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Preface

Breast cancer is an abnormal growth of cells in the breast, usually in the 
inner lining of the milk ducts or lobules. It is currently the most com-
mon type of cancer in women in developed and developing countries. 
The number of women affected by breast cancer is gradually increasing 
and remains as a significant health concern. Hence, the early detection of 
breast cancer can improve the survival rate and quality of life. Therefore, 
today, newer modalities are available to more accurately detect breast can-
cer. Researchers are continuously working to develop novel techniques to 
detect early stages of breast cancer. This book covers breast cancer detec-
tion using different imaging modalities such as mammography, magnetic 
resonance imaging, computed tomography, positron emission tomography, 
ultrasonography, infrared imaging, and other modalities.

Architectural distortion is one of the major causes of false-negative find-
ings in the detection of early stages of breast cancer. Chapter 1 presents 
methods for computer-aided detection of architectural distortion in mam-
mograms acquired prior to the diagnosis of breast cancer in the interval 
between scheduled screening sessions. The results are promising and indi-
cate that the proposed methods can detect architectural distortion in prior 
mammograms taken 15 months (on average) before clinical diagnosis of 
breast cancer, with a sensitivity of 0.8 at 5.2 false positives per patient.

A computer-aided system for the automated detection of normal, 
benign, and cancerous breasts using texture features extracted from digi-
tized mammograms and data mining techniques is proposed in Chapter 
2. The novelty of this work is to automatically classify the mammogram 
into normal, benign, and malignant classes using the texture features 
alone, with an efficiency of 93.3% and sensitivity of 92.3% using a fuzzy 
 classifier. 

Breast cancer diagnosis by combination of fuzzy systems and an ant 
colony optimization algorithm is proposed in Chapter 3. Results on the 
breast cancer diagnosis dataset from the University of California Irvine 
machine learning repository show that the proposed FUZZY-ACO would 
be capable of classifying cancer instances with a high accuracy rate and 
adequate interpretability of extracted rules.

xvii
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xviii	 Preface

Chapter 4 discusses a computer-aided diagnosis system tested on mag-
netic resonance datasets obtained from different scanners, with a variable 
temporal and spatial resolution and on both fat-sat and non–fat-sat images, 
and has shown promising results. This type of system could potentially 
be used for early diagnosis and staging of breast cancer to reduce reading 
time and to improve detection, especially of the smaller satellite nodules. 

Imaging plays a pivotal role in the evaluation of metastatic spread of 
breast cancer disease. Chapter 5 gives an overview of the recent devel-
opments in breast cancer imaging, in terms of instrumentation and clini-
cal applications. In addition, the theoretical framework behind advanced 
imaging modalities is highlighted to provide background knowledge to the 
reader, and potential future research directions are also presented.

The role of positron emission tomography is established in the practice 
of oncology. The advances in functional and molecular imaging techniques 
have increased the accuracy in the diagnostic evaluation of breast cancers 
and is discussed in detail in Chapter 6. 

Chapter 7 discusses 3D whole-breast ultrasonography, which can pro-
vide the entire breast anatomy for later review. The 3D whole-breast ultra-
sound procedure and the training time are simpler and shorter than the 
traditional 2D US. It also provides interoperator consistency, and its repro-
ducibility is better for follow-up studies. 

Recent progress in medical ultrasound has paved the way for the evalua-
tion of breast cancer. State-of-the-art high-resolution ultrasound can detect 
tiny breast lesions as small as 1–2 mm in size, and sometimes microcal-
cifications even less than 0.5 mm, or small carcinomas 3–6 mm in diam-
eter. Chapter 8 presents an overview of the recent developments in ultra-
sound imaging of breast cancer, in terms of instrumentation and clinical 
 applications.

Nonlinear features such as Lyapunov exponents are used to differentiate 
malignant and benign breast thermograms in Chapter 9. This work can be 
extended for classifying different stages of breast cancer. The authors are 
currently working toward these objectives.

A set of image features describing bilateral differences between left 
and right breast regions in thermograms is described in Chapter 10. These 
features are then used in a pattern classification stage to discriminate 
malignant cases from benign ones. Classification is performed by fuzzy 
if-then rules and applies a genetic algorithm to optimize the rule base, and 
secondly uses an ant colony optimization classification algorithm. Both 
approaches have shown good classification accuracy. 

Infrared imaging has shown to be a promising technique for the early 
diagnosis of breast pathologies and as a screening technique. The con-
cept of a combined diagnostic enables a high degree of specificity and 
sensibility in such diagnosis. Chapter 11 presents a concept of merging 
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 information from the images with other modalities of examination, such 
as mammograms and ultrasound, in order to improve the early detection of 
breast pathologies, including cancer.

Chapter 12 discusses diffuse optical imaging, which makes use of dif-
fuse light to probe deep tissues by taking advantage of low tissue absorp-
tion within the near-infrared wavelength range (650–900 nm). The optical 
measurements obtained can be used to calculate optical properties, namely 
absorption and scattering within tissues. This, in turn, can provide infor-
mation about physiological parameters within tissues, such as oxy- and 
deoxy-haemoglobin, and water and lipid, all of which can be utilized in the 
detection, characterization, and therapy monitoring of breast cancer.

Cytopathology is a branch of pathology that studies and diagnoses dis-
eases on the cellular level, using samples of free cells or tissue fragments. 
Chapter 13 describes the results of a study of the features that are used by 
physicians and computers to diagnose cancer based on features in fine-
needle aspiration cytology images. It discusses the significance of a cyto-
logical feature in representing its true ability to discriminate benign and 
malignant conditions of a breast lump in the Wisconsin Diagnostic Breast 
Cancer database. 

Only a small number of studies have been reported on breast 
 radio frequency ablation, and most of them have included the posterior sur-
gical excision of the treated breast. Chapter 14 presents the future trends 
in the development of more-specific radiofrequency algorithms for breast 
cancer treatment, to improve the results, determine the setting of the spe-
cific indications for the technique, and expand the study of long-term results  
and survival. 

Breast conserving therapy is the gold-standard option for patients with 
early-stage breast cancer. The surgical excision removes the entire tumor 
with a negative surgical margin and helps to preserve the breast tissue 
as far as possible. Chapter 15 explains minimally invasive ablative tech-
niques, which may offer complete tumor ablation, with less psychological 
morbidity, better cosmetic results, and shorter hospital stay. 

A microwave-based imaging modality is an emerging noninvasive med-
ical imaging approach exploring the dielectric property of biological tissue 
that shows great potential in breast cancer detection. Chapter 16 discusses 
a correlated microwave acoustic imaging modality and numerical simu-
lation using finite-difference time-domain analysis. It is clearly shown 
that a combination of microwave-based imaging modalities is expected to 
provide an efficient diagnostic method for breast cancer detection in the 
future.

Fluorescence-based bioassays are novel diagnostic tools that are avail-
able to clinicians for deciding future treatment and to researchers for 
monitoring biological functions that may lead to novel investigations. 
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The different aspects of photonic crystal fiber, its guiding mechanism, the 
refractive index law, etc. are analyzed and explained in Chapter 17. The 
proposed methodology is implemented in an array format of immuno rec-
ognition of specific proteins using a hollow-core photonic crystal fiber.

An overview of a quality-assurance program for digital mammography 
is discussed in Chapter 18. This overview includes the quality-control test 
procedures based on the American College of Radiology and the Interna-
tional Atomic Energy Agency. The role of medical physicists in the mam-
mography quality-assurance programs, including acceptance, annual, and 
regular quality-control testing, is briefly presented.

In this book, we have made an honest effort to present information and 
methodologies for accurate diagnosis of breast cancer to help researchers, 
doctors, teachers, and students in biomedical science and engineering.  

E. Y. K. Ng
U. Rajendra Acharya

Rangaraj M. Rangayyan
Jasjit S. Suri
January 2013
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Detection of Architectural 
Distortion in Prior 
Mammograms using 
Statistical Measures of 
Angular Spread1

Rangaraj M. Rangayyan, Shantanu Banik, and J. E. Leo Desautels
University of Calgary, Calgary, Alberta, Canada
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1This chapter is a revised and expanded version of S. Banik, R. M. Rangayyan, and J. E. L. Desautels, 
“Measures of angular spread and entropy for the detection of architectural distortion in prior mammograms,” 
International Journal of Computer Assisted Radiology and Surgery 8(1), 121–134 (2013). Reproduced with 
kind permission from Springer Science+Business Media. © 2012 Springer. 
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1.1 Introduction

Architectural distortion, a distortion of the architecture of breast paren-
chyma without being accompanied by increased density or a mass, is a 
mammographic sign of breast cancer.1 Architectural distortion is an impor-
tant finding in the detection of early stages of breast cancer.2 However, 
subtlety and variability in appearance, and similarity in presentation to 
normal breast tissue patterns overlapped in the projected mammographic 
image impose challenges in the detection of architectural distortion. 
Architectural distortion is the most commonly missed abnormality in 
false-negative (FN) screening cases.1 Several studies have indicated that 
architectural distortion accounts for 12% to 45% of breast cancer cases 
overlooked or misinterpreted in screening mammography.3,4 

In terms of treatment of patients affected by breast cancer, only local-
ized and nonmetastasized cancers are considered to be treatable and cur-
able. In order to increase the possibility of survival, the detection of breast 
cancer at its early stages is of highest importance.5 The use of computer-
aided diagnosis (CAD) techniques by a radiologist could be as effective 
as double reading, and provide efficient and effective means of reducing 
errors and help in increasing sensitivity in the detection of breast cancer.6–8 
Numerous CAD techniques and systems have been proposed and devel-
oped to improve the sensitivity and accuracy of the detection of breast 
cancer. Several CAD techniques are found to be effective in detecting 
masses and calcifications; unfortunately, the same systems have demon-
strated poor performance in the detection of subtle or indirect signs of 
possible malignancy, such as architectural distortion.9 Several studies 
have indicated that a substantial portion of prior mammograms of cases of 
screen-detected cancer or interval-cancer cases10–13 could contain subtle or 
minimal signs of abnormality.14 Such signs of abnormality include hard-
to-detect features or patterns that could indicate breast cancer at stages 
prior to the formation of a mass or tumor. Architectural distortion could 
appear at the initial stages of the formation of a breast mass or tumor, and 
has been found to be associated with breast malignancy in one-half to two-
thirds of the cases in which it is present.2 Increasing the sensitivity and 
accuracy in the detection of architectural distortion could lead to improve-
ment in the prognosis of patients affected by breast cancer15 and help in 
increasing the associated survival rate. 
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Development of CAD techniques for the detection of architectural 
distortion is a comparatively new field that has not been studied ade-
quately. There is increasing interest in this area at present, indicated by 
the appearance of a relatively small number of publications addressing 
parts of the problem.2,16–22 Furthermore, CAD of architectural distortion 
in prior mammograms, in particular those of interval-cancer cases, is an 
important approach that could facilitate early detection of breast cancer 
and warrants more attention.10–14 Simultaneous analysis of current and 
prior mammograms could help in early detection of breast cancer and is 
usually practiced by radiologists in the detection of breast cancer;23–25 the 
same procedure may be effective for CAD systems also. 

Based on the hypothesis that screening mammograms obtained prior to the 
detection of breast cancer could contain subtle signs of early stages of breast 
cancer, development of CAD systems specifically designed for the analysis of 
prior mammograms of screen-detected or interval-cancer cases12–14,26 could 
help in understanding the causes of FN error as well as developing strategies 
for the detection and treatment of breast diseases at their early stages, and 
lead to substantial improvement in the prognosis of the patient.15 

The normally oriented texture pattern in the normal breast, which typically 
converges toward the nipple, is changed or distorted in the presence of archi-
tectural distortion.27 The distorted pattern may include radiating or spiculat-
ing patterns or focal retraction at the edge of the breast parenchyma. Several 
methods may be required to capture and characterize the variety of textural 
patterns related to architectural distortion in mammograms.12,13 Noise and 
neighboring structures could adversely affect the detection process; they may 
lead to the detection of spurious or ambiguously oriented structures or other 
unrelated intersecting patterns in the image. Characterization of the angular 
spread has been shown to be effective in the detection of architectural dis-
tortion.13,26,28 In this context, the present study is directed toward the devel-
opment of CAD techniques for the detection of architectural distortion in 
prior mammograms of interval-cancer cases through characterization and 
analysis of the angular spread of the magnitude and angle responses of Gabor 
filters, coherence, orientation strength, and power in the frequency domain. 
Quantification of angular spread is performed using higher-order Rényi 
entropy26,29 and Tsallis entropy26,30 along with Shannon’s entropy.26,28 

1.2 Experimental Setup and Database

A total of 158 mammographic images, including 52 images of 13 normal 
individuals and 106 prior mammographic images of 56 individuals diag-
nosed with breast cancer, were obtained from a database of 1,745 digi-
tized mammograms of 170 subjects from Screen Test: Alberta Program 
for the Early Detection of Breast Cancer.31,32 Ethics approval for the study 
was obtained from the Conjoint Health Research Ethics Board, Office of 
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Medical Bioethics, University of Calgary, and the Calgary Regional Health 
Authority. The film mammograms were digitized at the spatial resolution of 
50 mm and grayscale resolution of 12 bits per pixel using the Lumiscan 85 
laser scanner (Lumisys, Sunnyvale, CA).31 

Mammograms acquired in the last scheduled visit to the screening pro-
gram prior to the detection of cancer were included in the dataset, and 
labeled as “prior mammograms of interval-cancer cases.”12 The mammo-
grams on which cancer was detected (i.e., “diagnostic mammograms”) 
were not available for the present study. In consultation with the radiolo-
gist, all of the prior mammograms of interval-cancer cases available in the 
database have been included in the study, except six images in which no 
suspicious parts could be identified. The 106 prior mammograms of interval-
cancer cases were reviewed independently by a radiologist specializing in 
screening mammography (J.E.L.D.). 

The radiologist (J.E.L.D.) who analyzed and annotated the images used 
in the present study has more than 40 years of experience in mammog-
raphy, of which more than 20 years is in screening for breast cancer; he 
was also a member of the team of radiologists in the Screen Test Program 
and interpreted the mammograms at the original instances of screening. 
All cases of interval cancer were reviewed by a panel of five experienced 
radiologists in the screening program as part of the standard protocol. 
The laterality, location, and nature of architectural distortion and/or other 
signs of breast cancer were determined by the radiologists and pathologists 
involved in the diagnostic imaging and other investigations. 

Regions related to or suspected to contain architectural distortion were 
marked using rectangular boxes based on the reports available on subse-
quent imaging or biopsy, or by detailed inspection of the prior mammo-
grams. All but two of the 106 prior mammograms had been declared to be 
free of any sign of breast cancer at the time of their original acquisition and 
interpretation in the screening program; the other two mammograms had 
been referred for biopsy although no signs of malignancy were present. 
The time interval between the diagnostic mammograms (not available) 
and prior mammograms ranged from 1.5 months to 24.5 months, with an 
average of 15.5 months and standard deviation of 7 months. Each image 
contained a single site of architectural distortion as identified by the rec-
tangular box drawn by the radiologist. The average width, height, and area 
of the 106 suspicious parts of images marked by the radiologist are 56 mm, 
39 mm, and 2274 mm2, with standard deviation of 11.8 mm, 11.6 mm, and 
1073.9 mm2, respectively. 

In addition to the above, all normal cases in the database with at least 
two visits to the screening program were identified. The mammograms of 
the penultimate screening visits of the normal cases at the time of prepa-
ration of the database were obtained and included in the present study as 
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mammograms of normal cases. In this manner, 52 mammographic images 
of 13 normal control cases were obtained for the study. 

1.3 Methods

The application of Gabor filters and linear phase portrait analysis leads to 
the automatic detection of the locations of node-like intersecting or spicu-
lating patterns, including potential sites of architectural distortion; the pro-
cedure also results in the detection of a number of false-positive (FP) sites. 
The number of FPs is reduced through the characterization and analysis of 
angular spread. The flowchart shown in Fig. 1.1 gives an overview of the 
procedure for the detection of architectural distortion. 

− Orientation Field
− Coherence Image 
− Orientation Strength Image

− Original Image

− Gabor Magnitude ROI
− Orientation Field ROI
− Coherence ROI
− Orientation Strength ROI

Feature Extraction

− Fourier Magnitude Response of 

Logistic Regression

Classification of ROIs using FLDA,

− Shannon’s Entropy 

Computation of Entropy Measures of

Detected Sites of 
Architectural Distortion

Selection of Curvilinear Structures

  Filtering and Downsampling 
     of the Orientation Field

    Phase Portrait Modeling

Architectural Distortion
Detection of Potential Sites of 

and Classification of ROIs

*

Segmentation of the Breast Portion

Detected Sites of 

Application of a Bank of Gabor Filters

  Mammographic Image

Extraction of the Orientation Field,
Magnitude Response, Coherence, and

Orientation Strength

Selection of Regions of Interest (ROIs)

Architectural Distortion

Feature Selection using Stepwise  

the Angular Histograms:

Computation of Angular Histogram of:

Extraction of ROIs from:

QDA (Bayesian), and ANN Classifiers
Feature Extraction, Feature Selection,   

− Rényi Entropy
− Tsallis Entropy 

the Original ROI

− Gabor Magnitude Response

Figure 1.1 Flowchart	 of	 the	 procedures	 used	 to	 detect	 architectural	 distortion	
in	 prior	 mammograms.	 The	 steps	 in	 the	 box	 indicated	 with	 an	 asterisk	 (*)	 on	
the	left	side	are	shown	in	detail	on	the	right	side.	ANN:	artificial	neural	network;	
FLDA:	 Fisher-linear	 discriminant	 analysis;	 QDA:	 quadratic	 discriminant	 analy-
sis;	ROIs:	 regions	of	 interest.	 (Reproduced,	with	kind	permission	 from	Springer	
Science+Business	Media,	from	Ref.	26.	©	2012	Springer.)
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6	 Chapter	1

1.3.1 Detection of potential sites of architectural distortion

Each mammographic image was filtered and downsampled to 200 mm/
pixel and 8 bits/pixel. Potential sites of architectural distortion in the prior 
mammograms were detected initially by the analysis of oriented texture 
with the application of a bank of Gabor filters and constrained linear phase 
portrait models.22 The methods include steps for approximate segmenta-
tion of the breast portion in the mammographic image using Otsu’s thresh-
olding method and the morphological opening filter, as well as the use of 
a bank of 180 real Gabor filters with angles spaced evenly over the range 
[−π ∕2, π ∕2] to obtain the magnitude response and orientation field. 

Gabor filters are a category of filters obtained by the modulation of a 
Gaussian envelope by a sinusoidal function (real or complex).33 The real 
Gabor filter kernel oriented at −π ∕2 is given as34,35 

 

g x y
x y

x y x y

( , ) exp= − +
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2

1

2

2

2

2

2πσ σ σ σ







cos( ),2πf xo

 

(1.1)

where σx and σy are the standard deviation values in the x and y directions, 
and fo is the frequency of the modulating sinusoid. Kernels at other angles 
can be obtained by rotating this kernel over the range [−π ∕2, π ∕ 2] by using 
coordinate transformation.34,35 The parameters in Eq. (1.1) were derived by 
taking into account the size of the lines or curvilinear structures (CLSs) to 
be detected, as follows:34 

● Let τ be the full-width at half-maximum of the Gaussian term in Eq.  
(1.1) along the x axis. Then, σx = τ/(2 2ln2) = τ ∕ 2.35. 

● Let the period of the cosine term be τ; then, f0 = 1 ∕τ. 
● The value of σy is defined as σy = lσx, where l determines the elongation 

of the Gabor filter in the y direction, as compared to the extent of the 
filter in the x direction. 

● The parameter τ controls the scale of the filter. In the present work, for 
the detection of architectural distortion, τ = 4 pixels (corresponding to 
a thickness of 0.8 mm at the pixel size of 200 mm) and l = 8 were used. 
These values were determined empirically, by observing the typical spi-
cule width and length in mammograms with architectural distortion.34 

The Gabor filter provides the best compromise between spatial locali-
zation and frequency localization, as represented by the product between 
the spatial extent and the frequency bandwidth of the filter.33,36–38 In the 
present work, a bank of 180 real Gabor filters was used to detect features 
with positive contrast; the filtering operation was implemented in the 
frequency domain. Figure 1.2 demonstrates the use of Gabor filters for 
the detection of oriented patterns in two directions. The test image used  
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contains patterns oriented at many directions; the use of a Gabor filter ori-
ented at a particular direction extracts only those components of the image 
that are oriented at the particular direction chosen. 

The output of the bank of 180 real Gabor filters was used to derive the 
magnitude response, orientation field, coherence, and orientation strength 
images. The magnitude response and angle of the Gabor filter with 
the highest output for each pixel were used to construct the magnitude 
response and orientation field images. Subsequent procedures include the 
selection of the CLSs of interest (i.e., spicules and fibroglandular tissue), 
filtering and downsampling of the core CLS pixels, and application of the 
linear phase portrait modeling procedure with specific conditions applied 
to the filtered orientation field to yield node maps.22 

Phase portrait modeling39,40 is a method for the analysis of oriented 
texture that relies on the association of an image presenting an oriented 
textural pattern with the appearance of a phase portrait diagram and the 
corresponding parameters of a system of differential equations. When a 

(a)

(d) (e)

(b) (c)

Figure 1.2 Use	of	Gabor	filters	for	the	detection	of	oriented	patterns.	(a)		A	test	image	
of	size	601	×	601	pixels.	(b)	Impulse	response	of	a	Gabor	filter	oriented	at	135	deg;	
τ	=	1,	l	=	15	pixels.	(c)	Impulse	response	of	a	Gabor	filter	oriented	at	10	deg.	(d)	Gabor	
magnitude	 response	of	 the	 image	shown	 in	part	 (a)	after	filtering	with	 the	 impulse	
response	shown	in	part	(b).	 (e)	Gabor	magnitude	response	of	 the	 image	shown	 in	
part	(a)	after	filtering	with	the	impulse	response	shown	in	part	(c).	The	images	of	the	
impulse	responses	are	not	to	the	same	scale	as	the	other	images.	
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8	 Chapter	1

system of two linear, first-order, differential equations is linear and affine, 
it assumes the form 
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q t
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(1.2)

where &p(t) and &q(t) indicate the first-order derivatives with respect to time 
of the functions p(t) and q(t), respectively, A is a 2 × 2 matrix, and b is a 
2 × 1 column matrix (a vector). The center (p0, q0) of the phase portrait is 
given by the fixed point of Eq. (1.2): 
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(1.3)

Solving Eq. (1.2) yields a linear combination of complex expo-
nentials for p(t) and q(t), whose exponents are given by the eigenval-
ues of A multiplied by the time variable t. In this case, there are only 
three types of phase portraits: node, saddle, and spiral.41 The type of 
phase portrait can be determined from the nature of the eigenvalues of 
A22,34,39,40 as given by 

 
λ1

4

2
= +

−tr tr( )
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[ ( )] ( )2A A Adet

 
(1.4)

and 

 
λ2

4

2
= −

−tr tr( )

2

[ ( )] ( )2A A Adet
,
 

(1.5)

where tr (A) is the trace of matrix A, and det(A) is the determinant of A. 
Large orientation fields, such as those of mammograms, may contain 

complex patterns that are formed by superpositions of several patterns or 
overlapping structures; this may result in the presence of multiple focal 
points in the analysis of phase portraits. To perform the analysis of large 
orientation fields through phase portrait modeling, the analysis should be 
performed at multiple locations (within a small window), and the infor-
mation so acquired should be accumulated in a form that permits the 
identification of the various significant patterns or structures present in the 
overall orientation field. 
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Rao and Jain40 proposed the following method for the analysis of large 
orientation fields: 

1. Create three images, referred to as phase portrait maps, of the same 
size as that of the image or orientation field under analysis. Initialize the 
phase portrait maps to zero. 

2. Perform analysis by moving a sliding window throughout the orienta-
tion field. For every position of the analysis window, perform the fol-
lowing steps: 
(a) Use the local analysis procedure described above to find the opti-

mal parameters Aopt and bopt that best describe the orientation field 
within the analysis window. 

(b) Determine the type of phase portrait and the fixed-point location 
associated with the orientation field within the analysis window 
from Aopt and bopt. 

(c) Select the phase portrait map corresponding to the phase portrait 
type determined above and increment the value present at the pixel 
nearest to the fixed-point location. This procedure is referred to as 
vote casting. 

When all votes are cast, the phase portrait maps could be analyzed to 
detect the presence of patterns in the given image or orientation field. If 
a part of the orientation field is composed of oriented segments radiating 
from a central point, in a manner similar to a node pattern, it is expected 
that the node map will contain a large number of accumulated votes close 
to the geometrical focus of the observed pattern. Spiral and saddle patterns 
were found to be not related with the patterns of architectural distortion; 
therefore, they were discarded through constrained linear phase portrait 
analysis with additional conditions.14,22,34,42 

The peaks in the node map are expected to indicate potential sites of 
architectural distortion. Hence, the node map was analyzed by rank-ordering 
the peaks in the node map to detect peaks related to the sites of archi-
tectural distortion; however, the procedure also resulted in the detection 
of a number of FP sites.12–14 For each peak in the node map, a square 
region of interest (ROI) of size 128 × 128 pixels at 200 mm/pixel (except at 
the edges of the images) was automatically obtained; the center of the 
node peak was taken as the center of the corresponding ROI. The ROIs 
were labeled at the locations indicated by the peaks in the node map, in 
decreasing order of the node value of the peak, with up to a maximum of 
30 ROIs per mammogram.12–14 The automatically detected ROIs that had 
their centers within the rectangular parts of architectural distortion marked 
by the radiologist were manually identified as true-positive (TP) ROIs; 
the others were labeled as FP ROIs. Phase portrait analysis did not detect 
any TP ROI in one prior mammogram of an interval-cancer case; the  
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10	 Chapter	1

radiologist had indicated that the corresponding image had no clearly evi-
dent architectural distortion. 

The results of application of the methods described above are illustrated 
in Fig. 1.3 for a prior mammogram of an interval-cancer case. In Fig. 1.3(a), 
the rectangle shows the area of architectural distortion marked by the radi-
ologist (J.E.L.D.). The magnitude image and the orientation field resulting 
from the Gabor filters are shown in parts (b) and (c), respectively. The node 
map is shown in part (d) of the same figure; the most dominant peak is evi-
dent within the site of architectural distortion. Figure 1.3(e) shows all of 
the automatically detected ROIs obtained by the methods described above. 

From the 158 mammograms in the study, a total of 4224 ROIs (2821 from 
the 106 prior mammograms of interval-cancer cases with 301 related to the 
parts with architectural distortion, and 1403 from the 52 normal mammo-
grams) of size 128 × 128 pixels at 200 mm/pixel (except at the edges of the 
images) were automatically obtained. The number of FP sites was reduced 
through characterization and analysis of the angular spread of the magnitude 
and angle responses of Gabor filters, coherence, orientation strength, and 
power in the frequency domain, as discussed in the subsequent sections. 

1.3.2 Analysis of angular spread

In preliminary studies related to the present work, characterization of 
the angular spread of power in the frequency domain was found to be 
useful in the detection of architectural distortion.13,28 In this context, it is 
hypothesized that analysis of the angular histograms of the Gabor magni-
tude response, orientation field (angle response), coherence, and orienta-
tion strength could reveal important information regarding the presence of 
architectural distortion. It should be noted that only the Gabor orientation 
field is used in the initial step of phase portrait analysis; the Gabor magni-
tude response could also aid in the detection of architectural distortion, as 
demonstrated in the following sections. 

1.3.2.1 Angular spread of power in the frequency domain

The Fourier spectrum of an image with oriented texture contains direc-
tional spectral characteristics that may be used for the extraction of impor-
tant information regarding the objects and patterns present in the image.36 
The derivation of measures of angular spread, coherence, and orientation 
strength is described in the following sections. 

In order to perform analysis in the frequency domain, the 2D Fourier 
power spectrum of the ROI being processed was obtained with the appli-
cation of a radial von Hann (also known as Hanning) window18 and zero 
padding to the size of 256 × 256 pixels. The 2D power spectrum S(u, v) 
in the Cartesian coordinates (u, v) was mapped to the polar coordinates 
( f, θ) to obtain S( f, θ), by resampling and computing a weighted average 
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Figure 1.3	 (a)	The	prior	mammogram	of	an	interval-cancer	case.	The	rectangle	
is	of	size	49.4	mm	×	29.9	mm	and	 indicates	 the	 region	of	architectural	distortion	
identified	by	a	radiologist.	Image	size	1370	×	850	pixels	at	200	mm/pixel.	(b)	Magni-
tude	response	obtained	using	a	bank	of	180	real	Gabor	filters.	(c)	Orientation	field	
angle	superimposed	on	the	mammographic	image;	needles	are	drawn	for	every	15th	
pixel.	(d)	The	node	map	at	800	mm/pixel.	Each	asterisk	(*)	corresponds	to	a	peak	
position	detected	automatically	 in	 the	node	map.	The	numbers	next	 to	 the	aster-
isk	marks	 indicate	 the	peaks	in	descending	order	of	magnitude.	(e)	The	27	ROIs	
obtained	automatically	using	the	peaks	detected	in	the	node	map.	The	size	of	each	
ROI	is	128	×	128	pixels	at	200	mm	per	pixel	(except	at	the	edges).	(f)	Reduction	of	
FPs	for	the	image	shown	in	part	(e)	using	the	selected	features	and	the	Bayesian	
classifier	with	the	leave-one-patient-out	method;	only	the	top	five	ROIs	on	the	image	
based	on	the	discriminant	values	are	shown,	with	the	associated	average	sensitivity	
of	0.8	at	5.4	FP/patient.	The	numbers	outside	the	parentheses	represent	the	ranking	
based	on	the	discriminant	values	obtained	by	the	Bayesian	classifier,	and	the	num-
bers	within	the	parentheses	represent	the	earlier	ranking	based	on	the	node	value.	
(Reproduced	with	permission	from	Ref.	28.)
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12	 Chapter	1

of the four neighbors of each pixel for radial distance f ranging from zero 
to half the sampling frequency and over the range of angle θ = [0, 179] deg. 
Although the power spectra of ROIs are transformed from rectangular to 
polar coordinates, the results are presented and processed further in rec-
tangular arrays for ease of computation and representation. 

The center (DC frequency) of S(u, v) corresponds to pixel (129, 129). 
Therefore, for a pixel (fk, θk) in S(f, θ), uk = fk cos θk + 129, and vk = 129 − 
fk sin θk, where (uk, vk) are the coordinates of a pixel in S(u, v); see the sche-
matic diagram in Fig. 1.4 (a). The value of S(fk, θk) was computed by taking 
the weighted average of the values of the four neighboring pixels. Defining 
u1 = floor (uk), u2 = ceil (uk), v1 = floor (vk), and v2 = ceil (vk), we have 

S f
d d d d

d S u v d S uk k( , )
( )

[ ( , ) (
1 2 3 4

1 1 1 2 1θ =
+ + +

+
1
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see the schematic diagram in Fig. 1.4(b). The weights are important to maintain 
homogeneity and continuity for continuous-to-discrete transformation (i.e., to 
reduce the estimation error) and also to account for border pixels. Although 
the Hankel transform43 and the Fourier transform in polar coordinates have 

Figure 1.4	 Schematic	 representations	 of	 (a)	 coordinate	 transformation	 and	
(b)	computation	of	the	weighted	average	of	the	transformed	pixel.
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been used for texture analysis and pattern recognition,44 the method described 
in the present chapter to characterize the angular spread of power is novel and 
is shown to be effective for the analysis of oriented texture. 

To obtain the angular spread of power in the frequency domain, the 
geometrically transformed 2D Fourier power spectrum S( f, θ), was trans-
formed into a 1D function S(θ), by integrating as a function of the angle 
θ (for the range [0, 179] deg) from the zero-frequency point over radial 
distance f = [6, 96] pixels. Selected low- and high-frequency regions were 
excluded so as to remove the effects of the low-frequency components 
related to the overall appearance of the image and the large structures 
present in the image, as well as to prevent the effects of high-frequency 
noise. The band of frequencies to be excluded (i.e., the nonlinear portion) 
was selected based on experimentation.13 

1.3.2.2 Coherence

In the method for the computation of coherence, the orientation informa-
tion at each pixel is represented by a pair of magnitude and orientation 
values. The method is based on a pixel’s neighborhood that provides the 
dominant orientation in an average sense and the degree of alignment of 
the orientation information for each pixel in the neighborhood with respect 
to the dominant orientation.39,45 The dominant orientation can be computed 
as the orientation that maximizes the coherence. 

Let G (m, n) and θ (m, n) denote the magnitude and orientation at the point 
(m, n) in an image, respectively, and P × P be the size of the neighborhood 
around (p, q) used for computing the dominant orientation, ψ (p, q). In the 
present work, G(m, n) and θ (m, n) are obtained from the Gabor magnitude and 
phase response. The projection of G (m, n) onto the orientation vector at (p, q) 
with angle θ (p, q) is given by G (m, n) cos[θ (m, n) − θ(p, q)]. 

The sum-of-squares SG of the projection of the Gabor response com-
puted at each pixel of the neighborhood with respect to the dominant ori-
entation specified by Θ is given as 
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(1.8)

The sum-of-squares SG varies as the reference orientation Θ is varied 
and attains its maximum when Θ is perpendicular to the dominant orien-
tation that corresponds to the underlying texture in the given neighbor-
hood.39 Differentiating SG with respect to Θ yields 
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By setting dS

d
G

Θ = 0 and further simplifying the result, the solution for 
Θ = Θ( p, q) that maximizes SG at the point (p, q) in the image is given by39 
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The second derivative d S

d
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2Θ
 is given as 
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Setting Eq. (1.11) to zero and solving the resulting equation yields the 
estimated dominant angle of the texture ψ(p, q) at (p, q) in the image to be 

 ψ π( , ) ( , ) /p q p q= +Θ 2. (1.12)

The coherence γ ( p, q) at a pixel (p, q) is given by the cumulative sum 
of the projections of the Gabor magnitude responses for the pixels in a 
window of size P × P, in the direction of the dominant orientation at the 
point ( p, q) under consideration,39,45 as 
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(1.13)

in the present work P = 15, with ( p, q) being located at the center of the 
P × P window. 

1.3.2.3 Orientation strength

For computation of the orientation strength, it is assumed that, rather than 
being a single value, the orientation information at a pixel is represented 
by a function G(θ) that provides the strength of orientation (at the pixel 
location) in the underlying image for each angle θ. The measure of orienta-
tion strength at each pixel is computed, in the present work, as a weighted 
average of the Gabor magnitude responses Gk(m, n) for all directions of the 
filters used, θk, k = 0, 1, 2, . . . , 179, as 
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This measure may also be termed as “alignment energy.”
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The results of application of the methods for computing the coherence 
and orientation strength are illustrated in Fig. 1.5 for the mammographic 
image shown in Fig. 1.3(a). It can be seen that the coherence and orien-
tation strength images appear similar to the Gabor magnitude response 
images: both images have high responses for oriented structures. However, 
coherence represents an average measure of alignment with reference to 
a specified angle over a neighborhood; on the other hand, the orientation 
strength takes into account the possibility of the presence of multiple struc-
tures oriented in several directions intersecting at the pixel considered. 

1.3.3 Characterization of angular spread

Three angular histograms or rose diagrams with 60 bins equally spaced 
over the angular range of [−89, 90] deg were generated using the Gabor 
magnitude response, coherence, and orientation strength for each ROI 
based on the orientation field angle at each pixel. Another rose diagram 
was obtained using only the orientation field angle. To quantify the dis-
tribution based on the magnitude response, orientation field angle, coher-
ence, and orientation strength, three entropy measures (Shannon’s entropy, 
Tsallis entropy, and Rényi entropy) of each rose diagram, F (θ), were com-
puted, after being normalized to have unit sum. 

The angular spread of power in the frequency domain, S (θ), as 
obtained by the procedure described in the Section 1.3.2.1, was also 
included in the analysis,13,28 and the three measures of entropy as above 
were computed. 

Figure 1.5	 (a)	Coherence	and	(b)	orientation	strength	images	for	the	mammo-
gram	shown	in	Fig.	3(a).	(Reproduced	with	permission	from	Ref.	28.)

(a) (b)

SRBK002-C01_01-40.indd   15 1/21/13   4:50 PM



16	 Chapter	1

Figures 1.6 and 1.7 illustrate the angular distributions (i.e., rose dia-
grams) obtained as above for the characterization of the angular spread 
of a TP ROI and an FP ROI, respectively. TP ROIs typically have pat-
terns oriented in multiple directions, and the corresponding rose diagrams 
are expected to contain a wide distribution of power spread over several 
angular bands. On the contrary, FP ROIs are not expected to have pat-
terns oriented in multiple directions, and the related rose diagrams should 
contain a narrower distribution of power over fewer angular bands. The 
quantification of angular histograms is discussed in detail in the subse-
quent sections. 

1.3.4 Measures of angular spread

Entropy is a measure of information (in terms of order, disorder, or 
probability of occurrence) in a given set of data. Because texture can be  

Figure 1.6	 (a)	A	128	×	128-pixel	mammographic	TP	ROI	with	architectural	distor-
tion.	(b)	Gabor	magnitude	response.	(c)	Orientation	field	with	angles	in	the	range	
[−π/2,	π/2]	mapped	to	the	grayscale	range	[0,	255].	(d)	Coherence.	(e)	Orientation	
strength.	 (f)	Angular	 histogram	 of	 power	 based	 on	 the	 Fourier	 spectrum	 of	 the	
image	in	(a).	(g)–(j)	Angular	histograms	of	(b)–(e).	Shannon’s	entropy	(HS),	Tsallis	
entropy	(HT)	of	order	two,	and	Rényi	entropy	(HR)	of	order	eight,	respectively,	are:	
(f)	7.3940,	0.9930,	6.6152;	(g)	5.7950,	0.9807,	5.2649;	(h)	5.8266,	0.9814,	5.4102;	
(i)	5.7812,	0.9803,	5.2173;	and	 (j)	5.7756,	0.9802,	5.2218.	Note:	HS	max	=	 7.49,	
HT	 max	 =	 0.9944,	 HR	 max	 =	 7.49	 for	 rose	 diagrams	 of	 type	 (f)	 with	 180	 bins,	 and	
5.91,	0.9833,	and	5.91,	respectively,	for	the	types	in	(g)–(j)	with	60	bins.	The	rose	
diagram	in	(f)	has	been	rotated	by	−90	deg	to	match	the	rose	diagrams	in	(g)–(j).	
(Reproduced	with	permission	from	Ref.	28.)

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
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Figure 1.7  (a)	A	128	×	128-pixel	mammographic	ROI;	the	ROI	represents	an	FP	
detection	due	to	overlapping	or	intersecting	normal	structures.	(b)	Gabor	magnitude	
response.	(c)	Orientation	field	with	angles	 in	 the	 range	 [−π/2,	π/2]	mapped	 to	 the	
grayscale	range	[0,	255].	 (d)	Coherence.	(e)	Orientation	strength.	 (f)	Angular	his-
togram	of	power	based	on	the	Fourier	spectrum	of	the	image	in	(a).	(g)–(j)	Angular	
histograms	of	 (b)–(e).	Shannon’s	entropy	 (HS),	Tsallis	 entropy	 (HT	)	 of	 order	 two,	
and	Rényi	entropy	(HR)	of	order	eight,	respectively,	are:	(f)	7.2101,	0.9919,	6.4858;	
(g)		5.5173,	0.9731,	4.6310;	(h)	5.6554,	0.9769,	4.9137;	(i)	5.4814,	0.9721,	4.5846;	
and	(j)	5.5454,	0.9739,	4.7111.	Note:	HS	max	=	7.49,	HT	max	=	0.9944,	HR	max	=	7.49	for	
rose	diagrams	of	type	(f)	with	180	bins,	and	5.91,	0.9833,	5.91,	respectively,	for	the	
types	in	(g)–(j)	with	60	bins.	The	rose	diagram	in	(f)	has	been	rotated	by	−90	deg	to	
match	the	rose	diagrams	in	(g)–(j).	(Reproduced	with	permission	from	Ref.	28.)

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

considered as a representation of the surfaces of objects and surfaces are 
often composed of features with multiple orientations, analysis of the 
entropy of a given image may be a useful approach to the problem of tex-
ture classification.12,13,28–30,36,46

1.3.4.1 Shannon’s entropy

The most commonly used measure of order in a dynamical system is Shannon’s 
(or Boltzmann–Gibbs) entropy.47,48 Shannon’s entropy is defined as 

 
H p pS i i

i

= −∑ log ,2

 
(1.15)

where pi is the probability of occurrence of an event i, or the value of bin i 
is a normalized rose diagram. The measure has its maximal value when all 
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events are equally likely (pi = 1 ∕N, with N being the number of events or 
bins). HS has the additivity (extensivity) property as 

 
H A B H A H BS S S( ) ( ) ( ),U = +

 
(1.16)

where A and B are two independent subsystems with p ( )A BU  = p(A)p(B). 
However, Shannon’s entropy may not be able to characterize sys-

tems with long-range interactions, long-term memory effects, or 
abrupt changes.49 In this context, the use of higher-order entropy, such 
as Tsallis entropy and Rényi entropy,48,50 which are generalized forms 
of Boltzmann’s or Gibbs’ traditional entropy, could be used as alterna-
tives of the typical entropy measures. Tsallis and Rényi entropies are 
both appropriate choices for a system with q-exponential behavior (an 
identity in the variable q that provides a known result in the limit, as 
q → 1 for an exponential function).50 

1.3.4.2 Tsallis entropy 

Tsallis entropy, a generalized form of Boltzmann–Gibbs entropy, is 
defined as50–52 

 
H q

p

qT
i
q

i( )
( )

,=
−

−
∑1

1  
(1.17)

where q is the moment order. Tsallis entropy is a generalized form of 
Shannon’s traditional entropy49–51 and is a nonextensive (scale-invariant) 
quantity for statistically independent subsystems. The parameter q meas-
ures the degree of nonextensivity. When q → 1, Tsallis entropy recovers 
the definition of Shannon’s entropy as follows:49–51

 

H q
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Tsallis entropy reaches its maximum when the probability of occur-
rence is the same for all events (pi = 1 ∕ N, N is the number of events or 
bins); the maximum value of Tsallis entropy is given by49,51,52 

 
H

N

qT

q

max .=
−

−

−1 1

1  
(1.19)

In the limit q → 1, HT max = ln N. 
Tsallis entropy has found applications in physics, thermodynamics, and 

biomedical engineering.49,53,54 It should be noted that the parameter q meas-
ures the degree of nonextensivity. The pseudo-additivity rule, in this case, is 

 H A B H A H B q H A H BT T T T T( ) ( ) ( ) (1 ) ( ) ( ),U = + + −  (1.20)

where q < 1, q = 1, and q > 1 correspond to superextensive, extensive, 
and subextensive statistics, respectively.49,55 The parameter q plays an 
important role in the result of computation of HT for a given N. However, 
there has been no established rule for optimizing the value of q other than 
through experimentation based on some predefined criteria and their char-
acteristics.49,56 In order to quantify the angular spread of power, Tsallis 
entropy was computed for the five angular distributions derived for each 
ROI for various values of the order q. Based on an analysis of the per-
formance using the area under the receiver operating characteristic (ROC) 
curves (Az value), Tsallis entropy of second order was selected for further 
use in the present work. The value of HT decreases monotonically with the 
increase of q.55 Figure 1.8(a) illustrates the variation of Tsallis entropy 

Figure 1.8	 Variation	of	(a)	Tsallis	entropy	and	(b)	Rényi	entropy	values	with	sev-
eral	orders	q	for	the	TP	(solid	line)	and	FP	(dashed	line)	Gabor	magnitude	ROIs	
shown	in	Figs.	1.6(b)	and	1.7(b),	respectively.	Shannon’s	entropy	values	are	also	
shown	for	reference	with	the	diamond	mark.	
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values with several orders, q ∈ [0.5, 3], for the TP and FP Gabor magnitude 
ROIs shown in Figs. 1.6(b) and 1.7(b), respectively; Shannon’s entropy is 
also shown for reference. 

1.3.4.3 Rényi entropy 

Rényi entropy48,50 is given by 

 
H q

q
pR i

q

i

( )
(1 )

log2=
− ( )∑1

.
 

(1.21)

Rényi entropy is a generalized form of Shannon’s traditional entropy 
and is an extensive quantity for statistically independent subsystems, con-
cave only for 0 < q < 1. Rényi entropy tends to Shannon’s entropy as 
a special case when q → 1. Shannon’s entropy is an averaged measure 
of information in the ordinary sense, whereas Rényi’s measure repre-
sents an exponential mean over the same elementary information gains of 
log2(1∕pi).

50 Rényi entropy has an additivity property similar to that 
of Shannon’s entropy and reaches its maximum when the probability  
of occurrence is the same for all events (pi = 1 ∕N). The maximum value of 
Rényi entropy is given by57 ln N in the limit q → 1, when the probability 
of occurrence is the same for all events. The parameter q can be varied to 
make Rényi entropy more or less sensitive to the shape of probability dis-
tribution of the data being analyzed. Rényi entropy has been widely used 
in multifractal theory,58 texture classification,59 pattern recognition, and 
image segmentation.60,61 

To quantify angular spread, Rényi entropy was computed for the five 
angular distributions derived for each ROI for various orders q. Based on 
an analysis of the classification performance using the Az values, Rényi 
entropy of eighth order was selected for further use in the present work; 
other works58 have used −10 ≤ q ≤ 10. Figure 1.8(a) illustrates variations 
of Rényi entropy values for several orders q ∈ [−10, 10] for the TP and 
FP Gabor magnitude ROIs shown in Figs. 1.6(b) and 1.7(b), respectively; 
Shannon’s entropy is also shown for reference. 

For a mammographic image, it is not feasible to characterize the 
underlying process as an extensive or a nonextensive system. Mammo-
grams of breasts with higher amount of fat content have been found 
to exhibit higher levels of nonextensiveness and fractal content.56 The 
present study explores the application of entropy measures for both 
nonextensive and extensive systems in the form of Tsallis and Rényi 
entropy. 

Due to the presence of spiculation radiating at several angles, TP ROIs 
are expected to have a wide angular spread of power.13 On the other hand, 
most FP ROIs were observed to contain a few intersecting ligaments, 
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ducts, or vessels with the power limited to a small number of angular 
bands. Figures 1.6 and 1.7 illustrate the results of the procedures for the 
characterization of angular distribution with a TP ROI and an FP ROI, 
respectively. The values of the three entropy measures are given in the 
captions. 

Table 1.1 lists the Az values obtained for the 15 features used in the 
present study. The Az value of each of the features is presented for the full 
dataset of interval-cancer cases including normal control cases. 

1.3.5 Feature selection and pattern classification

In performing classification tasks, numerous features may be extracted, 
but only a small number of them may have high discriminative capabil-
ity.62 The removal of noisy and irrelevant features can help to improve the 
performance of the classifier. In addition, time, labor, and expense can 
be saved by extracting only high-performance features. Feature selection, 
more precisely, feature subset selection, is the process of finding a reduced 
set of r features out of the given set of d features according to a given 
selection criterion.62 In a classification-oriented feature selection proce-
dure, the r selected features are expected to produce fewer classification 
errors.63 In the present work, feature selection is performed using stepwise 
logistic regression. 

Table 1.1  List	of	features	for	characterization	of	angular	spread	with	Az	values	
for	the	dataset	of	interval-cancer	cases	including	normal	control	cases.	HS1–HS5:	
Shannon’s	entropy	measures;	HT	1–HT	5:	Tsallis	entropy	measures	of	order	 two;	
and	HR1–HR5:	Rényi	entropy	measures	of	order	eight.	(Reproduced,	with	kind	per-
mission	from	Springer	Science+Business	Media,	from	Ref.	26.	©	2012	Springer.)

Symbol  Feature  Az 

HS1 
HS2 
HS3 
HS4 
HS5 
HT 1 
HT 2 
HT 3 
HT 4 
HT 5 
HR1 
HR2 
HR3 
HR4 
HR5 

power in the frequency domain 
Gabor magnitude response 
Gabor angle response 
coherence 
orientation strength 
power in the frequency domain 
Gabor magnitude response 
Gabor angle response 
coherence 
orientation strength 
power in the frequency domain 
Gabor magnitude response 
Gabor angle response 
coherence 
orientation strength 

0.64 
0.68 
0.63 
0.68 
0.62 
0.64 
0.68 
0.64 
0.68 
0.63 
0.64 
0.69 
0.67 
0.69 
0.67 
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Logistic classification is a widely used statistical method for feature 
selection and/or classification based on the probability of occurrence of 
an event by fitting data to a logistic regression model.36,64 The logistic 
regression model is a generalized linear model used for binomial regres-
sion and is applicable to problems associated with the classification of 
patterns into one of two classes. Studies indicate that in the case of a 
binary response variable, the logistic response function is usually cur-
vilinear and is referred to as a sigmoidal function with a typical shape 
of either a tilted “S” or as a reversed and tilted “S”. The function can be 
considered to be linear except at the shoulder or toe region with asymp-
totes at 0 and 1. In pattern classification using logistic regression, an 
event is typically defined by the membership of a pattern vector in one 
of the two classes under consideration;36 based on the given parameters, 
a response variable constrained to the range [0, 1] is computed. As a 
result, the variable may be considered as the probability of belonging to 
a class, and the probability of the pattern vector belonging to the other 
class can be obtained by calculating the difference between unity and the 
estimated value for the former class. 

For ROC analysis, two classical classifiers, namely Fisher linear discri-
minant analysis (FLDA) and quadratic discriminant analysis (QDA) with 
Bayesian assumption,65 and an artificial neural network (ANN) classifier 
were used in the present work. FLDA is based on a linear projection of 
the given M-dimensional feature data onto a line, with the expectation 
that such projections will be well separated by class; as such, the line is 
oriented to maximize class separation. 

The Bayesian approach is based on quantifying the tradeoffs between 
various classification decisions using probability and the costs that accom-
pany such decisions. For a binary classification problem, consider a set of 
observations x, with p(x|C1) and p(x|C2) being both normally distributed 
with mean and covariance (m1, ∑1) and (m2, ∑2), respectively. Bayes’ opti-
mal solution can be obtained by classifying the component as being from 
class C1 if the log-likelihood ratio is less than some threshold T ,65,66 as 

 

( ) ( ) ln ( ) ( )x x x x− − + − − −
−∑ ∑µµ µµ µµ µ2 22

1

2 1 11
T T −−∑

− + <∑

1

1
ln ln

( )

( )
,1

2

P C

P C
T

 
(1.22)

where P(C1) and P(C2) are the prior probabilities of the two classes, and T 
is independent of the observation x. 

Without any further assumption, the classification procedure as above 
is a typical QDA; with the Bayesian assumption, it is, hereafter, referred to 
as the Bayesian classifier. 
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In practical applications of pattern recognition, prior knowledge about 
the probabilities of an element or pattern belonging to the classes of  
concern could be unavailable; classical methods of pattern classification 
may not be applicable in such cases.65 In this context, a classifier that can 
acquire and store relevant knowledge from its environment through a learn-
ing process would be more suitable. ANNs are such classifiers and could be 
effective in solving complex and nonlinear classification problems through 
adaptive learning, input-output mapping, and evidential response.67 The 
ANN used in the present work consists of a single hidden layer with  
10 neurons and the logistic activation function;67 the ANN was trained 
and tested with the leave-one-patient-out method. The neurons in the out-
put layer of the ANN classifier used have a pure linear activation func-
tion. The Levenberg–Marquardt algorithm67 with an initial learning rate 
of 0.05 was selected for fast and robust training with the backpropagation 
method. 

In the present work, ROC curves, Az values, and the associated p-values 
of the differences of the ROC curves were obtained by using ROCKIT, 
a widely used software package developed at the University of Chicago 
(Chicago, IL).68 ROCKIT uses maximum likelihood estimation to fit a 
binormal ROC curve to continuously distributed data or ordinal category 
data. 

Free-response ROC (FROC) is a method of collecting observer per-
formance data where the observer marks and rates suspicious regions 
in the images.69–71 FROC analysis was used to assess the FP rate for 
a given level of sensitivity when the classification of automatically 
detected and segmented ROIs was placed in the context of detection of 
architectural distortion in the mammograms of the patient. In generating 
FROC curves using the leave-one-patient-out method, the TP ROI with 
the highest discriminant value in one of the two images (except six cases 
with only one image per case) was considered. The results of FROC 
analysis are reported in the text and tables for sensitivities of 0.8 and 0.9, 
unless otherwise specified. The jackknife alternative FROC (JAFROC) 
software package (version 4.1)69,70 was used for statistical analysis of the 
FROC data. It should be noted that the results of FROC analysis in most 
of our previous works were reported based on the leave-one-image-out 
procedure. 

1.4 Results

1.4.1 Analysis with various sets of features

The results of analysis of the ROC and FROC curves with various sets of 
selected features from the total set of 15 features obtained using several 
classifiers are listed in Table 1.2. Feature selection was performed with 
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stepwise logistic regression and the leave-one-patient-out method for ROC 
and FROC analysis. As a result, different features can be selected for each 
classification step; based on the histograms of the selection of features, the 
most frequently selected features are also shown in Table 1.2. 

With the node value only, i.e., the results after the application of Gabor 
filters and phase portrait analysis, the Az value obtained was 0.61; sensitiv-
ities of 0.8 and 0.9 were obtained at 8.1 and 13.9 FP/patient, respectively. 
The results indicate that node value alone is not adequate for accurate 
classification of the ROIs and detection of architectural distortion, and that 
more features need to be incorporated for proper characterization of archi-
tectural distortion. 

1.4.2 Statistical significance of differences in ROC analysis

In ROC analysis, the results obtained using all of the features studied are 
better than those obtained using the individual feature sets. The results of 
analysis of the statistical significance of the differences between the vari-
ous ROC and FROC curves obtained are presented in Tables 1.3 and 1.4, 
respectively. Because the ANN classifier was found to perform well in 
ROC analysis and the Bayesian classifier performed well in FROC analy-
sis, the results of the ANN classifier and the Bayesian classifier were used 
for the analysis of the statistical significance of the differences between 
ROC curves and FROC curves, respectively. 

Table 1.2 Results	of	ROC	and	FROC	analysis	using	 the	selected	 features	
based	on	stepwise	 logistic	 regression	 for	several	 types	of	 feature	sets.	The	
dataset	includes	106	prior	mammograms	of	 interval-cancer	cases	as	well	as	
52	normal	control	mammograms.	Feature	selection	and	pattern	classification	
were	performed	using	the	leave-one-patient-out	method.	FLDA:	Fisher	linear	
discriminant	 analysis;	 Bayes:	 Bayesian	 classifier;	ANN:	 artificial	 neural	 net-
work;	HS1–HS5:	Shannon’s	entropy	measures;	HT1–HT5:	Tsallis	entropy	mea-
sures	 of	 order	 two;	 and	 HR1–HR5:	 Rényi	 entropy	 measures	 of	 order	 eight.	
The	best	ROC	and	FROC	results	are	highlighted	 in	bold.	 (Reproduced,	with	
kind	permission	from	Springer	Science+Business	Media,	from	Ref.	26.	©	2012	
Springer.)

Type of 
input  

features 
Most frequently  
selected features 

ROC analysis (Az)

FROC analysis  
(FP/patient at the  

sensitivities shown) 

Bayes ANN

FLDA  Bayes  ANN  80%  90%  80%  90% 

HS1–HS5 
HT1–HT5 
HR1–HR5 

All

HS2, HS1, HS3, HS5 
HT2, HT1, HT3, HT5 
HR2, HR1, HR3, HR5 

HR2, HR3, HS1, HT5, HS3 

0.72
0.72
0.72
0.73

0.72
0.71
0.72
0.73

0.71 
0.73 
0.74 
0.75 

 7.0
 5.9
 5.8
 5.2

8.0
7.5
9.1
7.4

 6.2
 7.0 
 6.1
 6.0

8.7
9.3
9.5
8.2
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Table 1.3 gives measures of the statistical significance of the differences 
between the ROC curves generated using the ANN classifier and the leave-
one-patient-out method for the four sets of selected features as well as the 
node value. The results obtained using the selected features from all types 
of entropy measures show statistically highly significant improvement 
over the results obtained with the node value and Shannon entropy. The 
ROC performance obtained using a combination of all types of entropy 
measures is better, with statistical significance, than that obtained with the 
Tsallis entropy measures. 

1.4.3 Reduction of FPs

The FROC curves obtained using the Bayesian classifier with the features 
selected by stepwise logistic regression are shown in Fig. 1.9 for all of 
the sets of features listed in Table 1.2. The FROC curves obtained using 
each set of features and the combination of all features indicate substantial 
reductions in the number of FPs/patient (above the sensitivity level of 0.7) 
in the detection of architectural distortion compared to the initial stage of 
the study, that is, node analysis. 

Table 1.3 Analysis	of	 the	 statistical	 significance,	 using	 the	 p-value,	 of	 the	dif-
ferences	between	 the	ROC	curves	obtained	using	 the	ANN	and	 the	 leave-one-
patient-out	method	for	the	selected	features	from	the	various	types	of	feature	sets.	
The	p-values	were	estimated	using	ROCKIT	(up	to	four	decimal	places).	Values	
representing	 statistically	 significant	 differences	 are	 highlighted	 in	 bold.	 (Repro-
duced,	 with	 kind	permission	 from	Springer	Science+Business	Media,	 from	 Ref.	
26.	©	2012	Springer.)

Feature set  HS  HT  HR  All 

Node 
HS 
HT 
HR 

0.0000
  
  
  

0.0000
0.2381

  
  

0.0000
0.0825
0.0020

  

0.0000
0.0003
0.0291
0.1387

Table 1.4 Analysis	of	the	statistical	significance,	using	the	p-value,	of	the	differ-
ences	between	the	FROC	curves	obtained	using	the	Bayesian	classifier	and	the	
leave-one-patient-out	 method	 for	 the	 selected	 features	 with	 the	 various	 feature	
sets.	The	p-values	were	estimated	using	JAFROC.	Values	 representing	statisti-
cally	significant	differences	are	highlighted	in	bold.	(Reproduced,	with	kind	permis-
sion	from	Springer	Science+Business	Media,	from	Ref.	26.	©	2012	Springer.)

Feature set  HS  HT  HR  All 

Node 
HS 
HT 
HR 

0.0193
  
  
  

0.0417
0.0974

  
  

0.0177
0.0449
0.2590

  

0.0128
0.1523
0.4014
0.1581
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The reduction of FPs in the final result is illustrated in Fig. 1.3(f ) for 
the mammogram shown in part (e) of the same figure. The results obtained 
using the selected features with stepwise logistic regression and the Bayesian 
classifier with the leave-one-patient-out method are presented; only the top 
five ROIs based on the discriminant values of the features of the same image 
are shown; the other view of the breast is not illustrated. The numbers out-
side the parentheses represent the ranking based on the discriminant values 
obtained by the Bayesian classifier, and the numbers within the parentheses 
represent the earlier ranking based on the node value. From Fig. 1.3(f ), it 
is evident that the use of the selected features has led to a substantial reduc-
tion of FPs in the detection of architectural distortion; even if only the top 
six ROIs per patient (5.2, on the average, to be precise) are considered, the 
average sensitivity remains above 80% over the entire dataset including the 
normal control cases. 

1.4.4 Statistical significance of the differences in FROC analysis

Table 1.4 illustrates the statistical significance of the differences in FROC 
results, using the Bayesian classifier and the leave-one-patient-out method, 
for the four sets of selected features as well as the node value, obtained 
by comparing the discriminant values using JAFROC.69,70 The discriminant 
values obtained for FROC analysis with each of the selected feature sets per-
form better than the node value with statistical significance. The differences 
between the FROC curves for the sets of the discriminant values obtained 
with all types of entropy measures combined and the individual types of 
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Figure 1.9	 FROC	curves	for	the	dataset	of	106	prior	mammograms	of	interval-
cancer	 cases	 and	 52	 normal	 control	 mammograms	 with	 the	 selected	 features	
from	various	sets	of	features	using	stepwise	logistic	regression	and	the	Bayesian	
classifier	with	the	leave-one-patient-out	method.	(Reproduced,	with	kind	permis-
sion	from	Springer	Science+Business	Media,	from	Ref.	26.	©	2012	Springer.)

SRBK002-C01_01-40.indd   26 1/21/13   4:50 PM



Detection	of	Architectural	Distortion	in	Prior	Mammograms	.	.	.	 27

entropy measures are not statistically significant; therefore, any one of the 
sets of features HS, HT, or HR may be used. However, it is evident from all 
of the results listed in Table 1.2 that the combination of all types of entropy 
measures studied in the current work could be used to facilitate efficient 
detection of architectural distortion in prior mammograms. 

1.4.5 Effects of the initial number of ROIs selected

In the present work, the top 30 ROIs obtained from the analysis of the node 
map for each mammogram have been chosen for further analysis based 
on experimentation across several datasets (see Banik et al.13) for obtain-
ing high and consistent sensitivities. The selection of the top 30 ROIs per 
image provided a maximum sensitivity of 99% for the dataset used in the 
present study. If only the top 10 or 20 ROIs were to be selected per image, 
the maximum sensitivities that can be obtained would be 80% and 98%, 
respectively, for the dataset under consideration. Table 1.5 illustrates the 
effects of the number of ROIs selected at the initial stage of the study; 
the Az values are presented for the full dataset of interval-cancer cases 
including normal control cases. It is evident that our strategy of choosing 
up to 30 ROIs per image and allowing high sensitivity at the initial stage, 
even at the cost of a high FP rate, is appropriate. The subsequent steps of 
feature extraction and classification have significantly reduced the FP rate, 
as expected. 

1.5 Discussion

Using all of the 15 features related to the measures of angular spread, the 
most frequently selected features with stepwise logistic regression and the 

Table 1.5 Effects	of	the	number	of	ROIs	selected	at	the	initial	stage	of	the	study.	
The	ROC	and	FROC	curves	were	obtained	with	the	selected	features	from	the	set	
of	all	features	using	an	ANN	and	the	Bayesian	classifier,	respectively,	with	the	leave-
one-patient-out	method.	The	maximum	sensitivity	achieved	is	reported	in	terms	of	
the	106	images	with	architectural	distortion.	(Reproduced,	with	kind	permission	from	
Springer	Science+Business	Media,	from	Ref.	26.	©	2012	Springer.)

Initial number 
of ROIs/image 

Maximum  
sensitivity achieved 

With node value only 
With the selected  

features 

Az value 
FP/patient at 

80% sensitivity  Az value 
FP/patient at 

80% sensitivity 

10 
15 
20 
25 
30 

80% 
91% 
98% 
99% 
99% 

0.52 
0.55 
0.56 
0.59 
0.61 

9.3 
8.4 
8.2 
8.1 
8.1 

0.68 
0.71 
0.69 
0.73 
0.75 

6.0 
5.4 
5.9 
5.7 
5.2 
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leave-one-patient-out method were found to be HR2, HR3, HS1, HT 5, and 
HS3. This selection represents a combination of all of the three types of 
entropy measures used, i.e., Shannon’s entropy, Tsallis entropy, and Rényi 
entropy, and four of the five types of angular distributions proposed. The 
selected features resulted in the Az value of 0.74 with the ANN classifier; 
a sensitivity of 0.8 was obtained at 5.2 FP/patient with the Bayesian 
classifier. The results indicate that the measures of angular spread have a 
strong capability of characterizing the oriented texture related to architec-
tural distortion. 

1.5.1 Comparative analysis with related previous works

In a related work,28 the node value and the measures for characterization of 
the angular spread of power were used. For characterization of the angular 
spread, each ROI was represented by the Shannon entropy of the angular 
histogram composed with the Gabor magnitude response, angle, coher-
ence, and orientation strength; the entropy of the angular spread of power 
in the Fourier spectrum was also used. An Az value of 0.76 was obtained 
using an ANN based on radial basis functions (RBFs); FROC analysis 
indicated 82% sensitivity at 7.2 FP/image. Similar studies were conducted 
separately on the same dataset using Tsallis entropy30 and Rényi entropy29 
for characterization of the angular spread of power: Az values of 0.74 and 
0.75 were obtained, respectively, using an ANN-RBF. FROC analysis indi-
cated a sensitivity of 0.80 at 7.1 FP/image using the leave-one-image-out 
method with an ANN classifier for both cases.29,30 

Characterization and analysis of the angular spread of power in the fre-
quency domain, angular distributions of the magnitude and angle responses 
of Gabor filters, coherence, and orientation strength could provide important 
information regarding the spiculating patterns of architectural distortion. Due 
to the presence of spiculation radiating at several angles, TP ROIs should 
show a wide angular spread of power, whereas most FP ROIs should show 
the power limited to a small number of angular bands. The proposed entropy 
measures for characterization of angular distribution have shown good 
performance in the detection of architectural distortion.28–30 The use of the 
higher-order entropy measures, namely Tsallis and Rényi entropy, along with 
the conventional Shannon’s entropy for characterization of the angular spread 
has led to a reduction of FPs in the detection of architectural distortion. 

In another of our related previous studies,13 Az = 0.77, and a sensitiv-
ity of 0.8 at 5.8 FP/image in FROC analysis were obtained with the same 
dataset and the application of Gabor filters, linear phase portrait analysis, 
fractal analysis, analysis of the angular spread of power in the frequency 
domain, structured pattern analysis using Laws’ texture energy measures, 
and Haralick’s texture features. The present work, incorporating a leave-
one-patient-out approach, has led to a slightly lower value of Az = 0.75 
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but improved results in FROC analysis, with a sensitivity of 0.8 at 5.2 
FP/patient using a smaller number of features than our previous work. In 
the present study, the feature extraction step took about 1.2 seconds per 
image, and feature selection with stepwise logistic regression procedure 
and classification with the Bayesian (QDA) classifier took about 4 seconds 
per image on a Dell Precision PWS 490 workstation with Quad Intel® 
Xeon™ processors operating at 3.0 GHz, with 12 GB of RAM. On the 
other hand, the corresponding steps took approximately 40 seconds per 
image and 8 seconds per image, respectively, with the same computer in 
the previous study.13 The preceding steps of preprocessing and detection of 
ROIs took about 6 minutes per image in both studies. 

A combination of the several measures of angular spread proposed in 
the present work with other types of features could provide complemen-
tary information regarding oriented and/or spiculating texture patterns. 
Combining the entropy measures used in the present work with all of the 
features used in our previous study13 resulted in an Az value of 0.78 with 
statistically highly significant improvement (p-value = 0.0023) and a sen-
sitivity of 0.8 at 5.2 FP/patient with statistically significant improvement 
(p-value = 0.0481) as compared to the results obtained in the previous 
study.13 These results indicate that the features related to the angular spread 
of power can be used with various other types of features for improved 
accuracy of detection of architectural distortion. 

1.5.2 Comparative analysis with other works

Various CAD techniques have been proposed for the detection of archi-
tectural distortion;2,14,16–22 the results obtained in the present work with 
prior mammograms of interval-cancer cases, including normal con-
trol cases, are comparable, encouraging, and better in some aspects. 
Karssemeijer and te Brake17 proposed a multiscale-based method for the 
detection of stellate distortion including spiculating masses and archi-
tectural distortion using the output of three directional, second-order, 
Gaussian derivative operators with the direction of the filters differing by 
π ∕3 in orientation, and obtained a sensitivity of about 90% at the rate of 
one FP/image. Matsubara et al.2,72 used morphological image processing 
techniques along with a concentration index to detect architectural dis-
tortion around the skin line and within the mammary gland; the sensitiv-
ity obtained was 94% with 2.3 FP/image, and 84% with 2.4 FP/image, 
respectively. Guo et al.20 used five different methods to estimate the fractal 
dimension (FD) and a support vector machine to differentiate masses and 
architectural distortion from normal parenchyma; using FD and lacunar-
ity, the best result obtained for architectural distortion in terms of Az value 
was 0.875 ± 0.055. Nemoto et al.16 developed a method to detect architec-
tural distortion with radiating spiculation on 25 digital mammograms and 
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obtained a sensitivity of 80.0% at 0.80 FP/image. Nakayama et al.21 pro-
posed a technique for the detection of architectural distortion using mul-
tiresolution analysis and obtained a sensitivity of 71.3% at 3.01 FP/image. 

All of the works cited above, however, included clearly evident architec-
tural distortion with pronounced radiating spiculation. The automatic detec-
tion of architectural distortion in prior mammograms of interval-cancer 
cases is a more difficult problem due to the subtle and irregular appearance 
of the associated patterns. The dataset used in the present work includes 
mammograms containing hard-to-detect patterns of architectural distortion 
that had been missed by two radiologists reviewing the mammograms at 
the time of the original screening and interpretation.13 Detailed compara-
tive analysis is not possible because of the variability of the size and types 
of the datasets used in the studies cited above. It should be noted that the 
publicly available databases of mammograms, such as the Digital Database 
for Screening Mammography (DDSM)73 and the Mammographic Image 
Analysis Society (MIAS) database,74 do not contain prior mammograms. 

Baker et al.9 studied the performance of two commercial CAD sys-
tems in the detection of architectural distortion; less than 50% of the 
45 cases of architectural distortion were detected, with a lower image-
based sensitivity of 38% (30 out of 80 images), at 0.7 FP/image.  
Burhenne et al.75 evaluated the performance of a commercially avail-
able CAD system for mammography and reported a sensitivity of 75% 
in the detection of masses and architectural distortion at one FP/image. 
Birdwell et al.76 studied the performance of a commercial CAD system 
used for marking the signs of cancer that were overlooked or missed 
by radiologists; the system was able to detect five out of six cases of 
architectural distortion, and 77% of the previously missed lesions, at 
2.9 FP/image. Contrary to the state of the art in the detection of masses 
and calcifications, the results obtained in the present work indicate that 
the methods presented are not applicable for clinical use at the current 
stage; nonetheless, the present study on the detection of architectural 
distortion in prior mammograms of interval-cancer cases provided 
encouraging results that are better than those reported in studies on the 
detection of architectural distortion with commercially available CAD 
systems.9,75,76 

1.5.3 Limitations

Selecting the appropriate orders for Tsallis entropy and Rényi entropy is 
challenging; in the present study, the orders were selected based on experi-
mentation with ROC analysis. Selection of the appropriate range of fre-
quencies for characterization of angular spread in the frequency domain is 
critical and could affect the results; care should be exercised in the selec-
tion of the proper frequency range. 
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One of the limitations of the present work is that uncertainty measures 
related to the FROC curves, the number of FPs reported at a given sen-
sitivity, and the Az values reported have not been derived. The confidence 
bounds of ROC and FROC curves can be obtained through resampling 
methods including the bootstrap, jackknife, and permutation tests.77 
ROCKIT and JAFROC can also be used to provide confidence bounds for 
the ROC and FROC curves, respectively. 

1.6 Conclusion

The detection of architectural distortion in prior mammograms is an 
important yet difficult problem. The approach of simultaneous analysis of 
current and prior mammograms, as recommended for use by radiologists 
in the screening and diagnosis of breast cancer, could be used to enhance 
the performance of CAD systems. Limitations exist in the present work 
in terms of the types or patterns of architectural distortion detected by the 
constrained models used. Regardless, the results are promising and indi-
cate that the proposed methods can detect architectural distortion in prior 
mammograms taken 15 months (on average) before clinical diagnosis of 
breast cancer, with a sensitivity of 0.8 at 5.2 FP/patient. The results are 
difficult to compare with those provided by the existing CAD systems and 
techniques because of their dependence on the specific database used and 
the unavailability of public databases with prior mammograms. The devel-
opment of additional features related to the subtle patterns of architectural 
distortion is in progress. 

The results obtained in the present work with prior mammograms of 
interval-cancer cases including a number of normal control cases are 
important and encouraging, and indicate that the proposed methods have 
the potential to achieve early detection of subtle signs of breast cancer in 
mammograms, specifically, architectural distortion. 
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2.1 Introduction

Breast cancer is the second leading cause of cancer death in women today. 
It was estimated that 207,090 women would be diagnosed with cancer and 
39,480 women would die of breast cancer in 2010 in the United States.1 
For better survival odds and less use of the treatments and therapies and, 
therefore, fewer side-effects, many imaging systems are continually being 
developed to diagnose this disease as early as possible. Even though breast 
self-examinations (BSEs) and clinical breast examinations (CBEs) are 
affordable options to women, there is a lack of education regarding these 
methods, and these methods are not capable of detecting the cancer at its 
earliest stages. 

Mammography, which is the most popular technique for breast can-
cer detection, uses low-dose x-ray, high-contrast, high-resolution detec-
tors, and an x-ray system designed specifically for imaging the breasts. 
Mammography has found its application in both screening and diagno-
sis of breast cancer. In the case of screen-film mammography (SFM), the 
end-recording device is a film screen. Full-field digital mammography 
(FFDM), on the other hand, uses digital detectors as the recording media. 
The digital images provided by FFDM offer many advantages over their 
film counterpart. In FFDM, image enhancement to accentuate pathology is 
possible (postprocessing) and, because of the acquisition of digital images, 
CAD software can be used to highlight and detect suspicious areas in the 
mammograms. In the Digital Mammographic Imaging Screening Trial 
(DMIST),2 49,528 asymptomatic women were evaluated by both SFM 
and FFDM. Results reported a significantly better detection by FFDM in 
women of age 50 or younger, premenopausal women, or women with dense 
breasts.3 This better detection can be attributed to the improved contrast 
resolution of digital mammography. An update on digital mammography 
techniques can be found in Ref. 4. In spite of the use of ionizing radiation 
that may be potentially harmful on repeated use and its lower sensitivity in 
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detecting cancers in dense breasts, mammography is still the most recom-
mended examination for breast cancer screening and detection.5,6 Studies 
show that mammography can be used for early detection and treatment of 
breast lesions.7–9 However, interpretation of mammograms is a subjective 
process; hence, interobserver variability is common. Therefore, CAD tools 
are being developed and studied in order to assist radiologists in relatively 
better objective interpretation of mammograms. 

CAD systems combine a variety of techniques from the fields of arti-
ficial intelligence and digital image processing along with the domain 
knowledge from the medical experts to support cancer detection. CAD 
software helps radiologists better detect masses and microcalcifications in 
mammograms. Microcalcifications have small size (0.1–1 mm), low con-
trast, and various shapes and sizes, and are quite similar to the surrounding 
tissues. Masses are quite subtle, often occur in dense areas of the breast, 
and have smoother boundaries than microcalcifications, various shapes 
(circumscribed, speculated, lobulated, or ill-defined), and similar density 
to that of normal tissue. Detection and classification of microcalcifications 
and masses using CAD tools can improve the accuracy of mammography 
and also reduce the subjectivity associated with the manual interpreta-
tion process. In CAD software, the mammograms are first enhanced using 
standard image-enhancement methods mainly to sharpen the boundaries 
of the ROI and to increase the contrast between the ROI and the nearby 
normal tissue. The ROIs are then segmented through common statistical, 
region-based, or morphological approaches, and significant features are 
extracted for subsequent clustering or classification. Reviews on CAD 
tools and techniques for microcalcification and mass detection can be 
found in Refs. 10–12.

In 2009, Sadaf et al.13 studied the performance of FFDM augmented 
with CAD tools. The study showed that CAD combined with mammog-
raphy presented 100% sensitivity in identifying cancers manifesting as 
microcalcifications only, and 86% sensitivity for other mammographic 
appearances of cancer. In another recent study by Karssemeijer et al.,14 
FFDM using CAD was compared with SFM in a population-based breast 
cancer screening program. They found that the detection rate with FFDM-
CAD was as good as that with SFM, with FFDM-CAD providing better 
detection of ductal carcinoma in situ and microcalcification clusters. They 
also found that the recall rate of FFDM-CAD was higher. Thus, CAD in 
mammography shows great promise in being used as an adjunct tool for 
early breast cancer detection. 

In the proposed work, we extracted seven texture parameters from the 
mammogram images and fed them into six classifiers, namely, support 
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vector machine (SVM), Gaussian mixture model (GMM), fuzzy, k-nearest 
neighbor (k-NN), probabilistic neural network (PNN), and decision tree 
(DeTr). To compare the performance of these classifiers, we used the 
area-under-the-ROC curves (AUC), sensitivity, specificity, accuracy, and 
positive predictive value as measures. The layout of the chapter is as 
follows: Section 2.2 presents the details about the studied mammogram 
images and the preprocessing steps followed. The feature extraction tech-
niques used are described in Section 2.3. Section 2.4 describes the classi-
fiers used. Section 2.5 presents the results obtained in this work. A review 
of relevant literature on the use of texture features in CAD tools for mam-
mography and a discussion on the obtained results are given in Section 2.6. 
Finally, the chapter concludes in Section 2.7. 

2.2 Data Acquisition and Preprocessing

300 mammograms from the Digital Database for Screening Mammogra-
phy (DDSM)15,16 were used for evaluating the proposed CAD-based sys-
tem. The DDSM database contains approximately 2620 mammogram 
images of normal, benign, and malignant classes in 43 volumes. Four 
medical institutions from the U.S. contributed to the DDSM database: 
Massachusetts General Hospital (MGH), Wake Forest University School 
of Medicine (WFUSM), Sacred Heart Hospital (SHH), and Washington 
University in St. Louis (WU). Along with the digitized mammograms, 
the DDSM contains “boundary” files of the abnormalities. The outlines 
(thumbnails) of the abnormalities as indicated by a radiologist are stored 
in “chain code” in these files. Using this chain code, borders of the abnor-
malities can be reconstructed. In this work, we have used 100 normal and 
100 malignant images from MGH and 100 benign images from SHH. The 
original image file is very large because the films were manually scanned 
with a resolution between 42 and 100 μm. These images were cropped to 
leave out any dark space and to extract only the breast area, then resized to 
300 × 100 pixels. Since the aspect ratio (ratio of the width to the height of 
the image) of the resized image was kept the same as that of the original 
image, the quality of the resized image is comparable to that of the origi-
nal image. After resizing every image, we extracted the texture features 
of all of the images of three classes on a different scale (multiplying by 
a fraction). Hence, there is no effect on the texture feature extraction,17,18 
and thus, no bearing on the classification efficiency. The resized grayscale 
images were subjected to histogram equalization in order to improve image 
contrast. Sample mammograms taken from normal, benign, and cancerous 
breasts are depicted in Fig. 2.1.
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2.3 Feature Extraction

Feature extraction is one of the most important steps in an automated CAD 
system. In this step, relevant representative features that describe the image are 
extracted from the preprocessed image. Texture features were extracted in this 
work. Texture features measure the smoothness, coarseness, and regularity of 
pixels in an image. These features describe a mutual relationship among inten-
sity values of neighboring pixels repeated over an area larger than the size of the 
relationship.17,19 There are two common approaches to texture analysis: statisti-
cal analysis and structural analysis. In the statistical approach, scalar measure-
ments of the textures are obtained. This approach characterizes the textures as 
smooth, coarse, grainy, etc. These methods are based on the distribution and 
relationships between intensity values of pixels. Measures include entropy, con-
trast, and correlation based on the gray-level co-occurrence matrix (GLCM). 
Structural texture analysis is complex compared to the statistical approach.17 
It presents detailed symbolic descriptions of the image. Parameters that are 
extracted using the statistical approach are more suitable for image analysis 
than are those obtained using the structural method.20 In this section, the statis-
tical parameters extracted from the mammograms are briefly described.

2.3.1 Gray-level co-occurrence matrix

Texture characteristics were computed from the GLCM. Our image 
has 256 discrete gray levels. Hence, we define the spatial gray-level 

Figure 2.1 Sample	mammograms:	(a)	normal,	(b)	benign,	and	(c)	cancerous.

(a) (b) (c)
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dependency matrix P(i, j) of size 256 × 256 for each i and j. It is given by 
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where P
i j

i j,
numberof pixel pairswith intensity ( , )

=
ttotal numberof pairsconsidered

.

The term pij is defined as the relative number of times the gray-level 
pair (i, j) occurs when pixels are separated by the distance (i, j) = (1, 0) 
(Fig. 2.2). Then, each element is normalized by dividing by the total 
number of occurrences resulting in the co-occurrence matrix P.

The GLCM of an m × n image can also be defined18 by

C i j p q p x q y I p q id ( , ) |{( , ), ( , ): ( , ) ,= + + =∆ ∆ ( , ) }| ,I p x q y j+ + =∆ ∆

(2.2)

where (p, q), ( p + Dx, q + Dy) ∈M × N, d = (Dx, Dy), and ⋅ denotes the car-
dinality of a set. The probability of a pixel with a gray-level value i having 
a pixel with a gray-level value j at a (Dx, Dy) distance away in an image is

 

P i j
C i j

C i jd
d

d
ji

( , )
( , )

( , )
=

∑∑
.

 

(2.3)

Figure 2.2 Calculation	of	the	GLCM	for	eight	discrete	gray	levels	(N	=	8).

SRBK002-C02_41-64.indd   46 1/21/13   7:10 PM



Texture-based	Automated	Detection	of	Breast	Cancer	.	.	.	 47

Based on Eq. (2.3) we obtain the following features: 

Energy:
 

E P i jd
ji

= ∑∑ [ ( , )]2

 
(2.4)

Contrast: 
Co i j P i jd

ji

= −∑∑ ( ) ( , )2

 
(2.5)

Homogeneity:
 

H
P i j

i j
d

ji

=
+ −∑∑ ( , )

( )1 2

 
(2.6)

Entropy:
 

En P i j P i jd d
ji

= − ⋅∑∑ ( , ) ln ( , )
 

(2.7)

Moments m1, m2, m3 and m4 : 
 
m i j P i jg

g
d

ji

= −∑∑ ( ) ( , )
 

(2.8)

The similarity between two pixels that are (Dx, Dy) apart is measured 
by the homogeneity feature. On the contrary, the local variation between 
those two pixels is captured by the contrast feature. The denseness and the 
degree of disorder in an image are measured by energy and entropy fea-
tures. The entropy feature has a maximum value when all elements of the 
co-occurrence matrix are the same.

Difference statistics is defined as “the distribution of the probability that 
the gray-level difference is k between the points separated by d in an image.”21 
The difference statistics vector, being a subset of the co-occurrence matrix, 
can be obtained from GLCM as21

 

P k P i j
ji

i j k

dδ ( ) ( ),= ∑∑
− =

,

 

(2.9)

where k = 0, 1, . . . , n – 1, n is the number of the grayscale level,22 and d 
is d = (Dx, Dy). Based on the acquired vector, we obtain the following 
properties:23

Angular second moment: 
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Mean: 
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2.3.2 Run length matrix

The run length matrix Pθ(i, j) consists of the number of elements where the 
gray-level value i has a run length j continuous in the direction θ.24 Often 
the direction θ is set as 0, 45, 90, and 135 deg,25 and the features listed 
below are calculated for analysis and classification:

Short-run emphasis:
  

P i j

j
P i j

ji ji

θ
θ

( , )
( , )

2∑∑ ∑∑
 

(2.12)

Long-run emphasis: j P i j P i j
ji ji

2
θ θ( , ) ( , )∑∑ ∑∑

 
(2.13)

Gray-level nonuniformity:
 

P i j P i j
ji ji

θ θ( , ) ( , )∑∑ ∑∑{ }2

 
(2.14)

Run-length nonuniformity:

 

P i j P i j
ij ji

θ θ( , ) ( , )∑∑ ∑∑{ }2

 

(2.15)

Run percentage:
 

P i j A
ji

θ ( , ) ,∑∑
 

(2.16)

where A is the area of the image of interest. The software MATLAB®26 
was used to write the code to extract the texture features described in this 
section from the digital mammogram images.  

2.4 Classifiers

The classifiers used in this work are briefly described in this section. 

2.4.1 Support vector machine

The support vector machine (SVM) classifier has demonstrated excellent 
performance in a large number of pattern recognition problems.27–29 SVM is 
a supervised learning method that aims to determine a separating hyperplane 
that maximizes the margin between the input data classes that are viewed in 
an n-dimensional space (n is the number of features used as inputs). To calcu-
late the margin, two parallel hyperplanes are constructed, one on each side of 
the separating hyperplane. These two hyperplanes are computed directly using 
the training set. The input data is often transformed to a high-dimensional fea-
ture space with the use of nonlinear kernel functions so that the transformed 
data becomes more separable than the original input data. The methodology 
is described in detail by Vapnik29 and in the tutorial by Burges.27
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2.4.2 Gaussian mixture model

A Gaussian mixture model (GMM) is a parametric model used to estimate 
a continuous probability density function from a set of multidimensional 
feature observations. The Gaussian mixture distribution can be written as 
a linear superposition of K Gaussian components: 

 
p x N xk

k

K

k k( ) ( , ),= ∑
=

∑π µ
1  

(2.17)

where πk, µk, ∑k are mixing coefficients, mean, and covariance, respectively. 
The probability density of a single Gaussian component of D dimen-

sions is given by
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(2.18)

where (.)' denotes the vector transpose. The solution for determining the 
parameters of the GMM uses the maximum likelihood (ML) parameter 
estimation criterion. The model parameters are estimated through train-
ing such that they maximize the likelihood of the observations using the 
expectation-maximization (E-M) algorithm.30–32 In this work, the initial 
estimates of the parameters were obtained from training data using the 
K-means algorithm. The algorithm starts with randomly chosen initial 
means and assumed unit variances for the covariance matrix. We have used 
the diagonal covariance matrix as it is computationally more efficient and 
performs better than the full covariance matrix.30,31

2.4.3 Fuzzy Sugeno classifier

In fuzzy classification, the pattern space is divided into many subspaces. 
For each subspace, the relationships between the target patterns and their 
corresponding classes are indicated by if–then-type fuzzy rules.33 Nonlinear 
classification boundaries can be easily implemented in this type of classi-
fier. The fuzzy inference classifier classifies the unknown patterns by fuzzy 
inference; patterns of unknown class, which are not considered by learning, 
are rejected. A fuzzy classifier using subtractive clustering and the Sugeno 
fuzzy inference system34 was used as the classifier in this work.

2.4.4 k-nearest neighbor

k-NN is a very simple classifier that uses the minimum distance from the 
query instance to the training samples to determine the k nearest neighbors. 
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After gathering k nearest neighbors, a majority of these k nearest neigh-
bors are used for the prediction of the class of the new sample. A detailed 
explanation of k-NN can be found in Ref. 35.

2.4.5 Probabilistic neural network

PNN is a type of radial basis network used for classification. It has four 
layers. The first layer of PNN is the input layer wherein the features are 
fed to the neurons. The next layer is the hidden layer. In this layer, there 
is one neuron for each training data set. The neuron stores the values of 
the features along with the target value. This hidden neuron computes the 
Euclidean distance of the test case from the neuron’s center point and then 
applies the radial basis function (RBF) kernel function using the sigma 
values. The resulting value is passed to the neurons in the pattern layer. In 
the pattern (summation) layer, there is one pattern neuron for each class 
of the target variable. The actual target class of each training case is stored 
in each hidden neuron; the weighted value coming out of a hidden neuron 
is fed only to the pattern neuron that corresponds to the hidden neuron’s 
category. The pattern neurons add the values for the class that they repre-
sent (hence, it is a weighted vote for that category). The final layer is the 
decision layer, which compares the weighted votes for each of the target 
classes accumulated in the pattern layer and uses the largest vote to predict 
the target category. More details about this classifier can be found in an 
excellent tutorial in Ref. 36.

2.4.6 Decision tree

A DeTr classifier generates a tree and a set of rules to represent the model 
in order to identify different classes from a given data. This decision tree 
produces a series of rules that can be used to recognize the unknown data. 
Larose37 presents the methodology of the DeTr classifier in detail.

2.5 Results

2.5.1 Performance measures

Several parameters can be used to describe the quality and usefulness of 
a diagnostic test. Among those, the most commonly used parameters for 
clinical trial results analysis are sensitivity, specificity, accuracy, and posi-
tive predictive value. Sensitivity is the probability that a test will produce 
a positive result when used on diseased population. Specificity is the prob-
ability that a test will produce a negative result when used on disease-
free population. Accuracy is the ratio of the number of correctly classi-
fied samples to the total number of samples. The positive predictive value 
is the proportion of patients with positive test results who are correctly 
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diagnosed. The formulae to calculate these parameters are shown in the 
contingency table (Table 2.1).

2.5.2 Receiver operating characteristics

An ROC curve is obtained by calculating the sensitivity and specificity of 
a diagnostic test at different threshold values and plotting sensitivity ver-
sus (1 – specificity).38 A test that perfectly discriminates between the two 
groups (benign and malignant) would yield a curve that coincides with the 
left and top sides of the plot. This means that sensitivity is high and the FP 
rate is low. It indicates that the diagnostic test has small FP and FN rates 
across a reasonable range of threshold values. Generally, the soundness 
of a diagnostic test is assessed by determining the AUC, which can vary 
between 0.5 and 1. In practice, the closer the area is to 1.0, the better the 
test is, and the closer the area is to 0.5, the worse the test is. To evaluate the 
efficiency of the classifiers, the ROC analysis of the respective results was 
performed using MedCalc® software.39 

2.5.3 Classification results 

The texture features that were extracted from the mammograms using codes 
written in MATLAB were subjected to the analysis of variance (ANOVA) 
test. ANOVA uses variances to decide whether the means are different. 
In the present study, this test was used to compute the variation between 
features within a class and between classes. When the variation between 
classes was seen to be relatively high compared to the variation within the 
class, the test was considered to be statistically significant (low value of p). 
In this work, seven features resulted in a p-value less than 0.0001. Hence, 

Table 2.1 Definition	of	performance	measures.

 Actual disease status

Test result Malignant Benign

Positive 
Negative

True Positive (TP)
False Negative (FN)

False Positive (FP)
True Negative (TN)

Performance measures

Sensitivity
Specificity
Accuracy
Positive predictive value

TP/(TP+FN)
TN/(TN+FP)
(TP+TN)/(TP+TN+FP+FN)
TP/(TP+FP)

TP: Number of diseased patients for whom the test results were positive.
TN: Number of disease-free patients for whom the test results were negative.
FP: Number of disease-free patients for whom the test results were positive.
FN: Number of diseased patients for whom the test results were negative.
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these features are clinically significant. The values (mean ± standard devia-
tion) of the seven features extracted from the three classes (normal, benign, 
and malignant) of mammograms are listed in Table 2.2. The seven features 
are homogeneity, energy, contrast, moment 2, short-run emphasis, long-run 
emphasis, and run percentage. It can be seen from the table that homoge-
neity, energy, short-run emphasis, and long-run emphasis are higher for 
malignant and lower for normal cases. 

Ten-fold stratified cross-validation method was used to test all clas-
sifiers. The whole dataset was split into ten equal parts (30 images in 
each of the ten sets). Nine parts of the data (training set) were used for 
classifier development, and the built classifier was evaluated using the 
remaining one part (test set) (i.e. 270 images were used for training and 
30 images for testing each time). This procedure was repeated ten times 
using a different part as the test set in each case. Finally, the average 
of the accuracy, sensitivity, specificity, positive predictive accuracy, and 
AUC obtained over the ten evaluations were taken as the overall per-
formance measures. 

Table 2.3 shows the results of SVM, GMM, fuzzy, k-NN, PNN, and 
DeTr classifiers. It can be seen from this table that the fuzzy classifier 
is able to identify the unknown class with an accuracy of more than 
93.3%. Table 2.4 shows the sensitivity, specificity, positive predictive 
accuracy, and AUC values obtained using these classifiers. The fuzzy 
classifier resulted in higher sensitivity (92.38%), specificity (87.56%), 
positive predictive accuracy (93%), and AUC value (0.925) compared 
to the other classifiers. Figure 2.3 presents the ROC curves of the six 
classifiers. 

Table 2.2 Range	of	texture	features.

Texture parameters Normal Benign Malignant p-value

Homogeneity 62.569 ± 4.71 66.889 ± 7.51 70.262 ± 8.70 <0.0001

Energy 1.451E+05 ± 
1.004E+05

1.372E+05 ± 
9.302E+04

3.363E+05 ± 
3.783E+05

<0.0001

Contrast 311.63 ± 48.1 346.51 ± 66.3 328.34 ± 67.7 <0.0001

Moment 2 388.9 ± 
3.198E+03

7044.8 ± 
5.738E+03

6442.3 ± 
4.543E+03

<0.0001

Short-run emphasis 0.784 ± 
2.642E-02

0.792 ± 
2.671E-02

0.812 ± 
3.176E-02

<0.0001

Long-run emphasis 11.742 ± 9.32 36.435 ± 26.9 109.47 ± 150.0 <0.0001

Run percentage 1.451 ± 0.171 1.398 ± 1.31 0.939 ± 0.189 <0.0001
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Table 2.4 Sensitivity,	specificity,	positive	predictive	accuracy,	and	AUC	for	SVM,	
GMM,	fuzzy,	k-NN,	PNN,	and	DeTr	classifiers.

Classifier
Average 
No. TNs

Average 
No. TPs

Average 
No. FPs

Average 
No.  

n FNs
Average 

sensitivity
Average 

specificity

Average 
positive 

predictive 
accuracy AUC

SVM 10 14 6 0 95.75% 61.21% 76.99% 0.850

GMM 10 14 6 0 97.97% 66.57% 72% 0.850

Fuzzy 9 19 1 1 92.38% 87.56% 93% 0.925

K-NN 8 18 2 2 78.95% 89.17% 89% 0.850

PNN 8 18 2 2 90.73% 80.87% 90% 0.850

DeTr 8 17 3 2 88.825% 75.143% 86% 0.825

Table 2.3 Results	 of	 classification	 using	 classifiers:	 SVM,	 GMM,	 fuzzy,	 k-NN,	
PNN,	and	DeTr.

Classes

No. of 
images 

used for 
training

No. of 
images 

used for 
testing

No. of correctly classified images

SVM GMM
Fuzzy  

classifier k-NN PNN DeTr

Normal 90 10 9 10 9 8 8 8

Benign 90 10 6 5 9 6 6 6

Malignant 90 10 7 9 10 7 7 9

Overall accuracy 73.3% 80% 93.3% 70% 70% 76.7%

Figure 2.3 ROC	 curves	 showing	 the	 performance	 of	 the	 SVM,	 GMM,	 fuzzy,	
k-NN,	PNN,	and	DeTr	classifiers.	
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2.5.4 Graphical user interface

A graphical user interface (GUI) was developed for ease of use of the 
proposed system (Fig. 2.4). The entire GUI was divided into three sec-
tions: input, features, and output. To upload a mammogram image, the 
user clicks the Load Image push button. In the illustration, the uploaded 
image is ‘B1_new’. Once the image is selected, it is displayed in the input 
section. When the Features push button is pressed, the seven features cor-
responding to the loaded image are displayed in the features section of the 
GUI. The six push buttons named SVM, GMM, Fuzzy, K-NN, PNN, and 
DeTr allow the user to choose one of the six classifiers. When the clas-
sifier is selected, the classification result is subsequently displayed in the 
output section. In this illustration, the result is ‘benign’. When the image 
is uploaded, the name, race, age, and date of the last visit of the patient are 
automatically displayed in the output section. 

2.6 Discussion

In this section, we present the results of some of the related studies 
that evaluated CAD tools using texture features for mammogram anal-
ysis, and compare these results with the results obtained in our work. 
In the study in Ref. 40, the mean and the first three central moments 
were extracted from the mammograms and fed into an RBF neural net-
work. The proposed system detected 16 out of the studied 22 abnor-
mal mammograms and 42 out of the 54 normal mammograms. The 
overall accuracy was around 75.2%. The same four features that were 
used in the study in Ref. 40 were also used in another study41 to evalu-
ate the performance of an association rule mining classifier. Results of 
evaluation of the classifier with 322 images belonging to two classes— 
normal and abnormal—showed that the classifier had an accuracy of 

Figure 2.4 GUI	of	the	proposed	system.
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around 80%. A neuro-fuzzy classifier was evaluated using nine texture 
features derived from GLCM matrices at various spatial orientations.42 
Only 22 images were tested, and classification accuracies of 100% and 
80% were reported for abnormal and normal mammograms, respectively. 
An automated technique for the quantitative assessment of breast density 
from digitized mammograms using image processing and data mining 
techniques was studied.43 Three features (area, homogeneity, and micro-
calcification) were extracted using image processing techniques from 
the raw mammograms. These features were fed to feedforward neural 
network and GMM classifiers for automated detection of breast abnor-
malities. The classifiers were able to identify the abnormalities with a 
sensitivity and specificity of more than 90%. 

A new texture shape feature coding (TSFC)-based CAD method was 
proposed in Ref. 44. The authors converted the texture shape features 
determined from mammogram masses into texture feature numbers, the 
histogram of which was then used to determine seven texture descrip-
tors. These descriptors were then fed into an SVM classifier, and a good 
accuracy of over 86% was obtained. However, this technique was used to 
classify only the fatty and dense masses in mammograms into benign and 
malignant classes. In another study, the contours of a set of 108 regions 
on mammograms related to breast masses were manually delineated, and 
ribbons of pixels were extracted around the boundaries.45 Three shape fac-
tors and 14 texture features based on GLCMs of the pixels in the ribbons 
were computed and fed into the perceptron algorithm. It was reported 
that using only shape features presented an AUC of 0.99, while using 
only texture features resulted in an AUC of only 0.63. In a subsequent 
study by the same group,46 apart from the above indicated 17 features, an 
additional three measures of edge-sharpness-related features were also 
studied in a set of 111 regions from mammograms. Several feature sub-
sets were evaluated using perceptron classifiers of varying topology and 
training procedures. AUC values of up to 0.99 were reported in feature 
subsets that had at least one shape factor as a feature. In another more-
recent study,47 two more shape factors were included as features. Feature 
selection was performed by a genetic algorithm, and several linear and 
kernel-based classifiers were evaluated. The kernel-based nonlinear clas-
sifiers presented an AUC of around 0.95. 

A novel method for an automatic detection of mammographic masses 
was presented in Ref. 48. The method consists of an enhancement algo-
rithm for image contrast improvement, a segmentation technique that uses 
thresholding at multiple levels, and a region-ranking system to identify the 
regions that most-likely represent abnormalities based on the computed 
features. The method was evaluated using 57 mammographic images of 
masses, and a sensitivity of 80% at 2.3 FPs per image was reported. Local 
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binary patterns (LBPs) were used for representing the textural properties 
of the mammogram masses.49 The basic LBP histogram descriptor was 
extended into a spatially enhanced histogram that encodes both the local 
region appearance and the spatial structure of the masses. An SVM classi-
fier was used to differentiate masses from normal breast parenchyma. The 
study concluded that the LBPs are effective and efficient descriptors for 
mammographic masses. 

An SVM-based CAD system for the characterization of clustered micro-
calcifications (MCCs) in digitized mammograms was proposed.50 After the 
ROI in the mammogram was enhanced using morphological techniques, 
the potential MCC regions were segmented using edge detection and mor-
phological methods. Subsequently, features based on shape, texture, and 
statistical properties were extracted from each region and fed to an SVM 
classifier. The SVM classifier with an RBF kernel presented 97% accuracy, 
and that with a polynomial kernel provided 95% accuracy. Again, this tech-
nique deals particularly with MCC cluster classification into benign and 
malignant. Another CAD system for automatic detection of clustered MCs 
in digitized mammograms was proposed.51 The proposed system had two 
key steps. First, potential MCC pixels in the mammograms were detected 
and grouped into MCC objects using a multilayer feed-forward neural net-
work classifier. Next, 17 statistical features were extracted from the MCC 
objects and fed to an AdaBoost algorithm with an SVM-based component 
classifier. An 89.55% mean TP detection rate was achieved at the cost of 
0.921 FP per image.

The studies in Refs. 40–43 evaluated CAD tools for the classification 
of benign and malignant mammograms. The studies in Refs. 44–49, on 
the other hand, employed CAD techniques to extract masses from mam-
mograms and to classify these masses into benign and malignant classes. 
Similar work was performed with respect to MCC analysis.50,51 There is 
a dirth of studies on the use of texture features to classify the entire set 
of mammogram images into three categories (normal, benign, and malig-
nant). Therefore, in this work, we extracted seven texture features from 
the raw mammogram images (without using segmentation algorithms to 
determine ROIs) and fed them to the six classifiers: SVM, GMM, fuzzy, 
k-NN, PNN, and DeTr. On evaluation of the proposed system using 300 
mammograms, we found that the fuzzy classifier presented an accuracy of 
more than 93%, and sensitivity and specificity of around 93% and 88%, 
respectively. In comparison with the other studies described in this section, 
our method has demonstrated the ability to classify a significant number 
of mammograms (300 images) with a high degree of clinically acceptable 
accuracy. Due to the absence of segmentation steps in the proposed tech-
nique, the computational load as well as the time required for the analysis 
is minimized. 
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Compared to the other classifiers, the fuzzy classifier showed higher 
accuracy in detection of the normal, benign, and malignant classes. 
The fuzzy classifier mimics human decision making and can handle  
vague, imprecise, nonlinear texture features. It dynamically constructs 
the input and output membership functions based on the nonlinear 
nature of texture features. These texture features are able to capture 
the subtle variations in the pixels of the image. Our fuzzy logic algo-
rithm has the ability to describe these subtle variations of texture fea-
tures in a descriptive human-like manner in the form of simple fuzzy 
rules. Sometimes, there may be many fuzzy rules. Hence, a clustering 
algorithm is used to reduce the number of fuzzy rules and improve the 
system interpretability. Therefore, this technique improves the accuracy 
of classification and reduces the complexity of the problem. Addition-
ally, fuzzy classifiers take less computational time due to their intrinsic 
parallel-processing nature.

The key features of the proposed work are summarized below:

● The feature set consisting of seven features is powerful enough to effec-
tively classify normal, benign, and malignant classes with good accu-
racy of 93.3%. The texture features were found to be significantly dif-
ferent, as indicated by their p-value in Table 2.2. Therefore, on using 
them in the fuzzy classifier, good accuracy was obtained. We observed 
that our fuzzy logic algorithm has the ability to describe these subtle 
variations of texture features in a descriptive human-like manner in the 
form of simple fuzzy rules. 

● We evaluated the technique using a large database consisting of 300 
images belonging to the three classes (normal, benign, and malignant). 
In order to obtain a robust system, we trained and built the fuzzy clas-
sifier using a ten-fold cross-validation data-resampling technique. No 
other past studies have obtained such a close-to-theoretical accuracy 
using such a balanced dataset.

● The proposed CAD framework is very simple to use and can be extended 
to study other medical images. It can also be used to diagnose the effi-
cacy of the drugs during the treatment of breast cancer.

2.7 Conclusion

We have proposed a system for the automated detection of normal, 
benign, and cancerous breasts using texture features extracted from digi-
tized mammograms and data mining techniques. These texture param-
eters capture the subtle variation in the pixel intensities and contours in 
the images and serve as good features for classification. SVM, GMM, 
fuzzy, k-NN, PNN and DeTr classifiers were used to aid the physician in 
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automatic detection of the breast cancer. We used AUC, sensitivity, spe-
cificity, accuracy, and positive predictive value to evaluate the perform-
ance of the classifiers used. The novelty of this work is to automatically 
classify the mammogram in to normal, benign, and malignant classes 
using the texture features alone with an efficiency of 93.3%, sensitiv-
ity of 92.3%, specificity of 87.56%, and AUC of 0.925. A user-friendly 
GUI was created to visualize the unknown class immediately even by a 
nurse’s untrained eye. However, the performance can be further improved 
by increasing the size and quality of the training data and the rigor of the 
training imparted, as well as the parameters used. 
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3.1 Introduction 

Breast cancer is the most common cancer (excluding skin cancer) and  
the second most frequent cause of cancer death among women in the 
United States.1,2 Dynamic contrast-enhanced MRI (DCE-MRI) screening 
is recommended as an adjunct for mammography for high-risk women 
and is increasingly used as a key staging tool for newly diagnosed breast 
cancer.1,2

Case-based clinical decision support (CDS) methods mimic natural 
physicians’ reasoning for diagnosis by reading similar cases that have been 
previously reviewed and diagnosed. A case-based CDS for breast lesion 
diagnosis may help physicians to decide whether a queried case is likely 
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to be malignant or benign, thus avoiding misinterpretation and preventing 
unnecessary biopsies. 

Most of the case-based approaches in the published literature focus on 
breast cancer diagnosis based on mammogram and ultrasound images.3–5 
Extending the case-based approach to DCE-MRI may improve the sen-
sitivity and specificity. The challenge is to design an algorithm by taking 
more computer-calculated features into account to capture characteristics 
of malignant lesions. Additionally, there is also a challenge in obtaining 
the similarity relationship among cases for a case-based CDS system.

As described in BIRADS® (Breast Imaging Reporting and Data Sys-
tem)6 for MRI and other imaging modality studies, morphologic descrip-
tors (such as shape or margin) are crucial for determining the diagnosis 
of a breast lesion. For example, as we know from experienced physicians, 
a smaller, close to round or elliptical shaped lesion with a smooth lesion 
boundary margin tends to be a benign lesion, while a bigger, more irregu-
larly shaped lesion with a spiculated margin is more likely to be a malig-
nant lesion (see Fig. 3.1).

In addition, DCE-MRI internal enhancement patterns are also important 
characteristics in determining the malignancy of a breast lesion. There are 
four types of internal enhancements, as shown in Fig. 3.2. If the enhance-
ment of the lesion is uniform, it tends to be more homogeneous; if the 
enhancement is nonuniform, it is heterogeneous.6,7 The benign cases tend 
to have a homogeneous texture inside the lesions. Rim enhancement of 
breast lesions in MRI is due to a combination of angiogenesis and the dis-
tribution and degree of fibrosis.7–9 A lesion with rim enhancement shows a 
cluster of “black holes” of dead tissue.9 The thicker the rim (the white area 
of the lesion) is, the more likely the lesion is malignant. The appearance 
of rim enhancement is statistically significantly associated with malignant 

Figure 3.1 (a)	A	benign	lesion.	(b)	A	malignant	lesion.	(Derived	from	the	DCE-
MRI	database	provided	by	University	of	Chicago	Medical	Center.)

(a) (b)
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lesions and is a useful indicator or malignancy of the lesions.8–10 Dark 
internal septation refers to nonenhancing septation in an enhancing mass 
and tends to manifest as crossing lines in the lesion.11 These characteristics 
are typical for fibroadenomas, and the presence of dark internal septation 
is found to be highly predictive of benignity.7 

Currently, researchers have developed computer algorithms that quan-
tify image characteristics of lesions, such as texture, margin, and shape 
features to help characterize lesions.3,12–20 However, most of the developed 
image algorithms use texture features to characterize homogeneous and 
heterogeneous enhancement, and there are no computer calculated fea-
tures available for characterizing lesions with special enhancement charac-
teristics, such as rim enhancement and dark internal septation. We sought 
to provide similar cases with these additional special characteristics (e.g., 
dark internal or rim enhancement) since these characteristics can be cru-
cial for diagnosis.

In order to obtain a similarity relationship among cases, most of cur-
rent researchers use pair-wise comparisons of images to acquire similarity 
information among images.4,5,21–24 Muramatsu et al.4 worked on 50 ROIs 
(25 benign and 25 malignant) that had unknown diagnoses in their centers. 
They compared these ROIs with the ROIs of 6 known cases. Ten radiolo-
gists independently provided the subjective similarity ratings for 300 pairs 
of masses with a rating scale between 0 and 1. Nishikawa et al.22 worked 
on 30 pairs of mammograms showing clustered calcification using a rating 
on a 5-point scale of their similarity. All possible combinations of pairs  
(n = 435) were shown to the 4 readers, and each reader selected which pair 
was most similar. The experiment was repeated by the observers with at 
least a week between reading sessions. Rogowitz et al.23 selected 97 digi-
talized photographic images, and each image was compared with 8 ran-
domly picked images. Fifteen observers were involved in the experiment.

The collection of similarity relationships among cases is very important 
for the case-based approach, since future similar cases will be presented to 

Homogeneous Heterogeneous Rim enhancement Dark internal septation

Figure 3.2 Four	 types	 of	 enhancement:	 homogeneous,	 heterogeneous,	 rim	
enhancement,	and	dark	internal	septation.	(Derived	from	the	DCE-MRI	database	
provided	by	University	of	Chicago	Medical	Center.)
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users based on the similarity information. However, a pair-wise approach 
might lose global similar information since it can only compare a given 
case with a limited number of cases (4–8 cases) and because it is time 
consuming to go through different combinations of cases. Additionally, the 
rating score, having large interobserver variance, is very subjective. 

In this chapter, a “similarity experiment” that determines the similar-
ity relationship among cases will be described. Clinical similarity for 
mass lesions was established by four expert radiologists who systemati-
cally sorted lesions visualized by DCE-MRI into similarity clusters using 
a proprietary software tool. The main purpose of these experiments was to 
extract image characteristics of breast lesions on DCE-MRI and develop a 
CDS system to assist radiologists using DCE-MRI for breast cancer diag-
nosis. The results of these experiments will be used to develop a case-
based reasoning system that relies on presenting prior similar cases with 
known diagnosis from a database to aid decision making.

This chapter proposes a case-based CDS system using a similarity met-
ric combining clinical data with morphological, kinetic features and inter-
nal enhancement features extracted from DCE-MRI studies. Results are 
presented that demonstrate a high sensitivity and specificity achieved by 
this system.

3.2 Methodologies

3.2.1 Data preparation

Data were collected from 220 patients (241 mass lesions, average age  
55 years) scanned using DCE-MRI at the University of Chicago Medical 
Center between 2001 and 2003 [slice thickness ranging from 2 to 3.5 mm, 
spacing between slicing ranging from 1 to 3 mm; scanners included Philips 
Healthcare Intera 1.5T and Achieva 1.5T MR scanners (scanned at axial 
view), GE Medical Systems Genesis Signa (scanned at coronal view) 
and GE Signa Excite (scanned at axial view)]. The similarity experiment 
included 241 mass lesions; 15 lesions were removed that could not be recog-
nized by experts either because of the poor image quality or the insufficient 
lesion size. Three lesions were also removed because of bad segmentation. 
Finally, 223 mass lesions (124 malignant, 99 benign) from 203 patients with 
different types of shape, margin, and enhancement remained for further 
experimentation. Ground truth diagnosis of malignancy for each lesion was 
established by histopathological analysis of biopsy samples. 

Each set of DCE-MRI images contains several images at different 
time series, as shown in Fig. 3.3. In order to make a lesion and its bound-
ary more visible, we worked on the subtraction image, which was gen-
erated from the image T1-Gd at second phase minus the T1-weighted 
precontrast image. Then we calculated features on the segmented lesion 
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on the substation image. Figure 3.4 shows an example of preprocessing 
images and the segmented mass. 

3.2.2 Block diagram of our case-based approach

Figure 3.5 showed the block diagram of our proposed system. The main 
steps are as follows:

1. Store features of the training data in the database.
2. Compare them with the features of the queried case.
3. Calculate and rank the distances between the queried case and the cases 

in the database.
4. Present the most similar cases.

Figure 3.3 DCE-MRI	 images	 in	 different	 time	 series:	 (a)	 precontrast,	 (b)	 T2-
weighted,	(c)	multiple	postcontrast,	and	(d)	T1-weighted	images.

(a) (b)

(c) (d)

Figure 3.4 Preprocessing	of	the	images	and	the	segmented	mass.
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We used four categories of features (25 features) to represent each case: 
morphological, kinetic curve, and clinical information, and four new fea-
tures of internal enhancement. We had described some of the features in 
the previous research.20,25–27 Morphological features capture shape or mar-
gin characteristics of lesions. Kinetic features28 show the intensity change 
of the lesion through different time series of the image, as shown in Fig. 3.6. 
The kinetic curve includes initial (curve pattern from the first two time 

Figure 3.5 Block	diagram	of	the	case-based	approach.

Figure 3.6 Kinetic	curve	presentation.
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periods, including slow, medium, and rapid) and delay (curve pattern after 
the second time period, including persistent, plateau, and washout). Clini-
cal information includes age and the physicians’ impression of the lesion 
according to BIRADS for MRI (BIRADS-MRI). The approach consists of 
following steps:

1. Calculate image features to describe the segmented lesion; morpho-
logical, kinetic curve, and internal enhancement features are computed 
by segmenting the lesion on a subtraction image (second postcontrast 
minus precontrast29 (see Section  3.2.3 for more details of those fea-
tures).

2. Calculate the Euclidean distances between the queried case and the 
cases in the database from input information and calculated features. 
We converted non-numeric data to digital values (for details of the con-
version, see Table 3.3).

3. Sort the cases according to the distances. 

In order to ensure that the presenting similar cases fit the point of view 
of similarity from the experts, we asked the experts to perform the similar-
ity experiment in order to explore the similarity among cases according to 
their experience. 

Figure 3.7 provides an example of how to use a case-based CDS sys-
tem for CAD of breast cancer. Figure 3.7(a) shows a queried case—a 
case with unknown diagnosis for which a physician would like to use a  

Figure 3.7 Example	of	how	to	use	a	case-based	CDS	system:	(a)	a	queried	case;	
(b)	the	top	eight	retrieved	cases.

Queried case

malignant malignant malignant

malignant malignant malignant

benign malignant

ID: 123              Age: 62
Shape: round        Margin: irregular
Inter Enhancement: heterogeneous

(a) (b)
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case-based system to aid in the final diagnosis. Figure 3.7(b) shows the 
eight most-similar cases that match the queried case in the order of the 
rank of similarity. The retrieved cases were selected through a series of 
processes, as shown in Fig. 3.5, which includes calculation of features and 
similarity matching (Euclidian distance). From the eight cases with known 
prior diagnosis (either through biopsy results or follow up) in Fig. 3.7(b), 
we can see 7 out of 8 cases are malignant, and only 1 out of 8 is benign. 
Therefore, the current queried case is more likely to be a malignant lesion 
(the probability is 7/8 = 87.5%). The final decision depends on physicians’ 
detailed analysis of the presenting cases. For instance, the physician can 
click on each of the eight cases, and look at the images at different series 
in detail, e.g., precontrast image, post–T1-weighted images at the first time 
phase, post–T1-weighted images at the second time phase, subtraction 
image, and post–T2-weighted image.

3.2.3 Features to calculate on breast MRI images

We used four types of features to represent each case: morphologi-
cal, kinetic curve, clinical information, and four internal enhancement 
features with a total of 25 features,20,25–27 as shown in Table 3.1. Mor-
phological, kinetic, and internal enhancement features were computed 
by segmenting the lesion on a subtraction image (second postcontrast 
minus precontrast), and then calculating image features to describe 
the segmented lesion. Clinical information includes age and the phy-
sicians’ impression (shape, margin, and enhancement) of the lesion 
according to BIRADS-MRI. 

In our previous research on computed tomography (CT),26,27 we devel-
oped 3D texture-based features to characterize heterogeneous and homo-
geneous gray-level distribution in lesions. Those features were used to 
assist in predicting the malignancy of lung lesions on CT images based on 
the well-known co-occurrence matrices. We applied a similar algorithm 
for calculating 3D texture-based features in MRI images.

We implemented four new 2D image-based features of internal enhance-
ment in order to characterize the four types of enhancement: homogene-
ous, heterogeneous, the rim enhancement, and dark internal septation for 
breast cancer in MRI. The approach consists of following steps:

1. Locate the lesion boundary on the cross-sectional slice with the largest 
area of the lesion after segmentation.30

2. Identify heterogeneous regions (dark regions) inside the lesion (an iter-
ative method is used to find a threshold to separate white and black 
region). 

3. Search for the largest isolated heterogeneous region, which shows as “a 
black hole” of dead tissue. 
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Table 3.1  Type	and	definition	of	the	features	in	the	case-based	CDS	system.

Feature type Definition
Number of 

features

3D morphology 10
Shape: eccentricity Measure of how much the shape deviates 

from an ellipse

Shape: ellipse/irregularity 1 minus the ratio of the number of voxels 
around the fitted ellipse to the total voxel 
number on the object boundary

Shape: flatness Ratio of element 1 to element 2 in the 
eigenvalue matrix

Shape: enlongation Ratio of element 3 to element 2 in the 
eigenvalue matrix

Shape: sphericity Ratio between the volume of the structure 
within a volume-equivalent sphere centered 
at the centroid of the object and the whole 
volume

Contrast Ratio between the mean gray values inside 
and in a shell surrounding the object

Gradient Ratio of the value of the gradient magnitude 
that is less than threshold to the value of the 
surface

Fractal Fractal feature around the border of the  
object

Edge gradient Edge gradient standard deviation

Kurtosis histogram Kurtosis of gray values in a cube centered in 
the volume of interest (VOI)

3D texture 5
GLCM entropy inside GLCM entropy of inside region
GLCM correlation GLCM correlation of inside region
GLCM inertia inside GLCM inertia of inside region
GLCM entropy outside GLCM entropy of outside region
GLCM inertia outside GLCM inertia of outside region

Kinetic curve 2
Initial Intensity change from the first two time 

periods

Delayed Intensity change after the second time  
period

BIRADS physician’s 
impression

Shape, margin, and enhancement 3

Age  1 

Internal enhancement 4
Ratio of dark to white Ratio of the mean intensity of dark regions to 

white regions

Heterogeneous regions Total number of heterogeneous regions 

Max_rim Maximum thickness of the rim

Mean_rim Mean thickness of the rim
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Figure 3.8 Image	processing	for	the	two	cases	with	rim	enhancement:	(a)	origi-
nal	VOI	images;	(b)	image	after	finding	the	inner	“black	holes.”	The	rim	is	the	white	
area	inside	the	lesion;	(c)	gray	edge	showing	the	boundary	of	the	“black	hole,”	with	
the	white	edge	showing	the	lesion	boundary.	(Derived	from	the	DCE-MRI	database	
provided	by	University	of	Chicago	Medical	Center.)

(a) (c)(b)

4. Identify the edge and rim of this dark region. The rim is defined as the 
area covered by the lesion minus the largest dark region and appears 
as the white area of the lesion. Figure 3.8 shows the result of image 
processing of two lesions with rim enhancement.

5. Calculate four new 2D features after the above image processing: (1) 
the ratio of the mean intensity of dark regions and white regions; (2) the 
total number of heterogeneous regions; (3) the maximum and (4) mean 
thickness of the rim.

After learning from the similarity experiment, we assigned digital 
values for each category of BIRADS and kinetic curve features (see 
Table 3.3 for more details). Once the imaging, age, and BIRADS-MRI 
features of a queried case were sent into the system, we normalized 
each feature value using standard scores (Z values, z = (x-µ)/σ). Then 
the Euclidean distances between the queried case and the cases in the 
database were calculated, and cases in the database were sorted according 
to the distances (the Euclidian distance was calculated from the feature 
vector of the queried case to the feature vector of a case in the database). 
Each feature was weighted equally.
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3.2.4 Collections for ground truth of similarity from data

In order to obtain the ground truth of the similarity among images, a simi-
larity experiment was performed. We first asked four radiologists to inde-
pendently participate in the experiment, shown in Fig. 3.9. Experts clicked 
the snap shots to view all of the detailed images, and then dragged the snap 
shots into the clusters on the right. Users can also add notes at the bottom 
of each cluster.

We helped experts to analyze the data by providing them statistical 
information on their agreement. Based on the agreement (majority vot-
ing), they had a discussion, and then made a consensus on the number of 
the clusters, the name of each cluster, and one representative case for each 
cluster. After that, they were ready to drag cases into different clusters. 
Following the experiment, we interviewed each expert, requesting them to 
describe and draw the main characteristics of each cluster, find one repre-
sentative case for each cluster, and tell us the significant characteristics for 
malignant lesions. 

3.2.5 Evaluation

We evaluated our system by using the Euclidean distance metric in a k-NN 
classifier, which provides an estimate of the posterior probability that a 
query case belongs to the class of malignant samples.7 Based on the k most-
similar retrieved cases with shortest distances (most similar), this probabil-
ity is estimated by the number of malignant cases in the k most-similar cases 
divided by k. In order to evaluate the results, we used 0.5 as a probability 
threshold such that probabilities exceeding the threshold would be classified 
as malignant and probabilities below the threshold would be classified as 
benign, even though in practice the radiologist, not the CDS system, would 
make this decision. We used a leave-one-out cross-validation method and 

Figure 3.9 Screenshots	to	establish	clinical	similarity:	(a)	snap	shots	of	all	images;	
(b)	several	clusters.

(a) (b)

SRBK002-C03_65-84.indd   75 03/01/13   6:04 PM



76	 Chapter	3

calculated the area under the ROC curve (AUC), accuracy, sensitivity, and 
specificity for different values of k. 

3.3 Results and Discussion

For the independent study of the similarity experiment by four experts, the 
unanimous consensus is only 20%, and the majority agreement is around 
60%. Then, the four experts came to a census. After consensus, experts 
made 16 clusters, each including two main characteristics of shape, mar-
gin, or internal enhancement. For example, the first cluster is round/oval 
and homogeneous, and the second cluster is irregular, homogeneous. Table 
3.2 lists the number of cases in each cluster, the rank of the cluster based 
on number of cases in that cluster, and the number of malignant cases in 
each cluster.

From Table 3.2, we can conclude that the most popular group of cases 
is irregular, homogeneous (cluster 2), followed by lobular, homogene-
ous (cluster 7), round, homogeneous (cluster 1), irregular, heterogeneous 
(cluster 4), and spiculated, heterogeneous (cluster 3). For most of the 
cases in cluster 16, the image quality was not very good. Since experts 
had difficulty recognizing lesion characteristics, they labeled these cases 
as cannot recognize. Cluster 12 was labeled focus since experts found 
them too small. We are not very interested in those two groups, so we 
removed those cases from our list. Additionally, we can see that all of 

Table 3.2 16	clusters	resulting	from	the	similarity	experiment.

Cluster 
number Cluster characteristics

Total 
number

Popularity 
ranking number

No. of  
malignant cases

1 Round/oval, homogeneous 35 3 7/35
2 Irregular, homogeneous 66 1 35/66
3 Spiculated, heterogeneous 12 5 12/12
4 Irregular, heterogeneous 25 4 18/25
5 Spiculated, homogeneous 10 7 10/10
6 Lobular, heterogeneous 7 8 2/7
7 Lobular, homogeneous 48 2 21/48
8 Round/oval, heterogeneous 2 15 1/2
9 Lobular, rim 4 9 3/4

10 Spiculated, rim 4 9 4/4
11 Round/oval, dark internal 

septations
2 15 1/1

12 Focus 11 6
13 Irregular, rim 3 14 2/3
14 Round/oval, rim 4 9 1/4
15 Lobular, dark int. septations 4 9 3/4
16 Unrecognizable 4 9
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the cases that are spiculated, heterogeneous (cluster 3) are malignant. 
Almost all of the cases of spiculated, rim (cluster 10) or irregular, rim 
(cluster 13) are malignant (6/7). Spiculated is an important characteristic 
for classification of malignant lesions. Most of the cases that are round, 
homogeneous (cluster 1) are benign (28/35). For some clusters, such as 
cluster 2, since irregular shape might be a sign for a malignant lesion, 
while homogeneous might be a sign for a benign lesion, the group is a 
mixture of both malignant and benign lesions.

After learning from the similarity experiment, we assigned digital val-
ues for each category of BIRADS and kinetic curve features based on 
interviews and experiments, where a lower value indicates a lower risk for 
malignancy and a higher value indicates a higher risk or weight for malig-
nancy. The digital value is not evenly distributed, and the distance between 
two values is based on their category similarity. For example, the distance 
between round and oval is 0.25 since round and oval are similar, while 
the distance between round and irregular is 1.5 because there is much dif-
ference between them as shown in Table 3.3. Since we normalized those 
digital values to Z values later, it is reasonable to use them in the distance 
calculation.

As a final step, we evaluated our proposed system. The AUC, accuracy, 
sensitivity, and specificity with values for the parameter k (the number of 
nearest neighbors) are as shown in Fig. 3.10. Because the performance 
declined significantly at large values of k, we only display the results for 

Table 3.3 Feature	values	assigned	for	narrative	value	based	on	feature	similarity.

Shape Round 0.5
Oval 0.75
Lobular 1.25
Irregular 2

Margin Smooth 0.5
Irregular 1.5
Spiculated 3

Enhancement Homogenous 0.5
Dark internal enhancement 1
Heterogeneous 2
Rim enhancement 3

Kinetic curve initial Slow 0.5
Medium 0.75
Rapid 1

Kinetic curve delay Plateau 1
Persistent 2
Washout 3
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k from 1 through 20 (it showed gradual decline after k = 20). The decline 
in performance at high k is due to the influence of very distant (nonsimi-
lar) cases in the likelihood estimation. In practice, a cutoff k may need 
to be defined. The results show that the AUC, accuracy and sensitivity are 
almost maximized when we selected the top thirteen similar cases (k = 13). 
The performance measured at this point was AUC = 0.90, accuracy = 0.83, 
sensitivity = 0.88, and specificity = 0.81. Furthermore, the results were sta-
ble, yielding similarly high-performance characteristics for other nearby  
values of k. 

We can see that after k = 13, the four curves are more stable. The 
curves of sensitivity and specificity show zigzags at the beginning 
because the effective threshold for malignancy is greater than 0.5 when 
k is an odd number. The higher the effective threshold for malignancy, 
the lower the sensitivity, and the higher the specificity. Thus, we see 
that the sensitivity dropped at odd numbers, while the specificity rose 
at odd numbers. For example, when k = 3, the effective threshold for 
malignancy is 2/3 = 0.67; when k = 5, it is 3/5 = 0.60, while for k = 2 
or k = 4, the threshold is 0.5.

As a single feature, the mean thickness of the rim and the maximum 
thickness of the rim can achieve AUC at 0.774 and 0.768, respectively, for 
CAD of malignancy, as shown in Fig. 3.11. (These values are comparable 
to published optimal individual features.19) Two other features, the ratio of 
the mean intensity of dark regions and white regions and the total number 
of heterogeneous regions reached AUC = 0.704 and 0.708, respectively. 
These four features can be used in future work for malignancy prediction 
or other related work needing quantified image values.

Figure 3.10 AUC,	accuracy,	sensitivity,	and	specificity	with	varying	values	of	k	
(number	of	most	similar	cases	considered).
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The results show our extended system with four times as many cases 
as in the previous research;20 yet, despite the increase in data, the system 
demonstrates robust performance, which might suggest that the proposed 
case-based CDS could be used for a reference of diagnosis for physicians. 
It shows a high sensitivity and specificity, which means that physicians can 
rely on and have confidence in this CDS system, avoid misinterpretation 
of results, and reach the most patients requiring biopsy, while preventing 
unnecessary biopsies.

In our CDS system, instead of presenting only cases with known diag-
nosis, we also provide cluster names that experts have assigned from the 
similarity experiment. By presenting this information to users, users will 
more readily decide which cluster group the queried case belongs to. If 
most of the cases (majority voting) are from one particular cluster group, 
then the algorithm is more reliable, and vice versa.

We include multiple lesions for some patients (10–20 patients) in our 
analysis. However, since we use age as only one of the clinical features, 
this should not bias the results. In our system, we used both BIRADS 
reports of physician’s impression and computer-calculated features to 
enhance performance. However, if the computer-calculated features are 
more robust and precise enough with current computer technology, we 
might use only computer-calculated features in the future.

Currently, we have used some of what we have learned from the simi-
larity experiment, such as assigning reasonable digital value for category 
inputs and presenting cluster information to improve the confidence level 
of users. In the future, we will add a weighting factor to each feature in the 
algorithm.

Figure 3.11 ROC	curves	for	the	two	best	features	for	predicting	the	malignancy	
of	breast	lesions:	(a)	mean	thickness	of	the	rim;	(b)	maximum	thickness	of	the	rim.

(a) (b)
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3.4 Conclusions

We have proposed a case-based CDS system for breast cancer using a 
similarity metric combining clinical data with morphological, kinetic, and 
internal enhancement features extracted from DCE-MRI studies. We have 
also provided cluster information collected through a similarity experi-
ment for each case. Leave-one-out cross-validation suggests that the pro-
posed system can retrieve prior cases with the same diagnosis and similar 
imaging and clinical characteristics as the queried case. Further research 
will consider feature selection and weighting in order to optimize the sys-
tem for diagnostic decision making.
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4.1 Introduction

Breast cancer is the second most common malignancy after lung cancer, 
and the most common cancer in women.1,2 Dynamic contrast-enhanced 
(DCE) breast MRI, in which the breast is imaged before (unenhanced 
image), during, and after (enhanced images) the administration of a con-
trast agent, provides a noninvasive assessment of the microcirculatory 
characteristics of tissues in addition to traditional anatomical structure 
information.3 

DCE-MRI shows promise in detecting both invasive and ductal car-
cinoma in situ cancers, gives information on the biological aggressive-
ness of tumors, and may be used to evaluate the response to neoadjuvant 
chemotherapy4–7 and is therefore increasingly used in breast cancer diag-
nosis as an adjunct to conventional imaging techniques.8,9 Furthermore, 
DCE-MRI is highly sensitive, allowing detection of malignancy that is 
occult on physical examination, mammography, and sonography. How-
ever, despite its high sensitivity, several factors have precluded more 
widespread use of this technique. Current challenges include the lack of 
standardized acquisition protocols, time required for image processing 
and interpretation, and variable specificity of this imaging tool. In addi-
tion, the particular combinations of morphologic and kinetic features 
that best discriminate benign from malignant lesions have yet to be fully 
defined.10

In recent years, CAD systems have been introduced to overcome these 
obstacles. CAD systems aid in the visualization of kinetic information by 
providing color mapping, facilitating analysis through graphical and quan-
titative representations, and providing an index of suspicion. In order to 
compute morphological features and kinetic curves for use in predicting 
pathology probability (discrimination step), a typical CAD system also 
includes (1) a procedure of motion compensation between unenhanced 
and enhanced images (registration) and (2) a procedure of lesion identifi-
cation (lesion detection). In this chapter a specific approach is chosen and 
described for each step of a CAD system: im3D’s research version of a 
system called CAD-BREAST MRI.
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4.2 Registration

This step is aimed at correcting possible misalignment in the dynamic 
sequence due to patient motion. It was performed by registering all of the 
contrast-enhanced images with reference to the unenhanced sequence. 

4.2.1 Method

The registration method, illustrated in Fig. 4.1, is based on the method 
proposed by Rueckert11 and was implemented using the Insight Toolkit 
(ITK).12 To reduce the computational burden, the registration is performed 
at a minimal predefined resolution in each axis direction. Therefore, if the 
frames of the dynamic series present a lower resolution in any of the direc-
tions, the images are downsampled to the predefined minimal resolution. 
Otherwise, registration is performed at the original resolution. In addition, 
the registration is performed within a rectangular ROI that contains the 
relevant part of the scans for the diagnosis (i.e., breasts and axillae). The 
ROI is automatically determined based on the maximum and minimum 
points of the breast (as defined in Section 4.3.1.1).

The registration itself consists of two main steps. First, the global mis-
alignment is compensated by using a translation and a rigid-body trans-
formation. Subsequently, local motion is corrected by a free-form defor-
mation model based on B-splines.11 In all cases, mutual information is 
used as an image similarity function; in particular, the method specified by 
Mattes et al. was developed.13 Optimization is carried out by means of a 
gradient descent optimizer for the rigid registrations, and of the L-BFGS-
B (limited-memory Broyden–Fletcher–Goldfarb–Shanno for bound con-
strained optimization) optimizer for the nonrigid substep.14 If the contrast-
enhanced frames were downsampled before the registration, the respective 

Figure 4.1 (a)	Scheme	of	the	registration	method.	(b)	Basic	components	of	the	
ITK	registration	framework	used	for	the	rigid	and	nonrigid	registration	steps.

(a) (b)
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deformation fields are up-sampled to the original resolution. Finally, the 
original contrast-enhanced frames are warped to obtain the transformed 
(aligned) contrast-enhanced frames by applying the respective deforma-
tion field. In the warping, B-spline interpolation is used to minimize the 
introduction of sampling artifacts. 

4.2.2 Results

The dataset used to test the registration method was composed of images 
acquired on a 1.5T scanner using a 3D axial FLASH sequence.15,16 A total 
of 24 patients (mean age 55 years, range 37–79 years) were included; 16 
were randomly selected, while the remaining 8 were added, as they pre-
sented relevant artifacts due to patient movement. 

The registration method was applied to the enhanced sequences with 
reference to the unenhanced sequence. Registered (REG) and nonregis-
tered (N-REG) axial images and maximum-intensity projections (MIPs) 
of the first enhanced subtracted frame were randomized and blindly eval-
uated by two radiologists separately by scrolling the axial images and 
rotating the MIPs, with free windowing. Image quality was assessed for 
both axial images and MIPs. Readers were asked to define equivalence 
or superiority of one of the two datasets of each patient, simultaneously 
presented. Finally, the im3D CAD-BREAST MRI system (research ver-
sion) identified suspicious enhancements (prompts) for REG and N-REG 
images. A radiologist excluded prompts related to real findings; the 
remaining false prompts and their volume were obtained for both REG 
and N-REG images. Sign test, weighted κ, and Wilcoxon exact test were 
used.17

Image quality of REG MIPs was found to be significantly superior to 
that of N-REG MIPs for both readers (p-value < 0.001) with quite a good 
inter-rater agreement (κ = 0.5). Image quality of REG axial images was 
found to be slightly better than that of N-REG axial images by both read-
ers without significant difference. The mean number of false prompts per 
patient was 29.4 ± 17.7 on N-REG and 25.0 ± 16.5 for REG (p-value = 
0.041). Excluding one patient with wrong segmentation of the heart, the 
mean volume of false prompts was 13,000 ± 11,641 mm3 for N-REG and 
only 4,345 ± 4,274 mm3 for REG (p-value < 0.001). Examples of how 
registration was able to compensate for motion artifacts are shown in 
Figs. 4.2 and 4.3.

4.3 Lesion Detection

As DCE-MRI data analysis is time consuming, lesions may be isolated 
by segmentation to reduce reporting time. This image processing proce-
dure is preliminary to the extraction of quantitative information on lesion 
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 morphology, kinetics, and volume, and to distinguish viable from nonvi-
able tissue.18 Most segmentation methods are manual or semi-automatic 
and, therefore, may be affected by high inter- and intra-observer variabil-
ity.19–21 On the contrary, a fully automatic lesion segmentation process has 
the potential to reduce reading time and provide more-reproducible results. 

Figure 4.2 Comparison	between	subtracted	 images	with	and	without	 registra-
tion.	(a)	Subtraction	artifacts	due	to	patient	movement	are	visible	along	the	breast	
profile	(plain	arrow),	in	the	breast	parenchyma	(dotted	arrow),	at	lesion	and	vessel	
borders,	as	well	as	at	the	borders	of	fat	lobules.	These	artifacts	may	introduce	spu-
rious	enhancing	voxels,	thus	increasing	the	number	of	false-positive	(FP)	findings	
at	segmentation.	 (b)	Subtraction	artifacts	are	dramatically	 reduced	when	elastic	
registration	is	used.

(a) (b)

(a) (b)

Figure 4.3 Comparison	of	(a)	nonregistered	and	(b)	registered	MIPs.	The	image	
quality	is	significantly	superior	in	registered	images	(in	N-REG	images	the	motion	
artifacts	introduce	spurious	enhancing	voxels).
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Unfortunately, few papers have addressed automatic lesion detection and 
segmentation techniques for breast DCE-MRI.22–24 Furthermore, to our 
knowledge, these methods have been tested only on non–fat-saturated 
(fat-sat) contrast-enhanced images. Fat saturation allows enhancement 
of the contrast between the lesion and surrounding tissue6 but introduces 
additional challenges for lesion segmentation, such as artifacts from inho-
mogeneous signal saturation and a lower contrast-to-noise-ratio between 
enhanced lesions and surrounding parenchyma.25

A new, fully automatic algorithm for breast lesion detection is pre-
sented.26 The method has been conceived to run on both fat-sat and non–
fat-sat DCE-MRI datasets obtained from different MR scanners.

4.3.1 Method

The detection pipeline of the CAD-BREAST MRI research-version sys-
tem consists of three main processing steps, none of which requires user 
interaction:

(1) breast segmentation to automatically identify the breast and axillary 
regions;

(2) lesion detection to extract suspicious contrast-enhanced areas; and
(3) FP reduction to identify and discard regions incorrectly extracted. 

4.3.1.1 Breast segmentation

The breast segmentation itself is preceded by a process of identifying the 
approximate breast size and location. A rough estimate of breast location 
is obtained by identifying the maximum point, defined as the most anterior 
point reached by the breasts, and the minimum point, which is the deepest 
point within the concavity between the breasts (Fig. 4.4). 

These measures were obtained following a rough segmentation of the 
patient’s body, based on Otsu’s thresholding algorithm.27 The central line, 
defined as the line running along the concavity between the breasts, was 
computed by exploiting image symmetry and by searching for the skin 
voxel around the center of each slice. 

Once the central line has been obtained, two different procedures for 
breast segmentation are performed. If fat-sat is not used, the breasts can 
be easily identified based on the high signal intensity of fat tissue. Simi-
larly to the technique used by Twellmann et al.,24 a satisfactory segmenta-
tion can be obtained by combining morphological operations and Otsu’s 
thresholding.28 On the contrary, if fat-sat is used, intensity alone is not 
sufficient to obtain a reliable segmentation. In this case, an a priori knowl-
edge of the main anatomical structures in the field of view was exploited, 
using an atlas-based segmentation scheme. A simplified atlas was used 
in which the breasts, heart, chest wall, and lungs have been previously 
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manually segmented and color coded. Because breast size and shape may 
vary considerably across subjects, three different atlases were generated 
for large, medium, and small breasts. The most appropriate model was 
automatically selected for each patient according to breast size, measured 
as the distance between the maximum point and the minimum point along 
the central line. 

The patient’s body was identified by the abovementioned Otsu’s thresh-
olding method, and the image was first downsampled to a predefined reso-
lution to reduce the computational burden, then it was registered to the 
appropriate breast atlas. Two examples of breast segmentation results are 
shown in Fig. 4.5. 

The two methodologies yield slightly different results in the axillary 
area, but this is not compromising for lesion detection. Axillae, supracla-
vicular fossae, chest wall, and anterior mediastinum can be assessed by 
breast MRI (e.g., to search for enlarged lymph nodes), but their evaluation 
can be omitted, as there is no evidence of its diagnostic value.25

4.3.1.2 Lesion detection

Differences in vascular permeability29,30 and other technical and physio-
logical parameters, including type and dose of contrast material,31,32 cause 
large physiologic variations in the contrast enhancement of breast lesions. 
Differences may depend on lesion histology, on the timing of imaging, or 
on inhomogeneities within the lesions, such as those observed in necrotic 

Figure 4.4 Arrows	point	to	the	maximum	(left	arrow)	and	minimum	(right	arrow)	
points.
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areas or in fibrosis. The proposed approach used the subtracted mean 
intensity projection image over time (mIPT) in order to consider the nonu-
niform uptake of contrast, reducing at the same time the computational 
burden associated with processing all of the contrast-enhanced registered 
frames. The dynamic sequence is a 4D image (x × y × z × t), where t is time, 
and the mIPT is the 3D image (x × y × z) formed by averaging along the 
t axis each voxel of each registered enhanced frame. In order to neglect the 
contribution of regions that do not show contrast enhancement, subtraction 
of the unenhanced frame was performed.

Different scanners, coils, acquisition modalities, types and amounts of 
contrast agent injected, and patient physiologies, along with other external 
factors, result in significant variations of image intensities among images 
acquired in different hospitals, in different patients, or even among differ-
ent examinations from the same patient.31,32 The subtracted mIPT was nor-
malized by contrast enhancement of the mammary vessels to compensate 
for these effects.

In the first-dynamic-phase images, it is possible to obtain the best 
“angiographic effect” for both arteries and veins because in the subse-
quent acquisitions a more pronounced distribution of contrast material in 
the interstitial space reduces the vascular enhancement.33 Therefore, the 
mammary vessels were automatically segmented on the first subtracted 
contrast-enhanced frame. Referring to the position of the central line, a 
suitable ROI was automatically selected by placing a rectangle of a fixed 
size in each slice. The mammary vessels were then identified by applying 
to the ROI the multiscale 3D Sato’s vessel-enhancement filter, which is 
based on the eigenvalues of the Hessian matrix.34,35

Sato’s vessel-enhancement filter considers the mutual magnitude of the 
eigenvalues as indicative of the shape of the underlying object; isotropic 

Figure 4.5 (a)	Example	of	breast	segmentation	for	a	study	acquired	with	fat-sat.	
The	breast	mask	extends	 farther	 than	 in	 non–fat-sat	 sequences,	as	defined	by	
the	breast	atlas.	(b)	Example	of	breast	segmentation	for	a	study	acquired	without	
fat-sat.

(a) (b)
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structures are associated with eigenvalues that have a similar nonzero 
magnitude, while vessels present one negligible and two similar nonzero 
eigenvalues. Let the eigenvalues of the Hessian matrix be λ1, λ2, λ3 (with 
λ1 > λ2 > λ3). On a given scale, vesselness is thus defined as
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where λc = min (λ2, λ3), and α1 and α2 are set to 0.5. The σ subscript in 
Vσ indicates that the vesselness is computed on a smoothed version of the 
image and is therefore representative of the variations of image intensity 
on the σ spatial scale. As vessels in the breasts can have different diame-
ters, the vesselness is evaluated on a range of spatial scales, and the highest 
response is selected for each voxel. Specifically, the vesselness response is 
computed at 6 exponentially distributed scales between the maximum and 
minimum scales σmin = 0.5 and σmax = 1.0.

A threshold equal to one-half of the maximum vesselness value observed 
in the ROI identified as described above was then applied to select the most 
vessel-like voxels. Figure 4.6 shows an example of mammary vessels. 

Figure 4.6 (a)	First	subtracted	contrast-enhanced	frame	with	the	region	where	
the	mammary	vessels	are	located	in	the	rectangle.	(b)	Zoom	of	the	region	in	the	
rectangle	highlighted	 in	 (a).	Arrows	point	 to	mammary	arteries	 that	will	 be	seg-
mented	by	the	system.

(a) (b)
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The mean contrast enhancement of the mammary vessel voxels in the 
first contrast-enhanced frame was considered as a normalization factor. 
After normalizing the subtracted mean intensity projection, regions show-
ing contrast enhancement were extracted. Even if the contrast-enhanced 
frames were normalized, a fixed threshold was not found to be suitable 
to successfully segment lesions on all scans. As a consequence, a global 
threshold TI was empirically determined as

 
T meanI I

I= +
max

3
,
 

(4.2)

where meanI is the mean value of the normalized intensity histogram of the 
breast and axillary region, and maxI is the highest intensity value observed 
in the same region. 

Lesions and connected feeding vessels are often segmented together, 
leading to lesion oversegmentation, which can reduce the diagnostic qual-
ity of the segmentation and limit the performance of segmentation-based 
CAD applications. To avoid this risk, the eigenvalues of the covariance 
matrix were extracted for each voxel, and the ratio between the highest 
and medium eigenvalues was used as a vesselness measure. Voxels with a 
ratio larger than a fixed threshold Tv were labeled as vessels and excluded 
from lesion detection. Connected components were then extracted from 
the resulting mask.

4.3.1.3 False-positive reduction

The method based on the covariance matrix eigenvalues, described above, 
does not completely discard all vessels; therefore, together with motion 
artifacts and noise, the remaining vessels contribute to the number of FPs.

A few heuristic criteria were applied in our algorithm to exclude 
regions showing contrast enhancement that were different from lesions. 
First, regions with a volume of less than 20 mm3 were excluded. Taking 
into account image resolution and possible lesion undersegmentation, this 
roughly corresponded to a lesion of 5 mm in diameter, which is the cutoff 
between foci and lesions.36

Contrast enhancement kinetics can be classified as curves I, II, and 
III with an increasing probability of malignancy (6%, 64%, and 87%, 
respectively).37 However, these curves are commonly referred to indi-
vidual voxels or to a set of several contiguous voxels within a plane 
belonging to a single portion of tissue that has uniform vascular char-
acteristics and therefore has homogeneous contrast enhancement. The 
average intensity curve calculated over the entire lesion (typically with-
out homogeneous vascular characteristics) is generally more similar 
to the average signal intensity curves shown in Fig. 4.7. Thus, the aim 

SRBK002-C04_85-112.indd   94 03/01/13   6:05 PM



Registration,	Lesion	Detection,	and	Discrimination	for	Breast	Dynamic	.	.	.	 95

was to identify trends that are indicative of structures other than benign 
and malignant lesions, such as noise, artifacts, or vessels. Empirically, 
some simple kinetic features were found to identify trends that are rather 
typical of vessels or artifacts, as shown in Fig. 4.7. For instance, arti-
facts due to noise and patient motion are usually characterized by high 
signal variations; hence, regions with standard deviation greater than a 
specific value, or with a higher-than-10% decrease or increase in signal 
intensity in the last frame, with respect to the second-to-last frame, were 
discarded. Furthermore, regions with mean intensity decreasing from 
the first to the second enhanced frame were discarded, as this pattern is 
found in vessels but not in lesions.

4.3.2 Results

4.3.2.1 Subjects and MRI protocols

Algorithm performance was evaluated on a dataset of 48 DCE-MRI stud-
ies (mean patient age 51 years, range 31–79 years) performed on women 
with suspicion of breast cancer based on conventional imaging.26

Nineteen (group A) of the 48 studies were acquired on a 1.5T scanner, 
using a fat-sat 3D axial fast spoiled-gradient-echo sequence and admin-
istering gadopentetate dimeglumine, for a total of 7 scans for each study  
(1 baseline, 5 contrast-enhanced frames with 50-s time resolution, and one 
delayed frame acquired 7 min after contrast injection). 

The remaining 29 studies (group B) were acquired on a different 
1.5T scanner, using a dynamic 3D axial spoiled fast low-angle-shot 
sequence and administering Gd-BOPTA, for a total of 6 scans for each 

Figure 4.7 Signal	intensity	curves	calculated	over	an	entire	connected	compo-
nent	in	the	case	of	a	lesion,	a	vessel	and	an	artifact.
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study (1 baseline, 5 contrast-enhanced frames taken 118 s apart). Fat-sat 
sequences were not performed in group B patients.

The entire dataset included 12 benign and 53 malignant lesions. The 
median of the largest diameter of benign and malignant lesions was, 
respectively, 6 mm (range, 5–15 mm) and 26 mm (range, 5–75 mm). Over-
all, there were 16 lesions sized 10 mm or less, 15 lesions between 11 and 
20 mm, and 34 lesions sized larger than 20 mm.

4.3.2.2 Statistical analysis

A radiologist with more than four years of experience in breast MRI 
labeled a finding as a TP if the lesion was confirmed at histology or at fol-
low up, otherwise it was defined as a FP. 

Detection rate was calculated as the number of TPs (both malignant 
and benign) over the total number of lesions as defined at the reference 
standard, whereas sensitivity was calculated as the number of malignant 
lesions detected by the system over the total number of malignant lesions. 

Lesions were grouped according to size (see Table 4.1), and detection 
rate and sensitivity were calculated for each group. Sensitivity and detec-
tion rate values are presented with 95% confidence intervals (CIs) using 
the Wilson method for single proportions. Detection rate and sensitivity 
were also separately calculated for fat-sat and non–fat-sat exams, and the 
χ2 test was used to assess differences between the two subgroups. Detec-
tion rate was analyzed separately for satellite lesions for which a lesion-
by-lesion pathological analysis was not reported by the radiologist. 

FP findings were recognized by the radiologist according to the posi-
tion (mammary or extramammary) and the type (vessels, image artifacts, 
lymph nodes, normal gland, or other findings). The FP median, 1st, and 
3rd quartiles were calculated for the entire testing set, and for the fat-
sat and non–fat-sat subgroups. A two-sided Kruskal–Wallis test was 
applied to test for differences between the medians of the total number of  

Table 4.1 Number	of	lesions	and	performance	for	each	dimension	group.	Lesions	
were	grouped	according	to	the	National	Cancer	Institute.	Detection	rate	and	sen-
sitivity	were	calculated	with	a	95%	CI.

Lesion 
dimension 

(mm)
Number 

malignant
Number 
benign

Number 
total

Detection rate 
(upper–lower 

limit; 95% CI)

Sensitivity  
(upper–lower 

limit; 95% CI)

5–10 6 10 16 69% (44–86%) 100% (61–100%)
11–20 13 2 15 87% (62–96%) 92% (67–99%)
> 20 34 0 34 100% (90–100%) 100% (90–99%)
Total 53 12 65 89% (79–95%) 98% (90–99%)

SRBK002-C04_85-112.indd   96 03/01/13   6:05 PM



Registration,	Lesion	Detection,	and	Discrimination	for	Breast	Dynamic	.	.	.	 97

FPs/patient. A p-value of less than 0.05 was considered to be statistically 
significant.

4.3.2.3 Results

The automatic algorithm detected 58 of the 65 lesions (89% detection rate; 
95% CI 79–95%), including 52 of the 53 malignant lesions (98% sensitiv-
ity; 95% CI 90%–99%). Detection rate and sensitivity according to lesion 
size are shown in Table 4.1.

In the fat-sat subgroup, 20 of the 25 lesions (80% detection rate; 95% 
CI 61%–91%) were detected, including 19 of the 20 malignant lesions 
(95% sensitivity; 95% CI 76%–99%). In the non-fat-sat subgroup, 38 of 
the 40 lesions (95% detection rate; 95% CI 84%–99%) were detected, 
including all 33 malignant lesions (100% sensitivity; 95% CI 90%–
100%). Differences in sensitivity and detection rate between the two 
groups were not statistically significant (p-value = 0.798 and p-value = 
0.137, respectively).

A total of 7 lesions with an average size of 7 ± 3 mm [mean ± standard 
deviation (std)] were missed by the algorithm, including 6 benign and 
1 malignant nodules. Five of the undetected lesions were in dataset A, 
including: 2 fibroadenomas, 2 small enhancements with a negative MRI 
follow up of 5 mm and 7 mm in size, respectively, and a 12-mm invasive 
ductal carcinoma. Missed lesions in dataset B were two 5-mm small 
enhancements unchanged at MRI follow up. Examples of lesions detected 
and missed by the system are shown in Fig 4.8.

In addition to malignant lesions histologically confirmed as a result 
of a lesion-by-lesion analysis in the pathological report, 17 lesions satel-
lite to malignant index lesions, with a median diameter of 7 mm (range, 
5–20 mm) were detected by two radiologists. Sixteen of them (94%) were 
detected by the system.

Median mammary FPs per breast were 4 (1st–3rd quartiles 3–7.25), 
while median extramammary FPs per study were 2 (1st–3rd quartiles 1–5). 
Table 4.2 shows the distribution of FP findings according to the type. For 
the fat-sat subgroup, median mammary FPs per breast were 4 (1st–3rd 
quartiles 2–7.25); median extramammary FPs per study were also 4 (1st–3rd 
quartiles 3–6). In the non–fat-sat group, median mammary FPs per breast 
were 4.5 (1st–3rd quartiles 3.5–7), while median extramammary FPs per 
study were 1 (1st–3rd quartiles 1–2). No statistical significant differences 
were detected between the two subgroups (p-value = 0.72).

4.4 Lesion Discrimination

Lesion discrimination is a diagnostic stage in the CAD pipeline dedicated 
to recognizing the level of malignancy of previously detected lesions. 
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(a) (b)

(c) (d)

Figure 4.8 Examples	of	segmentation	results	superimposed	on	the	normalized	
and	subtracted	mean	projection	over	time:	(a)	a	33-mm	invasive	ductal	carcinoma	
(fat-sat	 image)	correctly	segmented;	 (b)	a	7-mm	 invasive	ductal	carcinoma	(fat-
sat	image)	correctly	segmented;	(c)	a	26-mm	invasive	ductal	carcinoma	(non–fat-
sat	 image)	correctly	segmented;	(d)	a	25-mm	invasive	ductal	carcinoma	(fat-sat	
image)	correctly	segmented;	here	a	5-mm	satellite	lesion	(arrow)	was	missed	by	
the	system.

Breast DCE-MRI allows depiction of differences between malignant and 
benign lesions according to morphological and contrast-enhancement 
kinetic features of lesions. 

Morphological attributes such as irregular or spiculated margins, 
irregular shapes, and heterogeneous and peripheral internal contrast 
enhancement are important indicators of malignancy.38 Signal-to-time 
curves with a rapid decrease of signal intensity after peak enhancement, 
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reached approximately 2 or 3 min after contrast injection, are more fre-
quently found in malignant lesions, whereas benign lesions have typically 
slow, persistent enhancement increase.38 Figure 4.9(a) shows an example 
of a malignant lesion with irregular margins and heterogeneous internal 
enhancement, and Fig. 4.9(b) shows a benign lesion with regular margins 
and homogeneous internal enhancement.

Clinical interpretation of the kinetic and morphological properties 
is subjective and qualitative; therefore, several studies have proposed 
computer-assisted approaches. Gihuijs et al.39,40 extracted morphological 
and kinetic features from lesions segmented manually or semi-automatically 
after manual indication of a seed point and used linear discriminant 
analysis and step-wise selection to select the best subset of features. Gibbs 
et al.41 applied texture analysis based on Haralick features and used logistic 
regression analysis with a backward elimination method to select the most 

Table 4.2 Classification	of	FP	findings	according	to	type.

FP findings

Type Number Percentage

Vessels 267 54
Artifacts* 113 23
Glands 80 16
Lymph nodes 2 0.4
Other** 32 6

*e.g., chemical shift, skin, patient movement
**i.e., nipple, pectoral muscle

(a) (b)

Figure 4.9 Examples	of	invasive	ductal	carcinoma	(a)	and	benign	fibroadenoma	
(b)	breast	lesions.
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discriminating subset of texture features. Gal et al.42 compared different 
classifiers (logistic regression, linear discriminant analysis, Bayesian, 
and SVM), combining kinetic and morphological features, and using an 
exhaustive search to select the best features. 

In the following section, a multiparametric model is presented that com-
bines a selection of morphological and kinetic features for discriminating 
malignant from benign mass-like breast lesions in DCE-MRI.43 Original 
features are introduced and combined with features already presented in 
literature, with the aim of trying a different approach. Model selection is 
performed by a genetic search44 and a wrapper approach45 using a support 
vector regressor.

4.4.1 Method

To validate the method, 73 mass-like lesions were retrospectively used. 
Lesions were detected in 51 exams acquired in two centers at 1.5T with the 
MRI protocols described in Section 4.3.2.1 and confirmed by histopathology 
(54 malignant and 19 benign). Lesions were automatically segmented after 
image normalization and elastic registration of contrast-enhanced frames, as 
described in the previous steps, and then selected by two experienced radi-
ologists in order to exclude non–mass-like lesions or blood vessels. 

Lesion size was 13 ± 8.4 mm (mean ± std) for benign lesions and 16.1 
± 14.7 mm for malignant lesions, with lesion size determined as the long-
est diameter measured by radiologists. Thirty-three lesions had a size 
smaller than 10 mm (22 malignant, 11 benign), whereas 40 lesions had a 
size larger than 10 mm (32 malignant, 8 benign). Table 4.3 summaries the 
lesion histology. 

For each lesion, a set of 19 features was automatically extracted:  
10 morphological features related to shape, margins, and internal  
contrast-enhancement distribution, and 9 kinetic features computed from 

Table 4.3 	Histological	types	of	the	73	lesions	
included	in	the	study.

Tumor types Number

Malignant lesions 54

Invasive ductal carcinoma 36

Invasive lobular carcinoma 4

Ductal carcinoma in situ 4

Mixed invasive carcinoma 10

Benign lesions 19

Fibroadenoma 9

Papilloma 4

Other benign lesions 6
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signal-to-time intensity curves. Two morphological features related to the 
lesion shape are calculated on the binary mask: circularity39 and convex 
index.46 

Three features are used to describe the margin of the lesion: 
irregularity,39 mean and standard deviation of angles between surface 
normals [(mean(ABSN) and std(ABSN), respectively].47 Five other 
features characterizing the internal enhancement pattern are extracted: the 
autocorrelation function (evaluated at 2-mm displacement), two features 
related to the peripheral uptake, and one feature related to the mean and 
one to the standard deviation of the shape index (SI)48 computed inside the 
segmented mass.

Enhancement kinetic features are used to characterize the time course 
of signal intensity through the contrast enhancement defined as
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where S(r, i) is the intensity at voxel location r at time frame i, and it is 
normalized to the contrast enhancement of mammary vessels. Two types 
of features are derived from the contrast enhancement. The first type is 
related to the fitting of the contrast enhancement to the following analyti-
cal exponential function:

 C t Ate t D

( ) ,= −
 (4.4)

where the coefficients A and D control the function amplitude and decay, 
respectively. These coefficients therefore characterize the contrast uptake 
and washout inside the lesion. The lesion uptake and washout of contrast 
material were characterized by fitting the contrast enhancement C(r, i) 
with an analytical function rather than using a two-compartmental phar-
macokinetic model.49 The use of a pharmacokinetic model implies strict 
constraints in the acquisition protocol50 that were not fulfilled in the acqui-
sition of many clinical datasets. Although the analytical function proposed 
[Eq. (4.4)] cannot physiologically model the lesion, its simple form allows 
for relaxing constraints on the acquisition protocols still characterizing the 
kinetic behavior of the lesion.

The second type of feature computes the area under the contrast 
enhancement curve C(r, i) (AUCEC). This feature is related to the total 
amount of contrast material in the lesion tissue. The mean, standard devia-
tion, and entropy were computed in the lesion segmented volume, yielding 
a total of nine contrast-enhancement kinetic features.

A SVM was trained with feature subsets selected by a genetic search. 
The best subsets were composed of the features most frequently selected 
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by majority rule. The performance was measured by ROC analysis with 
the 10-fold cross-validation method that prevents optimistically biased 
evaluations due to overfitting. The bootstrap technique was used in order 
to estimate the confidence interval of the AUC and to compare the classifi-
cation performances of the different feature subsets. A Wilcoxon matched-
pairs one-tailed test was also performed to determine the significance level 
of the performance improvement.

4.4.2 Results

Figure 4.10 shows the mean ROC curves related to the feature subsets 
selected in separate genetic searches for each class of features and to 
the feature subset selected by the genetic search using both classes of 
features.

Mean(ABSN), std(ABSN), and peripheral uptake were selected for 
the morphological subset, while mean(D), entropy(D), and entropy(A) 
were selected for the kinetic subset. From the combination of the mor-
phological and kinetic features, the mean(ABSN), std(SI), mean(D), and 
mean(AUCEC)] were selected. 

The AUC obtained in the three genetic searches were 0.90 ± 0.06 
(mean ± std) for the morphological features subset, 0.87 ± 0.06 for the 
kinetic features subset, and 0.94 ± 0.03 for the combined feature subset. 
The AUC resulting from the combined feature subset was significantly 

Figure 4.10 ROC	curves	associated	with	 the	 feature	subsets	selected	 in	sep-
arate	 genetic	 searches	 for	 each	 class	 of	 features	 and	 with	 the	 feature	 subset	
selected	by	the	genetic	search	using	both	classes	of	features.
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higher (p-value < 0.01) than those obtained with the other feature sub-
sets, showing that the combination of features increases the classification 
performances. 

4.5 Discussion and Conclusions

The CAD  system (im3D’s research version of CADBREAST MRI) pre-
sented here achieves good performance in detecting and discriminating 
breast lesions in a fully automatic manner, thus having the potential of 
reducing inter- and intra-observer variability and reading time.19,21

The lesion-detection step achieved a sensitivity of 98%, with an accept-
able number of FP findings. Moreover, the good performance obtained 
in detecting satellite lesions (16 of 17 were identified) highlights the sys-
tem’s potential to aid in the detection of multifocal and multicentric breast 
 cancers.

The widespread use of the DCE-MRI in clinical practice is hindered 
by the lack of automatic methods to make its analysis less time consum-
ing and independent of the expertise of the radiologist. Few methods have 
been developed to detect and characterize breast lesions automatically with 
DCE-MRI. Ertas et al. developed an automatic algorithm for the detection 
of breast lesions based on cellular neural network segmentation and 3D 
template matching,22 but their dataset was composed only of non–fat-sat 
images, and they applied a fixed threshold to extract suspicious areas, lim-
iting the applicability to studies acquired with different protocols. They 
assessed the performance of the system on a dataset of 39 lesions (19 
benign and 20 malignant), obtaining a detection rate of 100% with less 
than one FP per study. An automatic lesion-detection method based on 
the SVM, proposed by Twellmann et al. also showed promising results, 
yielding an AUC of 0.98. However, the algorithm was tested on a limited 
dataset of 12 patients and only on non–fat-sat images.24 

The innovation of the proposed lesion-detection method relies on the 
possibility of being used with both fat-sat and non–fat-sat images since 
the normalization is not performed by dividing each enhanced image by 
an unenhanced image, but by using an intrinsic value of the image related 
to contrast agent administration. The normalization process used in litera-
ture, in fact, yields very noisy images if fat-sat is applied, as most of the 
breast signal is suppressed in the unenhanced frame. On the other hand, the 
proposed normalization requires that the mammary vessels be included in 
the field of view with an adequate spatial resolution; therefore, DCE-MRI 
should be performed on the axial plane.

A second innovation relies on the use of the mIPT instead of the com-
monly used MIPT (maximum-intensity projection over time). The MIPT 
is very sensitive to artifacts and noise, and, due to the ‘‘blooming sign’’ 
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effect,51–53 the lesion size can be overestimated. Vice versa, the use of the 
mIPT can produce an underestimation of the lesion size by averaging over 
time but allows more reliable segmentations, as it is less sensitive to noise 
and thus produces a lower number of FPs. 

The higher number of FPs compared to other commercial and academic 
software54 is a limitation of the proposed method. As most of the FPs are 
vessels, mainly tortuous vessels or bifurcations with low vesselness val-
ues,55,56 research on fully automatic blood vessel detection is ongoing, aim-
ing to dramatically decrease the number of FPs. Moreover, improving the 
accuracy of the breast-segmentation step, especially around the ribcage 
area, could lead to an increase in the specificity of the lesion-detection step. 

In the proposed method the detected lesions were analyzed and discrim-
inated by a classifier based on the SVM. For this step a more accurate iden-
tification of lesion boundary and morphology could be useful, and further 
refinement of the lesion segmentation may become necessary, even if the 
results obtained during the lesion-discrimination step are satisfactory.

The classifier proposed here is able to discriminate malignant from 
benign breast mass-like lesions using two groups of features (morpho-
logical and kinetic), and obtaining an AUC of 0.94 ± 0.03. The AUC for 
the feature selection (FS) resulting from the combination of both feature 
groups was significantly higher than that the AUCs obtained with all other 
selected FSs, showing that the combination of features increases the clas-
sification performance. 

A genetic algorithm was used for selecting feature subsets in order to 
prevent unnecessary computation and overfitting, and to ensure a reliable 
classifier. The main limitation of the discrimination step is the limited num-
ber of lesions. This can produce overfitting of the training data, leading to 
an overestimate of the classifier’s performance. In order to reduce these 
effects, the total number of features was limited to 19, and the selected fea-
ture subsets were composed only of 3 to 4 features. Moreover, classifica-
tion performances were evaluated with a stratified 10-fold cross-validation 
method to reduce the classification bias.

Another limitation is the unbalanced dataset. The number of malignant 
lesions is higher than the number of benign lesions, leading to a possi-
ble bias in the discrimination of malignancy. This problem was partially 
reduced by presenting at training the same number of malignant and 
benign lesions using copies of benign lesions. Nevertheless, the benign 
class might be poorly described in the feature space. 

In conclusion, the proposed CAD system was tested on MR datasets 
obtained from different scanners, with a variable temporal and spatial 
resolution and on both fat-sat and non–fat-sat images, and has shown 
promising results. This type of system could potentially be used for early 
diagnosis and staging of breast cancer to reduce reading time and to improve 
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detection, especially of the smaller satellite nodules. Further refinements 
are ongoing to improve vessel detection and breast segmentation, and to 
validate these conclusions on a larger dataset.
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5.1 Staging Evaluation of Breast Cancer

In this section we highlight a few of the international consensus guidelines 
on the use of imaging in staging assessment of breast cancer (BC). The 
role of imaging in the screening of breast cancer is an entirely different 
subject and beyond the scope of current discussion.

Based on the 7th edition of the American Joint Committee on Can-
cer (AJCC), BC is staged according to the TNM classification, as 
with other common solid adult tumors. The T-stage (primary tumor) 
is dependent on tumor size, invasion of chest wall (importantly, deep 
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to the pectoralis muscles) and skin, and presence of an inflammatory 
component.1 The N-stage (nodal) is determined by the presence and 
numbers of involved nodes based on location; involvement of supra-
clavicular, infraclavicular, and internal mammary lymph nodes confer 
a higher nodal stage than do axillary lymph nodes, in that order. Pres-
ence of microscopic foci of tumor cells in circulating blood, bone mar-
row, or nonregional nodal tissue in asymptomatic patients constitutes 
M0 (i+) disease, while macroscopic deposits in distant organs consti-
tutes M1 disease.

Recommendations from the National Institute for Health and Clinical 
Excellence (NICE) of the United Kingdom are as follows: For early and 
locally advanced breast cancer, pretreatment ultrasound (US) evaluation of 
the axillae should be performed for all patients being investigated for early 
invasive breast cancer, and, if morphologically abnormal lymph nodes are 
identified, US-guided needle sampling should be offered. For advanced 
breast cancer, one should assess the presence and extent of visceral metas-
tases using a combination of chest radiography (CXR), US, computed 
tomography (CT) scans, and MRI. To assess the presence and extent of 
metastases in the bones of the axial skeleton, bone windows on a CT scan 
or MRI or bone scintigraphy (BS) should be employed. The proximal limb 
bones should be assessed for the risk of pathological fracture in patients 
with evidence of bone metastases elsewhere, using BS and/or CXR. MRI 
should be employed to assess bony metastases if other imaging is equivo-
cal for metastatic disease or if more information is needed (for example, 
if lytic metastases are encroaching on the spinal canal). Positron emission 
tomography fused with computed tomography (PET-CT) should only be 
used to make a new diagnosis of metastases for patients with breast cancer 
whose imaging is suspicious but not diagnostic of metastatic disease.2 In 
the ensuing sections of this chapter, the use of PET-CT considers only the 
use of F18-deoxyglucose; use of other novel tracers will be discussed in a 
separate chapter.

The American College of Radiology (ACR) has issued a limited set 
of Appropriateness Criteria® guidelines for BC. In asymptomatic stage 1 
BC disease, imaging for detection of metastases is generally not recom-
mended.3 This is echoed by a more detailed set of guidelines issued by the 
Breast Cancer Disease Site Group (BCDSG, Ontario) concerning imag-
ing for BC.4 The evidence for the BCDSG guidelines is modality spe-
cific as well as organ-system specific. The recommendations also take into 
account the incidence of metastatic disease in BC.

Based on the review of the literature by BCDSG, it was concluded that 
incidence of skeletal metastases detected on BS increased with tumor 
stage (in 0.5% of women with stage I disease, in 2.4% with stage II, and in 
8.3% with stage III). The incidence of metastases detected by liver US also 
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increased with tumor stage (in no patients with stage I disease, in 0.4% 
with stage II, and in 2.0% with stage III). Similar findings for lung metas-
tases were detected on CXR (in 0.1% of stage I patients, in 0.2% of stage 
II, and in 1.7% of stage III). Variably high false-positive (FP) rates were 
encountered for each of the abovementioned imaging modalities (10% to 
22% for bone scanning, 33% to 66% for liver US, and 0 to 23% for CXR). 
Hence, use of imaging for BC staging evaluation should be prudent and 
performed in tandem with tumor stage.

According to the BCDSG guidelines, for asymptomatic patients who 
have undergone surgery for their BC and where the treatment options are 
restricted to tamoxifen or no further treatment because of age or other fac-
tors, the use of routine staging should be discouraged. Women who have 
stage II disease should undergo routine BS for detection of bone metas-
tases. US of the liver and CXR are not routinely indicated in this group. In 
women with pathological stage III tumors, routine bone scan, liver US and 
CXR should be performed postoperatively. 

5.2 Nodal Disease

The axillary lymph nodes are divided into three levels based on their posi-
tion relative to the pectoralis minor muscle.5 Level 1 nodes lie lateral to the 
lateral border of the pectoralis minor, level 2 nodes lie between the medial 
and lateral borders of the pectoralis minor, and level 3 nodes lie medial to 
the medial border of the pectoralis minor (Fig. 5.1). 

Axillary lymph node involvement is one of the most important prognos-
tic factors in BC. For detection of axillary lymph node metastases, more 
invasive methods such as sentinel lymph node biopsy (SNLB) or four-node 

(a) (b)

Figure 5.1 (a)	Axial	contrast	enhanced	CT	(CECT)	image	shows	metastatic	level	
1	axillary	lymph	nodes	(arrow).	Note	changes	of	skin	thickening	(arrowhead),	con-
sistent	with	inflammatory	breast	cancer,	a	subtype	that	confers	poorer	prognosis.	
(b)	Axial	CECT	image	shows	metastatic	level	3	axillary	lymph	node	(medial	to	the	
medial	border	of	 the	pectoralis	minor	muscle)	 (arrow).	This	 implies	deeper	 lym-
phatic	dissemination	and	is	associated	with	poorer	prognosis.
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(a) (b)

Figure 5.2 (a)	Duplex	sonography	image	shows	a	suspicious	right	axillary	lymph	
node	(arrow)	with	increased	color	flow.	The	node	is	highly	irregular	and	markedly	
hypoechoic.	This	was	proven	 to	be	metastatic	by	biopsy.	 (b)	Axial	CECT	 image	
shows	the	same	lymph	node	(arrow)	to	be	round	and	borderline	enlarged	(10	mm).	
The	morphologic	characteristics	of	the	node	are	better	depicted	on	US	than	on	CT.

sampling are most accurate and considered to be the reference standards. 
SLNB is based on the drainage pathway of BC; if the first draining lymph 
node in the axilla is free from tumors, no future dissection is performed, 
and the extent of surgery can also be reduced using breast-conserving sur-
gical techniques.6 

In an Asian series published by Tan et al.,7 35% of patients with early 
BC were found to have nodal metastases. The four independent predictors 
of node positivity were tumor size, lymphovascular invasion, histology 
other than invasive ductal or lobular carcinoma, and presence of proges-
terone receptors.

A recent study by Valente et al.8 on 244 patients showed that physical 
examination and multimodal imaging with mammography, US, and MRI 
can be useful for treatment planning but remain inadequate predictors of 
axillary lymph node involvement, with a false negative (FN) rate of 14%. 
Although imaging remains limited for nodal status evaluation, continued 
improvements in accuracy have been made in the recent years through 
research. 

5.2.1 Axillary nodes

US of the axillary lymph nodes is usually performed using high-frequency 
linear transducers that afford high spatial resolution. This is particularly 
important in the assessment of the level 1 nodes, given their superficial loca-
tion (Fig. 5.2). In contrast, CT, MRI, and scintigraphic techniques play an 
important role in assessment of deep nodes such as those in the internal mam-
mary chain, given the limited penetration of US across the bony chest wall.
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Bedi et al.9 showed that there can be up to 88% interobserver agreement 
for differentiating between benign and malignant nodes, with sensitivity 
and specificity of 77% and 80% respectively. In that study, it was shown 
that predominantly hyperechoic lymph nodes can be considered benign, 
while the presence of asymmetric focal hypoechoic cortical lobulation or a 
completely hypoechoic node should prompt further evaluation with needle 
biopsy (Fig. 5.2). Some authors advocate size measurement; Cho et al.10 
showed a cutoff of 2.5 mm for cortical thickness of a node with an AUC of 
0.861 (95% CI: 0.796%–0.926%). 

Increasingly, needle aspiration biopsy combined with US is being used 
to improve the accuracy of nodal status determination. The FN error can 
be reduced with the use of a modified 14-gauge core needle biopsy tech-
nique that can be successfully performed without major complications.11 
The study by Garcia-Ortega et al.12 showed a sensitivity and specificity of 
US of 63% and 89% respectively, and of core biopsy of 67% and 100%, 
respectively. This allowed for avoidance of SLNB in 33% of patients. In the 
study by Moore et al.,13 assessment of sonographic characteristics of axil-
lary nodes, combined with needle biopsy, achieves high accuracy in stag-
ing and has been advocated as potentially replacing SLNB. Similar find-
ings have been echoed in a study by van Rijk et al.14 In that study, which 
looked at 726 patients, combined US and fine-needle aspiration cytology 
(FNAC) carried a sensitivity of 21% and avoided SLNB in 8% of patients. 
Finally, the meta-analysis by Houssami15 showed that US combined with 
biopsy is accurate and carries a pooled sensitivity and specificity of 80% 
and 98%, particularly in patients with average or high underlying risk of 
nodal  metastases.

CT has poor sensitivity of only 50–60% and does not currently play any 
role in routine preoperative staging assessment for axillary nodal involve-
ment16,17 (Fig. 5.2). Its use is reserved for locally advanced tumors where 
the suspicion for occult metastatic disease is high. Some authors have 
reported improved accuracy with thin section CT scanning in the prone 
position, but this can be technically more challenging.18 

MRI confers great soft tissue contrast resolution and allows for more 
than morphologic assessment. Increased T2-signal, lack of uptake of 
ultrasmall superparamagnetic iron oxide (USPIO) contrast agents that 
are preferentially taken up by normal lymph nodes and altered contrast 
perfusion, metabolic profile, and water diffusion characteristics have 
all been advocated for the diagnosis of nodal disease. Luciani et al.19 
showed that morphologic assessment of nodes on MRI can discriminate 
between benign and malignant nodes. The findings that were most sig-
nificant include irregular contours, high signal intensity on T2-weighted 
imaging, marked gadolinium enhancement, and round hila with abnor-
mal cortices.
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Among the various functional imaging techniques for nodal assessment, 
USPIO imaging has been best studied. Memarsadeghi et al.20 showed that 
USPIO-MRI is superior to nonenhanced imaging and carried a sensitivity, 
specificity, and accuracy rate of 100%, 98%, and 98%, respectively. Addi-
tionally, Harada et al.21 showed that use of USPIO imaging improved sensi-
tivity and specificity of MRI over morphologic assessment. With morpho-
logic assessment only, the sensitivity and specificity were 36% and 94%, 
respectively; with USPIO imaging, the sensitivity and specificity were 
85% and 98%, respectively. Similar findings were demonstrated by Michel  
et al., who showed that USPIO imaging carried a sensitivity of 82% and 
specificity of 100%;22 Motomura et al.23 evaluated the use of USPIO-MRI 
for sentinel node involvement and found a sensitivity, specificity, and accu-
racy rate of 84%, 91% and 89%, respectively. The meta-analysis by Cooper  
et al.24 showed that among other imaging modalities, USPIO-MRI showed a 
lower specificity at 73%, but a higher sensitivity at 88% than PET-CT, which 
yielded sensitivity and specificity rates of 56% and 96%, respectively. Fur-
thermore, the diagnostic accuracy of USPIO-MRI appears to be superior to 
that of DCE-MRI. In a more general meta-analysis by Wu et al.25 on USPIO-
enhanced MRI for lymph node metastases in different body regions, use of 
USPIO-MRI offers significantly higher diagnostic performance than con-
ventional MRI. These having been said, routine clinical use of USPIO agents 
have been hampered by frequent side effects (back pain, anaphylaxis), cum-
bersome administration protocols, and lack of commercial availability.

DCE-MRI assesses the perfusion characteristics of lesions. It is assumed 
that the concentration of gadolinium is proportional to the vascularity of 
lesions. This can be more simply assessed by plotting a concentration–
time curve, also known as a contrast-enhancement kinetics curve. Malig-
nant lesions tend to show rapid uptake and washout of contrast compared 
to normal soft tissue. More-complicated methods of analysis have also 
been used; some of these are now commercially available. Among them, 
the Tofts’ model is one of the most frequently used methods of quantitative 
analysis of various perfusion parameters, including blood flow and vascu-
lar permeability.26 Kvistad et al.27 showed that the sensitivity, specificity, 
and accuracy of DCE-MRI (using a 100% increase in signal intensity as a 
marker for node-positive disease) was 83%, 90%, and 88%, respectively. 
The meta-analysis by Klerkx et al.28 showed that the weighted estimated 
sensitivity and specificity of DCE-MRI (for all 43 papers studied) was 
0.72 and 0.87, respectively. Sensitivity was increased to 0.84 without sig-
nificant reduction in specificity (0.82) for subgroup analysis reviewing 
studies that incorporated contrast enhancement.

Diffusion-weighted (DW) MRI assesses for free diffusion of water mol-
ecules and has shown promise for assessment of tumor involvement. The 
advantages of this technique are rapid acquisition (approximately 3 min for 
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one station or body part) and no need for intravenous contrast administration. 
Heusner et al.29 showed that whole-body (WB) DW MRI might be sensitive 
but at present is not specific enough for the detection of locoregional or meta-
static BC. In that study, the sensitivity and specificity of PET-CT was 94% and 
98%, respectively, while that of DW MRI was 91% and 72%, respectively. 

MR spectroscopy (MRS) assesses the metabolic profile of lesions. This 
can be performed using either single-voxel (for small lesions such as lymph 
nodes) or multivoxel techniques. The main limitations of MRS in practice 
are that technical competency is necessary (to avoid artifacts such as fat 
contamination) and that it is prone to artifacts (noise) and long acquisition 
times (10–30 mins). Yeung et al.30 showed that sensitivity, specificity, and 
accuracy of MRS was 81%, 100%, and 90%, respectively, with choline 
being consistently detected in invasive ductal carcinoma. Asiago et al.31 
showed that a combination of nuclear MR and 2D gas chromatography-
mass spectrometry to profile the metabolites of samples yielded a sensitiv-
ity of 86% and specificity of 84%.

5.2.2 Other draining nodes

The other draining nodes in BC include the internal mammary (IM) and 
mediastinal lymph nodes. According to early studies of patients who under-
went extended radical mastectomy, metastasis to IM nodes occurs in close 
to 20% of women with stage II and stage III BC.32,33 The study of patients 
with early BC by Byrd et al.34 revealed that the overall prevalence of meta-
static IM nodes was 17%. IM node drainage was significantly less frequent 
when tumors were located in the upper outer quadrant of the breast (10%) 
than when tumors were located in the other three quadrants or the subare-
olar portion (17%–29%). Metastasis to the IM and axillary nodes usually 
occurs synchronously; however, it can be infrequently isolated to the IM 
chain in 4%–6% of cases.35 Furthermore, the prognosis of patients with 
IM and axillary node metastases is significantly worse than that of patients 
with only axillary node disease, suggesting that the IM nodal chain may be 
a conduit for more-widespread dissemination of disease.36 

Unlike axillary nodes, IM nodes are not routinely biopsied as part of an 
individual patient’s staging workup, and their status is generally unknown. 
CT has been the main modality used to evaluate mediastinal nodes in 
oncologic patients, but this technique, which uses size as the main crite-
rion to assess nodal status, is limited by poor sensitivity and specificity. At 
present, PET-CT appears superior to other imaging modalities for detec-
tion of nodal disease. In a preliminary analysis of 73 patients with recur-
rent or metastatic BC, the prevalence of suspected disease in mediastinal 
and IM nodes on fluorodeoxyglucose (18F or FDG) PET was significantly 
higher than the prevalence on CT (40% versus 23%).37 Uematsu et al.38 
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showed that while PET is not a breast imaging modality for evaluating the 
local tumor extent compared to MRI (accuracy for PET is 43.5% and for 
MRI is 91%), it is useful for predicting the prognoses of patients who are 
candidates for breast-conservation therapy (BTC) because it showed an 
accuracy of 87% for nodal status evaluation. 

5.3 Distant Metastases

The retrospective review study by Whitlock et al.39 showed that the most 
common sites of metastatic disease was the skeleton (67%) as detected on 
BS, liver (32%) as detected on US, and lungs (42%) as detected on CXR. 
The study by Mvere et al.40 showed that metastases were more common in 
patients with the inflammatory subtype of BC (26% compared to 10% in 
the noninflammatory subtype). With the inflammatory subtype, the lungs 
and pleura were the most common sites of metastases. 

Imaging assessment for metastatic disease is typically performed using 
a combination of “conventional” imaging techniques: BS, CXR, or CT of 
the lungs, and US, CT, or MRI of the liver. More recently, the advent of 
PET-CT has altered the imaging algorithm for staging evaluation of BC 
patients. Dose-Schwarz et al.41 showed that the sensitivity and specificity 
of PET was 93% and 77%, respectively, compared to 61% and 87% for 
conventional imaging, which included CXR, US of the liver, and BS. PET-
CT is more sensitive than conventional imaging procedures for detection 
of distant BC metastases and should be considered for additional stag-
ing, especially in patients with high-risk primary BC. Meta-analysis by 
Brennan et al.42 showed that conventional imaging studies, which included 
CXR, US, BS and CT, yielded lower sensitivity and specificity than PET-
CT (sensitivity/specificity: combined conventional imaging 78.0%/91.4%; 
BS 98.0%/93.5%; CXR 100%/97.9%; liver US 100%/96.7%; CT chest/
abdomen 100%/93.1%; and FDG-PET 100.0%/96.5%). Interestingly, the 
recent meta-analysis by Pan et al.43 showed that MRI was the most useful 
imaging technique to assess patients for suspected recurrent or metastatic 
disease (followed by PET-CT), when compared to other imaging modali-
ties such as US, CT, and scintimammography (AUCs of 0.9718, 0.9604, 
0.9251, 0.8596, 0.9386, respectively). 

On the whole, MRI may appear to be more cost effective than either 
PET alone or PET-CT as a diagnostic tool to replace the more-invasive 
reference methods. However, in a direct comparison between WB MRI 
and PET-CT in 33 patients, Schmidt et al.44 found that while both modali-
ties are useful for detection of tumor recurrence at follow up, WB MRI is 
more sensitive to distant metastases (PET-CT 86%, WB MRI 93%), while 
PET-CT is more sensitive in detecting nodal disease. Extensive discussion 
on the role of PET-CT will appear in a separate chapter. In the ensuing 
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sections, we focus more on the use of the imaging modalities, particularly 
ultrasound, CT, and MRI.

5.3.1 Pulmonary metastases

Complete resection of pulmonary metastases in selected cases can lead to 
improved disease-free survival, with low morbidity.45 The study by Ludwig 
et al.46 showed that a disease-free interval of more than two years influ-
enced the mean disease-free survival rate (36.1 months). Those in whom 
the disease-free interval was less than two years had a mean disease-free 
survival rate of 8.5 months. Patients with solitary metastases also tended to 
survive longer, compared to those with multiple metastases (28.8 months 
versus 13.1 months). Eubank et al.37 showed that patients with mediastinal 
or IM node disease on PET had a significantly greater likelihood of devel-
oping ipsilateral pleural or lung parenchymal metastasis than did patients 
without mediastinal or IM node disease on PET. The characteristic pattern 
of the spread of disease to the pleura, mediastinum, and lung as well as iso-
lated sternal metastases has been described in patients with IM node metas-
tases.47 In the study by Mahner et al.,48 the sensitivity and specificity of 
CXR, CT, and PET-CT were 28% and 100%, 65% and 97%, as well as 75% 
and 97%, respectively. PET also identified bone metastases with higher 
accuracy compared with BS. On the other hand, CT had distinct advantages 
in the identification of both small lung and liver metastases (Fig. 5.3).

MRI has been considered as an alternative to CT for detecting pulmonary 
metastases, primarily because exposure to ionizing radiation is avoided, an 

(a) (b)

Figure 5.3 (a)	CXR	shows	faint	ill-defined	opacity	(arrow)	in	the	lower	zone	of	the	
right	lung	that	was	confirmed	to	represent	a	metastasis	on	CT.	(b)	Axial	CT	image	
of	the	upper	lungs	show	multiple	metastases	(arrows)	that	were	not	well	depicted	
on	CXR.	This	clearly	illustrates	the	higher	sensitivity	of	CT	over	CXR	in	the	detec-
tion	of	pulmonary	metastases.
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issue of particular concern with younger patients undergoing multiple follow-
up examinations. However, motion-related artifacts, a lower spatial resolution 
than CT, and an inability to detect calcification within lesions all represent 
limitations of MRI (Fig. 5.4). Therefore, it is generally accepted that MRI does 
not currently have a role in screening of patients for pulmonary metastases. 

The study by Kersjes et al.,49 which evaluated turbo-spin echo MRI 
using CT as the reference standard, demonstrated a lower sensitivity for 
MRI in detecting pulmonary metastases; for 340 metastases identified on 
CT, the overall sensitivity of MRI was 84%, but for nodules <5 mm in 
diameter, sensitivity was only 36%. A more recent study comparing the 
nodule (greater than 5 mm) detection accuracy of various MRI sequences 
supports these results. The optimal sequence [short tau inversion recovery 
(STIR)] had a 72% sensitivity for nodule detection.50 

5.3.2 Bone metastases

Bone metastases are one of the most common forms of BC dissemination. 
The incidence of bone metastases is dependent on the stage and histology 
of the primary tumor. Patients with more-advanced disease tend to have 
a higher incidence of bone metastases. In the study by Koizumi et al.,51 
patients diagnosed with disease at or above stage IIIA had incidence of 
more than 3% per person-year, while those with stage 1 disease had inci-
dence of <1% per person-year. Traditionally, BS with Tc-99m chelates 
(commonly methylene disphosphonate, MDP) has been used to evaluate 
for osseous metastases. This is based on the fact that tumor incites bone 
reaction in the form of increased osteoblastic activity. 

The ACR Appropriateness Criteria52 on metastatic bone disease recom-
mends that in stage 1 breast carcinoma where BS is usually negative, rou-
tine baseline and follow-up bone scans are probably unwarranted because 

(a) (b)

Figure 5.4 (a)	Axial	 CT	 image	 shows	multiple	 pulmonary	metastases	 in	 bilateral	
lower	 lobes	 (arrows)	 and	 the	 middle	 lobe	 (arrowhead).	 (b)	Axial	 T2-weighted	 MR	
image	shows	the	same	bilateral	pulmonary	metastases	(arrows).	However,	the	middle	
lobe	metastasis	is	not	depicted	as	a	result	of	respiratory	and	cardiac	motion	artifacts.
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of the very low true-positive (TP) yield. Hence, no imaging studies of the 
skeleton are required in asymptomatic patients with stage 1 carcinoma of 
the breast at presentation. BS and PET-CT have been shown to be useful 
in the preoperative staging and postoperative followup of stages 2, 3, and 
4 breast carcinoma. In a symptomatic patient with stage 2 breast carci-
noma, radiography of the back and hip and radionuclide bone scan are 
warranted. In the setting of “hot” lesions on BS, if radiography is negative, 
single-photon emission computed tomography (SPECT) and MRI may be 
recommended. On MRI, use of a dual echo T1-weighted (also referred to 
as in- and out of phase) sequence may best assess for marrow replacement 
by tumor. CT may be performed for localization before needle biopsy. 

PET is more sensitive than BS for detection of lytic metastases or lesions 
predominantly involving the bone marrow, accounting for cases that are 
positive on PET and negative on bone scanning; BS is more sensitive than 
PET for detection of osteoblastic metastases, accounting for cases that are 
positive on bone scanning and negative on PET.53 In the study by Hahn 
et al.54 on a per lesion basis, PET-CT was more sensitive and showed no 
significant difference in specificity compared to BS; the sensitivity and 
specificity of BS and PET-CT were 76%/95% and 96%/92%, respectively.

MRI is a highly sensitive imaging modality for detection and charac-
terization of osseous metastases, in part due to the high soft-tissue con-
trast resolution achieved between tumor and normal fat-containing mar-
row (Fig. 5.5). The main limitations of MRI are the long scanning times 
required to obtain a WB scan and the related high costs of the procedure. 
With the advent of newer WB imaging techniques that utilize parallel 
imaging, imaging times are now significantly reduced. A typical WB MRI 
scan to look for osseous metastases now takes approximately 30 min. This 
is not significantly different from the scan time of BS. 

Nakanishi et al.55 directly compared WB MRI to BS and showed that 
there was an 81% concordance between the modalities, and that MRI is 
considered to be an excellent screening modality for bone metastases, 
especially in the vertebral body. Schmidt et al.56 showed that WB MRI 
carries a sensitivity of 94%, while PET-CT achieved 78% for detection 
of osseous metastases. Grankvist et al.57 showed that using PET-CT as 
the reference standard, MRI carried a sensitivity of 98%, and combining 
findings from T1-weighted imaging (STIR and DW MRI), the specificity 
was 95%. Houssami et al.58 performed a systemic review on 16 studies and 
found that PET-CT and MRI may provide small increments to the accu-
racy of BS for detecting bone metastases; at this point, there is insufficient 
evidence to support the use of SPECT and WB MRI as first-line imaging 
modalities. Engelhard et al.59 showed that using a moving table technique, 
WB MRI was superior in detection of metastases with sensitivity, specifi-
city, and accuracy rates of 92%, 90%, and 91%, respectively, as compared 
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to BS with sensitivity, specificity, and accuracy rates of 83%, 80%, 82%, 
respectively. Furthermore, MRI showed metastases of the lung and liver, 
which BS failed to demonstrate. Wu et al.60 showed that WB MRI had 
pooled sensitivity and specificity of 0.899 and 0.918, respectively. DW 
MRI appeared to reduce overall specificity (0.961 without DW MRI). Yil-
maz et al.61 directly compared MRI to BS and found greater sensitivity and 
specificity (95%, 100%) in MRI than in BS (70%, 94%) in detecting bone 
metastases (Fig. 5.6). 

5.3.3 Liver metastases

Liver metastases generally occur later than locoregional recurrences 
and are associated with a much worse prognosis.62 Patients with estro-
gen receptor (ER)–negative primary tumors have an increased risk of 
liver metastases compared with patients with ER-positive tumors.63 The 
predominant mode of metastasis to the liver is hematogenous; how-
ever, lymphatic spread from IM nodes to pericardial nodes and below 
the diaphragm to nodes in the porta hepatis and finally the hepatic 
parenchyma has been described.64 Detection of liver metastases can be 
important for curative treatment. In a small series by Selzner et al.,65 

(b)(a) (c)

Figure 5.5 (a)	Coronal	reformat	CT	image	shows	subtle	heterogeneity	of	the	T7	
vertebral	body	(arrow).	A	pulmonary	metastasis	(arrowhead)	is	also	present	in	the	
right	lower	lobe.	(b)	Sagittal	STIR	image	of	the	cervical	and	upper	thoracic	spine	
shows	multiple	areas	of	increased	T2	signal	(cervical	vertebrae:	arrowheads;	T2	
vertebra:	arrow),	consistent	with	metastases.	These	are	much	better	depicted	on	
MRI	than	on	CT.	(c)	Corresponding	sagittal	T1-weighted	image	shows	metastases	
as	hypointense	lesions	(cervical	vertebrae:	arrowheads;	T2	vertebra:	arrow)	as	a	
result	of	replacement	of	fatty	marrow.	The	lesions	showed	corresponding	enhance-
ment	with	gadolinium	(not	shown),	in	keeping	with	active	metastases.
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(b)(a)

Figure 5.6 (a)	 Bone	 scintigraphy	 image	 shows	 foci	 of	 increased	 osteoblastic	
activity	 in	the	medial	 left	 iliac	bone	(arrows)	and	L5	vertebral	body	(arrowhead),	
consistent	with	metastases.	(b)	Coronal	T2-weighted	MR	image	shows	a	hetero-
geneously	hyperintense	lesion	(arrow)	in	the	medial	left	iliac	bone,	consistent	with	
a	partially	sclerotic	metastasis.

BC in patients undergoing liver metastectomy, a long-term survival of 
22% was demonstrated. 

In the study by Mahner et al.,48 the sensitivity and specificity of US, 
CT, and PET-CT was 100% and 67%, 40% and 92%, and 19% and 76%, 
respectively. In the study by Ravaioli et al.,66 the TP rate for liver meta-
stases was 0.8%, and the FP rate was 0.4%. Furthermore, the detection  
(TP rate) was 0% for stage 1 BC, 0.5% for stage 2 with < 4 nodes involved, 
2.1% in stage 2 with >3 nodes involved (now considered stage 3), and 
2.9% in stage 3 patients. The specificity of US was 62%, sensitivity 99%, 
positive predictive value 67%, and negative predictive value 99%, using 
distant metastases confirmed by CT or MRI during the six-month fol-
lowup as the reference standard.
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A commonly encountered problem with the use of CT staging evalua-
tion of BC is the identification of incidentally detected small hypodensities. 
These have become even more common with the advent of multidetector 
row CTs that allow for higher spatial and temporal resolution imaging.  
The study by Khalil et al.67 showed that among 1012 women who under-
went CT of the liver, at least one indeterminate lesion [too small to charac-
terize (TSTC)] was found in 29% of patients. Using best- and worst-case 
scenario analyses, the lesions were shown to be benign in 97% and 93% of 
patients, respectively. 

BC liver metastasis is most commonly present as hypervascular hepatic 
metastases, which may develop early enhancement with variable degrees 
of washout and peripheral rim enhancement68 (Fig. 5.7).

A more generalized study on patients with metastatic liver disease from 
various primary diseases, by Hagspiel et al.,69 showed that USPIO-MRI 

(a) (b)

(c)

Figure 5.7 (a)	Axial	CECT	 image	shows	hypoattenuating	 lesion	 (arrow)	 in	 the	
anterior	 right	 hepatic	 lobe,	 indeterminate	 for	 a	 metastasis.	 The	 larger	 lesion	 in		
the	posterior	 right	 lobe	(arrowhead)	 is	consistent	with	a	metastasis.	 (b)	Coronal	
single	shot	 fast	spin	echo	 image	of	 the	 lesions	shows	a	mildly	T2	hyperintense	
lesion	(arrow)	that	lies	adjacent	to	a	cyst,	in	keeping	with	a	metastasis.	(c)	Axial	
DW	 MRI	 image	 (b	 =	 100	 sec/mm2)	 shows	 a	 rim	 of	 restricted	 diffusion	 in	 both	
lesions	(anterior:	arrow;	posterior:	arrowhead).	DW	MRI	can	be	useful	to	increase	
sensitivity	of	MRI	for	metastases.
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was the most sensitive imaging method, when compared to preopera-
tive CT and preoperative US. On a per lesion analysis, USPIO was less 
sensitive than intraoperative ultrasonography (IOUS) (56% versus 80%). 
The study by Patterson et al.70 on TSTC liver lesions that underwent 
further evaluation with MRI showed that immediate further evaluation 
of these lesions with MRI offers marginal benefit over CT, and among 
patients studied, only 5% were found to subsequently represent metastases  
(Fig. 5.8). 

Given the minimal complication rate of liver biopsy, the authors suggest 
that liver biopsy should still be performed in the types of cases studied 
here, despite the finding that the vast majority of biopsies produced the 
expected result and presumably did not change patient management.

5.3.4 Brain metastases

Gonzalez-Angulo et al.71 reviewed 668 BC patients treated with multimo-
dality therapy and found that 8% of patients developed brain metastases 

Figure 5.8 (a)	Axial	CECT	image	in	a	patient	with	known	BC	shows	an	indetermi-
nate	hypoattenuating	lesion	(arrow)	in	the	posterior	lateral	left	hepatic	lobe.	(b)	Axial	
T2-weighted	MR	image	at	the	same	level	shows	the	signal	within	the	lesion	(arrow)	
to	approach	that	of	fluid.	(c)	Axial	T1-weighted	contrast-enhanced	MR	image	of	the	
same	lesion	(arrow)	in	the	late	hepatic	arterial	phase	demonstrates	a	nodular	pattern	
of	enhancement.	The	MRI	features	are	more	in	keeping	with	a	haemangioma.	This	
case	illustrates	that	MRI	is	superior	to	CT	in	characterizing	focal	liver	lesions.

(a) (b)

(c)
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at a median follow-up duration of 9.5 years. Brain metastases represented 
the first site of recurrence for 63% of the affected patients. Character-
istics associated with the development of central nervous system (CNS) 
metastases over time included negative hormone receptor status, grade 3 
disease, and larger tumor size. MRI is currently regarded to be the most 
appropriate test for detection of brain metastases (Fig. 5.9).

 The use of PET-CT for brain metastases is hampered by the inherent high 
background activity of normal brain parenchyma, while the sensitivity of CT 
can be reduced by its relatively poorer soft-tissue contrast resolution, in which 
case iodinated contrast administration is considered mandatory (Fig. 5.10).

5.4  Treatment Response Evaluation: Response 
Evaluation Criteria in Solid Tumors (RECIST)

In 1979, the World Health Organization (WHO) issued its first version of 
tumor response criteria based on assessment of tumor burden. This was 
calculated by summing the products of 2D lesion measurements. Baseline 
lesion measurements were then compared with follow-up measurements 
assessed for change.72 In 2000, the WHO, the United States National Cancer 
Institute (US NCI) and the European Organization for Research and Treat-
ment of Cancer (EORTC) adopted a new set of tumor response criteria, the 
Response Evaluation Criteria In Solid Tumors (RECIST, version 1.0).73 

(a) (b)

Figure 5.9 (a)	Axial	T1-weighted	contrast-enhanced	MR	 image	shows	multiple	
nodular	enhancing	metastases	(arrows)	in	the	frontal	lobes.	(b)	Coronal	T1-weighted	
contrast-enhanced	MR	image	shows	many	more	metastases	(arrows)	in	the	cer-
ebellar	hemispheres.	The	high	soft-tissue	contrast	resolution	of	MRI	makes	it	supe-
rior	to	CT	in	the	detection	of	intracranial	metastases.
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(a) (b)

Figure 5.10 (a)	Axial	noncontrast-enhanced	CT	image	shows	subtle	hypoattenu-
ation	(arrow)	in	the	posterior	medial	right	thalamus.	(b)	Axial	CECT	image	at	the	
same	level	shows	avid	contrast	enhancement	in	the	metastasis	(arrow)	to	the	right	
thalamus.	Iodinated	contrast	enhancement	is	important	for	increasing	the	sensitiv-
ity	of	CT	for	intracranial	metastases,	particularly	in	the	leptomeninges.

RECIST was initially based on a 1D lesion measurement criterion instead of 
the 2D criterion used in the initial WHO guidelines. 

With the advent of PET-CT and its increasing use in oncologic imag-
ing, the RECIST working group published a revised version of the guide-
lines (RECIST, version 1.1) in 2009, drawing on data analysis of more 
than 6500 patients and more than 18000 target lesions.74 Based on the new 
guidelines, size measurement of five target lesions, with a maximum of 
two per organ, is recommended. The key points (revisions) to the updated 
RECIST criteria (version 1.1) are as follows:

● Complete response (CR): disappearance of all target lesions, plus 
reduction in short-axis diameter of pathologic lymph nodes to < 10 mm;

● Partial response (PR): ≥30% decrease in the sum of the longest diam-
eters of target lesions;

● Progressive disease (PD): >20% increase (5-mm absolute increase) in 
the sum of the longest diameters in comparison with the small sum of 
the longest diameters recorded since treatment started;

● Stable disease (SD): neither PR nor PD;
● Lymph nodes that possess a short axis diameter of at least 10 mm are 

considered normal, while those with short axis of 10–15 mm are nontar-
get lesions, and those with >15 mm in short axis diameter are considered 
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to be target lesions. Bone metastases are now considered target lesions if 
they are either lytic or mixed lytic/blastic, with a soft tissue component 
that is measureable; however, these should be assessed with either CT or 
MRI.

● Nontarget lesion status may reduce overall response; e.g., for a nonpro-
gressive disease in a nontarget lesion with CR in the target lesion, the 
treatment is considered to have achieved only PR.

Accordingly, disease progression is defined in part by an absolute 
increase of 5 mm or more in the sum of the longest dimensions of the 
target lesions, and in part by an increase of 20% or more in the sum of the 
longest diameters of target lesions. 

Even with the revised criteria, a few limitations to RECIST persist. This 
includes the assumption that all lesions are spherical (allowing for single 
2D measurement) and that those that respond to treatment will decrease 
uniformly in size. In addition, newer imaging modalities (such as DCE-
MRI to assess tumor vascularity and DW MRI as a marker of lesion cel-
lularity) are not used for assessment of tumor response. Finally, detection 
of new lesions is used for defining progressive disease. However, bone 
metastases may heal and become sclerotic and thereafter mistakenly be 
attributed to disease progression.

Given that RECIST is based entirely on size measurement to deter-
mine tumor burden, US, which is operator dependent and may therefore 
lead to subjective measurements, is not considered an acceptable imaging 
modality for treatment response assessment under the RECIST guidelines. 
Similarly, PET and other functional imaging techniques are currently not 
sufficiently standardized to merit substitution for anatomical assessment 
described in RECIST. A series of prospectively conducted multicenter clin-
ical trials to validate PET-CT as an appropriate end-point is desired.75 With 
more correlation between volumetric tumor measurements and results of 
molecular and functional imaging, further updates to the RECIST criteria 
can be anticipated.

5.5 Surveillance: To Do or Not To Do?

The Canadian Breast Cancer Initiative issued a set of Clinical practice 
guidelines for the care and treatment of BC as well as followup after treat-
ment for BC, updated in 2005. Based on the recommendations, routine 
laboratory and radiographic investigations should not be carried out for 
the purpose of detecting distant metastases76 (Fig. 5.11). This is based on 
the rationale that in the absence of evidence that early treatment of meta-
static disease will prolong life, one should avoid the inconvenience and 
expense of carrying out routine tests to detect it.
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In one trial, 655 patients who were randomly assigned to receive inten-
sive surveillance consisting of physician visits, bone scanning, liver US 
examination, CXR, and laboratory tests had a survival rate that was almost 
identical to that of a control group of 665 women who received only tests 
that were clinically indicated.77 In another randomized trial of similar 
size and duration, CXR and bone scans obtained every 6 months had no 
influence on mortality at 5 years. This has been verified in a recent meta-
analysis by Rojas et al.78 Hence, it is believed that except for mammo-
graphic examination, scientific evidence does not support the routine use 
of any other instrumental or laboratory test, including biologic markers as 
follow-up treatment for BC.79–82 Radiographic disease stability may repre-
sent either beneficial effect of treatment or indolent disease; patients with 
stable disease show survival equal to that of patients with tumor regression 
on radiographic assessment; hence, therapy is continued as long as toxicity 
is acceptable and there is no evidence of disease progression. 

Among laboratory-based markers, circulating tumor cells hold promise 
and have been shown to be an independent predictor of progression-free 
survival and overall survival in patients with metastatic BC.83 Budd et al.84 
showed that the use of circulating tumor cells conferred less inter-reader 
variability (1%) compared with radiographic assessment using the WHO 
criteria of 15% to determine disease progression. Further validation of 
circulating tumor cells as a marker of disease burden is required.

Figure 5.11 Axial	CECT	of	 the	upper	 lungs	shows	post-treatment	changes	 in	
the	form	of	cutaneous	thickening	(arrowhead)	and	a	focus	of	consolidation	in	the	
right	 upper	 lobe	 (arrow)	 in	a	patient	who	 completed	 radiotherapy	 for	 right	BC.	
These	are	common	findings	that	should	not	be	mistaken	for	residual	or	recurrent	
disease.
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5.6 Locoregional Recurrence

Goerres et al.85 demonstrated in 32 patients with BC and suspected recur-
rence that, while PET had greater specificity, MRI showed greater sensi-
tivity for the presence of locoregional recurrence. As MRI is limited by 
its small field of view, PET was able to detect five additional metastases 
beyond those detected by MRI. Hathaway et al.86 showed that, while PET 
was effectively able to identify the presence of recurrence disease, MRI 
plays an important role in determining the relationship of the metastatic 
tumor to the axillary and supraclavicular neurovascular structures. Hence, 
both imaging modalities play a complementary role. 

Gallowitsch et al.87 looked at 62 patients with surgically resected BC 
with a mean follow-up period of 2 years. On a per lesion basis, PET-CT 
showed a sensitivity, specificity, positive predictive value (PPV), negative 
predictive value (NPV), and accuracy for detecting local recurrence or dis-
tant metastases of 97%, 82%, 87%, 96%, and 90%, respectively, compared 
with 84%, 60%, 73%, 75%, and 74%, respectively, with conventional 
techniques including mammography, CT, MRI, CXR and BS (Fig. 5.12).

5.7 Summary

Imaging plays a pivotal role in the evaluation of metastatic spread of dis-
ease in BC. For early BC, the routine use of advanced imaging modalities 
needs to be weighed against increased costs and potential for exposure to 
ionizing radiation  (CXR, BS, CT, PET-CT). For regional nodal involve-
ment, US with needle biopsy is increasingly preferred in select patients. 
In advanced BC where there is strong clinical suspicion for metastatic 

(a) (b)

Figure 5.12 (a)	 Grayscale	 sonographic	 image	 of	 the	 right	 anterior	 chest	 wall	
post-wide	local	excision	shows	a	lobulated	hypoechoic	mass	(arrow)	in	the	subcu-
taneous	tissues.	(b)	Axial	CECT	shows	the	same	lesion	as	a	peripherally	enhanc-
ing	nodule	(arrow),	in	keeping	with	recurrence	disease.
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disease, MRI and PET-CT now show great promise for accurate noninva-
sive diagnosis, while possessing WB-imaging capabilities. While routine 
imaging surveillance for recurrent metastatic disease is not advocated due 
to lack of evidence for increased long-term survival, the correct approach 
should be tailored to a case-by-case basis by taking into account the under-
lying tumor biology (e.g., aggressive subtypes such as triple-negative dis-
ease) and the stage of the disease at presentation. 
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6.1 Introduction

This chapter reviews the state of molecular imaging in breast cancer, 
specifically the various indications for PET and the supportive evidence 
behind such clinical use, with a brief discussion into the molecular genet-
ics of breast tumors and its relation to molecular imaging. 

Medical imaging plays an integral role in the management of breast 
cancers, allowing for noninvasive staging, prognostication, and response 
evaluations of patients. Advanced cross-sectional imaging modalities such 
as computed tomography (CT) and magnetic resonance imaging (MRI) 
are routinely used in the assessment of such patients. 

Molecular imaging techniques such as positron emission tomography 
(PET) have only been used more recently than CT and MRI but are quickly 
gaining acceptance in clinical practice. The basis of molecular imaging 
lies with the detection of specific cell processes or targets, allowing for a 
precise and more specific identification of target tissue. 

Chapter 6

Nuclear Imaging with PET 
CT and PET Mammography
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The most commonly used radiotracer in PET imaging is fluorodeoxy-
glucose (FDG or 18F). Generally, malignant tissues tend to demonstrate 
significantly increased metabolism and glucose uptake compared to 
normal tissue, and FDG can be used as a substrate to identify such tis-
sue.1 The molecular basis of such increased glucose usage in tumor cells 
appears related to a multitude of factors, but two major factors have been 
implicated. Firstly, tumor cells have been found to overexpress glucose 
transporters (predominantly GLUT 1, 3 and 5), which actively drive glu-
cose into the cells, and secondly, there is an overexpression of hexokinase 
enzymes that increase glucose metabolism.2–4 

It is justifiable to claim that it was the success of FDG PET imaging that 
led to the explosive growth of molecular and functional imaging. Since the 
United States (US) Food and Drug Administration (FDA) approval of FDG 
as a radiopharmaceutical in 1997, advances and adoption by clinical medi-
cine has been encouraging, and this trend has been accelerated by develop-
ments in imaging technologies, especially hybrid PET/CT scanners. 

The overall use of FDG PET in oncology is established with consistent 
clinical impact across a range of tumors,5 and, pertinent to this chapter, 
breast cancers included. We now discuss the specific uses of PET in breast 
cancer and touch briefly on the molecular pathology and how this relates 
to our current understanding of molecular imaging. 

6.2 Breast Cancer Molecular Pathology and PET

Breast cancer is the most commonly diagnosed cancer in women, account-
ing for approximately 30% of all cancers occurring in women with an 
estimated lifetime risk of 6.1%.6 Established risk factors for this disease 
include age, family history, late first pregnancy, and obesity.7 

Treatment options can be divided into locoregional (mastectomy, 
breast conservation surgery, radiotherapy) and systemic (chemotherapy, 
endocrine treatment, biological therapies) treatments, the use of which is 
dependent on various factors such as the underlying genetic risks, disease 
burden at presentation, risk of spread and recurrence, patient functional 
status, and social factors.

Breast cancers arise from the epithelial cells of the breast ducts, and 
the most important histological feature is the presence of tumor invasion 
through the ductal architecture, which divides the tumor into noninvasive 
and invasive subtypes. Other important features include the architectural 
pattern (ductal, lobular, or mixed), histological grading, and presence of 
lymphovascular invasion.8 

The changes in metabolism in malignant cells cannot be explained by 
a single factor but is rather a complex interaction of various mechanisms 
that results in the increased glycolysis.4,9 Reported biological and genetic 
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Table 6.1 Immunohistochemistry	criteria	for	defining	breast	cancer	subtypes.

Subtype ER PR HER2 EGFR CK5/6 Ki-67

Luminal A Either positive Negative +/– +/– Negative

Luminal B Either positive Negative +/– +/– Positive

Luminal 
HER2

Either positive Positive +/– +/– +/–

HER2 
enriched

Negative Negative Positive +/– +/– +/–

Basal Negative Negative Negative Either positive +/–

Trip negative 
nonbasal

Negative Negative Negative Negative Negative +/–

Abbreviations: ER: estrogen receptor; PR: progesterone receptor; HER2: human epidermal growth 
factor receptor 2; EGFR: epidermal growth factor receptor (HER1); CK: cytokeratin.

changes in breast cancer that influence the degree of FDG uptake include 
factors such as microvascular changes resulting in increased blood flow, 
increased expression of glucose transporters (GLUT-1, predominantly) 
resulting in increased glucose uptake by the cells, upregulated hexokinase 
enzyme activity that metabolizes and traps the FDG glucose analogue, 
tumor cellular proliferation (ki-67), and associated inflammatory changes. 

Because of this complex interaction between the tumor microenviron-
ment and intrinsic cellular energy demands, FDG PET cannot be reliably 
used to determine specific biological characteristics of the tumor such as 
proliferation, differentiation, or histopathological grading. 

However, general differences in such biological changes can be character-
ized using FDG PET. For example, in the context of breast cancers, there 
are distinct biological differences between ductal and lobular carcinoma sub-
types, in which lobular histological subtypes have a lower level of glucose 
transporter expression, decreased proliferation rates, and lower tumor density 
compared to ductal histological subtypes. This is translated into generally 
lower FDG uptake in lobular cancers in comparison to ductal carcinomas.10,11

Recently, there has been expanded use of molecular genetic profiling 
to identify patients at risk of local or regional recurrence. A commonly 
used classification scheme uses a six-marker immunohistochemistry panel 
that includes estrogen receptor (ER), progesterone receptor (PR), human 
epidermal growth factor receptor (HER2 or Neu), epidermal growth fac-
tor receptor (EGFR) expression, cytokeratin 5 and 6 (CK 5/6), and pres-
ence and degree of proliferation based on the Ki-67 index. This classifica-
tion scheme divides breast tumors into six specific subtypes (Table 6.1), in 
which the cellular phenotype lies in a range between that of ductal epithelial 
cells (termed luminal) and the outer myoepithelial cell layer (termed basal). 
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Luminal A–type tumors are generally associated with a low risk of 
local or regional recurrence, whereas other subtypes such as basal (tri-
ple negative) and HER2-enriched tumor types impose a significance risk 
of recurrence,12 suggesting that additional (adjuvant) treatments might be 
indicated to address the possibility of such increased risk. 

Of interest, correlations between the degree of FDG uptake and the 
presence or absence of markers such as ERs, PRs, and HER2 has been 
shown, and this is of possible significance in disease prognostication.13

The discovery of BRCA-1 and BRCA-2 tumor suppressor gene muta-
tions in the germ cell lines shed some light on the mechanism of breast 
cancer inheritance, with patients with such mutations at markedly increased 
risk of breast and ovarian cancers.14–16 Data regarding the use of PET imag-
ing in such patients is scarce, but there are arguable indications for the use of 
FDG-dedicated PET mammography in screening such high-risk patients.17

In looking at specific biological changes or factors in the tumor, more 
specialized radiotracers have been and are being investigated. The ability to 
target and specifically image the tumor receptor and proteins such as ERs 
and HER2 is of clinical relevance in breast cancers, as they allow the iden-
tification of therapy targets such as for hormonal and biological therapies.

The gold standard evaluation of ER status is performed by immunohis-
tochemical staining of the tumor. However, the technique is influenced by 
interobserver variations and the type of antibody used, and this can lead 
to inaccurate assessments.18 In terms of clinical impact, the absence of 
ER expression on immunohistochemistry staining has a strong negative 
predictive value (NPV) for response to antihormonal treatment,19 but poor 
positive predictive value (PPV) in predicting response.20 

The use of imaging has several advantages over histological sampling. 
Firstly, it allows the assessment of the entire tumor burden and limits the 
possibility of sampling errors, as hormonal expression is often heteroge-
neous.21 In breast cancer patients, discordant ER expression between the 
primary tumor and metastatic lesions has been reported in 18–55% of 
patients, and loss of ER expression in distant metastasis was a predictor 
of poor response to hormonal treatment.22–24 Secondly, molecular imaging 
allows the “sampling” of tumors that might be difficult to target and allows 
repeated noninvasive assessment of such receptor expression that might 
not be feasible with direct sampling. 

The use of steroid-radiolabelled tracers such as 18fluorine fluoro-17β-
estradiol (18F-FES) has allowed for the PET imaging of ER expression, 
and several studies have shown that such FES PET assessment of ER 
expression correlates well with immunohistochemical scoring for ER.25–27 
Clinically, FES uptake in breast tumors has been shown to be able to pre-
dict response to tamoxifen therapy in patients with advanced ER express-
ing tumors,28 with one study reporting that treatment selection using FES 

SRBK002-C06_143-164.indd   146 03/01/13   6:06 PM



Nuclear	Imaging	with	PET	CT	and	PET	Mammography	 147

PET would have increased the rate of response from 23 to 34% overall, 
and up to 46% if the tumors did not overexpress HER2/Neu.29 

HER2 expression in breast tumors is an important prognostic factor and 
is an increasingly important target for treatment.30 HER2 belongs to the 
family of tyrosine-specific protein kinases, which act primarily as growth 
factor receptors and regulate downstream growth factor pathways. Such 
pathways are often dysregulated in human cancers, resulting in uncon-
trolled proliferation of cells, making such receptors an attractive target for 
anticancer treatment.31 

Several groups have developed radioligands for the in vivo imaging of 
HER2 expression, using a variety of ligands and tracers. These include 
iodine-124–labeled divalent HER2 antibody fragment,32 yttrium-86– and 
indium-111–labeled trastuzumab,33 18F affibody molecules,34 and gallium-68–
labeled affibody molecules.35 Most of the studies have been preclinical animal 
studies with few early human trials conducted, but these results have been 
promising and have shown the feasibility of PET characterization and semi-
quantification of HER2 receptor expression. 

Cellular proliferation is a fundamental property of cancers, and thy-
midine analogues radiolabelled with 18F have been developed that allow 
in vivo PET imaging of tumor proliferation, with such radiotracer uptake 
significantly correlating with cellular proliferation as measured by the 
Ki-67 labeling index.36 Of significance, early studies have shown the prom-
ise of such proliferation imaging in the early prediction of tumor therapy 
response, and have shown that such studies can be performed with high 
reproducibility in patients with breast cancer.37

Overall, an understanding of the molecular pathogenesis and genetics 
of breast cancers and its influence on management is needed before appro-
priate utilization of medical imaging can be effectively applied. 

6.3 Diagnosis of Primary Breast Cancers

Currently, most primary breast cancers are detected through self-breast 
examinations or during screening with mammography or ultrasound, with 
breast MRI emerging as a screening tool for high-risk patients.37 

Current whole body (WB) PET/CT scanners have an average of 4- to 
6-mm spatial resolution, although there are claims of up to 2-mm resolu-
tion. This generally means that the sensitivity of current general PET/CT 
machines for lesions less than 1 cm is limited; this sensitivity has been cor-
roborated by several published reports detailing the accuracy of WB PET/
CT devices in the primary diagnosis or characterization of breast tumors. 

Initial studies in clinical trials with qualitative analysis consider vis-
ually conspicuous foci with increased FDG accumulation above that of 
background at the site of the lesion as positive. These yielded sensitivity 
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rates of 80–86%.39 More-recent studies employ quantitative FDG uptake, 
measuring the ratio of maximum FDG uptake [the maximum standard-
ized uptake value (SUVmax) of the lesion in question] to the SUVmean 
of the background tissue. The authors found that a lesion-to-background 
(LTB) ratio of 2.0 with focal localization is considered a sound indicator of 
malignancy. Burg et al.40 stressed the importance of interpreting positron 
emission mammography (PEM) images with mammographic correlation, 
as they found that a mismatch between mammographic and PET findings, 
such as expected focal radiotracer activity based on mammographic tissue 
distribution, was highly predictive of malignancy. In their study, three false 
positives on PEM imaging could be reduced with correlative mammogra-
phy, as these lesions were clearly identified as benign on mammography.

A concern in regard to breast imaging is the temporal related change 
that occurs in breast parenchyma, in relation to the hormonal status of the 
patient. For FDG PET imaging, the generally low background breast tis-
sue FDG uptake, even in dense breast parenchyma, is unlikely to affect the 
ability of PET to discriminate between benign and malignant findings.41 
This is in contrast to conventional mammograms whereby imaging sensi-
tivities are known to decrease with increasing breast densities.42

Overall, reported WB FDG PET sensitivity in the detection of primary 
breast cancer is 64–96%, specificity is 73–100%, PPV is 81–100%, and 
NPV is 52–89%,43 with the main limitations being partial volume effects 
and variable activity.44

Prompted by the generally poor sensitivities of WB PET in the iden-
tification of small (pT1a and pT1b) lesions, high-resolution dedicated 
PET imaging for the breast, also known as PEM, was designed to improve 
detection of early primary breast carcinomas.

Several factors contribute to the improved results of PEM compared to 
WB PET. Reduced detector size, diminished interdetector distances, and 
advances in camera technologies with increased count rates all contribute 
to improved tumor contrast and SNRs. Reported PEM spatial resolutions 
have been in the region of 1–2 mm, in contrast to the typical values of  
4–6 mm of WB scanners. 

Preliminary results with PEM have been promising, with pilot studies 
showing sensitivities of 80–91% and overall accuracies of 89%.45,46 In a 
series of 77 patients, Burg et al.40 reported an overall specificity of 86%, 
which was increased to 93% if diabetic patients and those with lesions 
clearly benign on conventional imaging were excluded. Higher sensitivity 
rates approaching 93% have been reported in more-recent studies, dem-
onstrating figures comparable with that of MRI.47 In addition, the value of 
PEM in evaluating for multifocal disease was shown in these studies. 

Surgeons typically plan their surgeries based on available imag-
ing devices of mammogram, US, and MRI. In a pilot clinical trial of 44 
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patients where 19 were planned for breast conservation surgery, the sur-
geons in this trial were blinded to the results of PEM, employing conven-
tional imaging to determine resection margins. PEM accurately predicted 
6 of 8 patients (75%) with positive margins and 11 of 11 patients (100%) 
with negative margins. PEM showed effectiveness in defining local dis-
ease extent and was shown to illustrate clinically relevant lesions that were 
occult by conventional imaging. The authors postulated that with data 
from PEM imaging, clinicians would be able to determine whether breast 
conservation would be successful in achieving clear margins. Sequentially, 
more-precise surgical planning with reduction in the numbers of re-exci-
sion will be possible.48

Hence, with the advent of a high-resolution dedicated breast imaging 
system, functioning imaging has shown its potential in detection of small 
(<1.0 cm) and nonpalpable breast lesions that were previously not reli-
ably demonstrated with WB PET scanners. PEM should not be viewed as 
a competitive tool to replace conventional imaging. Rather, the integra-
tion of metabolic (PEM) and anatomic (mammography and US) imag-
ing should offer higher sensitivity and specificity rates than with either 
alone. This has generated interest in applying PEM as an instrument 
for local staging and detection of multifocal disease (see Fig. 6.1), as a 
problem solving tool, for tumor response assessment, and, finally, as an 
adjunct to screening. Pertinent disadvantages of PEM such as radiation 
dose, cost, and ability to image posterior lesions should be addressed 
before adopting it in larger clinical trials to establish the role of PEM in 
clinical management.

(a) (b)

(c)

Figure 6.1 Multifocal	breast	cancer.
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6.4 Staging of Breast Cancers

FDG PET is commonly used in breast cancer to determine disease spread, 
which can be divided into axillary nodal, mediastinal nodal, and distant 
metastasis assessment. 

6.4.1 Axillary nodal evaluation

The presence of axillary nodal disease in breast cancer is an important 
factor in prognostic evaluation and determining management, and patients 
with invasive breast tumors typically undergo sentinel lymph node evalua-
tion as part of the initial staging. 

Several of the early studies evaluating the use of FDG PET in breast 
cancer looked into its utility in axillary node staging. Published reports 
were mixed, with several groups publishing very promising results, and 
others showing PET sensitivities as low as 20–30%.49,50

A review of studies evaluating the utility of FDG PET in assessing 
axillary nodal disease using axillary nodal dissection as the gold standard 
shows a wide variation in reported accuracies, with a sensitivity range of 
46 to 95%, specificities ranging from 66 and 100%, PPVs of 62–100%, 
and NPVs of 60–99%.51

The largest study52 was a prospective multicenter trial involving 360 
women with newly diagnosed invasive breast cancer. The objective was to 
determine the accuracy of FDG PET in the assessment of axillary nodal 
metastasis using axillary nodal dissection as the gold standard. Sensitivi-
ties of 61%, specificities of 80%, PPVs of 62%, and NPVs of 79% were 
reported. The authors52 further found that false-negative axilla had signifi-
cantly smaller and fewer tumor positive nodes, but that FDG PET may be 
highly predictive for axillary nodal disease when multiple intense foci of 
uptake are seen (see Fig. 6.2). These findings are not surprising and are in 
fact expected with current WB PET devices, in which current resolution 
capabilities are unlikely to detect small-volume metastatic disease in the 
axillary nodes. 

Of further interest, the histology of the primary tumor is of importance 
as lobular-type carcinomas were found to have significantly lower FDG 
uptake compared to ductal-type carcinomas; this translates into substan-
tially lower sensitivities of 12.5–37.5% in the detection of lobular-type 
nodal metastasis. These lower sensitivities are consistent with previous 
reports of ductal breast cancers having significantly higher FDG avidity 
compared with lobular type cancers,10 and correlate without previous dis-
cussion in regard to the biological differences between ductal and lobular 
histological subtypes. 

A further review in which FDG PET was evaluated against sentinel 
lymph node biopsies as a gold standard found even lower sensitivities, 
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ranging from 15 to 47%.53–55 Postulated reasons include the fact that 
sentinel lymph node histological assessments with its more detailed exami-
nation of a small number of nodes is more likely to detect foci of microme-
tastasis that cannot be identified with current PET detector sensitivities. 

Overall, FDG PET is currently unable to replace sentinel lymph node 
biopsies in patients with early-stage breast cancer but may have a role  
in the evaluation of patients with locally advanced primary disease in 
which the risk of nodal metastasis is high, and the use of FDG PET might 
avoid the necessity of a sentinel lymph node biopsy if the results are 
unequivocally positive. In addition, caution in the interpretation of nega-
tive FDG PET results in primary lobular breast cancers is advised due to  
the generally lower FDG avidity. 

6.4.2 Mediastinal and internal mammary nodal evaluation

The presence of mediastinal or internal mammary nodal metastasis in 
patients with breast cancers has important implications in management 
and is generally associated with poorer prognosis.56,57 In contrast to the 
equivocal findings in axillary nodal assessment, there have been consist-
ently encouraging results regarding the use of FDG PET in the detection 
of mediastinal and axillary nodal disease. 

A retrospective review of 73 patients using FDG PET and CT data 
reported PET sensitivities, specificities, and accuracies of 85%, 90% and 
88%, respectively, in the assessment for mediastinal or internal mammary 
nodal disease, in contrast to 54%, 85% and 73% for CT evaluation.58 The 
recognition of disease in the internal mammary or mediastinal regions 
(see Fig. 6.3) has prognostic implications, as metastasis to the internal 

Figure 6.2 Axillary	nodal	metastasis.

(a) (b)

(c)
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mammary nodal chain has been reported to occur in a substantial portion 
of patients, up to 25% as reported in some studies, and is associated with 
a poorer prognosis.59–60 Further reports have suggested that the presence 
of internal mammary nodal disease as evidenced by FDG uptake is pre-
dictive of failure patterns consistent with such involvement.61 In addi-
tion, the identification of such disease sites has therapeutic implications, 
as changes to locoregional treatment such as extensions of radiotherapy 
fields, or more aggressive systemic therapies may be performed depend-
ing on findings. 

6.4.3  Distant metastasis and overall staging impact  
of FDG PET

The use of FDG PET in the evaluation of distant metastasis and its general 
utility as a single tool staging modality is very promising, with several 
studies demonstrating the increased sensitivity and utility of FDG PET 
over current conventional techniques. 

In one of the earlier studies62 using FDG PET in staging for breast 
cancers, WB PET imaging was performed on 57 patients with suspected 
recurrent or metastatic disease. Encouraging findings were reported: 93% 
sensitivity, 79% specificity, 82% PPV and 92% NPV of FDG PET in 
detecting recurrent or metastatic disease.

Heusner et al.63 from the University Hospital Essen, Germany, demon-
strated the technical feasibility and utility of a dedicated PET/CT protocol 
in breast cancers in which a general WB PET/CT scanner is utilized to 
perform PET/CT mammography. In a follow-up study, 64 the same authors 
evaluated the diagnostic accuracy of an all-in-one protocol of WB FDG 
PET/CT and integrated FDG PET/CT mammography, and compared it 
to the diagnostic accuracy of a multimodality algorithm for initial breast 
cancer staging. Forty women with suspected breast cancers were evalu-
ated, and the combination FDG PET/CT protocol was able to demonstrate 
good accuracies in local disease (95%), nodal disease (80%), and distant 
metastasis (100%) assessment. Of interest, FDG PET/CT was reported to 
have greater accuracy in detecting lesion focality compared to MRI, and 

(a) (b)

Figure 6.3 Mediastinal	nodal	metastasis.
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there was an overall 12.5% change in patient management with FDG PET/
CT imaging. 

A study evaluating the effect of adding FDG PET to conventional 
screening in patients with locally advanced breast cancer was performed 
by van der Hoeven et al.65 Forty-eight patients were evaluated with PET, 
and in 8% of the patients, FDG PET correctly detected distant metastasis 
not seen with routine evaluations. The authors concluded that the addition 
of FDG PET to standard work-ups for patients with locally invasive breast 
cancers may lead to the detection of unsuspected distant metastasis and 
could contribute to a more accurate staging and stratification of patients. 

Similar findings were reported by the group from Hospital Clinic of 
Barcelona, in which a prospective study involving 60 consecutive patients 
with large (>3 cm) primary breast cancer was imaged using WB FDG 
PET/CT and compared to typical conventional investigations.66 The 
reported sensitivities and specificities for lymph node assessment was 
70% and 100%, respectively, and for distant metastasis it was 100% and 
98%, respectively. In contrast, the detection of distant metastasis with con-
ventional imaging was reported with 60% sensitivity and 83% specificity, 
and FDG PET resulted in a change in the initial staging in 42% of patients. 

Mahner et al.67 evaluated 119 consecutive patients with newly diag-
nosed locally advanced breast cancer or patients with suspected recurrent 
metastatic disease (see Fig. 6.4), and imaging was correlated with his-
topathology and clinical followup. Reported FDG PET sensitivities and 
specificities were 87% and 83%, respectively, in the detection of distant 

(a) (b)

(c)

Figure 6.4 Metastatic	breast	cancer.
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metastasis, compared to conventional imaging modality sensitivity of 43% 
and specificity of 98%.

The overall impact of FDG PET on clinical management is significant. 
An interesting study investigating the impact of FDG PET from the refer-
ring physician’s perspective concluded that there was a major impact on 
the management of breast cancer patients, influencing both clinical staging 
and management in more than 30% of cases.68

6.5 Response Assessment

Imaging plays an important role in determining the response of tumors to 
systemic or locoregional treatments, predominantly in the settings of neo-
adjuvant treatment and metastatic disease. Prior to the advent of functional 
imaging, morphologic or size-based criteria have been traditionally used 
to measure response, but there were several limitations that include delays 
in significant size changes, reproducibility of measurements, and lack of 
correlation to clinical endpoints such as overall survival and time to tumor 
progression. These potentially may be addressed with functional imaging. 

Approximately 10–15% of patients present with locally advanced breast 
cancer,69 and neoadjuvant treatment (see Fig. 6.5) is becoming standard 
treatment for such patients to both improve surgical options and to pro-
vide prognostic information.70 Patients with complete response or mini-
mal residual disease typically have longer disease-free and overall survival 
rates.71 Techniques that allow prediction of therapeutic response at early 
time points could potentially halt ineffective treatments early. 

Typical morphological approaches to neoadjuvant treatment response 
evaluation have limitations, and it is often difficult to determine or stratify 
the response. In 1989, the use of the FDG radiotracer in breast cancer was 

(a)

(b)

Figure 6.5 Neoadjuvant	breast	cancer	therapy.	
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performed by Minn et al.,72 in which a gamma camera was used to image 
breast cancer patients injected with FDG. Even then with basic equipment, 
the lesions could be clearly visualized, and changes in FDG uptake could 
be observed following treatment. One of the earliest studies on neoadjuvant 
response73 evaluated the use of sequential FDG PET in monitoring neoadju-
vant chemotherapy response in a group of 11 patients with locally advanced 
breast cancer. Responding tumors demonstrated fast and significant decreases 
in FDG uptake, and these metabolic changes preceded size changes. Nonre-
sponding tumors did not show any significant decreases in FDG uptake.

Smith et al.74 investigated 30 patients with noninflammatory locally 
advanced breast cancers receiving neoadjuvant chemotherapy. Using a 
20% cut-off value in assessing changes in SUV, PET imaging was able to 
predict complete pathological response with a sensitivity and specificity of 
90% and 74%, respectively.

Similarly, a pilot study of 22 patients with locally advanced breast 
tumors reported an accuracy of 88% and 91% in predicting histopatho-
logical response after the first and second cycles of neoadjuvant chemo-
therapy, respectively.75

Rousseau et al.76 prospectively evaluated 64 patients with stage II and 
III breast cancers undergoing neoadjuvant chemotherapy, and found that 
FDG PET could predict pathologic response accurately after 2 courses of 
chemotherapy, with a sensitivity of 89%, specificity of 95%, and NPV of 
85%. Another similar study77 evaluating 47 women went one step further 
in concluding that FDG PET is able to predict pathological response with 
neoadjuvant chemotherapy after 1 cycle of treatment.

A large prospective multicenter trial evaluating the use of FDG PET 
in predicting response during neoadjuvant treatments of locally advanced 
breast cancers concluded similar findings.78 One-hundred four patients 
were recruited, with 272 FDG PET scans performed at base line and after 
the first and second chemotherapy cycles. All patients underwent surgery 
after neoadjuvant therapy, and histopathological evaluation was used as 
the gold standard. Histological nonresponders could be identified with an 
NPV of 90%, and relative drops in SUV values after each chemotherapy 
cycle were strong predictors of response. 

In regard to metastatic disease, the reported utility of FDG PET in 
response assessment was similar to neoadjuvant response assessment. In 
a small study of 11 patients with 26 metastatic lesions, Schwarz et al.79 
found significant differences in SUV changes between nonresponders and 
responders, and concluded that sequential FDG PET was able to predict 
response after the first cycle of chemotherapy.

For bone metastasis, FDG PET imaging is more reflective of tumor 
viability and activity, compared to conventional imaging in which mor-
phological changes can widely vary. In addition, FDG PET findings were 
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correlated with survival, in which the prognosis for patients with persist-
ently FDG avid bone lesions was poorer.80

The correlation between FDG PET findings and clinical outcomes of 
survival was further substantiated by a study by Cachin et al,81 in which 47 
patients with metastatic breast cancer were treated with 3 cycles of high-
dose chemotherapy and autologous stem cell transplant. The response 
assessment was performed with FDG PET and conventional imaging after 
the last chemotherapy cycle. Significant differences were found in com-
plete response rates, with 37% based on conventional imaging and 72% 
with FDG PET. Of significance, FDG PET was found to be the most pow-
erful and independent predictor of survival.

6.6 Conclusion

The role of PET is established in the practice of oncology, and advances 
in functional and molecular imaging techniques have allowed increased 
accuracies and confidence in the diagnostic evaluation of breast cancers. 
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7.1 Introduction

3D whole-breast ultrasonography (US) has become a popular subject of 
research and an important screening technique in recent years. The benefits 
of 3D whole-breast US over 2D US are operator independence,1,2 time effi-
ciency, reproducibility, improved visualization of the breast anatomy, and 
high resolution for tumor detection.3,4 In the traditional 2D US examina-
tion, the results of breast cancer detection and diagnosis are highly depend-
ent on the operator. It is possible that some difficult-to-detect tumors will 
not be identified by an inexperienced operator. The examination times can 
vary according to the size of the breast and the experience of the operator. 
Patients usually need to have follow-up examinations, but 2D US cannot 
provide full-field images for reproducibility. 

The 3D whole-breast US examination procedure is usually semi- 
automatic or automatic. The procedure is simple to use and consistent from 
operator to operator. Inexperienced operators need but a small amount of 
time for training, and the time required for examination by different opera-
tors is not significantly different.4 As for reproducibility, 3D whole-breast 
US can provide full-field images for follow-up examinations, and the 
reconstructed coronal view can provide potential information of the breast 
lesion. Due to the benefits of 3D whole-breast US, many 3D whole-breast 
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US machines have been proposed and used in clinical studies. The follow-
ing section introduces several 3D whole-breast US machines.

7.2 3D Whole-Breast Ultrasonography Machines

Prosound-II SSD-5500 (Hitachi Aloka Medical, Ltd., Tokyo, Japan) with 
the ASU-1004 scanner is a whole-breast US machine. The ASU-1004 
scanner is composed of a water tank and a 6-cm linear transducer with a 
frequency range of 5–10 MHz, as shown in Fig. 7.1(a). The resolution is  
0.23 mm/pixel at axial plane, and the slice interval is between 0.25 mm 
and 2 mm. For scanning, the patient lies prone to the water tank, and the 
transducer moves automatically to scan the breast. Because the width of the 
transducer is too short to cover the entire breast in one scanning pass, three 
scanning passes are needed to cover the whole breast. In the procedure, a 
1-cm overlapping width exists between the adjacent passes, as shown in  
Fig. 7.1(b). Because three passes are needed, an image-stitching procedure5,6 
is used for reconstructing the whole breast; stitching results are shown in 
Fig. 7.2(b). After reconstruction, the entire scanning area is 16 × 16 cm2. 

(a) (b)

6 cm

6 cm

1 cm

16 cm

16 cm

Water
tank 

Breast
Water

Move

Transducer

6 cm

Figure 7.1 (a)	The	ASU-1004	scanner	consists	of	a	water	tank	and	a	transducer.	
(b)	Three	passes	are	needed	to	cover	the	entire	breast.

(a) (b)

Figure 7.2 (a)	One	pass	of	a	whole-breast	US	image.	(b)	Stitched	whole-breast	
image.
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(a) (b)

Figure 7.3 (a)	The	SomoVu	scan	station.	(b)	The	scanner	with	a	15.4-cm	linear	
transducer.

The SomoVu™ Automated Breast Ultrasound (ABUS) (U-systems 
Inc., San Jose, CA, USA) consists of a scan station and a view station, as 
shown in Fig. 7.3(a). During the breast US examination, the scanner, with 
a 15.4-cm linear transducer as shown in Fig. 7.3(b), automatically scans 
the patient’s breast in the supine position, and the view station reviews and 
manipulates the acquired data. Although the transducer is wider than other 
3D transducers, more than one pass is still needed to cover the entire breast. 
The scanning volume of one pass is 15.4 × 17 × 5 cm3. The SomoVu sta-
tion provides several functions for breast tumor detection. The physician 
can switch to six view options (wide field of view, coronal view, multislice 
view, transverse view, sagittal view, radial view, and antiradial view) for 
tumor detection and diagnosis. Figure 7.4 shows images that have been 
processed in three of these views.

The Automated Breast Volume Scanner (ABVS) (Siemens, Munich, 
Germany) (Fig. 7.5) can acquire full-field volumes of the breast automati-
cally. The data acquisition procedure is similar to that of the SomoVu sta-
tion. The frequency bandwidth of the transducer is 5 to 14 MHz, the width 
of the transducer is 15.4 cm, and the resolution is 0.09 mm in the axial 
direction, 0.16 mm in the lateral direction, and 0.44 mm in the sagittal 
direction.

The Orison Corporation has developed the Embrace 3D™ US system 
(Orison, Bristol, TN, USA) with an automatic scanning concave transducer. 
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(a) (b)

(c)

Figure 7.5 (a)	The	ABVS	system.	(b)	The	transducer	of	the	ABVS	system.	(c)	A	
screenshot	from	the	ABVS	system.

Figure 7.4 The	six	small	images	on	the	left	were	processed	by	maximum-intensity	
projection	(MIP)	in	the	coronal	view;	the	upper	right	image	is	in	the	transverse	view,	
and	the	lower	right	image	is	in	the	sagittal	view.
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A rotating concave transducer, as shown in Fig. 7.6, is used for obtaining 
3D US images. The patient leans against the armrest, and the breast is 
placed tightly into the fluid-filled vessel. The hemisphere-shaped trans-
ducer scans the breast, and the hemisphere 3D images are reconstructed 
by visualization software. The operator can detect or diagnose tumors with 
the multiplanar view.

The Sofia™ automated whole-breast US system has been developed 
by iVu Imaging (iVu Imaging Corp., Grapevine, TX, USA). While the 
patient is in a prone position, the transducer scans the breast, which is in a 
fluid-filled constraining cone, as shown in Fig. 7.7. The acquired images 
are 120 slices in the 360-deg scanning procedure, and the scanning time 
is 3 min.

The SonoCiné system (SonoCiné, Inc., Reno, NV, USA) uses a 
 computer-guided arm to move the traditional 2D probe and generate the 
image sequences. The generated image sequences are usually 2000 to 
5000 slices and are stored in the computer for radiologist review. Kelly 
et al.7 compared the SonoCiné system to mammography, and the experi-
mental results showed that 3D whole-breast US performed well in tumor 
detection. 

Figure 7.6 The	Embrace	3D™	US	system.

Figure 7.7 The	scanning	procedure	of	the	Sofia™	system.
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In 3D whole-breast US scanning, the patients are in a prone or supine 
position. For prone scanning, a fluid-filled container is needed to hold 
the breast. The whole-breast image can be easily reconstructed, which is 
helpful for whole-breast density analysis. However, the US image quality 
might be reduced because the probe does not directly contact the skin. On 
the other hand, with supine scanning, the US image quality might be better 
due to the probe being in direct contact with the skin. The reduced thick-
ness of the breast in the supine position could improve sound penetration 
and reduce the acoustic shadows due to refraction effects.8 

Another advantage is that the patient is in the same position as she would 
be during breast surgery. Thus, supine scanning can help to locate lesions for 
biopsy and surgery.8 However, the whole-breast image is not easily recon-
structed, even using several passes to cover the whole breast, because the 
breast shape cannot be preserved during US scanning. Also, some regions 
might be not be scanned if the operator does not place the probe in the cor-
rect position. Some 3D whole-breast US machines use a conventional or 
dedicated probe, which is short in length and can only cover a small region. 
Hence, a longer dedicated probe is used for scanning a large region. Most of 
the automated 3D whole-breast US machines use a longer dedicated probe. 

Most of the probes are linear, like the probe used in the conventional 2D 
breast US machines. Only Orison’s Embrace 3D uses a concave probe to fit 
the breast shape. In most of the 3D whole-breast US machines, the probe 
is moved automatically by a scanning apparatus. The probe of only the 
SonoCiné machine is moved by hand. The probe movement of 3D whole-
breast US machines can be linear or rotary, and most of the machines need 
several passes to cover the whole breast. Only Orison’s Embrace 3D uses 
a concave rotary probe and can scan the whole breast in a single pass. For 
rotary scanning, a more complicated algorithm is needed to reconstruct 
the whole-breast image. A comparison of various 3D whole-breast US 
machines is provided in Table 7.1. 

7.3  Related Studies of 3D Whole-Breast 
Ultrasonography

Several studies have explored 3D whole-breast US. In a study by Tozaki 
et al.,4 61 lesions were used for comparing tumor detection performance 
between 3D whole-breast US and handheld US. The results show that all 
of the lesions detected by handheld US were also detected by 3D whole-
breast US. The scanning time among different examiners was also not of 
significant difference. In a study by Kelly et al.,7 tumor detection improved 
significantly with a combination of 3D whole-breast US and mammogra-
phy, compared to detection with mammography alone. 
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Breast density is an important factor for estimating breast cancer 
risk with mammography.9,10 However, the use of 2D mammography to 
estimate breast density has some flaws. Breast density estimation using 
mammography is affected by variations in the position, the degree of 
compression, and the thickness of the compressed breast.11 Recently, 
MRI has been used to estimate breast density because it can provide 
3D information of the breast. However, MRI has some drawbacks such 
as high cost, high noise volume, and image distortion caused by the 
slightest movement. In a study by Chen et al.,12 3D whole-breast US 
images scanned by the ASU-1004 were used to classify the BIRADS® 
density grades. In their experiments, the density grades from the pro-
posed method were compared with the ground-standard BIRADS den-
sity grades assigned by a majority voting of three experienced breast 
radiologists. The results showed that density analysis of the 3D whole-
breast US could be a reference and provide consistent quantification for 
radiologists. In the study of Moon et al.,13 3D whole-breast US and MRI 
were used to compare the measurements of breast density. The results 
showed that the correlations of breast density and breast volume between 
3D whole-breast US and MRI were high. 

Although there are many advantages to using 3D whole-breast US, 
reviewing and diagnosing 3D US images requires a lot of physician time, 
and misdiagnosis can occur due to the fatigue of the physician. Therefore, 

Table 7.1 Comparison	of	various	3D	whole-breast	US	machines.

Aloka 
ASU-1004

U-systems 
ABUS

Siemens 
ABVS

Orison 
Embrace 

3D iVu Sofia
Sono-
Ciné

Patient 
position

Prone Supine Supine Prone Prone Supine

Probe length Middle Long Long Long Short Short

Probe type Linear Linear Linear Concave Linear Linear

Scanning 
method

Automated Automated Automated Automated Automated Manual

Contacting 
skin

No Yes Yes No No Yes

Image quality Average High High Average Average High

Probe 
position

Automated Manual Manual Automated Automated Manual

Probe 
movement

Linear Linear Linear Rotation Rotation —

Scanning 
passes

3 3–5 3–5 1 ≥3 —

Breast shape Preserved Not 
preserved

Not 
preserved

Preserved Preserved Not 
preserved
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a computer-aided detection (CADe) system has been proposed to assist the 
physician in making diagnoses.14,15 Ikedo et al.5 proposed a CADe system 
3D whole-breast US. Two features based on edge direction and density 
difference were adopted in their study. The tumor detection accuracy was 
80.6% with 3.8 FPs per whole-breast image. Chang et al.6 also proposed 
a CADe system for 3D whole-breast US. Seven features were used in the 
system, which had a sensitivity of 92.3% with 1.76 FPs per case. In order 
to segment the lesion boundary for diagnosis, Sahiner et al.16 proposed a 
2D/3D active-contour model for automated lesion segmentation. In their 
experiments, features, including texture and morphology, were extracted 
according to the segmented lesions, and classification of the benign and 
malignant lesions was performed. For comparison with the system clas-
sification result, four experienced breast radiologists also diagnosed these 
lesions. The results showed that the AUC value of the automated system 
was significantly higher than the AUC values that resulted from three of 
the four radiologists. In a computer-aided diagnosis (CADx) system, Moon 
et al.17 proposed a diagnostic method using ellipsoid-fitting features and 
shape features. The performances had 85.0% accuracy, 84.5% sensitivity, 
85.5% specificity, and an AUC value of 0.9466.

7.4 Conclusion

3D whole-breast US provides the entire breast anatomy for later review. 
The physician can review the acquired data from different orientations, so 
lesions can be more easily identified than with the traditional 2D US. The 
3D whole-breast US procedure and required training time are simpler and 
shorter than for 2D US. It also provides interoperator consistency, and its 
reproducibility is better for follow-up studies. However, the large images 
can increase the interpreting time and reduce the diagnosis accuracy for 
the physician. Hence, developing CADe and CADx systems for 3D whole-
breast US will be necessary in the future.
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8.1 Introduction

Improvements in technology over the past 20 years have made real-time 
ultrasonography (US) an important imaging modality for evaluation of 
breast lumps and detection of breast cancer. Considerable advancements 
in US image quality and ultrasonic tissue characterization have taken place 
due to improvements in the resolution of high-frequency transducers, and 
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development of color Doppler US (CDU) technology, tissue harmonic 
imaging, and various image processing techniques.1–5

The use of hand-held high-resolution real-time scanners operating 
at frequencies of 7.5–15 MHz (or even higher) with a penetrating 
depth of about 6 cm has become fairly standard among practitioners. 
State-of-the-art scanners with advanced US technology have signifi-
cantly contributed to the improvements in spatial and contrast reso-
lution. Physicians who are facing an increasing incidence of breast 
cancer in Asia and even in western countries are now becoming aware 
of the usefulness of breast US. Familiarity with the diagnostic accu-
racy and commonly used lexicon in breast US is helpful for physi-
cians during communication with diagnostic imaging experts, breast 
surgeons, and patients.

8.2 Instrument Requirements

8.2.1 Equipment and transducer 

Breast US requires the use of hand-held, high-frequency, linear-array 
transducers. These should be able to be focused in the near field and 
have a capacity for variable focus, e.g., adjustable focal zone, or multifo-
cal or dynamic focal zone, so that the sound beam can be focused at the 
level of interest in the breast. Transducer frequency should be at least  
7.5 MHz. Transducers with a higher frequency may improve spatial reso-
lution. However, with increasing frequency, the ability of the sound beam 
to penetrate tissue decreases. Therefore, very high-frequency transduc-
ers (e.g., 16–18 MHz) may not be able to fully penetrate large breasts. 
The state-of-the-art scanner may utilize broadband technology to pro-
vide both high resolution and adequate penetration. For breast imag-
ing, a transducer with a properly wide aperture (e.g., 4.5 cm or more) 
is preferred to increase the field of view. The transducers are designed 
to have a variable focus that is electronically controlled. Depending on 
the timing of excitation of various elements in the transducer, the focus 
can be altered to a variety of distances from the transducer surface. Elec-
tronic focusing technology makes it possible to focus the sound beam 
during transmission (i.e., multiple transmit focusing) and during recep-
tion (i.e., dynamic focusing). Improvement of lateral resolution over a 
wide range of distances from the transducer surface is made possible. 
Further improvement in focusing is possible by electronically adjust-
ing the aperture. While dynamic focusing capability improves resolu-
tion simultaneously at various depths, multiple transmit focusing may 
decrease the frame rate. Therefore, in some equipment, when dynamic 
evaluation (graded compression) of the lesion is applied, image quality 
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may be degraged to a certain degree. If such multifocal capability is not 
desirable and not chosen, the examiner must adjust the depth of focus to 
the depth of the region in question. Dynamic focusing is always active 
during reception, and no control element is necessary.6–8

8.2.2 Image quality and equipment quality control

The image quality of a breast US unit is generally determined by the 
following factors: spatial and contrast resolutions, image quality in the 
near field, and slice thickness. The axial resolution is determined by 
the spatial length of an US pulse, which is usually two wavelengths. 
The minimum axial resolution is half of this value. The lateral resolu-
tion is determined by the size of transducer element, the frequency, and 
the focal zone. The contrast resolution depends on the transducer and 
signal processing inside the US unit. The recently developed technol-
ogy of tissue harmonic imaging (THI) has further improved US image 
quality. Because the thickness of most breasts is only few centimeters 
on US, many lesions lie close to the transducer. High image quality in 
the near field is essential for an accurate assessment of these relatively 
superficial lesions. Occasionally, a stand-off pad can be used between 
the transducer and the breast to achieve good images of the skin, and 
subcutaneous and superficial breast tissues. Slice thickness is a function 
of transducer design. When purchasing US equipment, slice thickness 
should be evaluated by checking the ability of the transducer to demon-
strate small pure cysts, which should appear echo free. If the slice thick-
ness is too thick, pure cysts will become atypical on US because of the 
inclusion of adjacent echogenic soft tissue within the slice. Equipment 
quality control is indispensable to ensure a high-quality breast US study. 
Each US machine should have a quality control program to maximize 
the quality of US imaging and other functions. Ongoing monitoring and 
evaluation of equipment should be a part of this program. A routine pre-
ventive maintenance program is desirable, and records should be kept to 
document this program. Efforts undertaken to improve quality of care 
should also be documented for the breast US team.1,6

8.3 Examination Technique

8.3.1 Patient positioning

The patient is generally studied in a supine or slightly oblique posi-
tion, with the ipsilateral arm comfortably elevated. For relatively 
large or pendulous breasts, the women should be positioned obliquely 
toward the contralateral side to allow the breast to lie flat on the chest 
wall.6

SRBK002-C08_175-254.indd   178 1/21/13   7:13 PM



Diagnosis of Breast Cancer Using Ultrasound 179

8.3.2 Scanning technique

The breast can be studied in an infinite number of planes. Standardization 
of the examination and appropriate labeling of images are necessary to 
make these studies interpretable by those who have not performed them 
and also makes them reproducible.1,6

The transducer should be held firmly with gentle pressure applied on 
the breast. An adequate amount of coupling gel should be used to avoid 
interference of the interposed air. Imaging the nipple–areola complex 
requires special maneuvers. The fibrous elements within the nipple and 
the abrupt edges between nipple and the areola may cause distal acoustic 
shadowing. If the image is not diagnostic with the transducer directly 
contacting the nipple–areola complex, the transducer should be placed 
adjacent to the nipple with the sound beam angled into the retro-areolar 
area. A number of scanning maneuvers have been suggested, e.g., sag-
ittal, transverse, radial/antiradial. Using a sagittal scan to examine the 
whole breast is the most convenient and time-saving way for a com-
plete US scanning coverage of the breast. However, we prefer to image 
the breast in the radial and antiradial planes (planes corresponding to a 
clock surface extending from the nipple and at right angle to these axes, 
respectively). The radial plane corresponds to the normal pattern of the 
duct anatomy of the breast. The labeling of lesions at o’clock axes is also 
more accurate than labeling with quadrant location. When needed, imag-
ing in additional planes with appropriate annotation on the images can 
be performed. Imaging in at least two orthogonal planes usually makes it 
possible to differentiate real lesions from normal breast anatomy such as 
fat lobules. Dynamic imaging with graded compression of a suspected 
lesion is also helpful to evaluate the elasticity and mobility of a lesion.9 
Fibroadenomas are typically extremely mobile. When compressibility of 
a lesion suggests that it is soft, often a cyst or other benign lesion is con-
sidered. If these features cannot be shown, malignancy should be sus-
pected, even in the case of completely well-circumscribed lesions with 
homogeneous echogenicity.1,9

8.3.3 Doppler imaging and contrast-enhanced US

It has been suggested that breast cancers tend to show more vascularity 
than benign breast tumors. A malignant tumor is usually associated with 
vessels arising along the edge of the mass and extending into its center. 
These vessels are often branching and irregular. Smooth vessels paral-
leling the periphery of a mass are more characteristic of benign lesions, 
such as fibroadenomas. However, both patterns can be seen in benign 
and malignant processes. In addition, benign lesions can be hypervas-
cular and malignant lesions hypo- or avascular (e.g., scirrhous-type  
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carcinomas). For this reason, the use of Doppler or power Doppler inter-
rogation of breast masses has not been found to be useful by most experts 
in determining which lesions require biopsy and which are benign.10,11 
However, the additional color Doppler information may increase diag-
nostic confidence; for example, a typical ovoid, sharply demarcated solid 
lesion presenting with only parallel marginal vessels is most likely a 
benign lesion and often a fibroadenoma. A small (e.g., <0.7 cm) relatively 
round hypoechoic nodule presenting with positive color flow signals in 
the peripheral or central zone is most likely a solid tumor and most often 
a papilloma or another cellular tumor. The use of microbubble contrast 
agents has also been described in several studies that attempt to better 
define vascular patterns within lesions, and to distinguish benign from 
malignant masses. The results are promising. Some studied showed that 
sentinel node identification can be effectively achieved by using micro-
bubbles and contrast-enhanced US.12–16

8.3.4 Elastography

Elastography provides a measure of the stiffness of a lesion and is an 
option available on most standard US equipment. In the study conducted 
by Itoh et al.,17 conventional US and real-time US elastography with the 
combined autocorrelation method (CAM) were performed on 111 women 
with breast lesions (59 benign and 52 malignant cases). The researchers 
used an elasticity score (1–5) to represent the stiffness (from soft to hard) 
of tumors and found that malignant lesions were harder (mean: 4.2 ± 0.9) 
and benign lesions were softer (mean: 2.1 ± 1.0) (P < 0.001). US elastog-
raphy (cutoff points of 3 and 4) showed a sensitivity of 86.5%, specificity 
of 89.8%, and accuracy of 88.3%, while conventional US (cutoff points 
of BIRADS 4 and 5) showed a sensitivity of 71.2%, specificity of 96.6%, 
and accuracy of 84.7%. Elastography had a higher sensitivity than conven-
tional US (P < 0.05), and the specificity of elastography was not inferior to 
that of conventional US. The accuracy of elastography was equivalent to 
that of conventional US.17 

Benign breast masses tend to appear similar in size or slightly smaller 
on elastography than on conventional imaging; on the contrary, malignant 
masses have the converse appearance, appearing larger on an elastogram 
than on conventional US. It is hypothesized that the larger size depicted 
on the elastogram is due to the infiltrative nature of the cancers. On con-
ventional imaging, cancers appear smaller than on elastography because 
the infiltrative portions are not well visualized.18 Many new techniques 
using relevant strain imaging or acoustic radiation force imaging have 
been introduced in the past nine years. Compression elastography is an 
evolving technology, and different methods and algorithms are used by 
different manufacturers. With shear-wave elastography, low-frequency 
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shear waves are propagated in tissue, and the elasticity of the tissue is 
quantitatively and reproducibly assessed.19 Elastography is now consid-
ered to be an important adjunct to conventional and Doppler US. 

8.3.5 Image labeling

Precise labeling of images is necessary so that US examinations are repro-
ducible and lesions can be demonstrated on a repeat study. Labeling of US 
studies of the breast should include: (1) patient identification, including name 
and identifying number such as medical record number, birth date or age;  
(2) examination date; (3) breast laterality (right or left); (4) scanning loca-
tions, including (a) axis, indicated by o’clock designation, (b) distance of the 
lesion from the nipple, and (c) an indication whether the lesion is palpable; and  
(5) identification of the physician or technologist performing the study. 

8.4 Grayscale Ultrasonic Criteria of Breast Disease

8.4.1 General criteria of interpretation

Identification of a focal area with different echogenicity in the background 
of (relatively hyperechoic) breast stroma remains the most important point 
in US interpretation. The primary characteristics of breast masses include 
shape and margins of a mass, boundary echoes, internal echotexture, and 
alternation of sonic transmission.1,20,23 

8.4.2 Diagnosing cysts

Simple cysts are epithelium-lined, fluid-filled, round or oval structures that 
are thought to occur secondary to obstructed ducts. US allows high confi-
dence in the diagnosis of a simple cyst. Diagnosing cysts is one of the most 
important contributions of US to breast imaging. The diagnosis of a simple 
cyst makes it possible to assure that a mass is benign and that it requires no 
additional workup for definitive diagnosis. US is essentially 100% accu-
rate in this diagnosis. Therefore, US is useful in the workup of any palpa-
ble or nonpalpable lesions that could be due to a simple cyst.1,2,21,22 

8.4.3 Differentiating solid lesions

US is a very helpful adjunct to mammography in assessing the internal 
texture and shape of the margins of masses that are partially or completely 
obscured by dense tissue on mammography. Palpable or nonpalpable 
lesions that are located in dense tissue and cannot be clearly or completely 
visualized on mammography can often be further characterized by US.23,24

Imaging characteristics of benign and malignant solid nodules have been 
reviewed by several authors and proven useful in the differentiation between 
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benign and malignant solid nodules. Generally speaking, the borders of benign 
nodules are sharply demarcated; they displace rather than invade surrounding 
tissue. Benign masses are round, oval, or minimally (gently) lobulated in shape. 
Their boundary echoes are relatively strong. Benign lesions contain relatively 
homogeneous internal echoes, which are usually low level but may vary from 
very low to intermediate level. Sonic transmission in benign solid nodules is 
relatively stronger than that in malignant ones.23,25–29 During interpretation of 
a focal breast lesion, the ACR BIRADS® lexicon is generally recommended.30

8.4.4 Diagnosing carcinoma

The anterior boundary echogenicity of malignant nodules varies from weak 
to strong. The posterior boundary echoes are usually weak or absent in larger 
tumors, due to some degree of desmoplasia in carcinomas. However, certain 
malignancies with homogeneous cellular arrangement liquid contents may 
show good sonic transmission as noted in benign lesions. The internal ech-
oes of a nodule depend on the histology of the lesion. Although many carci-
nomas are seen sonographically as hypoechoic masses, the echogenicity of 
carcinomas is variable. Some carcinomas are isoechoic or even hyperechoic 
with respect to the subcutaneous fat. Circumscribed carcinomas are usu-
ally very hypoechoic (or nearly anechoic) lesions, containing few low-level 
echoes in a relatively nonuniform distribution and sometimes containing 
microcalcification. During the interpretation of a noncystic focal mass using 
US, the through transmission, coexisted ductal changes, and the associ-
ated cystic components should be also evaluated31 (see Tables 8.1–8.3). The 
sonographic visibility of carcinomas also depends on the surrounding tissue. 

Table 8.1 	Differential	diagnoses	of	breast	nodules	
based	on	through	transmission.

1. Mass with distal sound attenuation
(a) Scirrhous types of ductal carcinoma
(b) Hyalinized or calcified fibroadenoma
(c) Cyst containing (echogenic) materials
(d) Sclerosing adenosis
(e) Surgical scar/radiating scar

2. Mass with distal enhancement
(a) Cyst
(b) Complicated cyst or cystic tumor 
(c) Fibroadenoma/phylloid tumor
(d) Circumscribed carcinoma

3. Mass with intermediate trans-sonicity
(a) Relatively small cyst containing echogenic materials 
(b) Papilloma
(c) Fibroadenoma
(d) Circumcribed carcinoma
(e) Sclerosing adenosis/focal fibrosis
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Since fat has a lower level of echogenicity compared to the glandular tissue, 
hypoechoic carcinomas may be missed sonographically within fatty tissue. 
Intramammary fat lobules may, furthermore, mimic malignancy. Because of 
these factors, some cancers will not be seen with US, although they may be 
easily found on mammography in fatty breasts.25–29,32

8.4.5 Secondary signs of malignancy

During the evaluation of breast nodules, some secondary signs of malig-
nancy are also important in distinguishing benign from malignant lesions, 
namely, disruption of breast architecture, skin distortion or thickening, 
breast contour changes, thickening of Cooper’s ligaments, alteration of 
subcutaneous fat layer, reactive changes surrounding a mass, interruption 
of the retromammary space and/or pectoralis muscles, and presence of 
axillary adenopathy. When secondary signs are present, the lesions in the 
breast are usually clinically obvious; however, when lesions are relatively 
small, the reactive changes surrounding the tumor may be extremely help-
ful in differentiating benign from malignant lesions.1,25–27

8.4.6 Evaluation of breast calcifications

Breast calcifications may be associated with inflammatory, degenerative, 
and toxic metabolic processes. They may also result from inspissated secre-
tions in ducts, acini, cysts, or malignancies such as cribiform carcinoma, 
or from deposition of calcium salts in necrotic tissue (e.g., in comedocar-
cinoma or fat necrosis). Some of these calcifications may be quite large 
and obvious (e.g., in degenerative fibroadenomas), and some may be very 
tiny (e.g., microcalcifications, usually <0.25–0.5 mm). State-of-the-art US 
scanners may depict calcifications larger than 0.5–1 mm without appar-
ent difficulty, particularly when there is a relatively homogeneous hyp-
oechoic background. Acoustic shadows are frequently present in denser 

Table 8.2 Differential	diagnosis	of	intracystic	tumors.

(a) Intracystic (intraductal) papillomas
(b) Intracystic (intraductal) carcinoma
(c) Invasive ductal carcinoma with necrosis

Table 8.3 	Differential	diagnosis	of	dilated	duct	with	or
without	internal	echoes.

(a) Intraductal carcinoma
(b) Intraductal papilloma
(c) Epithelial hyperplasia
(d) Other fibrocystic changes
(e) Thick milk, inspissated secretion or calcific plug in dilated duct
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calcifications. However, without a relatively homogeneous (hypoechoic) 
background, tiny calcifications may be hardly seen and therefore difficult 
to demonstrate. Malignancy with calcium deposits or microcalcifications 
may present on US as (1) a circumscribed solid tumor with microcalcifica-
tions: most easily identified; (2) ductal dilatation with intraductal echoes 
and microcalcifications: better delineated when ductal dilatation is appar-
ent (e.g., >2 mm); (3) clustered microcalcifications in a poorly defined 
hypoechoic background, representing carcinoma in situ or minimally inva-
sive pathology: often not easy to identify, but now relatively frequently 
identifiable on state-of-the-art high-resolution US scanners; (4) clustered 
microcalcification without apparent ductal dilation or hypoechoic back-
ground, representing carcinoma in situ or comedocarcinoma: most dif-
ficult to identify but occasionally appreciated with recently developed  
technologies.

Some benign pathologies such as cystic breast diseases, duct ectasia, or 
scar tissues with microcalcification may also present with microcalcifications 
on US. When a cystic lesion or dilated duct is appreciated by US, the tiny 
calcium deposit or milk of calcium may be identified inside the fluid spaces, 
as in cyst or duct, and can be differentiated from microcalcification in carci-
noma. However, lesions such as microcystic adenosis, sclerosing adenosis, 
or radiating scar with microcalcification may be difficult to distinguish from 
malignancy, and demonstration of microcalcifications is not easy.33,34

8.5  Considerations in Interpreting US Examination 
Results

Certain considerations should be taken into account when interpreting US 
examination results:

● If a lesion is not a simple cyst and a mammogram has not been per-
formed, a mammogram should be taken to further characterize the mass 
on the basis of echotexture, contour, borders, and the possible diagnos-
tic patterns of calcifications.

● Benign US findings in the presence of suspicious mammographic find-
ings do not exclude malignancy.

● A mass that cannot be seen on US should be considered not to be a cyst 
and therefore solid. This implies that these lesions may also be caused 
by a carcinoma.

● If there are any doubts about the benignity of a lesion after a complete 
imaging assessment, further diagnostic procedures (short-term followup 
or biopsy) are indicated.

● Some cancers will not be seen with US, although they may be easily 
found with mammography. This pitfall may occur in any type of breast 
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tissue but is more frequent within fatty breast tissue than in mixed breast 
tissue or dense hyperechoic glandular tissue.

Knowledge of some common pathologies and their US presentations is 
essential in interpretation of an US examination result.

8.6 Ultrasonography of Malignant Tumors 

8.6.1 Invasive ductal carcinoma

Invasive ductal carcinoma (IDC) is the most common type of breast malig-
nancy, accounting for around 80% of all breast carcinomas.35 IDC is the 
most common malignancy in women throughout the Western world and 
ranks first or second in the Eastern world.36 The lifetime risk of developing 
breast carcinoma is 1 in 9 in the United States and 1 in 12 in the UK,37 with 
an incidence that rises progressively with age.4 Environmental influences, 
such as diet, genetic factors, and endocrine factors, have been suggested as 
risk factors. The effect of estrogens is well documented to be related to the 
predisposition of breast cancer.38,39 Postmenopausal hormone replacement 
therapy (HRT) is suggested to be associated with a minimally increased 
risk, but its risk remains controversial.40

The most common presentation of breast cancer is a solitary hard mass, 
often associated with irregular contour. The fixation within the breast tis-
sues to subcutaneous fat, skin, or the pectoralis muscle is a suggestive sign 
of a carcinoma. Pain or tenderness, although generally considered a sign of 
benign lesions, can be encountered in about 15% of carcinomas. 

Clinical signs of breast carcinomas include flattening or dimpling of the 
overlying skin, flattening or retraction of the nipple, and nipple discharge, 
which are related to fibrotic stromal reaction, shortening of the Cooper’s 
ligaments, and involvement of the duct systems. Skin and subcutaneous 
edema can be seen in patients with inflammatory carcinoma.

IDCs have a variable appearance and may even show significant histo-
logical and cytological heterogeneity within the same lesion. Most IDCs 
are hard with an irregular stellate outline (scirrhous type), while the oth-
ers may be softer and circumscribed on macroscopic examination. On 
microscopic study, the tumor cells are usually arranged in nests or cords, 
often with a variable amount of tubule formation. Scirrhous tumors con-
tain abundant stroma with a large amount of collagen and, frequently, 
significant quantities of elastin. The tumor cells are usually uniform in 
size, shape, and staining intensity, and occasionally show marked pleo-
morphism. Some large and cellular tumors may present with necrosis, 
especially in densely cellular lesions. Microcalcification (usually com-
posed of hydroxyapatite) within the tumor nest and stroma is a common 
feature.
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8.6.1.1 Sonographic findings

An IDC typically presents as a mass on US.41 For lesions that do not pro-
duce mass effect, the secondary signs related to the surrounding tissue 
changes should be carefully evaluated. To detect a focal pathology, search-
ing for a mass (primary feature) or surrounding tissue changes (secondary 
features) is very important.

8.6.1.1.1 Primary features

The US features of breast carcinoma are variable (Figs. 8.1–8.11). 
The ultrasonographically identifiable mass is typically less reflective 
(hypoechoic) than the surrounding glandular tissue and is usually also  
less reflective than the subcutaneous fat layer. Tumors that are highly 

(a) (b)

Figure 8.1 A	51-year-old	 female	presenting	with	a	palpable	mass	on	 the	right	
breast:	IDC.	(a)	US:	a	hypoechoic	tumor	with	irregular	margins,	speculation,	angu-
lation,	and	an	echogenic	halo	are	noted.	(b)	CDU:	only	minimal	marginal	color	flow	
signals	are	evident.

(a) (b)

Figure 8.2 A	56-year-old	female	presenting	with	bloody	nipple	discharge:	IDC.	
(a)	 US:	 A	 very	 hypoechoic	 lesion	 with	 irregular	 margins	 and	 extending	 to	 the		
nipple,	representing	ductal	extension.	(b)	US:	orthogonal	view.
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(a) (b)

Figure 8.3 A	53-year-old	female	presenting	with	a	suspicious	breast	nodule:	IDC	
(a)	US:	a	1-cm	hypoechoic	nodule	with	vertical	orientation	and	distal	sound	attenu-
ation.	(b)	CDU:	No	significant	color	flows	are	noted.

(a)

(c)

(b)

Figure 8.4 A	42-year-old	female	presenting	with	palpable	left	breast	mass:	IDC.	
(a)	 US:	A	 very	 hypoechoic	mass	 is	noted,	 showing	 lobulated	 margins	 and	dis-
tal	enhancement.	 (b)	CDU:	Only	marginal	 color	 flow	signals	are	demonstrated.		
(c)	US:	Increased	gain	setting	may	demonstrate	weak	internal	echoes	and	prevent	
a	misinterpretation	as	a	cystic	lesion.
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calcified are a rare exception: they may be more reflective than breast 
parenchyma. The nidus usually has a heterogeneous texture (Figs. 
8.1–8.4), perhaps due to the irregular alignment of the tumor cells or 
to necrosis. Microcalcification may add to the heterogeneous texture. 
Occasionally, cystic change may be apparent; it is more common with 
larger tumors and is probably due to necrosis or hemorrhaging. Carci-
nomas can be multifocal, multicentric, or bilateral, and can be occult, 
hidden in breast stroma (Figs. 8.12–8.18).

IDC tends to be hypo- or very hypoechoic on US (Fig. 8.4); only occa-
sionally is it isoechoic (Fig. 8.5). Mucinous carcinoma may sometimes be 
hyperechoic. IDC is usually irregular in shape. Orientation of the tumor 
is usually nonparallel, with the depth-to-width ratio (D:W or AP/L) often 
exceeding 0.7–0.8.35

The borders of IDCs are irregular and usually appear ill defined or fuzzy 
because of their invading margins and desmoplastic reaction, particularly 
in the scirrhous type of tumor. The desmoplastic reaction is seen on US 
as an echogenic halo, usually thicker than 3 mm, surrounding the hyp-
oechoic nidus. This hyperechoic halo sign is important in distinguishing 
IDCs from fibroadenomas, which are typically encapsulated by a thin and 
smooth hyperechoic line. Posterior shadowing is a classical appearance in 
IDCs, typically seen in scirrhous-type tumors (Figs. 8.1, 8.2, and 8.16) but 
not in circumscribed-type tumors (Figs. 8.4, 8.8, and 8.19).

8.6.1.1.2 Secondary features

Carcinomas often break through normal structures and not uncommonly 
cause distortion of the surrounding breast stroma (Fig. 8.17). The US signs 
of invasion are particularly useful when a carcinoma is superficially located 
and may be apparent even with small tumors when the glandular tissue is 

(a) (b)

Figure 8.5 A	 55-year-old	 female	 without	 clinically	 palpable	 breast	 mass:	 IDC.	
(a)	US:	An	isoechoic	lesion	is	suspected	in	the	center	of	the	image,	about	1.1	cm	in	
size.	(b)	CDU:	Increased	marginal	and	peripheral	color	flow	signals	are	suggestive	
of	a	relatively	hypervascular	tumor.
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(a)

(c)

(b)

Figure 8.6 A	49-year-old	female	presenting	with	a	palpable	right	axillary	mass:	
Occult	 IDC	with	axillary	and	intramammary	 lymph	node	metastases.	 (a)	US:	An	
ovoid	hypoechoic	nodule	in	the	center	of	the	image	is	actually	an	intramammary	
lymph	node	with	metastasis;	the	primary	breast	lesion	is	occult	and	small,	located	
superficially,	vertical	in	orientation,	measuring	0.5	×	0.8	cm.	(b)	US:	The	apparently	
enlarged	lymph	node	is	the	only	metastasized	lymph	node	in	the	axillary	region.		
(c)	Mammography:	The	enlarged	axillary	 lymph	node,	 intramammary	node,	and	
the	 small	 superficially	 located	 tumor	 are	 seen	 on	 the	 right	 breast	 (mediolateral	
oblique	view).

SRBK002-C08_175-254.indd   189 1/21/13   7:13 PM



190 Chapter 8

(b)

(a)

(c)

Figure 8.7 A	 47-year-old	 female	 presenting	 with	 palpable	 left	 axillary	 mass:	
nonpalpable	 IDC	with	axillary	 lymph	nodes	metastasis.	 (a)	US:	A	0.9-cm	 round	
hypoechoic	nodular	 in	a	dense	breast,	associated	with	 relatively	poorly	defined	
boundary,	and	with	no	significant	change	of	sonic	transmission.	(b)	US:	Multiple	
enlarged	axillary	lymph	nodes	are	shown.	(c)	Mammography:	No	focal	mass	can	
be	identified	in	the	relatively	dense	breast.	Multiple	large	and	dense	axillary	lymph	
nodes	are	noted.

atrophic. When the primary feature of a lesion cannot be well appreciated 
on US, the US sign of invasion or the secondary sign can be the major fea-
ture. Invasion of a carcinoma may develop along Cooper’s ligaments, into 
the skin, between the dermis and subcutaneous fat, or into the underlying 
muscle. These changes may cause skin thickening, skin dimpling, stel-
late and speculation patterns, and interruption of the subcutaneous fat or 
underlying muscle fascia.
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(b)

(a)

(c)

Figure 8.8 A	25-year-old	female	presenting	with	a	palpable,	movable	left	breast	
lump:	 IDC.	 (a)	US:	A	hypoechoic	mass	 (1.7	cm),	heterogeneous	 in	echopattern	
and	associated	with	microlobulated	margins	showing	minimal	distal	enhancement.	
(b)	 CDU:	 Minimal	 intratumoral	 color	 flows	 are	 evident.	 (c)	 Mammography:	 No	
demonstrable	mass	in	the	left	breast.

(a) (b)

Figure 8.9 A	57-year-old	female	presenting	with	a	palpable	breast	mass:	IDC.	
(a)	US:	A	hypoechoic	mass	with	 irregular	margins	and	distal	 sound	attenuation	
is	seen.	There	are	some	tiny	punctuate	calcifications	(microcalcifications)	 in	 the	
lesion.	(b)	Mammography:	A	small	relatively	dense	area	with	poorly	defined	mar-
gins	and	some	punctuate	calcifications	is	noted	in	the	central	deep	portion.
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(c)

(a)

(b)

Figure 8.10 A	59-year-old	female	suspected	to	have	a	left-breast	lump	on	physi-
cal	examination:	 IDC.	 (a)	US:	A	hypoechoic	mass	 lesion	with	 irregular	margins,	
minimal	distal	sound	attenuation,	and	microcalcifications.	The	lesion	is	horizontal	
in	orientation.	(b)	CDU:	No	significant	color	flow	signal	is	demonstrated.	(c)	Mam-
mography:	A	 relatively	dense	area	with	microcalcification	 is	noted	 in	 the	medial	
aspect	of	the	left	breast.

(a) (b)

Figure 8.11 A	62-year-old	female	with	a	history	of	palpable	right	breast	mass	for	
five	months:	IDC.	(a)	US:	A	large	(4.9-cm)	lobulated	mass	lesion	with	fluid	spaces	
is	seen.	(b)	CDU:	some	peripheral,	marginal,	and	penetrating	vessels	are	demon-
strated	in	the	solid	part	of	the	lesion.
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(a) (b)

(c) (d)

Figure 8.12 A	70-year-old	female	presenting	with	a	palpable	mass	in	the	axillary	
region:	multifocal	IDC.	(a)	US:	2.0-cm	hypoechoic	mass	is	noted	in	the	region	of	
the	tail	of	Spence,	showing	irregular	margins,	and	poorly	defined	boundary.	(b)	US:	
Another	0.7-cm	hypoechoic	nodule	 is	also	noted	medial	 to	 larger	mass,	vertical	
in	orientation,	with	no	change	in	sound	transmission.	(c)	US:	An	enlarged	axillary	
lymph	 node.	 (d)	Automated	 whole-breast	 US:	Three	 lesions	 are	 demonstrated,	
including	the	diseased	axillary	lymph	node,	the	larger	cancer,	and	the	small	cancer.

(a) (b)

Figure 8.13 A	47-year-old	female	presenting	with	a	palpable	lump	on	the	right	
breast:	multicentric	IDC.	(a)	US:	A	very	hypoechoic	mass	is	seen	in	the	right	outer	
lower	quadrant,	associated	with	irregular	margins,	focal	distal	acoustic	shadows,	
corresponding	to	the	physical	examination.	(b)	US:	Another	nodule	is	depicted	in	
the	right	inner	upper	quadrant	of	right	breast.

SRBK002-C08_175-254.indd   193 1/21/13   7:14 PM



194 Chapter 8

(a) (b)

Figure 8.14 A	female	presenting	with	metachronous	bilateral	IDC.	(a)	US:	A	hyp-
oechoic	mass	is	noted	in	the	left	breast,	showing	heterogeneous	echopattern	and	
irregular	margins.	(b)	US:	Two	years	after	surgery	of	the	left	breast,	another	cancer	
is	demonstrated	in	the	right	breast,	showing	similar	US	findings.

(a)

(c)

(b)

Figure 8.15 IDC	of	the	left	breast	over	the	central	upper	part:	left	internal	mam-
mary	lymph	node	metastasis.	(a)	US:	The	primary	breast	tumor	is	a	horizontally	
oriented,	 mildly	 irregular,	 hypoechoic	 mass,	 associated	 with	 microcalcifications.	
(b)	US:	transverse	and	(c)	sagittal	scans	of	the	left	parasternal	region	demonstrate	
the	ovoid	hypoechoic	mass	posteroinferior	to	the	cartilagenous	part	of	the	left	sec-
ond	rib,	representing	the	metastasized	internal	mammary	lymph	node.
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(a)

(c)

(b)

Figure 8.16 Screening	US	study	of	a	42-year-old	female:	IDC.	(a)	US:	A	small	
hypoechoic	zone	in	the	left	breast	is	depicted	(0.5	×	0.4	cm).	The	focal	lesion	is	
associated	with	acoustic	shadows	and	 irregular	margins.	 (b)	3D	US:	The	 lesion	
shows	speculation	on	the	C	plane	(right	upper	 image),	 typical	of	 invasive	carci-
noma.	(c)	3D	US:	Volume	image	shows	architectural	distortion.

(a) (b)

Figure 8.17 Same	 patient	 as	 in	 Fig.	 8.16.	 (a)	 US-guided-wire	 localization:	 A	
hook	wire	is	inserted	through	the	lesion	under	US	guidance	with	the	hook	opened.		
(b)	Mammography:	After	 the	 localization	procedure,	 the	mammography	demon-
strates	 the	 location	of	 the	hook	wire.	Minimal	 tissue	changes	are	evident	 in	 the	
region	where	the	hook	is	located.
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8.6.1.1.3 Color or power Doppler ultrasound

Doppler flow signals on color Doppler ultrasound (CDU) or power Dop-
pler ultrasound (PDU) due to increased vascularity are usually demon-
strable within and at the margins of malignant tumors3,5,10 (Figs. 8.20 and 
8.21). Increased vascularity in a well-circumscribed mass is a suspicious 
feature, especially when found in postmenopausal women. Spectral Dop-
pler US of malignant tumors shows relatively higher resistivity index (RI) 
of the feeding arteries, frequently higher than 0.7–0.75 (Fig. 8.22). A knot 
of abnormal vessels may be a clue to the presence of a mass that is difficult 
to detect on grayscale imaging (Fig. 8.23).

8.6.1.1.4 Elastography

Compression elastography is an evolving technology, and different 
methods and algorithms are used by different manufacturers. Many 

(a) (b)

Figure 8.18 Screening	breast	US	in	a	43-year-old	female	depicts	(a)	a	nonpal-
pable	solid	nodule:	IDC.	(b)	The	hypoechoic	lesion	measures	0.5	×	0.4	mm	in	size,	
showing	relatively	irregular	margins	and	indistinct	boundary.

(a) (b)

Figure 8.19 A	 53-year-old	 female	 presenting	 with	 palpable	 mass	 on	 the	 left	
breast:	mucinous	carcinoma.	(a)	US:	A	3-cm	ovoid	hypoechoic	lesion	with	hetero-
geneous	echopattern,	 lobulated	margins,	and	minimal	distal	enhancement.	Part	
of	the	tumor	margin	is	not	very	sharp.	(b)	CDU:	Only	minimal	marginal	color	flows	
are	shown.
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(a)

(c)

(b)

Figure 8.20 CDU	and	PDU	 imaging	of	an	 IDC.	 (a)	US:	A	hypoechoic	mass	 is	
demonstrated	 and	 is	 associated	 with	 irregular	 margins	 and	 parallel	 orientation.	
Slightly	heterogeneous	echotexture	is	seen,	with	minimal	distal	enhancement	and	
a	tendency	of	halo	formation.	(b)	CDU	and	(c)	PDU	imaging	show	increased	vas-
cularity	of	the	tumor;	a	more-profuse	color	flow	signal	wall	is	depicted	using	PDU	
[in	(c)].

new techniques using relevant strain imaging or acoustic radiation force 
imaging have been introduced in recent years. There are different for-
mats for display of elasticity data (either color or black & white format, 
or quantitative elastography). In general, malignant lesions are harder, 
and benign lesions are softer42,43 (Figs. 8.24–8.27).
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(a)

(c)

(b)

Figure 8.21 CDU	and	PDU	imaging	of	an	IDC.	(a)	US:	An	irregular	hypoechoic	
mass	 is	 identified,	associated	with	a	hyperechoic	halo	or	speculation,	nonparal-
lel	orientation,	and	no	significant	change	 in	 through	 transmission.	 (b)	CDU	and		
(c)	PDU.	Both	techniques	demonstrate	increased	vascularity	of	the	tumor.	Vascu-
larity	is	shown	using	PDU	[in	(c)].

8.6.2 Mucinous carcinoma

Mucinous carcinoma, also known as colloid carcinoma, mucoid, or gelati-
nous carcinoma, is a rare variety with an incidence of less than 5% of all 
infiltrating carcinomas. It tends to occur in older women. Mucinous carci-
nomas are well circumscribed and often large. They are composed of nests, 
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(a)

(c)

(b)

Figure 8.22 Spectral	Doppler	US	of	three	IDCs.	(a)	A	relatively	small	(1.3-cm)	
tumor	with	high	resistivity	 index	(RI	=	0.87).(b)	A	large	(0.3-cm)	tumor	with	very	
high	RI	(>1.0).	(c)	A	2.5-cm	tumor	with	intermediate	RI	(0.7).

Figure 8.23 Color	Doppler	US	of	a	microinvasive	in situ	carcinoma.	CDU	shows	
a	 poorly	 defined,	 heterogeneously	 hyperechoic	 zone	 (as	 compared	 to	 the	 sub-
cutaneous	fat)	with	increased	color	flow	signals,	suggestive	of	ductal	carcinoma		
in situ	(DCIS).
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(a)

(c) (d)

(b)

Figure 8.24 A	57-year-old	female	presenting	with	a	palpable	mass	on	the	right	
breast:	IDC.	(a)	US	and	(b)	CDU	show	a	heterogeneous	hypoechoic	mass.	The	
lesion	is	associated	with	poorly	defined	margins	[shown	in	(a)]	and	positive	color	
flow	signals	[shown	in	(b)].	(c)	Elastography	demonstrates	a	hard	mass	(note	the	
elasticity	scale	on	the	right	margin	of	the	image)	[Image	(c)	courtesy	of	Samsung	
Medison.]	(d)	Mammography	shows	a	round,	speculated	mass.

cords, and even isolated cells lying in lakes of extracellular mucin sepa-
rated by a small amount of fibrous stroma.44 Mucinous carcinomas have 
relatively well-defined margins and lobulated contours. The echo-intensity 
of the tumor tends to be isoechoic or even hyperechoic with respect to 
subcutaneous fat tissue. Mucinous carcinoma is not uncommonly misin-
terpreted as a fibroadenoma, which may also have relatively strong inter-
nal echoes and be well circumscribed. The internal echoes of mucinous 
carcinomas tend to be more heterogeneous, and the distal echoes may be 
enhanced. Mucinous carcinomas are harder and less compressible than 
fibroadenomas (Figs 8.19 and 8.28).

8.6.3 Medullary carcinoma 

Less than 5% of all breast carcinomas are diagnosed as medullary carci-
noma.45,46 Pathologically medullary carcinomas are well delineated from 
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(a) (b)

Figure 8.25 A	 52-year-old	 female	 presenting	 with	 an	 IDC.	 (a)	 US:	 Grayscale	
image	shows	a	round	hypoechoic	mass	with	mildly	irregular	margins	and	asym-
metric	critical-angle	artifacts.	(b)	Elastography:	Generally	reddish	color	in	the	mass	
on	color	format	is	indicative	of	a	hard	lesion,	with	a	larger	area	of	hard	pathological	
tissue	than	that	on	the	US	image.	[Image	(b)	courtesy	of	Siemens.]

(a) (b)

Figure 8.26 IDC	 in	 a	 56-year-old	 female.	 (a)	 US:	A	 hypoechoic	 tumor	 with	 a	
central	cystic	zone,	speculated	margins,	and	an	echogenic	halo	is	shown.	(b)	Elas-
tography:	The	elastographic	appearance	shows	a	larger	area	with	hard	pathology	
(darker	on	black-and-white	format).	[Image	(b)	courtesy	of	Siemens.]
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(a)

(c)

(b)

Figure 8.27 Invansive	lobular	carcinoma	in	a	53-year-old	female.	(a)	US:	A	round	
hypoechoic	tumor	with	acoustic	shadows,	microlobulated	margins,	and	a	hyper-
echoic	halo.	 (b)	Shear	wave	US	elastography:	A	 “ring	of	fire”	pattern	 is	demon-
strated.	[Image	(b)	courtesy	of	SuperSonic	Imagine.]	(c)	Quantitative	shear	wave	
elastography:	The	value	of	elasticity	is	obtained	by	measuring	the	region	of	inter-
est	within	the	tumor.	In	this	example,	the	mean	value	is	145.66	kPa,	indicating	a	
very	hard	tumor	(a	cutoff	value	of	55	kPa	is	used).

(a) (b)

Figure 8.28 A	59-year-old	female	presenting	with	a	palpable	 left	breast	mass:	
Mucinous	carcinoma.	 (a)	US:	A	2.3-cm	round	hyperechoic	 lesion	with	a	hetero-
geneous	echopattern	and	distal	enhancement.	The	margin	 is	generally	smooth.	
There	 is	 a	 central	 nearly	 anechoic	 zone,	 representing	 mucin	 accumulation.		
(b)	CDU:	The	tumor	is	hypervascular	with	profuse	color	flow	signals.
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(a) (b)

Figure 8.29 A	51-year-old	female	presenting	with	a	small	palpable	nodule	in	the	
right	breast:	Medullary	carcinoma.	(a)	US:	The	round	hypoechoic	lesion,	measur-
ing	0.7	cm	in	size,	shows	relatively	sharp	and	smooth	margins,	with	no	significant	
change	in	through	transmission.	The	echopattern	is	quite	similar	to	some	fibroad-
enomas.	(b)	CDU:	Increased	color	flow	signals	in	the	lesion,	suggestive	of	a	hyper-
vascular	tumor.

the surrounding breast. Medullary carcinomas are circumscribed, cellular 
carcinomas.47,48 They are rounded or lobulated in shape. The margins are 
well defined and generally smooth. The internal echoes are very weak and 
slightly heterogeneous (Fig. 8.29). Calcification is not common. The pos-
terior acoustic enhancement is often marked.49

8.6.4 Invasive lobular carcinoma 

Invasive lobular carcinoma is the second most-common breast malignancy, 
making up some 10% of cancers.50–52 The tumor shows a high incidence 
of bilaterality and multicentricity.52,53 Invasive lobular carcinomas may be 
difficult to detect on mammography. The first and second most-common 
mammographic features are asymmetric density without a definable mass, 
and dense mass with speculation, respectively.54

8.6.4.1 Ultrasound features

The US features of invasive lobular carcinoma are similar to those of IDC, 
particularly of the scirrhous type (Fig. 8.30). Invasive lobular carcinomas 
tend to be highly infiltrative and sometimes do not have a distinct nidus; 
in some cases only focal heterogeneous tissue with sound attenuation or 
architectural distortion can be demonstrated.

8.6.5 Ductal carcinoma in situ

Before use of screening mammography became prevalent, less than 5% of 
all breast malignancies were classified as ductal carcinoma in situ (DCIS). 
During the past 10 years, however, DCIS constitutes 20% to 40% of all 
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breast malignancies because it is detected during routine mammographic 
screening.

DCIS represents a spectrum of noninvasive neoplasms. The classifica-
tion of the various types of DCIS is somewhat controversial. Traditionally, 
DCIS has been subdivided into comedo necrosis and noncomedo necro-
sis groups. Noncomedo DCIS is further subdivided into micropapillary, 
cribriform, and solid types. Solid-type DCIS is most frequently associ-
ated with comedo necrosis. Each type of DCIS is further subdivided into 
nuclear grade groups: low nuclear grade (LNG), intermediate nuclear 
grade (ING), or high nuclear grade (HNG). Comedo necrosis occurs most 
frequently in HNG DCIS. 

The prognosis of DCIS may be related to the nuclear grade and necro-
sis. HNG DCIS and lesions with necrosis are the most aggressive, are the 

(a)

(c)(b)

Figure 8.30 A	 43-year-old	 female	 presenting	 with	 a	 palpable	 mass	 in	 the	 left	
breast:	Invasive	lobular	carcinoma.	(a)	US:	A	1.8	×	0.7-cm	lobulated	hypoechoic	
mass	is	noted.	The	margins	are	mildly	irregular	in	some	parts.	(b)	CDU:	The	lesion	
shows	increased	color	flow	signals	in	some	parts.	(d)	Mammography:	Increased	
density	in	the	lower	part	of	the	left	breast.
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more likely to demonstrate micro-invasion, and more likely to progress to 
invasive carcinoma in a shorter time. They are more likely to recur early 
after wide excision and have a 1–2% positive axillary node rate compared 
to cases of LNG DCIS without necrosis. 

Based on different recurrent rates, the Van Nuys classification system 
for DCIS identifies three different groups. Group 1 is non-HNG DCIS 
without comedo necrosis (recurrent rate: 3.8%). Group 2 includes non-
HNG DCIS with comedo necrosis (recurrent rate: 11.1%). Group 3 
includes HNG DCIS with or without comedo necrosis (recurrent rate: 
26.5%). HNG DCIS more frequently presents with a palpable soft-tissue 
mass on imaging than does LNG DCIS because it more grossly distends 
ducts (filled with tumor cells or necrotic debris) and it incites periductal 
inflammation and fibrosis.

8.6.5.1 Sonographic findings

Mammography is generally more accurate than US for detection of DCIS 
because of its effectiveness in demonstrating and characterizing microcal-
cifications with which DCIS presents in most cases. Patients with calcifi-
cations are usually referred for stereotactically mammography-guided nee-
dle or wire localization and surgical biopsy, and do not undergo diagnostic 
breast US. However, US may be helpful in the evaluation of patients with 
DCIS in certain aspects, including: (1) evaluation of the 10% of patients 
with soft-tissue densities without calcifications, (2) evaluation of patients 
with palpable abnormalities and negative or nonspecific mammograms, 
and (3) evaluation of patients with nipple discharge and guiding aspiration 
and core needle biopsy of intracystic papillary DCIS, (4) evaluation of the 
size of the lesion in cases of noncomedo DCIS in which the extent of calci-
fications on mammography is likely to underestimate the size of the lesion, 
(5) identification of invasive components of carcinoma when calcifications 
suggest pure DCIS, (6) assessment of regional lymph nodes in large, HNG 
DCIS, (7) guidance of needle localization of calcifications, (8) guidance 
of ductography or needle localization of intraductal papillary lesions, and 
(9) guidance of core needle biopsy in the rare cases in which stereotactic 
biopsy is not possible.

Normal ducts and TDLUs can be demonstrated on high-resolution US. 
It is also known that abnormally distended ducts and TDLUs in patients 
with DCIS are demonstrable sonographically. The DCIS distended ducts 
are easily appreciated in a plane that is parallel to the long axis of the ducts, 
i.e., the radial plane. The long axis of the dilated ducts documented with 
relative effectiveness of long-axis and short-axis scanning of mammary 
ducts as opposed to random longitudinal and transverse scan planes.55–58

Duct extension and branch pattern are suggestive signs of DCIS or DCIS 
components of disease, signs that indicate the presence of tumor-enlarging 
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ducts. Microlobulations can be seen with either invasive and intraductal 
tumors but more frequently represent tumor-filled ducts or TDLUs. Micro-
calcifications representing the necrotic debris in the center of the lumen 
of involved ducts or ductules are also important findings that suggest that 
DCIS can be associated with any of the other abovementioned findings. 
The calcifications within DCIS can be large enough (e.g., 0.3–0.7 mm) to 
cause punctate, bright echoes without shadowing. DCIS can also be identi-
fied as amorphous sheets of isoechoic tissue (Figs. 8.31–8.37). Intracystic 
papilloma may be associated with in situ carcinoma, or a frank DCIS may 
be located in a cystically dilated duct that attains a size sufficient to pro-
duce a macroscopic nodule or mass in a cystic lesion.59,60

(b)(a)

Figure 8.31 A	48-year-old	referred	for	breast	US	examination	because	of	right	
breast	pain:	Ductal	carcinoma	in situ	with	micro-invasion.	(a)	US:	A	relatively	hyper-
echoic	area	(with	respect	to	the	subcutaneous	fat)	occurs	in	the	subareolar	region	
of	the	left	breast.	Some	tiny	echogenic	spots	are	indicative	of	microcalcifications.	
Physical	examination	revealed	a	relatively	thick	breast	tissue.	(b)	CDU:	Increased	
color	flow	signals	in	the	region	of	suspicion.

(b)(a)

Figure 8.32 A	34-year-old	female	presenting	with	clinically	suspicious	abnormal	
finding	in	the	left	breast:	Ductal	carcinoma	with	micro-invasion.	(a)	US:	A	2.5-cm	
hypoechoic	zone	in	the	left	breast	with	microcalcifications.	The	lesion	is	associated	
with	poorly	defined	margins	and	distal	sound	attenuation.	(b)	CDU:	Increased	color	
flow	signals	in	the	lesion.

SRBK002-C08_175-254.indd   206 1/21/13   7:15 PM



Diagnosis of Breast Cancer Using Ultrasound 207

Figure 8.33 A	39-year-ole	female	presenting	with	left	breast	lump:	Comedocar-
cinoma,	invasive.	US	shows	a	heterogeneous	region	with	punctuate	hyperechoic	
spots,	suggestive	of	microcalcifications.	Some	microcalcifications	are	 located	 in	
the	distended	ducts	(left-hand	aspect).	An	irregular	hypoechoic	zone	in	the	right-
hand	aspect	is	compatible	with	the	invasive	component	of	the	carcinoma.

(b)(a)

Figure 8.34 A	53-year-old	female	presenting	with	a	palpable	mass	in	the	right	
breast:	 IDC	with	ductal	 invasion.	(a)	US:	The	hypoechoic	lesion	shows	irregular	
margins	and	microcalcifications.	The	adjacent	duct	is	dilated	and	filled	with	hyp-
oechoic	material	and	punctate	spots,	representing	duct	invasion	and	microcalci-
fications.	 (b)	 Elastography:	 Heterogeneous	 elasticity	 in	 territory	 of	 the	 lesion	 is	
demonstrated.

8.6.6 Lobular carcinoma in situ

Most lesions of lobular carcinoma in situ (LCIS) are of microscopic size 
and are consequently asymptomatic and nonpalpable; they are incidental 
findings in biopsy specimens. The clinical importance of LCIS is the 
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(b)(a)

Figure 8.35 The	same	patient	as	Fig.	8.34:	mammography	of	the	right	breast,	
mediolateral	oblique	view.	(a)	Some	microcalcifications	are	shown	in	the	margins	
of	 the	 breast	 stroma	 near	 the	 breast	 tail.	 (b)	Ancillary	 view,	 compression:	 The	
microcalcifications	are	better	shown.

high incidence of multicentricity and bilaterality. The incidence depends 
on the thoroughness of sampling; multicentricity is reported as 70% 
in mastectomy specimens, and bilaterality in biopsy specimens of the 
contralateral breast as 30%. Histologically, LCIS causes a lesser degree 
of distension of the involved terminal duct lobular unit, and therefore 
the disease is of microscopic size. The growth pattern of LCIS is typi-
cally solid, and necrosis is absent. Extension into interlobular ducts can 
occur but shows a lesser degree of the ductal enlargement seen in DCIS61 
(Fig. 8.38).

8.6.7 Inflammatory carcinoma

The diagnosis of inflammatory carcinoma is based on the clinical find-
ings of tenderness, pain, and firm enlargement of the breast, together with 
reddening and edema of the skin affecting more than one-third of the 
breast. Flattening or retraction of the nipple is a frequent finding, and most 
patients have axillary lymph node metastases by the time of presentation. 
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Skin thickening is of various degrees. With progressive edema, the echo-
genicity of the skin decreases. The echogenicity of the subcutaneous fatty 
tissue may be diffusely increased (Fig. 8.39).

The tumor itself cannot always be demonstrated. If depicted, it may 
show an appearance as an infiltrative ductal carcinoma, a textural distor-
tion of the glandular tissue, or a significant attenuation arising from the 
thickened heterogeneous diseased breast tissue. Axillary lymphadenopa-
thy is a common finding.62

(c)(b)

(a)

Figure 8.36 A	 45-year-old	 female	 presenting	 with	 a	 small	 palpable	 nodule	 in	
the	right	breast:	DCIS.	(a)	US:	A	hypoechoic	lesion	in	the	right	upper	outer	quad-
rant,	with	suspicious	microcalcifications.	The	tumor	margins	are	irregular,	with	no	
change	of	the	through	transmission.	(b)	CDU:	Only	minimal	color	flow	signals	are	
noted	on	the	margins	of	the	lesion.	(c)	Mammography,	craniocaudal	view:	Some	
tiny	 calcifications	 of	 intermediate	 suspicion	 are	 seen.	 No	 definite	 focal	mass	 is	
depicted.
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Figure 8.37 A	 43-year-old	 female	 presenting	 with	 palpable	 breast	 nodules:	
DCIS.	US	of	bilateral	breasts	shows	cysts	of	variable	sizes	(0.3–0.9	cm).	How-
ever,	a	focal	nonpalpable	pathology	is	depicted	at	US,	measuring	0.8	×	0.7	cm.	
The	lesion	is	associated	with	microcalcifications.

(b)(a)

Figure 8.38 A	54-year-old	female	was	found	to	have	bilateral	breast	 lumps	on	
physical	examination:	Lobular	carcinoma	 in situ	(LCIS).	(a)	US:	The	hypoechoic	
area	in	the	center	of	the	image	is	of	indeterminate	nature.	(b)	CDU:	No	demon-
strated	color	flow	signals.	LCIS	was	confirmed	by	using	wire-localization	surgical	
excision	biopsy.

8.6.8 Lymphoma and metastases of the breast

Although breast involvement by metastases is uncommon, in females with 
a known history of malignancy, metastases should be always included in 
the differential diagnoses when dealing with patients with palpable breast 
lumps or solid breast masses on US. These lumps and masses can be metas-
tases from a carcinoma in the opposite breast, metastasis from extramam-
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mary primary malignancies, or breast involvement in hematological malig-
nancies. Among these, lymphoma involving the breast is the most common. 
Lymphoma occasionally originates primarily in the breast, but in most cases 
distinguishing primary from secondary involvement is difficult. Metasta-
sis to the opposite breast usually occurs via lymphatics across the anterior 
chest wall, and usually the primary lesion is already far advanced. A multi-
centric origin is believed to be more common than intramammary spread; 
however, only a histological study can confirm its nature. Metastases can 
be from bronchogenic carcinoma, melanoma, ovarian carcinoma, renal cell 
carcinoma, colon carcinoma, or sarcoma.63 Discrete nodules are more com-
mon than diffuse involvement at first presentation.64

8.6.8.1 Sonographic features

The metastatic nodules within the breast are usually hypoechoic with 
relatively poorly defined margins. Small metastases are relatively round, 
and larger lesions are ovoid. The echopattern is heterogeneous. These 

(c)(b)

(a)

Figure 8.39 A	 59-year-old	 female	 presenting	 with	 inflammatory	 carcinoma.	
(a)	US:	Panoramic	view	of	 the	 right	breast	shows	diffuse	 thickening	of	 the	skin	
(up	 to	 0.6	 cm)	 and	 subcutaneous	 fat,	 which	 shows	 increased	 echogenicity.	An	
extensive	irregular	hypoechoic	mass	with	hyperechoic	areas	is	noted.	The	hyper-
echoic	structures	are	most	likely	due	to	thickly	clumped	microcalcifications.	(b)	and		
(c)	 CDU:	Minimally	 increased	 color	 flow	 signals	 are	evident	 on	 the	 skin,	 in	 the	
subcutaneous	fat,	and	on	part	of	the	tumor.
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findings are related to minimal local reactive changes or signs of invasion 
in the surrounding tissues. A metastasis cannot be differentiated from a 
well-circumscribed breast carcinoma, although multiplicity may be sug-
gestive of metastasis. Lymphoma can present as discrete nodules, soli-
tary, or multiple. Because of their uniform cellularity, the internal echoes 
are extremely low with strong enhancement and can be misdiagnosed as 
cysts. Occasionally, lymphoma may present as diffuse thickening of the 
glandular tissue and a generalized decrease of echogenicity with preser-
vation of the structure of the glandular tissue (Figs. 8.40–8.42).

(b)(a)

Figure 8.40 Lymphoma	 involving	 the	 intramammary	 lymph	node.	 (a)	US:	The	
enlarged	 intramammary	 lymph	 node	 is	 very	 hypoechoic	 and	 is	 associated	 with	
distal	enhancement.	The	hilum	is	preserved.	(b)	CDU:	Positive	color	flow	signals	
adjacent	to	and	in	the	hilum.

(b)(a)

Figure 8.41 A	55-year-old	female	presenting	with	palpable	left	breast	mass:	lym-
phoma.(a)	US:	A	focal	heterogeneously	hypoechoic	mass	is	noted	in	the	left	lower	
outer	quadrant.	Distal	enhancement	 is	present.	 (b)	CDU:	Color	flow	signals	are	
demonstrated	in	the	lesion.

SRBK002-C08_175-254.indd   212 1/21/13   7:16 PM



Diagnosis of Breast Cancer Using Ultrasound 213

8.7 Fibrocystic Changes and Breast Cysts

8.7.1 Fibrocystic changes and benign proliterative disorders

Fibrocystic change (FCC) is often used as a collective term for a wide 
spectrum of non-neoplastic structural changes in the breast glandular 
tissue. FCC refers to hormonally induced transformations of the breast 
parenchyma. This very common benign condition usually involves the 
entirety of both breasts and is often found in premenopausal women. His-
tologically, FCC presents with interlobular and intralobular fibrosis, aci-
nolobular hyperplasias with cysts and ductal ectasia, and ductal epithelial 
proliferation. Nearly all women over the age of 30 have small breast cysts 
that can be detected by US. The cysts usually appear between 30 and 50 
years of age and are rare before age 20 and after age 60. Breast cysts noted 
in FCC range from a few millimeters to 6 cm in size. The cysts occurring 
in FCC may have a great variety of presentation on US. A typical cyst on 
US has acoustic properties that differentiate it from a solid lesion; i.e., ane-
choic, smooth, thin, and hyperechoic border, well-defined boundary, par-
allel in orientation (elliptical), posterior acoustic enhancement (enhanced 
sound transmission), bilateral edge shadows (lateral shadows), readily 
compressible, and no architectural change (Fig. 8.43). 

However, cysts can be atypical because of their content, anatomic vari-
ation, background, age of the cysts, and the associated changes developed 
in the cysts. The atypical cysts may be multilocular, septated, clustered, or 
echogenic (Fig. 8.44). Echoes can appear within a cyst due to hemorrhage, 
mucinous secretion, infection, inspissated milk, oil droplets, crystals, etc. 
Whenever intracystic solid structures are detected, histological confirma-
tion should be performed to exclude intracystic neoplasm (e.g., papilloma 
or carcinoma). The risk posed by FCC are two-fold: certain types of FCC 

Figure 8.42 A	61-year-old	female	with	a	history	of	colon	cancer.	Status	four	years	
after	surgery:	Metastasis	from	colon	cancer.	(a)	US:	A	0.4-cm	isoechoic	nodule	is	
depicted	in	the	upper	outer	quadrant	of	the	left	breast.	The	nodule	is	surrounded	
by	an	echogenic	halo.	(b)	CDU:	No	color	flow	signals	can	be	demonstrated.

(b)(a)
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(b)(a)

(d)(c)

Figure 8.43 Variable	 patterns	of	 breast	 cysts:	 (a)	A	 typical	 simple	 cyst	with	 a	
clear-cut	boundary,	a	thin	and	smooth	wall,	distal	enhancement,	and	critical-angle	
artifacts.	(b)	A	cyst	with	weak	internal	echoes	and	a	relatively	thick	wall.	(c)	A	cyst	
with	adjacent	fibrosis.	(d)	A	tiny	cyst	(2–3	mm).

Figure 8.44 A	nodular	structure	in	the	upper	part	of	the	right	breast:	Clustered	
microcysts.	US	shows	multiple	small	cysts	of	variable	sizes.	Most	of	the	cysts	are	
less	than	2–3	mm,	and	two	are	about	4–5	mm.
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increase the risk of developing breast cancer, and features of FCC on US 
can mimic the appearance of malignancy65–68 (Fig. 8.45).

8.7.1.1 Benign proliferative disorders in fibrocystic changes

Fibrocystic changes may be associated with various types of proliferative 
disorders such as epithelial hyperplasia and adenosis. Atypia can be found 
in some cases of epithelial hyperplasia or adenosis. (Fig. 8.46). Adeno-
sis is hyperplasia of the intralobular ductules that leads to enlargement of 
lobules and an increase in the number of lobules. When adenosis becomes 
extensive enough, the enlarged and more numerous lobules can coalesce 
into a solid mass termed tumoral adenosis. Tumoral adenosis is distin-
guished from adenosis or sclerosing adenosis only in extent. 

(b)(a)

Figure 8.45 An	 atypical	 or	 complex	 cystic	 lesion:	 Intracystic	 papillary	 cancer.	
(a)	 US:	An	 ovoid	 cystic	 lesion	 is	 seen.	 Weak	 internal	 echoes	 are	 present	 with	
sedimentation,	suggestive	of	debris	or	hemorrhage.	A	solid	part	is	noted	in	the	left-
hand	side	of	the	lesion.	(b)	CDU:	Color	flow	signals	are	demonstrated	in	the	solid	
part,	indicating	a	mural	tumor.

(b)(a)

Figure 8.46 A	case	with	fibrocystic	changes	and	a	focal	lesion	confirmed	to	be	
epithelial	hyperplasia	and	atypia.	(a)	US:	Multiple	small	hypoechoic	zones	repre-
sent	coalescent	 lobular	changes	 that	contain	epithelial	hyperplasia	and	fibrosis.	
Foci	of	atypia	are	revealed	on	histological	specimens.	(b)	CDU:	Only	minimal	color	
flow	signals	are	demonstrated.
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8.7.1.2 Sonographic findings

8.7.1.2.1 Sclerosing adenosis

Sclerosing adenosis has a variety of sonographic appearances. It can present 
as a microlobulated solid nodule with a central echogenic focus represent-
ing the sclerosis. If the sclerosis is severe, the small nodule formed may be 
angular or frankly speculated. The calcifications in adenosis may be large 
enough to cause punctate internal echoes but only occasionally present as 
sonographic microcalcifications (Fig. 8.47). 

8.7.1.2.2 Tumoral adenosis

Tumoral adenosis is a more extensive and confluent focal involvement with 
adenosis or sclerosing adenosis. US may show large isoechoic masses that 
are difficult to distinguish from DCIS or invasive carcinoma. Unlike DCIS 
or invasive carcinoma, tumoral adenosis may contain well circumscribed 
and thinly encapsulated simple cysts (Fig. 8.48).

8.7.2 Fibroadenomas

Fibroadenomas are the most common benign tumors in premenopausal 
women. The tumors occur in a wide age range that spans from adolescents 
to octogenarians. The tumor arises from the terminal ductolobular unit 
(TDLU) and contains variable amounts of stromal and epithelial elements. 
The stroma can be highly cellular or paucicellular and can also undergo 
myxoid change, sclerosis, hyalinization, and calcification. Fibroadenomas 
are usually encapsulated by a pseudo-capsule of compressed breast tis-
sue. They may regress spontaneously, or grow rapidly but usually do not 
become larger than 3.5 cm. However, giant fibroadenomas and juvenile 
fibroadenomas often grow rapidly larger than 3 cm and sometimes even up 
to 6 to 10 cm, at which point they are usually termed fibroadenomas with 
highly cellular stroma. The histologic distinction of fibroadenomas with 

(b)(a)

Figure 8.47 Sclerosing	adenosis	with	calcification.	(a)	US	and	(b)	CDU:	A	hyp-
oechoic	nodule	with	irregular	margins	and	a	central	hypoechoic	spot	represents	a	
focal	fibrotic	lesion	with	a	focally	dilated	acinus	containing	a	tiny	calcification.	No	
color	flow	signal	can	be	seen	on	CDU.
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cellular stroma from benign phyllodes tumor can be difficult. Fibroadeno-
mas rarely undergo malignant change (about 1 in 1,000).

8.7.2.1 Sonographic findings

The sonographic findings for fibroadenomas are usually sharply demar-
cated from surrounding tissue and often encapsulated, suggestive of 
benign lesions, but may not always be classic (Figs. 8.49 and 8.50). Giant 
fibroadenomas and juvenile fibroadenomas often grow larger than 3 cm 
but retain the classic sonomorphology of a fibroadenoma (Fig. 8.51). 
Nonclassic findings tend to require exclusion of the lesion from BIRADS 
category 3 or, occasionally, BIRADS 4. The classic sonographic findings 
of fibroadenomas include: (1) elliptical (parallel in orientation) or gen-
tly lobulated shape, (2) isoechoic or mildly hypoechoic echotexture, (3) a 
thin echogenic capsule, (4) increased or no significant change in through 
transmission, (5) thin lateral shadows (critical-angle artifacts), (6) slight 
compressibility on dynamic study, and (7) mobility during compression 
or palpation.

(b)(a)

(c)

Figure 8.48 Tumoral	adenosis	in	a	42-year-old	female.	(a)	and	(b)	US:	An	ovoid	
hypoechoic	lesion	with	essentially	sharp	margins	is	shown,	mimicking	a	fibroad-
enoma	on	US.	(c)	CDU:	No	significant	color	flow	is	seen	in	the	lesion.
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(b)(a)

(d)(c)

Figure 8.49 Variable	echopatterns	of	fibroadenomas	in	females	of	different	age	
groups.	(a)	A	lobulated	hypoechoic	nodule	with	mild	heterogeneous	pattern	and	
minimal	distal	enhancement.	(b)	A	flat	ovoid	isoechoic	tumor	with	mildly	heteroge-
neous	pattern	and	septation.	(c)	An	ovoid	nearly	isoechoic	nodule	with	a	homoge-
neous	pattern	and	sharp,	smooth	margins,	distal	enhancement,	and	critical-angle	
artifacts.	(d)	An	ovoid,	slightly	lobulated,	homogeneously	hyperechoic	tumor	with	
septation	and	distal	enhancement.

(b)(a)

Figure 8.50 A	 47-year-old	 female	presenting	 with	a	 relatively	 round	 lobulated	
hypoechoic	mass	with	a	mild	heterogeneous	echopattern	and	septation.	The	mass	
is	a	hyalinized	fibroadenoma.	Heterogeneous	distal	sound	attenuation	is	evident.	
(a)	US:	The	lesion	shows	a	relatively	thick	hyperechoic	zone	surrounding	the	hyp-
oechoic	nidus.	(b)	CDU:	Only	minimal	color	flow	signals	on	the	margins.	
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(b)(a)

Figure 8.51 A	17-year-old	female	presenting	with	a	large	palpable	mass	on	the	
right	breast:	Juvenile	fibroadenoma.	(a)	US:	A	large	smoothly	marginated	hypoe-
choic	 tumor	 is	demonstrated	(5.2	×	1.8	cm).	The	echopattern	is	similar	 to	usual	
fibroadenoma.(b)	CDU:	Relatively	increased	color	flow	signals	in	the	tumor.

As fibroadenomas become larger (e.g., >2–3 cm), they are less likely to 
remain elliptically shaped and are more likely to develop more than three 
lobulations or microlobulations in some parts, features that currently still 
require BIRADS 3 and, occasionally, BIRADS 4 classification. On color 
Doppler US, a fibroadenoma frequently shows smooth vessels parallel-
ing the periphery, a sign more characteristic of benign lesions. Penetrating 
vessels may be seen in some cases, especially in younger females (e.g., 
younger than 25–30 years)69–72 (Fig. 8.52).

8.7.3 Fibroadenoma variants

8.7.3.1 Complex fibroadenomas

Fibroadenomas are composed of a variable mixture of stromal and epi-
thelial elements. The epithelial elements within the fibroadenoma may 
undergo proliferative changes that include cyst formation, apocrine meta-
plasia, epithelial hyperplasia with epithelial-type calcifications, and scle-
rosing adenosis. Fibroadenomas that contain these epithelial changes are 
termed as complex lesions. The presence of histologic changes suggesting 
the presence of a complex rather than a simple fibroadenoma might pre-
cipitate biopsy rather than followup. 

8.7.3.2 Sonographic findings

Epithelial calcifications within complex fibroadenomas appear as small, 
punctate hyperechoic structures. They are usually too small to cause 
acoustic shadowing. Sclerosing adenosis within a complex fibroadenoma 
in the periphery may result in angular margins. Other sonographic findings 
include heterogeneous internal texture, internal cysts, and internal foci 
of hyperechogenicity (Figs. 8.50, 8.53, and 8.54). When a fibroadenoma 
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undergoes malignant change, color Doppler US may demonstrate focally 
increased color flow signals in the focus with malignancy.73

8.7.4 Tubular adenomas and lactating adenomas

Tubular and lactating adenomas represent an almost pure form of epithe-
lial growth, with a very small stromal component. 

8.7.4.1 Sonographic findings

Tubular adenomas tend to be elliptical and parallel in orientation. They may 
be gently lobulated or may appear fusiform in shape and pointed on the lat-
eral margins. Enhanced through transmission is more common because of 
the predominance of epithelial elements. Tubular adenomas that have under-
gone infarction can demonstrate acoustic shadowing. Lactating adenomas 
are minimally hypoechoic and commonly microlobulated, and demonstrate 
enhanced through transmission. The pattern may occasionally be charac-
terized as BIRADS 3 or even 4, especially in tumors seen during the third 
trimester of pregnancy or during lactation. The microlobulated contour may 

(b)(a)

(d)(c)

Figure 8.52 Fibroadenomas	 from	 two	 female	patients	of	different	ages.	 (a)	and	
(b)	A	48-year-old	female.	(a)	A	smoothly	marginated	ovoid	hypoechoic	lesion	is	seen	
on	 US.	 (b)	 Smooth	 vessels	 paralleling	 the	 periphery	 are	 demonstrated	 on	CDU.		
(c)	and	(d)	A	28-year-old	female	for	which	CDU	of	the	typical	ovoid	fibroadenoma	
shows	profuse	vascularity.	(c)	CDU	study	three	days	before	menstruation.	(d)	CDU	
study	four	days	after	menstruation	shows	minimally	decreased	vascularity,	suggest-
ing	the	physiological	change	of	vascularity	responding	to	the	estrogen	effect.
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(b)(a)

(d)(c)

Figure 8.53 Fibroadenomas	with	calcifications.	 (a)	Calcifications	 in	part	of	 the	
tumor,	casting	acoustic	shadows.	(b)	Diffuse	thick	calcification	 in	the	 tumor	with	
strong	acoustic	shadows.	(c)	Initial	US	of	the	fibroadenoma	shows	a	homogene-
ous	hypoechoic	nodule	with	smooth	sharp	margins.	(d)	Three	years	later	the	tumor	
becomes	calcified	in	the	center.

be related to the secretion-distended acini. Multiple small cystic spaces rep-
resenting lactational lobules can be occasionally demonstrated (Fig. 8.55). 
Most lactating adenomas are hypoechoic and heterogeneous in texture. How-
ever, with inspissated milk or secretions within the dilated acini, they can 
become hyperechoic. Lactating adenomas can be hypervascular (more vas-
cularity than the usual adenomas) with intratumoral vessels, but the smooth 
vessels paralleling the periphery of the mass are frequently preserved. 

8.7.5 Papilloma

Intraductal papillomas are a relatively common benign tumor of the breast. 
They are more commonly incidentally found in surgical or biopsy specimens 
than they are detected at imaging studies. In patients with clinical signs of 
nipple discharge, either bloody or serous, the possibility of intraductal papil-
loma should be suspected first. The incidence of US-detected papillomas 
in nipple discharge can be about 11%.74 Most intraductal papillomas are 
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(b)(a)

(c)

Figure 8.54 A	43-year-old	 female	presenting	with	a	palpable	mass	on	 the	 left	
breast:	Fibroadenoma.	(a)	US	and	(b)	CDU	show	a	well-defined	isoechoic	ovoid	
mass,	with	only	minimal	marginal	color	flow	signals	shown	in	(b).	(c)	Elastography	
shows	 a	 mosaic	 pattern	 within	 the	 mass,	 suggesting	 a	 relatively	 soft	 lesion	 or	
fibroadenoma.	[Image	(c)	courtesy	of	Samsung	Medison.]

(b)(a)

Figure 8.55 A	lactating	adenoma	with	cystic	changes.	(a)	US	and	(b)	CDU	dem-
onstrating	multiple	small	cystic	spaces	representing	lactational	lobules	in	the	sharply	
marginated	tumor.	No	demonstrable	color	flow	is	noted	on	CDU	in	this	case.
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located in the subareolar region when present with nipple discharge. How-
ever, in quite a number of cases, small papillomas can be detected periph-
erally. On microscopic study, a papilloma typically shows an arborescent 
growth pattern with branching fibrovascular cores of myoepithelial and epi-
thelial cells. 

8.7.5.1 Sonographic findings 

A large papilloma growing along a duct is frequently elongated (especially 
in the subareolar region) and occasionally round in shape. When the lesion is 
located within a focally dilated duct, the term intracystic papilloma is often 
used and the lesion presents sonographically as a solid nodule growing on the 
wall of a thin-walled cyst. Tumors in the cystic structures can be round, ovoid, 
or flat, attaching on the wall. In larger lesions the surface may be rough, show-
ing a frond-like pattern. A fluid-sediment level in the cystic lesion is a common 
feature that represents intracystic bleeding and arouses a strong suspicion of 
mural tumor in the cystic structure, especially intraductal papillary carcinoma 
(Fig. 8.45). Differentiation between intraductal papilloma and papillary carci-
noma is difficult on the basis of sonographic pattern alone. A lesion of larger 
size (>2.0 cm) carries a higher risk of malignancy. An intraductal papilloma is 
typically associated with dilated ducts and intraductal solid component. When 
there are symptoms such as nipple disease, the findings of dilated a duct with 
a solid component deserves US-guided biopsy.75–78

A single dilated duct in the breast should be carefully traced along the 
duct so that any fixed intraductal nodules can be detected and biopsied. 
Inspissated material or calcified nodules inside the dilated duct (or ectatic 
duct) should be cautiously evaluated so as not to miss the intraductal 
tumors. Color Doppler US usually demonstrates color flow signals in the 
tumor, especially in larger tumors (e.g., >1 cm) (Figs. 8.56–8.59).

(b)(a)

Figure 8.56 A	51-year-old	female	presenting	with	bloody	nipple	discharge	and	
a	palpable	nodule	about	2	cm	from	the	nipple:	Papilloma.	(a)	US:	A	hypoechoic	
nodule	is	noted	in	the	subareolar	region,	showing	a	relatively	homogeneous	echo-
texture,	a	clear-cut	boundary,	distal	enhancement,	and	bilateral	thin	critical-angle	
artifacts.	The	adjacent	duct	 is	minimally	dilated.	(b)	CDU:	Color	flow	signals	are	
demonstrated	on	the	margins	and	in	the	periphery	and	center	of	the	tumor.
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(b)(a)

Figure 8.57 Screening	breast	US	of	a	47-year-old	female:	Papilloma.	(a)	US:	A	
small	(0.6-cm)	hypoechoic	nodule	is	depicted	in	the	subareolar	region,	in	continu-
ation	with	the	minimally	prominent	duct,	suggesting	an	intraductal	tumor.	(b)	CDU:	
Minimal	color	flow	signals	are	seen	in	the	tumor	and	on	the	tumor	margins.

(b)(a)

Figure 8.58 A	75-year-old	female	presenting	with	a	small	palpable	nodule	in	the	
left	breast:	Papilloma.	(a)	US:	An	ovoid	isoechoic	nodule	(1.1	×	0.6-cm)	located	in	
the	periphery	of	the	breast,	partially	surrounded	by	a	crescent-shaped	fluid	space,	
indicating	 an	 intraducal	 papilloma.(b)	 CDU:	 Increased	 color	 flow	 signals	 in	 the	
tumor	are	demonstrated,	suggesting	a	hypervascular	tumor.

(b)(a)

Figure 8.59 An	 asymptomatic	 43-year-old	 female:	 Papilloma.	 (a)	 US:	A	 small	
(0.7	×	0.5-cm)	round	hypoechoic	nodule	is	depicted	in	the	periphery	of	the	breast,	
showing	lobulated	margins,	a	partially	poorly	defined	boundary,	and	minimal	distal	
enhancement.	(b)	CDU:	Color	flow	signals	are	shown	on	the	margins.
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8.7.6 Intramammary lymph nodes

Intramammary lymph nodes are almost always an incidental finding on 
mammograms and also frequently at US. The lymph nodes are generally 
located in the upper outer quadrants of the breast, embedded in the breast 
tissue. They usually are of little clinical significance.79

8.7.6.1 Sonographic findings

The lymph nodes typically appear as ovoid hypoechoic structures with an 
echogenic fibrofatty hilum. Like the axillary lymph nodes, an intramam-
mary lymph node typically shows a smooth and sharp boundary. The 
intramammary lymph node is usually less than 1.5 cm, generally smaller 
than the axillary lymph node. They can be better appreciated if the paren-
chymal thickness is greater than 2 mm, and more confidently diagnosed in 
the scanning plane through the nodule at the echogenic hilum (Fig. 8.60). 
On color Doppler US, an intramammary lymph node frequently shows 
(hilar) vessels running through the hyperechoic zone or notch (represent-
ing the hilum), as is more characteristic of intramammary lymph nodes 
than of axillary lymph nodes. Metastasis or involvement of lymphoma  
in the intramammary lymph node may show thickened parenchyma and 
distorted or obliterated hila (Figs 8.6 and 8.40).

8.7.7 Hamartomas

Breast hamartomas, similar to fibroadenomas, occur in a wide age range 
of 15–88 years but are most common during the reproductive years, espe-
cially the early 40s. They are localized overgrowth of fibrous, epithelial, 
and fatty elements. Other terms that are used to describe a breast hamar-
toma are adenolipofibroma, lipofibroadenoma, and fibroadenolipoma, 
depending on the major component of the overgrowth. When there are 

(b)(a)

Figure 8.60 (a)	A	small	intramammary	lymph	node	in	the	right	upper	outer	quad-
rant	 (0.8	cm).	 (b)	A	 large	 intramammary	 lymph	node	 (3.0	cm)	with	a	prominent	
echogenic	hilum,	mimicking	a	hematoma.
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primarily glandular and fatty elements without an associated fibrous ele-
ment, the term adenolipoma is preferred. 

8.7.7.1 Sonographic findings

Because of their relatively low prevalence, hamartomas have been under-
diagnosed and inaccurately interpreted as normal breast tissue on breast 
imaging. The composition can be minimally heterogeneous, especially 
in small lesions that show no significant mass effect on the background 
breast tissue. These lesions, like normal intramammary lymph nodes, are 
definitely benign (BIRADS 2) based on the typical mammographic find-
ings alone and do not require biopsy or special followup. The sonographic 
findings of hamartomas are variable but tend to be ovoid in shape and very 
heterogeneous, composed of a variable mixture of nearly isoechoic fatty 
or lobular elements and hyperechoic fibrous elements. The proportions of 
each echotexture reflect the underlying histologic constituents. A flattened 
target-like or multilaminated pattern with an isoechoic center is rather 
typical, reflecting a mixture of fatty, glandular, and fibrous elements and a 
central lobular tissue (Figs. 8.61 and 8.62). A thin echogenic rim of fibrous 
tissue is a common finding. The adenomatous elements of hamartomas 
can undergo fibrocystic or benign proliferative changes; it is rare that a 
malignant change develops in these tumors. Color Doppler US reveals no 
or only minimal vessels in the heterogeneous zone. 

8.7.8 Lipomas

Lipomas arise from adipose tissue and are contained within a well-defined 
capsule. Breast lipomas do not differ from lipomas found elsewhere in 
the body and are actually subcutaneous lesions rather than breast lesions. 
Many patients with breast lipomas have lipomas elsewhere in the body. 

(b)(a)

Figure 8.61 A	47-year-old	 female	presenting	without	 significant	 clinical	 symp-
toms.	 (a)	 US:	A	 heterogeneously	 hypoechoic	 mass	 with	 a	 central	 hyperechoic	
zone	is	noted.	(b)	CDU:	No	significant	color	flow	signal	is	evident	in	the	tumor.
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Lipomas are probably variants of hamartomas that contain only fat. Most 
lipomas arise within the subcutaneous fat layer, but some may be also 
embedded within the retromammary fat or within involuted fatty lobules 
within the native mammary zone. Lipomas occasionally arise within or 
adjacent to the chest wall muscles.80

8.7.8.1 Sonographic findings

Sonography is usually performed on lipomas presenting as palpable abnor-
malities associated with negative or nonspecific mammographic findings 
(Fig. 8.63). Lipomas can typically appear as one of the following three 
features: (1) completely isoechoic with other nearby normal breast fat  

(b)

(c)

(a)

Figure 8.62 A	44-year-old	female	presenting	with	a	suspicious	lump	on	the	right	
breast:	Hamartoma.	(a)	US:	A	large	heterogeneously	hyperechoic	mass	with	lami-
nated	pattern	and	small	central	hypoechoic	areas.	(b)	CDU:	Only	minimal	marginal	
color	flows	are	demonstrated.	(c)	Mammography	shows	a	large	heterogeneously	
hypodense	zone	in	the	center,	compatible	with	a	fat-containing	tumor	with	variable	
proportions	of	different	components.
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lobules, (2) mildly hyperechoic with respect to other adjacent normal 
breast fat lobules, or (3) isoechoic with adjacent fat lobules, but having 
numerous thin, internal echogenic septa that course parallel to the skin 
line. In addition to the sonographic appearance, demonstration of softness 
is key to sonographic diagnosis. Hyperechoic lipomas tend to be some-
what less compressible than the isoechoic variety, possibly because of 
edema or increased fibrous elements within the lipoma. Calcifications may 
only occasionally occur within lipomas. The fatty lesions that are difficult 
to distinguish from each other sonographically are all definitively benign 
(BIRADS 2), obviating additional evaluation and the need for followup. 
Like lipomas, normal fat lobules occasionally cause palpable breast abnor-
malities. Color Doppler US of a lipoma shows virtually no vessels in the 
lesion. 

8.7.9 Pseudo-angiomatous stromal hyperplasia

Pseudo-angiomatous stromal hyperplasia (PASH) is a benign focal over-
growth of stromal tissue, presenting as nonpalpable, mammographically 
detected nodules or clinically nontender mobile nodules. This condition 
occurs primarily in premenopausal women or in postmenopausal women 
under combined estrogen–progesterone hormone replacement therapy. 

8.7.9.1 Sonographic findings

About half of the nodules of PASH are ovoid and well circumscribed. 
The nodules are surrounded by a thin, echogenic pseudo-capsule, and 

Figure 8.63 A	 lipoma	 in	a	43-year-old	 female.	US	shows	a	minimally	hypere-
choic	 lesion	(with	respect	 to	 the	subcutaneous	 fat)	 in	the	 left	breast,	measuring		
5.9	×	1.6	cm.	The	lesion	is	associated	with	some	echogenic	streaks,	compatible	
with	fibrous	septa.
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the US pattern is indistinguishable from a fibroadenoma. Similar to com-
plex fibroadenomas, some PASH nodules contain cysts (Fig. 8.64). Sound 
transmission is usually not changed, or is slightly enhanced or decreased. 
Nodules with acoustic shadowing, together with ill-defined, angular, and 
microlobulated margins, have been reported in a few cases.81,82 Accord-
ing to Stavros et al., a little more than half of PASH nodules that undergo 
biopsy are not encapsulated and have angular or microlobulated margins 
or other suspicious features that prevent them from being characterized as 
BIRADS 3. 

8.7.10 Hemangiomas 

Hemangiomas, especially small, microscopically detectable perilobular 
hemangiomas, are usually clinically unrecognized and incidental find-
ings at histology. They are generally only 2–4 mm in size. However, larger 
hemangiomas may present as nonpalpable mammographic nodules with 
a size of 4 mm–2 cm. Histologically, the tumors can be classified as cav-
ernous or capillary, depending on the size of the vessels contained within 
them. Cavernous hemangiomas are the most common type and may con-
tain phleboliths.

8.7.10.1 Sonographic findings

Microscopic perilobular hemangiomas are rarely (or almost impossible to be) 
demonstrated on US. The sonographic appearance of macroscopic hemangi-
omas depends on the size of the vascular spaces and the presence or absence 

Figure 8.64 A	40-year-old	female	presenting	with	a	palpable	lump	on	the	right	
breast:	pseudo-angiomatous	stromal	hyperplasia	(PASH).	US	shows	a	focal	hyp-
oechoic	area	with	lobulated	margins,	mixed	with	cystic	structures.	The	pattern	is	
indistinguishable	from	a	fibroadenoma	or	fibrosis	adjacent	to	small	cysts.	The	diag-
nosis	of	PASH	was	surgically	proved.
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of fibrosis, scarring, thrombosis, or phleboliths. Cavernous hemangiomas 
are usually superficially located and ovoid in shape; they are commonly 
hypoechoic and only occasionally isoechoic or mildly hyperechoic.83,84 
Phleboliths, when present, appear as punctate areas of strong echogenicity 
that may cause acoustic shadowing if the diameter of the calcification is 
larger than 1.5–2.0 mm (Fig. 8.65).

8.7.11 Phyllodes tumors

Phyllodes tumors, also known as cystosarcoma phyllodes, are a rare 
breast tumor that constitutes 0.3–1.0% of mammary tumors and 2–3% of 
fibroepithelial neoplasms of the breast. Similar to fibroadenomas, phyl-
lodes tumors consist of epithelial elements and a cellular, spindle cell 
stroma. The stroma of the phyllodes tumor has a greater cellular activ-
ity and cellular content than fibroadenoma has. The tumor is character-
ized by the formation of leaf-like processes protruding into cystic spaces. 
Determination of the benign, malignant, and border forms of the phyllodes 
tumor are based on microscopic findings. The malignant characteristics of 
the lesions are based on the stromal features. Phyllodes tumors resemble 
giant fibroadenomas concerning their clinical, radiologic, and histopatho-
logic appearance, whereas phyllodes tumors differ by the type of surgical 
management and variable prognosis.85,86

8.7.11.1 Sonographic findings

About 75% of tumors were seen on US as well-defined masses, round or 
lobulated in shape with a heterogeneous, hypoechoic echopattern. Cystic 
areas (3–10 mm) were found in 58% of tumors. All lesions showed pos-
terior acoustic enhancement, but 25% of them also presented areas of  

(b)(a)

Figure 8.65 An	intramammary	hemangioma.	(a)	US:	A	horizontally	oriented	hyp-
oechoic	 lesion	with	 lobulated	margins	and	1–2	mm	calcification.	 (b)	CDU:	Only	
minimal	marginal	color	flows	are	evident.
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acoustic shadowing.86 The major US features in phyllodes tumors are shape 
and posterior acoustic phenomena (Figs. 8.66 and 8.67). Although the find-
ings can be clues for differentiation between phyllodes tumors and fibroad-
enomas, there is a substantial overlap between many imaging appearances 
of phyllodes tumors and large-sized fibroadenomas. Therefore, in suspi-
cious masses, a biopsy should be performed for a definitive diagnosis.

(b)(a)

Figure 8.66 A	45-year-old	female	presenting	with	a	palpable	lump	on	the	right	
breast:	 Phyllodes	 tumor.	 (a)	 US:	 A	 large	 well-circumscribed	 hypoechoic	 mass		
(3	 cm)	 with	 a	 slightly	 heterogeneous	 internal	 echotexture,	 lobulated	 margins,	
and	posterior	 enhancement.	No	 identifiable	 fluid-filled	 spaces	 in	 the	mass.	The	
sonographic	appearances	are	almost	 identical	 to	 those	of	 large	fibroadenomas.		
(b)	CDU:	Some	color	flow	signals	are	showing,	indicating	a	relatively	hypervascu-
lar	tumor.

Figure 8.67 A	58-year-old	female	presenting	with	a	large	hard	mass	on	the	left	
breast:	Malignant	phyllodes	tumor.	(a)	CDU:	Hypervascularity	is	demonstrated	in	
the	tumor.	(b)	Spectral	Doppler	US:	The	feeding	artery	shows	relatively	low	resis-
tivity	index	(RI	=	0.50).

(b)(a)
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8.7.12 Focal fibrosis 

The term focal breast fibrosis is commonly used in some cases to describe 
histologic findings in patients with a palpable or ultrasonographic or mam-
mographic mass, although no features are specific for this diagnosis.89 
Lesions composed of only fibrous stroma may be encountered in breast 
US imaging. Some other terms such as breast fibrosis, breast sclerosis, and 
fibrous mastopathy are used interchangeably by pathologists and do not 
reflect distinct histologic entities. Focal fibrosis is used by some patholo-
gists to describe lesions with less collagen deposition than lesions of 
fibrous mastopathy. Histologically, breast fibrosis is defined as prolifera-
tion of the stroma with obliteration of the lobular-ductal elements.88 Scle-
rosis is descriptive of fibrosis with little cellularity. Septal fibrosis found 
in diabetic patients and patients with renal failure is known as diabetic 
mastopathy.94 The pathogenesis of breast fibrosis is controversial. Prolif-
eration of the fibrous tissue can be the result of hormonal stimulation,88 
or a condition of normal breast involution,89 and some may be the end 
result of an inflammatory process.91 Focal fibrosis alone is a common his-
tologic finding in normal breast parenchyma and can be noticed as a find-
ing in parenchyma surrounding a lesion. The mammographic appearance 
of breast fibrosis has been emphasized when it presents as architectural 
distortion or a spiculated mass. The pattern often overlaps in appearance 
with that of carcinoma.91,92

8.7.12.1 Sonographic findings

The sonographic appearance of breast fibrosis has received little attention 
and has been limited to descriptions of acoustic shadowing91 and hypere-
choic lesions.92 However, breast fibrosis presenting as noncalcified lesions 
due to perilobular collagen deposition (or fibrosis) may result in masses 
with iso- or hypoechoic, well circumscribed, partially obscured, or (occa-
sionally) ill-defined margins (Fig. 8.68), and abuts adipose tissue. Careful 
histologic review of adequate core tissue samples can confirm the diagnosis 
of focal fibrosis. While in lesions containing microcalcifications on mam-
mography, very careful histologic imaging correlation should be performed. 
Histologic-radiologic concordance and adequate lesion sampling are easier 
to assess when the targeted lesion contains microcalcifications. If the histo-
logic diagnosis of focal fibrosis on a core biopsy is discordant with marginal 
speculation or areas of architectural distortion on US studies, excisional 
biopsy is necessary so as not to misdiagnose a malignant lesion.87,93 His-
tologic overlap in the appearance of fibroadenomas and focal fibrosis may 
be encountered, especially in a core needle biopsy specimen. Needle sam-
pling of a large fibrotic fibroadenoma can easily miss the characteristic lobu-
lated architecture and contain only fibrotic stroma, resulting in a diagnosis 
of fibrosis. In contrast, periductal fibrosis occurring in a large lobular unit 
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displays a lobulated pattern that may closely resemble a small hyalinized 
fibroadenoma. Thus, the overlap in the sonographic (and mammographic) 
appearances of focal fibrosis is explained by the histologic overlap between 
these two entities. Whenever possible, a mammogram should be reviewed 
so as not to miss the microcalcification, which can only be deprecated on 
mammography.

8.7.13 Diabetic mastopathy

Diabetic mastopathy, also known as diabetic fibrosis, is typically a disease 
process of multifocal, multicentric, and bilateral involvement of the breast. 
It usually presents in premenopausal diabetic patients about 20 years after 
onset of diabetes. Most of these patients had onset of type I diabetes before 
the age of 20 years. Only a few cases had type II diabetes. The condition 
is thought to result from disorders in collagen metabolism related to dia-
betes and is considered an inflammatory condition in which lymphocystic 
infiltration is noted surrounding the small vessels. Histologically, the mass 
is composed of denser collagenous stroma containing more histologically 
normal fibroblasts compared to usual fibroglandular tissue. 

8.7.13.1 Sonographic findings

Diabetic mastopathy of larger volume can present with hard lumps and 
almost invariably has a central hypoechoic focus that has many suspicious 
features on US. It is ill-defined, angular, and microlobulated and may be 
nonparallel in orientation, sonomorphologically indistinguishable from 
those of malignant lesions (BIRADS 4), and may mimic low-grade inva-
sive ductal or lobular carcinoma, and tubular carcinoma. (Fig. 8.69).

Figure 8.68 A	focal	fibrosis:	US	study	shows	a	focal	hypoechoic	zone	with	irreg-
ular	margins	and	an	ill-defined	boundary.	No	apparent	change	in	the	through	trans-
mission	is	observed.
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8.7.14 Infections and abscesses of the breast 

Infections of the breast are relatively uncommon except during the post-
partum period. These include mastitis (lactating mastitis), infected seba-
ceous cyst, abscess, and other relatively rare infections, e.g., tuberculosis, 
syphilis, and fungal or viral infections. Breast abscess is the second most-
common infectious disease of the breast after mastitis.95 Abscesses have 
been reported to develop in 5–11% of lactating women with infectious 
mastitis.96 They occur most commonly during lactation as a result of a 
rupture of overfilled lactiferous ducts and frequently develop following 
lactational mastitis. However, this common disease entity can also occur in 
nonlactating women of all ages.97 In a study of 136 patients (ranged in age 

(b)

(c)

(a)

Figure 8.69 A	48-year-old	female	with	a	known	history	of	diabetes	for	15	years.	
(a)	and	(b)	US:	(a)	Right	and	(b)	left	breasts	show	large	hypoechoic	zones	with	dis-
tal	sound	attenuation	or	acoustic	shadows.	The	pattern	is	compatible	with	dense	
fibrous	tissue.(c)	Mammography:	The	dense	subareolar	tissue	is	highly	suggestive	
of	thick	fibrous	tissue.

SRBK002-C08_175-254.indd   234 1/21/13   7:18 PM



Diagnosis of Breast Cancer Using Ultrasound 235

from 18 to 75 years, mean: 32 years) with specific aspiration and/or biopsy/
histopathological results, 59 patients (43%) were lactating at the time of 
US examination; the other 77 (57%) were not lactating. Microscopically, 
an abscess consists of a cavity filled with necrotic debris and white blood 
cells (chiefly neutrophils). The adjacent parenchyma undergoes acute 
and chronic inflammatory change. The surrounding tissue changes may 
progress to granulation and fibrosis if the disease process is prolonged.95

The diagnosis of a breast abscess can usually be easily made based on 
the clinical presentation related to the infectious nature such as local heat, 
swelling, pain, and redness of the overlying skin, and occasionally sys-
temic infectious signs. Although typical abscesses on US are rarely mis-
interpreted, a considerable overlap of the imaging appearances between 
abscess and malignancy has been reported.98,99

8.7.14.1 Sonographic findings

The typical US features of an abscess are the following: a hypoechoic lesion 
with an irregularly shaped contour, relatively ill-defined wall, and contain-
ing low-level or medium-level internal echoes representing necrotic debris. 
Because in the acute phase of inflammation (e.g. acute mastitis) the parenchy-
mal edema causes a decrease of echogenicity and architectural disturbances 
and ductal dilatation may develop, an acute abscess can be appreciated only 
by demonstration of an ill-defined anechoic or hypoechoic fluid space.100 The 
breast parenchymal surrounding the abscess may show poorly defined hypoe-
choic areas (26%) or hypoechoic interstitial streaks (7%). The poorly defined 
hypoechoic areas are correlated with edema and inflammatory cell infiltra-
tion. The interstitial streaks may be related to thickened and edematous fibrous 
septa or Cooper’s ligaments. These surrounding parenchymal changes may 
provide sufficient information of the infectious nature (33%) and should be 
kept in mind during evaluation.101 

High-resolution US has significantly improved the visualization of the 
superficial anatomic structures such as the skin, subcutaneous fat, lactifer-
ous ducts, and even dilated lymphatic ducts. Skin thickening and increased 
echogenicity of the subcutaneous fat are frequently seen.102 A hypoechoic rim 
(13%, 18/136) can be demonstrated on US, corresponding to the inflamma-
tory tissue seen on histopathological study. A relatively thick hypoechoic rim 
surrounding the nearly anechoic fluid space is usually more vascular and more 
fibrous than the breast stroma peripheral to the hypoechoic rim. The hypoe-
choic rim represents a relatively thick layer of granulation tissue that contains 
fluid, fibroblasts, inflammatory cells, and vessels. An inflammatory tumor 
usually presents as a hypoechoic mass with relatively poorly defined margins 
and poor sound penetration103 (Figs. 8.70–8.72).

The common US features of the tissue reactions in a relatively chronic 
abscess include: skin thickening, increased echogenicity of the subcutaneous 
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fat, and decreased echogenicity of the originally relatively hyperechoic breast 
stroma in acute phase or surrounding hyperechoic zone.98,104–106 Hypoechoic 
or nearly anechoic streaks representing interstitial edema may be encountered 
in acute phase.

8.8  Clinical Usefulness of US-Guided Aspiration  
and Biopsy

Breast lesions detected by imaging modalities such as mammography and 
US may not be palpable on physical examination. These lesions may be 

(b)(a)

Figure 8.70 A	33-year-old	female	presenting	with	left	breast	pain:	Acute	mastitis.	
(a)	US:	Decreased	echogenicity	of	 the	 left	breast	stroma	with	slightly	 increased	
echogenicity	of	the	subcutaneous	fat,	compatible	with	edema	of	the	breast	stroma	
and	subcutaneous	 fat.	 (b)	CDU:	 Increased	color	 flow	signals	 in	 the	 region	with	
edema,	consistent	with	hyperemic	reaction.

(b)(a)

Figure 8.71 A	47-year-old	 female	presenting	with	a	painful	nodule	 in	 the	are-
ola	region:	Breast	abscess.	(a)	US:	A	hypoechoic	lesion	is	noted,	associated	with	
irregular	margins	and	distal	enhancement.	 (b)	CDU:	Marginal	color	flow	signals	
are	noted,	indicating	hyperemic	reaction,	compatible	with	abscess.
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either small in size, deeply located, or confined in the ducts or lobules. 
Even with the knowledge of the findings on mammography or US, most of 
them are still nonpalpable. Mammography is the most important screening 
modality of breast cancer. However, in many patients, this technique has 
limitations, especially in dense breast tissue, which is a common breast 
pattern in Asian women. US and MRI are important adjuncts to mammog-
raphy. Lesions not identified on mammography may be detected by US or 
MRI. Because US is readily available and more cost effective than MRI 
and mammography, more and more lesions are being detected by US, and 
US-guided aspiration/biopsy for cytological and/or histological evaluation 
are frequently performed to achieve a definite diagnosis.

8.8.1 Ultrasound-guided breast aspiration 

During US-guided breast aspiration, the patient is in a supine or oblique 
position so that she is comfortable and the region of interest is easily 
accessible to the radiologist for biopsy. Placing the patient in a semi-
oblique position with a cushion behind her back is helpful for posterior 
lesions or for lesions located in the periphery of the breast. The transducer 
should be rotated over the lesion to create the best access for the opera-
tor to place the needle into the breast. The distances from the skin to the 
middle of the lesion and from the skin to the chest wall are determined. 
The needle tip will be visible within the lesion when the needle has been 
inserted at the proper depth and angle. Fine-needle aspiration cytology 
(FNAC) is usually performed with a free-hand puncture under US guidance  
(Fig. 8.73). Full retraction of a 10-ml syringe provides an adequate vacuum 

(b)(a)

Figure 8.72 A	 63-year-old	 female	 presenting	 with	 a	 tender	 lump	 and	 reddish	
skin	in	the	right	breast:	Breast	abscess.	(a)	US:	A	nearly	anechoic	lesion	is	demon-
strated,	associated	with	skin	thickening,	increased	echogenicity	of	the	surrounding	
tissue	and	the	subcutaneous	fat,	in	favor	of	abscess	formation.	(b)	CDU:	Minimally	
increased	 color	 flow	 signals	 on	 the	 margins,	 suggestive	 of	 a	 relatively	 chronic	
inflammatory	process.
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for aspiration of cell clusters using a fine needle (a 22- or 23-gauge needle 
is preferred). Local anesthesia is not recommended in the FNAC proce-
dure. Although US is almost always (96–100%) accurate in the diagnosis 
of cysts, difficulties may still be encountered in lesions without all of the 
US characteristics for a typical cyst. Lack of distal acoustic enhancement, 
presence of internal echoes, wall irregularity, or solid projections into the 
cyst may indicate intracystic pathologies or tumors. Aspiration in these 
patients with equivocal US findings is usually very helpful or diagnostic.

Accuracies of FNAC in different series vary from 72 to 94%. The results 
depend on several factors, such as the histological nature of the lesion, the 
background of the breast stroma, the skill of the operator, and the experi-
ence of the cytologist.107–113

8.8.2 Ultrasound-guided breast biopsy

Although a needle guide attachment can be used for needle localization 
or cyst aspiration, a freehand approach is essential for core-needle biopsy. 

(b)(a)

(c)

Figure 8.73 Needle	aspiration	 cytology.	 (a)	 US:	A	hypoechoic	 nodule	with	an	
adjacent	dilated	duct.	(b)	CDU:	The	nodule	shows	positive	color	flow.	(c)	A	needle	
(bright	linear	echoes)	is	inserted	into	the	nodule.	Aspiration	cytology	shows	papil-
lary	neoplasm.
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For core biopsy, a horizontal or parallel-to-the-chest-wall approach is 
required to avoid pnuemothorax. A needle guide does not permit this type 
of approach. For a histological core biopsy, 1–2% lidocaine is administered 
for local anesthesia before puncture of a 18- to 14-gauge cutting-edge nee-
dle. A variety of biopsy guns with different advantages are currently used. 
Routine US is used to visualize a mass that has been identified on previous 
US or mammography to determine whether it is visible sonographically 
and is applicable for US-guided biopsy. US guidance for percutaneous 
biopsy is required for those lesions seen only on US, and it is best for 
those lesions that are more clearly seen on US than on mammography 
(Fig. 8.74). 

US guidance is also advantageous for the following cases: biopsy of preg-
nant patients, patients who are more comfortable in a supine position, very 
obese patients whose weight exceeds the prone stereotactic table weight limit, 
and patients with implants. If there are more than two adjacent lesions on 
mammography, US guidance is best for definitive biopsies of the suggestive 

(b)(a)

(c)

Figure 8.74 Core	needle	biopsy:	Fibroadenoma.	(a)	Insertion	of	the	needle	with	
the	 tip	 lined	up	with	 the	edge	of	 the	hypoechoic	 tumor.	 (b)	Advancing	 the	 inner	
needle	through	the	tumor	with	the	trough	facing	upward.	(c)	Firing	to	advance	the	
outer	sheath	of	the	biopsy	needle.
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or more aggressive lesion. Because it is necessary to mark the exact center of 
a lesion on both stereotactic images for stereotactically guided breast biopsy, 
there is greater likelihood of observer error in stereotactically targeting larger 
lesions. US guidance certainly requires greater operator skill in the perform-
ance of the procedure in comparison with stereotaxis. Moreover, because the 
breast is not fixed by a compression device and the needle is not fixed by 
needle guides, there is a potential risk of pneumothorax. Histological core 
biopsy has several advantages: it can provide adequate material for a definite 
diagnosis, and the result is more representative for a focal lesion. However, it 
has certain disadvantages: compared to US-guided breast aspiration, it is more 
traumatic, and a specimen takes longer to process (therefore causing more 
anxiety for the patient). It is also more painful and can have delayed complica-
tions. The accuracy of biopsy may reach 90%.75,114–116

8.8.3 Vacuum-assisted biopsy

Vacuum-assisted biopsy (VAB) is fast and simple to perform, with a 
very low complication rate. For accurate lesion sampling, conventional 
core biopsy requires the lesion to be at the ‘line of fire’; thus, pin-point 
accuracy is mandatory. VAB, on the other hand, is a directional device, 
so it does not require the lesion to be lying along the path of the needle. 
Instead, it is better positioned next to the lesion so that the sampling 
chamber can be placed toward the direction of the lesion.117,118 The use of 
the VAB device may have a role in patients with US evidence of micro-
calcification where 14-gauge core biopsy does not provide a definitive 
diagnosis. It can provide a high-quality specimen with accurate diagno-
sis.119,120 Its versatility enables its use in challenging cases such as in deep 
lesions near the chest wall. VAB can reduce the overall costs of breast 
disease diagnosis when compared to open-surgical biopsy and spares the 
patients from surgical removal of benign tumors such as fibroadenomas 
(Figs. 8.73–8.75). It has been reported that lesions <1.5–2 cm can be 
completely excised.121,122 

8.9 Conclusion

During a fifty-year period of continuous improvement, medical US has 
proved very useful in the evaluation of breast disease. State-of-the-art 
high-resolution US can detect tiny breast lesions as small as 1–2 mm in 
size, and sometimes microcalcifications even less than 0.5 mm, or small 
carcinomas 3–6 mm in diameter. Although highly sensitive in detecting 
space-occupying lesions in the breast stroma, high-resolution US has 
limited specificity in the differentiation of malignant and benign lesions 
smaller than 0.5–1.0 cm. US-guided fine-needle aspiration cytology and 
core needle biopsy may provide highly accurate diagnostic yield. The use 
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of vacuum-assisted biopsy may have a role in patients with US evidence 
of microcalcification to obtain enough representative samples and also 
provide a possibility of minimally invasive removal of benign tumors. US-
guided preoperative wire localization can provide an accurate guidance 
for removal of nonpalpable breast nodules in patients who refuse to have a 
fine-needle aspiration cytology or biopsy. 

Spectral Doppler US, color and power Doppler US, or the newer strain 
or elasticity imaging techniques by which the vascularity and stiffness of 
the focal breast lesion can be evaluated, may offer certain advantages in 
the diagnosis of breast cancer; however, these techniques have limited use-
fulness in smaller lesions (e.g., <0.6 cm). Ultrasound contrast agents have 
proved to be useful in the differentiation of nonpalpable breast nodules. A 
malignant nodule tends to be more vascular than a benign nodule. Sophis-
ticated computer techniques are being applied to the interpretation of US 
images with ever-increasing success. Artificial neural networks (ANNs) 
may be able to speed up interpretation of US evaluation of breast tumors. 
Computer-aided diagnosis (CAD) that has been developed using echo-
texture or contour analysis on breast lesions is similar to CAD for mam-
mography. The results from the most recent articles show that the ANN 

(c)(b)(a)

(e) (f)(d)

Figure 8.75 Removal	 of	 a	 benign	 tumor	 (fibroadenoma)	 by	 using	 a	 vaccum-
assisted	 biopsy	 (9-gauge)	 needle.	 (a)	 US	 shows	 an	 ovoid	 hypoechoic	 tumor.		
(b)	Insertion	of	the	needle	underneath	the	tumor	with	the	sampling	chamber	facing	
upward.	(c)	After	three	‘bites’	the	opened	sampling	chamber	is	demonstrated	with	
the	posterior	aspect	of	the	tumor	sucked	into	the	chamber.	(d)	and	(e)	Throughout	
the	procedure,	the	tumor	samples	are	withdrawn	piece	by	piece	and	the	tumor	size	
is	decreased,	and	finally,	(f)	the	tumor	is	totally	removed.
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demonstrated high accuracy (96.47%), sensitivity (97.22%), specificity 
(96.35%), and negative predictive value (99.3%). The positive predictive 
value was 81.40%. This result is very encouraging.123–127

High-resolution US is an indispensible imaging modality in the diagno-
sis of breast disease, but the goal of replacing mammography in screening 
breast cancer is not yet realized.
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9.1 Introduction

Breast cancer is the second most common cancer in women, and incidences 
of it continue to rise. The cure rate is increasing for breast cancer that is diag-
nosed in its early stages. That is why the value of breast health care is so 
important. Malignant breast tumor detection is extremely important for the 
physician. Generally, this task has been performed based on the experience 
and knowledge of the radiologists by analyzing the visual characteristics of 
the structures that appear in mammograms. The irregularity that exists in the 
edge of the typical cell that forms part of the tumor and tumoral structures 
(angiogenesis) is one of the major characteristics.1 Particularly, some malig-
nant tumors involve a more irregular boundary edge, as compared to the 
benign ones.2 Speculating this feature by means of evaluating the irregulari-
ties can help support the diagnosis of malignancy. Hence, study of chaotic 
time series (CTS) can afford the tools necessary to generate the procedures 
to speculate the irregularities in the edges, through the use of the concept of 
fractal dimension (FD), which can produce the parameters to describe and 
categorize the structures under study. To detect the tumors and generate the 
time series (TS) characterizing the edge, techniques of digital image process-
ing are applied over breast thermal images. Ahmed concluded that tumor 
growth, argued as a dynamical system, is chaotic. Proposed chaotic models 
fit the observations well. Some of these models treat the tumor as a fractal.1

In this chapter, Lyapunov exponents (LEs) are computed from CTS 
based on the Jacobian approach by using polynomial models. The chapter 
is organized as follows: the CTS is introduced in Section 9.2, the time-
delay embedding (TDE) method is described in Section 9.3, followed by 
an explanation of LEs in 9.4. In Section 9.5, a method that is used to 
calculate the LEs is presented. The outline of the method to generate the 
TS of the edge is explained in Section 9.6, and Section 9.7 presents the 
results produced by using this process on the different types of tumors 
under study. Finally, the findings are concluded in Section 9.8.

9.2 Time Series

A nonlinear dynamical system that is hard to capture using conventional 
tools such as Fourier analysis is represented by TS. If the signal is gener-
ated by a linear source, a regular Fourier spectrum provides useful infor-
mation. For signals generated by a nonlinear source, an alternative charac-
terization of such TS is desired. The reason for choosing CTS analysis is 
that an unknown complex system can be described by a strange attractor in 
its phase space (PS), and it is crucial to reconstruct the system state-space 
starting from the observed TS. The observed TS can be observed as the 
output of an unknown system corrupted by noise. A trajectory is consti-
tuted of the time evolution of these observables in the state-space.
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Full knowledge of the system dynamics is not available because access 
to all measurements for each possible variable in the system is not possible. 
However, practically, only one TS measurement is available. In such a case, 
although the exact PS of the system cannot be found, a pseudo PS (equiva-
lent to the original PS in terms of the system invariants) may still be con-
structed. This pseudo PS is called the reconstructed phase space (RPS).3 
Nevertheless, generating RPS is a crucial task on CTS analysis. The PS is 
reconstructed with a time-delay embedding (TDE) method in this work.

9.3 Time-Delay Embedding

The most intelligible method of embedding scalar data is the method of 
delays. Suppose that {xi} represents the CTS. With an embedding dimension 
m and a time delay t, {xi} can be embedded into an RPS. When applying the 
TDE method, two parameters: (1) the embedding dimension m and (2) the 
time delay t need to be determined.4 Parameter m can be obtained by several 
methods, and parameter t can be selected arbitrarily by Takens’ theorem. 

Estimating the LEs and the efficiency of modeling is significantly 
affected by the optimality of the embedding dimension. Equation (9.1) 
represents one RPS matrix that is generated by sliding a window of length 
m through the data to form a series of vectors, stacked row-wise in the 
matrix. Each row of the matrix represents a point in the RPS:
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Suppose that d is the inherent system dimension. From information 
regarding the system dimension, an upper bound on the dimension of the 
RPS can be obtained. The Takens’ theorem states that, by embedding with 
a dimension m greater than 2d + 1, an RPS can be constructed that is 
equivalent to the original PS.5 In spite of the fact that this theorem provides 
a theoretically sufficient bound, practically, such a bound is not necessary. 
Accordingly, most systems can be embedded in much lower-dimensional 
spaces. Several methods such as false nearest neighbor (FNN), time delay, 
and singular value decomposition (SVD) can attain embedding.6

9.4 Lyapunov Exponents

Lyapunov exponents are quantities that characterize the averaged rate of 
divergence or convergence of two neighboring trajectories in the PS. It can 
measure the sensitive dependency on the initial conditions.
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The long-term evolution of an infinitesimal n sphere initial condition 
can be monitored with a continuous dynamical system in an n-dimensional 
PS. Parameter n is the number of equations (or equivalently, the number 
of state variables) used to describe the system. The sphere evolves into an 
ellipsoid whose principle axes expand (or contract) at rates given by the 
LEs as time t progresses. 

Error amplification during the course of the iteration to E1, E2, . . . can be 
recorded by comparing an orbit belonging to some initial conditions with 
an orbit for an initial condition that carries an error E0. The error amplifi-
cation factor can be obtained as telescope product En/ E0:
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LEs characterize the average logarithmic growth of the relative error per 
iteration. We let the size of the initial error go to zero to arrive at a well-
defined exponent. 

Practically, in each iteration, the size of the error can be renormalized 
to some convenient number e. This arrives at an LE l that characterizes 
for a given orbit how fast the nearby orbits are growing closer or moving 
away. By way of explanation, in each iteration, a small error in an initial 
point is scaled by the factor of el (on average). Hence, a negative expo-
nent means that the nearby orbits are attracted, while a positive exponent 
implies that the nearby orbits move away, which is expected for a chaotic 
attractor.

Suppose that the original separation is |dx(0)|, and the separation to 
time t is |dx(t)|, and assume that the rate of growth (or decay) of the sepa-
ration between the trajectories is exponential in time. Hence, if the func-
tion of limt→∞|dx(t)| = elt|dx(0)| holds in the lim t→ ∞, then the LE is 
defined as l. 

The LEs associated with a trajectory provide us with a measure of 
average rates of divergence or convergence of the surrounding trajecto-
ries. These are speculated to be a crucial invariant characterization of the 
dynamical system. Additionally, LEs are good quantities for categorizing 
fixed points and periodic, quasi-periodic, and chaotic motions.7

For a multidimensional system, there are as many LEs as there are 
dimension of the system. They may be positive, or negative, or zero. The 
sum of all LEs should be less than or equal to zero for a dynamical system 
with a bounded attractor. The positive LEs indicate that the system is cha-
otic, while negative LEs characterize a system’s tendency to pull an evolv-
ing trajectory toward the basin of attraction. In addition, zero exponents 
suggest that the system is in some sort of steady state mode. 
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9.5 Computation of the Lyapunov Exponents

Geometrical and Jacobian approaches are two general methods for com-
puting LEs from TS output. In geometrical approaches, the long-term evo-
lution of an infinitesimal sphere of initial conditions is considered. This 
method suffers from a significant drawback: a huge number of data points 
is required; hence, it is time consuming.8

Assuming the discrete time dynamical system expressed by Eq. 
(9.3), the adaptive LE estimation based on the Jacobian approach is 
given by

  X F X kk k+ = =1 0 1( ) , , . . .,  (9.3) 

where Xk is the state vector, and F(.) is a continuously differentiable non-
linear function. We are interested to see what goes to X1 with a small 
change in X0. We can find this by iteration of the tangent space as given 
by the Jacobian matrix. The approach is implemented by first linearizing 
the system for a small change around the operational trajectory in the PS, 
and then decomposing the system using a Taylor series, by neglecting the 
higher-order terms yields:

 δ δX J X kk k k+ ≅ =1 0 1, , . . . , (9.4) 

where J F Xk X k
= ∂ ∂ | is its Jacobian matrix of partial derivatives in point 

k, and dXk is the change in Xk. Let {X0, X1, . . . , Xk-1} be the sequence gen-
erated by successive iterations of the initial condition X0. We introduce the 
matrix defined by Eq. (9.5) as

 Y J X J X J X J Xk
k k= − −( ) ( ) ( ) ( )1 2 1 0. . .  (9.5) 

for this sequence. Consequently, the matrix defined by Eq. (9.6) is

 Λ =  →∞
lim
k

k T k kY Y( )
1

2 . (9.6)

Hence, LEs are the logarithms of the eigenvalues of Λ.
There are some problems with computation of the LEs using Eq. (9.6). 

One of the problems is that for large values of k, the calculation of Λ 
may not be possible since the fundamental solution Y k may be very large. 
In addition, the linear independence of the columns must be guaranteed  
in order to evaluate Y k. Otherwise, only the largest LEs will be obtained. In 
order to overcome these limitations, the QR factorization algorithm, which 
decomposes the matrix into an orthogonal and an upper triangular matrix, is 
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applied to approximate the LEs.9–12 The following steps are involved in 
this method:

1. Orthogonal Q0 is given such that 
2. QT

0 
.Q0 = I.

3. Zk+1 = Jk
.Qk, k = 0, 1, . . . is solved, and Zk+1 = Qk+1

.Rk+1 is obtained, where 
Qk is an orthogonal matrix, and Rk + 1 is an upper triangular matrix with 
positive diagonal elements.

4.  By using Eq. (9.7), the LEs are calculated as
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9.5.1 Polynomial model

The nonlinear difference equation expressed in Eq. (9.7) represents the 
dynamical behavior of the system 

 y k f xk( ) ( )+ =1 , (9.8)

where f (⋅) is a continuously differentiable function, in which xk is a state 
vector. Supposing that Eq. (9.9) represents the output data of the dynami-
cal system available in TS,

 y t t y t t y t Nts s s( ) ( ) ( ) ,+ + +, , ...,2  (9.9)

where ts is the sampling time, and N is the total number of measurements. 
The structure of the underlying dynamical system that generates the data is 
unknown in this situation. Accordingly, an arbitrary polynomial is selected 
to fit the output data:
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Equation (9.11) defines the number of parameters in vector θ that should 
be estimated to identify the underlying model: 

 
n

d n

d nθ =
+( )!

! !
, (9.11)

where d is the model order, and n is the degree of nonlinearity. Then, this 
identification can be obtained by using a least-squares method.

9.6 Generating the Time Series

In this work, we represent a region by TS to generate a 1D signal that 
allows the application of estimating the embedding dimension. Using 
this estimated dimension is helpful in reconstructing the PS with a TDE 
method and allows LEs of the TS to be estimated. Figure 9.1 shows a 
sample contour and the distances (in blue) between some of the boundary 
contour points and the center of mass.

Considering that cancer is often characterized as a chaotic, poorly regu-
lated growth of tumor boundaries,2 the algorithm for extracting a scalar 
signal from the 2D breast thermal images is proposed as follows. By using 
a fuzzy c-means algorithm, the breast thermal images are segmented.13,14 
The number of clusters depends on the number of camera palette colors:

1. Based on the color related to the maximal temperature, the first hot-
test regions are identified. Consequently, the axilla and close sternal 
boundaries are removed.

2. The distance between each of the subsequent boundary contour points 
and the center of the mass of the first hottest region in terms of the 
sequence of the former is estimated. This can be done by starting from 
an initial point of the contour and traversing in either a clockwise or 

(a) (b)

Figure 9.1 (a) A sample contour. (b) Four boundary contour points, center of 
mass, and the distances between the boundary points and the center of mass.
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counterclockwise direction. According to the geometrical shape and size 
of the region, the number of sample points in the sequence is different.

3. If the first hottest region is composed of several separated regions, one 
1D signal composed of the separated corresponding 1D signals would 
be generated.

For example, the implementation of the algorithm for an ellipse is shown 
in Fig. 9.2(a). Its center of mass is marked with a green square, and the 
boundary contour points as green points. The corresponding 1D time 
series is shown in Fig. 9.2(b).

9.7 Experimental Results and Discussion

In this work, two groups of images—synthetic images and real-world ther-
mal images—were studied. 

9.7.1 Fractal images

Some common fractal images that are produced by mathematical models as 
well as some sample contours with different irregularities were investigated 
in this section. The Koch snowflake is an example of a fractal image that is 
a mathematical curve based on the Koch curve as depicted in Fig. 9.3(a). 
Another example is the Mandelbrot set, which is a set of points in the complex 
plane, the boundary of which forms a fractal. A Mandelbrot set is depicted in 
Fig. 9.4(a). A fern and one chaos image are the next two examples, which are 
demonstrated in Figs. 9.5(a) and 9.6(a), respectively. In addition, four differ-
ent sample contours are presented in Figs 9.7(a), 9.8(a), 9.9(a), and 9.10(a). 
The corresponding generated 1D TSs for Figs. 9.3(a)–9.10(a) are shown in 
Figs. 9.3(b)–9.10(b). 

(a) (b)

Figure 9.2 (a) An ellipse and (b) its corresponding generated 1D time series. 
(Reprinted from Ref. 14 with permission. © 2012 Elsevier.)
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(a) (b)

Figure 9.3 (a) A Koch snowflake image and (b) its corresponding generated 1D 
TS. (Reprinted from Ref. 14 with permission. © 2012 Elsevier.)

(a) (b)

Figure 9.4 (a) A Mandelbrot image and (b) its corresponding generated 1D TS. 
(Reprinted from Ref. 14 with permission. © 2012 Elsevier.)
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(a) (b)

Figure 9.5 (a) A fern image and (b) its corresponding generated 1D TS. 
(Reprinted from Ref. 14 with permission. © 2012 Elsevier.)

(a) (b)

Figure 9.6 (a) A chaos image and (b) its corresponding generated 1D TS. 
(Reprinted from Ref. 14 with permission. © 2012 Elsevier.)
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(a) (b)

Figure 9.7 (a) First contour (a circle) and (b) its corresponding generated 1D TS. 
(Reprinted from Ref. 14 with permission. © 2012 Elsevier.)

Figure 9.8 (a) Second contour and (b) its corresponding generated 1D TS. 
(Reprinted from Ref. 14 with permission. © 2012 Elsevier.)

(a) (b)

SRBK002-C09_255-274.indd   265 1/21/13   4:41 PM



266	 Chapter	9

Figure 9.9 (a) Third contour and (b) its corresponding generated 1D TS.

(a) (b)

Figure 9.10 (a) Forth contour and (b) its corresponding generated 1D TS.

(a) (b)
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Their LEs for eight of these synthetic images are calculated for two 
polynomial degrees (m = 4 and m = 5), and the results are included in 
Table 9.1.

Several studies have been performed using the LEs computed from 
a CTS. In this study, the LEs were computed from a CTS based on a 
Jacobian approach by applying polynomial modeling. Normally, a pri-
ori knowledge concerning the dimension of a system does not exist, so 
it was imperative that our method was evaluated for different embed-
ding dimensions. 

For different embedding dimensions and different polynomial degrees, 
the LEs for all cases of the first group were computed. Results were included 
in Table 9.1. It was apparent that satisfactory results were obtained when m 
was below the Takens’ criterion. The results for parameter m = 4 and 5 are 
also demonstrated in Table 9.1.

In summary, our desired application is real-world breast thermal 
images, and analysis of the first two groups reconfirms the results for the 
real-world cases.

Table 9.1 Calculated LEs for eight selected synthetic images.

Images
Polynomial 
degrees (m) Lyapunov exponents

Koch snowflake 0.0526, –0.0612, –0.1660, –0.3668, –0.7678

Mandelbrot
5 0.1077, –0.0388, –0.1433, –0.3384, –0.8055

4 0.1429, –0.0548, –0.2614, –0.7413

Fern
4 0.0716, –0.1125, –0.3241, –0.7751

5 0.0462, –0.0803, –0.1869, –0.3574, –0.7749

Chaos (Fig. 9.6) 4 0.3869, 0.1134, –0.1032, –0.7119

Circle [Fig. 9.7(a)]
5 –0.0077, –0.1891, –0.3406, –0.4775, –1.0653

4 0.0074, –0.2241, –0.3840, –.7416

Fig. 9.8(a)
5 0.1113, –0.0275, –0.2997, –0.4377, –0.7181

4 0.0074, –0.2241, –-0.3840, –0.7416

Fig. 9.9(a)
5 0.3540, 0.0530, –0.0976, –0.2890, –0.7572

4 0.4182, 0.0034, –0.2411, –0.8235

Fig. 9.10(a)
5 0.7868, 0.2778, 0.0512, –0.1673, –0.7394

4 0.8143, 0.2185, –0.0757, –0.6372
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9.7.2 Real-world IR images

Our algorithm was implemented for several real-world breast thermal 
images, images from the second group in this study. One typical malig-
nant case is shown in Fig. 9.11. The original image, the corresponding 
hottest regions, its boundaries, and the center of mass as well as its corre-
sponding generated 1D time series are demonstrated in Figs. 9.11(a)–(d), 
respectively. 

In addition, the second malignant case (M2) and one benign case (B1) 
are depicted in Figs. 9.12 and 9.13, respectively.

(c)(a) (b)

(d)

Figure 9.11 (a) Malignant case 1 (M1). (b) The first hottest regions for M1. 
(c) Boundaries of the first hottest regions for M1. (d) Boundaries and the center of 
mass of the first hottest regions for M1 (left) and corresponding generated 1D TS 
(right).
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(b)

(a)

(c)

Figure 9.12 (a) The second malignant case (M2). (b) The first hottest region of 
M2 (left) and the its boundaries (right).

(b)

(a)

Figure 9.13 (a) Benign case 1 (B1). (Reprinted from Ref. 14 with permission. 
© 2012 Elsevier.) (b) The first hottest region of B1 and its boundaries (right).
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LEs were calculated for the two typical malignant cases and the one 
benign case. Parameter m (polynomial degrees) was chosen as 4 and 5. 
The calculated LEs are shown in Table 9.2.

From a mathematical point of view, the TS of the circle indicated in Fig. 
9.7(b) is expected to be a straight line, but, instead, the generated sequence 
is periodic with very small magnitude. Moreover, a circle has a nonchaotic 
contour and is expected to have only negative LEs. However, the results in 
Table 1 show three negative LEs and one small positive LE. These errors 
are related to the pixel errors that are due to the difference between the 
original analog data and the approximate discrete data.

Similarly, for Figs. 9.8(a)–9.10(a), we expected their generated TSs to 
be nonperiodic and hence their LEs to be positive. Additionally, as their 
contours become more complex, their LEs become more positive.

The malignant case M1 indicated in Fig. 9.11 has three positive LEs 
for polynomials of degree 5, and two LEs for polynomials of degree 4. 
In addition, the malignant case M2 (Fig. 9.12) has two positive LEs for 
both polynomials of degrees 5 and 4. This fact thus indicates chaos in the 
boundaries of the first hottest regions of the images. As we expected theo-
retically, it is observable from the obtained LEs that the rate of chaos for 
the benign case B1 is much less than that for the two other malignant cases 
M1 and M2. By way of explanation, the boundaries of the benign case are 
smoother than those of the malignant case.

9.8 Conclusion

This is a preliminary study that aims to explore the possibility of differ-
entiating between malignant cases and benign cases with experiments on 
nonlinear analysis of breast thermograms using LEs. Our approach is to 
check the differences between the TSs generated from the first hottest 
regions of the malignant case and those of the benign case. 

Table 9.2 Calculated LEs for the two typical malignant 
cancer cases and one benign case.

Images m Lyapunov exponents (LEs)

M1
5 0.9209, 0.2859, 0.0338, –0.1632, –0.7875

4 0.8244, 0.2522, –0.0882, –0.6269

M2
5 0.4810, 0.2385, –0.0087, –0.1579, –0.6613

4 0.6071, 0.2013, –0.1601, –0.6767

B1
5 0.0995, –0.0399, –0.2756, –0.4369, –0.7814

4 0.1698, –0.0523, –0.4580, –1.1290
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The described model confirmed the research questions that systems sci-
ence, complexity, and chaos theory can be applied to biologic entities. 
Cancer is often characterized as a chaotic, poorly regulated growth. Can-
cerous cells, tumors, and vasculature have irregular shapes that have the 
potential to be described by a nonlinear dynamical system. Chaotic time 
series (CTS) can provide the tools necessary to generate the procedures for 
evaluating the nonlinear system. Computation of LEs is a powerful means 
of quantifying the degree of the chaos. 

Moreover, the largest LEs can indicate the rate of chaos. We analyzed 
two groups of images: mathematical and synthetic images in the first 
group, and real-world breast thermal images in the second group. It is 
shown that our algorithm is potentially capable of differentiating between 
different patterns with different boundary irregularities.

In addition, the study indicates some errors in the estimated LEs due 
to pixel errors. Although our desired cases are real-world breast thermal 
images, inspecting our first group helps to confirm the results of the real-
world cases. This study presents a novel approach for nonlinear analy-
sis of breast thermograms to identify abnormal lesions. The application 
of Lyapunov exponents for breast thermograms is new. This work can be 
extended for classifying different stages of breast cancer; the authors are 
currently working toward this objective.
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10.1 Introduction

Breast cancer is the most commonly diagnosed form of cancer in women, 
accounting for about 30% of all cases.1 Despite earlier, less encouraging 
studies, which were based on low-capability and poorly calibrated equip-
ment, thermal infrared imaging has been shown to be well suited for the 
task of detecting breast cancer, in particular when the tumor is in its early 
stages or in dense tissue.2,3 Early detection is important as it provides 
significantly higher chances of survival,4 and in this respect, infrared imag-
ing5 outperforms the standard method of mammography. While mammog-
raphy can detect tumors only once they exceed a certain size, even small 
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tumors can be identified using thermography6 due to the high metabolic 
activity of cancer cells that leads to an increase in local temperature that 
can be picked up in the infrared. 

In this chapter, we derive a number of image features from breast ther-
mograms. These features are designed to describe the bilateral differences 
between regions of interest of the left and right breast. We then use these 
features in a pattern classification process to discriminate malignant cases 
from benign ones. Our pattern classification systems are based on rules, 
and we employ two different approaches to generate rule bases. The first 
utilizes fuzzy if-then rules and applies a genetic algorithm to optimize the 
rule base,7 while the second uses an ant colony optimization classification 
algorithm.8 Both approaches are shown to provide good classification 
accuracy. 

10.2 Image Features

As has been shown, an effective approach to automatically detect cancer 
cases based on breast thermograms is to study the symmetry between the 
left and right breast.7,9 A tumor will recruit blood vessels, resulting in hot 
spots and a change in vascular pattern and hence an asymmetry between the 
temperature distributions of the two breasts. On the other hand, symmetry 
typically identifies healthy subjects. We follow this approach and segment 
the areas corresponding to the left and right breast from the thermograms. 
Once segmented, we convert the breast regions to a polar coordinate repre-
sentation, which simplifies the calculation of several of the features that we 
employ. A series of statistical features is then calculated to provide indica-
tions of symmetry between the regions of interest (i.e., the two breasts).7 

Clearly, the simplest feature to describe a temperature distribution such 
as those encountered in thermograms is found by calculating its statistical 
mean. As we are interested in symmetry features, we calculate the mean for 
both breasts and use the absolute value of the difference of the two. Simi-
larly, we calculate the standard temperature deviation and use the absolute 
difference as a feature. Furthermore, we employ the absolute differences 
of the median temperature and the 90-percentile as further descriptors. 

We further utilize moments of order 1, which essentially describe the 
center of gravity of the breast regions, as well as the distance (both in x 
and y direction) of the center of gravity from the geometrical center of the 
breast. For all four features, we calculate the absolute differences of the 
values between the left and right breast. 

Histograms record the frequencies of certain temperature ranges of the 
thermograms. In our work, we construct normalized histograms for both 
regions of interest (i.e., left and right breast) and use the cross correlation 
between the two histograms as a feature. From the difference histogram 
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(i.e., the difference between the two histograms), we compute the absolute 
value of its maximum, the number of bins exceeding a certain threshold, 
the number of zero crossings, the energy, and the difference of the positive 
and negative parts of the histogram. 

Co-occurrence matrices have been widely used in texture recognition 
tasks10 and, applied to thermograms, record the joint probabilities of pixel 
(i.e., temperature) values a certain distance away from each other. In order 
to arrive at an indication of asymmetry between the two sides, we use the 
cross co-occurrence matrix11 where one pixel value is extracted from the 
left breast and the other from the right. From this matrix, we extract some 
statistical features, namely homogeneity, energy, contrast, and symmetry,10 
and the first four moments of the matrix. 

The mutual information between two distributions can be calculated from 
the joint entropy of the distributions and is employed as a further descriptor. 
As final feature descriptors, we calculate the Fourier spectrum and use the 
difference of absolute values of the ROI spectra. The features we adopt are 
the difference maximum and the distance of this maximum from the center. 

In summary, each breast thermogram is thus described by the following 
set of features: four basic statistical features, four moment features, eight 
histogram features, eight cross co-occurrence features, mutual informa-
tion, and two Fourier descriptors. We further apply a Laplacian filter to 
enhance the contrast and calculate another subset of features (the eight 
cross co-occurrence features together with mutual information and the two 
Fourier descriptors) from the resulting images. In total, we hence end up 
with 38 descriptors per breast thermogram that describe the asymmetry 
between the two sides. 

10.3 Fuzzy Rule-based Classification

10.3.1 Classification algorithm

Pattern classification typically is a supervised process where, based on a 
set of training samples, a classifier is derived that automatically assigns 
unseen data samples to the predefined classes. Let us assume that our pat-
tern classification problem is an n-dimensional problem with C classes 
(for the purpose of breast cancer diagnosis, C = 2) and m given training 
patterns xp = (xp1, xp2, …, xpn), p = 1, 2, …, m. Without loss of generality, 
we assume each attribute of the given training patterns to be normalized 
into the unit interval [0, 1]; that is, the pattern space is an n-dimensional 
unit hypercube [0, 1]n. We use fuzzy if-then rules of the form 

Rule Rj: If x1 is Aj1 and … and xn is Ajn

 then Class Cj with CFj, j = 1, 2, …, N, 
(10.1)

SRBK002-C10_275-284.indd   277 05/01/13   4:51 PM



278	 Chapter	10

where Rj is the label of the j-th rule, Aj1, … , Ajn are antecedent fuzzy 
sets on the unit interval [0, 1], Cj is the consequent class (i.e., one of the 
C given classes), and CFj is the grade of certainty. As antecedent fuzzy 
sets, we use triangular fuzzy sets as shown in Fig. 10.1.

Our fuzzy rule-based classification system consists of N fuzzy if-
then rules. There are two steps in the generation of fuzzy if-then rules: 
specification of antecedent part and determination of consequent class Cj 
and the grade of certainty CFj. The antecedent part of a rule is specified 
manually. Then, the consequent part (i.e., consequent class and grade of 
certainty) is determined from the given training patterns.12 It has been 
shown that the use of the grade of certainty in fuzzy if-then rules allows us 
to generate comprehensible fuzzy rule-based classification systems with 
high classification performance.13 

Let us assume that m training patterns xp = (xp1, …, xpn), p = 1, … , m, 
are given for an n-dimensional C-class pattern classification problem. The 
consequent part of the rule is determined by calculating βClass h(j) for class 
h as 

 

β µClass
Class

( ) ( ),h j
h

pj
p

=
∈
∑

xx

x

 
(10.2)

where 

 mj(xp) = mj1(xp1) … mjn(xpn), (10.3)

and mjn(⋅) is the membership function of the fuzzy set Ajn. 
Then, we find the class ĥ  that has the maximum value of βClass h( j): 
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Figure 10.1  Triangular fuzzy membership partitions.
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The grade of certainty CFj is determined as 
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with 

 
β

β
=

−
≠∑ Class ( )

.
hh h j

C

ˆ

1  
(10.6)

Using this procedure, we can generate N fuzzy if-then rules as in 
Eq. 10.1.1 After both the consequent class Cj and the grade of certainty 
CFj are determined for all N rules, a new pattern x = (x1, …, xn) can be 
classified by calculating αClass h(x) for Class h, j = 1, …, C, as 

 
α µClass ( ) max ( ) | ,h x x= ={ }j j jCF C h.

 
(10.7)

and finding the class h′ that has the maximum value of αClass h(x): 

 
α αClass Class( ) max ( ) .′

≤ ≤
= { }h

k C
kx x

1  
(10.8)

It is well known that any type of rule-based system suffers from the 
course of dimensionality. Our fuzzy rule-based classifier is no exception, 
in particular, considering the variety of features we are using as input. 
In our approach, we therefore employ a genetic algorithm that evolves 
a rule base to select a fixed, small number of rules without sacrificing 
classification performance.14 We also apply a cost term in the classification 
rules to be able to put more emphasis on correctly identifying maligant 
cases.15

10.3.2 Experimental results

For our experiments, we utilized a dataset of 146 thermograms of which 
29 cases have been confirmed as malignant, whereas the other 117 cases 
were benign. This is the same dataset that was used in Ref. 11 and is 
significantly larger than those used in other studies (e.g. Ref. 9). For all 
thermogram pairs, we extracted the 38 features described in Section 10.2.

The best results, based on standard 10-fold cross validation (where the 
data are split into 10 disjoint sets and the classification performance of one 
such set based on training the classifier with the remaining 90% of samples 
is evaluated in turn for all 10 combinations), were obtained using a set of 
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20 rules and 12 fuzzy partitions per attribute. Using this configuration, a 
classification accuracy of 80.89% was achieved, which is similar to that 
obtained by other imaging modalities.11

10.4 Ant Colony Optimization Classification

10.4.1 Classification algorithm

Ant colony optimization (ACO)16 is a relatively recent computational 
intelligence paradigm that is inspired by the collective behavior of natural 
ants. In ant colonies, each individual ant performs its own task independ-
ently, yet the various individual tasks are related, and through collabora-
tion it is possible to solve complex problems. In particular, ants are capable 
of finding the shortest path between their nest and a food source based 
only on local information. They are furthermore capable of adapting to 
changes in the environment. To achieve this, ants communicate with each 
other by means of pheromone trails. Ants leave pheromone as they move 
around in the environment, while other ants can follow pheromone paths. 
Therefore, the more ants follow a certain trail, the more attractive this trail 
becomes to other ants, hence leading to the equivalent of a positive feed-
back loop where the probability of following a certain path is proportional 
to its ‘quality.’ 

Ant colony optimization can also be employed for pattern classification 
as has been shown in Ref. 17 with the introduction of the Ant-Miner algo-
rithm. The basic idea is to perform classification using a rule base and to 
optimize this rule base through ACO. In Ant-Miner, each path constructed 
by an ant represents one rule of the rule base. Each such rule has the form 

IF <term1 AND term2 AND ...>   
THEN <class> 

with each term being defined by a triple 

<attribute, operator, value> 

such as <Day = Monday> and class representing the consequent class, 
i.e., one of a set of predefined categories. 

Algorithm 1 presents a high-level overview of the Ant-Miner algorithm. 
Ant-Miner starts with an empty rule base and successively adds rules one 
by one. To construct a new rule, an ant is initialized with an empty rule 
(i.e., no terms in the antecedent part), and one term is added at a time to 
the antecedent. Terms are added until a term would cause the rule to cover 
fewer than a preset number of training samples, or all possible attributes 
have been added. Once the rule has been constructed, a pruning step is 
applied to remove any irrelevant terms. Then, the consequent class of 
the rule is determined as the most frequent class of the covered training  
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samples. Rule construction is continued until a predefined number of rules 
has been built or an already existing rule is recreated. Of the created rules, 
the best one is chosen based on a quality measure that is often defined as 
the product of sensitivity and specificity. This rule is then added to the rule 
base, and the process is repeated until all but a predefined number of train-
ing samples are covered by the rule base. 

While Ant-Miner has been shown to provide good classification per-
formance coupled with a compact rule base,17 one downside of the algo-
rithm is that it is only capable of processing nominal data, i.e., data that 
can be described by a finite number of nominal or discrete values. There-
fore, as such, it cannot be applied to handle continuous numerical data 
directly. The only way to cope with continuous data is hence to discretize 
them in a preprocessing step, e.g., using the C4.5-Disc method.18 

The cAnt-Miner algorithm19 takes a different, integrated approach to 
ant-based classification. Discrete intervals are created on-the-fly, and hence 
no preprocessing step is required. This dynamic discretization is directly 
incorporated into the rule-construction stage of the Ant-Miner algorithm 
and consequently supports also terms that include < and ≥ operators. The 
discretization itself is based on an entropy measure that describes the 
impurity of a collection of samples. 

10.4.2 Experimental results

We utilize the same dataset as in Section 10.3.2, employing the cAnt-Miner 
algorithm and using all 38 features of each thermogram. We use 2000 ants 
for rule construction; the minimum number of samples covered per rule 
was set to 3, the maximum number of uncovered training samples to 3, and 
the number of rules used for testing convergence was set to 5. 

Initialize training set 
Reset rule base
repeat

Initialize all paths
repeat

Use ant to construct a rule
Prune rule
Determine consequent class of rule
Update pheromones

until (stopping criterion)
Select best rule from constructed rules
Add selected rule to rule base
Eliminate training samples covered by selected rule  

until (stopping criterion) 

Algorithm 1 Pseudo-code	of	the	Ant-Miner	algorithm.
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The achieved classification performance, based on 10-fold cross valida-
tion, using this approach was 79.52%. Although this does not quite match 
the performance of the fuzzy classifier, the rule bases of the ACO approach 
prove to be much more compact compared to the fuzzy rule bases. On 
average, the ACO classifier generated a rule base of only 7 rules (each 
with on average only 2 attributes), compared to the 20 rules of the fuzzy 
classification system. 

10.5 Conclusions

In this chapter, we have presented a computer-aided diagnostic (CAD) 
approach to the analysis of breast thermograms with the aim of identifying 
malignant cases. For this, we extract a number of image features from the 
thermograms to describe the bilateral differences of regions of interest of 
both breasts. These features are then used in a pattern classification stage. 
We have presented two different rule-based approaches for this purpose. 
The first employs fuzzy if-then rules coupled with genetic algorithms to 
generate a rule base, while the second uses an ant colony optimization 
algorithm to add rules to a rule base. Both approaches were shown to give 
good classification performance on a large dataset of breast thermograms. 
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11.1 Introduction

Infrared (IR) imaging has been shown to be a promising technique for the 
early diagnosis of breast pathologies and as a screening technique before any 
symptoms occur. The concept of a combined diagnostic enables a high degree 
of specificity and sensibility in such diagnosis. An abnormal thermogram is 
reported as a significant biological risk marker for the existence or develop-
ment of breast diseases. Some authors state that thermography may have the 
potential to detect breast cancer ten years earlier than the traditional golden 
method: mammography. Moreover, according to some authors, whenever the 
breast is exposed to x-ray radiation, the risk of cancer increases by 2%.

In the last ten years, the use of IR images in medical applications and 
diagnosis has advanced greatly.1 Part of this is due to infrared cameras 
being more accurate. On the other side, significant efforts have been made 
to advance the medical community’s acceptance of this technology. There 
remain important issues, such as: standardization, wider publication, using 
an iterative web-based database, and acquiring and interpreting precise 
images, all of which should be improved in order to reach this goal.1 In this 
chapter, some of these aspects are examined, and their results presented a 
contribution toward achieving better results in such issues. All of the 3D 
numerical simulations that were run aim to reach a better understanding of 
breast abnormalities and to learn more about how the use of IR images can 
validate such calculations. Finally, all of the approaches were used to per-
form a preliminary estimate of several physical breast and tumor parameters.

This study forms part of a research project to prove the feasibility of 
using IR as screening exams in a tropical country. The main purpose is to 
merge information from these images with other modalities of examina-
tion, such as mammograms and ultrasound, in order to improve the early 
detection of breast pathologies, including cancer. The images from this 
ongoing project are being acquired using a FLIR THERMACAM S45 
at the Hospital das Clínicas of the Federal University of Pernambuco  
(HC-UFPE). The project was registered in the Brazilian Health Ministry 
(CEP/CCS/UFPE N°279/05) after being previously approved by the  Ethics 
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Committee of UFPE. The images acquired are available (on request) on a 
public database at http://150.161.110.168/termo.

This chapter is organized into three further sections. Section 11.2 
details the general concepts involving clinical decision support systems 
and computer-aided diagnosis from image acquisition to the techniques 
related to automatic design based on the diagnosis by image. Section 11.3 
presents the several techniques that were developed for use in the numeri-
cal simulation proposed. Section 11.4 draws some conclusions and lists 
further studies that are in progress and are being designed.

11.2 Computer-Aided Diagnosis

Clinical decision support systems (CDSSs) have been designed to assist phy-
sicians in applying new information to patient care by analyzing their specific 
clinical variables.2,3 CDSSs are computational systems designed to support 
high-level cognitive functions involving medical tasks.4 According to the 
Agency for Healthcare Research and Quality (AHRQ), there is great potential 
for improving health care quality, increasing efficiency, and reducing health 
care costs.5 There are pieces of evidence that suggest that CDSSs are effec-
tive in preventing medical errors. These systems may be most practical when 
coupled with a computerized physician order entry (CPOE) system and elec-
tronic health records (EHRs). Figure 11.1 depicts an overview of the CDSS 
architecture. Systems applied to classify individuals with or without disease 
are usually referred to as computer-aided diagnosis (CAD) systems.6 The data 
that are input into CAD systems are usually medical images, e.g., magnetic 
resonance images (MRI), computed tomography (CT), and single-photon 
emission computed tomography (SPECT). This data input process involves 
an image segmentation algorithm to extract the features of the images, either 

Figure 11.1 Overview	of	the	CDSS	architecture.
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automatically or semi-automatically. Beyond extracting these features, some 
kind of artificial intelligence (AI) methodology, such as machine learning and 
classification algorithms, must be used to classify the patient images as normal 
or as presenting a specific type of disease. This section aims to discuss our 
proposition for a CAD using IR for the diagnosis of breast pathologies.

11.2.1 Standardization in acquiring IR breast images

For medical applications, especially when automatic analyses are consid-
ered, it is very important that well-positioned images are acquired and that a 
standardized protocol is used. For this purpose, an apparatus was designed 
and a protocol for acquisition was generated.7 This protocol is being used 
in the breast thermographic exams of the Hospital das Clinicas (HC) of the 
Federal University of Pernambuco (UFPE), Brazil. A computer program was 
used to design this project, the apparatus of which is illustrated in Fig. 11.2.

11.2.1.1 The mechanical apparatus

Standardizing thermographic images during acquisition is required to 
obtain reliable temperature measurements. This would enable further 
automatic image processing and numerical simulations to be conducted. 
Digital images are stored in pixels, and transforming them into a refer-
ence unit of length is needed. Therefore, an additional IR image is cap-
tured using a metallic grid. From a combination of a series of such images  
(see Fig. 11.3), it is possible to convert pixels to a metric system and to obtain 
the real size of the breasts. Additionally, the patient should be located at a 
well-known distance from the camera. A detailed description of the images 
shown in Fig. 11.3 is given in the protocol description in Section 11.2.1.2.

The apparatus project took into account some features such as the dis-
tance between the IR camera and the patient, the positioning of the patient’s 

(a) (c)(b)

Figure 11.2 (a)	Apparatus	assembly,	 (b)	 rails	on	 the	floor	 (during	 the	exams),	
and	(c)	rails	folded	on	the	wall	(when	no	exams	are	being	performed).
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arms, and the patient being in a comfortable and ergonomic position. The 
size and the weight of the apparatus were analyzed so that it would fit into 
the space where it must be installed. This apparatus consists of two rails (see 
Fig. 11.2) used for the displacement of a small carriage that supports the 
tripod, which is attached to the IR camera. A support for the patient’s arms 
made of steel, aluminum, and wood was fitted to a swivel chair. This sup-
port has a movable horizontal bar projected to move up and down. The bar 
is used to position the patient’s hands and allows four different positions so 
as to comfortably accommodate patients of different heights. In the lower 
structure of this chair, two aluminum pipes were placed vertically. To pre-
vent great interference when side-view thermograph images are to be taken, 
the pipes are folded backwards.

As patients have different biotypes, the camera–patient distance changes 
for each patient. This distance is measured with a measuring tape fixed in 
the chair that can be extended to the carriage, to which it can be attached 
using magnets. Since the movement of the camera takes place above the car-
riage, constancy in the distance while the image is being acquired is ensured. 
Moreover, the possibility of displacing the carriage allows for better agil-
ity during image acquisition. The rails were projected to allow them to be 
attached to the wall when they are not being used. So, when the exams are 
being performed, they are lowered onto the floor, as shown in Fig. 11.2(b). 
Due to this flexibility, the room can be freely used for other purposes.

11.2.1.2 Protocol

The protocol presented here is being used in HC/UFPE and was drawn 
up based on information found in the literature1,8–18 and on the six years 
of experience of the Thermal Engineering Group (TEG) of UFPE.7,19–22 
It comprises three main topics that are described on the following pages.

(a) (b) (c)

(e) (f) (g)

(d)

Figure 11.3 Example	of	D1	series	images	for	a	fixed	distance	of	89	cm:	(a)	T1,	
(b)	T2,	(c)	T2	using	a	metallic	grid,	(d)	LIMD,	(e)	LIME,	(f)	LEMD,	and	(g)	LEME.
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Making the room suitable. In relation to the environment where the ther-
mographic exams will be conducted, it is suggested that: (1) The room used 
should measure around 3 × 4 square meters. There must be sufficient space 
for the patient, the technical team, and the IR camera apparatus. (2) The 
people flow in and out of the room is controlled by the technical group. Only 
those responsible for the exam and the patient must stay in the room. (3) 
An air-conditioning device is responsible for the environmental conditions.  
(4) The room temperature and the relative humidity must be measured by 
a thermohygrometer. (5) In HC/UFPE, the temperature normally varies 
between 24 °C and 28 °C and the relative humidity ranges from 54% to 
70%. (6) Fluorescent lamps are available in the room, although daylight is 
used whenever possible. (7) The major sources of heat inside the room are 
the technical team, the patient, and a multimedia projector used to explain 
the exam to the patient. This latter item also helps everyone in the team to 
support the camera operator to acquire the best possible images. (8) The 
room has a reserved space in which the patient dresses and undresses. This 
space is separated by a folding screen. (9) The mechanical apparatus used 
for the examination is also positioned in this section of the room. (10) The 
computational equipment is located in a separate part of the room. 

Preparing the patient. The out-patient procedures that the patient fol-
lows before the thermographic exam require her to stay away from sun-
shine for at least two hours, without drinking and eating, and without tak-
ing a shower. Patients also need to sign an agreement form to participate in 
the research as this is required by the Ministry of Health of Brazil. During 
the medical appointment, the physician conducts the patient’s anamnesis 
by asking about and recording her medical history and current complaints. 
The technical team keeps a copy of the anamnesis, the ultrasonography 
and the mammography reports, if the patient has them available.

The physician directs the patient to the thermographic examination room, 
where, at first, she receives explanations about the exam. The patient receives 
a disposable gown to be used to cover the upper body and rests for about ten 
minutes, without touching her breasts. This is the time interval needed for 
the metabolic heat emitted by the body to decrease and also for the body 
temperature to reach thermal equilibrium with the environment. During this 
time, her body temperature is measured with a clinical thermometer. 

Image acquisition. The images are acquired using a FLIR THERMACAM 
S45, which has a field of view of 24 deg × 18 deg/0.3 m, a spatial resolution of 
1.3 mrad, a detector of the focal plane array (FPA) type, an uncooled micro-
bolometer, and 320 × 240 pixels; a spectral range of 7.5–13 µm; the tempera-
ture range was between –10 °C and +55 °C, with an accuracy of +/–1% of the 
reading.23 Periodically, the thermographic camera is checked by a blackbody 
emitter for calibration purposes.24 Also it is periodically calibrated by 
the manufacturer. Before the technical team performs the examinations, the 
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camera is initialized and some parameters are set. The emissivity is set to 0.98 
(emissivity of the human skin25); the reflected temperature and the camera–
patient distance is measured and updated for each patient. 

Two image series7 are performed. In the first (D1), with a fixed dis-
tance, the camera is positioned farthest from the patient. This distance will 
depend on the patient’s anatomy and is adjusted such that frontal images of 
both breasts are possible. Series D1 is used for automatic image process-
ing; standardized image acquisition is required for this series. In the second 
series (D2), which uses a variable distance, the camera is placed closer to 
the patient, and the distance used for several image acquirements can vary. 
The D2 series is more important for medical analysis and visualization, 
and for detailed analysis. Standardization is not required for this series.

In the first series with a D1 distance, seven images are taken (Fig. 11.3). 
One image of both breasts (T1) is taken, with the patient keeping her hands 
on her waist. The other images are taken with the hands on the apparatus bar. 
The acquired images are: a front image of both breasts (T2), the inner side of 
the right breast (LIMD), the inner side of the left breast (LIME), the outer side 
of the right breast (LEMD), the outer side of the left breast (LEME), and a 
T2 image with a metallic grid placed in front of the patient’s breasts, without 
touching them. This last image is needed to calculate the approximate breast 
dimensions using the size of the grid and the camera-patient distance.

In the D2 series, five images are acquired, as described above. With the 
patient’s hands put on her waist, two different images from the series D1 are 
taken: the image of the right breast (MD), another of the left breast (ME). 
Next, another T2 image is taken, with her hands on the apparatus bar, followed 
by other LEMD and LEME images. In both series, some extra images can be 
acquired for better visualization of any possible suspicious tumor and/or cyst. 

After the images are acquired, they are archived in a database.19,26 They 
are then ready to be interpreted by making comparisons against ultrasound 
and mammographic exams. Also, they are ready to be used in automatic 
image processing and in numerical simulations.

11.2.2 Data storage

This section introduces the database model that supports the research 
on breast cancer presented in this chapter. The database was designed to 
record the sequence of information from patients and the events necessary 
to obtain the thermographic images. The patient’s electronic record is pre-
sented as a research application with its functionalities and modeling. One 
of its roles is to work as a tool for the CDSS.

11.2.2.1 Database system

A database system is basically a computerized data manager that allows 
users to view and, depending on their database hierarchy, to modify the 
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information stored.27 Computational tools have made it possible to collect 
and analyze large amounts of data and have contributed to improvements in 
health care.28 Large clinical databases form the basis for statistical studies 
such as the analysis of statistical patterns and classification rules. The main 
aim when developing a database system is to permanently store the maxi-
mum amount of information by grouping data used for the same purpose.

11.2.2.2 Patient’s electronic record for research application

An electronic patient record stores and shares the information on a patient’s 
health, thus speeding up clinical communication. It is a single document 
that systematically documents and categorizes medical information, medi-
cal images, and medical findings on a particular patient.

Today, a patient’s record integrates clinical, financial, and decision sup-
port information about a patient inside a hospital.29 As stated by the Insti-
tute of Medicine,30 the basic functionalities of a patient medical record or 
patient health record are: health information and data, results management, 
entry order or management, decision support, electronic communication 
and connectivity, patient support, administrative processes, and reporting 
and population health management.

As a patient’s medical information can be exchanged by physicians and 
hospitals, there was a need to create a standard to guarantee that all data 
transmitted could be read by any system. This is why Health Level 7 (HL7) 
was created. The HL7 standard is a specification for information exchange 
between medical applications, including a protocol for data exchange.31 For 
research purposes, a patient’s medical record may be simplified according to 
the needs of the research. 

Figure 11.4 shows the database functionalities, and Fig. 11.5 shows 
a summarized representation of the data as a simplified entity relation-
ship diagram of a research database. Fields were created to capture the 
patient’s current treatment, health history (including family health history),  
environmental factors, and clinical examination results, as well as other 
image results such as mammography and ultrasound findings. 

Figure 11.4 Research	workflow.
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11.2.2.3 Research workflow (clinical workflow)

The database was designed to accommodate the sequence of events that 
occurs when a patient enters the physician’s office. A profile of the clinical 
workflow is: 

(1) The physician interviews the patient and records the patient’s histori-
cal data. 

(2) The physician performs a clinical examination and records the find-
ings. 

(3) If are there other exam results (such as mammography and ultra-
sound), these are carefully annexed to the patient’s data records.

(4) A technician explains the thermographic procedure, obtains a signed 
consent form from the patient, and takes the IR images. 

(5) All data obtained are added to the database by a researcher. 

11.2.2.4 Description of the database system

The system developed for this project runs on software written in PHP 
(hypertext preprocessor) embedded in HTML (hyper text markup lan-
guage) code, connected with an Oracle database as an object-relational 
database (ORD). 

ORDs add the advantages of both the relational-data model and the 
object-oriented (OO) model. This is similar to a relational-data model in 
which the inner structures such as relations or tables are allocated with 
rows and columns, but which supports custom data types and several OO 
structural features. This document can be split into different fields: patient 
identification, patient’s complaint, patient’s health history, environmental 
risks, and clinical results.

The database registers the medical conclusions, the thermographic images, 
the room conditions (temperature and humidity) during image acquisition, 
the mammographic or ultrasound findings, the patient’s complaint, and other 

Figure 11.5 Entity	relationship	diagram.
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patient medical information needed for the research. The database can be 
seen at http://150.161.110.168/termo (in Portuguese).

11.2.3 Breast segmentation

In image processing, segmentation is known as the separation of structures 
of interest from their background.32 The segmentation of a medical image 
is the stage in which a large effort is made to delineate the structures and 
discriminate them from the background.32 During the processing of ther-
mal images, extracting features and mining data depend strongly on the 
correct segmentation of the object studied.

Many papers focus on an automatic segmentation of the breast. In 
mammograms, this kind of segmentation avoids human error when man-
ual selection becomes difficult or imprecise.33 There are several ways to 
perform automatic segmentation, including edge-based techniques, 
threshold-based techniques and region-based techniques.32 Semi-
automatic or manual techniques can be used when it is necessary to define 
the region of interest (ROI) with a physician’s support and also when there 
is a need to obtain the whole area of the breast.

The goal is to select the full area of the breast as closely as possible to 
the real area, in the thermal image. Correct segmentation of the breast is 
extremely important for later comparison and for subsequent numerical 
simulation and texture mapping.

The main objective of the manual segmentation presented is, by using a 
simple tool, to avoid the errors that can arise due to the natural asymmetry 
of the human body when only automatic segmentation is used. An impor-
tant aspect is the use of a temperature matrix instead of the pixel colors, as 
commented on in the topic that follows.

11.2.3.1 Representation of the IR image 

The digital image representation of a thermogram may be defined as a 
3D function f (x, y, T ), where x and y denote spatial (plane) coordinates 
and T, the temperature value at that point. Although it can be seen as an 
M × N × 3 array of color pixels (RGB—red, green, blue representation) by 
some commercial image processing software programs, it is an indexed 
image that has two components: a temperature matrix T and a color map 
matrix. This temperature matrix can be obtained by using a proprietary 
software of the FLIR Infrared System Company. The thermally indexed 
image uses the value of the temperature matrix as a pointer into the color 
map for each pixel in the image.34 Therefore, the color for each pixel in the 
image depends on the color map applied (pallette) and on the thresholds 
defined by the temperature scale for each image. Thus, in IR images, the 
color representation can change, while the temperatures of an image remain 
the same. Figure 11.6 depicts a thermogram viewed by three different  
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pallettes, and Fig. 11.7 shows the variation in color in the same image by 
varying the temperature scale. In both Figs. 11.6 and 11.7, the temperature 
matrix remains the same.

11.2.3.2 Manual segmentation based on a temperature matrix

The temperature matrix of the thermally indexed image can be obtained 
from the proprietary software ThermaCAM Quick Report and referred to 
and converted into a spreadsheet or a text format. Image processing based on 
temperature information instead of pixel intensity brings some advantages 
to the thermographic analysis, either for manual or automatic processing. 

Based on these considerations, the process that was chosen for segmen-
tation of the breast consists of using ellipsoidal elements for selecting the 
area itself. The interest was to obtain the whole area of the breasts, with-
out including the thorax area, enabling thermography to be used for fur-
ther correlation with thermal numerical simulation and other techniques 
such as texture mapping. To proceed with the segmentation, ellipses were 
adjusted to the breasts of two women, as shown in Fig. 11.8. This is done 
by manually adjusting the diameters of the ellipses. For this purpose, a 
young woman and a middle-aged woman were selected.

Figure 11.6 Different	color	maps	of	 the	same	thermographic	 image	on	a	fixed	
temperature	scale:	(a)	rainbow,	(b)	grayscale,	and	(c)	iron.

(a) (b) (c)

Figure 11.7 Different	temperature	scales	of	the	same	IR	image	in	a	fixed-color	
map:	(a)	20–38	°C	and	(b)	15–45	°C.

(a) (b)
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Figure 11.8 Manual	segmentation	of	the	breasts.

11.2.4 Extracting features

Texture is an important visual attribute present in an image. It enables 
regions to be distinguished from each other and contributes to the process 
of recognizing patterns, and analyzing, describing, and classifying digital 
images. Because of its ability to model complex elements, fractal geom-
etry (FG) is one of the most widely used approaches in pattern recognition 
by texture analysis.35 

FG had been used to link each texture to numerical measures. By 
having such measures, textures can be classified. In the experiments con-
ducted using fractal features, three measures are extracted from the ROIs: 
the Hurst coefficient,36 lacunarity,37–39 and the Higuchi fractal dimension.

The Hurst coefficient is related to the density of the image, that is, how 
much space the image occupies in the frame. There are various applica-
tions of the Hurst coefficient, including: image classification, wear and 
erosion, detecting spectral bands of noise, corrosion, analyzing the diver-
sity of the landscape, analyzing fractured surfaces, determining the rough-
ness of a surface, determining the operational scale of natural phenomena 
in digital imaging, scaling applied to spatial extensions in remote sensing, 
distinguishing between landscape types, and analyzing the effects of con-
verting data into geographical information systems.

The Hurst coefficient is used in two ways. Initially, the images of the right 
and left breast are screened (pixel by pixel for each column and row of the 
image) using a movable window that computes the Hurst coefficient values. 
Each image is characterized by various Hurst coefficient values depending 
on the window size w. Then, the average and standard deviation of the Hurst 
coefficient for each w is used for forming the first four characteristics used 
on our feature vector. Six different sizes of square  windows (w = 5, 7, 9, 11, 
13, 15 pixels) were used, so this first method provides 24 features. The sec-
ond method employs the subtraction image of the breast. Then, the average 
and standard deviation of the Hurst coefficient for each window are used for 
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forming two other characteristics for the feature vector. Thus, the second 
method provides 12 features (2 features for each of 6 different windows). 
Therefore, the Hurst coefficient characterizes each thermal image with 36 
features. Figure 11.9 summarizes the way these coefficients are used. 

Lacunarity assesses the amount and distribution of gaps in an object. A 
high lacunarity is assigned to objects that have large gaps or holes. When the 
object under study is an image, greater variation in the distribution of image 
pixels means a high value is assigned to its lacunarity. Thus, a high value for 
lacunarity is associated with images that present a heterogeneous texture.37

A low value for lacunarity is associated with images in which the 
variation of the distribution of pixels is more homogeneous. Ninety 
seven other features were obtained from the lacunarity of the ROI. For 
this, the third coordinate (a temperature or grayscale) is used, and the 
images can be seen as a collection of voxels. Then, boxes of size s, 
2 ≤ s ≤ 25, are used to calculate the lacunarity; each box of size s is 
associated with a lacunarity value Λ(s). Therefore, 24 lacunarity values 
are generated for each image (subtraction image, right breast, and left 
breast). The notations ΛR(s) and ΛL(s) are used for referring to the 
lacunarity values of the right and left breast, respectively. By calculat-
ing |ΛR(s) – ΛL(s)|, where 2 ≤ s ≤ 25, 24 other features are generated. 
The last feature is extracted by calculating the standard deviations of  
|ΛR(s) – ΛL(s)|, where 2 ≤ s ≤ 25. 

Thus, this study proposes the use of the 72 features obtained from the 
lacunarity algorithm (24 features of each image), 24 other features obtained 
from |ΛR(s) – ΛL(s)|, where 2 ≤ s ≤ 25, and another feature obtained by 
the standard deviation of |ΛR(s) – ΛL(s)|, where 2 ≤ s ≤ 25. Figure 11.10 
represents a scheme for lacunarity-based feature extraction.

The fractal dimension represents a measure of irregular geometries. The 
Higuchi form of this was used, with a view to finding some fractal pat-
tern that describes the texture complexity of the IR thermal images.40 The 
Higuchi fractal dimension40 is used in measures of 1D signals.41 Equation 
(11.1) shows how to compute the Higuchi coefficient:

 l k

x m k x m i k N
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∑ 1 1
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, (11.1)

where k is the applied scale, N is the amount of data from x sequence, m 
is the sequence beginning at some k varying from 0 to –1, lm is the sum of 
differences from the current data and the data from the prior k positions, 
and (N – 1) is the normalization of the sum.
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In the algorithm developed, the temperature matrix for each image 
quadrant was relocated line by line to a vector. To measure the fractal 
dimension, the algorithm must be run from several different image scales. 
Each scale represents the detail level from the analyzed signal. We applied 
five scales for each quadrant with the following values chosen by tests: 3, 
5, 7, 9, and 11. These scale values were used for determining the window 
size so as to extract the fractal measurements.41 Using this algorithm, forty 
features were extracted from each patient image.

Two other geostatistical features were used to extract 620 features: 
Moran’s index and Geary’s coefficient. Moran’s index, [Eq. (11.2)], is a 
standard statistical measure to calculate spatial autocorrelation: If an event 
occurred in some location, it is probable that the same event will occur in 
neighboring regions.42 Moran’s index I is given as

 

I
N W X X X X

W X X

ij i jji

ijji ii

=
− −

( ) −

∑∑
∑∑ ∑

( )( )

( )

— —

— 2
,,
 (11.2)

where N is the number of occurrences (in this case N is the number of the 
pixels of the image), Xi and Xj are the positions of X in i and j coordinates, 
W is the weight of each coordinate in the image, and X

_
 is the mean value 

of the image.
Moran’s index is not only dependent on the X values, but also on the 

spatial location (coordinates) of the data to be calculated for the weight 
W. This weight can vary between 0 and 1, and can be calculated in several 
ways. In this study, we calculate W using the inverse distance measure. 
However, Moran’s index I can assume values between 1 and –1, depending 
on whether there is a low or high autocorrelation.

Geary’s coefficient [Eq. (11.3)], is similar to Moran’s index, but to cal-
culate Geary’s coefficient, it is not the standard deviation on the interaction 

Figure 11.10 Steps	of	lacunarity-based	feature	extraction.
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between i and j that is considered, but rather it is the value of each observa-
tion.42 Geary’s coefficient C gives values between 0 and 2 and is defined as

 

C
N W X X

W X

ij i jji

ijji i

=
− −





( ) −

∑∑
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( ) ( )

( )

1

2

2

X 22
i∑

.  (11.3)

However, a value of 1 represents the case where there is no correlation 
among regions, and values of 0 or 2 represent cases where there is a nega-
tive or positive autocorrelation among regions, respectively. Moran’s index 
extracts global information from the sample. On the other hand, Geary’s 
coefficient extracts local information and perceives a larger number of 
small differences in the neighborhood.

Figure 11.11(a) shows an example of a pixel matrix highlighting the value 
named “delay” between the pixel Xi (“head”) and pixel Xj (“tail”). The value 
of “delay” must be high or equal to 1. For this study, a total of 10 values for 
the “delay” variable were used. These values were defined by tests where 
each value was increased by 1 on each new iteration. Figure 11.11(b) shows 
the parameters used to calculate Geary’s coefficient and Moran’s index. All 
image pixels participate in the calculation. For each Xi, the pixels located on 
the “delay” parameter measurement for the iteration are counted. We chose 
10 values to “delay” (from 1 to 10). There is another parameter, named “azi-
muth”, i.e., the angle of inclination of the distance vector (“delay”) in rela-
tion to the horizontal axis of the matrix. We chose four angles of “azimuth” 
values: 0, 45, 90, and 135 deg. These values determine the four directions to 
be calculated. “Delay” and “azimuth” have values of 0.45 and 22.50, respec-
tively. Therefore, this algorithm extracts 320 features for each measurement.

Simple statistical features are considered as well. Four measures were used 
to extract a total of 40 features: mean, standard deviation, the quantization of 

Figure 11.11 (a)	Pixel	matrix	with	(b)	parameters	for	each	pixel.

(a) (b)
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the last bin from the histogram in a posterization of 10 bins, and the range 
between the highest and the lowest temperature. These features are described 
by Borchartt et al.43,44 Using these measurement types, eight features from 
each patient image were extracted.

11.2.5 Classification results

The images used in our experiments can be seen in the public database on 
the Visual Lab website.45 We used two datasets: one with 28 “old” images: 
24 images from patients with pathology, and 4 images from patients 
with no pathology; and the other with 34 “new” images: 24 images from 
patients with pathology, and 10 images from patients with no pathology. 
The images were segmented using a semi-automatic method, described in 
Section 11.2.3.2, in order to extract the ROI. Furthermore, the ROIs were 
divided into four quadrants of the same size.

As three FG measures are used in this approach, it is especially useful 
to verify that they are not correlated. In order to find out which features 
are the most suitable to describe the thermal images, the 133 features were 
divided into 14 groups as follows:

● Group 1: all 133 features; 
● Group 2: all of the features extracted by the Hurst coefficient (36 fea-

tures);
● Group 3: features f = 1, 2, 3, and 4 for w = 5, 7, 9, 11, 13, and 15 

(24 features); 
● Group 4: features f = 2 and 4 for w = 5, 7, 9, 11, 13, and 15 (12 features); 
● Group 5: features f = 1 and 3 for w = 5, 7, 9, 11, 13, and 15 (12 features); 
● Group 6: features f = 5 and 6 for w = 5, 7, 9, 11, 13, and 15 (12 features); 
● Group 7: feature f = 5 for w = 5, 7, 9, 11, 13, and 15 (6 features); 
● Group 8: feature f = 6 for w = 5, 7, 9, 11, 13, and 15 (6 features); 
● Group 9: all of the features extracted by lacunarity (97 features); 
● Group 10: ΛR(s) and ΛL(s) with 2 ≤ s ≤ 25 (48 features); 
● Group 11: |ΛR(s) – ΛL(s)| with 2 ≤ s ≤ 25 (24 features); 
● Group 12: the standard deviation of |ΛR(s) – ΛL(s)| with 2 ≤ s ≤ 25 

(1 feature);
● Group 13: the lacunarity [Λ(s)] of image subtraction with 2 ≤ s ≤ 25 

(24 features); and 
● Group 14: the features in Groups 12 and 13 (25 features). 

These groups were used for classifying patients as those who were 
healthy and those with some possible disease. Then, machine learning 
techniques were used. The results obtained using the Hurst coefficient 
and lacunarity were evaluated using the receiver operating characteristic 
(ROC). Tables 11.1 and 11.2 present the best results for the groups con-
sidered.
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Groups 6, 9, 10, 11, 13, and 14 did not show good results. However, as 
can be seen in the Tables 11.1 and 11.2, the proposed method did produce 
excellent results (ROC area = 0.958 using the features of Group 4) for other 
groups. The best results were obtained for Group 1 using a naïve Bayes 
simple classifier (0.792); for Group 2 using naïve Bayes and naïve Bayes 
updateable (0.875); for Group 3 using naïve Bayes and naïve Bayes update-
able (0.927); for Group 4 using naïve Bayes and naïve Bayes updateable 
(0.958); for Group 5 using non-nested generalized exemplars (0.750); for 
Group 7 using classification via clustering (0.708); for Group 8 using ran-
dom committee (0.745); and for Group 12 using classification via clustering 
(0.813). In future studies, those features presented in this study will be used 
as well as other fractal measures to diagnose breast diseases in early stages.

WEKA software46 was used to perform the classification. WEKA is a 
well-known software program in the area of data mining that performs clus-
terization, classification, feature reduction, etc. The reduction of dimension-
ality is necessary to reduce the number of calculations (because we extracted 
a total of 712 features). WEKA can be used with a view to improve the accu-
racy of the method, choosing the best features that represent the sample.47 In 
this study, this is not discussed, and only two dimensionality-reduction tech-
niques—principal components analysis (PCA) and information gain—are 
conducted. We used an algorithm of support vector machines (SVM) imple-
mented in WEKA, named LibSVM.48,49 For the parameters of LibSVM we 

Table 11.2 Results	of	Groups	7–14.

Techniques G7 G8 G9 G10 G11 G12 G13 G14

Naïve Bayes simple 0.625 0.484 0.557 0.542 0.281 0.698 0.417 0.422

Classification via 
clustering

0.708 0.563 0.688 0.625 0.479 0.813 0.417 0.438

Naïve Bayes 0.594 0.438 0.490 0.488 0.313 0.625 0.443 0.453

Naïve Bayes updateable 0.594 0.438 0.490 0.488 0.313 0.625 0.443 0.453

Random committee 0.391 0.745 0.568 0.391 0.271 0.563 0.542 0.557

Non-nested 
generalized exemplars

0.458 0.458 0.438 0.500 0.458 0.563 0.500 0.667

Table 11.1 Results	of	Groups	1–6.

Techniques G1 G2 G3 G4 G5 G6

Naïve Bayes simple 0.792 0.854 0.885 0.927 0.667 0.484

Classification via clustering 0.771 0.375 0.771 0.792 0.646 0.500

Naïve Bayes 0.708 0.875 0.927 0.958 0.667 0.490

Naïve Bayes updateable 0.708 0.875 0.927 0.958 0.667 0.490

Random committee 0.516 0.865 0.667 0.833 0.734 0.411

Non-nested generalized exemplars 0.500 0.500 0.479 0.458 0.750 0.500
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chose the SVMType, nu-SVC; nu value of 0.5; and kernelType linear. Other 
parameters were set up with standard values. Table 11.3 shows the results 
achieved from these and the results for the other methods in the literature. 
However, it is important to note that the image samples and algorithms are 
different for each of the first three approaches.

The dataset deemed “old” did not achieve good results. This occurred 
because the sample is unbalanced: only 4 images from patients with no 
pathology and 24 from patients with pathology. The results achieved from 
this study, using the dataset deemed “new,” are promising because every 
measure is over 80%. 

When we used this dataset with only geostatistical measures, we achieved 
a similar outcome. But when we used this same dataset with no geostatistical 
measures, the outcome was inferior: 64.70% accuracy, 30.00% sensitivity, 
79.20% specificity, and an AUC (area under the ROC curve) of 0.546.

This outcome encourages more research to improve our method with 
geostatistical measures. Furthermore, we achieved an AUC of 0.858. 
 Serrano et al.40 had achieved an AUC of 0.958. These two evaluations are 
close. However, every analyzed evaluation criterion using extracted fea-
tures by geostatistical measures proves that it is a promising methodology. 
The information gain is shown to be better with a low rate, around 5%. 
This was the value used on classification that achieved the best outcomes. 

11.3  Several Approaches for Improving the Numerical 
Simulation of Temperature Profiles

Breast modeling has been conducted by using several techniques and for 
different purposes, such as: epidemiological studies,54 breast surgery pro-
cedures55,56 temperature simulations, and so forth. In order to achieve these 
goals, a 3D geometry of the breast, within a shape as close as possible to 
that of the patient under analysis, is necessary. Surrogate geometries can 
be used for this purpose.

Table 11.3 Results	from	methods	used	in	other	studies	and	in	this	study.

Authors Accuracy (%) Sensitivity (%) Specificity (%)

Ng and Kee50 80.95 81.20 88.20

Schaefer et al.51 79.53 79.86 79.49

Acharya et al.52 88.10 85.71 90.48

Borchartt et al. approach 143 85.70 95.80 25.00

Borchartt et al. approach 243 60.70 66.70 25.00

Borchartt et al.44 92.86 95.83 25.00

Resmini et al. (old)53 82.14 91.70 25.00

Resmini et al. (new)53 88.23 80.00 91.70
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11.3.1 Surrogate geometry of the breast

Surrogate geometry is a geometry that swaps places with the patient in 
order to evaluate simulations. Gonzalez57 modeled the breast as a hem-
isphere attached to a layer that replicates the chest wall. Bezerra20 also 
used a hemisphere as a breast surrogate geometry to locate tumors inside 
the volume to calculate the temperature. Ng and Sudharsan58 modeled 
the female breast divided into four quadrants and inner layers so that the 
properties of each tissue could be used. This section describes how to 
acquire and use surrogate geometries of external breast prostheses used by 
patients who have undergone complete surgical removal of the mamma.21 
The improvement of this model is due to the fact that the shape of these 
prostheses is quite similar to a real female breast.

11.3.1.1 Acquiring surrogate geometries

Coordinate measuring machines (CMMs) were introduced more than 
thirty years ago and are among the most important tools of measurement 
for dimensional control commercially available.59 A CMM is able to deter-
mine dimensional parameters of an object by taking coordinate measure-
ments of points over the surface of the object. These points are adjusted 
in order to build the geometry of the object by several methods; the one 
most used is the least-squares method (LSM).60 Such geometries are called 
surrogate geometries, and their characteristics or main parameters, or even 
both, can be compared with the real dimensions of the object.

Seven different breast external prostheses were scanned: the model can be 
SG-419 or SG-420, with sizes 1, 2, 4, 6, 8, 10, and 12, manufactured by Orto 
Pauher, which donated all of the prostheses. The CCM CRYSTA 547 manu-
factured by Mitutoyo™, measured the prostheses. The pre-processor software, 
GAMBIT™, was used to build surrogate geometries so as to allow the correct 
usage of FLUENT™, a computational fluid dynamics (CFD) software program.

The CMM machine scanned the prostheses in longitudinal and latitu-
dinal directions and obtained four lists of points. The fifth and last curve 
was obtained from the points at the base of the prostheses. The point coor-
dinates in each direction were saved as text files in order to build the sur-
rogate geometry. How the points were acquired followed the directions 
illustrated in Fig. 11.12(b). The upper and lower surfaces of the model 
were obtained, and afterwards the volume was built up. Figure 11.12(a) 
shows one example of a surrogate geometry.

In the sequence, the surrogate geometry was customized to each patient 
by inserting in it as many 3D volumes as the number of patient abnormali-
ties. Each volume has the same dimensions as the corresponding abnormal-
ity described by the ultrasound examination. These volumes were located 
inside the model at the position given by the ultrasound examination.  
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At this point, the personalized model containing the regions of normal tis-
sue and abnormalities tissue was meshed. The information related to the 
mesh was exported to the FLUENT program that uses the finite volume 
method (FVM) to evaluate temperature profiles.

11.3.1.2  Choice of the surrogate geometry that best fits the real 
breast being studied

Extracting the points of the inframammary fold from the patient’s IR image 
is the first step. Figure 11.13 shows the points extracted from the IR image 
and overlapped on it. The software developed by Silva61 was used for this. 
The points of the contour of the breast were cut from the body contour and 
joined to the point coordinates of the inframammary fold. These coordi-
nates were saved into text files.

The points extracted from the IR image were adjusted by using the 
LSM. This curve was compared with the curves obtained from the base of 
the surrogate geometries in order to find the one that best fits the patient’s 
breast. In order to do so, these curves must run in the same direction, and 

Figure 11.12 (a)	External	breast	prosthesis.	(b)	External	breast	prosthesis	and	
the	directions	of	the	scan	process.

Figure 11.13 (a)	Points	extracted	from	the	IR	image	IR_0860.	(b)	The	extracted	
points	(black	dots)	overlapped	on	the	IR	image.

(a) (b)

(a) (b)
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the origin of their coordinate system must be placed at the same point. A 
numerical program in the C++ language was developed for this purpose. 
The steps for doing so are listed below:

1. The software reads the text file that contains the coordinates of the 
breast contour extracted from the IR image.

2. The operator translates the origin to the middle point.
3. The operator rotates the points by the angle formed by the symmetry 

axis and the vertical axis Y using the concept of the moment of inertia 
in digital formulation.62,63

4. The operator writes the file with the new coordinates. At this point, the 
coordinates are referenced to the same origin, which was the middle 
point of the curves, and they run in the same direction, as can be seen 
in Fig. 11.14(a).

Finally, the best surrogate geometry can be chosen. For this purpose, 
another software program using the C++ language was developed. The 
steps for doing so are listed below: 

1. The software reads the coordinate file obtained from the IR image after 
it has been rotated and translated to the middle point by the earlier soft-
ware program.

2. The operator calculates the coefficients of the curve that fits the given 
points using the LSM and the Gauss method with a pivoting strategy.64,65

3. The operator submits the points of the base of each surrogate geom-
etry to a curve that fits them using LSM with the same order of the 
curve that fits the IR image, and evaluate the errors between the coef-
ficients of the curve of the surrogate geometry and those of the curve 
of the IR image.

4. The operator chooses the surrogate geometry that presents the least error. 

Figure 11.14(b) shows the result of the choice of the surrogate geometry 
(#6) that best fits the patient shown at Fig. 11.13(b).

Figure 11.14 (a)	The	result	of	the	procedure	on	the	base	curves	of	the	surrogate	
geometries.	(b)	The	overlap	of	the	points	extracted	from	the	IR	image	and	the	base	
curve	of	the	surrogate	geometry	#6.

(a) (b)
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11.3.2 A parametric analysis to investigate IR sensitivity 

IR imaging promises to be a noninvasive and effective adjunctive modality 
to screen for early breast cancer, although its use is still hindered because 
of its poor sensitivity to deeper or smaller tumors.66 In this section a para-
metric analysis is used for investigating the sensitivity of IR imaging when 
detecting breast cancer. Initially, an idealized tumor was set into a 3D 
breast surrogate geometry. During this procedure, the position and size 
of the idealized tumor were changed. Some results showed the influence 
of these variations on the profile of the breast temperature. The technique 
developed was also used to estimate the height of the breast abnormality 
which, in general, is not measured by an ultrasound exam.

11.3.2.1 The mathematical model

The physical process is assumed to be governed by the bioheat transfer 
equation (BHTE) [Eq. (11.4)], which is a heat conduction equation with 
specific terms for volumetric heat generation due to the blood perfusion 
Qp and for volumetric metabolic heat generation Qm. It is used to calculate 
and analyze temperature profiles. Such an equation, for a homogeneous 
isotropic medium, with constant properties, is given by

 ρc
T

t
k T Q Qp m

∂
∂

= ∇ + +2 , (11.4)

where k is the thermal conductivity of the tissue, ρ is the density, c is the 
specific heat, T is the temperature of the local tissue, t is the time variable, 
and ∇2  is the Laplacian operator.

The heat flow due to blood perfusion is given by

 Q c T Tp b b a= −ωρ ( ), (11.5)

where ω is the blood perfusion rate [(ml/s) blood/ml tissue], ρb is the 
blood density, cb is the blood specific heat, Ta is the temperature of the 
arterial blood entering the tissue, and T is the temperature of the venous 
blood leaving the tissue (T is assumed to be equal to the temperature of 
the  tissue).

For the numerical simulations analyzed in this chapter, the breast was 
represented by two regions of different thermophysical properties: glan-
dular tissue and tumor tissue. Currently, some structures such as breast 
lobules and ducts were discarded. 

The boundary and initial conditions used to solve the BHTE are:

● Heat is transferred by convection between the breast surface and the 
external environment.
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● The prescribed temperature at the chest wall is 37 °C.
● The initial temperature of the breast is considered to be 37 °C. 
● The heat transfer coefficient adopted is a combination of convection, 

radiation, and the evaporation effects and is 13.5 W/m2 °C.67

According to Gautherie,68 Ng,67 and Mitra,69 tumor doubling time τ and 
tumor metabolic heat Qm are related by a hyperbolic function:

 Q Cmτ = ,  (11.6)

where C is a constant (3.27 × 106 W day/m3), and τ is the time (in days) 
required for the tumor to double its volume. The diameter D (in meters) of 
the tumor is related to τ according to 

 D e= −0 01 0 002134 50. .[ ( )]τ . (11.7)

Equations (11.6) and (11.7) were used to calculate Qm for each patient, 
with the information supplied by the patients’ exams.

When the nodule is considered as a cylinder, the volume of the cylin-
der is calculated; from this result it is possible to find the diameter D of a 
hypothetical breast nodule. For nodules with a diameter smaller than 1 cm, 
a metabolic heat of 65,400 W/m3 is considered. 67

It is assumed that the values   of thermal conductivity k, density ρ, 
and specific heat c are constant within each region of the breast. The volu-
metric metabolic heat generation of the breast is considered to be 450 W/
m3.20 The thermophysical properties adopted for the tissues analyzed are 
described in Table 11.4.

11.3.2.2  A parametric study using a phantom 3D geometry

As a first attempt, a 3D breast geometry obtained from a female man-
nequin was used as a human phantom. The CMM shown in Fig. 11.15(d) 
was used to acquire the point coordinates over the breast surface. Figures 
11.15(a)–(c) show the steps used for the geometry reconstruction and the 
mesh associated with it to calculate the temperature. 

A computational tool PARAMETRICA was developed on the  
MATLAB® platform with the objective of managing the influence of the 

Table 11.4 Thermophysical	properties	of	the	breast.20

Tissue k (W/m°C) ρ (kg/m³) c (J/kg°C) ω (s–1)

Glandular 0.48 1,080 3,000 0.00018

Malignant tumor 0.48 1,080 3,500 0.009

Fibroadenoma 0.48 1,080 3,500 0.0018

Blood — 1,060 4,200     —
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size of a tumor and its position on the temperature profile, which is calcu-
lated automatically by the successive simulations. In each case, FLUENT 
calculates the profile of the temperature of the breast, and the results are 
then stored in a new directory named as the patient’s name. How PARA-
METRICA is implemented can be seen in Ref. 70. Originally, the tumor 
geometry was spherical. Its radius was then modified, and all of the simu-
lations were conducted by the software program developed. The thermo-
physical properties used in this study are close to those of a real breast and 
are shown in Table 11.4.

Figure 11.16 shows one of the obtained results with which it is possible 
to check the reduction in temperature at a fixed position when the size of 
the tumor is reduced from 17 to 5 mm. For this calculation the external 
environment was 23.8 °C. Another result of some simulations performed 

Figure 11.15 (a)	 Sequence	 of	 acquiring	 points.	 (b)	 Building	 a	 contour	 line.	
(c)	The	generated	mesh	used	 for	 the	numerical	simulation.	 (d)	Phantom	at	 the	
CMM	workstation.

(a) (b) (c) (d)

Figure 11.16 Temperature	profile	versus	tumor	position	for	tumors	with	different	radii	
(Z	=	0	corresponds	to	the	nipple	position).
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Figure 11.17 Breast	temperature	profiles	(a)	r	=	20	mm;	(b)	r	=	15	mm;	(c)	
r	=	10	mm,	where	r	is	the	nodule	radius.

(a) (b) (c)

Figure 11.18 IR	image	with	the	region	of	the	solid	nodule	highlighted.

using PARAMETRICA is shown in Fig. 11.17, where it can be seen that 
when the tumor size is reduced, the same occurs to its image. The present 
result considered a nodule with a 20-mm radius. The maximum tempera-
ture calculated was 34.6 °C [Fig. 11.17(a)]. When the radius is reduced 
to 15 mm [Fig. 11.17(b)], the maximum temperature was 32.7 °C. In the 
third case, a tumor radius of 10 mm, it can be seen that the nodule image is 
almost invisible, and the maximum temperature is 31.7 °C [Fig. 11.17(c)].

11.3.2.3  Calculating the temperature profile: An example of the use 
of breast prosthesis and parametric analysis

Generally, ultrasound examinations describe the position and size of the 
nodule. However, in many cases, some details are missed. A study21,71 was 
undertaken to estimate the height of the nodule, using PARAMETRICA.72 
Infrared images were obtained from the database19 (http://150.161.110.168/
termo). A previously developed protocol7 was used to acquire them. Figure 
11.18 shows the patient’s IR image with the region of the solid nodule 
highlighted. The maximum temperature measured in this region was 33.1 
°C. Note that in the first image, the region near the nipple is hotter on the 
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left breast than on the right one. This is probably due to the presence of 
the tumor. 

An ultrasound examination of the patient’s breast indicated a solid nod-
ule with regular contours inside the left breast, BIRADS® 3, located at 
3h, i.e., located at the junction of the external lateral quadrants, 1.5 cm 
from the areola and 0.7 cm from the skin surface. The dimensions given 
were 0.6 cm × 0.4 cm. It was considered as a volume [Fig. 11.19(a)] with 
elliptical bases placed inside the surrogate geometry as described by the 
ultrasound examination. The third dimension was not measured by  
the ultrasound examination. PARAMETRICA71,72 estimated the value of 
the height of the tumor by making several calculations using a nodule with 
a different height at each cycle. The initial height set was 0.1 cm, and the 
last one was 0.7 cm. A routine that tests this parameter before perform-
ing the temperature simulation was used to ensure that the nodule did not 
exceed the limits of the breast. Any nodule, the height of which lay beyond 
the volume of the breast, was discarded.

The surrogate geometry was acquired21 as described in the previous topic.
The pre-processor software built the meshed geometry. One of these 

meshed geometries is shown in Fig. 11.19(b).
The computational program PARAMETRICA starts the CFD software 

to perform temperature calculations. The temperature profile on the tumor 
region was calculated and compared to the maximum temperature over 
the tumor region on the IR image. Finally, the calculated tumor height 
was that one whose temperature profile matched the patient’s IR image 
with the smallest error. The graphic displayed in Fig. 11.20 compares the 
results of each cycle for the surrogate geometry #1. The temperatures were 
measured on a surface point just above the nodule.

The temperature profile that is closest to the IR temperature is shown in 
Fig. 11.21. The temperature reached above the nodule region was 33.18 °C. 

Figure 11.19 (a)	Representation	of	the	first	nodule.	(b)	Frontal	and	lateral	views	
of	the	3D	surrogate	geometry	of	the	patient’s	breast	with	mesh.

(a) (b)
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The calculated height was 0.2 cm. The difference between the maximum 
temperatures of the simulated profile and the IR image was 0.08 °C, which 
gives a percentage error of 0.24%

11.3.3 Estimation of some breast and tumor properties 

During the last thirty or so years, in many disciplines, especially in medi-
cine, the inverse method has been used to solve the problems of heat transfer. 

Figure 11.20 Calculated	surface	temperature	for	each	tumor	height.

Figure 11.21 Simulated	temperature	profile	of	surrogate	geometry	#1.
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The breast consists of a combination of tissues and other structures. 
Younger women have higher levels of glandular tissue in their breasts. At 
the onset of menopause, the glandular tissue begins to atrophy and is pro-
gressively replaced by fatty tissue. In postmenopausal women, the breasts 
consist almost exclusively of fat and traces of glandular tissue. 

One of the difficulties in constructing a real model of the breast is to 
find the thermophysical properties of the several tissues of the breast. Also, 
it is not easy to find accurate values of these properties for breast nod-
ules. Thus, it is proposed to use thermography in conjunction with inverse 
methods to estimate these parameters, taking a simplified breast model as 
a homogeneous medium.

In this section, a first attempt is made to estimate the thermophysical 
properties of the breast and breast tumors, using the maximum superficial 
temperature (measured by IR images) of the breast over the tumor region. 
The sequential quadratic programming (SQP) method was used to solve 
the inverse problem and to estimate the thermal conductivity and blood 
perfusion of breast tissues, and FLUENT was adopted to compute the tem-
perature profiles.

11.3.3.1 The inverse method

For the approach of the inverse heat conduction problem (IHCP) employed 
in this study, thermal conductivity and blood perfusion are regarded as 
unknowns. The inverse problem is thus solved as an optimization problem 
of finite dimension, in which it is sought to minimize the objective func-
tion F(x), given by Eq. (11.8). This equation represents the mean square 
of the residues between the calculated temperature Tcal and the tempera-
ture measured experimentally by thermography Texp. The numerical values 
for Tcal can be obtained from numerical solutions using a finite volume 
method or other methods. 

Consider x as the vector of the design variables, in which i = 1,…, I, and 
I is the total number of experimental measurements. The vector x = [k, ω] 
represents the set of unknown parameters, the values of which it is sought 
to specify using the optimization process. 

The formulation of the inverse problem can be described mathemati-
cally by the following expression:

 Min F T Tcal exp
i

I

i ix
x x( ) ] ,= −

=
∑[ ( ) 2

1

 (11.8)

subject to

k k kL U

L U

≤ ≤

≤ ≤ω ω ω ,
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where, kL, kU, and ωL, ωU are the lower and upper limit constraints of each 
design variable that bound the design space and so avoid optimizing algo-
rithms that provide physically incorrect results such as negative values. 

To minimize the objective function, the SQP method is used.73–75 In 
this method, quadratic programming (QP) subproblems are solved at each 
iteration, based on a quasi-Newtonian approximation of the Hessian of the 
Lagrangian function, and in a search direction, with a quadratic objective 
function and linear constraints.76

The MATLAB platform has a fmincon function in its Optimization Tool-
boxTM. This function implements the SQP method, in which the  Hessian 
of the Lagrangian is calculated using the Broyden–Fletcher–Goldfarb–
Shanno (BFGS) method.77 This method searches for a local minimum of 
a scalar variable function, which is submitted to limit constraints. It starts 
from an initial estimate x0. The entire process of the optimization consists 
of choosing an initial estimate for x, and conducting the optimization 
problem with a modification of the variables until the optimal solution is 
reached. The stopping criterion used for all optimization in this study is 
the standard criterion given as the default in the MATLAB Optimization 
Toolbox. The termination tolerances on x and on the function value are set 
as 10–6. A flowchart of the method is presented in Fig. 11.22.

In order to evaluate the influence of the parameters on the distribution 
of breast temperature, a sensitivity analysis was conducted for each case 

Figure 11.22 Flowchart	of	the	optimization	method.
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studied. This analysis is very important in enabling an evaluation of which 
parameters can be estimated78,79 and which are the most important in the 
process.79 The sensitivity of the parameter to be determined must be large 
enough to ensure that the response of the model reflects small perturba-
tions in these parameters.

The numerical finite difference approximation was used to analyze the 
sensitivity coefficients. The method modifies each design variable xi inde-
pendently, with a relatively small value. In general, the finite difference 
method can be expressed by

 

∂
∂

≈ =
+ −T

x

T

x

T x x T x

xi i

i i i

i

∆
∆

∆
∆

( ) ( ) . (11.9)

According to Blackwell,79,80 if the simultaneous estimation of param-
eters is to succeed, the coefficients must be linearly independent, and the 
sensitivity coefficients must also be sufficiently large.

11.3.3.2 Experimental validation of the methodology

FLUENT was used to solve the BHTE [Eq. (11.4)]. The rate of blood 
perfusion and the metabolic heat generation were added to the calcu-
lations by means of a user-defined function (UDF) written in the C++ 
language. 

The manual segmentation described in Section 11.2.3 was used to 
select the ROI where the breast nodule is located. During this procedure, 
the maximum temperature measured by the IR image in that ROI was 
obtained.

A laboratory experiment was performed to validate this methodology. 
An incandescent bulb of 7 W was inserted into the right breast of the phan-
tom described in Section 11.3.2.2. The breast was filled with silicone rub-
ber,81 and the lamp acted as a localized heat source. The lamp was modeled 
as a cylinder with a radius of 1 cm and a height of 3 cm. The lamp filament 
was modeled as a cylinder with a 3-mm radius and 1.5-cm height. The 
boundary conditions involved were: convection heat exchange between the 
breast surface and the environment, the temperature of which was 25.4 °C. 
The rear part of the breast was at a fixed temperature of 37.2 °C. The lamp 
had a volumetric heat generation rate equal to 1.65 × 107 W/m3. Silicone 
rubber was used as breast tissue. The lamp was deemed as being filled with 
air, and the material used in the filament was tungsten. The geometry and 
unstructured tetrahedral mesh were obtained using GAMBIT®. One mesh 
with 6,006 nodes, 32,888 cells, and 66,726 faces was chosen after a mesh 
convergence study.

The thermophysical properties considered are presented in Table 
11.5. Figure 11.23(a) shows the frontal thermogram of the phantom. The 
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detailed information printed on this image was generated directly by the 
thermographic camera. The maximum temperature measured in the region 
where the lamp was located was 47.1 °C. Figure 11.23(b) shows the distri-
bution of the surface temperature of the breast using a numerical simula-
tion. The maximum temperature obtained using a numerical simulation 
was also 47.1 °C.

It is possible to estimate the thermophysical properties of the breast 
and the tumor using this temperature profile. Currently, only the maxi-
mum breast temperature, from the thermogram, over the region where 
the tumor is located is used. In the near future, the complete distribution 
of temperature obtained by texture mapping will be used for making 
estimates.

The major reason for using this phantom in order to validate the meth-
odology was the previous knowledge of the physical properties of the 
materials and, mainly, because it is a simpler model with a homogeneous 
medium, quite unlike that of a real human breast. Also, both the position 
of the lamp and its geometry are precisely known. The sensitivity analysis 
for some phantom parameters is shown in Fig. 11.24.

According to this analysis, the sensitivity coefficients of the silicone and 
the tungsten properties were found to be linearly dependent, as they show 
similar behavior. Thus, it is not possible to estimate both simultaneously. 

Figure 11.23 (a)	Thermogram	of	the	phantom	breast.	 (b)	Calculated	tempera-
ture	distribution	of	the	surface	of	the	breast.

(a) (b)

Table 11.5 Thermophysical	properties	of	the	materials.82

Material k (W/m°C) ρ (kg/m³) c (J/kg°C)

Silicone rubber 0.21 970 65.68

Air 0.0242 1,006.43 1.225

Tungsten 174 19,250 132 
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However, as the sensitivity coefficients of silicone conductivity and air 
conductivity are not linearly dependent, they could be estimated simulta-
neously. The sensitivity coefficients for thermal conductivities are, in prac-
tical terms, null up to position 0.06 m. At this position, these sensitivity 
coefficients vary. This is due to the presence of the lamp in this region. 
Table 11.6 presents the actual and estimated parameters, in which, in this 
case, a very small error was obtained for all parameters. The so-called 
actual values provided in the table for the thermophysical parameters are 
those found in the literature.

The conclusion may be drawn that an estimate can be made of the ther-
mophysical parameters using the maximum temperature measured by the 
IR image. The maximum error was 1.28%. Thereby, this procedure could 
be used to estimate the thermophysical properties of the nodules of the 
human breast.

11.3.3.3 Cases analyzed 

Next, some results are presented for three patients selected from the  
database described in Section 11.2.2. The first patient (Patient #01, med-
ical record: 1301345-4) was a 34-year-old woman. Her ultrasound and 

Figure 11.24 Sensitivity	analysis	for	the	phantom	parameters.

Table 11.6 Thermophysical	parameters	of	the	phantom.

Design variables (W/m°C) Actual Estimated Error

ksilicone 0.21 0.2127 1.28%

kair 0.0242 0.0241 0.41%

ktungsten 174 174.0372 0.021% 
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mammography exams showed a fibroadenoma in the lateral lower external 
quadrant of the left breast. In order to calculate the temperature, the data 
from the ultrasound exam was used to locate the nodule inside the breast 
volume. The nodule has a radius of about 1.3 cm, is about 0.6 cm away 
from the skin surface, and is near the nipple. For the simulation, the tumor 
was modeled by a sphere with a radius of 1.3 cm. The procedure presented 
in Section 11.3.1 was applied, and external prosthesis #04 was selected. 
The unstructured tetrahedral mesh adopted for Patient #01 had 15,282 
nodes, 86,624 cells, and 175,943 faces.

The boundary conditions involved were: heat exchange by convection 
from the breast surface to the environment at a temperature of 27.4 °C. The 
region of the chest was considered to be at a fixed temperature of 37 °C. 
The value of the metabolic heat used for the nodule with a diameter of  
1.3 cm was 18,907.76 W/m3. 

In Fig. 11.25 it can be seen that the maximum temperature captured 
by the thermogram was 34.7 °C, and the maximum temperature value 
obtained by the numerical simulation was 34.69 °C, which represents a 
relative error of 0.029% when these values are compared. On first analysis 
this good agreement might have occurred because the patient is a young 
woman and has dense breasts, with a large amount of glandular tissue.

The sensitivity analysis for some thermophysical parameters is shown 
in Fig. 11.26. The sensitivity coefficients for the density and the specific 
heat are null; thus, these properties cannot be estimated. This was expected 
because it is a steady state problem that is being addressed, and any value 
assigned to these properties does not influence the final profile of the tem-
perature. It can also be seen that the blood perfusion of the tumor could not 
be estimated due to its sensitivity coefficient being very small.

Figure 11.25 (a)	Thermogram	of	 the	 left	breast	of	Patient	#01.	 (b)	Calculated	
distribution	of	temperature	on	the	breast	surface.

(a) (b)
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Figure 11.26 also demonstrates that, in this problem, the sensitivity 
coefficients of the breast properties are linearly dependent. Thus, it is not 
possible to estimate both simultaneously. The sensitivity coefficients of the 
thermal conductivity of the tumor and of the breast are linearly independ-
ent. Therefore, they could be estimated simultaneously. The sensitivity of 
the breast thermal conductivity shows that this parameter causes the most 
significant effects on the temperature. The results of the estimated param-
eters are shown in Table 11.7.

As a final validation, the temperature profile was calculated again 
using all of the estimated parameters from Table 11.7. The maximum 
temperature obtained was then 34.71 °C. This represents a relative error 
of 0.0029% if compared with the maximum temperature measured by the 
thermogram.

Using the whole process already described, two other patients were ana-
lyzed. Patient #02 (medical record: 1776566-3) was 54 years old and was 
diagnosed by clinical examination, ultrasound, and mammography exams. 
Additionally, her biopsy led to a diagnosis of malignant tumors (invasive 
ductal carcinoma) in the left breast. The patient had two malignant tumors 

Figure 11.26 Sensitivity	analysis	for	Patient	#01.

Table 11.7 Thermophysical	breast	parameters	for	Patient	#01.

Design variables Actual Estimated Error

kbreast (W/m°C) 0.48 0.4853 1.10%

ktumor (W/m°C) 0.48 0.4815 0.31%

ωbreast (s
–1) 0.00018 0.0001833 1.83%
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in the upper outer quadrant of her left breast. Using the data provided by 
the ultrasound exam, it was possible to locate the tumors in the volume 
used for the calculations. 

The maximum temperature obtained by the numerical simulation was 
34.33 °C. This temperature is slightly above the thermogram temperature, 
with a relative error of 0.97%. The sensitivity coefficient analysis indi-
cated that the thermal conductivities of the breast and tumor can be esti-
mated simultaneously. The same occurs with the blood perfusion. Table 
11.8 provides estimated values of the considered parameters. 

At this point, a new simulation was conducted considering the esti-
mated values   of the thermophysical properties. The value of the max-
imum temperature at the point analyzed was 34.06 °C, giving a rela-
tive error of 0.17% when compared to the maximum measured value by 
the thermography.

Then, Patient #03 (medical record: 1309087-4) was studied. She is a 
69 year-old patient who was diagnosed by means of clinical examination, 
ultrasound, and mammography exams and, finally, a biopsy. The ultra-
sound examination indicated a solid nodule. Also, her biopsy led to a 
diagnosis of lymphangioma, which is a benign tumor, in the subcutaneous 
layer. 

The analysis of the sensitivity coefficients was performed and showed 
a linear independence between the sensitivity coefficients of the ther-
mophysical properties of the breast. Therefore, these properties could 
be estimated simultaneously. The sensitivity coefficients of the thermal 
conductivity and blood perfusion of the tumor are very small, indicating 
an insensitivity of the temperature to these parameters. Hence, only the 
breast thermal conductivity and the breast blood perfusion were esti-
mated.

The maximum temperature obtained by the numerical simulation was 
34.8 °C, which is greater than that measured by the thermogram, and had 
a relative error of 1.45%. 

Once again, the temperature profile was calculated using all of the esti-
mated parameters from Table 11.9. The maximum temperature obtained 
was then 34.28 °C. This represents a relative error of 0.058% when com-
pared with the maximum temperature measured by the thermogram.

Table 11.8 Thermophysical	parameters	of	the	breast	for	Patient	#02.

Design variables Actual Estimated Error

kbreast (W/m°C) 0.48 0.4503 6.18%

ktumor (W/m°C) 0.48 0.5107 6.39%

ωbreast (s
–1) 0.00018 0.000106 41.1% 

ωtumor (s
–1) 0.009 0.007937 11.81%
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As can be seen from Tables 11.8 and 11.9, the values of the estimated 
parameters for Patient #02 and Patient #03 were worse than those obtained 
for Patient #01 and for the phantom. Several other analyses are in the 
course of being made in an attempt to find an explanation for these differ-
ences. At this moment, it is thought that they are probably related to the 
patient’s age and to the simplified physical model that is used for the breast. 
These assumptions are supported by the fact that the phantom breast con-
sists of a homogeneous medium, silicone rubber, which does not have the 
internal structures present in the human breast. The physical properties for 
this material are well known. Patient #01 is a young woman. The physical 
properties of the breast used in the numerical simulations are those of a 
glandular tissue, the only tissues for which values of physical parameters 
were found in the literature. The young breast actually consists of this type 
of tissue. These properties were used also for Patient #02 and Patient #03. 
By the time patients reach the age of Patient #02 and #03, breast tissue 
partially or totally consists of fat. This fact has not yet been taken into 
account in the calculations. Also, the nature of the diseases (two malignant 
tumors) presented by Patient #02 can substantially affect the value of the 
blood perfusion rate used in the numerical simulations.

11.4 Conclusions

The main innovation presented in this chapter is to make links between 
complementary subjects so as to help analyze IR images, the goal being to 
detect breast cancer earlier. Furthermore, the chapter considers the compu-
ter vision aspects while also numerically modeling the problems involved 
when analyzing these images. This study considered the development of the 
IR image from the acquisition protocol to the inverse problem of estimat-
ing breast and tumor thermophysical parameters. The main contribution 
presented by this study is that of linking these subjects and encouraging a 
public database of the results achieved. A database for benchmarking the 
segmentation of breast tissue is presented, and some comparisons between 
pattern recognition algorithms are also made. 

The whole idea was implemented by following four steps. In the first, 
the segmentation of the ROIs from the surrounding background was 
carried out by using a semi-automatic technique. The second step deals 
with extracting features from the ROIs using a large number of possible 

Table 11.9 Thermophysical	parameters	of	the	breast	for	Patient	#03.

Design variables Actual Estimated Error

kbreast (W/m°C) 0.48 0.375 21.87%

ωbreast (s
–1) 0.00018 0.0001352 24.88%
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features, ranging from simple statistical ones to very complex features 
based on fractal geometry. The third step interpreted the values of the 
features based on knowledge from database methods. The fourth con-
siders the use of a CFD software program and other programs specifi-
cally developed to evaluate some internal states of the breast by analyz-
ing IR images. This is an inverse problem, which should link up the 
simulation and measurement strategies proposed with prior informa-
tion. The further development of a CAD system relies on the existence 
of good input data images and prior knowledge of the diagnosis related 
to these images. This system could be used as a second-opinion tool by 
physicians.

The continuation of this study is related to using the geometry of the 
patient’s real breast in conjunction with a linear mapping of the tempera-
tures measured over the breast volume. A more realistic model that con-
siders the heterogeneity of the breast tissue should also be considered. 
Furthermore, the complete distribution of surface temperature obtained by 
texture mapping will be used to estimate some thermophysical parameters 
of the breast that would then be more realistic and reliable. Also, advanced 
statistical analyses will be improved in the database, and this might well 
lead to physicians providing individual, fast, and customized diagnosis.
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Paraná, Brazil (2010).

37. R. H. C. Melo, E. A. Vieira, and A. Conci, “Comparing two approaches 
to compute lacunacity of mammograms,” 13th Int. Conf. Syst., Signal. 
Imag. – IWSSIP, Budapest, Hungary (2006).

38. R. H. C. Melo, E. A. Vieira, and A. Conci, “Characterizing the lacu-
narity of objects and image sets and its use as a technique for the anal-
ysis of textural patterns, Advanced Concepts for Intelligent Vision 
Systems,” Lecture Notes in Comput. Sci., ACIVS - IEEE Benelux Sig-
nal Processing Chapter, 4179, 208–219, Springer Berlin/Heidelberg, 
Antwerp, Belgium (2006).

39. C. Allain and M. Cloitre, “Characterizing the lacunarity of random 
and deterministic fractal sets,” Phys. Rev. A. 44, 3552–3558 (1991).

40. R. C. Serrano, J. Ulysses, S. Ribeiro, and R. C. F. Lima, “Using Hurst 
coefficient and lacunarity to diagnosis early breast diseases,” Proc. 
17th Int. Confer. Systems, Signals and Image Processing, Rio de 
Janeiro, Brazil, pp. 550–553 (2010).

41. T. Holden, G. Tremberger, E. Cheung, R. Subramaniam, R. Sullivan,  
P. Schneider, A. Flamholz, D. Lieberman, and T. Cheung, “Fractal analy-
sis of Creutzfeld-Jakob disease frontal horn brain magnetic resonance 
image,” 3rd Int. Conf. Bioinform. and Biom. Eng. - ICBBE, pp. 1–3 
(2009).

SRBK002-C11_285-332.indd   325 1/21/13   4:43 PM



326	 Chapter	11

42. S. Shekar and H. Xiong, Encyclopedia of GIS, Springer Verlag, Berlin 
(2008).

43. T. B. Borchartt, R. Resmini, A. Conci, A. Martins, A. C. Silva, E. M. 
Diniz, A. Paiva, and R. C. F. Lima, “Thermal feature analysis to aid on 
breast diseases,” Proc. 21st Braz. Congr. Mec. Eng. - COBEM, Natal, 
Brazil, pp. 1–8 (2011).

44. T. B. Borchartt, R. Resmini, L. S. Motta, E. W. G. Clua, A. Conci,  
M. J. A. Viana, L. C. Santos, R. C. F. Lima, and A. Sanchez, “Combin-
ing approaches for early diagnosis of breast diseases using thermal 
imaging,” to appear in Int. J. of Innov. Comp. and Appl., Special Issue 
on Intelligent Image and Signal Processing (In Press; Vol. and pages 
not yet released) (2012).

45. PROENG, “Image processing and image analyses applied to mastol-
ogy,” available at: <http://visual.ic.uff.br/en/proeng/> (01/2012).

46. M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and  
I. H. Witten, “The WEKA data mining software: An update,” SIGKDD 
Explorations, 11(1), 10–18 (2009).

47. R. P. Pereira, A. Plastino, B. Zadrozny, L. H. C. Merschmann, and  
A. A. Freitas, “Lazy attribute selection: Choosing attributes at clas-
sification time,” Intel. Data Analysis J. 15(5) 715–732 (2011).

48. R. E. Fan, P. E. Chen, and C. J. Lin, “Working set selection using the 
second order information for training SVM,” J. Machine Learn. Res. 
6, 1889–1918 (2005).

49. C. C. Chang and C. J. Lin, “LIBSVM: a library for support vector 
machines,” ACM Trans. Intel. Systems Technology 2(3), 27.1–27.27 (2001).

50. E. Y. K. Ng and E. C. Kee, “Integrative computer-aided diagnostic 
with breast thermogram,” J. Mec. Med. and Biol. 7(1), 1–10 (2007).

51. G. Schaefer, M. Zavisek, and T. Nakashima, “Thermography based 
breast cancer analysis using statistical features and fuzzy classifica-
tion,” Pattern Recognition 42(6), 1133–1137 (2009).

52. U. R. Acharya, E. Y. K. Ng, J. H. Tan, and S. V. Sree, “Thermography 
based breast cancer detection using texture features and support vec-
tor machine,” J. Med. Syst. 36(3) 1503–10 (2010).

53. R. Resmini, T. B. Borchartt, A. Conci, and R. C. F. Lima, “Assisting 
the early diagnosis of pathologies of the breast using thermal images 
and data mining techniques,” Computer on the Beach 2012: Anais do 
Evento 1, 305–314 (2012) (In Portuguese).

54. M. C. Koch, B. Adamietz, S. M. Jud, P. A. Fasching, L. Haeberle,  
S. Karbacher, K. Veit, R. Schulz-Wendtland, M. Uder, M. W. Beckmann, 

SRBK002-C11_285-332.indd   326 1/21/13   4:43 PM



Infrared	Imaging	for	Breast	Cancer	Detection	.	.	.	 327

M. R. Bani, K. Heusinger, C. R. Loehberg, and A. Cavallaro, “Breast 
volumetry using a three-dimensional surface assessment technique,” 
Aesthetic Plastic Surgery 35(5), 847–55, Epub (2011).

55. P. Huang, L. Gu, J. Yan, H. Xu, and J. Dong, “Virtual surgery planning 
of breast reconstruction using deformation modeling and curve shape 
approximation,” 6th International Special Topic Conference on Informa-
tion Technology Applications in Biomedicine 2007, pp. 127–130 (2007).

56. O. M. Tepper, K. Small, L. Rudolph, M. Choi, and N. Karp, “Virtual 
3-dimensional modeling as a valuable adjunct to aesthetic and recon-
structive breast surgery,” Am. J. Surgery 192, 548–551 (2006).

57. F. J. Gonzalez, “Thermal simulation of breast tumors,” Mexican 
Magazine of Physics (in Spanish: Revista Mexicana de Física) 53 (4), 
323–326 (2007).

58. E. Y. K. Ng and N. M. Sudharsan, “Computer simulation in conjunc-
tion with medical thermography as an adjunct tool for early detection 
of breast cancer,” BMC Cancer 4 (17), 6 (2004).

59. T. L. Rolim, “Procedures for the Coordinate Measuring Machine 
Calibration Method,” Doctorate thesis, Federal University of Paraíba, 
Brazil (2003) (in Portuguese).

60. F. Wäldele and J. Ni, “Coordinate Measuring Machines,” Coordinate 
Measuring Machine and Systems, J. A. Bosch, Ed., Marcel Dekker, 
Inc., New York, pp. 39–74 (1995). 

61. S. V. Silva, “Reconstruction of the Geometry of the Breast Using 
Thermographic Imaging, Thesis, Fluminense Federal University, 
 Brazil (2010) (In Portuguese).

62. E. Azevedo, A. Conci, and F. Leta, Graphics Computer: Theory and 
Practices, Vol. II, 3rd edition, Campus, Brazil (2007) (In Portuguese).

63. S. P. Timoshenko and J. M. Gere, Mechanics of Solids, 1st edition, Livros 
Técnicos e Científicos, Rio de Janeiro, Brazil (1994) (In Portuguese).

64. S. Chapra and R. P. Canale, Numerical Methods for Engineers, 3rd 
edition, WCB McGraw-Hill, Columbus, OH (1998). 

65. M. A. G. Ruggiero and V. L. da Rocha, Numerical Calculus: Theoreti-
cal and Computational Aspects, 1st edition, McGraw-Hill, São Paulo, 
Brazil, pp. 96–107 (1988) (in Portuguese).

66. M. Gautherie, “Thermobiological assessment of benign and malig-
nant breast diseases,” Am. J. Obstet. Gynecol. 147, 861–869 (1983).

67. E. Y. K. Ng and N. Sudarshan, “An improved three-dimensional direct 
numerical modelling and thermal analysis of a female breast with 
tumour,” Proc. Instn. Mech. Enghs. 215, 25–36 (2001). 

SRBK002-C11_285-332.indd   327 1/21/13   4:43 PM



328	 Chapter	11

68. M. Gautherie, “Thermopathology of breast cancer: measurements and 
analysis of in vivo temperature and blood flow,” Ann. N.Y. Acad. Sci. 
335, 383–415 (1980).

69. S. Mitra and C. Balaji, “A neural network based estimation of tumor 
parameters from a breast thermogram,” Int. J. Heat and Mass Transf. 
53, 4714–4727 (2010).

70. D. W. Milles, L. L. Thomsen, L. Happerfield, L. G. Bobrow, R. G. 
Knowles, and S. Moncada, “Nitric oxide synthase activity in human 
breast cancer,” J. of Cancer 72, 41–44 (1995).

71. L. C. dos Santos, M. J. A. Viana, T. L. Rolim, P. R. M. Lyra, R. C. F. 
de Lima, and A. Conci, “Estimating the height of a breast abnormality 
through comparisons between simulated temperature profile and ther-
mogram,” Proc. 21st Brazilian Congress of Mechanical Engineering–
COBEM, p. 6, Natal Brazil (2011).

72. L. C. dos Santos, “Development of a Computational Tool for the Para-
metric Analysis of the Influence of the Position and of the Size of a 
Breast Tumor in Temperature Profiles,” M.Sc. Thesis, Federal Univer-
sity of Pernambuco, Brazil (2009) (in Portuguese).

73. C. Yang, W. Jianh, D. H. Chen, U. Adiga, and W. Chiu, “Estimating 
contrast transfer function and associated parameters by constrained 
nonlinear optimization,” J. Microsc. 233(3), 391–403 (2009).

74. B. M. Nicolai, J. A. Egea, N. Scheerlinck, J. R. Banga, and A. K. 
Datta, “Fuzzy finite element analysis of heat conduction problems 
with uncertain parameters,” J. Food Engin. 103, 38–46 (2011).

75. M. L. Teles and H. M. Gomes, “Genetic algorithms and sequential 
quadratic programming comparisons for optimizing engineering 
problems,” Theory and Practice in Civil Engineering, pp. 29–39 
(2010), (In Portuguese).

76. J. Nocedal and S. J. Wright, “Numerical Optimization,” 2nd edition, 
Springer, New York (2006).

77. Optimization Toolbox for uses with MATLAB - User’s Guide, The 
Mathworks, version 2 (2001).

78. N. H. Thomson, “Theoretical-Experimental Analysis for Identify-
ing Thermophysical Properties using the Probe-Linear TSechnique,” 
M.Sc. thesis, Federal University of Rio de Janeiro, Brazil (2005). (In 
Portuguese).

79. B. F. Blackwell, “Sensitivity analysis and uncertainty propagation of 
computational models,” Handbook of Numerical Heat Transfer, 2nd 

SRBK002-C11_285-332.indd   328 1/21/13   4:43 PM



Infrared	Imaging	for	Breast	Cancer	Detection	.	.	.	 329

edition, W. J. Minkowywcz, E. M. Sparrow, and J. Y. Murthy, Eds., 
Kluwer Academic, Dordrecht, Netherlands, pp. 53–71 (1989).

80. M. N. Özisik and H. R. B. Orlande, Inverse Heat Transfer Fundamen-
tals and Applications, Taylor & Francis, New York (2000).

81. M. C. Araújo, L. A. Bezerra, L. C. Santos, T. L. Rolim, T. B. Santos, 
P. R. M. Lyra, and R. C. F. Lima, “Instrumentation and acquisition of 
the three-dimensional geometry of the breast of a phantom: Compari-
son of temperatures calculated numerically and measured by thermo-
graphic imaging,” Annals of XXIX Iberian Latin-American Congress 
on Computational Methods in Engineering, Maceió, Brazil (2008). 
(In Portuguese).

82. F. P. Incropera and D. P. DeWitt, Fundamentals of Heat and Mass 
Transfer, 6th edition, John Wiley, New York, (2007).

Luciete A. Bezerra is a doctoral student in 
Mechanical Engineering at Federal University 
of Pernambuco (UFPE), Brazil. She received a 
Master’s degree in mechanical engineering from 
UFPE in 2007. Her main areas of interest include 
breast cancer, medical thermography, numerical 
simulation, heat transfer, and inverse heat transfer 
 problems.

Marília M. Oliveira received a Master’s degree in 
Mechanical Engineering in the area of thermal sci-
ences in 2012 from UFPE, Brazil, working with 
standardization in the acquisition of breast ther-
mography images. She is interested in research 
in the domain of biomedical engineering, espe-
cially in thermography. She was directly involved 
in undergraduate research at UFPE in biomedi-
cal instrumentation, photogrammetry, and image 
processing. She did an internship in international 

trade in Paris and another in nuclear metrology in Recife, Brazil. After 
she received her engineering degree, she worked in the field of clinical 
engineering.

SRBK002-C11_285-332.indd   329 1/21/13   4:43 PM



330	 Chapter	11

Marcus C. Araújo is a substitute professor in the 
Mechanical Engineering Department of UFPE, 
Brazil. He is currently a doctoral student in 
Mechanical Engineering at UFPE. He received a 
Master’s degree in Mechanical Engineering from 
UFPE in 2009 and a degree in biomedical engi-
neering in 2006. His main areas of interest include 
medical thermography, medical imaging, clinical 
engineering, biomedical engineering, and heat 
transfer in biological tissues.

Mariana J. A. Viana received a Master’s degree 
in Mechanical Engineering from UFPE, Brazil in 
2010, and a PG diploma in teaching higher education 
from Cândido Mendes University, Brazil (UCAM) 
in 2004. She is teaching at the Federal Institute of 
Education, Science and Technology of Pernambuco 
(IFPE), Brazil. She is currently a doctoral student 
in mechanical engineering at the UFPE. Her current 
research is focused on breast cancer, breast mod-
eling, IR images, and numerical simulation.

Ladjane C. Santos is a doctoral student at UFPE, 
Brazil. She received a Master’s degree in Mechani-
cal Engineering from UFPE (2009). Her areas of 
interest include medical thermography and texture 
mapping.

Francisco G. S. Santos received his M.D. from 
the UFPE. He works in mastology at Hospital das 
Clínicas of UFPE and is also the coordinator of the 
Mastology Department at the Gynecology Clinic 
at the same hospital. He is an expert in evidence-
based medicine, teaching undergraduates and 
interns at the Gynecology Department. He is also a 
member of a research group on breast  cancer.

SRBK002-C11_285-332.indd   330 1/21/13   4:43 PM



Infrared	Imaging	for	Breast	Cancer	Detection	.	.	.	 331

Tiago L. Rolim is Chief of the Coordinate Meas-
ure Technology section in the Mechanical Engi-
neering Department of UFPE, Brazil. Dr. Rolim 
joined UFPE in 1985 as mechanical engineer, 
received his doctorate from the Federal Uni-
versity of Paraíba in 2004, and was promoted 
to his current position in 2005. The theme of  
Dr. Rolim’s research is a proposed system that is 
capable of indicating a method for calibrating the 
moving bridge of small and medium-sized coordi-

nate measure machines. Dr. Rolim has one patent and is well known for his 
work in the area of coordinate metrology.

Paulo R. M. Lyra is an associate professor in the 
Department of Mechanical Engineering at UFPE, 
where he is the Leader of the High Performance 
Computing on Computational Mechanics (PAD-
MEC) group. He is a Civil Engineer from UFPE 
(1984) and holds a M.Sc. (1988) from COPPE-
UFRJ, and a Ph.D. (1994) from University of Wales 
at Swansea (UWS), with a postdoctoral assignment 
at UWS (1995) and at MIT (2002–2003) in Com-

putational Mechanics. He has coauthored more than 150 research publica-
tions in referred journals and in conference proceedings on different sub-
jects. His main research areas of interest are CFD and high-performance 
computing (HPC).

Rita C. F. Lima received her M.Sc. degree in 
Nuclear Sciences in 1984 from UFPE, Brazil 
and her doctorate degree in Nuclear Technol-
ogy in 1997 from the Federal University of São 
Paulo, Brazil. She is an associate professor in the 
mechanical engineering Department of UFPE. Her 
research areas of interest are medical applications 
of IR images, numerical simulations of hyperther-
mic medical processes, and breast cancer. She is a 
supervisor to graduate students in those areas. She 

is coauthor of more than 70 research publications in referred journals and 
conference proceedings.

SRBK002-C11_285-332.indd   331 1/21/13   4:43 PM



332	 Chapter	11

Tiago B. Borchartt is a Ph.D. student at the Com-
puter Institute of Federal Fluminense University 
(UFF), Rio de Janeiro, Brazil. He has a Master’s 
degree in Computer Science from the Federal Uni-
versity of Santa Maria (UFSM), Brazil. He cur-
rently works in the VisualLab of UFF and performs 
research in the analysis and processing of biomedi-
cal images. He is participating in two projects: 
Processing and Analysis of Mastologic Images and 
Image Analysis for Mastologic Applications.

Roger Resmini obtained a Master’s degree in 
Computer Science from UFF, where he is a doc-
toral student in computer science. He received 
financial support from CAPES to do his research 
for his Master and Doctorate degrees. His main 
research areas are medical thermography, medi-
cal imaging, pattern recognition, computer vision, 
computer graphics, and education.

Aura Conci works in the area of computer vision 
and image processing. She received M.Sc. and 
D.Sc. degrees in Civil Engineering from Pontifícia 
Universidade Católica do Rio de Janeiro (PUC-
Rio), Brazil, in 1983 and 1988, respectively. From 
1988 to 1995 she was a lecturer in the Mechanical 
Engineering Department of PUC-Rio. Since 1994 
she has been a full professor at UFF, Brazil, in the 
Computer Science Department. She has published 
two books and has made more than 100 contribu-

tions to international journals and conferences. She was the editor of inter-
national conference proceedings and invited editor of the journal special 
issues. She has successfully supervised 87 students in M.Sc. and D.Sc. 
programs.

SRBK002-C11_285-332.indd   332 1/21/13   4:43 PM



333

Jun Hui Ho, Jing Dong, and Kijoon Lee
School of Chemical and Biomedical Engineering, Nanyang Technological University, 
Singapore

12.1	 Introduction

12.2	 Theory	

12.2.1	 Photon	propagation	model

12.2.2	 Diffuse	optical	spectroscopy

12.2.3	 Diffuse	correlation	spectroscopy

12.2.4	 Diffuse	optical	tomography

12.3	 Instrumentation

12.3.1	 Diffuse	optical	spectroscopy

12.3.2	 Diffuse	correlation	spectroscopy

12.3.3	 Diffuse	optical	tomography

12.4	 Clinical	Applications

12.4.1	 Breast	cancer	detection/characterization

12.4.1.1	 Endogenous	contrast

12.4.1.2	 Exogenous	contrast

12.4.2	 Therapy	monitoring

12.5	 Future	of	DOI	of	the	Breast

12.5.1	 Structural	illumination

12.5.2	 Spectral	derivative

12.5.3	 New	parameters

12.6	 Conclusion

References

12.1 Introduction

Breast cancer is the most frequently diagnosed cancer in women, with 
an estimated number of 226,870 new cases of invasive breast cancer 
occurring among women in the US during 2012. In addition, breast 
cancer also ranks second as a cause of cancer death in women (after 

Chapter 12
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lung cancer).1 Thus, even modest improvements in breast cancer screen-
ing, diagnosis, and therapy monitoring can have a significant impact 
in improving women’s health. Accurate detection and characterization 
of breast tumors is required for breast cancer screening and diagno-
sis, whereas therapy monitoring provides valuable information about 
cancer treatment efficacy. X-ray mammography, a common breast can-
cer screening technique, has high false negative rates in women under 
fifty2 and also uses harmful ionizing x-ray radiation. Techniques such 
as ultrasound and MRI are sometimes employed in addition to x-ray 
mammography but have limitations such as high cost, low throughput, 
limited specificity (MRI) and low sensitivity (ultrasound).3 Thus, new 
methods are required to detect earlier stages of cancers and cancers 
missed by mammography,4 and to monitor tumor growth during can-
cer therapy. Diffuse optical imaging (DOI) is an emerging noninvasive 
medical imaging modality that is especially suitable for breast imag-
ing. It can be divided into several categories, namely diffuse correlation 
spectroscopy (DCS), diffuse optical spectroscopy (DOS), and diffuse 
optical tomography (DOT). In terms of spectroscopic techniques, DCS 
is typically used to measure relative blood flow in deep tissues, whereas 
DOS can provide information about absorption and scattering proper-
ties within tissues. On the other hand, DOT makes use of optical trans-
mission measurements on the sample surface to reconstruct 3D maps of 
optical properties within the sample, namely the absorption and scatter-
ing coefficients. In addition, low tissue absorption in the 650- to 900-
nm wavelength range allows us to convert optical property maps into 
concentration maps of intrinsic chromophores, such as oxy- (HbO2) and 
deoxy-haemoglobin (Hb), water and lipid, and extrinsic agents such as 
fluorescent dyes. 3D maps of the parameters mentioned above can aid in 
tumor detection and characterization. For instance, tumor position has 
been shown to be strongly correlated with total haemoglobin concen-
tration via angiogenesis.5,6 This is especially valuable in breast cancer 
imaging, since the breast is a relatively homogeneous tissue. Thus, DOI 
provides physiological information directly related to tumor oxygena-
tion and vasculature, while utilizing cost-effective, nonionizing, rapid, 
portable and noninvasive instrumentation at the same time.

This review gives an overview of the recent DOI developments in 
breast cancer imaging, in terms of instrumentation and clinical applica-
tions. In addition, the theoretical framework behind DOI is also high-
lighted to provide background knowledge to the reader, and potential 
future research directions are also presented. This review is not meant to 
be comprehensive; thus, for further details on theory and instrumenta-
tion, please refer to earlier reviews by Choe et al.,7 Durduran et al.,8 and 
Lee.9 
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12.2 Theory

This section provides the theoretical framework behind DOI, which is 
based on the photon propagation model in tissues. Equations and calcula-
tions required to obtain optical parameters are presented for the various 
diffuse optical techniques. 

12.2.1 Photon propagation model

Light propagation through human tissue has been successfully described 
via the photon diffusion equation. It can be derived from the radiation 
transport equation (RTE), which is a conservation equation for the radi-
ance in each infinitesimal volume element within the sample;8 i.e.,
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where L(r, Ŵ, t) is the light intensity traveling in the Ŵ direction at posi-
tion r and time t, f(Ŵ, Ŵ′) is the normalized differential cross section for 
single light scattering events in the medium, and Q(r, Ŵ, t) is the power per 
volume emitted by sources.

Equation (12.1) can be reduced to the photon diffusion equation:
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φ φ

φ
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where µa is the absorption coefficient, µ′s is the reduced scattering coef-
ficient (i.e., the reciprocal of the “photon random walk step length”), D is 
the diffusion coefficient defined as D(r) = v/3[ma(r) + m′s(r)], v represents 
the speed of light in the turbid medium, S(r, t) is an isotropic source term, 
and f(r, t) is the light intensity. The photon diffusion model is valid only 
when the source is isotropic and scattering is much higher than absorp-
tion. This assumption is not valid at locations near the surface or near the 
source.

12.2.2 Diffuse optical spectroscopy

DOS is a noninvasive spectroscopic technique that can provide relatively 
accurate quantification of absorption µa and reduced scattering µ′s coeffi-
cients in thick tissues of up to several centimeters. In turn, such near-infra-
red (NIR) absorption spectra can offer further insight into the concentra-
tions of key tissue chromophores, i.e., oxy- and deoxy-haemoglobin, total 
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haemoglobin concentration, water, and lipid. In particular, the wavelength-
dependent absorption coefficient is given by the Beer–Lambert law:

 
µ λ ε λa i i

i

c( ) ( ) ,= ∑  (12.3)

where ei(l) is the wavelength-dependent extinction coefficient, and ci 
is the concentration of i-th chromophore. By measuring µa at different 
wavelengths, the unknown chromophore concentrations can be obtained 
by solving the Beer–Lambert equation in an inverse manner. Generally, 
in order to estimate the number N of chromophores, at least N different 
wavelengths are necessary for the determination of wavelength-dependent 
µa. Therefore, in the case where the main absorbers considered are oxy- 
and deoxy-haemoglobin in the NIR range, two wavelengths are sufficient 
for determining haemoglobin concentration. However, more wavelengths 
permit the inclusion of other chromophores such as water and lipid.  
Also, the use of more wavelengths improves the accuracy of the concen-
tration measurements since random errors can be reduced via multiple 
measurements.

The most common configuration of DOS is the reflection geometry, 
in which a homogenous semi-infinite (also called half-space) model is 
employed to approximate human tissue. In this situation, the photon dif-
fusion equation [Eq. (12.2)] can be solved by providing an additional 
source, as shown in Fig. 12.1. The solution of the diffusion equation is 
of the form10
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Figure 12.1 The	source	detector	pair	in	a	semi-infinite	medium.
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Here, k v iw Da
2 = −( )µ / , r is the distance between the source and the 

detector, r z r z zb1
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0
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0
22= + = + +ρ ρ, ( ) .and  In addition, D refers to 

the diffusion coefficient defined as 1/3µ′s, and z R Rb s eff eff= − +( )( )2 3 1 1/ /µ′
is defined as the random walk step 1/µ′s, where Reff represents the effective 
reflectance, and z0 is defined as the random-walk step 1/m′s.

In many cases, people are more interested in the temporal variations of 
physiological quantities; thus, we need to look into the changes in optical prop-
erties, namely Dma and Dm′s, respectively. The differential pathlength approach 
can be applied directly to obtain these relative changes and is defined as
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According to the modified Beer–Lambert law, and assuming that  
Dµ′s = 0 and da(r, l) = DPF(l)r,
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where DOD(l, t, r) = -ln[I(rd, t)/I(rd, t = 0)], and ei is the extinction coef-
ficient of the i-th chromophore at a given wavelength. By measuring DOD 
at multiple wavelengths, we can determine the changes in chromophore 
concentrations by inverting the above equation. 

12.2.3 Diffuse correlation spectroscopy

DCS is another promising spectroscopic technique for noninvasive meas-
urement of relative blood flow in deep tissues. It provides continuous meas-
urements of blood flow with high temporal but limited spatial resolution in 
tissues. Essentially, when a laser beam with constant intensity shines on the 
surface of a turbid sample, the emerging photons at the detector will form 
speckles due to constructive or destructive interference caused by migra-
tion through different path lengths through the medium. The speckle fluctu-
ations are sensitive to the motions of scattering particles, such as red blood 
cells. It is straightforward to show that the electric field temporal autocor-
relation function G1(t), which is defined as G E r t E r t1( ) ( , ) ( , ) ,τ 〈 τ 〉= +∗  
satisfies the correlation diffusion equation;11,12 i.e.,
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where k0 represents the wavenumber of the light diffusing through the 
medium, 〈 τ 〉∆r 2 ( )  refers to the mean-square displacement of the mov-
ing scatterers, and α represents the fraction of photon scattering events 
resulting from moving particles in the medium. The angle bracket 〈 〉...  
denotes an ensemble average that is experimentally assumed to be equiv-
alent to the time average in most situations. Two models can be used 
to describe the dynamics of blood flow, namely the Brownian motion 
model and the random flow model. In the former model (the mean-
square displacement of moving particles), 〈 τ 〉 τ∆ =r D

B
2 6( ) ,13,14 where 

DB is the effective diffusion coefficient of red blood cells. In the latter 
model, 〈 τ 〉 〈 〉τ∆ =r V2 2 2( ) ,15,16 where both the speed and direction of the 
flow at any point in space are random, and 〈 〉V 2 represents the mean-
square velocity of the scatterers. The Brownian motion model is more 
commonly used in analysis because it fits the experimental autocorrela-
tion curves quite well over a broad range of tissue types.17–19 One should 
notice that changes in αDB are proportional to the changes in tissue 
blood flow; therefore, blood flow is characterized by αDB [also called 
blood flow index (BFI)], which can be obtained from the exponential 
decay rate of the correlation functions.

The Green’s function solution of the correlation diffusion equation has a 
similar form to that presented in the previous section for DOS. For a point 
light source with unit intensity impinging upon a homogeneous semi- 
infinite medium, the solution is as follows: 
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where k k DD s a s B= 3 6 2
0
2µ µ µ α τ′ ′+ , and the other variables are defined 

in Fig. 12.1.
Practically, one can only measure the normalized inten-

sity temporal autocorrelation function g2(t), which is defined as 
g I t I t I t

2

2
( ) ( ) ( ) / ( ) ,τ τ= + where I(t) is the detected diffusing light 

intensity at time t. By applying the Siegert relation, 

 
g G I t

2 1

2 2
1( ) ( ) ( ) ,τ β τ= +  (12.9)

the electric field autocorrelation function G1(t) can be obtained. β is a 
numerical factor related to detector geometry, number of detected speck-
les, and other experimental parameters, and can be set to one in the ideal 
case. Hence, quantitative particle motion information can be extracted by 
measuring the temporal intensity fluctuations of scattered light. 
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12.2.4 Diffuse optical tomography

The goal of DOT is to reconstruct the spatial distribution of optical/physi-
ological properties at each point (or volume element) in the tissue from 
measurements of light transmission between many points on the tissue 
 surface. This image-reconstruction procedure is typically known as solving  
the inverse problem. In contrast, the forward problem refers to the calcula-
tion of the fluence rate on the tissue surface, given a forward model (radiative 
transport/photon diffusion equation) and prior knowledge of the sources and 
internal optical properties.20 The forward problem can be solved using numer-
ical finite-difference methods (FDMs), finite-element methods (FEMs), 
boundary-element methods (BEMs),21 or Monte Carlo simulations.22 

On the other hand, inversion approaches are classified as linear or 
nonlinear, as well as analytical or numerical. In terms of quantification, 
nonlinear methods are preferred, since the DOT inverse problem is inher-
ently nonlinear. However, nonlinear methods are computationally inten-
sive. In the limit that the optical properties of the volume elements are 
close to those of the background, the inverse problem is approximately 
linear and, thus, can be solved using linearized methods. Over the years, 
many  linearized methods have been employed for inverting the ill-posed 
Jacobian matrix, including singular value decomposition (SVD), algebraic 
reconstruction technique (ART), and simultaneous iterative reconstruc-
tion technique (SIRT).23,24 These methods have been used in optical mam-
mography applications, wherein optical properties change in response to 
 external stimuli such as compression.

In addition, symmetry in some systems has been exploited by some 
researchers in an attempt to boost the speed and efficiency in solving 
the inverse problem. These include translational symmetry in a slab and 
rotational symmetry in a cylinder or sphere. Such initiatives have been 
developed for Green’s functions, which are analytical inversion kernels 
for solving the inverse problem. Markel25,26 and Markel and Schotland27 
have demonstrated that the symmetry of the slab geometry can be used 
to transform the original 3D integral equation into a series of 1D inte-
gral equations in Fourier space. These linear equations are then merged 
to form a final solution, which can be transformed into image space via 
inverse Fourier Transform. Similar schemes can be employed for cylindri-
cal and spherical geometries as well, in which Fourier and spherical har-
monic waves form the integral components respectively.25–27 For instance, 
Konecky et al. 28 used the same linearized analytic inversion method to 
reconstruct the optical properties of complex targets in turbid medium. 
In this experiment, datasets corresponding to 107 source–detector pairs 
obtained with a CW instrument required only approximately one minute 
for image reconstruction on a 1.3-GHz workstation.
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On the other hand, when the optical properties of the volume elements are 
substantially different from those of the background, the linearized approach 
becomes inappropriate as an inversion model. In order to circumvent this 
problem, nonlinear iterative methods, such as Jacobian- and gradient-based 
schemes are required. In essence, nonlinear Jacobian-based schemes involve 
comparing calculated fluence rates with measured fluence rates and updating 
the calculated optical properties iteratively until convergence,23 whereas gra-
dient-based schemes encompass finding the optical properties that minimize 
an objective function along a search direction and updating them repeat-
edly as well until convergence.29,30 Since the gradient-based approach does 
not involve direct inversion of the Jacobian matrix, it is computationally 
less intensive than the Jacobian-based scheme. Both the gradient-based and 
Jacobian-based schemes are primarily written in MATLAB® and are utilized 
in popular DOT reconstruction packages such as TOAST31 and NIRFAST.32

Besides the various image reconstruction techniques mentioned above, 
there are other critical aspects that can also affect the quality of recon-
structed images. In general, when solving the inverse problem, experi-
mental noise in data may lead to image artifacts, which can be reduced 
via regularization methods.33 In addition, various research groups are also 
combining DOT with other imaging modalities such as MRI and ultra-
sound in order to incorporate prior information into the inversion process. 
This improves the accuracy and resolution of the reconstructed images. 
Recently, Dehghani et al.34 published a comprehensive review focusing on 
the incorporation of prior information into DOT.

12.3 Instrumentation

This section gives a brief outline of breast DOI system configurations, 
such as measurement domain and geometry, for the various diffuse optical 
methods.  

12.3.1 Diffuse optical spectroscopy

DOS, also called diffuse reflectance spectroscopy (DRS), is a powerful 
technique that can provide functional information about the tissue under 
investigation via the measurement of optical properties. DOS has been 
used to assist in the detection of breast cancer, as well as to monitor and 
assess therapeutic responses. By the measurement of the intrinsic absorp-
tion coefficient µa and reduced scattering coefficient µ′s with multiwave-
length light sources, physiological variables of the breast can be obtained, 
such as oxy- and deoxy-haemoglobin concentration, total haemoglobin 
concentration, oxygen saturation, etc. Unlike conventional x-ray mam-
mography, DOS is noninvasive and nonionizing, as it employs only NIR 
light to resolve spectroscopic information and generate images. Based on 
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the instruments employed, DOS can be categorized into continuous wave 
(CW), frequency domain (FD) and time domain (TD).

CW systems require a source with constant intensity or modulation at a 
low frequency of a few kilohertz, in order to provide high sensitivity inher-
ent in phase-locked detection methods. These systems also offer the advan-
tages of fast data acquisition and simple instrumentation. However, they are 
unable to resolve both absorption and scattering contrasts simultaneously, 
due to only a single amplitude measurement for each source–detector pair.

FD systems involve modulating the source amplitude at high frequen-
cies in the order of a few hundred megahertz, and measuring the corre-
sponding change in amplitude and phase shift of the transmitted signal. At 
a given source–detector separation, both the amplitude and phase of the 
diffusing wave are measured, from which simultaneous determination of 
absorption and scattering properties becomes possible.

Tromberg and coworkers developed a white-light-based broadband DOS 
system.35–37 The light sources include a CW 650- to 1000-nm halogen lamp 
and several FD amplitude-modulated diode lasers, whereas the detectors 
comprise a fiber-coupled spectrometer and an avalanche photodiode (APD). 
The inclusion of FD components provides separation of absorption and scat-
tering. In addition, the broadband spectra also provide information about 
other absorbers besides oxy- and deoxy-haemoglobin, such as water and fat.

TD systems measure the temporal point spread function (TPSF), which 
is defined as the photon distribution generated as a function of time when an 
ultrashort light pulse of a few picoseconds is shone through a highly scatter-
ing medium.38 The TPSF contains the most information content per source–
detector pair among the three domains, since it is equivalent to intensity-
modulated sources scanned over the wide range of modulation frequencies 
present in the pulse, via the Fourier transform. However, there is a tradeoff 
between instrument complexity and information content, as TD systems also 
require complicated instrumentation and have high implementation costs. 
Bassi and coworkers39 developed the first portable and clinically compatible 
TD-DOS system, using a photonic crystal fiber (PCF)-pumped laser as the 
source and a single-photon avalanche diode (SPAD) as the detector.

12.3.2 Diffuse correlation spectroscopy

DCS is an emerging optical method that is very sensitive to the blood cell 
motion in microvasculature, namely capillaries, arterioles, and venules. It 
offers high temporal (~100 ms) and moderate spatial (~1 mm) resolution in 
tissues. DCS has been studied extensively as a potential noninvasive probe 
of blood flow in deep tissue due to its portability and cost effectiveness 
compared to existing techniques. The first direct validation of relative blood 
flow (rBF) measurement by DCS in a human was recently performed.40 
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Moreover, DCS has been successfully used over a wide range of tissue 
types such as the brain,17 human skeletal muscle,18 and skin,12 as well as the 
breast.41 In addition, blood flow is a key physiological parameter that can 
provide information about tumor metabolism and the micro-environment. 
Therefore, DCS can also serve as an alternative method for bedside moni-
toring of tumor therapies such as chemotherapy in human breast cancer and 
photodynamic therapy in patients with head and neck tumors.

The typical DCS system includes the CW laser with a long coherence 
length as the source, as well as an APD, a photomultiplier tube (PMT), 
or a charge-coupled device (CCD) as the detector. The detected signals 
need to be connected to either a hardware or a software68 autocorrelator to 
compute the autocorrelation function. The APD and PMT are extremely 
sensitive detectors with relatively high acquisition speed, when compared 
to the CCD. Therefore, in APD- or PMT-based DCS systems, single-mode 
fibers are always employed, and a time-averaged light intensity autocor-
relation function is also calculated for increased accuracy. On the other 
hand, the multispeckle nature of CCD detection enables parallel detection 
at multiple spatial positions so that a position-averaged light intensity can 
be performed in this case.42 However, the CCD-based system has not been 
validated in clinical settings. 

12.3.3 Diffuse optical tomography 

DOT can be regarded as an extension of DOS, using a large number of 
source–detector pairs, thereby enabling 3D image reconstruction. In a 
fashion similar to DOS instruments, DOT devices for breast imaging can 
also be classified under analogous categories, based on the measurement 
domain (CW, FD, TD) or the measurement geometry (reflection, transmis-
sion, ring). The measurement domain determines the source modulation 
and detection techniques, whereas the measurement geometry is defined 
by the relative positions of the sources and detectors.

As an example of a multidomain instrument, a hybrid CW/FD DOT 
developed at the University of Pennsylvania is noteworthy. It combines 
the benefits of speed and low cost of CW systems, with the ability of FD 
measurements to simultaneously resolve absorption and scattering.43,44 
The system uses four amplitude-modulated laser diodes operating at 
four different wavelengths (690, 750, 786, and 830 nm), and diffusely 
reflected light is detected simultaneously by APDs via nine detector fibers 
distributed among the source fibers. Additional CW lasers at 650 and 905 
nm are included to improve the separation of optical parameters, from 
which transmitted CW data are collected by a lens-coupled CCD camera.

On the other hand, DOT devices can also be sorted based on measurement 
geometry. In reflection geometry, light sources and detectors are placed 
in the same plane,36 rendering the sensitivity volume to be banana-shaped 
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with a depth of roughly half the source–detector distance. In transmission 
geometry, the breast is positioned between the two different source and 
detector planes.43 This geometry provides benefits in terms of high SNRs 
and parallel CCD data acquisition. Frequency-domain measurement is also 
possible using a gain-modulated image intensifier.69 In ring geometry, the 
breast is surrounded by the light sources and detectors, which are evenly 
spaced along the circumference.45 Although the symmetry of ring geometry 
provides increased image stability, a large dynamic range in the detectors is 
required, due to vast differences in the source–detector separation.

12.4 Clinical Applications

This section gives a general overview of DOI applications in various clini-
cal settings, namely in the detection and characterization of breast cancer 
and neoadjuvant chemotherapy monitoring. System configurations and 
clinical results are briefly presented. 

12.4.1 Breast cancer detection/characterization

Diffuse optical techniques can offer potential alternatives to current 
breast imaging modalities such as x-ray mammography, ultrasound, and 
MRI because they provide physiological information directly related to 
tumor oxygenation and vasculature, while simultaneously utilizing cost-
effective, nonionizing, rapid, portable, and noninvasive instrumentation. 
Among the various physiological parameters accessible to DOI, high total 
haemoglobin concentration (THC) in malignant tumors has been une-
quivocally reported. This high THC is most likely due to malignant tumor 
growth accompanied by angiogenesis.5,6 In addition, the rapid prolifera-
tion of tumor cells can also give rise to an increase in the number density 
of subcellular organelles (e.g., mitochondria, nucleolus), an increase that 
in turn affects tissue scattering properties.46 On the other hand, tissue oxy-
genation (StO2) is useful for predicting the treatment efficacy in cancer 
therapy. However, reports on StO2 in cancerous tissue have been contra-
dictory, with either a decrease,47 increase,48 or no change44 in StO2 in the 
tumor. This discrepancy may be due to the dependence of cancer oxygen 
metabolism on the cancer stage and type, as well as biochemical pathways, 
or variations in detection accuracy and sensitivity among systems. 

12.4.1.1 Endogenous contrast

Cancerous cells can be differentiated from normal cells via the opti-
cal property and fluorescence contrast from endogenous chromophores 
(oxy- and deoxy-haemoglobin, water, and lipid) and fluorophores (pro-
toporphyrin IX), respectively. This endogenous contrast can have signifi-
cant value in breast cancer detection and characterization.
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Choe and coworkers44 built a parallel-plate DOT system (Fig. 12.2) for 
in vivo 3D imaging of breast cancer. A female subject lies in prone position 
on a bed with her breasts inside the breast box filled with an intralipid/ink 
fluid. CW transmission and FD reflection data are acquired simultaneously 
by a CCD camera and nine APDs connected by fibers on the source plate 
for 45 source positions at multiple wavelengths. With this system, Choe and 
coworkers44 demonstrated that benign and malignant lesions can be distin-
guished by quantitative 3D DOT. This system was validated on 47 patients 
with benign and malignant tumors, where corresponding images of tumor-
to-normal ratios (Fig. 12.3) of oxy- (rHbO2) and deoxy- (rHb) haemoglobin, 
total haemoglobin concentration (rTHC), blood oxygen saturation (rStO2), 
and tissue scattering (rµ′s) were reconstructed. In addition, an optical index 
(OI = rTHC × rm′s/rStO2) was proposed to increase the tumor contrast. 
Results indicated that malignant cancers show statistically significant higher 
total haemoglobin, oxy-haemoglobin concentration, scattering, and optical 
index compared to normal tissue, whereas benign tumors do not exhibit sta-
tistical significance in the tumor-to-normal ratios of any parameter.44 

Flexman and coworkers49 also investigated the dynamic hemodynamic 
changes due to a breath hold in a digital optical breast imaging system 
and its potential for use in breast cancer detection. The system is used to 
image both breasts simultaneously over the course of a breath hold in both 
a healthy volunteer and a breast cancer patient. Preliminary results support 
the potential use of a breath hold to detect breast lesions. Specifically, dur-
ing the recovery period of the breath hold, the tumor can be identified by 

Figure 12.2 Schematic	 of	 the	 parallel-plate	 diffuse	 optical	 tomography	 instru-
ment.	(Reprinted	with	permission	from	Ref.	44.)
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(a)

(d) (e)

(f) (g)

(h) (i)

(b) (c)

Figure 12.3 MR	image	and	DOT	images	of	a	2.2-cm	invasive	ductal	carcinoma	
in	the	right	breast	of	a	53-year-old	woman.	(a)	Sagittal	dynamic-contrast-enhanced	
MRI	(DCE-MRI)	containing	the	tumor	center.(b)	Axial	DCE-MRI	slice	along	the	red	
horizontal	line	in	(a).	(c)	Tumor	region	(in	red)	determined	based	on	MRI-guided	
optical	data	in	3D	space.	(d)–(i):	DOT	images	of	(d)	rTHC,	(e)	rStO2,	(f)	rHbO2,	(g)	
rHb,	(h)	rm′s	at	786	nm,	and	(i)	OI.	High	tumor-to-normal	contrast	is	visible	within	the	
tumor	region	(black	solid	line)	in	all	of	the	DOT	images.	(Reprinted	with	permission	
from	Ref.	44.)
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an increase in haemoglobin levels (Fig. 12.4). During the breath hold, the 
increase in venous return pressure results in an increase in haemoglobin 
levels in the breast. Upon recovery, the haemoglobin levels return to their 
baseline values. However, the convoluted vasculature of the tumor region 
is more sluggish in responding to the end of the breath hold. This cre-
ates a time window (15 sec immediately after the breath hold) where the 
increased haemoglobin levels in the tumor distinguish it from the back-
ground tissue.49

Alternatively, endogenous fluorophores, such as protoporphyrin IX 
(PPIX), can also be used for breast cancer detection and characterization. 
PPIX is an endogenous fluorophore involved in the synthesis of heme, 
which is normally produced at low levels in tissue. However, the rate of 
PPIX production and accumulation can be dramatically enhanced with the 
systemic or topical administration of 5-aminolevulinic acid (ALA). ALA-
induced PPIX is typically utilized in photodynamic therapy and exploited 
as a tumor marker in various kinds of cancers, including breast cancer. 
Recently, Davis et al.51 demonstrated MRI-coupled PPIX fluorescence 
tomography in the breast of a patient undergoing chemotherapy for breast 
cancer. The fibro-glandular tissue shows the highest level of fluorescence 

Figure 12.4 Oxy-haemoglobin	axial	maps	of	the	left	and	right	breast	taken	during	
the	baseline	prior	to	a	30-sec	breath	hold,	and	during	the	recovery	period	15	sec	
following	the	end	of	the	breath	hold.	The	tumor	region	is	identified	by	the	dashed	
line.	(Reprinted	with	permission	from	Ref.	49.)

SRBK002-C12_333-360.indd   346 1/21/13   7:21 PM



Diffuse	Optical	Imaging	of	the	Breast:	Recent	Progress	 347

activity, followed by the tumor region and adipose tissue, and chemo-
therapy is likely to affect PPIX production in breast cancer cells. Such 
preliminary results will require further validation, which may allow PPIX 
fluorescence tomography to be used for breast cancer diagnosis and chem-
otherapy monitoring in the future.50

12.4.1.2 Exogenous contrast

In breast cancer imaging, exogenous contrast dyes can be exploited to 
improve tumor contrast via the spatial distribution of their concentrations 
and lifetimes within the tissue. This offers higher sensitivity and specifi-
city in terms of detection and also provides additional information about 
the tissue micro-environment, such as pO2, pH, and intracellular calcium 
concentration. At present, indocynanine-green (ICG) is the only FDA-
approved dye suitable for DOT, since it has both absorption and fluores-
cence spectra in the NIR region (650–900 nm). Previously, Godavarty  
et al. conducted fluorescence imaging using ICG in breast phantoms,51 
and Reynolds et al. used fluorescent contrast agents to image canine breast 
cancer,52 while Corlu et al. also demonstrated the first 3D ICG-based fluo-
rescence DOT of breast cancer in humans.53 

12.4.2 Therapy monitoring

Neoadjuvant chemotherapy is commonly used to treat women with locally 
advanced breast cancer, and therapeutic monitoring is essential for treat-
ment efficacy. In the past, DCE-MRI and positron emission tomography 
(PET) have always been used to monitor changes in both tumor size and 
vasculature following neoadjuvant chemotherapy in breast cancer patients. 
However, such methods are costly and, thus, impractical for frequent 
monitoring. To circumvent this problem, a more cost-effective alterna-
tive, diffuse optical imaging, has been developed and applied successfully 
in similar clinical settings, using imaging instruments6,54 and hand-held 
probes.5,37

In recent development, Srinivasan and coworkers55 proposed using the 
boundary element method (BEM) in an image-guided NIR spectroscopy 
(IG-NIRS) setting in order to quantitatively reconstruct THC, StO2, water, 
and scattering coefficient during neoadjuvant chemotherapy treatment. 
The BEM was used to model light propagation in 3D based on surface 
discretization, and a dual-modality MRI-NIR system was used to acquire 
light reflectance data from breast tissue. For clinical validation, this tech-
nique was applied to six healthy individuals and one breast cancer patient. 
Results showed that healthy breast tissues exhibited higher THC and 
water in fibroglandular tissue than in adipose tissue. In the cancer patient, 
the tumor exhibited higher THC compared to the background and was 
reduced by 9 µM during treatment (Fig. 12.5). Thus, this method provides 
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potentially complementary information to DCE-MRI for tumor charac-
terization, as well as hemodynamic responses to therapeutic treatment.55

Li and coworkers56,57 also built a dual-wavelength dual-modality (MR-
NIR) tomography system that has the ability to image through thick breast 
tissue at 20 Hz. In the system, both MR and NIR images were acquired 
simultaneously and coregistered, during which the MR images provided 
prior structural information for NIR reconstruction. In addition, acquisition 
of the finger pulse oximeter (PO) plethysmogram was also synchronized 
with the system, in order to offer a frequency-locked reference. The fast 
Fourier transform of the output signal sequence indicated that the heart rate 
of the subject was between 1.1 and 1.4 Hz during imaging. The blood flow 
signal in breast tissue had a small peak sharing the same temporal frequency 
range of 1.1 to 1.4 Hz as the PO output. Thus, these results demonstrated 
the ability of this multimodality design to recover small pulsatile varia-
tions in absorption within breast tissue due to the heartbeat. This capability 
can be useful for breast tissue characterization and evaluation of treatment 
response to neoadjuvant chemotherapy. Moreover, the results also demon-
strated the system’s ability to image fast-flowing signals in deep tissue.56,57

Figure 12.5 Rendered	 surfaces	 of	 adipose,	 FG,	 and	 lesions	 segmented	 from	
T1-weighted	MRI	and	DCE-MRI	of	subject	undergoing	neoadjuvant	chemother-
apy	for	(a)	visit	1	and	(b)	visit	2.	The	red	markers	indicate	optical	fiber	locations.		
(c)	Reconstructed	 IG-NIRS	values	 for	HbT	 in	adipose,	fibrograndular	 (FG),	and	
tumor	 tissues	 for	 both	 visits.	 The	 subject	 underwent	 a	 therapeutic	 response.	
(Reprinted	with	permission	from	Ref.	55.)
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Gioux et al.58 designed a novel spatial frequency-domain multispectral 
NIR oxygenation imaging device and performed the first in vivo skin flap 
oxygenation imaging for patients undergoing breast reconstruction after 
mastectomy. The system employs a novel laser diode light source capable 
of providing six different wavelengths, a digital micromirror device (DMD)-
based projector to project light patterns, and a three-camera system capable 
of simultaneously collecting two NIR spectral bands with a color image. This 
study lays the foundation for the clinical translation of endogenous contrast 
imaging in surgery, providing useful intraoperative feedback to surgeons.58 

12.5 Future of DOI of the Breast

Although diffuse optical tomography (DOT) and fluorescence diffuse opti-
cal tomography (fDOT) are powerful in-vivo optical imaging techniques 
for imaging the breast as well as other tissues, they are normally limited by 
slow data acquisition and low accuracy. In addition, possible new optically 
accessible physiological parameters can be added, which can serve as tumor 
markers. In this section, we present novel techniques and approaches that 
have been recently developed, in order to overcome current shortcomings. 

12.5.1 Structural illumination

Recently, the use of spatially modulated light has been proposed in order 
to reduce the acquisition time and computational complexity of the inverse 
problem. Additionally, the measured datasets can be compressed to further 
boost the image reconstruction speed. Konecky et al.59 demonstrated the 
use of structured illumination to reconstruct 3D images of absorption con-
trast in turbid media, via analytic and finite-element-based reconstruction 
(Fig. 12.6). In addition, a novel correction to the diffusion approximation 
for increased accuracy near boundaries was also introduced.59

Belanger et al.60 designed a novel optical acquisition scheme based on a 
pair of DMDs that was able to perform high-resolution quantitative volu-
metric imaging of absorbing targets within turbid media. In addition, the 
reconstruction algorithm was implemented on a graphical processor unit 
to provide optical reconstructions at a frame rate of 2 Hz. This proposed 
method has significant cost advantages over camera systems, since only a 
single detector is required. Moreover, it also has the potential to increase 
frame rate, moving toward real-time DOT.60

Mazhar et al.61 showed that oxy- and deoxy-haemoglobin concentrations 
in tissues can be measured accurately via acquiring spatial-frequency-domain 
imaging data at only two wavelengths (670 and 850 nm), as long as proper 
assumptions for water and lipid fractions are made in the fitting process. The 
quality of in vivo fitting for both oxy- (HbO2) and deoxy-haemoglobin (Hb) 
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is dependent on wavelength selection, fitting parameters, and acquisition rate. 
Wavelength optimization enables dynamic imaging of arterial occlusions 
with improved spatial resolution due to reduction of motion artifacts.61

Structured illumination can also be applied to fluorescence imaging. 
Ducros and coworkers62,63 experimentally demonstrated a fast finite-
element-based reconstruction algorithm for structured illumination in 
fDOT, for both slab and cylindrical geometries. The approach consists of 
illuminating the medium with a few wavelet patterns and compressing the 
acquired images via wavelet transform. Compared to the classical raster-
scanning method, the proposed technique is able to reduce both acquisition 
and reconstruction times dramatically while maintaining high image qual-
ity, thus making it suitable for in vivo applications.62,63

In addition, Mazhar and coworkers64 introduced a noncontact imag-
ing method utilizing multifrequency structured light for improving lateral 
and axial resolution and contrast of fluorescent molecular probes in turbid 

Figure 12.6 (a)	 Schematic	 of	 tissue	 simulating	 phantom	 with	 four	 absorbing	
tubes	located	at	a	depth	of	z0	=	2	mm,	and	with	 lateral	separations	of	d1	=	5	mm,	
d2	=	4	mm,	and	d3	=	3	mm.	(b)	Image	and	line	profile	of	the	reconstructed	image	using	
the	tomographic	method.	(c)	Image	and	line	profile	of	the	image	produced	by	fitting	
to	a	homogeneous	model.	(Reprinted	with	permission	from	Ref.	59,	©	2009	OSA.)
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media. They demonstrated that by increasing the spatial frequency, fluo-
rescence from deeper structures is suppressed, while signals from more 
superficial objects are enhanced. By measuring the fluorescence depend-
ence on spatial frequency, the background can be reduced by localizing the 
signal to a buried fluorescent object. This method improves localization 
and SNRs, when compared to planar imaging techniques.64 

12.5.2 Spectral derivative

Dehghani and coworkers65,66 proposed the concept of using spectral deriv-
ative data in NIR diffuse optical spectroscopy and tomography, whereby 
the difference between adjacent spectral measurements is utilized instead 
of using discrete measurements at certain wavelengths. In terms of spec-
troscopy, reflectance measurements from 650 to 850 nm at 2-nm intervals 
are acquired on the forearms of three human subjects. The collected data is 
then utilized together with the spectral derivative technique for calculation 
of physiological parameters, such as THC, StO2, water content, and scat-
tering properties. In addition, this technique is also extended to full tomo-
graphic image reconstruction, where it can provide better image quality 
via eliminating image artifacts and improving contrast, as well as reducing 
cross-talk. As a whole, this method is proven to be independent of the 
tissue type and fiber contact coupling coefficients, thus providing signifi-
cantly higher accuracy when compared to traditional techniques. Moreo-
ver, its self-calibrating capability also improves its robustness in clinical 
settings, as demonstrated by simulation and experimental results.65,66 

12.5.3 New parameters

In the search for optical contrast to enhance differentiation between tumor 
and normal tissues, research groups are employing broader wavelength 
ranges to explore other endogenous parameters. Chung et al.67 developed a 
bound water index (BWI) from quantitative tissue water absorption spectra 
in the NIR region. The accuracy of BWI as a water state index was validated 
by comparing broadband DOS to MR spectroscopy, diffusion-weighted MRI, 
and conductivity in bound water phantoms. Noninvasive DOS measurements 
of malignant and normal breast tissues performed in 18 subjects showed a 
significantly higher fraction of free water in malignant tissues compared to 
normal tissues (Figs. 12.7 and 12.8). These results highlight broadband DOS 
sensitivity to tissue water content and state, and demonstrate the potential of 
BWI as a noninvasive in vivo index that correlates with tissue pathology.67

12.6 Conclusion

In summary, DOI makes use of diffuse light to probe deep tissues by tak-
ing advantage of low tissue absorption within the NIR wavelength range 
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Figure 12.7 (a)	In	vivo	tissue	absorption	spectrum	(solid	line)	from	normal	breast	
tissue.	(b)	Tissue	water	spectrum	after	subtracting	other	tissue	components’	spe-
ctra	(solid	line).	(c)	Normalized	tissue	water	spectrum	at	935–998	nm	(solid	line).	
The	pure	water	spectrum	at	36	°C	is	shown	in	each	panel	(a,	b	and	c,	dashed	lines)	
for	 comparison.	 (Reproduced	 with	 permission	 from	 Ref.	 67,	 ©	 2008	 Institute	 of	
Optics.)

Figure 12.8 Box	plots	of	BWI	of	malignant	(1.96	±	0.3)	and	normal	(2.77	±	0.47)	
breast	tissues	for	18	subjects.	Tumor	and	normal	tissues	were	differentiated	with	
statistical	significance	with	p	<	0.0001	(Wilcoxon	ranked-sum	test).	(Reproduced	
with	permission	from	Ref.	67,	©	2008	Institute	of	Optics.)

(650–900 nm). The optical measurements obtained can be used to calcu-
late optical properties, namely absorption and scattering, within tissues. 
This, in turn, can provide information about physiological parameters 
within tissues (such as oxy- and deoxy- haemoglobin, water, and lipid) 
that can be utilized in the detection, characterization, and therapy monitor-
ing of breast cancer.

Currently, the future of DOI is bright. Many excellent research 
groups worldwide are actively developing new technologies, and we are  
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witnessing fast translation from table-top experiments to clinical trials. 
We believe that it will not be too long before inexpensive and safe optical 
mammography systems are widely introduced in all the breast clinics.
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13.1 Introduction

Cytopathology is a branch of pathology that studies and diagnoses diseases 
on the cellular level using samples of free cells or tissue fragments. The tis-
sue fragments can be collected by exfoliation or by intervention techniques 
such as fine-needle aspiration (FNA). FNA is widely used for evaluation 
of a variety of breast abnormalities. It has been shown in numerous studies 
to be a good screening tool for diagnosis of breast lumps in symptomatic 
patients. Microscopic appearance of the nuclei, cells, cellular arrangement 
in clusters, and background elements in the smeared aspirates provide clues 
for evaluation and diagnosis. Several visual clues (features) relevant for the 
diagnosis of benign or malignant conditions of the breast abnormality as 
obtained via microscope have been reported in the literature and are used 
by experts in the decision-making process. A list of eighteen such adequate 
cytological features is given in Table 13.1. The list was prepared with the 
help of scholarly texts in clinical pathology.1–5 The list is subdivided in the 
four categories (1) aggregate properties, (2) background properties, (3) 
nuclear properties, and (4) cellular properties according to the elements 
whose features are used as evidence for diagnosis.

Currently, cytological diagnosis of the breast lump is based on the sub-
jective assessment of the microscopic appearance of the aspirate. As a 
result, difficulties in maintaining consistency and reproducibility are inev-
itable. A review of the literature2,3 served to highlight the following limita-
tions of fine-needle aspiration cytology (FNAC) leading to equivocal diag-
nosis: (1) inadequate or nonrepresentative sampling, and (2) the overlap of 
cytological features of benign and malignant lesions due to the nature of 
the lesion. Image analysis of breast FNAC slides by computer vision tech-
niques is helpful in overcoming some of these limitations.5 Incorporating 
the practice of FNA with an expert system embedded in a microscope aids 
pathologists/cytopathologists (experts) in a speedy and accurate assess-
ment of the slides through the use of quantitative and objective feature 
assessment for diagnostic decision making.
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Computer vision techniques that use histological or cytological images 
for computer-aided cancer diagnosis have been in development for some 
time now.6 These approaches use image processing, image segmentation, 
feature quantification, and pattern recognition to perform quantitative and 
objective feature assessment. These approaches essentially try to mimic 
an expert’s bottom-up manner of diagnostic reasoning from evidence to 
hypothesis.7 

Development of such computer vision systems entails the following:

● identification of diagnostic procedures and features used by experts;
● selection of aspects that are well suited to computer-aided analysis;
● selection/development of feature enhancement, delineation, and extrac-

tion techniques;
● statistical analysis of feature data and feature selection; and
● selection/development of pattern-recognition techniques for decision 

making.

There exists differential preference for clinico-pathological pro-
cedures and discordance among experts in morphometric diagnosis. 
Experts either do not use the same criteria for diagnosis or apply the 

Table 13.1 	List	of	cytological	features	used	in	breast	
FNAC	diagnosis.

Aggregate properties

 1.
 2.
 3.
 4.
 5.

Overall cell yield
Presence or absence of bimodal pattern of aggregates of epithelial cells
Size and shape of aggregates
Cohesiveness of epithelial cells in the aggregates
Presence/absence or count of myoepithelial cell nuclei in aggregates

Background properties

 6.
 7.
 8.

Presence/absence of bare nuclei
Presence/absence of single cells with intact cytoplasm
Nature of background

Nuclear properties 

 9.
10.
11.
12.
13.
14.
15.

Nuclear size
Nuclear shape
Nuclear membrane
Nuclear chromatin
Prominence of nucleoli
Number of nucleoli
Mitosis

Cellular properties

16.
17.
18.

Cellular pleomorphism
Volume and color of cytoplasm
Nucleus–cytoplasmic ratio
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same criteria differently from one another.8 Alternatively, it has been 
observed that, globally, experts see the same, but, locally, they see differ-
ent things and with different levels of appreciation.9 Also, for individual 
experts, reliance on explicit features is dynamic.10 Thus, it is necessary to 
develop a meticulous and methodical understanding of the practices and 
perceptions of domain experts to identify useful and necessary features for  
computer-aided analysis.

Here we present commonly perceived significance levels for cyto-
logical features used in breast FNAC obtained through an India-wide 
survey of experts’ opinions. This information can be used for selecting 
the cytological features for computer-aided analysis, selecting feature 
extraction and quantification techniques, and for combining experts’ 
acumen with learning algorithms to improve their performance. Fur-
ther, we also present the feature ranking and selection analysis of the 
Wisconsin Diagnostic Breast Cancer (WDBC) database.5 Findings of 
this analysis are discussed in the context of the survey findings to high-
light the fact that the class discrimination ability of cytological crite-
ria is different from the class discrimination ability of the objective/ 
mathematical features used to quantify and represent the state of cytologi-
cal features. Findings of this analysis are also discussed in the context of 
the need for selection of optimal feature-extraction techniques. 

13.2  Commonly Perceived Significance of Cytological 
Features in Breast FNAC

Essentially, there exists a difference of opinion among experts on the abso-
lute and relative diagnostic significance of the cytological features in breast 
lesion diagnosis. This work has been initiated with the belief that the com-
monly perceived diagnostic significance of a cytological feature represents 
its true ability in discriminating between benign and malignant conditions 
of a breast lump. This ability of the cytological criteria is different from 
class discrimination ability of the objective/mathematical features used to 
quantify and represent the state of cytological features. Linguistic features 
visually identified by a domain expert can each be quantified using multi-
ple techniques. Every method of quantification has a different aptitude to 
represent underlying physical evidence11 and thus has different discrimina-
tory power.12 

To identify the commonly perceived diagnostic significance of cyto-
logical features for diagnosis of benign or malignant condition of breast 
lesions, an India-wide questionnaire-based survey of cytopathologists’ 
opinions was conducted. The findings of this survey are presented here. 
The following subsection describes the methodology of the survey.  
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Subsection 13.2.2 explains how individual opinions of the participants 
were combined and presents the survey findings. 

13.2.1 Overview of the survey 

As mentioned earlier, identification of the commonly perceived diagnos-
tic significance of cytological features was the primary goal of the survey; 
however, the survey also served to identify the common clinico-pathological 
practices followed by experts. Accordingly, the survey questionnaire was 
prepared with help from scholarly texts in clinical pathology.1–4 To com-
plement the set goals, participants were asked to specify the importance 
level they attach to each cytological feature during diagnosis of benign 
or malignant conditions. For each cytological feature, the participants 
selected one of the five predefined linguistic significance levels defined 
as not significant (0), slightly significant (1), moderately significant (2), 
significant (3), and most significant (4). Here numerical values in the 
brackets represent corresponding numerical values used to combine indi-
vidual opinions in finding common perception. The sample question in 
the questionnaire is given in Fig. 13.1, where the experts specified the 
importance (significance) they attach to the nuclear size along with the 
microscope objective magnification they use for observation. The infor-
mation on objective magnifications used can help design the imaging pro-
tocol for computer-aided analysis. 

We received responses from 51 cytopathologists/pathologists from 
renowned medical education institutes (52%), oncological tertiary care 
centers (28%), and primary care centers/private diagnostic pathology labo-
ratories (20%) spread over 13 states (marked in pink in Fig. 13.2) of India. 
Individual reporting experiences of the participants are in the range of 2 to 
41 years with an average reporting experience of 17 years. An overview of 
the survey is provided in Fig. 13.3. 

Figure 13.1 Sample	question	in	the	survey.
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Figure 13.2 Map	of	India	with	states	from	which	responses	were	received	highlighted	
in	pink.

13.2.2 Opinion of the experts

Participants’ percentage opinion on significance levels of the cytological 
features is given in Fig. 13.4. Though there exists a considerable degree 
of agreement among the participants on diagnostic significance of most of 
the cytological criteria, there exists varying levels of concordance among 
the experts for different cytological features. For four criteria, namely, size 
and shape of aggregates, nature of background, number of nucleoli, and 
volume and color of cytoplasm, participants exhibit a relatively higher 
degree of disagreement.
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Objective:
• Identify common practices and commonly perceived significance of the

cytological features in breast FNAC diagnosis

Study Selection:
• Questionnaire-based survey of experts’ opinions

Data Sources:
• Questionnaire preparation

Questionnaire prepared with help of scholarly texts in cytopathology1–4

Questions on clinico-cytopathological procedures such as sample collection
and processing techniques used, type of stains used, and additional
investigations performed routinely in breast FNAC
Participants requested to specify the importance level they attach to each
cytological feature during diagnosis of benign or malignant conditions

• Expert opinions
51 experts from 13 states of India

Medical education institutes (52%)
Oncological tertiary care centers (28%)
Primary care centers/private diagnostic pathology laboratories (20%)
Average reporting experience: 17 years with a range of 2 to 17 years

Common practices Individual opinion on diagnostic 
significance of the cytological 

features

Protocol for imaging and image 
analysis by expert system

Commonly perceived diagnostic
significance of the cytological 

features

Mean shift technique
for combining
individual opinions

Figure 13.3 Overview	of	 the	survey.	Details	of	 the	survey	and	 its	findings	are	
available	in	Ref.	17.

Compilation of the responses to identify the commonly perceived rela-
tive significance of the cytological features has been performed by use of a 
mean shift technique.13 The process treats each participant’s opinion on 18 
cytological features as a vector (opinion vector (X i)) and iteratively com-
putes the weighted mean significance vector (X j). Each opinion is weighted 

SRBK002-C13_361-382.indd   367 1/21/13   4:46 PM



368	 Chapter	13

F
ig

u
re

 1
3.

4 
P

er
ce

nt
ag

e	
op

in
io

n	
of

	th
e	

pa
rt

ic
ip

an
ts

	o
n

	s
ig

ni
fic

an
ce

	le
ve

ls
	o

f	d
iff

er
en

t	c
yt

ol
og

ic
al

	fe
at

ur
es

.

SRBK002-C13_361-382.indd   368 1/21/13   4:46 PM



Computer	Vision	Theoretic	Approach	for	Breast	Cancer	Diagnosis	.	.	.	 369

as a function [K (•)] of the distance of participant’s opinion vector and 
the mean significance vector, such that highly discordant and inconsistent 
opinions receive smaller weights than receive the consistent opinions. The 
mean shift technique as applied is represented in Algorithm 13.1. 

The mean significance scores obtained by the cytological features are 
presented in Table 13.2. The plot of significance values of features is given 
in Fig. 13.5. The x axis of the plot presents the features arranged in nonin-
creasing order of their mean significance score, starting from the feature 
having the highest mean significance score. The y axis shows the corre-
sponding mean significance scores for the features. From overall mean 
significance scores, it can be observed that nuclear chromatin is the only 
most-significant feature; nature of background and volume and color of 
cytoplasm are a moderately significant category; whereas, all other cyto-
logical features belong to the significant category.

From overall mean significance scores it can be observed that nuclear 
chromatin is the only most-significant feature; nature of background and 
volume and color of cytoplasm are in the moderately significant category, 
while all other cytological features belong in the significant category. We 
believe that features ranked significant and most-significant must be used 
in a computer vision technique to match experts’ skills.

Input: Set of N opinion vectors {Xi}
Output: Weighted mean of the expert opinions {Xterm}
Initialization: Obtain initial estimate X0 as

X X0
1

1=
=∑N ii N, ,

do:
Compute weight for individual opinions using the kernel  
function, defined as

K( ) ,X X
X X

i
j i

j

− =
− −











−

−
1

1
2

exp
α

X
X X X

X X
j i

j
i N i

i
j

i N

=
−

−

−
=

−
=

∑
∑

K( )

K( )
,,

,

1
1

1
1

,

,

while (Xj ≠ Xj−1)
Xterm = Xj

Algorithm 13.1 Mean	shift	technique.
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13.3  Analysis of the Wisconsin Diagnostic Breast 
Cancer (WDBC) Database

Wisconsin Diagnostic Breast Cancer (WDBC)5 is an open-source database 
of features computed from the digitized images of FNA of the breast mass. 
These attributes describe characteristics of the cell nuclei present in an 
image. Ten real-valued attributes are computed for manually selected cell 
nuclei and combined to compute the mean, standard error, and “worst” 
or largest (mean of the three largest values) of these nuclear attributes 
for each image. Thus, a set of 30 real-valued attributes is formed for each 
image. The data are divided in two classes, namely, benign and malignant 
with 357 and 212 instances respectively. 

The mapping of WDBC attributes used to describe nuclear character-
istics and the cytological nuclear features that are quantified by them are 
given in Table 13.3. This mapping is as reported by developers of the data-
base. We believe that derived features such as standard error of area implic-
itly quantify a larger number of cytological features. A detailed description 
of the feature extraction methods are detailed by Wolberg et al.5

Here it can be observed that the experts use far more cytological features for 
diagnosis than those quantified in the WDBC database. Some of the excluded 
features are considered diagnostically more significant than those quantified. 

Table 13.2 Mean	significance	scores	obtained	by	the	cytological	features.

Cytological feature
Mean significance 

score Rank

Overall cell yield 2.7822 14

Presence or absence of bimodal pattern of aggregates of  
epithelial cells

3.068 9

Size and shape of aggregates 2.5261 16

Cohesiveness of epithelial cells in the aggregates 3.0864 8

Presence/absence or count of myoepithelial cell nuclei in aggregates 2.9265 13

Presence or absence of bare nuclei 3.2789 4

Presence or absence of single cells with intact cytoplasm 2.7807 15

Nature of background 2.4477 17

Nuclear size 2.9533 12

Nuclear shape 3.0526 10

Nuclear membrane 3.1789 7

Nuclear chromatin 3.548 1

Prominence of nucleoli 3.2388 5

Number of nucleoli 2.9731 11

Mitosis 3.2228 6

Cellular pleomorphism 3.4159 3

Volume and color of cytoplasm 2.3729 18

Nucleus/cytoplasmic ratio 3.4475 2
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In Section 13.3.1 we perform ranking and selection analysis of the data-
base features. Here, ranking of the attributes is based on their class discrim-
ination ability, which is evaluated using feature usability index (FUI),14 
whereas, classifier-dependent feature selection using a ranked feature set 
is performed by the wrapper method15 to identify an optimal feature set 
that maximizes the classification accuracy. The block diagrammatic rep-
resentation of the feature ranking and selection procedure applied is given 
in Fig. 13.6, and the ensuing subsections describe the feature ranking and 
selection procedure in detail.

Table 13.3 Mapping	between	WDBC	features	and	cytological	features.

WDBC attribute

Feature number
Corresponding cytological 

featureMean Standard error Worst

Radius 1 11 21 Nuclear size

Texture 2 12 22 Nuclear chromatin

Perimeter 3 13 23 Nuclear size, nuclear shape

Area 4 14 24 Nuclear size

Smoothness 5 15 25 Nuclear shape

Compactness 6 16 26 Nuclear shape

Concavity 7 17 27 Nuclear shape

Concave points 8 18 28 Nuclear shape

Symmetry 9 19 29 Nuclear shape

Fractal dimension 10 20 30 Nuclear shape

Data

Feature usability index computation and ranking

Class specificity

Error in decision makingHomogeneity

Feature selection by wrapper method

Optimal feature subset

Figure 13.6 Block	diagrammatic	representation	of	feature	ranking	and	selection	
procedure.
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13.3.1 Ranking of features using feature usability index

Given an object, its feature is expressed in an attribute vector  
Y= [y(1), y(2), . . . , y(d), . . . , y(D)], where each element y(d) of Y is an analytical 
value contributed by the dth feature extraction technique F (d). We assume 
that the N samples of Y are Y1, Y2, . . . ,YN and their corresponding class 
labels are C1, C2, . . . , CN. These class labels are finite, and Cn ∈{ω1, ω2, . . . , ωK} 
for a K-class classification problem. Then FUI evaluates the classification 
efficacy of an attribute F (d) in a classification problem and is computed 
using measures of homogeneity (O (d)), class specificity (S (d)), and error in 
decision making (R (d)). The FUI of the d th feature is thus expressed as 

 f
S

O R
d

d

d d
( )

( )

( ) ( )
.=

×
 (13.1)

The measures of homogeneity, class specificity, and error in decision mak-
ing are explained further in the following subsections. 

13.3.1.1 Homogeneity

Homogeneity measures the density of outlying observations in the K 
classes. For the dth feature, it is computed as

 O
card s

card s

d n
d

n
d

( )
.

.
=

−( ) >{ }
−( ) ≤

( )

( )

1 0 01

1 0 01{{ } = ⋅ ⋅ ⋅n N1 2, , , ,  (13.2)

where card {•} denotes the set cardinality, and sn = a(d)/|an
(d )| is the one-

outlier scatter ratio of a sample, with |a(d )| being the internal scatter of 
samples belonging to each of the K classes, and |an

(d )| being the analogous 
quantity with the nth observation omitted.

13.3.1.2 Class specificity

Class specificity of observations for a particular feature indicates its 
discrimination potential. It is generally associated with a high value of 
between class scatter and a low value of within class scatter. Class specifi-
city of a feature for a multiclass problem is expressed as the minimum of 
the ratio of between class scatter to within class scatter of the observations 
analyzed over all classes. For the dth feature, it is expressed as

       S d
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where (Cj, Ck) ∈{ω1,ω2, . . . , ωk}, and µ(d)
ck

 and σ(d)
ck

 are the mean and stand-
ard deviation, respectively, of the observations corresponding to the d-th  
feature having class label Ck.

13.3.1.3 Error in decision making

Error in decision making generally arises due to overlap in the a posteriori 
decision boundary. Here, class overlap in the Bayesian a posteriori deci-
sion boundary to the strength of the decision making that involves the d-th 
feature is expressed as a risk factor and is quantified accordingly:

 R
P C y dy

P C y dy
d

k
d d

y

k
d d

d
( )

( ) ( )

( ) (

( )

=
( )
( )

∫ min

max
))

( )

, , , ,

y d

k K
∫

= ⋅ ⋅ ⋅1 2  (13.4)

where P C y P C yk
d

C
k

d

k K
min

, , ,
( ) min ( ( )| |( ) ( )=

∈{ }ω ω ω1 2

)),  

P C y P C yk
d

C
k

d

k K
max

, , ,
( ) max ( ( )| |( ) ( )=

∈{ }ω ω ω1 2

)), and P(Ck| y
(d)) is the Bayesian

a posteriori probability of belongingness of an observation y(d) to a class 
with label Ck ∈{ω1, ω2, . . . , ωK}.

FUI as defined in Eq. (13.1) has an expression bound of [0; ∞), with 
minimum corresponding to the worst feature and vice versa. Here we com-
pute FUI for the features in the WDBC database and rank them in nonin-
creasing order of their FUI value to obtain an ordered feature set { }( )Fordered

d . 
The ranked features are accordingly available based on their classification 
efficacy (Table 13.4). A plot illustrating FUI for the features is given in Fig. 
13.7. The x axis of the plot presents the features arranged in nonincreasing 

Table 13.4 Ranks	of	the	WDBC	attributes	in	an	ordered	feature	set.	The	attribute	
names	can	be	retrieved	from	Table	13.3.

WDBC attribute 
number Rank

WDBC attribute 
number Rank

WDBC attribute 
number Rank

1 16 11 13 21 9

2 5 12 28 22 6

3 11 13 15 23 7

4 8 14 4 24 3

5 1 15 27 25 22

6 21 16 26 26 19

7 17 17 14 27 18

8 12 18 10 28 2

9 25 19 30 29 20

10 29 20 24 30 23
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order of their FUI values and starting from the best ranked feature. The y 
axis shows the corresponding FUI value.

At this point, comparing the ranks of the attributes in the WDBC data-
base to the ranks of the corresponding cytological features in the experts’ 
opinion, an evident mismatch between the ranks of the features can be 
observed. Also, of the multiple feature extraction techniques used to quan-
tify a cytological characteristic, each technique results in different FUI 
values and secures considerably different ranks.

13.3.2 Feature selection

The wrapper model of optimal feature subset selection presented here is 
specific to the classifier used. This method includes subset generation by 
sequential forward selection from the ordered feature set { }( )Fordered

d  and 
classifier accuracy evaluation by experimentation. The sequential forward 
selection procedure assumes that, with an ordered feature set as an input, 
the classification accuracy levels achieved increase monotonically to reach 
the global maxima, and any further additions to the subset deteriorate the 
classifier performance Algorithm 13.2 illustrates the wrapper model used 
in this application.

Here, experimentation to estimate classification accuracy for a subset 
of features is based on an exhaustive experimentation strategy. In order 
to avoid experimental bias in randomized trials, multiple experiments are 
conducted, with randomly chosen training and testing samples. One trial 
consists of 1,000 randomized experiments performed in order to avoid 

Input: Ordered feature set { }( )Fordered
d  with D features

Output: Optimal feature subset {G(d)} specific to a classifier 
Initialization: Empty set {G(d)}, A0 = 0 and k = 1; 
do

Shift kth top element of { }( )Fordered
d

 to {G(d)}; 

Compute the classifier accuracy Ak with the features in {G(d)};
k = k + 1;

while (Ak ≥ Ak−1 and k ≤ D)
if (k ≤ D) then

Remove (k−1)th element from {G(d)};

end
/* {G(d)} is the classifier specific optimal subset */

Algorithm 13.2 Sequential	 forward	 selection	 procedure	 of	 optimal	 feature	
subset	selection.
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experimental bias. Then the expected accuracy with a feature subset for 
a particular classifier is the mean of the accuracy obtained from all of 
the experiments. Here we present the findings of our experiments con-
ducted with naïve Bayesian classifier (NBC)16 and support vector machine 
(SVM)16 with a radial basis function as kernel. The mean accuracies 
obtained for each candidate subset are plotted in Fig. 13.8. The x axis of 
the plot presents the constituent features in a subset formed by incremental 
inclusion of ranked features starting from the best ranked feature. The y 
axis shows the corresponding mean accuracy achieved by the classifiers in 
the randomized experiments. 

It can be observed that the accuracy levels achieved increase monotoni-
cally for the first K iterations to reach the global maxima, and any further 
additions to the subset give lower accuracy. In the case of the NBC, the 
global maxima is reached with six top-ranked features in the subset. Thus, 
they form the optimal subset for the classifier. Similarly, for SVM, the 
top seven features form the optimal subset. The list of features and cor-
responding accuracies achieved are reported in Table 13.5. 

13.4 Conclusions

We presented the commonly perceived significance of 18 cytological 
features used in breast FNAC evaluation. We believe that commonly  
perceived diagnostic significance of a cytological feature represents its 
true ability in discriminating benign and malignant condition of a breast 
lump. This ability of the cytological criteria is different from the class dis-
crimination ability of the objective/mathematical features used to quantify 
and represent the state of cytological features. Currently available data-
bases use a much smaller number of visual cues for diagnosis than those 
used by experts. However, here it is important to note that the derived 
features such as standard error of the nuclear size and shape features effec-
tively quantify the cytological feature; cellular pleomorphism and WDBC 
attributes such as smoothness and concave points effectively quantify the 

Table 13.5 Optimal	subsets	and	corresponding	accuracies	for	classifiers.

Naïve Bayesian classifier Support vector machine

Features forming the optimal 
subset

Mean smoothness 
Worst concave points 
Worst area 
Standard error of area 
Mean texture 
Worst texture

Mean smoothness
Worst concave points
Worst area
Standard error of area 
Mean texture 
Worst texture 
Worst perimeter

Corresponding accuracy 96.2% 96.5%
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Mean accuracy (x100%) over 1000 randomized experiments
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state of nuclear membrane rather than the overall shape of the nucleus. 
The commonly perceived significance of the features can act as a reference 
point, while selection of cytological features for computer-aided analysis 
and those features ranked significant and most-significant must be used by 
the computer vision technique to match an expert’s skills.

Ranking of the WDBC features according to their FUI scores shows that, 
of the multiple-feature-extraction techniques used to quantify cytological 
characteristics, each one results in a different FUI value and secures con-
siderably different ranks in the ordered feature set. This verifies that every 
method and technique of feature quantification has a different aptitude for 
representing underlying physical evidence and thus different discrimina-
tory power. Results of the experiments conducted on classifier depend-
ant feature selection show that WDBC attributes quantifying nuclear 
membrane, nuclear size, pleomorphism, and nuclear chromatin form the 
optimal subset for both NBC and SVM. Attributes such as compactness, 
symmetry, and fractal dimension along with their derivative features that 
quantify shape of the nucleus are not members of the optimal subsets that 
maximize classifier accuracy, rendering cytological shape features weakly 
preferred in the decision-making process. Thus, in order to maximize 
translation of a cytological features’ class discrimination ability to quanti-
fied features, special attention should be paid while selecting feature quan-
tification techniques and methods. Along with reducing dimensionality of 
the data, feature ranking and selection techniques discussed here can also 
be used in selection of optimal feature extraction techniques. This has been 
demonstrated by Sheet et al.11 
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14.1 Introduction

Breast surgery maintains a central role in achieving local disease control 
in the management of breast cancer. After the introduction of radical mas-
tectomy as a standard treatment technique, there has been a continuing 
shift toward decreasing the amount of tissue removed during surgery, espe-
cially for the treatment of small cancers. Breast conservative treatment has 
been increasingly used because it has demonstrated survival rates similar 
to those of the more radical treatments. These treatments also have the 
added advantage of resulting in a more-natural appearing breast after cos-
metic surgery. In fact, the current standard treatment for T1N0M0 tumors 
is lumpectomy followed by radiation therapy.1,2

Over the past decade, a number of new, minimally invasive image-
guided techniques have been developed that allow the insertion of needle-
shaped devices into the tumor to completely and percutaneously destroy, 
or ablate, the cells using cold or heat. These techniques have demonstrated 
their efficacy and are being routinely used in the treatment of diverse 
tumors, especially in liver, kidney, lung, or bone.3–8

383
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Ablative techniques allow parenchyma-sparing treatment of tumors. In addi-
tion, in patients who are not candidates for surgery, percutaneous ablation allows 
local treatment with lower morbidity and mortality. Therefore, this approach 
could increase the number of patients who are candidates for treatment. Abla-
tive techniques may be considered alone or in conjunction with resection. Radi-
ofrequency (RF) ablation is the most widely used of these techniques.3–8

14.2 Radiofrequency

14.2.1 Concept

RF ablation induces a thermal injury to the tumor through electromagnetic 
energy deposition. In this context, the term radiofrequency does not refer 
to an emitted wave but to an alternating electric current that oscillates in 
the range of high frequency (200–1,200 kHz). The patient becomes a part 
of an electric circuit that includes a generator, grounding pads attached 
to the skin of the patient (usually on the thighs), and an electrode needle 
inserted into the tumor. When the generator is switched on, an alternat-
ing electric field is created within the tissue of the patient. Following the 
changes in direction of alternating electric current, the ions in the tissue 
that surrounds the electrode are alternately attracted and rejected. This 
ionic agitation creates friction within the surrounding tissue and provokes 
heating around the electrode.3

The thermal damage caused by RF depends both on the tissue temperature 
achieved and the duration of the heating. Heating of tissue at 50–55 °C for 
4–6 min produces irreversible cellular damage. At temperatures between 
60 and 100 °C, tissue immediately coagulates, causing irreversible dam-
age to mitochondrial and cytosolic enzymes of the cells. At more than 
100–110 °C, tissue vaporizes and carbonizes.3 

To ensure destruction of the tumor, it is necessary to submit the whole 
tumor to cytotoxic temperatures for a period of time. A minimum may be to 
maintain a 50–100 °C temperature throughout the entire tumor for at least 
6 min. Given the relatively slow thermal conduction from the electrode 
through the tissues, usually the application should be maintained during a 
minimum of 12–30 min, depending of the size of the tumor to be treated.3 

The goal of the procedure is to create a necrotic region that includes the 
tumor and a safety margin surrounding the target. Most authors recom-
mend a safety margin of 1 cm beyond the boundaries of the tumor.3 How-
ever, this is a controversial issue. 

14.2.2 Technical issues

The main problems with RF ablation are the relatively slow thermal con-
duction from the electrode surface through the tissues and the need to 
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avoid carbonization and vaporization around the tip of the electrode due 
to excessive heating. Both carbonized tissue and vapor act as insulators, 
blocking the transmission of the electric current. 

Two strategies have been used to increase the volume of ablation: pre-
venting overheating of the surrounding tissue, and increasing the number 
of active heads for treatment. Application of these strategies has resulted 
in different kinds of electrodes, as listed below:

● Internally cooled electrodes: the tip of the electrode is cooled by an 
inner circuit of circulating fluid to minimize carbonization around the 
needle tip. In this way, the transmission of the electric current is not 
blocked, and a larger volume of tissue can be ablated.   

● Multiple electrodes: several electrodes (usually up to three) work simul-
taneously to increase the total volume of ablation.  

● Multitined expandable electrodes: these electrodes have several prongs 
that are deployed once the tip of the needle is in the tumor. The ablation 
volumes of each of these prongs combine to produce a larger total abla-
tion volume. Some of these modified electrodes can ablate an area over 
7 cm in diameter. 

● Multitined perfused electrode: in this kind of electrode, a small volume 
of a saline solution is continuously injected through the tip into the sur-
rounding tissues during the ablation. This fluid increases the conductiv-
ity of the treated tissue, allowing the RF current to penetrate farther into 
the tissue, increasing tissue heating and necrosis.

Inadequate coagulation can also be due to the cooling effect of blood 
flow that can reduce the extent of thermal damage (the “heat sink effect”). 

14.3 Radiofrequency Ablation in the Breast

During the last decade a number of articles have been published describ-
ing studies on the treatment of breast cancer with RF ablation. Most of 
these studies were performed using ultrasound (US) as the technique of 
guidance.9–19

The first report of the use of RF ablation in breast was made by  
Jeffrey et al.9 It was a feasibility study in which the authors treated a 
small series of five patients scheduled for surgical excision. All of the 
tumors were locally advanced and larger than 5 cm, and some of them 
underwent preoperative chemotherapy. After performing RF ablation on 
a part of the tumors, the patients underwent standard surgical treatment, 
and the specimens were studied to detect viable tumor cells in the areas 
of RF treatment. Although nonviable tumors were found in the areas of 
treatment, there was a focus of viable cells in the treated area in one of 
the tumors.9 
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Following this study, several studies were performed in patients with 
tumors scheduled for surgical excision, but this time most of them included 
only small tumors (<3 cm in diameter), and the aim was a complete ablation 
of the tumor cells. In some of these studies, those patients with a suspicion 
of multifocal disease or intraductal spreading were excluded. The results 
have been encouraging with success rates ranging from 63% to 100%.10–16   

Only a few studies have been carried out without removing the ablated 
tissue. Two of them were reports of small series of cases,17,18 but Oura 
et al.19 published a series of 52 patients with localized breast cancers below 
2 cm in diameter treated with RF ablation in which no surgical treatment 
was performed after the ablation. Multifocal or multicentric tumors were 
carefully excluded using MRI. After a mean followup of 18 months, no 
recurrences were reported.19 These later results have been especially 
encouraging and have driven interest in the potential use of RF ablation in 
the management of breast cancer. 

14.4 Technique of Ablation 

In most of the studies published, RF ablation was performed under general 
anesthesia. However, sedation has also been used with excellent results.9–19 
Our own experience indicates that RF ablation can be performed under 
conscious sedation, especially in patients with high surgical risk. One of 
the groups initially performed the procedure using an intercostal block, 
but they found that the placement of the block was highly painful for most 
patients and finally stopped using it.12 

Several types of electrodes have been used for breast ablations, includ-
ing internally cooled electrodes and multitined expandable electrodes. In 
an ex vivo study performed in breast and liver models, Quaranta et al.20 
found that cool-tip RF breast ablation assured better performance than 
multiprobe RF breast ablation in terms of temperature distribution and 
length of the procedure. However, they used multitined electrodes that 
were different from the electrodes used in the other studies of breast RF, 
and the potential effects of blood perfusion and body temperature were 
not considered in this study.20 No significant differences in performance 
between electrodes have been observed in the clinical setting.9–19

Some authors excluded the treatment of breast tumors that do not have a 
minimum distance of 1 cm from the skin and from the chest wall, to avoid 
thermal damage to these structures.12,13,16 However, some authors used the 
technique of hydrodissection, subcutaneously injecting a solution of 5% 
dextrose to insulate the skin and avoid thermal damage.19,21 We have also 
used this technique in two cases in which the tumor was located close to 
the skin with excellent results. The application of ice pads to the skin over 
the tumor is also helpful.
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Ultrasound is the imaging technique used to guide the placement of 
the electrodes in the tumors and to follow the process of ablation dur-
ing the procedure. The type of electrodes and the time of ablation should 
be selected to achieve the ablation of the tumor plus a margin of at least 
0.5 cm around the tumor. The protocol used to deliver energy to the elec-
trodes and the time of ablation was dependent on the type of electrodes and 
generators used. Every supplier of RF systems has its own recommended 
algorithm for ablation. The time of application of RF depends in some 
systems on the appearance of the “roll-off ” phenomena (a sudden increase 
in tissue impedance caused by desiccation and tissue coagulation around 
the electrode). In other systems, a specific time of ablation is settled before 
the procedure. A time of 15 min. is considered enough to achieve complete 
ablation of the tumor in most cases.9–21

During the ablation procedure several changes can be observed in the 
tumor on US. The echogenicity of the area under treatment progressively 
increases, and the boundaries of the tumor and the tumor itself became 
fuzzy and finally disappear (Figs. 14.1–14.3). At the end of the RF ablation 

Figure 14.1 83-year-old	woman	with	a	symptomatic	breast	carcinoma	in	the	left	
breast	detected	on	mammography	(arrow).	The	tumor	was	also	visible	on	US	and	
was	2	cm	in	diameter.
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Figure 14.2 Same	patient	as	in	Fig.	14.1.	A	multitined	RF	electrode	(arrow)	was	
placed	in	the	tumor	before	starting	the	application	of	RF.

Figure 14.3 Same	patient	as	in	Fig.	14.1.	After	a	few	minutes	of	RF	application,	
the	limits	of	the	tumor	appear	fuzzy,	and	the	echogenicity	in	the	area	of	treatment	
increases.
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(Fig. 14.4) the tumor is no longer distinguishable on US, and only a diffuse 
shadow can be seen in the treated area.9–21

In the publications in which the tumors were not removed after ablation, 
patient followups were performed every three months during the first year. 
This followup included clinical examination, breast imaging (US, mam-
mogram, and MRI in some cases), and also a percutaneous biopsy of the 
treated area in the first three months after RF ablation.17–19 Presence of the 
tumor on US or mammography and the evidence of contrast enhancement 
on MRI are used as signs of recurrence in these imaging techniques. 

14.5 Outcomes

The objective of the application of RF ablation in the treatment of breast 
tumors is to achieve local control of the disease. In this context, RF abla-
tion appears as a potential substitute for surgery. The studies performed 
in cases in which RF ablation was followed by surgical excision cast some 
doubt over the possibility of this substitution. In these trials, the surgical 
specimen showed that some residual tumor was present in 11% of the 
cases.22 The causes of the failures described include the presence of a cyst 

Figure 14.4 Same	patient	as	in	Fig.	14.1.	At	the	end	of	the	treatment	the	tumor	
is	no	 longer	visible	on	US,	and	a	diffuse	hyperechogenicity	occupies	 the	entire	
treated	area.
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within the treated area, suboptimal placement of the electrode, pretreat-
ment underestimation of the tumor extent, or distant tumors not detected 
prior to RF ablation but found on final histopathology.

However, some of the published trials were in fact preliminary or fea-
sibility studies in which the technique was not yet sufficiently tested and 
developed, and the conclusions obtained cannot be considered definitive. 
The real test for the performance of a technique is the clinical test in 
which several additional factors can play a role in the final outcome. As 
an example, the addition of radiotherapy has been demonstrated to sig-
nificantly improve local control after RF ablation.23 Also, experimental 
studies suggest that adjuvant chemotherapy may also increase the abla-
tion volume.24 

In the studies performed in patients in whom no surgical excision was 
performed after RF ablation, only 1.6% of the cases recurred.22 From our 
own experience, five cases also treated without posterior excision showed 
no relapse after ablation. Although this is an encouraging result, the length 
of the follow-up periods in the published studies is still too short to make 
definitive conclusions (Figs. 14.5–14.9).  

Figure 14.5 73-year-old	woman	with	a	ductal	 invasive	carcinoma	of	0.5	cm	 in	
diameter.	The	lesion	was	clearly	visible	on	mammography	(arrow).
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Figure 14.6 Same	patient	as	in	Fig.	14.5.	The	lesion	was	also	visible	on	US	(arrow).

Figure 14.7 Same	patient	as	in	Fig.	14.5.	One	month	after	RF	ablation	the	tumor	
is	not	visible,	and	the	area	of	treatment	appears	diffusely	hyperechoic.
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Figure 14.8 Same	patient	of	Fig.	14.5.	Six	months	after	RF	ablation,	a	focal	ill-
defined	radiodense	opacity	can	be	seen	on	mammograms	in	the	area	of	treatment.

Figure 14.9 Same	patient	of	Fig.	14.5.	Two	years	after	RF	ablation,	the	lesion	
has	completely	disappeared.
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Cosmetic results have been evaluated as well. Most of the patients had 
a cosmesis that rated as excellent after treatment. Mass formation because 
of electrocoagulation in the area of treatment and hyperpigmentation due 
to mild superficial skin burning have been reported in a small number of 
cases.16,19   

One of the problems with breast RF ablation is the current lack of stand-
ardization of the procedure. The electrode type has been described to affect 
the outcome of the ablation. Different types of electrodes, such as mul-
titined electrodes or internally cooled devices, produce different shapes 
of ablation.20 Ablation time is highly variable among the different studies 
published, depending mainly on the system of ablation used. More studies 
are needed to establish specific algorithms to be applied in each system of 
RF ablation in order to achieve the highest effectiveness.  

14.6 Complications

The complication rate is very low in breast RF ablation. Besides the recur-
rences and cosmetic changes discussed above, the more frequently described 
complications have been skin and muscle burns in tumors located close to 
the skin or to the chest wall.12,19,21 Injection of a solution of 5% dextrose 
between the skin and the tumor or the chest wall (Fig. 14.10) has proved 

Figure 14.10 Same	patient	as	in	Fig.	14.1.	A	needle	has	been	placed	between	
the	nodule	and	chest	wall	to	inject	a	solution	of	5%	dextrose.
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very effective in protecting the skin from thermal damage.21 Using ice pads 
in the skin over the ablated area is also useful in our own experience.

Another very infrequent complication is an infection in the area of abla-
tion, usually appearing as an abscess. This complication has been excep-
tionally described, and we have also observed a case among our patients.17 
A US-guided percutaneous drain can easily solve this problem (Fig. 14.11).

RF ablation procedures in other organs have had other complications 
such as bleeding, tumor seeding, or grounding pad burns. These particular 
complications have not been reported in breast RF ablation to date. The 
shortness of the procedure and the lack of solid organs in the surroundings 
make breast RF a very safe technique. 

14.7 Conclusions and Future Trends

Only a small number of studies have been published on breast RF ablation, 
and most of them have included the posterior surgical excision of the treated 
breast. The studies in which treated tumors have been submitted to the test 
of time are limited to three, and the number of patients treated and the 
length of the followup are too short yet. Thus, there is currently not enough 
evidence to support or even glimpse at a future change in the standard of 
care from surgery to RF ablation for local control in breast cancer. The 
time has come to conduct some clinical trials with long follow-up times to 
study the performance of RF in breast cancer treatment. 

However, the preliminary studies and especially the series of Oura et al. 
are encouraging concerning the possibility of a future inclusion of RF abla-
tion among the standard techniques of treatment of breast cancer.19 The future 
trends in breast cancer RF ablation will be dependent on the development of 

Figure 14.11 Subcutaneous	abscess	after	RF	ablation	of	a	breast	 tumor.	The	
lesion	was	successfully	treated	using	percutaneous	aspiration.

SRBK002-C14_383-398.indd   394 05/01/13   4:55 PM



Radiofrequency	Ablation	of	Breast	Neoplasms		 395

more specific RF algorithms for breast to improve the results, the setting of 
the specific indications for the technique, and the study of long-term results 
and survival. Currently, RF ablation appears as an excellent alternative to 
achieve local control in patients for whom surgery is not indicated or con-
traindicated, and especially in receptor-negative tumors.
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15.1 Introduction

Breast cancer is the most frequently occurring female cancer, and ranks 
second overall when cancers of both sexes are considered together. It is 
still the leading cause of mortality from cancer in women (the 411,000 
deaths reported annually represent 14% of all female deaths from cancer 
worldwide), and is the fifth cancer-related cause of death overall. There 
were an estimated 1.15 million new breast cancer cases in 2002, of which 
more than half were in industrialized countries—about 361,000 in Europe 
(27.3% of female cancers) and 230,000 in North America (31.3%).1 Inci-
dence rates are highest in the most developed areas, with the highest age-
standardized incidence being in North America (99.4 per 100,000).2 The 
prognosis from breast cancer is generally good, with the average survival 
rate in developed countries being 73% and in developing countries 57%. 
This favorable survival rate in the West is probably a consequence of the 
introduction of screening programs.

Radical mastectomy has been accepted as an appropriate therapy for 
breast cancer for a long time. This treatment involves extensive removal of 
surrounding healthy normal tissue, and often requires a skin graft. How-
ever, since the 1970s, an increased understanding of the natural history of 
breast cancer has led to the consequent use of preservative surgery in the 
treatment of small breast tumors. Today, breast conservation surgery, com-
bined with radiotherapy, chemotherapy, and/or hormonal therapy, is per-
formed increasingly often in patients with early-stage breast cancer. The 
move from mastectomy to breast conservation therapy has not affected the 
long-term survival rates of patients.3–6

In the context of this background, nonsurgical minimally invasive thera-
pies, such as radiofrequency,7,8 laser,9,10 microwave,11,12 cryoablation,13,14 
and high-intensity focused ultrasound (HIFU),15,16 have been explored with 
the intention of achieving equivalent efficacy to that achieved with breast 
conservation therapy, but with improved cosmesis. Using either a percu-
taneous or an extracorporeal approach, these therapies employ various 
kinds of physical energy to raise the temperature between 56 and 100 °C, 
or to drop the temperature to a freezing point in a targeted tumor, and thus 
induce complete destruction, instead of local tumor removal. Compared 
with a surgical procedure, the main advantages of the alternative is that it 
is less invasive with no incision, leaves less scarring, is less costly and less 
painful, and has shorter recovery time. These advantages result in an asso-
ciated reduction in mortality, morbidity, hospital stay length, and cost, and 
improved quality of life for cancer patients.17–22 In addition, they may lead 
to better cosmetic results since there is less disruption to the contour of the 
breast.23,24 The purpose of this chapter is to introduce recent developments 
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in the use of thermal ablation techniques for breast cancer, and to discuss 
their potential in this application.

15.2 Methods of Thermal Ablation Technique 

Local tumor destruction occurs while destructive energy is transmitted 
into a breast lesion, and all of the targeted breast cancer cells are com-
pletely destroyed. Minimally invasive thermal techniques rely on heat as 
the major mode of tumor ablation. These thermal techniques vary based 
on the processes involved in heat generation and its delivery. Due to dif-
ferences in energy sources, these techniques can be classified into five 
categories as follows: radiofrequency ablation (RFA), laser ablation (LA), 
microwave ablation (MWA), cryoablation, and high-intensity focused 
ultrasound (HIFU) ablation. Each method has unique characteristics for 
breast tissue ablation, according to the method of energy delivery through 
the skin, conduction of energy and length of time required, real-time imag-
ing for targeting/monitoring, and a variety of other specific issues. A sum-
mary comparing the varied methods is shown in Table 15.1.

15.2.1 Radiofrequency ablation (RFA)

RFA uses an electromagnetic energy source with frequencies less than  
900 kHz to generate heat.25 An electrode probe is percutaneously placed 
into a targeted breast cancer. Through the probe, transmission of low- 
voltage alternating current creates ionic agitation and heating.26 Ablation 
temperatures reach 50 to 100 °C, resulting in the coagulation necrosis of the 
targeted tumor.27 When the tissue surrounding the tip of the probe reaches 
more than 100 °C, it will vaporize and char. This decreases the absorption 
of the energy, and reduces the ablative size of the surrounding tissue.28 

15.2.2 Laser ablation (LA)

Laser ablation (LA) is also referred to as laser photocoagulation or laser 
interstitial thermal therapy.29 LA employs the energy of infrared light 
to produce heat, and ablates a targeted breast cancer. The light energy 
is transmitted through an optical fiber with a bare tip and thus induces 
coagulation necrosis of the targeted tumor while it diffuses through the 
target.30 The Nd-YAG (neodymium:yttrium aluminum garnet) laser with a 
wavelength of 1064 nm, and diode laser with shorter wavelengths 
(800–980 nm) are the most widely used devices for laser ablation of solid 
tumors. Both of these lasers can induce tissue photocoagulation at low 
power or vaporization and cavitation at a higher output. The extent of tis-
sue necrosis is typically limited, depending on the amount of deposited 
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energy. Thus, multiple fiber applicators are necessary in clinical applica-
tion for ablation of larger lesions.31

15.2.3 Microwave ablation (MWA)

MWA employs electromagnetic energy to ablate a targeted tumor via an 
electrode antenna placed within the lesion.32 While electromagnetic micro-
waves (900–3,000 kHz) travel through the tissues, they evoke agitation 
and vibration of ionic molecules such as water molecules within cells. The 
rapid motion of these ionic molecules causes frictional heating and raises 
the local temperature ranging from 60 to 100 °C in the cellular environ-
ment, resulting in tissue coagulation necrosis.33 Compared to RFA, MWA 
can cause a much larger zone of active heating with less effect on heat sink, 
and no tissue boiling or charring occurs during the ablation procedure.34 

15.2.4 Cryoablation

Cryoablation is an alternative technique that uses extreme cold to freeze 
a targeted tumor in the form of an “ice ball.” It is one of the oldest abla-
tion methods, with less peri- and postprocedural pain.35 Cryoablation has 
recently gained increasing interest due to the use of an argon-gas cryo-
therapy technique, which induces controlled tissue freezing by inserting 
a percutaneous applicator into a targeted lesion.36 A typical cryoablation 
session involves a freeze–thaw–freeze cycle. The argon and helium gases 
are alternately delivered to achieve extra- and intracellular ice-crystal for-
mation and tissue osmosis. This process causes protein denaturation, rup-
ture of cell membranes, and cellular death.37 

15.2.5 High-intensity focused ultrasound (HIFU) ablation

Of all of the minimally invasive therapies, HIFU ablation is the only non-
invasive approach proposed to date.38 It employs extracorporeal ultrasound 
energy to ablate a targeted tumor at depth, without any needle insertion, 
so there is no damage to the skin and overlying tissues. Ultrasound is a 
 high-frequency pressure wave. It can be brought to a tight focus at a dis-
tance from its source while propagating through tissues. If the concentrated 
energy is sufficient, energy absorption by the living tissue causes measur-
able temperature rises (56–100 °C), resulting in coagulation  necrosis of 
the tissue solely within the focal volume.39 In addition, nonthermal effects 
such as cavitation can induce local destruction of the tissue due to cavi-
tation-induced high pressures and temperatures.40 The ablation zone by a 
single exposure (1–3 sec) is ellipsoidal and small, approximately 1.5 × 15 
mm under normal exposure parameters at 1.6 MHz. By placing numerous 
individual ablation zones side by side, conformal confluent volumes of 
ablation of clinically relevant sizes can be achieved.41 While HIFU ablation 
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only takes 1–3 sec per exposure, the total time can be substantial, longer 
than other minimally invasive therapies. 

15.3 Scientific Principles of Thermal Ablation

The absorption of the physical energy delivered by the thermal ablation 
technique can result in a measurable temperature elevation in living tissue. 
The thermal effects on tissue are directly dependent on how heat interacts 
with tissue. When temperatures are increased to 42–45 °C for a period of 
30–60 min, cells become more subject to damage by other agents such 
as radiotherapy and chemotherapy.42 Increasing the temperature can obvi-
ously shorten the exposure time for therapeutic effects. If the temperature 
is increased a few degrees to 50–52 °C and maintained for 4–6 min, irre-
versible cellular damage is induced.43 Between 60 and 100 °C, instantane-
ous induction of protein coagulation occurs, resulting in the permanent 
destruction of key mitochondrial enzymes and nucleic acid–histone com-
plexes.44 Temperatures greater than 105 °C can cause tissue vaporization 
and carbonization.28

Thermal ablation is a different therapy from hyperthermia, which has 
been applied by physical heating technology to elevate targeted regions 
to temperatures in the 42–45 °C range. This “conventional” hyperthermia 
usually maintains uniform temperature distributions in a narrow therapeu-
tic range for a period of 30–60 min and is applied once or twice a week.45 
However, the temperature distributions induced in vivo are usually nonu-
niform because of tissue cooling by blood flow, and it is extremely dif-
ficult to avoid local cold spots that do not reach the required therapeutic 
temperature level.46 The efficacy of hyperthermia is highly dependent on 
the ability to localize and control the effective temperature distributions, 
which are often influenced by tissue heterogeneities and blood flow. As a 
result, hyperthermia cannot be used alone in its clinical application but can 
be implemented only as an adjuvant method in combination with either 
radiation therapy or chemotherapy in the treatment of malignant tumors.47 
Two types of mechanisms are commonly involved to explain the rationale 
for this combined therapy. Heat is a radiosensitizer that increases radiation 
damage and prevents subsequent repair. Hyperthermia can also produce 
biological effects on targeted tumors, including direct cellular toxicity, 
hypoxia, low pH, and indirect deprivation of blood perfusion in the tumor 
indirectly.48 

15.4 Mechanisms of Thermal Ablation

Thermal ablation can cause direct and indirect damage to a targeted 
tumor. Direct heat injury occurs during the period of heat deposition and 
is predominately determined by the total energy delivered to the targeted 
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tumor.49 Indirect heat injury usually occurs after thermal ablation, which 
produces a progression in tissue damage. It may involve a balance of sev-
eral factors including microvascular damage, cellular apoptosis, Kupffer 
cell activation, and altered cytokine release.50 Direct injury is generally 
better defined than the secondary indirect effects.

15.4.1 Direct thermal and nonthermal effects on tumors

The effects of thermal ablation on a targeted tumor are determined by 
increased temperatures, thermal energy deposited, rate of removal of heat, 
and the specific thermal sensitivity of the tissue. As the tissue temperature 
rises, the time required to achieve irreversible cellular damage decreases 
exponentially. At temperatures between 50 and 55 °C, cellular death occurs 
instantaneously in cell culture.51 Protein denaturation, membrane rupture, 
cell shrinkage, pyknosis and hyperchromasia occur ex vitro between 60 
and 100 °C, leading to immediate coagulation necrosis.52 Tissue vaporiza-
tion and boiling are superimposed on this process when the temperature is 
greater than 105 °C. Carbonization, charring, and smoke generation occur 
when the temperature is over 300 °C.53 

In addition, acoustic cavitation, one of mechanical effects induced by 
HIFU ablation, is the most important nonthermal mechanism for tissue 
disruption in the ultrasound field.54 The presence of small gaseous nuclei 
existing in subcellular organelles and fluid in tissue are the source of cavi-
tation, which can expand and contract under the influence of the acoustic 
pressure. During the collapse of bubbles, the acoustic pressure is more 
than several thousand pascals, and the temperatures reach several thou-
sand degrees Celsius, resulting in the local destruction of the tissue.55,56

Histological changes are evident in tumor tissue after thermal abla-
tion.57 In addition to HIFU ablation, four zones of cellular changes are 
described in the liver after thermal ablation. The four zones are as follows: 
application, central, transition, and reference tissue zones.58–60 The appli-
cation zone is where the heat source contacts the tissue. The central zone 
immediately surrounds the application zone and consists of damaged tis-
sue. The transition zone contains apparently undamaged tissue but exhibits 
signs of subacute hemorrhage. The reference zone refers to normal tissue 
surrounding the transition zone.

15.4.2 Thermal effects on tumor vasculature

Structural and functional changes are directly observed in tumor vasculature 
after thermal ablation. These changes are not as well described as thermal 
effects on the tissues, but they rely on varying temperatures. At temperatures 
between 40 and 42 °C, there is no significant change in tumor blood flow 
after a 30–60-min exposure.61 Beyond 42 to 44 °C, there is an irreversible 
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decrease in tumor blood flow, with vascular stasis and thrombosis, result-
ing in heat trapping and progressive tissue damage.62 When temperatures 
exceed 60 °C, immediate destruction of tumor microvasculature occurs.63 
These temperatures cut the blood supply to the tumor directly through the 
cauterization of the tumor feeder vessels, leading to deprivation of nutrition 
and oxygen. Thus, tissue destruction can be enhanced by the damage caused 
by thermal ablation to tumor blood vessels. 

15.4.3 Indirect effects on tumor 

Indirect injury is a secondary damage to tissue that progresses after the 
cessation of thermal ablation stimulus.50 It is based on histological eval-
uation of tissue damage at various time points after thermal ablation.59 
The full extent of the secondary tissue damage becomes evident one to 
seven days after thermal ablation, depending on the model and energy 
source used.64,65 The exact mechanism of this process is still unknown. 
However, it may represent a balance of several promoting and inhibiting 
mechanisms, including induction of apoptosis, Kupffer cell activation, and 
cytokine release. 

Cellular apoptosis may contribute to the progressive injury of tis-
sue after thermal ablation. It is well established that apoptosis increases 
in a temperature-dependent manner, and temperatures between 40 and  
45 °C cause inactivation of vital enzymes, thus initiating apoptosis of 
tumor cells.66,67 Thermal ablation creates a temperature gradient that pro-
gressively decreases away from the site of probe insertion. The induction 
of apoptosis at a distance from the heat source may potentially contribute 
to the progression of injury. An increased rate of apoptosis is observed in 
the liver 24 hours after microwave ablation.59 The stimulation of apopto-
sis may be directly induced by temperature elevations, alterations in tis-
sue microenvironment, and the release of various cytokines after thermal 
ablation. 

Kupffer cell activity may be one of the major factors involved in pro-
gressive injury after thermal ablation.50 Heat induces Kupffer cells to 
secrete IL-168 and tumor necrosis factor-α (TNF-α),69 which are known to 
have in vivo antitumor activity70 and to increase apoptosis in cancer cells.67 
Kupffer cells also induce the production of interferon, which augments the 
liver-associated natural killer cell activity.71 

Thermal ablation may induce both regional and systemic production of 
cytokines through activation of inflammatory cells. Compared with con-
trols, the circulating level of interferon-γ (IFN-γ) and vascular endothe-
lial growth factor levels markedly increase after RFA.72,73 The increased 
level of IL-1 and TNF-α is also observed after RFA.74 These cytokines may 
have direct cytotoxic effects such as inducing tumor endothelial injury and 
causing tumor cells to become more sensitive to heat-induced damage.75,76 
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However, contrasting results are obtained for the TNF-α level in two 
studies77,78 and IL-1 level in one study78 in which the IL-1 level remains 
unchanged after thermal ablation. 

Cryoablation may cause pathophysiological changes similar to those 
observed after endotoxin administration.79,80 These changes cause impor-
tant increases in capillary permeability in the lung, leading to the secondary 
injury.81 It is generally believed that all alterations may be associated with 
postcryosurgery activation in the lungs of the nuclear factor-κB and derived 
cytokines including TNF-α and macrophage inflammatory protein-2, and 
with an increase in serum thromboxane levels.82,83

15.5  Clinical Studies on Thermal Ablation  
of Breast Cancer

The final goal of breast cancer ablation is to demonstrate oncologic effi-
cacy and aesthetic outcomes without surgical lumpectomy. Two types 
of clinical studies have been performed to support thermal ablation as 
a local therapy of breast cancer. The first type of study is designed to 
investigate the ability of thermal ablation to adequately destroy a targeted 
breast cancer. These studies are phase I and II clinical trials for assessing 
the feasibility and safety of thermal ablation. Surgical excision usually 
follows the ablation, and histological techniques are used to confirm the 
completeness of ablation and the accurate identification of a unifocal can-
cer. Most forms of thermal ablation currently under use serve the purpose 
of this first category. 

The second type of clinical study focuses on identifying what hap-
pens to breast tumors after ablation in terms of survival benefit and local 
appearance. Ablated breast tissue remains as a necrotic tissue within the 
breast and then resorbs over time. Phase III clinical trials investigate the 
long-term survival and cosmetic outcomes of breast cancer patients who 
are treated with thermal ablation, in combination with chemotherapy, radi-
ation, endocrine, and biological therapies. Clinical studies for long-term 
follow-up results are still underway. 

15.5.1 Radiofrequency ablation

RFA has been widely used to ablate liver tumors for a long time in clinical 
practice. It is the most studied form of thermal ablation for breast cancer. 
The first study of RFA in human breast cancer was performed in 1999 by 
Jeffrey and colleagues.84 Five patients with locally advanced breast cancer 
underwent the ablation, immediately followed by mastectomy. Complete 
ablation was found in four of these patients, with the fifth showing a small 
area of viable cells lining a cyst. No complications related to RFA were 
observed in these patients. 
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Subsequently, several investigators reported feasibility studies of RFA 
for small breast cancer.85–92 The tumor was removed immediately or 1–4 
weeks after RF ablation, and tumor viability was evaluated on histologi-
cal examinations with hematoxylin and eosin (H&E) and nicotinamide 
adenine dinucleotide plus hydrogen (NADH) staining, a standard assess-
ment for tumor cell viability. The results of these studies are summarized 
in Table 15.2, and the rates of complete coagulation necrosis ranged from 
76 to 100% in this series. Thus, preliminary experiences of RFA for small 
breast cancer followed by surgical excision were encouraging.

Several pilot studies were performed to investigate the effectiveness of 
RFA for treatment of breast cancer in elderly patients, and all patients were 
followed up after the ablation, without any surgical excision. Susini and col-
leagues98 reported the first short-term result of RFA in three elderly patients 
with inoperable breast cancer, and no evidence of local recurrence was found 
by MRI and core-needle biopsy after 18 months of followup. RFA was also 
performed after hormone therapy in four elderly inoperable patients, and 
there was no breast recurrence in three patients who received breast radiation 
with a mean followup of 29.4 months.99 Oura and colleagues100 performed 
RFA, followed by breast radiation therapy in 52 patients, and reported no 
breast cancer recurrence with a mean followup of 15 months. 

Breast cosmetic results after RF ablation was excellent in 43 patients 
(83%), good in 5 (12%), and fair in 3 (6%). Brkljacic and colleagues101 
used RF ablation to treat six patients with inoperable breast cancer who 
were at high-risk for general anesthesia and surgery because of severely 
impaired cardiac function, advanced age, or associated diseases (acute 
myeloid leukemia, diabetes, hypertension, depression), and/or who 
refused surgery. They had core-biopsy-proven T1-2N0 M0, grade I or II, 
1.0–2.7-cm sized invasive ductal cancers. Four tumors measured greater 
than 2 cm, and three were 1.0–1.2 cm in diameter. Follow-up results showed 
that six tumors in five patients were completely ablated, without recurrence 
during followup (range: 9–49 months). One patient had a partial ablation, 
and died two months later from myocardial infarction. One patient with 
acute myeloid leukemia presented an infection of the treated breast after 
four months. She received postponed mastectomy with no signs of malig-
nancy in histopathology but finally died of leukemia 42 months after RFA. 
Thus, based on these early results, this technique is promising as a local 
treatment for small breast cancer. However, the follow-up periods are too 
short to allow investigation of tumor recurrence and survival rates, and 
the long-term cosmetic appearance of the ablated area of the breast is still 
unknown. Further studies, particularly in randomized clinical trials, are 
necessary to determine whether the use of RFA can produce local recur-
rence and survival rates equivalent to those obtainable with conventional 
breast conserving therapy.
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15.5.2 Laser ablation

Almost all of the studies on laser ablation were designed to investigate 
the safety and feasibility of LA for the treatment of breast cancer. Surgi-
cal resection was followed 0–70 days after LA. Either H&E staining, or 
H&E combined with NADH staining, was used to determine the extent of 
coagulation necrosis in the targeted tumor. The results of these studies are 
summarized in Table 15.3. Although four studies did not mention the com-
plete ablation rate, tissue damage was clearly seen in 90–100% of ablated 
breast cancer.102–105 Three studies showed that complete ablation of breast 
cancer was achieved in 13–70% of the patients with T1–T3 tumors.106–108 

Apart from small skin burns, a gaseous rupture of the tumor was noted 
as a serious complication of LA.104 The largest clinical experience with LA 
for breast cancer was reported by Dowlatshahi and colleagues.106 Fifty-
four patients were enrolled in this study, and the LA procedure was per-
formed under local anesthesia, followed by surgical excision one to eight 
weeks after thermal ablation. The results showed that the complete abla-
tion rate was 70%, whereas 96% complete ablation was observed in the 
most recent series of 28 patients. In addition, he reported a 70-year-old 
woman who underwent LA for a 7-mm low-grade invasive breast cancer 
without surgery. The patient was placed on tamoxifen (20 mg/day), and 
followed up closely at three- to six-month intervals. There was no evi-
dence of recurrence three years after LA.110 Based on promising results in 
the feasibility study, Akimov and colleagues104 followed up seven patients 
who underwent LA. Among them, three were stage IV patients, and LA 
was intended for palliative treatment. The remaining four patients were 
diagnosed as stage I–III breast cancer, and LA was used as an alternative 
to surgery in the primary treatment. The results showed that local tumor 
control was achieved in five patients, and disease-free survival was 19–60 
months in three patients with stage I–III breast cancer. 

Recently, Klimberg and colleagues111 reported preliminary results of 
using image-guided vacuum-assisted excisional biopsy for lesion removal, 
followed by either LA or RFA for residual breast cancer, in order to 
achieve both fresh naïve tissue for histological investigation and better 
negative margins. Eighteen patients were enrolled onto the study, includ-
ing 15 for RFA and 3 for LA. They all received lumpectomy immediately 
after ablation, and treated tissues were histologically investigated for the 
assessment of thermal destruction. The results showed that complete abla-
tion was achieved in all of the RFA-treated patients with negative tumor 
margins. However, there was unpredictability of the ablation zone with 
residual tumor cells in all of the LA-treated patients. This study may pro-
vide a novel approach to minimally invasive therapy in combination with 
percutaneous excision for effective cytoreduction with RF ablation of mar-
gins for the treatment of residual breast cancer. 
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15.5.3 Microwave ablation 

Clinical experiences of using MWA for breast cancer are limited, and only 
a few clinical studies have been published so far. Gardner and colleagues112 
reported the first pilot study in which 10 patients with biopsy-proven inva-
sive breast cancer underwent focused MWA. Mastectomy was performed 
5–27 days after the ablation in all patients, and surgical specimens were 
analyzed using histopathologic examinations. Tumor necrosis was noted 
in 4 of 10 specimens and apoptosis in 6, but no complete ablation was 
observed. A significant tumor response on the basis of reduction in tumor 
size or significant tumor cell kill occurred in 8 (80%) of 10 patients. Com-
plications included skin burn in one patient and skin flap necrosis in three 
patients after mastectomy. 

The same group also published another article focusing on sentinel 
lymph node mapping after thermal ablation.113 Twenty-one patients with 
invasive breast cancer received MWA. The sentinel lymph node was 
found in 91% patients, and axillary metastases were detected in 42% of 
the patients. Histological evidence of MWA-induced tumor necrosis was 
present in 68% of the patients. Complications were not mentioned in 
this study. In addition, this group reported a prospective, nonrandomized 
dose-escalation study.114 Twenty-five women with invasive breast cancers 
underwent MWA, and H&E staining showed pathological necrosis in 17 
patients (68%), including 2 patients with complete ablation. However, 
margins of the ablated tissue were not evaluated in this study. Complica-
tions mentioned were mild pain during treatment, skin burn, and short-
lived erythema of the skin. Finally, the authors performed a prospective, 
randomized, multicenter study of preoperative focused MWA for patients 
with T1, T2 invasive breast cancer with two treatment arms (MWA fol-
lowed by surgery within 60 days after ablation, and surgery alone as the 
control arm).115,116 Outcomes measured were pathologic margin status, 
surgical re-excision rates including second incisions, excised tissue vol-
ume, pathologic tumor necrosis, and side effects. Interim statistical data 
were analyzed on a study group of 75 patients, consisting of 34 patients 
treated with thermotherapy prior to surgery and 41 patients who received 
surgery alone. At enrollment based on ultrasound measurements, mean 
tumor diameter was 1.7 cm in the thermotherapy arm versus 1.6 cm in 
the control arm. Three patients receiving MWA had a skin burn, and one 
patient presented moderate abscess caused by necrotic tissue surround-
ing the tumor. After treatments were completed, in the MWA arm 0 of 
34 (0%) patients had positive margins and in the surgery-alone arm 4 
of 41 (9.8%) patients had positive margins, suggesting that MWA could 
reduce the rate of positive margins compared with breast conservation 
surgery alone. 

SRBK002-C15_399-452.indd   412 05/01/13   4:56 PM



Minimally	Invasive	Thermal	Ablation	for	Breast	Cancer	 413

15.5.4 Cryoablation 

Almost all of the clinical trials using cryoablation for breast cancer are both 
pilot and feasibility studies, as shown in Table 15.4. All patients receive 
surgical excision five days to four weeks after cryoablation. Complete 
ablation of the tumor, which is confirmed by histopathological examina-
tions, ranges from 36 to 83%. No serious complications are observed after 
cryoablation. Ultrasound guidance is used in three studies but shows only 
the surface of the ice ball; the area beyond the surface is not clearly visible 
on ultrasound imaging. This makes ultrasound more difficult as a real-time 
monitoring tool for ablative procedures. MRI guidance in an open configu-
ration is also used in two of the studies, and the results demonstrate that 
MRI correctly predicts the cryosurgery results in most patients.

The first breast cancer patient treated with cryoablation was presented 
in 1997 by Rabin and colleagues.117 Two invasive lobular tumors were fro-
zen in the same quadrant under ultrasound guidance. No surgical excision 
was performed. However, core needle biopsy showed no residual or per-
sistent disease 4 to 12 weeks after the well-tolerated procedure. Sabel and 
colleagues118 reported a multi-institutional study of cryoablation for early-
stage breast cancer. Twenty-nine women were treated with cryoablation, 
followed by surgical resection 1–4 weeks later. The results showed that 
cryoablation successfully destroyed 100% of cancers in all patients with 
tumors less than 1 cm in diameter. For tumors between 1.0 and 1.5 cm, this 
success rate was achieved only in patients with invasive ductal carcinoma 
without a significant ductal carcinoma in situ component. For tumors 
greater than 1.5 cm, cryoablation was not reliable with this technique in 
terms of complete ablation. 

Similar results were observed in cryoablation when the breast lesion 
was less than 15 mm, and complete ablation was achieved in 24 (83%) of 
29 patients with small breast cancer.121 Cryoablation was also performed 
under MRI guidance in two studies, but complete ablation achieved was 
low, ranging from 36% (4/11) to 52% (13/25) in patients with invasive 
breast cancer.119,122 Cryotherapy seems more successful in treating inva-
sive than in situ disease. Roubidoux and colleagues120 reported their clini-
cal experience with cryoablation for small breast cancers. With ultrasound 
guidance, seven of nine treated patients had no residual disease, which was 
confirmed by histopathologic examinations. However, a higher complete 
ablation rate was achieved when cryoablation was performed for patients 
with small subclinical breast cancer (mean tumor size: 0.8 ± 0.4 cm). In 
14 of the 15 patients a complete necrosis of the cryoablated lesion both in 
postprocedural MRI followup and anatomo-pathological evaluation after 
surgical resection was observed.123 Recently, Littrup and colleagues124 
reported a long-term follow-up result of using cryoablation for the  
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treatment of breast cancer. Twenty-two breast cancer foci (stages I–IV) 
were treated in 11 patients who refused surgery by using multiple 2.4-mm 
cryoprobes. Five patients had recurrent disease and six had new diagnoses. 
The mean pretreatment breast tumor diameter was 1.7 cm ± 1.2 (range: 
0.5–5.8 cm). Tumor size from MRI and/or clinical followup were available 
for up to 72 months after ablation. No significant complications, retraction, 
or scarring were noted. Biopsies at the margins of the cryoablation site 
immediately after cryoablation and at followup were all negative. No local 
recurrences have been noted at an average imaging followup of 18 months.

15.5.5 High-intensity focused ultrasound ablation

Two types of HIFU devices, using either MRI or ultrasound as an imag-
ing guidance tool, were used clinically to treat breast cancer. Table 15.5 
shows a summary of the clinical results of their use for the treatment of 
breast cancer. The first HIFU-treated case was reported by Hüber and col-
leagues.125 This case involved a woman with invasive ductal carcinoma, on 
which MRI-guided HIFU ablation was performed, followed by lumpec-
tomy five days later for histological examination. The results revealed 
lethal and sublethal tumor ablation, which corresponded well with the out-
lined region on the preprocedural MR images. Gianfelice and colleagues126 

reported the initial use of MRI-guided HIFU followed by segmental resec-
tion in the treatment of 17 patients with invasive breast cancer. Histopatho-
logic analysis showed that complete ablation was observed in 4 (24%) of 
the patients. Some residual tumor was identified predominantly at the 
periphery of the tumor mass. Similar results were also found in another 
feasibility study, and complete ablation was histologically confirmed in  
2 (20%) of 10 patients with infiltrating breast cancer.127 Furusawa and col-
leagues129 reported the safety and feasibility of MRI-guided HIFU fol-
lowed by wide surgical excision or mastectomy for the treatment of 30 
women with biopsy-proven breast cancer. They found that 15 (53.5%) of 
28 evaluable patients had 100% necrosis of the ablated tumor, 10 (35.8%) 
had 95–97%, and 3 (10.7%) had less than 95% necrosis. Similar results 
were also observed by Kim and colleagues,131 and MRI and histological 
examinations showed that complete ablation was achieved in 3 (50%) of  
6 patients with invasive ductal breast cancer. These results were very prom-
ising, indicating that MRI-guided HIFU may be considered as a potential 
noninvasive replacement for lumpectomy in the treatment of breast cancer. 

Wu and colleagues130 undertook a randomized clinical trial of ultrasound-
guided HIFU ablation for patients with localized breast cancer. Forty-eight 
women with biopsy-proven breast cancer were randomly allocated to either 
a control group (mastectomy alone), or an HIFU group (HIFU ablation 
followed by mastectomy one to two weeks later). The mean tumor size in 
the HIFU group was 3.1 cm (2.0–4.7 cm). Pathological examination showed 
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wide local ablation of the target, covering both the tumor and a mean margin 
of 1.80 ± 0.58 cm of surrounding normal breast tissue. Complete ablation 
was observed in all patients. The authors concluded that HIFU is effective, 
safe, and feasible for the treatment of localized breast cancer.

The majority of current studies were phase I and II clinical trials that 
showed HIFU to be a promising ablative treatment for small breast cancer. 
While the results were very encouraging, the obvious weakness of the trials 
was the lack of intermediate and long-term followup. Wu and colleagues132 

reported long-term survival data from a prospective phase-III clinical trial. 
Twenty-two patients with breast cancer (TNM classification: stage I in  
4 patients, stage II in 17 and stage IIA in 1) underwent ultrasound-guided 
HIFU ablation with conservative intent for the primary lesions, followed 
by chemotherapy, radiation therapy, and tamoxifen therapy. At a median 
followup of 54.8 months (range, 36–72 months), 2 of the 22 patients had 
local recurrence, 1 patient had died, 1 was lost to followup, and 20 were 
still alive. The five-year disease-free survival and recurrence-free survival 
rates were 95% and 89%, respectively. The cosmetic result was judged to 
be good to excellent by 94% of patients. 

Gianfelice and colleagues128 used an MRI-guided HIFU device to treat 
24 women with biopsy-proven invasive breast cancer. Before HIFU, all 
patients had undergone a chemotherapeutic regimen consisting of oral 
tamoxifen citrate for varying periods of time. After HIFU ablation, they were 
followed up for 13–39 months (mean: 20.2 months), and core biopsy was 
performed to histologically assess the tumor response. The results showed 
that 14 of the 24 patients (58.3%) had no residual tumor, while the remain-
ing 10 patients had varying amounts of residual tumor in biopsy specimens. 
A second HIFU treatment session rendered five of these 10 patients tumor 
free on post-treatment biopsy. In total, 19 of 24 patients (79%) had nega-
tive biopsy results after 1 or 2 HIFU sessions. The mean follow-up period 
was 20.2 months (13–39 months). The authors concluded that MRI-guided 
HIFU could be used as an adjuvant to tamoxifen therapy in high-risk sur-
gical patients with breast cancer. Furusawa and colleagues133 reported 21 
patients undergoing MRI-guided HIFU treatment, including 17 patients 
treated once and 4 patients twice. They followed up the patients for 3–26 
months (mean, 14 months). One case had local recurrence, but no evidence 
of recurrence was detected through MRI in the remaining 20 patients. 

15.6 Antitumor Immune Response after Thermal Ablation

It has been noted that large amounts of tumor debris remain in situ 
after thermal ablation. As a normal process of the healing response, 
the tumor debris is gradually reabsorbed by the individual patient dur-
ing a period ranging from months to few years. It is still unclear what 
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kind of biological significance may exist during the absorption of the 
ablated tumor. However, some studies have shown that active immune 
response to the treated tumor could be developed after thermal abla-
tion, and the host immune system could become more sensitive to the 
tumor cells.134–137 This may lead to a potential procedure that reduces 
or perhaps eliminates metastases and prevents local recurrence in can-
cer patients who have had original dysfunction of antitumor immunity 
before treatment. In this chapter we review the studies that focused on 
the host immune responses after thermal ablation of a tumor and ana-
lyze experimental and clinical data available to assess whether these 
studies provide potential for a better understanding of this complex phe-
nomenon. In addition, we compare the various ablation techniques in 
terms of ablative mechanisms, advantages and disadvantages, and their 
relevance for the treatment of solid tumors. 

15.6.1 Antitumor immune response after RFA 

Of the minimally invasive therapies, RFA is only one technique that has 
been widely used in the clinical management of solid tumors, particularly 
in hepatocellular carcinoma (HCC). As coagulative necrosis is immedi-
ately induced in a targeted tumor after thermal ablation, necrotic cell death 
can be recognized by the immune system as a result of dangerous events, 
according to the “danger” model of immunity by Matzinger.138,139 Necrotic 
cell death is also accompanied by the release of “danger signals” from 
the heat-stressed cells such as acute phase proteins, pro-inflammatory 
cytokines, and heat shock proteins (HSPs), thus developing a temporary 
inflammatory stress. This stress may be associated with positive processes 
similar to the healing of injured tissues but could also lead to the stimula-
tion of tumor growth.140 After RFA treatment, a moderate and temporary 
systemic inflammatory response has been observed in cancer patients, 
as demonstrated by the increase in plasma levels of pro-inflammatory 
cytokines and acute phase reactants.141–145 

HSPs are families of highly conserved proteins that are involved in the 
mechanisms of cell repair. They are intracellular molecular chaperones 
that physiologically bind tumor peptide antigens and enhance tumor cell 
immunogenicity.146 Antigen-presenting cells (APCs) take up HSP–tumor-
peptide complex and present the chaperoned peptides directly to tumor-
specific T lymphocytes with high efficiency, resulting in potent cellular 
immune responses against tumor cells.147 Around the necrotic ablated 
area, RFA produces sublethal injury in the zone of transition that shows 
apoptosis and increased HSP70 expression in the liver of normal swine.148 
Schueller and colleagues found that there was an increased synthesis 
and cell surface expression of HSPs (HSP70, 90) after RFA in nude rats 
bearing human hepatocellular carcinoma.149 In addition, large amounts 
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of tumor debris can induce local infiltration of activated dendritic cells 
(DCs), the most potent APC for induction of adaptive immunity against 
cancer.150 Activating signals including necrotic tumor cells and HSPs can 
induce the progression of infiltrating DCs from an immature to a mature 
stage, resulting in the matured DCs presenting tumor antigens to naïve 
T lymphocytes in an MHC-restricted fashion.151 (Note: MHC stands for 
major histocompatibility complex.) 

Ali and colleagues demonstrated that a transient function of myeloid 
DCs can be activated in HCC patients 7–14 days after RFA, with an 
increased ability to stimulate CD4+ T cells.152 Up to 7% of DCs present in 
the draining lymph nodes contained tumor antigens in the ablated tumor 
after RFA. Compared to untreated HCC and normal liver tissue, expres-
sion of costimulatory molecules such as CD80 and CD86 was signifi-
cantly enhanced by incubation with RFA-treated HCC.153 Similar results 
were also demonstrated by Zerbini and colleagues in HCC patients,154 
indicative that local tumor ablation can lead to efficient antigen loading, 
and migration and maturation of APCs including DCs and monocytes. 
Direct evidence has recently shown that RFA can induce APC infiltration 
and amplification of weak tumor-induced immunity in a murine tumor 
model, and that enhanced systemic antitumor T-cell immune responses 
and tumor regression are associated with increased infiltration of DCs 
after subtotal RF ablation.155 These results suggest that the generation of 
heat-altered tumor antigens, in combination with the “danger signals,” 
may help to overcome immune tolerance or anergy toward the remaining 
tumor. 

The effects of RFA on antitumor T-cell responses have been studied in 
animal models. A local influx of immune cells was observed after RFA in 
tumor-free domestic pigs and in the livers of rabbits implanted with epi-
thelial tumors.156 The influx of immune cells was located in the periphery 
of the coagulated area and consisted of lymphocytic and plasma cell infil-
trates. Concomitantly, a specific T-cell proliferative response to the tumor 
cells was also detected in the peripheral blood of RFA-treated animals.157 
den Brok and colleagues158 found that a weak but detectable immune 
response was present after RFA in mice bearing ovalbumin-transfected 
melanoma. This antitumor immunity was mediated by antigen-specific 
CD8+ T cells, and adoptive transfer of splenocytes could induce partial 
protection against tumor challenge in syngeneic mice. Compared to surgi-
cal resection and control groups, RFA could efficiently stimulate activa-
tion and proliferation of splenocytes in mice bearing H22 tumors, and the 
cytotoxicity of splenocytes to tumor cells was significantly enhanced in 
RFA-treated animals, with an increased secretion of IL-2 and IFN-γ.159 
After in situ RFA of liver tumors, resistance to local and systemic tumor 
rechallenge was increased in mice bearing CC531 colon carcinoma.160 
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However, no inhibitory effect on tumor growth was observed in the nearby 
untreated liver tumors. 

Similar results have been also demonstrated in cancer patients treated 
with RFA. Zerbini and colleagues161 showed convincing evidence that 
RFA can activate a systemic antitumor T-cell response in 20 HCC 
patients. Using an ELISPOT assay, the reactivity of circulating T cells 
to autologous HCC lysate was assessed before and after RFA treatment. 
(Note: ELISPOT stands for enzyme-linked immunosorbent spot.) The 
researchers found that the specific T-cell response was increased from 
zero to three patients immediately after RFA. Importantly, this boost-
ing effect still persisted at four weeks after RFA, and the number of the 
patients showing the same T-cell response increased to nine. These data 
were confirmed by another study where both HCC and colorectal liver 
metastasis were treated with RFA.162 After RFA treatment, both HCC and 
colorectal cancer cells could significantly stimulate a specific immune 
response in patients, resulting in an increase of circulating CD4+ and 
CD8+ T cells, and cytotoxic activity. In contrast, one study observed a 
decrease of circulating CD3+ and CD4+ T cells after RFA treatment in 
metastatic cancer patients, together with no change in HCC patients. 
However, RFA-induced trafficking of naïve and memory CD62L+ T cells 
from circulation to tissues enhanced the function of T cells, including 
in vitro responses to phytohaemagglutinin (PHA) and tumor-associated 
MUC1 antigen.163 

In order to improve the RFA-induced weak immune response, the com-
bination of RFA with immunotherapy has been investigated in laboratory 
settings. RFA can be efficiently combined with immune modulation by 
anti-CTLA-4 antibodies or regulatory T-cell depletion. These combina-
tion treatments protected mice from the outgrowth of tumor challenges 
and led to in vivo enhancement of tumor-specific T-cell numbers, which 
produced more IFN-γ upon activation.153 Saji and colleagues164 demon-
strated that RFA plus intratumoral injection of naïve DCs can induce DC 
migration to regional lymph nodes and adoptive antitumor immunity in a 
mouse tumor model. The combination of RFA with IFN injection could 
significantly increase antitumor effects in an orthotopic murine model 
with squamous cell carcinoma, as compared to single therapy and control 
groups.165 RFA stimulated tumor-specific T cells to move to tumor sites, 
whereas IFN activated DC and enhanced antigen presentation. All of the 
mice survived for 50 days in the combined-therapy group. Using both 
neu-overexpressing mouse mammary carcinoma in FVBN202 transgenic 
mice and 4T1 tumors in Balb/c mice, RFA followed by the administra-
tion of intratumor IL-7 and IL-15 induced immune responses to tumors, 
inhibited tumor development and lung metastasis, and reduced myeloid-
derived suppressor cells.166 

SRBK002-C15_399-452.indd   420 05/01/13   4:56 PM



Minimally	Invasive	Thermal	Ablation	for	Breast	Cancer	 421

15.6.2 Antitumor immune response after LA

In addition to local destruction with thermal energy, LA can induce an 
immunogenic effect on cancer in both animal tumor models and cancer 
patients. Compared to surgical resection, LA can reduce metastatic spread 
of liver tumors in rats bearing a liver adenocarcinoma.167 Furthermore, 
with HSP70 shifts from cytoplasm to nucleus in LA-treated liver cancer 
cells, an increase of HSP70 immunoreactivity in tumors was observed, 
leading to increased numbers of tumor-infiltrating macrophages and an 
increased presence of HSP70 in the membrane and cytoplasm of these 
macrophages.168 LA can also induce a significant increase of HSP70 
expression in the murine mode of colorectal liver metastasis169 and pros-
tate cancer.170,171 While two independent adenocarcinomas were implanted 
into both lobes of the liver in rats (one as a control in the right lobe and 
one treated with LA in the left lobe), the control tumor volumes were sig-
nificantly smaller in the LA group than those in hepatic resection group, 
and the expression of CD8 and B7-2 (CD86) was significantly higher in 
the control tumor after LA.172 Moreover, compared with surgical extir-
pation, complete eradication of reimplanted tumors and increased local 
infiltration of ED1 macrophages and CD8 lymphocytes were observed in 
the LA group 48 days after tumor challenge,173 suggesting that LA can 
enhance antitumor immune response to eradicate a challenging tumor. 
This enhanced response might be associated with increased numbers of 
tumor-infiltrating macrophages and CD8 lymphocytes.

Immunological assays followed by the LA procedure for cancer patients 
are still limited in the clinical setting. An early systemic inflammatory reac-
tion was observed after LA in patients with malignant liver tumors.174 The 
serum levels of IL-6, TNFRI, and CRP increased significantly up to 72 h 
after LA procedure, while the TNF-α, IL-1β, and IL-10 levels remained 
unchanged. Using an IFN-γ secretion assay and flow cytometry, Volg and 
colleagues175 studied peripheral T lymphocyte (CD3+, CD4+, CD8+) acti-
vation against autologous tumor tissue, and T-cell cytotoxicity against allo-
genic colorectal cancer (CaCo) cells before and after LA in patients with 
liver metastasis of colorectal cancer. They found that tumor-specific cyto-
toxic T-cell stimulation was detected after LA treatment, with a significant 
increase of cytolytic activity against CaCo cells, indicative that LA can 
trigger T-lymphocyte-mediated antitumor immune response against autol-
ogous tumor tissue in patients. 

15.6.3 Antitumor immune response after cryoablation

In the early introduction of cryoablation to clinical practice, there were occa-
sional reports of patients with spontaneous regression of tumor metastases 
after ablation of a primary tumor, suggesting a potential systemic benefit 
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to a local therapy.176 However, the mechanisms behind the existence of a 
cryo-immunologic response were unclear because immunologic assays were 
limited at the time of many of these observations. Subsequently, an immune 
response induced by cryoablation was investigated using a variety of animal 
tumor models. The results revealed that tumor-specific immunity, as meas-
ured by resistance to rechallenge in tumor-bearing animals undergoing cryo-
ablation of a primary tumor, was significantly greater in the cryoablation-
treated animals compared with surgical excision or naïve animals.177–179 In 
addition, cryoablation could significantly inhibit the growth of contralateral 
tumors180,181 and reduce metastatic deposits in the lung and liver in tumor-
bearing animals.182,183 

On the contrary, some studies found that cryoablation failed to induce 
antitumor immune responses. There was no significant inhibition on 
secondary tumor growth after rechallenge in cryo-treated rats.184 Cryo-
ablation alone couldn’t directly cause a tumor-specific cytotoxic T lym-
phocyte (CTL) response and a protective antimetastatic impact compared 
to cryotherapy combined with subsequent in situ injection of immature 
DCs.185,186 Moreover, immunosuppressive effects induced by cryoablation 
on host antitumor immunity was also observed in tumor-bearing animals, 
resulting in a decreased resistance to a secondary tumor challenge and an 
increase of pulmonary metastases after cryoablation.181,187,188 This has led 
to a controversy over whether a cryo-immunologic response would exist 
after cryoablation of malignant tissue. 

Recently, due to a better understanding of the relationships between the 
innate and adaptive arms of the immune response, more detailed studies 
of the mechanism behind cryo-immunology have offered insight into why 
cryoablation may alternate between immune enhancement and immune 
suppression. It is evident that several changes induced by cryoablation, 
such as cytokine profile, the availability of tumor antigens processed by 
APCs, the mechanism of cell death by either apoptosis or necrosis, and the 
subsets of phagocytic cells (DCs or macrophages) responsible for clearing 
the ablated cells, may impact the immune response either positively or 
negatively.176 For instance, although apoptosis and necrosis are the pri-
mary mechanisms of tumor cell death, they have a significantly differ-
ent impact on the immune response.189 Apoptosis results in the uptake of 
cellular debris without causing inflammation or releasing the intracellular 
contents. APCs that take up the apoptotic cells not only do not generate 
an immune response but can lead to clonal deletion and anergy.189–192 In 
contrast, necrotic cell death is characterized by cellular breakdown and 
release of intracellular contents, many of which are danger signals. These 
signals promote cross-presentation, maturation of the DCs, and ultimately 
the activation of antigen-specific T cells.193–195 As both necrosis and 
apoptosis play a role in tumor cell death after cryoablation, the relative  
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contribution of necrosis and apoptosis in the death of the tumor cells may 
shift the immune response from stimulatory to suppressive. Cryoablative 
techniques that result in large areas of apoptotic cell death, as opposed to 
necrosis, may result in immunosuppression. However, some studies have 
suggested that apoptotic tumor cells may be superior to necrotic cells in 
stimulating an antitumor immune response.196–198 

In addition to animal models, some clinical studies have recently 
attempted to reveal how cryoablation has profound effects on the immune 
system in cancer patients. Osada and colleagues199 measured serum levels 
of IL-2, IL-4, IL-6, IL-10, TNF-α, and IFN-γ in 13 patients with unre-
sectable hepatic tumors before and after cryoablation. Decreased levels of 
serum tumor markers and local tumor necrosis detected on CT scan were 
observed in all patients, including five cases who presented evidence of 
necrosis in metastatic tumors away from the treated lesions. Serum IL-6 
level was increased in all patients after cryoablation, but no change was 
made in the IL-2 level. There was a significant increase of serum TNF-α 
level and Th1/Th2 ratio in the patients showing the necrosis of second-
ary tumors. The effects of cryoablation on humoral immune compartments 
were also analyzed by Ravindranath and colleagues in 35 patients with 
liver metastases originated from colon cancer.200 They found an increase 
in the production of IgM antibodies against tumor-released gangliosides. 
Interestingly, these antibodies were not significantly increased in patients 
undergoing RFA or routine surgery. Si and colleagues201 observed a spe-
cific cytotoxic T-cell response induced by cryoablation in 20 patients 
with high-risk prostate cancer. Four weeks after cryoablation, there was 
a significant increase of serum TNF-α and IFN-γ levels and in the Th1/
Th2 ratio compared with the values before cryoablation, but no changes 
were observed in the serum level of IL-4 or IL-10. Tumor-specific T-cell 
responses were significantly increased four weeks after cryoablation when 
peripheral blood mononuclear cells were co-incubated with human pros-
tate cancer (LNCaP) cells, indicating that cryoablation could improve 
tumor-specific cytolytic activity of CTLs in prostate cancer patients. This 
immune response was sufficiently maintained only for a period of four 
weeks. However, when cryoablation was combined with granulocyte mac-
rophage colony-stimulating factor (GM-CSF) administration to treat met-
astatic hormone refractory prostate cancer, the response lasted for at least 
eight weeks.202

In the case of freezing large tumors, cryoablation may cause a seri-
ous complication known as cryoshock, a syndrome of coagulopathy, dis-
seminated intravascular coagulation, and multi-organ failure.203 As these 
reactions are similar to those observed after endotoxin administration 
and other systemic inflammatory stimuli, cryoshock is believed to be 
caused by the systemic release of inflammatory cytokines including IL-1, 
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IL-6, and TNF-α after cryoablation.204–206 This is different from the RFA-
treated liver tissue where there is coagulative destruction of the hepatocyte 
organelles within an intact plasma membrane.207 Cryoshock rarely appears 
in the cryoablation of renal and prostate tumors and is a more common 
side effect of hepatic cryoablation.

15.6.4 Antitumor immune response after MWA

The effect of microwaves on immune cells was initially investigated in 
murine B16 melanoma models. Microwave hyperthermia in combination 
with an ethanol injection can significantly prolong the survival of tumor-
bearing mice with an increased infiltration of T lymphocytes and NK cells 
in the ablated melanoma.208,209 Whole-body microwave hyperthermia can 
cause a significant enhancement of TNF-α secretion in murine peritoneal 
macrophages and splenic T lymphocytes.210 Yao and colleagues211 found 
that a murine CT-26 tumor treated with MWA could sensitize immature 
DCs, subsequently inducing in vitro proliferation of T cells and activating 
the cytotoxicity of CTLs. In addition, the sensitized DCs could signifi-
cantly inhibit in vivo growth of the tumor and prolong the survival of the 
mice. 

Clinical studies related to the immune response were initially conducted 
on prostate cancer treated by microwave energy. A significant, transient 
increase of the CD4+/CD8+ ratio and of the PHA and concanavalin-A 
transformation indices was observed after microwave hyperthermia in 15 
prostate cancer patients, and the peak effect of this immune response was 
noted at 2 months with a subsequent decrease.212 Fan and colleagues213 
treated 58 patients with malignant bone tumors with a surgical proce-
dure in combination with microwave hyperthermia and adjuvant immu-
notherapy, and the immune response, including T-cell subsets, IL-2, and 
sIL-2, was monitored 3–38 months (mean 19 months) after the combined 
therapies. The immune function was significantly improved in the majority 
of the patients, though oncologic outcome was similar to that obtained by 
the limb-saving procedure. 

MWA-induced immune response was mostly observed by Dr. Dong and 
colleagues in 78 patients with hepatocellular carcinoma, and ultrasound-
guided core needle biopsy was performed after treatment for determining 
the local infiltration of immunocytes within the treated lesion. The results 
demonstrated a significantly increased infiltration of T lymphocytes, mem-
ory T lymphocytes, NK cells, and monocytes in the ablated tumor, with no 
change in B lymphocytes, suggesting that MWA could only enhance cel-
lular immune response in HCC patients.214–216 This response was maximal 
on the third day after thermal ablation but persisted to day 30. The extent of 
infiltration was negatively related to serum α-fetoprotein and tumor size.216 
But interestingly, patients with a high degree of immune cell infiltration 
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in the treated tumor had lower recurrence rates than those with low levels 
of infiltration, and there is a statistically significant correlation between 
survival outcome and the extent of immunocyte infiltration.215 In addition, 
serum levels of IL-6, IL-1ra, and C-reactive protein were significantly 
elevated one day after laparoscopic MWA and returned to the preopera-
tive levels at day seven postoperatively.217 Furthermore, MWA combined 
with either a local injection of staphylococin or oral uptake of Shenqi (a 
Chinese herb) mixture, could enhance cellular immune response, improve 
survival time, and reduce local recurrence in HCC patients compared with 
the control group.218,219 

15.6.5 Antitumor immune response after HIFU ablation

Animal studies have suggested that HIFU might modulate host antitu-
mor immunity. Yang and colleagues220 used HIFU to treat C1300 neurob-
lastoma implanted in mouse flanks, followed by the rechallenge of the 
same tumor cells. A significantly slower growth of re-implanted tumors 
was observed in these mice when compared with the controls. After HIFU 
treatment, the cytotoxicity of peripheral blood T lymphocytes was sig-
nificantly increased in the H22-tumor-bearing mice treated with HIFU, 
and adoptive transfer of the activated-lymphocytes could provide better 
long-term survival and lower metastatic rates in the mice that were rechal-
lenged by the same tumor cells. Similar results were confirmed in the mice 
implanted with MC-38 colon adenocarcinoma after HIFU ablation. HIFU 
treatment could also induce enhanced CTL activity in vivo, thus providing 
protection against subsequent tumor rechallenge.221 

After HIFU ablation, large amounts of tumor debris remain in situ, and 
the host gradually reabsorbs the debris as part of the normal process of a 
healing response. Using a murine hepatocelluar carcinoma model, Zhang 
and colleagues222 demonstrated that the remaining tumor debris induced 
by HIFU could be immunogenic as an effective vaccine to elicit tumor-
specific immune responses, including induction of CTL cytotoxic activity 
and protection against a lethal tumor challenge in naïve mice. When the 
tumor debris was loaded with immature DCs, it could significantly induce 
maturation of DCs, as well as increased cytotoxocity and TNF-α and IFN-γ 
secretion by CTL, thus initiating a host-specific immune response after the 
H22 challenge in the vaccinated mice.223 Immediately after HIFU exposure 
to MC-38 colon adenocarcinoma cells in vitro, the release of endogenous 
danger signals including HSP60 was observed from the damaged cells. 
These signals could subsequently activate APCs, leading to an increased 
expression of costimulatory molecules and enhanced secretion of IL-12 
by the DCs, and elevated secretion of TNF-α by the macrophages.224 In 
addition, HIFU could upregulate in vitro and ex vitro molecular expres-
sion of Hsp70,225,226 which is an intracellular molecular chaperone that can 
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enhance tumor cell immunogenicity, resulting in potent cellular immune 
responses. 

The potency of APC activation from mechanical lysis and a sparse-scan 
HIFU was much stronger than that from thermal necrosis and a dense-
scan HIFU exposure, suggesting that optimization of an HIFU ablation 
strategy may help to enhance immune response after treatment.227 Heat 
and acoustic cavitation are two major mechanisms involved in HIFU-
induced tissue damage, and cavitation is a unique effect of HIFU when 
compared with other thermal ablation techniques. Cavitation causes mem-
branous organelles (including mitochondria and endoplasmic reticulum 
cells and nuclear membranes) to collapse. This breaks up tumor cells into 
small pieces, on which the tumor antigens may remain intact, or leads to 
the exposure of an immunogenic moiety that is normally hidden in tumor 
antigens. Zhou and colleagues228 used either heat- or HIFU-treated H22 
tumor vaccine to inoculate naïve mice. The vaccination times were in four 
sessions, once a week for four consecutive weeks, and each mouse was 
challenged with H22 tumor cells one week after the last vaccination. The 
researchers found that the HIFU-treated tumor vaccine could significantly 
inhibit tumor growth and increase survival rates in the vaccinated mice, 
suggesting that acoustic cavitation can play an important role in stimulat-
ing the host antitumor immune system. 

Emerging clinical results revealed that a systemic cellular immune 
response was observed in cancer patients after HIFU treatment. Ros-
berger and colleagues229 reported five consecutive cases of posterior 
choroidal melanoma treated with HIFU. Three patients had abnormal, 
and two patients had normal CD4/CD8 ratios before treatment. One week 
after treatment, the ratio in two patients reverted to normal, while another 
was noted to have a 37% increase in his CD4 T cells relative to his CD8 
cells. Wang and Sun230 used multiple-session HIFU to treat 15 patients 
with late-stage pancreatic cancer. Although there was an increase in the 
average values of NK cells, T lymphocytes, and subsets in 10 patients 
after HIFU treatment, a significant statistical difference was observed in 
only NK-cell activity before and after HIFU treatment (p < 0.05). We231 
observed changes in circulating NK cells, T lymphocytes, and subsets 
in 16 patients with solid malignancy before and after HIFU treatment. 
The results showed a significant increase in the population of CD4+ lym-
phocytes (p < 0.01) and the ratio of CD4+/CD8+ (p < 0.05) after HIFU 
treatment. The abnormal levels of CD3+ lymphocytes returned to normal 
in two patients, as did the CD4+/CD8+ ratio in three, the CD19+ lym-
phocytes in one, and the NK cells in one, respectively, in comparison 
to the values in the control group. In addition, serum levels of immuno-
suppressive cytokines including VEGF, TGF-β1, and TGF-β2 were sig-
nificantly decreased in the peripheral blood of cancer patients after HIFU 
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treatment, indicating that HIFU may lessen tumor-induced immunosup-
pression and renew host antitumor immunity.232 

Clinical evidence suggests that HIFU treatment may also enhance local 
antitumor immunity in cancer patients. Kramer and colleagues233 found 
that HIFU treatment could alter the presentation of tumor antigens in pros-
tate cancer patients and was was most likely to be stimulatory. Histological 
examination showed significantly upregulated expression of Hsp72, Hsp73, 
and glucose-regulated protein (GRP) 75 and 78 at the border zone of the 
HIFU treatment in prostate cancer. Heated prostate cancer cells exhibited 
increased Th1-cytokine (IL-2, IFN-γ, TNF-α) release but decreased Th2-
cytokine (IL-4, -5, -10) release of tumor-infiltrating lymphocytes (TILs). 
The upregulated expression of Hsp70 was confirmed in the tumor debris 
of breast cancer after HIFU ablation,234 indicating that HIFU may modify 
tumor antigenicity to produce a host immune response. We235 found that 
the number of tumor-infiltrating APCs including DCs and macrophages 
increased significantly along the margin of HIFU-treated human breast 
cancer with an increased expression of HLA-DR, CD80, and CD86 mol-
ecules. Activated APCs may take up the HSP–tumor-peptide complex that 
remains in the tumor debris and present the chaperoned peptides directly 
to tumor-specific T lymphocytes with high efficiency, resulting in potent 
cellular immune responses against tumor cells after HIFU treatment. Fur-
thermore, HIFU could induce significant infiltration of TILs in human 
breast cancer, including CD3, CD4, CD8, B lymphocytes, and NK cells. 
The numbers of activated CTLs expressing FasL+, granzyme+, and per-
forin+ significantly increased in the HIFU-treated tumor, suggesting that 
specific cellular antitumor immunity can be locally triggered after HIFU 
treatment.236

15.7 Summary

Breast conserving therapy is the gold-standard option for patients with 
early-stage breast cancer. Current techniques include surgical excision, 
chemotherapy, radiation therapy, and endocrine therapy. The goal of surgi-
cal excision is to remove the entire tumor with a negative surgical margin, 
and to preserve the breast tissue as far as possible. Minimally invasive 
ablative techniques may offer complete tumor ablation with less psycho-
logical morbidity, better cosmetic results, and shorter hospital stay. 

Several drawbacks are encountered in thermal ablation for breast can-
cer. Successful thermal ablation is a function of appropriate patient selec-
tion, and breast lesions close to the skin and chest wall, as well as multiple 
lesions, should be excluded from thermal ablation. As pathological sam-
ples are not obtainable for assessing the tumor-free margins of the ablated 
tissue after thermal ablation, the lack of pathologic method to directly 
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examine the tumor margins is still a major argument against this thermal 
approach for breast cancer. Recently, innovative techniques for the detec-
tion of residual disease have been examined in the fields of breast imag-
ing. These techniques include 3D rotating delivery of excitation off (3D 
RODEO), MRI, and positron emission tomography (PET), for which pre-
liminary results are very encouraging.237 Determination of the status of the 
sentinel node in breast cancer is important in breast conserving therapy. As 
lymph drainage may be disturbed after local tumor ablation, it is prefer-
able to perform the sentinel node biopsy before the ablation. Finally, some 
of the ablation devices, such as the HIFU device, are currently expensive. 
With technical developments underway, we are optimistic that device cost 
will decrease in the future. 

Until now, thermal ablation of early-stage breast cancer has been con-
ducted in research settings for the assessment of technical safety and feasi-
bility, and none of those described herein have been used alone in clinical 
practice. Where clinically appropriate, thermal ablation techniques should 
give at least the same results as surgical excision, with the extent of the 
negative surgical margins being determined by imaging. Although recent 
results have been very encouraging, further trials are essential to evalu-
ate the long-term efficacy, cosmetic outcome, and cost effectiveness of 
thermal ablation in early-stage breast cancer. Not until these issues have 
been resolved, and the results from prospective, randomized clinical trials 
worldwide become available, can minimally invasive ablative techniques be 
considered as candidates for conventional therapy for widespread clinical 
application.

However, some of the minimally invasive thermal therapies can already 
be offered as options for the treatment of some carefully selected breast 
cancers. The less-invasive nature of these therapies may make them attrac-
tive options for the elderly woman with early-stage breast cancer. The 
rationale for this is the evidence for increased incidence and poorer out-
comes in the elderly breast-cancer patient who is undertreated.238 As the 
population grows and ages, there will be a large population of elderly can-
didates for appropriate treatments, and thermal ablation may become the 
treatment of choice for improving the currently poor outcome of treatment 
for early-stage breast cancer in elderly women. Thermal ablation may also 
be performed as a local treatment to eradicate small primary tumors or 
any residual tumor that persists after the completion of systemic therapy. 
Finally, these therapies can be used as a salvage method to treat local 
recurrence after breast conservation therapy.

It is clear that minimally invasive thermal therapies should be under-
taken when there is precise knowledge not only of the number and location 
of the lesions, but also of the biological characteristics and natural history 
of the tumor. For patients with breast cancer, the treatment strategy must 
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be multidisciplinary and should include surgery, radiotherapy, chemother-
apy, and/or tamoxifen therapy. As a local treatment, thermal ablation may 
provide an alternative to open breast surgery in the future. However, it 
should be used in combination with other conventional therapies. 
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16.1 Introduction

Breast cancer is one of the most common cancers in the world and caused 
460,000 deaths in 2008 according to World Health Organization.1 In 
Singapore, about 1300 women are diagnosed with breast cancer, causing 
an average death of 313 every year, and making breast cancer the number 
one cause of death of women in Singapore.2 Detection of breast cancer at an 
early stage is extremely important in determining the effectiveness of con-
sequent treatment and the survival rate of the patient. However, early-stage 
tumor detection is challenging due to the inefficacy of existing commer-
cial imaging modalities. Although mammography is currently the golden 
standard imaging method, it still suffers from some limitations, such as 
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low sensitivity for dense-breast screening, low specificity to differentiate 
malignant and benign tumors, low-dose ionization, and discomfort during 
the screening process. Other alternative imaging modalities such as ultra-
sound imaging and MRI have much lower contrast, especially for early-
stage tumor detection. High cost, bulky size, and safety issues also prevent 
x-ray imaging and MRI from on-site diagnosis in homecare and routine 
screening.

Microwave-based imaging modalities, which include microwave 
imaging (MWI)3–17 and microwave-induced thermo-acoustic imaging 
(MTAI),18–32 have been receiving increasing attention in the last decade. 
By exploring the significant dielectric contrast between tumor and normal 
tissue,33–36 microwave-based imaging modalities can potentially provide 
improved performance, especially in terms of contrast, over conventional 
imaging modalities. Currently, most of the research on both MWI and 
MTAI focuses on algorithm design, prototyping, and even clinical tri-
als,3–32 while little research is focused on correlating these two promising 
modalities to each other.37 

In this chapter, we demonstrate the necessity of correlating MWI and 
MTAI theoretically and propose a simple but efficient algorithm called 
correlated microwave acoustic imaging (CMAI) to achieve enhanced reso-
lution and contrast. A preliminary experimental setup is also established 
to simultaneously receive both microwaves and thermo-acoustic waves. 
Then, an ultrawideband (UWB) transmitter is designed as the microwave 
source for future prototyping.

16.2 Emerging Microwave-based Imaging Modality

The basic principle behind the microwave-based imaging modality is 
the interaction between microwave and biological tissue; i.e., when 
incident microwaves are transmitted into biological tissue, scattered 
microwaves can be received by an antenna for MWI, and due to thermal 
expansion, an acoustic signal can also be collected by an ultrasound 
transducer for MTAI. Unlike the existing microwave-based imaging 
approach that only collects microwaves or thermo-acoustic waves for 
imaging (e.g., MWI and MTAI), the CMAI introduced in this chapter 
aims to simultaneously collect both scattering microwaves and induced 
thermo-acoustic waves for image reconstruction with improved qual-
ity. As shown in Fig. 16.1, both kinds of wave are received for CMAI, 
in which the dielectric contrast is expected to be further enhanced com-
pared to MWI and TMAI. This section will review the dielectric prop-
erties of biological tissue and the principles of the currently existing 
modalities of MWI and TMAI.
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16.2.1 Dielectric property of biological tissue

The physical principle behind microwave-based imaging modalities is 
interactions between the electromagnetic (EM) field (microwave spec-
trum) and biological tissue. Therefore, the basis of tumor detection by 
microwave-based imaging modalities is the large dielectric contrast among 
different biological tissues, which is defined as complex permittivity e:

 ε ε ε= −′ ″j , (16.1)

where e′ is the relative permittivity of biological tissue related to the stor-
age of the electric field, and e″ is the loss factor referring to the EM energy 
absorption and dissipation inside tissue expressed as

 ε σ ε ω″ = / 0 , (16.2)

where σ is the total conductivity of tissue, e0 is the permittivity of vacuum, 
and ω is the angular frequency of the EM wave. Previous work has explored 
the complex permittivity of various biological tissues from 10 Hz to  
20 GHz.34 The mechanism of microwave–tissue interaction relies on a, b, and 
γ dispersions at different frequency bands. For the microwave-based imaging 
modality, a band of more than 1 GHz to several GHz is usually utilized, and 
the γ dispersion is dominant due to the polarization of water molecules. In 
other words, relative permittivity in the microwave spectrum mainly reveals 
the water content of different biological tissues. Figure 16.2 shows the rela-
tive permittivity and conductivity of muscle and fat tissue in the spectrum 
from 1 to 10 GHz, the range we are interested in. The figure shows that the 
dielectric difference between muscle and fat is significant. This difference 
is the main advantage of microwave-based imaging compared with con-
ventional imaging modalities. Specifically, for breast cancer detection, the  

(a) (b)

Tissue

Scattered
microwave

Induced thermo-
acoustic wave

Input microwave

Antenna

Ultrasound
transducer 

Figure 16.1 Waveform	 of	 (a)	 scattered	 microwaves	 and	 (b)	 induced	
thermo-acoustic	wave.
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dielectric difference between tumor and breast fat tissue is up to 5:1 accord-
ing to previous literature.36 To make use of the large dielectric contrast of bio-
logical tissue for imaging, two kinds of microwave-based imaging modalities 
have been widely investigated in recent years. As mentioned already, these 
are MWI and MTAI, which are the subjects of the next two sections.

16.2.2  Microwave imaging

Microwave imaging refers to reconstructing the map dielectric property of 
the human body through microwave transmitting and receiving at different 
locations around the body, as shown in Fig. 16.3. 

MWI is mainly subdivided into two categories: microwave tomogra-
phy and confocal microwave imaging (also called radar-based microwave 
imaging). Microwave tomography reconstructs the dielectric distribution 
by solving a nonlinear inverse scattering problem. To overcome the limita-
tion of the long microwave wavelength, various iteration algorithms are 
proposed to achieve super-resolution performance, and a prototype has 
been built for clinical trial.16,17 Unlike microwave tomography, which is 
a narrowband system, confocal microwave imaging utilizes short UWB 
pulses in the nanosecond range to illuminate the object. The image is 
reconstructed by beamforming the scattered UWB pulses received at vari-
ous locations. Instead of obtaining an accurate dielectric image, confocal 
microwave imaging shows the scattering intensity at every image pixel to 
localize the tumor area. Many beamforming techniques have also been 
developed to achieve a better signal-to-clutter ratio (S/C) for tumor detec-
tion.5–9 For the sake of simplicity, the integral equation derived from Max-
well’s equations representing the scattered electric field Escat is derived as

 
E

k
E r g r r rscat

b

= + ∇∇ ⋅





ω µ ε2
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1 ( ) ( , )[ ( )′ ′ ′* −−∫ εb
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Figure 16.2  Relative permittivity and conductivity of fat and muscle tissue rang-
ing from 1 to 10 GHz.
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where ω and m are the angular frequency and permeability of the medium, 
respectively, e*(r′) and e*

b are the permittivity of the tumor and the sur-
rounding normal tissue, respectively, E(r′) is the total electrical field, 
and kb b= ω µε*  and g r r jk r r r rb( , ) exp( )/′ ′ ′= − − −4π  are Green’s 
function. In microwave tomography, the reconstruction algorithms for-
mulate this mathematical inverse problem as a nonlinear optimization 
problem that is iteratively solved to obtain the dielectric distribution of 
the unknown biological object. However, in confocal microwave imag-
ing, the time-of-flight scattered UWB signals are beamformed to obtain 
the scattering field intensity of the reconstructed image. For both kinds 
of microwave imaging modalities, the dielectric contrast ε ε* *( )r b′ −  is the 
basis.

16.2.3 Microwave-induced thermo-acoustic imaging

The microwave-induced thermo-acoustic effect refers to the acoustic 
generation due to EM energy absorption followed by heating and ther-
mal expansion. Based on the thermo-acoustic effect, MTAI receives the 
induced thermo-acoustic signal after high microwave illumination by 
ultrasound transducers placed around a biological object and reconstructs 

Figure 16.3 Imaging	setup	for	MWI.
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the image representing EM absorption of biological tissue.18–32 Figure 16.4 
illustrates the working principle of MTAI in a 2D configuration, where 
high peak power up to a kilowatt microwave pulse is usually required to 
illuminate the biological tissue to induce a sufficiently strong acoustic sig-
nal, and the acoustic signal is collected at different locations around the 
biological object for image reconstruction. The induced thermo-acoustic 
pressure p(r, t) follows the equation below:

 
∇ −

∂
∂

= −
∂
∂

2
2

2

1
p r t

c t
p r t

C t
H r t

p

( , ) ( , ) ( , )
β

,
 

(16.4)

where c is the acoustic velocity, b is the isobaric volume expansion coef-
ficient, Cp is the specific heat, and H(r, t) is the heating function defined 
as the thermal energy per time and volume deposited by the microwave 
source. Using Green’s function method, a general form of the thermo-
acoustic pressure can be expressed as

 

p r t
C

d r

r r

H r t

tp t t

( , )
( , )

(

=
−

∂
∂∫∫∫

= −

β
π4

3 ′
′

′ ′
′

′ rr r c− ′ /

.
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(16.5)

The heating function can be expressed as the product of the spatial absorp-
tion function and microwave envelope function:

 H r t A r I t( , ) ( ) ( )= .  (16.6)

Breast tissue
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Transmitted
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acoustic wave

Ultrasound
transducer and

receiver

Figure 16.4 Imaging	setup	for	MTAI.
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Then, p(r, t) is expressed as

 
p r t

C

d r

r r
A r

dI t

dtp

( , ) ( )
( )=

−∫∫∫
β

π4

3 ′
′

′
′
′

.
 

(16.7)

From Eq. (16.7), the received acoustic signal has an amplitude propor-
tional to the microwave absorption A(r), which is related to the conductiv-
ity of biological tissue, and the pulse shape is related to the derivative of 
the microwave envelope function I(t). A backprojection algorithm aims to 
reconstruct the microwave absorption by received thermo-acoustic signals 
at different locations around the biological tissue.

16.3  Correlated Microwave Acoustic Imaging: 
Numerical Example

According to the analysis in previous sections, both MWI and MTAI reveal 
the dielectric properties of biological tissue, i.e., relative permittivity and 
conductivity. Therefore, it is expected that correlating these two micro-
wave-based imaging methods will allow for better performance. CMAI 
will be introduced in this section as a method to strengthen tumor detection 
and suppress clutter in both imaging modalities, as verified by numerical 
simulation. The system setup is shown in Fig. 16.5, which shows an objec-
tive breast tissue sample modeled as a circle filled with heterogeneous 
healthy human tissue with an embedded tumor with a dielectric property 
that is different from that of the surrounding tissue. Microwave antennas 
are placed around the breast model to transmit microwaves and receive 

Breast tissue

Tumor

Transmitted
EM wave

Scattered
EM wave

Induced
acoustic wave

Antenna connect
to transceiver

Ultrasound
transducer and

receiver

Figure 16.5 Imaging	setup	for	CMAI.
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scattered microwave signals. Ultrasound transducers are also placed for 
acoustic signal detection. This setup allows collection of both microwave 
and acoustic signals at different locations for image reconstruction.

16.3.1 Image reconstruction algorithm

Although the imaging basis for both MWI and MTAI is the dielectric 
difference between the tumor and the surrounding healthy tissue, the sig-
nal collection methods for the two imaging modalities are completely 
different: one is scattered microwaves, and the other is thermo-acoustic 
waves. Due to the different forms of energy (EM waves and acoustic 
waves), each propagates in separate channels and suffers respective noise 
sources. Therefore, it is expected that the images from MWI and MTAI 
are correlated at the tumor location (strong scattering and absorption) 
and uncorrelated at other locations (different forms of noise source). 
Thus, CMAI, which combines MWI and MTAI, is expected to achieve 
better performance.

The signal processing of CMAI is shown in Fig. 16.6. The microwave 
transmitter generates an input microwave source into biological tissue. 
Experiencing EM wave scattering and absorption, both scattered micro-
waves and induced thermo-acoustic waves are processed but in separate 
channels. Following signal calibration and gain compensation, which are 
used to remove strong scattering at the skin and to compensate for attenuation 
in lossy tissue, a delay-and-sum algorithm is applied to the scattered micro-
waves. After low-pass filtering and gain compensation for induced acous-
tic signal, a back-projection algorithm is applied to reconstruct the MTAI 
image. Due to the different reconstruction methods of MWI and MTAI, a 
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Gain
compensation Delay and Sum

Gain
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Back-projection

Scattered
EM wave

Induced
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Figure 16.6 Signal-processing	flow	chart	for	CMAI.

SRBK002-C16_453-474.indd   460 05/01/13   4:58 PM



Correlated	Microwave	Acoustic	Imaging	for	Breast	Cancer	Detection	 461

scaling procedure is applied so that both images have the same scale range, 
and then the images are shifted by their mean values. This normalization is 
shown in Eqs. (16.8) and (16.9):
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Then image correlation of MWI and MTAI is performed by
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where the correlated image Ci, j is obtained by multiplying the corre-
sponding elements of MWI and MTAI images in a rectangular area 
(2l + 1) × (2s + 1), adding together and then averaging. In this way, at the 
tumor location, the elements of A and B are highly correlated, and multi-
plication and summation will lead to significant amplification and sharp-
ening of the tumor. For other locations, due to different noise sources and 
clutter, the elements of A and B are uncorrelated; i.e., since both positive 
and negative values exist, their multiplication and summation tend to be 
zero. Therefore, through this kind of image correlation, the tumor will be 
enhanced, while clutter will be effectively suppressed. 

16.3.2 Numerical simulation results

Finite-difference time-domain (FDTD) analysis is utilized for the simula-
tion of EM wave scattering and thermo-acoustic signal propagation.38 A 
simulated UWB signal is transmitted into a female breast model, where a 
tumor is modeled as a circle with a 1.6-mm radius. Scattered microwaves 
and induced thermo-acoustic waves shown in Fig. 16.7 are collected by 
microwave receivers and ultrasound transducers placed simultaneously 
around the breast model.

The grid cell of FDTD simulation is 0.4 mm for the EM field and  
0.1 mm for acoustic simulation due to the much smaller wavelength 
of the acoustic wave. A perfectly matched layer is utilized to terminate 
the computational region. In EM simulation, scattered microwaves are 
recorded by the receiver, tumor response is calculated by subtracting the 
calibration signal recorded without the tumor, and specific absorption 
rate is calculated at every grid cell and interpolated for the following 
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acoustic simulation. We set two scenarios of low contrast and large vari-
ation to test the performance of the correlated microwave acoustic imag-
ing. In Table 16.1, three cases for low-contrast scenarios and three cases 
for large-variation scenarios are simulated, where er /eb specifies the die-
lectric contrast ratio of tumor and surrounding fat tissue, and eb variation 
models the heterogeneous properties of fat tissue. Signal-to-clutter ratio 

Table 16.1 Dielectric	properties	of	six	cases.

Table 
head

Dielectric properties

Low-contrast scenario High-variation scenario

er /eb 2.0 1.7 1.4 2.0

eb variation 3% 3% 6% 9%
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Figure 16.7 Waveform	 of	 (a)	 scattered	 microwave	 and	 (b)	 induced	 thermo-
acoustic	wave.
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(S/C) for these six cases are shown in Fig. 16.8. The S/C deteriorates 
when the dielectric contrast decreases and dielectric variation increases. 
In either case, CMAI outperforms MWI and MTAI with at least 2.5 dB 
and 0.5 dB improvement, respectively.

Another case is simulated with dielectric contrast as low as 1.4:1 and 
variation as large as 9%, utilizing the three approaches. Simulated results 
are shown in Fig. 16.9, which shows that for MWI, a strong clutter caused 
by multiple scattering of microwaves in the heterogeneous breast tissue 
model exists, leading to confusion, and in MTAI, the tumor is blurred due 
to limited contrast. Image reconstructed by CMAI is shown in Fig. 16.9(d) 
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Figure 16.9 (a) Original dielectric distribution and constructed images by (b) MWI, 
(c) MTAI and (d) proposed CMAI.
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with enhanced resolution, contrast, and accuracy; i.e., the tumor is detected 
clearly by strengthening the correlated location of tumor and suppressing 
other uncorrelated clutter parts.

16.4 Preliminary Prototyping

Significant improvement of CMAI has been proved by numerical simu-
lation in the previous section. In this section we focus on experimental 
implementation. Before conducting a correlated microwave acoustic 
imaging experiment, we first establish a preliminary experimental setup to 
collect both microwaves and thermo-acoustic waves simultaneously. Then, 
a UWB transmitter is designed and fabricated using microelectronics tech-
nology for imaging system implementation in future work. 

16.4.1  Collecting microwaves and acoustic waves 
simultaneously

The preliminary experimental setup to collect both microwaves and 
thermo-acoustic waves simultaneously is shown in Fig. 16.10, where a 
Gaussian modulated microwave pulse is generated and both scattering 
microwave pulse and induced acoustic signal are collected by oscilloscope. 
In detail, a microwave generator (Rohde & Schwarz SMBV100A) under 
amplitude-shift keying configuration is used to provide a modulated Gaus-
sian pulse microwave signal, which is amplified up to 100 W peak power 
by a microwave power amplifier (Mini-Circuits ZHL-100W-GAN+). Due 
to the power and bandwidth limit (up to 100 W and 500 MHz, respec-
tively) of the power amplifier, we choose 440 MHz as the carrier frequency 
and 2-μs pulse width in order to deliver up to 0.2 mJ/pulse into biological 

Preamplifier

Microwave generator

Power 
amplifier tank  with 

mineral oilTransmit helical antenna Tissue sample and holder

Transducer

Oscilloscope

Receive helical antenna

Figure 16.10 Experimental	 setup	 capable	 of	 collecting	 both	 scattering	 micro-
waves	and	induced	thermo-acoustic	waves	simultaneously.
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tissue. The amplified modulated Gaussian microwave is fed into a custom-
designed helical antenna operating at 440 MHz. The measured S-parameter 
of S11 is shown in Fig. 16.11. To receive the scattered microwave signal, 
another helical antenna is placed at the other side, and meanwhile, thermo-
acoustic signal due to microwave absorption is also collected by an ultra-
sound transducer (Olympus V323-SU) with 2.25-MHz central frequency, 
followed by an ultrasound preamplifier with 54-dB gain (Olympus 5662). 
Both scattered microwave and thermo-acoustic signals are recorded with 
a digital oscilloscope (Lecroy WaveMaster 8000A) at a 5-GHz sample/s 
rate. In the tank shown in Fig. 16.10, both the microwave antennas and the 
ultrasound transducer are immersed in mineral oil (er = 2.1, σ ≈ 0), which 
is a proper medium for microwave and acoustic wave propagation and is 
used to model female fat tissue.

Porcine muscle tissue with different dielectric contrast (er  = 54.8, 
σ ≈ 0.98) from mineral oil is utilized to model the tumor tissue. Made 
into a small round shape with a 5-mm diameter, the muscle tissue 
is placed close to both the antennas and the transducer. Recorded 
microwaves and thermo-acoustic waves of muscle are shown in Figs. 
16.12(a) and (b), respectively. After low-pass filtering, the thermo-
acoustic waveforms in time domain and frequency domain are shown 
in Figs. 16.12(c) and (d), respectively. The central frequency of the 
thermo-acoustic wave is around 400 kHz due to the long microwave 
pulse width (2 μs), and the measured microwave follows well with the 
incident microwave pulse. In this preliminary experiment, we success-
fully collected both scattering microwave signal and induced thermo-
acoustic signal simultaneously, a success that is promising for the 
implementation of the CMAI prototype in future work.
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Figure 16.11 Measured	S11	of	the	custom-designed	helical	antenna.
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16.4.2 UWB transmitter design 

In implementing the CMAI prototype, the microwave source is a very 
important component in the system. First, for MWI, a short UWB micro-
wave pulse with a higher carrier frequency is highly appreciated for better 
resolution and localization performance. For the MTAI system, a tunable 
pulse width is required to meet the different tradeoffs between SNR, pene-
tration depth, and resolution. In this section, we present the design and fabri-
cation of a UWB transmitter using microelectronics technology. This UWB 
transmitter is ready for implementation in future imaging prototypes.39

The UWB transmitter is implemented in a complementary metal- 
oxide semiconductor 0.18-μm technology with 3.3-V power supply with 
low complexity and high efficiency. The simple architecture of a switched 
LC (inductor/capacitor) oscillator is a good option for this UWB trans-
mitter to achieve high energy efficiency and peak power (VDD repre-
sents the power supply voltage). The UWB transmitter architecture is 
shown in Fig. 16.13, and the data flow of the transmitter is shown in Fig. 
16.14. As shown in these two figures, the rising edge of input digital 
data A triggers a digital pulse generator to generate a nanosecond-wide 
digital pulse B. The pulse train B controls the tail current source of the 
LC oscillator, and consequently a UWB pulse train is generated at C. 
After amplification by the driver amplifier, the output pulses D are sent 

(a) (b)

(c) (d)

Figure 16.12 (a)	Measured	scattering	microwave	signal,	(b)	thermo-acoustic	sig-
nal	and	its	low-pass	filtered	waveform	in	(c)	time	domain	and	(d)	frequency	domain.
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to a matched antenna (Ant). A common LC VCO (voltage-controlled 
oscillator) and its small-signal schematic are shown in Fig. 16.15. Here 
Cv is the varactor capacitance, and Cp is the parasitic capacitance. RL is 
the load resistance. Ri, Ci, and Ro represent the input resistance, input 
capacitance, and output resistance, respectively, and gm represents the 
transconductance of M1.

Figure 16.13 UWB	 transmitter	 architecture	 for	 correlated	 microwave	 acoustic	
imaging	prototype.

Figure 16.14 Data	flow	of	the	UWB	transmitter.

Figure 16.15 LC	VCO	circuit	(upper)	and	its	small-signal	equivalent	circuit	(lower).
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Figure 16.16 Die	photography	of	the	UWB	transmitter.

The transmitter chip is realized in Chartered Semiconductor’s 0.18-μm 
process and occupies an area of 0.8 × 0.6 mm (core circuit). A die photo is 
shown in Fig. 16.16. The chip is mounted on a Rogers Corp. printed circuit 
board and tested. With 1-Mbps baseband input data, the circuit can gener-
ate a pulse with 2-GHz bandwidth. 

The entire transmitter circuit structure is shown in Fig. 16.17, which 
includes a pulse generator, an LC VCO, and a buffer (driver) amplifier. The 
buffer is switched on and off simultaneously with the VCO through a gate 
bias (not shown here). The OOK modulation scheme is adopted. The pulse 
width is tunable by adjusting the current of delay elements. The cross-
coupled NMOS pair NM2, NM3 forms a VCO core. The LC tank consists 

Figure 16.17 The	complete	circuit	architecture	of	the	UWB	transmitter	for	CMAI.
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of inductors L1, L2 and varactors C1, C2. An accumulation MOS varactor 
is used here to achieve 1-GHz tuning range (3.49–4.6 GHz) for calibration 
purposes. To facilitate fast start up and high output peak power, the sizing 
of transistors NM2-5 are large. Hence, the parasitic capacitance is quite 
large—around 0.6 pF. L3, L4, and NM4, NM5 form a buffer. It is used to 
drive 100-Ω loading and to stabilize the frequency of the LC VCO. The 
digital data with a certain duty cycle is used to trigger the pulse generator. 
A narrow pulse will be generated according to the rising edge of the input 
data. The pulse controls the gate of NM1 to turn on or off the VCO and the 
buffer circuits. The large size for NM1 is chosen to minimize the drain-
source voltage and effectively present a short circuit directly to the ground.

Figure 16.18 shows the output pulse with 1.2-ns width and peak swing 
of 7.2 V, which is the highest output swing reported for the integrated UWB 
transmitters. The current consumption is 224 μA at 1 Mbps for the entire 
transmitter, and around 200-ps start-up time is achieved. The performance 
is summarized in Table 16.2.

Figure 16.18 Measured	UWB	pulse	in	time	domain	and	the	input	data.

Table 16.2 UWB	transmitter	summary.

Specifications Measurement results

Process
Supply voltage
Die area
Modulation
Maximum data rate
Input data duty cycle
Current consumption (1 Mbps)
Pulse width
Differential output swing
Center frequency
Frequency band
Start up

CMOS 0.18 μm
3.3 V
0.8 × 0.6 mm (core circuit)
OOK
1 Mbps
0.1%
224 μA
1.2 ns (tunable)
7 V
4 GHz
3–5 GHz
200 ps
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16.5 Conclusion

Microwave-based imaging modality is an emerging noninvasive medi-
cal imaging approach that uses the dielectric property of biological tis-
sue and shows great potential in breast cancer detection. Microwave 
tomography reconstructs the dielectric distribution of the object, while 
radar-based microwave imaging shows scattering intensity distribution 
to detect the tumor. On the other hand, microwave-induced thermo-
acoustic imaging uses the microwave absorption property (conductivity) 
of the object. All of these modalities have been receiving much research 
interest in the recent decade, but few people are working on fusing the 
emerging microwave-based imaging modalities together. Combining 
these modalities, we expect an imaging performance that exceeds that of 
any the single modalities.

In this chapter, the microwave-based imaging modality is introduced, 
then CMAI is proposed and studied by numerical simulation using FDTD 
analysis. A preliminary experiment is conducted to collect both scatter-
ing microwave and induced thermo-acoustic signals for future imaging 
prototyping. Then, a UWB microwave transmitter is introduced and imple-
mented with microelectronics technology, providing a pulse-width-tunable 
microwave signal for CMAI implementation. It is clearly shown that com-
bination of microwave-based imaging modalities is expected to achieve 
higher performance in terms of resolution, contrast, and robustness. Such 
a multimodality imaging approach will provide an efficient diagnostic 
method for breast cancer detection in the future.
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17.1 Introduction

The recent drive in biomedical research has been mainly focused on 
 detection, diagnosis, treatment, and prevention of diseases in order to 
ultimately foster better health. Detection of cancerous tissue or relevant 
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 cancer-causing entities using an extremely low sample volume and at an 
early stage is another targeted objective of researchers in the recent past. 
From that perspective, ultrasensitive detection and imaging methods are 
treated as enablers for the advancement of diagnostic methodologies to the 
next level. The steady progress in biology, engineering, and medicine toward 
diagnostics based on molecular markers leads to the exploration of high-
throughput methods for the detection of biomolecules and their interactions 
in a biological system. Fluorescence-based bioassays are novel diagnostic 
tools available to clinicians for deciding on further treatment and to research-
ers for monitoring biological functions that lead to novel investigations. 

Protein microarrays are an essential tool in proteomics research and 
are also used in biomedical applications to determine the presence and/or 
amount of proteins in a biological sample.1 In recent years, fluorescence 
assay technologies have played a pivotal role in the high-throughput analy-
sis of proteins and protein interactions. The precise measurement of a fluo-
rescence signal is a prime parameter in analyzing the functional responses 
of the biological samples.2 Diagnostics or detection at the molecular level 
using reporter assays or expression studies are led by improved techniques 
using fluorescent proteins as biomarkers.3

It is known that breast cancer, the fifth most common cancer, leads to 
approximately 502,000 deaths worldwide per year and has already been 
linked with the steroid hormone estrogen.4 Further, it is well reported that 
many human breast cancers are initially hormone dependent. This knowl-
edge led to the utilization of anti-estrogens in the treatment of breast can-
cer.5,6 Discovery of the estrogen receptor (ER) has given the medical com-
munity a powerful diagnostic and predictive marker that is employed as a 
proficient target for the treatment of hormone-dependent breast cancer.7,8 
Several techniques are available for the specific detection of the said pro-
tein. The immune-sensing technique is a powerful and flexible tool, used 
to identify a targeted antigen with desired specific antibodies.9–11 Even 
though enzyme-linked immunosorbent assay (ELISA) is an old method, 
it is still in use to detect proteins12–13 but has the disadvantage of showing 
nonspecific interaction leading to false positives. The gel shift assay is 
another approach for detecting the ER protein. Its intracellular localiza-
tion and expression levels are reported elsewhere.14 Immunohistochemis-
try is another technique for assessing the ER status of breast cancers.15,16 
However, it is reported that this method has a disadvantage in determining 
the level of expression. 

The use of optical fibers for various sensing purposes has been reported 
heavily in the recent past.17,18 The emergence of microstructured optical 
fibers (MOFs) opens up new opportunities for novel fluorescent detec-
tion and relevant biosensor design, both of which can solve the problems 
encountered in conventional biosensors.19–21 MOFs are characterized as 
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having a plurality of air holes running along the entire length of the fiber.22 
The optical properties of this class of fibers are determined by their geom-
etry, size, and relative position of the air holes. Photonic crystal fibers 
(PCFs) are one of the most prominent MOFs that have emerged in recent 
years that could be engineered to have vastly different properties com-
pared to conventional fibers.23,24

17.2 Photonic Crystal Fibers

Photonic crystal fibers are fundamentally 2D photonic crystals in the 
transverse geometry that extend longitudinally along the length of the 
fiber. Their guiding mechanism is based on the photonic bandgap (PBG) 
formed due to its high index contrast (commonly silica and air in the opti-
cal region) and from the wavelength-scale microstructure. The mode prop-
agation properties strongly depend on wavelength, which in turn depends 
on the design, configuration, and geometry of the air holes.24–26 The trans-
mission bands, or transmission windows, of the hollow-core photonic 
crystal fiber (HC-PCF) is decided by the spacing between the holes of 
the capillaries (pitch), the hole diameters of the capillaries, and/or the air- 
filling content within the inner cladding. In 1996, Russell and his cowork-
ers demonstrated the first PCF,27 compromising fine silica fibers with an 
array of air holes running down their length with the central region where 
an air hole is absent acting as the guiding core. Since then, the field of PCF 
has developed rapidly and has attracted attention from research communi-
ties from around the world. A common way to classify PCFs is based on 
the guiding mechanism. 

Holey fibers consist of a central solid core surrounded by a cladding 
region laced with air holes, which acts as index-decreasing elements. 
In this case, light is guided by a modified form of total internal reflec-
tion, since the refractive index (RI) of the core is greater than effective 
index of the surrounding cladding region. Another class of fibers is the 
abovementioned HC-PCFs, where light within certain wavelength bands 
is prevented from propagating through the cladding region due to band-
gap effects.26 HC-PCFs are formed by introducing a low-index effect in a 
2D photonic crystal structure; hence, they are able to support guidance in 
air.24–26 Illustrations of the guiding mechanisms in hollow and solid core 
fiber are shown in Fig. 17.1. Unlike conventional fibers, PCFs are made of 
pure silica glass (SiO2) without any doping. Hence, they are biocompat-
ible and chemically inert. Furthermore, the capillary tubes present in PCFs 
have a good surface-to-volume ratio. A high light–matter interaction cross 
section of the field energy and the sample material can be achieved with 
HC-PCFs. Hence, an HC-PCF-based sensor utilizes the available sample 
volume much more effectively than fiber optic sensors based on conven-
tional optical fibers. 
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In the recent past, HC-PCFs have been widely used for evanescent 
wave sensing or highly efficient sensing of biomolecules, such as DNA, 
enzymes, antigens, antibodies, and proteins.28–31 Of late, optical manipu-
lation and detection of the fluorescent sample inside the core of HC-PCFs 
is also explored.32,33 When the holey regions of HC-PCFs are filled with 
aqueous solution, the transmission window shows a blue shift.34,35 This 
approach is analogous with the well-known scaling laws that describe 
the shift in the PBG edge that is derived from scalar waveguide approxi-
mation.34 By means of the scalar-wave approximation, simple RI scal-
ing laws have been derived to predict the manner in which the photonic 
states of the fiber scale with changes in the RI contrast. An experimental 
demonstration of the shift in the PBG edge due to RI scaling is consid-
ered, and an efficient fluorescence sensing scheme using HC-PCFs has 
been illustrated.36 In this context, this chapter describes an efficient fluo-
rescence sensing approach to developing a technique to recognize spe-
cific proteins in an extremely low volume of sample based on immune 
binding. 

17.2.1 Refractive-index scaling law

In general, the wave equation for the scalar field distribution in microstruc-
tured index-contrast structures is given by35

 ∇ + − =⊥
2 2

0
2 2 0Ψ Ψ( , ) ( ) ( , ) ,x y k n x yβ   (17.1)

where k is a free-space wave number, n0 is the transverse distribution 
of the RI of the structure, β is the propagation constant of the mode, 
and ∇⊥ is the transverse Laplacian operator.

The scalar wave equation is valid for very small index contrast. How-
ever, it is found to roughly explain light propagation in high-index-contrast 
microstructures such as HC-PCFs, as well.37 Figure 17.2 represents the 

(a) (b)

Figure 17.1 Illustration	of	(a)	index	guidance	and	(b)	bandgap	guidance	in	phot-
onic	crystal	fibers,	where	n1	=	1.45	(silica)	and	n2	=	1	(air).
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cross section of a representative HC-PCF. It consists of a hollow-core of 
diameter D surrounded by cladding holes in a triangular lattice. The sepa-
ration between the holes is represented as Λ (pitch), and the air-hole diam-
eter is d. The important characteristics of HC-PCFs are the positions and 
the bandwidths of the PBG, which in turn depend on the fiber geometry 
and the RI contrast between the ambient and background media. In scalar 
approximation for a photonic crystal structure comprising a material with 
a high index n1 and a material with low index n2 with pitch Λ, the photonic 
states scale so that the quantities such as ν2 and ω2 remain invariant with 
any changes of parameters k, Λ, n1 and n2,

37 where

 ν2 2 2
1
2

2
2= −k n nΛ ( ),   (17.2)

and

 ω β2 2 2 2
2
2= −Λ ( ).k n   (17.3)

Equations (17.2) and (17.3) provide the RI scaling laws, which can 
describe the extent to which the frequency of the photonic state of fiber 
can shift on changing the index contrast of the fiber materials. Specifi-
cally, consider the case where the low-index material (n2) in an HC-PCF 
is altered while the high-index material remains unchanged. The initial 

Figure 17.2 HC-PCF	with	air	holes	arranged	in	a	triangular	lattice	(white	regions	
correspond	to	air).
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RI contrast [N0 = (n1/n2)] changes to N. From Eqs. (17.2) and (17.3), the 
bandgap at wavelength λ0 will shift to a new wavelength λ, given by35,37
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−
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17.2.2 Selection of fibers

As shown in Fig. 17.2, in HC-PCFs, the ambient RI na represents the RI of the 
holey region that consists of both core and cladding holes. The RI of the back-
ground material (in general, silica) is symbolized as nb. The shift in central 
wavelength from wavelength λ0 to a new wavelength λ can be expressed as

 

λ λ=
−( )
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In Eq. (17.5), na represents the ambient index inside the holey region, 
which includes the core and the holes inside the cladding. The RI of the 
background material and infiltrated material is denoted as nb and nm, 
respectively. Also, λ0 represents the central wavelength of the fiber in air 
medium (n0). This RI scaling law is particularly applicable where the entire 
air region of the HC-PCF needs to be filled with gases or liquids. Filling 
the holes with different fluid media results in a shift in bandgaps and a shift 
in their corresponding bandwidths. This shift in central wavelength and 
bandwidth can be evaluated using the RI scaling law [Eq. (17.5)].

Hence, for hollow-core fibers with similar geometry profile, when the RI 
of the filling material changes from n0 to nm, the corresponding wavelength 
shift of the PBG edge varies from λ0 to λ. Most HC-PCFs have cladding 
made of pure fused silica (nb = 1.45) with array of air holes (na  = 1) running 
along the entire length of the fiber. Based on the RI scaling law, for a par-
ticular filling material, the shifted wavelength λ is proportional to central 
wavelength λ0 of the HC-PCF. The variation of λ with λ0 is plotted in Fig. 
17.3 for different filling-material index values ranging from 1.3 to 1.4. It 
can be seen that on increasing the filling material indices, the central wave-
length of a particular HC-PCF is shifted to the lower-wavelength region.

This shift in central wavelength should be a significant parameter to be 
considered in HC-PCF-based fluorescent sensors where fluorescent sam-
ple solutions are infiltrated into the fiber holes. For efficient fluorescent 
sensing, when filling the aqueous sample, the selection of HC-PCF should 
satisfy the condition that the emitted fluorescence wavelength is centered at 
the shifted wavelength of the HC-PCF. Hence, based on the RI scaling law, 
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two HC-PCFs such as one with central wavelength at 830 nm (HC-800) and 
another with central wavelength at 1060 nm (HC-1060) are selected for the 
detection of green and red fluorescent dye respectively. The scanning elec-
tron microscope (SEM) images of these two fibers are given in Fig. 17.4.

The HC-800 has an approximate core diameter of 9.3 µm surrounded 
by a 40-µm diameter microstructured cladding. It exhibits full PBG (high 
transmission range) extending from approximately 770 to 890 nm. The 
attenuation over this range is less than 0.5 dB/m. In HC-1060, the PBG 
presents a band larger than 100 nm centered at 1060 nm. The hollow core 
has a center core size of diameter 10 ± 1 µm surrounded by a microstructure 

Figure 17.3 The	shift	 in	 central	wavelength	λ0	 of	HC-PCFs	 to	 the	new	wave-
length	λ	at	various	filling	material	indices	(adapted	from	Ref	36).

Figure 17.4 SEM	images	of	an	HC-PCF	with	(a)	central	wavelength	of	830	nm	
(HC-800)	and	(b)	central	wavelength	of	1060	nm	(HC-1060).

(a) (b)
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comprising eight periods of hexagonally packed cylinders with a period 
of 2.75 µm and a filling fraction of around 90%. The cladding diameter 
is 123 ± 5 µm. Both of the hollow-core fibers are cut into segments of 
≈10-cm length, and one end of the fiber is cleaved carefully (approximately 
1.5–2.0-cm length) using a fiber cleaver to produce a flat surface. 

17.3 Sensing Mechanism Based on Evanescent Waves

A majority of the optical sensing methods are based on the existence of 
evanescent waves (EWs) in the region where the chemical species to be 
sensed is placed. Evanescent waves occur when there is a confinement 
region in which a majority of the optical density exists; however, outside 
this region, a tail of the optical field exists, forming the EWs.

Typically, an EW field is created when light undergoes total internal reflec-
tion at the boundary between two dielectric media. The evanescent optical 
field that decays exponentially from the waveguide interface has been used in 
a variety of sensing schemes. The sensitivity of an EW-based sensor depends 
on both the amplitude of the EW in the region where the sample is located and 
the length of the region that has the target species within the EW field. But the 
drawback of this type of sensor is that the sensitivity is reliant on the mode 
distribution and hence on launching conditions and external disturbances.

17.3.1 Conventional-fiber-based evanescent wave sensing

Optical-fiber-based evanescent sensors, which make use of the interaction 
of an EW with analytes in the field along an optical waveguide, have been 
widely used. This sensing technique relies on the penetration of the EW of 
a totally internally reflected light into the fiber cladding, where a chemical 
species absorbs/scatters the EWs or is excited by the EWs to give a sensing 
signal. In conventional EW-based fiber sensors, commercially available 
silica optical fibers or silver halogenide fibers are used. In order to create 
an EW field in this sort of fiber, one needs to remove the optical fiber’s 
jacket as well as the cladding. This removal will make such fibers fragile 
and difficult to handle, especially when a fiber of small diameter, such as 
a single-mode optical fiber, is used to fabricate the sensor. Moreover, in 
most reported EW-based optical fiber sensors, only a few centimetres of 
the cladding can be replaced, limiting the sensitivity of the sensors. 

17.3.2 Evanescent wave sensing using HC-PCF

HC-PCF is characterized as having a hollow core (of diameter D) sur-
rounded by a pattern of air holes (of diameter d) running along the entire 
length of the fiber. As indicated by their name, HC-PCFs guide light in 
the air core within certain bandgaps, which manifest as transmission  
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windows in the transmission spectrum. The SEM image of a fiber end 
face and an enlarged view of the region enclosed by the rectangular box 
are shown in Fig. 17.5. When the entire section of the fiber is illuminated/
excited with a laser light source from one end, the electromagnetic field 
from light propagating through the fiber is mostly confined to the silica 
walls (the area between the neighboring air holes). However, due to the 
wave nature of electromagnetic waves, an exponential tail of the optical 
field will penetrate into the holes of the HC-PCF (core and cladding holes) 
and thereby probe any sample placed there. The strong evanescent field 
interaction with the fluorescent sample over several centimeters ensures 
efficient usage of the entire sample volume, and the emitted fluorescence 
is guided along the fiber for subsequent detection at the other end.

17.4 Materials and Methods

The method is based on antibody-based immunoassay technology38 that 
makes use of the binding between an antigen and its homologous antibody 
in order to identify and quantify the specific antigen in a sample. ER-
positive MCF-7 breast carcinoma cells and ER-negative MDA-MB-231 
cells were chosen for the study. ER-positive and ER-negative cell lysates 
immobilized inside HC-PCFs were detected using an anti-ER primary 
antibody with either Alexa Fluor® 488 (green fluorescent dye) or 555 (red 
fluorescent dye) labeled goat anti-rabbit IgG as the secondary antibody. 

17.4.1 Cell culture and sample preparation

Both MCF-7 and MDA-MB-231 cells were grown to confluence in Dul-
becco’s Modified Eagle Medium (high glucose) supplemented with 10% 
fetal bovine serum (FBS) and 1% penicillin and streptomycin. The media 

(a) (b)

Figure 17.5 SEM	image	of	an	HC-PCF	(a)	end	face	and	(b)	enlarged	view	of	the	
region	enclosed	by	the	rectangular	box	in	(a).	
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were removed from the 12-well culture plates in which the cells were 
grown, and the cells were washed twice with phosphate-buffered saline 
(PBS). These cells were lysed (200 μL) in the buffer (1×) and kept at 
4 °C in a rotator for 1 h. After incubation, 5 μL of 200-mM phenylmeth-
ylsulfonyl fluoride was added, and the sample solution was centrifuged at 
10,000 rpm for 15 min. The supernatant-containing protein was extracted 
and stored at −70 °C until it was used.

17.5 Results and Discussion

The concentration of proteins in the cell lysates are quantified using the 
Bradford method.39 The estimated amount of protein in MCF-7 and MDA-
MB-231 cell lysates is found to be 1 μg/μL. The amounts of ER-α protein 
immobilized in the fibers are calculated according to the protein quantity 
in the cell lysate. The western blot is used as an analytical technique to 
detect specific proteins in the given sample. The endogenous ER levels in 
the positive cells are detected using the antibody raised against ER-α. To 
confirm the ER protein signal, the cells are analyzed using anti-ER-α anti-
body for cellular ER, and anti-β-actin antibody for β-actin. As the β-actin 
is the housekeeping gene, it acts as an internal standard protein. Hence, it 
gives a signal in both MCF-7 and MDA-MB 231 cell lines. It is also noted 
that only the MCF-7 cell line gives a signal that corresponds to ER-α. The 
absence of signal in MDA-MB-231 cell lines confirms the lack of ER-α 
receptor in it. 

17.5.1 HC-PCF-based fluorescence detection

The different steps involved in the process are schematically represented 
in Fig. 17.6. The binding of protein mainly depends on efficient surface 
attachment procedures, which are crucial for biosensor applications. Hence, 
the primary step of the experiment is to activate the silica inner core of the 
fiber to facilitate the detection of the ER protein. Poly-L-lysine is used to 
precoat the inner wall of the fiber. The activated surface of the inner core 
provides a base for appending the targeted protein to achieve this goal. The 
tip of the fiber is dipped in the 0.01% poly-L-lysine solution for 3 min, and 
the solution is allowed to get into the fiber by simple capillary force. The 
fiber is permitted to dry out at room temperature for approximately 1 h. 
After drying, it is washed twice with PBS for 5 min. Thus, the inner core 
is prepared for further processing.

In the next step, ER-α positive (MCF-7) and negative (MDA-MB-231) 
cell lysates are allowed to stick inside different PCFs for protein binding  
(3 min.). After that, the fibers are incubated at 4 °C for 2 h, then washed 
thrice briefly in TBST buffer. The primary antibody (Acris Antibodies, 
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GmbH, Germany) binding is performed using anti-estrogen-α solution 
diluted to a final concentration of 1:1000 (14 mg/ml) in TBS for 5–10 min 
and incubated for 3 h at 4 °C. Concurrently, sodium iodide symporter 
antibody (NIS primary antibody, Whatman Ltd.) is also used to check the 
nonspecific binding of the ER-α protein. This is followed by TBST buffer 
wash (thrice) for 10 min. and drying at 4 °C for 1 h. The experiment is 
completed by adding a secondary antibody solution made in TBS contain-
ing Alexa Fluor 488 and/or 555 red fluorescent dye labeled goat anti-rabbit 
IgG diluted to 1:100, in same way as in the earlier step. Appropriate con-
trols are performed simultaneously for both green and red dye detections. 
Now the immuno binding of the protein is completed inside the fiber core, 
and the fiber is ready for imaging/sensing. The fibers are stored in dark 
ambience at 4 °C.

The fluorescence fingerprints of the ER-α protein are observed under 
a fluorescence microscope, and their optical characteristics are also ana-
lyzed using a spectrophotometer. The cleaved end of the fiber carrying 
immobilized protein is focused under the microscope (Olympus America 
Inc. fluorescence microscope CKX41) and checked for the fluorescence 
signal. Both the control fiber and sample fiber are analyzed for the emis-
sion signal. An abundant fluorescence signal is noticed in the center core 
due to the large size that allows fast and easy flow of a larger quantity of 
samples inside, compared to the surrounding holes in the case of a fiber 
immobilized with ER-α positive (MCF-7) cell lysate. The fluorescence 
signal is found to be linearly increased with the concentration of cell lysate 
as a result of the larger number of binding surfaces inside. The control 
fibers (MDA-MB-231 cell lysate immobilized) showed literally no fluo-
rescence signal [see Figs. 17.7(b) and 17.8(b)], whereas the green [see Fig. 
17.7(a)] and red [see Fig. 17.8(a)] signals are observed for sample fibers 

Figure 17.6 Drawing	showing	specific	protein	binding	by	the	developed	protocol.	
(GFD	=	green	fluorescent	dye,	RFD	=	red	fluorescent	dye.)	(Adapted	from	Ref.	31.)
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(a) (b)

(c) (d)

Figure 17.7 (a)	and	(b)	Fluorescence	microscopy	images	of	(a)	sample	fiber	with	
green	fluorescent	dye	and	(b)	control	fiber.	(c)	and	(d)	Spectral	signatures	show-
ing	(c)	protein	binding	inside	the	fiber	immobilized	with	ER-α	positive	(MCF-7)	cell	
lysate	 (sample	 fiber)	 and	 (d)	 ER-α	 negative	 (MDA-MB-231)	 cell	 lysate	 (control	
fiber).	(Adapted	from	Ref.	31.)

(MCF-7 cell lysate immobilized) with secondary antibodies such as green 
(Alexa Fluor 488) and red (Alexa Fluor 555) dyes.

17.5.1.1 Spectroscopic analysis

The presence of ER-α protein inside the hollow core is further confirmed 
through the spectroscopic method. The schematic setup used for the spec-
tral analysis of fluorescent proteins is shown in Fig. 17.9. A CW diode-
pumped solid state (DPSS) laser (output power ≈ 10 mW) is coupled to 
the proximal end of the sample-immobilized PCF using a high-precision 
single-mode fiber coupling (FC) unit (Melles Griot Pte Ltd.) with a micro-
scope objective [20X, 0.65NA (L1)]. The diverging beam emerging from 
the distal end of the sample-immobilized fiber is allowed to pass though a 
2-f lens system, which is configured using two microscope objective lenses 
[Newport M-20X, 0.4 (L2) and Olympus UMPLAN FI 50X/0.8 (L3)]. The 
2-f lens system focuses the beam into a high-quantum-efficiency spectro-
photometer (Ocean Optics QE65000). The spectrometer is coupled to a 
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(a) (b)

(c) (d)

Figure 17.8 (a)	and	(b)	Fluorescence	microscopy	images	of (a)	sample	fiber	with	
red	fluorescent	dye	and	(b)	control	fiber.	(c)	and	(d)	Spectral	signatures	showing	
(c)	 protein	binding	 inside	 the	 fiber	 immobilized	 with	 ER-α	 positive	 (MCF-7)	 cell	
lysate	 (sample	 fiber)	 and	 (d)	 ER-α	 negative	 (MDA-MB-231)	 cell	 lysate	 (control	
fiber).	(Adapted	from	Ref.	31.)

Figure 17.9 Schematic	diagram	of	the	setup	used	for	PCF-based	EW	sensing	of	
samples	(adapted	from	Ref.	36).

PC that displays the spectrum. In our study, lasers with wavelengths of 473 
and 532 nm were used for the green fluorescent dye and red fluorescent dye 
analysis, respectively. Green emission is obtained at around 515 nm for sam-
ple fibers (MCF-7 cell lysate immobilized) [see Fig. 17.7(c)] with Alexa 
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Fluor 488 as the secondary antibody. Similarly, red emission at around 
585 nm is obtained for sample fibers with Alexa Fluor 555 as the second-
ary antibody as shown in Fig. 17.8(c). However, in the both cases, control 
fibers failed to show any fluorescence signals [Figs. 17.7(d) and 17.8(d)]. 
These spectral signatures authenticate the strong binding of ER-α protein 
inside the HC-PCF.

17.5.1.2 Image processing method

The distribution of fluorescence in the fiber and the localized presence of 
protein are investigated by image processing means. In order to understand 
the distribution of fluorescence inside the fiber, the image is processed 
with ImageJ, a Java-based program developed at the National Institutes of 
Health. The wavelengths corresponding to the red dye (Alexa Fluor 555) 
are extracted from the obtained fluorescence image. The distribution of the 
extracted intensity along the length of the sample fiber has been normal-
ized and plotted, as given in Fig. 17.10(b). It is clear that the fluorescence 

(a) (b)

(c)

Figure 17.10 (a)	 Fluorescence	 microscopic	 image	 of	Alexa-Fluor-555-labeled	
MCF-7	cell	immobilized	inside	the	HC-PCF.	(b)	Normalized	fluorescence	intensity	
distribution	along	the	length	of	fiber	and	(c)	its	corresponding	interactive	3D	sur-
face	plot.	
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is distributed along the central hollow core where the cells are immobi-
lized. The fluorescence has concentrated toward the right end facet of the 
fiber through which the sample is adsorbed inside the fiber. The interactive 
3D surface plot of the fluorescence images has been plotted using ImageJ 
in Fig.17.10(c), which further confirms the presence of localized protein 
inside the hollow core. These results strongly confirm the specific binding 
of ER-α protein inside the hollow core. The respective fluorescence micro-
scopic image, normalized fluorescence intensity distribution along the 
length of fiber, and interactive 3D surface plot of the control fiber (negative 
cell line-MDA-MB-231 immobilized) are given in Fig. 17.11. The control 
fiber has failed to produce fluorescence signal due to the lack of a receptor.

17.6 Conclusion

The different aspects of PCF, its guiding mechanism, the RI scaling law, etc. 
are analyzed and explained in this chapter. In order to recognize the ER-α 
protein, an antigen–antibody reaction method is employed. The distribution 

(a) (b)

(c)

Figure 17.11 (a)	 Fluorescence	 microscopic	 image	 of	Alexa-Fluor-555-labeled	
MDA-MB-231	cell	 immobilized	 inside	 the	HC-PCF.	 (b)	Normalized	 fluorescence	
intensity	distribution	along	the	length	of	fiber	and	(c)	its	corresponding	interactive	
3D	surface	plot.	
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of fluorescence inside the PCF immobilized with an ER-positive cell and the 
localization of protein across the length of the fiber have been investigated. 
The proposed methodology is implemented in array format with immuno 
recognition of specific proteins using an HC-PCF. The primary step of the 
experiment is to activate the silica inner core of the fiber to facilitate the 
detection of ER protein. Poly-L-lysine is used to precoat the inner wall of 
the fiber to create an activated surface that can effectively bind the targeted 
protein. In the second step, ER-α positive (MCF-7) and negative cell (MDA-
MB-231) lysates are allowed to stick inside different HC-PCFs in order to 
bind with specified antibodies. The primary antibody raised against ER-α 
protein (anti-rabbit) is subsequently used to recognize the biomolecule (even 
in fragments), which is available on the core surface. It is illustrated that the 
Alexa Fluor 488 (green fluorescent dye) and/or 555 (red fluorescent dye) as 
a secondary antibody compatible to the anti ER-α protein can be employed. 
Fluorescence signal is observed inside the fiber core under a microscope in 
the case of MCF-7-cell-immobilized HC-PCF, whereas MDA-MB-231-cell-
immobilized fiber shows literally no signal. This result confirms the possible 
application of HC-PCF in specifically detecting the presence of protein at a 
very low sample volume. This method has an additional advantage that the 
immobilized sample  can be analyzed spectroscopically using a simple opti-
cal set up. By using a laser with wavelengths such as 473 and 532 nm, the 
fluorescence spectrum can be obtained for both positive- and negative-cell-
immobilized HC-PCF, which further confirms the ability of HC-PCF for 
specific protein detection. The developed technique enables recognition of  
≈20 pg of ER-α protein specifically in a 50-nL sample volume. This method 
holds great promise in that the HC-PCF can be used as a potential biosensor 
for medical diagnosis and therapeutics. In general, this sensor can be applied 
for any other protein of interest, too.
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18.1 Introduction

18.1.1 Scope

The chapter is intended to provide overviews of the following:

● quality assurance (QA) programs for digital mammography,
● quality control (QC) test procedures based on the American College 

of Radiology (ACR) and the International Atomic Energy Agency 
(IAEA),

● the role of medical physicists in mammography QA programs, includ-
ing acceptance, annual, and regular QC testing, and

● the role of technologists/radiographers in mammography QA programs, 
including regular QC testing.

Recent advances in digital detector technology have paved the way to 
full-field digital mammography (FFDM) systems. The performance of 
these systems has evolved to the point where replacement of screen-film 
mammography (SFM) systems is becoming realistic. FFDM has several 
inherent advantages, such as wide dynamic range, reduction in recall 
rates, potential for reduction in radiation dose, increased patient through-
put, postprocessing capability, and digital acquisition.1,2 There is an urgent 
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need to implement an effective QA program for ensuring optimum diag-
nostic information and patient safety. 

18.2 Technical Quality Control

A high-quality digital mammogram must meet clinical requirements to 
ensure that the radiologist can identify the following five features:3

(1) the characteristic morphology of a mass,
(2) the shape and spatial configuration of calcifications,
(3) distortion of the normal architecture of the breast tissue,
(4) asymmetry between images of the left and right breast, and
(5) the development of anatomically definable new densities when com-

pared to prior studies. 

In order to produce a high-quality digital mammogram, a quality assur-
ance program  (QAP) should be implemented. Thus, a QAP can be defined 
as a program that ensures the soundness of the entire mammography proc-
ess, including image production, radiography technique, and technical 
components, as well as the administrative and personnel aspects. 

The QAP follows several steps to obtain good results, such as determin-
ing who will be responsible for possible corrective actions, complemented 
by administrative procedures, which include conducting acceptance test-
ing of equipment and facility, conducting routine QC testing, and taking 
continuing education courses.

Routine testing is periodic and must be conducted in accordance with 
specific procedures for different types of equipment, accessories, image 
viewers, printers, conference reports, and examinations. These tests need 
to be recorded and monitored on an on-going basis.

In the Quality Control Manual4 (ACR/1999) on mammography screen-
film system, it is specified that tests should be performed by technologists 
and medical physicists. Even with the transition to digital mammography, 
many ACR/1999 tests remain valid, such as kVp Accuracy and Reproduc-
ibility, beam quality assessment [half-value layer (HVL) measurement], 
and radiation output rate. However, many more tests have been added 
depending on the type of detector being used. For accreditation with the 
ACR, the facilities must follow the quality control procedures provided by 
the manufacturers’ manuals.

In the IAEA mammography quality assurance publication,5 which pro-
vides the QAP for dedicated digital mammography, the methods of meas-
urement are integrated, differing from the ACR QAP (see Appendices 18.1 
and 18.2). However, the division of tasks between medical physicists and 
technologists is still maintained. The tests to be performed by medical 
physicists and technologists are shown in Table 18.1. For QA to produce 

SRBK002-C18_497-534.indd   499 1/21/13   4:51 PM



500	 Chapter	18

Table 18.1 Tasks	of	a	quality	assurance	program	QAP	for	medical	physicists	and	
technologists	according	to	American	College	of	Radiology	(ACR)	and	International	
Atomic	Energy	Agency	(IAEA)	documents.	(SNDR	is	signal-difference-to-noise	ratio.)

Tests

Performed by

ACR IAEA

Mammography unit assembly Medical
Physicist

Medical
Physicist

Compression force and thickness Technologist Medical
Physicist

Site technique factors for SDNR (radiographer  baseline) Medical
Physicist

Medical
Physicist

Automatic exposure control evaluation Medical
Physicist

Medical
Physicist

Baseline detector performance Medical
Physicist

Medical
Physicist

Spatial linearity and geometric distortion of the  
detector

Medical
Physicist

Medical
Physicist

Detector ghosting Medical
Physicist

Medical
Physicist

Detector uniformity and artifact evaluation Medical
Physicist

Medical
Physicist

Modulation transfer function Medical
Physicist

Medical
Physicist

Limiting spatial resolution Medical
Physicist

Medical
Physicist

Beam quality assessment (HVL) Medical
Physicist

Medical
Physicist

Incident air kerma at the entrance surface of PMMA slabs Medical
Physicist

Medical
Physicist

Mean glandular dose (MGD) Medical
Physicist

Medical
Physicist

Collimation system Medical
Physicist

Medical
Physicist

Image display quality Medical
Physicist

Medical
Physicist

Laser printer (where applicable) Technologist Medical
Physicist

Phantom image quality Technologist 
(monthly)

Medical
Physicist

Monitor inspection, cleaning, and viewing conditions Technologist Technologist

Digital mammography equipment daily checklist Technologist Technologist

Daily flat-field phantom image Technologist Technologist

Visual inspection for artifacts (CR systems only) Technologist Technologist

Laser printer sensitometry and artifacts Technologist Technologist

Image plate erasure (CR systems only) Technologist Technologist

Monitor QC Technologist Technologist

View box cleanliness Technologist Technologist

Weekly QC test object and full-field artifacts Technologist Technologist

Safety and function checks of examination room and equipment Technologist Technologist

(continued on next page)
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good results, these tests must rely on administrative procedures to ensure 
corrective actions where necessary.

Although many tests are the same as with screen-film mammogra-
phy, special attention should be given to equipment that produces digital 
images. If there is no image quality and dose optimization, the detectors 
can introduce new types of artifacts, and the dose may be higher than that 
emitted by screen-film equipment.

18.3  Testing by Medical Physicists and Equipment 
Performance

Medical physicists must perform the acceptance tests to ensure that the 
equipment is able to carry out the clinical routine with the highest quality. 
Some equipment, such as GE Senographe Essential or DS and Hologic 
Selenia®, require special attention in the selection of technical parameters 
by automatic exposure control (AEC). Two tables can be selected for the 
equipment according to expected response in entrance surface air kerma 
(ESAK); an example of calibration using slabs of PMMA (45- and 63-mm 
thickness) is presented in Fig. 18.1. Calibration should be carried out dur-
ing the installation of equipment before the acceptance test.
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Figure 18.1 Selenia	detector	response	to	a	selection	of	Table	0	or	1	according	to	
the	expected	response	to	ESAK.	The	percentage	of	calibration	varies	and	can	be	
chosen	from	within	each	table.

Tests

Performed by

ACR IAEA

Full-field artifacts Technologist Technologist

Printed image quality Technologist Technologist

Repeat image analysis Technologist Technologist

Spatial resolution test (CR and scanning systems only) Technologist Technologist

Table 18.1 (Continued)
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18.3.1 Mammography unit assembly evaluation

The mammography unit requires care in all its mechanical components 
and accessories, since they can be damaged by the intense use. A com-
mon problem is compression plate crack, which can be harmful to the 
patient. In addition, special attention must be given to the control room 
temperature due to the sensitivity of the detector, which may stop working 
if the temperature is not in the proper range. These issues and other items 
as shown in Appendix 18.3 checklist must be checked frequently (semi-
annually is desirable; annually is essential) to ensure that the examinations 
can be carried out without problems.

18.3.2 Compression force and thickness accuracy

18.3.2.1 Compression force

Compression force is one factor that makes the mammography exam pain-
ful and uncomfortable for a patient. However, compression is critical for 
the exam because it reduces the thickness of the breast and serves several 
key functions:5

● reduces scattered radiation,
● increases contrast,
● reduces radiation exposure to the breast,
● improves image sharpness,
● minimizes focal spot blurring of structures in the image,
● minimizes patient motion, and
● results in more-uniform image densities.

As the compressed breast thickness determines the choice of technical 
factors for exposure, it is important that the compression parameter is 
calibrated. It is necessary that both modes of compression are evaluated, 
namely powered and manual.

To check the compression force, use an analog bathroom scale and bath 
towels or blocks of rubber foam. Place the bathroom scale on the bucky 
resting on a towel for protection, and place another towel (or blocks of foam 
rubber) on top, properly centered, and set the bathroom scale to zero. Using 
the power drive, activate the compression paddle and allow it to operate and 
stop automatically at the maximum available powered force. Some equip-
ment has staged compression, in which case, compress several times until 
it ceases. Record the values of compression force shown on the bathroom 
scale and equipment. Release the compression and then check the manual 
mode. Move the compression paddle until it stops. Record the maximum 
compressive force F and make sure that the values are within the limits. For 
ACR, 111 N ≤ F ≤ 200 N; for IAEA, 150 N < F < 200 N, and for powered 
compression, F < 300 N, where displayed value accuracy is ±20 N.
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18.3.2.2 Thickness accuracy

As thickness must be considered in the choice of technical factors, this 
parameter needs to be calibrated. To check the thickness accuracy, use 
blocks of PMMA with thicknesses of 20, 45 and 70 mm, ideally with the 
size of 18 cm × 24 cm (to avoid deformation of the compression paddle).

Centralize the PMMA blocks laterally, align them with the chest wall 
edge, and activate the compression paddle until the clinically used com-
pression force is achieved. The performance criteria are:

ACR:  According to manufacturers’ manuals. For example, for 
Hologic Selenia, the displayed thickness is within ±5 mm of 
the slab thickness.

IAEA:  Acceptable: The displayed thickness is within ±8 mm of slab 
thickness.

 Achievable: The displayed thickness is within ±5 mm of slab 
thickness.

18.3.3  Site technique factors for SDNR  
(radiographer baseline)

An imaging system is designed to give the observer an image containing 
a signal that can be recognized on a background of noise. Noise is one of 
the image parameters that can produce more problems, since it can lead 
to nonidentification of findings. Noise is produced by all systems and by 
various sources, from electronic signals generated by background noise 
detector electronics to the structure of a normal breast tissue. When an 
electronic detector is at rest waiting for an x-ray exposure, it produces sig-
nals that come from random background noise, and many sources cannot 
be eliminated. Thus, the noise must be constantly evaluated to ensure that 
the image quality of the system is maintained at optimal levels.

This test should be performed by a medical physicist during acceptance 
testing to obtain a baseline of technical parameters, while the routine test 
should be performed weekly by a technologist. According to the IAEA, the 
test consists of placing a 45-mm-thick PMMA test object, centered and 
laterally aligned with the chest wall edge of the digital image receiver, with 
a 1-mm-thick contrast object of placed 40 mm from the chest wall. The 
compression force should be recorded, including the thickness shown by 
the equipment, the position of the AEC sensor (where applicable), target, 
filter, kV, grid, density control position, and operating mode (automatic or 
semiautomatic). This test should be performed routinely by a technologist, 
always under the same conditions. The image obtained from this phantom 
should be analyzed in the DICOM image format “for presentation.” The 
window width and window level used to analyze the image will also be 
used for routine testing by the technologist.
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According to the IAEA publication,5 this part of the test is subjective, and is 
designed to check for artifacts. The expected results should be the absence of:

● blotches or regions of altered texture appearance,
● observable lines or structural artifacts, and
● “bright” or “dark” pixels that are evident.

18.3.4 Automatic exposure control evaluation

The AEC evaluation aims to verify whether the automatic choice of techni-
cal parameters by the equipment ensures quality images in different com-
pressed breast thicknesses, associating with an acceptable level of SNR. 
This test is performed in two parts: (1) to verify that the AEC compensates 
for the compressed breast thickness, and (2) to check the variations of 
density control (where applicable).

18.3.4.1 Thickness behavior

To verify the compressed breast thickness, it is necessary to use slabs of 
PMMA or BR12, with thickness of 20 to 70 mm. If using PMMA, one 
should consider that the thickness of PMMA and typical breasts are not 
equal; thus, to achieve the same thickness read by the equipment, spacer 
thicknesses should be placed (method shown in Table 18.26).

Place the contrast disk or square of 1-mm thickness positioned 40-mm 
from the chest wall on the upper surface of PMMA (Fig. 18.2). Compress 
with the force used clinically (if using the protocol for GE equipment, as 

Table 18.2 Spacer	thicknesses	used	for	attaining	thickness	equivalence	between	
PMMA	and	typical	breasts.6

Equivalent breast thickness (mm) PMMA thickness (mm) Spacer thickness (mm)

21 20 0

53 45 8

90 70 20

40 mm

Figure 18.2 Slabs	of	PMMA	with	a	1-mm-thick	contrast	object	positioned	40	mm	
from	the	edge	of	the	chest	wall.
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per ACR, compress to 50 N). Choose the exposure mode used clinically; 
however, if conducting the acceptance test, all modes should be tested.

After exposure, record the technical parameters, which will be used to 
determine the incident air kerma. The incident air kerma, in turn, is used 
to calculate the mean MGD. This test should be performed for the three 
thicknesses, which vary according to the protocol to be followed:

IAEA: for thickness shown in Table 18.2.
ACR: GE Senographe: 25 mm, 50 mm, 60 mm.
 Hologic Selenia: 20 mm, 40 mm, 60 mm, 80 mm.

In unprocessed images taken at all thicknesses, place a region of inter-
est (ROI) in the contrast object area and another outside it. Calculate the 
SDNR according to 

 
SDNR =

−| |
,

A B

C
 (18.1)

where A and B are the mean pixel value (MPV) of the ROIs placed in the 
areas of image background and the object contrast, respectively, and C is 
the ROI value of the background standard deviation.

The methods to analyze the results differ according to the protocol being 
used:

IAEA: The SDNR values for images of 20, 45, and 70 mm of PMMA 
should exceed the acceptable values given in Tables 18.3 and 
18.4 for the aluminum and PMMA contrast object, respec-
tively.

ACR: One should follow manufacturers’ recommendations:

● GE Senographe DS or Essential: The expected results are presented 
in Table 18.5. SNR values must be assessed from a baseline. 

● Hologic Selenia: The pixel value of each individual image cor-
responding to a breast thickness between 20 and 80 mm at any 
operating mode should not vary more than 10% of the mean value 
recorded from all tested breast thickness and operating modes.7 

● In the Mammography Quality Standards Act (MQSA) form, “Medi-
cal Physicist’s Mammography QC Test Summary: Full-Field Digital – 
Hologic or GE,” the results should only be recorded as “pass” or “fail.”

18.3.4.2 Density control

In the case of equipment that controls the variation in densities, allowing 
adjustments to the mAs (milliampere × second), test all of the possible 
steps of change. Use the 40-mm thickness and vary the steps from –3 to 
+4, or vary the steps for the particular equipment. Evaluate the SDNR of 
each image “for processing” and calculate the time from mAs for each 
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exposure. Calculate the variation in pixel value with respect to the mean 
value computed for the zero-exposure compensation step. The results 
should be evaluated according to the protocol adopted as follows:

IAEA: The techniques chosen should not result in an exposure time 
greater than 5.0 s for 70 mm of PMMA, and the exposure time 
should be less than 2.5 s for a 45-mm PMMA slab. These  
time limits do not apply to scanning-type systems.

ACR: The MQSA form does not go into detail, but the manufac-
turer’s manual, particularly for the Hologic Selenia, gives the 
criteria shown in Table 18.6.

18.3.5 Baseline for detector performance

The baseline must be established for the response and noise characteristics 
of the image acquisition system under standard radiation exposure con-
ditions. Therefore, one should use the contrast object (0.2-mm aluminum 

Table 18.3 Acceptable	 and	 achievable	 values	 for	 SDNR	 for	 AEC	 evaluation	
0.2-mm-thick	aluminum	contrast	object	(used	with	permission	from	IAEA5).

PMMA thickness (mm)

20 45 70

System Acceptable Achievable Acceptable Achievable Acceptable Achievable

Agfa CR (MM3.0) 13.8 20.1 12.4 18.0 10.8 15.8

Agfa CR (HM5.0) 10.2 15.0 8.9 13.0 8.0 11.7

Fuji CR 9.8 14.2 8.8 12.8 7.7 11.2

Fuji Amulet 6.1 8.7 5.5 7.8 4.8 6.8

GE 2000D 8.9 12.9 7.9 11.5 6.9 10.0

GE DS 8.9 12.9 7.9 11.5 6.9 10.0

GE Essential 12.7 18.4 11.3 16.5 9.9 14.4

Hologic Selenia 4.8 7.0 4.3 6.3 3.8 5.5

IMS Giotto 7.8 11.3 7.0 10.1 6.1 8.8

Carestream CR 
(M2 plate)

9.5 13.9 8.5 12.5 7.5 10.9

Carestream CR 
(M3 plate)

11.7 17.0 10.2 14.8 9.1 13.3

Konica CR (RP-6M) 11.4 16.6 10.2 14.8 8.9 13.0

 (RP-7M) 8.7 12.8 7.8 11.4 6.8 10.0

 (CP-1M) 6.6 9.5 5.9 8.5 5.1 7.5

Planmed Nuance 6.3 9.1 5.0 7.2 4.3 6.2

Sectra D40 3.6 5.3 3.2 4.7 2.8 4.1

Sectra L30 3.6 5.3 3.2 4.7 2.8 4.1

Siemens Novation DR 5.1 7.4 4.5 6.6 4.0 5.8

Siemens Inspiration 4.4 6.3 3.9 5.7 3.4 5.0
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Table 18.5 Expected	results	for	the	verification	of	the	STD	mode	in	equipment	GE.7

PMMA thickness 
(mm)

Exposure parameters for standard mode only

SNRTrack/filter mAs kV

25 Mo/Mo 20–60 26

>5050 Rh/Rh 40–90 29

60 Rh/Rh 16–120 30 or 31

Table 18.4 Acceptable	and	achievable	values	for	SDNR	used	for	AEC	evaluation	
of	1-mm-thick	PMMA	contrast	object	(used	with	permission	from	IAEA5).

PMMA thickness (mm)

20 45 70

System Acceptable Achievable Acceptable Achievable Acceptable Achievable

Agfa CR (MM3.0) 5.8 8.7 5.1 7.8 4.3 6.7

Agfa CR (HM5.0)

Fuji CR 3.9 6.5 3.4 5.8 2.9 4.8

Fuji Amulet 2.1 3.4 1.8 2.9 1.5 2.5

GE 2000D 3.4 5.61 3.0 5.0 2.5 4.1

GE DS 3.4 5.61 3.0 5.0 2.5 4.1

GE Essential 5.2 7.9 4.6 7.0 3.9 6.0

Hologic Selenia 1.5 2.6 1.3 2.2 1.0 1.8

IMS Giotto 2.9 4.6 2.6 4.0 2.1 3.4

Carestream CR 
(M2 plate)

3.8 5.8 3.3 5.1 2.8 4.4

Carestream CR 
(M3 plate)

Konica CR (RP-6M) 4.6 7.1 4.1 6.2 3.5 5.4

 (RP-7M) 3.4 5.3 2.9 4.6 2.5 4.0

 (CP-1M) 2.3 3.8 2.0 3.3 1.7 2.8

Planmed Nuance 1.2 2.0 1.6 2.7 2.4 3.9

Sectra D40 0.9 1.7 0.8 1.5 0.6 1.2

Sectra L30 0.9 1.7 0.8 1.5 0.6 1.2

Siemens Novation DR 1.6 2.7 1.4 2.4 1.1 2.0

Siemens Inspiration 1.3 2.2 1.1 1.9 0.9 1.6

or 1-mm PMMA) over 45-mm PMMA, with the center at a distance of  
60 mm from the chest wall. One compresses and images in AEC mode and 
then reproduces these parameters in manual mode, but with mAs values as 
close as possible to those achieved in automatic mode. One obtains images 
for three different values of mAs. The incident air kerma without backscat-
ter is measured using a dosimeter appropriate for mammography in mAs 
values obtained above. Calculate the SDNR [Eq. (18.1)] with the values 
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obtained in ROI 1 and 2, as shown in Fig. 18.3, for each image, and plot 
the values of MPV (B), the variance (C2), and SDNR versus mAs.

For linear systems, perform a linear fit to obtain the slope, intercept, 
and correlation coefficients (R2). For logarithmic systems, it may be neces-
sary to plot the MPV and variance against 1/mAs to obtain a straight line. 
Some manufacturers intentionally add a pixel value offset (B0) to their 
image data, obtained from the manufacturer’s technical documentation or 
the intercept obtained. To calculate the average value of this quantity, use 
the following equation:

 

B B

mAs

− 0 .  (18.2)

ROI 1

ROI 2

Figure 18.3 Obtaining	values	in	ROIs	for	calculating	SDNR.

Table 18.6 The	 exposure	 compensation	 step	 should	
result	in	the	following	changes	in	pixel	value	when	divid-
ing	the	pixel	value	at	a	given	step	by	the	MPV	at	step	0.8

Step Change in pixel value

–3 0.50 to 0.61

–2 0.63 to 0.77

–1 0.77 to 0.94

+1 1.04 to 1.27

+2 1.17 to 1.43

+3 1.31 to 1.60

+4 1.44 to 1.76
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For CR systems without ROI capability, compare the values of the expo-
sure index (EI) at each mAs value with the baseline and the results of 
previous tests. The results using IAEA standards should agree with the 
detector response and noise tolerances (Table 18.7), and

● For linear [digital radiology (DR)] systems: The plot of MPV (B) and 
variance (C2) versus mAs should be linear with R2 ≥ 0.95. All values of 
(B–B0)/mAs should be within 10% of the mean value of this ratio.

● For logarithmic (CR) systems: EI versus mAs should be linear with  
R2  ≥ 0.95.

18.3.6  Spatial linearity and geometric distortion  
of the detector

A test that checks for distortion in straight lines in both contact and mag-
nification mode is performed as follows. Place a geometric distortion test 
tool (with parallel lines at 20 mm spacing and lines angled at 45 deg to 
the edges of the tool) on the breast support plate and center it. Analyze 
the image of the distortion phantom acquired in automatic mode using 
appropriate window width and window level settings such that the lines 
are clearly visible. Examine the image for uniformity of sharpness across 
the image and for any distortion in the regular pattern. Calculate the effec-
tive detector element (del) size referenced to the breast support table mea-
suring vertical and horizontal distances, which must be obtained in pixels. 
The results should agree with the following criteria for IAEA:

● The effective del width and length (x and y) dimensions should be 
within 5% of each other.

● The image size (in cm) in each dimension should be within 10% of the 
manufacturer’s stated nominal image size.

● The distances measured using the annotation tool should be within 5% 
of the true size. 

● There should be less than 2% deviation from a straight line over a 100-mm 
length in the center of the field.

Table 18.7 Detector	response	and	noise	tolerance	(used	with	permission	from	IAEA5).

System type Parameter Acceptable tolerance

Nominally linear (DR) MPV (B–B0) (B–B0) ≤ 10%

Standard deviation (C) C ≤ 5%

SDNR SDNR ≤ 5%

Nonlinear (CR) Fuji, Philips, Konica—S# S# ≤ 10%

Agfa—SAL/SALlog/PVIlog ±5%/±430/±580

Carestream—EI EI ≤ 40 units
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18.3.7 Detector ghosting

This measurement aims to assure that the level of detector ghosting 
does not interfere with image quality. The goal of the test is to cause 
a ghost image to appear in the detector in order to quantify it. Place a 
PMMA slab of 45 mm on the support of the breast, and select a tech-
nique that is clinically used for a standard breast. Turn the slab 90 deg 
so that it covers one-half of the useful area of the detector, as shown in 
Fig. 18.4. Make an exposure with the same technique twice, with the mini-
mal time between acquisitions allowed by the equipment. Use the image 
“for processing,” if possible, to visualize the ghost. Calculate according to 
Eq. (18.3), obtaining the data of ROI, as shown in Fig. 18.4.

 
Ghost image SDNR

A B

C
=

−
.  (18.3)

This factor can have values described as follows:

IAEA: Acceptable: ghost image SDNR ≤ 2.0.
ACR: Manufacturers (more precisely Hologic) describe a slightly 

different method, where instead of taking two images with 
the PMMA half of the detector, it takes only one. Place a 
0.1-mm sheet of aluminum over the PMMA, in the position 
that covers the entire detector. Thus, the calculation will be 
as is shown in the following equation and in Fig 18.5:

Figure 18.4 Analysis	of	the	ghost	image	obtained	with	PMMA	in	different		positions.

SRBK002-C18_497-534.indd   510 1/21/13   4:51 PM



Quality	Assurance	in	Digital	Mammography	 511

 
Ghost image factor

mean mean

mean mean
=

−
−

3 2

1 2

.  (18.4)

In this method, the recommendation is that the ghost image factor value 
should be within ±0.3.

18.3.8 Detector uniformity and artifact evaluation

A qualitative assessment of uniformity and artifacts in the detector is per-
formed as follows. Use a 45-mm-thick slab of PMMA or a sheet of alu-
minum, 2–3-mm thick. Apply a compression force and make an exposure 
turning off any image enhancements or postprocessing options. Images 
should be acquired for all target–filter combinations. In the magnification 
mode, image using a 25-mm-thick slab of PMMA or a sheet of alumi-
num, 1–2 mm thick. Examine the unprocessed images and select a window 
width and window level that allows artifact severity assessment without 
accentuating the noise excessively. The analysis is performed according to 
the following protocols:

IAEA, none of the following should be visible:

● dead pixels, missing lines, or missing columns of data at a level that 
could interfere with the detection of anatomical structures or could 
mimic structures that do not actually exist in the breast;

● distracting structured noise patterns in a uniform phantom image;
● regions of discernibly different density on an unprocessed image of 

a uniform phantom; and
● unexpected variation in apparent texture or magnitude of the noise 

across the uniform image. If necessary, calculate the SNR from ROIs 
placed in regions of nonuniformity and compare them.

Figure 18.5 Position	of	ROI	to	calculate	the	ghost	image	factor.

1 2 3

ROI1 ROI2 ROI3
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ACR: Manufacturers apply this test, but each requests a different 
thickness of PMMA:

● GE: a 25-mm-thick uniform sheet of PMMA. The image must be 
analyzed with window width in the range of about 400 to 450 and 
a window level that allows visualization of artifacts. The qualitative 
analysis is the same as that presented by IAEA.

● Hologic Selenia: a 40-mm-thick uniform sheet of PMMA. The image 
must be acquired without compression paddle. The artifact evalua-
tion exposure techniques are presented in Table 18.8. The window 
width is suggested to be set at 500 and window level at 350. The 
qualitative analysis is the same as that presented by IAEA.

18.3.9 Modulation transfer function

The spatial resolution of the imaging system or component can be des-
cribed by modulation transfer function (MTF) in terms of its ability to 
transfer the signal from its input to output as a function of the spatial fre-
quency of the signal.9 Thus, MTF quantifies how an imaging system repro-
duces high-contrast objects with varying size. It represents the relationship 
between contrast and spatial resolution.10 This is a fundamental parame-
ter in the analysis of image quality and is easy to quantify. Two different 
methods can be used: one employs the linear edge of high contrast, and the 
second employs the high-contrast resolution pattern. The first method was 
adopted by IAEA,5 and the second was adopted by equipment manufactur-
ers in their quality control manuals.7,8

18.3.9.1 High-contrast edge

The first method for determining the MTF of a system is to measure its 
edge spread function (ESF) using an opaque object with a straight edge.11 
To measure, use a square piece of metal foil with very straight edges, 
20–50 mm on a side, and provide a high contrast in the mammography 
energy range. Place the foil over the 45-mm-thick slab of PMMA, which is 
slightly angled (2–5 deg) with respect to the chest wall edge of the breast 
support table. Make an exposure using manual mode and use the proper 
techniques for the uniform image region without reaching the minimum 

Table 18.8 Artifact	evaluation	exposure	techniques	for	Hologic	Selenia.

X-ray tube Mode kVp Filter 1st image
Filter 2nd 

image Focal Spot

Mo Auto-time 28 Mo Rh Large

W Auto-time 28 Rh Ag Large
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or maximum pixel values for the system. Analyze the image “for process-
ing” with MTF software provided by http://humanhealth.iaea.org.

According to IAEA,5 the tolerances are for spatial frequencies where 
the MTF:

● has fallen to 50% and 20% and should not be less than the values 
specified in Table 18.9 for the relevant model of digital mammography 
equipment.

● at 2.5, 5.0, and 7.5 cycles/mm should not change more than 10% from 
the value established at acceptance tests of the equipment.

18.3.9.2  High-contrast resolution pattern

The second method uses a high-contrast resolution pattern with frequen-
cies of 2.09 and 3.93 lp/mm over 45 mm of PMMA. If the equipment 
used is GE Senographe 2000D, DS, or Essential, disable the “fine view” 
mode. Remove the compression paddle and orient the resolution pattern 
parallel to the anode-cathode axis (perpendicular to the chest wall edge 
of the bucky). Image the pattern in manual exposure mode and set the 

Table 18.9 Acceptable	frequencies	at	which	the	MTF	falls	to	
50%	and	20%	(cycles/mm)	(used	with	permission	from	IAEA5).

System

Contact mode

50% 20%

Agfa CR (MM3.0) 2.0/2.0 4.5/3.5

Agfa CR (HM5.0) 2.5/2.0 5.5/4.5

Carestream CR (EHR-M3) 2.0/2.0 4.5/4.0

Carestream CR (EHR-M2) 1.5/1.5 3.5/3.0

Konica CR (RP-6M) 2.5/2.0 5.0/3.5

 (RP-7M) 3.0/2.0 6.0/4.0

 (CP-1M) 3.5/2.0 7.5/4.0

Fuji Amulet 4.5/4.5 7.5/4.5

Fuji Profect (HR-BD) 3.0/2.0 6.0/4.0

GE 2000D 2.5/2.5 5.0/5.0

GE DS 3.5/3.5 6.0/6.0

GE Essential 2.5/2.5 4.5/4.5

Hologic Selenia 6.5/6.5 9/9

IMS Giotto 4.0/4.0 6.5/6.5

Philips PCREleva 5.0/5.0 9.0/8.0

Planmed Nuance 4.5/5.5 9.0/8.0

Sectra L30 4.0/5.5 6.0/8.0

Siemens Novation DR 5.0/5.0 8.0/8.0

Siemens Inspiration 5.0/5.0 9.0/8.0
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following parameters: Mo-Mo, 30 kVp and 140 mAs. Image the pat-
tern again with the technical parameters: Rh-Rh, 30 kVp and 140 mAs. 
Repeat this procedure with the resolution pattern perpendicular to the 
anode-cathode axis. 

Analyze the images “for processing” obtained by adjusting the window 
width and window level for optimum visibility of the bar pattern image. 
Place the ROI of 1 to 4, as shown in Fig. 18.6. Equation (18.5) below 
shows how to calculate MTF in the desired frequency M(f ), f = 2.09 and 
3.93 lp/mm for large focal spot and 5 and 8 lp/mm for the small focal spot, 
considering the parameters mean value (Si) and standard deviation (Ni) in 
an ROI, with i = 1 to 4:

 

M S S S S N
N N

M f
N

0 3 4 3 4
2 3

2
4
22

0 45
2

= − = − =
+

=

π
( ) . ( ), ,

( )
22 2

0
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.

f N

M

−
 (18.5)

The MTF values for GE Senographe 2000D, DS, and Essential equipment 
must exceed the action limits specified in Table 18.10. 

18.3.10 Limiting spatial resolution

In a screen-film system, checking the size of the focal spot is sufficient 
to indicate the system resolution, based on the results of the line-pair test 
object. In a digital system, as the detector resolution is limited by the del 
size, this measurement is not appropriate.12 To evaluate the spatial resolu-
tion of a digital system, it is recommended to calculate the MTF. However, 
if this is not possible, an alternative is to measure the limiting spatial resolu-
tion. This test is similar to that recommended for screen-film systems, using 

Figure 18.6 MTF	analysis	for	a	high-contrast	resolution	pattern	for	large	focal	spot.
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a star or bar resolution pattern covering at least the range 5–12 lp/mm. 
Thus, the recommended values for the system performance are:

IAEA: Baseline value: Achievable—The limiting spatial resolution 
(in line pairs per millimeter) should not fall below the values 
listed under the 20% column in Table 18.9. In routine tests, 
the variation should be <10% from the baseline value.

ACR: The MSQA form asks for results of MTF measurement only, 
for GE equipment. For Hologic Selenia, the form asks for 
results of evaluation of system resolution. In this case, the 
system spatial resolution must be >7 lp/mm when the bars 
are at 45 deg to the anode-cathode axis.

18.3.11 Half-value layer

The purpose of this test is to ensure that the half-value layer (HVL) of the 
x-ray beam is adequate to minimize patient breast dose.4 It is necessary to 
calculate the MGD in order to know the HVL, and it is appropriate to meas-
ure it with the compression paddle in the beam and for the same technical 
parameters related to MGD calculation. Measurements are performed fol-
lowing the ACR,4 with the compression paddle in the beam. Both IAEA and 
ACR publications evaluate the result according to the following equation:

 

kV kW

100
0 03

100
+ ≤ ≤ +. ,HVL C  (18.6) 

where C = 0.12 for Mo/Mo,
0.19 for Mo/Rh,
0.22 for Rh/Rh,
0.30 for W/Rh,
0.32 for W/Ag, and
0.25 for W/Al.

Table 18.10 Action	limits	to	MTF	values	in	GE	equipment.

Track Axis

Large Focal Small focal spot

Frequency (lp/mm) Action limit Frequency (lp/mm) Action limit

Mo Width 2.09 0.58 5 0.34

Rh Width 2.09 0.58 5 0.34

Mo Length 2.09 0.58 5 0.34

Rh Length 2.09 0.58 5 0.34

Mo Width 3.93 0.26 8 0.11

Rh Width 3.93 0.26 8 0.11

Mo Length 3.93 0.26 8 0.11

Rh Length 3.93 0.26 8 0.11
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18.3.12  Incident air kerma at the entrance surface  
of PMMA slabs

This measurement aims to estimate the incident air kerma at the position 
corresponding to the entrance surface of PMMA (IAEA) with thickness of 
20, 45, and 70 mm or phantom image quality (ACR) (see Fig. 18.7) to cal-
culate the MGD. The IAEA publication refers to this measurement without 
backscatter (without the PMMA) and ACR publication with backscatter 
(with the dosimeter beside the phantom). In the first method, place the 
desired thickness of PMMA and use automatic mode to acquire the techni-
cal parameters. Then, in manual mode and without the PMMA, measure 
the incident air kerma. 

If the mAs of manual exposure (mAsM1) does not correlate with the 
mAs automatic mode (mAsAEC), make a correction to the measurement M 
of air kerma, as follows:

 
M MAEC

AEC

M

=
mAs

mAs
1

1.  (18.7)

Then, the incident air kerma K is

 K M N ki AEC mammo TP,
. . ,45mm =  (18.8)

where kTP is the dosimeter correction factor for temperature and pressure, 
and Nmammo is the value of the calibration factor for beam quality.

18.3.13 Mean glandular dose 

As breast cancer appears predominantly in the glandular tissue and this 
tissue is very sensitive to radiation, doses in mammography should be rou-
tinely monitored. Thus, the measurement of MGD is essential both for 
monitoring the doses given to patients and for evaluating the system per-
formance. MGD can be derived from incident air kerma.

(a) (b)

Figure 18.7 Estimating	the	incident	air	kerma	(a)	with	and	(b)	without	backscatter.
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18.3.13.1 IAEA method

We use Eq. (18.9) for each thickness of PMMA studied and obtain the 
MGD:13

 MGD g c s Kt t i t= . . . ,,  (18.9)

where: 
Ki,t is the incident air kerma at the surface of PMMA [Eq. (18.8)],
 gt is the factor that converts from air kerma to MGD for a breast having 

50% fibroglandular/50% adipose composition with a thickness of t mm,
 ct is the conversion factor that corrects for any difference in breast 

composition from 50% glandularity, and
  s is the factor related to different x-ray spectra that gives a correction 

that depends on the target–filter combination.

The factors gt, ct, and s are tabulated and can be found in the IAEA publica-
tion.5 Acceptable and achievable levels for MGD are presented in Table 18.11.

18.3.13.2 ACR method

Wu14 defined the normalized MGD DgN as MGD Dg per unit entrance skin 
exposure Xese. DgN is assumed to be a function of beam quality (HVL), 
x-ray tube target material, breast thickness, and breast composition. From 
DgN and Xese, the Dg can be calculated using

 D D Xg gN ese= . .   (18.10)

The measurement of Xese is performed with a compression paddle and 
backscatter.

The ACR publication presents tabulated values of DgN  as a function of 
target–filter combination, kVp and HVL, to a 42-mm breast thickness— 
50% adipose, 50% glandular breast tissue. Other combinations of tissue 

Table 18.11 Acceptable	and	achievable	levels	for	MGD.5

Thickness of  
PMMA (mm)

Thickness of  
equivalent breast 

(mm)

Acceptable level of 
MGD for equivalent 

breast (mGy)

Achievable level of 
MGD for equivalent 

breast (mGy)

20 21 1.0 0.6

30 32 1.5 1.0

40 45 2.0 1.6

45 53 2.5 2.0

50 60 3.0 2.4

60 75 4.5 3.6

70 90 6.5 5.1
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composition, target–filter combination, kVp and HVL, can be obtained 
using the method of parameterization published by Sobol and Wu.15 The 
MGD to 42-mm compressed breast must not exceed 3 mGy per view. This 
ACR recommendation refers to screen-film system. 

18.3.14 Collimation system

The positioning of the patient is very important for obtaining a high- 
quality image. It is important to include as much of the breast tissue as 
possible in the image to increase the possibility of detecting breast cancer. 
As the positioning is directed by the light beam, it must be appropriately 
aligned with the x-ray beam and with the detector. Therefore, the objec-
tive of this test is to check for proper alignment and to determine the 
amount of breast tissue at the chest wall that is excluded in obtaining the 
image.

For CR systems, it is possible to perform the tests that are recommended 
by the ACR4 and the IAEA16 using two sizes of cassettes (18 cm × 24 cm 
and 24 cm × 30 cm) and coins to delineate the edge of the light field. The 
smallest cassette is placed in the image receptor holder and the large cas-
sette on top of the bucky. 

In this method, the tolerance for coincidence between light field and 
radiation field is achievable for ≤1% of the source-to-image distance (SID) 
on any side. The tolerance for coincidence between detector and radiation 
field is as follows. It is achievable when the beam completely irradiates 
the image receptor but can only extend to the chest wall side of <5 mm. 
It is acceptable when the beam is inside the breast support by ≤2% of the 
SID for the three sides other than at the chest wall, which is <5 mm. The 
tolerance between the compression paddle and detector is acceptable for 
1% of the SID.

For DR systems, two radiographic rulers, five phosphorescent screen 
pieces, opaque material, and slabs of PMMA totaling 45 mm in thickness 
are placed as shown in Fig. 18.8.

In this method the tolerance is as follows for:

● missing tissue at the chest wall:
● achievable: ≤5 mm;
● acceptable: ≤7 mm.

● coincidence between active detector edge and radiation field:
● achievable: The beam completely irradiates the active area of the 

detector but does not extend beyond the breast support.
● acceptable: The beam completely irradiates the active area of the 

detector and does not extend beyond the breast support (for a chest 
wall of <5 mm).
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● the extent of the compression paddle in the chest wall edge of <5 mm. 
The chest wall edge of the paddle must not be visible in the image.

18.3.15  Image display quality

It is widely accepted that, compared to film, digital mammograms have 
many advantages related to image quality, efficiency, handling of image 
information, manipulation of images, and parameter remote viewing. 
However, these improvements cannot be completely appreciated without 
monitors that are suitable for the format of the displayed image.17 The 
monitors should provide information that represents small differences in 
attenuation of x rays or small differences in thickness of any anatomical 
ROI. This information should also result in small differences in luminance 
of an image represented. Therefore, a monitor should have specific charac-
teristics such as spatial resolution and contrast, noise, luminance, geomet-
ric distortion, and reflection appropriate for enabling the observer to make 
an assessment that will lead to better diagnosis.18

Thus, to ensure a better response, the quality of the image must be peri-
odically assessed, both with the software provided by some manufacturers 
and, externally, to evaluate the performance of the internal monitor calibra-
tion. With continual use, a monitor can undergo degradation of luminance 
or uniformity and degradation of the definition of edges or variations of 
some parameters that characterize them. Additionally, the monitor’s output 
must be verified.19

The performance of display devices plays a significant role in the over-
all image quality of a digital mammographic system. In a filmless envi-
ronment, it is necessary to implement acceptance and constancy tests on 

Figure 18.8 Arrangement	that	suggests	evaluating	the	x-ray	field	alignment	with	
light	field	and	missing	tissue.

SRBK002-C18_497-534.indd   519 1/21/13   4:52 PM



520	 Chapter	18

monitors used for interpretation of medical images.20 To check the moni-
tor, use the TG18 test pattern series.21

18.3.15.1 Geometric distortions

The geometric distortion test is to be performed only in cathode ray tube 
monitors, since liquid crystal monitors have a fixed matrix and will not 
deform the image. However, this test can determine the proportion of 
images, that is, whether the monitor displays flattened images, which can 
result if the resolution is not correctly configured on the video card. Use the 
pattern TG18-QC (Fig. 18.2) test measuring square with a flexible ruler. The 
variation between the horizontal and vertical measures may not exceed 2%. 

18.3.15.2 Luminance uniformity

The luminance uniformity of the test checks for the region of the screen where 
the light intensity varies with a same shade of gray. Use the pattern TG18-
UNL80 (80% of maximum luminance) and TG18-UNL10 (10% of maxi-
mum luminance), Fig. 18.9. With a photometer, measure the four regions of 
the edges and the center. These measures cannot vary by more than 30%.

18.3.15.3 Luminance response and contrast

This test indicates whether the maximum luminance Lmax of the monitor 
is sufficient for viewing medical images (Lmax > 170 cd/m2) and whether 
the contrast level is consistent with the DICOM grayscale standard display 
function (GSDF). In addition, it is also important to check the variation of 
the maximum luminance when workstations with dual screens are used, 
as this variation cannot be greater than 10%. The relationship between 
the maximum and minimum luminance assigns the parameter contrast 
response (CR), which cannot be <250. 

This check is done by measuring with a photometer luminance of 18 gray 
levels with the test patterns TG18-LN. The evaluation is performed by means 
of a graph that relates the variation of luminance with the index JND (just 
noticeable difference) and luminance (level contrast) with the index JND. Both 
curves cannot exceed the 10% difference compared to standard DICOM GSDF.

18.3.15.4 Ambient lighting

The room where the monitor is installed should be maintained in adequate 
lighting to prevent any glare on the monitor screen and to exclude daylight. 
The ambient lighting should be measured and should be <10 lux and, ide-
ally, <5 lux.

18.3.16 Laser printer (where applicable)

In a facility, usually the laser printer is used for all imaging modalities, 
and each modality has an appropriate lookup table (LUT) that should be 
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(a)

(b)

Figure 18.9 (a)	 Modified	 TG18-QC	 test	 pattern	 with	 test	 objects	 indicated:	A	
marks	the	0%–5%	contrast	square,	B	the	95%–100%	contrast	square,	C	the	hori-
zontal	and	vertical	line	pairs,	D	the	squares	going	from	black	to	white,	E	the	5-cm	
line,	F	the	grayscale	ramp,	and	G	the	‘quality	control’	subjective	test.	 (b)	TG18-
UNL10	e	UNL80.
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automatically selected by the printer. Thus, to ensure the correct function-
ing, the laser printer should be evaluated by a medical physicist during 
acceptance testing, annually, and after servicing the printer or printing 
software. 

The test is simple and requires the printing of an image of the test pat-
tern TG18-QC (Fig. 18.9). The following should be visible:

● all density steps,
● squares in the corners of the grayscale patches,
● the 5% squares at both bright and dark,
● all line-pair patterns, and
● the letters ‘QUALITY CONT.’

The measured lengths of the horizontal and vertical should be within 5% 
of actual values for the rulers on the TG18-QC pattern and for the annota-
tion lines on the film.

18.3.17 Phantom image quality

The verification of image quality is similar to that performed for screen-
film systems, where the medical physicist establishes the baseline for the 
technologist in routine testing. A breast phantom containing structures 
such as fiber, specks, and masses is used. The phantom image evalua-
tion and identification of structures must be made both on the film that is 
printed on laser printer and on the workstation.

The tolerance for this test for IAEA requires establishment of base-
line for degradation of image quality, exposure factors, and the identi-
fication of structures. The tolerance for this test using the ACR phan-
tom should identify, as a minimum, the numbers of structures shown in 
Table 18.12.

18.4 Technologist Testing

Technologists play an important role in the implementation of the QAP in 
mammography. They are involved with all routine examinations and are 
aware of the problems that can affect the equipment. Therefore, they can 
implement many quick and easy routine checks.

Table 18.12 Minimum	required	number	of	identified	structures	for	
the	tolerance	of	the	ACR	breast	phantom	image	quality	test.

Fibers Masses Speck groups

GE 2000D, DS, Essential 4 3 3

Hologic Selenia 5 4 4

Siemens Mammomat Inspiration 5 4 4
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18.4.1  Inspection, cleaning, and viewing conditions  
of monitors and view boxes

Dust, fingerprints, and other marks on the monitor screens can inter-
fere with image interpretation. Therefore, the monitor must be inspected 
and cleaned daily. For the same reasons, view boxes must be kept clean 
and maintained with a luminance of 3000 cd/m2. The uniformity of the 
luminance should also be checked. The viewing conditions should be 
kept as initially measured by a medical physicist, as explained in Section 
18.3.15.

18.4.2 Laser printer 

18.4.2.1 Sensitometry

The technologist must obtain a TG18-CQ image (Fig. 18.2) daily for wet 
processing and monthly for dry processing, and compare these with the 
baseline [reference operating levels (ROLs)] as established by a medi-
cal physicist. It is recommended that this image confirm the visibility 
of objects and the measurements made in acceptance testing. When per-
forming sensitometry, the densities on the step wedge pattern should be 
obtained in accordance with the following parameters:

● maximum density Dmax—the darkest step;
● density difference (DD)—the step closest to an optical density of 2.20 

(DD1) minus the step closest to but not less than 0.45 (DD2);
● mid-density (MD)—the step closest to but not below an optical density 

of 1.20 or the working optical density; and
● base + fog (B + F)—the lightest step.

The tolerances provided by the IAEA publication are presented in  
Table 18.13.

18.4.2.2 Artifacts

In addition to tests already carried out in the laser printer, this test checks 
whether there are any artifacts in the film printed. An image of the test 

Table 18.13 Tolerance	 for	 laser	print	sensitometry	 (used	with	permission	 from	
IAEA5).

Parameter Acceptable tolerance Achievable tolerance

Dmax2 ≥ROL – 0.15 or 3.50, whichever is less ≥ROL – 0.10 or 3.50, whichever is less

DD ROL ± 0.15 ROL ± 0.10

MD ROL ± 0.15 ROL ± 0.10

B + F ≤ROL + 0.03 —
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pattern TG18-UNL80 (Fig. 18.2) must be printed with a window level 
that gives an optical density of between 1.5 and 2.0. The window width 
should be set to maximum. The resulting film must display an image with 
uniform optical density, and with no streaks, lines, specks, or blotches.

18.4.2.3 Printed image quality

An image of the test pattern TG18-CQ should be obtained quarterly to 
ensure that the printed image quality is consistently high. The visibility of 
the different test objects on the printed image quality should be evaluated 
according to the following IAEA criteria:5

● The 0%–5% contrast square and 95%–100% contrast square should be 
distinguishable.

● The finest horizontal and vertical line pairs should be visible in all four 
corners.

● The squares of different shades from black to white should be dis-
tinct.

● Lines should appear straight and even, without apparent distortions.
● There should be no distracting artifacts.
● The 5-cm lines should be between 4.7 and 5.3 cm long on the printed 

image.

18.4.3 Phantom image quality

The technologist must obtain an image of the phantom and confirm the 
baseline established by a medical physicist. The tolerance for the param-
eters evaluated in this image comprises the following:

● mAs is ≤ ±10% of the baseline mAs value if the kV and filter have not 
changed.

● For CR systems, the tolerance for the EI is not be exceeded.
● No significant degradation of image quality from the baseline image occurs.
● No blotches or regions of altered noise appearance, observable lines or 

structural artifacts, and ‘bright’ or ‘dark’ pixels are evident.
● The baseline to fibers, masses, and specks is maintained.

18.4.4 Digital mammography equipment daily checklist

Assessment of the mammography equipment must be carried out to ensure 
that all parts and accessories are working properly. Checks should be made 
on items listed in Table 18.14.

18.4.5 Daily and monthly flat-field phantom image test

The implementation of this test is important to eliminate the possibility 
that the image has artifacts. For this evaluation, the technologist uses a 
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phantom of 45-mm PMMA covering the entire detector area, applies a 
compression force typically used clinically, acquires an image, and ana-
lyzes it in “for processing” mode. 

This image should not contain: 

● blotches or regions of altered texture appearance,
● observable lines or structural artifacts, or
● evident ‘bright’ or ‘dark’ pixels.

On a monthly basis, the test is extended to include all applicable focal 
spots, filters, and magnification modes; however, the tests for MPV and 
SDNR are not required.

18.4.6 Visual inspection for artifacts (CR systems only)

This test for CR systems is similar to that described in Section 18.4.5, to 
check whether the image is free of artifacts. All clinical images should be 
inspected during the day for excessive artifacts attributable to dust on the 
imaging plates or in the readout system, defects on the imaging plates, or 
dirt on the breast support plate or compression paddle.

18.4.7 Image plate erasure (CR systems only)

One of the advantages of using the imaging plate instead of film is the 
ability to reuse it. However, residual latent image signals or signals arising 
from ionizing radiation are retained on the phosphor plate after readout.22 
These signals can cause image ghosting. The erasure of the plate is a func-
tion of the overall exposure. To ensure the absence of residual signals, the 
erasure test evaluates the ability of the read–erase cycle to remove ghost-
ing artifacts. This erasure is repeated before clinical exposures on plates 
that have not been used for more than eight hours.

Table 18.14 Digital	mammography	(DM)	checklist	for	the	technologist.

Daily and weekly tests Monthly, quarterly, and semi-annual tests

Monitor inspection and cleaning (daily)
Monitor viewing conditions (daily)
DM equipment daily checklist (daily)
Daily flat-field image (daily)
Visual inspection for artifacts (CR systems only) (daily)
Laser printer sensitometry (wet) (daily)
Image plate erasure (CR systems only) (daily)
Monitor QC (weekly)
Viewbox cleanliness (weekly)
QC test object and full-field artifacts (weekly)
Image quality with breast-mimicking phantom 
(weekly)

Laser printer sensitometry (dry) (monthly)
Safety and function checks of examination 
room and equipment (monthly)
Full-field artifacts (monthly)
Laser printer artifacts (monthly)
Printed image quality (quarterly)
Repeat image analysis (quarterly)
Spatial resolution test (CR and scanning 
systems) (quarterly)
CR plate sensitivity matching and plate 
artifacts (semi-annually)
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18.4.8 Monitor QC

This test consists of evaluating the monitors using a TG18-QC (or SMPTE) 
test pattern and to ensure the following:

● Viewing conditions for the radiologist workstation are as recommended 
by the medical physicist.

● There are no noticeable diagonal lines, flickering, blotches, nonuniform 
grayscale ramps, curved ‘straight’ lines, and bright or dark pixels in the 
evaluated image.

● All 16 luminance patches are distinct from each other.
● 5% contrast squares are visible in both the dark (0%–5%) and light 

(95%–100%) squares.
● The letters ‘QUALITY CONT’ are visible.
● The images on all radiologists’ workstations appear with the same 

brightness and contrast.

The TG18-QC image must be evaluated in the ambient condition presented 
in the Section 18.3.15.4.

18.4.9 Weekly QC test object and full-field artifacts

The technologist will monitor the consistency of imaging performance 
from the baseline image of the test object obtained in a previous physi-
cist’s test. The acquisition and image evaluation is performed in the same 
manner as described in Section 18.3.5, and the results should be evaluated 
and maintained as specified in Table 18.15.

18.4.10  Safety and function checks of examination  
room and equipment

The mammography unit must operate mechanical and electrical operations 
in a way that ensures that the image acquisition is correct. For this, attention 
and verification should be performed on the items shown in Table 18.16. 

Table 18.15 Tolerances	for	imaging	weekly	QC	test	object	(used	with	permission	
from	IAEA5).

Parameter Acceptable tolerance with respect to baseline values

mAs ±10%*

MPV ±10%

SDNR ±10%

CR systems: EI
Fuji, Philips and Konica (S#)
Agfa (SAL/SALlig/PVIlog)

Carestream (EI)

±10%
±5%/±430/±580

±40 units

*Provided that the anode/filter and kV used are identical.
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18.4.11 Repeat image analysis

The repeat image analysis is very important for an assessment to identify 
problems in the production of the image. This method shows the cause of 
the repeat image, and the analysis of the data will help to identify ways 
to improve system performance. After identifying the cause of rejection, 
one should discern which equipment was involved and which technician 
received the rejected radiography. With these results, the particular mal-
function in the imaging chain can be seen, or it may be determined that the 
technologist requires training.

The tolerance according to the IAEA publication5 is:

● Acceptable repeat rate: <5%,
● Achievable repeat rate: ≤2%.

18.4.12  Spatial resolution test (CR and scanning  
systems only)

Spatial resolution in CR systems can be checked with a bar resolution 
pattern as is used to calculate the MTF or limiting spatial resolution. The 
technologist monitors the system to ensure that there is no degradation 
in spatial resolution over time. Thus, the value should not vary from the 
baseline.

Table 18.16 Items	to	be	checked	for	corrective	actions.

Items requiring immediate action before any 
further patients are imaged:

Items requiring action within 30 days of first 
identified failure:

 1. Room temperature not controlled
 2. Loose parts present, paddles damaged or 

bucky not clean
 3. Hoses or cables kinked or damaged
 5. Interlocks faulty
10. Time, date, and facility ID incorrect or not 

present on images
13. Automatic and/or manual compression 

release not working
15. Cleaning solution not available

 4. Angulation indicator not functioning
 6. Gantry motion not smooth
 7. Problems in panel switches, indicator lights, 

and meters
 8. Field light inoperative
 9. Current technique chart not posted
11. Breast thickness indicator inaccurate
12. Face guard absent or damaged
14. Operator radiation shield damaged
16. Overall integrity questionable

SRBK002-C18_497-534.indd   527 1/21/13   4:52 PM



528	 Chapter	18

Appendix 18.1  ACR Summary of Medical Physicist’s 
and Technologist’s QC Tests: General 
Electric
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Appendix 18.2  ACR Summary of Medical Physicist’s 
and Technologist’s QC Tests: Hologic
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Appendix 18.3  IAEA* Safety and Function Checklist of 
Examination Room and Equipment
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A
ablative techniques, 384
accuracy, 51
acoustic pressure, 405
AdaBoost algorithm, 56
additivity, 18
additivity property, 20
adenocarcinoma, 425
adenopathy, 183
adenosis, 215
adipose tissue, 226
American College of Radiology, 

498
analysis of variance, 51
anesthesia, 408
angiogenesis, 256, 334
angular second moment, 47
angulation, 527
ant colony optimization, 276
antibodies, 478
antibody, 146
antigens, 419, 478
antihormonal treatment, 146
Ant-Miner algorithm, 280
apoptosis, 406, 422
a posteriori decision boundary, 374
area-under-the-ROC curves, 44
argon, 403
arterioles, 341
artificial neural network, 5
asymptomatic, 42

automatic exposure control, 501
avalanche photodiode, 341
axillae, 114
axillary neurovascular structures, 

132
axillary nodal assessment, 150
axillary nodal dissection, 150

B
backpropagation, 23
basal cells, 145
Bayesian classifier, 100
Bayesian classifier, 11
beamforming, 456
benchmarking, 321
benign, 44
bifurcations, 104
binary classification, 22
binormal, 23
bioassays, 476
biological therapies, 144
biomolecules, 478
biosensors, 476
blood flow index, 338
Boltzmann–Gibbs entropy, 18
bone metastases, 115
bone scintigraphy, 114
boundary element method, 347
breast nodules, 183
breast parenchyma, 2
Brownian motion, 338
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correlated microwave acoustic 
imaging, 454

cosine, 6
covariance, 22, 49
covariance matrix, 49
cross correlation, 276
cross validation, 52, 80
cryoablation, 400, 401, 403
cryoshock, 423
curvilinear structures, 5, 6
cyst, 179
cytokine, 405
cytological diagnosis, 362
cytopathology, 362
cytoplasm, 363
cytotoxic temperatures, 384
cytotoxic T lymphocyte, 422

D
dark internal septation, 67
database, 74, 370
decision layer, 50
decision tree, 44, 50
dendritic cells, 419
density, 2
density difference, 523
deoxy-haemoglobin, 334
desiccation, 387
desmoplasia, 182
detector ghosting, 510
diagnosis, 72
diaphragm, 124
DICOM, 520
dielectric, 455
diffuse correlation spectroscopy, 

334
diffuse optical imaging, 334
diffuse optical spectroscopy,  

334
diffuse optical tomography, 334, 

349
diffusion-weighted MRI, 118
digitized mammograms, 56

C
calcifications, 2
cancer, 31
capillary permeability, 407
carbonization, 385
cardinality, 46
Cartesian coordinates, 10
case-based clinical decision 

support, 65
cauterization, 406
cavitation, 401, 426
cellular arrangement, 182
cellular level, 362
cellular pleomorphism, 363
cellular toxicity, 404
central nervous system, 128
chaotic attractor, 258
chaotic time series, 256
characterization, 3
charge-coupled device, 342
chemotherapy, 144, 155
choroidal melanoma, 426
chromophores, 334, 343
circumscribed carcinoma, 182
clinical decision support, 65
coherence image, 5
cohesiveness of cells, 363
collimation, 518
colloid carcinoma, 198
colon carcinoma, 211
color Doppler ultrasound, 177, 220
combined autocorrelation method, 

180
compactness, 372
computed tomography, 72, 114
computer-aided diagnosis, 2
conductivity, 351
confocal microwave imaging, 456
continuous wave, 341
contrast, 47
contrast resolution, 178
Cooper's ligaments, 183
coordinate transformation, 6
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Euclidean distance, 50,72
evanescent waves, 482
expectation-maximization 

algorithm, 49
exponential mean, 20

F
false nearest neighbor, 257
false-negative, 2
false-positive, 5
feature delineation, 363
features, 21
feedback loop, 280
fiber coupling, 486
Fibroadenoma/phylloid tumor,  

182
fibroadenomas, 100, 179, 216, 

308
fibrocystic change, 213
fibroglandular, 7
fibrosis, 232
filter, 6
fine-needle aspiration, 362
fine-needle aspiration cytology, 

117
finite-difference method, 339
Fisher linear discriminant  

analysis, 5
flatness, 73
fluorescent dyes, 334
fluorodeoxyglucose, 143
fluorophores, 343
Fourier analysis, 256
Fourier spectrum, 16
fractal, 73
fractal dimension, 256
fractal geometry, 296
frequency, 6
full-field digital mammography, 

42, 498
fusiform, 220
fuzzy c-means, 261
fuzzy membership, 278

dimensionality, 379
dispersions, 455
distortion, 2
downsampling, 7
dual-modality tomography, 348
ductal carcinoma, 145
ductal carcinoma in situ, 203
ductal epithelial cells, 145
dynamical system, 256

E
eccentricity, 73
echogenicity, 387
echotexture, 181
edge spread function, 512
eigenvalue, 73
elastography, 180
electrocoagulation, 393
electrode antenna, 403
electrode needle, 384
electromagnetic energy deposition, 

384
electromagnetic field, 455
ellipsoidal, 403
ellipsoidal elements, 295
ellipticallity/irregularity, 73
embedding dimension, 257
endocrine therapy, 407
endocrine treatment, 144
endoplasmic reticulum, 426
endotoxin, 407
energy, 47
enlongation, 73
entrance surface air kerma,  

501
enzyme-linked immunosorbent 

assay, 476
epidermal growth factor receptor, 

145
epithelial hyperplasia, 183, 

219
estrogen, 476
estrogen receptor, 124, 145

SRBK002-Index_535-542.indd   537 05/01/13   4:59 PM



538	 Index

histological grading, 144
histology, 122
histopathological analysis, 68
hollow-core photonic crystal fiber, 

477
homogeneity, 47
human epidermal growth factor 

receptor, 145
Hurst coefficient, 296
hyperchromasia, 405
hyperpigmentation, 393
hyperplane, 48
hyperplasia, 215
hyperthermia, 404
hypodensities, 126
hypoechoic node, 117
hypoxia, 404

I
if-then rules, 278
images, 7
imaging modalities, 454
immobilized sample, 490
immunoassay, 483
immunogenicity, 418
immunohistochemical staining, 146
immunosuppression, 427
impulse response, 7
incubation, 484
infiltration, 424
infinitesimal volume element, 335
inflammatory carcinoma, 208
inflammatory component, 114
infraclavicular lymph nodes, 114
input layer, 50
insulators, 385
International Atomic Energy 

Agency, 498
interobserver, 43, 146
intracellular ice crystal, 403
intracystic papillary DCIS, 205
intraductal carcinoma, 183
intraductal papilloma, 183

fuzzy rules, 49
fuzzy Sugeno classifier, 49

G
Gabor filters, 3
gadolinium enhancement, 117
gamma camera, 155
gangliosides, 423
Gaussian mixture model, 44, 49
Geary’s coefficient, 299
gelatinous carcinoma, 198
geometric distortion, 509
global maxima, 377
glucose, 144
glucose transporters, 144, 145
glycolysis, 144
gold standard, 150
gradient, 73
gradient-based schemes, 340
graphical user interface, 54
gray-level co-occurrence matrix, 45
gray-level nonuniformity, 48
gray values, 73

H
haemoglobin concentration, 336
half-value layer, 515
hamartomas, 225
Hankel transform, 12
Haralick features, 99
helium, 403
hemangiomas, 229
hemorrhage, 405
hepatic cryoablation, 424
hepatic parenchyma, 124
hepatocellular carcinoma, 418, 424
heterogeneous enhancement, 66
hexokinase enzymes, 144
hidden layer, 50
high-intensity focused ultrasound, 

400
high-refractive-index material, 479
histograms, 16
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log-likelihood ratio, 22
longitudinal scan, 205
long-run emphasis, 48
lookup table, 520
luminance, 520
lumpectomy, 407, 410
lung, 121
Lyapunov exponents, 256
lymphangioma, 320
lymph nodes, 129
lymphocytes, 424
lymphovascular invasion, 116, 144
lysates, 490

M
macrophage, 407
magnetic resonance imaging, 65
magnetic resonance spectroscopy, 

119
malignant, 44
mammograms, 2, 4
Mandelbrot set, 262
mapping, 412
mastectomy, 144, 407
mastopathy, 232
mean, 47
mean glandular dose, 500
mediastinum, 121
medullary carcinoma, 200
megahertz, 341
melanoma, 424
metabolism, 144
metaplasia, 219
microbubbles, 180
microcalcifications, 43, 56
microlobulations, 206
microscopic appearance, 362
microvasculature, 341
microwave ablation, 401
microwave imaging, 454
microwave-induced  

thermo-acoustic imaging,  
454

intravenous contrast 
administration, 119

ionizing radiation, 132
irregular, homogeneous cluster, 76
isotropic medium, 307
iterations, 377

J
jackknife, 23
Jacobian approach, 256
Jacobian-based schemes, 340

K
kernel, 6
kinetic features, 68
K-means algorithm, 49
k-nearest neighbor, 44
Koch snowflake, 262
Kruskal–Wallis test, 96
kurtosis, 73

L
lactating adenomas, 220
lacunarity, 29, 296
Laplacian filter, 277
Laplacian operator, 307
laser ablation, 401
lasers, 342
lateral resolution, 178
leave-one-patient-out method, 24
lesions, 30, 66
Levenberg–Marquardt algorithm, 

23
light propagation, 483
lipid, 343
lipomas, 226, 228
liver metastases, 126
lobular carcinoma, 100, 145
lobular carcinoma in situ, 207
lobular cluster, 76
lobulated hypoechoic mass, 132
local binary patterns, 56
locoregional treatment, 144, 154
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normalization, 100
normalized, 17
nuclear chromatin, 363, 369
nuclear imaging, 143
nuclear membrane, 379
nuclear size, 363
nucleoli, 363
nucleolus, 343

O
obesity, 144
octogenarians, 216
oncology, 156
orientations, 172
orthogonal matrix, 260
orthogonal planes, 179
osteoblastic activity, 122
ovarian carcinoma, 211

P
pair-wise comparisons, 67
papillomas, 100, 182, 221
parenchyma, 29
parenchymal metastasis, 121
pattern recognition, 363
pectoralis minor muscle,  

115
penicillin, 483
penultimate screening, 4
perceptron, 55
percutaneous ablation, 384
perfusion, 118
perimeter, 377
phantom, 509
phase space, 256
phleboliths, 229
photodynamic therapy, 342
photomultiplier tube, 342
photon, 335
photonic bandgap, 477
photonic crystal fibers, 477
phyllodes tumors, 230
phytohaemagglutinin, 420

microwave therapy, 400
microwave tomography, 456
mid-density, 523
mitochondria, 343, 426
mitochondrial damage, 384
mitosis, 363
modulating sinusoid, 6
modulation, 341
modulation transfer function, 512
molecular imaging, 143
moments, 47, 276
Monte Carlo simulation, 339
Moran’s index, 299
morbidity, 384
morphological, 6
mortality, 384
mucinous carcinoma, 198
mucoid carcinoma, 198
multiclass problem, 373
multidimensional system, 258
multifocal breast cancer, 149
multislice view, 167
mutations, 146
myocardial infarction, 408
myoepithelial cell nuclei, 363
myoepithelial cells, 145

N
necrotic debris, 235
needle biopsy, 117
negative predictive value, 146
neoadjuvant chemotherapy, 343
neoadjuvant treatment, 154
neuron, 50
nicotinamide adenine  

dinucleotide-diaphorase, 408
nodal disease, 115
nodules, 229
noninvasive replacement for 

lumpectomy, 415
nonionizing instrumentation, 343
nonlinear, 13
nonmetastasized, 2
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receiver operating characteristics, 
19, 51

refractive index, 477
region-based approach, 43
region of interest, 9, 505
regression, 26
regularization methods, 340
Rényi entropy, 3
resistivity index, 196
rule-based classification, 278
run-length nonuniformity, 48
run percentage, 48

S
sagittal view, 167
sarcoma, 211
scanner, 95
scanning volume, 167
scarring, 400
scintimammography, 120
scirrhous-type carcinomas, 180
sclerosing adenosis, 182
sclerosis, 216
screen-film mammography, 42, 498
screening, 4, 30
sensitivity, 2, 28
sensitometry, 525
sentinel lymph node, 150
sentinel lymph node biopsy, 115
sequential quadratic programming, 

313
Shannon’s entropy, 3
short-run emphasis, 48
sigmoidal function, 22
single-photon avalanche diode, 341
single-photon emission computed 

tomography, 123
singular value decomposition, 257
sinusoidal function, 6
skeleton, 123
source-to-image distance, 518
spatial resolution, 147
specificity, 44, 50

pixel, 7
plateau, 77
pleura, 121
polarization, 455
polynomial kernel, 56
polynomial model, 256, 260
porta hepatis, 124
positive predictive value, 44, 51
positron emission tomography,  

114
posterior lesions, 149
power spectrum, 10
probabilistic neural network, 44
probability, 22
probability density function, 49
progesterone receptor, 145
prognosis, 400
prostate cancer, 423
pseudo-angiomatous stromal 

hyperplasia, 228
pseudo-code, 281
pulmonary metastases, 121
pulse oximeter, 348
p-value, 25, 51
pyknosis, 405

Q
quadrant location, 179
quadratic programming, 314
quality assurance, 498
quality assurance program, 499
quality control, 498

R
radial basis function, 50
radial view, 167
radial von Hann, 10
radiofrequency ablation, 384, 

401
radiologist, 4
radiopharmaceutical, 144
radiosensitizer, 404
radiotherapy, 144, 390, 400
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tissue fragments, 362
tissue harmonic imaging, 177
training, 52
trajectory, 256
transducers, 116
transverse scan, 205
transverse view, 167
true negative, 51
true-positive, 9
Tsallis entropy, 3
tubular adenomas, 220
tumor, 2, 275

U
ultrasensitive detection, 476
ultrasmall superparamagnetic iron 

oxide, 117
ultrasound, 66
ultrawideband, 454
user-defined function, 315

V
vaccine, 425
vacuum-assisted biopsy, 240
vaporization, 385
vascular characteristics, 94
vascular permeability, 118
vessels, 95
visceral metastases, 114
visualization, 165
volumetric imaging, 349

W
wavelength-dependent extinction 

coefficient, 336
wavelengths, 401
WEKA software, 302

X
x ray, 42

Z
Z values, 74

speckle fluctuations, 337
spectroscopic analysis, 486
spiculated cluster, 76
spiculated margins, 98
spiculating, 3
spinal canal, 114
spurious, 3
statistical approach, 43
stellate distortion, 29
stem cell transplant, 156
steroid-radiolabelled tracers, 146
stiffness, 180
streptomycin, 483
stroma, 181
subcutaneous layer, 320
subcutaneous tissues, 132
subset, 377
supine position, 167
support vector machine, 44
supraclavicular lymph nodes, 114
supraclavicular neurovascular 

structures, 132
systemic treatment, 144
system invariants, 257

T
T1-weighting, 68, 123
tamoxifen, 429
Taylor series, 259
T-cell proliferation, 424
temporal variations, 337
testing, 52
texture, 10
texture features, 45
therapeutics, 490
therapeutic temperature, 404
thermal images, 268
thermal infrared imaging, 275
thermo-acoustic waves, 454
thermodynamics, 19
thresholding, 6
time series, 256
tissue coagulation, 384
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