population size is 40 and the GA operators used are the steady state re-
placement approach [38], tournament selection [11], standard two-point crossover
(with 0.7 probability) and a mutation operator. We use a higher mutation pri-
ority of 0.1 in our case in order to maintain the diversity of the population. The
steady state approach directly inserts a new solution into the population pool
replacing a less fit solution. The tournament selection method picks a subset of
solutions randomly from the population to form a tournament selection pool,
from which two solutions are selected with the probability based upon the fit-
ness values of the solutions. The two-point crossover operator splits the selected
solutions at two randomly chosen positions and exchanges the centre sections
with a crossover p robability. The mutation operator changes the integer at
each position in the solution within the allowed range with a defined mutation
probability. The elitist approach, which ensures that the best solution in the
population pool is always retained, has been applied. The initial population of
chromosomes is created at random. The stopping criterion for a GA run is to
achieve the pre-specified error level (e).

When the GA learning process is completed (i.e., when pre-specified error level
is achieved) after running the GA over a large number of runs, we choose the
best GA chromosome. This best chromosome is decoded to get the structure of
the FNN Tool by keeping only the links that are indicated by the chromosome.
The GA approach can take a lengthy computation time for the optimization
process. However, this computation time is not considered problematic for off-
line training.

4 Case Study

In order to evaluate and test the proposed system discussed in the previous
section, we derived a test case study using a small section of the ring-road around
Riyadh, the capital city of Saudi-Arabia. The selected section is one of the busiest
parts of the Riyadh ring-road, because it is used mostly for traffic approaching
the city centre as shown in Fig. 6. This section includes 10-km of the main road
with three lanes in each way and a service road with a limited capacity. The
service road parts with the main road at point B and runs parallel to the main
road and gives access to Mather Street and then joins the main road again at
point C (see Fig. 6). A, B, and C are join points between service roads and the
main road and they are controlled by ramp metering devices. Before point B
there is a DRIP which can display queue information or give some alternative
routes to drivers. In this case study, we only consider the traffic going from the
south to the north.

Since the aim of this stage is assessing the technical feasibility of the proposed
system, only a limited number of inputs, control actions, and training data have
been considered. However, the increase in the number of inputs, possible control
actions, and training data should not affect the validity of the proposed system.
We have considered the following variables in our case study:

76 K. Almejalli, K. Dahal, and M.A. Hossain

Traffic Flow

Mather street

Riyadh Ring Road (Main Road)

Service Road

A

B

C

On Ramp Metering

On Ramp Metering

Off Ramp Metering

DRIP

Service Road

Fig. 6. The sub network considered in the prototype

Table 1. The performance evaluation of the control actions C1–C5 on a selected traffic
state

Traffic State:
Traffic Flow : Main Road = 2600 Service Road =1000
Traffic Demand : Main Road = 1780 Service Road = 900

Riyadh-Traffic
Simulation Model Proposed System

Control Actions TTT TFC AQL TTT TFC AQL
C1 1243 3589 15 1240 3581 15
C2 987 2989 19 984 2988 19
C3 1056 3345 22 1050 3345 21
C4 890 2879 15 888 2872 15
C5 1267 3108 17 1266 3103 16

Real Time Identification of Road Traffic Control Measures 77

Two traffic factors to represent the current traffic state:

• Traffic flow (vehicle/hour): on both the main road and the service road.
• Traffic demand (number of vehicles inflow into the network): for both the

main road and the service road.

Five traffic control actions:

• C1: metering the on-ramp at point A, and using DRIP.
• C2: metering the off-ramp at point B, and using DRIP.
• C3: metering the on-ramp at points A and C, and off-ramp at points B.
• C4: using DRIP to display the queue information.
• C5: doing nothing.

We use three evaluation criteria for calculating the performance of the control
actions:

• Total travel time (TTT) (hours).
• Total fuel consumption (TFC) (liters).
• Average queue length (AQL) (number of vehicles).

The data needed for the training process has been generated using a traffic
simulation model (METANET macroscopic flow model [25]). Real data is not
available, because obtaining real data which represents the performances of dif-
ferent control actions for each real traffic state is impossible. All our variables
have been considered and simulated for the period from 4pm to 8pm.

In order to test the performance of the proposed system, we compared the
proposed system and the traffic simulation model. The results obtained for the
performance of the five control actions by the proposed system and the simula-
tion model on a selected traffic state are shown in Table 1. We found that the
results obtained by the proposed system are very close to the results given by the
traffic simulation model, which confirms the validity of the proposed model in
obtaining results. However, the time the proposed system needs to calculate the
performance of a given control action is much less than the time needed by the
simulation model. Since the proposed system has been developed using trained
FNN Tool, the main advantage of the proposed system is its execution speed.
Furthermore, the proposed system allows the user to evaluate a set of control
actions in one process instead of evaluating one by one.

5 Conclusion and Future Work

This chapter has described a real-time decision support system for a traffic con-
trol centre. The proposed system uses a decision support tool with FL, NN and
GA techniques to assist the human operator of the traffic control center to man-
age the current traffic state. When a non-recurrent congestion takes place, the
operator can use the proposed system in real-time to assess the approximate per-
formance of several control actions in real-time. For constructing and training
the fuzzy neural network tool used in the proposed system we performed three

78 K. Almejalli, K. Dahal, and M.A. Hossain

different algorithms: the self-organization algorithm for initializing the fuzzy
sets, a GA-based learning algorithm for identifying appropriate fuzzy rules, and
the back-propagation algorithm for fine tuning the system’s parameters. A case
study of a section of the ring-road around Riyadh is presented and discussed in
order to evaluate and test the proposed system. The results of the proposed sys-
tem clearly demonstrate its merits and capabilities in terms of processing speed
and flexibility.

This research investigation has demonstrated the technical feasibility of the
proposed system with a traffic network and limited inputs (traffic variables and
control actions). It is noted that the proposed system can provide an effective
tool to assist traffic control operators in real-time decision making for a traffic
network with a large number of traffic variables and control measures.

References

1. Almejalli, K., Dahal, K., Hossain, A.: Intelligent traffic control decision support
system. In: Giacobini, M., et al. (eds.) EvoWorkshops 2007. LNCS, vol. 4448, pp.
688–701. Springer, Heidelberg (2007)

2. Almejalli, K., Dahal, K., Hossain, A.: GA-based learning algorithms to identify
fuzzy rules for fuzzy neural networks. In: de Janeiro, R. (ed.) The 7th International
Conference on Intelligent Systems Design and Applications (ISDA), pp. 289–296.
IEEE Computer Society Press, Los Alamitos (2007)

3. Bingham, E.: Reinforcement learning in neurofuzzy traffic signal control. European
Journal of Operational Research 131(2), 232–241 (2001)

4. Bogenberger, K., Keller, H.: An evolutionary fuzzy system for coordinated and
traffic responsive ramp metering. In: The 34th Annual Hawaii International Con-
ference on System Sciences, p. 3038. IEEE, Los Alamitos (2001)

5. Chen, M., Linkens, D.: Rule-base self-generation and simplification for data-driven
fuzzy models. In: The 10th IEEE International Conference on Fuzzy Systems,
Melbourne, pp. 424–427 (2001)

6. Chunshien, L., Chun-Yi, L.: Self-organizing neuro-fuzzy system for control of un-
known plants. IEEE Transactions on Fuzzy Systems 11(1), 135–150 (2003)

7. Cuena, J., Hernandez, J., Molina, M.: Knowledge-based models for adaptive traffic
management systems. Transportation Research Part C 3(5), 311–337 (1995)

8. De Schutter, B., Hoogendoorn, S., Schuurman, H., Stramigioli, S.: A multi-agent
case-based traffic control scenario evaluation system. In: Proceedings of Intelligent
Transportation Systems, pp. 678–683. IEEE, Los Alamitos (2003)

9. FHWA. FHWA Administrator Testifies That Growing Traffic Congestion Threat-
ens Nation’s Economy, Quality of Life (2002) (October 15, 2006),
http://www.fhwa.dot.gov/pressroom/fhwa0220.htm

10. Goldberg, D.: Genetic Algorithms in Search, Optimization and Machine Learning.
Addison Wesely, Reading (1989)

11. Goldberg, D., Deb, K.: A comparative analysis of selection schemes used in genetic
algorithms. In: The First Workshop on Foundations of Genetic Algorithms, pp. 69–
93. Morgan Kaufmann, San Francisco (1991)

12. Hegyi, A., De Schutter, B., Hoogendoorn, S., Babuska, R., van Zuylen, H.: A fuzzy
decision support system for traffic control centers. In: Proceedings of Intelligent
Transportation Systems, pp. 358–363. IEEE, Los Alamitos (2001)

http://www.fhwa.dot.gov/pressroom/fhwa0220.htm

Real Time Identification of Road Traffic Control Measures 79

13. Henry, J., Farges, J., Gallego, J.: Neuro-fuzzy techniques for traffic control. Control
Engineering Practice 6(6), 755–761 (1998)

14. Holland, J.: Adaptation in Natural and Artificial Systems. MIT Press, Cambridge
(1992)

15. Hoogendoorn, S., Schuurman, H., De Schutter, B.: Real-time traffic management
scenario evaluation. In: The 10th IFAC Symposium on Control in Transportation
Systems (CTS 2003), Tokyo, pp. 343–348 (2003)

16. Ishibuchi, H., Nozaki, K., Yamamoto, N., Tanaka, H.: Selecting fuzzy if-then rules
for classification problems using genetic algorithms. IEEE Transactions on Fuzzy
Systems 3(3), 260–270 (1995)

17. Ishibuchi, H., Yamamoto, T.: Fuzzy rule selection by multi-objective genetic local
search algorithms and rule evaluation measures in data mining. Fuzzy Sets and
Systems 141(1), 59–88 (2004)

18. Karr, C.: Genetic algorithms for fuzzy controllers. AI Expert 6(2), 26–33 (1991)
19. Kohonen, T.: Self-Organization and Associative Memory. Springer, New York

(1984)
20. Krause, B., von Altrock, C., Limper, K., Schafers, W.: A neuro-fuzzy adaptive

control strategy for refuse incineration plants. Fuzzy Sets and Systems 63(3), 329–
338 (1994)

21. Lee, M., Lee, S., Park, C.: A new neuro-fuzzy identification model of nonlinear
dynamic systems. International Journal of Approximate Reasoning 10(1), 29–44
(1994)

22. Lin, T.: Neural Fuzzy Control Systems With Structure and Parameter Learning.
World Scientific, Singapore (1994)

23. Lin, C.: A GA-based neural fuzzy system for temperature control. Fuzzy Sets and
Systems 143(2), 311–333 (2004)

24. Lin, C., Lee, C.: Neural-network-based fuzzy logic control and decision system.
IEEE Transactions on Computers 40(12), 1320–1336 (1991)

25. Messmer, A.: METANET – A Simulation Program for Motorway Networks. Tech-
nical University of Crete, Dynamic Systems and Simulation Laboratory (2000)

26. Molina, M., Hern, J., Cuena, E.: A structure of problem-solving methods for real-
time decision support in traffic control. International Journal of Human-Computer
Studies 49(4), 577–600 (1998)

27. Quek, C., Pasquier, M., Lim, B.: POP-TRAFFIC: A novel fuzzy neural approach
to road traffic analysis and prediction. IEEE Transactions on Intelligent Trans-
portation Systems 7(2), 133–146 (2006)

28. Quek, C., Zhou, R.: POPFNN: A pseudo outer-product based fuzzy neural network.
Neural Networks 9(9), 1569–1581 (1996)

29. Quek, C., Zhou, R.: The POP learning algorithms: Reducing work in identifying
fuzzy rules. Neural Networks 14(10), 1431–1445 (2001)

30. Petrovic-Lazarevic, S., Coghill, K., Abraham, A.: Neuro-fuzzy modelling in support
of knowledge management in social regulation of access to cigarettes by minors.
Knowledge-Based Systems 17(1), 57–60 (2004)

31. Ritchie, S.: A knowledge-based decision support architecture for advanced traffic
management. Transportation Research Part A: General 24(1), 27–37 (1990)

32. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations
by error propagation. In: Rumelhart, D.E., McClelland, J.A. (eds.) Parallel Dis-
tributed Processing: Explorations in the Microstructure of Cognition, vol. 1: Foun-
dations, pp. 318–362. MIT Press, Cambridge (1986)

33. Tay, J., Zhang, X.: Neural fuzzy modeling of anaerobic biological wastewater treat-
ment systems. Journal of Environmental Engineering 125(12), 1149–1159 (1999)

80 K. Almejalli, K. Dahal, and M.A. Hossain

34. Trabia, M., Kaseko, M., Ande, M.: A two-stage fuzzy logic controller for traffic
signals. Transportation Research Part C: Emerging Technologies 7(6), 353–367
(1999)

35. Wei, C.: Analysis of artificial neural network models for freeway ramp metering
control. Artificial Intelligence in Engineering 15(3), 241–252 (2001)

36. Wei, W., Zhang, Y., Mbede, J., Zhang, Z., Song, J.: Traffic signal control using
fuzzy logic and MOGA. In: 2001 IEEE International Conference on Systems, Man
and Cybernetics, pp. 1335–1340 (2001)

37. Werbos, P.: Neurocontrol and fuzzy logic: Connections and designs. International
Journal of Approximate Reasoning 6(2), 185–219 (1992)

38. Whitley, D.: Using reproductive evaluation to improve genetic search and heuristic
discovery. In: The Second International Conference on Genetic Algorithms and
Their Application, pp. 108–115. Lawrence Erlbaum Associates, Mahwah (1987)

39. Yager, R.: Modeling and formulating fuzzy knowledge bases using neural networks.
Neural Networks 7(8), 1273–1283 (1994)

40. Yager, R.: Implementing fuzzy logic controllers using a neural network framework.
Fuzzy Sets and Systems 100(1), 133–144 (1999)

41. Zhang, H., Ritchie, S.: Real-time decision-support system for freeway management
and control. Journal of Computing in Civil Engineering 8(1), 35–51 (1994)

42. Zhang, H., Ritchie, S., Jayakrishnan, R.: Coordinated traffic-responsive ramp con-
trol via nonlinear state feedback. Transportation Research Part C: Emerging Tech-
nologies 9(5), 337–352 (2001)

Simultaneous Airline Scheduling

Tobias Grosche1 and Franz Rothlauf2

1 airconomy GmbH & Co. KG, Frankfurt Airport Center 1, Hugo-Eckener-Ring,
60549 Frankfurt, Germany
grosche@airconomy.com

2 Department of Information Systems and Business Administration, University of
Mainz, Jakob-Welder-Weg 9, 55128 Mainz, Germany
rothlauf@uni.mainz.de

Summary. Currently, there are no solution approaches available to construct and op-
timize airline schedules within a single model. All existing approaches decompose the
problem into smaller and less complex subproblems and solve those subproblems sepa-
rately. This chapter presents a metaheuristic for simultaneous airline scheduling where
several different subproblems are integrated into one single optimization model, except
for crew scheduling. The problem-specific metaheuristic uses an adaptive procedure
for operator selection to allow an efficient choice between a variety of different opera-
tors. Experiments are conducted as proof-of-concept and to calibrate free parameters.
Comparing different search strategies and studying operator probabilities show that
efficiently solving the airline scheduling problem requires the application of both, local
and recombination-based search operators.

Keywords: Airline scheduling, Fleet assignment, Genetic algorithms, Threshold
accepting.

1 Introduction

In 2005, for the first time the number of passengers of the worlds scheduled
airlines exceeded two billions [24]. For the future, demand for airline travel is
expected to grow at an average rate of about 5% per year until 2025 [24]. How-
ever, despite these positive market trends, an airline’s individual profit margin
is considerably small and highly dependent on general economical performance
[9]. To be successful, an airline has to make the most efficient and effective use
of its resources to match passengers’ demand. Its major instrument is the air-
line schedule. It includes the flights an airline carries out and the assignment of
resources (aircrafts and crews) to these flights.

The objective of airline schedule optimization (“airline scheduling”) is to con-
struct an airline schedule with high operational profit. This planning task is not
only the most important but also the most complex task an airline is confronted
with. Until now, a single optimization approach of the complete airline schedul-
ing problem is believed to be computational intractable and even its formulation
impossible [3]. Instead, the problem is usually decomposed into several less com-
plex subproblems that are solved in a sequential manner. The solution of one

A. Fink and F. Rothlauf (Eds.): Advances in Computational Intelligence, SCI 144, pp. 81–108, 2008.
springerlink.com © Springer-Verlag Berlin Heidelberg 2008

82 T. Grosche and F. Rothlauf

subproblem is used as input for the next subproblem. However, to account for
any interdependencies between the subproblems, feedback loops and iterations
are necessary. Therefore, it remains questionable if the decomposition of the
overall airline scheduling problem reduces the quality of the resulting schedules
compared to schedules that would result from an integrated airline scheduling
approach.

The goal of this chapter is to overcome the artificial decomposition of the
airline scheduling problem into subproblems and, thus, to make a step from the
status-quo of airline scheduling towards the researcher’s ultimate goal of a fully
integrated airline scheduling approach. It presents an optimization approach
for an airline scheduling problem integrating the choice of flights and the air-
craft assignment. It includes more decision variables in one optimization model
than existing airline scheduling models while representing airline operations on
a higher level of detail without simplifying assumptions. This integrated model
is solved using metaheuristic optimization.

The chapter is structured as follow. In the next section, a short introduction
to airline scheduling is given. Then, Sect. 3 presents the conceptual design for
a metaheuristic approach on airline scheduling addressing elements like repre-
sentation, search operators, fitness function, initialization, and search strategy.
Section 4 includes experimental results from the application on test scenar-
ios. They focus on calibration of free parameters, the choice of the best search
strategy, and the analysis of the search process. Finally, Sect. 5 concludes this
contribution and suggests directions for future work.

2 Airline Scheduling

An airline schedule represents the central element within an airline’s corporate
planning system since it affects almost every operational decision and has the
largest impact on profitability [36, 34, 5, 3]. Thus, many factors such as demands
in various markets, competition, and available resources have to be considered
to achieve optimal solutions [16, 3]. The high number of variables and their
interdependencies make this problem too complex to be believed solvable in one
single optimization model. Instead, an airline schedule usually is constructed in
several steps emerging from a decomposition of the overall airline scheduling
problem into smaller subproblems [34, 27, 18, 3].1 The subproblems are less
complex and can be solved independently, each with its individual objective
function [12]. The major subproblems that have to be addressed when solving
an airline scheduling problem are:

• Flight Schedule Generation: In this step, flights including their departure and
arrival times and airports are chosen to be offered to potential passengers.
These flights determine the airline’s route network and the frequency of con-
nections. The selection of flights is influenced by traffic forecasts, tactical and
strategic initiatives, seasonal demand variations, and passengers’ connection

1 For approaches see for example [34, 5, 27, 33, 18, 1, 17, 25, 11, 3, 26, 29].

Simultaneous Airline Scheduling 83

possibilities. Major constraints in this planning step are the size and com-
position of the aircraft fleet and other resources, and legal factors like traffic
rights [13, 5, 18, 2]. The flight schedule generation affects all subsequent
planning steps and has a high impact on passenger demand [5, 2, 11].

• Fleet Assignment: Airlines usually posses several fleets of aircrafts having
some characteristics like cruising speed, capacity, conformance to noise re-
strictions, or crew requirements in common [4, 17]. As a result, different fleets
produce different revenues if assigned to the same flight. The objective of the
fleet assignment problem is to find an assignment of aircraft types to the
flights that minimizes operating costs and opportunity costs of lost revenue
due to too low capacities. Major constraints in the fleet assignment prob-
lem include the available number of aircrafts per type, the coverage of each
scheduled flight, the flow balance at each airport (the numbers of arrivals
and departures of each type have to be the same), and operating restrictions
(e.g. noise limitations, runway lengths, or endurance).

• Aircraft Routing: Given the fleet assignment, the objective of the aircraft rout-
ing is to find a feasible and profit-maximizing assignment of physical aircrafts
to the flight legs [4]. An aircraft routing consists of a number of flight legs that
can be carried out by the same aircraft. A sequence of aircraft routings that
starts and ends at the same location and that can be flown by one aircraft
is denoted as rotation. A rotation can be flown by more than one aircraft (in
parallel), and many airlines construct one rotation per fleet to have an equal
utilization of the aircrafts and easier operational planning [22, 6]. The major
constraints in this solution step are maintenance restrictions, since the avia-
tion authorities and the airlines usually require each aircraft to undergo regular
maintenance every three or four days at an appropriate maintenance station
[16, 35]. Thus, the rotations need to incorporate intermediate stops of sufficient
length to allow regular maintenance opportunities.

• Crew Scheduling: The objective of the crew scheduling problem is to find
an optimal assignment of crew members to the flights given by the previous
planning steps. This problem represents a very complex optimization problem
because of many constraints defined by work-rules given by legal regulations,
union agreements, and company policies [19]. Therefore, the crew scheduling
problem is usually solved in a two-step process, in which at first generic
crew schedules (pairings) are constructed that are feasible and minimize crew
costs, which then are assigned to individual crew members by either bidding
of crew members or direct assignment [3].

To further reduce the complexity of the overall scheduling problem, airlines usu-
ally consider a pattern or base schedule for a shorter time interval (a day or a
week), so that the cyclical extension of this schedule represents the schedule over
the whole planning horizon [13, 18].

To solve these subproblems, many different (optimization) models have been
developed. Not surprisingly, the capability of these models has constantly grown.
For example, the number of decision variables was increased and more practical
requirements included. However, none of the existing models solves the complete

84 T. Grosche and F. Rothlauf

flight schedule generation, fleet assignment, and aircraft routing in an integrated
or simultaneous approach.2

3 Conceptual Design

Metaheuristics have been proven to allow the solution of complex real-world
problems that are intractable for traditional exact optimization techniques.
Thus, they represent a promising approach to heuristically solve the integrated
airline scheduling problem. The metaheuristic presented in this chapter inte-
grates the steps flight schedule generation, fleet assignment, and aircraft routing.
This section focuses on conceptual design of the metaheuristic. It presents its
four basic design elements: representation and corresponding search operators,
fitness function, initialization, and search strategy.

3.1 Representation and Search Operators

A representation determines the mapping between a phenotype and a geno-
type. The phenotype is a solution to the given problem, the genotype represents
this solution such that the heuristic’s search operators can be applied. Thus,
the representation and the operators work together and cannot be developed
independently [32].

Representation

Because our goal is to solve the integrated airline scheduling problem, a complete
airline schedule must be fully determined by the genotype and the genotype-
phenotype mapping. Thus, all decision variables that are necessary to construct
a complete schedule must be included either into the genotype or in the genotype-
phenotype mapping.

A genotype consists of a fixed number S of segments. Since a segment encodes
the flight program of one day for one aircraft, S is equal to the number of
available aircrafts. All segments of aircrafts of one fleet type are grouped together
on succeeding positions in the linear genotype.

Each segment contains a sequence of tuples, where Ls denotes the number of
tuples in segment s ∈ [1, S] and ls ∈ [1, Ls] denotes the position of a tuple in
segment s. Each tuple consists of an airport number or name als and a waiting
time tls , indicating the airport and additional time the aircraft is located on the
ground. Figure 1 gives an overview of this representation concept with seven
aircrafts, two different fleet types, and six tuples in the fourth segment denoting
the airports that are visited by an aircraft of fleet type B. The aircraft is required
to fly between the encoded airports in the indicated sequence, thus, there is an
2 Overviews of such solution models can be found for example in [20, 12, 36, 34, 5,

33, 1, 17, 18, 25, 11, 3].

Simultaneous Airline Scheduling 85

Fig. 1. Representation concept

indirect encoding of the flights depending on the ground activities. Using this
indirect and aircraft-based representation avoids infeasible aircraft assignments.3

The departure time of a flight depends on the departure times of the pre-
ceding flights. The airport als is the departing airport of the flight fls which
connects the airports als and als+1. The time interval tls at each position in the
segment indicates the amount of time that the aircraft is scheduled to remain
on the ground after the minimum turn time (necessary for refueling, loading,
catering etc.) has elapsed and before conducting the next flight. The departure
time tdep

ls
of flight fls can be calculated recursively based on the departure time

of the previous flight tdep
ls−1, its block-time tblock

als−1,als
which specifies the time pe-

riod between departure from the gate of the departure airport until arrival at
destination airport, the minimum required turn time tturn

als
and the scheduled

ground time tls :
tdep
ls

= tdep
ls−1 + tblock

als−1,als
+ tturn

als
+ tls . (1)

If a departure time is scheduled when night flying restrictions at the correspond-
ing airport are into effect, tdep

ls
is set to the earliest time at which flights are

allowed again. This is also the procedure to calculate the first departure time
tdep
1 of an aircraft in a segment. If the airport allows flight operations through-

out the night, tdep
1 can be set to a pre-specified time point. Using the decision

parameters (a and t) and the given data (tblock, tturn, and night flying restric-
tions), a feasible flight schedule can be encoded. If, like in Fig. 1, more than one
aircraft of the same fleet type exists, their segments are concatenated and the
last flight of each segment is heading towards the starting airport of the next
segment. This procedure results into one single rotation per fleet type, and each
aircraft of the same fleet type accomplishes the identical routing consisting of
a number of days equal to the number of aircrafts in the fleet. Often, airlines
3 By encoding the flight program of one day, the flights take place on a daily base.

Thus, the concept presented at this stage is suitable for example for airlines with
a regional scope. On the other hand, intercontinental flights are more likely to be
scheduled on a weekly base. Thus, to represent weekly schedules the daily model
can easily be extended by constructing 7 flight programs (one per day) per aircraft.

86 T. Grosche and F. Rothlauf

prefer a single rotation per fleet because of evenly distributed use of the aircrafts
and ease of scheduling [22, 6].

Search Operators

The search operators can be divided into two groups: local search operators
and recombination operators. In this study, for each group of operators different
variants are developed.

Local Search Operators

Local search operators construct a new solution by applying small changes to
the current solution. Thus, a local search operator should produce a solution
that is in the original solution’s neighborhood in the search space, keeping most
of the original solution’s properties. Based on the given problem here and the
representation used, a genotype determines several elements of an airline sched-
ule (like visited airports, times, aircraft assignments). A neighboring solution is
obtained by modifying one element of the genotype. Different local operators
were developed, each resulting in a different neighborhood.

• Delete ground time (locDelGT):
This local search operator chooses a random segment s of the genotype and
a random position ls within this segment and sets the corresponding ground
time tls = 0.

• Insert ground time (locInsGT):
The ground time tls of a random position ls in a randomly chosen segment s
is increased by a time value between 0 and a parameter tinit. Therefore, all
flights following the encoded position are displaced by tinit.

• Change airport (locChgApt):
This operator randomly changes the airport als at a random position ls in
a randomly chosen segment s. The operator results in two different flights,
since als represents an arrival and a departing airport of two succeeding
flights. In addition, if the overall block time of the new flights changes, the
departure times of succeeding flights are different. Figure 2 illustrates the
application of the operator (airport DUS is changed into airport HAM) and
the corresponding changes in the phenotype.

• Delete airport (locDelApt):
The tuple at a random position ls in a randomly chosen segment s is removed
from the genotype. This operator replaces the two flights connected via als

with one flight from als−1 to als+1. In addition, because the new flight usually
has a lower block time than the cumulated block time of the two original
flights, all flights following ls in the segment will depart earlier.

• Insert airport (locInsApt):
This operator inserts a new random tuple at a random position ls in a ran-
domly chosen segment s, replacing one flight with two new flights connecting
via als . The new ground time is chosen randomly between 0 and tinit. Usually,
succeeding flights have later departure times.

Simultaneous Airline Scheduling 87

Fig. 2. Application of locChgApt search operator

Fig. 3. Application of locChgFA

• Change fleet assignment (locChgFA):
This operator changes the order of the segments in the genotype. Because
the segments of a genotype are ordered by the fleet types, exchanging two
segments s1 and s2 changes the fleet assignment if the two segments belong to
different fleet types. In addition to a different fleet assignment, the flights at
the connecting points between the segments might be changed if the segment
is part of a multi-segment rotation. Figure 3 illustrates the functionality of
this operator.

• Change airports with similar market size (locChgAptMS):
This operator randomly changes the airport at a random position ls of a
randomly chosen segment s. To increase the locality of the search space with
this type of operator, similarities between different airports are considered.
Therefore, the operator uses the total market size (passenger demand) of an
airport as a characteristic to measure similarity. The smaller the difference
between the two market sizes of two airports, the higher their similarity.
Given the market size msod for every market of an originating airport o ∈ A
and a destination airport d ∈ A, the total market size msa of airport a ∈ A
is calculated as:

msa =
∑
d∈A

msad +
∑
o∈A

msoa. (2)

88 T. Grosche and F. Rothlauf

The probability pab of an airport b to replace an airport a in the genotype
increases with decreasing difference in their market sizes:

pab =
min(|msa − msb|−1, 1)∑

c∈A

min(|msa − msc|)−1, 1)
· (3)

• Change airports with similar distance (locChgAptDist):
This operator works in analogy to locChgAptMS, instead it uses the geograph-
ical distance as indication of similarity of airports. The closer two airports,
the higher the probability that they are exchanged in the genotype.

Recombination Operators

The purpose of recombination operators is to create new solutions by combining
meaningful elements of different solutions. To apply recombination operators,
a population of solutions is necessary because each new solution (“offspring”)
emerges from at least two preceding solutions (“parents”). In the following,
different recombination operators are presented.

• one-point crossover (1xover):
The traditional one-point crossover splits two genotype strings at a random po-
sition and exchanges the partial strings. When using the absolute position l as
crossover point, a new offspring with a large time displaced can be generated.
If, for example, one parental solution contains many short flights and the sec-
ond parent only long flights, the same absolute position would indicate a flight
of the first parent departing much earlier than the corresponding flight in the
second parent. Therefore, 1xover does not use as crossover points absolute po-
sitions in a segment but relative positions. In a first step, it randomly chooses a

Fig. 4. Application of 1xover

Simultaneous Airline Scheduling 89

Fig. 5. Application of 2xover

Fig. 6. Application of stringxover

segment s and a time tcross. Then, the corresponding tuple ls in the two parents
is indicated and the tuples following after the crossover point are exchanged.
Therefore, displacement of flights after the crossover position is low. Figure 4
illustrates the functionality of the operator (tcross = 14:30).

• two-point crossover (2xover):
The operator 2xover works analogously to 1xover besides randomly choosing
an additional time tcross2 defining a second crossover position (tcross+tcross2).
Thus, each genotype is divided into three substrings, and the inner string is
exchanged between the parents. An example is given in Fig. 5.

• string crossover (stringxover):
When using stringxover elements of the genotype are exchanged between
approximately the same positions. The operator works analogously to 2xover,
however, the segment s1 at one parent where the substring of the other
parent is inserted does not need to correspond to this segment s2 (s1 �= s2).
This operator allows to change the fleet assignment. The functionality of the
operator is illustrated in Fig. 6.

Repair Operators

The representation and the corresponding search operators ensure that only fea-
sible aircraft assignments exist. Because of the aircraft-based relative encoding,
each flight is covered by exactly one aircraft, the number of aircrafts per fleet is
not exceeded, and the aircraft flow at each airport is balanced. In addition, the
search operators consider operational restrictions of the fleets, for example they
do not insert an airport in a segment where the corresponding fleet type is not
able to operate or where the insertion would result in a flight being too long for
an aircraft’s endurance.

However, there are other restrictions that might still be violated when apply-
ing the search operators. If there are either too many stops in one segment or
the operators replace flights by flights with longer block times, the subsequent
flights are postponed because of the relative encoding of their departure times.
This could lead to the situation that the last flights of the segment would be

90 T. Grosche and F. Rothlauf

scheduled to depart at the next day. If the end of day is exceeded by a segment,
a repair operator searches for ground times that can be minimized. If there is
not sufficient ground time available, the repair operator randomly deletes stops
until the resulting flight program can be completed in one day.

Night flight restrictions are always met at the beginning of each day, since the
departure times are encoded relatively to either the ready time of the previous
flight or the time an airport allows flight operations. However, the arrival of a
flight might violate some restrictions, if for example a flight departs at an airport
without night restrictions heading to an airport with restrictions. To deal with
such problems, a repair operator tries to minimize the scheduled ground times if
the last flight arrives too late in the evening. If minimizing is not sufficient stops
are randomly deleted from the segment.

3.2 Fitness Function

The objective of the airline scheduling problem is to construct airline schedules
with maximum operating profit. Thus, the fitness function has to estimate the
estimated operational profit of an airline. The operational profit is defined as
the profit directly related to and dependent of the flights in the schedule, or,
to be more specific, the yield of all passengers of all flights minus the costs for
operating the flights. The prediction of operating costs is straightforward, since
in each solution all information on the flights is given, allowing to easily deter-
mine the corresponding costs of these flights. However, estimating the number
of passengers demands more sophisticated approaches which are discussed in the
following paragraphs.

Passenger Estimation

To estimate the number of passengers on individual flights, many different (com-
mercial) applications exist. Such tools imitate passenger behavior on a very de-
tailed level and take into account many factors that influence passenger demand,
leading to computation times varying from minutes to many hours for evaluat-
ing one schedule. Using such tools (and corresponding models) for the fitness
evaluation in a metaheuristic would lead to excessive overall computation times.
In addition, their acquisition costs, the lack of parameters and data required by
those tools, and the general difficulty to obtain detailed information due to their
proprietary nature [26] make it impossible to use them for this study. Thus, a
custom model for passenger estimation is developed. Because of its complexity,
a detailed presentation would be beyond the scope of this contribution, thus,
in the following only the main steps are presented.4 In each step, some param-
eters exist that have to be calibrated. For the calibration, real-world data was
available consisting of MIDT (Market Information Data Tapes) bookings of 2004
for airline travels between Germany and European countries with non-stop or
one-stop service. This data set consists of 1,365,497 records including a total of
4 See [20] for a more detailed description of this evaluation procedure.

Simultaneous Airline Scheduling 91

7,808,041 passenger bookings. Each record contains detailed flight information
like departure time, operating airlines, route of flight, and others.

Given the total airline passenger demand for each market (city-pair), the flight
schedules of other airlines, and the schedule subject to evaluation the number of
passengers is estimated in three steps:

1. Itinerary construction
2. Itinerary market share estimation
3. Passenger allocation

Itinerary Construction

An itinerary is a travel alternative between two cities, which could be either a di-
rect flight or a sequence of connecting flights [8]. Since itineraries are constructed
by concatenating single flights, the number of city-pair connections exceeds the
number of flights.

Because passengers choose among competing itineraries (and not among
flights), the demand has to be estimated on the itinerary level. Therefore, in
a first step it is necessary to construct valid itineraries from the set of individ-
ual flights in the complete schedule including flights and flights offered by other
airlines. Because each flight represents a valid nonstop itinerary, the focus is on
the construction of connecting flights (or simply connections). Since the number
of possible connections grows exponentially with the number of flights, airlines
limit the number of connections to those itineraries that are reasonable and are
likely to be chosen by passengers.

Only few articles discuss under which conditions a connection forms a valid
itinerary. The following conditions for determining whether a connection repre-
sents a valid itinerary are used in this study. Some conditions include parameters
which have been calibrated using the MIDT data set described above.

• The geographical distance distcnx of a connecting flight must not exceed
the direct distance distdir between the origin and departure airport by a
maximum detour factor dmax. Thus, distcnx ≤ dmaxdistdir.

• Connecting flights must not depart before the flight before has arrived and
a minimum connecting time tcnx

min has elapsed.
• The travel time tcnx of a connecting flight must not exceed the travel time

tshortest of the shortest itinerary in the market by a certain factor tdelay :
tcnx ≤ tdelaytshortest. Since the time delay is believed to be perceived differ-
ently depending on the type of the shortest itinerary (direct or connection)
tshortest differentiates between both types, resulting in tcnx

delay and tdir
delay .

• The second flight leg has to depart before a maximum connecting time tcnx
max

has elapsed.
• Connections of different airlines (interline connections) are only allowed if

in the given data at least ninterline connections could be observed between
these airlines.

The parameters need to be calibrated to obtain a complete connection building
procedure that reproduces the travel behavior observed in reality in a proper way.

92 T. Grosche and F. Rothlauf

The MIDT data describes the behavior in reality because each record represents
a chosen itinerary and the number of passengers that have chosen it. Given all
single flights in the observed data, the calibrated connection building sequence
should result in a set of connections that were chosen by the passengers in the
past. Because this number could easily be maximized by constructing all possible
connections (leading also to a vast number of non-chosen connections and to
excessive computation times), a second (conflicting) objective is to minimize the
total number of connections constructed.

The calibration process represents an optimization problem for which a simple
hill-climbing metaheuristic using the parameters of the rules as decision variables
has been applied. Table 1 summarizes the outcome of the optimization procedure
(details of the optimization procedure are omitted for brevity, details can be
found in [20]) and lists the mean and standard deviation σ of the parameters.
Setting the parameters to the listed values results in a connection builder that
produces a set of connections similar to the connections that can be observed in
the MIDT booking data.

Table 1. Optimal parameters for itinerary construction

parameter mean σ

dmax 1.26 0.41
tdir
delay 1.39 0.36

tcnx
delay 1.74 1.16

tcnx
max 113.1 44.8

tcnx
min 55.1 24.7

ninterline 81.3 11.3

Itinerary Market Share Estimation

The direct and connecting flights represent the set of itineraries a passenger can
choose from. The objective of itinerary market share estimation is to forecast the
attraction of each itinerary for a single passenger. The attraction of an itinerary
depends on various attributes of the itinerary such as convenience of travel,
travel time, departure and arrival time, average fare, aircraft type, and airline
preferences. The attraction of an itinerary is measured as the market share of
the itinerary, thus, if multiplied with market sizes, the total passenger demand
for each itinerary can be calculated.

Multinomial logit (MNL) models are commonly used for market share estima-
tion [7]. Because for this study the variables required and used in the published
models are not available, the existing models cannot be directly used. In addi-
tion, it remains unclear whether the assumptions of MNL models (like logistic
function or linear-in-parameter utility) limit the forecasting accuracy in compar-
ison to other estimation models. In [21] MNL models, artificial neural networks,
and a custom model for itinerary market share estimation are compared on a
real-world data set. The MNL performs worst with respect to the forecasting
quality; in contrast, the custom model yield the highest prediction accuracy.
Thus, the model of [21] is used for market share estimation.

Simultaneous Airline Scheduling 93

Passenger Allocation

Given market sizes and the relative share (attraction) of each itinerary, calculat-
ing the absolute passenger demand for each itinerary is straightforward. How-
ever, capacities of flights are constrained and, thus, not all passenger demand
can be met. Because each flight might be a leg of a connecting itinerary, this
competition takes place between itineraries of different markets. The objective
of the passenger allocation step is to satisfy passenger demand by providing an
assignment of the demand to the itineraries (and its flights, respectively) without
violating capacity constraints [27]. This task is commonly referred to as “Spill
& Recapture”. The procedure in this study for calculating spill and recapture
consists of the following steps.

1. Estimation and assignment of the total demand independently of the flight
capacities.

2. Determination of excess demand per flight.
3. Calculation of “spilled” passengers for all itineraries affected by limited ca-

pacities. Passengers are spilled according to the attraction of the correspond-
ing itineraries.

4. Recapture of spilled passenger by itineraries with free capacities left. The
assignment follows the itineraries’ attraction.

5. Determination of excess demand per flight and removal according to step 3.

Details can be found in [20].

Fitness Calculation

Given the number of passengers on the itineraries (from the passenger estimation
model presented above), the calculation of the overall profit of a flight schedule
F is as follows. Let cblock

f denote the block hour costs of the aircraft type assigned
to flight f ∈ F , tblock

f the block time of flight f , ym the passenger yield in market
m, and Pk the number of passengers on itinerary k ∈ K. Then, the operational
profit πF of flight schedule F is calculated as:

πF =
∑
m

∑
∀k∈Km

Pk · ym −
∑
∀f∈F

cblock
f · tblock

f (4)

In the fitness function of a metaheuristic, additional properties of a solution can
be considered like constraint violations that are no direct result of the objective
function. As discussed before, the encoding of schedules and the corresponding
operators (including the repair operators) result in feasible solutions except for
maintenance considerations. Usually, aircrafts are required to undergo mainte-
nance checks every three days. These maintenance restrictions are included as
penalty term in the fitness function: for each aircraft not scheduled for appro-
priate maintenance at a proper airport, penalty costs reduce the fitness value by
a certain value. For the experiments presented in Sect. 4, the fitness value πF is
reduced by 500,000 for every violated maintenance restriction.

94 T. Grosche and F. Rothlauf

3.3 Initialization

Since no problem-specific information about high-quality solutions is given, all
solutions should have the same probability to be selected as initial solutions. This
is accomplished by a random initialization of the decision variables. Thus, for
initializing, randomly chosen airports are subsequently included in each segment
until the corresponding flight program reaches the end of day. The ground times
t assigned to each stop are chosen uniformly between 0 and tinit.

3.4 Search Strategy

In general, local and recombination-based search strategies are distinguished.
Although the proper choice of the search strategy depends on the problem and
its structure, both strategies are used here. Consequently, three metaheuristic
techniques are implemented and evaluated:

1. threshold accepting (TA) as a representative example of local search,
2. a selecto-recombinative steady-state genetic algorithm (rGA) as example of

pure recombination-based search, and
3. a standard steady-state genetic algorithm (GA) as an example of metaheuris-

tic search with both, local and recombination-based search.5

Even when focusing on a single search strategy, an explicit control of the search
operators is necessary, because for each type of search operator different variants
were designed. In each search step, one of these variants has to be selected. This
selection can be random or follow a given rule. In this study, an adaptive control
of the operators is used which preferably applies those operators in each search
step that were advantageous in the previous steps. This procedure not only
reduces the number of decisions and parameters required to be manually set,
but also increases the efficiency of the search process. The adaptive control used
in this approach randomly selects one operator per iteration with a probability
that depends on its contribution to the past search progress. If the application of
the operator yielded in high-quality solutions (compared to the results of other
operators), its selection probability is increased. For each operator o ∈ O of the
current search type (local or recombination-based), the progress of its last N
applications is monitored. Its progress is evaluated according to the change in
the fitness value fo

n = f(s∗o) − f(s) between the original solution s and solution
s∗o resulting from the nth application of the operator o. The relative fitness
contribution co of operator o is calculated as

co =
max

(∑
n∈N

fo
n, 0

)

∑
q∈O

max

(∑
n∈N

f q
n, 0

) · (5)

5 For an introduction and more information on TA see [10]; further information on
GA can be found for example in [23, 14, 15, 30].

Simultaneous Airline Scheduling 95

Based on this fitness contribution, the selection probability po of operator o can
be calculated as

po =
co∑

q∈O

cq
· (6)

To prevent diminishing operators, each operator has a minimum selection prob-
ability of 0.05. The initial setting for the selection probability of each operator is
determined by applying the operator N times to a randomly generated solution.
In the experiments presented in Sect. 4, N = 5 is used.

This adaptive procedure is also applied to the standard steady-state GA to
choose among local and recombination-based search. Thus, the GA uses a two-step
adaptation: first, the type of operator (local or recombination) is chosen, then, the
operator itself is selected. The probability to select a crossover operator depends
on the average progress contribution of all crossover operators. Let R denote the
set of crossover operators and L the set of local search operators (O = R ∪ L).
Then, the probability pR of using a crossover operator is calculated as

pR =

∑
r∈R

cr

|R|∑
r∈R

cr

|R| +

∑
l∈L

cl

|L|

· (7)

The functionality of the three different search strategies is described in
Algorithms 1, 2, and 3.

Algorithm 1. Threshold Accepting
1: choose parameters:
2: initial threshold T ∈ [0, 1]
3: threshold reduction step size r < T
4: maximum number of iterations idecrease between threshold reduction
5: maximum number of iterations imax > idecrease when T = 0
6: create initial solution s with fitness f(s)
7: calculate po for all operators o ∈ O
8: iteration i = 0
9: repeat

10: i = i + 1
11: select local search operator o ∈ O according to po

12: create neighboring solution s∗
o

13: calculate new fitness value f(s∗
o)

14: Δf = f(s) − f(s∗
o)

15: if Δf < Tf(s) then
16: s = s∗

o

17: update po for all operators o ∈ O
18: end if
19: if T > 0 and i > idecrease then
20: T = T − r
21: i = 0
22: end if
23: until i = imax

96 T. Grosche and F. Rothlauf

Algorithm 2. Selecto-Recombinative Steady-State Genetic Algorithm
1: choose parameters:
2: population size n
3: pconv to determine convergence of the population
4: create initial population S0 with n solutions s
5: calculate fitness f(s) for each s ∈ S0
6: calculate po for all operators o ∈ O
7: iteration i = 0
8: repeat
9: i = i + 1

10: select recombination-based search operator o ∈ O according to po

11: choose two solutions s1 and s2 randomly
12: create solution s∗

o from s1 and s2 using a crossover operator
13: calculate new fitness f(s∗

o)
14: replace the worst solution in S by s∗

o

15: update po for all operators o ∈ O
16: determine solution ŝ ∈ S with maximum fitness
17: calculate average fitness f̄(S) of population
18: until f(ŝ) − f̄(S) < pconv · f(ŝ)

Algorithm 3. Standard Steady-State Genetic Algorithm
1: choose parameters:
2: population size n
3: pconv to determine convergence of the population
4: create initial population S0 with n solutions s
5: calculate fitness f(s) for each s ∈ S0
6: calculate po for all operators o ∈ O
7: calculate pR and pL

8: iteration i = 0
9: repeat

10: i = i + 1
11: if random(0, 1) < pR then
12: select recombination-based search operator o ∈ R according to po

13: choose two solutions s1 and s2 randomly
14: create solution s∗

o from s1 and s2
15: else
16: select local search operator o ∈ L according to po

17: create neighboring solution s∗
o

18: end if
19: calculate new fitness f(s∗

o)
20: replace the worst solution in S by s∗

o

21: update po for all operators o ∈ O
22: update pR and pL

23: determine solution ŝ ∈ S with maximum fitness
24: calculate average fitness f̄(S) of population
25: until f(ŝ) − f̄(S) < pconv · f(ŝ)

Simultaneous Airline Scheduling 97

4 Experimental Results

This section presents results from implementing and applying the simultaneous
airline scheduling approach. First, calibration results focusing on the setting
of the parameters for each metaheuristic are presented. Then, each calibrated
metaheuristic is applied to the same test scenarios to compare the three different
solution strategies. Finally, the search process and the obtained solutions of the
search strategy that yields best results are studied.

All metaheuristics have been implemented in C++. The experiments pre-
sented here were conducted on different workstations with different processor
and memory specifications. Thus, the number of fitness evaluations is used to
compare the computational effort of different approaches.6 Five different plan-
ning scenarios are used in the experiments. Each scenario models a different
situation or planning problem an airline might be confronted with. Different
situations are different with respect to

• the number of aircrafts available, fleet composition, and maintenance sta-
tions,

• the set of airports or markets that the airline is willing to accept in its
schedule.

Table 2 gives an overview of the five different scenarios and lists the number of
aircrafts, number of different fleets, and number of airports available.

Table 2. Scenarios

scenario aircrafts fleets airports
A 30 4 62
B 30 3 29
C 8 4 55
D 20 2 50
E 10 1 90

Schedule evaluation is the computationally most expensive part of the op-
timization process. The required time depends on the number of flights and
itineraries that have to be evaluated which in turn depends on the number of
competing flights. To be able to conduct a sufficient number of experiments and
to avoid statistical outliers, only 10% of the competing flights listed in given
real-world flight schedules are considered. This reduction does not bias the fun-
damental results, because this reduction is applied to all experiments and – to
keep a realistic estimation of passenger demand – the given market sizes are also
reduced to 10% of their original value.
6 As one example, calculating the fitness of a schedule with 15,000 flights requires

about 60 seconds on a workstation with a 2.8 GHz processor and 1.0 GB RAM.

98 T. Grosche and F. Rothlauf

4.1 Calibration

Using an adaptive control of the search operators allows to reduce the number
of parameters to be set for each metaheuristic. However, there are still some
remaining parameters that have to be calibrated. In this section, experiments
are presented that determine proper values of the remaining parameters.

For this calibration process, each metaheuristic is applied to the five different
planning scenarios with different parameter settings. In each setting, one param-
eter is varied whereas the other parameters remain constant. The performance
of a metaheuristic is measured by

1. the fitness value, and
2. the number of fitness evaluations until the best solution was found.

For each scenario and parameter setting, five independent optimization runs are
performed. The different scenarios result in different fitness values (and num-
ber of fitness evaluations) because the scenarios consist of different numbers
of aircrafts and airports. Thus, to compare parameter values between different
scenarios, the performance results are normalized and aggregated. For a given
parameter setting and scenario, the difference between the averaged results for
one particular parameter setting and the averaged results for all parameter set-
tings are used as measurement for the quality of the particular parameter setting.
With fp,s denoting the average fitness value of the five runs with parameter set-
ting p ∈ P (P is the set of tested values of p) and scenario s ∈ S, the average
fitness value f̄s for all settings for scenario s becomes

f̄s =

∑
p∈P

fp,s

|P | · (8)

The influence ip,s of setting p in scenario s can be expressed as relation between
the fitness values obtained with p compared to the average fitness values obtained
with all parameter settings:

ip,s =
fp,s − f̄s

|f̄s|
· (9)

Finally, aggregating over all scenarios yields the average influence īp of setting
p:

īp =
ip,s∑

s∈S

ip,s
(10)

The following paragraphs present the results īp for different settings p for each
parameter.

Threshold Accepting

The TA algorithm was implemented as presented in Algorithm 1. There are four
different parameters that have to be calibrated:

Simultaneous Airline Scheduling 99

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

F
itn

es
s

N
o.

 E
va

lu
at

io
ns

T

Fitness
No. Evaluations

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

F
itn

es
s

N
o.

 E
va

lu
at

io
ns

T

Fitness
No. Evaluations

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

F
itn

es
s

N
o.

 E
va

lu
at

io
ns

r

Fitness
No. Evaluations

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

F
itn

es
s

N
o.

 E
va

lu
at

io
ns

r

Fitness
No. Evaluations

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 100 200 300 400 500 600 700 800
-1

-0.5

 0

 0.5

 1

 1.5

 2

F
itn

es
s

N
o.

 E
va

lu
at

io
ns

idecrease

Fitness
No. Evaluations

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 100 200 300 400 500 600 700 800
-1

-0.5

 0

 0.5

 1

 1.5

 2

F
itn

es
s

N
o.

 E
va

lu
at

io
ns

idecrease

Fitness
No. Evaluations

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

F
itn

es
s

N
o.

 E
va

lu
at

io
ns

imax

Fitness
No. Evaluations

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

F
itn

es
s

N
o.

 E
va

lu
at

io
ns

imax

Fitness
No. Evaluations

Fig. 7. Calibration results for TA parameters

• the initial threshold T ∈ [0, 1],
• the threshold reduction step size r < T ,
• the number of iterations idecrease between the threshold reductions, and
• the maximum number of iterations imax > idecrease at the end of the algo-

rithm when T = 0 (then the search process becomes a local hill climber).

Figure 7 presents the results for different values of the four different parameters.
Bézier curves are shown as well as the mean and standard deviation for distinct
parameter settings. The solution quality decreases for low and high values of T ,
it is highest for values around 0.2 – 0.25. Thus, these values seem to represent
the best compromise between a random search (high T) and a hill-climbing
technique that does not accept inferior solutions during search (low T). With
lower r, the resulting solution quality decreases. If r is low, the threshold is
reduced very slowly, allowing an explorative search. However, the computational
effort also increases. In general, solution quality increases with higher idecrease.
The higher idecrease, the more search steps are performed before the threshold
is further reduced. This allows to explore larger areas of the solution space
during optimization. However, the higher solution quality is obtained at the cost
of increased computational effort. Increasing imax yields higher solution quality,
since the hill-climbing technique has more attempts to escape from local optima.

For each parameter, the value that resulted in the best fitness ist used for the
subsequent experiments. The values are shown in Table 3. As a reference, this

100 T. Grosche and F. Rothlauf

Table 3. Initial and final setting of the TA parameters

parameter final setting initial setting
T 0.25 0.2
r 0.005 0.005

idecrease 650 20
imax 1500 500

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.005 0.01 0.015 0.02 0.025
-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

F
itn

es
s

N
o.

 E
va

lu
at

io
ns

pconv

Fitness
No. Evaluations

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.005 0.01 0.015 0.02 0.025
-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

F
itn

es
s

N
o.

 E
va

lu
at

io
ns

pconv

Fitness
No. Evaluations

-12

-10

-8

-6

-4

-2

 0

 2

 4

 0 50 100 150 200 250 300
-1

-0.5

 0

 0.5

 1

 1.5

F
itn

es
s

N
o.

 E
va

lu
at

io
ns

n

Fitness
No. Evaluations

Fig. 8. Calibration results for rGA parameters

table also includes the initial setting of the parameters that remained constant
while one parameter was varied.

Selecto-Recombinative Steady-State Genetic Algorithm

The selecto-recombinative steady-state GA described in Algorithm 2 has the
following two parameters:

• population size n and
• pconv (in percent) which measures the diversity of the fitness of the individuals

in the population.

Figure 8 shows the calibration results for the two parameters. The final and
initial parameter setting is presented in Table 4.

With smaller pconv, a population must be more homogenous. To obtain more
homogeneous populations, more search steps are necessary, each possibly creat-
ing a better solution. This results in overall better solution quality. On the other
hand, more search steps require more computational effort. Increasing n yields
higher solution quality, since more solutions are processed during search. The
more solutions, the higher the chance of a search step to find a better solution.
As Fig. 8 shows, for increasing n the fitness value asymptotically approximates a
maximum value, whereas the required number of schedule evaluations constantly
increases.

Simultaneous Airline Scheduling 101

Table 4. Initial and final parameter setting for the rGA

parameter final setting initial setting
n 200 50

pconv 0.00125 0.01

-14

-12

-10

-8

-6

-4

-2

 0

 2

 4

 0.005 0.01 0.015 0.02 0.025
-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

F
itn

es
s

N
o.

 E
va

lu
at

io
ns

pconv

Fitness
No. Evaluations

-16

-14

-12

-10

-8

-6

-4

-2

 0

 2

 4

 6

 0 50 100 150 200 250 300
-1

-0.5

 0

 0.5

 1

 1.5

F
itn

es
s

N
o.

 E
va

lu
at

io
ns

n

Fitness
No. Evaluations

Fig. 9. Calibration results for GA parameters

Table 5. Initial and final parameter setting for GA

parameter final setting initial setting
n 200 50

pconv 0.00125 0.01

Standard Steady-State Genetic Algorithm

The standard stead-state GA uses the same parameters as the selecto-
recombinative GA. Calibration results are presented in Fig. 9, the initial and
final parameter setting in Table 5. The results for the standard GA are almost
the same as for the selecto-recombinative GA.

4.2 Comparison of Metaheuristics

The final parameter settings obtained by the calibration allow the metaheuristics
to return high-quality results. To decide which type of metaheuristic performs the
best, each strategy using the final parameters is applied to the different planning
scenarios. The resulting (average) fitness values and number of required fitness
evaluations are presented in Fig. 10.

For all scenarios, using the GA yields the highest solution quality. Except for
scenarios A and E, the selecto-recombinative GA produces better results than
TA. Because the two types of genetic algorithms use a population of solutions
they require more fitness evaluations in comparison to TA which processes only
one solution. The results indicate that with regard to solution quality combin-
ing local and recombination-based search outperforms search strategies using

102 T. Grosche and F. Rothlauf

 0

 100000

 200000

 300000

 400000

 500000

 600000

EDCBA

F
itn

es
s

Scenario

TA
rGA
GA

(a) fitness

 10000

 20000

 30000

 40000

 50000

 60000

 70000

EDCBA

N
o.

 E
va

lu
at

io
ns

Scenario

TA
rGA
GA

(b) number of fitness evaluations

Fig. 10. Comparing the performance of the different metaheuristics for the five differ-
ent scenarios

only on one type of search operator, but also requiring a higher number of
fintess evaluations. This finding is not surprising, since most problems of practi-
cal importance inherit properties applicable to both search concepts, local and
recombination-based search [28, 31].

To validate the results, an unpaired t-test is conducted.7 The null hypothesis
H0 is that the observed differences in the fitness values are random. Hα says that
the differences are a result of the model specification. The critical t-value for
p = 0.975 is 2.306. The results in Table 6 for the three models and five different
scenarios show that the t-values always exceed the critical t-value of the level of
significance. Thus, H0 can be rejected on the 97.5%-level. The GA represents the
search strategy that works best using the presented airline scheduling approach.

4.3 Solution Process

In the remainder of the section, the solution process of the GA is analyzed.
Detailed results for scenario A for the five different runs performed are presented.
The results for the other scenarios are analogous.

Search Progress

Figure 11 plots the fitness of the best solution over the number of evaluations for
all five runs. It shows the typical GA behavior. The improvement rate is maximal
at the beginning and continuously decreases during optimization. There are two
reasons for this: at the beginning of the search, the search operators have much
room for improvements, since the early solutions inherit random elements due to
the random initialization; second, the population converges during the GA run,
reducing the potential capability of the recombination-based operators with its
7 The required test of the results for normal distribution was conducted using a

Kolmogorov-Smirnov test.

Simultaneous Airline Scheduling 103

Table 6. t-values for the comparison of different search strategies

scenario
models A B C D E

TA vs. rGA 6.405 20.136 13.222 13.637 3.277
TA vs. GA 7.057 79.604 16.775 16.127 2.400
rGA vs. GA 10.554 17.641 5.645 6.251 4.811

-600000

-400000

-200000

 0

 200000

 400000

 600000

 800000

 0 10000 20000 30000 40000 50000 60000 70000 80000

F
itn

es
s

No. Evaluations

Scenario A

Fig. 11. Fitness of optimal solution over number of evaluation for scenario A

rather large modifications to solutions, and leaving only the possibility to make
local improvements.

Figure 12 plots the number of flights (Fig. 12(a)) in the best schedule and
the total number of passengers (Fig. 12(b)) expected to travel on these flights.
The plots show that the fitness increase observed in Fig. 11 is due to an increase
of the seat load factor during optimization, which itself results from both an
increase of the number of passengers and a reduction of the number of total
flights. Apparently, in each GA run unprofitable flights are successively removed
from the schedule. Since the number of flights is higher in the beginning of each
run and assuming that the average block time of all flights remains constant,
the final schedules must include some idle ground times. Thus, an additional
increase in profit would become possible by increasing the number of airports
available for planning. Then additional (profitable) flights can be scheduled.

Parameter Adaptation

Since the operator probabilities are self-adjusted, the change of the relevance of
the operators changes during a GA run is studied. Figure 13 shows the prob-
abilities of applying a crossover operator over the number of evaluations. In

104 T. Grosche and F. Rothlauf

 100

 110

 120

 130

 140

 150

 160

 170

 0 10000 20000 30000 40000 50000 60000 70000 80000

F
lig

ht
s

No. Evaluations

Scenario A

(a) Number of flights

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 0 10000 20000 30000 40000 50000 60000 70000 80000

P
ax

No. Evaluations

Scenario A

(b) Number of passengers

Fig. 12. Number of flights and passengers over the number of evaluations for scenario A

general, the five different runs show a similar behavior. The crossover probabili-
ties are at a minimum at the start of the optimization but crossover becomes the
main search operator after a few evaluations. Then, the probability continuously
decreases until the end of the optimization. The continuous shift from crossover
to local search is due to the different character of the search operators. The
crossover operator performs a global search which is useful for the exploration
of the search space at the early stages of optimization. With increasing number
of evaluations, the solutions in the population become more similar and search
focuses more on finding high-quality solutions in the neighborhood of solutions
already in the population (exploitation).

Finally, Fig. 14 plots the application probabilities of the different variants of
the crossover operators (Fig. 14(a)) and the local search operators (Fig. 14(b)).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 10000 20000 30000 40000 50000 60000 70000 80000

P
ro

ba
bi

lit
y

No. Evaluations

Scenario A

Fig. 13. Application probability of recombination (scenario A)

Simultaneous Airline Scheduling 105

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 10000 20000 30000 40000 50000 60000 70000

P
ro

ba
bi

lit
y

No. Evaluations

1xover
2xover

stringxover

(a) Recombination operators

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 10000 20000 30000 40000 50000 60000 70000

P
ro

ba
bi

lit
y

No. Evaluations

locDelGT
locChgFA
locInsGT

locChgApt
locInsApt
locDelApt

locChgAptMS
locChgAptDist

(b) Mutation operators

Fig. 14. Application probability of crossover and mutation operators for scenario A

For crossover operators, after an initialization phase all three different crossover
operators are applied with about the same probability. For mutation operators,
there is no clear dominant operator and all operators are used during the op-
timization in a different and volatile extent. However, on average, locDelGT,
locInsGT, and locInsApt are more often used than the other operators.

5 Summary, Conclusions, and Future Work

The airline scheduling problem is one of the most complex optimization problem
an airline has to solve. Until now, no integrated solution approaches exist but
the overall problem is solved by decomposing it into smaller and less complex
subproblems. In this chapter, a metaheuristic approach is presented to integrate
different partial problems into one single optimization approach (except crew
scheduling). Based on a problem-specific representation that is able to encode
complete airline schedules, corresponding local and crossover operators were de-
veloped. The fitness of a flight schedule is the estimated operational profit of
all scheduled flights. Three metaheuristic techniques were implemented and cal-
ibrated as representative examples for different search strategies: a threshold
accepting algorithm (local search), a selecto-recombinative genetic algorithm
(recombination-based search), and a genetic algorithm (local and recombination-
based search). The application of the search operators is adaptively controlled
according to their fitness contributions in past iterations. The genetic algorithm
with local and recombination-based search yields the best results. At the begin-
ning of its search process, mainly recombination is applied to explore the search
space. With ongoing progress, exploitation gets more important and local search
operators are applied to a greater extent.

These findings further advise to use both local and recombination-based search
when solving real-world problems. Usually the properties of these problems that
favour one search concept are hard to identify in advance or they are applicable
to both search concepts, thus, techniques using both search strategies like genetic
algorithms could be the proper choice to tackle real-world problems. In general,

106 T. Grosche and F. Rothlauf

metaheuristics have to be designed problem-specific to be successful, however,
usually there still is much freedom in designing the individual components like for
example the representation or search operators. In this chapter, different search
operators were developed each focusing on different elements of airline schedules.
To choose among the different operators in each iteration of the metaheuristic,
an adaptive procedure is presented. This procedure is not limited to the airline
scheduling problem but can also be used in other applications of metaheuristics.

The presented approach makes it possible to integrate different subproblems of
the airline scheduling problem into one single model. By processing complete air-
line schedules at once, the several different subproblems and their interdependen-
cies are implicitly included and the elements of the schedules are optimized with
respect to the overall objective. In addition, airline operations can be modelled on
a higher level of detail. Simplifying assumptions of existing approaches (like for
example only one fleet type, negligence of operating restrictions, no competition,
single hub network, and others) can be avoided and additional elements of airline
scheduling can be easily included in future work. Significant cost reductions could
be generated if the crew scheduling would be integrated into the presented plan-
ning approach. If a schedule is evaluated according to the extent of possible delays
caused by disruptions, the robustness of airline schedules can also be increased.
Other operational or managerial objectives in scheduling can also be easily in-
cluded by modifying the fitness function. If airport slots need to be considered,
penalty costs can be adjusted so that they represent the efforts to obtain a slot.

Until now, this study represents a theoretic framework; the postulated ad-
vantageousness compared to a decomposition-approach and its applicability in
real-world airline scheduling still have to be assessed. Thus, benchmark tests
with airline scheduling models using the sequential planning paradigm have to
be conducted. Even more desirable would be to replace the planning scenarios
and all input used in this study by real existing data from an airline. Then, if
possible and applicable, using the same scenario and prerequisites for optimiza-
tion real airline schedules were based on, the presented approach can be further
evaluated and compared to the corresponding real-world schedules.

References

1. Antes, J.: Structuring the process of airline scheduling. In: Kischka, P. (ed.) Opera-
tions Research Proceedings 1997, Selected Papers of the Symposium on Operations
Research (SOR 1997), pp. 515–520. Springer, Berlin (1998)

2. Antes, J., Campen, L., Derigs, U., Titze, C., Wolle, G.-D.: SYNOPSE: a model-
based decision support system for the evaluation of flight schedules for cargo air-
lines. Decision Support Systems 22(4), 307–323 (1998)

3. Barnhart, C., Belobaba, P.P., Odoni, A.R.: Applications of operations research in
the air transport industry. Transportation Science 37(4), 368–391 (2003)

4. Barnhart, C., Boland, N.L., Clarke, L.W., Johnson, E.L., Nemhauser, G.L., Shenoi,
R.G.: Flight string models for aircraft fleeting and routing. Transportation Sci-
ence 32(3), 208–220 (1998)

Simultaneous Airline Scheduling 107

5. Barnhart, C., Talluri, K.T.: Airline operations research. In: ReVelle, C., McGarity,
A.E. (eds.) Design and Operation of Civil and Environmental Engineering Systems,
pp. 435–469. Wiley, New York (1997)

6. Clarke, L.W., Johnson, E., Nemhauser, G.L., Zhu, Z.: The aircraft rotation prob-
lem. Annals of Operations Research 69, 33–46 (1997)

7. Coldren, G.M., Koppelman, F.S.: Modeling the competition among air-travel
itinerary shares: GEV model development. Transportation Research Part A: Policy
and Practice 39, 345–365 (2005)

8. Coldren, G.M., Koppelman, F.S., Kasturirangan, K., Mukherjee, A.: Modeling ag-
gregate air-travel itinerary shares: Logit model development at a major US airline.
Journal of Air Transport Management 9, 361–369 (2003)

9. Doganis, R.: Flying Off Course – The Economics of International Airlines, 3rd edn.
Routledge, London (2004)

10. Dueck, G., Scheuer, T.: Threshold accepting: A general purpose optimization al-
gorithm appearing superior to simulated annealing. Journal of Computational
Physics 90(1), 161–175 (1990)

11. Erdmann, A., Nolte, A., Noltemeier, A., Schrader, R.: Modeling and solving an
airline schedule generation problem. Annals of Operations Research 107(1-4), 117–
142 (2001)

12. Etschmaier, M.M., Mathaisel, D.F.X.: Airline scheduling: An overview. Trans-
portation Science 19(2), 127–138 (1985)

13. Feo, T.A., Bard, J.F.: Flight scheduling and maintenance base planning. Manage-
ment Science 35(12), 1415–1432 (1989)

14. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley, Reading (1989)

15. Goldberg, D.E.: The Design of Innovation. Genetic Algorithms and Evolutionary
Computation. Kluwer, Dordrecht (2002)

16. Gopalan, R., Talluri, K.T.: The aircraft maintenance routing problem. Operations
Research 46(2), 260–271 (1998)

17. Gopalan, R., Talluri, K.T.: Mathematical models in airline schedule planning: A
survey. Annals of Operations Research 76, 155–185 (1998)

18. Grandeau, S.C., Clarke, M.D., Mathaisel, D.F.X.: The processes of airline system
operations control. In: Yu, G. (ed.) Operations Research in the Airline Industry,
pp. 312–369. Kluwer Academic Publishers, Boston (1998)

19. Graves, G.W., Mcbride, R.D., Gershkoff, I., Anderson, D., Mahidhara, D.: Flight
crew scheduling. Management Science 39(6), 736–745 (1993)

20. Grosche, T.: Integrated Airline Scheduling. PhD thesis, University of Mannheim
(2007)

21. Grosche, T., Rothlauf, F.: Air travel itinerary market share estimation. Working
Papers in Information System I, University of Mannheim (2007)

22. Gu, Z., Johnson, E.L., Nemhauser, G.L., Wang, Y.: Some properties of the fleet
assignment problem. Operations Research Letters 15, 59–71 (1994)

23. Holland, J.H.: Adaption in natural and artificial systems. University of Michigan
Press, Ann Arbor (1975)

24. ICAO. Annual review of civil aviation 2005. ICAO Journal 61(5) (2006)
25. Jarrah, A.I., Goodstein, J., Narasimhan, R.: An efficient airline re-fleeting model

for the incremental modification of planned fleet assignments. Transportation Sci-
ence 34(4), 349–363 (2000)

26. Lohatepanont, M., Barnhart, C.: Airline schedule planning: Integrated models and
algorithms for schedule design and fleet assignment. Transportation Science 38(1),
19–32 (2004)

108 T. Grosche and F. Rothlauf

27. Mathaisel, D.F.X.: Decision support for airline schedule planning. Journal of Com-
binatorial Optimization 1, 251–275 (1997)

28. Michalewicz, Z., Fogel, D.B.: How to Solve It: Modern Heuristics. Springer, Berlin
(2000)

29. Papadakos, N.: Integrated airline scheduling. Computers and Operations Research
(to appear, 2008)

30. Reeves, C.R., Rowe, J.E.: Genetic Algorithms: Principles and Perspectives. Kluwer
Academic Publishers, Boston (2003)

31. Rothlauf, F.: Design and Application of Metaheuristics. Habilitationsschrift, Uni-
versity of Mannheim (2006)

32. Rothlauf, F.: Representations for Genetic and Evolutionary Algorithms, 2nd edn.
Springer, Heidelberg (2006)

33. Rushmeier, R.A., Kontogiorgis, S.A.: Advances in the optimization of airline fleet
assignment. Transportation Science 31(2), 159–169 (1997)

34. Suhl, L.: Computer-Aided Scheduling – An Airline Perspective. Gabler, Wiesbaden
(1995)

35. Talluri, K.T.: The four-day aircraft maintenance routing problem. Transportation
Science 32(1), 43–53 (1998)

36. Teodorovic, D.: Airline Operations Research. Transportation Studies. Gordon and
Breach, New York (1988)

Part II

Vehicle Routing

GRASP with Path Relinking for the
Capacitated Arc Routing Problem
with Time Windows

Nacima Labadi, Christian Prins, and Mohamed Reghioui

Institute Charles Delaunay, University of Technology of Troyes, BP 2060, 10010
Troyes Cedex, France
{nacima.labadi,christian.prins,mohamed.reghioui hamzaoui}@utt.fr

Summary. Greedy randomized adaptive search procedures (GRASP) are proposed for
the undirected capacitated arc routing problem with time windows (CARPTW). Con-
trary to the vehicle routing problem with time windows (VRPTW), this problem has
received little attention. The procedures combine simple components: a greedy random-
ized heuristic to compute either a giant tour (three versions) or a feasible CARPTW
solution (one version), a tour-splitting algorithm for the giant tours (two versions), a
local search, and an optional path relinking process. Computational experiments on the
CARPTW indicate that proposed metaheuristics compete with the best published al-
gorithms: on a set of 24 instances, the best combination of components finds 17 optima
(including 4 new ones) and improves 5 best-known solutions. Moreover, when applied
to the CARP without time windows, these GRASPs are as effective as state-of-the-art
algorithms, while being significantly faster.

Keywords: Capacitated arc routing problem, Time windows, GRASP, Path relinking.

1 Introduction

The NP-hard capacitated arc routing problem (CARP) is raised by applications
like urban waste collection and winter gritting. A natural extension is the CARP
with time windows or CARPTW, motivated for instance by the interruption of
operations during rush hours or maintenance interventions on gas, power or
telecom networks. The CARPTW can be defined on an undirected network G =
(V, E) with |V | = n and |E| = m. The node set V includes one depot node s with
a fleet of identical vehicles of capacity Q. Each edge e has a non-negative demand
qe, a length ce and a deadheading time te (traversal time without service). The
τ edges with non-zero demands (called required edges or tasks) must be serviced
by a vehicle. Each task e has also a processing time pe (when e is traversed by
a vehicle to be serviced) and a time window [ae, be] in which service must begin.
Arriving earlier than ae induces a waiting time, while arriving later than be is
not allowed. In this chapter all data are integers.

The CARPTW consists of computing a set of vehicle trips minimizing the
total distance travelled. Each trip must start and end at the depot and service a
subset of required edges while respecting their time windows. The total demand

A. Fink and F. Rothlauf (Eds.): Advances in Computational Intelligence, SCI 144, pp. 111–135, 2008.
springerlink.com © Springer-Verlag Berlin Heidelberg 2008

112 N. Labadi, C. Prins, and M. Reghioui

satisfied by a vehicle must not exceed its capacity and each required edge must
be serviced by one single vehicle (split service is not allowed). The total distance
is minimized in this chapter because this is the usual objective for the vehicle
routing problem with time windows (VRPTW). Most instances of literature
assume that te = ce = pe for each required edge e.

To the best of our knowledge, the only publicly available works that deal with
the CARPTW are three Ph.D. dissertations. Mullaseril [18] considered the di-
rected CARPTW and proposed heuristics and a transformation into a VRPTW.
Later, Gueguen [10] described an integer linear programming model for the undi-
rected CARPTW and another transformation into a VRPTW, but without giv-
ing numerical results. More recently, Wøhlk [23] presented two ways of modeling
the undirected CARPTW (one arc routing and one node routing formulation),
several heuristics and a dynamic programming algorithm combined with simu-
lated annealing (DYPSA). She also designed a column generation method to get
tight lower bounds.

Tagmouti et al. [22] studied a closely related problem, the CARP with time-
dependent service costs, with a column generation method based on a node rout-
ing model. However, such a problem involves time-dependent piecewise-linear
service cost functions rather than hard time windows.

Powerful metaheuristics are available for the VRP [4], the VRPTW [17] and
the CARP [2, 3, 11, 12, 15]. However, apart from the simulated annealing em-
bedded in Wøhlk’s DP method, no metaheuristic has been proposed for the
CARPTW. This chapter bridges the gap by presenting simple but very effec-
tive greedy randomized adaptive search procedures (GRASP), strengthened by
a path relinking process (PR). To the best of our knowledge, only two very recent
journal papers describe applications of PR to vehicle routing problems [13, 19],
but both deal with node routing problems (respectively the VRP and a school
bus routing problem).

The chapter is structured as follows. Section 2 presents GRASP components:
greedy randomized heuristics to build either CARPTW solutions or giant tours,
splitting algorithms to convert giant tours into feasible CARPTW solutions and
a local search procedure to improve resulting solutions. The path relinking is
described in Sect. 3. Section 4 is devoted to computational experiments on the
CARPTW and CARP.

2 GRASP Components and General Structure

Greedy randomized adaptive search procedures or GRASP were introduced in
1989 by Feo and Bard [6], see also [7] for a general presentation of the method.
Each GRASP iteration computes one solution in two phases. The first phase
builds one trial solution using a greedy randomized heuristic. Each step of this
heuristic extends a partial solution by adding one element randomly selected
among the best candidates (restricted candidate list or RCL). The second phase
improves the trial solution with a local search procedure. The method stops after
a fixed number of iterations and returns the best solution found.

GRASP with Path Relinking for the CARP with Time Windows 113

The following subsections describe ad hoc components for the CARPTW.
Sect. 2.1 describes one greedy randomized heuristic which directly builds a
CARPTW solution, and three other methods which relax the vehicle capac-
ity and time windows constraints to compute one single tour servicing all cus-
tomers (giant tour). Two splitting algorithms to convert giant tours into feasible
CARPTW solutions are presented in Sect. 2.2. The local search is introduced in
Sect. 2.3 and the resulting GRASP structure in Sect. 2.4.

Some additional notation is required for this section. A dummy loop (index 0)
is added on the depot, each required edge is replaced by two opposite arcs (pos-
sible traversal directions) and the resulting arcs are indexed from 1 to 2τ + 1.
The opposite arc associated with one arc u is denoted u′. A distance matrix D,
(2τ +1)× (2τ +1) is pre-computed. The distance duv between two arcs u = (i, j)
and v = (k, l) is defined as the length of a shortest path from node j to node k.

During the construction of a trip, u denotes the last edge treated and Z
the set of edges not yet serviced whose demands fit residual vehicle capacity.
dmin = min{duz|z ∈ Z} is the minimum distance between u and the edges of Z
and L = {z ∈ Z|duz = dmin} is the set of edges of Z at distance dmin.

2.1 Greedy Randomized Heuristics

It is not an easy task to design a greedy randomized heuristic able to provide
good but diverse solutions. On one hand, the same trial solution can be gener-
ated several times if the RCL is too small: the heuristic tends to behave like a
deterministic greedy heuristic. On the other hand, a large RCL leads to a ran-
dom heuristic with low-quality solutions on average. Another difficulty is that
the local search can lead to the same local optimum when applied to several
trial solutions located in the same attraction basin, and the probability to ob-
tain duplicate solutions after improvement increases with the number of GRASP
iterations.

For a given number of GRASP iterations, a better diversity can be expected
if several constructive heuristics are used and this was confirmed during pre-
liminary testing. For the CARPTW, our GRASPs call two heuristics among the
ones described in the two following subsections. In practice, each heuristic is used
during one half of GRASP iterations. Some results which prove the effectiveness
of this strategy are given in Sect. 4. All the proposed heuristics are adaptive,
i.e. they update at each iteration the benefits associated with the choice of each
task, instead of working with a list of decisions prepared in advance.

Randomized Path-Scanning Heuristic

Path-Scanning (PS) is a classical greedy heuristic for the CARP [9], which builds
one trip at a time using the nearest neighbour principle and a set of five rules
to break ties. We recall it first for the CARP.

Starting from the depot, each iteration extends the incumbent trip by adding
the closest edge in Z. The vehicle returns to the depot when Z is empty. The
algorithm stops if all required edges are serviced, otherwise a new trip is started.

114 N. Labadi, C. Prins, and M. Reghioui

However, contrary to node routing problems, dmin is often null and the set L
contains several edges. For instance, consider a crossroad with four streets. If
a vehicle treats one street, it may choose one of the three adjacent streets to
continue: in that case, dmin = 0 and |L| = 3.

When |L| > 1, PS evaluates each edge e in L and uses five rules to select the
next edge to be serviced: 1) minimize the distance de0 to return to the depot, 2)
maximize this distance, 3) minimize the ratio qe/ce (a kind of productivity), 4)
maximize this ratio, 5) use rule 2 if vehicle is less than half-full, otherwise use
rule 1. One solution is computed for each rule and the best one is returned at
the end.

For the same running time (5 solutions), Pearn [20] noticed that better average
results are obtained if one of the 5 rules is randomly selected in each iteration.
We adapted Pearn’s version for the CARPTW: the set Z now gathers the edges
not yet serviced, with compatible demands, and which can be reached from the
incumbent edge without violating time windows.

However, we added 12 other rules proposed by Wøhlk [23] and specific to time
windows. These rules consists in selecting the next edge e in order to minimize
the following criteria, in which i is the incumbent edge and μi the current time
when the service of i terminates: 1) be · die, 2) be, 3) (be − μi) · die, 4) ae · die, 5)
(be−ae) ·die, 6) be ·die/qe, 7) (be−ae) ·die, 8) ae−μi, 9) be+die, 10) ae−μi−die,
11) die · (ae − μi − die), 12) ae. For instance, rule 2 is equivalent to the earliest
due date priority rule used in scheduling heuristics.

Like in Pearn [20], the heuristic is randomized by randomly selecting one of
the rules (now 17) in each iteration. L is used as restricted candidate list. A
second randomization consists of choosing randomly one edge among the k best
candidates in L for the selected rule.

Preliminary tests on the CARPTW confirmed that using the 17 rules gives
better results than using only the 5 rules used in PS for the CARP (but adapted
here to time windows) or the 12 rules specifically designed by Wøhlk for time
windows. The resulting greedy randomized heuristic is called RPS in the sequel.
When applied to the basic CARP (without time windows), all time windows are
initialized to [0, ∞] but Wøhlk’s rules are deactivated for the sake of efficiency.

Randomized Heuristics Producing Giant Tours

Three randomized heuristics called RR, RT and RTF were also designed. They
ignore vehicle capacity and time windows to build one giant tour covering all
required edges. To obtain a feasible CARPTW solution, they must be followed by
one of the splitting algorithms described in the next subsection. RR (like Random
Rule) is equivalent to RPS, but with a fictitious vehicle capacity Q =

∑m
e=1 qe

and without time windows. One single tour is constructed. In each iteration, one
of the 5 rules not designed for time windows is selected at random and the next
edge of the trip is selected randomly in L using this rule. Note that Q is set
to the sum of demands to guarantee a correct behavior of rule 5 of PS, i.e. the
vehicle must start getting closer to the depot when it is half-full.

GRASP with Path Relinking for the CARP with Time Windows 115

RT (like Random Task) draws the next edge in the candidate list L = {z ∈
Z|duz = dmin}. As already mentioned for RPS, this simple strategy works well
for arc routing problems because dmin is often null and L contains several edges
in general.

In RTF (like RT Flower), candidate edges are partitioned in two lists L1
and L2. L1 gathers the edges which drive the vehicle away from the depot, i.e.,
L1 = {z ∈ Z|duz = dmin ∧dz0 > du0}. The other tasks are stored in L2. Let load
denote the current load of the tour. If one list is empty, RTF selects one task
at random in the other list. If no list is empty, RTF randomly draws the next
task in L1 if (load mod Q) ≤ Q/2, and in L2 otherwise. In other words, the giant
tour tends to go away from the depot if its load is in one interval [iQ, iQ+ Q/2]
for some integer i ≥ 0, otherwise it nears the depot. The name RTF comes from
the flower-shaped resulting tour. The goal of this strategy inspired by rule 5 of
Path-Scanning is to help the splitting algorithms: the most likely splitting points
will be closer to the depot.

2.2 Tour Splitting Algorithms

Basic Splitting Algorithm

Beasley [1] introduced route-first cluster-second heuristics for the VRP, but with-
out providing numerical results. The principle is to relax vehicle capacity and
to build one giant tour, using any TSP algorithm. Then an optimal partition
(subject to the sequence) of the giant tour is computed using a tour splitting al-
gorithm. The idea is also valid for arc routing problems. For instance, Lacomme
et al. [15] designed an efficient memetic algorithm (MA) for the CARP, in which
the chromosomes are giant tours: they do not contain special symbols to delimit
successive trips. Each chromosome is evaluated using a tour splitting algorithm
called Split. In this MA, the algorithm to solve the uncapacitated problem and
provide giant tours is replaced by a crossover operator. Split is adapted here
for the CARPTW, the giant tours being provided by the greedy randomized
heuristics RR, RT or RTF presented before.

Figure 1 shows a giant tour T = (T1, T2, T3, T4, T5) with τ = 5 required
edges (thick segments), with demands in brackets and time windows in square
brackets. Thin lines represent intermediate shortest paths between successive
edges or between each edge and the depot. It is assumed that Q = 9 and that
te = ce = pe for each edge e. Split builds an auxiliary graph H with τ + 1
nodes indexed from 0 onwards. This graph contains one arc (i − 1, j) if trip
(0, Ti, Ti+1, . . . , Tj , 0) is feasible. For instance, the leftmost arc corresponds to
the trip reduced to edge T1: its cost 35 includes the distance from the depot
to edge T1, the length of T1 and the distance to return to the depot. Once
the auxiliary graph is completed, Split computes a min-cost path from the first
node 0 to the last node τ = 5. The arcs along this path indicate the optimal
decomposition of the giant tour (lower part of the figure).

This example illustrates the flexibility of the Split algorithm: all constraints at
the trip level are only used to filter the trips represented in H , but the shortest

116 N. Labadi, C. Prins, and M. Reghioui

T1 (5) [0,25]

T2 (4) [10,25]

T3 (4) [20,60]

T4 (2) [20,80]

T5 (7) [10,95]

20

25
30

40

5

55
10

15 25

0 35 75 125 205 230T1:35 T5:25T3:85 T4:80T2:40

T2T3:90

T3T4:135

T4T5:105

T1 (20)

T2 (25)

T3 (50)

T4 (25)

T5 (95)

Trip 2
90

Trip 1
35

Trip 3
105

Depot [0,250]

105

10
5

10
15

5

45
25

15

Fig. 1. A five-edge example with Q = 9 for Split

path computation does not change. For instance, there is no time window in the
CARP MA [15] and the trip (0, T1, T2, 0) is modelled by one arc in H . For the
CARPTW, this trip is not represented because time windows are violated.

A range constraint L = 130 (i.e. maximum trip length) could be added easily:
in that case, the trip (0, T3, T4, 0) with length 135 would not be considered.

By construction, H is acyclic and contains h ≤ τ(τ+1)/2 arcs if the CARPTW
involves τ required edges. Using the version of Bellman’s algorithm for directed
acyclic graphs [5], whose complexity is linear in h, the shortest path can be
computed in O(h). In the worst case, h = O(τ2). Let qmin denote the minimum
demand. A trip contains at most r = �Q/qmin� tasks, there are at most r trips
starting with a given edge Ti and so r outgoing arcs per node of H . H contains
O(rτ) arcs and then the complexity of Split is O(rτ). Hence, Split is faster when
qmin represents a substantial fraction of vehicle capacity.

It is possible to implement Split without generating H explicitly, like in
Algorithm 1. For each task Tj of the giant tour T , the algorithm computes
two labels: Wj , the cost of a shortest path from node 0 to node j in H , and

GRASP with Path Relinking for the CARP with Time Windows 117

Algorithm 1. A compact implementation of Split for the CARPTW
1: W0 := 0
2: P0 := 0
3: for i := 1 to τ do
4: Wi := ∞
5: end for
6: for i := 1 to τ do
7: j := i
8: load , length := 0
9: ArrivalTime,DepartureTime := 0

10: u := 0
11: repeat
12: v := Tj

13: load := load + qv

14: length := length − d(u, 0) + d(u, v) + cv + d(v, 0)
15: ArrivalTime := DepartureTime + δuv

16: DepartureTime := ArrivalTime + max(0, av − ArrivalTime) + pv

17: if (load ≤ Q) and (Wi−1 + length < Wj) and (ArrivalTime ≤ bv) then
18: Wj := Wi−1 + length
19: Pj := i − 1
20: end if
21: j := j + 1
22: u := v
23: until (j > m) or (load > Q) or (ArrivalTime > bu)
24: end for

Pj , the predecessor of Tj on this path. At the beginning, the labels in W are
null for node 0 and infinite for all other nodes. The main for loop scans T using
index i. For each i, the repeat loop inspects each possible trip (0, Ti, . . . , Tj, 0)
starting with task Ti and evaluates its length, its load and its feasibility for time
windows. To avoid nested indices, v denotes the incumbent arc (Tj) and u the
previous arc of the trip (Tj−1, or the depot loop 0 if i = j). δuv is used to check
time windows, it denotes the duration of the shortest path from u to v (the one
with minimum length duv). The loop stops when load exceeds vehicle capacity,
the vehicle arrives too late at Tj or when j reaches the end of T . A feasible trip
(0, Ti, . . . , Tj , 0) corresponds to one arc (i − 1, j) in H . Instead of storing this
arc, the label of node j is directly updated when improved. For each j, note that
load, length and ArrivalTime are updated in O(1) from their values for j − 1
(lines 13-14-15).

This avoids an additional loop to compute the length of the incumbent trip or
to check its feasibility for time windows. This trick is essential to achieve the O(h)
complexity, coming from the two nested loops which are equivalent to inspecting
all arcs of H . Moreover, the algorithm runs in O(τ) space only, instead of O(h)
if H were generated explicitly. At the end, the cost of the optimal CARPTW
solution, subject to the sequence imposed by the giant tour T , is given by Wτ .

118 N. Labadi, C. Prins, and M. Reghioui

The trips of the associated CARPTW solution can be easily extracted, using the
predecessors stored in vector P .

Improved Splitting Algorithm

For each sub-sequence (Ti, Ti+1, . . . , Tj) of a giant tour T , a rotation (circular
left shift) can give a better trip. It is then possible to evaluate all rotations and
to model only the best one in the auxiliary graph. We call this version Split-Shift.

One example with four required edges is given in Fig. 2. It is assumed that
Q = 9, pe = ce = te for each edge e, and that the shortest paths from T3 to T2, T4
to T3 and T4 to T2 have respective lengths 20, 30 and 10. To better visualize rota-
tions, these paths are drawn on the giant tour. The trip without rotation (T2, T3)

860 37 66T2:27 T4:32T3:40

T3T4:64

T2T3T4:76

T2T3:56

T1:10 10

T3 (2)

T2 (2)
T4 (5)

Trip2 : 76

T1 (5)

Trip1 : 10

T2 (5) [0,60] T3 (2) [10,40]

T4 (2) [10,50]

11
60

15

13

14

5

5
20

20

Depot [0,250]

20
5

10

2

3
5T1 (5) [0,10]

11

20
30

Fig. 2. A four-edge example for Split-Shift

GRASP with Path Relinking for the CARP with Time Windows 119

(length 56) is better than its rotation (T3, T2) (length 61): hence, only the first
trip is modelled in the auxiliary graph H . The rotation (T3, T4, T2) (length 76)
is included in H because the two other possibilities (T2, T3, T4) and (T4, T2, T3)
violate time windows. Finally, (T3, T4) (length 76) is kept while (T4, T3) is
infeasible.

Like Split, it is possible to implement Split-Shift without generating the aux-
iliary graph explicitly. The algorithm is like the one for Split, with the same
two nested loops which enumerate all feasible sub-sequences (Ti, Ti+1, . . . , Tj).
However, one internal loop is added to evaluate the cost of the trip if it starts
with one of the tasks and browses the other tasks cyclically. Only the trip cor-
responding to the best rotation is modelled in the auxiliary graph. Since Split
runs in O(rτ) if the trips contains at most r required edges, Split-Shift with the
additional loop in O(r) runs in O(r2τ). In practice, the algorithm is fast enough
because r is in general much smaller than τ .

2.3 Local Search

Like in the VRP, possible moves in a local search for arc routing problems include
relocating, swapping and inverting chains of edges. However, their implementa-
tion is more difficult in case of time windows. Feasibility tests for capacity can be
done in O(1) but the insertion of one new edge in a trip with ξ edges may shift
all arrival times after the insertion point: apparently, the modified trip must be
scanned in O(ξ) to check time windows. In fact, Kindervater and Savelsbergh
[14] have shown how to detect time window violations in O(1) for the VRPTW:
the slack or maximum allowed delay for an insertion must be kept for each cus-
tomer. We have adapted this technique to the CARPTW, with the following
moves:

• OR-OPT moves: relocate a chain of 1 or 2 required edges.
• SWAP moves: swap two different edges.
• 2-OPT moves adapted to the arc routing context.

These moves may involve one or two trips, and the two possible traversal direc-
tions of a required edge are tested in the reinsertions. Remember (beginning of
Sect. 2) that each edge is coded by two opposite arcs. For one arc (i, j) indexed
by u, let u′ denote the index of the opposite arc (j, i). For instance, an OR-OPT
move may remove u from its current trip to reinsert it as u or u′, in the same
trip or in another trip.

What we call a 2-OPT move is defined by two edges u and v. Assume that
a trip X is encoded as a list of α edges including one copy of the depot loop
at the beginning and at the end, i.e., X = (x1 = 0, x2, . . . , xα−1, xα = 0). If
u and v belong to the same trip X with xi = u, xj = v and i ≤ j, the 2-
OPT move consists of inverting sub-sequence (xi, xi+1, . . . , xj): it is replaced by
sub-sequence (x′

j , x
′
j−1, . . . , x

′
i).

If u and v belong to two distinct trips X (α edges) and Y (β edges) with
xi = u and yj = v, the 2-OPT moves consists of cutting the shortest paths from

120 N. Labadi, C. Prins, and M. Reghioui

Algorithm 2. GRASP for the CARPTW
1: f∗ := ∞
2: iter := 0
3: repeat
4: iter := iter + 1
5: if iter ≤ maxiter/2 then
6: H1(S)
7: else
8: H2(S)
9: end if

10: LocalSearch(S)
11: if f(S) < f∗ then
12: f∗ := f(S)
13: S∗ := S
14: end if
15: until (iter = maxiter) or (f∗ = LB)

xi to xi+1 and from yj to yj+1. Then, there are two different ways of reconnect-
ing the trips. The first one preserves edge directions: the two trips are replaced
by (x1, . . . , xi, yj+1, . . . , yβ) and by (y1, . . . , yj, xi+1, . . . , xα). Some edges are in-
verted in the second way, which replaces X and Y by (x1, . . . , xi, y

′
j , . . . , y

′
1) and

(x′
α, . . . , x′

i+1, yj+1, . . . , yβ). The second version is less productive, because of a
higher probability of time window violation.

Each iteration of the local search evaluates all feasible moves and executes
the best one found. The local search ends when no more improvement can be
found.

2.4 General Structure of the GRASP

Algorithm 2 summarizes the general structure of our GRASPs, without the PR
procedure. Two randomized greedy heuristics H1 and H2 must be selected among
the ones described in Sect. 2.1. In each iteration, the solution S resulting from
one of the two heuristics is improved by local search. f(S) denotes the cost (total
length of the trips) of S. The algorithm stops after a fixed number of iterations
maxiter or when a known lower bound LB is reached. Its results are the best
solution found S∗ and its cost f∗.

3 Path Relinking

Path relinking (PR) is an intensification strategy which can be added to any
metaheuristic. The method was used for a first time by Glover and Laguna
[8] to improve solutions obtained by tabu search. Its principle is to explore a
trajectory linking two solutions in solution space, to try finding a better one.
The attributes of the target solution are progressively introduced in the source
solution, which generates a sequence of intermediate solutions. In each iteration,

GRASP with Path Relinking for the CARP with Time Windows 121

S: 2 5 10 | 7 6 | 8 1 | 9 | 4 3
T: 9 | 6’ 7’| 2 5 10 | 8 1 | 4 3

Fig. 3. Example of distance between two solutions

the attributes added are selected to minimize the cost of the next intermediate
solution.

In spite of its simplicity and speed, GRASP is often less effective than more
aggressive metaheuristics like tabu search. A possible explanation is the indepen-
dency of GRASP iterations, which perform a kind of random sampling of solution
space. The addition of a PR procedure working on a small pool of elite solutions
collected during the GRASP is a good way to remedy this relative weakness.
The following subsections describe a distance measure for the CARPTW, show
how to use it to explore a trajectory between two solutions, and present two
possible ways of integrating the PR and the GRASP.

3.1 Distance Measure

Our distance for the CARPTW extends a distance proposed by Mart́ı et al.
[16], for permutation problems in which the relative position of each element
is more important than its absolute position (R-permutation problems). Given
two permutations S = (p1, p2, . . . , pm) and T = (q1, q2, . . . , qm), this distance
D(S, T) is the number of times pi+1 does not immediately follow pi in T , for
i = 1, 2, . . . , m − 1. In other words, D is the number of pairs of consecutive
elements in P that are “broken” in Q, it varies between 0 and m − 1.

A similar strategy is used to compute a distance between CARPTW solutions,
represented as giant tours to have a constant length of τ required edges. The
Split procedure of Sect. 2.2 is used to extract the true CARPTW solutions. We
have also extended the original distance to make it reversal-independent: a pair
of consecutive arcs (u, v) of S is counted as broken if neither (u, v) nor (v′, u′)
are found in T . Like Mart́ı’s distance, the new version can be computed in O(τ).
Figure 3 provides an example with D(S, T) = 4. Vertical bars in S (resp. T)
indicate the pairs broken in the other solution.

3.2 Exploration of a Trajectory

To generate a path from one solution S to one solution T , we first compute
D(S, T). Then, starting from S, the incumbent solution undergoes a move that
reduces its distance to T . The moves include the inversion, the relocation and
the relocation with inversion of a chain of consecutive edges without broken
pairs, called block. The concept of block is used to avoid repairing one pair while
breaking another. In Fig. 3 for instance, moving arc 1 after arc 9 in S repairs
the pair (1, 4) but breaks (8, 1). This can be avoided if the whole block (8, 1) is
moved. To avoid too long trajectories and the generation of low-quality solutions,

122 N. Labadi, C. Prins, and M. Reghioui

all possible moves are evaluated and the least-cost one is executed to obtain the
next solution on the path. This new solution is immediately decoded with Split.

It is well-known that the PR mechanism alone provides few improved solu-
tions: it must be helped by a local search. However, consecutive solutions on
the path often lead to the same local optimum because their structures are too
close. For the CARPTW, the local search already described for the GRASP is
applied only every λ iterations, λ being a given parameter. This accelerates the
path relinking with a negligible loss in solution quality.

3.3 Integrating GRASP and PR

Resende and Ribeiro [21] describe two main ways of combining GRASP and PR.
The first one (external PR) is to use PR for post-optimization, on a small pool
of elite solutions collected during the GRASP. The second one (internal PR) is

Algorithm 3. GRASP with internal PR for the CARPTW
1: iter := 0
2: repeat
3: iter := iter + 1
4: if iter ≤ maxiter/2 then
5: H1(S)
6: else
7: H2(S)
8: end if
9: LocalSearch(S)

10: if iter = 1 then
11: P := {S}; S∗ := S; fmax := f(S)
12: else
13: select any T in arg max {D(S, X) : X ∈ P}
14: k := 0
15: Q := S
16: while Q �= T do
17: MoveOnPath(Q)
18: k := k + 1
19: if (k mod λ) = 0 then
20: LocalSearch(Q)
21: end if
22: if |P| < ρ then
23: P := P∪ {Q}
24: else if f(Q) < fmax then
25: select any Y in arg min {D(Q, X) : X ∈ P ∧ f(X) > f(Q)}
26: P := (P \{Y }) ∪ {Q}
27: update best solution S∗ and worst cost fmax

28: end if
29: end while
30: end if
31: until (iter = maxiter) or (f(S∗) = LB)

GRASP with Path Relinking for the CARP with Time Windows 123

Algorithm 4. GRASP with external PR for the CARPTW
1: iter := 0
2: repeat
3: iter := iter + 1
4: if iter ≤ maxiter/2 then
5: H1(S)
6: else
7: H2(S)
8: end if
9: LocalSearch(S)

10: if iter = 1 then
11: P := {S}; S∗ := S; fmax := f(S)
12: else if |P| < ρ then
13: P := P∪ {Q}
14: else if f(Q) < fmax then
15: select any Y in arg min {D(Q, X) : X ∈ P ∧ f(X) > f(Q)}
16: P := (P \{Y }) ∪ {Q}
17: update best solution S∗ and worst cost fmax

18: end if
19: until (iter = maxiter) or (f(S∗) = LB)
20: for each pair (S,T) of distinct solutions of P do
21: k := 0
22: Q := S
23: while (Q �= T) and (f(S∗) �= LB) do
24: MoveOnPath(Q)
25: k := k + 1
26: if (k mod λ) = 0 then
27: LocalSearch(Q)
28: end if
29: update best solution S∗

30: end while
31: end for

to apply PR to each local optimum during the GRASP, by exploring the path
which links it to an elite solution randomly chosen in the pool.

The GRASP with internal PR is sketched in Algorithm 3. It works on a pool
P limited to ρ solutions. In the first GRASP iteration, the pool is initialized
with the first solution. In each subsequent iteration, the PR generates a path
between the incumbent GRASP solution S and the solution T most different
from S in P .

The incumbent solution Q on the trajectory is modified by MoveOnPath. This
procedure evaluates all ways of moving or inverting a block in Q and performs
the least-cost move among the ones which reduce the distance between Q and
T . Remember that distance computations consider solutions encoded as strings
without delimiters. The string corresponding to one detailed solution is obtained
by concatenating the sequences of arcs traversed by the trips. Conversely, a string

124 N. Labadi, C. Prins, and M. Reghioui

can be decoded using the Split procedure. These conversions are not detailed in
Algorithm 3, to avoid overloading its general structure.

The counter k counts the solutions generated along the path. As explained in
the previous subsection, the local search is applied only every λ solutions. If P
has not yet reached its nominal size ρ, the intermediate solution Q is added to
the pool. Otherwise, Q enters the pool only if it is better than the worst solution
in P . fmax denotes the cost of this worst solution. To increase pool diversity, the
solution Y most similar to Q (in terms of distance) is replaced. This solution is
selected among the solutions of P outperformed by Q. Note that the best pool
solution S∗ is preserved or improved, but never degraded.

The GRASP with external PR is detailed in Algorithm 4. PR is applied to
the pool P of elite solutions obtained at the end of the GRASP iterations. This
pool contains the best and most diverse GRASP solutions.

All pairs (S, T) of solutions in pool P are combined using PR. To preserve
S for the next iterations, a copy of S is assigned to Q, then Q is modified by
MoveOnPath to explore the path between S and T . As for the internal PR,
local search is applied periodically on solutions generated along the path. If a
new best solution is produced, S∗ is updated. The algorithm stops if the lower
bound is reached in the GRASP iterations or in the PR part, and returns the
best solution S∗.

4 Computational Results

4.1 Implementation and Instances

Our algorithms were implemented in Delphi and executed on a 3 GHz PC. They
were evaluated first on 3 sets of CARPTW problems A, B, C proposed by Wøhlk
[23] and containing 8 instances each. The number of nodes ranges from 10 to 60,
the number of edges m from 15 to 90 and the number of required edges τ from 11
to 81. These sets mainly differ in the width of their time windows, which is tight
for set A (between 5 and 20 time units), medium for B (15-30 time units) and
wider for C (30-45). The GRASPs were compared to the best heuristic proposed
by Wøhlk, the Preferable Neighbor Heuristic (PNH), and to her lower bound
obtained by column generation.

The efficiency of the GRASPs was also appraised for the CARP, although
the algorithms were not designed for problems without time windows. We wish
to underline here that no published paper dealing with the VRPTW provides
results for the VRP. It is even well known that the most difficult VRPTW
instances for exact algorithms are the ones that are closest to a VRP, i.e. with
the widest windows.

The three sets of standard CARP instances used can be downloaded at
http://www.uv.es/∼belengue/carp.html. The 23 gdb files have 7 to 27 nodes
and 11 to 55 edges, all required. The 34 val files have 24 to 50 nodes and 34 to
97 edges, all required. The last set (egl files) comprises 24 larger instances with
77 to 140 nodes, 98 to 190 edges, and 51 to 190 required edges.

GRASP with Path Relinking for the CARP with Time Windows 125

The GRASPs were compared to three state-of-the-art metaheuristics for the
CARP: the memetic algorithm from Lacomme et al. [15], the tabu search from
Hertz et al. [11] and the very recent tabu search described by Brandão and
Eglese [3]. These algorithms are respectively called MA, TSH and TSB in the
sequel. We have also evaluated the deviations to the most recent lower bounds,
compiled by Brandão and Eglese.

4.2 Evaluation Method

In order to have a uniform comparison, all algorithms were evaluated with
maxiter = 500 iterations. The first step consisted of evaluating the greedy ran-
domized heuristics RPS (with k = 5), RR, RT and RTF without the local search.
The giant tours produced by RR, RT and RTF were partitioned using either the
basic splitting algorithm (Split) or its version with rotations (Split-Shift). RPS
directly generates a CARPTW solution, but we observed a significant improve-
ment if the resulting trips are concatenated to get one giant tour which is finally
split to get a definitive CARPTW solution. This is why the solutions of RPS are
re-evaluated by Split or Split-Shift, like the other greedy heuristics.

In a second step, we added local improvement to get a basic GRASP without
PR. The goal of these tests was to evaluate the gain brought by the local search
and to select the greedy randomized heuristics which benefit best from local
improvement. The aim of the third step was to reinforce the best GRASP by
calling two heuristics instead of one, like in Algorithm 2. Finally, the best GRASP
with two heuristics was strengthened even further by adding either an internal
or external PR. The two kinds of PR use a pool size ρ = 8 and local search is
applied every λ = 2 solutions on PR trajectories for an internal PR and every
λ = 1 for an external one.

4.3 Results for CARPTW Instances

For the 24 CARPTW instances, Table 1 summarizes the results obtained by each
greedy randomized heuristic, followed by Split or Split-Shift and improved or not
by local search. The selected performance indicators are the average deviation to
Wøhlk’s lower bound in percent, the worst deviation to this bound, the average
running time in seconds and the number of proven optima (when the bound is
reached). The greedy heuristic RTF with its flower-shaped giant tours gives the
worst results: due to time windows, the splitting points are not often close to
the depot (see Sect. 2.1). The three other heuristics provide very similar results.
Better CARPTW solutions are obtained if the giant tours are evaluated using
Split-Shift instead of Split. Of course, adding the local search brings a strong
improvement. The best simple GRASP, based on RT, has an average solution
gap below 4% and is able to solve one quarter of instances to optimality.

Table 2 illustrates the kind of synergy obtained by using two greedy random-
ized heuristics in the best simple GRASP: by combining the two best heuristics
RR and RT, two more optima are obtained and the average deviation to the
lower bound drops to 3.66%.

126 N. Labadi, C. Prins, and M. Reghioui

Table 1. Impact of basic components for the CARPTW

RPS RR RT RTF
Avg. dev. to LB (%) 25.48 25.94 25.72 28.41

Heuristic + Split Worst dev. to LB (%) 55.67 56.06 55.07 57.65
Time (s) 0.07 0.06 0.05 0.04
Nb of optima 0 1 0 0
Avg. dev. to LB (%) 22.52 22.73 22.47 24.83

Heuristic + Split-Shift Worst dev. to LB (%) 47.51 47.12 49.11 48.31
Time (s) 0.08 0.08 0.07 0.05
Nb of optima 0 1 0 0
Avg. dev. to LB (%) 4.24 3.96 3.84 4.83

Heuristic + Split-Shift Worst dev. to LB (%) 16.30 14.71 17.17 16.90
+ local search (GRASP) Time (s) 7.10 6.43 6.31 4.54

Nb of optima 3 6 6 4

Table 2. Combination of heuristics in the best simple GRASP (CARPTW)

RR RT RR+RT
Avg. dev. to LB (%) 3.96 3.84 3.66
Worst dev. to LB (%) 14.71 17.17 17.10
Nb of optima 6 6 8

Table 3. Impact of PR on the best simple GRASP for the CARPTW

PR None Internal External
Avg. dev. to LB (%) 3.66 0.71 1.54
Worst dev. to LB (%) 17.10 8.35 11.73
Time (s) 7.82 79.02 30.06
Nb of optima 8 17 12

Table 3 gives a comparison between the results obtained by the best simple
GRASP and a GRASP with internal or external PR. The basic GRASP is very
fast but finds few optima. The PR brings a strong improvement at the expense
of a running time multiplied by 4 for an external PR and by 10 for an internal
one. Using PR inside the GRASP appears to be more effective but more time-
consuming than using it as post-optimization. In the first case, PR is applied
to each local optimum and the local search procedure is more frequently called.
However, priority was given to the most effective but slowest option, since Wøhlk
provides no running times for PNH.

A detailed comparison of our method with PNH is provided by Table 4. PNH
is a kind of two-phase heuristic column generation method. The first phase
generates a large set of promising feasible tours. Using a commercial IP solver
(CPLEX), the second phase solves a set covering problem defined by these routes.

GRASP with Path Relinking for the CARP with Time Windows 127

Table 4. Results for each CARPTW instance

Best
Instance n m τ LB PNH Grasp CPU GIPR CPU GIPR
A10A 10 15 11 107 *107 *107 0.00 *107 0.03 *107
A13A 13 23 22 202 *202 *202 0.17 *202 0.58 *202
A13B 13 23 22 171 173 175 1.31 *171 0.89 *171
A13C 13 23 22 163 *163 *163 0.22 *163 4.02 *163
A20B 20 31 29 260 264 264 0.98 *260 6.81 *260
A40C 40 69 63 660 *660 708 29.55 *660 152.58 *660
A40D 40 69 63 807 *807 852 27.23 815 265.78 *807
A60A 60 90 81 1822 *1822 1884 52.59 1837 247.24 1830
B10A 10 15 11 87 *87 *87 0.02 *87 0.05 *87
B13A 13 23 22 167 *167 *167 0.97 *167 0.39 *167
B13B 13 23 22 152 158 158 0.06 *152 0.44 *152
B13C 13 23 22 141 *141 143 1.13 *141 0.84 *141
B20B 20 31 29 214 *214 220 1.91 *214 2.64 *214
B40C 40 69 63 588 602 632 26.03 602 192.55 602
B40D 40 69 63 730 *730 777 26.05 *730 229.22 *730
B60A 60 90 81 1554 *1554 1644 28.73 1567 272.08 1565
C10A 10 15 11 73 *73 *73 0.02 *73 0.00 *73
C13A 13 23 22 142 148 *142 0.95 *142 0.53 *142
C13B 13 23 22 132 *132 *132 0.28 *132 0.51 *132
C13C 13 23 22 121 *121 123 0.27 *121 2.66 *121
C20B 20 31 29 186 *186 192 0.51 *186 1.22 *186
C40C 40 69 63 503 563 589 17.97 545 161.94 545
C40D 40 69 63 611 626 672 19.70 631 148.14 631
C60A 60 90 81 1283 *1283 1384 22.95 1289 205.77 1289
Average 1.20% 3.66% 10.82s 0.71% 79.02s 0.64%
Worst 11.92% 17.10% 52.59s 8.35% 272.08s 8.35%
Optima 17 8 17 18

The first four columns of Table 4 respectively indicate the instance name, then
the number of nodes, the number of edges and the number of tasks. The 5th and
6th columns show Wøhlk’s lower bound (LB) and the total distance obtained by
PNH. Remember that Wøhlk provides no running times. The four next columns
respectively represent the solution cost and the running time in seconds found
by the best simple GRASP of Table 3 (RR and RT heuristics, Split-Shift) and
by the same GRASP with internal PR (GIPR). The last column gives the best
cost achieved by the GRASP with PR using several settings of parameters. The
last rows give for each column the average value (a deviation to LB in % when
the column concerns solution costs), the worst value and the number of optima.

The GRASP with PR finds the same number of optimal solutions as PNH
(17 out of 24 instances) but displays a smaller deviation to the lower bound:
0.71% versus 1.2%. Four new optima are found (instances A13B, A20B, B13B,
C13A) and the best-known solution for C40C is improved. By modifying the
pool size and the periodicity of local search in the PR, another optimum was

128 N. Labadi, C. Prins, and M. Reghioui

achieved (A40D), reducing the average deviation to the lower bound to 0.64%.
The running times are irregular because all algorithms stop after a fixed number
of iterations or when they reach the lower bound.

4.4 Results for CARP Instances

In Table 5, the performances of the heuristics for the CARP are compared in the
same way as for the CARPTW. The comparison to select the best components is
based on the 34 val files. RTF seems to be the most appropriate for the CARP,
by achieving 16 optima and giving the best deviation to the lower bound: 5.72%.

Confirming the results achieved for the CARPTW, the GRASP performs bet-
ter when two greedy randomized heuristics are used. Table 6 gives some statistics
about the best combination obtained for the CARP, RPS with RTF. Compared
to a GRASP with RPS, the combination saves 0.59% and finds three additional

Table 5. Impact of basic components for the CARP (val files)

RPS RR RT RTF
Avg. dev. to LB (%) 7.65 7.27 7.21 5.72

Heuristic + Split Worst dev. to LB (%) 15.77 16.75 15.41 15.09
Time (s) 0.32 0.29 0.30 0.31
Nb of optima 0 0 1 1
Avg. dev. to LB (%) 6.21 5.94 5.80 4.55

Heuristic + Split-Shift Worst dev. to LB (%) 12.77 15.71 13.61 12.38
Time (s) 0.38 0.33 0.36 0.32
Nb of optima 0 1 2 2
Avg. dev. to LB (%) 1.77 1.95 1.80 1.42

Heuristic + Split-Shift Worst dev. to LB (%) 7.53 7.88 8.45 8.56
+ local search (GRASP) Time (s) 1.32 2.07 1.75 1.60

Nb of optima 14 14 14 16

Table 6. Combination of heuristics in the best simple GRASP (CARP)

RPS RTF RPS+RTF
Avg. dev. to LB (%) 1.77 1.42 1.18
Worst dev. to LB (%) 7.53 8.56 5.71
Nb of optima 14 16 17

Table 7. Impact of PR on the best simple GRASP for the CARP

PR None Internal External
Avg. dev. to LB (%) 1.18 0.40 0.57
Worst dev. to LB (%) 5.71 4.19 4.54
Time (s) 2.05 62.11 13.68
Nb of optima 17 27 26

GRASP with Path Relinking for the CARP with Time Windows 129

optima. Compared to a GRASP with the best heuristic (RTF), one more opti-
mum is found and the average deviation to the lower bound decreases by 0.24%.

Table 7 confirms our previous observations for the two ways of combining the
GRASP and the PR. Again, the addition of PR improves the GRASP significantly,
especially for the number of optimal solutions. Compared to the GRASP with
an external PR, the internal implementation finds one more optima and gives a
slightly better average deviation to the lower bound, but achieves its solutionsmore
slowly. Contrary to the CARPTW case, the external implementation was selected
for the CARP to offer a good tradeoff between speed and solution quality.

First, we compare our results to those obtained by TSH, TSB and MA on the
23 gdb files. In Table 8, the number of edges m is omitted because all edges are
required (m = τ). The column (LB) gives the best-known lower bounds listed in
[3]. The solution costs and the running times obtained with standard parameters
by TSH, TSB and MA are given by the next columns. The running time is scaled
for the 3 GHz Pentium-IV PC used for the GRASP. For TSB, we cannot be more
precise for the running times because Brandão and Eglese provide one decimal
only. The GRASP column concerns a GRASP with maxiter = 500, ρ = 8 and
using the two best heuristics RPS and RTF backed by Split-Shift. An external
PR with λ = 1 is added to this GRASP to obtain costs given by the GEPR
column. The last column provides the best cost found by this GRASP version,
using several settings of parameters.

The simple GRASP is not as good as TSH, TSB and MA in terms of average
deviation to the bound but it already outperforms TSH for the worst deviation
and it is much quicker than the other metaheuristics: 28 times faster than TS,
16 times faster than MA and 13 times faster than TSB. When PR is added, the
GRASP takes place between TSH and TSB, while remaining the fastest method
(4.4 times faster than the fastest reference method, TSB).

The same table format is used to present the results for val files in Tables 9
and 10, using the same parameters as for gdb files. Conclusions drawn for gdb
files remain valid but, this time, even the simple GRASP becomes competitive: it
outperforms TSH for the average and worst deviations to lower bound, and finds
the same number of optima. Concerning the running time, the basic GRASP can
find a solution in 2 seconds on average versus 29 seconds for TSH, 17 for MA
and 15 for the fastest reference metaheuristic (TSB).

The GRASP with PR finds 9 more optima than TSH and 2 less than MA and
TSB. Compared to the gdb instances the algorithm gets closer to MA and TSB
performance, while remaining faster than both methods. Using several settings
of parameters, it is able to retrieve all proven optima.

The egl instances are the largest and the hardest ones. The lower bounds are
seldom reached. The MA finds five optima, but TSH none. The parameters are
identical except in the PR where the size ρ of the pool of elite solutions is set to
4. For those files no running times are known for TSH.

Once again, the quality of the solutions obtained by the GRASP with PR are
better than those obtained by TSH, but not as good as those obtained by MA

130 N. Labadi, C. Prins, and M. Reghioui

T
ab

le
8.

C
om

pu
ta

ti
on

al
re

su
lt

s
fo

r
C

A
R

P
in

st
an

ce
s

–
gd

b
fil

es

B
es

t
F
ile

n
τ

L
B

T
SH

C
P

U
T

SB
C

P
U

M
A

C
P

U
G

ra
sp

C
P

U
G

E
P

R
C

P
U

G
E

P
R

gd
b1

12
22

31
6

*3
16

1.
45

*3
16

<
0.

1
*3

16
0.

00
*3

16
0.

00
*3

16
0.

02
*3

16
gd

b2
12

26
33

9
*3

39
2.

38
*3

39
<

0.
1

*3
39

0.
20

*3
39

0.
03

*3
39

0.
02

*3
39

gd
b3

12
22

27
5

*2
75

0.
03

*2
75

<
0.

1
*2

75
0.

03
*2

75
0.

00
*2

75
0.

00
*2

75
gd

b4
11

19
28

7
*2

87
0.

04
*2

87
<

0.
1

*2
87

0.
00

*2
87

0.
02

*2
87

0.
02

*2
87

gd
b5

13
26

37
7

*3
77

2.
57

*3
77

<
0.

1
*3

77
0.

05
*3

77
0.

03
*3

77
0.

03
*3

77
gd

b6
12

22
29

8
*2

98
0.

39
*2

98
<

0.
1

*2
98

0.
08

*2
98

0.
02

*2
98

0.
02

*2
98

gd
b7

12
22

32
5

*3
25

0.
00

*3
25

<
0.

1
*3

25
0.

02
*3

25
0.

02
*3

25
0.

00
*3

25
gd

b8
27

46
34

8
35

2
28

.0
4

*3
48

1.
2

35
0

18
.3

1
35

7
0.

11
35

1
1.

66
*3

48
gd

b9
27

51
30

3
31

7
24

.7
8

*3
03

20
.3

*3
03

3.
26

31
3

1.
77

30
9

5.
55

*3
03

gd
b1

0
12

25
27

5
*2

75
0.

71
*2

75
<

0.
1

*2
75

0.
03

*2
75

0.
00

*3
75

0.
02

*3
75

gd
b1

1
22

45
39

5
*3

95
1.

05
*3

95
<

0.
1

*3
95

0.
58

*3
95

0.
36

*3
95

0.
34

*3
95

gd
b1

2
13

23
45

8
*4

58
9.

48
*4

58
0.

6
*4

58
4.

50
*4

58
0.

14
*4

58
0.

12
*4

58
gd

b1
3

10
28

53
6

54
4

1.
11

54
0

3.
7

*5
36

3.
41

54
4

0.
03

54
4

0.
05

54
4

gd
b1

4
7

21
10

0
*1

00
0.

22
*1

00
<

0.
1

*1
00

0.
02

*1
00

0.
00

*1
00

0.
00

*1
00

gd
b1

5
7

21
58

*5
8

0.
00

*5
8

<
0.

1
*5

8
0.

00
*5

8
0.

00
*5

8
0.

00
*5

8
gd

b1
6

8
28

12
7

*1
27

0.
78

*1
27

<
0.

1
*1

27
0.

03
*1

27
0.

11
*1

27
0.

11
*1

27
gd

b1
7

8
28

91
*9

1
0.

00
*9

1
<

0.
1

*9
1

0.
02

*9
1

0.
00

*9
1

0.
00

*9
1

gd
b1

8
9

36
16

4
*1

64
0.

13
*1

64
<

0.
1

*1
64

0.
05

*1
64

0.
00

*1
64

0.
00

*1
64

gd
b1

9
8

11
55

*5
5

0.
09

*5
5

<
0.

1
*5

5
0.

00
*5

5
0.

00
*5

5
0.

00
*5

5
gd

b2
0

11
22

12
1

*1
21

4.
37

*1
21

<
0.

2
*1

21
0.

15
*1

21
0.

16
*1

21
0.

16
*1

21
gd

b2
1

11
33

15
6

*1
56

0.
52

*1
56

<
0.

1
*1

56
0.

08
*1

56
0.

33
*1

56
0.

33
*1

56
gd

b2
2

11
44

20
0

*2
00

1.
55

*2
00

<
0.

1
*2

00
1.

54
20

1
0.

00
*2

00
1.

39
*2

00
gd

b2
3

11
55

23
3

23
5

15
.8

0
23

5
17

.4
*2

33
23

.5
3

23
5

0.
25

23
5

0.
25

23
5

A
ve

ra
ge

0.
35

%
4.

15
s

0.
07

%
1.

95
s

0.
02

%
2.

43
s

0.
38

%
0.

15
s

0.
23

%
0.

44
s

0.
10

%
W

or
st

4.
62

%
28

.0
4s

0.
86

%
20

.3
0s

0.
57

%
23

.5
3s

3.
30

%
1.

77
s

1.
98

%
5.

55
s

1.
49

%
O

pt
im

a
19

21
22

18
19

21

GRASP with Path Relinking for the CARP with Time Windows 131

T
ab

le
9.

C
om

pu
ta

ti
on

al
re

su
lt

s
fo

r
C

A
R

P
in

st
an

ce
s

–
va

l
fil

es

B
es

t
F
ile

n
τ

L
B

T
SH

C
P

U
T

SB
C

P
U

M
A

C
P

U
G

ra
sp

C
P

U
G

E
P

R
C

P
U

G
E

P
R

va
l1

a
24

39
17

3
*1

73
0.

01
*1

73
<

0.
1

*1
73

0.
00

*1
73

0.
05

*1
73

0.
05

*1
73

va
l1

b
24

39
17

3
*1

73
4.

26
*1

73
0.

7
*1

73
3.

69
17

9
0.

02
*1

73
0.

02
*1

73
va

l1
c

24
39

24
5

*2
45

42
.8

5
*2

45
9.

4
*2

45
13

.1
8

*2
45

0.
67

*2
45

0.
61

*2
45

va
l2

a
24

34
22

7
*2

27
0.

08
*2

27
<

0.
1

*2
27

0.
02

*2
27

0.
00

*2
27

0.
02

*2
27

va
l2

b
24

34
25

9
26

0
5.

99
*2

59
0.

2
*2

59
0.

10
*2

59
0.

19
*2

59
0.

17
*2

59
va

l2
c

24
34

45
7

49
4

14
.5

6
*4

57
6.

1
*4

57
10

.0
0

46
5

0.
14

46
3

2.
19

*4
57

va
l3

a
24

35
81

*8
1

0.
35

*8
1

<
0.

1
*8

1
0.

02
*8

1
0.

00
*8

1
0.

00
*8

1
va

l3
b

24
35

87
*8

7
1.

28
*8

7
<

0.
1

*8
7

0.
00

*8
7

0.
53

*8
7

0.
48

*8
7

va
l3

c
24

35
13

8
*1

38
19

.1
5

*1
38

1.
0

*1
38

12
.9

8
*1

38
0.

62
*1

38
0.

55
*1

38
va

l4
a

41
69

40
0

*4
00

13
.0

2
*4

00
0.

3
*4

00
0.

33
*4

00
1.

92
*4

00
1.

73
*4

00
va

l4
b

41
69

41
2

41
6

34
.7

8
*4

12
4.

3
*4

12
0.

56
*4

12
2.

69
*4

12
2.

42
*4

12
va

l4
c

41
69

42
8

45
3

32
.2

1
*4

28
29

.6
*4

28
8.

79
44

0
3.

05
*4

28
31

.6
1

*4
28

va
l4

d
41

69
52

6
55

6
10

7.
38

53
0

85
.8

54
1

47
.4

7
54

6
2.

47
53

8
30

.4
7

53
6

va
l5

a
34

65
42

3
*4

23
1.

75
*4

23
0.

2
*4

23
0.

86
*4

23
0.

61
*4

23
0.

56
*4

23
va

l5
b

34
65

44
6

44
8

19
.0

3
*4

46
<

0.
1

*4
46

0.
48

*4
46

0.
39

*4
46

0.
36

*4
46

va
l5

c
34

65
47

3
47

6
24

.4
9

47
4

8.
3

47
4

46
.4

4
47

4
2.

11
47

4
1.

92
47

4
va

l5
d

34
65

57
3

60
7

10
3.

03
58

3
57

.2
58

1
41

.7
2

60
5

1.
44

59
9

13
.9

7
58

5
va

l6
a

31
50

22
3

*2
23

1.
79

*2
23

1.
3

*2
23

0.
08

*2
23

0.
02

*2
23

0.
02

*2
23

va
l6

b
31

50
23

3
24

1
12

.3
9

*2
33

9.
9

*2
33

30
.9

6
*2

33
0.

78
*2

33
0.

70
*2

33
va

l6
c

31
50

31
7

32
9

39
.1

6
*3

17
17

.9
*3

17
24

.0
1

32
3

0.
47

*3
17

10
.3

0
*3

17
va

l7
a

40
66

27
9

*2
79

3.
03

*2
79

0.
8

*2
79

0.
91

*2
79

0.
48

*2
79

0.
44

*2
79

va
l7

b
40

66
28

3
*2

83
0.

01
*2

83
0.

4
*2

83
0.

20
*2

83
0.

05
*2

83
0.

05
*2

83
va

l7
c

40
66

33
4

34
3

55
.8

3
*3

34
28

.9
*3

34
46

.5
1

34
0

2.
25

33
5

14
.5

8
*3

34
va

l8
a

30
63

38
6

*3
86

1.
77

*3
86

0.
2

*3
86

0.
30

*3
86

0.
59

*3
86

0.
55

*3
86

va
l8

b
30

63
39

5
40

1
37

.4
5

*3
95

1.
4

*3
95

4.
57

*3
95

3.
22

*3
95

2.
94

*3
95

va
l8

c
30

63
51

8
53

3
67

.7
7

52
9

43
.4

52
7

32
.8

5
54

7
1.

84
54

0
21

.5
9

53
1

132 N. Labadi, C. Prins, and M. Reghioui

T
ab

le
10

.
C

om
pu

ta
ti

on
al

re
su

lt
s

fo
r

C
A

R
P

in
st

an
ce

s
–

va
l
fil

es
(c

on
ti

nu
ed

)

B
es

t
F
ile

n
τ

L
B

T
SH

C
P

U
T

SB
C

P
U

M
A

C
P

U
G

ra
sp

C
P

U
G

E
P

R
C

P
U

G
E

P
R

va
l9

a
50

92
32

3
*3

23
13

.1
1

*3
23

<
0.

1
*3

23
8.

41
32

5
6.

27
*3

23
10

.1
7

*3
23

va
l9

b
50

92
32

6
32

9
27

.5
3

*3
26

0.
4

*3
26

13
.5

1
33

0
5.

48
*3

26
96

.2
2

*3
26

va
l9

c
50

92
33

2
*3

32
25

.9
5

*3
32

0.
3

*3
32

32
.7

3
33

4
5.

53
*3

32
62

.2
0

*3
32

va
l9

d
50

92
38

5
40

9
16

2.
42

39
1

47
.1

39
1

97
.0

6
40

7
7.

41
40

1
12

.3
9

39
3

va
l1

0a
50

97
42

8
*4

28
2.

54
*4

28
2.

5
*4

28
11

.7
1

43
0

5.
11

*4
28

11
.0

0
*4

28
va

l1
0b

50
97

43
6

*4
36

8.
47

*4
36

1.
4

*4
36

2.
15

43
8

1.
33

*4
36

24
.4

8
*4

36
va

l1
0c

50
97

44
6

45
1

42
.9

7
*4

46
5.

8
*4

46
7.

95
44

7
6.

23
*4

46
26

.3
7

*4
46

va
l1

0d
50

97
52

5
54

4
71

.8
6

53
0

17
0.

1
53

0
98

.8
6

54
6

5.
72

53
7

10
4.

19
53

0
A

ve
ra

ge
1.

59
%

29
.3

6s
0.

21
%

15
.7

6
0.

26
%

17
.6

3s
1.

18
%

2.
05

s
0.

57
%

13
.6

8s
0.

29
%

W
or

st
8.

10
%

16
2.

42
s

2.
12

%
17

0.
10

s
2.

85
%

98
.8

6s
5.

71
%

7.
41

s
4.

54
%

10
4.

19
s

2.
51

%
O

pt
im

a
17

28
28

17
26

28

GRASP with Path Relinking for the CARP with Time Windows 133

T
ab

le
11

.
C

om
pu

ta
ti

on
al

re
su

lt
s

fo
r

C
A

R
P

in
st

an
ce

s
–

eg
l
fil

es

B
es

t
F
ile

n
m

τ
L
B

T
SH

T
SB

C
P

U
M

A
C

P
U

G
ra

sp
C

P
U

G
E

P
R

C
P

U
G

E
P

R
eg

l-
e1

-A
77

98
51

35
48

36
25

*3
54

8
17

.2
*3

54
8

34
.1

4
35

87
1.

03
*3

54
8

2.
63

*3
54

8
eg

l-
e1

-B
77

98
51

44
98

45
32

45
33

21
.8

*4
49

8
31

.9
4

45
43

1.
89

45
43

1.
84

45
25

eg
l-
e1

-C
77

98
51

55
66

56
63

55
95

18
.8

55
95

32
.7

2
57

61
0.

44
56

87
2.

76
56

40
eg

l-
e2

-A
77

98
72

50
18

52
33

*5
01

8
49

.5
*5

01
8

70
.1

5
50

32
2.

69
50

27
9.

84
*5

01
8

eg
l-
e2

-B
77

98
72

63
05

64
22

63
43

52
.0

63
40

70
.5

3
64

92
3.

25
64

46
10

.4
8

63
51

eg
l-
e2

-C
77

98
72

82
34

86
03

83
47

61
.4

84
15

59
.6

0
86

26
0.

27
85

74
9.

81
83

93
eg

l-
e3

-A
77

98
87

58
98

59
07

59
02

60
.3

*5
89

8
11

1.
26

59
38

0.
26

59
33

25
.1

7
59

02
eg

l-
e3

-B
77

98
87

77
04

79
21

78
16

88
.5

78
22

11
7.

39
79

53
4.

11
78

53
27

.9
2

78
23

eg
l-
e3

-C
77

98
87

10
16

3
10

80
5

10
30

9
10

4.
8

10
43

3
94

.8
7

10
57

7
4.

23
10

57
7

4.
25

10
38

6
eg

l-
e4

-A
77

98
98

64
08

64
89

64
73

10
5.

7
64

61
13

4.
18

66
63

8.
67

65
06

36
.2

7
64

76
eg

l-
e4

-B
77

98
98

88
84

92
16

90
63

13
0.

7
90

21
14

3.
83

93
79

11
.8

9
92

76
41

.9
4

91
01

eg
l-
e4

-C
77

98
98

11
42

7
11

82
4

11
62

7
14

7.
1

11
77

9
11

6.
03

11
94

6
9.

72
11

94
6

9.
80

11
79

8
eg

l-
s1

-A
14

0
19

0
75

50
18

51
49

50
72

51
.9

*5
01

8
95

.9
1

51
27

1.
97

51
27

1.
98

50
19

eg
l-
s1

-B
14

0
19

0
75

63
84

66
41

63
88

63
.0

64
35

95
.9

8
66

21
0.

80
65

66
6.

08
64

90
eg

l-
s1

-C
14

0
19

0
75

84
93

86
87

85
35

61
.8

85
18

76
.1

1
86

74
5.

11
85

85
10

.9
7

85
61

eg
l-
s2

-A
14

0
19

0
14

7
98

24
10

37
3

10
03

8
30

8.
2

99
95

40
1.

98
10

29
1

31
.1

3
10

29
1

31
.3

6
10

15
5

eg
l-
s2

-B
14

0
19

0
14

7
12

96
8

13
49

5
13

17
8

34
9.

7
13

17
4

34
9.

63
13

61
5

39
.0

5
13

60
2

15
6.

39
13

44
1

eg
l-
s2

-C
14

0
19

0
14

7
16

35
3

17
12

1
16

50
5

40
2.

3
16

79
5

34
3.

39
17

22
7

37
.1

7
17

06
4

17
3.

83
16

80
9

eg
l-
s3

-A
14

0
19

0
15

9
10

14
3

10
54

1
10

45
1

43
2.

3
10

29
6

49
2.

15
10

62
5

43
.6

7
10

53
2

22
7.

11
10

46
9

eg
l-
s3

-B
14

0
19

0
15

9
13

61
6

14
29

1
13

98
1

44
5.

1
14

05
3

48
9.

17
14

36
3

39
.7

3
14

30
0

21
9.

03
13

98
0

eg
l-
s3

-C
14

0
19

0
15

9
17

10
0

17
78

9
17

34
6

46
5.

2
17

29
7

40
1.

95
18

01
8

34
.9

7
17

85
4

27
7.

37
17

59
5

eg
l-
s4

-A
14

0
19

0
19

0
12

14
3

13
03

6
12

46
2

54
3.

5
12

44
2

70
6.

89
12

94
1

52
.4

7
12

66
5

28
6.

09
12

70
8

eg
l-
s4

-B
14

0
19

0
19

0
16

09
3

16
92

4
16

49
0

74
4.

6
16

53
1

65
7.

55
17

08
8

25
.7

7
16

77
2

27
6.

77
16

63
8

eg
l-
s4

-C
14

0
19

0
19

0
20

37
5

21
48

6
20

73
3

72
8.

9
20

83
2

68
7.

32
21

46
9

67
.4

8
21

35
0

30
7.

62
21

08
5

A
ve

ra
ge

3.
63

%
1.

31
%

22
7.

29
s

1.
39

%
24

2.
28

s
3.

90
%

17
.8

2s
3.

06
%

89
.8

9s
1.

99
%

W
or

st
7.

35
%

3.
04

%
74

4.
60

s
3.

21
%

70
6.

89
s

6.
57

%
67

.4
8s

5.
02

%
30

7.
62

s
4.

65
%

O
pt

im
a

0
2

5
0

1
2

134 N. Labadi, C. Prins, and M. Reghioui

and TSB. The results for egl files are given by Table 11. The method reaches
one optimum (egl-e1-A) using standard parameters, and achieves another one
(egl-e2-A) using different settings. The computing times are still better than
those needed by MA (14 times smaller) and TSB (13 times).

5 Conclusions

A GRASP for the very hard CARPTW has been reinforced by using two different
randomized heuristics and a PR based on a distance measure in solution space.
The best resulting algorithm competes with the best existing heuristic: 17 out
of 24 instances are solved to optimality and the gap to lower bounds is less than
1%. Moreover, it is relatively simple and requires only 4 parameters.

This algorithm is still very effective when time windows are removed. It com-
petes with state-of-the-art metaheuristics for the CARP, while being much faster.

The path relinking process considers solutions encoded without trip delimiters
and evaluated using a tour splitting procedure. Using any distance for permuta-
tions, the exploration of a trajectory consists of generating a sequence of giant
tours with a decreasing distance to the giant tour representing the target solu-
tion. This technique is very flexible and has the potential to be easily adapted
to other capacitated vehicle routing problems, provided the underlying splitting
problem stays polynomial.

Like in the VRPTW, the time windows considered concern the service: it is
still possible to traverse an edge without servicing it, inside its window. Some-
times, works in a street (e.g. repairing an optic fiber) prevent deadheading traver-
sals too. Our goal is now to tackle such cases, in which the shortest path between
two edges is affected by the time windows of traversed edges.

References

1. Beasley, J.E.: Route-first cluster-second methods for vehicle routing. Omega 11,
403–408 (1983)

2. Beullens, P., Muyldermans, L., Cattrysse, D., Van Oudheusden, D.: A guided lo-
cal search heuristic for the capacitated arc routing problem. European Journal of
Operational Research 147, 629–643 (2003)

3. Brandão, J., Eglese, R.: A deterministic tabu search algorithm for the capacitated
arc routing problem. Computers & Operations Research 35, 1112–1126 (2008)

4. Cordeau, J.F., Gendreau, M., Hertz, A., Laporte, G., Sormany, J.S.: New heuris-
tics for the vehicle routing problem. In: Langevin, A., Riopel, D. (eds.) Logistic
Systems: Design and Optimization, pp. 279–298. Wiley, Chichester (2005)

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT
Press, Cambridge (1990)

6. Feo, T.A., Bard, J.: Flight scheduling and maintenance base planning. Management
Science 35, 1415–1432 (1989)

7. Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedures. Jour-
nal of Global Optimization 6, 109–133 (1995)

8. Glover, F., Laguna, M.: Tabu search. In: Reeves, C.R. (ed.) Modern Heuristic
Techniques for Combinatorial Problems, pp. 70–150. Blackwell, Oxford (1993)

GRASP with Path Relinking for the CARP with Time Windows 135

9. Golden, B.L., DeArmon, J.S., Baker, E.K.: Computational experiments with al-
gorithms for a class of routing problems. Computers & Operations Research 10,
47–59 (1983)

10. Guéguen, C.: Exact solution methods for vehicle routing problems. PhD thesis,
Central School of Paris, France (1999) (in French)

11. Hertz, A., Laporte, G., Mittaz, M.: A tabu search heuristic for the capacitated arc
routing problem. Operations Research 48, 129–135 (2000)

12. Hertz, A., Mittaz, M.: A variable neighborhood descent algorithm for the undi-
rected capacitated arc routing problem. Transportation Science 35, 425–434 (2001)

13. Ho, S.C., Gendreau, M.: Path relinking for the vehicle routing problem. Journal of
Heuristics 12, 55–72 (2006)

14. Kindervater, G.A.P., Savelsbergh, M.W.P.: Vehicle routing: Handling edge ex-
changes. In: Aarts, E.H.L., Lenstra, J.K. (eds.) Local Search in Combinatorial
Optimization, pp. 337–360. Wiley, Chichester (1997)

15. Lacomme, P., Prins, C., Ramdane-Chérif, W.: Competitive memetic algorithms for
arc routing problems. Annals of Operations Research 131, 159–185 (2004)

16. Mart́ı, R., Laguna, M., Campos, V.: Scatter search vs. genetic algorithms: An ex-
perimental evaluation with permutation problems. In: Rego, C., Alidaee, B. (eds.)
Metaheuristic Optimization via Memory and Evolution: Tabu Search and Scatter
Search, pp. 263–283. Kluwer, Boston (2005)

17. Mester, D., Bräysy, O.: Active guided evolution strategies for large-scale vehicle
routing problems with time windows. Computers & Operations Research 32, 1593–
1614 (2005)

18. Mullaseril, P.A.: Capacitated rural postman problem with time windows and split
delivery. PhD thesis, MIS Department, University of Arizona (1996)

19. Pacheco, J., Mart́ı, R.: Tabu search for a multi-objective routing problem. Journal
of the Operational Research Society 57, 29–37 (2006)

20. Pearn, W.L.: Augment-insert algorithms for the capacitated arc routing problem.
Computers & Operations Research 18, 189–198 (1991)

21. Resende, M.G.C., Ribeiro, C.C.: GRASP with path-relinking: recent advances
and applications. In: Ibaraki, T., Nonobe, K., Yagiura, M. (eds.) Metaheuristics:
Progress as Real Problem Solvers, pp. 29–63. Springer, Berlin (2005)

22. Tagmouti, M., Gendreau, M., Potvin, J.-Y.: Arc routing problems with time-
dependent service costs. European Journal of Operational Research 181, 30–39
(2007)

23. Wøhlk, S.: Contributions to Arc Routing. PhD thesis, Faculty of Social Sciences,
University of Southern Denmark (2005)

A Scatter Search Algorithm for the Split
Delivery Vehicle Routing Problem�

Vicente Campos, Angel Corberán, and Enrique Mota

Dept. Estad́ıstica i Investigació Operativa, Universitat de Valéncia, Dr. Moliner 50,
46100 Valéncia, Spain
vicente.campos@uv.es, angel.corberan@uv.es, enrique.mota@uv.es

Summary. In this chapter we present a metaheuristic procedure constructed for the
special case of the Vehicle Routing Problem in which the demands of clients can be
split, i.e., any client can be serviced by more than one vehicle. The proposed algo-
rithm, based on the scatter search methodology, produces a feasible solution using the
minimum number of vehicles. The quality of the obtained results is comparable to the
best results known up to date on a set of instances previously published in the literature.

Keywords: Scatter search, Vehicle routing, Split delivery.

1 Introduction

In this chapter we consider a variant of the Vehicle Routing Problem (VRP)
in which the demand of any client can be serviced by more than one vehicle,
the Split Delivery Vehicle Routing Problem (SDVRP). This relaxation of the
classical VRP was first proposed by Dror and Trudeau ([9] and [10]), who showed
that important savings on the total solution cost could be obtained as well as a
reduction in the total number of vehicles used in the solution by allowing clients
to be serviced by more than one vehicle. They also showed that this problem is
also NP-hard. The SDVRP has received great attention in the last years.

Mullaseril, Dror and Leung [18] studied the problem of distributing feed to
cattle at a large livestock ranch in Arizona. They modeled this problem as an
arc routing one (in fact, as a Capacitated Rural Postman Problem with split
deliveries and time windows). The about 100.000 head of cattle are fed each day,
within a specified time window, by six trucks that deliver feed to the large pens
connected by a road network. Sometimes, the last pen on a route does not receive
its full load and another truck, servicing a different route, has to visit it again in
order to complete the load. The computational experiments showed that allowing
split deliveries produced a significant reduction in the total distance traveled by
the vehicles in most of the considered situations.
� A preliminary version of this work was published in: Cotta, C. and van Hemert, J.

(eds.), Evolutionary Computation in Combinatorial Optimization, Lecture Notes in
Computer Science 4446, pp. 121–129. Springer, Berlin (2007).

A. Fink and F. Rothlauf (Eds.): Advances in Computational Intelligence, SCI 144, pp. 137–152, 2008.
springerlink.com © Springer-Verlag Berlin Heidelberg 2008

138 V. Campos, A. Corberán, and E. Mota

In 1998, Sierksma and Tijssen [19] presented another application. The problem
was to schedule the helicopter flights from an airport near Amsterdam to 51 off-
shore platforms in the North Sea in order to exchange the employees, which work
every other week. A person leaving a platform is exchanged for another person
arriving for working at the same platform. The helicopters have a fixed capacity
and, because of fuel constraints, a maximum flying distance for each route. The
problem was modeled as a Split Delivery Vehicle Routing Problem, in which the
total number of exchanges at a given platform could be done by more than one
helicopter.

More details about the above applications, as well as some comments on their
resolution and results, can be found in the recent paper by Chen, Golden and
Wasil [6]. Moreover, that paper also mentions another interesting application by
Song, Lee and Kim [20] related to the distribution of newspapers from printing
plants to agents in Seoul (South Korea).

Dror, Laporte and Trudeau [8] proposed a branch and bound algorithm based
on an integer and linear SDVRP formulation, to which several classes of new
valid inequalities were added. The procedure was tested on three small instances
up to 20 clients and varying client demands. The SDVRP was studied from a
polyhedral point of view in [5]. Based on the partial description of the SDVRP
polyhedron, the same authors implemented a branch and cut algorithm capable
of solving some medium size instances up to 51 clients. The strengthened linear
relaxation produces a good lower bound to the optimal solution value.

In their original work, Dror and Trudeau ([9], [10]) propose a two stage proce-
dure that first obtains a feasible VRP solution and then improves it using specific
routines such as the route addition and k-split interchanges. The route addition
routine consists of creating a new route to service a client whose demand is split
in several routes if the total distance is reduced. A k-split interchange considers
a client i with demand di and removes i from all the routes that service it. Then,
the routine considers all subsets of routes having a “residual” capacity greater
than di and computes the total insertion cost of client i into all the routes of the
subset. Finally, the subset leading to the least insertion cost is chosen and the
interchange takes place. These basic but important procedures have also been
used in successive heuristic and metaheuristic procedures later on.

In [11], Frizzell and Giffin studied the SDVRP with time windows but on
a special network (the clients are located on a grid) and proposed a construc-
tive heuristic followed by some improvement procedures (1-0 exchanges and 1-1
interchanges) that will be described later.

A Tabu Search procedure was developed by Archetti, Hertz and Speranza
[1]. It produces an initial feasible solution using the GENIUS algorithm for the
TSP ([12]). In the Tabu Search phase moves are made according to two proce-
dures: one orders the routes servicing client i according to the saving obtained
by removing i, while the other looks for the “best neighbor” solution of the
current one. In a final and improvement phase, GENIUS is applied to each in-
dividual route. A variant of this algorithm (SPLITABU) consists of applying
2-opt and node interchange procedures each time the best solution encountered

A Scatter Search Algorithm for the Split Delivery Vehicle Routing Problem 139

so far is improved. This variant produces better results and is denoted as
SPLITABU-DT.

Archetti, Savelsbergh and Speranza [4] use the above Tabu Search procedure
to identify parts of the solution space that are likely to contain high quality
solutions. Once a set of promising routes is selected, an integer program (a route-
based formulation for the SDVRP) is run trying to obtain improved feasible
solutions.

In a recent paper, Chen, Golden and Wasil [6] propose a procedure that first
constructs a feasible VRP solution using the Clarke and Wright [7] savings algo-
rithm. The solution of an integer program provides then the optimal reallocation
of the endpoints of a route in order to maximize the total savings. The program
is run for a maximum time of T seconds, with a given neighbor list for each end-
point that is a function of the number of endpoints, and the best feasible solution
found is saved. Then, using the feasible solution as the initial one, a new program
is run, with a larger size for the neighbor list and a smaller limit for the running
time. To the final and best solution obtained, a variable length record-to-record
travel algorithm [16] that considers 1-0 exchanges, 1-1 interchanges and 2-opt
moves, is applied.

Before closing this introduction, we should mention some structural properties
of the problem. In [9] Dror and Trudeau showed that “if the cost matrix satisfies
the triangle inequality, then there exists an optimal solution to the SDVRP where
no two routes have more than one client with a split demand in common”.
Archetti, Savelsbergh and Speranza ([2]) define by ni the number of vehicles
servicing client i and by ni − 1 the number of splits at client i. Then they show
that when the cost matrix satisfies the triangle inequality there is an optimal
solution to the SDVRP where the total number of splits (the sum of the number
of splits of every client) is less than the number of routes.

Moreover, Archetti, Savelsbergh and Speranza addressed in [3] the question:
To split or not to split? They showed first that, assuming that all the distances
among clients and the depot satisfy the triangle inequality, the ratio between
the minimum number of routes required to satisfy the client demands in a VRP
solution over the minimum number in a SDVRP solution is always less than
or equal to 2. They also proved that this bound is tight. In what refers to the
ratio between optimal solution values, the same authors showed in [2] that the
same bound applies. So, allowing splitting the demands may produce important
savings both in the total number of vehicles used and in the total solution cost, as
already pointed out by Dror and Trudeau. Moreover, Archetti, Savelsbergh and
Speranza conducted an empirical study of the last mentioned ratio, as a function
of client locations and client demands, concluding: Cost reductions seem to be
due to the ability to reduce the number of routes, without depending on client
locations, and mainly depend on the relation between mean demand and vehicle
capacity and on the variance of the demands. They obtained the largest benefits
when the mean demand is greater than half the vehicle capacity but less than
three quarters of the vehicle capacity. Our own computational study also points
to this direction.

140 V. Campos, A. Corberán, and E. Mota

The chapter is organized as follows: In Sect. 2 the problem is defined and
some notation is presented. Section 3 describes the main features of the proposed
metaheuristic and in Sect. 4 we present the computational results. Conclusions
and future work are summarized in Sect. 5.

2 Problem Definition and Notation

The Vehicle Routing Problem with Split Demands is defined on an undirected
and complete graph G = (V, E), where V = {0, 1, 2, . . . , n} is the set of vertices
(vertex 0 denotes the depot and 1, . . . , n represent the set of clients). Each edge
e = (i, j) has an associated cost or distance ce between clients i and j. Moreover,
each vertex has a known demand di (d0 = 0) and there is a fleet of identical
vehicles of capacity Q located at the depot. A feasible solution consists of a set
of routes, each one beginning and ending at the depot, such that:

• The demand of every client is satisfied, and
• The sum of the demands serviced by any vehicle does not exceed its capacity

Q

The SDVRP version defined above is a difficult problem that presents an out-
standing characteristic that makes it different from the classical VRP: there is
always a feasible solution using the minimum number of vehicles k. It is easy to
see that this minimum number corresponds to the smallest integer greater than
or equal to

∑
i di/Q. This is not always true if the demand of a client can not

be split, since in this case the minimum number of vehicles corresponds to the
optimal solution of a Bin Packing Problem.

To the usual and explicit objective of minimizing the total solution cost, we
add the implicit one of minimizing the number of vehicles used in the solution.
We consider that this is a very important objective, since in most of the practi-
cal applications involving several vehicles there is a fixed cost associated to each
used vehicle. Moreover, the total fixed cost of a fleet is usually greater than the
total and variable cost of a feasible solution. This variable cost usually depends
on the total distance traveled by the fleet. Note that a term in the objective
function penalizing the excess of vehicles could be added, or bicriteria tech-
niques could also be taken into account, since it is possible in some instances to
decrease the total cost by increasing the number of vehicles. Instead we propose
a Scatter Search procedure, following the framework presented in [14] and [15],
which generates a population of feasible solutions with the minimum number of
vehicles.

3 A Scatter Search Procedure

In this section we describe the main features of a Scatter Search procedure de-
signed for the SDVRP. This is, as far as we know, the first time that such a
technique is applied to this routing problem. The overall procedure is outlined
in Fig. 1. Scatter Search is a population-based method that has been shown to

A Scatter Search Algorithm for the Split Delivery Vehicle Routing Problem 141

Population

RefSet

Diversification Generator

Repeat until |P|= PSize

Improvement

Solution Combination

Method

Feasibility

 +

 Improvement

Creation or Update of RefSet

Pairs not Combined before

Pool

Stop if RefSet is

unchanged or Max.

Iterations reached

Fig. 1. Scheme of a Scatter Search procedure

yield promising outcomes for solving hard combinatorial optimization problems.
The Scatter Search process tries to capture information not contained separately
in the original solutions, takes advantage of improving methods, and makes
use of strategy instead of randomization to carry out component steps. Our
implementation is based on the description given in Glover [14].

The procedure starts with the construction of an initial reference set of so-
lutions (RefSet) from a large set P of diverse solutions. The solutions in RefSet
are ordered according to quality, where the best solution is the first one in the
list. The search is then initiated by combining solutions in RefSet. Although the
method can use combinations of any number of solutions, we have restricted our
attention to combinations of two solutions. RefSet is updated with the newly cre-
ated solutions. If the new solution is good enough, it can immediately replace the
worst solution in RefSet (dynamic strategy) or be stored in a secondary set that
will be used to update RefSet when all possible combinations of solutions have
been performed (static strategy). In the last case, the new RefSet will contain
the best solutions among those in the old RefSet and in the secondary set. The
dynamic strategy changes RefSet very quickly and usually produces good solu-
tions in short times, while the static strategy can be slower but usually produces
better solutions. In our implementation we have used the dynamic strategy. The
procedure stops when, after combining all the solutions in RefSet, it remains

142 V. Campos, A. Corberán, and E. Mota

unchanged or a maximum number of iterations is reached. The main character-
istics and particularities introduced by the authors are briefly described in the
next subsections.

3.1 Creating a Population

We have adapted two standard VRP heuristic procedures to the split demands
case in order to obtain SDVRP feasible solutions. The first one, called here Big
Tour, uses the Lin and Kernighan [17] heuristic to build a giant tour through the
n clients and the depot. From this tour it is always possible to obtain k routes
and, thus, a feasible SDVRP solution: Let us first renumber the clients so that the
TSP tour is 0−1−2− . . .−(n−1)−n−0. The first vehicle leaves the depot using
edge (0, 1) and services, successively, clients 1, 2, . . . up to client i1 for which the
total demand serviced by this first route is at least equal to the vehicle capacity.
Client i1 is either completely serviced or its demand is split between routes 1
and 2. In the first case, edges (i1, 0) and (0, i1 + 1) are added, corresponding to
the last edge in route 1 and the first one in route 2. In the second case edge
(i1, 0) is added twice and route 2 continues using edge (i1, i1 + 1). The feasible
solution finally obtained satisfies the two structural properties mentioned in the
introduction, i.e., the total number of splits is less than the number of routes and
any two routes have, at most, one client in common. We can take into account
the difference between the total capacity kQ of the vehicles fleet and the total
demand of the clients and adjust the load in each vehicle to an average load so
that the solution finally obtained uses k balanced (in terms of load) routes. In
this way, we avoid obtaining a solution having k − 1 routes with load Q and a
last route with possibly a very small load.

The same Big Tour is used to generate additional solutions, all of them follow-
ing the same sequence of clients but starting each one at a different client, i.e.,
the second feasible solution (for instance) could use as the first edge in the first
route edge (0,2) and then edge (2,3) and so on. The last edge in route k would
then be edge (1,0). However, in order to obtain solutions that differ substantially,
the starting clients are selected in a nonconsecutive order.

The second procedure is a modified and accelerated version of the classical
Clarke and Wright parallel savings algorithm [7]. According to this procedure,
from an initial solution consisting of n return trips to each client, the best avail-
able saving, computed as sij = c0i +c0j −λcij , is used to merge the single routes
(0,i,0) and (0,j,0) into a new route (0,i,j,0) and the procedure is repeated until
no merge is feasible, in terms of vehicle capacity, or there are no more avail-
able savings. For each client, its neighborhood is computed as the subset of its
closest clients, and only these savings are calculated. We allow splitting the de-
mand of a client l only when the best available saving corresponds to merging
a given route r with a return trip from client l and the total demand exceeds
the vehicle capacity Q; in this case, part of the demand of client l is serviced in
route r and we maintain a return trip from client l with the unsatisfied demand.
In order to limit the complexity of the procedure, any client is serviced by, at
most, two vehicles. This procedure does not guarantee a feasible solution using

A Scatter Search Algorithm for the Split Delivery Vehicle Routing Problem 143

the minimum number of vehicles (k) but in all our computational experiences,
feasible solutions using k vehicles are obtained. In order to generate more than
one solution, we prohibit half of the savings used in a solution when computing
the next one. Savings are prohibited with probabilities directly proportional to
the frequency of use of each saving in the previously generated solutions.

Finally, we have also implemented a sequential version of the Clarke and
Wright savings algorithm [7] in which routes are generated one after the other.
Thus, the procedure has always just one active route which grows by adding new
clients either to the first serviced client or to the last one (the two “endpoints” of
the route). In this case, only the demand of the last client added to the route can
be split, but the number of vehicles that may service this client is not limited.
Savings are again computed, for a pair of clients i and j as sij = c0i + c0j − λcij

and, in both versions, different values of parameter λ are considered in order to
diversify the solutions. We have chosen λ = 1, 0.6 and 0.4.

3.2 Improving a Feasible Solution

A local search phase is applied to each solution in the original population in order
to reduce its cost, if possible. We have implemented procedures for client moves,
such as the 1-0 exchanges, tried first and consisting of shifting one client from
one route to another route, and 1-1 interchanges, consisting of interchanging one
client from a route with another client in another route. These moves are applied
to every non split client. We have also implemented 2-split changes, that take a
client out from every route visiting it and look for a pair of routes that, jointly,
could service its demand (2-split changes are a particular case of the k-split
changes, first introduced by Dror and Trudeau in [9]). Finally, 2-2 interchanges
are checked. With them, we try to interchange one edge of a route with another
from another route. When such improvements are no longer possible, the routes
in the solution are re-optimized using a 2-opt procedure or the more complex
Lin and Kernighan algorithm. The same procedures are applied to a feasible
solution entering the reference set, as described in the next subsection.

3.3 The Reference Set

The Psize feasible solutions in the population are ordered according to the cost
and b of them are selected to be in the reference set RefSet. One half corresponds
to the best feasible solutions and the remaining solutions add the necessary
diversity to this set, since they correspond to those solutions in the population
that are the most different when compared to the best ones. As a measure of
the difference between two solutions we compute the total number of edges in
one solution but not in the other. Each pair of solutions in the reference set is
combined to produce another solution that enters this set only when its cost,
after applying the improvement procedures, is lower than the cost of the worst
solution, which is then eliminated. Therefore, the cost is the criterion used in
the updating of RefSet. The overall procedure stops when, after every possible

144 V. Campos, A. Corberán, and E. Mota

combination (one iteration), no new feasible solution enters in the reference set
or a maximum number of iterations, previously fixed, is reached.

In our computational experiments, we have tested different population sizes
combined with the size of the Reference Set. As expected, the quality of the
solutions improves as Psize and b increase, although at cost of greater computing
times. Accordingly, we have chosen Psize = 150 and b = 25 as the final values
for the computational experiences and comparisons.

3.4 The Combination Method

We have devised a procedure that captures the essential characteristics of a
feasible SDVRP solution and tries to maintain those that could be satisfied by
the good solutions. In order to do that, for each solution in the reference set we
define a set of critical clients, consisting of:

1. all its split clients,
2. all the clients in routes with just 1 or 2 clients,
3. the client whose removal from a route produces the greatest saving cost, for

each route with at least 3 clients, and finally
4. every client such that at least one among its three closest neighbors belongs

to a different route.

When combining feasible solutions A and B in the reference set we consider,
in turn, a critical client in A, in classes 1 to 3 above, and we move this client,
thus modifying solution A, following the recommendation for this same client in
solution B. If it is a split client in B, we consider that there is no recommendation
and so we take the next critical client in A. If it is not, we consider its two
adjacent clients, say α and β, in B and we locate these clients in solution A. If
clients α and β are two consecutive clients in the same route in solution A, we
understand that solution B recommends to insert the critical client between α
and β; otherwise, the critical client is moved to the “best recommended” position,
i.e., inserted after client α or inserted before client β. In order to simplify the
combination procedure and since the moves already performed may produce a
route overload, to move a client to an already unfeasible route is prohibited.
Note that combining solutions B and A is also possible and produces a different
combination.

When all the critical clients of A have been considered, the combination
method has produced a new and maybe unfeasible solution because the load
in some routes can exceed the vehicle capacity Q. A routine is then applied
that considers some moves aimed at obtaining a feasible solution. The idea of
this routine is looking for clients in an unfeasible route that could be moved
completely to (or partially serviced by) another route in order to obtain feasible
routes.

Each time a feasible solution is obtained as a combination of two solutions
in the Reference Set, the improve procedures described in Sect. 3.2 are applied.
Once all the possible comparisons have been considered, if no new solution enters

A Scatter Search Algorithm for the Split Delivery Vehicle Routing Problem 145

the reference set, instead of finishing the overall procedure at this moment, we
augment the set of critical clients of each solution in RefSet by including those
in case 4 above and we run all the possible combinations once again. The new
neighborhood created for each solution replaces the usual rebuilding phase. If a
feasible solution enters now the Reference Set, the procedure continues, otherwise
we stop it. The procedure considers also the combinations already performed so
that repetitions are avoided and only pairs of feasible solutions not yet considered
are combined.

4 Computational Experiments

In this section we present the results obtained by the Scatter Search procedure
on a wide set of instances taken from the literature. They are compared with
the results obtained with the more relevant algorithms designed for solving the
SDVRP.

4.1 The Instances

In order to test their algorithm, Dror and Trudeau [9] selected three basic in-
stances with 75, 115 and 150 clients, with randomly generated demands from
six different scenarios, expressed as a fraction of the vehicle capacity. The same
pattern has been used since then, so most of the published and available test
instances are generated from known VRP instances, varying the demands of
clients. In two cases, as far as we know, other instances are proposed: in [3]
some of the Solomon instances are used and in [6] the authors propose new and
geometric instances. However the published computational results do not always
allow an easy comparison.

To study the computational behavior of our algorithm, we have generated the
same set of instances used by Archetti, Hertz and Speranza in [1]. Starting from
the VRP problems 1 to 5, 11 and 12 taken from [13], which have between 50
and 199 clients and satisfy the triangle inequality, the demands of customers
have been computed in the following way. First, two parameters α and γ (α ≤
γ) are chosen in the interval [0, 1]. Then, the demand di of customer i is set
equal to di = �αQ + δ(γ − α)Q� , where δ is a random number in [0, 1]. This
procedure is equivalent to generate the demands of an instance in the interval
(αQ, γQ). As in [9] and in the above mentioned paper by Archetti, Hertz and
Speranza, we have considered the following combinations of parameters (α, γ):
(0.01, 0.1), (0.1, 0.3), (0.1, 0.5), (0.1, 0.9), (0.3, 0.7) and (0.7, 0.9). Considering also
the case where the original demands are not changed (represented as O.D. in
the tables), a total of 49 instances are obtained. Distances among clients have
been computed as follows:

cij = round

(
10000

√
(xi − xj)

2 + (yi − yj)
2
)

(1)

where cij represents the cost or distance between clients i and j and round is the
function which gives the integer number closest to its argument.

146 V. Campos, A. Corberán, and E. Mota

4.2 Computational Results

We have first tested the quality of the feasible solutions obtained by the three
constructive procedures described in Sect. 3.1 on the whole set of test instances.
For each instance and each of the three algorithms, we have obtained 50 solutions
which have been improved using the procedures described in Sect. 3.2. Table 1
shows the average values for all the instances in each class defined by a given
value of parameters (α, γ) and Fig. 2 summarizes the results obtained. These
results indicate that the values of the solutions obtained by the sequential version
are always worse than the values obtained by the other two procedures, which
are similar.

Table 1. Average values for three constructive algorithms for the SDVRP

Instance class Big Tour Sequential CW Parallel CW

OD 10160398,7 12167770,7 9863394,7
0.01-0.1 8196954,3 9405272,8 8160844,3
0.1-0.3 17922662,7 22271986,9 17572631,2
0.1-0.5 24246567,9 29550626,9 24172589,7
0.1-0.9 37063229,9 41902227,9 37405057,9
0.3-0.7 37575097,1 42143493,7 38055871,1
0.7-0.9 58107028,0 66310339,9 60157794,6

We have decided then to discard the sequential version of the Clarke and
Wright savings algorithm and use procedure Big Tour to generate half of the
population of feasible solutions, of size Psize, and generate the remaining feasible
solutions using the parallel version of the Clarke and Wright heuristic.

Computational results on the whole set of instances are shown in Tables 4
and 5, which compare the results obtained by the Scatter Search procedure (SS-
SDVRP) with those obtained with two Tabu Search (TS) algorithms presented in
[1]. Other characteristics of the feasible solutions are also included in the tables.
The first two columns show the instance name, which also indicates the number
of clients, and the values of α and γ and thus, the corresponding interval where
demands have been generated. Instances in the first seven rows have original
demands (denoted by O.D.). Column 3 presents the value (z) obtained by our
Scatter Search procedure. A value in bold indicates that this value is at least
as good as all the ten values obtained by applying the SPLITABU and the
SPLITABU-DT procedures ([1]).

Column 4 indicates the number of vehicles in the feasible solution obtained
(k), which corresponds always to the minimum number. Total time in seconds
is presented in column 5 (t). The procedure was implemented in C and run on
a PC Pentium IV, 1GB RAM, CPU 2.40 GHz. The minimum solution value
(zmin) among the five executions that each instance is run with SPLITABU
and SPLITABU-DT is shown in columns 6 and 9, respectively. Similarly,

A Scatter Search Algorithm for the Split Delivery Vehicle Routing Problem 147

0,0E+00

1,0E+07

2,0E+07

3,0E+07

4,0E+07

5,0E+07

6,0E+07

7,0E+07

o a b c d e f

Instance Class

A
ve

ra
g

e
va

lu
es

 (
50

 s
o

lu
ti

o
n

s
fo

r
ea

ch
 in

st
an

ce
)

BIGTOUR

CW_SEQ

CW_PAR

Fig. 2. Quality comparison for the three constructive heuristics

Table 2. Computational results grouped by client demands

SS-SDVRP SP-TABU SP-TABU-DT
k z t k z t k z t

O.D. 9.7 916.4 295.8 9.7 957.1 420.0 9.7 930.4 138.5
0.01-0.1 6.0 755.9 517.7 NA 818.1 197.1 NA 786.0 121.1
0.1-0.3 22.5 1677.5 208.8 24.7 1759.0 418.7 24.7 1709.2 228.5
0.1-0.5 33.3 2326.6 155.2 37.5 2407.4 827.6 37.5 2357.2 607.9
0.1-0.9 55.0 3613.1 112.2 63.5 3674.7 1035.9 63.5 3548.2 1087.9
0.3-0.7 56.3 3704.0 72.5 61.0 3830.3 826.4 61.0 3621.1 1285.3
0.7-0.9 92.0 5757.6 47.9 94.8 5837.2 4108.3 94.8 5565.9 5325.2

columns 7 and 10 present the average solution value for the 5 runs (zmean).
Columns 8 and 11 give the average times, in seconds of a PC Pentium IV, 256
MB RAM, CPU 2.40 GHz. Finally, column 12 gives the number of vehicles in
the feasible solution as presented in a preliminary version of [4].

Table 2 summarizes the results shown in Table 4. It gives the average number
of vehicles used (k), the average solution cost (z) and the average computing
time in seconds (t) on each subset of 7 instances grouped by a given class of
client demands. Best average values are denoted in bold. Figure 3 illustrates the
behavior of the three metaheuristics.

Considering the original demands, the quality of the solutions obtained with
the SS algorithm is better, although at a greater computational effort. Every
solution uses the minimum number of vehicles. Note that the values obtained
by the Scatter Search algorithm were produced maintaining all the parameters
unchanged for all the instances and with only one execution per instance. The

148 V. Campos, A. Corberán, and E. Mota

Algorithms Comparison

0,0

1000,0

2000,0

3000,0

4000,0

5000,0

6000,0

7000,0

0,0 20,0 40,0 60,0 80,0 100,0

vehicles

co
st

SS-SDVRP

SP-TABU

SP-TABU-DT

Fig. 3. Number of vehicles used by the SS and TS metaheuristics

number of vehicles used is not available, (NA), for both TS methods on the
second group of instances and the solutions obtained by the SS are also better
than the best solutions obtained with the TS procedures. When the demand is
generated in the interval (0.1Q, 0.3Q) the solution quality is also better in the
case of the SS algorithm. The number of vehicles in the solutions obtained with
the Tabu Search procedures is no longer the minimum one and the difference
reaches 3 vehicles in 2 out of 6 instances. On the instances with demands in
(0.1Q, 0.5Q) the SS produces worse solutions than the best ones obtained in the
5 runs of the two TS procedures, although on average the behavior of the SS
algorithm is still slightly better (see Table 2) and it uses 4.2 vehicles less on
average. On the remaining instances, the SS solutions are worse than the ones
obtained with the TS procedures. Clearly our algorithm does not perform well
on this kind of instances with big demands. This could be explained by the fact

Table 3. Comparison on the instances with original demands

Number SS-SDVRP SP-TABU-DT Chen et al. procedure
Clients z t z t z t

50 524.61 49.7 530.65 13.0 524.61 1.8 (3.4)
75 829.01 166.6 845.82 36.0 840.18 4.0 (57.0)
100 819.56 192.4 833.35 58.0 819.56 3.7 (126.5)
120 1042.11 270.3 1053.54 38.0 1043.18 5.6 (136.4)
150 1045.22 527.1 1064.38 389.0 1041.99 10.0 (308.0)
199 1324.73 588.3 1339.98 386.0 1307.40 18.1 (618.5)

A Scatter Search Algorithm for the Split Delivery Vehicle Routing Problem 149

T
ab

le
4.

C
om

pu
ta

ti
on

al
re

su
lt

s
on

th
e

w
ho

le
se

t
of

in
st

an
ce

s
(I

)

In
st

.
D

em
.

S
S
-S

D
V

R
P

S
P

-T
A

B
U

S
P

-T
A

B
U

-D
T

z
k

t
zm

in
zm

ea
n

t
zm

in
zm

ea
n

t
k

p
1-

50
O

.D
.

5
2
4
6
1
1
3

5
49

.7
52

76
75

1
53

00
57

0
17

53
06

52
0

53
35

53
5

13
5

p
2-

75
O

.D
.

8
2
9
0
1
2
1

10
16

6.
5

84
04

52
9

85
16

72
9

64
84

58
22

1
84

95
41

0
36

10
p
3-

10
0

O
.D

.
8
2
9
4
4
7
7

8
27

6.
1

83
41

35
7

84
61

84
4

60
83

33
56

6
83

56
19

1
58

8
p
4-

15
0

O
.D

.
1
0
4
5
2
2
3
7

12
52

7.
1

10
57

02
79

10
62

19
88

44
0

10
64

38
47

10
69

83
69

38
9

12
p
5-

19
9

O
.D

.
1
3
2
4
7
3
2
5

16
58

8.
3

13
57

34
55

13
67

81
77

19
00

13
39

97
77

13
42

85
15

38
6

16
p
6-

12
0

O
.D

.
1
0
4
2
1
1
5
8

7
27

0.
3

10
76

37
53

10
84

73
31

40
10

53
54

25
10

56
01

48
38

7
p
7-

10
0

O
.D

.
8
1
9
5
5
8
1

10
19

2.
4

8
1
9
5
5
8
1

82
26

04
5

86
8
1
9
5
5
8
1

82
53

18
4

49
N

A
p
1-

50
.0

1-
0.

1
4
6
0
7
8
9
6

3
51

.8
4
6
0
7
8
9
6

46
38

53
2

9
4
6
0
7
8
9
6

46
37

57
1

5
N

A
p
2-

75
.0

1-
0.

1
5
9
6
9
8
7
2

4
14

4.
0

60
41

18
6

60
76

57
9

42
60

16
17

4
60

52
37

6
13

N
A

p
3-

10
0

.0
1-

0.
1

7
2
6
8
0
7
8

5
27

2.
1

75
72

45
9

77
27

88
1

59
73

74
51

4
75

22
01

2
31

N
A

p
4-

15
0

.0
1-

0.
1

8
7
1
2
6
2
4

8
74

3.
3

88
64

41
5

89
49

84
3

25
8

88
19

99
5

89
09

53
3

17
3

N
A

p
5-

19
9

.0
1-

0.
1

1
0
2
3
1
3
5
6

10
18

74
.8

10
45

26
20

10
73

59
85

75
4

10
47

87
39

10
56

26
79

52
6

N
A

p
6-

12
0

.0
1-

0.
1

9
7
6
5
6
9
6

6
37

0.
9

10
64

19
48

10
95

75
37

61
10

76
08

97
10

84
69

59
42

N
A

p
7-

10
0

.0
1-

0.
1

63
59

95
3

5
16

6.
5

64
07

12
6

66
28

03
7

71
63

58
86

5
64

87
35

9
58

N
A

p
1-

50
0.

1-
0.

3
7
4
1
0
5
6
5

10
66

.4
75

07
08

4
76

44
04

1
27

75
15

96
8

76
14

02
1

22
11

p
2-

75
0.

1-
0.

3
1
0
7
1
8
6
9
4

15
14

3.
8

10
83

50
52

10
99

02
97

78
10

87
93

05
10

95
32

25
45

16
p
3-

10
0

0.
1-

0.
3

1
3
9
7
5
0
3
0

20
30

5.
1

14
18

97
00

14
28

86
83

12
2

14
19

37
62

14
24

81
14

96
22

p
4-

15
0

0.
1-

0.
3

19
37

20
05

29
32

6.
6

19
28

47
42

19
40

67
20

54
5

19
07

92
35

19
18

24
59

39
3

32
p
5-

19
9

0.
1-

0.
3

24
33

17
37

38
32

.1
24

12
02

35
24

19
97

73
12

24
23

78
05

37
23

84
15

45
75

5
41

p
6-

12
0

0.
1-

0.
3

2
7
4
2
5
9
8
5

23
38

0.
8

28
52

07
39

29
00

98
98

51
6

29
14

57
14

29
18

70
92

14
3

26
p
7-

10
0

0.
1-

0.
3

1
4
1
8
8
1
0
3

20
20

6.
3

14
53

19
28

14
70

95
92

85
14

37
95

43
14

62
00

77
14

6
v

p
1-

50
0.

1-
0.

5
99

78
33

4
15

87
.1

99
40

56
1

10
07

68
38

56
99

72
12

8
10

08
66

63
28

16
p
2-

75
0.

1-
0.

5
14

63
59

82
22

12
6.

8
14

40
78

23
14

50
10

86
71

14
32

16
06

14
43

62
43

12
3

24
p
3-

10
0

0.
1-

0.
5

19
08

02
27

29
22

5.
2

18
78

85
10

18
87

83
31

20
6

18
85

74
14

18
94

72
10

13
6

33
p
4-

15
0

0.
1-

0.
5

26
49

97
03

43
21

.3
26

16
85

32
26

34
09

01
56

4
26

08
91

13
26

32
71

26
73

9
49

p
5-

19
9

0.
1-

0.
5

32
91

96
00

56
31

.2
32

76
56

65
32

98
18

71
38

11
32

47
31

25
32

84
47

23
26

68
63

p
6-

12
0

0.
1-

0.
5

3
9
7
9
6
7
1
7

34
32

9.
0

41
23

17
58

41
66

78
01

25
9

41
31

12
59

42
06

12
10

26
8

40
p
7-

10
0

0.
1-

0.
5

19
95

34
07

29
26

6.
5

19
92

49
80

20
30

03
66

18
8

19
81

54
53

20
29

99
48

29
3

N
A

150 V. Campos, A. Corberán, and E. Mota

T
ab

le
5.

C
om

pu
ta

ti
on

al
re

su
lt

s
on

th
e

w
ho

le
se

t
of

in
st

an
ce

s
(I

I)

In
st

.
D

em
.

SS
-S

D
V

R
P

SP
-T

A
B

U
SP

-T
A

B
U

-D
T

z
k

t
zm

in
zm

ea
n

t
zm

in
zm

ea
n

t
k

p1
-5

0
0.

1-
0.

9
15

54
37

68
25

92
.6

14
81

57
10

14
93

92
33

34
14

43
83

67
14

69
92

21
61

26
p2

-7
5

0.
1-

0.
9

21
82

33
68

37
11

9.
9

21
13

16
36

21
21

27
78

31
1

21
07

21
24

21
24

42
69

19
3

41
p3

-1
00

0.
1-

0.
9

28
94

21
37

48
17

7.
9

28
11

61
17

28
26

61
22

41
2

27
46

75
15

27
94

07
74

64
9

56
p4

-1
50

0.
1-

0.
9

40
62

88
21

71
50

.4
39

78
57

29
40

06
28

07
18

22
38

49
73

20
39

09
72

49
22

78
84

p5
-1

99
0.

1-
0.

9
50

74
56

58
93

50
.7

50
05

89
05

50
39

65
24

25
98

47
37

46
71

48
53

82
54

32
97

10
7

p6
-1

20
0.

1-
0.

9
63

57
32

83
56

20
.6

65
07

24
61

65
60

33
47

10
37

62
59

67
20

65
83

97
35

87
8

67
p7

-1
00

0.
1-

0.
9

31
66

30
64

48
27

2.
7

31
19

27
45

31
58

08
65

52
3

30
10

50
41

31
01

52
73

26
0

N
A

p1
-5

0
0.

3-
0.

7
15

32
19

44
25

92
.4

14
94

14
62

15
09

31
18

52
14

87
01

98
14

96
90

09
49

26
p2

-7
5

0.
3-

0.
7

22
28

89
75

37
11

.1
21

66
62

19
21

75
98

79
18

4
21

49
73

82
21

60
50

50
12

9
39

p3
-1

00
0.

3-
0.

7
29

86
32

98
49

17
.0

28
95

80
54

29
14

78
59

45
4

27
64

25
38

28
70

49
54

81
0

53
p4

-1
50

0.
3-

0.
7

41
85

68
32

73
23

.0
41

22
80

32
41

46
75

44
15

12
39

67
10

62
40

39
69

94
30

08
80

p5
-1

99
0.

3-
0.

7
52

65
01

21
96

32
7.

3
53

32
97

07
53

68
91

92
22

79
50

01
45

12
51

02
83

79
35

66
10

3
p6

-1
20

0.
3-

0.
7

64
81

09
43

58
20

.5
67

20
76

50
68

66
33

90
47

7
64

33
01

10
66

39
55

22
65

9
65

p7
-1

00
0.

3-
0.

7
32

48
76

07
49

16
.0

31
63

13
72

32
22

03
34

41
1

28
82

12
35

30
38

02
25

77
8

N
A

p1
-5

0
0.

7-
0.

9
23

12
47

51
40

5.
8

21
73

33
26

21
76

39
23

16
0

21
48

37
78

21
65

20
85

10
6

42
p2

-7
5

0.
7-

0.
9

33
87

86
05

60
10

.5
32

18
41

16
32

29
46

27
43

7
31

38
17

80
31

80
64

15
86

9
61

p3
-1

00
0.

7-
0.

9
45

76
13

39
80

38
.3

43
61

94
65

43
68

77
23

18
91

42
78

83
32

43
02

31
14

13
98

82
p4

-1
50

0.
7-

0.
9

64
79

45
50

11
9

30
.5

63
34

50
83

63
54

20
58

87
83

60
99

86
78

61
96

35
77

10
22

3
12

3
p5

-1
99

0.
7-

0.
9

83
23

72
30

15
8

21
5.

0
82

07
15

43
83

43
95

43
11

34
7

76
76

11
41

79
44

63
39

21
84

9
16

2
p6

-1
20

0.
7-

0.
9

10
15

83
16

0
95

20
.4

10
30

67
40

4
10

55
05

74
5

20
33

10
07

26
02

2
10

30
40

77
8

18
26

99
p7

-1
00

0.
7-

0.
9

50
65

25
58

80
13

.8
49

33
48

93
49

60
75

13
18

65
47

73
59

21
48

67
78

57
10

04
N

A

A Scatter Search Algorithm for the Split Delivery Vehicle Routing Problem 151

that the SS algorithm is designed to find solutions with the minimum number
of vehicles while the TS algorithms minimize the total distance traveled. Note
that the solutions obtained with the TS methods always use a larger number of
vehicles that in some cases increases by up to 14 vehicles, as in instance p5-199
with demands in (0.1Q, 0.9Q).

Finally, comparisons on all the instances with the results presented in [4] and
[6] were not possible since the instances and other significant details were not
available to the authors. Though in [6] the general characteristics of the in-
stances are maintained as in [1], the instances themselves are different. However
a comparison is possible among the SS, Tabu-DT and the Chen et al. algo-
rithm on 6 of the instances with original demands. Results are summarized in
Table 3. Columns z and t show the solution value and the time used to obtain it
in the case of the SS and the Chen et al. procedure. In the case of the Tabu-DT
algorithm, column z shows the value of the best solution obtained in 5 executions
of the algorithm, while t shows the average computing time. Times shown for
the Chen et al. procedure are obtained in a slower machine (PC Pentium IV, 512
MB RAM, CPU 1.70 GHz). As it can be seen, the best results are obtained by
the SS and the Chen et al. procedure, although this last method is faster than
ours.

Note however that a time limit is a parameter in the Chen et al. procedure
and that greater CPU times were given to the algorithm in order to compare in
[6] its results with the Tabu-DT method. Therefore, we have included in brackets
the average CPU times used in [6] for solving instances of similar sizes when the
client demands are generated in the range (0.1Q, 0.3Q). These average CPU
times are the second best times given in [6] for the six scenarios considered.

5 Conclusions and Further Research

The first results obtained with the Scatter Search procedure indicate that it is
able to obtain very good feasible solutions with the minimum number of vehicles
within reasonable computing times. When the demands are well over half the
capacity of the vehicle, the values of the solutions are not so good, because our
procedure was not initially designed for these situations. The set of published and
available instances is limited and quite small. In the future, we want to work on
the elaboration of bigger test instances that will be publicly available and include
some other refinements to the overall algorithm like another generator of feasible
solutions and more procedures to be applied to the unfeasible solutions produced
in the combination phase.

Acknowledgments. The authors want to thank the support of the Spanish
Ministerio de Educación y Ciencia, through grants MTM2006-14961-C05-02 and
TIN2006-02696. We are also grateful to C. Archetti and M.G. Speranza that
kindly helped us to generate the instances used in the computational experiences
and to an anonymous referee for his/her careful reading of the manuscript.

152 V. Campos, A. Corberán, and E. Mota

References

1. Archetti, C., Hertz, A., Speranza, M.G.: A tabu search algorithm for the split
delivery vehicle routing problem. Transportation Science 40, 64–73 (2006)

2. Archetti, C., Savelsbergh, M.W.P., Speranza, M.G.: Worst-case analysis for split
delivery vehicle routing problems. Transportation Science 40, 226–234 (2006)

3. Archetti, C., Savelsbergh, M.W.P., Speranza, M.G.: To split or not to split: That is
the question. Transportation Research E: Logistics and Transportation Review 44,
114–123 (2008)

4. Archetti, C., Savelsbergh, M.W.P., Speranza, M.G.: An optimization-based heuris-
tic for the split delivery vehicle routing problem. Transportation Science (to appear,
2008)

5. Belenguer, J.M., Mart́ınez, M.C., Mota, E.: A lower bound for the split delivery
vehicle routing problem. Operations Research 48, 801–810 (2000)

6. Chen, S., Golden, B., Wasil, E.: The split delivery vehicle routing problem: Applica-
tions, algorithms, test problems and computational results. Networks 49, 318–329
(2007)

7. Clarke, G., Wright, J.V.: Scheduling of vehicles from a central depot to a number
of delivery points. Operations Research 12, 568–581 (1964)

8. Dror, M., Laporte, G., Trudeau, P.: Vehicle routing with split deliveries. Discrete
Applied Mathematics 50, 239–254 (1994)

9. Dror, M., Trudeau, P.: Savings by split delivery routing. Transportation Science 23,
141–145 (1989)

10. Dror, M., Trudeau, P.: Split delivery routing. Naval Research Logistics 37, 383–402
(1990)

11. Frizzell, P.W., Giffin, J.W.: The split delivery vehicle routing problem with time
windows and grid network distances. Computers and Operations Research 22, 655–
667 (1995)

12. Gendreau, M., Hertz, A., Laporte, G.: New insertion and postoptimization pro-
cedures for the travelling salesman problem. Operations Research 40, 1086–1094
(1992)

13. Gendreau, M., Hertz, A., Laporte, G.: A tabu search heuristic for the vehicle
routing problem. Management Science 40, 1276–1290 (1994)

14. Glover, F.: A template for scatter search and path relinking. In: Hao, J.-K., Lutton,
E., Ronald, E., Schoenauer, M., Snyers, D. (eds.) AE 1997. LNCS, vol. 1363, pp.
13–54. Springer, Berlin (1998)

15. Laguna, M., Mart́ı, R.: Scatter Search – Methodology and Implementations in C.
Kluwer Academic Publishers, Boston (2003)

16. Li, F., Golden, B., Wasil, E.: Very large-scale vehicle routing: New test problems,
algorithms and results. Computers and Operations Research 32, 1197–1212 (2005)

17. Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the travelling sales-
man problem. Operations Research 21, 498–516 (1973)

18. Mullaseril, P.A., Dror, M., Leung, J.: Split-delivery routing in livestock feed dis-
tribution. Journal of the Operational Research Society 48, 107–116 (1997)

19. Sierksma, G., Tijssen, G.A.: Routing helicopters for crew exchanges on off-shore
locations. Annals of Operations Research 76, 261–286 (1998)

20. Song, S., Lee, K., Kim, G.: A practical approach to solving a newspaper logistic
problem using a digital map. Computers and Industrial Engineering 43, 315–330
(2002)

Stochastic Local Search Procedures for the
Probabilistic Two-Day Vehicle Routing Problem

Karl F. Doerner1, Walter J. Gutjahr2, Richard F. Hartl1,
and Guglielmo Lulli3

1 Department of Business Administration, University of Vienna,
Bruenner Strasse 72, 1210 Vienna, Austria
{karl.doerner,richard.hartl}@univie.ac.at

2 Department of Statistics and Decision Support Systems, University of Vienna,
Universitätsstraße 5, 1010 Vienna, Austria
walter.gutjahr@univie.ac.at

3 Department of Computer Science, University of Milano Bicocca,
Via Bicocca degli Arcimboldi 8, 20126 Milano, Italy
guglielmo.lulli@disco.unimib.it

Summary. This chapter is motivated by the study of a real-world application on blood
delivery. The Austrian Red Cross (ARC), a non-profit organization, is in charge of
delivering blood to hospitals on their request. To reduce their operating costs through
higher flexibility, the ARC is interested in changing the policy of delivering blood
products. Therefore it wants to provide two different types of service: an urgent service
which delivers the blood within one day and the other, regular service, within two days.
Obviously the two services come at different prices.

We formalize this problem as a stochastic problem, with the objective to minimize
the average long-run delivery costs, knowing the probabilities governing the requests
of service. To solve real instances of our problem in a reasonable time, we propose
three heuristic procedures whose core routine is an Ant Colony Optimization (ACO)
algorithm, which differ from each other by the rule implemented to select the regular
blood orders to serve immediately. We compare the three heuristics on both a set of
real-world data and on a set of randomly generated synthetic data.

Computational results show the viability of our approach.

Keywords: Stochastic local search, Vehicle routing, Blood delivery.

1 Introduction

The Austrian Red Cross (ARC), a non-profit organization, is in charge of de-
livering blood to hospitals on their request any time that they put an order. In
current operations, the ARC is obliged to fulfill any order within the following
day. This policy leads to high delivery costs. Quite often, the ARC has to pay
extra working hours to their drivers in order to fulfill all the orders. Even solving
a Vehicle Routing Problem (VRP) every day of operations will not ameliorate
the current situation. As an alternative, the ARC is interested in changing policy
in order to acquire higher flexibility. More specifically the ARC is investigating

A. Fink and F. Rothlauf (Eds.): Advances in Computational Intelligence, SCI 144, pp. 153–168, 2008.
springerlink.com © Springer-Verlag Berlin Heidelberg 2008

154 K.F. Doerner et al.

the possibility to provide two different types of service: one which delivers the
blood within one day and the other within two days. Obviously, these services
must have different prices.

If this policy is implemented, the ARC will be confronted every day with two
different types of blood orders: urgent blood orders to be delivered within the
current day, and regular blood orders which allow the delivering within the next
day. The ARC has both to decide when to serve hospitals with regular blood
orders and solve a VRP problem to find the optimal sequence for serving the
selected hospitals (including of course all urgent services). Decisions on each
single day have a downstream effect on decisions and their corresponding costs
for the following days. Hence, these decisions should depend on the foreseen
blood orders for the following days and are taken with the goal to minimize the
long-run total expected delivery costs. The blood is delivered from one central
depot.

The main feature of the problem, together with the two different types of blood
orders and the decisions involved, is blood orders uncertainty represented, in our
modeling approach, with random variables. This leads to a stochastic problem
which differs from its deterministic counterpart in several fundamental respects.
We capture it in the formal framework of a stochastic two-day delivery VRP
(see the Appendix for a mathematical description). The problem was introduced
in [7].

Network routing problems have been deeply investigated both in a determin-
istic [15] and in a stochastic [9, 11] setting. Nevertheless, at the best of our
knowledge, our specific problem is quite new in the routing problem arena. The
two-period symmetric TSP studied by Butler et al. [5] is a work which resembles
our problem in some respects, but it remains within a deterministic framework.
Under different model assumptions, several approaches and methodologies have
been developed to handle stochastic routing problems, which are, however, not
easily transferable to our situation.

Recently Angelleli et al. [2, 3] analyzed the competitive ratio for different
dispatch strategies for a very similar problem. For instance, the problem under
consideration could be viewed as a Markov decision process (MDP) (see [12]), but
the corresponding solution techniques fail for real instances of our problem since
the number of states of the MDP explodes with a growing number of hospitals.
An alternative would consist in the application of two-stage stochastic programs
where a planned or an “a priori” solution is determined at the first stage and then
at the second stage, once the realizations of the random variables are disclosed,
a recourse or corrective action is applied to the first stage decision. Also this
consideration, however, would lead to exploding computation times: Note that
both in the MDP model and in the two-stage stochastic program, the evaluation
of the solution cost or of the recourse action, which require the solution of a
VRP, are themselves NP-hard problems. Andreatta and Lulli considered a TSP
variant of the problem as a Markov decision process with an aggregate model [1].

To solve real instances of our problem in a reasonable time, we propose three
heuristic procedures which differ from each other by the rule implemented to

Stochastic Local Search Procedures for the Probabilistic Two-Day VRP 155

select the regular blood orders to serve immediately. The first is an advanced
heuristic (Sampling-Based Local Search) which incorporates Iterative Local
Search and Ant Colony Optimization (ACO) as well as bootstrap and sampling
procedures. The other two algorithms (Fixed Percentage Selection Procedure
and Estimated Savings Selection Procedure) implement a simple postponement
procedure, and a selection algorithm based on preprocessing results, respectively.

The core routine for the three algorithms is the Savings-Based Ant Colony
Optimization (SBACO) algorithm used to solve the VRPs. SBACO builds on the
Ant Colony Optimization (ACO) metaheuristic and combines it with the well-
known Savings algorithm [6] for VRPs. The success principles of ACO (which
is, as other metaheuristics, derived from analogies with processes in nature)
consist in an intelligent exploitation of the problem structure and in an effective
interplay between intensification (concentrating the search to a specific region
of the search space) and diversification (elaborating various diverse regions in
the solution space). These features are extended in SBACO by suitable memory
structures and an efficient use of the ”savings” values as a valuable guide for
tour determination.

2 Solution Procedures

In the description of the solution procedures, we use the following notation:

H
(t)
0 = the set of urgent orders, placed on day t

(to be served during day t),
H

(t)
1 = the set of regular orders, placed on day t

(to be served within two days).

For each day t, the task is to select the set B(t), subset of H
(t)
1 , containing the

regular orders to be served during the current day t. c(A) denotes the delivery
cost for serving the orders in the set A.

2.1 Sampling-Based Local Search

Sampling-Based Local Search (SBLS) consists of three nested iterations (Loop 1,
Loop 2 and Loop 3).

1. An execution of Loop 1 evaluates a possible solution, that is, a subset B(t)

of customers to be serviced already within 24 hours, out of the set H
(t)
1

of customers who expect their service within 48 hours. The VRP for the
set consisting of these selected customers plus the customers who must be
serviced on the current day t (including those “inherited” from the previous
day t−1) is solved. Then, the procedure goes into Loop 2, where the costs for
the customers postponed to the next day are estimated by sampling. Finally,
the set B(t) is updated by a local search move.

2. In Loop 2, we take a sample of the possible scenarios for the demand on day
t + 1 and apply local search to find a set of customers B(t+1) ⊆ H

(t+1)
1 to

update the set B(t+1), the procedure goes into Loop 3.

156 K.F. Doerner et al.

3. In Loop 3, the cost occurring on day t + 1 is determined by solving the cor-
responding VRP by SBACO. To this delivery cost, a penalty term for the
customers postponed to day t+2 is added (otherwise, the local search proce-
dure would always serve only the minimum possible number of customers on
day t+1). This penalty term is computed to estimate the additional costs on
day t + 2 caused by the postponed customers. The simplest way to do this is
to multiply the number of postponed customers by an estimate of the average
additional costs incurred by such a customer depending on the distance to
the depot. This estimate can be based on previous days for which costs are
already known (for details, see below). We also use a second estimate based
on distances and take a weighted mean.

Let us now outline how, for the penalty term computation, a sequence of im-
proving estimates ct (t = 0, 1, . . .) of the additional costs incurred by a postponed
customer is computed. We start with an arbitrary initial value c0 on day 0 and
modify ct in each iteration to a value ct+1 by taking a weighted mean between
the current value ct and the average (additional) cost on day t for the service of
a customer postponed from day t − 1 to day t.

When the process approaches its steady state, it can be expected that ct

approaches the true value of the cost parameter under consideration.
In the second estimation approach, we consider the sum of distances from

the depot to the postponed customers instead of the number of these customers.
Now, we estimate the average (additional) cost per distance unit for a postponed
customer. Similarly as before, the estimate c̄t for this value is updated by taking
a weighted mean between the current value and the average (additional) cost
per distance unit on day t for the service of a customer postponed from day t−1
to day t.

The pseudocode of SBLS is given in the Appendix.

2.2 Fixed Percentage Selection Procedure

The Fixed Percentage Selection Procedure (FPSP) uses a very simple rule to
select the regular blood orders to be served on the same day. For the selection
decision, the percentage p of regular customers to be served immediately is fixed
in advance. To select the orders, we use the following rule: For each customer i
with a regular order, we solve the VRP for the set of all urgent or regular orders
(including those “inherited” from the last day) except the order of customer i.
The lower the resulting cost C−

i , the higher is the immediate cost reduction on
the current day achieved by postponing customer i to the next day. Therefore,
the p percent of customers with the lowest values of C−

i are postponed to the
next day.

After some pre-tests, we chose p = 50 percent for our real-world application.
Both values between 30 and 40 percent and values between 60 and 70 percent
yielded distinctly worse results in our application case. It is clear that the optimal
value for p heavily depends on the special structure of order frequencies and their
oscillations.

Stochastic Local Search Procedures for the Probabilistic Two-Day VRP 157

Once the selection decision is taken, we compute the new VRP solution by the
SBACO algorithm. Note that in this procedure we do not use any probabilistic
information on blood orders for the following day. The pseudocode of FPSP is
given in the Appendix.

2.3 Estimated Savings Selection Procedure

In the Estimated Savings Selection Procedure (ESSP), we postpone a regular
blood order to be served on the next day if the extra delivery cost for serving this
customer in addition to those with urgent orders and those “inherited” from the
previous day exceeds the estimated additional cost for serving this customer on
the next day. This is obviously a simple approximation first because each single
regular customer is considered independently from the others and dependencies
between regular orders are not considered and second because no downstream
effects of current decisions in the following stages of the problem are taken into
account.

For the described decision rule, estimates of the additional costs incurred by
each postponed customer are required. In a preprocessing phase, we compute
these estimates for each day d of week (Monday to Sunday) separately, taking
varying frequencies of demands during the week into account. Estimates are
obtained by sampling, based on historical data on request frequencies. As a
sample size for the demand structure on a specific day of week, we took N = 100
samples in our computational experiments. The pseudocode of ESSB is given in
the Appendix.

2.4 Savings-Based ACO Algorithms for the VRP

The SBACO procedure is the core subroutine of all three described heuristics.
SBACO heuristically solves a given VRP applying the ACO metaheuristic.

The Ant Colony Optimization (ACO) metaheuristic introduced by Colorni,
Dorigo and Maniezzo [8] imitates the behavior shown by real ants when searching
for food. Ants exchange information about food sources via pheromone, a chemi-
cal substance which they deposit on the ground as they move along. Short paths
from the nest to a food source obtain a larger amount of pheromone per time unit
than longer paths. As a result, an ever increasing number of ants is attracted
to follow such routes, which in turn reinforces the corresponding pheromone
trails. Artificial ants not only imitate the learning behavior described above,
but also apply additional, problem specific heuristic information. ACO has been
successfully applied to various hard combinatorial optimization problems [8].

The Savings-Based ACO Algorithm [13, 14] mainly consists of the iteration
of three steps: (1) generation of solutions by ants according to pheromone infor-
mation; (2) application of a local search to the ants’ solutions, and (3) update
of the pheromone information.

Solutions are constructed based on the well known Savings Algorithm due
to Clarke and Wright [6]. In this algorithm, the initial solution consists of the

158 K.F. Doerner et al.

assignment of each customer to a separate tour. After that, for each pair of
customers i and j, the following savings values are calculated:

sij = di0 + d0j − dij , (1)

where dij denotes the distance between locations i and j, the index 0 denotes
the depot, and sij represent the savings of combining two customers i and j
on one tour contrary to serving them on two different tours. In the iterative
phase, customers or partial tours are combined by sequentially choosing feasible
entries from the list of saving values. A combination is infeasible if it violates
either the capacity or the tour length constraints. The decision making about
combining customers is based on a probabilistic rule taking into account both
savings values and the pheromone information. Let τij denote the pheromone
concentration on the arc connecting customers i and j telling us how good the
combination of these two customers i and j was in previous iterations. In each
decision step of an ant, we consider the k best combinations still available, where
k is a parameter of the algorithm. Let Ωk denote the set of k “neighbors”, that
is, the k feasible combinations (i, j) yielding the largest savings, considered in a
given decision step, then the decision rule is given by equation (2).

Pij =

⎧⎪⎨
⎪⎩

sβ
ijτα

ij∑
(h,l)∈Ωk

sβ
hlτ

α
hl

if (i, j) ∈ Ωk

0 otherwise.

(2)

In (2), Pij is the probability of choosing to combine customers i and j on one
tour, while α and β bias the relative influence of the pheromone trails and the
savings values, respectively. This algorithm results in a (sub-)optimal set of tours
through all customers, once no more feasible savings values are available.

The used pheromone update rule was proposed in [4] and its pheromone man-
agement centers around two concepts borrowed from Genetic Algorithms, namely
ranking and elitism to deal with the trade-off between exploration and exploita-
tion. This paradigm was used for solving the VRP. We will briefly depict the
pheromone update scheme here. Let 0 ≤ σ ≤ 1 denote the trail persistence and
e the number of elitists. Then, the pheromone update scheme can formally be
written as

τij := στij +
e−1∑
r=1

Δτr
ij + eΔτ∗

ij (3)

First, the best solution found by the ants up to the current iteration is updated
as if e ants had traversed it. The amount of pheromone laid by the elitists is
Δτ∗

ij = 1/L∗ if (i, j) belongs to the best solution so far, and Δτ∗
ij = 0 otherwise,

where L∗ is the objective value of the best solution found so far. Secondly, the
e − 1 best ants of the current iteration are allowed to lay pheromone on the arcs
they traversed. The quantity laid by these ants depends on their rank r as well
as their solution quality Lr: the r-th best ant lays Δτr

ij on each arc (i, j), where
Δτr

ij = (e − r)/Lr if arc (i, j) is traversed by this ant, and Δτij = 0 otherwise.

Stochastic Local Search Procedures for the Probabilistic Two-Day VRP 159

Arcs belonging to neither of those solutions just face a pheromone decay at the
rate (1 − ρ), which constitutes the trail evaporation.

A solution obtained by the above mentioned procedure can then be subjected
to a local search in order to ensure local optimality. In our algorithms we sequen-
tially apply the swap neighborhood between tours to improve the clustering, and
the 2-opt algorithm within tours to improve the routing.

3 Procedures Comparison and Simulation

The developed solution procedures use information on the probability distribu-
tion of blood orders for each hospital on any given day. To estimate such proba-
bility distributions of the demand, we used one-year historical real data provided
by the ARC. We analyzed these data with the statistical package SPSS. More-
over, we had to specify (estimate) the (hospital-specific) ratio between urgent
and regular orders. We predicted the ratio for each hospital and each day of
week by fitting a reasonable model of customer behavior to the real data, since
the policy allowing two types of orders is not yet implemented and therefore no
data is available.

Ratio prediction was done by clustering hospitals into groups according to
their size, by carefully analyzing their past order record, and by making suitable
assumptions on inventory strategies: it is assumed that hospitals will send an
order as soon as their blood store falls below a certain lower bound (urgent
order) or will presumably fall below this bound the next day (regular order),
and they will fill the store to a certain upper bound. We verified the consistency
of estimates obtained in this way by using data provided directly by hospitals
via questionnaires. We do not go further into details for the sake of brevity.

We compare the three algorithms by computing their performance over a time
horizon of a half year (180 days). For the comparison, two data sets were used:

1. A set of real data with the orders of 55 hospitals (see Fig. 1) within the
indicated 180-days period. Only the ratio between urgent and regular orders
is estimated by the inventory model mentioned above.

2. A randomly generated synthetic data set obtained directly by simulation
from the inventory model. The inventory model makes certain assumptions
on the customer behavior that also influence the total number of orders
(urgent plus regular orders) on each day. This leads to a deviation from
the ordering behavior observed in practice. In particular, the empirical data
show that hospitals are rather reluctant to send orders on weekends; they
seem to do it in urgent cases, but otherwise they prefer to delay an order
to the beginning of the next week. As a consequence, our synthetic data set
contains a distinctly higher number of orders on weekends than the real data
set, and most of them are regular orders which would presumably have been
delayed in the real customer behavior.

We generated ten different instances (based on the same basic parameters)
for the tests.

160 K.F. Doerner et al.

Fig. 1. Distribution of the hospitals

Table 1. Comparison of the results (in hours)

runtime avg. sol. avg. sol. % of postp.
method quality qual. customers

real-world data generated data
no postp. – 7374.8 7792.1 0
SBLS 41 sec/day 7188.3 7537.5 54
FPSP 2.9 sec/day 7185.2 7538.8 50

ESSP
12 hours preproc.

+ 2.5 sec/day 7061.6 7490.3 44

The three algorithms were implemented in C and run on a Pentium PC with
3.6 GHz. Each algorithm was run ten times in order to take into account the
probabilistic nature of all the three heuristic approaches. Note that even the
FPSP heuristic which does not use any sampling, has a probabilistic nature since
it uses SBACO as a subprocedure for solving VRPs, which is a probabilistic
algorithm. In the case of the real data set, all ten runs were applied to the
same problem instance. In the case of the synthetic set containing ten particular
instances, run 1 of each algorithm was applied to instance 1, etc. In Table 1, we
report average values over these ten runs. Delivery costs are indicated in hours.

Stochastic Local Search Procedures for the Probabilistic Two-Day VRP 161

In the first row of Table 1, we report the delivery costs of solution which
corresponds to the current blood delivery policy of the ARC, i.e., the status-quo
situation. Rows two through to four contain the results for the algorithms SBLS,
FPSP and ESSP, respectively.

The SBLS and FPSP algorithms perform equally good on the real data,
achieving driving time reductions by 187 resp. 190 hours in average, which are
2.5 resp. 2.6 percent of total driving time. ESSP even reduces the driving time
by 313 hours, which are 4.2 percent of total driving time. In the synthetically
generated data set, the reductions amount to 3.3 percent for SBLS and FPSP
and to 3.9 percent for ESSP.

It is interesting to see that the best-performing algorithm, ESSP, only post-
pones 44 percent of orders in average, whereas the other two algorithms postpone
a larger number (50 percent – which is the percentage chosen in advance – for
FPSP, and even 54 percent for SBLS).

Comparing computation times, both FPSP and ESSP are very fast when
applied to the planning problem of a single day, while SBLS needs a computation
time that is more than ten times higher. However, for our hospital compound of
55 hospitals, the runtime is still less than one minute per day, which should not
cause any practical problems.

ESSP, although very fast in the daily runs, requires a preprocessing run where
estimates for the costs of postponed customers are determined. This run took
about twelve hours in our experiments. If it is carried out once a year (which
is reasonable since order frequencies and other conditions may change), ESSP
is the slowest of the three algorithms with about two minutes runtime per day,
but even this runtime is easily feasible in practice.

The SBLS algorithm might seem to be dominated by FPSP which produces
results of a comparable quality in less computation time, but it should be em-
phasized that SBLS has its own advantages: it requires less parameters to be
tuned than FPSP and ESSP, and it is a self-adjusting procedure that reacts to
changes in the order behavior of the customers by automatically adapting the
values ct and c̄t. The application of one of the two other algorithms runs the
risk that parameter settings can become ineffective if changes in the customer
behavior are not responded in time by a suitable re-tuning of the percentage p of
postponed customers in the case of FPSP, or by a new run of the preprocessing
procedure in the case of the ESSP.

Figures 2 to 5 show the delivery costs for certain days of the week in their
development over the 180-days-period. The demand on a working day is usually
higher than on a weekend day. Therefore, we have selected Tuesday as a typ-
ical working day and Saturday as a typical weekend day for a closer analysis.
For both days of week, we depict the behavior of the algorithms both for the
synthetic and the real data set. Let us start with looking at Figs. 2 and 3 re-
ferring to the synthetically generated data. It is immediately seen that all three
algorithmic techniques lead to consistently lower driving times than the baseline
policy where no orders are delayed. The gain is particularly impressive on Satur-
day. For Tuesday, no consistent advantage of one of the algorithms SBLS, FPSP

162 K.F. Doerner et al.

Tuesday

2450

2500

2550

2600

2650

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Days

Costs no postp. sampling b. ls fixed perc. est. savings

Fig. 2. Delivery costs on Tuesday (in minutes) – synthetic data

Saturday

2300

2350

2400

2450

2500

2550

2600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Days

Costs no postp. sampling b. ls fixed perc. est. savings

Fig. 3. Delivery costs on Saturday (in minutes) – synthetic data

and ESSP over another can be stated. On Saturday, however, ESSP performs
distinctly better than SBLS and FPSP.

Figures 4 and 5 show the corresponding effects for the real data set. Comparing
Fig. 4 with Fig. 2 (both for Tuesday) reveals that the curves for SBLS and

Stochastic Local Search Procedures for the Probabilistic Two-Day VRP 163

Tuesday real

2000

2100

2200

2300

2400

2500

2600

2700

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Days

Costs
no postp. sampling b. ls fixed perc. est. savings

Fig. 4. Delivery costs on Tuesday (in minutes) – real-world data

Saturday real

2100

2150

2200

2250

2300

2350

2400

2450

2500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Days

Costs no postp. sampling b. ls fixed perc. est. savings

Fig. 5. Delivery costs on Saturday (in minutes) – real-world data

FPSP are now closer to the baseline curve for “no postponement”, and a clear
advantage of ESSP over the other algorithms can be recognized.

Surprisingly, Fig. 5 for Saturday shows another picture. Here, the baseline
policy of “no postponement” is astonishingly good, outperforming in some weeks
even the ESSP results. An explanation of this effect can be the following: As

164 K.F. Doerner et al.

c bar

0

0,05

0,1

0,15

0,2

0,25

0,3

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171

Days

Fig. 6. The development of the parameter c̄

mentioned above, the generation mechanism for the synthetic data distinctly
overestimates the number of orders on weekend days. A lot of orders, in particular
regular orders, are created that would not occur in practice. Dealing with many
regular orders favors our three postponement algorithms, since they are able to
cope with a mix of regular and urgent orders. On the other hand, they have no
advantage over the baseline algorithm if there are only (or nearly only) urgent
orders present, since these must be satisfied on the same day anyway. This effect
is enhanced by the specific situation on Saturday: in the real-data situation,
SBLS, FPSP and ESSP can be expected to have postponed a certain amount
of orders from Friday to Saturday, but due to the reduced order frequency on
Saturday, a much smaller amount of orders will be further postponed to Saturday.
Thus, these algorithms use a good deal of their effort on Saturday for working off
the remaining load from Friday. The baseline algorithm, however, has satisfied
all Friday orders already on Friday, so the cost registered on Saturday is only
due to the relatively low load of Saturday orders.

To give an example for the development of the values ct or c̄t in the SBLS
solution procedure, we present in Fig. 6 the curve for the c̄t case. c̄t expresses
an estimate of the additional cost per distance unit for a postponed customer.
Since we measure both costs and distances in time units, c̄t is a dimensionless
number, a value x meaning that servicing an additional customer in one hour
distance from the depot (by including this customer into a present tour) requires
an additional travel time of x hours. As observed from Fig. 6, the initial value for
c̄t has been chosen much too high. The procedure corrects this by successively
reducing c̄t, until the value oscillates around 0.008.

Stochastic Local Search Procedures for the Probabilistic Two-Day VRP 165

4 Conclusions and Directions of Future Research

We have investigated the potential impact of introducing different order types in
the blood delivery strategies of the Austrian Red Cross. The reduction in delivery
costs were analyzed when offering the customers different prices for different
delivery time windows. We have designed and implemented three alternative
solutions approaches. The obtained results show the viability of the proposed
approach. The algorithms perform very well on the real data, achieving driving
time reductions by up to 313 hours for 180 delivery days, which is a reduction in
driving time by 4.2 percent of total driving time. The implication of our study is
that it is worthwhile for the ARC to offer different order types to the hospitals.

In a further work [10] we investigate the potential value of switching from the
current vendee managed inventory set up to a vendor managed inventory system.
We develop and evaluate two alternative delivery strategies. The first strategy
retains the concept of regions and the use of fixed routes. The second strategy
combines more flexible routing decisions with a focus on delivery regularity for
each hospital. For an initial assessment of the potential benefits of these delivery
strategies, we investigate a simplified setting: we consider a single blood product
and we assume known and constant daily demand for each hospital.

Acknowledgment

We want to thank Franz Jelinek from the Austrian Red Cross for supporting
this project. Any opinions expressed herein do not necessarily reflect those of
the ARC. Furthermore, we are grateful to Ortrun Schandl for collecting the data
from the hospitals and analyzing the questionnaire. Financial support from the
Oesterreichische Nationalbank under grant #11187 is gratefully acknowledged.

References

1. Andreatta, G., Lulli, G.: A multi-period TSP with stochastic regular and urgent
demands. European Journal of Operational Research 185, 122–132 (2008)

2. Angelelli, E., Savelsbergh, M.W.P., Speranza, M.G.: Competitive analysis of a
dispatch policy for a dynamic multi-period routing problem. Operations Research
Letters 35, 713–721 (2007)

3. Angelelli, E., Savelsbergh, M.W.P., Speranza, M.G.: Competitive analysis for dy-
namic multi-period uncapacitated routing problems. Networks 49, 308–317 (2005)

4. Bullnheimer, B., Hartl, R.F., Strauss, Ch.: A new rank based version of the ant sys-
tem: A computational study. Central European Journal of Operations Research 7,
25–38 (1999)

5. Butler, M., Williams, H.P., Yarrow, L.A.: The two-period travelling salesman prob-
lem applied to milk collection in Ireland. Computational Optimization and Appli-
cations 7, 291–306 (1997)

6. Clarke, G., Wright, J.W.: Scheduling of vehicles from a central depot to a number
of delivery points. Operations Research 12, 568–581 (1964)

166 K.F. Doerner et al.

7. Doerner, K.F., Gutjahr, W.J., Hartl, R.F., Lulli, G.: A probabilistic two-day deliv-
ery vehicle routing problem. In: The Fifth Symposium on Transportation Analysis
(TRISTAN V), Preprints, Le Gosier, Guadeloupe, French West Indies, June 13–18
(2004)

8. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
9. Gendreau, M., Laporte, G., Seguin, R.: Stochastic vehicle routing. European Jour-

nal of Operational Research 88, 3–12 (1996)
10. Hemmelmayr, V., Doerner, K.F., Hartl, R.F., Savelsbergh, M.W.P.: Delivery

strategies for blood products supplies. OR Spectrum (to appear, 2008)
11. Powell, W.B., Jaillet, P., Odoni, A.R.: Stochastic and dynamic networks and rout-

ing. In: Ball, M.O., et al. (eds.) Handbook in Operations Research and Management
Science, vol. 8: Network Routing, pp. 141–296. Elsevier, Amsterdam (1995)

12. Puterman, M.L.: Markov Decision Processes. Wiley, Chichester (1994)
13. Reimann, M., Stummer, M., Doerner, K.F.: A savings based ant system for the

vehicle routing problem. In: Proceedings of the Genetic and Evolutionary Compu-
tation Conference (GECCO 2002), July 2002, pp. 1317–1325. Morgan Kaufmann,
San Francisco (2002)

14. Reimann, M., Doerner, K.F., Hartl, R.F.: D-Ants: Savings based ants divide and
conquer the vehicle routing problem. Computers & Operations Research 31, 563–
591 (2004)

15. Toth, P., Vigo, D. (eds.): The Vehicle Routing Problem. SIAM Monographs on
Discrete Mathematics and Applications, Philadelphia (2002)

Appendix

VRPs are well known combinatorial optimization problems that involve the con-
struction of a set of vehicle tours starting and ending at a single depot and satis-
fying the demands of a set of customers, where each customer is served by exactly
one vehicle and neither vehicle capacities nor maximum tour lengths are violated.

We extend the general VRP modelling framework to our problem situation
as follows: As stated before, we distinguish urgent requests from a set H

(t)
0 of

customers requiring delivery within the first day, and regular requests from a set
H

(t)
1 of customers allowing delivery within two days. A decision has to be made

on which day to serve customers belonging to the set H
(t)
1 .

The features of our real application suggest the following hypotheses on the
model:

• orders are random variables,
• delivery can take place any time during the day, that is, there are no time

windows,
• there are no capacity constraints on vehicles.

Under mild assumptions, the described problem can be considered as a Markov
decision process (see, e.g., Puterman [12]). Indeed, the state of the system depends
exclusively on the state and the decision taken at the previous stage. However,
for computational reasons, optimization methods for Markov decision processes
cannot be applied anymore to instances of our problem of a realistic size.

Stochastic Local Search Procedures for the Probabilistic Two-Day VRP 167

With the notation introduced at the beginning of Sect. 2, the problem can be
formalized as follows:

Min c(H(0) ∪ B(0)) + E[
T∑

t=1

c(H(t) ∪ B(t))]

s. t. H(t) = (H(t−1)
1 \B(t−1)) ∪ H

(t)
0 ∀t = 1, . . . , T. (4)

B(t) ⊆ H
(t)
1 ∀t = 1, . . . , T.

where H(0) = H
(0)
0 , c(A) denotes the delivery costs for serving the customers

belonging to the set A (optimal solution of the VRP), E denotes the mathe-
matical expectation, and T is the time horizon. Constraints (4) represent the
evolution of the system from one stage to the following one.

Procedure. Sampling-Based Local Search
Initialization: t = 0; initialize c0 and c̄0; H

(0)
1 = B(0) = ∅;

on each day t = 1, 2, . . . {
Step 0: select B(t) ⊆ H

(t)
1 ;

while termination criterion is not met { // Loop 1
Step 1: solve the VRP for the customers of the set
(H(t−1)

1 \ B(t−1)) ∪ H
(t)
0 ∪ B(t) by SBACO;

for a certain number of iterations {// Loop 2
Step 2: sample one instance for the sets

H
(t+1)
0 and H

(t+1)
1 by using the estimated distribution of the demand;

Step 3: select B(t+1) ⊆ H
(t+1)
1 ;

while termination criterion is not met { // Loop 3
G = (H(t)

1 \ B(t)) ∪ H
(t+1)
0 ∪ B(t+1); // customers chosen for day t + 1

compute the tours and delivery costs f(G) by SBACO;
with ϕ(A) = sum of distances from the depot to the customers in A,
totalCosts = f(G) + λ · ct · |H(t+1)

1 \ B(t+1)|+
+(1 − λ) · c̄t· ϕ(H(t+1)

1 \ B(t+1));
update best value minTotalCosts of totalCosts;
update B(t+1) by a local search move;

} // close Loop 3
} // close Loop 2
Step 4: compute the average value of minTotalCosts for B(t) over the samples;
chosen in Loop 2;
overallCosts = costs of Step 1, plus average costs of Step 4;
Step 5: update B(t) by a local search move;

} // close Loop 1

ct+1 = ρ · ct + (1 − ρ) · c((H(t−1)
1 \B(t−1))∪H

(t)
0 ∪B(t))−c(H(t)

0 ∪B(t))

|H(t−1)
1 \B(t−1) |

;

with ϕ(A) = sum of distances from the depot to the customers in A,

c̄t+1 = ρ · c̄t + (1 − ρ) · c((H(t−1)
1 \B(t−1))∪H

(t)
0 ∪B(t))−c(H(t)

0 ∪B(t))

ϕ(H(t−1)
1 \B(t−1))

;

} // close loop over days t

168 K.F. Doerner et al.

Procedure. Fixed Percentage Selection Procedure
on each day t = 1, 2, . . . {

set L = (H(t−1)
1 \ B(t−1)) ∪ H

(t)
0 ∪ H

(t)
1 ;

for each customer i ∈ H
(t)
1 {

solve the VRP for the customers of the set L \ {i} and store the
resulting cost in C−

i ;
} // close loop over customers i
sort the customers i according to their values C−

i in ascending order;
postpone the first p percent of customers on the resulting list by putting

them into the set H
(t)
1 \ B(t);

put the remaining customers into the set B(t);
} // close loop over days t

Procedure. Estimated Savings Selection Procedure
(1) Preprocessing:
for day d = 1, . . . , 7 of week {

for ν = 1, . . . , N {
sample one instance for the set H

(t)
0 by using the distribution of the demand

on day d of week;
solve the VRP for the customers of the set H

(t)
0

and store the resulting cost in C;
for each customer i {

solve the VRP for the customers of the set H
(t)
0 ∪ {i} and store the

resulting cost in Ci;
compute the additional cost ξ(i, ν, d) = Ci − C for serving customer i;

} // close loop over customers
} // close loop over samples ν
for each customer i

set the customer-specific cost estimate η(i, d) equal to the average value
of ξ(i, ν, d) over all ν;

} // close loop over days of week
(2) Planning for consecutive days:
on each day t = 1, 2, . . . {

determine d as the day of week of day t + 1;
set L = (H(t−1)

1 \ B(t−1)) ∪ H
(t)
0 ;

solve the VRP for L and store the resulting cost in Γ ;
for each customer i ∈ H

(t)
1

solve the VRP for L ∪ {i} and store the resulting cost in Γi;
postpone all customers i with Γi − Γ > ηi(i, d) by putting them into the
set H

(t)
1 \ B(t);

put the remaining customers into the set B(t);
} // close loop over days

The Oil Drilling Model and Iterative Deepening
Genetic Annealing Algorithm for the Traveling
Salesman Problem

Hoong Chuin Lau and Fei Xiao

School of Information Systems, Singapore Management University,
80 Stamford Road, Singapore 178902
hclau@smu.edu.sg, feixiao@smu.edu.sg

Summary. In this work, we liken the solving of combinatorial optimization prob-
lems under a prescribed computational budget as hunting for oil in an unexplored
ground. Using this generic model, we instantiate an iterative deepening genetic an-
nealing (IDGA) algorithm, which is a variant of memetic algorithms. Computational
results on the traveling salesman problem show that IDGA is more effective than stan-
dard genetic algorithms or simulated annealing algorithms or a straightforward hybrid
of them. Our model is readily applicable to solve other combinatorial optimization
problems.

Keywords: Oil drilling model, Iterative deepening genetic annealing algorithm,
Memetic algorithms, Traveling salesman problem.

1 Introduction

Solving NP -hard optimization problems efficiently still remains as one of ul-
timate challenges for computer scientists. Most often, rather than seeking op-
timal solutions, near optimal solutions are acceptable in industry considering
limited computational resources and quick response requirements. In the past
two decades, a large number of metaheuristic approaches have been proposed to
obtain reasonably good solutions for NP-hard problems, including more popular
ones such as genetic algorithms (GA) [11], simulated annealing (SA) [12], and
tabu search [7, 8]. A large number of hybrid algorithms has also been proposed,
such as memetic algorithms [19].

It is well-known that metaheuristics generally require proper tuning of key
parameters, and they perform differently on various optimization problems, or
even different instances of the same problem. In particular, when it comes to
hybrid local search strategies (such as a combination of GA and SA), the perfor-
mance often hinges on how well the algorithm explores the search space through
an (iterated) process of diversification and intensification. Recently in [3], in
an attempt to unify different metaheuristics conceptually, a framework called
the I&D frame was introduced to put different intensification and diversification
components in relation with one another.

A. Fink and F. Rothlauf (Eds.): Advances in Computational Intelligence, SCI 144, pp. 169–184, 2008.
springerlink.com © Springer-Verlag Berlin Heidelberg 2008

170 H.C. Lau and F. Xiao

In this work, we draw a close analogy of this iterated search process to oil
drilling, and propose an easily implementable and efficient scheme called the oil
drilling model (ODM) to hybridize two different heuristics, where one serves as an
intensifier while the other as an diversifier. The goal for our research is to achieve
balanced diversification and intensification for a specified problem under a given
computational budget. More specifically, by following the ODM, we develop
an iterative deepening genetic annealing (IDGA) algorithm, which is composed
of a standard genetic algorithm and simulated annealing. An intensification-
diversification pyramid is proposed to illustrate the strength of diversification
and intensification with different parameter settings in IDGA.

The traveling salesman problem (TSP) is arguably one of the most funda-
mental and important combinatorial optimization problems in transportation
and logistics planning, along with other problems such as the quadratic assign-
ment problem. In this work, we choose TSP as our case study problem.

This chapter proceeds as follows. We present the details of the oil drilling
model in the next section. In Sect. 3.1, the iterative deepening genetic annealing
algorithm is developed based on the ODM. The intensification-diversification
pyramid is presented in Sect. 3.2. In Sect. 4, we discuss details of IDGA to solve
the TSP. In Sect. 5, we present our experimental results, comparing IDGA with
GA, SA, and a hybrid of GA and SA. In Sect. 6, we present some concluding
remarks.

2 The Oil Drilling Model

Finding high-quality solutions for an optimization problem can be viewed as
hunting for oil in an unexplored ground. The goal for an oil hunting firm is to
find oil in the ground within the cost limits. Granted that there may be some
more advanced technology in finding oil today such as using magnetometers and
shock waves, we consider a traditional process where drill is the only means to
find out whether oil is present. The process is as follows. First, one has to identify
where to drill. We also have to decide how deep to drill for each identified well.
The cost for oil hunting is proportional to the number of locations to drill and
the depth of each drilled location.

Analogously, in solving combinatorial optimization problems with heuristics,
our goal is to hunt for high-quality solutions within prescribed computational
cost limits. The ground can be viewed as the solution space and computational
limits can be viewed as cost limits in the oil hunting process. We consider local
search algorithms (or heuristics with strength in intensification) as the drilling
process, which incurs most of the computational cost. To decide where we should
start the local search is similar as to decide where to drill. Moreover, to decide
about the maximum number of steps in a local search is analogous to deciding
how deep to drill.

Furthermore, in an oil hunting process, before drilling a very deep well, one
would like to drill some shallow wells to get some samples of the rocks. By
analyzing the structure of the rocks, one will narrow the scope to a smaller

The Oil Drilling Model and IDGA Algorithm for the TSP 171

number of places to drill deeper therein. This process is repeated until finally
one can decide to drill the deepest well at a particular location with the highest
chance for finding oil. We see oil hunting as a promising model to model the
general notion of iterative diversification and intensification in metaheuristic
search. Hence, we name our approach conveniently as the oil drilling model,
which is proposed and given algorithmically as follows.

Algorithm 1. The Oil Drilling Model (ODM)
1: Initialize search depth, population size, and initial solutions in the population
2: Sieve the solutions according to the population size
3: Perform local search on the remaining solutions with current depth
4: Increase the depth and reduce the population size
5: If population size is greater than 1, goto 2:

As shown in Algorithm 1, ODM is an iterative deepening process, where there
are two basic steps for each iteration. The first step is called the sieving step.
Only the best solutions obtained in the preceding iteration are kept. The second
step is called the search step. A local search algorithm will be applied on all
remaining solutions. After that the depth of the local search will be increased
and the population will be decreased. When the population reaches 1, the deepest
local search will be performed and the oil drilling process ends. A similar iterative
deepening process can be found in iterative deepening A* search [13], which is
an efficient exhaustive search algorithm.

3 Iterative Deepening Genetic Annealing (IDGA)
Algorithm

3.1 Structure of IDGA

Genetic algorithms [11] have been widely used in solving combinatorial opti-
mization problems. Crossover, as one of the main operators of GA, is very useful
in evolving new high-quality solutions which inherit the useful patterns of the
parent solutions. As GA maintains a population of solutions, it exhibits good di-
versification properties. Hence, for this work, GA is selected as the diversification
algorithm for ODM.

On the other hand, simulated annealing [12] is notable not only for its conver-
gence towards optimality, but also for simplicity of implementation. Like many
other local search algorithms, SA has strengths in intensification. Furthermore
SA is not easily trapped in local optimality. The desirable properties of SA
inspire us to select it as the intensification algorithm for ODM.

We introduce the iterative deepening genetic annealing (IDGA) algorithm,
which results from applying GA as the sieving step and SA as the local search
step in ODM. It is different from the traditional hybrid of GA and SA such as
[5], where the population of GA as well as the step limits of SA are fixed.

172 H.C. Lau and F. Xiao

It is worthwhile to provide a brief discussion relating our approach with
memetic algorithms. In [14], a memetic algorithm is defined as an evolutionary
algorithm that includes individual learning and optimization, so for example,
a genetic algorithm with local search [19] is a memetic algorithm. Memetic al-
gorithms have been deployed to solve combinatorial optimization problems; for
example, [21] provides a survey for different memetic algorithms on the Euclidean
TSP. Recently, [20] studied important design issues of memetic algorithms. In
our ODM approach, the sieving step can be a pure selection procedure without
applying a crossover operator, and hence it may not be an evolutionary algo-
rithm. Hence, strictly speaking, ODM is different philosophically from a memetic
algorithm. However, IDGA, which is an instantiation of ODM comprising a hy-
brid of GA and SA, can be classified as a memetic algorithm, with the special
condition that the population of IDGA is gradually reducing, as we will present
below.

The details of IDGA are given as follows. The population of GA will be
reduced and the step limits of SA will be increased in each iteration until the
population size of GA reaches 1 and the step limits of SA reaches its largest
value. Assuming the decreasing rate of the population is 1

α , and the increasing
rate of the step limits is β, the population size POPk+1 and step limit STEPk+1
of the (k + 1)-th iteration of IDGA is calculated as

POPk+1 = POPk/α, (1)
STEPk+1 = β · STEPk. (2)

As the drilling cost is the main cost of the oil drilling process, we will only
consider the cost of SA in ODM. Therefore, the total number of steps of SA is
calculated as the computational cost, the cost for the k-th iteration of IDGA
will be POPk · STEPk. Assuming the total computational budget is C, and the
total number of iterations of IDGA is K, let the ending population of the GA
(i.e., final drilling of ODM) be 1 and let the start step limit of SA be 1, we have

αK−1 + β · αK−2 + · · · + βK−2 · α + βK−1 ≤ C, (3)

where βk−1 ·αK−k is the computational cost for the k-th iteration of IDGA. The
above inequality can be transformed to the following form:

{
(αK − βK)/(α − β) ≤ C when α �= β,
K · αK−1 ≤ C when α = β.

(4)

Note that the cost for each iteration of IDGA will increase, so we have α < β.
Therefore, given a computational cost limit C, the maximum possible iteration K
of IDGA can be found by binary search, where an upper bound can be calculated
as

Kmax = min{logα C, logα C} + 1. (5)

After finding K with binary search, the cost C can be calculated as

C = αK−1 + β · αK−2 + · · · + βK−2 · α + βK−1. (6)

The Oil Drilling Model and IDGA Algorithm for the TSP 173

Crossover and
Selection

SA SA SA SA

POP=POP/α
STEP=STEP*β

Selection

POP>0

Initialization

Output best result

Fig. 1. Iterative deepening genetic annealing algorithm

The extra computational cost, C − C, will be consumed in the last iteration of
IDGA to extend the depth of the last drilling step. A flowchart of IDGA is given
in Fig. 1.

In IDGA, a POP number of initial solutions will be randomly generated or
generated according to some rules (as the initial spots to drill) and STEP , which
is the step limit of SA, is initialized to 1. The crossover operator is then used
to generate t · POP more solutions and the POP best solutions will be selected
according to the selection scheme of GA. Then, the SA is performed on all POP
number of solutions with the step limit as STEP . After SA has been performed,
the population will be reduced to POP/α, while the step limit is increased to
β · STEP , where the POP/α solutions are selected according to the selection
scheme of GA. The whole process will be repeated so long as POP > 1. The
step or depth to drill become largest when POP=1, and the final drilling will
be performed at the only place selected, where all the remaining computational
budget will be consumed. Here we neglect the details of generating the initial
population, the crossover operator, the selection scheme of GA, and the annealing
schedule of SA. In Sect. 4, we will provide details for IDGA on the traveling
salesman problem.

According to Equation 3, different α and β values will result in different total
numbers of iterations in IDGA. Moreover, since the diversification property in

174 H.C. Lau and F. Xiao

IDGA is mainly determined by size of the population, and the intensification
property is determined by depth of SA, the parameters α and β can be viewed
as the parameters for diversification and intensification, respectively. Different α
and β values will result in different intensification-diversification schemes. The
intensification-diversification pyramid given in the next section will clearly illus-
trate the strength of intensification and diversification under different schemes.

3.2 Intensification-Diversification Pyramid

The depth of SA typically remains constant in a standard hybrid of GA and SA,
which implies that the strength of diversification and intensification remains the
same throughout the search process. In ODM, more strength is put into the
diversification at the start of the search while the focus shifts to intensification
at the end of the search. We argue that ODM is better than a standard hybrid
scheme, since a greater amount of computational cost should be devoted to ex-
ploit the solution structure in order to have the highest chance in obtaining best
solutions. Therefore, the starting stage of ODM can be viewed as the selection
phase, where different solutions are examined and sieved. The ending stage of
ODM is to perform the final drilling, which can be viewed as the exploring phase,
where the most computational cost is used to explore the neighbors of the last
solution.

As mentioned in the previous section, the parameters α and β determine the
strength of intensification and diversification in ODM. To illustrate the different
intensification-diversification schemes according to different α and β values, we
develop the intensification-diversification pyramid (ID-pyramid). The number
of levels of the ID-pyramid is the total number of iterations K in Equation 3,
where each level represents an iteration of IDGA. The width of each level is the
size of the population in that iteration, and the height of the level is the depth
of the SA. With total cost set to 120, we present different ID-pyramids with
(α, β) values set to (1.2, 1.2), (1.5, 1.5), (2, 2), (2, 4), (4, 2), and (4, 4), as shown
in Fig. 2.

Clearly, the area of each pyramid is equal to the cost limit 120. We also observe
that the larger the value of α, the bigger the difference between the width of
the neighbor levels in ID-pyramids, and the larger the value of β, the bigger the
difference between the height of the neighbor levels in ID-pyramids. The heights
of the last level of the ID-pyramids are the highest; this is clearly illustrated
in Fig. 2. In fact, as shown in the computational study later, to achieve best
performance of ODM, the area of the last level of an ID-pyramid should be
larger than the total areas of the rest of the levels. In Fig. 2, the last level
ID-pyramid (4, 2) is much lower than the last level of other pyramids, which
illustrates that it is not good to let α be larger than β. Detailed experimental
results for different ID-pyramids can be found in Sect. 5. In the next section,
we will introduce the traveling salesman problem and survey some of the past
research, followed by the details of applying IDGA on the TSP.

The Oil Drilling Model and IDGA Algorithm for the TSP 175

(1.2,1.2) (1.5,1.5) (2,2) (2,4) (4,2) (4,4)

Fig. 2. Intensification-diversification pyramids with cost limit as 120

4 Solving TSP with IDGA

In the traveling salesman problem (TSP), we are given a complete undirected
graph G = (V, E), each edge has a nonnegative weight w(u, v), and the objective
is to find a cycle of minimum total weight that visits each vertex exactly once
and also returns to the starting vertex.

One may model the TSP as an integer programming problem and apply the
cutting plane method proposed by Gomory [9]. Further work developed by Ap-
plegate et al. [1] has solved a TSP instance with 24,978 cities using approxi-
mately 84.8 CPU years on a single Intel Xeon 2.8 GHz processor. It remains
highly improbable to solve very large instances (like the World TSP with more
than 1 million cities) using the cutting plane method. The best reported tour
for the World TSP was found by Helsgaun using the LKH heuristic algorithm
[10] (an improved effective implementation of Lin-Kernighan search [15]), which
is 0.04996% greater than the lower bound. The cutting plane method developed
by Applegate et al. and the LKH heuristics by Helsgaun are state-of-the-art al-
gorithms for solving the TSP. A large number of heuristic algorithms have been
developed to obtain reasonably good solutions under a limited computational
cost, such as genetic algorithms [18], simulated annealing [22], tabu search [24],
and ant colony optimization [6]. There are also hybrid algorithms for the TSP
which combine heuristic algorithms like GA and SA with local search algorithms
like 2-opt, 3-opt, or Lin-Kernighan search [17, 16]. A recent review on the state-
of-art algorithms for the TSP can be found in [2].

In this section, we present results on the performance of IDGA for solving
the TSP. Our intention here is not to achieve best results for the TSP, but
to demonstrate that applying IDGA to solve the TSP is more effective than
applying SA and GA alone or GASA (a simple hybrid GA and SA with fixed
population size and search depth). With extensive research done on the TSP,

176 H.C. Lau and F. Xiao

there are numerous techniques we can adopt. Here, we will present details of
IDGA embedding some popular techniques such as candidate sets and 2-opt.

Initial Population

To reduce the computational effort and improve the quality of the solutions, can-
didate sets have been widely used in the approaches for the TSP. The candidate
set of each vertex contains the best choices for the neighbors of the vertex when
forming the TSP tour. In IDGA, we maintain a candidate set with 6 nearest
neighbors for each vertex to balance the performance and computational time.
One of the initial solutions for IDGA will be selected as the solution from a clas-
sic greedy algorithm. The rest of the initial solutions are generated randomly,
where, in building the tour, the current vertex will try to pick up the next vertex
in the tour from its candidate set randomly; if all the neighbors in the candidate
set of the current vertex have been picked up, it will select the nearest neighbor
which has not yet been included in the tour as the next vertex.

All the settings of IDGA are also used in the GA, SA, and a standard combi-
nation of GA and SA (GASA) which we benchmark against. Since the SA only
has one initial solution, the initial solution of the SA is just the solution from
the greedy algorithm.

Crossover

A classic two point crossover is used in IDGA. Both the parents are selected
according to the 2-tournament rule. Assuming there are N cities for the TSP,
point a and point b is selected on the father’s sequence, such that |b − a|/N ∈
[0.4, 0.6]. To have a good diversification in the offspring, two parents will only
have one child instead of two, since the siblings from the same parents tend to
have similar genes. For the child sequence, the first part from 1 to b − 1 and the
third part from a+1 to N are inherited from the father’s sequence directly. The
second part of the child is the compose of the cities in the second part from a to
b of the father’s sequence, however, the order of them is according to their order
in the mother’s sequence. As an example, for the TSP with 6 cities, assuming
the father sequence is [1, 2, 3, 4, 5, 6] and the mother sequence is [4, 1, 2, 5, 6, 3],
also assuming a is 3, and b is 5, the child sequence will be [1, 2, 4, 5, 3, 6], in which
the first part [1, 2], and the third part [6] is from the father directly, the second
part is from the second part [4, 5, 3] of the father however in the order of the
mother’s sequence.

Selection

The fitness function for each sequence is the length of the tour it represents.
Each generation of IDGA will generate 4 ∗ POP offspring. The ranking method
is used to select the sequence for the next generation. POP number of sequences
with highest fitness values will be selected among the old POP sequences and
their 4 ∗ POP offspring.

The Oil Drilling Model and IDGA Algorithm for the TSP 177

Annealing Schedule

Instead of providing each SA search in Fig. 1 with a separate annealing sched-
ule, we treat the entire IDGA as a single annealing process to achieve a better
convergence. The initial temperature T0 is set as

T0 =
−Lbest

100 ln(0.01)
(7)

so that the probability to accept a solution that is 1/100 worse than Lbest is 0.01,
where Lbest is the length of the best tour in the initialization procedure. In IDGA,
SA mainly plays the role of intensification, and hence the initial temperature is
set relatively low.

Accordingly, the final temperature Te is set as

Te =
−1

ln(0.001)
(8)

so that the probability to accept a solution which is 1 unit longer than the best
length is 0.001. In our approach, the exponential cooling scheme is used, which
is given as

Tk+1 = λTk, k ≥ 0, (9)

where λ is set as 0.2. The number of steps of SA for the (k + 1)-th temperature
is calculated as Nk+1 = Nk ∗ 2, which also means the length of the Markov
chain increases with the temperature approaching 0. The number of different
temperature states can be calculated as

p =
⌈

ln(Te/T0)
ln λ

⌉
+ 1. (10)

With the total computational cost as C, N0 can be calculated as

N0 =
⌊

C

2p − 1

⌋
. (11)

Local Move

2-opt is one of the most used local search algorithms for the TSP, not only for
its efficiency but also for the simplicity of implementation. We apply the local
move used in 2-opt in our IDGA. The local move considers removing two edges
from the current tour and adding two new edges to form a new tour. If the new
tour is acceptable according to the transition probability of SA, the current tour
will be updated by the new tour.

IDGA

With all the above features, the detailed algorithm of IDGA for the TSP is given
in the appendix. Within this algorithm, crossover is the function to generate the

178 H.C. Lau and F. Xiao

new solution by performing crossover on Sf and Sm; 2-opt-move is the function
to generate a new tour S′

j through applying a 2-opt move on the old tour Sj ;
rand is the function to generate a real number randomly in (0, 1) according to
uniform distribution; Nd is used to record the length of the current Markov
chain. When the population decreases to one solution, the additional cost C −C
will be added to the depth for the last drilling.

5 Computational Study

We implemented IDGA with Visual C++ 6.0 on the Windows XP platform. All
experiments are conducted on a laptop PC with a PIV 1.6 GHz Intel dual-core
processor and 1 GB memory.

As mentioned above, only the number of steps of the SA is counted as com-
putational cost. In all experiments, the cost limit is given as 12499968 (set α, β,
K as 2, 10, 8), where the cost limit can be set as any other value instead and
the results are consistent.

We randomly selected 11 TSP instances from the set of 67 EUC2D TSP
instances posted in TSPLIB [23], where the number of cities ranged from 52
to 2392. We will first present the results on different ID-pyramids discussed in
Sect. 3.2, followed by detailed experimental results of comparing IDGA with
GA, SA, and GASA.

5.1 Selecting the ID-Pyramid

The shapes of different ID-pyramids are given in Fig. 2, where some insights
on the ID-pyramids are discussed in Sect. 3.2. The average deviation from the
optimal solutions and average running time for different ID-pyramids on the 11
TSP instances selected are recorded in Table 1. Note that for ID-pyramid (2, 2)
the initial population size is calculated as 524288, which will be computationally
prohibitive. Hence, for all cases, we set the limit for the initial population size
as 5000.

Table 1. Computational results for different ID-pyramids

ID-pyramids (1.2,1.2) (1.5,1.5) (2,2) (2,4) (4,2) (4,4) (2,10) (2,20)
Avg. dev. (%) 5.15 5.03 4.65 3.83 5.73 4.97 3.36 4.56
Avg. time 81.08 54.13 45.29 25.28 39.88 39.92 13.98 12.71

In Table 1, we observe that even with the same number of steps of SA, more
computational time is required for smaller values of α and β (such as ID-pyramids
(1.2, 1.2), (1.5, 1.5) and (2, 2)). This is because the aggregate population sizes
for those ID-pyramids are large, and hence more computational cost of GA

The Oil Drilling Model and IDGA Algorithm for the TSP 179

0
2

4
6

8
10

0

5

10
3

3.5

4

4.5

5

5.5

6

6.5

alpha
beta

de
v.

Fig. 3. Results of different ID-pyramids

operators will be incurred. We note that the main computational cost of ODM
is the drilling process. Therefore, in IDGA, we only count the steps of SA as
the computational cost. We also discover that the top 3 ID-pyramids are (2, 10),
(2, 4), and (2, 20), while ID-pyramid (4, 2) returns the worst result. The reason
is that ID-pyramid (4, 2) focuses on diversification so that the last level of ID-
Pyramid (4, 2) is much lower than the other ID-pyramids, which is also indicated
in Fig. 2. We also observe that too much strength on intensification is also not
good, as the results of ID-pyramid (2, 20) is worse than ID-pyramid (2, 10).
It is quite clear from Table 1, that ID-pyramid (2, 10) should be selected for
IDGA to achieve balanced strength of intensification and diversification within
a reasonable computational time.

To further investigate whether there are multiple balanced points for the
strength of intensification and diversification, we have sampled 49 different ID-
pyramids, where the values of α and β are taken from the set {1.2, 1.5, 2, 4, 6, 8, 10}.
The deviations from the optimal solutions of those ID-pyramids are illustrated in
Fig. 3. We observe there is a valley phenomenon in Fig. 3, which suggests that
while there are multiple balanced points (best ID-pyramids), the best ones are
those with an α value around 2. We also observe that the worst results are achieved
by those with α > β, which shows that for the TSP intensification should have
a stronger strength than diversification. The best result, which is 3.04% from the
optimal solutions, is achieved by setting α and β to be 1.5 and 2.0 respectively.
Note however that the average computational time for this case is 53.20 seconds.
On the other hand, the ID-pyramid (2, 10) is a good choice if the computational
budget is limited to be within, say 20 seconds.

180 H.C. Lau and F. Xiao

5.2 Experimental Results

Detailed results for comparing IDGA with SA on the 11 TSP instances are
presented in Table 2. We observe that IDGA outperforms SA on 9 cases, with
1 equal result and only 1 worse result. On average, the solutions of IDGA are
1.39% better than the solutions of SA. We also observe that IDGA outperforms
SA significantly on the two largest instances, where IDGA yields 9% better than
SA for the TSP instance pr2392. Note that SA can be viewed as the ID-pyramid
(1, C) which mainly focuses on intensification, while IDGA has been designed to
achieve balanced strength in diversification and intensification.

Table 2. Comparing IDGA with SA on the TSP instances

SA IDGA
dev. time dev. time dev.

TSP instance opt. results opt. (%) (sec) results opt. (%) (sec) SA (%)
pr2392 378032 457374 20.99 14.20 416042 10.05 18.77 -9.04
pr1002 259045 290080 11.98 13.52 281675 8.74 14.70 -2.90
pr107 44303 45177 1.97 14.34 44580 0.63 14.77 -1.32
rd100 7910 8141 2.92 13.98 8083 2.19 14.39 -0.71

berlin52 7542 7542 0.00 13.97 7542 0.00 13.95 0.00
pr76 108159 109841 1.56 13.91 108638 0.44 13.89 -1.10
a280 2579 2720 5.47 11.83 2710 5.08 11.92 -0.37

kroa100 21282 21567 1.34 14.05 21369 0.41 14.03 -0.92
ch150 6528 6791 4.03 12.52 6695 2.56 12.50 -1.41
ei151 426 426 0.00 10.45 426 0.00 10.36 0.00

pcb442 50778 52924 4.23 14.06 54256 6.85 14.55 2.52
Average 80598.55 91143.91 4.95 13.35 86546.91 3.36 13.98 -1.39

IDGA uses the same operators as SA, GA, and GASA. However, the popu-
lation of solutions in IDGA decreases and the steps of SA in IDGA increase for
each iteration. For IDGA, the total SA step limit is set to 12499968 (set α, β,
K as 2, 10, 8). For pure SA, the total SA step limit is also set to 12499968. For
pure GA, the population size is set to 150 and the number of generations is set
to 100. For GASA, the population is set to 60, the number of generations is set
to 30, and the number of SA steps is set to 6944 (12499968/60/30).

The results of GA and GASA are given in Table 3. Here, GA can be viewed
as the ID-pyramid (1, 0), where we try to provide same computation time to GA
by assigning the number of population as 150 and the number of generations as
100, while GASA can be viewed as ID-pyramid (1, 1). The population is set to
60, the number of generations is set to 30 and the number of SA steps for each
GA sequence is set to 6944 (12499968/(60×30)). We observe in Table 3 that, on
average, the results for IDGA are 2.10% better than the results of GASA, and
14.24% better than the results of GA. It is noteworthy that the TSP on planar
graphs exhibits the well-known big valley property [4], and hence GA typically
returns worse results than SA. The comparison between IDGA and GA, SA, and

The Oil Drilling Model and IDGA Algorithm for the TSP 181

Table 3. Comparing IDGA with GA and GASA on selected TSP instances

GA GASA IDGA
dev. time dev. time dev. dev.

TSP instance results opt. (%) (sec) results opt. (%) (sec) GA (%) GASA(%)
pr2392 461170 21.99 35.72 461170 21.99 17.75 -9.79 -9.79
pr1002 331103 27.82 21.75 331103 27.82 14.55 -14.93 -14.93
pr107 46242 4.38 14.24 44595 0.66 14.74 -3.59 -0.03
rd100 9887 24.99 13.83 7910 0.00 15.19 -18.25 2.19

berlin52 8736 15.83 13.63 7542 0.00 15.17 -13.67 0.00
pr76 138484 27.61 13.70 108792 0.59 15.00 -21.55 -0.14
a280 3149 22.10 14.66 2697 4.58 11.69 -13.94 0.48

kroa100 27132 27.49 13.91 21344 0.29 15.17 -21.24 0.12
ch150 8191 25.47 14.16 6571 0.66 12.84 -18.26 1.89
ei151 468 9.86 13.63 427 0.23 10.20 -8.97 -0.23

pcb442 61979 22.06 16.34 55760 9.81 14.45 -12.46 -2.70
Average 99685.55 20.87 16.87 95264.64 6.06 14.25 -14.24 -2.10

Table 4. Average results of 67 instances from TSPLIB

Avg. results IDGA SA GASA GA
Length 77416.97 78927.42 82854.39 88553.10

Dev. opt (%) 5.99 6.92 8.88 23.01
Time 12.66 11.73 10.72 17.33

IDGA improvements (%) 0.00 -0.81 -2.21 -13.66

Table 5. Comparing IDGA with memetic algorithms on TSP instances, where γ indi-
cates average fitness per generation at each run, averaged over 100 runs, and η indicates
best fitness values achieved during these runs

SSMA HC TGMA HC IDGA
TSP instance γ η γ η γ η

C20 149.799 62.575 153.128 62.575 116.367 62.575
C30 186.314 62.716 198.448 62.716 120.025 62.716
C40 243.077 62.768 309.523 62.768 125.721 62.768
S21 129.523 60.000 149.920 60.000 121.439 60.000
F32 157.291 89.288 172.591 84.180 124.640 84.180
F41 205.571 68.168 239.901 68.168 125.461 68.168

GASA has illustrated the superior performance of ODM and IDGA, and more
importantly, demonstrated that balancing diversification and intensification can
certainly improve the performance over pure and standard hybrid algorithms.

The average results for all the 67 instances from TSPLIB are presented in
Table 4. We observe that IDGA achieved best average results overall, with 0.81%
improvement over SA, 2.21% over GASA, and 13.66% over GA.

182 H.C. Lau and F. Xiao

We also compare IDGA with state-of-art memetic algorithms for the TSP [21],
including a steady state memetic algorithm with hill climbing (SSMA HC) and
a trans-generational memetic algorithm with hill climbing (TGMA HC). The
TSP instances C20, C30, C40, S21, F32, and F41 proposed by Ender Ozcan and
Murat Erenturk [21] are used here. The detailed results can be found in Table 5.

As shown in Table 5, IDGA has found optimal solutions for all the test in-
stances. IDGA also achieved better average fitness value than the other two
approaches, which implies that IDGA converges faster than other methods.

6 Conclusion

An oil drilling model (ODM) has been proposed in this chapter for solving
combinatorial optimization problems. Following ODM, we designed a new it-
erative deepening genetic annealing (IDGA) algorithm to solve the TSP. We
also proposed the notion of ID-pyramids to illustrate different intensification-
diversification schemes, where the best ID-pyramid is selected according to ex-
perimental results. Detailed experimental results on the TSP also show that
IDGA outperforms pure GA, SA, and a standard hybrid of GA and SA, which
illustrates the effectiveness of ODM and IDGA and demonstrates that it is pos-
sible to combine different heuristics to achieve a balanced point of diversification
and intensification.

To further investigate on IDGA and ODM, more experiments on different
kinds of combinatorial optimization problems should be conducted in the future.
Moreover, different sieving and local search methods other than GA and SA can
also be used. The ID-pyramids may be used as a tool to illustrate the strength
of intensification and diversification for other hybrid heuristics. Since different
problems may have different balance points of diversification and intensification,
we think that an interesting future work is to design an intelligent method that is
capable of performing automated selection of the best ID-pyramid for a specified
problem.

References

1. Applegate, D., Bixby, R., Chvátal, V., Cook, W.: On the solution of traveling
salesman problems. In: Documenta Mathematica, Extra Volume Proceedings ICM
III, pp. 645–656 (1998)

2. Applegate, D., Bixby, R., Chvátal, V., Cook, W.: The Traveling Salesman Problem:
A Computational Study. Princeton University Press, Princeton (2007)

3. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: Overview and
conceptual comparison. ACM Computing Surveys 35(3), 268–308 (2003)

4. Boese, K.D.: Models for Iterative Global Optimization. PhD Thesis, UCLA Com-
puter Science Department (1996)

5. Chen, D.J., Lee, C.Y., Park, C.H.: Hybrid genetic algorithm and simulated an-
nealing (HGASA) in global function optimization. In: 17th IEEE International
Conference on Tools with Artificial Intelligence, pp. 126–133 (2005)

The Oil Drilling Model and IDGA Algorithm for the TSP 183

6. Dorigo, M., Maniezzo, V., Colorni, A.: The Ant System: Optimization by a colony
of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics –
Part B 26(1), 29–41 (1996)

7. Glover, F.: Tabu search – Part I. ORSA Journal on Computing 1(3), 190–206
(1989)

8. Glover, F.: Tabu search – Part II. ORSA Journal on Computing 2(1), 4–32 (1990)
9. Gomory, R.: Solving linear programs in integers. In: Bellman, R.E., Hall Jr., M.

(eds.) Combinatorial Analysis, Proceedings of Symposia in Applied Mathematics
X, pp. 211–216. American Mathematical Society, Providence (1960)

10. Helsgaun, K.: An effective implementation of the Lin-Kernighan traveling salesman
heuristic. European Journal of Operational Research 126(1), 106–130 (2000)

11. Holland, H.J.: Adaption in Natural and Artificial Systems. University of Michigan
Press, Ann Arbor (1975)

12. Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by simulated anneal-
ing. Science 220, 671–680 (1983)

13. Korf, R.E.: Depth-first iterative-deepening: An optimal admissible tree search. Ar-
tificial Intelligence 27, 97–109 (1985)

14. Krasnogor, N., Smith, J.E.: A tutorial for competent memetic algorithms: Model,
taxonomy and design issues. IEEE Transactions on Evolutionary Computa-
tion 9(5), 474–488 (2005)

15. Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-
salesman problem. Operations Research 21, 498–516 (1973)

16. Liu, Z., Kang, L.: A hybrid algorithm of n-OPT and GA to Solve Dynamic TSP.
In: Li, M., Sun, X.-H., Deng, Q., Ni, J. (eds.) GCC 2003. LNCS, vol. 3032, pp.
1030–1033. Springer, Berlin (2004)

17. Martin, O., Otto, S.W.: Combining simulated annealing with local search heuris-
tics. Annals of Operations Research 63, 57–75 (1996)

18. Merz, P., Freisleben, B.: Genetic local search for the TSP: New results. In: Pro-
ceedings of the 1997 IEEE International Conference on Evolutionary Computation,
pp. 159–164 (1997)

19. Moscato, P.A.: On evolution, search, optimization, genetic algorithms and martial
arts: Towards memetic algorithms. Technical Report Caltech Concurrent Compu-
tation Program, Report 826. Caltech (1989)

20. Nguyen, Q.H., Ong, Y.S., Lim, M.H., Krasnogor, N.: A study on the design issues
of Memetic Algorithm. In: Proceedings of the 2007 IEEE International Conference
on Evolutionary Computation, pp. 2390–2397 (2007)

21. Ozcan, E., Erenturk, M.: A brief review of memetic algorithms for solving Euclidean
2D traveling salesrep problem. In: Proceedings of the 13th Turkish Symposium on
Artificial Intelligence and Neural Networks, pp. 99–108 (2004)

22. Skiscim, C.C., Golden, B.L.: Optimization by simulated annealing: A preliminary
computational study for the TSP. In: Proceedings of the 15th Conference on Winter
Simulation, vol. 2, pp. 523–535 (1983)

23. Library of Sample Instances for the TSP (1997),
http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html

24. Zachariasen, M., Dam, M.: Tabu search on the geometric traveling salesman prob-
lem. In: Osman, I.H., Kelly, J.P. (eds.) Metaheuristics: Theory and Applications.
Proceedings Metaheuristics International Conference 1995, Colorado, pp. 571–587
(1995)

http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html

184 H.C. Lau and F. Xiao

Appendix

Algorithm 2. Iterative Deepening Genetic Annealing Algorithm (IDGA)
1: Generate candidate set for each vertex
2: Set initial value for T0 and Te

3: Calculate the number of generations K with binary search
4: Calculate POP0 and STEP0

5: for i ← 1 to POP0 do
6: Generate Solution Si randomly according to candidate sets
7: end for
8: Calculate N0 according to T0, Te, and C
9: i ← 0

10: c ← 0, d ← 0
11: while i < K do
12: for j ← 1 to 4 ∗ POPi do
13: Select Sf and Sm

14: Sj+POPi ← crossover(Sf , Sm)
15: end for
16: Select best POPi solutions
17: for j ← 1 to POPi do
18: for u ← 1 to STEPi do
19: S′

j ← 2-opt-move(Sj)
20: p ← rand(0, 1)
21: if p < e(Sj−S′

j)/Tk then
22: Sj ← S′

j

23: end if
24: c ← c + 1
25: if c = Nd then
26: d ← d + 1
27: Nd ← 2 ∗ Nd−1

28: c ← 0
29: end if
30: end for
31: end for
32: POPi+1 ← POPi/α
33: STEPi+1 ← STEPi ∗ β
34: if POPi+1 = 1 then
35: STEPi+1 ← STEPi+1 + C − C
36: end if
37: i ← i + 1
38: end while

Online Transportation and Logistics Using
Computationally Intelligent Anticipation

Peter A.N. Bosman and Han La Poutré

Centre for Mathematics and Computer Science, P.O. Box 94079, 1090 GB
Amsterdam, The Netherlands
{Peter.Bosman,Han.La.Poutre}@cwi.nl

Summary. With advances in technology in communication and navigation, the abil-
ity to make decisions online (i.e. as time goes by) becomes increasingly important in
transportation and logistics. In this chapter, we focus on online decision making in
these areas. First, we point out the importance of anticipation when optimizing deci-
sion processes online. Anticipation is the possibility to take into account future events
and the influence of decisions taken now on those future events. Second, we discuss
how computational intelligence (CI) can be used to design approaches that perform
anticipation. We illustrate this particular use of CI techniques in two different applica-
tions: dynamic vehicle routing (transportation) and inventory management (logistics).
In both cases the use of anticipation is found to lead to substantial improvements.
This demonstrates our main conclusion that the ability to perform anticipation in
online transportation and logistics is very important.

Keywords: Online optimization, Estimation-of-distribution algorithm, Evolutionary
algorithm, Vehicle routing, Inventory management.

1 Introduction

Transportation and logistics play an important role in many companies. Opti-
mizing the processes that are involved directly influences a company’s efficiency
and hence can lead to better revenues. With the advances in technology in com-
munication and navigation, companies can exert an increasing amount of di-
rect control on their transportation and logistics processes. For instance, using
global positioning systems the whereabouts of trucks or goods in general can
be tracked 24 hours a day. Using global communication, new instructions for
moving the goods can be issued at any time. Such technological advances hold a
promise to service customers faster because new servicing orders can be given out
immediately.

Exploiting these new abilities in the best possible way is therefore an im-
portant issue. Traditionally, transportation and logistics problems are optimized
using a static model, i.e. plans are made ahead and then executed. If needed,
new plans are made for a new period. The main point is that the plans are not
made to be adjusted online, i.e. while the plans are being executed. Typically,

A. Fink and F. Rothlauf (Eds.): Advances in Computational Intelligence, SCI 144, pp. 185–208, 2008.
springerlink.com © Springer-Verlag Berlin Heidelberg 2008

186 P.A.N. Bosman and H. La Poutré

this results in plans that are not very flexible and hence cannot easily accom-
modate for changes that may be required. This is a myopic, i.e. “near-sighted”,
approach. The quality of plans is taken only to be how good they are for the
current situation. Optimizing plans while keeping in mind that they might need
to be adjusted during execution, or optimizing the plans completely online, is
however not trivial and is an important field on its own [10, 17].

The optimization problems under consideration are thus dynamic, meaning
that they change with time. Moreover, they have to be solved in an online
fashion, i.e. as time goes by. Typical examples in transportation and logistics
are vehicle routing [21, 27] and inventory management [23, 26]. This type of
problem is often hard, even for a single point in time. Also, there is typically
not much time between two subsequent decision moments. For these reasons,
restarting optimization from scratch is often undesirable. Instead, the tracking
of (near-) optima, once they have been found, is often desired. To be able to
do this, the optimization algorithm needs to have a proper degree of adaptivity.
Evolutionary algorithms (EAs) [16], an important optimization methodology in
computational intelligence, are good candidates to this end. The reason for this is
that EAs employ a set of solutions rather than just a single solution. Adaptivity
is then a virtue of issues such as maintaining diversity around (sub)optima and
continuously searching for new regions of interest that may appear over time [10].

Tracking optima alone is not enough however. Tracking optima corresponds
to building (optimal) plans only for the current situation and repeating this
continuously or whenever something changes. Decisions taken now however have
consequences in the future. For instance, a consequence of executing a particular
plan may be it does not leave enough flexibility for future requests to be served
(e.g. new loads to be picked up). Another example is that refusing service or not
being able to service a customer (e.g. sell goods) may lead to decreasing repeated
servicing requests in the future. Because of such future consequences of current
decisions, a myopic approach can perform poorly in the long run. Anticipation of
future situations is needed to be able to make well-informed decisions. Consider
the problem of online dynamic vehicle routing. Intuitively, one can construct a
more efficient routing, resulting in the delivery of more loads, if one would know
beforehand when the loads will become ready for transport. It would then be
possible to send a vehicle to a customer that currently has no load available,
but it is known that a load will be available at that customer upon arrival of
the vehicle. A myopic approach would only consider currently available loads.
Alternatively stated, this information allows us to see that a current decision
to send a vehicle to pick up a currently available load may in the end not be
the best thing to do. However, this optimal information about future introduc-
tion of new loads is not readily available. The only option left is to learn to
predict it.

In this chapter we discuss how computational intelligence can be used to de-
sign approaches that perform anticipation in online optimization. Specifically
we combine EAs with another key area of computational intelligence: statisti-
cal/machine learning (ML/SL). The ML/SL techniques are used to explicitly

Online Transportation and Logistics Using CI Anticipation 187

predict for future times the observed values of problem-specific variables and/or
the quality of decisions. The EA optimizes decisions not only with respect to
the current situation but also future decisions with respect to future, predicted,
situations (i.e. it builds a plan). We illustrate this approach for two applications:
vehicle routing and inventory management. In both cases the use of anticipation
is found to lead to substantial improvements. This demonstrates our main con-
clusion that the ability to perform anticipation in practical online transportation
and logistics is very important.

The remainder of this chapter is organized as follows. In Sect. 2 we sketch the
approach of performing anticipation with computational intelligence techniques
in some more detail and discuss related literature. We apply the methodology to
vehicle routing in Sect. 3 and to inventory management in Sect. 4. We conclude
this chapter in Sect. 5.

2 Intelligent Online Optimization by Anticipation

In dynamic optimization, the goal is to optimize some function F over a period
of time. The variables to optimize over within this time span, represent the
decisions to be made (e.g. which truck to use for picking up a certain load).
Function F can be seen as the real world. Function F cannot be evaluated beyond
the current time tnow. The reason why we require anticipation is the existence
of time-dependence. Time-dependence means that F may depend on previous
decisions. If only the current situation is taken into account, the decision that
immediately leads to the highest reward is optimal. But because function F may
change as a result of a decision, it is in general suboptimal to only consider the
current situation. Future changes in F as a result of decisions taken now must
thus be taken into account also. This means that we must optimize F not only for
the current situation, but also for future situations. Only then does optimization
reveal the true value of a certain decision for the current situation. Anticipation
is thereby automatically performed. However, this implies that we evaluate F
also for the decisions pertaining to future situations, which is not possible. The
only way in which we can still take into account the future is to predict the value
of F. Summarizing, the approach is to build and maintain (i.e. learn online) an
approximation of F (i.e. F̂) and to optimize decisions for the present and for the
approximated future simultaneously using the approximation. Approximation
function F̂ can be seen as a simulation of the real world.

The nice thing about this approach is that under the condition of perfect
prediction, optimal decisions can be taken. For a typical application it is not
required that the entire function needs to be learned. Instead, only specific pa-
rameters need to be estimated. In logistics settings, typical parameters to be
learned include the rate of customer demand or parameters describing the dis-
tribution of customer demand.

Some parallels can be drawn here with other research found in literature.
Optimizing future, simulated situations is not the only approach to performing
anticipation. Anticipation can also be performed by heuristically changing F

188 P.A.N. Bosman and H. La Poutré

into F̃ so that F̃ measures not only the quality of the current plan, but also
takes into account additional information such as the flexibility, robustness and
sensitivity of a solution. Although this approach typically does not have the
property of being able to reach optimality of the original problem, such heuristic
adaptations of F can still be very effective. Examples of this approach include
scheduling [12], where an emphasis is placed on schedule flexibility by scheduling
new jobs as quickly as possible to ensure free machines for new, yet unknown,
jobs, and vehicle routing [13], where an emphasis is placed on flexibility by
allowing vehicles to wait before moving on to the next location.

The idea and importance of optimizing for future, simulated situations when
solving dynamic optimization problems, is in itself not a new idea. In most prob-
lems related to real-world applications, the dynamism is caused by stochasticity
(e.g. the appearance of new customers is often a Poisson process). In the ex-
pectation method [14], multiple future scenarios are sampled. For each possible
decision d that can be made for the current situation, an optimal path of fu-
ture decisions is computed for each of the sampled scenarios that starts with
decision d. The decision d� for the current situation that leads to the highest
expected value of the profit (i.e. average) is then actually taken. The expectation
method bears much resemblance to the sample average approximation method
for non-dynamic stochastic programming where the quality of a solution consists
of a deterministic part a and a stochastic part. The deterministic part gives the
(immediate) quality of a plan. The stochastic part gives a penalty for changing
the plan to accommodate as best possible the scenario that has actually become
reality. To find the expected best solution, one must average over many scenar-
ios. The sample average approximation method can be applied for instance to
stochastic vehicle routing [31]. It has been shown recently that the expectation
method can provide high-quality solutions in the expected-value sense [22]. It is
important though that the expected difference between the optimal choice for
any scenario and the optimal expected-value choice does not become too large.
It has already been argued that this assumption is satisfied in most real-world
problems. It has also been proved to be the case for a real-world problem (packet
scheduling) [22]. Because the expectation method requires optimization for many
combinations of decisions and scenarios, methods that approximate the expecta-
tion method have also been developed [4, 5]. These methods are typically faster,
but result in solutions of a lesser quality.

In most of the approaches in the literature, the stochasticity is assumed to be
known so that scenarios can be sampled. Hence, there is no learning. Also, the
application of optimizing future scenarios so far has been limited to sampling
scenarios beforehand and then optimizing the future decisions in these scenarios.
Time-dependence is thus explicitly not considered in full. The type of time-
dependence that is tackled is the direct influence of one decision on another
decision. For example, a decision to drive to customer ci puts the truck at that
location instead of the location where it would otherwise have stayed. What
is not taken into account is the possible influence of a decision on the future
response of the system, e.g. the stochastics. For example, deciding to drive to

Online Transportation and Logistics Using CI Anticipation 189

customer ci may lead to a higher frequency of new orders from customer ci in
the near future. With the existence of time-dependence of this kind, sampling
events in a scenario beforehand is unacceptable because the events may change
as a result of decisions made.

The general approach requires a minor modification to allow for time-
dependence in any of its forms to be tackled. Optimization with scenarios can
be done by randomly choosing N scenarios random seeds and then optimizing the
simulation for each random seed. This essentially makes the approximation (i.e.
simulation) deterministic, allowing it to be re-evaluated under the exact same cir-
cumstances during optimization. The computational implications of this change
are however not minor. Finding a solution (i.e. future trajectory) for each and
every scenario requires solving an interactive problem (i.e. an online dynamic op-
timization problem without stochastics). To be able to do this efficiently complex
algorithmic design is required. Alternatively, exhaustive search can be used, but
this is very inefficient. For this reason the problem instances solved using global
(enumerative) optimization methods are relatively small. Also, a problem exists
with most methods if the decision to be made concerns continuous (e.g. real-
valued) variables. It is then not possible to optimize decision trajectories for all
possible values for the current decision. It is not even possible to optimize the
entire trajectory and then choose for the current situation the decision that has
maximum average profit. For continuous decision variables it is namely not likely
that optimal values will be the same in different scenarios. Discretization can be
a solution, but doing this properly is typically very hard.

Clearly, there is a need for computationally intelligent algorithms that are able
to come up with good solutions at any time and are not restricted to solving
discrete optimization problems with only a few alternative decisions to choose
from at any point in time. Evolutionary algorithms offer a way of doing just
that as they are a means of performing optimization by continuously adapting a
set of solutions. Thus EAs always have a solution available. Moreover, EAs are
known to be able to successfully optimize many different types of solution. In
the following sections we shall give two examples of using EAs to solve dynamic
optimization problems online in the area of transportation and logistics. In both
applications, the EA is continually run to evolve a plan. A plan can be either a list
of decisions (yet) to be executed or a strategy on the basis of which decisions are
made (i.e. what to do under which circumstances). Whenever a plan is evaluated,
it is not only evaluated for the current situation, but also for the predicted
future.

3 An Application to Transportation: Vehicle Routing

In this section we focus on the dynamic vehicle routing problem. In this problem,
routes have to be planned for a fleet of vehicles to pick up loads at customers.
The problem is dynamic because the loads to be transported are announced
while the vehicles are already on-route [15].

190 P.A.N. Bosman and H. La Poutré

A few studies currently exist in which information is used about future
loads [6, 7, 13, 18, 24, 25, 30]. Most approaches employ a waiting strategy. For
each vehicle, upon its arrival at a customer, a waiting window is defined within
which a new load is expected to arrive at that customer or at a nearby customer.
During that waiting period, the vehicle does not move because it anticipates on
having to move only a little in the near future to pick up a new load. In this
section, similar to [30], we opt for an approach in which the vehicles keep driving,
unless they are at a centrally located depot. The rationale behind this idea is the
principled notion that as long as there are loads to be transported, we do not
want to have any vehicles waiting around. To move the vehicles as efficiently as
possible, we propose to learn the distribution of load announcements at the cus-
tomers. We use this information to predict the number of future expected loads
at a certain customer. By directly integrating this expected value into the fitness
of solutions, i.e. vehicle routes, the EA that we use here is able to make informed
decisions about anticipated moves (i.e. moves to customers that currently do not
have a load ready).

3.1 Problem Definition

The definition of the dynamic vehicle routing problem that we use here is the
same as the one used by Van Hemert and La Poutré [30]. Here we shall restrict
ourselves to an intuitive, yet concise, description of the problem at hand. Exact
mathematical details can be found in [30].

A set of customers is predefined. Each customer has a certain location defined
by 2D coordinates. The distance between two locations is the Euclidean distance.
The goal in solving the problem is to deliver as many loads as possible. Each
load has to be picked up at a certain customer and must be delivered to the
central depot. A load has a certain announcement time (i.e. the time from which
it is available for pickup). Each load must be delivered to the depot within a
certain delivery window, starting from the moment of announcement. Beyond
this delivery window the load is no longer accepted by the depot. The size of the
delivery window is fixed and is denoted Δ.

To transport the loads, a fleet of vehicles is available. All vehicles have the
same capacity. All loads have the same size. Both the size of the loads and the
capacity of the vehicles is integer. Initially, all vehicles are at the depot.

At any time tnow, the solver must be able to return a list of actions to be
performed; one separate action for each vehicle in the fleet. Actions are either
to go and pick up a load at a customer, to go to a certain customer without a
pickup assignment (i.e. an anticipated move) or to go back to the depot to drop
off all loads that are currently being carried.

To ensure that loads are only picked up if they can be delivered on time and
to furthermore ensure that loads that have actually been picked up are indeed
delivered on time, constraints exist to ensure that such solutions are infeasible.
The optimization approach must now only return feasible solutions.

Online Transportation and Logistics Using CI Anticipation 191

3.2 Optimization Approach

The Dynamic Solver

The dynamic solver updates the optimization problem whenever a change occurs,
i.e. when a new load becomes available for pick up. In addition, the dynamic
solver controls the EA. It runs the EA and announces changes to the EA so
that these changes may be accounted for in the solutions that the EA is working
with. It also requests the currently best available solution from the EA whenever
changes occur and presents that solution to the real world as the plan to be
executed. In our case, the problem changes whenever a new load is announced,
whenever a load is picked up or whenever loads are delivered. In addition, the
currently executed solution changes whenever a vehicle arrives at a customer,
regardless of whether a load is to be picked up there.

The EA is run between changes (also called events). In practice, the time
that is available for running equals the time between events. Because computing
fitness evaluations takes up most of the time, in our simulated experiments we
ensured that the number of evaluations that the EA was allowed to perform be-
tween two subsequent events is linearly proportional to the time between events
in the simulation. For each time unit of the simulation the EA may perform one
generation. Since the population size will be fixed, the EA will thus perform a
fixed number of evaluations in one simulation run.

The whole simulation operates by alternatively running the EA and the sim-
ulated routing problem. The routing simulator calculates when the next event
will occur, e.g., a vehicle will pick up or deliver a load, or, a load is announced
for pickup. Then, the EA may run up until this event occurs. This way we
simulate an interrupt of the EA when it needs to adapt to changes in the real
world. The best individual from the last generation before the interrupt is used
to update the assignments of the vehicles in the routing simulation. Then, the
routing problem is advanced up until the next event. Afterward, the individuals
of the EA are updated by removing assignments that are no longer applicable
(i.e. delivered loads or loads that have passed their delivery window) and by
adding assignments to pick up loads that have recently been made available.

Base EA: Routing Currently Available Loads

With the exception of the selection method, the base EA that we use is the same
as the one used by Van Hemert and La Poutré [30].

Representation: The representation is a set of action lists, one separate list for
each vehicle in the fleet. An action list describes all actions that the vehicle will
perform in that order. In the case of the base EA, this action list contains only
pickup actions. The first action in the list for a specific vehicle is currently being
executed by that vehicle. Properties such as the number of loads that a vehicle
already carries is stored in the simulation and is not subject to search.

192 P.A.N. Bosman and H. La Poutré

New loads: Whenever new loads are announced, these loads are injected ran-
domly into the action list of a single vehicle in each member of the population.

Variation: Only mutation is considered. Two vehicles are chosen randomly. These
two vehicles may be the same vehicle. From these two vehicles, two actions from
their lists are chosen randomly. These actions are swapped. This operator allows
visits to customers to be exchanged between vehicles or to be re-ordered in the
route of a single vehicle directly.

Selection: The selection scheme that we employ ensures elitism. We use trunca-
tion selection to select half of the population. The other half is discarded. Using
variation, the discarded half is replaced with new individuals. Hence, elitism of
the best half of the population is employed. Although this selection operator
is rather strict, enough diversity is introduced as a result of mutation and the
random introduction of new loads. As a result, selecting more strictly allows the
EA to weed out bad solutions more efficiently.

Decoding: It is important to note that as a result of load introduction and of
variation, action lists may come to represent an infeasible solution. For example
the action list may cause the vehicle to be on-route too long for the loads that
it is carrying to be returned to the depot within the delivery window. For this
reason a decoding mechanism is used that decodes the representation into a
valid solution, i.e., a solution where none of the constraints are violated. The
representation itself is not altered. Assignments that violate one or more time
constraints are ignored upon decoding. When a vehicle reaches its capacity or
when adding more assignments will violate a time constraint, the decoder inserts
a visit to the depot into the action list. Afterward, this vehicle may be deployed
to service customers again. This procedure is the same as used in [20]. The fitness
of the individual will be based on the decoded solution. Although the decoding
process may have a large impact on the fitness landscape, it is necessary as in a
dynamic environment we must be able to produce valid solutions on demand.

Fitness: The fitness of an individual corresponds to the number of loads that
is returned to the depot, i.e. the number of loads picked up when executing
the current decoded action lists for all vehicles. It should be noted that this
representation already provides, in part, a way to oversee future consequences
of current decisions. To see this, note that the only decision required to be
taken at each point in time from the problem’s perspective is what to let each
vehicle in the fleet do next. By having a list of actions to perform after the
first next move, planning ahead is made possible, which consequently allows for
more efficient routing. However, this anticipation at time tnow covers only the
non-stochastic information about the problem that is available at time tnow. It
might be possible to improve the benefits of anticipation further by considering
some of the stochastic information about the problem at time tnow. This is the
goal of introducing anticipated moves.

Online Transportation and Logistics Using CI Anticipation 193

Enhanced EA I: Implicit Anticipated Moves

In this approach, there is no explicit link between making an anticipated
move and the expected reward to be gained from that move [30]. Instead, the
mechanism behind anticipated moves is implicit and focuses on ensuring that
anticipated moves do not cause the resulting routing to violate any constraints.
Ultimately, this results in slight deviations from routes that are built based upon
currently available loads, otherwise the loads will not be returned to the depot
in time. It is only over multiple generations and over time that in retrospect an
anticipated move can be found to have been advantageous.

Variation: To guide the introduction of anticipated moves, an anticipated-move-
rate α is used. Upon mutation, this parameter represents the probability of
introducing an anticipated move into the route of a single vehicle. Similar to
mutation in evolution strategies [2], this parameter is subject to self-mutation.

Fitness: To prevent selection of individuals with a large α that cause many
constraint-violating anticipated moves to be introduced, the fitness function is
extended with a penalty term. The penalty term grows linearly with the number
of constraint-violating anticipated moves in a solution.

Enhanced EA II: Explicit Anticipated Moves

The results reported in [30] already indicate an improvement over the base EA for
certain values of the delivery window Δ. However, there is no directly apparent
reason that the anticipated moves will actually result in the collection of more
loads. A bigger improvement is to be expected if a proper, direct and explicit
reason for making anticipated moves is introduced. To this end, we opt for an
explicit means of anticipation. We still use the basic strategy of introducing
anticipated moves randomly, i.e. we use the same variation technique. To bias
the search toward feasible anticipated moves with a positive number of expected
future loads, we alter the fitness function.

Fitness: First, assume that we have an oracle that can tell us for each customer
exactly when future loads will become available at that customer. In that case
the fitness of a decoded action list can be computed by not only counting the
number of loads that are picked up along the route as a result of premeditated
pickup actions, but also the number of loads that are available at customers
upon arrival there. Care must be taken that the capacity of the vehicle is not
exceeded in computing the number of additional loads. Moreover, only the loads
that can still be brought back to the depot on time should be counted. Also, each
load should only be counted once to avoid overrating the goodness of anticipated
moves when two or more vehicles have planned a visit to the same customer. As
we now know exactly how fruitful certain anticipated moves are, a much more
efficient search of anticipated moves becomes possible.

In practice we do not have such perfect information. For each customer we there-
fore propose to estimate the distribution of the time between two subsequent loads

194 P.A.N. Bosman and H. La Poutré

becoming available for transport. To estimate this distribution, we use the normal
distribution. How to compute maximum-likelihood estimates for the normal dis-
tribution is well known from the literature [1, 29]. The expected number of loads
that will become available at a certain customer ci between the current time tnow

and the time tarrive of arrival of a vehicle at ci is just (tarrive − tnow)/μci where μci is
the mean of the distribution of the time between two subsequent loads at customer
ci. Similar to the case of perfect information we must only count the expected loads
that can still be brought back to the depot in time. Also the capacity of the ve-
hicle and the possibility of multiple vehicles planning an anticipated trip need to
be taken into account. This can be done in the same way as in the case of perfect
information.

3.3 Experiments

Experimental Setup

In practice, customers are often clustered into regions as opposed to scattered
around uniformly [28]. We therefore use a particular arrangement of the cus-
tomers by clusters, similar to the arrangement used in [30]. First a set of points
called the set of cluster centers C is created by randomly selecting points (x, y)
in the 2-dimensional space such that these points are uniformly distributed in
that space. Then for each cluster center (x, y) ∈ C a set of locations R(x, y)
is created such that these locations are scattered around the cluster center by
using a Gaussian random distribution with an average distance of τ to choose
the diversion from the center. This way we get clusters with a circular shape.
The set of customer nodes N is defined as N = {n|n ∈ R(x, y) ∧ (x, y) ∈ C}.
The set of locations form the nodes of the graph G = (N, E). This graph is a
full graph and its edges E are weighted with the costs to traverse them. For each
(n1, n2) ∈ E, this cost is the Euclidean distance between n1 and n2.

A set of loads is randomly generated, which represents the work that needs
to be routed. Every load starts at a customer node and needs to be carried to a
central depot, which is located in the center of the map. Each customer generates
loads where the time between two subsequent loads is normally distributed with
a mean of μLoads and a standard deviation of σLoads. Typically customers are
manufacturers. Therefore, the internal process of preparing loads is often quite
regular. The larger σLoads, the less regular the process is assumed to be and the
more randomly generated the loads will appear to be.

We have randomly generated 25 problem instances and have run the EA
without anticipation, the EA with implicit anticipation, the EA with optimal-
information anticipation and the EA with learned-information anticipation for
1·105 time units. We have varied the standard deviation of the time between sub-
sequent loads, the delivery window and the capacity of the vehicles. An overview
of all parameters used in our experimental setup is given in Table 1.

Online Transportation and Logistics Using CI Anticipation 195

Table 1. Parameter settings used in our experiments

Parameter Value

Maximum width and height of the map 200 × 200
Number of locations |N | = 50
Number of clusters |C| = 5
Spread of locations in a cluster τ = 10
Number of vehicles |V | = 10
Capacity constraint q ∈ {1, 5}
Delivery time constraint Δ ∈ {20, 40, . . . , 400}
Average time spread of loads μLoads = 400
Standard dev. time spread of loads σLoads ∈ {20, 40, . . . , 200}

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

P
er

ce
n
ti
le

o
f
lo

a
d
s

d
el

iv
er

ed

Δ

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

P
er

ce
n
ti
le

o
f
lo

a
d
s

d
el

iv
er

ed

Δ
Implicit Learned Optimal None

Fig. 1. Routing efficiency in percentage of loads delivered as a function of the delivery
window for all EAs and a standard deviation of the time spread of the loads of σLoads =
40. Vehicle capacity is 1 in the left graph and 5 in the right graph.

Results

Figure 1 shows the efficiency of the various EAs with respect to the problems
in our test suite for a standard deviation of the time spread of the loads of
40. There is a clear shift in problem difficulty when varying the length of the
delivery time window. If this time window is very small, anticipatory routing
only pays off if one is certain that there will be loads that can be picked up upon
arrival at a certain customer. The number of loads that can be picked up and
delivered on time is so small that uninformed anticipatory moves directly cause
a drop in the number of loads that could have been delivered otherwise. Indeed,
if the learned information or the perfect information is used, an improvement
can be found over not using anticipatory moves, where the perfect information of
course leads to the biggest improvements. For an average Δ there is much room
for improvement. Indeed all anticipatory approaches are capable of obtaining
better results than the non-anticipatory approach. However, the use of explicit
learning and predicting the announcement of new loads is able to obtain far

196 P.A.N. Bosman and H. La Poutré

0% - 10%

20% - 30%
30% - 40%
40% - 50%
50% - 60%
60% - 70%

10% - 20%

20 40 60 80 100 120 140 160 180 200

50

100

150

200

250

70% - 80%
80% - 90%

σLoads

Δ

≈ 0%

Fig. 2. Relative performance increase of our proposed anticipation-by-explicit-learning
EA over the non-anticipatory EA for various values of the delivery window and the
standard deviation of the time spread of the loads

better results than when the implicit means of anticipation is used. If the delivery
window becomes too large, there is ample time to fully use the capacity of the
fleet to the maximum and hence there is no longer any difference between using
anticipation and using no anticipation. The problem thus becomes easier.

Figure 2 shows a contour graph of the relative performance increase that
can be obtained when using our explicit prediction approach to anticipation as
compared to the EA that does not use anticipatory moves. This height-map
shows clearly the phase-shift with respect to the delivery time window. There
are clear bounds within which an improvement can be obtained. This graph also
shows the influence of the randomness of the problem. The larger the standard
deviation of the time between subsequent loads, the smaller the performance
increase becomes. Clearly, the largest performance increase can be obtained if
the variance goes down to 0, which corresponds to the case of using the optimal
information. Although the best results only comprise a small area of the graph
and thus correspond only to a specific type of problem settings, the range of
problem settings for which an improvement can be obtained is large and rather
robust with respect to an increase in randomness. Hence we can conclude that
our explicit anticipatory approach provides a robust means of improving the
quality of online dynamic vehicle routing that is generally speaking preferable
compared to an implicit means of anticipatory routing.

4 An Application to Logistics: Inventory Management

General Description

We employ a commonly used definition of inventory management (IM) prob-
lems [26]. In Fig. 3 a schematic overview is given. Buyers, also called customers
and denoted Ci, buy goods from a vendor. The number of buyers is denoted nc.
The number of goods and the frequency of buying are called the demand and is

Online Transportation and Logistics Using CI Anticipation 197

VendorSuppliers Buyers

Inventory

S0

S1
...

...

Sns−1

C0

C1

Cnc−1

L0

L1

Li

Lns−1

D0

D1

Dj

Dnc−1

Fig. 3. Schematic overview of inventory management

denoted Di for customer Ci. To prevent going out of stock, the store keeps an
inventory. Inventory must be replenished from time to time. Because delivery of
new stock from the store’s suppliers also takes time (called the lead time, de-
noted Lj for supplier Sj), the replenishment order must be placed before going
out of stock. The number of suppliers is denoted ns.

Base Definition

Although IM poses problems that are continuous through time, when solving
these problems we typically discretize them. In this chapter, we will use a dis-
cretization of time into units of a minute. Let M(t) be the money that the vendor
has at time t. The decisions to be taken are how much to order and which sup-
pliers to order from at a any given point in time. Hence, a general formulation
of IM is

max
x(t)

M(0) +

⎧⎨
⎩

tend∑
t=0

ΔM(t)

⎫⎬
⎭ (1)

where ΔM(t) is the change in the money of the vendor at time t, M(t) depends
on the decisions x(t) and tend is the end of the planning horizon. The expenses
of the vendor are the costs of holding the inventory and the ordering of new
supplies. The income of the vendor is based on sales made:

ΔM(t) = Sales(t) − HoldingCost(t) − OrderingCost(t) (2)

The holding cost can be computed per time unit and depends on the size of the
inventory I(t). Typically, holding costs are a fixed price pH per unit of inventory
per time unit:

HoldingCost (t) = pHI(t) (3)

Typically, the cost of an order that is placed at some supplier is paid for when
the order is delivered. The ordering cost at time t therefore depends on earlier
decisions x(t′), t′ < t. The cost of a replenishment order at supplier Si typically
consists of two parts: a fixed part cO

i and a part that increases with the size of
the order. Typically, a fixed price pO

i per unit of ordered goods is charged. Let
xOrderQuantity

i (t) be the quantity of goods ordered from supplier i at time t and let

198 P.A.N. Bosman and H. La Poutré

Li(xOrderQuantity
i (t′)) be the time it takes supplier Si to deliver that order, then

we have:

OrderingCost(t) =
∑
t′<t

ns−1∑
i=0

o(i, t′, t) (4)

where

o(i, t′, t) =

⎧⎪⎪⎨
⎪⎪⎩

cO
i + pO

i xOrderQuantity
i (t′) if xOrderQuantity

i (t′) > 0
and t′ + Li(xOrderQuantity

i (t′)) = t

0 otherwise

Note that in an implementation, it is not efficient to use Equation 4 directly.
Instead, an event queue can be used to check whether a new supplier order has
arrived at time t and hence whether payment is due.

The income of sales at time t depends on whether the demand of a buyer at
time t can be met. Only if there are enough goods in inventory, a sale is made.
Partial sales are typically excluded [26]. The goods are sold at a fixed unit price
pS . Let D(t) be the demand of the buyers at time t, then we have:

Sales(t) =

{
pSD(t) if D(t) ≤ I(t)
0 otherwise

(5)

We note that there are many other ways in which the above costs and gains
can be computed, but most are just minor variations of the equations presented
above. Also, other costs and gains besides the ones mentioned above may be
taken into account such as the directly computable cost of having more demand
than inventory (called excess demand cost) and the subsequent possible loss
of sales (called lost sales cost). Such functions are similar to the ones above.
Although they indeed make the model more involved, it does not increase the
level of problem difficulty, especially for a general problem solving approach that
we shall use for this type of problem (see Sect. 4.1).

Although now ΔM(t) has been defined, there are still functions in the above
definitions that are left undefined, namely I(t), Li and D(t). The inventory (or
stock) level I(t) usually is assumed to have the property I(0) = 0, but this is not
a requirement. In addition, the inventory level rises with xOrderQuantity

i (t′) at time
t′+Li(xOrderQuantity

i (t′)) (i.e. when the supplier order arrives). The inventory level
falls with D(t) when a sale is made at time t. The formulations for the rise and fall
of I(t) are very similar to those of ΔM(t). Function Li for the delivery time for
an order placed at supplier i typically follows a certain probability distribution.
The same holds for the demand function D(t). The demand function has two
sources of stochasticity however: both the quantity Dq of the demand and the
frequency of the demand Df . In this chapter we shall assume all these functions
to be normally distributed at any time t with means of respectively μL(t), μDq(t)
and μDf (t) and variances of respectively σ2,L(t), σ2,Dq(t) and σ2,Df (t) where
μDf (t) and σ2,Df (t) describe the distribution of the time between two subsequent
customer visits. Note that all these distributions are restricted to R

+.

Online Transportation and Logistics Using CI Anticipation 199

Time-dependence plays an important role even in the base definition of IM.
The decision of whether or not to place a replenishment order at a certain point
in time has great future consequences because it determines future inventory
levels. Also, a decision to place an order at a supplier leads to a future event
(delivery of goods) that is a response to placing the order. Still, although time-
dependence is already important here, it is of a rather trivial nature because
the only function that is affected by decisions made earlier is the level of the
inventory. Given a fixed demand, a single supplier, and a fixed lead time for that
supplier, the best strategy for placing replenishment orders is straightforward to
compute [26]. Although this is already no longer possible if there is more than
one supplier [23], an extension of the model that defines a second, but also very
practically relevant, level of time-dependence, makes the problem even harder.

Extended Definition: Customer Satisfaction

Customer satisfaction is important in doing business with customers. A higher
level of customer satisfaction will most likely result in a growing frequency of
customer transactions, either from the same customer or new customers as sat-
isfied customers will spread the word. In our model this means that whether or
not a customer is satisfied when requesting goods from the vendor influences the
stochastic model that underlies the customer demand behavior. We can integrate
this in the above model by changing the parameters that describe the distribu-
tion of the time between two subsequent customer visits, μDf (t) and σ2,Df (t).
If a sale can be made (there is enough inventory, see Equation 5), the customer
frequency increases and thus the time between two subsequent customer visits
decreases. If the customer cannot be satisfied (no sale is made), the frequency
decreases:

μDf (t + 1) = max
{
1, C(t)μDf (t)

}
σ2,Df (t + 1)= max

{
1, C(t)σ2,Df (t)

} (6)

C(t) =

⎧⎪⎪⎨
⎪⎪⎩

1
2 if D(t) ≤ I(t) and D(t) > 0

2 if D(t) > I(t) and D(t) > 0

1 otherwise (D(t) = 0)

(7)

The influence of customer satisfaction now is one of true time-dependence, which
can be seen as follows. A decision whether or not to order new goods from a
supplier has a future effect on the size of the inventory. Depending on the level
of the inventory, a sale can either be in the future made or not. Although this
is already a form of time-dependence, customer satisfaction brings a secondary
level of time-dependence. Whether or not a future sale can be made influences
further future sales indirectly because of an altered customer frequency. This
secondary effect is very important however, because it determines the rate of
change in future profits. If a higher frequency of customer visits can be met as a
result of proper inventory management, profits can be made faster. However, this

200 P.A.N. Bosman and H. La Poutré

type of time-dependent influence is often overlooked in literature [3]. Without
overseeing the future effects on the frequency of customer visits, the strategy
optimizer will see no need to change the strategy beyond one that meets with
the current expected rate of customer frequency. Although this does not mean
that profits become losses, the strategy can clearly not be optimal.

4.1 EA Design

Many models exist for simple to hard problems in IM. For the simplest problems,
exact optimal strategies are known. For practical problems however, there are
typically multiple store suppliers to choose from with different delivery times,
order magnitudes and costs. Also demands and lead times tend to be stochastic
rather than deterministic. Although these aspects increase the benefit of a non-
myopic view, they also make the problem harder to solve [23]. Consequently, no
exact optimal strategies exist for the harder and more general cases. For specific
cases, specific heuristics exist. There is no general flexible approach however that
is applicable to a variety of IM problems. Here we again follow the principled
idea of optimizing the future to oversee the consequences of current decisions.

We again use EAs as the base optimization technique. We take a slightly
different approach to finding the decisions than we did in the previous section
for vehicle routing however. It is common practice in IM to find a strategy instead
of individual decisions. The strategy that we employ is a common one in IM.
The strategy is a so-called (s, Q) strategy [26]; s is called the re-order point and
Q the order-up-to size. One such strategy is used for each supplier. Hence, the
genotype contains 2ns real values to be optimized, where ns is the number of
suppliers. If the stock drops below the re-order point si of supplier i, and no
order is currently outstanding for supplier i, a new order is placed at supplier
i of size Q − stocklevel . Thus, in the case of two suppliers, if an order from the
cheaper supplier is running late, the stock level will drop further and the rule for
the more expensive, emergency supplier becomes active. It is not known whether
this strategy can be optimal for the case of two suppliers, but it is an often used,
sensible choice.

The EA thus finds a strategy. In addition to a population, a current best
strategy is maintained. This allows the EA to be run continuously. Whenever a
decision needs to be made, the current best strategy can be applied. Evaluation
of a strategy is done by running that strategy in the simulation multiple times us-
ing different random seeds (i.e. in different scenarios). Note that in the previous
section, we used the expected values of the distributions for prediction instead of
averaging over multiple scenarios. It was recently shown that the optimization of
strategies using EAs works better when averaging over multiple sampled future
scenarios is used instead of the expected value [9]. The quality of a strategy
is measured by its average evaluation value, averaged over all sampled future
scenarios. The variance is also stored. The variance is required to compare the
best strategy in the population with the current best strategy. Because multiple
random seeds are used, corresponding to multiple drawings from the probability
distribution that underlies the problem, statistical hypothesis tests are required

Online Transportation and Logistics Using CI Anticipation 201

to be certain that an improvement has been obtained. The statistical hypothesis
test that we used in our experiments is the Aspin-Welch-Satterthwaite (AWS)
T -test at a significance level of α = 0.05. The AWS T -test is a statistical hy-
pothesis test for the equality of means in which the equality of variances is not
assumed [19].

The EA must optimize the parameters of the (s, Q) strategies. Since these are
real values, we use a real-valued EA. Specifically, we use a recent Estimation-of-
Distribution Algorithm (EDA) called SDR-AVS-IDEA [8]. EDAs estimate the
distribution of the selected solutions and sample new solutions from this esti-
mated distribution in an attempt to perform variation more effectively. In SDR-
AVS-IDEA normal distributions are used. For this problem we did not learn
any covariances. This means that SDR-AVS-IDEA computes for each parame-
ter the mean and variance in the selected set of solutions and resamples new
solutions with these parameters using a separate one-dimensional normal distri-
bution for each parameter to be optimized. It should be noted that other EAs
can be used as well. Particularly of interest are EAs that have been designed
to tackle dynamically changing environments without anticipation such as the
self-organizing scouts [11]. The focus of this chapter however is on the extended
design of EAs to facilitate anticipation. For the problems at hand, the relatively
simple EA that we employ suffices.

4.2 Experiments

Problems

We use four IM problems. For each problem, inventory is to be managed for
129600 minutes, i.e. 90 days. Orders can be placed any minute of the day.

Problem I represents problems of the type for which an optimal strategy can be
computed beforehand. There is one supplier and one product. Product quantities
are integer. The product is sold to the buyers at a price of 50 and bought from
the supplier at a price of 20. A fixed setup cost for each order placed at a supplier
is charged at a price of 50. Inventory holding costs are 1 per day per unit. The
lead time of the supplier is fixed to 3 days. The demand is fixed to an order of
1 item every hour.

Problem II represents problems for which there is not a known optimal strategy.
There are two suppliers. One supplier is cheaper than the other. The more ex-
pensive supplier can supply immediately, but costs twice as much. This type of
setting is popular in IM research. It is typically known as IM with emergency re-
plenishments and is known to be a hard problem [23]. The second supplier is used
only if the stock has become really low and stock outs are imminent. To add to
the difficulty of the problem, we have made the lead time of the cheapest supplier
both stochastic and periodically changing. The lead time of the slower supplier is
normally distributed with mean (in minutes) of 4320 (cos((2πt)/43200) + 1) /2,
i.e. it varies between 0 and 3 days and the period-length of the cosine is 30 days.
The variance is 14402 (cos((2πt)/43200) + 1) /2, i.e. it varies between 0 and 1440

202 P.A.N. Bosman and H. La Poutré

days, corresponding to a maximum standard deviation of 38 days with the same
period-length as the mean. The periodically changing lead time causes the op-
timal strategy to change with time as well. The maximum size of the standard
deviation is not very likely to occur in practical situations. The experiments
in this chapter are however meant to illustrate the working principles of the
framework. The current setup will show whether changes can be anticipated.
The demand is now also stochastic. The time between two subsequent orders is
normally distributed with a mean of one hour and a variance of 60 hours. The
amount ordered is also normally distributed, with a mean of 3 products and a
variance of 9 products. For this setting, there are not any known heuristics.

Problem III equals Problem I but has customer satisfaction (Equation 6).

Problem IV equals Problem II but has customer satisfaction (Equation 6).

Algorithmic Setup

We used two different EA settings, a “small” setting and a “big” setting. The
small setting corresponds to a situation in which there is only very little time to
do optimization and thus the EA resources are small. The big setting corresponds
to a situation in which there is more time and thus the EA resources are larger.
In the small settings, the population size is 50, scenario-evaluation simulates
10 days into the future, 5 generations of the EA can be done per day, and 10
scenarios are used. In the big settings, all settings are three times bigger. The
population size is 150, scenario-evaluation simulates 30 days into the future,
5 generations of the EA can be done every eight hours and 30 scenarios are
used. To facilitate the simulation of the future, the EA learns the distribution
behind the stochasticity of the buyer using maximum likelihood estimates. The
stochasticity of the supplier is assumed to be known. All results were averaged
over 100 independent runs.

Results

Problem I: In Fig. 4 the average profit obtained is shown for both EA settings.
The approach can be seen to be a scalable technique (also on Problem II) in
the sense that allowing more resources results in better solutions. Investing in
computing power thus results in a better policy for a vendor. Moreover, even the
small settings for the EA lead to very good profits. The maximum profit that can
be obtained on problem I is 58888. This profit corresponds to a setting of the
strategy ((s, Q) = (143, 143)) that is far outside the range in which we initialized
the EA ((s, Q) ∈ [0, 25] × [0, 50]). Out of all settings in the initialization range,
the maximum profit is only 25705. The EA is thus also capable of finding much
better solutions when initialization is suboptimal. The big EA settings lead to
near-optimal results.

Figure 4 also shows the strategies obtained with the big EA settings for both
problems in a typical run of the EA. The lack of stochasticity in problem I

Online Transportation and Logistics Using CI Anticipation 203

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 20000 40000 60000 80000 100000 120000 140000

P
ro

fit

Time

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20000 40000 60000 80000 100000 120000 140000

S
tr

at
eg

y
pa

ra
m

et
er

 v
al

ue

Time

small EA
large EA

s0
Q0

Fig. 4. Left: Results on inventory management problem I; Right: Strategies evolved
in a typical run of the EA on problem I

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0 20000 40000 60000 80000 100000 120000 140000

P
ro

fit

Time

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 20000 40000 60000 80000 100000 120000 140000

S
tr

at
eg

y
pa

ra
m

et
er

 v
al

ue

Time

small EA
large EA

s0 Q0
s1 Q1

Fig. 5. Left: Results on inventory-management problem II; Right: Strategies evolved
in a typical run of the EA on problem II

translates into finding a stable strategy by the EA very quickly and maintaining
that strategy throughout the run.

Problem II: In Fig. 5 the average profit obtained is shown for both EA settings.
The profits on problem II are higher than on problem I. The average demand
in problem II is three times higher than in problem I. Indeed, the EA is able to
obtain a profit of about 3 times higher than on problem I even though problem
II is far more difficult.

Figure 5 shows that the adaptive capacity of the EA allows the algorithm to
continuously adapt the strategies and find better solutions for the situation at
hand as the lead time of the cheapest supplier changes with time. The periodic
change of the lead time of the cheapest supplier (S0) is clearly translated into a
periodic change in strategy. When the average and variance of the lead time of the
cheapest supplier are small, less products need to be ordered and the threshold
can be lower. The threshold for emergency replenishments can even become
0. When the lead time is the largest, emergency replenishments may become

204 P.A.N. Bosman and H. La Poutré

 0

 50

 100

 150

 200

 250

 0 20000 40000 60000 80000 100000 120000 140000

Q
ua

nt
ity

 o
rd

er
ed

(s
up

pl
ie

r
0)

Time

 0

 50

 100

 150

 200

 250

 0 20000 40000 60000 80000 100000 120000 140000

Q
ua

nt
ity

 o
rd

er
ed

(s
up

pl
ie

r
1)

Time

Fig. 6. Quantities ordered in a typical run of the EA on problem II

-20000

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 20000 40000 60000 80000 100000 120000 140000

P
ro

fit

Time

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 20000 40000 60000 80000 100000 120000 140000

P
ro

fit

Time

small EA

Fig. 7. Results on inventory management problem III with (Left) and without (Right)
anticipation of customer satisfaction

necessary and concordantly, the EA proposes a strategy in which emergency
replenishments are made before the stock runs out completely. Also, in this case
the re-order point for the cheapest supplier is much higher as is the number of
products ordered from that supplier. It can be seen in Fig. 6 that emergency
replenishments are indeed made during the periods when the cheapest supplier
is less reliable. Furthermore, note that the strategies are not exactly the same
in each period. Note that while the EA is optimizing strategies, it is also still
learning distributions. Learning converges to the true distribution over time.
Finally, the periodic change in the lead time of the cheapest supplier can also be
seen in the obtained profits in Fig. 5. When the lead time of the cheapest supplier
is the smallest, the EA finds a strategy that uses this supplier more and therefore
obtains more profit, resulting in a steeper slope of the profit-versus-time graph
at these moments.

Problem III: From the results on problems I and II it is now clear that giving
more resources to the EA improves the results. For this reason we now only con-
tinue our experiments with the small EA settings. Figure 7 shows the average
profit that was obtained if the EA is run with anticipation and without antic-
ipation. The difference between the results is very large. Without anticipation,

Online Transportation and Logistics Using CI Anticipation 205

-1e+06

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 0 20000 40000 60000 80000 100000 120000 140000

P
ro

fit

Time

 0

 50000

 100000

 150000

 200000

 250000

 0 20000 40000 60000 80000 100000 120000 140000

P
ro

fit

Time

small EA

Fig. 8. Results on inventory management problem IV with (Left) and without (Right)
anticipation of customer satisfaction

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 20000 40000 60000 80000 100000 120000 140000

S
tr

at
eg

y
pa

ra
m

et
er

 v
al

ue

Time

 0

 200

 400

 600

 800

 1000

 1200

 0 20000 40000 60000 80000 100000 120000 140000

S
tr

at
eg

y
pa

ra
m

et
er

 v
al

ue

Time

s0
Q0

s0 Q0
s1 Q1

Fig. 9. Strategies evolved in a typical run of the EA with anticipation on problem III
(Left) and problem IV (Right)

the EA is still able to obtain a profit. With anticipation however, the EA notices
that having a larger inventory eventually leads to a higher frequency of sales and
the result is a much faster growing profit. The growth is exponential until the
customer frequency (one customer per minute) can no longer increase.

Inventory growth as a result of ordering more supplies (i.e. a change in strat-
egy) can clearly be seen in Fig. 9. The strategy moves far away from its ini-
tialization range and continues to raise the number of goods to order as time
goes by until customer satisfaction can no longer be increased (which happens
approximately at the end of the run).

Problem IV: A difference that is similar in magnitude can be seen in Fig. 8 be-
tween the EA that uses anticipation and the EA that does not use anticipation
on problem IV. The main difference with the results on problem III (besides the
effect due to the the periodic change in the supply time of the main supplier)
is that the increase in the rate of profit is almost immediate. On problem III it

206 P.A.N. Bosman and H. La Poutré

takes some time before the strategy matches the maximum customer satisfaction
level. The reason for this difference is the emergency supplier. The emergency
supplier can supply goods immediately. Ordering more from the emergency sup-
plier therefore has a much faster effect on the customer satisfaction level. In Fig. 9
it can indeed be seen that the strategy for ordering from the emergency supplier
is changed very quickly: an increase in the number of goods to be ordered can
be observed. This increase allows to immediately meet with the quickly growing
demand of the customers. Meanwhile, the strategy for ordering from the main
supplier also increases the number of goods to order, making more profit in the
end by meeting the maximum level of customer satisfaction mostly through the
supplies bought from the main (and cheaper) supplier rather than the emergency
supplier.

5 Discussion and Conclusions

In this chapter we have focused on designing intelligent algorithms for solving
dynamic optimization problems in the transportation and logistics domain in
an online fashion. We have indicated that it is not enough to only track optima
as they shift with time. The optimization algorithm is also required to perform
anticipation, i.e. take into account consequences of decisions taken earlier. To this
end, we investigated a principled approach in which optimization is performed
not only for the current decision but also, simultaneously, for future decisions in
future, predicted situations.

We have applied this approach to key problems in transportation and logistics,
specifically vehicle routing and inventory management, and found significant
improvements over traditional approaches. By analyzing carefully what it is that
should be predicted, learning this information from past experience and explicitly
incorporating it in anticipating the consequences of current decisions, better
results can be obtained than when using no prediction or when using an implicit
means of prediction.

In addition to the positive results on the problems in this chapter, one of the
most beneficial aspects of the approach that we used is that when the problems
are changed the overall approach remains the same and is able to obtain positive
results. No in-depth redesigning needs to be done when something changes in the
definition of the problem. Often, well-designed heuristics need to be completely
redesigned when transferring a problem from theory into practice because of
discrepancies between the theoretical case and the practical case and the fact
that the heuristics are very problem-specific.

Although there are many important questions still to be answered about antic-
ipation in general such as whether the length of the time-interval that is required
to use future predictions over can also be detected online, we can conclude that
online dynamic optimization and the use of anticipation represent an important
avenue of research.

Online Transportation and Logistics Using CI Anticipation 207

References

1. Anderson, T.W.: An Introduction to Multivariate Statistical Analysis. Wiley, New
York (1958)

2. Bäck, T.: Evolutionary Algorithms in Theory and Practice. Oxford University
Press, Oxford (1996)

3. Beamon, B.: Supply chain design and analysis: Models and methods. International
Journal of Production Economics 55, 281–294 (1998)

4. Bent, R., Van Hentenryck, P.: Online stochastic and robust optimization. In: Ma-
her, M.J. (ed.) ASIAN 2004. LNCS, vol. 3321, pp. 286–300. Springer, Heidelberg
(2004)

5. Bent, R., Van Hentenryck, P.: Regrets only! Online stochastic optimization under
time constraints. In: McGuinness, D.L., Ferguson, G. (eds.) Proceedings of the
National Conference on Artificial Intelligence – AAAI 2004, pp. 501–506. AAAI
Press, Menlo Park (2004)

6. Bent, R., Van Hentenryck, P.: Scenario-based planning for partially dynamic vehi-
cle routing with stochastic customers. Operations Research 52(6), 977–987 (2004)

7. Bent, R., Van Hentenryck, P.: Waiting and relocation strategies in online stochastic
vehicle routing. In: Veloso, M.M. (ed.) Proceedings of the International Joint Con-
ference on Artificial Intelligence – IJCAI 2007, Hyderabad, pp. 1816–1821 (2007)

8. Bosman, P.A.N., Grahl, J., Rothlauf, F.: SDR: A better trigger for adaptive vari-
ance scaling in normal EDAs. In: Thierens, D., et al. (eds.) Proceedings of the
Genetic and Evolutionary Computation Conference – GECCO 2007. ACM Press,
New York (2007)

9. Bosman, P.A.N., La Poutré, H.: Learning and anticipation in online dynamic op-
timization with evolutionary algorithms: The stochastic case. In: Thierens, D., et
al. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference –
GECCO 2007, pp. 1165–1172. ACM Press, New York (2007)

10. Branke, J.: Evolutionary Optimization in Dynamic Environments. Kluwer, Norwell
(2001)

11. Branke, J., Kaußler, T., Schmidt, C., Schmeck, H.: A multi–population approach
to dynamic optimization problems. In: Parmee, I.C. (ed.) Adaptive Computing in
Design and Manufacture – ACDM 2000, pp. 299–308. Springer, Berlin (1999)

12. Branke, J., Mattfeld, D.: Anticipation and flexibility in dynamic scheduling. Inter-
national Journal of Production Research 43(15), 3103–3129 (2005)

13. Branke, J., Middendorf, M., Noeth, G., Dessouky, M.: Waiting strategies for dy-
namic vehicle routing. Transportation Science 39(3), 298–312 (2005)

14. Chang, H., Givan, R., Chong, E.: Online scheduling via sampling. In: Chien, S., et
al. (eds.) Proceedings of the Fifth International Conference on Artificial Intelligence
Planning Systems – AIPS 2000, pp. 62–71. AAAI Press, Menlo Park (2000)

15. Ghiani, G., Guerriero, F., Laporte, G., Musmanno, R.: Real-time vehicle routing:
Solution concepts, algorithms and parallel computing strategies. European Journal
of Operational Research 151(1), 1–11 (2004)

16. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learing.
Addison Wesley, Reading (1989)

17. Grötschel, M., Krumke, S.O., Rambau, J. (eds.): Online optimization of large scale
systems. Springer, Berlin (2001)

18. Ichoua, S., Gendreau, M., Potvin, J.-Y.: Exploiting knowledge about future de-
mands for real-time vehicle dispatching. Transportation Science 40, 211–225 (2006)

208 P.A.N. Bosman and H. La Poutré

19. Kendall, M.G., Stuart, A.: The Advanced Theory Of Statistics, Inference And
Relationship, vol. 2. Griffin, London (1967)

20. Laporte, G., Louveaux, F., Mercure, H.: The vehicle routing problem with stochas-
tic travel times. Transportation Science 26, 161–170 (1992)

21. Larsen, A.: The Dynamic Vehicle Routing Problem. PhD thesis, Technical Univer-
sity of Denmark, Denmark (2000)

22. Mercier, L., Van Hentenryck, P.: Performance analysis of online anticipatory algo-
rithms for large multistage stochastic programs. In: Veloso, M.M. (ed.) Proceedings
of the International Joint Conference on Artificial Intelligence – IJCAI 2007, Hy-
derabad, pp. 1979–1984 (2007)

23. Minner, S.: Multiple-supplier inventory models in supply chain management: A
review. International Journal of Production Economics 81(82), 265–279 (2003)

24. Mitrovic-Minic, S., Krishnamurti, R., Laporte, G.: Double-horizon based heuristics
for the dynamic pickup and delivery problem with time windows. Transportation
Science B 38, 669–685 (2004)

25. Mitrovic-Minic, S., Laporte, G.: Waiting strategies for the dynamic pickup and
delivery problem with time windows. Transportation Science B 38, 635–655 (2004)

26. Nahmias, S.: Production and Operations Analysis. Irwin, Homewood (1997)
27. Savelsbergh, M.: DRIVE: Dynamic routing of independent vehicles. Operations

Research 46(4), 474–490 (1998)
28. Solomon, M.: The vehicle routing problem and scheduling problems with time

window constraints. Operations Research 35, 254–265 (1987)
29. Tatsuoka, M.M.: Multivariate Analysis: Techniques for Educational and Psycho-

logical Research. Wiley, New York (1971)
30. van Hemert, J.I., La Poutré, J.A.: Dynamic routing problems with fruitful regions:

Models and evolutionary computation. In: Yao, X., Burke, E.K., Lozano, J.A.,
Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán,
A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 690–699. Springer,
Heidelberg (2004)

31. Verweij, B., Ahmed, S., Kleywegt, A.J., Nemhauser, G., Shapiro, A.: The sample
average approximation method applied to stochastic routing problems: A com-
putational study. Computational Optimization and Applications 24(2-3), 289–333
(2003)

Part III

Supply Chain Management

Supply Chain Inventory Optimisation with
Multiple Objectives: An Industrial Case Study

Lionel Amodeo, Haoxun Chen, and Aboubacar El Hadji

ICD – LOSI (FRE CNRS 2732), University of Technology of Troyes, 12 rue Marie
Curie, 10012 Troyes, France
lionel.amodeo@utt.fr, haoxun.chen@utt.fr

Summary. Effective inventory management across a supply chain is very important
for reducing inventory costs while improving services to customers. One problem for the
management is to determine an optimal inventory policy for each stock in the supply
chain. The problem is difficult to solve not only because a supply chain is a multi-
echelon inventory system with multiple interrelated stocks but also because it involves
conflicting objectives. Finding a set of pareto-optimal solutions for the problem requires
a robust and efficient method that can efficiently search the entire solution space of the
problem. Genetic algorithms (GAs) seem to be suited for this task because they process
multiple solutions in parallel, possibly exploiting the similarities of the solutions by re-
combining them. In this chapter, supply chain inventory polices are optimised using a
multi-objective optimisation approach that combines a genetic algorithm with a Petri
net-based simulation tool for performance evaluation. The supply chain considered is
first modeled as a batch deterministic and stochastic Petri net, and a simulation-based
optimisation method is developed for parameter optimisation of inventory policies of
the supply chain with a multi-objective optimisation approach as its search engine. In
this method, the performance of a supply chain is evaluated by simulating its Petri net
model, and a Non dominated Sorting Genetic Algorithm (NSGA2) is used to guide the
optimisation search process toward high-quality solutions. An application to a real-life
supply chain demonstrates that our approach can obtain inventory policies better than
ones currently used in practice in terms of inventory cost and service level.

Keywords: Supply chain management, Petri nets, Simulation, Multi-objective
optimisation, NSGA-II.

1 Introduction

A supply chain is a network of material suppliers, manufacturers, distribution
centres/warehouses, and retailers through which products or services are pro-
duced and delivered to customers. One important issue in supply chain manage-
ment is inventory management. The goal of this study is to develop a practical
tool that can help companies to reduce their inventory costs and improve their
customer services by optimising the inventory policies of their supply chains. The
supply chain inventory optimisation problem is difficult to solve because supply
chains are multi-echelon inventory systems with multiple interrelated stocks and

A. Fink and F. Rothlauf (Eds.): Advances in Computational Intelligence, SCI 144, pp. 211–230, 2008.
springerlink.com © Springer-Verlag Berlin Heidelberg 2008

212 L. Amodeo, H. Chen, and A. El Hadji

conflicting objectives. For example, a stock of a manufacturer depends on the
stock of its supplier from which the downstream stock is replenished, and the re-
duction of inventory cost and the improvement of service level are two conflicting
objectives for any stock.

Petri nets have been proved a very powerful tool for modelling and analysis of
discrete event systems such as manufacturing systems. The tool is also applicable
to supply chains since they are discrete event systems as well from a high level
of abstraction. In the literature, supply chains are usually described as multi-
echelon inventory systems [19] but most existing models can only describe a
restricted class of supply chains with simplifications.

In our previous work [3, 14], we have developed a new Petri net model, called
Batch Deterministic and Stochastic Petri Nets (BDSPN), for supply chain mod-
elling. With this model, material, information and financial flows of a supply
chain can be described in a graphical, concise and integrated way, where oper-
ational policies of the chain form one part of the flows. A simulation tool has
been developed for performance evaluation of the model. This study aims at
developing an effective approach for supply chain inventory optimisation based
on the model and the tool.

As we know, for large scale complex systems such as supply chains, it is very
difficult to develop analytical methods for performance evaluation and optimisa-
tion. As an alternative, many researchers have been seeking for simulation-based
optimisation methods, which combine optimisation techniques with performance
evaluation by simulation [4, 10]. The optimisation techniques used in these meth-
ods include metaheuristics such as genetic algorithms, tabu search, simulated
annealing and other stochastic optimisation methods. By appropriately combin-
ing these metaheuristics with simulation, near optimal solutions of a stochastic
optimisation problem can be found in a reasonable computation time.

In this chapter, we present a simulation-based optimisation approach for pa-
rameter optimisation of inventory policies of supply chains. The approach com-
bines the Petri net-based simulation tool for performance evaluation with a ge-
netic algorithm for optimisation. Two objectives are considered in the inventory
policy optimisation: inventory cost and service level. Since the problem consid-
ered is a multi-objective optimisation problem, a multi-objective optimisation
approach based on Non dominated Sorting Genetic Algorithms (NSGA-II) is
developed. In the approach, a supply chain is modeled as a batch deterministic
and stochastic Petri net, and the performance of the supply chain is evaluated by
simulating its Petri net model. The NSGA-II is used to guide the optimisation
search process toward global optima. Our approach is tested by using a real-life
instance – an industrial supply chain for producing and distributing electrical
connectors. Numerical results show that the approach can obtain inventory poli-
cies significantly better than ones currently used in practice with a reduced cost
and an improved service level.

The remainder of this chapter is organized as follows: Batch deterministic and
stochastic Petri nets are briefly introduced in Sect. 2. The multi-objective genetic
algorithm is presented in Sect. 3. A real-life supply chain is described in Sect. 4.

Supply Chain Inventory Optimisation with Multiple Objectives 213

Our simulation-based optimisation approach is applied to the optimisation of
the inventory policies of the supply chain in Sect. 5 with numerical results and
analysis. Several tests are made to evaluate our approach. Concluding remarks
are given in Sect. 6.

2 Batch Deterministic and Stochastic Petri Nets

In our previous work [3, 14], we have proposed a new class of stochastic Petri nets
– Batch Deterministic and Stochastic Petri Nets (BDSPN) – to meet the mod-
elling needs of supply chains, where inventory replenishment and distribution
operations are usually performed in a batch mode triggered by purchase or-
ders and customer orders, respectively. Batch deterministic and stochastic Petri
nets extend Deterministic and Stochastic Petri Nets (DSPN) [16] by introducing
batch places and batch tokens. The motivation for such an extension is that in
systems like supply chains, purchasing, production, and distribution are usually
performed in a batch way where customer orders play an important role. In BD-
SPN, there are two types of places, discrete places and batch places. Tokens in
a discrete place are viewed indifferently as those in standard Petri nets, while
tokens in a batch place, which have sizes, are viewed as different entities and
are represented by Arabic numbers. The tokens of the second type are called
batch tokens. We use different ways to represent the marking of a discrete place
and the marking of a batch place. The former is represented by a nonnegative
integer as in standard Petri nets, while the latter is represented by a set of non-
negative integers. The set may have identical elements and each integer in the
set represents a batch token with a given size. We use a vector (or mapping) μ
to represent the marking of a BDSPN with μ(p) denoting the marking of place
p, where μ(p) is either a nonnegative integer or a set of nonnegative integers,
depending on the type of the place. Moreover, another type of marking, called
M -marking, is also introduced for the definition of BDSPNs. For each discrete
place, its M -marking is the same as its μ-marking, while for each batch place
its M -marking is defined as the total size of the batch tokens in the place.

Definition: A batch deterministic and stochastic Petri net is a nine tuple:

N = (P, T, I, O, V, W, P, D, μ0)

where P = Pd∪Pb is a set of places consisting of the discrete places in set Pd and
the batch places in set Pb; T = Ti∪Td ∪Ts is a set of transitions consisting of the
immediate transitions in set Ti, the deterministic timed transitions in set Td, and
the stochastic timed transitions in set Ts; I ⊆ (P × T) and O ⊆ (T × P) define
the input arcs and the output arcs of the transitions, respectively, as in standard
Petri nets; V ⊆ (P ×Ti) defines the inhibitor arcs for immediate transitions with
V ∩I = ∅; W defines the weights for all ordinary arcs and inhibitor arcs. For each
arc a ∈ I ∪O∪V , its weight W (a) is a linear function over the M -marking of the
net with integer coefficients, i.e., W (a) = α+

∑
p∈P βpM(p), where α, βp(p ∈ P)

are integers, and W (a) ≥ 0. W (a) is assumed to be constant for each arc a

214 L. Amodeo, H. Chen, and A. El Hadji

associated with a timed transition of Td ∪ Ts; Π : T −→ ℵ is a priority function
assigning a priority to each transition, where ℵ is the set of nonnegative integers.
Timed transitions are assumed to have the lowest priority, i.e., Π(t) = 0 for all
t ∈ Td ∪Ts, and π(t) ≥ 1 for all t ∈ Ti. D : T −→ {0}∪
+ ∪Ω defines the firing
times of all transitions, where
+ is the set of positive real numbers, Ω is the set
of random variables with a given distribution, D(t) = 0 for all t ∈ Ti, D(t) ∈
+

for all t ∈ Td, and D(t) ∈ Ω for all t ∈ Ts; μ0 : P −→ ℵ ∪ 2ℵ is the initial
μ-marking, where 2ℵ is a superset consisting of all subsets of ℵ, μ0(p) ∈ ℵ if
p ∈ Pd, and μ0(p) ∈ 2ℵ if p ∈ Pb.

In graphical representation, discrete places and batch places are represented
by single circles and squares with an embedded circle, respectively. Immedi-
ate, deterministic, and stochastic transitions are represented by thin bars, filled
rectangles, and empty rectangles, respectively. Inhibitor arcs are represented by
arrows ending with a small circle. Ordinary tokens are represented by dots, while
batch tokens are represented by Arabic numbers that indicate the sizes of the
tokens.

The state of the net is represented by its μ-marking μ : P −→ ℵ ∪ 2ℵ. The
corresponding M -marking is denoted by M(μ) : P −→ ℵ , or simply by M ,
where M(p) = μ(p) for p ∈ Pd, and M(p) =

∑
b∈μ(p) b for p ∈ Pb. In the

following, a place that is connected with a transition by an arc is referred to
as an input, output, and inhibitor place, depending on the type of the arc. The
set of input places, the set of output places, and the set of inhibitor places of
transition t are denoted by •t, t•, and ◦t, respectively, i.e., •t = {p | (p, t) ∈ I},
t• = {p | (t, p) ∈ O}, and ◦t = {p | (p, t) ∈ V }.

To well define the semantics of the net, it is assumed that: 1) Inhibitor arcs are
only associated with immediate transitions; 2) The weights of all arcs associated
with timed transitions (i.e., transitions of Td ∪ Te) are constants; 3) No place
which is both inhibitor and input for the same transition exists (i.e., •t∩◦t = ∅).

2.1 Transition Enabling and Firing

The state or the μ-marking of the net is changed with two types of transition
firing called batch firing and discrete firing. They depend on whether a transition
has no batch input place.

Discrete Enabling and Firing Rules

If a transition has no batch input place, its enabling condition is the same as
that for a transition of DSPNs. That is, a transition t ∈ T with •t ∩ Pb = ∅ is
enabled at marking μ (its corresponding M -marking) if and only if:

∀p ∈•t, M(p) ≥ W (p, t) (1)
∀p ∈◦t, M(p) < W (p, t) (2)

Note that in this case, the M -marking of each input place of transition t is
the same as the μ-marking of the place. An enabled transition can be fired. If

Supply Chain Inventory Optimisation with Multiple Objectives 215

transition t is fired, W (p, t) tokens will be ”frozen” in each input place p (i.e.,
the tokens cannot be used to enable and fire other transitions). After a time
delay given by D(t), the firing will finish and tokens will be removed from its
input places and created in its output places. The number of ordinary tokens
removed from an input discrete place or created in an output discrete place is
determined by weight of the arc connecting the place with the transition. For
each output batch place, a batch token with the size equal to the weight will be
created. That is, the state of the net after the firing of transition t will become:

∀p ∈•t, μ′(p) = μ(p) − W (p, t) (3)
∀p ∈ t• ∩ Pd, μ′(p) = μ(p) + W (t, p) (4)
∀p ∈ t• ∩ Pb, μ′(p) = μ(p) + {W (t, p)} (5)

Batch Enabling and Firing Rules

A transition with at least one input batch place is called a batch transition. A
batch transition t is said to be enabled at μ-marking μ if and only if there is a
batch firing index (positive integer) q ∈ ℵ (q > 0) such that:

∀p ∈•t ∩ Pb, ∃b ∈ μ(p), q = b/W (p, t) (6)
∀p ∈•t ∩ Pd, M(p) ≥ q × W (p, t) (7)
∀p ∈◦t, M(p) < W (p, t) (8)

The firing of t leads to a new μ-marking μ′:

∀p ∈•t ∩ Pd, μ′(p) = μ(p) − q × W (p, t) (9)
∀p ∈•t ∩ Pb, μ′(p) = μ(p) − {q × W (p, t)} (10)
∀p ∈ t• ∩ Pd, μ′(p) = μ(p) + q × W (t, p) (11)
∀p ∈ t• ∩ Pb, μ′(p) = μ(p) + {q × W (t, p)} (12)

A batch transition t is said to be enabled if : (a) Each batch input place p of
the transition has a batch token with size b such that all these batch tokens
have the same batch firing index q defined as b/w(p, t) for the transition, (b)
Each discrete input place of the transition has enough tokens to simultaneously
fire the transition for a number of times given by the index, (c) The number
of tokens in each inhibitor place of the transition is less than the weight of the
inhibitor arc connecting the place to the transition.

For any batch output place, the firing of an enabled batch transition generates
a batch token with the size given by the multiplication of the batch firing index
and the weight of the arc connecting the transition to the batch place. For any
discrete output place, the firing of the transition generates a number of discrete
tokens with the number given by the multiplication of the batch firing index and
the weight of the arc connecting the transition to the discrete place.

216 L. Amodeo, H. Chen, and A. El Hadji

2.2 Inventory System Modelling

Figure 1 shows the BDSPN model of an inventory system with continue review
(R, Q) policy, where R is the reorder point and Q is the fixed order quantity. In
the model, discrete place p1 represents the on-hand inventory of the stock and
place p3 represents outstanding orders. Discrete place p2 represents the on-hand
inventory of the stock plus its outstanding orders (the orders that are placed
by stock p1 but not filled yet) that is, M(p2) = M(p1) + M(p3). The inven-
tory position of the stock equals to M(p1) + M(p3) − M(p4) = M(p2) − M(p4).
Inventory replenishment decisions are based on the position. Batch place p4 rep-
resents backorders of the stock (total unfilled customer demand). The operations
of the system such as generation of replenishment orders (t4), inventory replen-
ishment (t2), and order delivery (t1) are performed in a batch way because of
the batch nature of customer orders recorded in batch place p4 and the batch
nature of the outstanding orders recorded in batch place p3. The fulfillment of a
customer order will decrease on-hand inventory of the stock as well as its inven-
tory level. This is described by the arcs from places p1, p4 and p2 to transition
t1. If a customer order cannot be filled because of stock-out, it will become a
backorder (a batch token in place p4). The continuous inspection of inventory
position, i.e., M(p2) − M(p4), is represented by immediate transition t4 and its
associated inhibitor arc. When this position is below the reorder point R, i.e.,
M(p2) − M(p4) < R, or equivalently M(p2) < R + M(p4), an order with size
Q (batch order) will be placed to the supplier (a batch token with the size Q
will be created in batch place p3). If there is a batch token (order) in place p3,
transition t2 will be fired after its associated delay, which will replenish stock p1
by delivering the order to it.

Immediate transitions fire in constant zero time whereas timed transitions fire
after either an exponentially distributed or a deterministic firing delay. When
some timed transitions are enabled in a marking, the transition with the mini-
mum firing delay will cause the marking change. This is called a race condition
[1]. Further, as in DSPN, it is assumed that after a marking change each timed

p3

t2 p1

Replenishment stock

Backorders

p4

t1

Delivery

p2t4 R+M4

Outstanding order Batch order

Q
Q

Fig. 1. BDSPN model of an (R,Q) inventory control policy

Supply Chain Inventory Optimisation with Multiple Objectives 217

transition newly enabled samples a remaining firing time from its firing delay
distribution. Each timed transition which has already been enabled in the pre-
vious marking and is still enabled in the current marking keeps its remaining
firing time. This stochastic behavior corresponds to the race policy with enabling
memory of stochastic Petri nets [1].

For a more detailed explanation of the BDSPN model (i.e., firing rules, con-
flicts, temporal policies and behavior) please refer to our previous paper [3].

3 Multi-objective Genetic Algorithm

Multi-objective optimisation is a research topic attracting much attention be-
cause many optimisation problems involve multiple and conflicting objectives
and a compromise may have to be made among these objectives. The most
important concept in multi-objective optimisation is Pareto optimality. A so-
lution is Pareto optimal if it is not dominated by any other solution in terms
of all objectives considered. Since a number of solutions may be Pareto op-
timal, the task of multi-objective optimisation is to find as many as possible
such non dominated solutions, and this task is quite complex. In this section, a
simulation-based multi-objective optimisation method that combines simulation
evaluation of performance and meta-heuristic search with multi-objective genetic
algorithms called NSGA-II is adapted for the optimisation of inventory policies
of supply chains. We use a multi-objective optimisation method because there
are more than one objective in supply chain inventory optimisation especially
the inventory cost and the service level.

GA is a search technique based on the mechanism of natural selection and re-
production introduced by Holland and is used to search large, non-linear solution
spaces where expert knowledge is lacking or difficult to encode and where tradi-
tional optimisation techniques fall short. It starts with an initial set of randomly
generated solutions called population and each individual in the population is
called chromosome representing a solution. Each chromosome is composed of
a set of elements called genes. At each iteration (generation) of GA, all newly
generated chromosomes are evaluated using a fitness function to determine their
qualities. High quality chromosomes are selected to produce offspring chromo-
somes through genetic operators, namely, crossover and mutation. After a num-
ber of generations, the GA converges to a chromosome which is very likely to be
an optimal solution or a solution close to the optimum.

Although standard GAs cannot efficiently solve multi-objective optimisation
problems, multi-objective GAs such as NSGA-II can. The choice of NSGA-II
is motivated by its potential as a stochastic search method and the facility of
encoding inventory policy parameters of supply chains. One of its major ad-
vantages for multi-objective optimisation, like in this study, is their ability to
find multiple Pareto optimal solutions in one single simulation run. Also, we
obtain at the end of the search process a diversified population of good so-
lutions. This diversity is a useful element because it makes possible to have
more varied possibilities. Therefore, NSGA-II is very well adapted to treat

218 L. Amodeo, H. Chen, and A. El Hadji

multi-objective optimisation problems. The first Multi-Objective method based
on Genetic Algorithm is VEGA (Vector Evaluated Genetic algorithm) [18]. After
VEGA, many multi-objective optimisation methods based on GA are proposed:
MOGA (Multi-Objective Genetic Algorithm) [9] in which each individual of the
population is arranged according to the number of individuals who dominate
it, Horn et al. [12] presented NPGA (Niched Pareto Algorithm). This method
uses a tournament based on the concept of Pareto dominance. Another method,
NSGA (Non-dominated Sorting Genetic Algorithm) [8] is proposed by Deb and
Srivinas.

However these approaches are not elitist, the generated Pareto front is not
diversified, and convergence is slow. In order to solve these problems, some new
elitist techniques are developed [6]. They keep the best individuals of old genera-
tions after genetic operators crossover and mutation. This is realized by copying
the best individuals in the population of each generation to the next genera-
tion. Among those methods, one can cite RPSGAe (Reduced Pareto Set Genetic
Algorithm) [11], SPEA (Strengh Pareto Evolutionary Algorithm) [20], PESA
(Pareto Envelope based Selection Algorithm) [13], NSGA-II (Non-dominated
Sorting Genetic Algorithm-2) [7], where Deb tries to solve all criticisms of NSGA
[8] approach: complexity, lack of elitism and need for specifying sharing parame-
ters. We choose NSGA-II for our supply chain inventory optimisation with mul-
tiple objectives because of following reasons : (i) it is an elitist and fast method
because it uses non dominated sorting procedure, (ii) its modular and flexible
structure, (iii) it can be applied to a large variety of problems.

Moreover, any multi-objective evolutionary algorithm (MOEA) has a formal
proof of convergence, with a large diversity, to real Pareto optimal solutions [15].
Indeed, in recent years, extremely robust methods are proposed [2, 5] to solve
multi-objective optimisation problems using genetic algorithms. According to the
studies which have evaluated several multi-objectives algorithms, the NSGA-II is
classified among the best and the most popular algorithm in term of convergence
and diversity of solutions.

The following two subsections introduce the principle of NSGA-II and its
adaptation to bi-objective supply chain inventory optimisation.

3.1 NSGA II Principle

NSGA-II computes successive generations of a population of solutions belonging
to non-dominated fronts. The non-dominated set is identified and constitutes
the non-dominated front of level 1 or front 1. In order to find the individu-
als in the next non-dominated front, the solutions of front 1 are discounted
temporarily and the above procedure is repeated. This process continues until
all fronts are identified. In order to maintain diversity in the population, the
crowding-distance is used. The overall structure of the NSGAII is specified by
Algorithm 1.

Supply Chain Inventory Optimisation with Multiple Objectives 219

Algorithm 1: NSGAII overall structure
Create the initial population P of size n
Evaluate the n solutions using simulation
Sort P by non domination
Compute the crowding distance of each solution
repeat

Create and add n children to P (using genetic operators: selection, crossover and
mutation of two parents)
Sort P by non domination
Compute the crowding distance of each solution
newP ← ∅
i ← 1
while |newP | + |front(i)| ≤ n do

Add front(i) to newP
i ← i + 1

end while
missing ← n − |newP |
if missing �= 0 then

Sort the solutions by descending order of the crowding distance
for j ← 1 to missing do

Add the jth solution of front(i) to newP
end for
P ← newP

end if
until Stopping Criterion

3.2 GA Components for Bi-objective Supply Chain Inventory
Optimisation

In this study, we consider a supply chain composed of s interrelated stocks. Each
stock uses a batch ordering policy (R, Q) for its inventory replenishment. The
supply chain has two objectives, namely total inventory cost and service level, to
optimise. Basic operations that characterize our adapted NSGA-II are explained
as follows.

Encoding

For batch ordering policies, only two parameters are involved: the reorder point
R and the order quantity Q. For a supply chain with s stocks controlled by batch
ordering policies, each chromosome is encoded as [R1, Q1, . . . ,Ri, Qi, . . . ,Rs, Qs],
where Ri and Qi are the reorder point and the order quantity of the batch
ordering policy of the ith stock, respectively, i = 1, 2, . . . , s. For a supply chain
with other types of inventory policy or a mixture of multiple types of policies,
the chromosome can be similarly encoded. The length of the chromosome is the
total number of the parameters of all inventory policies of the supply chain. To
make genetic operations easier and effective, Ri and Qi are encoded in binary.

220 L. Amodeo, H. Chen, and A. El Hadji

Initial Population

The NSGA-II starts the search by generating a population of candidate solu-
tions. In our implementation, this population is randomly generated accord-
ing to uniform distributions. That is, the parameters (gene values) Ri and Qi

are randomly generated according to uniform distributions U [Rimin, Rimin] and
U [Qimin, Qimin], respectively, where Rimin, Qimin and Rimax, Qimax are respec-
tively the minimum and the maximum possible values of Ri and Qi.

Chromosomes Evaluation and Selection

In our study, each chromosome is evaluated through simulation. The simulation is
controlled by two control parameters: the number of simulations per chromosome
N and the length of each simulation run T . For each chromosome i, the fitness
value fi is evaluated on its average value over the N simulations.

Selection is a process in which chromosomes are chosen according to their
fitness function value or their rank value. In this study, the tournament parent
selection is used. Tournament selection is one of selection methods in genetic
algorithms which runs a tournament among a few individuals chosen at random
from the population and selects the winner (the one with the best fitness) for
crossover. The tournament size used in our computational experiments is 2.

Crossover and Mutation

The crossover produces new offspring chromosomes from parent individuals. Two
new chromosomes are created by exchanging some genes of two parent chromo-
somes. We use in our implementation the single-point crossover. This kind of
crossover creates a pair of offspring by exchanging parts of the parents after a
randomly chosen crossover point.

The mutation introduces some extra variability into the current population.
The function of mutation is to maintain the diversity of the population in order
to prevent too fast convergence of the algorithm. The probability of mutation is
taken as 1/l where l is the string length of our binary-coded variables.

Crowding Distance Calculation

As the overall population size of P is 2n, we cannot accommodate all fronts in
the new parent population (newP) of size n. The non accommodated fronts are
simply deleted. When the last allowed front is considered, there may exist more
solutions in the last front than the remaining slots in the new population.

In order to avoid arbitrarily choosing individuals, we choose the individuals
that can assure diversity between the considered ones; that is what we call a
niching strategy. For this reason, we calculate the crowding distance measur-
ing the Euclidean distance between the neighboring individuals in each front
(Fig. 2). The Algorithm 2 describes the crowding distance procedure.

Supply Chain Inventory Optimisation with Multiple Objectives 221

Algorithm 2: Crowding distance calculation
Let ζ the number of solutions
for each solution i do

Initialize the distance to 0
for each objective m do

Sort the solutions according to the objective m
d1 ← 0, dζ ← ∞
for i ← 2 to (ζ − 1) do

di ← di + (f i+1
m − f i−1

m)/(fMAX
m − fMIN

m)
end for

end for
end for

where f i
m is the value of the objective function m of the ith solution. Thereafter,

those strings with largest crowding distance values are chosen to become the
new parent population. Once the non-dominated sorting is over, the new parent
population, newP , is created by choosing solutions of different non-dominated
fronts.

i−1

i+1

ζ

i

Cuboid

f1

f2

f2

f1 f1

f2MAX

MIN

MIN MAX

Fig. 2. Crowding distance

Stopping Conditions

There are no universal stopping conditions accepted for multi-objective genetic
algorithms. In this study, we simply stop our algorithm after a given number of
iterations (Ng).

4 Industrial Case

In this section, a real life supply chain is presented. For confidential reason, the
name of the company concerned is not mentioned. The supply chain is com-
posed of three suppliers, three upstream transporters with one for each supplier,
a manufacturer, a downstream transporter for the manufacturer and a set of
customers (see Fig. 3).

222 L. Amodeo, H. Chen, and A. El Hadji

transporter

Upstream
transporter 1

Custumer 1

Custumer 2

Custumer n−1

Custumer n

Upstream
transporter 2

Upstream
transporter 3

Supplier 1

Supplier 2

Supplier 3

Manufacturer
Downstream

Fig. 3. Structure of an industrial supply chain

PackagingAssembly

Raw materials

S1

S2

Flat (copper)

S3

Screw

Finished products

Delivery

S4

Rod (aluminium)

Fig. 4. Manufacturing process of an electrical connector

The manufacturer produces an electrical connector for high voltage lines.
There are three types of flow in the supply chain: material flows, information
flows and financial flows. For material flows (see Fig. 4), the manufacturer needs
three raw materials for the production of the connector: flats, rods, and screws.
They are purchased from suppliers 1, 2 and 3, respectively. These materials are
delivered to the manufacturer by the corresponding upstream transporters. At
the manufacturer site, rods of aluminum are cut into shafts with a pre-specified
length, flats are bored and ground, and the finished product is then produced by
assembling a shaft, a flat, and two screws. The product will be further packaged
and delivered to customers by the downstream transporter.

For information flows, the manufacturer receives customer demand in the form
of orders. When the inventory position of the finished product (Stock 4) is be-
low a pre-specified reorder level, an assembly order with a given batch size will
be released to the assembly line of the manufacturer. For the raw material stocks
(S1, S2 and S3), when their inventory positions are below their reorder levels, a
purchase order with a given quantity will be placed to their corresponding sup-
pliers. Each purchase or assembly order contains the information such as order
release time and order quantity, which are determined by an inventory policy in-
volved. The inventory policies of all the stocks are periodic review batch ordering
policy. For financial flows, customers pay the manufacturer within a given time
period after receiving their ordered finished products. The manufacturer pays its

Supply Chain Inventory Optimisation with Multiple Objectives 223

t3 p3 t6 t9 p9p6

t25p28 p32

t2 p2 t5 p8p5

p24p21

p27 p31t24

p25
t16

t20 t17 p16

p18

p17

t22

t21

p19

t18

t19

t15

p10 t11 p11 p12 t13 p13

p33p29

p34 t27

t26

t1 p1 t4 t7 p7p4

p23

p26 p30t23

p22

t8

p14

t14

p20

t10

p15

t12

Fig. 5. BDSPN model of the industrial supply chain

suppliers similarly. The suppliers and the manufacturer pay their transporters
within a given time period after the delivery of raw materials or finished products.

Figure 5 shows the BDSPN model of the industrial supply chain. In the model,
the material flows are represented by timed transitions t1, t2 and t3 (inventory
replenishments of the suppliers), t7, t8 and t9 (deliveries of raw materials from
the suppliers to the manufacturer), t11 (assembly operation), t13 (delivery prepa-
ration of the manufacturer), t14 (delivery of finished products from the manu-
facturer to customers), and their associated places and arcs. The information
flows are represented by immediate transitions t23 to t26, their associated dis-
crete places p30 to p33 and batch places p26 to p29, the arcs connecting the places
with the transitions, and the weights of the arcs. The financial flows are repre-
sented by transitions t15 to t22, discrete and batch places p14 to p25, and their
associated arcs, where each transition represents a payment operation from one
company to another while the markings of the discrete and batch input places
represent the money available in a company and the order delivery information
received from a company.

5 Computational Experiments

In this study, we have programmed our adapted NSGA-II algorithm on a LINUX
station using C++ under KDevelop environment. The algorithm is tested on real

224 L. Amodeo, H. Chen, and A. El Hadji

NSGA 2

SOLUTIONS

SIMULATION
BLOCK

GENETIC
OPERATORS

EVALUATION

FITNESS

Fig. 6. Structure of the simulation based optimisation tool

data of an industrial case. Figure 6 shows the coupling between the BDSPN
simulator and the NSGA2 optimisation method.

With the BDSPN model, the performance of the current real-life supply chain
is evaluated by simulation using a BDSPN simulator (a C++ program) developed
by us. All data in our simulation are taken from the company concerned. The
mean replenishment lead times for stocks S1, S2, S3, and S4 are 40, 20, 70, and
20 days, respectively. The mean transportation lead times for all transporters
are 2 days. The standard deviations of these lead times are negligible. Customer
orders arrive randomly with the inter-arrival times subject to an exponential
distribution with mean value 0.0355. Actually, the reorder points of stocks S1, S2,
S3, S4 are 2300, 590, 2000, 400, respectively, while the order quantities of these
stocks are 5000, 3000, 9300, 2000, respectively. The annual holding costs of raw
materials and final products in stocks S1, S2, S3, S4 are 12% of their prices which
are 0.3€, 0.6€, 0.16€, and 3€, respectively. The performance criteria of the
supply chain considered include average inventory level and service level of each
stock, where the service level is defined as the probability that customer orders
can be filled on time. The first criterion is easy to obtain since it corresponds
to the average number of tokens in the discrete place representing the on-hand
inventory of a stock. For the evaluation of the service level, it needs to obtain
the total time that the discrete place has no token while the corresponding batch
place that represents customer orders is not empty in each simulation run. This
can be done by observing the markings of the two places during the simulation.

5.1 Performance Evaluation

Because of the stochastic nature of the model, the simulation has to be replicated
for many times with a long time horizon (simulation length) to get reliable
estimates of the performance indices. Each index is evaluated as its average
value over all simulation replications. The accuracy of the evaluation depends
on the number of simulations performed and the simulation length adopted.

Thus, several instances were tested while varying the simulation time and the
number of replications. The simulation time T and the number of replications
N take respectively the following values T ∈ [1000, 2000, 3000, 4000, 5000] and
N ∈ [5, 10, 25, 50, 75, 100, 150, 200]. To choose a relevant value of T and N , 5

Supply Chain Inventory Optimisation with Multiple Objectives 225

Table 1. Simulation results with T = 2000

N CT σCT SL σSL Time (s)
5 516.05 2.98 0.8260 0.0082 0.203
10 516.35 3.27 0.8268 0.0082 0.343
25 517.39 3.46 0.8286 0.0077 0.781
50 517.35 3.30 0.8283 0.0074 1.593
75 517.54 3.35 0.8286 0.0072 2.296
100 517.36 3.31 0.8283 0.0070 3.031
150 517.26 3.02 0.8280 0.0065 4.500
200 517.37 3.06 0.8283 0.0066 6.031

Table 2. Performance of the industrial supply chain with T = 2000 days and N = 25
replications

Stock Average Average Service Average
inventory level backorder size level inventory cost

S1 3355.33 (11.28) 0.00 (0.00) 1.0000 (0.0000) 120.79 (0.41)
S2 1189.43 (5.22) 178 (0.18) 0.6845 (0.0015) 85.64 (0.37)
S3 5071.65 (14.76) 0.00 (0.00) 0.9232 (0.0231) 97.37 (0.28)
S4 593.30 (9.39) 20.81 (1.95) 0.8286 (0.0077) 213.59 (3.38)

Supply chain performance 0.8286 (0.0077) 517.39 (3.46)

performance indices are taken into account: the total inventory cost TC, the
variance of the total inventory cost σTC , the customer service level SL, the vari-
ance of the customer service level σSL, and the computation time (time). The
choice of the simulation parameters of T and N is a compromise between the
computation time and the quality of the performances. Table 1 gives the per-
formances obtained with T = 2000 days and N ∈ [5, 10, 25, 50, 75, 100, 150, 200]
replications. The computation time is reasonable for a coupling with an optimi-
sation module for N = 25. Beyond N = 25 replications, the performances (TC,
σTC , SL, σSL) do not vary significantly any more.

According to these simulation results, the simulation horizon for the optimi-
sation procedure is set as 6 years (T = 2000) with a warm up period of 6 months
(10% of the simulation horizon) in order to reach a steady state, and the number
of replications is set to N = 25.

The complete performance of the supply chain is shown in Table 2, where each
entry without bracket enclosed is the estimated mean value of a performance
criterion, while the entry enclosed with a bracket below the mean value is the
estimated standard deviation of the criterion. From Table 2, we can find that the
standard deviation is quite small, usually within 1% of its corresponding mean
value. This implies that the obtained results are trustful. The performances of
the supply chain are 517.39 for the mean total inventory cost per day, which
is the sum of the mean inventory costs of the four stocks, and the mean service
level to the final customers are 82.86 %.

226 L. Amodeo, H. Chen, and A. El Hadji

The current customer service level is relatively low. This is the main motiva-
tion driving the manufacturer to improve its supply chain. The goal of the man-
ufacturer is to maximise the service level to the final customers and to minimize
the total inventory cost. To reach this goal, the simulation-based optimisation
approach is applied to optimise the inventory policies of the supply chain.

5.2 Multiobjective Optimisation

Our algorithm was run with different values of the generation number (from 25
to 1000), with an initial population size of 100 and with the following param-
eters referring to the NSGA-II [7]: the probability of crossover is 0.9 and the
probability of mutation is 1/l, where l is the length of the binary coded decision
variables. Also the genetic operations such as the Pareto dominance ranking pro-
cedure and the elitist selection are used. The elitist approach is very important.
It considers both parent and child population for selecting better candidates for
mating pool. This is supported by the fact that subsequent generations do not
allow fitter chromosomes to get lost in the crowd due to the randomness involved
in the selection operation of NSGA-II.

Evaluation Criteria

In the resolution of a multi-objective optimisation problem based on genetic algo-
rithms, the central issue is to compare two fronts obtained by resolving this prob-
lem with different parameters of the algorithm. Two evaluation criteria are used:

• Zitzler Measure (C(F1, F2)): This measure has been proposed by Zitzler [20].
Let F1, F2 be two Pareto fronts. The function C maps the ordered pair
C(F1, F2) to the interval [0, 1]:

C(F1, F2) :=
|{x2 ∈ F2; ∃x1 ∈ F1 : x1 � x2}|

|F2| (13)

C(F1, F2)=1 means that all solutions in F2 are dominated by or equal to
solutions in F1. The opposite, C(F1, F2)=0 represents the case where none of
the solutions in F2 are dominated by the solutions of F1. Since this measure
is not symmetrical, it is necessary to calculate C(F2, F1). Therefore, F1 is
better than F2 if C(F1, F2) < C(F2, F1). This measure can be used to show
one Pareto front dominates another; however, it does not tell how much better
this is. The second measure proposed by Riise [17] overcomes this drawback.
It calculates numerically the sum distance between two Pareto fronts, which
is given by:

• μ Distance:

μ =
N∑

i=1

di (14)

where di is the distance between a solution i ∈ F1 and its orthogonal projec-
tion on F2. The μ value is negative if F1 is below F2, and positive otherwise.

Supply Chain Inventory Optimisation with Multiple Objectives 227

Table 3. Optimisation results with T = 2000 and N = 25

Ng Time (s) |F | C(Fi; F1) C(F1; Fi) μ μ̄

F1 25 1416 78 0 0 0 0
F2 50 2758 100 2 73 3.863 0.0495
F3 75 4190 100 0 78 7.318 0.0938
F4 100 5543 100 0 78 8.366 0.1072
F5 250 13580 100 0 78 9.636 0.1235
F6 500 27132 100 0 78 9.875 0.1266
F7 750 41107 100 0 78 9.627 0.1234
F8 1000 55762 100 0 95 9.433 0.1209
IS – 1 1 100 0 - -18.659

Since μ depends on the number of solutions in |F1| = ζ, a normalized
measure is generally taken: μ̄ = μ

ζ

Results

To test our optimisation method, several sets of parameters are used and the
corresponding results are presented in Table 3. Ng is the number of generations.
Fi is the optimal Pareto front and IS is the industrial solution described before
with the performances (517.39€, 82.86%). The number of solutions |F | in all
Pareto optimal fronts Fi is equal to 78 or 100. Each optimal Pareto front Fi

and the solution IS are compared with the reference front F1 on two evaluation
criteria, the Zitzler measures C(Fi; F1) and C(F1; Fi) and the μ distance. Results
show that with all parameters settings, the algorithm can obtain solutions better
than the industrial solution IS but with a longer computation time (more than 18
hours for F8). The longer computation time is acceptable since the optimisation
of the inventory policies can be done off time.

The results in Table 3 show that after 100 generations, there are no more
noticeable improvements of the front. Thus, for the robustness analysis of the
algorithm hereafter, the number of generations is fixed to 250.

Graphically, Fig. 7 gives an example of the optimal Pareto distribution of the
front F8. Each point represents a specific solution that is Pareto-optimal. We
can also discover that the points are evenly distributed along the front. The IS
point is below the optimal Pareto front. Figure 8 compares two optimal Pareto
fronts F1 and F8.

5.3 Robustness Analysis

The robustness of our method was tested by performing multiple simulation runs
with different standard deviations of demand Cvd and lead time Cvlt, in order
to see the variability on the quality of non dominated solutions for cost min-
imization and service level maximization. The different Pareto fronts obtained
using different standard deviations (10%, 20%, 30%) of demand and (0%, 10%,
20%) of lead time are presented in Table 4. Each optimal Pareto front Fi are

228 L. Amodeo, H. Chen, and A. El Hadji

100 150 200 250 300 350 400 450 500 550
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Inventory cost

S
er

vi
ce

 le
ve

l

F8
IS

Fig. 7. Distribution of F8 and IS point

100 150 200 250 300 350
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Inventory cost

S
er

vi
ce

 le
ve

l

F1
F8

Fig. 8. Comparison between F1 and F8

Supply Chain Inventory Optimisation with Multiple Objectives 229

Table 4. Robustness results with T = 2000, N = 25 and Ng = 250

Cvd Cvlt |F | C(Fi; F10) C(F10; Fi) μ μ̄

F10 10% 0% 100 0 0 0 0
F11 10% 10% 100 99 0 -0.596 -0.00596
F12 10% 20% 100 100 0 0.364 0.00364
F13 20% 0% 100 62 7 -0.033 -0.00033
F14 20% 10% 100 91 1 0.104 0.00104
F15 20% 20% 100 99 0 0.436 -0.00436
F16 30% 0% 100 85 1 0.031 0.00031
F17 30% 10% 100 92 1 0.467 0.00467
F18 30% 20% 100 100 0 0.576 0.00576

compared with the reference front F10 on two evaluation criteria, the Zitzler
measures C(Fi; F1) and C(F1; Fi) and the μ distance. It can be observed that
there is no significant difference between all Pareto fronts. This indicates that
all Pareto fronts resulting of demand variability have little variation, thus this
shows the robustness of our method.

6 Conclusion

In this chapter, we have developed a simulation-based method for the optimi-
sation of the inventory policies of supply chains with multiple objectives. This
method combines simulation evaluation of performance with a genetic algorithm
that guides an optimisation search process toward global optima. The simulation
evaluation is based on a batch deterministic and stochastic Petri net modelling
tool we developed, while the genetic algorithm is developed based on NSGA2.
Our method is tested by an industrial case study that optimises inventory poli-
cies for a real-life supply chain. The test is performed with different parameter
settings of the algorithm. The different solutions obtained by the algorithm and
represented by Pareto fronts are compared with two evaluation criteria: μ dis-
tance and Zitzler measure. Numerical results show that our method can obtain
inventory policies much better than the ones currently used in practice with a
reduced inventory cost and an improved service level. The application of the
method to other problems in supply chains such as the inventory routing prob-
lem that minimizes the total cost of inventory and transportation is a topic for
future research.

References

1. Ajmone Marsan, M., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Mod-
elling with Generalized Stochastic Petri Nets. Wiley, Chichester (1995)

2. Burke, E.K., Landa Silva, J.D.: The influence of the fitness evaluation method on
the performance of multiobjective search algorithms. European Journal of Opera-
tional Research 169(3), 875–897 (2006)

230 L. Amodeo, H. Chen, and A. El Hadji

3. Chen, H., Amodeo, L., Chu, F., Labadi, K.: Modelling and performance evalua-
tion of supply chains using batch deterministic and stochastic petri nets. IEEE
Transactions on Automation Science and Engineering 2(2), 132–144 (2005)

4. Coello Coello, C.A.: An updated survey of GA-based multiobjective optimization
techniques. ACM Computing Surveys 32(2), 109–143 (2000)

5. Daniel, J.S.R., Rajendran, C.: Heuristic approaches to determine base-stock lev-
els in a serial supply chain with a single objective and with multiple objectives.
European Journal of Operational Research 175(1), 566–592 (2005)

6. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley,
Chichester (2001)

7. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-
objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Com-
putation 6(2), 182–197 (2002)

8. Deb, K., Srinivas, N.: Multiobjective optimization using non-dominated sorting in
genetic algorithms. Evolutionary Computation 2(3), 221–248 (1994)

9. Fonseca, C., Fleming, M.: Genetic algorithm for multiobjective optimization: for-
mulation, discussion and generalization. In: Proceedings of the Fifth International
Conference on Genetic Algorithms, San Mateo (1993)

10. Fu, M.C.: Simulation optimization. In: Proceeding of the 2001 Winter Simulation
Conference, pp. 53–61 (2001)

11. Gaspar-Cunha, A., Covas, J.A.: RPSGAe-reduced pareto set genetic algorithm:
Application to polymer extrusion. In: Gandibleux, X., Sevaux, M., Sorensen, K.,
T’kindt, V. (eds.) Metaheuristics for Multiobjective Optimisation, pp. 221–249.
Springer, Berlin (2004)

12. Horn, J., Nafpliotis, N., Goldberg, D.: A niched pareto genetic algorithm for multi-
objective optimisation. In: Proceedings of the 1st IEEE Conference on Evolutionary
Computation (1994)

13. Knowles, J.D., Corne, D.W., Oates, M.J.: The pareto-envelope based selection
algorithm for multiobjective optimization. In: Deb, K., Rudolph, G., Lutton, E.,
Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS,
vol. 1917, pp. 839–848. Springer, Berlin (2000)

14. Labadi, K., Chen, H., Amodeo, L.: Modeling and performance evaluation of inven-
tory systems using batch deterministic and stochastic petri nets. IEEE Transac-
tions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 37(6),
1287–1302 (2007)

15. Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining convergence and diver-
sity in evolutionary multiobjective optimization. Evolutionary Computation 10(3),
263–282 (2002)

16. Lindemann, C.: Performance Modeling with Deterministic and Stochastic Petri
Nets. Wiley, Chichester (1998)

17. Riise, A.: Comparing genetic algorithms and tabu search for multiobjective opti-
mization. In: Abstract Conference Proceedings of IFORS 2002, Edinburgh, p. 29
(2002)

18. Schaffer, J.: Multi-objective optimisation with vector evaluated genetic algorithms.
In: Proceedings of the First International Conference on Genetic Algorithms and
Their Applications, pp. 93–100 (1985)

19. Tayur, S., Ganeshan, R., Magazine, M.: Quantitative Models for Supply Chain
Management. Kluwer Academic Publishers, Boston (1998)

20. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case
study and the strength pareto approach. IEEE Transactions on Evolutionary Com-
putation 3(4), 257–271 (1999)

Decomposition of Dynamic Single-Product and
Multi-product Lotsizing Problems and
Scalability of EDAs

Jörn Grahl1, Stefan Minner1, and Franz Rothlauf2

1 Department of Logistics, University of Mannheim, Schloss,
68131 Mannheim, Germany
{joern.grahl,minner}@bwl.uni-mannheim.de

2 Department of Information Systems and Business Administration, University of
Mainz, Jakob-Welder-Weg 9, 55128 Mainz, Germany
rothlauf@uni-mainz.de

Summary. In existing theoretical and experimental work, Estimation of Distribution
Algorithms (EDAs) are primarily applied to decomposable test problems. State-of-the-
art EDAs like the Hierarchical Bayesian Optimization Algorithm (hBOA), the Learning
Factorized Distribution Algorithm (LFDA) or Estimation of Bayesian Networks Algo-
rithm (EBNA) solve these problems in polynomial time. Regarding this success, it is
tempting to apply EDAs to real-world problems. But up to now, it has rarely been
analyzed which real-world problems are decomposable. The main contribution of this
chapter is twofold: (1) It shows that uncapacitated single-product and multi-product
lotsizing problems are decomposable. (2) A state-of-the-art EDA is used to solve both
problems. The problems are fundamental in inventory management and their fitness
functions can be expressed as additively decomposable functions. It is analyzed how
a search distribution of Boltzmann-type factorizes for these functions and it is shown
that the factorizations of the Boltzmann distribution are polynomially bounded. Conse-
quently, experimental scalability analysis is conducted for both problems with a state-
of-the-art EDA. The total number of fitness evaluations required to reliably solve the
problems to optimality is found to grow with a low-order polynomial depending on the
problem size. The results confirm existing scalability theory for decomposable problems.

Keywords: Estimation of Distribution Algorithms, Decomposition, Lotsizing.

1 Introduction

Genetic Algorithms (GA) [16, 9] and Estimation of Distribution Algorithms
(EDA) [29] show high performance when solving decomposable problems. A
problem is decomposable if its dimensionality can be reduced by splitting it into
possibly interacting subproblems that are easier to solve and from whose the
overall solution can be constructed. In recent years, much progress has been made
in solving decomposable problems. Artificial test problems that are intractable
for simple GAs can reliably be solved to optimality by EDA such as LFDA [27],

A. Fink and F. Rothlauf (Eds.): Advances in Computational Intelligence, SCI 144, pp. 231–251, 2008.
springerlink.com © Springer-Verlag Berlin Heidelberg 2008

232 J. Grahl, S. Minner, and F. Rothlauf

hBOA [32] or EBNA [21] in a scalable manner. Although there exist numerous
theoretical and experimental results that indicate the efficiency of EDA in solving
decomposable problems, successful applications of EDA to problems of industrial
interest are still rare.

The main contribution of this chapter is twofold. First, the practical rele-
vance of decomposability assumptions is demonstrated. Two lotsizing problems
are studied that are fundamental in inventory management and of practical rele-
vance. These are the single-product lotsizing problem [44] and the dynamic joint
replenishment problem (JRP, [1]). The single-product lotsizing problem consid-
ers the placement of replenishment orders for a single product over time and
is polynomial-time solvable, see [43]. The dynamic joint replenishment problem
extends the single-product problem to a multi-product case where ordering costs
are linked between the products. The JRP is NP-complete [2]. It is shown that
both problems are decomposable and that their fitness functions can be formu-
lated as additively decomposable functions. It is assessed how Boltzmann-type
search distributions factorize into marginal distributions for these decomposi-
tions and it is shown that the factorizations of the Boltzmann distribution are
polynomially bounded for both problems.

Second, the problems are solved with a state-of-the-art EDA in an experimen-
tal scalability analysis. The total number of evaluations required to reliably solve
the problems to optimality grows with a low-order polynomial depending on the
problem size. The results confirm existing scalability theory for decomposable
problems.

This chapter is structured as follows. In Sect. 2.1, a brief introduction to
lotsizing problems is given. The single-product lotsizing problem is presented
in Sect. 2.2, the dynamic joint replenishment problem in Sect. 2.3. In Sect. 3
we review existing results on the influence of problem decomposition on the
scalability of Evolutionary Algorithms, especially GAs and EDAs. In Sect. 4, we
propose decompositions for the single- and the multi-product lotsizing problem.
In Sect. 5, experimental scalability analyses for both problems are conducted.
The paper ends with concluding remarks.

2 Lotsizing

2.1 Introduction

Almost any organization has to cope with inventories to exploit economies of
scale, guarantee a certain service level or to decouple processes to name just
a few reasons. A central problem of managing inventories is matching replen-
ishment ordering decisions with customer demand over time. Lotsizing problems
are solved to balance cost trade-offs that arise from placing replenishment orders
in an inventory system at different points in time.

Assume that customer demand for a product is known over time, e.g., for the
next 12 weeks. A company can place replenishment orders for the product at

Decomposition of Lotsizing Problems and Scalability of EDAs 233

various discrete time points, e.g., every Monday. Received but not used goods
can be stored as inventories. Customer demand has to be satisfied completely
from the available sources.

The total costs that are caused by placing replenishment orders consist of (1)
fixed ordering costs and (2) inventory holding costs. Fixed ordering costs arise
for each order that is placed (e.g. shipping costs). They are independent from the
amount of goods that is actually ordered. Inventory holding costs arise, if goods
are put on stock and are carried as inventory. The sum of the fixed ordering
costs grows with the number of orders that are placed. The sum of the inventory
holding costs decreases with the number of orders that are placed. This trade-off
has to be balanced in order to minimize the total costs that is caused by placing
replenishment orders.

2.2 Single-Product Lotsizing

The standard single-product dynamic, discrete time lotsizing problem (also
known as the Wagner-Whitin problem) was introduced in [44]. This fundamental
problem addresses placement of replenishment orders for a single product over
time such that the sum of fixed ordering costs and inventory holding costs is
minimized. The single-product lotsizing problem is the starting point for several
extensions into various directions that address issues arising in practice.

In the single-product lotsizing problem, time is discretized into T time-points.
The t-th period denotes the time interval between time-point t and time-point
t + 1. Orders of amount qt � 0 are placed at each time point t ∈ {1, 2, . . . , T}.
This means that orders are placed at the beginning of period t. An order of
qt > 0 causes a fixed costs of c that is independent of the amount that is actually
ordered. The ordered goods are immediately available. They can be stored in a
warehouse with unlimited capacity. The inventory level of the warehouse at the
end of period t is denoted by yt. We assume that initial inventory y0 is zero.
Holding a single item of inventory from one time-point to the next causes costs
of h. After an order qt has been placed, demand occurs of size zt. Without loss
of generality we assume throughout the paper that z1 > 0 in the single-product
lotsizing problem because initial periods with zero demand can be neglected.
Demand zt has to be satisfied completely from the order qt or from stock (thereby
reducing yt).

The objective is to place the orders qt such that the sum of fixed ordering costs
and inventory holding costs over the planning horizon is minimized. Therefore,
the following two questions have to be answered:

1. For which time-points t ∈ {1, 2, . . . , T} should qt > 0?
2. If qt > 0, how large should qt be?

Using a mixed integer linear program, the single-product lotsizing problem
can be formulated as follows.

234 J. Grahl, S. Minner, and F. Rothlauf

min f =
T∑

t=1

(c · xt + h · yt) (1)

yt = yt−1 + qt − zt ∀t = 1, . . . , T (2)
y0 = 0 (3)

qt � xt ·
T∑

i=t

zi ∀t = 1, . . . , T (4)

xt ∈ {0, 1} ∀t = 1, . . . , T

yt, qt � 0 ∀t = 1, . . . , T

In this formulation, binary variables xt are introduced to indicate whether an
order is placed at time-point t. If xt = 1, then an amount of qt > 0 is ordered.
If xt = 0, then no order is given at time-point t. In that case, inequality (4)
restricts the order amount qt to zero. The inventory balance equation (2) states
that the inventory level at the end of period t equals the inventory level at the
end of period t − 1 plus items that are ordered in period t (qt) minus demand
that occurs in period t (zt). Equality (3) states the initial condition that starting
inventory is zero.

The single-product lotsizing problem can be solved in polynomial time. Wag-
ner and Whitin [44] proposed a dynamic programming formulation that has a
complexity of O(T 2). More efficient algorithms with O(T log T) complexity have
been proposed by [8] and [43]. Several heuristics for the problem have been
proposed, overviews are available, e.g., in [46] and [5].

2.3 Dynamic Joint Replenishment Problem

Standard lotsizing problems become more complex in a multi-product context
with dependencies between different products. Examples in practice are products
that are manufactured on the same machines (multi-item lotsizing and schedul-
ing problems) or products that share a common warehouse. In the dynamic
joint replenishment problem, the ordering costs depend on the mix of multiple
products that are replenished jointly.

The JRP considers K > 1 products. For each product k = 1, . . . , K, a single
product lotsizing problem (see Sect. 2.2) has to be solved. Fixed ordering costs
ck (also referred to as minor setup costs), inventory holding costs hk, and cus-
tomer demand zk

t are product-specific. We assume for the JRP throughout the
paper that initial periods where all products have zero demand are neglected.
It follows that at least a single product has positive demand in the first period.
The products are linked as follows. If at least one product is replenished at time-
point t, then an additional order cost of co arises (also referred to as major setup
costs), independent of the number of products that are actually replenished at
time-point t. If no product is replenished at time point t, co does not arise at
time point t. Note that if several products are ordered at time point t, product
specific fixed ordering costs ck arise for each of these products but co arises once.

Decomposition of Lotsizing Problems and Scalability of EDAs 235

One example in practice is that several products are jointly shipped in a single
truck, causing transportation costs of co.

If co = 0, the JRP decomposes into K single-product lotsizing problems that
can be solved independently. If ck = 0 ∀ k = 1, . . . , K, the JRP can be transferred
into one single-product lotsizing problem.

The dynamic joint replenishment problem can be formulated as a mixed-
integer linear program. The notation used follows the notation that has been
introduced in Sect. 2.2. Decision variables and problem parameters are assigned a
product index k. The fitness function includes all ordering and inventory holding
costs.

min f =
K∑

k=1

T∑
t=1

(
ck · xk

t + hk · yk
t

)
+

T∑
t=1

co · wt (5)

yk
t = yk

t−1 + qk
t − zk

t ∀t = 1, . . . , T ; k = 1, . . . , K

yk
0 = 0 ∀k = 1, . . . , K

qk
t � xk

t ·
T∑

i=t

zk
i ∀t = 1, . . . , T ; k = 1, . . . , K

xk
t � wt ∀t = 1, . . . , T ; k = 1, . . . , K

(6)

This formulation is a direct extension of the single-product lotsizing mixed-
integer linear program (see Sect. 2.2) for K products. If at least one product is
replenished in period t, an indicator variable wt is forced to 1 and ordering costs
co arise in the fitness function (5). This coupling of the ordering costs is modeled
in inequality (6).

The computational complexity of the JRP was analyzed in [2]. It is NP-
complete. Algorithms that determine an optimal solution using dynamic pro-
gramming approaches were developed by [39] and [19]. A branch-and-bound
method was proposed by [7]. A dual-based method was developed by [38],
heuristics were proposed in [17]. Efficient integer programming formulations are
available in [3] and [30].

3 Problem Decomposition and Scalability of Evolutionary
Algorithms

Genetic Algorithms (GA) [16, 9] are population-based stochastic search strate-
gies that mimic evolutionary concepts like gene recombination, mutation, and
selection to solve optimization problems. It is commonly assumed that solu-
tions are represented as binary strings of fixed length l. Without any further
assumptions the size of the search space grows exponentially with l. In a signifi-
cant amount of work, GAs are applied to additively decomposable test problems
[37, 31, 23, 45]. Decomposing a problem aims at reducing the dimensionality of
the search space. In inventory management (see, e.g., [8]) the term decompo-
sition is used as well, however in the non-related context of planning horizon

236 J. Grahl, S. Minner, and F. Rothlauf

theorems. According to [25] the fitness function f(x) is additively decomposable
if it can be formulated as

f(x) =
m∑

i=1

fi(xsi). (7)

f(x) is additively defined over m subset of the alleles. The s1, s2, . . . , sm are
index sets, si ⊆ {1, 2, . . . , l}. The fi are sub-problems that are only defined on
the alleles xj with j ∈ si. The subproblems can be non-linear. The xsi are subsets
of all alleles. These subsets can overlap.

Equation (7) exhibits a modular structure. It consists of m components that
can, but may not, be coupled. If the si are disjoint, si ∩ sj = ∅ ∀ i �= j, the
functions do not overlap and the overall problem is called separable. Separable
problems can be solved by solving the m subproblems fi and summing up the
results. Depending on the size of the subproblems, separation reduces the di-
mensionality of the search space significantly. Assuming that |si| = k ∀ i the
dimensionality is reduced from l to k and the size of the solution space is re-
duced from 2l to m2k. Problem (7) is called decomposable if some sets si, sj

exist for which si ∩ sj �= ∅. In this case, a strict separation of the sub-functions
is no longer possible because a single decision variable influences more than one
sub-function.

What makes decomposable problems hard to solve? This is a non-trivial ques-
tion and several answers can be found in the literature. Most obviously the
hardness of the sub-functions directly contributes to the overall complexity of
the problem. Deceptive problems (see [6]) are hard to solve for GA and EDA and
are often assumed as sub-functions for testing purposes. Deceptive functions are
typically harder to solve for GA and EDA than non-deceptive functions. Fur-
ther, subproblems can contribute to the overall fitness on a similar scale, or the
scaling of the sub-functions can differ greatly. In the first case, all sub-functions
of equal importance and convergence towards the partial solutions will happen
simultaneously. If the sub-functions are exponentially scaled however, the most
salient of them will converge first. The other sub-functions may converge later
and some instantiations might already be lost at that time. Additively decom-
posable functions with exponentially scaled sub-functions are harder to solve
for GA and EDA – they require a higher population size, see [40]. [18] discuss
whether the size |si| of the sets influences the hardness of a problem. This can
be the case, if for solving fi(si) all associated variables must be regarded simul-
taneously. It may not be the case however, if interactions are not very strong
and only some of the dependencies are important. The size of the sets can thus
be a source for the hardness of a problem but the degree of connectivity and
importance of the dependencies appears to be a more important source for the
GA- or EDA-complexity of a function.

The decomposition of a problem defines which bits in a solution depend on
each other and which are independent from each other. This information is
also called linkage information [15]. We refer to high-quality configurations of
alleles that belong to the sets si as building blocks (BBs, see [16, 10]). Building
blocks can be characterized by their size ki = |xsi | and their defining length

Decomposition of Lotsizing Problems and Scalability of EDAs 237

δi = max si −min si. The defining length of a BB is the distance between its two
outermost bits.

A different approach to assess the problem complexity for GAs was intro-
duced using the notion of schemata. It was found in [16] that GA using uniform
crossover promote BBs with small ki and perform worse on problems with large
ki. GA using one-point or multi-point crossover promote BBs with small δi

and perform worse on problems with large δi. In both cases, low performance
is due to crossover operators that disrupt BBs instead of recombining them
correctly.

Crossover operators that do not disrupt BBs are called linkage-friendly. The
use of linkage-friendly crossover operators significantly enhances GA perfor-
mance [41]. However, to design linkage-friendly crossover operators, the decom-
position of the problem has to be known. This is seldom the case, and often,
linkage-information has to be learned by the algorithm [15]. This observation has
triggered the development of techniques that learn linkage information by adap-
tively changing the positioning of the bits [12, 11, 20] or adapting the crossover
operators.

One of the latter approaches that has received considerable attention uses
density estimation and sampling as the major source of variation. These algo-
rithms are commonly referred to as Estimation of Distribution Algorithms [29].
In EDA, crossover and mutation are replaced by the following two steps:

1. Estimate the joint density of high quality solutions.
2. Generate new solutions by sampling from the estimated density.

In the estimation step, linkage information is learned from the selected indi-
viduals [13, 35] and encoded into a density estimate. New solutions are sampled
from this search distribution which respect to the captured linkage information.
EDAs perform an iterative procedure of estimation, sampling, and selection.

For EDA success it is crucial that solutions can efficiently be generated by
sampling. In the following paragraphs we refer to work that has been developed in
the theory of decomposable graphs and probability theory and has been adapted
to EDA theory, e.g, in [25] to illustrate for which decompositions this is possible.
Assume that a fitness function of type (7) is given and one tries to solve the
l-dimensional optimization problem xopt = argmax f(x) by sampling the x
from a search distribution. A good candidate for the search distribution is the
Boltzmann distribution, which is given as follows [24]:

pβ(x) =
eβf(x)

∑
y eβf(y) .

The Boltzmann distribution with so-called temperature 1/β has the appealing
property that for increasing β, it focuses only on the global optima of f(x). For
β → ∞, only global optima have positive probabilities. Unfortunately, sampling
from the Boltzmann distribution needs exponential effort and is no tractable
search strategy.

238 J. Grahl, S. Minner, and F. Rothlauf

If the fitness function is additively decomposable, the sampling effort can be
reduced by sampling from a factorization of the Boltzmann distribution. A fac-
torization is a decomposition of a multi-dimensional density into some marginal
densities of smaller sizes. If it can be shown that for a fitness function f(x)
the Boltzmann distribution can be decomposed into smaller marginal distribu-
tions, generating solutions for f(x) from a factorized Boltzmann distribution can
potentially be an efficient search strategy.

To analyze whether this is the case, we define the sets di, bi and ci for the
index sets s1, s2, . . . , sm for i = 1, 2, . . . , m as follows:

di =
i⋃

j=1

sj bi = si \ di−1 ci = si ∩ di−1.

If the following Factorization Theorem [25, 28, 26] holds for a given decomposable
function, the Boltzmann distribution can be factorized into some of its marginal
distributions.

Factorization Theorem: Let the fitness function f(x) =
∑m

i=1 fi(xsi) be an ad-
ditive decomposition. If

bi �= 0 ∀ i = 1, . . . , m (8)

and

∀ i ≥ 2 ∃ j < i such that ci ⊆ sj , (9)

then

qβ(x) =
m∏

i=1

pβ(xbi |xci) = pβ(x). (10)

Condition (9) is called the running intersection property (RIP). If conditions
(9) and (10) hold, the Boltzmann distribution can be obtained from an exact
factorization into some of its marginals. But, it is only reasonable to sample
new solutions from (10) in order to solve (7), if sampling new solutions from
(10) is computationally easier than solving (7) directly. This is not the case if
the marginal distributions are of arbitrary dimensionality, because the sampling
effort grows exponentially with their size. However, it is indeed the case, if the
size of the sets bi and ci is bounded by a constant independent of l. Then, the
factorization is called polynomially bounded.

A major result of EDA theory is that if the factorization of the Boltzmann
distribution for a given problem is polynomially bounded, new solutions can
efficiently be generated and an EDA can theoretically solve the decomposable
problem with a polynomial number of fitness evaluations [26]. During the last
years, this potential has been turned into scalable optimizers that outperform
standard GA on a wide range of problems. For overviews on EDA instances and
historical developments, the reader is referred to [22], [36] and [4].

Decomposition of Lotsizing Problems and Scalability of EDAs 239

4 Decomposition of Lotsizing Problems

4.1 Single-Product Case

In this section, we reformulate the fitness function (1) as an additively decom-
posable function of type (7). Then, we show that the Factorization Theorem
holds for the decomposition and that the size of the marginal distributions is
bounded with the consequence that a state-of-the-art EDA should be able to
solve the problem in polynomial time.

The proposed decomposition is constructed by exploiting the zero inventory
property (see [44]). This property states that in an optimal solution for the single-
product lotsizing problem, replenishment orders qt > 0 are placed at time t if and
only if yt−1 = 0. From this it follows that order quantities qt in optimal solutions
are batches of aggregate consecutive future demands. In the previous formulation
of the problem (see Sect. 2.2), a company has to decide when replenishment
orders should be placed and how much should be ordered. If we exploit the
zero inventory property, it is only necessary to decide when the orders have
to be placed and not how much should be ordered. The order amounts are
completely derived from the times when orders are placed. If an order qt is placed
at time t and the next order u is placed at time t < u < T , then qt =

∑u−1
i=t zi.

Consequently the last order amount is qu =
∑T

i=u zi.
Exploiting the zero-inventory property allows us to represent a solution on a

binary string; see Fig. 1. The ordering decision variables xt are binary (either an
order is placed at time t or not) and their values are aligned on the string. The
ordering decision xt is represented by the t-th bit on a string of length T .

Note that for lotsizing problems considered in this paper an order has to be
placed in period one as initial inventory is zero and z1 > 0. This means that
solutions where x1 = 1 are feasible and solutions where x1 = 0 are infeasi-
ble. For all following reformulations and analysis we assume feasibility of the
solutions.

Fig. 1. Coding for the single-product lotsizing problem

The total costs caused by m replenishment orders over T periods of time
can be calculated by adding up m costs values that cover the costs that occurs
in m lots over disjoint and aligned sets of periods. Thus, the single-product
lotsizing problem is decomposed along batches of aggregate consecutive future
demands.

240 J. Grahl, S. Minner, and F. Rothlauf

We reformulate (1) to an additively decomposable function of type (7) as
follows:

min f =
m∑

i=1

fi(xsi) (11)

with
p = {p1, p2, . . . , pm}
pi ∈ {1, 2, . . . , T}
p1 = 1

si =
p(i+1)−1⋃

j=pi

j.

f(xsi) = c + h ·

⎡
⎣
|xsi

|−1∑
j=0

j · z(pi+j)

⎤
⎦

Fitness function (11) is additively defined over m sets of the ordering decision
variables xsi . m denotes the number of 1 � m � T orders that are placed.
The xsi are disjoint subsets of all ordering decision variables and xsi consist of
all variables that are associated with the order point pi. Order points pi, i =
1, 2, . . . , m, are time points t where xt = 1. The set p contains all order points.

Example 1. Let the number of periods T be 12. Orders are placed at the begin-
ning of periods 1,5,6, and 10. In this case, m = 4, p = {1, 5, 6, 10}, p1 = 1, p2 = 5,
p3 = 6 and p4 = 10. The sets si have the following structure: s1 = {1, 2, 3, 4},
s2 = {5}, s3 = {6, 7, 8, 9}, and s4 = {10, 11, 12}. The decision variables x are
grouped into sets of xs1 = {x1, x2, x3, x4}, xs2 = {x5}, xs3 = {x6, x7, x8, x9},
and xs4 = {x10, x11, x12}. These groups can be denoted as building blocks of the
problem instance.

The example illustrates that the building blocks of single-product lotsizing
problem instances have a well-defined structure. They consist of a leading 1
that denotes the setup decision plus subsequent 0s, if any. An illustration of the
BB structure is given in Fig. 2. The BBs of a problem instance need not be
equally sized. But the average size of the BBs will increase with the setup costs
c and decrease with h. The more expensive an order is, the more is ordered in a

Fig. 2. Building blocks of a single-product lotsizing instance

Decomposition of Lotsizing Problems and Scalability of EDAs 241

single batch to avoid frequent ordering and the more demand of future periods
is covered by a single order.

We now show that the Factorization Theorem holds for this decomposition
and that the factorization of the Boltzmann distribution is polynomially bounded
(see 3).

First, we show that bi �= ∅ for all i = 1, 2, . . . , m.
Obviously, all si �= ∅, because the si always include at least one index pi.

Since si ∩ sj = ∅ for all i �= j, it follows that

ci = si ∩ di−1 = si ∩
i−1⋃
j=1

sj = ∅.

Thus, bi = si \ di−1 = si. Since si �= ∅, it follows that bi �= ∅ ∀i = 1, 2, . . . , m.
The RIP is fulfilled because the subproblems do not overlap, the problem is
separable.

Additionally, it is desired that the factorization is polynomially bounded.
This means that the size of the marginal distributions is bounded by a constant
independent of T . The size of a marginal distribution relates directly to the
number of periods |si| whose demand a replenishment order placed in pi covers. It
is reasonable to assume that the ordering costs c and the inventory holding costs
h are bounded and positive. Assume now that T → ∞. Under these assumptions,
the number of periods that any replenishment order covers is bounded. Any
values chosen for c and h will make it beneficial to order more than once if
T → ∞. The size of any si is bounded. bi is bounded since bi = si and ci

is bounded because ci = ∅. The factorization of the Boltzmann distribution is
polynomially bounded. The planning horizon theorem from [44] yields similar
results by stating independence of partial solutions spanning periods t to t + H ,
if the optimal solution for periods t to t + H + 1 includes an additional order in
period t + H + 1 and the optimal order amount in period t remains unchanged.

4.2 Joint Replenishment Case

In this section, we will reformulate (5) as an additively decomposable function of
type (7). Then we show that the Factorization Theorem holds for this decompo-
sition and that the factorization of the Boltzmann distribution is polynomially
bounded.

The zero-inventory property also holds for the dynamic joint replenishment
problem [42]. This allows us to extend the additively decomposable reformulation
of the single-product lotsizing problem (see Sect. 4.1) to the multi-product case.

The reformulation introduces an artificial product with index k = 0 that is
used to model the coupling of ordering costs. Inventory holding costs for the
artificial product are zero. If at least one real product is replenished at time
point t, then the artificial product is replenished as well at time point t. This
causes fixed ordering costs of co that are independent of the number of products
that are actually replenished in period t. If no real product is replenished at
time-point t, then the artificial product is not replenished at time-point t.

242 J. Grahl, S. Minner, and F. Rothlauf

Fig. 3. Coding for the dynamic joint replenishment problem

Solutions of the JRP are represented as a binary string as follows. Like in the
single-product case we do not need to encode the amounts that are ordered. Due
to the zero-inventory property, we only need to encode binary ordering timing
decisions. A single product k = 0, 1, . . . , K is exactly encoded as described in
4.1. The setup decisions for all products are aligned on the binary string. This
means, that if 3 products are given and T = 12, then 4·12 = 48 bits are needed to
encode a single solution. The first T bits are used to represent the order decision
of the artificial product. Bits T +1 to bit 2 ·T represent ordering decisions of the
first product, second, and so forth. In general, the ordering decision for period t
of product k is represented by bit T · k + t. The coding is illustrated in Fig. 3.

We reformulate function (5) as an additively decomposable function of type (7)
as follows:

min f(x) =
K∑

k=0

mk∑
i=1

fk
i

(
xsk

i

)
(12)

with

c0 = co; h0 = 0

pk = {pk
1 , p

k
2 , . . . , pk

mk} ∀k = 0, 1, . . . , K

pk
i ∈ {1, 2, . . . , T} ∀k = 0, 1, . . . , K; i = 1, 2, . . . , mk

pk
1 = 1 ∀k = 1, 2, . . . , K

pk ⊆ p0 ∀k = 1, . . . , K (13)

sk
i =

pk
(i+1)−1⋃

j=pk
i

[j + (k · T)] ∀k = 0, 1, . . . , K; i = 1, 2, . . . , mk.

fk
i (xsk

i
) = ck + hk ·

⎡
⎢⎣
|x

sk
i
|−1∑

j=0

j · zk
(pk

i +j)

⎤
⎥⎦

Fitness function (12) is additively defined over all products k = 0, 1, . . . , K and
all associated sets of decision variables xsk

i
for each of the products. (13) links

the ordering decisions of the real products with the ordering decisions of the
artificial product.

Decomposition of Lotsizing Problems and Scalability of EDAs 243

Example 2. Let the number of periods T be 12 and the number of real products K
be 3. The first product is replenished in periods 1,5, and 6. The second product
is replenished in periods 1, 6, and 11 and the third product is replenished in
periods 1 and 3. The artificial product is therefore replenished in periods 1,3,5,6,
and 11. For this setting, p1 = {1, 5, 6}, p2 = {1, 6, 11}, p3 = {1, 3} and p0 =
{1, 3, 5, 6, 11}. The set s0

1 = {1, 2}, s0
2 = {3, 4}, s0

3 = {5}, s0
4 = {6, 7, 8, 9, 10},

s0
5 = {11, 12}, s1

1 = {13, 14, 15, 16}, s1
2 = {17}, s1

3 = {18, 19, 20, 21, 22, 23, 24},
s2
1 = {25, 26, 27, 28, 29}, s2

2 = {30, 31, 32, 33, 34}, s2
3 = {35, 36}, s3

1 = {37, 38},
s3
2 = {39, 40, 41, 42, 43, 44, 45, 46, 47, 48}.

For the following analysis, we assume only feasible solutions.
We have shown in Sect. 4.1 that the Factorization Theorem holds for a single

product. We transfer this result to the dynamic joint replenishment problem.
The above reformulation of the JRP separates the products from each other.
The index sets sk

i do not overlap between the products. This means that for each
product that is modelled in the JRP, the single-product results apply. Because
the products of the JRP are separated, the Factorization Theorem also holds for
the JRP as a whole.

We have shown in Sect. 4.1 that the Boltzmann distribution is polynomially
bounded for a single product. In our JRP formulation we separate the products
from each other and no additional complexity is introduced for all feasible so-
lutions. Thus, this result is valid individually for every “real” product k > 0.
Note, that the artificial product is special because it has zero-inventory hold-
ing costs. The size of the inventory holding costs does not affect the analysis of
the decomposition. Therefore, the results for a single real product apply for the
artificial product as well.

An instance of the JRP is made up by a combination of a bounded number
of real products and one single artificial product. If we let T → ∞, the size of
no set sk

i can tend to infinity. All sets sk
i are bounded. All sets bk

i are bounded
because bk

i = sk
i . The sets ck

i are bounded because ck
i = ∅. The factorization of

the Boltzmann distribution is polynomially bounded for the JRP as a whole.

5 Experimental Results

We perform experiments on the single-product lotsizing problem and the
dynamic joint replenishment problem. The analysis of the previous chapters
indicates that both problems are decomposable. State-of-the-art EDA solve de-
composable problems in polynomial time. We conduct an experimental scala-
bility analysis to assess the degree of the polynom and how the constant factor
depends on the problem instance.

The Hierarchical Bayesian Optimization Algorithm (hBOA) [34, 32] is used in
all experiments because it is a state-of-the-art EDA. It has been used for solving
complicated problems from computer science and physics previously, see [33].
An introduction is available in [32]. hBOA performs selection by restricted tour-
nament replacement (RTR). In RTR, a specified percentage of the population
is iteratively replaced by the best individual out of a randomly chosen subset of

244 J. Grahl, S. Minner, and F. Rothlauf

individuals of size w (called the window size). We chose to replace 50% of the
population. After some initial testing, the window size for RTR was set to 4,
independent of the size of the problem l.

5.1 Single-Product Case

We implemented fitness function (11) for hBOA. Solutions were encoded on the
binary string as explained in Sect. 4.1. In every generation of the algorithm, the
feasibility of the population was maintained by setting the first bit of a solution
to 1.

Scalability theory for hBOA assumes BBs of constant and bounded size. In
order to assess whether the scalability results for the lotsizing problem are in
accordance with scalability theory, we propose two test problems with constant
demand and constant BB-size in Table 1. In the optimal solution of the first test
problem, BBs are of size 2. In the optimal solution of the second test problem,
BBs are of size 6. Instead of using 2 and 6, another pair of different sizes could
also have been chosen.
We propose a second test problem with seasonal demand in Table 2 where BBs
of the optimal solution have varying sizes from 2 to 6.

For all problems, we varied the problem size T from 6 to 60 in steps of size
6, resulting in 10 problem sizes per problem. For each problem size, the optimal
costs was computed with the solver XPRESS MP as listed in the tables. Then,
we derived the minimal population size that hBOA requires to solve the problem
to optimality using a bisection method. An instance was assumed to be solved
to optimality, if in at least 27 out of 30 independent consecutive runs of hBOA,

Table 1. Test problems with constant BB-sizes for the single-product lotsizing problem

BB-size Optimal costs c h zt ∀t

2 T
6 · 5400 15000 8 100

6 T
6 · 27000 1500 8 100

Table 2. Test problem with varying BB-sizes for the single-product lotsizing problem

BB-size Optimal costs c h zt

2 − 6 T = 6 : 3680 1000 2 z = (100,140,180,140,120,110,
T = 12 : 6100 80,50,30,50,80,90,
T = 18 : 9600 100,140,180,140,120,110,
T = 24 : 12080 80,50,30,50,80,90,
T = 30 : 15680 100,140,180,140,120,110,
T = 36 : 18160 80,50,30,50,80,90,
T = 42 : 21680 100,140,180,140,120,110,
T = 48 : 24160 80,50,30,50,80,90,
T = 54 : 27760 100,140,180,140,120,110,
T = 60 : 30240 80,50,30,50,80,90)

Decomposition of Lotsizing Problems and Scalability of EDAs 245

 10

 100

 1000

 10000

 60 54 48 42 36 30 24 18 12 6

A
ve

ra
ge

 N
um

be
r

of
 E

va
lu

at
io

ns
 fo

r
90

%
 s

uc
ce

ss

Problem size l=T

Experiment, BB-size = 2
Experiment, BB-size = 6

Experiment, BB-size = 2-6
O(T2.2)

O(T2)

Fig. 4. Scalability results for the single-product lotsizing problem

the entire population converged towards the optimal solution. For the minimally
required population size, the number of fitness evaluations was averaged over
the number of successful runs.

Figure 4 illustrates how the average number of fitness evaluations depends
on the problem size l. Additionally, the average number of evaluations has been
approximated by a function of the form O(lr), where r was set such that ex-
perimental results were fitted accurately, emphasizing more stable experimental
results for larger problems. Smaller instances were neglected due to high volatil-
ity of the results. Straight lines in the plot indicate polynomial scalability.

As can be seen in Fig. 4, the average number of fitness evaluations grows with
a low-order polynomial depending on the problem size l = T . For a BB-size of
2, r has been set to r = 2.0, for a BB-size of 6, r has been set to r = 2.2. hBOA
scales within these bounds, if the BB-size is in between 2 ≤ BB-size ≤ 6.

Scalability theory for hBOA on non-hierarchical problems predicts that the
number of fitness evaluations needed to reliably solve decomposable problems
of bounded order grows with a low-order polynomial depending on the problem
size with respect to the problem size l [32]. Our estimate of r for a BB-size of 6
lies slightly above quadratic scalability. Still, hBOA succeeds in solving single-
product lotsizing problems whitin low-order polynomial time.

The size of the constant factor of the polynomial that approximates the ex-
perimental results grows with the size of the BBs. This means that hBOA needs
more time to solve instances where large batches are ordered, compared to

246 J. Grahl, S. Minner, and F. Rothlauf

instances where smaller batches are ordered. If batches are not sized identi-
cally, the constant factor grows with the size of the largest batch ordered in
the optimal solution. Note, that the size of the batches is unknown in advance
because they depend on the parameter settings. We do not perform a detailed
study of problem difficulty.

5.2 Dynamic Joint Replenishment Problem

We implemented fitness function (12) in hBOA. Solutions were represented as
described in Sect. 4.2. Feasibility of all solutions was maintained as follows in
each generation. We assume positive demand. All bits T ∗k ∀ k = 0, 1, 2, . . . , K−1
were set to 1, if they were 0. Additionally, whenever

∑K
k=1 x(k∗T)+j = 0 for any

j = 0, 1, 2, . . . , T − 1, then xj was set to 0. This means that if none of the real
product is ordered at time-point j, the artificial product is not ordered as well.

We conduct scalability analysis for K = 2 and K = 6 products. For each case,
we propose in Table 3 two test problems with constant demand and constant
BB-size, resulting in 4 problems in total. For both K = 2 and K = 6, a problem
with BB-size of 2 and a problem with BB-size of 6 is designed. Just like in the
single-product case, we expect that a problem instance with seasonal demand
and varying BB-size between 2 and 6 would scale up inside the bounds of these
problems.

Table 3. Test problems with constant BB-sizes for the JRP

BB-size Optimal costs zk
t ∀ t, k hk ∀ k co ck ∀ k

2
Products

2 l
18 · 11400 100 8 2000 100

6 l
18 · 3260 10 5 1560 100

6
Products

2 l
42 · 2100 10 5 100 50

6 l
42 · 9100 10 5 1600 500

By varying the number of time-points T between 6 and 60 with a step size
of 6, we obtained 10 problem instances for the 2 products case. The scalability
analysis for two products spans problem sizes from 18 to 180 bits. For the 6
products case, T was varied from 6 to 30 in steps of 6, yielding 5 problem
instances. This was necessary due to limited computational resources available.
The scalability analysis for K = 6 products spans problem sizes from 42 to 210
bits.

For each instance, we obtained the optimal costs using the solver XPRESS
MP as listed in Table 3. We derived the minimal population size that hBOA
required to solve the problem to optimality using a bisection method. A problem
instance was solved to optimality, if in at least 27 out of 30 consecutive and
independent runs of hBOA, the optimal solution was found. For the minimal
required population size, the average number of fitness evaluations was averaged
over all successful runs.

Decomposition of Lotsizing Problems and Scalability of EDAs 247

 100

 1000

 10000

 180 162 144 126 108 90 72 54 36 18

A
ve

ra
ge

 N
um

be
r

of
 E

va
lu

at
io

ns
 fo

r
90

%
 s

uc
ce

ss

Problem size l

Experiment, BB-size 6
Experiment, BB-size 2

O(l1.9)
O(l1.7)

(a) 2 Products

 1000

 10000

 100000

 210 168 126 84 42

A
ve

ra
ge

 N
um

be
r

of
 E

va
lu

at
io

ns
 fo

r
90

%
 s

uc
ce

ss

Problem size l

Experiment, small large
Experiment, small batches

O(l2.5)
O(l2.4)

(b) 6 Products

Fig. 5. Scalability results for hBOA on the joint replenishment problem

Figure 5 illustrates how the average number of fitness evaluations depends
on the size of the problem for K = 2 and K = 6 products. In addition, the
average number of evaluations has been approximated by a function of the form
O(lr), where r was set such that experimental results were fitted accurately,
again emphasizing larger problem sizes. Both plots have a log-log scale. Straight
lines in the plots indicate polynomial scalability.

For the case that the number of products K = 2, r has been set to r = 1.9
(BB-size of 6) and r = 1.7 (BB-size of 2). For the 6 products case, r = 2.5
(BB-size of 6) and r = 2.4 (BB-size of 2). Thus, hBOA succeeds in solving
decomposable instances of the JRP in low-order polynomial time. For the two-
products case, the constant factor grows with the size of the BBs. Like in the
single-product case, more time is needed to solve instances of the JRP where
larger batches are ordered optimally, compared to instances of the JRP where
smaller batches are ordered.

The scalability results from the 6-products case illustrated in Fig. 5(b) yield
counterintuitive results. hBOA scales polynomially for small and large BB-sizes,
but obviously the problem set with a BB-size of 2 is harder to solve and re-
quires more fitness evaluations than the corresponding instance with a BB-size
of 6. This result can be explained with the population sizing model from [14]
which states that the required population size scales inversely proportional to
the signal-to-noise ratio defined as σbb/d. Noise σbb denotes the standard devia-
tion of fitness values from all solutions that include the best BB and indicates
the amount of fitness variability in the instance. The signal d denotes the dif-
ference between the mean fitness f̄1 of solutions that contain the best BB and
the mean fitness f̄2 of solutions that contain the second-best BB. The signal-
to-noise ratio for the JRP instance with 6 products and 6 periods (l = 42) is
exemplarily presented in Table 4. Note that, for a BB-size of 2, the average costs
of solutions that contain the second-best BB is lower than that of solutions that
contain the best BB. This deception is not present in the case of BB-size 6, ren-
dering the instance with smaller BB-size harder to solve than the instance with
larger BBs.

248 J. Grahl, S. Minner, and F. Rothlauf

Table 4. Signal-to-noise ratio for JRP with six products

f̄1 f̄2 d σbb Signal-to-noise ratio

BB-size 6 20107.81 20257.80 -150.01 1717.19 -0.09
BB-size 2 2864.06 2823.44 40.62 309.92 0.13

6 Conclusions and Outlook

Decomposability of fitness functions is well-understood and frequently assumed
in theoretical GA and EDA literature. State-of-the-art EDAs reliably solve de-
composable problems in a low-order polynomial number of fitness evaluations
depending on the problem size. This success makes it a tempting idea to apply
EDA to real-world problems. It is essential to bridge the gap between theoreti-
cal work that focuses on solving decomposable problems and applied work that
focuses on solving problems of practical interest. However, the complexity of the
real world makes a direct adaption of theoretical concepts a stiff task and it is
rarely known which problems are decomposable.

In this chapter, we demonstrated that decomposability is of practical relevance
and valid for certain problems in inventory management. The decomposability
of single-product lotsizing and the dynamic joint replenishment problem was
analyzed. The results indicated that these lotsizing problems are indeed decom-
posable into subproblems of bounded complexity. We conducted a scalability
analysis that showed that a state-of-the-art EDA can reliably solve the prob-
lems in a low-order polynomial number of fitness evaluations depending on the
problem size.

The results are promising and reveal the potential of EDA applications in
inventory management. However the complexity of real-world lotsizing problems
is higher due to capacity constraints and bill of material structures. This provides
interesting areas for future research.

References

1. Aksoy, Y., Erenguc, S.S.: Multi-item inventory models with coordinated replenish-
ments. International Journal of Operations Management 8(1), 63–73 (1988)

2. Arkin, E., Joneja, D., Roundy, R.: Computational complexity of uncapacitated
multi-echelon production planning problems. Operations Research Letters 8, 61–
66 (1989)

3. Boctor, F.F., Laporte, G., Renaud, J.: Models and algorithms for the dynamic
joint replenishment problem. International Journal of Production Research 42(13),
2667–2678 (2004)

4. Bosman, P.A.N., Thierens, D.: Learning probabilistic models for enhanced evolu-
tionary computation. In: Jin, Y. (ed.) Knowledge Incorporation in Evolutionary
Computation, pp. 147–176. Springer, Berlin (2004)

5. de Bodt, M., Gelders, L., van Wassenhove, L.: Lot sizing under dynamic demand
conditions: A review. Engineering Costs and Production Economics 8, 165–187
(1984)

Decomposition of Lotsizing Problems and Scalability of EDAs 249

6. Deb, K., Goldberg, D.E.: Analysing deception in trap functions. In: Whitley, L.D.
(ed.) Foundations of Genetic Algorithms 2, pp. 93–108. Morgan Kaufmann, San
Mateo (1993)

7. Erenguc, S.S.: Multiproduct dynamic lot-sizing model with coordinated replenish-
ments. Naval Research Logistics 35, 1–22 (1988)

8. Federgruen, A., Tzur, M.: A simple forward algorithm to solve general dynamic lot
sizing models with n periods in O(n log n) or O(n) time. Management Science 37,
909–925 (1991)

9. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Addison-Wesley, Reading (1989)

10. Goldberg, D.E.: The Design of Innovation: Lessons from and for Competent
Genetic Algorithms. Genetic Algorithms and Evolutionary Computation, vol. 7.
Springer, Berlin (2002)

11. Goldberg, D.E., Deb, K., Kargupta, H., Harik, G.: Rapid, accurate optimization
of difficult problems using fast messy genetic algorithms. In: Forrest, S. (ed.) Pro-
ceedings of the Fifth International Conference on Genetic Algorithms, pp. 56–64.
Morgan Kaufmann, San Francisco (1993)

12. Goldberg, D.E., Korb, B., Deb, K.: Messy genetic algorithms: Motivation, analysis
and first results. Complex Systems 10(5), 385–408 (1989)

13. Harik, G.: Linkage learning via probabilistic modeling in the ECGA. Technical
Report 99010, IlliGAL, University of Illinois, Urbana, Illinois (1999)

14. Harik, G., Cantú-Paz, E., Goldberg, D.E., Miller, B.L.: The gambler’s ruin prob-
lem, genetic algorithms, and the sizing of populations. Evolutionary Computa-
tion 7(3), 231–253 (1999)

15. Harik, G., Goldberg, D.E.: Learning linkage. In: Belew, R.K., Vose, M.D. (eds.)
Foundations of Genetic Algorithms 4, pp. 247–262. Morgan Kaufmann, San Fran-
cisco (1997)

16. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michi-
gan Press, Ann Arbor, Michigan (1975)

17. Joneja, D.: The joint replenishment problem: New heuristics and worst case per-
formance bounds. Operations Research 38, 711–723 (1990)

18. Kallel, L., Naudts, B., Reeves, C.R.: Properties of fitness functions and search
landscapes. In: Naudts, B., Kallel, L., Rogers, A. (eds.) Theoretical Aspects of
Evolutionary Computing, pp. 175–206. Springer, Berlin (2001)

19. Kao, E.P.C.: A multi-product dynamic lot-size model with individual and joint
setup costs. Operations Research 27, 279–289 (1979)

20. Kargupta, H.: SEARCH, Polynomial Complexity, and the Fast Messy Genetic Al-
gorithm. PhD thesis, University of Illinois, Urbana, Illinois (1995)

21. Larrañaga, P., Lozano, J.A. (eds.): Estimation of Distribution Algorithms: A New
Tool for Evolutionary Computation. Genetic Algorithms and Evolutionary Com-
putation, vol. 2. Kluwer Academic Publishers, Norwell (2001)

22. Lozano, J.A., Larrañaga, P., Inza, I., Bengoetxea, E. (eds.): Towards a New Evolu-
tionary Computation. Studies in Fuzziness and Soft Computing, vol. 192. Springer,
Berlin (2006)

23. Mahnig, T.: Populationsbasierte Optimierung durch das Lernen von Interaktionen
mit Bayes’schen Netzen. PhD thesis, University of Bonn, Sankt Augustin, GMD
Research Series No. 3/2001

24. Mandl, F.: Statistical Physics, 2nd edn. The Manchester Physics Series. Wiley,
Chichester (1988)

25. Mühlenbein, H., Höns, R.: The estimation of distributions and the mimimum rel-
ative entropy principle. Evolutionary Computation 13(1), 1–27 (2005)

250 J. Grahl, S. Minner, and F. Rothlauf

26. Mühlenbein, H., Mahnig, T.: FDA – A scalable evolutionary algorithm for the
optimization of additively decomposed functions. Evolutionary Computation 7(4),
353–376 (1999)

27. Mühlenbein, H., Mahnig, T.: Evolutionary algorithms: From recombination to
search distributions. In: Kallel, L., Naudts, B., Rogers, A. (eds.) Theoretical As-
pects of Evolutionary Computing, pp. 137–176. Springer, Berlin (2000)

28. Mühlenbein, H., Mahnig, T., Rodriguez, A.O.: Schemata, distributions and graph-
ical models in evolutionary optimization. Journal of Heuristics 5, 215–247 (1999)

29. Mühlenbein, H., Paaß, G.: From recombination of genes to the estimation of dis-
tributions: I. Binary parameters. In: Ebeling, W., Rechenberg, I., Voigt, H.-M.,
Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 178–187. Springer, Berlin
(1996)

30. Narayanan, A., Robinson, E.P.: More on models and formulations for the dynamic
joint replenishment problem. International Journal of Production Research 44(2),
297–383 (2006)

31. Ochoa, A., Soto, M.R.: Linking entropy to estimation of distribution algorithms.
In: Lozano, J.A., Larrañaga, P., Inza, I., Bengoetxea, E. (eds.) Towards a New
Evolutionary Computation: Advances on Estimation of Distribution Algorithms.
Studies in Fuzziness and Soft Computing, vol. 192, pp. 1–38. Springer, Berlin (2006)

32. Pelikan, M.: Bayesian optimization algorithm: From Single Level to Hierarchy.
PhD thesis, University of Illinois at Urbana-Champaign, Department of Computer
Science, Urbana, Illinois (2002)

33. Pelikan, M., Goldberg, D.E.: Hierarchical BOA solves ising spin glasses and
MAXSAT. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, D., Roy, R., O’Reilly,
U.-M., Beyer, H.-G., Standish, R., Kendall, G., Wilson, S., Harman, M., Wegener,
J., Dasgupta, D., Potter, M.A., Schultz, A.C., Dowsland, K., Jonoska, N., Miller,
J. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1271–1282. Springer, Berlin (2003)

34. Pelikan, M., Goldberg, D.E., Cantú-Paz, E.: BOA: The Bayesian optimization algo-
rithm. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela,
M., Smith, R.E. (eds.) Proceedings of the GECCO 1999 Genetic and Evolutionary
Computation Conference, pp. 525–532. Morgan Kaufmann, San Francisco (1999)

35. Pelikan, M., Goldberg, D.E., Cantú-Paz, E.: Linkage problem, distribution estima-
tion, and Bayesian networks. Evolutionary Computation 8(3), 311–341 (2000)

36. Pelikan, M., Goldberg, D.E., Lobo, F.: A survey of optimization by building and
using probabilistic models. Computational Optimization and Applications 21(1),
5–20 (2002)

37. Pelikan, M., Sastry, K., Butz, M.V., Goldberg, D.E.: Hierarchical BOA on random
decomposable problems. In: Keijzer, M., Cattolico, M., Arnold, D., Babovic, V.,
Blum, C., Bosman, P., Butz, M.V., Coello Coello, C., Dasgupta, D., Ficici, S.G.,
Foster, J., Hernandez-Aguirre, A., Hornby, G., Lipson, H., McMinn, P., Moore, J.,
Raidl, G., Rothlauf, F., Ryan, C., Thierens, D. (eds.) Proceedings of the GECCO
2006 Genetic and Evolutionary Computation Conference, pp. 431–432. ACM Press,
New York (2006)

38. Robinson, E.P., Gao, L.L.: A dual ascent procedure for multiproduct dynamic
demand coordinated replenishment with backlogging. Management Science 42,
1556–1564 (1996)

39. Silver, E.A.: Coordinated replenishments of items under time varying demand:
Dynamic programming formulation. Naval Research Logistics Quarterly 26, 141–
151 (1979)

40. Thierens, D.: Scalability problems of simple genetic algorithms. Evolutionary Com-
putation 7(4), 331–352 (1999)

Decomposition of Lotsizing Problems and Scalability of EDAs 251

41. Thierens, D., Goldberg, D.E.: Mixing in genetic algorithms. In: Forrest, S. (ed.)
Proceedings of the Fifth Conference on Genetic Algorithms, pp. 38–45. Morgan
Kaufmann, San Mateo (1993)

42. Veinott, A.F.: Minumum concave cost solutions of Leontief substitution models of
multi-facility inventory systems. Operations Research 17, 262–291 (1969)

43. Wagelmans, A., van Hoesel, S.: Economic lot sizing: An O(n log n) algorithm
that runs in linear time in the Wagner-Whitin case. Operations Research 40(S1),
145–156 (1992)

44. Wagner, H.M., Whitin, T.M.: Dynamic version of the economic lot size model.
Management Science 5, 89–96 (1958)

45. Watson, R.A., Hornby, G.S., Pollack, J.B.: Modeling building-block interdepen-
dency. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN
1998. LNCS, vol. 1498, pp. 97–106. Springer, Berlin (1998)

46. Wemmerlöv, U.: A comparison of discrete single stage lot-sizing heuristics with
special emphasis on rules based on the marginal cost principle. Engineering Costs
and Production Economics 7, 45–53 (1982)

Hybrid Genetic Algorithms for the Lot
Production and Delivery Scheduling Problem
in a Two-Echelon Supply Chain

S. Ali Torabi1, Masoud Jenabi2, and S. Afshin Mansouri3

1 Department of Industrial Engineering, Faculty of Engineering,
University of Tehran, Tehran, Iran
satorabi@ut.ac.ir

2 Department of Industrial Engineering, Amirkabir University of Technology,
Tehran, Iran
m.jenabi@aut.ac.ir

3 Brunel Business School, Brunel University, Uxbridge, Middlesex UB8 3PH,
United Kingdom
Afshin.Mansouri@brunel.ac.uk

Summary. This chapter addresses integrated production and delivery scheduling of
several items in a two-echelon supply chain. A single supplier produces the items on a
flexible flow line (FFL) under a cyclic policy and delivers them directly to an assembly
facility over a finite planning horizon. A new mixed zero-one nonlinear programming
model is developed, based on the basic period (BP) policy to minimize average setup,
inventory-holding and delivery costs per unit time where stock-out is prohibited. This
problem has not yet been addressed in literature. It is computationally complex and
has not been solved optimally especially in real-sized problems. Two efficient hybrid
genetic algorithms (HGA) are proposed using the power-of-two (PT-HGA) and non-
power-of-two (NPT-HGA) policies. The solution’s quality of the proposed algorithms
is evaluated and compared with the common cycle approach in a number of randomly
generated problem instances. Numerical experiments demonstrate the merit of the
NPT-HGA and indicate that it constitutes a very promising solution method for the
problem.

Keywords: Flexible flow lines, Lot production and delivery scheduling, Basic period
approach, Hybrid genetic algorithm.

1 Introduction

Production management involves a set of activities which are triggered by cus-
tomer orders and/or forecasted demands to determine an appropriate produc-
tion schedule in a production facility (i.e. indicating the starting and finishing
times of required manufacturing operations). One of the key issues in production
planning and scheduling is the lot-sizing problem. This problem arises where sig-
nificant setup times/costs are to be incurred when switching from one product

A. Fink and F. Rothlauf (Eds.): Advances in Computational Intelligence, SCI 144, pp. 253–275, 2008.
springerlink.com © Springer-Verlag Berlin Heidelberg 2008

254 S.A. Torabi, M. Jenabi, and S.A. Mansouri

to another in the production sequence. Therefore, the economies of scale requires
a lot production strategy (i.e. producing the products in a lot-by-lot manner).

The economic lot scheduling problem (ELSP) deals with lot sizing and
scheduling of several items with static demands over an infinite planning horizon
at a single capacitated facility, where only one item can be produced at a time
[3].

Nowadays, there is a firm tendency to develop integrated models in research
community for simultaneously cost-effective planning of different activities in
supply chains. Among them, integrated production and delivery planning be-
tween adjacent supply parties is of particular interest, which can reduce the to-
tal logistics-related costs considerably. The economic lot and delivery-scheduling
problem (ELDSP) is a variant of the ELSP where a supplier produces several
items for an assembly facility and delivers them in a static condition [8]. The
objective is to minimize the average transportation, setup and inventory holding
costs per unit time across the supply chain without backlogging.

Most of the contributions reported in the literature dealing with static de-
mand have focused on three cyclic schedules (i.e. a schedule that is repeated
periodically). These include the common (or rotation) cycle approach, the basic
period approach and the time varying lot sizes approach [22].

The common cycle approach restricts the products’ cycle times to an equal
length. The main advantage is that a feasible schedule (if any) can be found;
because it is always possible to find a cycle time in which one lot of each product
can be produced which satisfies the corresponding demands during the cycle
time.

The basic period approach allows different cycle times for different products,
but restricts each product’s cycle time to an integer multiple of a time period
called basic period. In the course of this approach, even finding a feasible schedule
becomes a complex problem, given the number of production runs of each prod-
uct per global cycle (i.e. the least common multiple of individual cycle times).
This is the main disadvantage of the basic period approach, but in general, it
provides better solutions compared to the common cycle approach.

The time varying lot sizes approach allows multiple runs for each product at
each cycle with different lot sizes over a cyclic schedule, and guarantees finding
a feasible schedule if one exists. Modeling a problem with this approach is more
complicated than the other approaches, but usually gives better solutions.

The ELSP was first introduced by Eilon [3] who formulated it under the com-
mon cycle policy. Bomberger [1] considered different cycles for products, where
each cycle time must be an integer multiple of a basic period (BP) which is
long enough to meet the demand of all items. The production frequency of each
product is then determined as a multiple of the selected BP. Elmaghraby [4] pro-
vided a review of the various contributions to ELSP and an improvement upon
the BP approach which is called the extended basic period (EBP) method. In
the course of this policy, the items are allowed to be loaded on two BPs simulta-
neously and at the same time relax the requirement that the basic period should
be large enough to accommodate such simultaneous loading. Furthermore,

HGA for the Lot Production and Delivery Scheduling Problem 255

several authors have extended the ELSP to multi-stage production systems un-
der common cycle or basic period production policies (for example, see [5], [6],
[16–20], and [22, 23]).

Hahm and Yano [8] introduced the economic lot and delivery scheduling prob-
lem to the single-product case. They also extended the problem to the multiple-
product case under the common cycle and nested schedule cases respectively [9,
10]. Khouja [15] studied the ELDSP for a supplier that uses a volume flexible
production system. Jensen and Khouja [13] studied the ELDSP under a com-
mon cycle approach considering some simplified assumptions. Based on these
assumptions, they interpreted the sequencing phase as an optimization problem
to minimize the weighted flow time. Moreover, they assumed that there was
sufficient time within the common cycle time (T) to setup and produce the re-
quired products. Under these conditions, they developed an optimal polynomial
time algorithm for the problem. Torabi et al. [23] considered the ELDSP in flex-
ible flow lines (typical flow lines with at least one machine at each stage) under
the common cycle approach over a finite planning horizon. They developed an
effective HGA to obtain near optimal solutions.

The complexity of the ELSP and ELDSP even under the simplifying assump-
tions (like the single-stage production facility and zero setup cost) have been
shown to be NP-hard [12]. The difficulty arises from the fact that two or more
items compete for the available facility. As such, several heuristic/meta-heuristic
approaches have been proposed in literature. Among them, the evolutionary-
based approaches presented by Khouja et al. [14], and Yao and Huang [25]
under basic period policy are two cases dealing with single-stage production
systems.

It is noteworthy that most of the previous researches in this field assume the
planning horizon to be infinite. However, the planning horizon is rarely infinite
in real-world situations. In practice, the length of the finite horizon is usually
determined by a mid-range contract between the supplier and the assembler. At
the end of such a planning horizon, either the scheduling problem will cease to
exist, or a new cyclic schedule needs to be derived for the next horizon based
on a new contract. Moreover, it is common to consider a finite planning horizon
where no significant fluctuations exist in the demand rate. Hence it could be
argued that the assumption of infinite planning horizon considerably restricts
the applicability of the proposed contributions. To cope with this shortcoming,
some research papers have considered the finite horizon case (e.g., [16, 23]).

To the best of our knowledge, no research has been reported on the ELDSP
in flexible flow lines under basic period approach over a finite planning hori-
zon. Flexible flow lines can be found in a vast number of industries including
the automotive, chemical, cosmetics, electronics, food, packaging, paper, phar-
maceutical, printing, textile, wood-processing and semiconductor industries [21].
They are particularly common in the process industry. In this study, we address
the finite horizon ELDSP in flexible flow lines (FH-ELDSP-FFL) under a basic
period approach. A new mixed zero-one nonlinear program has been developed

256 S.A. Torabi, M. Jenabi, and S.A. Mansouri

to determine optimal solutions concerning (i) an assignment of products in basic
periods, (ii) an assignment of products to machines in the stages with multiple
parallel machines, (iii) a sequence of products on each machine, (iv) lot sizes and
(v) an optimal production schedule for each production run.

To solve this problem, it is assumed that the cycle time of each product i,
denoted by Ti, is an integer multiple ki of a basic period F ; i.e., Ti = kiF
for all i. In addition, the basic period F needs to be determined such that
the planning horizon PH be an integer multiple of a global cycle HF. In other
words, PH = rHF where r is an integer and H denotes the least common
multiple (LCM) of the k′

is. Two hybrid genetic algorithms are suggested based
on two variants of BP approach: the power of two policy (i.e. restricting the time
multiples to powers of 2) and non-power of two (1, 2, 3, . . .) time multiples.

The rest of this chapter is organized as follows. The problem formulation is
presented in Sect. 2. Section 3 explains the proposed HGAs. Section 4 developes
an efficient procedure for determining upper bounds on product’s cycle time co-
efficients. An efficient feasibility test for capacity checking along with an iterative
repair procedure for infeasible solutions is proposed in Sect. 5. Computational
experiments are provided in Sect. 6. Finally, Sect. 7 is devoted to concluding
remarks.

2 Problem Formulation

The following assumptions are considered for the problem formulation:

• Parallel machines at each stage are identical.
• Machines are continuously available and each machine can only process one

product at a time.
• At the stages with parallel machines, each product is processed entirely on

one machine.
• Setup times/costs in the supplier’s production system are sequence indepen-

dent.
• The production sequence at each basic period for each machine at each stage

is unique and determined by solution method.
• The supplier incurs linear inventory holding costs on semi-finished products.
• Both the supplier and the assembler incur linear holding costs on end

products.
• Preemption/lot-splitting is not allowed.

Moreover, the following notations are used for the problem formulation:

Parameters

n number of products
m number of work centers (stages)
mj number of parallel machines at stage j

HGA for the Lot Production and Delivery Scheduling Problem 257

Mk′j k′-th machine at stage j
di demand rate for product i
pij production rate of product i at stage j
sij setup time of product i at stage j
scij setup cost of product i at stage j
hij inventory holding cost per unit of product i per unit time between

stages j and j+1
hi inventory holding cost per unit of final product i per unit time
A transportation cost per delivery
PH planning horizon
M a large real number

Decision variables

σk production sequence vector for basic period k (which contains a
sub-set of products to be produced by the supplier)

σkk′j production sequence vector for machine k′ at stage j related to the
basic period k (which contains a sub-set of products to be produced by
the supplier)

r number of production cycles over the finite planning horizon
nkk′j number of products assigned to machine Mk′j in basic period k
F basic period
bij starting time for processing product i at stage j
ki cycle time coefficient of product i

xilk′kj =

⎧⎪⎨
⎪⎩

1 if product i at basic period k is assigned to the l-th position of
machine Mk′j

0 otherwise

It should be noted that the global cycle time is equal to the the least common
multiple of the ki variables, i.e., H = LCM(k1, k2, . . . , kn). Moreover, the pro-
duction cycle time for product i (Ti), the production lot size of product i (Qi)
and the processing time for a lot of product i at stage j (ptij) can be computed
as follows:

Ti = kiF (1)

Qi = diTi (2)

ptij = Qi/pij = dikiF/pij (3)

258 S.A. Torabi, M. Jenabi, and S.A. Mansouri

Fig. 1. Inventory level of final product i at the assembler in one cycle

Moreover, at stages with only one machine, the value of mj and index k′ are
equal to one. Since the monetary value of the items increases as they are moving
through production stages, the hij values are non-decreasing; i.e., hi,j−1 ≤ hij .

The objective function of the problem (P) includes three elements: inventory
holding costs, setup costs, and transportation costs. The setup and transporta-
tion cost per unit time could be easily computed as follows:

C =
n∑

i=1

m∑
j=1

scij

kiF
+

A

F
(4)

The inventory holding cost is incurred at both the supplier and the assembler.
Figure 1 shows the inventory curve of final product i in one cycle at the assembly
facility.

It could be derived from the figure that the average inventory holding cost of
products per unit time at the assembly facility is equal to: F/2

∑n
i=1 hikidi.

Two types of inventory (i.e., work-in-process (WIP)) and finished product
inventories are considered for the supplier. Figures 2 and 3 show the amount of
WIP inventory of product i between two successive stages j − 1 and j, and the
inventory level of final product i, respectively.

Based on Fig. 2, the average WIP inventory of product i between two succes-
sive stages j − 1 and j per unit time is calculated as follows:

Ii,j−1 =
1
Ti

{
diTi

2
diTi

pi,j−1
+ diTi

(
bij − bi,j−1 − diTi

pi,j−1

)
+

diTi

2
diTi

pij

}

= di

(
bij +

dikiF

2pij
− bi,j−1 − dikiF

2pi,j−1

) (5)

Therefore, the total WIP inventory holding cost for all products per unit time
at the supplier amounts to:

TCWIP =
n∑

i=1

m∑
j=2

hi,j−1di

{
bij +

dikiF

2pij
− bi,j−1 − dikiF

2pi,j−1

}
(6)

HGA for the Lot Production and Delivery Scheduling Problem 259

Fig. 2. WIP between stages j − 1 and j at the supplier

Fig. 3. Final product inventory at the supplier

Moreover, it could be derived from Fig. 3 that the average inventory of final
product i per unit time is:

Iim =
1
T

{
diTi

2
diTi

pim
+ diTi

(
Ti − bim − diT i

pim

)}

= di

(
1 − di

2pim

)
kiF − dibim

(7)

Thus, the total inventory holding cost for all final products per unit time amounts
to:

TCFI =
n∑

i=1

hidi

(
1 − di

2pim

)
kiF −

n∑
i=1

hidibim (8)

Finally, the total cost per unit time (i.e., objective function of problem P) can
be computed as follows:

TC =
A

F
+

n∑
i=1

m∑
j=1

scij

kiF
+

n∑
i=1

F

[
hidiki

2

(
3 − di

pim

)

+
d2

i

2

m∑
j=2

hi,j−1

(
1

pij
− 1

pi,j−1

)]

+
n∑

i=1

m∑
j=2

hi,j−1di(bij − bi,j−1) −
n∑

i=1

hidibim

(9)

260 S.A. Torabi, M. Jenabi, and S.A. Mansouri

Considering this objective function as well as logical relationships between the
variables of problem P , the following mixed zero-one nonlinear model is devel-
oped to obtain an optimal solution of the problem.

Problem P :

Min Z =
A

F
+

n∑
i=1

m∑
j=1

scij

kiF

+
n∑

i=1

F

[
hi

diki

2

(
3 − di

pim

)
+

kid
2
i

2

m∑
j=2

hi,j−1

(
1

pij
− 1

pi,j−1

)]

+
n∑

i=1

m∑
j=2

hi,j−1di(bij − bi,j−1) −
n∑

i=1

hidibim

(10)

subject to:

bi,j−1 +
dikiF

pi,j−1
≤ bij ; i = 1, . . . , n; j = 2, . . . , m (11)

bi,j +
dikiF

pi,j
+ sij − buj ≤ M(2 − xilk′kj − xu(l+1)k′kj); (12)

i = 1, . . . , n; u �= i; j = 1, . . . , m; k′ = 1, . . . , mj ;
l < n; k = 1, . . . , H; H = LCM(k1, . . . , kn)

n∑
i=1

xilk′kj ≤ 1; (13)

j = 1, . . . , m; k′ = 1, . . . , mj ; l = 1, . . . , n; k = 1, . . . , H; H = LCM(k1, . . . , kn)

n∑
i=1

xi(l+1)k′kj ≤
n∑

u=1

xulk′kj ; (14)

i = 1, . . . , n; j = 1, . . . , m; k = 1, . . . , mj ;
l < n; k = 1, . . . , H; H = LCM(k1, . . . , kn)

mj∑
k′=1

n∑
l=1

ki∑
k=1

xilk′kj = 1; i = 1, . . . , n; j = 1, . . . , m (15)

HGA for the Lot Production and Delivery Scheduling Problem 261

mj∑
k′=1

n∑
l=1

xilk′(t+bki)j =
mj∑

k′=1

n∑
l=1

xilk′(t+(b+1)ki)j ; (16)

i = 1, . . . , n; j = 1, . . . , m; t = 1, . . . , ki; b = 0, . . . ,
H

ki
− 2

mj∑
k′=1

n∑
l=1

xilk′kj =
mj∑

k′=1

n∑
l=1

xilk′k,j+1; (17)

i = 1, . . . , m; j = 1, . . . , m; j < m; k = 1, . . . , H

bij ≥ sij − M

(
1 −

mj∑
k′=1

xi1k′kj

)
; (18)

j = 1, . . . , m; i = 1, . . . , n; k = 1, . . . , H; H = LCM(k1, . . . , kn)

bim +
dikiF

pim
≤ F ; i = 1, . . . , n (19)

HFr = PH ; H = LCM(k1, . . . , kn) (20)

r ≥ 1, and integer (21)

F ≥ 0; bij ≥ 0∀i, j; xilk′kj = {0, 1}; ∀i, l, k′, j, k. (22)

Constraints (11) state that no product can be processed on a given stage
before its completion of its preceding stage. Constraints (12) guarantee that
no product can be processed before the completion of its predecessor product
in the production sequence (σkk′j). Constraints (13) enforce that at most one
product is being processed at each position of each machine. Constraints (14)
state that one product can be assigned at a position of machine Mk′j only when
another product has previously been assigned at the preceding position of the
same machine. Constraints (15) ensure the assignment of product i to one of the
first ki basic periods and imply that at each stage, each assigned product has a
unique position in the sequence of one machine. Constraints (16) determine the
assignment of products in appropriate basic periods during the H basic periods.
Constraints (17) denote that if product i has been assigned to the basic period
k at stage j, it must be assigned to this basic period at all stages. Constraints
(18) show that if product i is the first product in the sequence vector of one
machine at stage j, its processing cannot be started before the corresponding
set up operation. Constraints (19) ensure that the resulting schedule is cyclic so
that the process completion time for each product at the final stage is less than or
equal to a basic cycle time F . Constraint (20) implies that the planning horizon

262 S.A. Torabi, M. Jenabi, and S.A. Mansouri

PH is an integer multiplier of HF , where H = LCM(k1, . . . , kn), and F is the
basic period length. Constraints (21) indicate that r is an integer number greater
than or equal to one. Finally, Constraints (22) preserve the non-negativity of the
variables.

In order to solve this model, the ki values need to be determined at first. Based
on these values and through solving problem P , the corresponding optimal basic
period, assignments, sequence vectors and the production and delivery schedule
of products might be obtained.

3 Proposed Hybrid Genetic Algorithms

During the last three decades, there has been a growing interest in solving the
complex combinatorial problems using genetic algorithms (GA). Introduced by
Holland [11], GA works based on the mechanism of natural selection and genetics.
It starts with an initial set of solutions, called population. Each solution in the
population is called a chromosome (or individual), which represents a point in
the search space. The chromosomes are evolved through successive iterations,
called generations, by genetic operators (selection, crossover and mutation). In
a GA, a fitness value is assigned to each individual according to a problem-
specific objective function. Generation by generation, the new individuals, called
offspring, are created and compete with chromosomes in their parents in the
current population to form a new population. To improve solution quality and
to escape from converging to local optima, various strategies of hybridization
have been suggested [2], [23]. In designing a hybrid genetic algorithm (HGA),
the neighborhood search (NS) heuristic usually acts as a local improver into a
basic GA loop.

In the proposed HGAs in this chapter, each solution is characterized by a set of
ki multipliers and the value of basic period F . One of the challenges besides the
cost minimization is to generate feasible schedules. For this, a capacity feasibility
test has been proposed which identifies and converts the infeasible solutions to
feasible schedules. This issue will be discussed in Sect. 5.

3.1 Chromosome Representation

The chromosome structure for the proposed HGAs is binary strings representing
the ki values. Each ki multiplier is represented by a particular part of a chromo-
some. For instance, the first u1 bits are used to encode k1 and the segment of
chromosome from the (u1 + 1)-th bit to the (u1 + u2)-th bit represents k2 and
so on. In order to represent all possible values of ki for each item i, an upper
bound (see Sect. 4) need to be set for the value of ki. In the power of two policy
where ki = 2vi , the upper bound is to be set on the value vi. A mapping scheme
is also required to decode segments of binary strings into their corresponding
integer (i.e., ki values). The following equations are used to map a binary string
consisting of ui bits to their associated ki for the power of two and non-power
of two cases, respectively:

HGA for the Lot Production and Delivery Scheduling Problem 263

〈buibui−1 . . . b1〉2 =

⎛
⎝ ui∑

j=1

bj2j−1

⎞
⎠

10

= (vi)10 ⇒ ki = 2vi (23)

〈buibui−1 . . . b1〉2 =

⎛
⎝ ui∑

j=1

bj2j−1

⎞
⎠

10

= (ki)10 (24)

3.2 Determining the σk Vectors

Finding feasible solutions as for the assignment and sequence of the products in
different basic periods (i.e., σk vectors), is not easy. This section derives simple
necessary and sufficient conditions in order to have a non-empty set of feasible
solutions.

Given a vector of multipliers ki; i = 1, . . . , n, the procedure starts with cre-
ating a vector say V ′ by sorting the products in ascending order of ki. Ties are
broken by sorting the products having the same multiplier ki in a descending
order of ρi where:

ρi =
m∑

j=1

kidi

pij
, i = 1, . . . , n (25)

Each product i in the vector V ′ is assigned to the basic period t within the
first ki periods of the global cycle H which minimizes:

max
k=t,t+mi,...

{
max

j=1,...,m

(∑
u∈σk

kudu

puj
+

kidi

pij

)}
(26)

Finally, for each k, k = 1, . . . , H, the sequence of products within σk is de-
termined so that if i, u ∈ σk and i is before u in V ′, then i is also before u
in σk.

3.3 Determining the σkk′j Vectors

The first available machine (FAM) rule [23] has been employed to assign and
sequence the products of each basic period to the machines of different stages.
According to this procedure, for any given permutation vector V , the products
are assigned to the machines of the first stage by using the FAM rule (if m1 > 1).
In the subsequent stages, the products are first sequenced in the increasing order
of their completion times at the preceding stage. The products are then assigned
to the machines at the current stage according to the FAM rule.

3.4 Initial Population

The initial population of the binary chromosomes is generated at random. In-
feasible solutions are then identified via feasibility test and converted to feasible
ones.

264 S.A. Torabi, M. Jenabi, and S.A. Mansouri

3.5 Evaluation Function

Each chromosome in the population represents a potential solution to the prob-
lem. The evaluation function assigns a real number to the individuals relating to
their fitness. In our case, the fitness value for each individual is obtained by solv-
ing the non-linear problem P1 once the σkk′j vectors are determined. Problem
P1 is derived from problem P by substituting the variables by their values in
the corresponding σkk′j vectors. Incidentally, σkk′j(i) denotes the i-th product
in the associated sequence vector of machine Mk′j in basic period k.

Problem P1:

Min Z =
A

F
+

n∑
i=1

m∑
j=1

scij

kiF

+
n∑

i=1

[
hiki

di

2

(
3 − di

pim

)
+

m∑
j=2

hi,j−1ki
d2

i

2

(
1

pij
− 1

pi,j−1

)]
F

+
n∑

i=1

m∑
j=2

hi,j−1di(bij − bi,j−1) −
n∑

i=1

hidibim

(27)

subject to:

bi,j−1 +
kiFdi

pi,j−1
≤ bij ; i = 1, . . . , n; j = 2, . . . , m (28)

bσkk′j(i−1),j +
kσkk′j(i−1)Fdσkk′j(i−1)

pσkk′j(i−1),j
− sσkk′j(i),j ≤ bσkk′j(i),j ; (29)

i = 2, . . . , nkk′j ; j = 1, . . . , m; k′ = 1, . . . , mj;
k = 1, . . . , H; H = LCM(k1, . . . , kn)

bσkk′j(1),j ≥ sσkk′j(1),j ; (30)

j = 1, . . . , m; k = 1, . . . , mj ; k = 1, . . . , H; H = LCM(k1, . . . , kn)

bim +
kiFdi

pim
≤ F ; i = 1, . . . , n (31)

rHF = PH ; r ≥ 1 and integer (32)

F, bij ≥ 0 ∀i, j. (33)

HGA for the Lot Production and Delivery Scheduling Problem 265

Problem P1 can be solved by means of the following iterative procedure:

• Initial step: Let r = 1 and solve the associated linear problem. Let Zr

denote the optimal objective value.
• Iterative step: Let r = r + 1 and solve the corresponding linear problem. If

this model has no feasible solution, stop; otherwise Let Zr+1
denote the current optimal objective value. If Zr+1 < Zr set
F ∗ = PH/rH ; otherwise the best objective value remains
unchanged. Repeat the iterative step.

It is noteworthy that this procedure acts as an explicit enumeration method
which ensures that the non-linear problem P1 could be solved to optimality.

3.6 Selection

Tournament selection is used in the proposed HGAs. It randomly chooses two
chromosomes from the parent pool and selects the fitter individual with proba-
bility 1−ϕ and the other one with probability ϕ where 0.5 < ϕ < 1. The spouse
duplication method is used to copy the selected parents in a separate set of the
same size. Finally, pairs of individuals are picked randomly from the two sets for
recombination through the crossover operation.

3.7 Crossover Operator

The main purpose of crossover is to exchange genetic material between randomly
selected parents with the aim of producing better offspring. In this research, the
two-point crossover is used wherein two cut points are selected at random among
the selected chromosomes. The middle segment of the parents are exchanged to
generate two descendants (see Fig. 4).

Fig. 4. Two points crossover

3.8 Mutation

Mutation introduces random variation into the population. Mutation is used to
produce small perturbations on chromosomes to promote the diversity of the
population. Most genetic algorithms incorporate a mutation operator mainly to

266 S.A. Torabi, M. Jenabi, and S.A. Mansouri

Fig. 5. Swap mutation

avoid convergence to local optima in the population and to recover lost genetic
materials. A small portion of individuals (mut size) is selected at random from
the enlarged population (i.e. parents in the current population and offsprings
generated by crossover operation) for mutation. In the proposed HGAs, swap
mutation has been used as mutation operator. Fig. 5 illustrates an example of
this operator.

3.9 Local Improver

A local improvement procedure is employed in the proposed HGAs based on an
iterative neighborhood search (NS). The neighborhood search is applied to the
offspring generated via crossover or mutatation operators. The search continues
until a given chromosome is replaced by an elite (dominating) neighbor within
a predetermined reasonable time. The inversion operator is used in the NS in
which the genes between two randomly selected positions are inversed. Fig. 6 is
an example of this operator.

Fig. 6. Inversion operator

3.10 Population Replacement

Chromosomes for the next generation are selected from the enlarged population.
Once the offspring are generated (through crossover and mutation operations)
and improved by neighborhood search, the improved offspring are added to the
current population. Therefore, the number of individuals in the enlarged popu-
lation will be equal to: pop size + cross size + mut size.

Individuals of the enlarged population are sorted according to their fitness.
Sixty percent of the next population is filled by the top-ranked chromosomes
of the enlarged population. The remaining chromosomes are selected randomly
from the unselected chromosomes of the enlarged population.

HGA for the Lot Production and Delivery Scheduling Problem 267

3.11 Termination Criteria

The HGAs stop once a pre-determined number of generations (max gen) or non-
improving generations (max nonimprove) has been executed.

4 Upper Bounds on ki Values

In order to represent all possible and feasible for ki multipliers, an upper bound
is determined for each ki. In the PT-HGA, an upper bound on ki is derived
through determining an upper bound for the objective value of each product
i. The Following procedure describes how an upper bound for each ki(kUB

i) is
computed:

Step1: For each product i, let ki = 1 and calculate
∑

j di/pij . Arrange the
products in ascending order of these values. Assign the products to the
machines and sequence them at all stages via FAM rule. Finally, find
the corresponding common cycle solution and its objective function,
TCcc.

Step2: Calculate the cost share of each product i using this formula:

TCi
cc = TCcc −

n∑
u=1,u�=i

TCu
cc.

It should be noted here that TCi
BP ≤ TCi

cc (see [24]), where TCi
BP is

the cost share of product i under basic period approach. The TCi
BP

values are determined in the next step.
Step3: Assume there is only one product (say product i) with the following

objective function:

TCi
BP =

m∑
j=1

scij

kiF

+ kiF

[
hidi

2

(
3 − di

pim

)
+

d2
i

2

m∑
j=2

hi,j−1

(
1

pij
− 1

pi,j−1

)]

+
m∑

j=2

hi,j−1di(bij − bi,j−1) − hidibim

(34)

It is obvious that in order to obtain the optimal solution, the starting
times need to be determined such that (bij − bi,j−1)− bim is minimized.
Moreover, the smallest feasible value of bij−bi,j−1 is equal to kiFdi/pi,j1
and the largest feasible value of bim is equal to kiF (1−di/pim). There-
fore, the best value of TCi

BP is as follows:

268 S.A. Torabi, M. Jenabi, and S.A. Mansouri

TCi
BP =

m∑
j=1

scij

kiF

+ kiF

[
hidi

2

(
1 +

di

pim

)
+

d2
i

2

m∑
j=2

hi,j−1

(
1

pij
+

1
pi,j−1

)]
︸ ︷︷ ︸

Hi

(35)

Finally, for a given value of F , an upper bound on ki, denoted by kUB
i

can be derived by using the following equations:

TCi
BP ≤ TCi

cc ⇒
m∑

j=1

scij

kiF
+ kiFHi ≤ TCi

cc

⇒ k2
i F 2Hi − kiFTCi

cc +
m∑

j=1

scij ≤ 0

(36)

kUB
i =

TCi
cc +

√
(TCi

cc)2 − 4Hi

(∑m
j=1 scij

)
2HiFmin

; (37)

in nonpower of two case

⇒ vUB
i = log2

⎡
⎢⎢⎢⎢⎢⎢⎢

TCi
cc +

√
(TCi

cc)2 − 4Hi

(∑m
j=1 scij

)
2HiFmin

⎤
⎥⎥⎥⎥⎥⎥⎥

; (38)

in power of two case

To determine the minimum value of F , Fmin, assume that F must be
large enough so that at least one product with ki = 1 can be produced
meanwhile. Consequently, Fmin is obtained from the following equation:

max
i=1,...,n

{ m∑
j=1

sij +
m∑

j=1

diF

pij

}
≤ F ⇒ F ≥ max

i=1,...,n

{ ∑m
j=1 sij

1 −
∑m

j=1 di/pij

}
(39)

5 Feasibility Test and Repair Procedure

A simple test for capacity feasibility can be carried out for a given chromosome
and its related ki, σk and σkk′j vectors. To do so, the process completion times of
the products for all H basic periods are first calculated. The following procedure
is used for this purpose.

HGA for the Lot Production and Delivery Scheduling Problem 269

for k = 1, . . . , H
for each i ∈ σk

for j = 1, . . . , m
process1=

∑
u∈σkk′j

kudu/puj, product u is before i at basic
period k on machine Mk′j .

process2=
∑

u∈σkk′,j−1
kudu/pu,j−1 + kidi/pi,j−1, product u

is before i at basic period k on machine Mk′,j−1.
fin= max{process1,process2} + kidi/pij

end
ftik =fin

end
ftk = maxi{ftik}

end

If the related completion time is greater than or equal to 1 in at least one basic
period, the corresponding chromosome is infeasible. Otherwise, it is feasible. In
other words, if at least one of the ftk values, k = 1, . . . , H, is greater than or
equal to 1, this solution is infeasible.

To convert an infeasible solution into a feasible one, the following iterative
repair procedure is proposed, based on the ki values modifications.

Step 1: Choose the basic period with maximal value of ftk, say basic period
k1.

Step 2: From among the products of basic period k1, select the product with the
largest process time (maxi{

∑
j=1,...,m kidi/pij}; i ∈ σk1), say product i.

Step 3: If ki �= 1; set ki = ki − 1 (in the case of power of two, if vi �= 0, vi =
vi−1), and obtain σk and σkk′j vectors for this new set of multipliers. If
this solution is feasible, stop, otherwise go to step1. If ki = 1 or vi = 0;
select the product with the next largest process time and go to step3.

It is noteworthy that all chromosomes obtained via genetic operators
(crossover, mutation and local improver) are checked using the aforementioned
feasibility test.

6 Computational Experiments

To verify the efficiency of the proposed algorithm in terms of the solution quality
and the required computation time, a number of numerical experiments were
implemented. The experiments were executed on a PC with an Intel Pentium IV
1800 MHz CPU. The HGAs were coded on MATLAB 6.5. Moreover, LINGO 6.0
optimization software was used to solve the mixed zero-one non-linear models.

6.1 Parameter Setting

The parameters of the HGAs were tuned empirically in the course of some ini-
tial experiments. These values were found to be effective in terms of solution

270 S.A. Torabi, M. Jenabi, and S.A. Mansouri

quality and computation time: population size pop size=n, maximum number
of generations max gen=m × n, maximum number of non-improving genera-
tions max nonimprove=n, crossover probability Pc=0.8, mutation probability
Pm=0.2, and tournament selection parameter ϕ=0.7.

6.2 Data Sets

Data sets were randomly generated using these uniform distributions: di ∼
U(100, 1000), pij ∼ U(5000, 15000), sij ∼ U(0.01, 0.15), hi1 ∼ U(1, 10), A ∼
U(10000, 20000). In order to have non-decreasing hij values in successive stages
(considering the fact that value is being added to the products as they are pro-
cessed through the stages), the hij values for the stages j ≥ 2 were generated us-
ing a recursive formula as: hij = hi,j−1 +U(1, 3). In order to reflect the potential
correlation between scij and sij values, the corresponding scij for each randomly
generated sij was generated with this equation: scij = 15000×sij+1000×U(0, 1).
Finally, the number of parallel machines at each stage was randomly set to either
1 or 2.

6.3 Performance Evaluation

To evaluate the efficiency of the proposed solution methods, nine test problems
of different size were considered. For each size, 20 problem instances were gener-
ated at random. The problem instances were subdivided into small-size problems
(with 4 and 5 products with 2 and 3 stages) and medium to large-size problems
(having 5 and 10 products with 2, 5 and 10 stages). For small problems, the
solutions of the proposed algorithms were compared with those of LINGO. For
medium and large problems, the results of the proposed algorithms were com-
pared with lower bounds. An index λ = (TC −LB)/LB is used for this purpose
where TC is the total cost of a problem instance obtained by the proposed
algorithm and LB is the associated lower bound.

In order to calculate the LB for a given problem, the following equation needs
to be minimized:

Z =
A

F
+

n∑
i=1

m∑
j=1

scij

kiF

+
n∑

i=1

[
hiki

di

2

(
3 − di

pim

)
+

m∑
j=2

hi,j−1ki
d2

i

2

(
1

pij
− 1

pi,j−1

)]
F

+
n∑

i=1

m∑
j=2

hi,j−1di(bij − bi,j−1) −
n∑

i=1

hidibim

(40)

It could be concluded that if the bij values are determined so that the
(bij − bi,j−1) terms are minimized, then the above equation will be minimized.
According to constraint (11), the minimum value for (bij −bi,j−1) is dikiF/pi,j−1

HGA for the Lot Production and Delivery Scheduling Problem 271

and the maximum feasible value for bim is F (1−kidi/pim), where F is calculated
using this formula:

F =

√√√√ A +
∑m

j=1 scij/ki∑n
i=1 ki

[
hidi

2

(
1 + di

pim

)
+ d2

i

2

∑m
j=2 hi,j−1

(
1

pij
+ 1

pi,j−1

)] (41)

As a result, the LB can be computed as follows:

LB =
A

F
+

n∑
i=1

m∑
j=1

scij

kiF

+
n∑

i=1

kiF

⎡
⎣hi

di

2

(
1 +

di

pim

)
+

d2
i

2

m∑
j=2

hi,j−1

(
1

pij
+

1
pi,j−1

)⎤⎦ (42)

6.4 Results

Table 1 represents the results for the small-sized problem instances. The results
for the medium and large-sized problem instances are presented in Tables 2 and
3 respectively.

In Table 1, the quality of the solutions found by the proposed algorithms is
compared with the solutions found using a LINGO 6.0 optimization software.
Columns 2 and 3 show the number of times out of 20 instances where NPTHGA
and PTHGA respectively have found a better solution compared to LINGO. The
figures indicate that the proposed algorithms outperform LINGO in most cases.
The main reason for this could be attributed to the nonlinearity of the math-
ematical model which enforces LINGO to stop searching once a local optimum
has been found instead of the global optimum. The average superiority of the
proposed algorithms over LINGO in terms of cost reduction or distance to the
LINGO’s final results are represented in the columns 4 and 5. As the averages
indicate, the solutions’ quality found by the NPTHGA and PTHGA was 6.3
and 4.3 percent better than the solutions of LINGO, respectively. Moreover, the
figures in columns 6–8 concerning the execution times show that both proposed
algorithms were considerably faster than LINGO. Furthermore, they indicate
that PTHGA requires less CPU time compared to NPTHGA in finding the final
solutions. However, considering the better performance of the NPTHGA over
PTHGA in terms of quality, this extra execution time might be justified.

It should be noted that for solving the small-sized problem instances by
LINGO, this parameter was set empirically, since it was not possible to specify
the smallest possible upper bound for big M in the mathematical model. Ac-
cording to our experiments, M = 1000 would yield good results. For the values
very larger than 1000, LINGO reports the problem as being infeasible.

For the medium and large size problem instances, performance ratio λ have
been calculated and used as a measure to compare the proposed algorithms. In
Table 2 the performances of the proposed algorithms are compared with each

272 S.A. Torabi, M. Jenabi, and S.A. Mansouri

Table 1. Results for small size test problems

(1) (2) (3) (4) (5) (6) (7) (8)
4x2 18 17 4.80 3.44 2736.98 35.64 34.43
4x3 17 16 6.08 5.05 5684.45 75.24 53.47
5x2 17 16 6.82 5.35 5770.77 81.11 54.69
5x3 19 18 11.57 9.07 9737.29 170.96 133.65

Average 6.3 4.3
Column headings:

(1): problem size (n×m)

(2): number of times that the NPTHGA’s solution was better than the LINGO’s solution

(3): number of times that the PTHGA’s solution was better than the LINGO’s solution

(4): the average superiority of NPTHGA compared to LINGO (%) in terms of cost reduction

(5): the average superiority of PTHGA compared to LINGO (%) in terms of cost reduction

(6): average CPU time for LINGO (s)

(7): average CPU time for NPTHGA (s)

(8): average CPU time for PTHGA (s)

Table 2. Results for medium and large size test problems (comparisons with LB)

Problem
size

(n×m)

Avg.
performance

ratio of
NPTHGA (%)

Avg.
performance

ratio of
PTHGA (%)

Avg. CPU time
of NPTHGA (s)

Avg. CPU time
of PTHGA (s)

Cost
comparison of
PTHGA vs.

NPTHGA (%)

5×5 8.01 10.26 270.45 149.34 28.08
5×10 18 18.86 825.59 787.66 4.77
10×2 6.04 7.84 988.86 636.36 29.8
10×5 15.29 16.4 1869.1 1825.9 7.25
10×10 23.06 23.63 2234.52 2126.58 2.47

Table 3. Results for medium and large size test problems (comparisons with common
cycle approach)

problem
size

(n×m)

Avg. cost reduction in
NPTHGA’s solution
compared to common

cycle approach

Avg. cost reduction in
PTHGA’s solution

compared to common
cycle approach

Cost comparison of the
PTHGA vs. NPTHGA

5×5 7.59 5.43 39.77
5×10 4.63 4.58 10.92
10×2 6.92 5.13 34.89
10×5 5.27 5.16 2.13
10×10 3.84 3.72 3.22

other. The results indicate that the solution quality of the NPTHGA averages
18.19% better than the solution quality of the PTHGA.

Table 3 reports the average improvement in total cost by using the proposed
algorithms compared to the common cycle approach (i.e. the case where ki = 1

HGA for the Lot Production and Delivery Scheduling Problem 273

is assumed for all products). These results reveal that the average reduction in
the total cost of solutions found by PTHGA and NPTHGA are 4.8% and 5.65%
respectively, when compared with the common cycle approach. These results
show the advantage of using a basic period policy instead of a common cycle in
the problem addressed in this chapter.

7 Concluding Remarks

In this chapter, the basic period approach has been used to solve the economic
lot and delivery-scheduling problem in a two-echelon supply chain, in which a
supplier produces several items in a flexible flow line system and delivers them to
an assembler on a cyclic basis over a finite planning horizon. A new mixed zero-
one nonlinear model has been developed to solve the problem to optimality. Due
to the computational complexity, providing an optimal solution is impossible
especially for medium and large size problem instances. For this, two hybrid
GAs (called NPTHGA and PTHGA) have been developed based on different
variants of basic period approach.

In the numerical experiments, the quality of the proposed hybrid GAs was
compared with LINGO on small size problems. For medium and large-size prob-
lems, the hybrid GAs were compared with reference to a lower bound. Compu-
tational results indicate that using a basic period policy instead of a common
cycle approach yields better solutions. Furthermore, the NPTHGA outperforms
the PTHGA with respect to the solution quality, but the PTHGA outperforms
the NPTHGA with respect to the computation time.

Acknowledgement

This study was supported by the University of Tehran under the research grant
No. 8109920/1/01. Also, Afshin Mansouri was supported in part by EPSRC
under grant EP/D050863/1 as well. The authors are grateful for this financial
supports.

References

1. Bomberger, E.E.: A dynamic programming approach to the lot size scheduling
problem. Management Science 12, 778–784 (1966)

2. Cheng, R., Gen, M.: Parallel machine scheduling problems using memetic algo-
rithms. Computers and Industrial Engineering 33, 761–764 (1997)

3. Eilon, S.: Scheduling for batch production. Institute of Production Engineering
Journal 36, 549–579 (1957)

4. Elmaghraby, S.E.: The economic lot scheduling problem: review and extensions.
Management Science 24, 587–598 (1978)

5. El-najdawi, M., Kleindorfer, P.R.: Common cycle lot size scheduling for multi-
product, multi-stage production. Management Science 39, 872–885 (1993)

274 S.A. Torabi, M. Jenabi, and S.A. Mansouri

6. El-najdawi, M.: Multi cyclic flow shop scheduling: An application for multi-
product, multi-stage production processes. International Journal of Production
Research 39, 81–98 (1997)

7. Fatemi Ghomi, S.M.T., Torabi, S.A.: Extension of common cycle lot size scheduling
for multi-product, multi-stage arborscent flow-shop environment. Iranian Journal
of Science and Technology, Transaction B 26, 55–68 (2002)

8. Hahm, J., Yano, C.A.: The economic lot and delivery-scheduling problem: The
single item case. International Journal of Production Economics 28, 235–252 (1992)

9. Hahm, J., Yano, C.A.: The economic lot and delivery-scheduling problem: The
common cycle case. IIE Transactions 27, 113–125 (1995)

10. Hahm, J., Yano, C.A.: The economic lot and delivery scheduling problem: Models
for nested schedules. IIE Transactions 27, 126–139 (1995)

11. Holland, J.H.: Adaptation in Natural and Artificial Systems, 2nd edn. University
of Michigan / MIT Press (1992)

12. Hsu, W.L.: On the general feasibility test of scheduling lot sizes for several products
on one machine. Management Science 29, 93–105 (1983)

13. Jensen, M.T., Khouja, M.: An optimal polynomial time algorithm for the common
cycle economic lot and delivery scheduling problem. European Journal of Opera-
tional Research 156, 305–311 (2004)

14. Khouja, M., Michalewicz, Z., Wilmot, M.: The use of genetic algorithm to solve
the economic lot size scheduling problem. European Journal of Operational Re-
search 110, 509–524 (1998)

15. Khouja, M.: The economic lot and delivery-scheduling problem: Common cycle,
rework, and variable production rate. IIE Transactions 32, 715–725 (2000)

16. Ouenniche, J., Boctor, F.F.: Sequencing, lot sizing and scheduling of several com-
ponents in job shops: The common cycle approach. International Journal of Pro-
duction Research 36, 1125–1140 (1998)

17. Ouenniche, J., Boctor, F.F.: The multi-product, economic lot-sizing problem in
flow shops: the powers-of-two heuristic. Computers and Operations Research 28,
1165–1182 (2001)

18. Ouenniche, J., Boctor, F.F.: The two-group heuristic to solve the multi-product,
economic lot-sizing and scheduling problem in flow shops. European Journal of
Operational Research 129, 539–554 (2001)

19. Ouenniche, J., Boctor, F.F.: The G-group heuristic to solve the multi-product,
sequencing, lot-sizing and scheduling problem in flow shops. International Journal
of Production Research 39, 89–98 (2001)

20. Ouenniche, J., Bertrand, J.W.M.: The finite horizon economic lot sizing problem
in job shops: The multiple cycle approach. International Journal of Production
Economics 74, 49–61 (2001)

21. Quadt, D., Kuhn, H.: Conceptual framework for lot-sizing and scheduling of flexible
flow lines. International Journal of Production Research 43, 2291–2308 (2005)

22. Torabi, S.A., Karimi, B., Fatemi Ghomi, S.M.T.: The common cycle economic lot
scheduling in flexible job shops: The finite horizon case. International Journal of
Production Economics 97, 52–65 (2005)

23. Torabi, S.A., Fatemi Ghomi, S.M.T., Karimi, B.: A hybrid genetic algorithm for
the finite horizon economic lot and delivery scheduling in supply chains. European
Journal of Operational Research 173, 173–189 (2006)

HGA for the Lot Production and Delivery Scheduling Problem 275

24. Yao, M.J., Elmaghraby, S.E.: On the economic lot scheduling problem under
power-of-two policy. Computers and Mathematics with Applications 41, 1379–1393
(2001)

25. Yao, M.J., Huang, J.X.: Solving the economic lot scheduling problem with deteri-
orating items using genetic algorithms. Journal of Food Engineering 70, 309–322
(2005)

Author Index

Almejalli, Khaled 63
Amodeo, Lionel 211

Bosman, Peter A.N. 185

Campos, Vicente 137
Chen, Haoxun 211
Corberán, Angel 137

Dahal, Keshav 63
Dimitriou, Loukas 3, 23
Doerner, Karl F. 153

El Hadji, Aboubacar 211

Grahl, Jörn 231
Grosche, Tobias 81
Gutjahr, Walter J. 153

Hartl, Richard F. 153
Hossain, M. Alamgir 63

Jenabi, Masoud 253

La Poutré, Han 185
Labadi, Nacima 111
Lau, Hoong Chuin 169
Lulli, Guglielmo 153

Mansouri, S. Afshin 253
Minner, Stefan 231
Mota, Enrique 137

Prins, Christian 111

Reghioui, Mohamed 111
Rothlauf, Franz 81, 231

Stathopoulos, Antony 3, 23
Sumalee, Agachai 45

Torabi, S. Ali 253
Tsekeris, Theodore 3, 23

Xiao, Fei 169

	Part I: Traffic and Transport Networks
	Combined Genetic Computation of Microscopic Trip Demand in Urban Networks
	Genetically Optimized Infrastructure Design Strategies in Degradable Transport Networks
	Genetic Algorithm for Constraint Optimal Toll Ring Design
	Real Time Identification of Road Traffic Control Measures
	Simultaneous Airline Scheduling
	Experimental Results
	Calibration
	Comparison of Metaheuristics
	Solution Process

	Part II: Vehicle Routing
	GRASP with Path Relinking for the Capacitated Arc Routing Problem with Time Windows
	Introduction
	GRASP Components and General Structure

	A Scatter Search Algorithm for the Split Delivery Vehicle Routing Problem
	Introduction
	Problem Definition and Notation
	A Scatter Search Procedure
	Creating a Population
	Improving a Feasible Solution
	The Reference Set
	The Combination Method

	Computational Experiments
	The Instances
	Computational Results

	Conclusions and Further Research

	Stochastic Local Search Procedures for the Probabilistic Two-Day Vehicle Routing Problem
	Introduction
	Solution Procedures
	Sampling-Based Local Search
	Fixed Percentage Selection Procedure
	Estimated Savings Selection Procedure
	Savings-Based ACO Algorithms for the VRP

	Procedures Comparison and Simulation
	Conclusions and Directions of Future Research

	The Oil Drilling Model and Iterative Deepening Genetic Annealing Algorithm for the Traveling Salesman Problem
	Online Transportation and Logistics Using Computationally Intelligent Anticipation
	Part III: Supply Chain Management
	Supply Chain Inventory Optimisation with Multiple Objectives: An Industrial Case Study
	Decomposition of Dynamic Single-Product and Multi-product Lotsizing Problems and Scalability of EDAs
	Hybrid Genetic Algorithms for the Lot Production and Delivery Scheduling Problem in a Two-Echelon Supply Chain

