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Preface

As the world moves toward more competitive and open markets in the 
twenty-first century, effective supply chain management is of critical impor-
tance to the success of an enterprise. Despite a large amount of research con-
ducted in the past decades on the supply chain management topic, many 
researchers and practitioners are still devoting considerable efforts to the 
new emerging problems. This is not only due to theoretical and computa-
tional challenges, but also the business environments and configurations 
from various industries, which are continuously changing and becoming 
more restrictive and demanding. As a result, numerous new problems are 
arising in the field of supply chain management.

In response to the need for educational and research resources that practi-
cally apply to a collaborative and integrative environment in today’s mar-
ket, this book contains contributions from leading experts in supply chain 
management throughout the world. It is intended as a collection of inno-
vative strategies and practical solutions that address problems encountered 
by enterprises in the management of supply chain and logistics. As supply 
chain management is a far-reaching area, it is not possible to cover all aspects 
and applications of the field. Rather than concentrating on just methodol-
ogy or techniques (such as optimization or simulation) or specific application 
areas (such as inventory or transportation), the book is designed to present 
readers with a collection of topics that bridge the gap between the academic 
arena and industrial practice. Yet the book still provides an in-depth discus-
sion of both general techniques and specific approaches to a broad range of 
important, inspiring, and unsolved questions in the field.

This book is designed to be of value to researchers, practitioners, and pro-
fessionals in academic institutions and industry who need a wide-spectrum 
resource for many different aspects involved in supply chain management 
from technical methodologies to management implications. Graduate (and 
advanced undergraduate) students and researchers will also find this book 
a rich resource for the design, analysis, and implementation of supply chain 
management problems arising in a wide range of industries.

The book is organized based on four major research themes in supply 
chain management: (1) supply chain strategy and coordination, (2) supply 
chain network optimization, (3) inventory management in the supply chain, 
and (4) financial decisions in the supply chain. The sequence of these themes 
helps in transitions from an enterprise-wide framework to network design 
to operational management to financial aspects of supply chain. Each indi-
vidual theme also addresses the answer to a challenging question as to how 
to go about applying quantitative tools to real-life operations, resulting in 
practical solutions.
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xiv Preface

The first section includes two chapters focused on supply chain strategy 
and coordination. Chapter 1, by Miller, lays down the platform of this book 
by providing an overview of the concept of hierarchical supply chain plan-
ning frameworks at the strategic level down through operations. Although 
the chapter does not review the details of key operations and decision sup-
port tools in the frameworks, it provides a key foundational tool to organize 
and manage supply chain planning and operations activities. Chapter 2, by 
Pei et al., provides an overview of coordination between supply chain part-
ners in discrete manufacturing enterprises. The chapter provides an over-
view of challenging scheduling problems that often arise in supply chain 
coordination and briefly discusses research methodologies that are applied 
to these problems.

The second section includes three chapters with emphasis on optimiza-
tion methodologies in supply chain networks. Chapter 3, by Lei et al., pro-
vides an overview of optimization models and solution methodologies for 
integrated operations planning problems in supply chain networks. These 
ideas can be applied to integrated real-life problems that involve production, 
inventory, distribution, and routing. Chapter 4, by Nurre et al., presents a 
review of the nested partitions method for solving large-scale optimization 
problems. The applications of the method are demonstrated on two supply 
chain network optimization problems. Specifically, the intermodal hub loca-
tion problem, which is a facility location problem in supply chain networks, 
and the multilevel capacitated lot-sizing problem with backlogging, which 
is a complex production planning problem, are the two case problems in the 
chapter. Chapter 5, by Chen and Shi, considers a novel stochastic optimiza-
tion model of the location problem to place critical components in a supply 
chain network to increase the resiliency of the network, that is, to aid in the 
recovery of the supply chain network after an extreme event. The chapter 
discusses a case study to determine the placement of permanent generators 
at the retail locations of shops, which distributes both convenience items and 
fuel in Upstate New York and Vermont.

The third section includes two chapters that are centered on inventory 
decisions in the supply chain. Chapter 6, by Liang et al., proposes a novel 
optimization model based on a schedule-based formulation for the cyclic 
inventory routing problem. The chapter presents a column generation method 
as a solution methodology to solve this problem efficiently. Chapter 7, by 
Chaovalitwongse et al., illustrates a production planning case study in a 
production process of rolled tissues. In the case study, customer demand 
could not be fulfilled because of an insufficient inventory level. The chapter 
addresses the problem by introducing a new inventory policy and a produc-
tion planning method to determine new production orders.

The fourth section includes two chapters that are focused on financial 
aspects in the supply chain. Chapter 8, by Yang et al., discusses the impor-
tance of competitive learning when firms make decisions on initial invest-
ments. For example, when firms neglect the due diligence on conducting 
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xvPreface

demand-forecast studies, overcapacity will be inevitable. The last chapter, 
by Qin et al., studies a revenue management optimization for a multiperiod 
multiclass rail passenger revenue management problem. The chapter pre-
sents a complex optimization model and proposes a new efficient solution 
methodology. This work has an impact on logistics network and transporta-
tion problems.

During the process of completing this volume, we spent a few years inter-
acting with the authors and anonymous reviewers. We appreciate their time, 
effort, and dedication  toward the successful completion of this volume and 
cannot thank them enough. The experience of putting together this volume 
has been rewarding. We truly hope that readers will find the volume to be as 
stimulating and valuable as we did.

Zhe Liang
Tongji University

Wanpracha Art Chaovalitwongse
University of Washington

Leyuan Shi
University of Wisconsin—Madison

MATLAB® is a registered trademark of The MathWorks, Inc. For product 
information, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

© 2016 by Taylor & Francis Group, LLC
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3

1
Supply Chain Frameworks: A Constant 
in the Midst of Change

Tan Miller

ABSTRACT Supply chain management in the early 21st century continues 
to evolve, expand, and globalize at a dizzying pace. Whether it is adapting 
and integrating new decision support tools and new technologies related to 
business analytics, the Internet, equipment and machinery, or other infra-
structure, new challenges confront supply chain managers every day. In this 
environment of constant, almost overwhelming change, it is critical not to 
lose sight of the fact that the underlying principles and foundation tools of 
supply chain management remain valuable, and even more important than 
ever. These principles, foundation tools, and methods provide an anchor, a 
guide map, a “constant” for supply chain managers to call on as they con-
front dramatic changes in their everyday work lives. In this chapter, we 
review and illustrate how to utilize effectively one key “foundational” sup-
ply chain management tool and methodology: multiple time horizon, hier-
archical “frameworks” to organize and manage supply chain planning and 
operations activities. 

Historical Footnote Multiple time period, hierarchical supply chain plan-
ning (HSCP) frameworks and methodologies have existed for decades. For 
perspective, we note that this hierarchical approach dates back to at least 
the 1960s, specifically to Robert Anthony’s seminal work on planning and 
control systems (Anthony, 1965). Anthony classified all managerial decisions 

CONTENTS

1.1 Introduction: What Is a Hierarchical Supply Chain Planning 
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1.2 Frameworks Have Broad Applications .......................................................6
1.3 Warehouse Operations ..................................................................................6
1.4 A Framework of How Inventory Decisions Fit into a Planning 
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1.5 A Hierarchical Supply Chain Performance Measurement System ...... 12
1.6 Summary and Conclusions ........................................................................ 16
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4 Supply Chain Management and Logistics

into three broad categories consisting of (1) strategic planning, (2) manage-
ment control, and (3) operational control. A number of authors (e.g., Ackoff, 
1970) eventually termed the second category as tactical planning and the 
third category as operational planning and scheduling. In its initial stages, 
the focus of these hierarchical planning systems or frameworks was inte-
grated production planning and scheduling among the strategic, tactical, 
and operational levels. These systems were known as hierarchical produc-
tion planning (HPP) systems (see, e.g., Hax and Meal, 1975). This early HPP 
work on coordinated production planning and scheduling activities across 
multiple time horizons set the stage for current HSCP systems.

KEY WORDS: hierarchical production planning, logistics planning, supply chain 
frameworks, supply chain management.

1.1  Introduction: What Is a Hierarchical 
Supply Chain Planning Framework?*

There are major organizational issues, systems and infrastructure consid-
erations, methodology issues, and numerous other problem dimensions to 
evaluate in formulating a firm’s logistics and supply chain network plan-
ning approach. From all perspectives, effective supply chain planning over 
multiple time horizons requires that a firm establish appropriate linkages 
across horizons and establish points of intersections between these horizons. 
To facilitate a planning system that possesses these appropriate linkages, a 
firm must have an overall framework that guides how different planning 
horizons and planning components fit together.

Figure 1.1 presents a general framework for hierarchical supply chain 
planning (HSCP) that defines three levels: strategic, tactical, and operations. 
As Figure 1.1 illustrates, strategic planning activities focus on a horizon of 
approximately 2 or more years into the future, whereas tactical and opera-
tional activities focus on plans and schedules for 12–24 months, and 1–18 
months in advance, respectively. At the strategic level, a firm must address 
such key issues as overall corporate objectives, market share and profitabil-
ity goals, business and product mix targets, and so on. Planning decisions 
on overall corporate objectives drive strategic supply chain decisions. For 
example, market share and business or product mix objectives will strongly 
influence manufacturing capacity strategies.

At the strategic manufacturing planning level, the firm must address 
such issues as planned production capacity levels for the next 3 years and 
beyond, the number of facilities it plans to operate and their locations, 

* Much of the material presented in this introductory section first appeared in Miller (2009).
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5Supply Chain Frameworks

the resources the firm will assign to its manufacturing operations, and 
numerous other important long-term decisions. Decisions made at the 
strategic level place constraints on the tactical planning level. At the tacti-
cal level, typical planning activities include the allocation of capacity and 
resources to product lines for the next 12–18 months, aggregate planning 
of workforce levels, the development or fine-tuning of distribution plans, 
and numerous other activities. Within the constraints of the firm’s manu-
facturing and distribution infrastructure (an infrastructure determined 
by previous strategic decisions), managers make tactical (e.g., annual) 
planning decisions designed to optimize the use of the existing infra-
structure. Planning decisions carried out at the tactical level impose con-
straints on operational planning and scheduling decisions. At this level, 
activities such as distribution resource planning, rough cut capacity plan-
ning, master production scheduling, and shop floor control scheduling 
decisions occur. 

Feedback Loops. The feedback loops from the operational level to the tacti-
cal level and from the tactical level to the strategic level represent one of the 
most important characteristics of the supply chain planning system illus-
trated in Figure 1.1. To ensure appropriate linkages and alignment between 
levels, a closed-loop system that employs a “top down” planning approach 

Corporate
• Objectives
• Product/market mix

Manufacturing
• Plans
• Capacities
• Facilities
• Locations
• Resources

Aggregate production/distribution
planning

Operations scheduling

Constraints

Strategic   (2 yrs. +)

Tactical   (12 to 24 months)

Operational   (1 to 18 months)

Constraints

Constraints

• Allocates capacity and
   resources to product lines
• Assigns sales regions to
   DCs and plants

• Distribution Resource Planning
   (DRP)
• Master production scheduling
• Short run DC workload
   scheduling
• Transport scheduling

Short-term
scheduling
(shop floor)

FIGURE 1.1
Hierarchical supply chain planning framework.
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6 Supply Chain Management and Logistics

complemented by “bottom up” feedback loops is required. For example, pro-
duction and distribution plans that appear feasible at an aggregate level can 
often contain hidden infeasibilities that manifest themselves only at lower, 
more disaggregated levels. Without proper feedback loops imbedded into its 
planning system, the danger that a firm will attempt to move forward with 
infeasible plans always exists. These infeasibilities often do not surface until a 
firm is in the midst of executing its operational plans and schedules. For addi-
tional detail on the importance of feedback loops, readers are referred to hier-
archical production planning literature (see, e.g., Hax and Meal, 1975; Bitran 
and Hax, 1977; Miller, 2002). In addition, the following sections offer examples 
of feedback loops, and Miller (2009) provides a detailed production and inven-
tory scheduling example.

1.2  Frameworks Have Broad Applications

One can utilize a hierarchical planning and scheduling framework approach 
for any major functional area within the supply chain. That is, frameworks 
can provide invaluable decision support to assist in the coordination of vir-
tually all short-, medium-, and long-run planning and scheduling activities. 
As noted, the application of this methodological approach to supply chain 
management originated in the area of production planning and scheduling. 
However, transportation, inventory management, demand management, 
and warehouse operations represent just a few examples of major functional 
areas that can benefit from a hierarchical perspective (see, e.g., Miller, 2002). 
Further, frameworks can also be applied to more general decision support 
activities such as performance measurement. To illustrate the broad appli-
cability of frameworks, we will now review the application of hierarchical 
frameworks to three diverse activities: warehouse operations, inventory 
management, and performance measurement.

1.3  Warehouse Operations

The warehouse planning process begins at the network-wide strategic plan-
ning level. At this level, a firm must determine how warehouse operations fit 
into its overall strategic plan, and in particular, what is the mission of each 
warehouse on its network, as well as on the overall network itself. Figure 1.2 
provides a high-level overview of this hierarchical planning process that 
begins at the strategic level, while Figure 1.3 highlights selected decisions 
that take place at each level.
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Network design and warehouse
location
• Overall network capacity
• Number of echelons

Facility design and technology selection
• Scale trade-o˜ s

Aggregate planning
• Capacity balancing across network
• Capacity planning within DC
• SKU/item location and allocation

Operating procedures and policies

Daily and short-run
scheduling

Constraints

Constraints

Strategic

Tactical

Operational

FIGURE 1.2
Hierarchical warehouse planning.

Strategic
planning
horizon

Operational
planning
horizon

Tactical
planning
horizon

• How many warehouses are needed on the network?
• Where should they be located?
• What should their mission be?
• What customer regions should each warehouse serve?
• What materials handling and storage technology should be used?

• What design should be used for each warehouse?
• What picking and replenishment strategies should be employed?
• What items should be allocated to particular storage technologies?
• What mix of pallet storage racking should be used?
• What items should be assigned to particular storage locations?

• What level of labor force is required?
• How many shifts should operate?
• Is current storage capacity suÿcient ?

• How should seasonal builds be addressed?
• How should warehouse labor be deployed on a weekly
           and daily basis?

• What assignment of customer orders to the di°erent t ypes of pick operations in a
           warehouse will maximize operating eÿcienc y?
• How much space should be allocated for di°erent pro duct types and di°eren t
           activities?
• What items should be diverted to temporary outside storage when storage space
           requirements exceed short-term capacity?
• How should individual jobs be scheduled in the warehouse?

FIGURE 1.3
Framework of how warehousing decisions fit into a planning hierarchy.
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8 Supply Chain Management and Logistics

A first step in the planning process consists of determining the mission of 
the overall warehouse network and the individual locations that will make 
up the network. Note that not all warehouses on a network will necessarily 
have the same mission or play the same role. The number of warehouse eche-
lons to establish represents a common strategic network design question that 
heavily influences the mission of individual warehouses. For example, a firm 
must decide whether it will operate a single-echelon network in which every 
warehouse will receive shipments of all products directly from all plants, 
or alternatively if it wants to operate a multi-echelon warehouse network in 
which one or more first-echelon, central warehouses receive products from 
plants and then redistribute some or all products to second-echelon regional 
warehouses. Another important strategic decision concerns the question of 
whether a firm chooses to operate its own facilities or to outsource some or 
all of its warehouse operations to third-party providers. Finally, as Figure 1.2 
illustrates, total network warehouse capacity requirements and economies 
of scale trade-offs are two additional key determinants of the interrelated 
decisions that a firm must address on network design, facility design, and 
warehouse technology selection.

At the tactical level, a firm must concern itself with such planning activi-
ties as balancing the demand for warehousing capacity across its network 
and planning the most efficient and effective utilization of its capacity at 
each individual distribution center (DC). Capacity planning at the individ-
ual DC level can involve determining the overall labor workforce level and 
mix required to meet the projected demands over the planning horizon, the 
proper mix and use of available storage locations (e.g., type of racking where 
adjustable), and so on. In general, tactical warehouse planning focuses on 
the determination of how best to employ the existing network infrastructure 
(i.e., the existing warehouses and material handling equipment). In addition, 
decisions to purchase relatively minor additional warehousing assets (e.g., 
incremental material handling equipment, racking, etc.) will occur in the tac-
tical planning process. However, major infrastructure issues that a firm can-
not resolve at the tactical planning level (e.g., inadequate network capacity 
to meet forecast long-term warehouse throughput or storage requirements) 
must typically be fed back up to the strategic planning level for resolution. 
Thus, the efficacy of hierarchical warehouse planning and scheduling relies 
on feedback loops, similar, for example, to the dependency of effective pro-
duction planning on such mechanisms.

At the operational level, a broad assortment of warehouse planning and 
scheduling activities take place on a regular basis. Figure 1.3 illustrates a 
sample of key decisions that operational schedulers must address. The 
scheduling of labor and short-term assignments of items to storage locations 
represent two of the major operational planning activities. Typically, it is the 
nonroutine components of these activities (e.g., addressing temporary labor 
or storage requirements that significantly exceed capacity) that require the 
most critical attention. It is also typically the “exceptions” or “nonroutine” 
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requirements of operational planning and scheduling that planners must 
report or “feed back” to the tactical planning level. For example, when ware-
house planners consistently find themselves having to schedule “unplanned” 
outside storage because of insufficient facility storage capacity, they should 
send this information to the tactical level for resolution. Perhaps the over-
all warehouse network is out of balance and requires realignment because 
excess storage capacity exists at certain warehouses, while other warehouses 
face the opposite situation. Alternatively, perhaps this storage capacity issue 
at one warehouse is not an imbalance issue, but rather is occurring regularly 
across the network and requires a total network solution. This represents just 
one simple example of the types of feedback loops that must exist between 
the operational and tactical warehouse planning levels.

In summary, firms can improve their warehouse operations by explicitly 
maintaining a warehouse management framework that identifies

• What specific decisions are made at what level, by whom, and how 
often

• How these decisions impact long run to short run operations
• The planning and scheduling decisions support (dss) tools and sys-

tems that are utilized at each level of the planning hierarchy and how 
the inputs and outputs of these dss tools are linked and coordinated

1.4  A Framework of How Inventory Decisions 
Fit into a Planning Hierarchy*

Similar to production or warehouse management decisions, inventory deci-
sions span all three levels of the planning hierarchy (i.e., the strategic, tacti-
cal, and operational levels). In addition, in a fashion similar to the production 
and warehousing functions, inventory decisions made at higher levels 
impose constraints on decisions that occur at lower levels, while at the same 
time the ramifications of constraints imposed by higher level decisions must 
flow back or upwards to higher planning levels from lower planning levels. 
Figure 1.4 offers an overview of where some key inventory decisions fit into 
a planning hierarchy. Although this set of decisions does not represent a 
comprehensive list, it serves to illustrate how key inventory decisions span 
multiple planning horizons. For illustrative purposes, we now consider sev-
eral of these decisions in more detail.

At the strategic planning level, inventory decisions revolve around such 
questions as determining the optimal level of inventory investment that a 

* Much of the material presented in this section originally appeared in Miller (2002).
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firm should plan to maintain on an ongoing basis. This decision requires 
an evaluation of a number of intertwined trade-offs. For example, in many 
cases, manufacturing firms must consider what represents the best mix of 
investment in manufacturing capacity vis-à-vis total investment in inven-
tory. As a general rule, for any given level of network-wide demand, as a firm 
increases its manufacturing capacity and flexibility, it decreases the level 
of inventory investment that it must make. This is particularly the case for 
make-to-stock firms. For example, if a firm has the capacity and flexibility to 
produce its entire product line during 1 week (i.e., cycle through its full set of 
products), it will require less finished goods inventory to fill customer orders 
than if the firm requires several weeks or months to cycle through its prod-
uct line. In general, the more heavily a firm chooses to invest in fixed plant 
and equipment (i.e., production equipment), the greater its production capac-
ity and flexibility. Thus, at the strategic level, a manufacturer must decide 
the best balance to maintain between fixed assets (plant and equipment) and 
inventory investment.

The inventory investment decision also requires that a firm consider the 
trade-offs between relative levels of investment in finished goods inventory 
versus raw materials and work-in-process components. In addition, at a very 
high level, a firm must develop a strategy on its planned customer service 
level fill rate. For example, a make-to-stock manufacturer cannot simply 
plan to have a 100% customer service line fill rate. This is not realistic. Thus, 

Strategic
planning
horizon

• What is the optimal balance between investment in inventory and invesment in
   fixed plant and equipment?
• How should inventory investment be balanced between FGI, WIP raw materials?
• What is the optimal customer service fill rate?
• Overall, what level of inventory investment is optimal?

Tactical
planning
horizon

• What is the optimal balance between inventory investment costs and
   transportation costs?
• Where should inventory be deployed across the network by locations?
• What level of inventory investment in new products should be made prior
   to product launches?
• What is the optimal customer service fill rate by major product grouping?
• How should inventory investment be balanced among finished goods, 
   work-in-process, and raw materials by major product grouping?
• Overall, what level of inventory investment is optimal by major product
   grouping?

Operational
planning
horizon

• When should inventory be redeployed across the network?
• When do short-term inventory targets have to be increased or
   decreased?
• What is the optimal customer service fill rate by product or product 
   grouping, by location?
• At what location and in what quantities should inventory for new 
   product launches be deployed?
• How should slow-moving inventory be disposed of?
• Should inventory be reserved or held for particular key customer
   orders?

FIGURE 1.4
A hierarchical framework for inventory management.
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a manufacturer must put a service level strategy in place considering the 
trade-offs between some “acceptable” level of lost or unfulfilled demands 
versus the inventory investment associated with alternative service levels. 
Finally, such issues as the appropriate trade-offs between transportation 
costs and inventory investment costs also require consideration in the inven-
tory management process. Often manufacturers must choose between using 
faster, more expensive transport services (e.g., air) between a “supplying” 
origin and a “receiving” destination and slower, less expensive transporta-
tion alternatives. A key question in such decisions is whether the savings in 
inventory investment requirements (i.e., in-transit and safety stock inventory 
at the destination) facilitated by a faster replenishment transit time outweigh 
the increased costs of the expedited transport service. Questions such as 
this often represent tactical rather than strategic issues; however, they play a 
prominent role in a firm’s overall inventory investment approach.

At the tactical planning level, many of the same inventory issues found at 
the strategic level resurface, but at a greater level of granularity. For exam-
ple, typically a firm’s annual planning process includes an evaluation of the 
level of the total inventory investment that it will make during the next year. 
At the minimum, however, this process will usually include an analysis at 
the major product grouping level (e.g., brand or product family). In contrast, 
the strategic inventory planning process will not address this level of detail. 
Many of the same trade-offs considered at the strategic level again reappear 
in more detail (e.g., evaluating optimal service fill rates and the approxi-
mate mix of finished, in-process, and raw materials inventory at the product 
grouping level). Further, as previously noted, decisions implemented at the 
strategic level will impact options at the tactical level. For example, the man-
ufacturing capacity and flexibility built into the firm’s current infrastructure 
will heavily influence its annual inventory investment plan.

At the tactical level other more detailed decisions such as the deployment 
of inventory by location and by product grouping will also occur for the 
first time. An example of the type of feedback that can develop at this level 
would be if a firm’s planners, when reviewing inventory requirements by 
major product grouping, determine that to meet planned service fill rates, 
they require a total inventory level exceeding the planned overall investment 
target. In addition, at this level, specific policies must be developed covering 
such potential issues as whether certain customers will receive priority in 
the event of temporary inventory shortages during the planning horizon. 
The development of guidelines for when inventory should be redeployed 
between locations on a firm’s network because of shortages and/or imbal-
ances represents another example of the types of policies developed at the 
tactical planning level.

At the operational planning and execution level, again many previous 
planning decisions made at higher levels are revisited at a more detailed 
product line level and in more detailed time increments. Here a firm’s plan-
ners must ensure that all SKUs (i.e., stock keeping units, or items at unique 
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locations) have inventory targets designed to deliver specific customer ser-
vice fill rates. In addition, decisions regarding inventory targets by season, 
by month (perhaps even by week) must be made, and made within the 
guidelines or constraints established at higher planning levels. Inventory 
policies represent a vital area in which the existence of good feedback loops 
from the operational level to the tactical level can play an important role. If, 
for example, the guidelines regarding inventory redeployment between net-
work locations in cases of inventory imbalances are not working effectively, 
this information must be communicated back to the tactical planning level 
so that a more effective approach can be developed and implemented.

In summary, the inventory management function shares the same criti-
cal need for coordination and feedback between hierarchical planning levels 
as do other functions such as warehouse operations and manufacturing. A 
firm that makes the effort to formally design and update on a regular basis 
an inventory management framework positions itself to plan its inventory 
investment and deployment efficiently and effectively.

1.5  A Hierarchical Supply Chain Performance 
Measurement System

This section presents a three-level hierarchical performance measurement 
framework that can link a wide array of functional areas and performance 
measures. The three levels of the hierarchy consist of the strategic, tactical, 
and operational levels, as found in traditional supply chain frameworks. 
However, the hierarchical levels have a different connotation in this perfor-
mance measurement system (PMS). As discussed, in traditional frameworks, 
the dimension of “time” or planning horizon differentiates the hierarchy lev-
els. In our PMS framework, it is the “scale” of an operation or activity that 
a particular performance measure monitors that determines its place in the 
hierarchy. Also within the hierarchy of the firm, the level of a functional unit 
that a measure monitors determines where it (i.e., the measure) falls in the 
performance measurement hierarchy.

Within each of the three levels of the measurement system, we further dif-
ferentiate performance measures into two categories: (1) external measures 
and (2) internal measures. External measures focus on the effectiveness of an 
activity or function while internal measures evaluate the efficiency or pro-
ductivity of an activity or function. In particular, external measures evalu-
ate the effectiveness of flows and links across a supply chain, while internal 
measures evaluate the cost or efficiency of a function or organization in pro-
ducing its outputs and services. Two typical external performance measures 
are order and line item fill rates on customer orders. When a customer (e.g., 
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a mass merchandiser) places an order to a supplier (e.g., a manufacturer), 
the order and line item fill calculations measure whether the supplier deliv-
ers the total order and the individual line items on time and complete as 
ordered. These measures do not evaluate the supplier’s cost in delivering 
the order. Thus, if a supplier had to deliver an order by expensive air freight 
rather than normal surface transportation because of inventory shortages or 
other problems, the order and line fill calculations would not capture this. 
If the shipment arrived on time and complete by air transport, the order fill 
and line fill measures would identify this particular shipment as a success-
ful fulfillment of a customer order (i.e., the manufacturer was “effective” in 
delivering the order on time and in full to the customer). In contrast, internal 
performance measures focusing on efficiency would evaluate this order fill 
example as an “inefficient” effort. “Distribution cost per case” and “freight 
cost per lb.” represent two common internal measures, and this air freight 
delivery would increase the firm’s average distribution cost per case and 
freight cost per pound.

Figure 1.5 depicts an integrated hierarchical supply chain performance 
measurement framework. Note that the framework in Figure 1.5 spans an 
entire supply chain from the echelon of the raw material and component 
suppliers, to the echelons of the plants and distribution centers of a manu-
facturing firm, to the echelon(s) of the locations of the customers of a manu-
facturer, and finally to the retail consumer. One can adapt the performance 
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FIGURE 1.5
A hierarchical supply chain performance measurement framework.
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measurement framework in Figure 1.5 to as many or as few echelons as 
may exist on a supply chain. For illustrative purposes, we now consider this 
framework from the more limited viewpoint of a single firm. To measure 
and monitor both the effectiveness and the efficiency of each of its major 
functions, a firm will want to have a few key high level measures, both inter-
nal and external, for each function. To describe this framework, we briefly 
focus on the distribution organization in particular.

As noted, at the strategic level, a few key indicators will measure the over-
all performance of the distribution organization. At the tactical level, the per-
formance of each major subfunction of a functional area is measured. In this 
example, warehouse operations and transportation represent the two pri-
mary components of distribution. Therefore, we will need a few internal and 
external performance measures for each of these subfunctions. At the opera-
tional level of this framework, the performance of each key subfunction (of 
each function of the tactical level) is monitored. In this example, Figure 1.5 
illustrates that the warehouse operations component has five major subfunc-
tions: receiving, putaway, storage, picking, and shipping. Thus, each of these 
five areas would require both external and internal performance measures. 
Similarly, the major subfunctions of transportation would each require their 
own measures.

Figure 1.6 provides additional insight on how this hierarchical perfor-
mance measurement framework works. This figure displays sample external 

Measure:
Distribution

Warehouse operations

Receiving

Percent of scheduled customer shipments delivered on-time

Order cycle lead time: from release to distribution to customer delivery

Total distribution cost per unit delivered

time in days—variabilityStrategic
External

Internal

Tactical
External

Internal

Operational
External

Internal

Level: Type:

Percent of lines/orders picked correctly
Percent of orders picked on scheduled day

Total warehouse costs per unit of throughput

Percent of cases/lines received correctly

Total receiving costs per unit

FIGURE 1.6
Illustrative hierarchical performance measures for the distribution function.
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and internal performance measures for a distribution organization at each 
level of the hierarchy. The measures of (1) percent of scheduled customer 
shipments delivered on time and (2) the average and variance (or standard 
deviation) of order cycle lead time represent strategic external measures. 
These indicators are external because they measure outputs and/or services 
that flow across the supply chain. In this case, they provide a measure of 
how effectively the distribution function serves its customers at the next 
echelon of the supply chain. These measures are classified as strategic in 
this hierarchy because they evaluate one of the key missions of a distri-
bution function: to distribute product and/or services to its customers in 
a timely manner. The other strategic indicator shown in Figure 1.6 is the 
total distribution cost per unit delivered (e.g., per case delivered). We clas-
sify this measure as internal because it has an “inward” focus; namely, it 
evaluates how efficiently the distribution organization performs its func-
tion. This internal measure falls into the strategic level because it evaluates 
a major function (distribution) at a summary level (i.e., the distribution cost 
per case delivered provides a high level view of overall distribution cost and 
effectiveness).

The performance measure examples shown in Figure 1.6 for warehouse 
operations (at the tactical level) and warehouse receiving operations (at 
the operational level) follow a similar theme. The percent of lines or orders 
picked correctly and the percent of orders picked on the scheduled day 
represent external measures because they evaluate the impact of ware-
house operations across the supply chain. Specifically, when a warehouse 
picks an order correctly, it contributes to the ultimate successful delivery 
of products to a customer that has placed an order. In contrast, an incor-
rect pick will result in an unsuccessful delivery to a customer. Similarly, 
when a warehouse picks an order on time (i.e., on the scheduled day), this 
contributes toward a successful on-time delivery of products to a cus-
tomer. The third tactical measure shown in Figure 1.6, total warehouse 
costs per unit of throughput, represents an internal measure, as it offers 
a summary view of the internal cost (and efficiency) of the warehouse 
operation.

At the operational level, the warehouse receiving function uses the percent 
of cases (or lines) received correctly (i.e., accurately) as an external perfor-
mance measure. We categorize this measure as external because the accu-
racy with which this function receives inbound shipments will impact the 
next stage of the supply chain. For example, suppose that the receiving area 
miscodes an inbound receipt as product A, when in fact it received product 
B on a delivery. If this error remains undetected, the shipment will then be 
put into inventory classified as product A and at some future point, could 
be picked and delivered to a customer who ordered product A. In contrast, 
total receiving cost per unit has an internal orientation and will be of most 
immediate concern to receiving and warehouse personnel.
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Benefits of a Hierarchical Performance Measurement Framework. Employing a 
hierarchical performance measurement framework offers a number of 
important benefits. First of all, this approach provides a unified frame-
work for aggregating performance measures across a company. By imple-
menting a hierarchical measurement approach, a firm positions itself to 
organize its key performance measurements into a structure that leads to 
a relatively few, high-level, strategic measures that monitor overall firm 
performance. At the same time, this structure facilitates having many 
other performance measures that monitor smaller components of a firm’s 
operation, yet that align with overall firm objectives. In particular, a hier-
archical measurement system allows both large and small functional 
areas within a firm to develop and maintain their own measures and to 
contribute to and be part of an overall measurement system.

This hierarchical approach thus helps to keep measures both “simple” and 
“meaningful” because each function and subfunction at each level can focus 
on a few key performance measures.

Finally, a hierarchical performance measurement system can also con-
tribute toward aligning the collective activities of a firm to meet a desired 
mission and set of objectives. For example, if a firm has a comprehensive 
measurement system in place that covers most or all of its major functional 
areas and activities, managers can view the system in its entirety to identify 
any potential misaligned activities or objectives.

In closing this section, we emphasize again that the PMS framework dif-
fers markedly from the other frameworks presented in that “time or plan-
ning horizon” does not distinguish the levels of the hierarchy. As described, 
“scale or magnitude” differentiates one level of the PMS hierarchy from 
another, and this illustrates the flexibility of the framework paradigm. In 
short, frameworks can be applied to a highly diverse set of supply chain 
functions and activities.

1.6  Summary and Conclusions

We prefaced this chapter by acknowledging that supply chain professionals, 
as well as their colleagues in all other parts of the business world, must man-
age today in an unprecedented era of technological advancement and rapid 
globalization. Competitive pressures continue to escalate for firms as cus-
tomers’ physical and informational access to competitive suppliers around 
the world increase through developments such as enhanced transportation 
and distribution infrastructure, the Internet, and business analytics. In this 
chapter, we have made the point that in the midst of this dynamically chang-
ing world, supply chain professionals must more than ever utilize and call 
on well tested operating principles and methods.
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HSCP frameworks represent one of these fundamental methods that prac-
titioners should employ to help manage their operations. We explored three 
different frameworks for warehouse operations, inventory management, 
and performance metrics respectively in this chapter. Although each frame-
work was different, they were also similar in that each provided a planning 
platform to coordinate the activities of a major function from the long-run 
strategic horizon to the short-run operating horizon. Thus, managers can use 
these hierarchical planning and scheduling systems to help organize and 
align the activities of major functional areas, and an entire supply chain over 
a multilevel operating horizon.

Finally, we note that although this chapter served to introduce the concept 
of HSCP frameworks, we did not review in detail some of the key “mechan-
ics” and decision support tools of these systems, nor did we describe actual 
real-world implementations. Readers interested in exploring HSCPs fur-
ther are referred to (Liberatore and Miller, 1998; Miller, 2002; Miller and 
Liberatore, 2011) for details on implementations and related strategies, as 
well as examples of additional frameworks.
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ABSTRACT New challenges are arising in supply chain management with 
growing competition in global markets. To address these challenges, supply 
chain partners must cooperate with each other much more closely to decrease 
costs and increase their competiveness. In particular, cooperation between 
partners in discrete manufacturing enterprises is of special importance. This 
chapter focuses on the coordinated scheduling problems of discrete manufac-
turing enterprises in a supply chain environment. It provides a comprehensive 
review from various perspectives, identifies interesting problems from the 
existing literature, and proposes prospective research directions. The research 
methodology mainly applied for solving these problems is briefly discussed.

KEY WORDS: coordinated scheduling, supply chain, discrete manufacturing.

2.1  Introduction

In the era of E-commerce, discrete manufacturing enterprises (DMEs) are 
characterized by multitype, small-batch, and flexible production patterns 
because of personalized and timing requirements of customers. DMEs 
are vital for the economy and the competition among them is increasingly 
becoming a competition in the supply chain. However, the matching, coor-
dination, and optimization between the production of most DMEs and the 
supplying and distribution of up- and downstream partner enterprises are 
not factored into the production and scheduling plans of the DMEs, result-
ing in an increase in the total costs of the supply chain and a weakening of 
their competitiveness. In the existing literature, the research work on sched-
uling problems in a supply chain environment is limited to the production 
plans, the established models are generally too simple, the objectives and 
constraint conditions are too idealized, and the production features of DMEs 
are not taken into account, which is far from the real-life situations (Frederix, 
2001). Thus, the research on the supply chain problems for DMEs is of signifi-
cant theoretical and practical importance.

Characteristic features of the production systems of DMEs are complicated 
products, multitype material, uncertainty, and focus on software. Indeed, 
(1) the products of DMEs tend to be complicated because they may be com-
posed of many components, and they usually have relatively fixed match-
ing relationships between the products’ structures and the components; 
(2) DMEs’ products are diverse, which requires multiple types of production 
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materials; (3) in DMEs, connection and management among different depart-
ments or different production processes frequently bring high uncertainty 
into production; (4) the productivity of DMEs does not depend on the hard-
ware but on the software such as management, unlike in continuous manu-
facturing enterprises.

The production scheduling patterns in a supply chain environment have 
some new features that are different from the traditional ones (Hall and 
Potts, 2003).

 1. There is a greater optimization space for coordinated schedul-
ing patterns in a supply chain environment, with more numerous, 
broader, and more complicated involved departments. The sched-
uling decisions in a supply chain are made in the workshop and 
the functional departments in the form of a multitype and small-
batch approach not only in the complicated production processes 
for each job-machine assignment and the job processing orders on 
each machine, but also for the integration of each node in the supply 
chain network, to optimize globally the production activities of each 
functional department, such as transportation, storage, and so forth, 
so as to enhance the competitiveness of the entire supply chain.

 2. The multiobjective feature of production scheduling in a supply 
chain environment differs from traditional multiobjective produc-
tion scheduling problems because it focuses on the “benefit balance” 
among the involved nodes in the supply chain network. The corre-
sponding problems are not limited to the traditional production area 
but also bear a close relationship with materials, finished products, 
storage, transportation, and other areas. In view of this, the main 
purpose of coordinated scheduling in a supply chain environment 
is to realize global optimization of the supply chain so as to enhance 
the competitiveness of the entire supply chain and not restrict the 
goal to the optimization of some objective for a single production 
node or functional department, such as maximizing machine utili-
zation and in-time delivery ratio, minimizing the completion time, 
and so forth. Moreover, its purpose is not the optimization of the 
aggregate  of the objectives of the nodes, but of the “benefit balance” 
across multiple nodes in the supply chain network. This pattern, 
besides the traditional optimization objectives in production sys-
tems, also involves the transportation and storage problems among 
multiple nodes, such as how to maximize the on-time arrival rate, 
minimize production storage and transportation costs, or maximize 
the output value of the entire supply chain.

Traditional production scheduling problems address more academic 
issues such as mathematical modeling theory and methods, complexity 
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theory, control theory, combinatorial optimization theory and methods, arti-
ficial intelligence, computer technology, and so on, whereas the coordinated 
scheduling problems in a supply chain environment address more manage-
rial issues, because besides scientific methodology, effective communication 
and coordination among all nodes are required. That is, the collaborative 
management mechanism and supply chain operation cost is vital for supply 
chain production scheduling and constitutes the basis for production sched-
uling theory and method implementation.

Future research should aim at the new features of a DME production 
scheduling pattern in a supply chain environment, at studies of the exist-
ing supply chain production scheduling collaboration management mecha-
nism, multiobjective modeling and solution methods for typical problems, 
and at the development of evaluation methods. It should include research on 
(1) the new features of scheduling problems in a supply chain environment; 
(2) the collaboration mechanism of enterprise scheduling in a supply chain 
environment; (3) the DME production scheduling models in a supply chain 
environment; (4) the solution methods and simulation experiments for DME 
production scheduling models in a supply chain environment; and (5) case 
studies.

2.2  Literature Review

Next we review the multiobjective production scheduling problems in a 
supply chain environment from the aspects of coordination mechanism of 
the production system, production plans, production (machine) scheduling, 
multiobjective production problem-solving techniques, and multiobjective 
evolutionary algorithm evaluation methods.

2.2.1  The Research Status of Coordination Mechanisms 
for Production Systems in a Supply Chain Environment

The coordination mechanisms for production systems generally include the 
production scheduling management mechanisms in a supply chain environ-
ment, the information communication mechanism of production schedul-
ing in a supply chain environment, and the benefit distribution mechanism 
among the supply and demand nodes in the up-/downstream supply chain.

The production scheduling management mechanisms in a supply chain 
environment include the joint replenishment management, joint inventory 
management, joint production, production and transportation collabora-
tive optimization, and production outsourcing mechanisms, among others. 
The joint replenishment management mechanism has many submecha-
nisms such as rapid-reaction, accurate-response, backup agreement, and 
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quality–flexibility mechanisms. The rapid-reaction mechanism was first 
proposed by Iyer and Bergen (1997). Sahin et al. (2008) used the method of 
frozen orders to determine fixed deliveries in a certain period of time, with 
the remaining orders decided when the next period approached, so as to 
realize the effect of rapid reaction. In the accurate-response mechanism, the 
manufacturers in a supply chain designate a two-stage materials production 
for the material producers to realize the flexibility of production supply, con-
sidering the random requirements of the market (Fisher and Raman, 1996). 
The joint inventory management mechanism in a supply chain environment 
requires that each entity should consider not only its own production and 
inventory situations, but also the other partners’ when adopting the inven-
tory management policy, with the result that the entire supply chain can 
realize inventory optimization. The joint production management mecha-
nism in a supply chain environment includes joint production of parallel 
enterprises and up-/downstream enterprises. Frederix (2001) proposed a 
method of expanding enterprise plan for DMEs, in which he considered 
that the core enterprise was in charge of the coordination and scheduling 
of multiple partners’ production in the supply chain, so as to realize effi-
ciency optimization of the whole supply chain’s resource. Alvarez (2007) also 
studied the problem of expanding the enterprises’ plan, in which each pro-
ducer was considered as an independent agent, the coordination and con-
trol task of which was not taken by the core enterprise only. Kanyalkar and 
Adil (2005) considered the problem of production coordination management 
in a supply chain that has multiple production equipment locations, with 
alternative production capability supplying to multiple points of sale and  
suppliers that are dynamically determined. Sawik (2009) developed a coor-
dination mechanism and two mixed integer programming methods with 
respect to the problem of multiple suppliers and producers in a supply chain 
to realize the synchronization of materials supplying and minimize the total 
inventory and other costs of the entire supply chain. Lee and Chen (2001) 
studied the overall coordination scheduling problem of production and 
transportation considering the transportation capability and time, based on 
the research of machine scheduling, and also discussed the complexities of 
a variety of scheduling problems related to this problem. Chang and Lee 
(2004) further studied such problems taking into account the differences of 
storage space of each product. Li et al. (2005) considered the transportation 
coordination problem when customers are distributed in different locations. 
The production outsourcing mechanism in a supply chain environment is 
subject to the coordination mechanism applied in the situation when the 
production capacity or production types of core enterprise are insufficient 
and the production is outsourced to other enterprises. The information com-
munication and sharing mechanism in a supply chain environment is the 
basis of a unified, coordinated, and efficient operation of the multiple nodes 
and the entire supply chain. Jayaraman and Pirkul (2001) pointed out that 
information on the production process is the biggest concern. The benefit 
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distribution mechanism among supplying and demanding nodes of the up-/
downstream supply chain is the focal issue in the cooperation and dissen-
tion of supply chain enterprises. Leng and Parlar (2009) studied a two-node 
supply chain with producer and distributor, using Nash equilibrium theory 
to construct a linear benefit distribution mechanism.

Given the research status on the production scheduling collaborative 
mechanism in a supply chain environment, studies on the supply chain pro-
duction coordination mechanism have a direct relationship to laws, credit, 
and even management systems applicable to the enterprises.

2.2.2  The Research Status of Joint Production, Production 
Inventory, and Production Transportation Plans 
in a Supply Chain Environment

Since the concept of a supply chain was first proposed, the production plan 
in a supply chain environment has been a hot area in academic research. 
Taking the joint production plan, for example, Kanyalkar and Adil (2005) 
studied the collaborative production plan problem in a multifactory, mul-
tipoint of sale environment and proposed a linear programming model to 
realize unified plan coordination of production time and production capac-
ity. Alvarez (2007) discussed the coordination plan and scheduling problem 
of expanding enterprises and the development level of this research area. In 
research work on production inventory plans, Jayaraman and Pirkul (2001) 
studied the strategy level decision-making problems of multiproduction, 
multisupplier, multifactory, and multicustomer enterprises. The authors 
developed a solution method based on heuristics for the coordination plan. 
In addition, Xie et al. (2006) considered the inventory factor in the coordina-
tion problem in a supply chain environment. In research work on produc-
tion transportation plans, Liang (2007) studied the comprehensive planning 
problem of production and transportation in a supply chain environment 
and constructed an interactive fuzzy multiobjective linear programming 
model. Aliev et al. (2007) proposed a fuzzy genetic algorithm to integrate 
production and transportation in production planning of a supply chain. 
There are also related works in Demirli and Yimer (2006), Rizk et al. (2006), 
Chern and Hsieh (2007), and Selim et al. (2008). Torabi and Hassini (2008) 
conducted research on the coordination plan in a supply chain in the form of 
purchasing–producing–distributing.

There is extensive and deep related work on the production planning 
research in a supply chain environment. Research on constraints and objec-
tives involves the production cost, production capacity, setting time, set-
ting cost, cleaning time, transportation time, transportation vehicle space, 
transportation cost, transportation capacity, inventory level, inventory cost, 
warehouse cost, no-delivery cost, inventory service level, replenishment 
cost, replenishment time, order flexibility, delivery time, dynamics, and 
randomness. The modeling methodologies used by the researchers include 
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the mathematical programming models such as the linear/nonlinear, two/
multistage, random/nonrandom, single-objective/multiobjective, fuzzy/
nonfuzzy, and mixed integer/integer programming models, as well as intel-
ligent algorithms such as genetic algorithm, tabu search algorithm, ant 
colony optimization algorithm, and many heuristics algorithms. In view of 
this, research on production planning in a supply chain environment is very 
comprehensive, in contrast to research on production scheduling in a sup-
ply chain environment, which is still limited. Mula et al. (2010) conducted a 
literature review on production and transportation planning problems in a 
supply chain environment and found that more than 90% of all the 127 inves-
tigated related work concerned the problem of planning level, not schedul-
ing level.

2.2.3  The Research Status of Production Scheduling 
in a Supply Chain Environment

In 1996, Rowe et al. (1996) first proposed the concept of logistics schedul-
ing, which introduced queuing theory into the supply chain management 
area. Afterward, Hall and Potts (2003) published the first paper on supply 
chain scheduling. In 2004, Hall gave a speech on supply chain scheduling 
and introduced the further research results on this topic (Agnetis et  al., 
2006; Dawande et al., 2006). Since then, research in this area has been wide 
ranging. The supply chain scheduling problem is a collaborative optimiza-
tion problem with the optimization objective of minimizing the sum of 
production and transportation costs, integrating production scheduling, 
and splitting shipment. Zegordi et al. (2010) studied a two-stage scheduling 
problem in the supply chain, in which production scheduling was divided 
into production and transportation stages. The first stage involved mul-
tiple suppliers with different production speeds, and the second stage had 
multiple vehicles with different speeds and transportation capacities. The 
authors constructed the mathematical model for the problem as a mixed 
integer programming problem and used a new genetic algorithm to solve it. 
Mazdeh et al. (2011) applied the branch and bound algorithm in solving the 
collaborative optimization problem of single-machine production schedul-
ing and batches delivery, and the optimization objective was to minimize 
the total cost of production scheduling and batch delivery. In addition to 
the aforementioned research work on the supply chain scheduling problem 
involving the coordination scheduling of production and transportation, 
some authors studied the production collaborative scheduling problem 
with multiple factories or multiple stages. For example, Agnetis et al. (2006) 
investigated the multifactory collaborative scheduling problem. Their arti-
cle was not about the scheduling of parallel enterprises but about the up- 
and downstream enterprises, that is, multistage or multilevel supply chain 
scheduling. The authors considered the benefit of both suppliers and man-
ufacturers through an intermediate storage buffer to realize optimization 
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of production scheduling for both parties. Other issues of concern in pro-
duction scheduling in a supply chain environment are the collaborative 
optimization problems of production scheduling and inventory and the 
collaborative optimization problem of production scheduling, inventory, 
and transportation. Selvarajah and Steiner (2006) took the transportation 
and inventory costs into account when studying the production schedul-
ing problem in a supply chain. Kaminsky and Kaya (2008) introduced the 
problem of inventory location selection when studying the job scheduling 
problem in a supply chain environment. We also investigated coordinated 
scheduling and transportation problems in an aluminum supply chain 
and developed an effective intelligent algorithm and heuristic algorithm, 
respectively (Pei et al., 2014a,b).

In conclusion, research on coordination production in a supply chain is 
mainly on the strategy or planning level but limited on the scheduling level, 
and all of them do not consider the DME’s supply chain scheduling problem 
with complex production conditions such as multitype, small-batch patterns 
and flexibility. There is still a lack of research on the supply chain schedul-
ing problem from the perspective of multiple objectives, especially from the 
perspective of decision makers.

2.2.4  The Research Status on the Solving Techniques 
for Multiobjective Production Scheduling

The methods for solving multiobjective scheduling problems are generally 
classified into three groups: converting the multiobjective scheduling prob-
lem into a single-objective one by weighting the objectives and searching for 
the non-Pareto the Pareto solutions.

In research work on the first group of methods, the determined weights 
strategy is mainly used. Xia and Wu (2005) studied a triple-objective flex-
ible job-shop scheduling problem (FJSP) in which the three optimization 
objectives were converted into a single one using the weighting method, 
and then a mixed algorithm of a tabu searching algorithm and particle 
swarm searching algorithm was used to solve the problem. Huang and 
Yang (2009) describe other studies using similar weighting strategies. In 
multiobjective problems, the dimensions of different objectives are usually 
different; thus some methods unified the dimensions of objectives before 
weighting them. Cardoen et al. (2009) studied the scheduling problem of 
doctors and patients in a hospital, where six objectives were taken into 
account, and the multiobjective scheduling problem was converted into a 
single-objective one by using the weight dimension conversion formula 
to each objective, and then the authors established the mixed integer lin-
ear programming model, based on which a deterministic algorithm and a 
heuristic algorithm were proposed to solve it. The second type of method 
is to find non-Pareto solutions. Low et al. (2006) studied a triple-objective 
mixed flowshop problem, the objective of which was to minimize average 
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processing time, minimize average job tardiness, and minimize machine 
idle time. The authors proposed a mixed algorithm of simulated anneal-
ing algorithm and tabu search algorithm. Zhang et al. (2009) also stud-
ied a triple-objective mixed flowshop problem, and the difference was 
that the authors considered the problem from two parts, the first part of 
which used a particle swarm algorithm to determine the job assignment 
on each machine, and the second part was done by a simulated annealing 
algorithm to determine the processing order of the jobs on each machine.  
Related papers include Yagmahan and Yenisey (2008). The third type of 
method is to find Pareto solutions, which are mainly intelligent algorithms 
or mixed intelligent algorithms, and most of them consist of  genetic algo-
rithms. Some articles focused on how to find the most fitting Pareto solu-
tions after obtaining the Pareto solution set. Pasupathy et al. (2006) studied 
the multiobjective permutation flowshop problem, the objective functions 
of which were to minimize the manufacturing cycle and minimize total 
processing time. The authors proposed a multiobjective genetic algorithm 
based on Pareto sorting, the so-called Pareto genetic algorithm, and also 
proposed the concept of nondominated sorting and crowding distance. 
Besides the genetic algorithm, there are some other algorithms also applied 
to such problems, for example, immune algorithm, particle swarm algo-
rithm, and simulated annealing algorithm. Tavakkoli-Moghaddam et al. 
(2007) studied a multiobjective nonwaiting time flowshop problem, of 
which the objective functions included minimizing average completion 
time and minimizing weighted average tardiness. Behnamian et al. (2009) 
used a special method that combined the random weighting strategy and 
the finding Pareto solutions strategy to solve a multiobjective mixed flow-
shop problem in a real production scenario.

The research work described in the preceding text discussed the model-
ing and solving problems of a multiobjective scheduling problem in a single 
production unit. However, in a real production process, production, inven-
tory, and transportation are tightly connected. Integrating these three key 
problems; establishing models and proposing solution methods; and in the 
end forming effective production scheduling plans, inventory strategy, and 
transportation management mechanisms hold great application prospects.

2.2.5  The Research Status of Multiobjective Evolutionary 
Algorithms Performance Evaluation

There have been some research results on the multiobjective evolutionary 
algorithm performance evaluation (Chinchuluun et al. 2008). Knowles (2002) 
conducted a comprehensive and systematic analysis on multiobjective evo-
lutionary algorithms, which became the basis of future research. Deb et al. 
(2002) proposed two evolution indicators related to distance, which provided 
a new idea for evaluation indicator design of multiobjective evolutionary 
algorithms. However, these two indicators must be operated on the basis 

© 2016 by Taylor & Francis Group, LLC

  



28 Supply Chain Management and Logistics

of a known Pareto-optimal solution set, but in real applications the Pareto-
optimal solution set is often unknown. In view of this, it has very limited 
value for real-world applications.

The existing evaluation indicators of multiobjective evolutionary algo-
rithms are insufficiently applicable to real problems. Moreover, the algorithm 
performance cannot be evaluated effectively unless the multiple indicators 
can interwork well together. However, there is still no recognized and effec-
tive solution for how to combine and apply multiple indicators.

2.2.6  Existing Problems

Here we propose some existing problems as follows:

 1. The production system coordination mechanism in a supply chain 
environment is an important procedure for ensuring that produc-
tion scheduling theories and methods in a supply chain are effec-
tively implemented. Problems in this area include
• How to coordinate the activities among and within enterprises, 

or among the functional departments such as factories
• How to realize the global optimization of production scheduling 

in a supply chain
• How to coordinate and manage the processes of supplying, pro-

duction, sale, inventory, and so forth, so as to reduce the total 
costs and increase operation efficiency

• How to coordinate the sharing and distributing problems of the 
benefit, risk, and costs among all functional departments in a 
supply chain

• How to construct the information sharing platform to realize the 
global optimization of production scheduling in a supply chain

  Such problems are little discussed in the existing research mate-
rials, and the depth, range, and real applicability of the current 
research status cannot satisfy the practical requirements, and thus 
they need to be studied further.

 2. There are some research results on joint production planning and 
control and on production inventory planning and production trans-
portation planning. However, the research work hardly targeted to 
production scheduling, which is on the operational level in a supply 
chain. Thus, ways to conduct in-depth studies on the operational 
level (i.e., production scheduling level) are a significant direction for 
future research.

 3. Research on production scheduling in a supply chain environment is 
still in the early stage, that is, the studied problems are oversimplified, 
and most of them contain only a few constraints, being far removed 
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from the practical production situation in industry. Thus, how to 
extend research on the specific problems to bring them much closer to 
the real situation is another future research topic of great significance.

 4. Research on the production scheduling problems in a supply chain 
has focused mostly on model building, with little breakthrough on 
the solution methods. Most researchers used existing or simple algo-
rithms, such as exact algorithms, heuristic algorithms, and so forth, 
to solve small-size problems. However, small-batch and multitype 
features are two of the most important characteristics of DMEs, and 
thus the problems are usually of a large size. Effective algorithms 
that can solve large-size problems in a reasonable time should be 
developed so as to apply production scheduling theory and meth-
ods in a practical DME production environment. Thus, further in-
depth research on the solution techniques for large-size production 
scheduling problems should be conducted.

 5. The multiobjective algorithm theory and methods based on the con-
cept of Pareto optimality has become a hot topic in multiobjective 
algorithms in recent years. There are some results that have been 
applied well in many areas, and also some progress in traditional 
production scheduling problems. The production scheduling prob-
lems in a supply chain environment are mostly multiobjective prob-
lems, but there is still limited research on the algorithms for finding 
a Pareto-optimal solution set. Problems include

• How to apply the multiobjective algorithms based on the concept 
of Pareto optimality in the multiobjective production scheduling 
problems in a supply chain

• How to develop effective multiobjective evolutionary algorithms 
in view of such problems

• How to combine existing knowledge, known scheduling 
rules, heuristics algorithms, and multiobjective evolutionary 
algorithms

  All of these problems need to be studied further.
 6. There are a few distinct advantages in the real applicability of the 

evaluation indicators for multiobjective evolutionary algorithms 
based on the concept of Pareto optimality, but they also lack a uni-
fied evaluation framework. Moreover, there are no unified measure-
ments and testing data for the production scheduling problems in a 
supply chain. These disadvantages decrease the accountability and 
fairness of the evaluation of the algorithm. Thus, how to design the 
measurement index with more practical operability, how to build a 
unified algorithm evaluation framework, and how to construct or 
generate testing data closer to the real situation are problems that 
urgently need to be studied.
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2.3  Future Research Directions

2.3.1  Research on the New Features of Production Scheduling 
Problems in a Supply Chain Environment

There exist significant differences between the production scheduling prob-
lems in a supply chain environment and traditional production scheduling 
problems in a single workshop or single factory. Given the status of produc-
tion scheduling management in up-/downstream DMEs, we need to analyze 
the new features and complexities of the DMEs’ production scheduling prob-
lems in a supply chain environment and classify such problems into certain 
types. The current status of existing inventory management and transpor-
tation optimization is investigated to study their relationship with produc-
tion scheduling and analyze the new features generated by the collaborative 
optimization of production scheduling and transportation and inventory in 
a supply chain environment, and also analyze the main contradiction and 
bottleneck problems.

2.3.2  Production Scheduling Coordination Mechanism 
of Enterprises in a Supply Chain Environment

The collaborative management mechanisms related to production schedul-
ing in a supply chain environment include an information sharing mech-
anism, and production scheduling management mechanism (including 
benefit distributing mechanism), which are the basic condition and essential 
guarantee to realize and implement production scheduling and transporta-
tion and inventory collaborative strategies in a supply chain environment. 
Based on the survey of typical production patterns of the supply chain of 
DMEs and analysis of the status and new features of the production pat-
terns in a supply chain, the information sharing and production scheduling 
management mechanisms of the production pattern in a supply chain can be 
proposed in future research, and the detailed research content is as follows.

 1. The information sharing mechanism of production scheduling in a supply 
chain environment. The information sharing mechanism is the basic 
guarantee of realizing the production scheduling and transporta-
tion and inventory collaborative optimization in a supply chain 
environment. The degree, scope, and mode of information sharing 
directly impact on the effectiveness of the scheduling plans. The 
future research mainly studies the key information determination 
problem (e.g., supply lead time, finished products delivery time) and 
information sharing mechanism of production scheduling problems 
in a supply chain environment, and explores the optimal informa-
tion sharing mechanism of scheduling problems in a supply chain.
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 2. The production scheduling management mechanism in a supply chain envi-
ronment. The production scheduling in a supply chain environment 
involves the processing of the inconsistent situations in produc-
tion scheduling and transportation and inventory among multiple 
connected nodes in a supply chain. For example, if the operational 
benefits (e.g., production scheduling optimization, just-in-time, zero 
inventory) of the client need to be ensured, then the supplier has 
to assume a higher production cost, transportation cost, or inven-
tory cost, which impacts the overall competitiveness of the supply 
chain and also weakens the willingness of the supplier and client 
in the supply chain to cooperate. In view of this, we should focus on 
the multinode joint production management, joint inventory man-
agement, and production and transportation collaborative optimi-
zation mechanisms in the supply chain to reduce the operational 
cost including production, storing, and transportation and optimize 
production capacity and resource allocation.

2.3.3  Multiobjective Production Scheduling Model 
Research of DMEs in a Supply Chain

The main difference between the production scheduling problems of DMEs 
in a supply chain environment and traditional scheduling problems is that 
the first considers the collaborative optimization of overall scheduling plans 
of multiple production organizations or functional departments during dif-
ferent stages, and that the optimization objective also involves the entire 
supply chain, which may contain multiple objectives, such as minimizing 
production cost, transportation cost, inventory cost, production cycle, short-
age stock level, tardiness (maximizing the service responsibility), and so 
forth. Given the survey of the production manufacturing problems in the 
supply chain of the DME industry and the literature review, we can propose 
three types of problems and study the corresponding models.

 1. The research on continuous multiperiod dynamic production schedul-
ing models oriented to the market of core enterprises in a supply chain. 
In a multilevel supply chain environment, the multiple nodes of 
up- and downstream enterprises (or departments) are in a supply–
demand relationship. It is essential to study the continuous multi-
period dynamic collaborative optimization production scheduling 
problems and the multiobjective optimization model within each 
node in the supply chain, which should be oriented to the market 
of core enterprises in a supply chain, combining the production 
plans and production scheduling and lengthening the scheduling 
cycle. Oriented to the market demand of DME core enterprises that 
are characterized by multitype, small-batch patterns and flexibility, 
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the multiobjective mathematical models of continuous multiperiod 
dynamic production scheduling collaborative optimization (e.g., 
minimizing production cycle, shortage stock level, tardiness) can be 
established, and the complexity of the problem needs to be analyzed.

 2. Research on joint collaborative optimization models of production sched-
uling and inventory and transportation for the entire supply chain. In a 
supply chain environment, assuming that the supplier provides the 
raw materials in batches to save the unit transportation cost, such 
that the client (i.e., the core enterprise) has a certain amount of mate-
rial inventory, and also assuming that the finished products of the 
core enterprise are transported to each storage center in batches, we 
need to consider comprehensively the factors of raw material dis-
tribution, raw material inventory, production scheduling, and fin-
ished products delivery in batches and inventory and the multitype, 
small-batch, and flexibility features of the core enterprise; establish 
the multiobjective (minimizing production cost, inventory cost, and/
or transportation cost, minimizing the production cycle, tardiness, 
and/or shortage stock level) production scheduling models; and 
analyze the complexity of the problems.

 3. Research on the new production scheduling problem models specific to a 
DME supply chain environment. Some special scheduling problems in 
DMEs are found in the long-time production optimization research 
such as the flowshop problem with multiple types, small batches, and 
inconsistent production processes (different from traditional flow-
shop problems). We can further study the specific scheduling problem 
and synthesis problem of transportation and inventory collaborative 
optimization, establish multiobjective optimization models of these 
types of problems, and analyze the complexity of the problems.

2.3.4  Research on the Solution Approaches of DME Production 
Scheduling Problems in a Supply Chain Environment

We need to analyze the characteristics, advantages, disadvantages, and scope 
of application of the traditional multiobjective solving approaches; combine 
existing scheduling rules and experience and knowledge in real production to 
investigate the constructive heuristic algorithms applicable in multiobjective 
problems; and study heuristic algorithms for multiobjective production sched-
uling problems in a restricted supply chain based on Pareto optimality. Owing 
to the main features of multiple types and small-batch production scheduling 
in DMEs, the scale of the problem is usually large; thus we focus on the mul-
tiobjective intelligent algorithms based on the concept of Pareto optimality.

The simulation and assessment of algorithms is not only an essential pro-
cess in the algorithm analysis, but the algorithms can also be modified in the 
process of simulation and evaluation. We should design the measurement 
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indicators that can be used to assess the multiobjective scheduling prob-
lem; evaluate the performance of algorithms in the case of a Pareto-optimal 
unknown solution set, including the solution quality of the algorithm, diver-
sity (or uniformity of distribution) of the final Pareto approximately  optimal 
solution set, algorithm convergence, and evolution performance; compre-
hensively compare each measurement indicator; and construct an evaluation 
framework of multiobjective evolutionary algorithms.

2.4  Research Methodology

We can apply mathematical models, traditional multiobjective algorithms, 
dispatching rules, heuristics algorithms, multiobjective intelligent algo-
rithms, and case studies to conduct research on the multiobjective produc-
tion scheduling problems. The detailed research methods and their purposes 
are as follows.

2.4.1  Mathematical Modeling Method

Some mathematical modeling methods are proposed as follows:

 1. Using the mathematical modeling method to establish the problem model of 
production scheduling in a supply chain environment. According to the 
real production environment, the mathematical modeling methods 
(e.g., multiobjective programming, mixed integer programming) are 
utilized to construct mathematical models of the production sched-
uling problem in a supply chain, in which the real production cases 
are considered to set the constraint conditions, decision variables, 
and intermediate parameters in different types of problem models. 
The cost (e.g., production, transportation, inventory costs), time (e.g., 
completion time, tardiness), and quality of service (e.g., timely deliv-
ery rate, shortage stock level) are set as the objective functions in the 
mathematical models of the problems.

 2. Applying exact algorithms to solve small-size production scheduling prob-
lems. The related exact algorithms applied in linear programming, 
integer programming, mixed integer programming, and dynamic 
programming, such as the relaxed mixed integer programming 
method, branch-and-bound method, column generation method, 
recursive method, and so forth are utilized to find the optimal solu-
tions or lower bound of small-size problems and determine the maxi-
mum size of the problem. In addition, the exact solutions within the 
limited scale are used to validate the effectiveness of the methods.
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 3. Applying decomposition techniques to decompose complex production sched-
uling problems. The decomposition techniques based on machines 
(resources) (e.g., shifting bottleneck technique) and tasks, or mixed 
decomposition techniques are utilized to divide the problems into 
several subproblems solved separately, and the local optimal solutions 
of these subproblems are integrated by some communication strategy 
for global optimization. With respect to continuous multiperiod pro-
duction scheduling problems, the rolling scheduling strategy is used 
to solve the production scheduling problem in different periods.

 4. Applying evaluation function methods to integrate multiple objectives of 
the same type. With respect to problems with the same type of objec-
tive functions, for example, the objectives based on cost, the evalu-
ation function method is supposed to be used in solving this type 
of problem, which can reduce the number of objectives by certain 
mathematical methods. Some common evaluation function methods 
include the linear weighted function method, weighted deviation 
function method, geometric average function method, cost effective-
ness function method, and so forth.

 5. Applying other types of traditional multiobjective algorithms to solve mul-
tiobjective production scheduling problems.

 6. For problems with determined preferences of decision makers, the most 
important or most leading decision objectives are set as the objective func-
tions. The other objectives are converted to constraint conditions 
by setting threshold values, so as to decrease the complexity of the 
problems. Another method is to classify the objective functions 
into different layers, after satisfying the upper layer of objectives, 
and then solve the optimal solutions of the next layer of objectives, 
and so on. For the problems with explicit objective values, the ideal 
point method is used, in which the decision makers first give an 
ideal objective value that is smaller than the optimal solution (for 
minimizing problems), then some norm is introduced into the objec-
tive space, and finally the feasible solutions with shortest distance 
between the ideal point are found in that norm.

2.4.2  Dispatching Rules, Combinatorial Dispatching 
Rules, and Heuristic Algorithms

Here we propose some dispatching rules and algorithms as follows:

 1. Dispatching rules and combinatorial dispatching rules. There exist a 
large number  of mature dispatching rules or composite dispatch-
ing rules in the traditional production scheduling and combinato-
rial optimization areas. Based on these existing rules, experiences, 
and knowledge in a real production environment, we can design 
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scheduling rules or combinatorial scheduling rules for production 
scheduling problems in a supply chain environment and analyze 
the principles of each type of rule and its impact on system perfor-
mance. This type of method is usually of higher solution efficiency 
and more targeted, contributes to analyzing the essence and opti-
mization principles of scheduling problems, and also can be used 
to construct the initial solutions of intelligent algorithms. However, 
these rules are also subject to some shortcomings, such as low 
scalability.

 2. Heuristic algorithms. The production scheduling problems in a supply 
chain environment are mainly nondeterministic polynomial time 
(NP)-hard problems. Because the production scheduling problem 
scale of DMEs is large in general, designing heuristic algorithms is 
the main trend of solving such problems. Based on various sched-
uling rules and experiences and knowledge in a real production 
environment, we can design the heuristic algorithms for production 
scheduling problems in a supply chain and validate the effective-
ness of the heuristics through the known exact solutions in small-
size problems, and the results of the heuristics can also be used as 
the initial solutions of other algorithms (such as multiobjective intel-
ligent algorithms).

2.4.3  Multiobjective Intelligent Algorithms

For the multiobjective programming models of large size DMEs, various 
effective multiobjective intelligent algorithms can be developed to solve 
them. The emphasis should be on multiobjective genetic algorithms and 
multiobjective particle swarm algorithms because these algorithms have 
been validated to well solve such problems.

 1. Multiobjective genetic algorithms based on Pareto solutions. Genetic 
algorithms are a widely used and efficient random searching and 
optimizing method, which is also a suitable method for solving mul-
tiobjective problems. The method of “dominated solutions” is used 
when maintaining the offspring, that is, when choosing two genes 
and comparing their fitness: If A is completely better than B, then 
A dominates B, and B is called the dominated solution; and if A is 
not dominated by any other solution (vector), then A is called the 
nondominated solution. The nondominated solutions obtained by 
the operations of crossover and mutation are the required Pareto-
optimal solution set, and the final optimal solution is chosen from 
this set based on the preferences of decision makers.

 2. Multiobjective particle swarm optimization algorithms. The particle 
swarm optimization algorithm is a new evolutionary algorithm 

© 2016 by Taylor & Francis Group, LLC

  



36 Supply Chain Management and Logistics

developed in recent years. When solving multiobjective problems, 
the speed and location of each particle is denoted by a D-dimension 
vector, and the particles that are no worse than all other particles are 
the targets of their directions.

2.5  Conclusions

This chapter provides an overview of multiobjective coordinated sched-
uling problems of discrete manufacturing enterprises in a supply chain 
environment. Previous research is reviewed in five aspects, including the 
coordination mechanism of the production system, production plans and 
production (machine) scheduling, multiobjective production problem-
solving techniques, and multiobjective evolutionary algorithm evaluation 
methods. Based on this review work, it is noticeable that a huge gap exists in 
the current situation. Moreover, we propose prospective research directions 
for these problems. We hope this chapter clearly demonstrates the problems 
and challenges in the DME supply chain and provides new opportunities 
for researchers to address these challenges. Then, more effective solutions 
can be developed to deal with practical problems in the industry, thereby 
strengthening the economic competitiveness of discrete manufacturing 
enterprises.
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ABSTRACT This chapter presents an overview of existing solution meth-
odologies for integrated operations planning problems in supply chain net-
works involving production, inventory, distribution, and routing. We take 
into account problems dealing with operational decisions and classify them 
according to their characteristics, such as time constraints and routing deci-
sions. Various methodologies are presented and their possible integrations 
and combinations are discussed. Finally, future research directions are 
proposed.

KEY WORDS: distribution, integrated operations planning, inventory, produc-
tion, routing, supply chain.

3.1  Introduction

A supply chain is defined as an integrated business process with bidirec-
tional flows of products, information, cash, and services, between tiers of 
suppliers, manufacturers, logistics partners, distributors, retailers, and cus-
tomers. Because of fast changes in the marketplace and the rapid expansion 
of supply chains (Eksioglu et al., 2007), ensuring highly coordinated produc-
tion, inventory, and distribution over a multi-echelon supply chain network is 
vital, and has an immediate impact on customer services and profit margins. 
This importance will continue to increase along with the following trends.

Globalization. All functions in a supply chain network, such as procurement, 
production, distribution, and consumption, have now become more global-
ized. Most multinational firms have business facilities located over multiple 
continents, with many local markets to serve; face the need for emerging 
market penetration and the challenge of capacity shortages and rising ship-
ping costs; and are constantly confronting environmental/sustainability con-
cerns. At the same time, the promises and flexibility of third-party logistics 
and subcontracting opportunities offer a great incentive to expand supply 
chains globally. As supply chains expand, the need to ensure a more precise 
match between demand and supply increases the importance of integrated 
operations planning.

Pressure on lead time reduction and profit margin improvement. Because cus-
tomer demand for both products and services typically changes over time, 
time-to-market is more important than ever to meet the expectations of 
demanding customers. For most supply chains, production is not the only 
major process to be considered; there are many other stages, such as sourc-
ing, distribution, inventory, packaging, and order processing that together 
could account for a significant portion of the lead time. A less coordinated 
supply chain process could easily diminish or eliminate the profit margin 
and lead to poor customer service.
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Advances in information technology. Advances in information technology 
during the past two decades have significantly improved data visibility 
(e.g., inventory visibility and shipping status) and information accessibility 
along the supply chain. Data can be automatically collected, retrieved, and 
manipulated in various ways and shared by many supply chain partners 
(e.g., through radio frequency identification [RFID]). Furthermore, today’s 
computing power allows us to solve, relatively easily and more rapidly, 
larger scale integrated operations planning problems that were difficult, if 
not impossible, only a few decades ago when optimization problems of a 
combinatorial nature were considered computationally intractable.

Serving the needs of emerging noncommercial supply chains. A network for 
disaster relief operations is a typical illustration of a noncommercial supply 
chain. Disaster relief and emergency logistics (e.g., in response to Hurricane 
Katrina in Louisiana in 2005, the tsunami in Japan in 2011, and Hurricane 
Sandy in New Jersey and New York in 2012) usually cannot be handled effec-
tively by a single state or a single local government. Today’s Internet allows 
the need for disaster relief to be communicated cross-country and interna-
tionally within minutes of an event and the rapid formation of disaster relief 
supply chains for quick response to people in the affected areas. A highly 
effective and fully integrated production and distribution operation that 
pulls supplies from different industries and states to ensure delivery of these 
resources to the people in an affected area is critical to human well-being.

In this chapter we focus on the solution methodologies for solving various 
integrated/coordinated production and distribution operations planning prob-
lems reported in the current literature. This survey does not focus on results 
related to decisions for supply chain designs (e.g., facility location and/or 
facility capacity), or on those results that deal only with a single operation 
such as inventory, or routing, or production scheduling, but rather addresses 
issues unique to process integration.

There have been several survey papers dealing with integrated opera-
tions problems, each with its own focus. Among these, the pioneer review 
by Thomas and Griffin (1996) defines a generic structure for a supply chain 
network and classifies published results at both the strategic planning level 
and the operational planning level, the latter of which falls into our scope. 
The models related to operational planning are classified into buyer and 
vendor coordination, production–distribution coordination, and inventory–
distribution coordination; up through the time of this study, most research-
ers, because of limitations on computational capability, have decomposed 
such multistage problems into several two-stage problems that are then 
solved separately. Erenguc et al. (1999) review the studies on managing sup-
ply chain networks with three distinct stages consisting of suppliers, plants, 
and distribution centers and focus on the results for joint operational deci-
sion making across the three stages. Decisions that need to be jointly made 
regarding optimizing production–distribution planning are discussed. 
Sarmiento and Nagi (1999) consider integrated production–distribution 
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planning systems at both the strategic and tactical levels with an explicit 
consideration of transportation. They classify the problems based on the 
type of decisions being modeled (e.g., decisions on production, distribution, 
or inventory management) and on the number of locations per echelon in 
the model. Three categories of two-echelon models are identified, and the 
differences between such models and those in classical Inventory Routing 
studies are discussed. Fahimnia et al. (2008b) review existing production–
distribution planning models and provide a table summarizing 19 papers 
according to problem attributes (e.g., numbers of plants, distribution centers, 
and customers, multiperiods, multiproducts, routing), types of modeling 
approaches (e.g., mathematical programming, optimization, simulation, and 
combinations of these), and the solution methods applied.

There are also two recent survey papers on integrated operations plan-
ning: Mula et al. (2010) and Fahimnia et al. (2013). Mula et al. (2010) cite 44 
papers published since 1985 among the 54 references and classify these 
works based on the decision levels (e.g., strategic, tactical, and operational), 
modeling approach (e.g., linear programming and multiobjective integer lin-
ear programming), objective (e.g., total cost and customer satisfaction), level 
of information sharing (e.g., production cost, lead time, inventory level, and 
demand), and solution methodologies. Fahimnia et al. (2013) cite 139 papers 
related to integrated operations planning and classify these papers by two 
criteria: complexity of the network structure and solution methodologies. 
Interestingly, in spite of the large number of references listed in these sur-
veys, only 19 papers were common to both surveys. However, there is no 
analysis in either survey on the relationship between problem structures 
and the methodologies reported in these works.

Unlike the existing surveys, we focus here on the relationships between 
the problem structures and solution methodologies. Such a survey provides 
information to researchers on the solution approaches, developed for solv-
ing problems defined over different types of network structures, and their 
effectiveness. We classify the integrated operations planning problems into 
four categories. For each category, we present a basic mathematical model 
and, based on the properties of the respective network structure, analyze the 
existing solution methodologies. To define these categories, two attributes 
are used: time constraint and routing. Most integrated operations planning 
problems involve multiple time periods. For each period, the ending inven-
tory level, production quantity, and distribution amount must be determined. 
Because a continuous time scale within a period has to be considered in some 
studies to describe time constraints such as arbitrary delivery deadlines or 
travel times, there is a need to model the time constraints explicitly. Note 
that without such explicit modeling of time constraints, as many studies in 
the past have done, we often have to assume that any quantity produced in 
one period is delivered to customers in the same period, which leads to a gap 
between the models and the real-world practice. For those studies involving 
direct shipment between suppliers and customers, we allow the shipping 
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capacity to be defined as either the maximum outgoing flow amount or the 
fleet size and/or capacity of vehicles. For the studies in which one vehicle 
may visit several customers in one trip, we allow vehicle routing issues to 
be explicitly included in the model. We categorize the problems into four 
categories in Table 3.1.

We also refer readers to another survey by Yossiri et al. (2012), in which 
the authors categorize the studies according to their inclusion of decision 
variables related to the flow quantity of production, inventory, distribution, 
and routing.

The remainder of this chapter is organized as follows. In Section 3.2, we 
introduce the basic assumptions of the integrated operations planning prob-
lems. In particular, the assumptions of each of the four categories shown 
in Table 3.1—PDP, PDPT, PDPR, and PDPRT—are presented. In Section 3.3, 
we focus on the studies and solution approaches for the integrated produc-
tion and distribution problems, PDPs, that involve no routing and time con-
straints; most of the papers from the related literature belong to this class of 
problems. In Section 3.4, we extend PDP to include time constraints, and in 
Section 3.5 we extend PDP to include routing issues. In Section 3.6, we review 
those existing studies that include both time constraints and routing, an area 
where the design of effective solution methodologies is much more challeng-
ing. Discussion and future research directions are presented in Section 3.7.

3.2  Assumptions and Preliminaries

In this section, we introduce the common assumptions and notation used to 
define the four categories of problems: PDP, PDPT, PDPR, and PDPRT. For 
each assumption, we then discuss its extensions or variations that are found 
in the literature.

Product and time dimension. We consider the multiproduct problem (i.e., with 
multiple commodities) over a given planning horizon of multiple time periods.

TABLE 3.1

Categories of the Integrated Operations Planning Problems

Issues in the Literature 
Problem Categories

Production 
Issues

Distribution 
Issues

Time 
Constraints

Routing 
Issues

Production and distribution 
problem (PDP)

X X

PDP with time constraints 
(PDPT)

X X X

PDP with routing (PDPR) X X X
PDP with routing and time 
constraints (PDPRT)

X X X X
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Network structure and material flow. The supply chain network has three 
stages: manufacturers, distribution centers (DCs), and customers, as shown in 
Figure 3.1. Each customer has a certain demand to be fulfilled in each period. 
Both manufacturers and DCs hold inventories of products. Manufacturers 
produce and fill their own inventories and send products to DCs, which in 
turn send the products to customers.

Extensions or variations in the literature. There exist suppliers to provide 
manufacturers with raw material.

There exist third parties that serve as contract manufacturers or DCs. The 
third parties usually charge higher prices than regular players.

In some cases, manufacturers may deliver the product directly to customers.
Production and transportation capacity. Each manufacturer has a maximum 

production capacity (i.e., the maximum quantity that it is able to produce) in 
each period. Both manufacturers and DCs have a maximum transportation 
capacity (i.e., the maximum outgoing flow quantity) in each period.

Extensions or variations in the literature. A manufacturer’s production capac-
ity can be increased at an additional fixed and/or variable cost (e.g., overtime 
work).

Transportation capacity can be defined by the vehicle attributes (e.g., the 
fleet size, the vehicle loading capacity, the maximum number of trips, the 
total working hours in one period, etc.).

Manufacturers CustomersDistribution centers

Component flow Product flow

FIGURE 3.1
Network structure and material flow.
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Customer demand fulfillment and on-time delivery. All customer orders must 
be fulfilled on time, and no customer carries inventory.

Extensions or variations in the literature. If an order is not fulfilled on time, it 
is lost (called a lost-sale).

If an order is not fulfilled on time, it can be fulfilled later with a penalty 
cost (either as a backorder delivered in a subsequent period, or as a late ship-
ment within the same period).

Cost components. Each manufacturer has a fixed, and variable, cost of pro-
duction, and each DC has a fixed, and variable, cost for handling the product. 
Both manufacturers and DCs incur inventory holding costs. The shipments 
from manufacturers to DCs, and from DCs to customers, result in a shipping 
cost.

Extensions or variations in the literature.

• When raw materials are required, the purchase cost is considered.
• When a third party is involved, the respective costs (e.g., contract 

fees) are included.
• If a late delivery (backorder) is allowed, the relevant penalty cost is 

included.
• If a lost-sale is allowed, the shortage penalty is included.

Although a representative mathematical model for each of the following 
sections is built upon these basic assumptions, its variations are introduced 
as we discuss individual papers.

Throughout this survey, we use the following notation: let M = {m}, B = 
{i}, J = {j}, and K = {k} denote the set of manufacturing facilities, the set of 
distribution/transshipment centers (DCs), the set of customers, and the set 
of products ordered by customers, respectively. When routing decisions are 
involved, let V(m) denote the set of vehicles of manufacturer m. Let T = {t} 
denote the set of periods. For simplicity, ∀m, ∀i, ∀j, ∀k, ∀v, and ∀t may be used 
instead of ∀m ∈ M, ∀i ∈ B, ∀j ∈ J, ∀k ∈ K, ∀v ∈ V(m), and ∀t ∈ T.

3.3  The Production and Distribution Problem

The production and distribution problem (PDP) is primarily concerned with 
coordinating production and outbound distributions to minimize the total 
costs associated with production, inventory, and transportation over a dis-
crete multiperiod planning horizon. Because PDP does not explicitly include 
the routing and shipping times, the models for PDP involve only inventory 
flow balance, facility capacity, and transportation capacity constraints (e.g., 
Thomas and Griffin, 1996).
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To define the mathematical model for the PDP formally, we introduce the 
following notation: for any given period t, let Cm t

k
,  be the production capacity 

of manufacturer m for product k, Ca,b,t be the transportation capacity from 
location a to location b for (a, b) ∈ M × B ∪ B × J, and dj t

k
,  be the demand for 

product k by customer j. Let Ia
k
,0 be the initial inventory of product k at location 

a for a ∈ M ∪ B ∪ J. For decision variables, let Wa,b,t and Zm t
k

, , respectively, be 
the binary variables denoting the decision for a flow from location a to loca-
tion b for (a, b) ∈ M × B ∪ B × J in period t, and the decision for a production 
batch for product k by manufacturer m in period t. Let S, Q, P, and I, each 
with proper superscript and subscript indices, be continuous variables denot-
ing the shortage amount, flow quantity, production quantity, and inventory 
level, respectively. For example, Qm i t

k
, ,  denotes the flow quantity of product k 

from manufacturer m to DC i in period t. In addition, we use M||J, and B||J, 
to denote a network involving only manufacturers and customers, and distri-
bution centers and customers, respectively, and M||B||J to denote a network 
involving all three stages. A basic PDP model can then be described as follows:

Minimize: G W W S Q Q Pm i t i j t m t
k

j t
k

m i t
k

i j t
k

m t, , , , , , , , , , ,, , , , , ,Z kk
m t
k

i t
k

j t
kI I I, , ,, , ,( )  (3.1)

 s.t. 

 I P Q I m k tm t
k

m t
k

m i t
k

i
m t
k

, , , , , , , ,−
∀

+ − = ∀∑1  (3.2)

 I Q Q I i k ti t
k

m i t
k

m
i j t
k

j
i t
k

, , , , , , , , ,−
∀ ∀
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 I Q d S I j k tj t
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i j t
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i
j t
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j t
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W W S Q Qm i t i j t m t
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j t
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m i t
k

i j t
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, , , , , , , , , ,, , { , }, , ,Z ∈ 0 1 ,, , , , , , , ,, , , ,P I I I m i j k tm t
k

m t
k

i t
k

j t
k ≥ ∀0  (3.8)

The objective function (Equation 3.1) minimizes the total operations cost, 
consisting of raw materials, facility setup, production, inventory, and trans-
portation costs. The constraints in Equations 3.2 through 3.4 ensure the flow 
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balances at the manufacturing facilities, DCs, and customer sites, respec-
tively, while the constraints in Equations 3.5 through 3.7 are network capac-
ity constraints.

Although special cases of PDP, such as the classical transportation prob-
lem and the transshipment problem, can be solved in strongly polynomial 
time, the general version of the PDP is difficult to solve. More precisely, the 
multiproduct PDP defined by Equations 3.1 through 3.8 is strongly nonde-
terministic polynomial time (NP)-hard, because a special case of this PDP 
is a multiproduct multiperiod lot-sizing problem that has been proved to be 
strongly NP-hard by Chen and Thizy (1990). Therefore, a general version of 
PDP could require an excessive amount of computational time to verify the 
solution optimality when the network size becomes large.

In this section, we focus on the existing solution methodologies for vari-
ations of the PDP defined by Equations 3.1 through 3.8, and classify them 
into three categories. The first one is heuristic and metaheuristic algorithms, 
in which a solution (or a set of solutions) is constructed by relatively simple 
rules and then improved through an iterative process. The other two are both 
mathematical programming-based solution approaches, and differ on how 
the PDP model is relaxed: constraints relaxation approaches and variables 
relaxation approaches. Note that although the routing decision is not consid-
ered in this section, we do include those problems that assume fixed routing.

3.3.1  Heuristic and Metaheuristic Algorithms

Because of the intractability of the general PDP, feasible solutions with accept-
able quality and minimal solution time have been commonly discussed in 
the literature. Representative solution approaches in this category are greedy 
heuristics and genetic algorithms.

Park (2005) proposes a two-phase heuristic for solving a multiproduct 
PDP defined on an M||J network to maximize the total profit. The phase 
I problem is formed by aggregating the demand of all customers in each 

period, defined by D dt
k

j t
k

j
=

∀∑ ,  and then replacing constraint (Equation 3.4) 

by I Q D It
k

t
k

t
k

t
k

− + − =1 , ∀k, t, in the model, which reduces the problem to a 
single-customer multi-period model and allows one to quickly determine 
the values of Pm t

k
,  by solving a production lot-sizing problem (Fumero and 

Vercellis, 1999) with constant production capacity. All unsatisfied demand is 
penalized as shortage and no backorder is considered. Given Pm t

k
, , the author 

then solves a distribution problem in phase II to determine the values of 
Qm j t

k
, , , by applying a bin-packing heuristic together with local improvement 

procedures that consolidate partial loads by shifting shipping periods and 
reducing the level of stock-out using leftover production capacity. Through 
computational experiments on 21 test problems of three sizes, this heuris-
tic achieves an error gap, or a difference between the optimal and heuristic 
solutions, of 5.6%–6.8% for small-size cases and no more than 9.2% for all the 
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test cases. The computation time is less than 3 seconds for small cases and no 
more than 1200 seconds for large cases.

Ahuja et al. (2007) study a two-echelon M||J single product PDP with a 
single sourcing constraint, which means that each customer receives ship-
ment from at most one supplier in each period. In addition to constraints 
in Equations 3.2 through 3.7, the authors also include a constraint on inven-
tory perishability, so that the maximum inventory time for the product is 
bounded by a given constant N. Thus, at any period t, the ending inventory at 
DC i, i ∈ I, cannot exceed its future demand from all customers in the next N 

periods, or I Qi t i j t n
jn

N

, , ,≤ +
∀= ∑∑ 1

. The resulting PDP is decomposed into two 

subproblems. One includes only binary facility–customer assignment vari-
ables, and the other includes variables for transportation flow and inventory 
levels. A proposed greedy heuristic is used to assign the facility–customer 
pairs, on which a very-large-scale-neighborhood (VLSN) search heuristic is 
applied to improve the quality of the solution. Extensive tests on randomly 
generated problem sets are conducted, and the error gap obtained by com-
paring the heuristic with the best lower bound obtained by CPLEX within 15 
minutes of central processing unit (CPU) time is less than 3% in all cases. The 
authors also report that their error gaps have a decreasing tendency as the 
number of customers is increased, and it is less than 0.1% in the largest size 
case. The computation time is less than 40 seconds in all cases.

Some researchers consider PDP with extensions such as fixed routes for 
transportation or direct shipment. Lei et al. (2006) investigate an integrated 
production, inventory, and distribution routing problem encountered from 
the practices of after-merge operations of a chemical company. A two-phase 
approach is proposed, in which the phase I problem is defined by assuming 
direct shipment between manufacturing plants and customers. The assump-
tions on direct shipments allow the authors to solve an optimization prob-
lem with a significantly reduced complexity, which yields a feasible solution 
to the original problem. The problem in phase II is to improve the solution 
from phase I and is modeled as a shortest path problem on a directed acyclic 
graph. An empirical study that evaluates the computational performance of 
this solution approach is also reported. Liu et al. (2008) study a multiproduct 
packing and delivery problem with a single capacitated truck and a fixed 
sequence of customer locations. The authors first apply a network flow-based 
polynomial time algorithm to solve the problem assuming no split deliveries 
and then allow the split delivery to improve the truck efficiency by using a 
greedy heuristic with a time complexity of O(|J|3log|J|). In both papers, opti-
mal solutions of the special cases (with restriction) are modified to obtain 
feasible solutions to the original problems.

During the past two decades, the genetic algorithm (GA), inspired by 
the process of natural evolution, has been quickly gaining in popular-
ity. In Jang et al. (2002), the problem of production and distribution plan-
ning over a three- echelon M||B||J network is considered. Constraints 
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similar to those in Equations 3.1 through 3.7 are included and a material 
transform factor Γ is used to define the rate of raw materials consumption: 

I P Q Im t m t mi m i t
i

m t, , , , ,−
∀

+ − ⋅ =∑1 Γ , ∀m, t. The solution of the proposed GA algo-

rithm is compared with that obtained by CPLEX. Among randomly gener-
ated test problems, the solution time of GA is quite stable, averaging from 334 
to 546 seconds, while that required by the CPLEX solver exhibits exponential 
growth with respect to problem size, from 32 to 67,854 seconds to obtain the 
optimal solutions. The proposed GA also demonstrates strong performance, 
with an average error gap of 0.2%. Gen and Syarif (2005) propose a GA-based 
approach for their M||J network. A new solution approach called the span-
ning tree-based genetic algorithm is presented together with the fuzzy logic 
controller concept for auto-tuning the GA parameters. The proposed method 
is also compared with a traditional spanning tree-based approach. This com-
parison shows that the proposed approach achieves a better result in every 
experiment, with an average improvement from 0.05% to 0.65% for six different 
settings. Kannan et al. (2010) develop an M||B||J network model for battery 
recycling. Besides production, inventory, and transportation costs, the objec-
tive function includes additional cost factors for recycling such as collection, 
disposal, and reclaiming costs. The authors introduce a heuristic-based genetic 
algorithm to solve the problem and compare the result with that obtained by 
the General Algebraic Modeling System (GAMS), a commercial solver. In 
experiments with different problem sizes and heuristic parameters (popula-
tion and iteration), the maximum error observed is 7.4% compared with the 
results from GAMS. Moreover, the average computation time of the GA-based 
approach is less than 315 seconds for the largest problem whereas that by 
GAMS is at least 2800 seconds for the smallest problem.

3.3.2  Constraints Relaxation-Based Approaches

Another popular solution approach to PDP in the current literature is to 
relax a subset of constraints to make the relaxed problem easier to solve. 
The major approach in this regard is the well-known Lagrangean relaxation, 
by which difficult constraints are placed into the objective function with 
coefficients called Lagrangean multipliers so that the resulting problem is 
“easily solvable.” One example of such an easily solvable problem is a net-
work flow problem (Ahuja et al., 1993). Another important approach is based 
on problem decomposition, by which a subset of constraints is temporar-
ily simplified or removed from the original model to make the remaining 
problem decomposable. When a Lagrangean relaxation is adapted to achieve 
the decomposition, the resulting process is called Lagrangean decomposi-
tion. In constraints relaxation-based approaches, identifying the constraints 
to be relaxed and ensuring that the search converges to the optimal or 
near-optimal solution quickly are two critical steps for achieving the qual-
ity and effectiveness of such solution approaches. For example, in the basic 
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model defined by Equations 3.1 through 3.8, when we relax the constraint in 
Equation 3.3 and incorporate it in the objective function with penalty factors, 
the problem is decomposed into two problems as follows:

 Minimize: G W Q P Im i t m t
k

m i t
k

m t
k

m t
k1

, , , , , , ,, , , ,Z( )  s.t. (Equations 3.2, 3.5, and 3.6)

 Minimize: G W S Q I Ii j t j t
k

i j t
k

i t
k

j t
k2

, , , , , , ,, , , ,( )  s.t. (Equations 3.4, 3.7, and 3.8) 

where both G1 and G2 include the penalty terms for violating constraint (3.3).
Yung et al. (2006) use constraints relaxation to solve a multiproduct single-

period PDP, and thus the time index t is dropped from all the notations, 
defined upon an M||J network. Their study involves decisions on produc-
tion and transportation, as well as on lot-sizing and order quantity. The 
average inventory level is used to define the inventory cost, and variables 
zm

k  and xmj
k  are added to denote production lot size and shipping quantity 

for product k. The model contains flow balance constraints similar to those 
in Equations 3.2 through 3.4, and capacity constraints similar to those in 
Equations 3.5 through 3.7. However, the objective function includes terms 
P zm

k
m
k/  as the number of production lots for product k at manufacturer m and 

terms Q xmj
k

mj
k/  as the number of shipments of product k from m to j, which 

lead to a nonlinear objective function that is neither convex nor concave. To 
apply Lagrangean relaxation, an artificial variable Rmj is utilized, where:

 
Q Rmj

k
mj

k

=∑  (3.9)

and redundant constraints P Rm
k

k
mj

j∑ ∑= , d Rj
k

k
mj

m∑ ∑= , and 0 ≤ ≤Rmj  

dj
k

k∑  are added to the model. By relaxing the constraint in Equation 3.9, the 

original model is decomposed into two independent submodels. The first 
one deals with joint decisions on production and lot-sizing and thus contains 
variables Pm

k, zm
k , and the aggregated transportation flow, Rmj. In the second 

model, the constraints for transportation planning involving Qmj
k  and order-

ing quantity xmj
k  are included. By continuously updating the Lagrangean 

multipliers and the artificial variables, two subproblems are iteratively 
solved. The test result is compared with that obtained by Fmincon, a nonlin-
ear programming tool box in MATLAB® 6.1. Among seven problem settings, 
Fmincon cannot terminate for three cases whereas the proposed algorithm is 
able to solve all of the cases. In terms of the solution performance, the pro-
posed algorithm saves 1.5%–8% in cost, with less CPU time, over what Fmincon 
achieves for all the cases solved.

© 2016 by Taylor & Francis Group, LLC

  



55Production/Distribution/Routing Planning for Supply Chain Networks

Eksioglu et al. (2007) consider a variation of multiproduct multiperiod PDP 
on an M||J network where only the production facility carries an inventory 
and there are no capacity limits for inventory and transportation. The model 
contains flow balance constraints:

 

I P Q Im t
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instead of Equations 3.1 and 3.2. Because the model does not allow shortages, 
it has
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instead of Equation 3.4, and capacity constraint in Equation 3.5 with binary 
indicator variables for production. Unlike the previous solution approach, 
which uses redundant aggregated variables, this approach introduces redun-
dant disaggregated variables. The authors reformulate the original model 
by introducing a new variable, Qmjt

k
τ, which defines the amount of product k 

from manufacturer m to customer j to satisfy demand in period τ using the 
quantity produced in period t, where t ≤ τ. Thus, the original variables can be 
expressed by new variables as follows:
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By using the constraints in Equations 3.12 through 3.14, the original model 
becomes a facility location problem. The authors then show that the linear 
programming (LP) relaxation of the location model provides a tighter lower 
bound than the LP relaxation of the original model. Lagrangean decomposi-
tion is applied to the resulting location problem by introducing zmjt

k
τ, clone or 

copy of Qmjt
k

τ:

 Q zmjt
k

mjt
k

τ τ=  (3.15)
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Accordingly, redundant constraints for zmjt
k

τ:
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 zmjt
k

τ ≥ 0  (3.18)

are then added into the model. By relaxing Equation 3.15 using a Lagrangean 
multiplier, the model is decomposed into two subproblems. The first one 
containing Qmjt

k
τ is an uncapacitated multiproduct problem and is further 

decomposed into |K| single product subsubproblems that are NP-hard but 
solvable by dynamic programming. On the other hand, the second one con-
taining zmjt

k
τ can be modeled as an LP problem. For test problems of large 

sizes, the subproblems are solved by using the primal-dual algorithm and 
the total running times vary from 4 to 87 CPU seconds with empirical error 
gaps no more than 5%.

Karakitsiou and Migdalas (2008) consider a single product PDP defined 
on an M||J network. The model has flow balance constraints similar to 
Equations 3.2 through 3.4, and capacity constraints similar to Equations 3.5 
through 3.7. Defining a new variable:

 

r Qm t m j t

j

, , ,= ∑  (3.19)

the inventory flow balance constraint at m is replaced by

 Im,t−1 + Pm,t − rm,t = Ii,t (3.20)

and the transportation capacity constraint is replaced by

 0 ≤ ≤r Cm t m t
S

, ,  (3.21)

where Cm t
S

,  is the maximum outbound shipping quantity. Moreover, a redun-
dant constraint
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m
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is added. To apply Lagrangean decomposition, a clone variable of rm,t, denoted 
as zm,t, is introduced:

 rm,t = zm,t (3.23)

so that the constraint in Equation 3.20 can be replaced by

 Im,t−1 + Pm,t − zm,t = Ii,t (3.24)

 0 ≤ ≤z Cm t m t
S

, ,  (3.25)

By relaxing Equation 3.23 and using Lagrangean multipliers, the origi-
nal model is decomposed into two independent parts. The first one deals 
with variables Pm,t, Ii,t, and zm,t together with the constraints in Equations 3.5, 
3.24, and 3.25, and the second one deals with Qm,j,t and rm,t together with the 
constraints in Equations 3.4, 3.19, 3.21, and 3.22. The first subproblem can 
be further decomposed, over the manufacturing facilities, into |M| sub- 
subproblems that can each be modeled as a linear programming problem. 
The second subproblem can also be further decomposed, over the time hori-
zon, into |T| sub-subproblems, each as a network flow problem. To check the 
quality of the solutions produced by the Lagrangean relaxation, the results 
are compared with the optimal solution obtained by the GNU Programming 
Kit (GLPK) solver, a free and open source software. For six randomly gener-
ated problems involving 30–1200 nodes, the empirical error gaps are no more 
than 6% and the required computation time is no more than 350 seconds.

3.3.3  Variables Relaxation-Based Approaches

During the past decade, the variables relaxation-based approaches, in which 
a selected subset of integer variables is relaxed so that the reduced problem 
can be relatively easy to solve, have gained a significant amount of attention 
from researchers. While the Lagrangean relaxation procedures aim at reduc-
ing the duality gaps, most variables relaxation-based approaches focus on 
reducing the suboptimality due to rounding linear values to integers.

Dogan and Goetschalckx (1999) introduce a multiproduct multiperiod PDP 
model involving strategic decisions on the network and detailed production 
planning on the machine level along with deterministic seasonal customer 
demands. The network under consideration includes candidates for sup-
pliers, potential manufacturing facilities, and DCs with multiple possible 
configurations and customers. The manufacturing facilities have alternative 
facility types, which introduce binary variables for the facility selections, 
and integer variables are used to define the number of machines used in 
each facility during each period. In addition to the ending inventory, the 
authors also consider the work-in-process inventory that defines part of the 
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inventory holding cost. Replenishment of raw material may happen more 
than once during each period. Transportation flow quantities and produc-
tion quantities on each machine at each facility are also decision variables. 
Benders decomposition is used as the solution methodology. In the mixed 
integer master problem, the status of the facilities, the production lines, and 
the production and inventory quantities are determined. The reduced prob-
lem becomes a minimum-cost transportation flow problem, and its optimal 
cost is added to the mixed integer master problem to find a feasible schedule 
satisfying the obtained flow cost. The search terminates when the master 
problem can find no lower cost solutions. For the real-life problem that moti-
vated this study, the proposed approach saves the company an additional 
2% over the hierarchical approach, where optimal strategic and tactical deci-
sions are made sequentially. The Benders decomposition solution method 
with acceleration techniques utilizing disaggregated cuts, dual variables, 
and the LP relaxation in the initial iterations reduces the running time by a 
factor of 480, versus a standard Benders decomposition algorithm.

Yilmaz and Catay (2006) consider a variation of PDP involving a single 
product, multiple suppliers, multiple producers, and multiple distributors, 
with an option of capacity expansion at additional fixed and variable costs. 
New continuous variables representing increased capacity, and binary vari-
ables indicating capacity expansion decisions for transportation and facility, 
are introduced. Only manufacturers are allowed to carry inventory, and thus 
the inventory balance is considered only at the manufacturers’ sites. Three 
different LP relaxation-based heuristics are used to solve the problem, and 
the relaxed variables are then adjusted to 0 or 1 according to different search 
mechanisms. The results are then compared with CPLEX solutions obtained 
with a 300-second time limit.

Another representative study on variables relaxation-based approaches 
was performed by Lei et al. (2009). The authors considered a single-product 
multiperiod PDP defined on a M||B||J network with both forward and 
reverse flows. Because of the need to model the reverse flow in the supply 
chain network, new constraints such as

 
H R R H i ti t i j t

j

m i t

m

i t, , , , , , , ,−
∀ ∀

+ − = ∀∑ ∑1

are added, where the variable R refers to the reverse flow quantity, and H 
refers to the reverse product inventory levels. A partial LP relaxation-based 
rolling horizon method is proposed. With this approach, a given multiperiod 
planning horizon is partitioned into three intervals: the current period, the 
immediate next period, and a consolidated period covering all future time 
periods. In the first interval, all of the original constraints and the integer 
requirements remain unchanged. For the second and the third intervals, only 
the integer requirements on the number of truck trips between the DC and 
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customers are relaxed. To reduce the computational effort of each iteration, 
the forward and backward demands in the third interval are equal to the sum 
of the forward and backward demands of all the time periods in that inter-
val, respectively. The ending inventories obtained from the solution to the 
first interval are then fixed as the beginning inventories for the second inter-
val, and this process repeats by redefining intervals until all the time periods 
achieve integer solutions. Randomly generated test cases are used to bench-
mark the computational performance of the proposed algorithm against that 
obtained by the CPLEX within a 1-hour CPU time. More than 70 test cases 
are randomly generated, and the largest error gap observed is 0.16%, and the 
required computation time is less than 5 seconds; the average computation 
time required by CPLEX for solving these cases far exceeds 700 CPU seconds.

3.3.4  Remarks on PDP

In general, if the particular PDP problem being studied has a relatively simple 
structure, the well-known solution methodologies from the literature can often 
be effectively adapted. For example, when a PDP problem is defined on a two-
stage supply chain network and the constraints are limited to those defined by 
Equations 3.2 through 3.8, the original problem can be decomposed by either 
a sequential decomposition or Lagrangean decomposition, which allows the 
decomposed problem to be modeled as an easy-to-solve problem such as the 
lot-sizing problem, or a linear programming or network flow problem.

Although not included in this survey, it should be pointed out that in the 
literature, there has also been a significant amount of work focusing on 
production and distribution involving uncertainty in demand, processes, 
and/or supplies, for which stochastic and fuzzy models have been applied 
extensively. The difference between stochastic and fuzzy models is that a 
stochastic model usually follows a known probabilistic distribution, while 
a fuzzy model is described by a simple distribution, such as a triangular 
distribution, based on expert knowledge. Representative work in stochastic 
PDP can be found in studies by Park (2005), Aliev et al. (2007), Lejeune and 
Ruszczynski (2007), and Liang and Cheng (2009). Also note that although the 
exact methods have rarely been discussed in the literature for solving PDP 
problems, they could be appropriate if the problem has a special structure, 
such as that given by Wang et al. (2010).

3.4  The Production and Distribution Problem 
with Time Constraints

PDP with time constraints (PDPT) is a natural extension of the PDP model, 
which explicitly takes into account production and transportation time and 
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usually assumes a deadline for the shipment arrival to the customer. To 
define the shipment arrival times, additional notation must be introduced. 
Let rm

k be the production rate for product k at manufacturer m. Let τm,i and τi,j 
be the transportation times from manufacturer m to DC i, and from DC i to 
customer j, respectively. Let Lj,t be the deadline at customer site j in period t, 
by which time the shipment of commodities should have arrived at j; other-
wise a shortage or tardiness cost would be incurred. Let MM be a very large 
positive number. The deadline constraints are defined as follows.
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The basic PDPT model is defined by Equations 3.1 through 3.8 and 3.26.
Some papers study PDPT problems involving production lead times and 

delivery lead times over a multiperiod planning horizon. Let lm,i and li,j rep-
resent lead times from manufacturer m to DC i, and from DC i to customer 
j, respectively. In this case, Equations 3.2 through 3.4 should be replaced by 
the following constraints.
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Owing to the complexity of PDPT, using a single methodology, such as a 
Lagrangean relaxation, or a simple heuristic algorithm, may not be effective 
enough to solve the problem. In the literature, two major approaches have 
been discussed. One is iteration-based, and starts with an initial solution (or 
a group of solutions), and then continuously improves the solution (or the set 
of solutions) iteratively by a relatively simple procedure; most metaheuristic-
based algorithms belong to this category. The other is to formulate the origi-
nal problem into a mathematical model and then use optimization software 
to derive the optimal or near-optimal solutions. The latter approach has typi-
cally been used for solving some case-specific problems.

There are also several papers using simulations to deal with PDPT involv-
ing uncertainty. Most such studies (e.g., Lee et al., 2002; Lee and Kim, 2002; 
Safaei et al., 2010) start with a deterministic version of the problem and solve 
it to find an initial solution. Through simulation, the solution is evaluated 
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and the parameters of the respective deterministic problem are modified 
until the solution stabilizes. In this survey, we include only such simulation 
studies that report on the approaches to solve respective deterministic ver-
sions of the PDPT problem.

In this section, we focus on the existing solution methodologies for solving 
PDPT. Two categories of solution approaches are reviewed: (1) a metaheuris-
tic and iterative approach and (2) mathematical modeling and the use of an 
optimization solver. Again, we do not consider detailed routing decisions in 
this section, and hence we treat all transportation operations as direct ship-
ping or fixed routing.

3.4.1  Metaheuristic and Iterative Approach

Naso et al. (2007) consider the integrated problem of finding an optimal sched-
ule for the just-in-time (JIT) production and delivery of ready-mixed concrete 
with manufacturers and customers. The study involves a single product in a 
single period with no inventory permitted. Times required for the loading, 
unloading, and shipping operations of each truck must be explicitly mod-
eled. In addition, outsourcing options of production and third-party (or over-
time) trucks are permitted at an additional cost. All decision variables are 
binary, where xjvr = 1 if job j is assigned to truck v as the rth task: ymj = 1 if job j 
is produced at manufacturer m, and yoj = 1 if job j is outsourced. The schedul-
ing algorithm combines a GA and a set of constructive heuristics, which are 
guaranteed to terminate in a feasible schedule for any given set of jobs.

Gebennini et al. (2009) consider a multiperiod strategic and operational 
planning problem for a single manufacturer that offers a single product 
with uncertain demand on an M||B||J network. Production lead times and 
delivery lead times are considered, where lead time may be an integer mul-
tiple of one time period, and inventory and stockout costs are considered 
with safety-stock (SS) determination. Thus, the problem of minimizing the 
total cost is modeled as a mixed-integer nonlinear programming problem 
in which the objective function includes a nonlinear term representing the 

SS cost, c ki
s
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ij ij

j J

ˆ ˆ
∈ ∈

∑ ∑ σ ϑ2 , where ci
s is the inventory cost for DC i, k̂ is a safety 

factor to control the customer service level, σ̂ ij
2 is the combined variance at 

DC i serving customer j, and ϑij is a 0–1 decision variable equal to 1 if DC i 
supplies customer j in any time period. This nonlinear term is linearized to 
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∑∑  where SSi is a lower bound on the optimal amount of SS 

carried at DC i, because the closer SSi is to the optimal SS level at DC i, the 
closer the formula is to the optimal SS cost. A recursive procedure based on 
the modified linear model is developed to find an admissible solution to the 
nonlinear model and quantify the minimized global logistic cost, while also 
taking the effect of safety-stock management into consideration. Because the 
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optimal safety-stock level is unknown, the value is initially set to a lower 
bound on the effective safety-stock quantity for each DC. It is claimed that 
the proposed recursive procedure converges to the global optimal solution of 
the original nonlinear problem in a finite number of iterations.

Yimer and Demirli (2010) address a multiperiod, multiproduct scheduling 
problem in a multistage build-to-order supply chain manufacturing system 
with consideration of lead times for production and delivery. For the sake of 
efficient modeling performance, the entire problem is first decomposed into 
two subproblems: (1) a downstream part: from manufacturers through dis-
tributors and retailers to customers, and (2) an upstream part: from suppliers 
through fabricators to manufacturers. Both subproblems are then formu-
lated as MIP models with the objective of minimizing the associated aggre-
gate costs while improving customer satisfaction. A GA-based heuristic is 
proposed with a chromosome of three parts: (1) product ID, total production 
quantity at each plant, and inventory level at each DC in the period; (2) flow 
proportion floating values; and (3) status values for feasibility. If a candi-
date solution is infeasible, it is revised by a proposed repairing heuristic. The 
fitness value is measured by the original objective function value and the 
degree of infeasibility. Using some test instances, the best solutions obtained 
from GA are of high quality compared with the lower bounds obtained from 
LINGO, a nonlinear programming solver.

Sabri and Beamon (2000) develop an integrated multiobjective supply chain 
model that facilitates simultaneous strategic and operational planning using 
an iterative method in a four-tier network. They consider stochastic demand 
and capacity constraints in all layers of the supply chain, and shortages are 
allowed, but penalized, while a fixed setup production cost is incurred. Total 

production lead time at manufacturer m for product k is g
Q
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k m

k
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k m
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m
k, , , , and θm

k  are production setup time, production quantity, 
production rate, waiting time, and material delay time, respectively. θm

k  is 
determined by the bill of material of product k and customer service level. 
They first find a solution for the strategic model and then use the solution 
as an input to solve the operational model. New parameters determined in 
solving the operational model are used to solve the strategic model, and this 
iteration terminates when all binary variables no longer change. LINGO is 
used in solving each subproblem.

3.4.2  Mathematical Modeling and the Use of the Optimization Solver

Whereas some researchers try to develop effective solution methodologies to 
solve the PDPT, others put more effort into the modeling process. In this sub-
section, we summarize the research in which the models are solved by math-
ematical optimization software such as CPLEX. The common feature of the 
following papers is that the authors concentrate on the models rather than 
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the design of methodologies. The size of the computational testing instances 
is small enough for the solver to handle, or else the problem comes from real-
world practice so that the solution by a solver is applicable.

Rizk et al. (2006) examined a multiple-product production–distribution 
planning problem on a single manufacturer and a single destination. The 
manufacturer operates a serial production process with a bottleneck stage, 
subject to a predetermined production sequence. The manufacturing cost 
consists of the changeover cost of intermediate products and the inventory 
holding cost of final products. The transportation cost is characterized by 
a general piecewise linear function of transportation quantity with break 
points of Λh with Λ0 = 0. In the hth interval (Λh−1, Λh], let vh be the slope of 
its straight line, Ah be the discontinuity gap at the beginning of the interval, 
and Eh be the ending value. Thus, the transportation cost is z(Λ) = (Eh−1 + 
Ah) + vhλh, λh = Λ − Λh−1. Valid inequalities to strengthen these formulations 
are proposed and the strategy of adding extra 0–1 variables to improve the 
branching process is examined.

Chen and Lee (2004) investigated a multiperiod simultaneous optimization 
of multiple conflict objectives with market demand uncertainties and uncer-
tain product prices in a supply chain network consisting of manufacturers, 
DCs, retailers, and customers. The scenario-based approach is adopted for 
modeling the uncertain market demands, and the product prices are taken 
as fuzzy variables where the incompatible preference on prices for differ-
ent participants are handled simultaneously. The whole model becomes a 
mixed-integer nonlinear programming problem to compromise fair profit 
distribution, safe inventory levels, maximum customer service levels, and 
decision robustness to uncertain product demands. Incompatible preference 
of product prices for all participants is considered by applying the fuzzy 
multiobjective optimization method; nonlinear MIP solvers, DICOPT and 
CONOPT, are used for a numerical example.

Dhaenens-Flipo and Finke (2001) provided a multiple period model on an 
M||B||J network that comes from a practical case at the European indus-
trial division of the manufacturer. Because switching from one product to 
another on a production line may take a long time, it is assumed that at most 
one switching per period and per production line is allowed. There are three 
aggregated products and three line types according to capability to handle 
these products. All possible sequences in each manufacturing line are enu-
merated, and they are used in a mixed integer programming model. The set 
of available product sequences of the line m is denoted by S(m) and these 
sequences are indexed by s. At this stage, the data involved concern the total 
production time (Bm) available on line m, the production time TPm

k( )  and cost 
CPm

k( )  of product k on line m, the changeover time (TCsm), and the cost (CCsm) 
associated with the products of sequence s on line m. Let pm

k  be a quantity of 
product k manufactured on line m, and let ysm be 1 if sequence s is chosen for 
the line m. Thus, we need to add the following constraints:
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The proposed MIP has the constraints in Equations 3.30 through 3.32, flow 
balance equations similar to Equations 3.2 through 3.4, and domain con-
straints. For problems of industrial sizes, the model is able to provide a sub-
optimal solution in less than 2 hours (23 minutes on the average) by CPLEX.

Fahimnia et al. (2008a) surveyed 20 papers and define a representative 
mixed integer program formulation for the integration of an aggregate pro-
duction and distribution plan on an M||B||J network. Three production 
alternatives are considered: regular-time production, overtime production, 
or outsourcing. They illustrate with an example to show that considering 
production alternatives can give a more accurate and better schedule than 
considering average production cost.

3.4.3  Remarks on PDPT

Lagrangean relaxations and decomposition-based techniques are not effec-
tive for solving the general PDPT problems because newly added time con-
straints often change the model structure significantly. The production and 
transportation time as well as the incurred deadline constraints all add more 
complexities to the original PDP, as a feasible solution for a PDP may vio-
late the deadline constraint in PDPT. Even after a PDPT is decomposed, the 
resulting subproblems may still be NP-hard and therefore make Lagrangean 
relaxation and decomposition-based solution approaches fail to function 
effectively. Therefore, most literature results reported are either customized 
solution approaches for specific PDPTs or efficient algorithms for solving 
some special cases of PDPT.

3.5  The Production and Distribution Problem with Routing

PDP with routing (PDPR) is discussed in this section. Because of its com-
plex structure, most papers assume a two-stage network, and thus those 
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problems can be considered as a combination of the capacitated lot-sizing 
problem and the inventory routing problem. The aim of the problem is to 
minimize the total cost, composed of inventory holding, production, and 
transportation costs.

We consider a basic model defined on a two-echelon supply chain consist-
ing of a set of manufacturers and a set of customers, where customer j has 
demand djt in period t. For simplicity, a single product is considered and 
thus the superscript for product type (k) is dropped. We assume that there 
is a fleet of homogeneous vehicles belonging to manufacturer m, denoted by 
V(m). Because the PDPR model contains routing decisions in it, the quantity 
being carried by a vehicle is different from the quantity delivered to a cus-
tomer by a vehicle in a period. Thus, the following parameters and decision 
variables are added to PDP:

fmjlt
v  = fixed cost of vehicle v of manufacturer m along (j, l) in period t

gmjlt
v  = unit shipping cost for vehicle v of manufacturer m along (j, l) in 
period t

ξmjlt
v  = equals 1 if vehicle v of manufacturer m serves l immediately after 
j in period t

Qmjlt
v  = quantity carried by vehicle v of manufacturer m along (j, l) in 
period t

qmjt
v  = quantity delivered by vehicle v of manufacturer m to customer j 

in period t

for m ∈ M, j ∈ {m} ∪ J, l ∈ {m} ∪ J, t ∈ T.
The objective function of the model consists of production, inventory, 

and transportation (routing) costs. The transportation cost is changed as 
follows:
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Moreover, routing constraints should be included in the model. The flow 
conservation constraints are
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We need an inventory balance constraint for each customer.
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Because ξmjlt
v  represents the existence of flow on (j, l) and each customer can 

be served by at most one manufacturer, we have the following constraints:
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We classify the relevant papers, according to their solution methodologies, 
into three classes. Because the problem includes the routing decisions, all 
methods use decomposition. However, each decomposed problem is solved 
by a different solution approach. One approach is to use mathematical pro-
gramming or simple heuristic algorithms. The other two use a metaheuris-
tic, such as a tabu search, and the approximation approach, respectively.

3.5.1  Mathematical Programming Approach

Fumero and Vercellis (1999) studied a multiple period and multiple prod-
uct problem with a single manufacturer. They assumed that there are fixed 
setup costs and vehicle usage costs that occur independently from the 
amount of produced or carried product. In the model, partial order serv-
ing is allowed. They decompose the problem into production (capacitated 
lot-sizing) and distribution (multiperiod vehicle routing) problems by 
Lagrangean relaxation, relaxing the constraints that ensure the balance at 
the central plant among production, inventory, and deliveries. Furthermore, 
the vehicle capacity constraints are relaxed to simplify the solution of the 
routing subproblem. The Lagrangean dual problem is solved using a vari-
able target subgradient optimization algorithm that is described in Fumero 
and Vercellis (1997). In addition, they employ an alternative decomposition 
method in which the production plan is developed without considering the 
distribution plan, and then used as an input for the distribution model. They 
show that the Lagrangean decomposition method outperforms the alterna-
tive decomposition method.

Bard and Nananukul (2010) proposed a hybrid methodology that is a 
combination of an exact method and heuristic procedures within a branch-
and-price (B&P) framework for the problem with a single manufacturer 
and a single product type. The master problem (MP) is defined by the pro-
duction and inventory decisions, and the remaining routing problem can 
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be decomposed by period, yielding |T| subproblems. In the reformulated 
model, each column in the MP corresponds to a feasible schedule for all cus-
tomers. They use a novel column generation heuristic and a rounding heu-
ristic to improve the algorithmic efficiency. They show that the B&P heuristic 
is efficient and can derive high-quality solutions for large problems within a 
reasonable amount of time.

Ruokokoski et al. (2010) considered the problem of determining a pro-
duction schedule for an uncapacitated plant, replenishment schedules for 
multiple customers, and a set of routes for a single uncapacitated vehicle. 
The aim of the problem is to fulfill customer demand over a finite horizon 
at a minimum total cost of distribution, setups, and inventories. This paper 
introduces a basic mixed integer linear programming formulation and pro-
vides exact methods through several strong reformulations of the problem. 
Moreover, two families of valid inequalities, 2-matching and generalized 
comb inequalities, are introduced to strengthen these formulations, and 
they are used within a branch-and-cut framework. Comb inequalities are 
known to be facets defined for the traveling salesman problem (Grötschel 
and Padberg, 1979) and 2-matching inequalities are generalized comb 
inequalities under certain conditions. An a priori tour-based heuristic is 
also provided, and with available solvers and strong formulations, excel-
lent solutions can be obtained within a short time, even for the largest 
problems.

Archetti et al. (2011) considered a production-routing system, where a 
manufacturer with unlimited capacity produces one product, which is dis-
tributed to a set of retailers by a fleet of vehicles. The objective is to deter-
mine the production policy, the customer replenishment policy, and the 
transportation policy so that the system cost is minimized. Two types of 
replenishment policies are studied: maximum level (ML) and order-up to 
level (OU), and the problem is NP-hard under both. As the problem with 
OU policy has been solved heuristically by Bertazzi et al. (2005), the authors 
proposed a three-step sequential heuristic on the ML policy. In the first step, 
unlimited production quantity is assumed, and the distribution part of the 
problem concerning inventory at customers and delivery routes is optimized 
by solving a customer problem with branch-and-cut and iteratively adding it 
to the solution. In the second step, the production plan is determined by solv-
ing the classical uncapacitated lot-sizing problem, which can be optimally 
solved in polynomial time. In the third step, the improvement procedure, 
removing and inserting two retailers, is repeated until there is no further 
improvement.

Cetinkaya et al. (2009) considered a three-layer practical supply chain 
problem and developed a multiproduct and multiperiod model to improve 
the outbound supply chain of Frito Lay North America (FLNA), consisting 
of a factory warehouse, multiple DCs, and a set of customers. Some custom-
ers can receive supplies directly from the factory warehouse, which is called 
direct delivery (DD). They did not consider the production costs but the 
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production capacities. The objective function includes the inventory holding 
cost, the truck loading and dispatch cost, mileage costs, and handling costs. 
The proposed solution methodology decomposes the integrated problem 
into two subproblems—inventory and routing problems—and they are iter-
atively solved until either no further improvement is found or the maximum 
number of iterations is reached. The routing subproblem is solved period by 
period. As a preprocessing, they use full-truck load (FTL) shipments with a 
route having a single destination for customers with large order quantities, 
and use less-than-truck load (LTL) shipments with truck routes for other cus-
tomers. They then use a savings algorithm proposed by Clarke and Wright 
(1964) and utilized by Chopra and Meindl (2001) and add an improvement 
step, called the cheapest insertion heuristic, a well-known traveling sales-
man problem heuristic. For the inventory subproblem, the objective func-
tion includes the corresponding route-based setup costs and all cost terms of 
the overall model, except the loading and routing parameters considered in 
the routing subproblem. The CPLEX 9.0 solver is used to solve the inventory 
subproblem.

3.5.2  Metaheuristic Approach

Bard and Nananukul (2009a) consider the problem of a B||J network in 
which inventory handling at both the customer and manufacturer sites is 
permitted, but the inventory level must be zero at the end of the each period, 
with no shortages allowed. They solved the problem using a two-phase 
approach, which is similar to the method developed by Lei et al. (2006). In 
the first phase, they formulated the model as a mixed integer program with-
out taking into account the routing constraints. They found a feasible solu-
tion that determines the sufficient delivery amounts for all customers using 
the proposed model. The solutions derived in the first phase are used as an 
initial solution for the tabu search algorithm, which is used in the second 
phase to solve the integrated problem. The path relinking method is used to 
obtain better solutions. They showed that the lower bounds obtained from 
the relaxed version in the first phase are not very effective for evaluating the 
proposed algorithm. However, according to the computational results, the 
proposed method can derive 10%–20% better solutions, but requires more 
computational effort than the greedy randomized adaptive search proce-
dure (GRASP) proposed by Boudia et al. (2007).

Bard and Nananukul (2009b) proposed three algorithms with a B&P fra-
mework for the Inventory Routing Problem (IRP) as a subproblem of the 
integrated production–inventory–distribution–routing problem. For less 
computation, a two-step procedure is proposed: the first step involves devel-
oping a model for determining delivery quantities for each customer in each 
period. The second step involves finding actual routes in light of the cur-
rent set of branching constraints with a vehicle routing problem (VRP) tabu 
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search method. According to computational experiments, although the B&P 
algorithm generates better results than the tabu search approaches (3.6% on 
average), the tabu search outperforms the B&P algorithm in terms of the 
computation time (more than 10 times faster on average).

Yossiri et al. (2012) developed a decomposition heuristic based on an adap-
tive large neighborhood search (ALNS) for the problem defined on a network 
consisting of a plant and multiple customers to minimize the total produc-
tion, setup, inventory, and routing costs. In the first stage, a set of initial 
solutions are generated with different setup schedules by solving two sub-
problems: (1) production and distribution problem with approximate trans-
portation costs and (2) routing problem; both are solved heuristically. In the 
second stage, the initial solutions are improved by ALNS. When a solution 
is modified by removing a customer from a route and inserting it in a differ-
ent period, one has to identify the new delivery quantity for the customer, 
which may also affect the production, inventory, and other delivery quantity 
decisions. It is not always necessary to reinsert the removed nodes, because 
the demands can be satisfied from available inventory and, furthermore, 
the removed nodes can be inserted in multiple periods. To deal with these 
issues, binary variables are defined accordingly. During the transformation 
process, the binary decisions concerning routing are modified according to 
the cheapest insertion rule and then, with fixed binary variables concerning 
production setup, the continuous variables are adjusted by solving the mini-
mum cost flow problem.

3.5.3  Incorporating Routing Cost Approximation for Solving PDPR

When the decomposition method is applied, a PDPR problem is usually 
solved through two phases. During the first phase, a reduced version of 
PDPR is solved, where many studies assume direct shipments to custom-
ers (e.g., Lei et al., 2006); and then during the second phase, vehicle routing 
decisions are made to improve the solutions obtained in the first phase. The 
advantage of such a phased approach is to reduce the search complexity in 
each phase. However, using direct shipment to replace vehicle routing in the 
first phase can sometimes also lead to a solution that is feasible but deviates 
significantly from the optimal solution to the original problem.

Another alternative solution approach to PDPR is based on continuous 
approximation models for the vehicle routing problems. Such an approach 
uses a continuous approximation of the optimal routing cost in the phase I 
problem instead of assuming direct shipments. Note that this provides an 
estimation of the actual routing cost without explicitly solving the vehicle 
routing problem. Once the phase I problem is solved and the assignments of 
vehicles to customers are determined, the exact routing decisions under the 
given vehicle assignments are made during the second phase.
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Shen and Qi (2007) incorporated a continuous approximation function in 
their integrated supply chain design model to estimate the optimal vehicle 
routing cost. Specifically, the approximate function that they propose is
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where
Vmvt =  the approximate routing cost of vehicle v of manufacturer m in 

period t
Cv = the capacity of vehicle v of manufacturer m
qmjt

v  =  the quantity delivered by vehicle v of manufacturer m to customer j 
in period t

µmjt
v  =  the unit cost of a direct shipment by vehicle v of manufacturer m to 

customer j in period t
|vt| =  the number of customers served by vehicle v of manufacturer m in 

period t
A = the area where customers are scattered
Φ = parameter, and Φ = 0.75 for Euclidean metrics

Shen and Qi (2007) numerically demonstrated the effectiveness of this 
approximation function using a data set with 150 points from Christofides 
et  al. (1979), and showed that this approximation function performs espe-
cially well when the number of customers is sufficiently large. In particular, 
when the number of customers is more than 80, the approximation error is 
typically less than 5%.

When the above continuous approximation function is incorporated in the 
phased approach, parameters qmjt

v  and |vt| vary with the decision of assign-
ments of vehicles to customers, while all the remaining parameters are given 
constants. Compared with the direct shipment assumption that is often 
made in the literature, this approximation function provides a more accurate 
estimation of the routing cost without increasing the problem complexity. 
This approach may be used as an alternative to further enhance the perfor-
mance of phased approaches.

3.5.4  Remarks on PDPR

In this section, the total cost of the PDP with routing is minimized, where the 
total cost is composed of inventory holding, production, and routing costs. 
Because the problem includes the vehicle routing problem, it is very difficult 
to find the optimal solution or an approximate solution close to the optimum. 
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Thus, most algorithms use a decomposition approach and metaheuristic 
algorithms, such as a tabu search, to solve routing subproblems. When there 
is a single manufacturer, the decomposition approach is frequently used 
because the upstream problem can be regarded as a capacitated lot-sizing 
problem. Moreover, after obtaining a solution, various improvement heuris-
tics are also often used as post-processing procedures. Because the optimal 
value is usually unavailable, the performance of an algorithm is presented 
by comparing its solution with a lower bound, or with a solution obtained by 
either previous approaches or an optimization solver.

3.6  The Production and Distribution Problem 
with Routing and Time Constraints

PDP with routing and time constraints (PDPRT) is discussed in this section. 
Time constraints appear in different forms, such as time window, due date, 
and exact arrival time predetermined by customers. It can be considered as 
a combination of an inventory routing problem (IRP) with time constraints 
and a capacitated lot-sizing problem.

In most of the existing literature, a two-echelon supply chain that contains 
a single plant and a set of geographically scattered customers is considered. 
Because of the complexity of the problem, multiple manufacturers are rarely 
considered (see Lei et al., 2006; Bilgen and Günther, 2010). Generally, the 
objective function contains the production cost, the transportation cost (rout-
ing cost) and the inventory holding cost. On the other hand, minimizing 
the makespan consisting of production time and transportation time, and 
maximizing the satisfied demand are considered as objectives in Geismar 
et al. (2008) and Armstrong et al. (2008), respectively. Although third-party 
vehicles are rarely considered, Lei et al. (2006) take third-party transship-
ments into account. The authors consider a representative model with a two-
echelon supply chain network consisting of a set of manufacturers and a 
set of customers. For simplicity, they assume that customer j has demand djt 
with due date Ljt in period t, and that there is a fleet of homogeneous vehicles 
belonging to each manufacturer. To deal with time constraints, additional 
parameters and variables are defined. The objective function and constraints 
other than time constraints are equivalent to those in the model in Section 
3.5. Thus, focusing only on time constraints:

τmjlt
v  = travel time of vehicle v of manufacturer m on arc (j, l) in period t

Tmjt
v  = arrival time of vehicle v of manufacturer m at customer j in period t
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To guarantee due date constraints, the authors add the following con straints:
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The solution methodologies used to solve this problem in the literature fall 
into two different groups, according to their structures; the first one solves 
the problem in an integrated manner, while the second one partitions the 
problem into small pieces that are easier to solve. In these decomposition 
methods the solution from the first phase is used as an input to the second 
phase. Using integrated methods, the solution may be improved by an itera-
tive process.

Chandra and Fisher (1994) solve the production and transportation sched-
uling problems in separate and integrated manners and compare those 
results. In their model, the plant can produce several products in a limited 
time and transporters are allowed to partially deliver to a set of customers 
with unlimited capacity in a period. The plant has an unlimited production 
capacity and the inventory holding costs are not involved in the total costs. 
First, they implement an integrated approach in small examples and show 
that firms can reduce their operation costs about 3%–20% by coordinating 
the production and distribution activities. Second, in the decomposed part, 
they assume that the production scheduling problem can be modeled as a 
capacitated lot-sizing problem and the distribution problem can be modeled 
as a standard multiperiod local delivery routing problem. The interface of 
GAMS, ZOOM/XMP, a solver, is used to solve the production scheduling 
problem. They use three well-known vehicle routing heuristics—sweep 
(Gillett and Miller, 1974), nearest neighbor rule (Rosencrantz et al., 1974), 
and feasible insertion rule (Chandra, 1989)—to find an initial solution to the 
distribution problem. A local improvement heuristic is used to combine the 
production and distribution problems. Since the work of Chandra and Fisher 
(1994), many extended studies have been conducted with various approaches 
including decomposition and compounded methods.

3.6.1  Decomposition Methods

Using decomposition methods, the problem is usually partitioned into two 
subproblems—production planning and routing problems—that are solved 
sequentially.

Lei et al. (2006) investigated an integrated production, inventory and dis-
tribution routing problem where there is no fixed cost of using a vehicle, and 
each transporter can make multiple trips during each period. They used a 
two-phased approach that solves the problem in two separate stages but in an 
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integrated manner. In the first phase, they assumed that the distribution of 
the products from plants to customers is carried out by direct shipment. The 
problem is formulated as a mixed integer programming problem, neglecting 
the vehicle routing constraints, and solved by the CPLEX MIP solver. In the 
second phase, they propose a heuristic transporter routing algorithm, called 
the load consolidation (LC) algorithm, to consolidate the loads into routing 
decisions. The LC algorithm determines the sequence of transporter trips 
and allocates the transporters to the trips without violating the transporter 
capacity and available time constraints. The extended optimal partitioning 
(EOP) procedure is used to find the shortest path among the feasible trips that 
are identified in the first phase. They compare the LC algorithm and CPLEX 
MIP solver with 56 test problems. According to their test results, the LC algo-
rithm can solve the problem in less than 0.2 second whereas the CPLEX MIP 
solver needs more than 2 hours to solve the overall problem.

Geismar et al. (2008) developed a two-phase heuristic to solve a single-
period integrated production and transportation scheduling problem for a 
product with a short life span. The first phase uses either a genetic algorithm 
(GA) or a memetic algorithm (MA) to select a locally optimal permutation 
of a given set of customers. MAs have a local search parameter and a rela-
tively small population size as a result of different population management. 
In the second phase, for a given permutation of customers, Beasley’s (1983) 
“first route-cluster second” method is used to determine simultaneously the 
customers to be served and the vehicle routes to be used, and a linear pro-
gram formulation is used to minimize the makespan for a given set of trips. 
The Gilmore–Gomory (1964) algorithm for two-machine no-wait flowshops 
is then used to order the subsequences of customers to form the integrated 
schedule.

3.6.2  Integrated Methods

Among the papers dealing with integrated methods, some papers propose 
problem-specific methodologies for problem solving, while others focus on 
new modeling techniques.

Boudia and Prins (2009) examined a multiperiod production distribution 
problem in a two-echelon supply chain that is very close to the model pro-
posed by Chandra and Fisher (1994), but differs in that the limited vehicle 
capacity and a single product are considered. They use a memetic algorithm 
with population management (MA/PM) to handle production and distribu-
tion problems simultaneously. The proposed algorithm is evaluated in three 
sets of 30 instances with 50, 100, and 200 customers over 20 periods. They com-
pared the proposed algorithm with two previous algorithms: the two-phase 
algorithm (H1) proposed by Boudia et al. (2005) and the three-phase algo-
rithm (H2) based on GRASP developed by Boudia et al. (2007). They showed 
that the memetic algorithm can generate better solutions than GRASP, which 
also solves the related problem from an integrated perspective.
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Armstrong et al. (2008) solved a similar problem with a branch-and-bound 
search procedure to maximize the total satisfied demand by choosing a subset 
of customers from the given sequence who will be served by a single vehicle. 
The constraints of the problem refer to the product lifespan, the production/ 
distribution capacity, and the delivery time window. Because there is no 
inventory handling at the supply chain members, it is important to syn-
chronize the production and distribution planning decisions successfully. 
Empirical studies on the computational effort required by the proposed 
search procedure compared with that required by CPLEX on randomly gen-
erated test cases are summarized. A branch-and-bound search algorithm 
is also proposed and is shown to outperform CPLEX with limited running 
time.

Bilgen and Günther (2010) considered an integrated production and distri-
bution planning problem in the fast-moving consumer goods industry, with 
a so-called block-planning approach, which establishes cyclical production 
patterns defined by setup families. The aim is to minimize the total cost, 
consisting of production costs, inventory holding costs at distribution cen-
ters, and transportation costs for FTL and LTL transportation modes. Unlike 
the other related studies, they considered two types of production setup 
costs—major setup costs for each block started on one of the lines (e.g., for 
clean-out in the food industry) and minor setup costs for the production lots 
of the individual products. They traced the time in terms of the block and lot 
production completion times. Two different periods were used in this study: 
macro periods (e.g., weeks) were used for the block assignments and micro 
periods (e.g., days) were used for the distribution schedule and external 
demand elements. They compared two different block-planning approaches: 
the flexible and the rigid block, which differ by their degree of flexibility in 
the scheduling of the production lots. A mixed-integer linear programming 
model is proposed and CPLEX is used as a solver. The numerical results 
reveal that the flexible block-planning approach can provide considerable 
cost savings compared with the rigid block-planning approach.

Bolduc et al. (2010) considered the split delivery vehicle routing problem 
with production and demand calendars. They propose a simple decompo-
sition procedure to provide a starting solution and use a tabu search with 
new neighbor reduction strategies. After the tabu iterations are completed, 
an improvement heuristic is applied. They implement their procedure on a 
randomly generated 100 instances with 50 customers and 10 periods. The 
results show that the developed model is effective in terms of both solution 
quality and computation time.

3.6.3  Remarks on PDPRT

In the decomposition method, there are two general approaches: the first 
one considers the production problem and the routing problem separately, 
while the second solves the problem including production and simplified 
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distribution and then solves the routing problem. For the integrated method, 
there are two approaches. The first is to solve the problem simultaneously 
using mathematical programming with an optimization package, while 
the second is to use an iterative method in which the solution is improved 
over iterations through a metaheuristic such as GA and tabu search. Even 
though there is no clear dominance between the decomposed method and 
the composed method, the decomposed method is always useful to find an 
initial feasible solution. For example, Bolduc et al. (2010) used a decomposed 
method to find an initial solution and then improved it by a tabu search algo-
rithm in an integrated manner.

Because the problem is already complicated by including the vehicle rout-
ing problem in it, researchers have focused on a two-echelon problem with 
static demand. Thus, natural generalizations are required, such as two ech-
elons to multiple echelons, static demand to stochastic demand, and exclud-
ing third party to including third party.

3.7  Discussion

In a realistic situation, such as multiproduct, multiechelon, distribution rout-
ing, the problem under consideration has a complicated structure with a 
huge size. Moreover, each problem in the literature has its unique assump-
tions and definitions. Various approaches are considered and analyzed for 
different problems, and therefore it is very difficult to propose an integrated 
view of the entire set of methodologies. In this section, we provide three 
different perspectives. The first one classifies the solution approaches with 
a perspective on the decomposition framework, and solution methodologies 
applied to the decomposed subproblems. The second one relates the problem 
structure to the utilized solution approaches. The last one addresses future 
research directions.

3.7.1  Structure of Solution Approach

Most problems in the literature are computationally difficult to solve opti-
mally, and thus different decomposition approaches are utilized. When the 
problem is decomposed, the optimality of the problem may not be guaran-
teed, but each decomposed problem is much easier to solve and sometimes 
can be solved effectively (e.g., optimally or near-optimally) and efficiently 
(e.g., in polynomial time or in pseudo-polynomial time). Moreover, after the 
original problem is decomposed into subproblems, each subproblem can be 
further decomposed according to the structure of the subproblem. The over-
all framework of the solution methodology in terms of decomposition has 
the following three categories.
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No decomposition. The entire problem is solved at once.
Mathematical decomposition. The original problem is decomposed accord-

ing to mathematical properties. Two representative decomposi-
tions are Lagrangean decomposition and Benders decomposition. 
In Lagrangean decomposition, some of constraints are relaxed by 
Lagrangean relaxation and the problem under consideration can 
be decomposed into independent subproblems. In Benders decom-
position, some of the variables are fixed and the problem can be 
decomposed.

Heuristic decomposition. The original problem is decomposed according 
to problem-specific properties. A common way is to decompose the 
problem with respect to layers. Thus, the upstream problem and the 
downstream problem are separately defined. Another method is to 
decompose into a strategic problem and an operational problem.

When the problem (or decomposed subproblem) cannot be further decom-
posed, or is going to be solved directly, several approaches are utilized. The 
major solution approaches in the literature can be summarized:

Exact algorithm development. When the problem (or subproblem) can 
be formulated as a problem that has a known optimal algorithm in 
polynomial time (or pseudo-polynomial time), it can be solved opti-
mally. Typical examples are network flow problems, linear program-
ming (LP), and dynamic programming.

Modeling with an optimization solver. Some papers describe the prob-
lem with an exact mathematical formulation, such as LP, nonlinear 
programming (NLP), and mixed integer programming (MIP), and 
solve it with an optimization solver. When the problem size is small 
enough or the problem has unique properties, optimal solutions 
can be obtained in a reasonable time frame. Various optimization 
solvers are found in the literature, such as CPLEX, GAMS, AMPL, 
LINGO, and GLPK. To strengthen the formulation, additional con-
straints, such as valid inequalities, can be inserted. In most cases, an 
approximate solution by an optimization solver is acceptable, given 
the error limit or running time limit.

Mathematical programming approach. When the subproblem is still too 
hard to be solved optimally, there are several approaches utilizing 
mathematical programming techniques. Representative methods 
are Lagrangean relaxation and LP relaxation.

Metaheuristic. Metaheuristics iteratively improve a candidate solution 
with regard to a given measure of quality. A metaheuristic makes 
few or no assumptions about the problem being optimized and can 
search very large spaces of candidate solutions. However, it does not 
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guarantee that an optimal solution is ever found. The solution qual-
ity and running times are highly dependent on the setup parameters. 
Examples are local search (e.g., tabu search, simulated annealing), 
evolutionary algorithms (e.g., genetic algorithm), and swarm intel-
ligence (e.g., particle swarm optimization, ant colony optimization).

Problem-specific algorithms. According to the problem-specific property, 
an algorithm can be developed only for the particular problem. In 
many cases, values of variables are sequentially decided. A repre-
sentative one is a greedy algorithm, which makes a locally optimal 
choice at each stage with the hope of finding a global optimum. 
After obtaining a solution, a local improvement procedure may be 
applied.

Figure 3.2 gives an overview of the existing procedures for solving the 
integrated problem. If a problem is directly solvable, it can be solved using an 
exact method. Otherwise, we may try to decompose it into multiple subprob-
lems with minor changes from the original problem, or try to use other solu-
tion approaches. If the problem is decomposed, subproblems can be solved 
separately and each of them is considered as an independent problem. Then, 
we can iteratively check whether the subproblems are directly solvable or 
further decomposable. If the problem (or subproblem) is not decomposable 
or we do not attempt to decompose it further, several solution approaches 
are applicable.

Based on the above classification, the solution approaches used in the lit-
erature surveyed in this chapter can be classified in Table 3.2. We make the 
following observations.

When the problem is solved without decomposition, the two major meth-
odologies are modeling with an optimization solver and a metaheuristic, in 
which the structural property is not well utilized.

When a mathematical decomposition is utilized as an overall framework, 
the subproblem is always solved by mathematical programming methods 
for optimal or approximate solutions. In other words, if one would like to 
apply mathematical decomposition, subproblems should be able to be well 
handled by mathematical programming methods.

When the problem is heuristically decomposed, metaheuristic and problem- 
specific heuristics are frequently used.

3.7.2  Problem Structure and Solution Approaches

In the reviewed papers, along with the problem structure and methodolo-
gies used, when routing is involved as a part of the decision, the problem 
includes a vehicle routing problem (VRP), which is one of the well-known 
difficult combinatorial optimization problems. Thus, we separately discuss 
the problems where routing is considered, and those where it is not.
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For the problems without routing decisions (PDP and PDPT), the method-
ologies for PDP and PDPT differ.

The major solution methodology for PDP is to use Lagrangean decomposi-
tion as a framework and mathematical programming for the decomposed 
problems. Especially when the PDP is defined on a supply chain network 
with two stages, Lagrangean decomposition works very well, because the 
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FIGURE 3.2
An overview of existing procedures for solving the integrated problem.
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subproblems can be solved optimally. However, when PDP is defined on a 
network with three or more stages, Lagrangean decomposition is rarely used.

The major methodology of PDPT is to establish a mathematical model 
without decomposition and use an optimization solver. Half of the papers 
dealing with PDPT use an optimization solver, even though some mathe-
matical models are nonlinear, while no papers use mathematical program-
ming for overall or decomposed problems. It may imply that the problem 
with time constraints can be clearly defined in a mathematical model, but 
the time constraints make it difficult to utilize the mathematical structure for 
mathematical programming-type algorithm development.

TABLE 3.2

Summary of Solution Approaches

Overall 
Framework

No 
Decomposition

Mathematical 
Decomposition

Heuristic 
Decomposition

Subproblem 
methodology

Modeling with 
optimization 
solver

Rizk et al. (2006)
Chen and Lee (2004)
Dhaenens-Flipo and 
Finke (2001)

Fahimnia et al. (2008a)
Bilgen and Günther 
(2010)

Sabri and Beamon 
(2000)

Cetinkaya et al. (2009)
Chandra and Fisher 
(1994)

Exact algorithm 
development

Armstrong et al. (2008)
Ruokokoski et al. 
(2010)

Yung et al. (2006)
Eksioglu et al. (2007)
Karakitsiou and 
Migdalas (2008)

Dogan and 
Goetschalckx (1999)

Bard and Nananukul 
(2009b)

Archetti et al. (2011)

Mathematical 
programming 
approach

Yilmaz and Catay 
(2006)

Lei et al. (2009)

Fumero and Vercellis 
(1999)

Bard and Nananukul 
(2010)

Bard and Nananukul 
(2009b)

Archetti et al. (2011)
Metaheuristic Jang et al. (2002)

Gen and Syarif (2005)
Kannan et al. (2010)
Naso et al. (2007)
Boudia and Prins 
(2009)

Bolduc et al. (2010)

Ahuja et al. (2007)
Yimer and Demirli 
(2010)

Bard and Nananukul 
(2009a)

Geismar et al. (2008)
Yossiri et al. (2012)

Problem-
specific 
algorithm

Lei et al. (2006)
Liu et al. (2008)
Gebennini et al. (2009)
Shen and Qi (2007)

Park (2005)
Cetinkaya et al. (2009)
Chandra and Fisher 
(1994)

Lei et al. (2006)
Geismar et al. (2008)
Archetti et al. (2011)
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For the problems with routing decisions (PDPR and PDPRT), mathemati-
cal decomposition is rarely used, while heuristic decomposition is fre-
quently used. When the problem is decomposed heuristically, the upstream 
problem deals with production lot-sizing and the downstream problem is 
defined for routing decisions. Decomposed subproblems are solved by vari-
ous methods.

In PDPR, one subproblem may be modeled and solved by an optimization 
solver, and the other subproblem solved by a problem-specific heuristic. In 
another case, one subproblem is solved by mathematical programming for 
an approximate solution, while the other subproblem is solved by an exact 
algorithm for the optimal solution.

In PDPRT, a mathematical programming approach is rarely used as the 
solution methodology for decomposed problems because of the complexity 
of the decomposed problems. Instead, metaheuristic and problem-specific 
heuristic approaches are widely used. In both PDPR and PDPRT, the solu-
tion approaches cannot directly give a solution close to the optimum, and 
thus local improvement heuristics are frequently used as a post-processing 
procedure.

In addition, we observe the following relationships between problem struc-
ture and methodologies used.

The mathematical programming approach works better for problems with-
out time constraints.

When the problem structure is complicated, problem-specific algorithms 
and local improvement heuristics are frequently used.

Metaheuristics can be applied for most problem structures.

3.7.3  Future Research Directions

One trend in solution approaches for modern supply chain operations, which 
is much more complex than those addressed in traditional operations related 
literature, is to use a hybrid methodology by combining the aforementioned 
methods and the use of a simulation as a framework, especially for prac-
tical and large-scale problems. When a simulation is used as a framework 
for solving the problem, a mathematical model is usually established first 
and solved as a deterministic problem (by fixing the values of uncertain fac-
tors). The resulting solution is then used as an input to the simulation model, 
which incorporates the uncertainties in demand, facility failure, delivery 
time, capacity, and so forth. The output of a simulation model helps to adjust 
the values of model parameters. Such a simulation procedure is usually 
repeated many times until the solution is efficient and robust. In the current 
literature, however, there remains a significant dearth of studies that focus 
on the development and applications of such a comprehensive and hybrid 
solution methodology.

Another observed trend is the construction of a general framework to 
deal with an integrated problem of a practical size. Each component of the 
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framework should be separately modeled and possible solution methodolo-
gies should be proposed; the decision process, including information granu-
larity and the decision period, should be carefully designed. We may need 
to consider more qualitative decisions beyond the total cost. A big company 
may prefer amicable small companies as its partners even though they are 
not currently cost effective. Alternatively, an industry-dependent framework 
is a possible direction. For example, the framework for the supply chain net-
work in electronics manufacturing might give rise to a general framework to 
handle various operations-level decisions.

Furthermore, in most of the literature, we find that stochastic factors are 
seldom incorporated in the models with time constraints and routing issues, 
although most real-life integrated production and distribution problems 
often contain stochastic factors. Also, most papers dealing with routing 
issues only consider a supply chain with at most two or three echelons. A 
third party is generally not considered, and when it is considered, it usually 
has unlimited or very large capacity and zero or very short lead time. Thus, 
future research may be directed toward an extension of the models to cover 
more general cases.

Last, but not least, most of the work in the existing literature applies to a 
collaborative environment, where all information is shared and a decision is 
made by a central authority and applied to all players in the supply chain. 
Realistically, this is not always the case. In practice, in most supply chains, 
each player (or group of players) may pursue its own objective and not all 
players try to achieve a global optimum. Even where some or all may try 
to collaborate, information-sharing may not be possible. Each entity may be 
subject to a different management policy in terms of a given information 
item, sharing scheme, updating period, and so forth. However, in the cur-
rent literature, there are few studies that focus on multiechelon supply chain 
networks with partial information. Although a competitive supply chain 
has been studied in the past decade, researchers have generally assumed 
only two echelons, either suppliers and manufacturers, or manufacturers 
and retailers. In the case where competition exists across the entire supply 
chain, or in a part of the supply chain, the global optimum may differ signifi-
cantly from a local optimum. Thus, a game-theoretic approach to modeling 
and solving competitive but integrated supply chain problems may also be a 
promising area for future research.

In summary, the gaps between modern supply chain operations problems 
and problems in the literature can be characterized as (1) large scale (e.g., 
multiechelon, third party); (2) multiobjective (e.g., total cost, ease of opera-
tions); (3) uncertainty (e.g., randomness, disruption); and (4) competitive envi-
ronment with incomplete information (e.g., multiagents, competing entities). 
One possible way to incorporate these characteristics is by using simulation 
as a framework. A large-scale problem can be decomposed into multiple 
modules such that each module includes collaborative entities. For decision 
making within a module, the integrated production/distribution/ routing 
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Define the scope of a large-scale problem

Decompose the problem into modules

Define a module (stochastic)
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Evaluate the solutions by simulation
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FIGURE 3.3
A general procedure to define and solve modern supply chain operations problems with a 
simulation framework.
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planning problem is defined and solved by various solution methodologies; 
for decision making among competing modules, game-theoretic analysis 
can be applied. Multiple objectives can be simultaneously evaluated from 
different solutions for supply chain networks with uncertainties. Figure 3.3 
shows a general procedure for defining and solving these problems within a 
simulation framework.
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4
Increasing the Resiliency of Local 
Supply Chain Distribution Networks 
against Multiple Hazards

Sarah G. Nurre, Thomas C. Sharkey, and John E. Mitchell

ABSTRACT We examine the resiliency of retail locations of a supply 
chain network to aid in the recovery of the local community after an extreme 
event. A two-stage stochastic programming model is used to determine 
the placement of permanent generators at the retail locations of Stewart’s 
Shops, which distributes both convenience items and fuel in Upstate New 
York and Vermont, to enhance the resiliency of the supply chain. Our mea-
sure of resiliency specifically considers the recovery process of each retail 
location after the extreme event and its interdependency on other external 
infrastructure systems. Our computational experiments consider the mul-
tiple distinct types of hazards that can affect the retail locations of Stewart’s 
Shops. We empirically explore different stochastic sampling procedures to 
solve the resiliency model. The results of computational tests indicate that 
we can converge to an approximate optimal solution quickly. We compare 
the resiliency efforts when planning for different types of hazards versus all 
hazards simultaneously as well as the impact of external infrastructure sys-
tems on the resiliency efforts. The empirical study identifies that the stores 
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in rural, less densely populated areas serving a large population should be 
selected to receive generators.

KEY WORDS: multiple hazards, resilience, supply chain network, two-stage 
stochastic program.

4.1  Introduction

Recent extreme events, such as Hurricanes Irene in 2011 and Sandy in 2012 
that affected New York and New Jersey, have demonstrated the need for 
enhancing the resiliency of supply chain systems. This is especially impor-
tant for local supply chain networks that move critical goods, such as food, 
batteries, and fuel, into the areas affected by the extreme event. These criti-
cal goods allow the local population to begin to recover from the event and, 
often, companies operate hybrid retail operations that are part convenience 
stores (to provide food and batteries) and part gas station (to provide fuel). As 
a motivating example, Stewart’s Shops is a company that operates 330 conve-
nience stores and gas stations locations in Upstate New York and Vermont. 
Figure 4.1 presents a map of the retail locations of this company relative 

FIGURE 4.1
Locations of Stewart’s Shops stores.
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to the northeastern United States. Figures in the remainder of this chapter 
zoom in to the black box for clarity. In 2013, Stewart’s had 58 locations that 
operated only as convenience stores and 272 locations that operated as both 
convenience stores and gas stations (see Stewart’s Shops, 2013). In the past 
few years, multiple types of hazards have impacted Stewart’s retail locations 
including hurricanes (in particular, Hurricanes Irene and Sandy), flooding, 
blizzards, and ice storms. This means that any efforts to increase the resil-
iency of Stewart’s Shops for delivering critical goods to local populations 
should incorporate the potential impact of these various hazards.

The resiliency of a local supply chain distribution network, like that of 
Stewart’s Shops, is typically focused on its ability to bounce back from dis-
ruptions. For local distribution networks, an important aspect of its bounce 
back is the capability to have its retail operations open for business. There 
are both internal and external factors that determine when a retail operation 
can begin its vital role as a distribution point after the disruptive event. The 
internal factors typically involve the steps necessary to reopen the store after 
any damage that was caused by the event. Example internal factors include 
(1) clearing debris, snow, or ice from the parking and refueling areas; (2) clean-
ing up the interior of the store and restocking shelves; (3) rebooting informa-
tion systems; and (4) having workers arrive at the store, which often depends 
on external transportation systems. The external factors involve whether the 
services (such as power and telecommunications) necessary to support the 
retail operations are available after the event. For example, after Hurricane 
Sandy, lack of electrical power was a major source of the delay in the reopen-
ing of gas stations in the New York/New Jersey areas (see, e.g., Ma, 2012; 
Goldberg, 2012; Hu and Yee, 2012; Lipton and Krauss, 2012; Zernike, 2012). In 
fact, generators were brought into the area by certain gasoline companies for 
the sole purpose of reopening their points of distribution (Goldberg, 2012). 
In addition, many gas stations had their telecommunications services dis-
rupted by Hurricane Sandy, implying that they were able to accept only cash 
from customers (e.g., Hu and Yee, 2012). Therefore, our proposed resiliency 
models specifically incorporate the reliance of reopening convenience and 
fuel distribution on the services provided by other (potentially disrupted) 
infrastructure systems.

The focus of this work is on locating permanent generators at the retail 
operations of a local supply chain distribution network to increase the resil-
iency of the system against multiple types of hazards. The resiliency of a par-
ticular retail operation is measured as the sum of the weighted (by demand) 
opening time for various commodities (e.g., cash-paying customers for fuel). 
The calculation of the opening time of a commodity at a retail operation 
will incorporate both the internal and external factors (e.g., dependencies on 
power and telecommunications) that affect it. This means that we use a two-
stage stochastic preplanning model in which the first stage decisions locate 
the generators and the second stage, for each scenario, captures the resil-
iency of the distribution network for a realization of the damage of a hazard.
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We do note that the “opening times” will not need to incorporate the 
arrival of inventory into the retail operation—the types of items that tend 
to be sold immediately after a disruptive weather event will be well stocked 
before that event and are often able to be replenished shortly after the event. 
Therefore, the focus of the resiliency measure should be on the ability to 
distribute on-site inventory rather than receiving shipments from elsewhere. 
It should be noted that Stewart’s Shops will send out more “necessity” items 
to stores in areas potentially affected by an incoming event. In addition, the 
lack of power at gas stations was a major concern with respect to the gaso-
line shortages and rationing after Hurricane Sandy. Therefore, the particular 
focus on opening times of retail operations is well justified. This implies 
that we do not necessarily need to model the underlying warehouse–retailer 
distribution network in each scenario, thus allowing us to develop fast algo-
rithms to solve our resulting resiliency models.

Our work is related to research on planning for supply chain disruptions; 
Snyder et al. (2006) and Snyder (2006) provide an overview of design and 
fortification models in this mean. These two-stage stochastic models they 
describe consider the location of supply chain components as the first-stage 
decisions and customer assignment as the second-stage decisions. The model 
in this chapter is distinct from this work because our first stage changes the 
properties of existing components and our second stage focuses on the time 
to recovery of distribution points.

There has been previous research on two-stage preplanning models for 
locating emergency supplies before a disaster. These models incorporate the 
dependencies of the supply chain on the transportation network by having 
travel times be scenario-dependent based on the damage of the event—
see, for example, Shen et al. (2009), Mete and Zabinsky (2010), Rawls and 
Turnquist (2010), and Salmeron and Apte (2010), and Van Hentenryck et al. 
(2010). However, these models do not consider the reliance of the supply chain 
on other critical civil infrastructure systems, such as power and telecom-
munications. Shen (2013) examined building in new arcs in a network to 
increase the resiliency of interdependent infrastructure systems; however, 
these models assume that the infrastructures will “work together” in the 
second stage in terms of planning their recovery efforts from the event. This 
is often not the case for infrastructure restoration and, more importantly, 
local supply chain distribution networks will tend not to have a voice in res-
toration efforts from large-scale events. Further, these previous works on 
preplanning models tend to focus on scenarios that are generated from a 
single type of event, such as an earthquake (Dodo et al., 2007; Liu et al., 2009), 
rather than multiple hazards.

Other two-stage preplanning models examine the resilience of infra-
structure systems subject to extreme events. Liu et al. (2009) examined the 
retro fitting of transportation networks; Miller-Hooks et al. (2012) exam-
ined a freight transportation network and determine the optimal allocation 
of preparedness and recovery actions; and Peeta et al. (2010) considered a 
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highway network and sought to maximize the connectivity after the event. 
All of these studies do not incorporate the impact of external factors, such as 
power outages, on the recovery or resilience of the transportation network. 
The time it takes to bounce back to normal after an extreme event is one 
dimension of resiliency, which is often ignored, in these previous works that 
is specifically included in our model. A notable exception is Sheu (2007), who 
examined the time until relief is distributed after a disaster. However, Sheu 
(2007) focused on a multiobjective model in which the supply chain is not 
explicitly impacted but instead the demand is dynamic based on the degree 
of impact to different geographical locations.

The main contributions of this work include the following: (1) the consid-
eration of multiple types of hazards in supply chain resiliency planning; 
(2) development of a two-stage stochastic program to enhance the resiliency 
of local supply chain networks specifically considering the recovery process 
of each retail operation and its interdependency on external infrastructures; 
and (3) an empirical exploration of stochastic sampling procedures to solve 
resiliency models.

The work proceeds as follows. Section 4.2 introduces the mathematical 
model and associated algorithm used to solve the two-stage stochastic sup-
ply chain resiliency problem; Section 4.3 presents the results of the compu-
tational analysis including the inclusion of different distribution of hazards 
and the impact of internal and external factors; and we conclude in Section 
4.4. Please see the Appendix for corresponding parameter and data genera-
tion for each hazard scenario.

4.2  Mathematical Model and Algorithms

The proposed mathematical model to increase the resiliency of local supply 
chain distribution networks involves locating generators at retail operations 
to minimize the weighted “opening time” of the retail operations across a 
set of scenarios. The opening time of the retail operation for commodity l at 
store j requires that all internal and external factors that could prevent the 
opening are complete. In particular, the internal factors include (1) complet-
ing all work (such as repairing damage) for tasks that do not necessarily 
require power (we refer to these as “nonpower tasks”) and (2) completing 
all work on tasks that do require power (we refer to these as “power-based 
tasks”). Note that there may be nonpower tasks (such as cleaning the store) 
that can be completed faster if power is available at the store—this will be 
incorporated in our model. The external factors include (1) any (potential) 
flooding around the store subsiding, (2) power being restored to the store (if 
there is no generator), and (3) telecommunications being restored to the store 
(for credit-only customers).
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To provide a formal description of the model, it is necessary to provide 
an overview of the notation used to describe various parameters associated 
with the problem. The relevant parameters include the following:

• S is the set of all scenarios.
• N is the set of all stores.
• L is the set of all commodities.
• ws is the weight of scenario s ∈ S. This would typically be viewed as 

the probability of the event occurring; however, for our purposes, 
this weight reflects the fact that we care about multiple types of haz-
ards. A scenario for a type of hazard would have a probability, and 
the importance of that hazard multiplied by this probability would 
give us the weight for the scenario.

• djl is the cash demand for store j and commodity l.

• djl is the credit-only demand for store j and commodity l.
• K is the number of generators available.

• rsj
p is the release time (or restoration time) for power (from the grid) 

at store j in scenario s.

• rsj
c is the release for communications at store j in scenario s.

• rsj
f  is the release time for any floodwaters at store j in scenario s. We 

assume that r rsj
f

sj
p≤  for all s and j because power will not be restored 

to areas damaged by flooding until the flooding subsides and proper 
electrical inspections are done (see, e.g., Issler and Brodsky, [2012] for 
a discussion of this issue after Hurricane Sandy).

• psjl is the time needed to complete power-based tasks at store j for 
commodity l in scenario s.

• wsjl is the work needed to be completed at store j for commodity l and 
scenario s for nonpower tasks.

• σ j
p is the speed the work associated with nonpower tasks is com-

pleted when power is available.

• σ j
np is the speed the work associated with non-power tasks is com-

pleted when power is not available.

The mathematical model is a two-stage stochastic program in which the 
first stage decisions locate generators at the retail operations of the local dis-
tribution supply chain network and the second stage decisions calculate the 
opening times of each store and commodity in each scenario. To this end, 
we define binary decision variables zj for j ∈ N that represent the decision 
of locating a generator at store j. The decision variables Csjl and Csjl provide 
the opening time of commodity l at store j in scenario s for cash custom-
ers and credit-only customers, respectively. The mathematical model of our 
resiliency model for local supply chain distribution networks (R-LSC) is then
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 zj ∈ {0, 1} ∀j ∈ N. (4.8)

The constraint in Equation 4.2 limits the number of generators placed at 
the stores while the constraints in Equations 4.3 through 4.7 help to ensure 
the opening times consider all internal and external factors. In particular, 
for cash customers, the constraints in Equations 4.3 through 4.5 ensure that 
the following steps need to be complete prior to opening store j for com-
modity l: (1) flooding at the store subsides, (2) all nonpower tasks are completed, 
(3) power returns (either through a generator or being restored) to the store, 
and (4) all power-based tasks are completed. If zj = 0, then the constraints in 
Equation 4.3 imply that we do not begin the power-based tasks until at least 
power is restored to the store and the constraints in Equation 4.4 imply that 
we do not begin the power-based tasks until at least the nonpower tasks are 
complete. The first term inside the parentheses in the constraints in Equation 
4.4 is the time when we begin processing nonpower tasks at their “power” 
speed while the second term provides the amount of time required to finish 
the remaining work on these tasks. Note that if the tasks can be completed 
before the power speed kicks on, then the second term will be negative, 
and thus the constraints in Equation 4.3 will be active. The constraints in 
Equations 4.6 and 4.7 ensure the opening time for commodity l of credit-only 
customers is based on the fact that the store is open for cash customers for 
commodity l and communications is restored to the store.

It can be expected that the number of scenarios in R-LSC will be extremely 
large, and therefore it may not be computationally feasible to solve the form 
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of R-LSC that incorporates all scenarios. Therefore, we will apply sample 
average approximation (see Shapiro et al., 2009) to determine an (approxi-
mate) optimal solution to R-LSC. For our case study of applying R-LSC to 
locating generators at Stewart’s Shops, the set of scenarios span four distinct 
types of hazards: hurricanes, flooding, blizzards, and ice storms. The weight 
of a particular scenario, ws, will be based on (1) the priority of the type of haz-
ard associated with scenario s and (2) the probability that this type of hazard 
produces scenario s. For example, if we care about all four hazards equally, 
and a particular hurricane scenario has a 0.5 probability of occurring and 
a particular flooding scenario has a 0.2 probability of occurring, then the 
weights will be selected as 0.5 and 0.2 for these scenarios, respectively.

Our computational analysis will first apply sample average approxima-
tion (SAA) techniques to R-LSC to locate generators to increase the resiliency 
against a single type of hazard. The purpose of this is twofold: First, it will 
help determine the limits of planning for a particular type of hazard versus 
planning for all hazards and second, it will be the basis for an empirical 
sampling mechanism when protecting against multiple types of hazards. 
We will then explore different ways to sample when considering the multiple 
types of hazards and see their impact on the convergence of the SAA.

It turns out that R-LSC can be solved in O(∣N∥S∥L∣) time. The method to 
solve R-LSC comes from the observation that the second-stage decisions 
are decomposable by store and that the generator location decisions can be 
viewed as improving the worst case opening times for each scenario. In par-
ticular, we define Rsj to be the “base” resiliency measure, that is, the resil-
iency of store j in scenario s when a generator is not located at j:
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This calculation simply forces the constraints in Equations 4.3 and 4.4 and 
4.6 and 4.7 to be “active” for scenario s and store j. We then define ′Rsj to be the 
objective for scenario s at store j when a generator is located there:

 ′ = + +
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Note that R Rsj sj≥ ′  for all s and j because r rsj
f

sj
p≤ . We can then reformulate 

R-LSC as
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 zj ∈ {0, 1} ∀j ∈ N (4.11)

This reformulation is a knapsack problem in which all items (stores) have 
unit coefficients in the knapsack constraint. Therefore, the K stores with the 
lowest values of w R Rs sj sj

s S

′ −( )
∈

∑  will be chosen to have generators located 

at them. It requires O(∣S∥L∣) time to calculate Rsj and ′Rsj for each store, and 
therefore R-LSC can be solved in O(∣N∥S∥L∣).

4.3  Computational Analysis

The purpose of this section is to explore both empirical convergence prop-
erties of R-LSC and to provide policy-based analysis for Stewart’s Shops. 
The area in which Stewart’s Shops operate their retail stores is prone to four 
types of hazards: hurricanes, flooding, blizzards, and ice storms. Each of 
these hazards has its own unique properties in terms of how it comes into 
the area and what damage it tends to cause to the retail stores, power grid, 
and telecommunications infrastructure. The Appendix discusses our tech-
niques to generate a scenario for each of these distinct types of hazards.

For our case study, we consider two types of commodities: the “conve-
nience” (e.g., food, water, and batteries) commodity and the “fuel” commod-
ity. The demand level for these commodities at store j ∈ N are a function 
of the location of the store, its surrounding areas, and its capabilities. We 
first determine the overall demand level for commodity l ∈ {c, f } (where c = 
convenience and f = fuel) through the following procedure: (1) for each county 
and commodity l, determine the set of Stewart’s Shops in that county capable 
of delivering that commodity and (2) split the demand (which we measure 
as the population; see NYS Data Center, Census, [2010] of the county evenly 
among all stores capable of delivering that commodity. We then assume that 
50% of this overall demand for store j and commodity l is “credit-only” to 
determine djl and djl. As an example, if there is a county with 10,000 residents 
and 10 Stewart’s Shops that have gas stations, then we assume that the overall 
demand for fuel at each of these locations is 1000. Figure 4.2 displays a heat 
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map of the Stewart’s stores based on their total level of demand over all types 
of customers (cash and credit-only) and commodities (convenience and fuel).

There are a few limitations to creating our demand levels in this man-
ner. First, it assumes that the entire population will visit a Stewart’s Shops 
store after an event. However, this assumption is not too limiting because if 
Stewart’s market share is uniform across all counties, the optimal solution 
will not change because all solutions will have their objective function multi-
plied by their percentage market share. The second assumption is that it does 
not factor in the “closest” Stewart’s Shops store to a given population—there 
may be a store across the street that is in a different county, and therefore 
the demand is assigned elsewhere. However, the number of these situations 
across all 330 stores is probably quite small. Further, the assignment of this 
demand assumes that the population will visit only one Stewart’s Shops store 

FIGURE 4.2
Heat map displaying the 330 Stewart’s Shops stores and their respective total demand level, 
where darker shading indicates a higher level of demand.

© 2016 by Taylor & Francis Group, LLC

  

http://www.crcnetbase.com/action/showImage?doi=10.1201/b19080-7&iName=master.img-001.jpg&w=238&h=325


97Increasing the Resiliency of Local Supply Chain Distribution Networks

and will not visit another one if the store is closed because of the event, as 
we assume static and not scenario-based demand. This assumption should 
be relaxed in future work; however, we justify the assumption by concluding 
a “non Stewart’s Shop” will often be closer to a closed Stewart’s Shops store 
than another Stewart’s location and, therefore, the customers for the closed 
store will visit the “non Stewart’s Shop.”

4.3.1  Sample Average Approximation for Single Hazard Resiliency

Our first set of tests seeks to determine the location of generators among 
the 330 Stewart’s Shops when considering each type of hazard individually. 
Specifically, we determine 12 solutions, one for each of the four hazards and 
three generator levels, K = 17, 33, and 50 which represent locating generators 
at 5%, 10%, and 15% of the number of stores, respectively. As with any empiri-
cal stochastic programming problem with a large number of scenarios, we 
must determine the appropriate number of scenarios to consider that pro-
vides a close approximation of the true optimal objective function value and 
solution. Our approach and stopping criteria uses a combination of the imple-
mentations presented by Linderoth et al. (2006) and Kleywegt et al. (2002).

For a fixed number of scenarios |S|, we solve M instances of the prob-
lem over |S| randomly generated scenarios and determine their associated 
solutions z1,…zM and objective function values v1,…vM. We then solve one 
instance of the problem by including the union of all |S| scenarios over the 
M iterations for a total of M|S| scenarios. Denote the solution and objective 
function value of this instance as zM+1 and vM+1. We then calculate the opti-
mality gaps of v1,…vM relative to vM+1. If all of the optimality gaps are within 
±1%, we stop; otherwise we increase the number of scenarios considered. 
The specifics of the algorithm are outlined in Algorithm 4.1.

Algorithm 4.1 Convergence Stopping Criteria

 1. Set Boolean variable stopping_criteria equal to 0
 2. Set number of scenarios, |S| = 500
 3. Input: Number of generators, K
 4. Input: Number of iterations, M
 5. while stopping_criteria = 0 do
 6.  for i = 1:M do
 7.   Generate M|S| independent scenarios
 8.    Solve for objective function value vi and solution zi for locating 

K generators using the M|S| scenarios
 9.  end for
 10.  Consider all M|S| scenarios generated
 11.   Solve for the objective function value vM+1 and solution zM+1 for 

locating K generators using the M|S| scenarios
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 12.  Calculate optimality gaps, v v
v

M i

M

+

+

−1

1  
, for each i = 1:M

 13.  if All optimality gaps are within ±1% then
 14.   Set stopping_criteria = 1
 15.  else
 16.   Set number of scenarios, |S| = |S| + 500
 17.  end if
 18. end while
 19. Return vM+1 and zM+1

Because we are considering each type of hazard individually, each sce-

nario has the same weight, specifically 1
S

. Figure 4.3 displays the results of 

these tests by showing the types of hazards, the three numbers of generators 

Hazard
Number of 

generators (K)

−

10,500

11,500

10,000

−

37,500

34,000

29,000

−

3,500

3,500

5,500

−

7,000

5,500

8,000

12,042,400

11,241,600

10,876,600

10,550,900

8,129,770

7,284,080

6,936,210

6,886,730

9,543,590

8,629,480

8,237,490

7,873,700

12,696,300

11,270,400

10,473,200

9,784,940

17

33

50

0

0

17

33

50

0

17

33

50

0

17

33

50

Number of scenarios
for convergence

Objective
function value

Hurricane

Flood

Blizzard

Ice storm

FIGURE 4.3
Single hazard computational results.
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considered, the resulting number of scenarios needed to converge, and objec-
tive function value. For reference, we include the objective function value 
when no generators are placed. From Figure 4.3, we see that the flooding 
hazard requires the greatest number of scenarios to converge. This is due to 
the fact that only 75 stores can ever be impacted by a flood, and further, more 
than two thirds of the stores are only impacted by at most one particular 
flooding event. This means that the intersection of stores impacted by two 
distinct flooding events is small, making it hard to decide on where to locate 
generators unless many scenarios are considered. Also from the table, we 
note that the hurricanes and ice storms have the biggest impact for reopen-
ing locations as is realized through the higher objective function values.

Figures 4.4 through 4.7 display the solutions for the three generator lev-
els and their associated hazard where darker markers indicate the Stewart’s 
Shops selected to receive a generator. For all four types of hazards, the solu-
tions are incremental as we increase the number of available generators. In 
other words, the solution to the problem with 17 generators is a subset of the 
solution with 33 generators, and the solution to the problem with 33 genera-
tors is a subset of the solution with 50 generators. This is expected for a fixed 
set of scenarios as a direct result of the knapsack formulation. If for each 
store the Rsj and ′Rsj values sufficiently converge, we can rank the objective 
function coefficient values and select the best K locations to receive genera-
tors for any number of generators K.

Therefore, the fact that our solutions exhibit this quality validates the use 
of our convergence stopping criteria. In practice, this solution property is 
desirable because if Stewart’s Shops wanted to add more generators to their 
set of stores, they would not have to relocate existing generators to attain 
the optimal solution for the increased number. Instead they could determine 

(a) (b) (c)

FIGURE 4.4
Hurricane hazard solutions. (a) 17 generators, (b) 33 generators, and (c) 50 generators.
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which of the existing locations without generators will be selected for the 
installation of a generator. Also, as a direct result of the formulation, we 
notice the phenomenon of diminishing returns where the benefit of an extra 
generator decreases as the number of available generators is considered. 
From the figures, we see that the solutions to the hurricane, blizzard, and ice 
storm hazards are similar to each other. We expand on this observation in 
Section 4.3.3.

When examining where generators are located, we notice that many 
of the Stewart’s Shops stores in rural locations were selected. As is out-
lined in the Appendix, the population density in the area surrounding a 
store impacts the time when power and communications are restored to 

(a) (b) (c)

FIGURE 4.5
Flood hazard solutions. (a) 17 generators, (b) 33 generators, and (c) 50 generators.

(a) (b) (c)

FIGURE 4.6
Blizzard hazard solutions. (a) 17 generators, (b) 33 generators, and (c) 50 generators.
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the store, where power to urban locations is restored more quickly than 
to rural locations. Therefore, we see that rural locations serving a large 
population that have to wait longer for external services are often selected 
to receive generators.

4.3.2  Sample Average Approximation for All Hazard Types

We now seek to determine a solution that considers all four types of hazards. 
With these tests, we consider two different scenario sampling and weight-
ing schematics. The first scheme looks at each type of hazard equally by 
incorporating an equal number of scenarios of each hazard type and dis-
tributing the weight equally across all scenarios. Specifically if |S| scenarios 

are considered, we generate S
4

 hurricane scenarios, S
4

 flood scenarios, S
4

 bliz-

zard scenarios, and S
4

 ice storm scenarios all with a weight equal to S
4

. 

The second scheme considers each hazard equally; however, it incorporates 
the results from Section 4.3.1 by generating different number of scenarios for 
each hazard type. Let si

k denote the number of scenarios needed to converge 
to a solution for hazard type i and generator level k (e.g., set hurricane as haz-
ard type 1, then s1

17 10 500= ,  as seen in Figure 4.3). Under second sampling 

scheme, the number of scenarios generated for each type is s S
s s s s

i
k

k k k k
1 2 3 4+ + +

. 

The weight is then assigned by hazard type, where the sum of the weights 
for all scenarios of a set hazard type equals 0.25. The weight for each scenario 

of hazard type i (assuming four hazard types) equals 0 25 1 2 3 4. s s s s
s S

k k k k

i
k

+ + +( ), 

which is equivalent to 0.25 divided by the number of scenarios of hazard 

(a) (b) (c) 

FIGURE 4.7
Ice storm hazard solutions. (a) 17 generators, (b) 33 generators, and (c) 50 generators.
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type i. We denote the first scheme as “Equal Sampling” and the second as 
“Hazard-Based Sampling.” For both of these schemes, we continue to test for 
17, 33, and 50 generators. We then use Algorithm 4.1 to determine when we 
have converged to a solution and objective function value.

Figure 4.8 displays the computational results when all hazards are con-
sidered. We notice that both sampling schemes need a comparable number 
of scenarios to converge. Further, the solutions are similar as can be seen 
in Figures 4.9 and 4.10, which show the placement of the generators for the 
Equal Sampling and Hazard-Based Sampling tests represented by darker 
markers. We again see the incremental nature of the solutions as we increase 

(a) (b) (c)

FIGURE 4.9
Solutions for all hazards with equal sampling. (a) 17 generators, (b) 33 generators, and 
(c) 50 generators.

Number of
generators (K)

50

17

33

50

17

33

9,000

12,000

14,000

8,000

12,000

12,500

8,905,650

9,820,900

9,426,040

8,994,290

9,806,580

9,382,530

Number of scenarios
for convergence

Objective
function value

Equal sampling

Hazard

Hazard-based
sampling

FIGURE 4.8
All hazards computational results.
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the number of generators considered. For both Equal Sampling and Hazard-
Based Sampling the solution with 17 generators is a subset of the solutions 
with 33 and 50 generators and the solution with 33 generators is a subset of 
the solution with 50 generators. We reinforce that this is a nice solution prop-
erty, as if budgets increase to allow for the installation of more generators, 
the optimal solution will not require that existing generators be relocated. 
We explore solution similarity by examining the solutions when hazards are 
considered individually and collectively.

4.3.3  Comparison of Solutions

We now examine the solutions, that is, where we selected to locate the gen-
erators, across the different types of hazards individually and collectively. 
We compare these solutions using two different metrics.

The first metric evaluates the converged solution to one test instance under 
si

k randomly selected scenarios of another test instance for hazard type i. 
For example, we take the approximate optimal solution when only hurri-
cane scenarios are considered with 17 generators and evaluate it under a test 
instance with 37,500 flood scenarios (from Figure 4.3) and 17 generators. We 
perform this pairwise comparison for each of the hazards individually (hur-
ricane, flood, blizzard, and ice storm) and under the two different sampling 
techniques (Equal Sampling and Hazard-Based Sampling). An optimality 
gap is then calculated as the percentage difference between the evaluated 
solution’s objective function value and the optimal objective function value 
for that set of scenarios. The second metric that we use to compare solutions 
is a solution matching percentage which is calculated as the ratio of match-
ing selected locations to the number of generators. For example, we take the 

(a) (b) (c)

FIGURE 4.10
Solutions for all hazards with hazard-based sampling. (a) 17 generators, (b) 33 generators, and 
(c) 50 generators.
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solutions to two different problems, say, only hurricane scenarios with 
17 generators and only blizzard scenarios with 33 generators. We then count 
the number of stores that are selected to receive a generator under both solu-
tions. This count is bounded above by the minimum number of generators 
considered, which in this example is 17. A solution matching percentage is 
then calculated by taking the ratio of the count to the minimum number of 
generators.

Figure 4.11 displays the results of the comparisons using the first met-
ric where we evaluate solutions. For each entry in the table, we create si

k 
scenarios (from Figures 4.3 and 4.8) consistent with the descriptions in the 
two left most columns. With this set of scenarios we perform two calcula-
tions: (1) solve it to optimality (which should approximately be equal to the 
objective function value displayed in Figure 4.3 or 4.8) and (2) evaluate the 
converged solution for the type of hazard indicated by the topmost row. For 
both calculations we capture the objective function value and calculate an 
optimality gap by taking the percentage difference between the evaluated 
solutions objective function value and the optimal objective function, which 
is displayed. From these results, it appears the flood hazard is least consis-
tent with the other types of hazards as is represented by large optimality 
gaps. Further, it appears the Equal Sampling solution (column) performs 
better than the Hazard-Based Sampling solution (column) when evaluated 
against the different test instances as it almost always has a smaller optimal-
ity gap.

The results of the comparison using the second metric calculating a solu-
tion matching percentage are presented in Figures 4.12 and 4.13. The values 
are presented in Figure 4.12 and a corresponding heat map where darker 
values signify closer to 1 (100%) are presented in Figure 4.13. The calcula-
tions create a symmetric matrix; however, for conciseness we leave the val-
ues below the diagonal empty. First, we note that our previous observation 
about the incremental nature of the solutions is verified as all values within 
the same hazard–hazard comparison equal 1.00 (e.g., hurricane 17 and hur-
ricane 33). It appears that flood hazards are least similar to ice storm, bliz-
zard, and hurricane hazards. An important point is that the placement of 
generators change significantly when we move from a single hazard to all 
hazards. Therefore, it is important for local supply chain distribution net-
works to understand their goals for their resiliency efforts and incorporate 
the appropriate types of hazards into their analysis. Lastly, we point out that 
the solutions for Equal Sampling and Hazard-Based Sampling have a very 
high matching percentage, indicating that the biased sampling is not critical 
when calculating our resiliency efforts.

4.3.4  Impact of Internal and External Factors

In the last set of tests, we examine how internal and external factors impact 
where we locate generators. The opening time of a store depends on work 
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5.66%

8.35%

7.46%
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2.26%
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1.88%

2.17%
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4.41%

11.14%
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2.07%
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3.53%
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11.84%

16.01%
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19.20%
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3.09%
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FIGURE 4.11
Optimality gaps when the converged solution to the top row hazard is evaluated under the scenarios and optimal solution to the hazard described in 
the first column.
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FIGURE 4.12
Percentage of matching solutions using the count metric.
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being completed at the store (including tasks that require and do not require 
power) and the restoration of external services, such as power, communi-
cations, and transportation (e.g., flooding subsiding). We first examine the 
degree of impact the external factors have on the opening time of each store. 
To quantify this degree of impact, we perform the following procedures 
for each hazard and generator level. We define the opening time for a store 
under a “no work” situation as the time when power and transportation is 
restored (for cash customers) and power, transportation, and communica-
tions is restored (for credit-only customers). (1) We first solve for the optimal 
“no work” solution by (a) generating si

k random scenarios (from Figures 4.3 
and 4.8) of hazard type i where all work is removed and (b) solving this sets 
of scenarios to optimality. (2) We seek to evaluate the optimal “no work” solu-
tion under scenarios with work by (a) generating another set of si

k scenarios 

Hazard K
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17

33

33
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50 17 33 50 17 33 50 17 33 50 17 33 50 17 33 50
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based
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Hazard-based

FIGURE 4.13
Heat map corresponding to the values shown in Figure 4.12 where darker represents closer 
to 1.
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of hazard type i where all work is maintained as created, (b) solving this set 
of scenarios to optimality, and (c) evaluating the optimal “no work” solu-
tion from (1) under this set of scenarios. (3) We then define the degree of 
impact of external factors as the optimality gap (calculated as the percentage 
difference) between the optimal objective function value (from 2b) and the 
objective function value for the evaluated “no work” solution (from 2c). The 
placement of generators is impacted by both external factors and internal 
factors. External factors are present in calculations (1) and (2), while internal 
factors (work) is present only in calculation (2). Therefore, if external factors 
have a greater degree of impact the two solutions (“no work” solution and 
optimal solution from 2b) will be similar as is represented by a smaller opti-
mality gap (closer to 0%). If the external factors have less impact and instead 
the internal factors influence the solution more greatly, the optimality gap 
from calculation (3) will be greater.

Second, we examine the impact of the opening time objective on the solu-
tion as compared to an unmet demand objective. With the opening time 
objective, we capture how long a customer has to wait to acquire goods from 
a Stewart’s location. An unmet demand objective strictly looks at how many 
customers cannot attain goods from their Stewart’s store immediately after 
a hazardous event. These are both realistic objectives that internal man-
agement would have to consider when deciding where to locate genera-
tors among their shops. We follow a procedure similar to the one described 
removing work to capture the impact of switching to an unmet demand 
objective. We first solve a test instance to optimality with si

k scenarios con-
sidering an unmet demand objective. A test instance with the same hazard 
makeup with si

k scenarios is then both solved to optimality and evaluated 
using the optimal unmet demand solution. An optimality gap, calculated 
as a percentage difference, is then calculated between the optimal solution 
objective value and evaluated solution objective value. An optimality gap 
closer to 0% emphasizes that the two objectives are interchangeable.

The results of the two sets of tests are presented in Figure 4.14. The column 
labeled External Factors captures the degree of impact each instance has on 
external factors, where closer to 0% is a greater dependence on external fac-
tors. We see that the flood hazard has the greatest dependence on external 
factors. The result makes sense, as the flooding hazard is the only hazard 
that depends on the release times for flooding, power, and communications. 
The column labeled Unmet Demand captures the interchangeability of the 
opening time and unmet demand objectives, where closer to 0% represents a 
higher degree of interchangeability. On first inspection, the optimality gaps 
appear not close to zero, thereby signifying that the two objectives differ. 
However, Figure 4.15 displays the 330 Stewart’s Shops locations and the count 
of times each location was selected to have a generator across all possible test 
scenarios (opening time, opening time with no work, and unmet demand), 
where a darker color represents a higher count. When we compare Figure 4.15 
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to Figure 4.2 we will see that the higher demand stores correspond to those 
stores with a higher selection count to receive a generator. This indicates that 
demand is a strong driver in the selection of generator placement under any 
objective. However, note that many high-demand stores (particularly those 
near the Albany, New York area in the center right of the map) are not often 
selected to receive a generator. These high-demand stores are in areas with 
highly dense populations that often have power restored quickly. It is the 
high-demand stores in rural, less densely populated areas, that are selected 
to receive generators more frequently, as these stores traditionally have to 
wait longer for restoration of power and communications.

Hazard K

2.10% 3.09%

4.72%
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FIGURE 4.14
Optimality gaps capturing the interdependence on external services and interchangeability of 
different objectives.
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4.4  Conclusions

We examined the resiliency of retail locations of a supply chain network to 
aid in the recovery of the local community after an extreme event. A two-
stage stochastic program was used to determine the location of permanent 
generators among Stewart’s Shops 330 stores. Consistent with recent events, 
we considered four types of hazardous situations that could impact Stewart’s 
Shops: hurricanes, flooding, blizzards, and ice storms. Using an optimal 
greedy algorithm, we tested the model for a variety of different instances by 
considering each hazard individually and collectively using two different 

FIGURE 4.15
Heat map displaying the 330 Stewart’s Shops stores and their respective count of instances 
where they are selected to receive a generator. A darker color indicates a higher count.
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sampling procedures. We examined the impact of external factors, such as 
power, communications, and flooding, and different objectives on the solu-
tion obtained. The results demonstrate that we are able to empirically con-
verge to an optimal solution, using a hybrid stopping criteria, by considering 
a relatively small number of scenarios. We observed that the solutions were 
incremental as the number of available generators increased, which is a 
direct result of the knapsack formulation. This is a desirable property as a 
prioritized list of stores that should receive generators can be made and fol-
lowed as more generators become available.

Future work should involve sensitivity analysis on the parameters used to 
generate the hours of work that each store is required to perform both with 
and without power. These parameters impact the opening times of stores 
and ultimately if demand can be met. Further, scenario-dependent demand 
should be incorporated into the model. Currently, we consider only static 
demand but for many areas, there are many Stewart’s Shops close to one 
another that can service customers if their preferred shop is closed.

Disclaimer

The views expressed in this chapter are those of the authors and do not reflect 
the official policy or position of the United States Air Force, Department of 
Defense, or the United States Government.

Appendix: Scenario Generation

In this section, we describe the procedures to generate a scenario for each 
type of hazard. For each of the four hazards (hurricane, flood, blizzard, and 
ice storm), we describe the different parameters that factor into the scenario 
generation. There are various continuous parameters that impact the scenario, 
meaning that it is not possible to generate the probability of a particular sce-
nario based on these parameters. For each type of hazard, the parameters to 
consider for a scenario are

• Hazard characteristics. Track and intensity level (hurricane, blizzard, 
ice storm) or body of water (flood). Figure 4.16 provides the start-
ing and ending points for hurricanes, blizzards, and ice storms. 
Hurricanes travel south to north and blizzards and ice storms travel 
west to east.
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• Probability of an impact for each store j ∈ N along with whether the 
store is impacted for that scenario

• Release times for power, communications, and flooding (i.e., rsj
p, rsj

c, 
and rsj

f ) for each impacted store j ∈ N
• Amount of work associated with nonpower tasks (i.e., wsjl) for each 

impacted store j ∈ N and commodity l ∈ L$

• Speed with which nonpower tasks are processed both with σ j
p( ) and 

without σ j
np( ) power available

• Amount of time needed to process power-based tasks (psjl)

We now present the values and logic behind each of these parameters for 
the different types of hazards.

FIGURE 4.16
Potential starting and ending points for hurricane, blizzard, and ice storm tracks.
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Hurricane

• Hazard characteristics. We randomly sample a starting (on the south 
horizontal line in Figure 4.16) and ending point (on the north hori-
zontal line in Figure 4.16) for the track and assume the track of the 
storm is a straight line between these points. We then calculate the 
distance from this track to each store, which we represent as δsj. Each 
storm has an associated intensity, α ∈ {0, 1, 2} where 0 represents a 
tropical storm, 1 represents a category 1 hurricane, and 2 represents 
a category 2 hurricane.

• Probability of impact for each store. The probability of a store being 
impacted by the storm track used in scenario s is calculated as 
follows:
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  A random number, vsj ∈ [0, 1], is generated for each store j and 
scenario s. If vsj ≤ psj, then we classify store j as impacted by a power 
outage, otherwise not. If v

p
sj

sj≤
3

, we classify store j as impacted by a 
communications outage, otherwise not. This means that we assume 
that every store impacted by a communications outage is also 
impacted by a power outage. This is consistent with the observations 
after Hurricane Sandy: Communications outages are typically either 
caused by a power outage to a local central office (implying power 
needs to be restored to the area) or because downed poles in the area 
carried both power lines and communications lines.

• Release times for power, communications, and flooding. For hurricanes, 
we will only consider release times for power and communications 
because our focus for this hazard is on wind damage (flooding from 
a hurricane is considered indirectly in the “flooding hazard”). Let 
ξj denote the population density of the county of store j. The release 
time for power is then calculated using the following equation:

 rsj
p sj

j

= +
⋅







⋅2

4
70tanh

 
δ

ξ
 (4.13)

 which puts all power release dates in the range of [2, 72] hours if the 
store is impacted and 0 otherwise.

• The release time of communications is then calculated as a func-
tion of the release time of power and whether there is a precedence 
constraint between repairing power and communications. This can 
happen in situations when the power company owns the poles that 
carry telecommunications lines. If there is a power precedence, then 
the release time of communications is greater than the release time 
of power. We specifically calculate the release of communications as

 r
r

sj
c sj

p

=
0 75. if no power precedence over communicatioons

if power precedence over communications1 25. rsj
p







 where 50% of the stores are selected at random to have a power 
precedence.

• Work associated with nonpower tasks. For each impacted store j, we set 
the work for the convenience commodity to 6 hours and the work for 
the fuel commodity to 3 hours.

• Processing speed of nonpower tasks. Work can be completed at a rate of 
1 unit if there is no power and 1.5 units if there is power available 
(restored early or a generator).

• Time needed for power-based tasks. At each store j, we set the processing 
time for the fuel commodity to 2 hours. For the convenience commodity, 
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we set the processing time to 3 hours. If a store is prone to flooding 
from a specific storm we add on a random integer in [0, 15] to the pro-
cessing time for convenience. We denote a storm prone to flooding if 
the store is within 10 miles of the track and within 0.1 mile of a body 
of water for tropical storms, 0.2 mile of a body of water for category 
1 hurricanes, and 0.3 mile of a body of water for category 2 hurricanes.

Flooding

• Hazard characteristics. There are six large bodies of water that could 
flood and impact various locations of Stewart’s Shops: (1) Hudson, 
(2) Mohawk, (3) Lake Champlain, (4) Black River, (5) Vermont Rivers, 
and (6) St. Lawrence River. Smaller local rivers and creeks flowing 
off of these bodies of water are also included in our analysis. A flood 
is selected uniformly at random from these 6. An intensity level, α, 
from {0.1, 0.2, 0.3, 0.4, 0.5} is selected uniformly at random for each 
flood that represents how far away from the river flooding occurs.

• Probability of impact for each store. There is no probability associated 
with the impact to a store. The impact is determined solely by the 
flooding event and the distance from the store to the body of water. 
For each store j we know its distance to each of the six bodies of 
water, denote this δsj for the flooding event in scenario s. If store j is 
closer to the body of water than the flood intensity level (δsj ≤ αs), then 
it is considered impacted by the event.

• Release times for power, communications, and flooding. The release time 
(in hours) for flooding is calculated using the table that follows, 
where the leftmost column represents the intensity of the flood (αs), 
and the topmost row represents the distance a store is from the body 
of water associated with s (δsj).

0.1

0.1 20

36 16

50 30 14

62 42 26 12

72 52 36 22 10

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

r f
sj
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  The release time of power at store j under scenario s is calculated 
using the following equation:

 r rsj
p

sj
f

j

= + + ⋅





⋅ ⋅ +


max 5 5

200
150 0 1, tanh ( . )

α
ξ

α









 (4.14)

 which puts the release dates in the range [15, 95] if a store is impacted 
and 0 otherwise.

  The release time of communications is calculated using the same 
equation as was done for the hurricane hazard, specifically:

 r
r

sj
c sj

p

=
0 75. if no power precedence over communicatioons

if power precedence over communication1 25.  rsj
p ss







• Work associated with nonpower tasks. For each impacted store j, we set 
the work for the convenience commodity to 12 hours and the work 
for the fuel commodity to 5 hours.

• Processing speed of nonpower tasks. Work can be completed at a rate of 
1 unit if there is no power and 1.5 units if there is power available 
(restored early or a generator).

• Time needed for power-based tasks. The processing time for power-
based tasks for the fuel commodity is set to 2 hours. The process-
ing time for power-based tasks for the convenience commodity 
is calculated using the table below, where the leftmost column 
represents the intensity of the flood (αs) and the topmost row rep-
resents the distance a store is from the body of water associated 
with s (δsj).

0.1

0.1 10

20 10

30 20 10

40 30 20 10

50 40 30 20 10

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5
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Blizzard

• Hazard characteristics. We randomly sample a starting (on the west 
vertical line in Figure 4.16) and ending point (on the east vertical 
line in Figure 4.16) and assume the track of the storm is a straight 
line between these points. We then calculate the distance from this 
track to each store (denoted as δsj). Each storm also has an associ-
ated intensity, α ∈ {1, 2, 3, 4, 5} based on Northeast Snowfall Impact 
Scale.

• Probability of impact for each store. Let lj denote the elevation of store j. 
The potential impact of the blizzard on the store is a function of its 
distance from the track, the intensity of the storm, and its elevation. 
The probability of a store being impacted by the storm track used in 
scenario s is calculated as follows:

 

p
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  A random number, vsj ∈ [0, 1], is generated for each store j and 
scenario s. If vsj ≤ psj, then we classify store j as impacted by a power 
outage, otherwise not. If v

p
sj

sj≤
3

, we classify store j as impacted by a 
communications outage, otherwise not.

• Release times for power, communications, and flooding. We consider only 
release times for power and communications for this type of haz-
ard. Let ξj represent the population density in the area surrounding 
store j. The release time for power is calculated using the following 
equation:

 rsj
p sj

j

= +
⋅







⋅α

δ
ξ

tanh
 4

50  (4.16)

 which puts all power release dates in the range of [1, 55] hours if the 
store is impacted and 0 otherwise.

  The release of communications is calculated using the same equa-
tion as was done for the hurricane scenario, specifically:

 r
r

sj
c sj

p

=
0 75. if no power precedence over communicatioons

if power precedence over communications1 25. rsj
p







• Work associated with nonpower tasks. For each impacted store j we set 
the work for the convenience commodity to 4 hours and the work for 
the fuel commodity to 2 hours.

• Processing speed of nonpower tasks. Work can be completed at a rate of 
1 unit if there is no power and 1.5 units if there is power available 
(restored early or a generator).

• Time needed for power-based tasks. For each impacted store j, we set the 
processing time for work requiring power for both the convenience 
commodity and the fuel commodity to 2 hours.

Ice Storm

• Hazard characteristics. We randomly sample a starting (on the west 
vertical line in Figure 4.16) and ending point (on the east vertical 
line in Figure 4.16) and assume the track of the storm is a straight 
line between these points. We then calculate the distance from this 
track to each store (denoted as δsj. Each storm also has an associated 
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intensity, α ∈ {1, 2, 3, 4, 5} based on the Sperry–Piltz Ice Accumulation 
Index.

• Probability of impact for each store. Let lj denote the elevation of store j. 
The potential impact of the blizzard on the store is a function of its 
distance from the track, the intensity of the storm, and its elevation. 
The probability of a store being impacted by the storm track used in 
scenario s is calculated as follows:
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  A random number, vsj ∈ [0, 1], is generated for each store j and 
scenario s. If vsj ≤ psj, then we classify store j as impacted by a power 
outage, otherwise not. If v

p
sj

sj≤
3

, we classify store j as impacted by a 
communications outage, otherwise not.

• Release times for power, communications, and flooding. We consider only 
release times for power and communications. The release time for 
power is calculated using the following equation:
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 rsj
sj

j

= + +
⋅









 ⋅α

δ
ξ

1
4

80tanh  (4.18)

 which puts all power release dates in the range of [1, 86] hours if the 
store is impacted and 0 otherwise.

  The release of communications is calculated using the same equa-
tion as was done for the hurricane scenario, specifically:

 

r
r

sj
c sj

p

=
0 75. if no power precedence over communicatioons

if power precedence over communications1 25. rsj
p







• Work associated with nonpower tasks. For each impacted store j we set 
the work for the convenience commodity to 2 hours and the work for 
the fuel commodity to 1 hour.

• Processing speed of nonpower tasks. Work can be completed at a rate of 
1 unit if there is no power and 1.5 units if there is power available 
(restored early or a generator).

• Time needed for power-based tasks. For each impacted store j, we set the 
processing time for work requiring power for both the convenience 
commodity and the fuel commodity to 2 hours.
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5
Nested Partitions for Large-Scale 
Optimization in Supply Chain Management

Weiwei Chen and Leyuan Shi

ABSTRACT In today’s global business environment, an effective and reli-
able supply chain substantially increases a company’s competitive advantage. 
Supply chain management has played a crucial role in a business’s success. 
Optimization has been sought to model and solve many of these supply 
chain problems. However, as the size of the optimization model grows, the 
difficulty of finding the optimal or near-optimal solution typically grows 
exponentially. Nested partitions is one of the algorithms developed to tackle 
these large-scale optimization problems. In this chapter, the nested parti-
tions method, and its implementation in two critical supply chain problems, 
are reviewed. One problem is the intermodal hub location problem, a special 
case of facility location problems, and the other is the multilevel capacitated 
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lot-sizing problem with backlogging, a complex problem in production 
planning. The computational results show that the hybrid nested partitions 
approaches are superior to standard mathematical programming and spe-
cialized heuristic approaches, and thus provide an effective alternative in 
enhancing supply chain performance.

KEY WORDS: facility location, large-scale optimization, metaheuristic, nested 
 partitions, production planning,  supply chain management, supply chain optimization.

5.1  Introduction

In today’s global market, designing and managing an effective and reliable 
supply chain increases a company’s competitive advantage. There is no coin-
cidence between the success of retailers such as Amazon and Walmart and 
their innovative supply chain strategies. To appreciate fully the importance 
of supply chain management, we first need to understand what a supply 
chain is.

5.1.1  Supply Chain and Supply Chain Management

A supply chain essentially touches all components of a business’s value chain 
in fulfilling customer demands. It begins with purchasing raw materials to 
supply the production of the products or services that the company wants 
to sell. In making sourcing and procurement decisions, costs and quality 
are two major factors in consideration. Once the materials are in place, man-
ufacturing of the product or operations to provide the service begins. The 
main objective is to lower the operations and inventory costs. Undoubtedly, 
production planning and scheduling is complex because of the various 
resources involved, such as machines, labors, and inventories. It further adds 
to the complexity when multiple operating facilities involve. Demand plan-
ning and forecasting is another crucial effort in supply chain operations. An 
accurate demand forecast not only ensures customer fulfillment and satis-
faction, but also enables effective inventory management. Inventories may 
include final products, raw materials, and/or works-in-process. When the 
products are ready, the next element in the value chain is distribution of the 
products to retailers or customers. The speed of the distribution is critical 
in today’s intense competition. Meanwhile, a company inevitably desires to 
lower the distribution costs. Hence, a good design of the distribution net-
work remains at the top of key supply chain strategical decisions to be made. 
The effort may not end here, as customer services and reverse supply chain 
have become essential parts of the business. Reverse supply chain refers to 
the activities required to retrieve a used product from a customer, either by 
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customer return or vendor recycling, and dispose of it or reuse it (Daniel and 
Wassenhove, 2002).

Although each of the aforementioned components of a supply chain are 
already difficult to manage, the ultimate benefit of supply chain manage-
ment cannot be achieved unless parts of or all components are considered 
systematically and coordinately. For example, the design of a distribution 
network can be better realized when production planning as its upstream 
element and transportation as its downstream element are both taken into 
account. In like manner, production cannot be planned and scheduled accu-
rately if demand forecast and procurement plans are not in place. With the 
global market and outsourcing, the situation becomes further complicated as 
the supply chains of involved companies are often coupled. It seems reason-
able to design and operate a supply chain by considering others. However, 
it has seldom been achieved because of conflicting interests and objectives 
of various parties, not to mention the exponentially increasing technical 
difficulty to consider the entire system. For instance, suppliers typically 
appreciate large quantities of purchase from manufacturers so that they can 
maximize the profit and reduce the transportation cost. On the other hand, 
from manufacturers’ viewpoint, a more flexible purchase plan can mitigate 
the risk of overproduction and reduce the inventory cost. Consequently, the 
changes of one company’s supply chain unavoidably affect other companies’ 
supply chains. Therefore, recent industrial trends pay more attention to the 
robustness of the supply chain as an effort to deal effectively with uncertain-
ties and mitigate risks.

In short, a supply chain involves all business components and facilities, 
including suppliers, manufacturers, warehouses and distribution centers, 
and retailers, which make the product conform to customer requirements. 
The main objective of supply chain management is to reduce costs, improve 
efficiency, and mitigating risks, from both strategic and operational perspec-
tives. We quote a definition of supply chain management from Simchi-Levi 
et al. (2008, p. 1) as follows:

Supply chain management is a set of approaches utilized to efficiently 
integrate suppliers, manufacturers, warehouses, and stores, so that mer-
chandise is produced and distributed at the right quantities, to the right 
locations, and at the right time, in order to minimize systemwide costs 
while satisfying service level requirements.

Such a definition perfectly introduces the main topic of this chapter: large-
scale optimization in supply chain management. First, optimization is the 
modeling and solution techniques popularly used in supply chain manage-
ment. As indicated in the definition, the objective is to minimize costs, while 
operational requirements and service level have to be satisfied as constraints. 
There exist other variants of the objective, such as to maximize profits, which 
can be translated into similar mathematical models. Second, the optimization 
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models of interest are notably in large scale, as we strive to optimize from the 
system level and to coordinate different components in a supply chain. As 
the size of the optimization problem grows, the solution space grows expo-
nentially, as well as the effort to identify the best or even a “good enough” 
solution. As a result, despite systemwide supply chain management being 
the ultimate goal, research efforts in supply chain optimization have been 
focusing on providing an optimal or near-optimal solution to one or mul-
tiple components of a supply chain.

5.1.2  Supply Chain Optimization

To survive in the market competition and compete for the narrow profit mar-
gin, supply chain optimization has become more and more popular among 
the world’s leading retailers, manufacturers, and distributors. As men-
tioned in the preceding text, plenty of opportunities exist for supply chain 
optimization.

The battle typically begins at sourcing. Optimization can be used to design 
an effective sourcing strategy that maintains the production capability in 
a cost-saving manner. An example is the game-changing sourcing strategy 
deployed by Procter & Gamble (P&G; Sandholm et al., 2006). Suppliers make 
electronic offers that express rich forms of capabilities and efficiencies, while 
P&G, as a buyer, also expresses constraints and preferences. The sourcing 
solution brought these together via an optimization engine to determine the 
optimal allocation of business to the suppliers. It was reported to save P&G 
$294.8 million from $3 billion sourcing activities over a period of two and a 
half years.

Because of the problem complexity and importance, production planning 
and scheduling have drawn much attention in the optimization community. 
Although planning and scheduling are mentioned together here, they are 
concerned with activities in different time frames. Production planning is 
a medium-term activity, with the objective of allocating production plans to 
fulfill customer demands at minimum production and inventory costs. On 
the other hand, production operations scheduling is a short-term activity. 
The goal is to determine the optimal allocation of resources (e.g., machines 
and labors) and the sequencing and timing of tasks. Traditionally, produc-
tion planning and operations scheduling have been studied independently 
in consideration of model tractability. Just to name a few, reviews of produc-
tion planning models (e.g., lot-sizing models) and solution algorithms can 
be found in Drexl and Kimms (1997), Kreipl and Pinedo (2004), and Voß and 
Woodruff (2006), and reviews of operations scheduling include Pinedo and 
Chao (1999), Hall and Potts (2003), and Pinedo (2008). Some studies have also 
looked at the possible integration of planning and schedule from an opti-
mization point of view, such as the work in Miller (2002) and Maravelias 
and Sung (2009). Not surprisingly, solving an integrated optimization model 
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is much more difficult and typically requires a much longer computational 
time.

Another popular research area for optimization is distribution. Distribution 
refers to the steps taken to move and store a product from the supplier stage 
to a customer stage in the supply chain (Chopra, 2003). The problems can 
be further divided into strategic and operational decisions. A well-known 
strategic level decision is the distribution network design (Amiri, 2006). 
An effective distribution network delivers products in a timely manner, or 
strives for a low-cost solution, or ideally does both. The distribution network 
design directly affects the inventory costs, transportation costs, and facil-
ity setup and maintenance costs. Many researchers have extensively studied 
facility location problems to determine the optimal locations of warehouses 
and/or plants. As a strategic level decision making, the facility location deci-
sions are usually targeted on one time change for long-term benefits, as the 
investments on each location can be millions of, or even billions of dollars. 
A variety of facility location models, as well as their integration with trans-
portation or inventory, have been reviewed in Daskin et al. (2005) and Klose 
and Drexl (2005).

Given a distribution network, the mode of transportation and the opera-
tional schedule are then determined to transport the products from plants 
or warehouses to warehouses or retailers. Contrary to the network design, 
the operational transportation schedules are typically made on a daily basis 
and subject to uncertainties. From a transportation company standpoint, the 
optimization objective is usually to reduce the unnecessary costs incurred 
by moving empty tractors and/or trailers from one location to another, while 
the on-time delivery rate has to be maintained to fulfill customer services. 
Equivalently, the goal can also be to maximize the overall profit over a plan-
ning horizon. Variants of problems include vehicle routing, local pickup 
and delivery, and intermodal transportation. Typically, the load pickup and 
delivery window constraints and the driver capacity and working hour con-
straints pose difficulties to the mathematical models. Different formulations 
have been proposed and various algorithms have been developed, such as 
column generation (Xu et al., 2001), approximate dynamic programming 
(Powell et al., 2002), heuristics and data mining (Campbell and Savelsbergh, 
2004; Bräsy and Gendreau, 2005a,b; Chen et al., 2013), and so forth.

In addition to the aforementioned topics, optimization has played an 
important role in other aspects of the supply chain management. Some nota-
ble examples include inventory management (Roy et al., 1997; Chen et al., 
2007), reverse supply chain (Pishvaee et al., 2011), considering uncertainties in 
supply chain (Gupta and Maranas, 2003; Bertsimas and Thiele, 2004; Santoso 
et al., 2005), supply chain disruption (Arreola-Risa and DeCroix, 1998; Cui 
et al., 2010; Aboolian et al., 2013), and so forth. Not surprisingly, many of 
these optimization models are large scale and notoriously difficult to solve. 
In this chapter, we review the nested partitions algorithm, a metaheuristic 
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optimization framework for solving large-scale optimization, in applications 
to some of these supply chain optimization problems.

The rest of this chapter is organized as follows. The nested partitions opti-
mization framework is introduced in Section 5.2. In Sections 5.3 and 5.4, we 
review the implementation of nested partitions for solving facility location 
problems and production planning problems, respectively. Conclusions are 
drawn in Section 5.5.

5.2  Nested Partitions and Large-Scale Optimization

Many supply chain optimization problems, as well as other key business stra-
tegic and operational decisions, are large-scale discrete optimization prob-
lems. These problems are challenging and are notoriously difficult to solve.

5.2.1  Large-Scale Discrete Optimization

There are two major techniques for solving large-scale discrete optimiza-
tion problems: (1) exact algorithms that are grounded in mathematical pro-
gramming and dynamic programming theories and (2) heuristics, including 
metaheuristics, which aim to find acceptable solutions quickly.

Exact algorithms have been studied for decades. With the rapid growth 
of computational power and advancements in mathematical theories, 
breakthroughs in the ability to solve large-scale problems using mathe-
matical programming have been achieved. Generally, branching methods 
and decomposition methods are two primary classes of mathematical pro-
gramming methods used to solve discrete optimization problems (Wolsey, 
1998; Nemhauser and Wolsey, 1999). Relaxation methods play a key role in 
the use of math programming for solving discrete optimization problems 
(Lemarechal, 2001; Fisher, 2004). Lagrangian relaxation can be thought of as 
a decomposition method with respect to the constraints because it moves 
one or more constraint into the objective function. The Lagrangian problem 
is easier to solve because the complicating constraints are no longer pres-
ent. Furthermore, it often produces a fairly tight and hence useful bound. 
Dynamic programming is another class of exact algorithms that are pop-
ularly used to address sequential decision making. It solves subproblems 
recursively using the Bellman equation (Puterman, 2005). Despite the break-
throughs, it can still be very time consuming or structurally difficult when 
using exact algorithms for solving practical problems with large sizes. Some 
approximation algorithms have been developed based on similar math-
ematical theories. These algorithms guarantee that the solution lies within a 
certain range of the optimal solution, and usually provide provable runtime 
bounds (Hall and Hochbaum, 1986; Bertsimas and Teo, 1998).
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Another class of optimization algorithms are heuristic algorithms, which 
aim to find good solutions within an acceptable time frame. Unlike exact 
algorithms, heuristics do not usually make a performance guarantee, such 
as bounds. But they have been proven to be very effective and efficient in 
solving many real-world problems. Some heuristic algorithms utilize the 
domain knowledge to speed up the search and thus are problem dependent. 
Meanwhile, there exist a class of metaheuristics, which are designed to be 
applicable to a large variety of problems. One simple algorithm is greedy 
search (Cormen et al., 1990), which makes the locally optimal decision at 
each step. It basically sacrifices solution quality for fast computational speed, 
whereas all heuristics have different trade-offs between these two key mea-
surements. Tabu search (Cvijovíc and Klinowski, 1995; Glover and Laguna, 
1997) improves local search by prohibiting the repeated visits to the same 
solution within a short period of time. A subcategory of the metaheuris-
tics comprises evolutionary algorithms that are typically used by artificial 
intelligence and machine learning communities. These algorithms include 
genetic algorithms (Goldberg, 1989; Mitchell, 1998), ant colony optimization 
(Dorigo, 1992; Dorigo et al., 1999), particle swarm optimization (Kennedy 
and Eberhart, 1995; Poli et al., 2007), and so forth. Some metaheuristics use 
probability distributions as rules and strategies, such as simulated annealing 
(Kirkpatrick et al., 1983; van Laarhoven and Aarts, 1987), cross-entropy meth-
ods (Rubinstein and Kroese, 2004; De Boer et al., 2005), and model reference 
adaptive search (Hu et al., 2007). Metaheuristics are designed to be general 
enough to apply to many real problems, and it is usually easy to further 
speed up the algorithms by embedding domain knowledge.

5.2.2  Nested Partitions Overview

Introduced by Shi and Ólafsson (2000a), the nested partitions (NP) method 
is a metaheuristic framework for solving large-scale optimization prob-
lems. The NP method is a partitioning and sampling based strategy that 
focuses computational effort on the most promising region of the solution 
space while maintaining a global perspective on the problem. It is capable 
to be applied for solving deterministic (both discrete and continuous) and 
stochastic optimization, for example, simulation-based optimization (Shi 
and Ólafsson, 2000b) problems. The focus of this chapter is on deterministic 
discrete optimization. Consider the following optimization problem:

 min ( )
θ

θ
∈Θ

f  (5.1)

Problem 5.1 can be a large-scale mixed integer program, or a combina-
torial optimization problem. The feasible region is denoted as Θ, and an 
objective function f : Θ → ℜ is defined on this set. When the problem size 
is not large, efficient exact algorithms can usually be deployed to solve the 
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problem with guaranteed optimal solutions. However, when the problem 
becomes large, no known exact algorithm exists today to solve the problem 
within reasonable time frame. This type of problems is what the NP method 
targets on.

In each iteration of the NP algorithm, we assume that there is a region 
(subset) of Θ that is considered the most promising. We partition this most 
promising region into a fixed number of M subregions and aggregate the 
entire complementary region (also called surrounding region) into one region, 
that is, all the feasible solutions that are not in the most promising region. 
Therefore we consider M + 1 subsets that are a partition of the feasible region Θ; 
namely, they are disjoint and their union is equal to Θ. This is referred to as 
a valid partitioning scheme. Each of these M + 1 regions is sampled using 
some random sampling scheme to generate feasible solutions that belong to 
that region. The performance values (objective values) of the randomly gen-
erated samples are used to calculate the promising index for each region. This 
index determines which region is the most promising region in the next iter-
ation. If one of the subregions is found to be the best, this region becomes the 
next most promising region. The next most promising region is thus nested 
within the last. If the complementary region is found to be the best, then the 
algorithm backtracks to a larger region that contains the previous most prom-
ising region. This larger region becomes the new most promising region, and 
is then partitioned and sampled in the same fashion.

If region η is a subregion of region σ, we call σ a superregion of η. Let σ(k) 
denote the most promising region in the kth iteration. We further denote the 
depth of σ(k) as d(k). The feasible region Θ has depth 0, the subregions of Θ 
have depth 1, and so forth. When Θ is finite, eventually there will be regions 
that contain only a single solution. Such singleton regions are called regions 
of maximum depth. If the problem is infinite, define the maximum depth to 
correspond to the smallest desired sets. The maximum depth is denoted as 
d*. With this notation, the generic nested partitions algorithm is described in 
Algorithm 5.1 (Shi and Ólafsson, 2000a). The special cases of being at mini-
mum or maximum depth are considered separately.

Algorithm 5.1 Nested Partitions Algorithm (0 < d(k) < d*)

 1. Partitioning. Partition the most promising region σ(k) into M subre-
gions σ1(k), ..., σM(k), and aggregate the complementary region Θ\σ(k) 
into one region σM+1(k).

 2. Random sampling. Randomly generate Nj sample solutions from 
each of the regions σj(k), j = 1,2,…, M + 1:

 θ θ θ1 2, , , , = 1, 2, , 1.j j
N j

j j M  +
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  Calculate the corresponding performance values:

 f f f j Mj j
N j

jθ θ θ1 2, , , , = 1, 2, , 1.( ) ( ) ( ) + 

 

 3. Calculate promising index. For each region σj, j = 1,2,…, M + 1, cal-
culate the promising index as the best performance value within the 
region:

 I k f j Mj
i N j

i
j( ( )) = , = 1, 2, , 1.

{1,2, , }
σ θ

∈
( ) +



min
 

 4. Move. Calculate the index of the region with the best performance 
value.

 ˆ arg minj I kk j M j= ( ( )).{1, , 1}∈ +

σ  

  If more than one region is equally promising, the tie can be broken 
arbitrarily. If this index corresponds to a region that is a sub region 
of σ(k), that is ĵ Mk ≤ , then let this be the most promising region in 
the next iteration:

 σ σ( 1) = ( ).k kjk
+ ˆ

 

  Otherwise, if the index corresponds to the complementary region, 
that is ĵ Mk = 1+ , backtrack to the superregion of the current most 
promising region:

 σ(k + 1) = σ(k − 1).

 or backtrack to the entire solution space:

 σ(k + 1) = Θ.

For the special case of d(k) = 0, the steps are identical except there is no 
complementary region. The algorithm hence generates feasible sample solu-
tions from the subregions and in the next iteration moves to the subregion 
with the best promising index. For the special case of d(k) = d*, there are 
no subregions. The algorithm therefore generates feasible sample solutions 
from the complementary region and either backtracks or stays in the current 
most promising region.

The aforementioned procedure of the NP method gives us a framework 
that guides the search and enables convergence analysis (Shi and Ólafsson, 
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2000a). The basic idea is that the sequence of regions that NP visits, denoted 
by { ( )} =1σ k k

∞ , is a Markov chain, and the regions of maximum depth are the 
only absorbing states. That is, { ( )} =1σ k k

∞  ends up in one of these absorbing 
states with probability 1.

Theorem 5.1

The NP method with a valid partitioning scheme for the optimization problem

 θ θ
θ

* arg min∈
∈Θ

f ( ),
 

converges almost surely to a global minimum in finite time, that is, there 
exist a K < ∞ such that with probability 1,

 σ(k) = {θ*}, ∀k ≥ K,

where

 θ* ∈ arg minθ∈Θ f(θ). 

The generic NP algorithm is particularly effective for problems where the 
solution space can be partitioned such that good solutions tend to be clus-
tered together and the corresponding regions are hence natural candidates 
for concentrating the computational effort. For large-scale problems, it may 
not be natural to find such a partitioning scheme. Therefore, the real power 
of NP is usually achieved when incorporating domain knowledge, local 
search, or mathematical programming into its framework. The NP frame-
work provides the guidance to explore the entire solution space with global 
convergence guarantee, while the incorporated algorithm exploits each sub-
region efficiently.

According to our computational experience, hybrid NP algorithms with 
local heuristics (including math programming) almost always outperform 
heuristics alone. It has been successfully used in solving optimization prob-
lems from various domains. In Shi et al. (2001), NP is combined with greedy 
search, dynamic programming, and genetic algorithm to solve a product 
design problem, which is to use the preferences of potential customers to 
design a new product such that the market share is maximized. Another 
example is a hybrid NP and tabu search algorithm developed to allocate 
optimally a given buffer capacity in a factory such that a desired system 
performance is achieved (Shi and Men, 2003). Other examples include radia-
tion treatment planning (Zhang et al., 2009), feature selection in data mining 
(Ólafsson and Yang, 2005), and local pickup and delivery (Pi et al., 2008; Chen 
et al., 2013). In the next two sections, we present two such applications, one 
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in facility location (Pi et al., 2008; Chen et al., 2009) and the other in produc-
tion planning (Wu et al., 2011), and demonstrate how to develop hybrid NP 
methods for solving large-scale supply chain optimization.

5.3  Nested Partitions for Facility Location

In this section, we review a detailed implementation of the NP method for 
solving the intermodal hub location problem (IHLP), which is first published 
in Pi et al. (2008). IHLP is a hub location problem in the intermodal trans-
portation industry and can be viewed as a special type of discrete facility 
location problems.

Truck/rail intermodal transportation combines the cost-effectiveness of 
rail with the flexibility of trucks. When freight is transported, it is first loaded 
onto a trailer or a container that is moved from the shipper to a nearby rail 
ramp by truck. Then the freight is conveyed by rail to a ramp close to its 
destination. Finally it is delivered to the consignee by truck (Chen et al., 
2011). Intermodal operations utilize a sealed container or truck trailer that is 
mechanically moved between modes (truck, rail) in a seamless fashion. An 
intermodal terminal has equipments suitable for transferring the contain-
ers and trailers between modes. Because of its economic impact, this prob-
lem has drawn a great attention by researchers (Campbell, 1994; O’Kelly and 
Bryan, 1998; Racunica and Wynter, 2005).

5.3.1  Mathematical Model

The IHLP aims to minimize the total costs of the intermodal transportation 
system, including operations costs of the open hubs and the routing costs of 
the intermodal movements. The notations and formulation are introduced 
as follows:

Sets and indexes
• I = {1,…,|I|}: set of terminal (origin and destination) locations
• R = {1,…,|R|}: set of intermodal hub locations
• F = {1,…,|F|}: set of demand flows, that is, product movements 

from an origin to a destination
• Of, f ∈ F: origin terminal of flow f
• Df, f ∈ F: destination terminal of flow f

Parameters
• wf, f ∈ F: amount of flow f
• c r Rr

O, ∈ : operations cost of hub r, if r is open
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• c i j I R R R R Iij
T , ( , ) ∈ × ∪ × ∪ × : transportation cost of unit flow 

between location i to location j
• c f Ff

P, ∈ : penalty cost per unit amount of flow f moved by other 
mode of transportation instead of intermodal, such as long-haul 
truck movement, which is usually more expensive

• δij, (i, j) ∈ I × R ∪ R × I: equals 1 if a movement from i to j is 
allowed; equals 0 otherwise

Decision variables
• xfkl, f ∈ F, k ∈ R, l ∈ R: the amount of flow f moved through inter-

modal rail line (k, l)
• yij, (i, j) ∈ I × R ∪ R × R ∪ R × I: the amount of flow from location 

i to location j
• zr, r ∈ R: binary facility location variables. zr = 1 if hub r is open; 

zr = 0 otherwise
• uf, f ∈ F: the amount of flow f that is not moved through the inter-

modal operations
Formulation

min

 
r R

r
O

rc z
∈

∑ ⋅  (5.2)

 + ⋅
∈ × ∪ × ∪ ×

∑ c yij
T

ij

i j I R R R R I( , )

 (5.3)

 + ⋅
∈

∑c uf
P

f

f F

 (5.4)

Subject to

 u x w f Ff fkl f

k R l R

+ ∀ ∈
∈ ∈
∑ = , ,

,

 (5.5)

 x w z f F k Rfkl f k

l R

≤ ⋅ ∀ ∈ ∈
∈

∑ , , ,  (5.6)

 x w z f F l Rfkl f l

k R

≤ ⋅ ∀ ∈ ∈
∈

∑ , , ,  (5.7)
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 x y i I k Rfkl ik

f F l R O if

≤ ∀ ∈ ∈
∈ ∈

∑ , , ,
, : =

 (5.8)

 x y k R l Rfkl kl

f F

≤ ∀ ∈ ∈
∈

∑ , , ,  (5.9)

 x y l R j Ifkl lj

f F k I D f j

≤ ∀ ∈ ∈
∈ ∈

∑ , , ,
, : =

 (5.10)

 x w f F k I l Ifkl f O kf
≤ ⋅ ∀ ∈ ∈ ∈δ , , , ,  (5.11)

 x w f F k I l Ifkl f l D f
≤ ⋅ ∀ ∈ ∈ ∈δ , , , ,  (5.12)

xfkl, yij, uf are nonnegative, and zr are binary.

In the objective function, Equation 5.2 is the hub operations cost, Equation 
5.3 is the intermodal transportation cost, and Equation 5.4 is the penalty of 
using another transportation mode instead of intermodal. The constraints in 
Equation 5.5 require that all the demand flows should be transported. The 
constraints in Equations 5.6 and 5.7 guarantee that flow can be routed only 
via an open hub in an intermodal movement. The constraints in Equations 5.8 
through 5.10 are the flow balance requirements. The constraints in Equations 
5.11 and 5.12 are the restrictions of the movements between terminals and hubs.

5.3.2  Hybrid NP and Mathematical Programming Algorithm

To effectively solve the IHLP, a hybrid NP and mathematical programming 
(HNP–MP) approach is developed. Math programming is used to solve the 
smaller subproblems.

In most NP implementations, complete sample solutions are generated in 
each sampling step. To be able to integrate the mixed integer programming 
(MIP) techniques into the NP framework, partial sampling is developed. 
A partial sample is a solutions that is generated by sampling only part of 
the variables in a given region. For example, assume that the current most 
promising region is ( *, , *, , , )1 1θ θ θ θ k k n+ , where θ θ1

*, , *
 k  are fixed. By sam-

pling θk+1,…,θk+1(1 ≤ j < n − k), we have a partial sample in the following form: 
( *, , *, , , , , )1 1 1θ θ θ θ θ θ  k k k j k j n+ + + +, . The purpose of introducing partial sam-
ples is that by reducing the number of variables of the original problem, the 
subproblem with only variables (θk+j+1,…,θn) could be solved effectively using 
math programming.

The HNP–MP algorithm is presented in Algorithm 5.2.
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Algorithm 5.2 HNP–MP Algorithm

 1. Set the initially most promising region as the entire solution space. 
Set the initial surrounding region as ∅.

 2. If stopping conditions are met, stop and return the best sample 
obtained; otherwise, proceed to the next step.

 3. Obtain LP solution for the current most promising region. Perform 
LP biased sampling (to be introduced later) in the most promis-
ing region and surrounding region to generate partial samples 
( * , , * , , , , , )1 1 1θ θ θ θ θ θ  k k k j k j n+ + + +, .

 4. Evaluate partial samples ( * , , * , , , , , )1 1 1θ θ θ θ θ θ  k k k j k j n+ + + +,  by solv-
ing the subproblems using math programming. Calculate the prom-
ising indexes. If the next most promising region is within the current 
most promising region, further partitioning; otherwise, backtrack-
ing. Go to step 1. 

5.3.2.1  Sampling

The first step in applying the HNP–MP approach to IHLP problems is to 
determine a proper form of partial samples such that the capability of MIP 
solvers such as CPLEX can be fully leveraged to efficiently solve the small-
scale subproblems associated with the partial samples. For the IHLP, we 
define partial samples as feasible solutions to the problem in the form of fix-
ing a set of hubs to be closed (some z variables are fixed to 0), and no flow can 
move through these closed hubs. Figure 5.1 shows an example with seven 
hubs r1,…,r7, and four flows f1,…,f4; and in the partial solution, hubs r1, r4 and 
r6 are closed.

Biased sampling techniques can be used to obtain partial samples with 
high quality. We develop a biased sampling procedure, called the linear pro-
gramming (LP) solution-based sampling, for solving the IHLP problem. The 
procedure is described in Algorithm 5.3.

Algorithm 5.3 LP Biased Sampling

 1. Obtain the LP solution. Denote the solution of variable z by z*.
 2. Calculate the sampling weights of variable z, based on the value of 

z*. For ∀k ∈ R, define ′ +W zk k= * ε (ε is a very small nonnegative num-
ber). The sampling weights are then obtained by normalization

 W k W W W k Rk k k

k R

( ) = = .hub is open /′ ′ ∀ ∈′
′∈

∑ ,
 

 3. Based on the sampling weights, generate partial samples. 
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5.3.2.2  Calculating the Promising Index

To calculate the promising index, we first need to evaluate the partial sam-
ples generated in the sampling step. Given the partial sample, the remaining 
problem is a smaller subproblem that can be solved quickly using math pro-
gramming. In Figure 5.1, hubs r1, r4 and r6 are closed. By solving the corre-
sponding subproblem, a complete sample solution can be obtained as shown 
in Figure 5.2. The elite samples obtained will be used to calculate the prom-
ising index and guide the partitioning/backtracking. For the IHLP, if only 
a fraction of the z variables are fixed (to 0) in a partial sample, the partial 
sample corresponds to a relatively small problem with the same structure 
as the original problem; if the partial samples are in the form of fixing all 
the z variables, the subproblem associated with each partial sample becomes 
a linear program. For both cases, standard math programming approaches 
can be used to evaluate partial samples efficiently.

5.3.2.3  Partitioning, Backtracking, and Stopping

If the most promising region needs to be further partitioned, we keep the 
current best sample in the next most promising region, which provides a set 
of partitioning variables. For the IHLP, each available partitioning variable 
can be used to partition current most promising region into two subregions 
(one subregion with the given hub open and the other with the given hub 
closed).

r4

r3

r2

r1

r7f4
f3

f1f2

r5

r6

Terminals

Potential hubs

Closed hubs

FIGURE 5.1
IHLP: a partial sample.
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If backtracking is performed, then some constraints on the most promis-
ing region are relaxed. For the IHLP, by dropping some cuts that let certain 
hub(s) open, the next most promising region will include the current most 
promising region and the best sample obtained so far. The algorithm usu-
ally stops when the computational resource (e.g., time) reaches a predefined 
value. Other problem-depend stopping criteria can also be designed.

5.3.3  Computational Results

In Pi et al. (2008), 21 randomly generated cases were tested. The solutions 
generated by the HNP–MP approach were compared to those computed by 
CPLEX MIP solver and a Lagrangian relaxation (LR) approach in Geoffrion 
(1974), respectively. For these instances, the sizes of terminal locations range 
from 30 to 60, the sizes of candidate hubs range from 30 to 50, and the size 
of flows range from 150 to 300. Owing to the limited space, we refer to Pi et 
al. (2008) for detailed settings of each test case. The test results are shown 
in Table 5.1. In the table, LB is the best lower bound obtained using CPLEX 
MIP solver; CPLEX is the solution obtained using the CPLEX MIP solver; 
Gap CPLEX (%) is the optimality gap of CPLEX solution; LR is the solution 
obtained using the Lagrangian relaxation approach; Gap LR (%) is the opti-
mality gap of LR solution compared to LB; HNP–MP is the solution obtained 
using the HNP–MP approach; Gap HNP-MP (%) is the optimality gap of 
HNP–MP solution compared to LB.

From Table 5.1, the solutions found by HNP–MP is superior to those found 
by LR and standard CPLEX MIP solver. Also, the HNP–MP solutions are 

r3

r4

r2

r1

r7

r6

r5

f3
f4

f2

f1

Terminals

Opened hubs

Closed hubs

FIGURE 5.2
IHLP: a complete sample solution.
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very close to the optimality, owing to the facts that good sample solutions are 
quickly identified to speed up the search.

5.4  Nested Partitions for Production Planning

In this section, we review an implementation of NP in solving the multi-
level capacitated lot-sizing problem with backlogging (ML-CLSB) published 
in Wu et al. (2011). ML-CLSB is a class of problems in production planning.

The ML-CLSB problem intends to plan production at each stage of a com-
plex bill-of-materials (BOM) over a finite horizon. The objective is to minimize 
the total costs, including setup costs, inventory holding costs, and backlog-
ging costs, while meeting all customer demands by the end of the planning 
horizon. Effective solutions of this problem is one important determinant of 

TABLE 5.1

IHLP Test Results

Case LB CPLEX

Gap 
CPLEX 

(%) LR

Gap 
LR 
(%) HNP–MP

Gap 
HNP–MP 

(%)

1 487,561 604,171 23.9 518,017 6.2 494,705 1.5
2 448,997 461,617 2.8 505,079 12.5 454,880 1.3
3 320,345 403,153 25.8 337,503 5.4 324,313 1.2
4 313,337 385,607 23.1 329,818 5.3 317,509 1.3
5 238,229 302,019 26.8 256,319 7.6 241,663 1.4
6 232,600 253,196 8.9 234,998 1 234,898 1
7 312,283 350,581 12.3 329,982 5.7 315,783 1.1
8 553,196 604,171 9.2 567,793 2.6 565,163 2.2
9 523,013 570,222 9 555,238 6.2 528,691 1.1
10 365,622 401,353 9.8 371,864 1.7 372,036 1.8
11 354,859 385,607 8.7 361,218 1.8 359,298 1.3
12 275,713 302,020 9.5 281,922 2.3 275,793 0
13 267,871 300,074 12 274,028 2.3 269,229 0.5
14 353,558 395,128 11.8 367,467 3.9 358,710 1.5
15 477,633 604,171 26.5 485,076 1.6 481,618 0.8
16 447,052 455,698 1.9 484,173 8.3 454,129 1.6
17 305,522 401,353 31.4 314,423 2.9 312,196 2.2
18 295,429 385,607 30.5 312,687 5.8 301,513 2.1
19 229,240 302,020 31.7 237,010 3.4 233,042 1.7
20 222,205 300,074 35 248,134 11.7 226,639 2
21 299,684 395,128 31.8 312,503 4.3 305,789 2
Average 18.2 4.8 1.4
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cost performance in Material Requirements Planning (MRP), Manufacturing 
Resource Planning (MRPII), and Enterprise Resource Planning (ERP) systems.

The ML-CLSB problems are notoriously difficult to solve due to their 
complexity. Past research has focused on simpler variants (single-level or 
uncapacitated or both) (Pochet and Wolsey, 1988; Ganas and Papachristos, 
2005; Song and Chan, 2005; Mathieu, 2006). Heuristics and metaheuristics 
have also been popular in solving lot-sizing problems due to the difficulties 
encountered using exact algorithms (Kuik and Salomon, 1990; Ozdamar and 
Bozyel, 2000; Tang, 2004; Karimi et al., 2006; Akartunalı and Miller, 2009).

5.4.1  Mathematical Model

Multiple mathematical formulations exist in literature. They result in differ-
ent performance when using different solution approaches. A formulation 
that generates tight lower bound and is suitable for using the NP method is 
presented in the following context:

Sets
• T = {1,…,|T|}: set of time periods in the planning horizon
• M = {1,…,|M|}: set of machines
• I = {1,…,|I|}: set of items
• endp ⊂ I: set of end items
• endpi ⊆ endp, i ∈ I: set of end items that utilize item i
• ηi ⊂ I: set of immediate successors of item i

Parameters
• sci, i ∈ I: setup cost for producing item i
• eci, i ∈ I: echelon inventory holding cost for one unit of item i 

per time period, which is the unit holding cost for item i minus 
the total holding cost of its immediate predecessors needed 
(Akartunalı and Miller, 2009)

• bci, i ∈ I: backlogging cost for one unit of item i per time period
• edit, i ∈ I, t ∈ T: echelon demand for item i in period t, which is 

the gross demand needed for item i in period t plus the amount 
of item i needed to produce its immediate successor (Akartunalı 
and Miller, 2009)

• rij, i ∈ I, j ∈ I: amount of item i needed to produce one unit of item 
j, where item j is one of the successors of item i

• aim, i ∈ I, m ∈ M: production time required to produce one unit of 
item i on machine m

• stim, i ∈ I, m ∈ M: setup time required for producing item i on 
machine m

• Cmt, m ∈ M, t ∈ T: available capacity of machine m in period t
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Decision variables
• xitp, i ∈ I, t ∈ T, p ∈ T: amount of item i produced in period t to 

satisfy demand in period p
• yit, i ∈ I, t ∈ T: binary setup decision variables. yit = 1 if production 

is setup for item i in period t; yit = 0 otherwise
Formulation

min

 sc yi it

t Ti I

⋅
∈∈

∑∑  (5.13)

 + ⋅ − ⋅
=∈∈

∑∑∑ ec p t xi itp

p t

T

t Ti I

( )  (5.14)

 + ⋅ − ⋅
=

−

∈∈
∑∑∑ bc t p xi itp

p

t

t Ti endp

( )
1

1
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 xitp ≤ edip · yit, ∀i ∈ I, t ∈ T, p ∈ T, (5.19)

 a x st y C m M t Tim itp

p Ti T

im it mt

i I

⋅ + ⋅ ≤ ∀ ∈ ∈
∈∈ ∈

∑∑ ∑ , , ,  (5.20)

xitp are nonnegative, and yit are binary.

Here, the objective function consists of the setup costs (Equation 5.13), 
the inventory holding costs (Equation 5.14), and the backlogging costs 
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(Equation 5.15). The constraints in Equation 5.16 ensure that the demands in 
each period are satisfied. The constraints in Equation 5.17 mean that echelon 
inventories for non-end items are no smaller than those of their corresponding 
successors. The constraints in Equation 5.18 guarantee that echelon backlog lev-
els for non-end items are consistent with the backlog levels of their correspond-
ing end items. The constraints in Equation 5.19 are setup forcing constraints. 
The constraints in Equation 5.20 enforce production capacity limits.

5.4.2  Lower and Upper Bound Guided Nested Partitions

In this section, a hybrid NP approach is introduced, called the lower-and-
upper bound guided nested partitions (LugNP). The LugNP method focuses 
on solving mixed-integer programming models in the following form.

min c1x + c2y

s.t. A1x + A2y ≥ b (P)
  x ∈ Rn, y ∈ {0,1}m

Problem (P) represents typical mixed binary integer programming mod-
els, which our ML-CLSB model falls into. The difficulties in solving these 
problems arise as a result of the existence of binary variables y. The basic 
idea of the LugNP method is to efficiently fix a subset of the binary variables 
that leads to a restricted version of problem (P) that is easier to solve. It starts 
with quickly finding a feasible solution using certain heuristics. This idea is 
inherited from the HNP–MP approach presented in Section 5.3.

Denote four subsets of the binary variable y as qf, qp, qs, and qm, represent-
ing the index sets of binary variables that are fixed in the current iteration, 
currently used for partitioning, currently used for sampling, and the free 
variables, respectively. Given qf, qp, and qs, the restricted version of problem 
(P) is denoted as (PS), where yp are known for all p ∈ qf ∪ qp ∪ qs. Solving 
problem (PS) is to obtain unknown variables x and yp, p ∈ qm.

LugNP relies on a lower bound and an upper bound updated in every 
iteration. To obtain such a lower bound, a lower bounding technique, such 
as linear programming relaxation, is desired and denoted as L. Meanwhile, 
a heuristic or math programming, denoted as H, is used to obtain the upper 
bounds. With the aforementioned notations, the LugNP method is described 
in Algorithm 5.4.

Algorithm 5.4 LugNP Algorithm 

 1. Initialization. Solve (P) using L and H to obtain a lower bound LB 
and an initial feasible solution UB. The corresponding binary vari-
ables in LB and UB are denoted as y and y . Set k = 1, qf = ∅, qp = ∅, 
qs = ∅, and the current most promising region σ(k) = Θ.

© 2016 by Taylor & Francis Group, LLC

  



143Nested Partitions for Large-Scale Optimization

 2. Select partitioning and sampling variables. For each free binary 
variable in qm, compute the following probability based on y and y .

 Pr p qmp

yp y
p

p qm

yp y
p

= , .

1 1
ρ

ρ
ρ

ρ

− −

′∈

− ′ −
′

∑ ∀ ∈/

 

  Here ρ ≥ 1 so that a larger value of ρ leads to a higher probability 
of selecting a variable with a smaller gap between its corresponding 
y  and y. Sort all binary variables in qm in the descending order of 
Prp. Select the top one or several binary variables in qm as the next 
partitioning variables (qp), and the next one or several binary vari-
ables as the sampling variables (qs).

 3. Partitioning. Partition the current most promising region into M 
subregions and one surrounding region, based on the selected par-
titioning variables qp.

 4. Partial sampling. Within each subregion σj(k) (binary variables in qf 
and qp fixed), randomly sample the variables in qs and construct the 
corresponding Nj subproblems

 P Pkj
S

kjN j
S

1, , .

 5. Estimate promising index. Within each subregion σj(k), solve all sub-
problems using the lower bound technique L to obtain lower bounds

 L Lkj
S

kjN
S

j0 1 0, , .P P( ) ( )

  Determine the subproblem with the best lower bound, whose 
index is denoted by îkj as

 î Lkj i N j kji
S= .{1, , } 0arg min P∈ ( )



  The promising index of σj(k) is then determined by solving the 
subproblem Pkji

S
ˆ( ), using the heuristic H, as

 H kj i
S

kj0 ( ) .P ˆ( )
 6. Determine the next most promising region and move. The next 

most promising region, whose index is denoted by ĵk, is chosen as

 ˆ arg min ˆj Hk j M kj ikj

S= .{1, , 1} 0 ( )∈ + ( )

P
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  Update y using the solution of H k jk ikj

S
0 ( )( )P ˆ ˆ( ) and y  using the solu-

tion of L k jk ikj

S
0 ( )( )P ˆ ˆ( ).

  Stop if all binary variables are in qf or time limit is reached. 
Otherwise, either further partitioning or backtracking based on the 
next most promising region. Go to step 1.

There are two key elements in the LugNP algorithm.

 1. In each iteration, the new partitioning and sampling variables are 
chosen based on the current best lower bound and upper bound. For 
a given binary variable in y, the smaller the gap between the vari-
able’s values in y and y, the higher probability it is chosen as a par-
titioning and sampling variable. Partitioning variables have higher 
priorities than sampling variables.

 2. When estimating the performance of each subregion, we do not 
need to solve all partial sample, that is, subproblems P Pkj

S
kjN j
S

1, , , 
using the heuristic algorithm H. Instead, all the subproblems are 
solved using the lower bound technique L, which is generally much 
faster than H. For example, H can be a MIP solver, while L can be a 
LP solver. Only the subproblem with the best lower bound is solved 
using H to obtain a feasible solution in this subregion. Hence, the 
computational time is greatly shortened.

To solve the ML-CLSB problem, we choose LP relaxation to be the lower 
bound technique L and a relax-and-fix heuristic to be the upper bound heu-
ristic H. The basic idea of the relax-and-fix algorithm is to keep only a subset 
of the binary variables at a time, and relax the binary requirement on others. 
The resulting problem, which is now smaller, is then solved using a MIP 
solver. Once we fix this subset of the binary variables, the similar procedure 
is repeated until the entire subproblem is solved (Wu et al., 2011).

5.4.3  Computational Results

In Wu et al. (2011), 12 sets of instances were tested. The first four test sets, 
denoted by A B C D+ +, , , , were modified based on the benchmarks published 
in Tempelmeier and Derstroff (1996) and Stadtler (2003) to permit backlog-
ging. They contain 120, 312, 144, and 79 test cases, respectively. The second 
four test sets, denoted by A B C D+ +, , , , were modified based on the first four 
test sets to allow a more significant role of backlogging. The last four test 
sets, denoted by SET1, SET2, SET3, and SET4, were adopted from Akartunalı 
and Miller (2009). They contain 30 instances each. We refer to Wu et al. (2011) 
for detailed description of test instances and settings.

The LugNP method is compared with the CPLEX MIP solver (branch-and-
cut) and a heuristic proposed in Akartunalı and Miller (2009). The average 
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performance on each set of test instances are shown in Table 5.2. The opti-
mality gaps of solutions generated by the heuristic, CPLEX, and LugNP 
are shown, where the lower bound is obtained by the LP relaxation. “Imp_
Heuristic (%)” and “Imp_CPLEX (%)” represent percentage of improvements 
of LugNP solutions compared to the heuristic and CPLEX solutions, respec-
tively. The table shows that LugNP outperforms both the heuristic and the 
CPLEX MIP solver. On average, LugNP improves the solution quality by 
19.84% and 27.45% from heuristic and CPLEX, respectively.

5.5  Conclusions

With the increasingly intensified competition, companies have paid much 
attention to build effective and robust supply chains. Supply chain manage-
ment is the collection of approaches to achieve that goal. In recent years, 
optimization has gained more and more recognition in supply chain man-
agement because of its rigor and power to pursue cost reduction and effi-
ciency improvement. As one can imagine, many of these problems emerging 
in supply chain optimization are large scale and notoriously difficult to 
solve. The nested partitions method, along with other exact and heuristic 
algorithms, is developed to tackle these large-scale optimization problems.

In this chapter, the nested partitions method is reviewed and its global 
convergence is presented. It is a partitioning and sampling based global ran-
dom search algorithm. The real power of nested partitions lies in its flexibil-
ity to incorporate other heuristics or exact algorithms. The NP framework 

TABLE 5.2

ML-CLSB Test Results

Data Heuristic (%) CPLEX (%) LugNP (%) Imp_Heuristic (%) Imp_CPLEX (%)

A + 30.21 32.24 24.76 18.03 23.20
B + 29.42 34.26 23.86 18.90 30.36
C 47.84 39.75 29.10 39.16 26.79
D 28.51 29.72 14.89 47.78 49.91

A + 28.98 30.82 24.92 13.99 19.12
B + 34.30 34.69 28.57 16.69 17.63
C 46.79 40.28 29.92 36.05 25.73
D 43.31 79.95 32.73 24.43 59.06
SET1 14.36 19.59 14.28 0.54 27.07
SET2 8.84 12.43 8.82 0.22 28.98
SET3 206.04 248.13 172.69 16.18 30.40
SET4 108.68 123.60 105.59 2.84 14.57

© 2016 by Taylor & Francis Group, LLC

  



146 Supply Chain Management and Logistics

guides the optimization search to be focused on the subsets of the solution 
space where the optimum is most likely to exist. Within each subset, the 
incorporated heuristic or exact algorithm quickly explores and searches for 
the local optimum. To demonstrate the hybrid NP approaches, we review 
two important supply chain problems solved by NP. One example is the 
intermodal hub location problem, a special case of facility location problems. 
The mathematical model is provided, and a hybrid NP and math program-
ming (HNP–MP) approach is introduced to solve the problem. Test results 
show that the HNP–MP approach is superior to the CPLEX MIP solver and 
a Lagrangian relaxation method. Another example is the multilevel capaci-
tated lot-sizing problem with backlogging (ML-CLSB), which is a complex 
production planning problem. A binary integer programming (BIP) model 
is provided, and a lower and upper bound guided NP (LugNP) method is 
proposed to deal with such a BIP model. The LugNP method utilizes lower 
bounds and upper bounds to determine a good set of partitioning and sam-
pling variables, as well as the next most promising region. Computational 
tests on 12 sets of instances show 19.84% of improved performance over a 
heuristic proposed to solve ML-CLSB problems and 27.45% of improvement 
over the standard CPLEX MIP solver.

In short, this chapter reviews the nested partitions method and its appli-
cations to supply chain management. More importantly, we would like to 
place more emphasis on supply chain optimization and hope to inspire more 
advancements in such an important area.
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6
A Schedule-Based Formulation 
for the Cyclic Inventory Routing Problem

Zhe Liang, Rujing Liu, and Wanpracha Art Chaovalitwongse

ABSTRACT In this chapter, we study a cyclic inventory routing problem 
(CIRP). The traditional exact methods for the inventory routing problem 
(IRP) use an arc-based formulation (also known as two-index flow formula-
tion), in which a variable represents a possible vehicle flow between a pair 
of customers. In this research, we propose a schedule-based model (SBM), in 
which a variable represents a possible one-day schedule for any vehicle. This 
model can be considered a Dantzig–Wolfe decomposition of the arc-based 
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model. We also propose a set of new valid inequalities to tighten the linear 
relaxation bound of SBM. To solve SBM efficiently, we develop a column gen-
eration algorithm in which only attractive vehicle schedules are generated. 
Our computational results on five real-life test cases show that the linear pro-
gramming (LP) relaxation of SBM is tight. SBM can obtain near-optimal solu-
tions to very large real-life test cases within a reasonable time, and average 
integer programming (IP)–LP gaps of SBM are within 5% for maximum-level 
(ML) policy and 7% for order-up-to-level (OU) policy, respectively.

KEY WORDS: column generation, cyclic schedule, integer programming, inven-
tory routing problem, valid inequality.

6.1  Introduction

The inventory routing problem (IRP) integrates three major decisions— 
inventory management, vehicle routing, and delivery scheduling—in the 
supply chain management. In the classical IRP, a fleet of homogeneous capaci-
tated vehicles located at a central depot is used to serve a group of customers 
over multiple periods. In each period, the vehicles start and end the routes at 
the depot while the total inventory carried by each vehicle cannot exceed the 
vehicle capacity. The objective of IRP is to construct a replenishment sched-
ule for each customer and a set of vehicle routes while minimizing the total 
inventory and transportation cost. There are two commonly used inventory 
replenishment policies: maximum-level (ML) policy and order-up-to-level 
(OU) policy. In the ML policy, the inventory delivered to a customer can be 
any positive value as long as the inventory at the customer does not exceed 
its maximum inventory capacity. In contrast, in the OU policy, whenever 
a customer is visited, the inventory delivered has to fullfill the customer’s 
inventory capacity. In the last three decades, numerous exact solution meth-
ods and heuristics have been proposed for IRP. For a complete review of the 
theoretical and industrial development of IRP, we refer interested readers to 
two recent survey papers by Andersson et al. (2010) and Coelho et al. (2014).

IRP is closely related to the well-known capacitated vehicle routing prob-
lem (VRP). The traditional model for VRP is an arc-based formulation (also 
known as the two-index flow formulation; Toth and Vigo, 2014). However, 
recent advances in VRP suggest a very promising modeling direction, in 
which VRP is formulated as a set partitioning problem and each variable 
represents a unique vehicle route. The route-based model can optimally 
solve some very hard test cases that previously could not be solved by the 
arc-based model (Fukasawa et al., 2006; Baldacci et al., 2011; Pecin et al., 2014).

On the other hand, the most promising exact methods for IPR are those 
of Archetti et al. (2007) for the ML policy and Solyli and Sural (2011) for the 
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OU policy, which are all arc-based models. Adulyasak et al. (2014) performed 
an extensively computational study on the aforementioned methods. It is 
shown that these methods can solve only test cases with up to 35 customers, 
3 periods, and 3 vehicles optimally. If the number of periods increases from 
3 to 6, the size of the optimally solvable test cases decreases to 15 customers 
with 2 vehicles. Because the formulations proposed in Archetti et al. (2007), 
Solyli and Sural (2011), and Adulyasak et al. (2014) are arc-based models, 
branch-and-cut has to be used for optimal integer programming (IP) solu-
tions. However, one of the major challenges is that the linear programming 
(LP) relaxations of these formulations are not tight. For example, Adulyasak 
et al. (2014) reported that when inventory cost is low, most gaps between the 
root note LP solution and the best IP solution range from 10% to 20%, and 
this root node IP–LP gap increases with the problem size. Consequently, the 
poor root note LP leads to a very long computational time.

Enlightened by the advances in VRP, in this chapter, we propose a schedule-
based model for the cyclic inventory routing problem (CIRP) for both ML 
and OU policies. The variable in a schedule-based model represents a pos-
sible 1-day schedule for any vehicle. Then we develop a set of valid inequal-
ities to tighten the linear relaxation of the model. Because the number of 
possible schedules increases exponentially with the number of customers, 
we also develop a column generation algorithm to solve the LP relaxation 
efficiently. Our computational results over five real-life large test cases show 
that the model proposed is competitive with both the exact methods of the 
ML policy of Archetti et al. (2007) and Adulyasak et al. (2014)  and the OU 
policy of Solyli and Sural (2011). The proposed method can obtain very good 
IP solutions to the very large test case (up to 67 customers, 7 periods, and 16 
vehicles) within 5% optimality in 4 hours of computational time.

This chapter is organized as follows. In Section 6.2, we provide a literature 
review on the CIRP. In Section 6.3, we first present an arc-based model, which 
is similar to the one in Archetti et al. (2007). Then we propose a schedule-
based model (SBM), which can be viewed as a Dantzig–Wolfe decomposition 
of the arc-based model. We present the solution method for SBM in detail 
in Section 6.4. We also extend the schedule-based model for some real-life 
considerations in Section 6.5. Computational results on real-life test cases are 
reported in Section 6.6. Finally, conclusions and future research directions 
are given in Section 6.7.

6.2  Literature Review

Recently with the evolution of computational capability, researchers have 
been able to develop better solution approaches for many different IRP vari-
ations, such as stochastic IRP (Kleywegt et al., 2002, 2004; Adelman, 2004; 
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Hvattum et al., 2009), robust IRP (Solyli et al., 2012), maritime IRP (Gronhaug 
et al., 2010; Engineer et al., 2012), and consistent IRP (Coelho et al., 2012), to 
name but a few. Among them, the CIRP is used to find an inventory replenish-
ment and vehicle routing schedule that are repeatable over a perpetual time 
horizon. CIRP is especially important and practical for customers with deter-
ministic and periodic demands, that is, the deterministic demand pattern 
repeats itself periodically (e.g., weekly or monthly). Because the customer’s 
demands are periodical and deterministic, a cyclic schedule is highly desir-
able. The studies of Anily and Federgruen (1990) and Gallego and Simchi-
Levi (1990) are among the first to consider CIRP. Anily and Federgruen (1990)  
analyzed a class of “fixed partition policies,” in which customers are grouped 
into regions, all of the customers within each region are served together by 
one vehicle, and different regions are served independently and separately. 
Gallego and Simchi-Levi (1990) showed that the long-run effectiveness of a 
direct shipping strategy is at least 94% effective whenever the Economic Lot 
Size is at least 71% of vehicle capacity. In the last decades, CIRP has drawn 
more and more attention from both industry and academia. Aghezzaf et 
al. (2006) and Raa and Aghezzaf (2008, 2009) studied a CIRP with constant 
demand rate. The length of the complete replenishment cycle is one of the 
decisions in the resulting schedule. Aghezzaf et al. (2006) proposed a mixed-
integer programming model and a column generation solution algorithm to 
solve this problem, and Raa and Aghezzaf (2008) proposed a heuristic that 
is capable of handling more real-life constraints. Raa and Aghezzaf (2009) 
extended their previous work by integrating several heuristics into the col-
umn generation framework. Aghezzaf et al. (2012) and Vansteenwegen and 
Mateo (2014) proposed a mixed-integer programming model and an itera-
tive local search algorithm to a single-vehicle CIRP, which raised a pricing 
subproblem for the column generation proposed by Aghezzaf et al. (2006). 
Zhao et al. (2008) studied a three-echelon logistic system containing a sup-
plier, a central warehouse, and a group of retailers with constant demand 
rate. They first partitioned all the retailers into multiple regions as in Anily 
and Federgruen (1990) and Gallego and Simchi-Levi (1990), and then applied 
a power-of-two replenishment strategy for all the retailers in a region. They 
also proposed a variable large neighborhood search heuristic to optimize the 
partition of the retailers. Chan et al. (2013) studied a partition-based periodic 
policy, in which the retailers are partitioned into regions, and vehicles can 
serve all the retails in one or multiple regions at the same time. It is shown 
that a partition-based policy has the worst-cast asymptotic performance of 
1.202 with respect to the best possible policy. Ekici et al. (2015) proposed an 
interactive clustering-based constructive heuristic to solve the CIRP in two 
stages: clustering and delivery schedule generation. It is worth mentioning 
that the CIRP they considered is different from all of those in the previous 
study because the number of periods in the cyclic schedule is predefined.

The CIRP we studied is similar to the one in Ekici et al. (2015). We assumed 
the number of periods in the cyclic schedule is predefined, for example, 
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7 days a week. Furthermore, instead of assuming a constant demand rate at 
each customer, we assume the demand rate for each customer is determinis-
tic and periodically repeated. Therefore, the demand rates at different peri-
ods of the cycle might be different for the same customer. This is appropriate 
especially when the demand rate has seasonality.

6.3  Problem Definition and Formulation

The CIRP can be described as follows. There is a single depot, a set of cus-
tomers, and a set of vehicles. Each customer has a deterministic demand rate 
in each period, and a customer can be visited at most once per period. The 
number of vehicles available is predefined, and a vehicle departs from and 
arrives at the depot in each period and can visit multiple customers as long 
as the inventory carried for these customers is less than the vehicle capac-
ity. CIRP aims to find a schedule, lasting a predefined number of periods, 
for replenishing customers’ inventory such that the long-term transportation 
cost is minimized. For each customer, the inventory at the end of the last 
period is equal to the inventory at the beginning of the first period, so that 
the replenishment schedule for all customers is repeatable over a perpetual 
time horizon. No stock out is allowed for any customers in CIRP.

6.3.1  Arc-Based Model

To facilitate our discussion, we define the following notations.

Sets, parameters, and constants

M: the set of customers, indexed by i and j
o: the depot where all vehicles depart from and arrive at
T: the set of planning periods, indexed by t
dit: the demand for customer i ∈ M in period i ∈ T
cij: the travel distance/cost between location i and j, where i, j ∈ M ∪ {o}
Bi: the maximum inventory that customer i can hold
K: the set of vehicles available, indexed by k
H: the vehicle capacity

Variables

xijkt: the binary variable indicating whether vehicle k ∈ K travels from 
customer i to customer j in period t. xijkt = 1 if vehicle k travels 
from customer i to j in period t ∈ T, and 0 otherwise

yit: the inventory for customer i ∈ M at the end of period t ∈ T
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uikt: the binary variable indicating whether vehicle k visits customer 
i in period t. If uikt = 1, the customer is visited and 0 otherwise

vikt: the nonnegative variable representing the delivery amounts to 
customer i by vehicle k in period t ∈ T

The basic model (BM) can be formulated as follows:

 min
,

c xij ijkt

i j Mk Kt T ∈∈∈
∑∑∑  (6.1)

 s t x x i M k K t Tijkt jikt

j Mj M

. . = 0 , , ,− ∀ ∈ ∀ ∈ ∀ ∈
∈∈

∑∑  (6.2)

 x k K t Tm jkt

j M
o

= ∀ ∈ ∀ ∈
∈

∑ 1 , ,  (6.3)

 x k K t Tjm kt

j M
o

= ∀ ∈ ∀ ∈
∈

∑ 1 , ,  (6.4)

 uikt ≥ xijkt ∀i, j ∈ M, ∀k ∈ K, ∀t ∈ T, (6.5)

 u i M t Tikt

k K∈
∑ ≤ ∀ ∈ ∀ ∈1 , ,  (6.6)

 vikt ≤ min{Bi, H}uikt ∀i ∈ M, ∀k ∈ K, ∀t ∈ T (6.7)

 v H k K t Tikt

i M

≤ ∀ ∈ ∀ ∈
∈

∑ , ,  (6.8)

 y y v d i M t Tit it ikt it

k K

= , ,1−
∈

+ − ∀ ∈ ∀ ∈∑  (6.9)

 y v B i M k Kit ikt i

k K

+ ≤ ∀ ∈ ∀ ∈
∈

∑ , ,  (6.10)

 xijkt, uikt ∈ {0,1}, yit, vikt ≥ 0 ∀i, j ∈ M, ∀k ∈ K, ∀t ∈ T. (6.11)

The objective in Equation 6.1 minimizes the total travel cost of all vehi-
cles during the complete planning period. The constrains in Equations 6.2 
through 6.4 are the flow balance constraints for each vehicle. The constraints 
in Equation 6.5 imply that if arc ij is traveled by a vehicle, customer i must 
be visited. The constraints in Equation 6.6 ensure that a customer can be 
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visited at most once per period. The constraints in Equation 6.7 ensure the 
delivery amount for any customer i is less than or equal to the minimum of 
the vehicle capacity and the customer’s inventory capacity. The constraints 
in Equation 6.8 ensure that the total delivery amount for the customers from 
vehicle k must be less than or equal to the vehicle capacity. The constraints in 
Equation 6.9 represent the inventory balance constraints for each customer 
during the complete planning horizon. Here we assume t − 1 is equal 
to |T| when t = 0, which means that the inventory at the end of the planning 
horizon is equal to the inventory at the beginning of the planning horizon, 
so that the resulting schedule is repeatable from one planning horizon to the 
next. The constrains in Equation 6.10 ensure that the customer’s inventory 
capacity cannot be exceeded. The constraints in Equation 6.11 are the binary 
and nonnegative constraints for variables.

6.3.2  Schedule-Based Model

The solutions provided by BM might contain sub-tours, and we need to add 
sub-tour elimination constraints to BM iteratively to find a feasible solution. 
This procedure could be very time consuming. Therefore, it is natural to 
decompose the BM using Dantzig–Wolfe decomposition, such that each vari-
able in the model representing a feasible vehicle schedule in a single period. In 
the schedule-based model (SBM), a feasible vehicle schedule is a one-day trip 
that departs from and arrives at the depot and visits a sequence of customers. 
The total inventory delivered to the customers must obey the vehicle capacity 
constraint. As we can see, each vehicle schedule contains two types of infor-
mation: the routing information and the inventory replenishment informa-
tion. To facilitate our discussion, we define the following additional notations.

Additional sets and parameters

S: the complete set of feasible vehicle schedules for all planning 
periods. Define St where t ∈ T is the set of all feasible vehicle 
schedules in period t. Therefore, we have 

t T
tS S

∈
= , and 

S S t t Tt t1 2 1 2= , ,∩ ∅ ∀ ∈ . Let Sit be the set of all vehicle schedules 
visiting customer i in period t.

cs: the travel cost of schedule s, where c cs ij

ij S

=
∈

∑
bis: the inventory delivered to customer i ∈ M in schedule s

Additional variables

zs: the binary variable indicating whether a vehicle schedule is selected 
in the solution. zs = 1 if schedule s is selected and 0 otherwise.

uit: the binary variable indicating whether a customer is visited in 
period t. uit = 1 if customer i is visited in period t and 0 otherwise.
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The schedule-based model for ML policy (SBM-ML) can be formulated as 
follows:

 min c zs s

s S∈
∑  (6.12)

 s t z K t Ts

s St

. ,. ≤ ∀ ∈
∈

∑  (6.13)

 y y b z d i M t Tit it is s it

s Sit

= , ,1−
∈

+ − ∀ ∈ ∀ ∈∑  (6.14)

 y b z B i M t Tit is s i

s Sit

−
∈

+ ≤ ∀ ∈ ∀ ∈∑1 , ,  (6.15)

 z u i M t Ts it

s Sit

= ∀ ∈ ∀ ∈
∈

∑ , ,  (6.16)

 zs, uit ∈ {0,1}, yit, ≥ 0 ∀i ∈ M, ∀t ∈ T, ∀s ∈ S. (6.17)

The constraints in Equation 6.13 ensure that at most |K| vehicle schedules 
can be selected in a period. The constraints in Equation 6.14 represent the 
inventory balance constraints for each customer. The constraints in Equation 
6.15 ensure that inventory for customer i isless than or equal to its maxi-
mum inventory level. The constraints in Equation 6.16 ensure that at most 
one vehicle visits a customer in each period. The constraints in Equation 6.17 
are nonnegative and binary constraints for variables.

The SBM-ML can be easily extended to OU policy by adding the following 
constraints.

 yit + dit ≥ Biuit ∀i ∈ M, ∀t ∈ T. (6.18)

The constraints in Equation 6.18 together with the constraints in Equation 
6.14 ensure that the inventory at customer i is Bi after replenishment if uit is 1.

6.4  Solution Methods

In this section, we first present a set of valid inequalities to tighten the linear 
relaxation of SBM. Then we develop a column generation algorithm to obtain 
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the optimal LP relaxation of SBM. Finally, we propose a simple heuristic to 
obtain the IP solution to SBM efficiently.

6.4.1  Valid Inequality on the Number of Replenishments

Although the SBM improve the LP relaxation of BM to some extent, the gap 
between the optimal LP relaxation and the optimal IP solution of SBM is 
still large. This is because in the solution to the LP relaxation, the routing 
decisions are highly related to the inventory decision. Here, we present an 
example to show the reasons for the poor LP relaxation.

Consider a problem with a single vehicle, a single customer, and a single 
period.  Customer i’s daily demand di = 5; the vehicle’s capacity H = 25; and 
we have three vehicle schedules s1, s2, and s3, as shown in Table 6.1.

The optimal IP solution is zs1
= 1 and the cost is 100. However, the opti-

mal solution to the LP relaxation is zs2
= 0.2 and zs3

= 0.8, and the cost of 
the LP relaxation is 20. This is because the routing cost of the LP relaxation 

5
25 1

×




cs  is strongly affected by demand di in the SBM-LP relaxation. It is 

easy to see that the optimal LP relaxation is equal to 
d
H

i × 100  for any di, and 

the IP–LP gap is H d
H

i− . When H is much larger than di, the LP relaxation 

of SBM provides little information on the optimal IP solution. In fact, this is 
also the case for BM.

It is not hard to see that the total number of visits to customer i in the com-

plete planning horizon has to be greater or equal to 
d

B H

it

t T

i

∈
∑













min{ , }

. Therefore, 

we can easily cut off the situation as shown in example above using the valid 
inequality that has been proposed in Adulyasak et al. (2014) and Coelho et al. 
(2014) for the IRP. That is,
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it
t T
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i
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d

B H
i M

∈

∈∑
∑

≥

















∀ ∈
min{ , }

.  (6.19)

TABLE 6.1

Comparison between Optimal LP Relaxation and Optimal IP Solution to SBM

Schedule Route Inventory Cost LP Relaxation Optimal IP

s1 O → i → O 25 100 0.2 0
s2 O → i → O 5 100 0 1
s3 O → O 0 0 0.8 0
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The aforementioned bounds on the number of replenishments for any cus-
tomer can be further improved as follows.

Proposition 6.1

For any customer with constant demand di, if Bi ≤ H, then the number of replenish-

ments has to be greater or equal to 
T
B
d

i

i



























. That is

 u
T
B
d

i Mit

t T i

i

∈
∑ ≥



























∀ ∈ .  (6.20)

Proof: Because Bi ≤ H, each time after replenishment, the maximum inven-

tory is at most Bi. Therefore, it is easy to see that 
B
d

i

i









  is the maximum number 

of periods that customer i can last without a replenishment. Then 
T
B
d

i

i



























 is 

the minimum number of replenishments needed for the complete planning 
horizon. EOF.

Proposition 6.2

For any customer with constant demand di, if Bi ≤ H, valid inequality in Equation 6.20 
is stronger than the valid inequality in Equation 6.19.

Proof: Specifically, we have

 
T

B d
T d
B
d

d

T d
Bi i

i

i

i
i

i
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×








 ×

≥ ×
= =

Total demand over T
Bi

.

Therefore, if we take the ceiling on both sides of this inequality, we have the 
following.
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These bounds can be extended to nonconstant demand and the condi-
tion Bi ≤ H can also be relaxed. To find the bound on the minimum num-
ber of replenishments needed for any customer i, we first need to construct 
an inventory flow network Gi(Ni, Ei) for each customer i ∈ M as shown in 
Figure 6.1.

Each node n ∈ Ni is indexed by two more parameters t ∈ T and p, where 
0 ≤ p ≤ Bi and p is integer. Define the set of nodes indexed by t as Nit. There 
are two types of arcs in the inventory flow network: consumption arcs and 
replenish arcs. A consumption arc eipt starts from node nipt and ends at node 
niqt+1, where q = p − dit, representing that the inventory for customer i drops 
from p to q after one-period consumption. No consumption arc is constructed 
for node nipt if p < dit. A replenishment arc eipqt starts from nipt and ends at node 
niqt, where 0 ≤ p ≤ q ≤ Bi, representing that the inventory for customer i is 
replenished from p to q. For an ML policy, p and q can be any integer as long 
as q − p ≤ H as shown in Figure 6.1a; and for an OU policy, q has to be equal 
to H and p ≥ max{Bi − H,0} as shown in Figure 6.1b. After the inventory flow 
network Gi is constructed, it is easy to see that any directed cycle in Gi can be 
viewed as a feasible replenishment plan for customer i. Then we define the 
following variables.

(a) (b) 

Period 1 Period 2 Period 3 Period 4 Period 1 Period 2 Period 3 Period 4

Consumption arc

Replenishment arc

Inventory = 3

Inventory = 4

Inventory = 2

Inventory = 1

Inventory = 0

FIGURE 6.1
Inventory flow network containing four periods for a customer. The maximum inventory 
capacity of the customer is 4, and the demands are 2, 1, 2, and 3 for period 1, 2, 3, and 4, respec-
tively. The vehicle capacity is 3. (a) Inventory flow network for ML policy. (b) Inventory flow 
network for OU policy.
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Variables

ripqt: the binary variable indicating whether the replenishment arc 
eipqt is implemented. If ripqt = 1, the arc eipqt in period t ∈ T is imple-
mented and 0 otherwise.

wipt: the binary variable indicating whether the consumption arc eipt is 
used. If wipt = 1, the arc eipt is used and 0 otherwise.

Then we can solve the following network model (NM) for the minimum 
number of visits to each customer in the complete planning horizon.

 min rpqt

q p

B

p

B

t T

ii

= +=

−

∈
∑∑∑

10

1

 (6.21)

 s t w t T
p dt
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∑ ∀ ∈  (6.22)

 w r w r ti p dit t qpt pt
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( 1)( 1)

0

1

1

− − −
=

−

= +

+ = + ∀∑ ∑ ∈∈ ≤ ≤T p Bi, 0 ,  (6.23)

 wpt, rpqt ∈ {0,1} ∀t ∈ T, 0 ≤ p < q ≤ Bi. (6.24)

The objective in Equation 6.21 minimizes the total number of replenish-
ments. The constraints in Equation 6.22 ensure that only one inventory level 
is selected in each period. The constraints in Equation 6.23 are the inventory 
flow balance constraints. The constraints in Equation 6.24 are the binary con-
straints for variables.

Proposition 6.3

Denote the partial relaxation of NM in Equations 6.21 through 6.24 as NMw if 
we relax the binary constraints for r variables. Let conv(NMw) denote the convex 
hull of NMw and conv(NM) as the convex hull of NM. We have conv(NMw) = 
conv(NM).

Proof: For any feasible solution to NMw, because wpt variables have been fixed, 
the constraints in Equation 6.21 become void, and the constraints in Equation 
6.23 form a network matrix (hence a totally unimodular matrix) with only r 
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variables, with a value on the right-hand side of 1, 0, or –1. Therefore, conv(NMw) 
has to be integral. Thus, we know conv(NMw) = conv(NM). EOF.

Denote the objective value of NMw for customer i as Obji(NMw), we have the 
following theorem.

Theorem 6.1

The number of replenishment for customer i has be to greater or equal to 
Obji(MNw). That is

 u NM i Mit i w

t T

≥ ∀ ∈
∈

∑ Obj ( ) .  (6.25)

Usually NMw can be solved very efficiently because the majority of the 
constraints in NMw are network constraints, and it contains only t × min{Bi, H} 
number of binary variables.

We can also disaggregate the constraints in Equation 6.25 using the follow-
ing inequality.

 u i M t Tit

t t

t it
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+
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= 1
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1
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 (6.26)

Here, τit1
 is the minimum number of period starts from t1 for customer i 

such that d Bit i
t t

t it
>

= 1

1 1
+∑ τ

. The inequality in Equation 6.26 ensures that there 

must be at least one visit to customer i from period t1 to t it1 1
+ τ  because the 

total demand is more than the capacity of customer i.
Finally, we can also limit the total number of vehicle schedules used in the 

entire planning horizon as follows.
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 .  (6.27)

The inequality in Equation 6.27 ensures there are enough vehicle sched-
ules to carry the total demand for all customers during the entire planning 
horizon.
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6.4.2  Nondominated Variables

It is obvious that SBM is a Dantzig–Wolfe decomposition of the BM. Like 
many Dantzig–Wolfe reformulations, SBM contains a very large number of z 
variables. The number of physical routes grow exponentially with the num-
ber of customers, and even for the same physical route, if the inventories 
delivered to each customer are different, they represent different z variables.

We can greatly reduce the size of S by excluding the dominated sched-
ules in SBM. We say a schedule s1 is dominated by route s2, if M Ms s1 2

⊆ , 
b b i Mis is s1 2 1

≤ ∀ ∈ , and c cl l1 2
≥ . Here, Ms1

 and Ms2
 are the sets of customers 

visited by s1 and s2 respectively. We can eliminate the dominated schedules 
in two stages. First, we know that for all vehicle routes (without considering 
inventory information) visiting the same set of customers, there exists one 
vehicle route that dominates all other vehicle routes with the minimum dis-
tance. Particularly, if the maximum number of customers that a vehicle can 

visit in a period is Mveh, the maximum number of routes is 
m

Mveh M

m=1∑












. 

Second, for the set of vehicle schedules constructed from a nondominated 
route, we can eliminate those that are not fully loaded. This is because for 
a vehicle schedule s1 that is not fully loaded, there must exist a fully loaded 
vehicle schedule s2 such that b b i Mis is s1 2 1

≤ ∀ ∈ .
It is worth mentioning that if we erase all the dominated schedules, it 

might cause an infeasibility of SBM. For example, if we have a customer i 
with demand 5 and Bi = 5, and the vehicle capacity is 25. It is obvious that all 
the schedules, whose route is o → i → o, are dominated by the fully loaded 
vehicle with bis = 25. If we erase all the dominated schedules such as the 
schedule o → i → o with bis = 5, the constraints in Equation 6.15 cannot be sat-
isfied. To resolve this issue, we introduce a set of surplus variables wit, which 
represents the unnecessary inventory if the inventory at a customer is more 
than its capacity. Therefore, the constraints in Equations 6.14 and 6.15 can be 
replaced as follows:

 y y b z w d M t Tit it

s Sit

is s it it= , ,1−
∈

+ − − ∀ ∈ ∀ ∈∑  (6.28)

 y b z w B i M t Tit

s Sit

is s it i−
∈

+ − ≤ ∀ ∈ ∀ ∈∑1 , ,  (6.29)

 wit ≥ 0 ∀i ∈ M, ∀t ∈ T. (6.30)

After solving SBM with the constraints in Equations 6.28 through 6.30, the 
actual inventory needed for each customer can be easily computed as bis − wit, 
∀i ∈ Ms, ∀s ∈ St, ∀t ∈ T.
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6.4.3  Column Generation

Because the number of schedules |S| increases exponentially with the num-
ber of customers, it is impractical to enumerate all the nondominated routes, 
especially when the maximum number of customers that a vehicle can visit 
in a period is large. Therefore, we propose a column generation algorithm 
to obtain the optimal LP relaxation of SBM. To facilitate our discussion, we 
define the following dual variables.

Dual variables

π: the positive dual variable associated with the constraints in 
Equation 6.27

δt: the negative dual variable associated with the constraints in 
Equation 6.13

αit: the dual variable associated with the constraints in Equation 6.16
βit: the positive dual variable associated with the constraints in 

Equation 6.14 (because the = sign can be replaced by ≤)
γit: the negative dual variable associated with the constraints in 

Equation 6.15

The reduced cost of a schedule ′cs in period t can be written as follows:
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 (6.31)

Therefore, if we can find any schedule s such that the reduced cost is less 
than 0, we should add it to SBM to improve the LP relaxation. If there is no 
schedule  such that the reduced cost is less than 0, we know the current LP 
relaxation is optimal. From Equation 6.31, we can easily see that the pricing 
subproblem in period t can be formulated as follows:

 min ( )
,

c b xij it it it i ij

i j M

− − +
∈

∑ β α γ( )  (6.32)

 s t x
j M

mo j. . = 1
∈

∑  (6.33)
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 xjm
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∑ 1  (6.34)
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 b H B x i Mi i ij
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∑min{ , } ,  (6.36)
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i M

≤
∈

∑  (6.37)

 xij ∈ {0,1}, bi ≥ 0 ∀i, j ∈ M. (6.38)

Here, we assume αot = βot = 0 for the consistency. The objective function in 
Equation 6.32 minimizes the reduced cost of the schedule. The constraints 
in Equations 6.33 through 6.35 are the flow balance constraints for the route. 
The constraints in Equation 6.36 ensure the delivered inventory bi can be 
positive only if customer i is visited. The constraints in Equation 6.37 are 
the capacity constraints. Although the objective function in Equation 6.32 is 
quadratic, it can be linearized as follows:

 min ( )
,

c x bij it ij it it i

i Mi j M

− − +
∈∈

∑∑ α β γ( )  (6.39)

Here, we provide two simple heuristics to the pricing subproblem for SBM. 
In the first heuristic, we first discard the profit contributed by (βit + γit)bi, and 
then the problem becomes the shortest path problem. Because the value of cij − 
αit can be positive or negative, we apply the well-known label correction algo-
rithm, Bellman–Ford algorithm, to obtain the optimal solution to the shortest 
path problem. Then we can sort all the customers in the shortest path by βit + 
γit in descending order. We first ensure that each customer has the minimum 
inventory delivered, that is, bi = 1, ∀i. Then we try to maximally allocate the 
remaining capacity to the customer with the largest βit + γit. If there is still 
remaining capacity left, we repeat the procedure to the customer with the sec-
ond largest βit + γit. The procedure continues until there is no vehicle capacity 
left. In the second heuristic, we sort all the customers by βit + γit in descending 
order, and we try to allocate the maximum capacity to the customers with 
higher βit + γit until there is no capacity left. We then construct the shortest 
path to the selected customers and compute the final reduced cost.
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In every iteration of the column generation, after solving the subproblem 
by two proposed heuristics, if the reduced cost for some schedule is negative, 
we add it to the restricted master problem without solving the pricing sub-
problem model in Equations 6.32 through 6.38. Otherwise, we need to use 
the subproblem model in Equations 6.32 through 6.38 to prove the optimality 
of the LP relaxation. For each column generation iteration, we need to solve 
|K| × |T| subproblems.

6.4.4  Implementation Issues

We can always use branch-and-price to obtain the optimal IP solution for 
SBM. However, in our study, instead of using branch-and-price, we solve a 
restricted IP with only the schedules generated in the column generation. To 
speed up the computation, we first modify the constraints in Equation 6.13 
as follows:

 v z t Tt s

s St

− ≥ ∀ ∈
∈

∑ 0 ,  (6.40)

 0 ≤ vt ≤ H, and is integer ∀t ∈ T. (6.41)

Here, vt represents the number of vehicles used in each period. Then, 
in the branch-and-bound tree, we always branch on vt variables first, fol-
lowed by uit variables, and lastly on zs variables. This is because in each 
period, the number of vehicles used is a higher level decision than which 
customers to visit, and uit (the set of customers to visit) leads to the decision 
on the exact vehicle schedules. The above branching rule can be achieved 
using the CPXcopyorder function. Also, when there is a fraction variable 
vt or uit, we always first search the floor of that variable because we want 
to reduce the number of vehicles used in each period (with respect to vt) 
and the total number of visits to all customers (with respect to uit) because 
intuitively it might reduce the total number of vehicles and replenishment 
to customers. When we solve the SBM, we stop the CPLEX branch-and-
bound process if there is no improvement on the best integer solution 
within 1800 seconds.

6.5  Model Extension

In this section, we discuss several possible model extensions that could be 
useful in real-life applications.
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6.5.1  Multiple Depots

Assume there are multiple depots denoted by set O, and a vehicle can depart 
from and arrive at different depots during its route. Therefore, when we gen-
erate vehicle schedules, a route can start and end at different depots. Also, 
we need to ensure that the number of vehicles that arrived at a depot in the 
previous period must be equal to the number of vehicles that depart from the 
same depot in the next period, so that the vehicle schedule is repeatable. This 
can be formulated as follows:

 z z o O t Ts

s Sot

s

s Sot∈ + ∈ +
−

∑ ∑= ∀ ∈ ∀ ∈

1

, .  (6.42)

Here, Sot
+  and Sot

−  are the sets of vehicle schedules arriving at and departing 
from depot o ∈ O in period t respectively.

6.5.2  Depot Capacity

If the inventory provided by the depot in each period is limited and denoted 
by Capo, ∀o ∈ O, we can formulate the depot capacity constraints as follows:

 b z o O t Ts s o

s Sot

≤ ∀ ∈ ∀ ∈
∈

∑ Cap , .  (6.43)

Here, bs is defined as the total delivery amount of vehicle schedule s, so 

b bs is
i s

=
∈∑ .

6.5.3  Multiple Fleets

In many real-life situations, more than one fleet is available. Therefore, it is 
natural to extend the proposed model for the multiple-fleet situation. This 
can be easily done by introducing a new set of available fleets, F, and increas-
ing the dimensionality of variables with a fleet index. Define Kf as the set of 
vehicle available in fleet f ∈ F. Define Sfit as the set of vehicle schedules for 
fleet f that visit customer i in period t. The MIP formulation for multifleet 
CIRP with multiple-depot and depot capacity is given by

 min c zs s

s Sf F f∈∈
∑∑  (6.44)

 s t z K f F t Ts f

s S ft

. . , ,≤ ∀ ∈ ∀ ∈
∈

∑  (6.45)
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 y y b z d i M t Tit it is s it
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 y b z B i M t Tit is s i

s Sf F fit

−
∈∈

+ ≤ ∀ ∈ ∀ ∈∑∑1 , ,  (6.47)

 z d Hs

s Sf Ft T

it
f F

f

i Mt Tfit∈∈∈
∈

∈∈
∑∑∑ ∑∑≥ 





max ,  (6.48)
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+

−
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1
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 b z o O t Ts s o

s Sf F fot

≤ ∀ ∈ ∀ ∈
∈∈
∑∑ Cap , .  (6.50)

Equations 6.25 and 6.26,

 zs, uit ∈ {0,1}, 0 ≤ yit ≤ Bi ∀f ∈ F, ∀i ∈ M, ∀t ∈ T, ∀s ∈ Sfit. (6.51)

6.5.4  Finite Period Inventory Routing Problem

In fact, SBM can also be extended to model the finite period IRP because 
CIRP and IRP are closely related. To facilitate our discussion, we denote Iit0

 
as the initial inventory for customer i. Then we just a need to discard the 
inventory balance constraints in Equation 6.14 for t = |T|, and set y Iit it0 0

= .
To compute the minimum number of replenishments in Equation 6.25, 

we only build the inventory consumption arcs and replenishment arcs cor-
responding to inventory level Iit0

 for customer i in period t0 as shown in 
Figure 6.2.

All the inventory consumption arcs and replenishment arcs terminate at 
the nodes in the last period of the planning horizon (hence the schedule is 
no longer cyclic). Then the proposed SSM model can be easily adapted to the 
new inventory flow network.

Finally, it is worth mentioning that in general CIRP is more difficult than 
the finite period IRP because of the following two points. First, the solution 
space of CIRP is larger than IRP because in CIRP there is no initial inven-
tory. As a result, any combination of the initial inventories to all customers 
may appear in the optimal solution to CIRP. Second, many known results 
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for IRP can no longer be applied to CIRP. For example, Archetti et al. (2007, 
2011) and Adulyasak et al. (2014) proposed a very effective valid inequality 
as follows:

 u

d I

it

i Mt t

t it it

t t

t

i

s∈=

′
=

′

∑∑
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≥

−












0

0

0
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max ,
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 ∀ ∈ ∀ ⊆M

s
s

H
i M M M, .  (6.52)

This valid inequality ensures that the total number of vehicles entering 
and leaving the set of customers Ms from period t0 to t′ must be sufficient to 
carry the demands in these periods. However, we cannot adapt this valid 
inequality in CIRP because we cannot substitute Iit0

 by pwipt
p d

B

it

i

0
0=∑ ; other-

wise the inequality becomes nonlinear.

6.6  Computational Study

In this section, we present the computational results of SBM. We first intro-
duce five real-life test cases used. Then we present the computational solution 
for small and mid-size test cases by enumerating all the possible schedules. 
We also present the solution to all test cases using the column generation 
algorithm. Finally, we analyze the reduced cost of the schedules in the best 
IP solution of SBM.

Period 1 Period 2 Period 3 Period 1 Period 2 Period 3

Consumption arc

Replenishment arc

Dummy end node

Initial inventory node
Inventory = 3

Inventory = 4

Inventory = 2

Inventory = 1

Inventory = 0

(a) (b)

FIGURE 6.2
Inventory flow network for a three-period inventory routing problem. The initial inventory 
level is 2. The maximum inventory capacity of the customer is 4, and the demands are 2, 1, and 
2 for period 1, 2, and 3, respectively. The vehicle capacity is 3. (a) Inventory flow network for ML 
policy. (b) Inventory flow network for OU policy.
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6.6.1  Details of the Test Instances

Our test instances are provided by an industrial gases manufacturer. We 
have a single fleet of 23-ton vehicles. The inventory capacities at customers 
range from 7 tons to 30 tons. The inventory cost at any customer is 0. The 
vehicle speed is assume to be 50 kilometers per hour constantly, a vehicle can 
work at most 12 hours every day, and a vehicle cannot serve more than five 
customers per day. We assume the unload time at each customer is 1 hour, 
and the minimum delivery amount to any customer has to be no less than 
2 tons. We try to build a weekly cyclic inventory routing plan, in which each 
day is considered as a single period (so |T| = 7). The detailed information on 
each test case is shown in Table 6.2.

6.6.2  Solution by Enumerating All Schedules

We first solve the first three instances with SBM by enumerating all the pos-
sible vehicle schedules. We set the computational time to be 4 hours for all 
test cases. The results are shown in Table 6.3.

We can see from Table 6.3 that the SBM can obtain optimal solutions to five 
out of six small and mid-size test cases. The only nonoptimally solved test 
case 2-ML has an optimality gap of 3.3%. However, the best solution to 2-ML 

TABLE 6.2

Detailed Information about the Five Real-Life Test Instances

Instances
Number of 
Customers

Number of 
Vehicles

Number of 
Depots

Average Daily 
Demand

1 5 2 1 35
2 0 3 1 38
3 20 5 1 49
4 47 10 1 185
5 67 15 1 235

TABLE 6.3

Computational Results by Enumerating All of the Schedules for Small and Mid-size 
Test Cases

Test 
Instances Policy

Number 
of 

Schedules
LP 

Value
LP 

Time
IP 

Value
IP 

Time

CPLEX 
Optimal 
Gap (%)

Root Node 
IP–LP 

Gap (%)

1 ML 46,795 4340 1 4365 61 0.0 0.6
OU 46,795 4340 1 4642 120 0.0 6.5

2 ML 148,820 4973 8 5209 14,400 3.3 4.5
OU 148,820 4973 8 5318 388 0.0 6.3

3 ML 513,513 8443 12 8651 374 0.0 2.4
OU 513,513 8443 11 8895 1416 0.0 5.1
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TABLE 6.4

Computational Result Using Column Generation

Test 
Instances Policy

Number of 
Iterations

Number of 
Schedules LP Value LP Time IP Value IP Time

IP–LP 
Gap (%)

Enumeration 
Solution (%)

1 ML 3 3388 4340 1 4370 11 0.7 0.1
OU 3 3388 4340 1 4642 37 6.5 0.0

2 ML 3 8701 4973 2 5209 1816 4.5 0.0
OU 3 8701 4973 2 5318 244 6.3 0.0

3 ML 3 2940 8443 3 8651 10 2.6 0.0
OU 3 2968 8443 3 8927 17 2.8 0.4

4 ML 26 108,556 17,077 802 18,153 14,400 5.9 –
OU 24 136,440 17,077 663 19,187 14,400 11.1 –

5 ML 34 232,357 22,107 1261 23,522 14,400 6.0 –
OU 39 291,472 22,107 1452 24,397 14,400 9.4 –
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is found in the very early stage of the branch-and-bound process. For other 
test cases, the solution time of the OU policy is slightly longer than that of the 
ML policy. This might be because the number of constraints in the OU policy 
is higher than that of the ML policy. Finally, it is important to note that the LP 
relaxation of SBM is very good. The average gap between the best IP solution 
and the LP relaxation is 3.3% for the ML policy and 6.2% for the OU policy.

6.6.3  Column Generation Results

We also solve the LP relaxation of SBM using column generation. Then we 
solve a restricted IP problem with only the schedules generated in the col-
umn generation procedure. We show the computational results in Table 6.4.

As we can see from Table 6.4, we can obtain very good solutions using 
column generation. For small and mid-size test cases, the best integer solu-
tions obtained are within a 0.1% gap on average compared with the solu-
tions obtained using enumeration methods. The computational times for test 
cases 1–3 are reduced drastically. However, the computational time for large 
test cases 4 and 5 is still 4 hours. The IP–LP gaps for test cases 4 and 5 are 
about 6% for the ML policy and 10% for the OU policy, respectively.

6.6.4  Schedule Quality in the Best IP Solutions

Finally, we also report the LP reduced cost of the vehicle schedule in the best 
IP solutions.

As we can see from Table 6.5, for the ML policy, the reduced cost of 80% of 
the schedules is less than 5. For the OU policy, the reduced cost of more than 

TABLE  6.5

Vehicle Schedule Quality in the Best IP Solutions

Test 
Instances Policy

Total 
Schedules

Value of the Reduced Cost ′′cs

0 (0, 5] (5, 20] (20,50] (50, + ∞) Average

1 ML 1 6 (55) 3 (27) 2 (18) 0 (0) 0 (0) 1.60
OU 12 4 (33) 6 (50) 2 (17) 0 (0) 0 (0) 2.85

2 ML 17 13 (76) 4 (24) 0 (0) 0 (0) 0 (0) 0.42
OU 17 11 (65) 3 (18) 3 (18) 0 (0) 0 (0) 1.54

3 ML 23 17 (74) 2 (9) 2 (9) 1 (4) 1 (4) 6.24
OU 23 16 (70) 1 (4) 0 (0) 5 (22) 1 (4) 14.5

4 ML 61 27 (44) 19 (31) 11 (18) 4 (7) 0 (0) 4.22
OU 63 21 (33) 15 (24) 17 (27) 8 (13) 2 (3) 10.21

5 ML 76 28 (37) 20 (26) 25 (33) 3 (4) 0 (0) 4.54
OU 78 22 (28) 26 (33) 20 (26) 9 (11) 1 (1) 7.34

Average ML – 57% 23% 16% 3% 1% 3.4
OU – 46% 26% 18% 9% 2% 7.3

Note: Numbers in parentheses are percents.
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70% of the schedules is less than 5. The average reduced cost of all schedules 
is only 3.4 for the ML policy and 7.3 for the OU policy. For the ML policy, there 
are only 4% of the schedules whose reduced cost is more than 20, and this 
number is 11% for the OU policy. From this table, we can see that the reduced 
cost can be viewed as a reasonable measurement for the quality of a schedule.

6.7  Conclusions

In this chapter, we proposed a schedule-based model (SBM) for the cyclic 
inventory routing problem. This model can be considered a Dantzig–Wolfe 
reformulation of the widely used arc-based model for the IRP. To solve SBM 
efficiently, we developed a column generation algorithm, in which only 
attractive vehicle schedules are generated. We also proposed a group of new 
valid inequalities to tighten the bounds of SBM. Our computational results 
on five real-life test cases show the LP relaxation of SBM is quite tight. SBM 
can obtain near-optimal solutions to very large real-life test cases within a 
reasonable time, and IP–LP gaps of SBM are within 5% and 7% for the ML 
policy and the OU policy on average for all test cases, respectively.

There are several possible future research directions in this research. First, 
we can further develop new valid inequalities to tighten the bound of the LP 
relaxation of SBM. Second, as we discussed in Section 6.3.8, we can test the 
proposed model on the finite period inventory routing problem, especially 
on the well-studied test cases provided in Archetti et al. (2007, 2012). Third, 
we could also extend the current deterministic SBM model to the stochastic 
cyclic inventory routing problem with stochastic demand.
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7
An Application of an Inventory 
Model for Production Planning

Paveena Chaovalitwongse, Pakpoom Rungchawalnon, 
and Kwankeaw Meesuptaweekoon

ABSTRACT A good alignment between customer demand (in terms of 
quantity and timing) and production orders results from an effective and 
efficient production plan. This chapter concerns the production planning 
of a production line in a finishing process of rolled tissues at a case study 
manufacturer. The case study is making rolled tissues under a make-to-
stock manufacturing environment, which is a normal practice for commod-
ity products. Thus, its production plan can ensure that the customer service 
level requirements will be achieved at a “just-enough” level of inventory. 
Currently, the case study cannot fulfill customer demand for all items at the 
required service level. In addition, it is not clear how much inventory is just 
enough for them. Thus, this chapter aims to improve the current produc-
tion planning method to serve customers better with an appropriate level of 
inventory. The simple reorder point fixed order quantity inventory model is 
introduced in a new production planning method that comprises two com-
ponents: establishing inventory policy and determining production orders. 
The proposed method is tested with the actual demand data and then com-
pared with the current method. The results show that with the proposed 
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method all items can pass the service level requirements. In addition, there 
are savings from inventory and setup reduction of approximately 37% and 
27% respectively.

KEY WORDS: inventory model, make-to-stock, production plan, reorder point.

7.1  Introduction

The case study company is a large household product manufacturer. One 
of its lines of products is rolled tissues, which include bathroom tissues and 
kitchen towels. These products vary in the quality of tissue paper, types of 
wrapping sheet, package size, and length of paper per roll.

This chapter focuses on the finishing process of rolled tissue making in 
which jumbo tissue rolls are processed into rolls of usable size. The finishing 
process encompasses embossing, winding to length, cutting to size, wrap-
ping, and boxing (see Figure 7.1). The jumbo tissue rolls are produced from a 
preparatory process. According to the case study policy, jumbo rolls must be 
maintained for the finishing process at all times. Unlike jumbo tissue rolls, 
plastic paper and cardboard boxes are procured from outside sources. The 
procurement plan for these two materials must be align with the finishing 
process production plan.

A single continuous line is used in this finishing process. The production 
line is an automatic line and can be adjusted to process various types of 
finished rolled tissue products. In other words, multiple products share the 
same production line.

The production line capacity is determined by the number of cases that 
can be produced per day. Because the processing times are different among 
finished goods, the capacity for each finished good can be unequal. There 
will be a production line setup once a new product is produced. Thus, one 
setup occurs when a new lot size is produced. It is noted that the major loss 
from the setup is material loss. The setup time loss between lot sizes is only 

Jumbo
tissue roll Plastic

paper
Cardboard

boxes

Cases of
rolled tissues

Rolling Cutting Wrapping BoxingEmbossing

FIGURE 7.1
A finishing process of rolled tissues.
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slightly due to the technical specification of the production line. Therefore, 
it allows us to neglect this time loss when determining a production plan.

The main customers for rolled tissues are large-scale retailers. The case 
study’s customers send their purchase order via Electronic Data Interchange 
(EDI) and require an order fulfillment time of 1 day. Moreover, the service 
agreement has a 99% case fill rate. If the case study fails to fulfill customer 
orders, there will be a high penalty cost.

Currently, the case study plans its production under a make-to-stock envi-
ronment. Production planning is determined weekly in a 4-week advance 
period by using monthly forecasts from the Sales Department. After deter-
mination of a production plan, the Material Requirement Planning (MRP) 
for plastic paper and cardboard boxes is calculated. With a highly fluctuating 
demand pattern, the forecast is rarely accurate. As a result, the current pro-
duction plan does not meet the actual demand and leads to a poor fill rate. 
Thus, one of the key issues in satisfying customer demand under a make-
to-stock environment is good production planning. In other words, the pro-
duction planning must be able to align the production plan with customer 
demand. The effectiveness of production planning can be measured by ser-
vice level, average inventory, and the number of machine setups.

This chapter is organized as follows. In Section 7.2 we review some of the 
pertinent literature. In Section 7.3, we study and analyze the as-is produc-
tion planning method. The proposed method is described in Section 7.4. The 
proposed method evaluation and results are reported in Section 7.5. Finally, 
in Section 7.6 we make some concluding remarks.

7.2  Literature Review

To achieve customer satisfaction, demand fulfillment is always challenging 
in many businesses. Maintaining customer loyalty might require a good 
management plan at a great cost because stationary demand rarely exists 
in the real world (Agrawal et al., 2009). In many industries, products have 
a slight differentiation among brands (Rego and Mesquita, 2015). A high 
inventory level might provide better customer service but it may entail a 
great inventory cost. However, low inventory may pose a risk of lowering the 
customer service level and lost sales due to the shortage of goods (Gruen and 
Corsten, 2003). Therefore, many businesses have tried to study demand pat-
terns to forecast demands in the future to manage production plans, mate-
rial requirement plans, and inventory of finished goods to be replenished on 
time.

Demand variability is affected by many components, for example, unsta-
ble demands of end customers and the results of the bullwhip effect in the 
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supply chain. The literature review shows that several studies are focusing 
on different aspects of demand forecasting and inventory control. However, 
most of them focus only on how to deliver the best model to forecast demands 
with minimum error by considering external factors.

On the supply side, most models assume that the Production Department 
is ready to fulfill orders according to the inventory policy setting. In such a 
setting, an order is placed based on the demand prediction coming from the 
forecasting model, but the prediction model does not consider the nature and 
constraints of production lines. Most research on the integrated production– 
inventory model consider the collaboration between the echelons. Vendor-
managed inventory (VMI) is a particularly interesting approach to solve 
this problem and has been progressively applied in several companies and 
research studies (Zavanella and Zanoni, 2006). However, they consider only 
a production rate in terms of a constraint or an assumption of the production 
part and pay attention to a synchronized inventory policy and the collabora-
tive strategy between parties (Boyaci and Gallego, 2002; Hoque and Goyal, 
2006; Sarmah et al., 2006).

If considering the other type of production–inventory system, the Capaci-
tated Production–Inventory System and Production–Priority Policy might 
have more correspondence with our work. They are particularly relevant 
to producing multiple products for which demand is nonstationary and the 
products share a finite-capacitated resource problem that has been studied 
and solutions proposed in some interesting work. A base stock policy is 
proposed to solve this problem by using an optimal method and a heu-
ristic to compute the levels of heterogeneous and homogeneous products 
(DeCroix and Arreola-Risa, 1998). However, the assumption concerning pro-
duction is typically the same as in other work as well as in the work of 
Balkhi (2009), who presented the optimal stopping and restarting produc-
tion times for each produced item, assuming production capacity is always 
available to produce goods at the production rate of each period of time 
the same as other Capacitated Production–Inventory works (Özer and Wei, 
2004).

Nevertheless, production and inventory management problems with a sin-
gle resource constraint have received a low level of attention in the literature 
(Bretthauera et al., 2006). Reorder cycle times that are independent for each 
item carried in inventory is the ordinary policy to apply in this problem. 
Because there is a chance that many products may eventually be ordered 
that need to be produced at the same time, the approach in these works is to 
manage the situation to satisfy constraints and also the objective functions. 
The optimal Lagrange multiplier and its improvement (Maloney and Klein, 
1993) are proposed as one of two types of solution approaches. The other 
type is an improvement approach for considering order quantity (Page and 
Paul, 1976) and cycle times of each item in the system. However, the compu-
tational effort is not appropriate for implementation.
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The concept of inventory acting as a buffer, to absorb increases or decreases 
in demand while production remains relatively steady, is also proposed 
by Buffa and Miller (1979). Also, in the real case, production is not stable 
because of the constraint and capacity. Therefore, in this work, we represent 
the simple method to deal with the variability of demand while production 
has a strict constraint in terms of capacity and availability of a machine that 
is shared among multiple products.

7.3  As-Is Study and Analysis

7.3.1  Current Production Planning Process

The current production plan is driven by the monthly demand forecast or 
4-week time frame that has been agreed on by the Sales and Production 
Departments. The 4-week demand forecast for each finished goods item 
is then distributed to weekly demand by the production planner. It is 
noted that there is no concrete rule or guideline on how it should be done. 
Once the weekly forecast has been acknowledged, the planner decides 
how much of each product should be produced each week according to 
production line capacity and forecast demand (no backlog is allowed in 
planning). Then the planner must determine the details of production 
orders that indicate what product/when to start–finish/how much (order 
quantity or lot size) to produce within the week. After the production 
plan and orders have been issued, the planning of raw materials is deter-
mined by MRP. It should be observed that because of the lead time of 
procuring raw materials, the production orders for the first 2 weeks of 
the 4-week plan must consider the raw material availability. The produc-
tion plan is officially revised weekly. Figure  7.2 represents the current 
process of  production planning by the ICOM (input/output/constraints/  
 mechanism) model.

7.3.2  Current Performance

The performance of the current planning method in 2010 is shown in 
Figure 7.3. It indicates that only 3 of 10 finished goods (FG) items have a ser-
vice level greater than 99% or achieve a satisfactory customer service level. In 
addition, it is not clear whether the inventory level is appropriate or not. For 
FG02 and FG03, they can meet a 99% service level with fewer than 15 days of 
inventory sales. However, FG09 needs to hold inventory over 30 days of sales 
to a satisfactory customer service level. For other items, it may seem that the 
holding inventory is too low to achieve a satisfactory customer service level.
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Besides the aforementioned performance indicators, the frequency of the 
production line setup is also considered. With the current planning method, 
emergency changes always occur in the production plan if the raw materials 
are available, largely because of using inaccurate forecast data to determine a 
production plan that cannot align with incoming orders. Thus, at this point, 
the current planning method is not good enough to match the customer 
demand with the given production plan.

Constraints

Production
planning
process

Production
capacity

Raw
materials

No
backlog

Weekly production
plan

Monthly forecasts for
sales department

Done manually by
using operator

expertise

Output

Mechanism

Input

FIGURE 7.2
Overview of current production planning process.
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FIGURE 7.3
Production planning performance indicators.
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7.3.3  An As-Is Method Analysis

In planning production, the major concern is aligning customer demands 
with production orders. To obtain better alignment, one should first under-
stand the characteristics of demand and production (see Table 7.1).

According to the current planning method, the forecast used does not give 
a good estimate of the actual customer demand, which has a 1-day order 
fulfillment time and high daily fluctuation. In addition, it is not likely to get 
a good daily demand forecast for commodity products such as rolled tissues. 
Therefore, production planning should not be based mainly on forecasting.

Currently, there is no decision rule or guideline for a production planner to 
follow to ensure that production orders are aligned with incoming demands. As 
a result, the planner faces emergency setup changes. According to the case study 
planning procedure, the production plan should be reviewed once a week. As 
for current operations, emergency production changes occur almost every day 
of the week. As a result, the initial plan has been overwritten and never used. It 
is also difficult for planning raw material procurement. Thus, the new produc-
tion planning should include a decision guideline to react rationally to actual 
demands.

Considering production characteristics, the production line allows a new 
setup with little time loss. Thus there is no need for a long-term planning period 
to minimize the setup time loss between product changes. Because the setup 

TABLE 7.1

Characteristics of Demand and Production

Demand Characteristics Production Characteristics

 1.  Daily demands of each individual item 
are highly fluctuating and cannot be 
accurately forecast.

 2.  The total quantity of demands for any 
given day can exceed the production 
capacity.

 3.  Annual demands are more stable and 
predictable.

 4. The order fulfillment time is 1 day.
 5. The service level must exceed 99%.
 6.  The penalty cost when failing to fulfill 

orders is high.

 1. Production is performed on a single 
continuous line that must be shared among 
10 products.

 2. The production line is continuous and fully 
automated; thus job preemption is not 
allowed.

 3. The production line is capacitated.
 4. There is a setup every time when changing 

products on the production line.
 5. The setup results in loss of material (tissue 

paper) and time. However, the time loss is 
very small and can be neglected.

 6. There are differences in production capacity 
among products.

 7. The production plan indicates what/when/
how much (lot size) to make in each lot size 
or every time a production line setup occurs.

 8. When producing more than enough, an 
inventory holding cost is incurred.

 9. The cost of external raw materials (plastic 
wrap and cardboard boxes) is very low 
compared to the penalty cost from customers.
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loss accounts mainly for material loss, the key consideration here is to deter-
mine the appropriate lot size for each product setup on the production line.

Raw material planning should not be done by MRP because the produc-
tion plan is not static and subject to change with highly fluctuating daily 
demands. In addition, the raw material costs are much lower than the pen-
alty cost imposed by the customers. It is better to have raw materials avail-
able to ensure a quick response to the dynamics of demands.

In sum, the current method can be improved in several aspects: (1) The 
production plan should not be based mainly on forecasts, (2) there is a need 
for a decision guideline, (3) the economic production lot size should be con-
sidered for each production setup, and (4) raw materials should be ready for 
uncertain production orders due to the demands of the dynamics.

7.4  Proposed Planning Method

7.4.1  Description of the Proposed Method

Figure 7.4 shows the concept of the proposed planning method. Under the 
proposed method, the production decisions should be reviewed more often 
because of the dynamics of daily demand, which cannot be forecast with 

Constraints

Input Output

Mechanism

Proposed
production

planning
process

Continuous review
inventory model

(reorder point, order quantity)

Annual demand
distribution/pattern

Daily production
orders

Desired
service

level

Production
capacity

FIGURE 7.4
Overview of the proposed production planning process.
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high accuracy. In addition, the continuous inventory review is applied to 
establish decision guidelines. The inventory policy is calculated with annual 
demand distribution.

Figure 7.5 shows details of the proposed planning method, which com-
prises two major components: establishing inventory policy and determin-
ing production orders.

The inventory policy is determined by using a simple reorder point order 
quantity model:

 Reorder point: ROP = Z* σ + μ.

 
Order quantity: Q

K p n s
h

= +2λ( ˆ * ( )

 

where
 Z = safety stock factor
 σ = standard deviation of demand during lead time
 μ = mean of demand during lead time
 λ = mean of annual demand
 K = setup cost
 p̂ = penalty cost

n(s) = expected shortage = σ * L(Z) where L(Z) is the standard loss function
 h = inventory holding cost

The inventory policy should be reviewed at least once a year or when-
ever the demand distribution is changed. It should be noted the production 

Tactical level
Establish
inventory

policy

• Use historical demand data to set up the
   inventory policy.
• Apply reorder point order quantity
   inventory model with 99% service level.
• Recalculate when demand distribution or
   pattern has been changed.

• Concern production capacity.
• Distribute production load based on
   current on-hand inventory and expected
   demand rate.
• Determine and review daily.

Determine
production

orders
Operational level

FIGURE 7.5
Components of the proposed planning method.
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capacity is not applicable at the tactical level. Table 7.2 shows the order quan-
tity or production lot size in terms of days in production compared to its 
capacity.

At the operational level, production orders are reviewed and determined 
every day. At this point, we are facing a multi-item situation on a single pro-
duction line. Thus the production capacity is considered.

In determining daily production orders, we decide whether or not we 
should pull expected future production to process beforehand to avoid 
capacity conflict if we wait until the production orders are triggered by the 
reorder point (ROP). The pseudo code of our algorithm is shown below.

FOR all i in set of FGs
 Expected Inventory Day of FG i = Inventory FG i/Daily demand i

ENDFOR
Production = FALSE
FOR all i in set of FGs

Sum of days in production = 0
FOR all j in set of FGs

IF (Expected Inventory Day of FG i >= Expected Inventory Day of FG j)
Sum of days in production += Production Time j

ENDIF

ENDFOR

Capacity of FG i = Expected Inventory Day of FG i – Sum of days 
in production

IF (Capacity of FG i < 1)
Production = TRUE

ENDIF
ENDFOR
IF(Production = TRUE)

Production orders = Sequence of items ordered by Expected Inventory 
Day of FG from min to max

ENDIF

TABLE 7.2

Lot Size or Order Quantity

Items Lot Size (Days in Production) Items Lot Size (Days in Production)

FG01 1.01 FG01 0.99 
FG02 1.94 FG02 0.43 
FG03 1.95 FG03 0.49 
FG04 0.33 FG04 0.77 
FG05 0.73 FG05 0.83 
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In terms of raw material planning, the base stock model is used to guar-
antee that there will always be raw materials available whenever they are 
needed in production. The base stock level is determined by the finished 
goods production lot size and the expected ratio of production cycle time to 
procurement lead time. If the ratio is greater than 1, then the raw material 
base stock value should be enough for one finished goods production lot 
size. Otherwise, it means that the procurement lead time is greater than the 
average cycle time; the base stock value then should be greater than 1.

7.4.2  Input Parameters

Input parameters include cost, demand, and lead time parameters. All 
parameters are estimated from the actual data from the year 2010. The details 
of parameter estimates are presented in Table 7.3.

7.5  Evaluation and Results

The proposed method is evaluated with a set of actual 3-month demand 
data from April to June 2011. The initial inventory level is also given with 
the actual amount. We tested our inventory policy and production planning 
algorithm in Microsoft Excel®, and then compared results with current plan-
ning method. In Figure 7.6, the inventory movement or behavior for each 
product is illustrated. It shows how each planning method is performed: 
replenishment decisions, inventory level, and shortages. The raw material 
performance is shown in Figure 7.7.

The planning performance indicators are reported in Tables 7.4 and 7.5. 
The indicators include an average inventory level, the number of production 
line setups for product changed, fill rate, and savings on holding inventory.

TABLE 7.3

Details of Parameters

Type Parameters Details

Cost  1. Setup cost Estimated by the material loss when starting 
new product production

 2. Inventory holding cost Estimated by company cost of capital and 
warehouse cost

 3. Penalty cost Given by customers
Demand  1. Demand distribution Statically estimated from actual demand data 

from the year 2010
Lead time  1. Customer demand Given by customers

 2. Raw material procurement Estimated by suppliers and may be varied by 
types of raw materials
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The test results show that with the proposed method, all items can suc-
cessfully achieve the required service level at 99%, whereas only 3 out of 10 
items have achieved this level with the current planning method. In terms 
of holding inventory, 8 of 10 items result in a lower level of inventory hold-
ing without sacrificing the service level. For best-selling items such as FG02 
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FIGURE 7.6
Computational results for production planning.
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and FG03, the inventory can be reduced as much as almost 50%. For FG04 
and FG07, the proposed method results in an inventory increase as a result 
of larger lot size setup. However, the total setups have been decreased from 
10 setups to 6 setups. For almost all items, there is a decrease in the num-
bers of setups due to fixed lot size policy. Unlike the proposed method, the 
current method does not have any concrete decision rule to determine lot 
size. It can be seen in Figure 7.6 that the current production lot sizes are 
randomly determined. Some lot sizes can be very large, whereas others can 
be very small. It shows that the current method does not consider economy 
of scales in a production setup. Furthermore, some items have a decrease in 
both inventory level and setups. In sum, we can conclude that the proposed 
method is successful in planning production of the case study’s finishing 
process. It can reduce the overall inventory holding value and production 
line setups, and the required service level is still achieved.
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Computational results for raw materials.
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7.6  Conclusions

Production planning for a rolled tissue finishing process of a large manu-
facturer is studied. The objective is to improve the current planning method 
to achieve its customer expectation. The reorder point and fixed order quan-
tity model are applied in the proposed planning method. The computational 

TABLE 7.4

Summary of Performance Indicators

Items

Inventory

Case Fill Rate Number of SetupsDay’s Sales Cases

Current Proposed Current Proposed
Current 

(%)
Proposed 

(%) Current Proposed

FG01 13.4 11.2 2543 2008 98.70 100.00 10 6
FG02 13.4 6.7 16,202 8024 100.00 100.00 13 10
FG03 12.4 6.8 7760 3813 100.00 99.42 13 13
FG04 18.7 19.8 321 388 98.41 100.00 6 3
FG05 12.1 16.4 465 634 96.71 99.02 7 3
FG06 17.7 12.1 1291 955 94.72 99.55 9 5
FG07 16.3 18.7 394 382 95.95 100.00 4 3
FG08 29.5 20.1 627 490 100.00 100.00 5 2
FG09 15.3 14.8 732 685 95.48 100.00 8 4
FG10 18.6 13.0 777 684 94.16 100.00 8 4

Total 73 53
% Setup savings 27.40%

TABLE 7.5

Savings on Holding Inventory

Items Unit Cost

Inventory (Cases) Inventory Value

Current Proposed Current Proposed

FG01 540 2543 2008 1,373,220 1,084,320
FG02 214.8 16,202 8024 3,480,190 1,723,555
FG03 600 7760 3813 4,656,000 2,287,800
FG04 705 321 388 226,305 273,540
FG05 567 465 634 263,655 359,478
FG06 620 1291 955 800,420 592,100
FG07 850 394 382 334,900 324,700
FG08 780 627 490 489,060 382,200
FG09 599.3 732 685 438,688 410,521
FG10 932.4 777 684 724,475 637,762

Total 12,786,912 8,075,975 
% Savings 36.84%
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results show that the proposed method can perform well with actual demand 
data. Future research will focus on improving the algorithm for determining 
production orders to match various types of demand patterns better.
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A Game of Competitive Investment: 
Overcapacity and Underlearning

Jian Yang, Yusen Xia, and Junmin Shi

ABSTRACT We consider the situation in which a number of firms decide 
their individual capacity investment levels. The total sum of these levels 
determines the total return, which the firms share in proportion to their con-
tributions. Before their commitments, firms may spend efforts on learning 
a size indicator of the market. Using this model, we can explain the overca-
pacity phenomenon that appeared time and again in numerous industries. 
The competitive learning aspect of the situation sheds light on the chronic 
neglect of due diligence when companies are supposed to conduct demand-
forecast studies but do not do so.

KEY WORDS: investment game, overcapacity, underlearning.
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8.1  Introduction

8.1.1  Motivation and Outline

In various product markets, especially those involving huge initial invest-
ments but comparatively little operational costs, one may observe that over-
capacity, that is, the presence of an industry-wide capacity that is more than 
desirable for the combined welfare of the producers, is a common phenome-
non. In the dynamic random-access memory (DRAM) industry, chip makers 
have been expanding their production capacities over recent years, resulting 
in continuous price drops that hurt the makers’ profit in turn (Kardos et al., 
2008). In the liquid-crystal display (LCD) industry, LG Philips announced 
a $335 million loss in 2006 due to a steep price decline resulting from an 
industry-wide capacity glut (Burns, 2006). The auto industry is also plagued 
by excess capacity. It has been estimated that the global overcapacity in this 
industry is around 20% (Dressler, 2004).

Despite the prevalence and impact of overcapacity, there is but a dearth 
of research on the cause of this phenomenon. The few works dealing with 
this issue treat it as the result of established firms making credible threats to 
deter the entry of newcomers. However, it is hard to see that the self-harming 
strategy of overcapacity is used by established firms solely for the purpose 
of battling the remote chance of new entrants, as initial investments needed 
to enter the aforementioned industries all involve billions of dollars. It is 
against this backdrop that we propose a capacity-setting game, involving 
equally established firms. In this setting, overcapacity comes as a natural 
competitive outcome as firms jostle for market shares.

Key ingredients of our game-theoretic setting are that (1) the total revenue 
generated by all firms is increasing and concave in the total capacity built 
up by all firms; and (2) a firm’s revenue share is proportional to its capacity 
share. These features are consistent with industries in which initial invest-
ments are comparatively costlier than day-to-day operations. Our setup nat-
urally leads to the fact that a higher industry-wide capacity is needed in the 
competitive setting more than in the first-best setting, for a firm’s marginal 
return on capacity investment to be matched by its marginal investment cost. 
This therefore leads to overcapacity.

Much is at stake when a firm commits to a multiyear project of building 
a multibillion dollar production facility from scratch while future market 
outlook is still uncertain. Hence, forecasting of future demand is essential 
to a firm’s survival and prosperity in the face of cutthroat competition. But 
learning under competition is a tricky business. With the ease at which 
data travel in this Internet age, it is impossible for a firm to keep what it has 
learned about the market in complete darkness. When multiple firms collect 
data about the same market, each participating firm may learn more than it 
would alone. Yet, as far as we know, there is no conclusive result on whether 
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it positively or negatively affects each player when everybody gains more 
knowledge about market conditions. Therefore, we may contend that effects 
of information and learning in competitive environments are not yet well 
understood, even though benefits of better information have been well estab-
lished in single-firm settings (e.g., Blackwell, 1951; Lehmann, 1988).

From our capacity game, we take one step toward the better understand-
ing of information and learning under competition. Specifically, we add 
one stage before the capacity-setting stage. In this stage, firms’ efforts are 
focused on learning a size indicator of the common market. To make matters 
simple, we let random variables representing the size indicator and signals 
received by firms be bivalued. Learning is reflected by relationships between 
these random variables and firms’ efforts. Our learning framework reflects 
the externality in learning, so that the trustworthiness of the signal received 
by a firm is determined by both the learning effort put in by the current firm 
and efforts put in by other firms. The framework also allows different firms 
to receive different signals. As the capacity game involving learning is dif-
ficult to analyze in its full generality, we let the investment return function 
take a special form. We then concentrate on the case in which the informa-
tion collected by every firm is public knowledge. For this case, we examine 
the underlearning effect, the phenomenon in which firms shirk from their 
learning responsibilities, hoping that others will do the dirty work for them.

The following is a summary of our main contributions:

 1. We establish that the concavity of the investment return function 
and the proportionality of revenue allocation are primary culprits 
for overcapacity (cf. Theorem 8.1).

 2. In a competitive setting, we introduce notions for both information 
structure and controlled learning.

 3. For the case in which firms cannot hide what they learn, we demon-
strate the severity of the underlearning effect—the more numerous 
the firms, the less they will know about the market in which they all 
operate (cf. Theorem 8.3).

Point 1 gives a plausible interpretation to the prevalent overcapacity 
phenomenon. Also, point 2 provides a functional alternative for modeling 
information and learning in competitive settings, and point 3 offers firms 
forewarnings about the dire consequences of neglecting due diligence in 
their in-house market research before plunging into an uncertain market into 
which others are rushing as well (e.g., the subprime mortgage market from 
2002 to 2007). Finally, we want to add that our underlearning results are con-
sistent with firms’ demand learning and capacity investment behaviors in 
several industries. For example, in the electronics industry, without sufficient 
and effectively learning demand information, firms invested too much in 
capacity, which led prices for DRAM chips to fall 70% in 2007 (Ihlwan, 2007).
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8.1.2  Literature Survey

In a duopolistic setting, Kreps and Scheinkman (1983) showed that a two-
stage game involving capacity competition in the first stage and Bertrand-like 
price competition in the second stage results in a Cournot-like equilibrium. 
Davidson and Deneckere (1986) pointed out the earlier result’s critical depen-
dence on a particular demand rationing rule. Acemoglu et al. (2009) consid-
ered a similar two-stage model in which consumers always exhaust a lower 
priced firm’s capacity before moving on to a higher priced firm. They quan-
tified inefficiencies of the game’s equilibria and demonstrated that great 
differences exist between different equilibria. Anupindi and Jiang (2008) 
studied the role played by flexibility in a duopolistic game involving capac-
ity decisions. The industrial organization literature has shown that excess 
capacity can be exploited by an established firm as a credible threat to deter 
entry; see, for example, Dixit (1980) and Bulow et al. (1985).

The competitive-newsboy framework of Lippman and McCardle (1997) can 
certainly be used in a competitive-capacity study. However, this framework 
is more suitable for the situation in which the set of firms under scrutiny 
constitutes only a small portion of the entire industry, to the effect that the 
total capacity built by these firms does not have any sway over the sales price 
of the concerned product. Incidentally, as examined in Cachon (2003, Section 
6.5.1), this framework also leads to an overcapacity phenomenon, resulting 
primarily from the fact that each firm ignores the demand-reducing effect 
on other firms when it builds excess capacity. The same reason is behind 
the overcapacity effect identified by Mahajan and van Ryzin (2001) in their 
dynamic consumer choice framework. Our study of overcapacity across 
entire industries necessitates a different setup.

Elastic demand was indeed considered in Deneckere et al. (1997) and 
Cachon (2003, Section 6.5.2). However, their models allow for an unlimited 
supply of nonatomic firms. New firms will come into competition as long 
as the market price has not been driven to zero. Our setting is oligopolis-
tic with a fixed number of firms. We shall demonstrate overcapacity at the 
individual-firm level.

To leave room for the later learning-stage addition, we do not explic-
itly model a pricing-and-rationing stage after the capacity-setting stage. 
Nevertheless, our setup takes into account the industry-wide capacity’s 
dampening effect on firms’ pricing powers. As mentioned, our fundamen-
tal assumptions on the capacity-setting stage are the concave total revenue 
function and proportional revenue allocation. One explanation for these 
assumptions is as follows: When production is relatively cheap, firms tend 
to fully utilize their capacities. This way, the total industry-wide capacity, 
together with the innate demand-price curve of the market, will deter-
mine the  market-clearing price, and hence the total industry-wide revenue. 
Because all firms face the same price, each firm’s revenue share is its share of 
the total capacity.
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Under this setup, a firm has the incentive to keep on expanding its capac-
ity until the marginal return on its own buildup can no longer offset the 
required investment. With revenue being shared proportionally, a firm’s 
marginal return will be more diluted when there are more competitors in the 
market. On the other hand, it takes a higher capacity for a diluted marginal 
return to match its undiluted counterpart. This is the main reason behind 
the overcapacity phenomenon.

The literature on learning in monopolistic settings is extensive. For 
instance, Burnetas and Gilbert (2001) showed that demand learning can 
help reduce procurement costs; under various circumstances, Lariviere and 
Porteus (1999), Bensoussan et al. (2007), and Chen and Plambeck (2008) dem-
onstrated that Bayesian learning can help firms cope with unobserved lost 
sales. A few works in economics dealt with “learning by doing” in competi-
tive settings. Rob (1991) treated a multiperiod rational expectations model 
in which firms base their decisions of entering and exiting a market on past 
information generated by incumbent firms’ actions. Aghion et al. (1993) 
studied a multiperiod pricing game involving firms that produce differenti-
ated products, whereby all firms receive the same information on the mar-
ket demand which is influenced by past actions of all firms. These works 
emphasized the “public good” aspect of information and their equilibria 
often exhibit the “free-riding” phenomenon.

Our setup for information and learning can demonstrate the aforemen-
tioned informational externality features as well. Furthermore, it has 
improved over existing frameworks in the aspects that learning has been 
made explicit and separately controllable. That is, “learning” is no lon-
ger entangled with “doing.” This way, investments in market studies and 
experiments can be modeled directly, and trade-offs between information- 
acquisition costs and gains due to better information can be more clearly 
analyzed; in addition, our framework can be more readily transplanted to 
different settings. Shin and Tunca (2009) showed that overlearning can occur 
when retailers ordering from one single supplier are themselves engaged 
in Cournot competition. However, they assumed that there is no external-
ity in learning, and hence every retailer is singularly responsible for its own 
learning. When retailers’ learning efforts (but not the signals they acquired) 
become public, the same authors demonstrated that the overlearning effect 
will be amplified further. One of our main results is almost complementary. It 
says that, when all firms receive the same signal produced by their collective 
efforts, firms will tend to shirk from their forecasting responsibilities. Also, 
we assume that the efforts put into learning are public knowledge throughout.

The rest of the chapter is organized as follows. In Section 8.2, we set up 
the capacity investment game and provide basic analyses; in Section 8.3, 
we introduce notions of information structure and controlled learning; in 
Section 8.4, we analyze the underlearning effect; in Section 8.5, we shed light 
on a potential extension to the case where different firms may acquire differ-
ent signals; and finally, we conclude the chapter in Section 8.6.
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8.2  The Overcapacity Effect

8.2.1  Setup

Our investment game involves n identical firms. These firms compete in 
utilizing costly capital to build capacities with hopes of generating future 
returns. Each firm’s cost for capital follows a function c: R+ → R+, where R+ 
stands for [0 + ∞). The return to an individual firm is not solely determined 
by its own investment level. Rather, the total return to all firms is governed 
by a function r: R+ → R+ of these firms’ total investment level. The return to 
each firm i is proportional to its investment level xi ∈ R+. Therefore, when the 
profile of other firms’ investment levels is xi = (xj|j ≠ i), firm i will receive a 
profit f(xi, x–i), where

 f x x
x

x x
r x x c xi i

i

i j

j i

i j

j i

i( , ) = ( )−

≠
≠+

⋅ +





−
∑ ∑ . (8.1)

We now give one potential explanation to the aforementioned setup. 
Suppose the demand function of the concerned product is given by d = D(p), 
whose inverse is p = P(d). Also, there is one production run after the capac-
ity buildup. Finally, suppose that, relative to c′(0), the unit production cost cP 
is negligible. This way, firms will tend to produce at full capacity. The total 

supply on the market will be the total capacity level xi
i

n

=1∑ , which will lead 

to a market-clearing price P xi
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while firm i’s share of the total revenue will be x x xi i j
j i

/ +( )


⋅

 ≠∑  

r x xi j
j i

+( )≠∑  .  When there are an infinite number of production stages 

after the settlement of capacity levels, where the unit production cost at 
every stage is cP and the per-stage discount factor is δ, we will need cP/(1 δ) = 
c′(0) for the preceding explanation to work.

Owing to the apparent symmetry in Equation 8.1, we may define function 
g, so that

© 2016 by Taylor & Francis Group, LLC

  



203A Game of Competitive Investment

 g x y
x

x y
r x y c x( , ) = ( ) ( )

+
⋅ + − . (8.3)

Note that

 f x x g x xi i i j

j i

( , ) = ,−
≠

∑




. (8.4)

We suppose that the capital cost function c is smooth. In addition, we 
assume the following:

(c0) c(0) = 0, as is expected
(c1) c′(0+) ≥ 1, which reflects the lost opportunity of invested capital
(c2) c″(x) ≥ 0 for any x ∈ (0, +∞), so that the marginal cost of capital is 

increasing

We further suppose that the return function r is smooth. In addition, we 
assume the following:

(r0) r(0) = 0, as is expected
(r1) r′(x) > 0 for any x ∈ (0, +∞), so that more investment leads to a higher 

return
(r2) r″(x) < 0 for any x ∈ (0, +∞), so that the marginal rate of return to 

investment decreases with the investment level
(r3) limx→+∞r′(x) = 0, so that return to investment will diminish to zero 

when capital is injected in indefinitely

Between functions c and r, we assume that

(cr) r′(0+) > c′(0+), so that investment will be lucrative when the industry-
wide capacity is low enough.

One immediate consequence of (r0) and (r2) is that r′(x) < (r(x) − r(0))/(x − 0) =  
r(x)/x. We put this in the following:

 (r02) r′(x) < r(x)/x for any x ∈ (0, +∞).

A further consequence of the preceding is that (r(x)/x)′ = (r′(x) − r(x)/x)/x < 0.  
Therefore, we have

 (r02b) r(x)/x is decreasing in x.
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8.2.2  Competitive Analysis

From Equation 8.3, we have
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From (r2), (r02), (c2), and Equation 8.6, we know that ∂2g(x, y)/∂x2 < 0, and 
hence g(x, y) is strictly concave in x.

We set out to see if a pure symmetric equilibrium ( = * = 1, 2, ..., )x x i ni n |  
exists. Here, the subscript “n” in “xn

*” signifies the presence of n firms. From 
the strict concavity of g(x, y) in x and Equation 8.5, we see that xn

* can be 
found by solving the following:

 h x
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x n
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n n
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n n
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∂
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n
r nx

nx
c xn

n
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whenever the equality is achievable. The desired xn
* is not only in existence, 

but also unique.

Proposition 8.1

There is a unique pure symmetric equilibrium investment level xn
*.

We have relegated all proofs to appendices that follow the main text. For 
instance, the proof of Proposition 8.1 appears in Appendix A. Now we study 
the total investment level z nxn n

* = *. To this end, define function in so that 
in(z) = hn(z/n). By Equation 8.7, we have

 
i z n r z n n r z z c z n

r z

n( ) (1 ) ( ) (( 1) ) ( ) ( )

= ( )

= ⋅ ′ + − ⋅ − ′/ / / /

// / / /z n r z r z z c z n+ ⋅ ′ − − ′(1 ) [ ( ) ( ) ] ( ).
 (8.8)

Being a rescaled version of hn, the function in is positive at 0+, decreasing 
in z, and negative at large z values. Just because xn

* is the unique root of hn, 
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we know that zn
* is the unique root of in. More importantly, we know that the 

marketwise investment level zn
* increases with the number of participants n.

Proposition 8.2

The equilibrium total investment level zn
* is increasing in n.

8.2.3  Comparison with the First-Best Solution

For the total payoff of the n firms to be maximized, a social planner will solve 
the following problem:

 
max ( ) ( )

. . .

r z n c z n

z R

− ⋅

∈ +

/

s t  (8.9)

Therefore, the first-best total investment level z n1
*  will be a solution to

 i z r z c
z
nn1 ( ) = ( ) = 0′ − ′





 . (8.10)

Here, the subscript “1” signifies optimality under one decision maker, and 
the subscript “n” still signifies the presence of n firms. By (r2) and (c2), we 
know that i1n(z) is strictly decreasing in z; by (cr), we know that i1n(0+) > 0; and, 
by (r3), (c1), and (c2), we know that i1n(z) < 0 will occur when z is large enough. 
Therefore, z n1

*  is in existence and unique. Moreover, we can predict the trend 
for z n1

*  when the number of participants n changes.

Proposition 8.3

The first-best total investment level z n1
*  is increasing in n, while the first-best indi-

vidual investment level x z nn n1 1
* = * /  is decreasing in n.

We can show the important result that competition brings in overcapacity.

Theorem 8.1

Compared to the first-best total investment level z n1
* , the equilibrium level zn

* is 
greater.
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Our earlier assumptions and the above result essentially reflect that over-
capacity is a consequence of the concavity of the investment return function 
and the proportionality of revenue allocation. In general, the difference func-
tion (in − i1n) as defined in Equation 8.60 indicates the degree of overcapacity. 
We may see that it increases with n, and saturates at the function (r(z)/z − 
r′(z)) as n tends to +∞.

As a specific case, suppose r(x) = xγ for some γ ∈ (0,1) and c(x) = x. Then, 
from Equations 8.8 and 8.10, we may find that z n n nn

* = (( 1) )1 (1 )− + −/ / /γ γ  
and z n1

1 1* /( )= −γ γ . Hence, a more direct measure of overcapacity, 
z z n n nn n
* * (( ) ( ) ) /( )/ / /1

1 11 1= − + −γ γ , grows with n fairly quickly. When γ = 1/2, it 
follows that z z n nn n

* * = (2 1)1
2 2/ /− , which converges to 4 as n → +∞.

8.3  Information Structure and Learning

We introduce a framework that allows uncertainty in the size of the market 
faced by all firms. Through individual efforts, firms may exert control on the 
precision levels of the common signal received by all of them.

8.3.1  A Learning Framework

Instead of the previous r, let now the return function Rω be parameterized by 
some ω ∈ {L, H}, where H > L > 0. Before obtaining any information, all firms 
believe that ω is the realization of the random variable Ω, which satisfies

 P L P H[ = ] = [ = ] =
1
2

Ω Ω . (8.11)

To describe the information structure to be used, we introduce random 
variable Θ, which serves as a common signal that reflects the commonality of 
firms’ knowledge about Ω. More specifically, we let Θ be a bivalued random 
variable ranging in {L, H}. There is a constant a ∈ [0, 1] such that

 
P L L a P H H

P L H a

[ = = ] = (1 ) 2 = [ = = ],

[ = = ] = (1 )

Θ Ω Θ Ω
Θ Ω

| |

|
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From the preceding, we may derive that

 P L P H P L P H[ = ] = [ = ] = [ = ] = [ = ] =
1
2

Ω Ω Θ Θ . (8.13)
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Our framework can be extended beyond the current bi-valued case. We 
opt for the current case for the ease of later derivations involving controlled 
information acquisition.

Now, we suppose that the information structure itself is subject to firms’ 
controls. That is, we allow the random variable Θ to be dependent on firms’ 
efforts. There are stages 0 and 1. In stage 0, firms may invest to learn the 
market; in stage 1, they may participate in the investment game described in 
Section 8.2. Before stage 0, all firms believe that the return function follows 
RΩ(x). Given stage 0 firm-effort vector x0 = (x0i|i = 1,2,…,n), we suppose that Θ 
is in the form of Θ( )0x . Thus, Θ( )0x  reflects the learning effect. The true value 
of Ω will be revealed only after stage 1.

We suppose that the a used in Equation 8.12 is replaced by some function 
ã(x0). With effort-dependent substitutions, we can achieve counterparts of the 
earlier Equation 8.12. For the function ã(∙), we suppose that there is a positive 
constant α, so that

 
a x

x

x

j
j

n

j
j

n( ) =
1

0

0
=1

0
=1

α

α

∑
∑+

.
 (8.14)

This function form reflects that more can be learned through the exertion 
of greater efforts, and that the marginal return in learning decreases with 
effort levels. We have simplified the matter by letting ã(x0) depend on x j

j

n

0
=1∑  

only. Because of this, we later write a x j
j

n

0
=1∑



  in the place of ã(x01,…,x0n).

Also in the preceding, α indicates the effectiveness of learning. At the 
extreme of α = 0, the intermediate signal Θ( )0x  will be useless noise regard-
less of the amount of effort spent; at the other extreme of α = +∞, Θ( )0x  will be 
Ω itself under the convention that +∞ · 0 = +∞.

8.3.2  Particulars of the Investment Game

Let us specify the particular form of the parameterized return function Rω(·):

 R x r
x

x Rω ω
ω

( ) = ,⋅




 ∀ ∈ +. (8.15)

Note that

 
dR y

dy
r z r xy x z y x x

ω
ω ω ω ωω

ω
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=
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That is, the marginal return of an ωx-level investment under the Rω(·)-return 
regime is the same as the marginal return of an x-level investment under the 
r(·)-return regime. Thus, ω in Rω(·) can be thought of as a market-size indica-
tor. Now, we make the simplifying assumption that the total cost to firm i is 
x0i + x1i when it has spent learning effort x0i and capacity investment x1i in the 
two stages. Now (cr) in Section 8.2 means that r′(0+) > 1.

We may use xi = (x0i, x1i(L), x1i(H)) to describe firm i’s strategy. In it, x0i is the 
firm’s stage 0 learning effort, while x1i(θ) is its stage 1 investment level when 
it has learned θ as the realization of Θ( )0x . Let us use f(xi, x–i) to describe the 
average payoff to firm i, when it adopts policy xi = (x0i, x1i(L), x1i(H)) while oth-
ers have adopted policy profile xi = ((x0j, x1j(L), x1j(H))|j ≠ i. We have

 

f x x q x x xi i

L H

i i i( , ) = (1 2) ( ; , ) [( (
{ , }

0 0, 1−
∈

−∑ ⋅ ×/
θ

ω θ| θθ θ

θ ω θ

ω

) ( ( )

( ))) (( ( )

1

{ , }

1 1 1

/ x

x r x x

i

L H

j i

j i

∈

≠

∑

∑+ ⋅ ⋅ + jj i i

j i

x x( )) ) ( )]},0 1θ ω θ/ − −
≠

∑
 (8.17)

where, according to the effort-dependent version of Equation 8.12,
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Inside Equation 8.17, the 1/2 is the chance for the common observation Θ to 
be either L or H, and q(ω|θ; x0i, x0,−i) is the conditional probability P[Ω = ω|Θ = θ] 
under the same learning-effort vector. Note that firm i’s decision dependent 
is only on θ, whereas its payoff is dependent on the actual Ω-realization ω. 
As efforts are measured in costs, the cost term (x0i + x1i(θ)), involving unit 
coefficients, in no way indicates that information acquisition and capacity 
expansion costs are comparable.

8.4  The Underlearning Effect

By Equation 8.18, we can condense other firms’ action profile x−i into y = (y0, 

y1(L), y1(H)) with y xj
j i

=
≠∑ , meaning, component-wise, that y x j

j i
0 0=

≠∑ , 

y L x Lj
j i

1 1( ) = ( )
≠∑ , and y H x Hj

j i
1 1( ) = ( )

≠∑ .
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8.4.1  Stage 1 Competitive Analysis

Define function g(x, y), so that g x x f x xi j
j i i i, = ( , )

≠ −∑( )  as defined in 

Equation 8.17. For ease of presentation, we shall use x0, xL, xH to represent x0, 
x1(L), x1(H), respectively, and do the same for the y’s. Hence, x0 stands for the 
current firm’s stage 0 learning effort and y0 stands for other firms’ total stage 
0 learning effort; for θ = L, H, xθ stands for the current firm’s stage 1 invest-
ment level and yθ stands for other firms’ total stage 1 investment level.

Now Equation 8.17 can be simplified into

 

g x y g x x x y y y x x xL H L H L H( , ) = ( , , , , , ) = 2 2

[(1 2
0 0 0− − −

+ +
/ /

αα α α αx y x y

x x y L r xL L L L

0 0 0 02 ) (4 4 4 )]

[( ( )) ((

+ + +
× + ⋅ ⋅

/

/ ++ + + ⋅ ⋅ +
+ +

y L x x y H r x y H

x
L H H H H H) ) ( ( )) (( ) )]

[1 (4 4

/ / /

/ α 00 04 )]

[( ( )) (( ) ) ( (

+
× + ⋅ ⋅ + + +

αy

x x y H r x y H x xL L L L L H H/ / / yy L r x y LH H H)) (( ) )].⋅ ⋅ + /

 

(8.19)

From this, we can derive that

 
∂

∂
′ +g x y

x
g x y x y

L
L L L

( , )
= ( , , )0 0 , (8.20)

where

 

′ = − + + +

×

g z x y z z

x
L L L

L

( , , ) [( ) ( )]

[( (
0 0 01 2 1 2 4 4/ /

/

α α

xx y r x y L y x y L r x yL L L L L L L L L+ ⋅ ′ + + + ⋅ ⋅ +)) (( ) ) ( ( ) ) ((/ / 2 )) )]

[ ( )] [( ( )) (( ) )

/

/ / /

L

z x x y r x y HL L L L L+ + × + ⋅ ′ +1 4 4 0α

++ + ⋅ ⋅ +( ( ) ) (( ) )].y x y H r x y HL L L L L/ /2

 

(8.21)

Symmetrically, we can find the expression for ∂ ∂ ′g x y x gH H( , ) =/  (x0 + y0, xH, 
yH). These lead to the following important property.

Lemma 8.1

We have ∂ ′ ∂g z x y xL L L L( , , ) < 00 /  and ∂ ′ ∂g z x y xH H H H( , , ) < 00 / .
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We seek a pure symmetric equilibrium ( = * = 1, 2, ..., )x x i ni n | , where xn
* 

is made up of three components: xn0
* , xnL

* , and xnH
* . For the time being, we 

concentrate on firms’ stage-1 subgame perfect equilibrium actions when all 
firms’ stage 0 actions are known. Let x znL

* ( )0  be each firm’s pure symmetric 
equilibrium stage 1 action when it is known that the total learning effort in 
stage 0 is z0 and the firm itself has observed the L signal. We may similarly 
define x znH

* ( )0 . Once the stage 0 equilibrium xn0
*  has been determined, we can 

let x x nxnL nL n
* = * ( * )0  and x x nxnH nH n

* = * ( * )0 .
By Lemma 8.1, we know that, under a given total stage 0 learning effort z0, 

the pair ( * ( ), * ( ))0 0 x z x znL nH  can be found by solving for

 ′ − ′g z x z n x z g z xL nL nL H nH( , * ( ),( 1) * ( )) = 0, ( , *
0 0 0 0   (( ),( 1) * ( )) = 00 0z n x znH−  , (8.22)

whenever the aforementioned equalities are achievable. According to 
Equation 8.21, the above requirement on x znL

* ( )0  is that it be a root for func-
tion hnL(z0,·) defined by

 h z x
z
z

j nx
L znL L n

L( , ) =
1
2

1 2
4 4

1
4 40

0

0

− + +
+

⋅ 





+
+

α
α α 00

⋅ 





j nx
H

n
L , (8.23)

where

 j x
n

r x
n

n
r x

xn( ) =
1

( )
1 ( )⋅ ′ + − ⋅ . (8.24)

By (r2) and (r02b), we know that jn(x) is strictly decreasing in x. Symmetrically, 
we may resort to function hnH(z0,·) to find x znH

* ( )0 , where

 h z x
z
z

j nx
H znH H n

H( , ) =
1
2

1 2
4 4

1
4 40

0

0

− + +
+

⋅ 





+
+

α
α α 00

⋅ 





j nx
L

n
H . (8.25)

We can establish the existence and uniqueness of a stage 1 subgame perfect 
equilibrium.

Proposition 8.4

On (0, +∞), both hnL(z0,·) and hnH(z0,·) are strictly decreasing functions starting with 
strictly positive values and ending with strictly negative values. Consequently, when 
firms contribute a total learning effort z0, there will be a unique low-signal invest-
ment level x znL

* ( )0  and a unique high-signal investment level x znH
* ( )0  all will be 

willing to adopt.
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From the following, we see that when better informed, firms will place 
more trust in the common signal they receive, and more boldly place differ-
entiated bets on the market.

Proposition 8.5

First, we have  x xnL nH
* (0) = * (0). Then, as z0 increases, x znL

* ( )0  will decrease, while 
x znH
* ( )0  will increase.

Using the same logic as previously, we can show that increases in learning 
effectiveness α will result in the widening of the gap between x znL

* ( )0  and 
x znH
* ( )0 .

Proposition 8.6

First, we have  x z x znL nH
* ( ) = * ( )0 0  when α = 0. Then, as α increases, x znL

* ( )0  will 
decrease, while x znH

* ( )0  will increase.

8.4.2  Stage 0 Competitive Analysis

We now come back to stage 0 to study its equilibrium decision. Define func-
tion g x yn( , )0 0 , so that

 
  g x y g x x x y x x y y nn nL nH( , ) = ( , * ( ), * ( ), ,(0 0 0 0 0 0 0 0+ + −− +

− +

1) * ( ),

( 1) * ( ))

0 0

0 0





x x y

n x x y

nL

nH ,
 (8.26)

where g is given in Equation 8.19. The newly defined function is the payoff to 
a firm which spends an x0 effort in stage 0, when the other n − 1 firms spend 
a total of y0 effort in this stage and all firms adopt their subgame perfect 
equilibrium responses in stage 1. By Equation 8.19, we have

 

  g x y x x x y x x yn nL nH( , ) = * ( ) 2 * ( ) 2

[(

0 0 0 0 0 0 0− − + − +

+

/ /

11 2 2 ) (4 4 4 )] [( ) ( * (0 0 0 0 0+ + + + × ⋅α α α αx y x y L n r nx xnL/ /  ++

+ ⋅ + + + +

y L

H n r nx x y H xnH

0

0 0 0

) )

( ) ( * ( ) )] [1 (4 4 4

/

/ / / α ααy

H n r nx x y H L n r nxnL nH

0

0 0

)]

[( ) ( * ( ) ) ( ) ( *× ⋅ + + ⋅/ / /  (( ) )].0 0x y L+ /

 

(8.27)
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Because the above gn is difficult to analyze, we shall start to make the 
simplifying assumption:

 r x x( ) = . (8.28)

Now, from Equation 8.24, we will have

 j x
n

n x
n( ) =

2 1

2

−
. (8.29)

Hence, from Equations 8.23 and 8.25, we have

 

h z x n n n z

z L

nL L( , ) = 1 2 ((2 1) (8 8 ))

[(1 2 )

0 0

0

− + − +

× + ⋅

/ / α

α // /

/ /

( ) ( )],

( , ) = 1 2 ((2 1) (8 80

nx H nx

h z x n n n
L L

nH H

+
− + − + αα

α

z

z H nx L nxH H

0

0

))

[(1 2 ) ( ) ( )],× + ⋅ +












 / /

 (8.30)

from which we get

 
x z n L H L z n znL
* ( ) = (2 1) ( 2 ) (16 (1 ) )0

2
0

2 3
0

2− × + + ⋅ ⋅ +α α/ ,,

* ( ) = (2 1) ( 2 ) (16 (1 )0
2

0
2 3

0x z n H L H z n znH − × + + ⋅ ⋅ +α α/ 22).






 (8.31)

Plugging Equations 8.28 and 8.31 into 8.27, we obtain a closed-form expres-
sion for gn:

 
g x y x n n x y

HL

n( , ) = [(2 1) (16 (1 ) )]

2

0 0 0
3

0 0
2− + − ⋅ + +

×

/ α α

⋅⋅ + + + + ⋅ + + ⋅ + +(1 2 2 ) ( ) [1 2 ( ) (1 )]0 0 0 0 0 0α α α α αx y L H x y x y{{ }. 

(8.32)

After some algebra, it can be found that

 
∂

∂
+

g x y
x

Q A x yn
n

( , )
= ( , ( ))0 0

0
0 0α , (8.33)

where

 Q a w
aw

w
( , ) =

(1 )
13+

− , (8.34)
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and

 A
n H L

nn =
(2 1)

8

2

3

− −( )α
. (8.35)

At various a levels, the function Q(a,·) possesses useful properties.

Lemma 8.2

When a ∈ [0, 27/4), we have Q(a, w) < 0 for w ∈ R+; when a ∈ [27/4, +∞), the func-
tion Q(a,·) has two positive real roots w0(a) ≤ 1/2 and w*(a) ≥ 1/2, such that the 
function is below 0 when w ∈ [0, w0(a)), above 0 when w ∈ [w0(a), w*(a)], and below 
0 again when w ∈ (w*(a), +∞).

Suppose parameters α, L, and H are such that the An as defined by Equation 
8.35 is above 27/4. Then, we may define Bn = w*(An), where w*(a) is the larger 
one of the two roots of function Q(a,∙) as defined in Lemma 8.2. Also, define 
Cn so that

 C n g B
n

n B
n

g n B
n

n n
n n

n
n= ,

( 1)
0,

( 1)α
α α α

⋅ −





− −


 












, (8.36)

which, after some algebra while using Equation 8.32 and the fact that Q(An, 
Bn) = Q(An, w*(An) = 0), can be found to be the same as

 C
n B nB B

nB B nn
n n n

n n

=
(2 2) ( 1)

2 ( )

3

2

− ⋅ + ⋅ −
⋅ − +

. (8.37)

We can express the largest stage 0 equilibrium xn0
*  in terms of the afore-

mentioned constants.

Proposition 8.7

xn0
*  is always in existence; in addition, it is true that

 x
A A C

B nn
n n n

n
0

* =
0, < 27 4, 27 4 < 0,

( ),

when or and

whe

/ /

/

≥
α nn andA Cn n≥ ≥





 27 4 0./
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8.4.3  First-Best Analysis

Suppose all firms adopt the same policy x = (x0, xL, xH). Then, according to 
Equation 8.19, each of the firms will earn the following:

 

g x x x g x x x n x n x n xL H L H L H1 0 0 0( , , ) = ( , , , ( 1) , ( 1) , ( 1)− − − )) = 2

2 [(1 2 ) (4 4 )]

( )

0

0 0

− −
− + + +

× ⋅

x x

x n x n x

L n nx

L

H

/

/ /

/

α α

LL H

L

L H n nx H

n x H n nx H

/ / /

/ / /

+ ⋅ 
+ + × ⋅ +

( )

[1 (4 4 )] ( )0α (( ) .L n nx LH/ /⋅ 

 
(8.38)

Hence, we have

 
∂

∂
′g x x x

x
g nx xL H

L
L L

1 0
1 0

( , , )
= ( , ), (8.39)

where

 ′ − + + ⋅ +
+ ⋅

g z x
z L H

z nx
L L

L
1 0

0

0

( , ) =
1
2

(1 2 )

(8 8 )

α
α

. (8.40)

It is easy to check that ′ ⋅g zL1 0( , )  is strictly decreasing in xL, limxL Lg→ + ′0 1

(z0, x0) > 0, and limxL L Lg z x→+∞ ′1 0( , ) < 0. We can find similar properties for 

∂ ∂ ′g x x x x g nx xL H H H H1 0 1 0( , , ) = ( , )/ . Therefore, given total learning effort z0, 
the stage 1 first-best decisions x znL1 0( )*  and x znH1 0

* ( ) can be found by solving 
for ′g z x zL nL1 0 1 0( , * ( )) = 0  and ′g z x zH nH1 0 1 0( , * ( )) = 0 , respectively. Hence, in view 
of Equation 8.40, we have

 





x z L H L z n z

x

nL

nH

1 0 0

2

0
2

1

* ( ) = 2 (16 (1 ) ),

* (

+ + ⋅( ) ⋅ +α α/

zz H L H z n z0 0

2

0
2) = 2 (16 (1 ) ).+ + ⋅( ) ⋅ +







 α α/

 (8.41)

Comparing Equations 8.31 and 8.41, we may see that overcapacity is present 
under the same level of learning. Also, the ratio of overcapacity approaches 
4 from below when the number of firms tends to +∞.
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Theorem 8.2

We have

 








x z

x z

x z

x z

nnL

nL

nH

nH

* ( )

* ( )
=

* ( )

* ( )
=

(2 1)0

1 0

0

1 0

2−
nn2 .

Plugging Equation 8.41 into 8.38, we may obtain the payoff to an individual 
firm when every firm pitches in an x0 learning effort and adopts the corre-
sponding optimal stage 1 decision:

 
  g x g x x nx x nx x

H

n nL nH1 0 1 0 1
*

0 1
*

0 0( ) = ( , ( ), ( )) =

[2

−

+ LL n x L H n x n x n⋅ + + + ⋅ + + ⋅ +(1 2 ) ( ) (1 2 2 )] (16 (10 0
2 2

0
2α α α / ααnx0

2) ).
 

(8.42)

Taking derivative, we find that

 
dg x

dx
Q A n xn1 0

0
1 0

( )
= ( , )α , (8.43)

where Q is defined in Equation 8.34, whereas A1 is defined in Equation 8.35 
but with n = 1. Suppose α, L, and H make A1 ≥ 27/4. Then, we may define B1 = 
w*(A1), as well as, C1 so that

 C n g B
n

gn n1 1
1

1= (0)α
α

⋅ 





−








  , (8.44)

which by Equation 8.42, is the same as C1 being defined through Equation 
8.37 with n = 1. We can express the largest first-best individual-firm learning 
effort x n1 0

*  in terms of these constants.

Proposition 8.8

It is true that

 x
A A C

Bn1 0
1 1 1

1

* =
0, < 27 4, 27 4 < 0,

( ),

when / / and

/ wh

or ≥
nα een / andA C1 127 4 0.≥ ≥
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8.4.4  Comparison between Sections 8.4.2 and 8.4.3

For n = 2, 3,…, let z nxn n0 0
* = *  be the total learning effort in equilibrium. Also, 

let z nx n10 1 0
* = *  be the first-best total learning effort, which, according to 

Proposition 8.8, is independent of the number of firms n. Now we treat n = 
1, 2,… indiscriminately, with the understanding that n = 1 signifies the first-
best case involving an arbitrary number of firms, while n = 2, 3,… connotes 
the competitive case involving n firms.

From Propositions 8.7 and 8.8, it is clear that zn0
*  depends on L and H 

through the Ω-uncertainty indictor γ = H L−  only. We can further show 
that the total effort zn0

*  is decreasing in the number of decision makers n and 
will be encouraged by an increased level of return uncertainty γ; in addition, 
the total learning effect αzn0

*  increases with the effectiveness of learning α.

Theorem 8.3

For n = 1,2,…, An, Bn, and Cn are all decreasing in n, increasing in γ, and increasing 
in α. Consequently, zn0

*  is decreasing in n and increasing in γ; in addition, αzn0
*  is 

increasing in α.

The aforementioned decrease of zn0
*  in n underscores the underlearning 

effect, that more intense competition leads to lower total investment in learn-
ing. With this, the individual learning effort xn0

*  will drop with n even faster. 
The above effect should be expected, as communal learning in some sense 
encourages “free riding.” To help better understand the trends for An and Cn, 
we draw Figures 8.1 and 8.2. In Figure 8.1, we draw, in the (α, γ)-plane, iso-
value curves An = 27/4 at different n values and gradients (∂An/∂α, ∂An/∂γ) at 
different points of the curves. In Figure 8.2, we repeat the same for Cn.
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FIGURE 8.1
Iso-valued curves An = 27/4.
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Let us consider the total stage 1 capacity investment levels. By Equations 
8.31 and 8.41, we can combine the competitive and first-best cases to obtain 
the following: for n = 1, 2,…,

  z z
n L H

nnL nH
* (0) = * (0) =

(2 1)

16

2 2

2

− ⋅ +( )
, (8.45)

and

 

z B n L H L B n BnL n n n
* ( ) = (2 1) 2 (16 (1 ) )2 2 2 2/ /α − ⋅ + + ⋅( ) ⋅ + ,,

* ( ) = (2 1) 2 (16 (1 )2 2 2
z B n H L H B n BnH n n n/ /α − ⋅ + + ⋅( ) ⋅ + 22).







  (8.46)

We may define kn
* for n = 1,2,… as a ratio:

 k
z z

z z
n

nH n

nL n

* =
* ( * )

* ( * )

0

0





. (8.47)

It measures the confidence a firm has in its acquired information about the 
market outlook.

By Propositions 8.7 and 8.8 and Equations 8.45 through 8.47, we have, for 
n = 1, 2,…,

 k
A A C

K B An
n n n

n n

* =
1, < 27 4, 27 4 < 0,

( ),

when or and

when

/ /≥
≥≥ ≥





 27 4 0,/ and Cn
 (8.48)
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Iso-valued curves Cn = 0.
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where

 K b L H H b

H L L b
( ) = 2

2

2

2
+ + ⋅( )

+ + ⋅( ) . (8.49)

In the competitive setting, a firm’s confidence in its learning effect de creases 
with the number of firms n; a firm’s confidence in this setting is always below 
that in the first-best case; also, confidence in both settings increases with the 
stage 0 learning effectiveness α.

Theorem 8.4

For n = 1, 2,…, kn
*  is decreasing in n. Also, every kn

*  is increasing in α.

8.5  A Potential Extension

In an extended learning model, we may still use the Ω defined through 
Equation 8.11 as firms’ common belief of the size indicator before informa-
tion acquisition. The relationship between each realized ω and the return 
function may still be described by Equation 8.15. However, this time we 
allow different firms to be able to acquire different information. On top of 
the random variable Θ, serving as firms’ common observation through the 
relation in Equation 8.12, we introduce random variables Δ1, Δ2, …, and Δn 
for the n firms. We let each Δi be a bivalued random variable ranging in {L, H}. 
When conditioned on Θ = some θ, the random variables (Δi|θ) are indepen-
dent of each other and (Ω|θ). Also, there is a constant bi ∈ [0, 1] such that

 
P L L b P H H

P L H
i i i

i

[ = = ] = (1 ) 2 = [ = = ],

[ = = ] = (1

∆ ∆

∆

| |

|

Θ Θ
Θ

+ /

−−





 b P H Li i) 2 = [ = = ]./ ∆ |Θ  (8.50)

Now, Θ serves as something intermediate between Ω and the Δi’s. Firm i’s 
final observation is the realization δ = L, H of the random variable Δi. The 
firm is to use this to make statistical inferences. By using Bayes’ formula as 
well as other elementary probabilistic tools, it is easy to characterize the vari-
ous random variables (Θ|δ), (Δj|δ) for j ≠ i, and (Ω|δ). We have

 
P L L b P H H

P L H
i i i

i

[ = = ] = (1 ) 2 = [ = = ],

[ = = ] = (1

Θ Θ
Θ

| |

|

∆ ∆

∆

+ /

−−





 b P H Li i) 2 = [ = = ];/ Θ |∆  (8.51)
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for j ≠ i,

 
P L L b b P H H

P L
j i i j j i

j i

[ = = ] = (1 ) 2 = [ = = ],

[ = =

∆ ∆ ∆ ∆

∆ ∆

| |

|

+ /

HH b b P H Li j j i] = (1 ) 2 = [ = = ];−






/ ∆ ∆|  (8.52)

and,

 
P L L ab P H H

P L H
i i i

i

[ = = ] = (1 ) 2 = [ = = ],

[ = = ] = (

Ω Ω
Ω

| |

|

∆ ∆

∆

+ /

11 ) 2 = [ = = ].−





 ab P H Li i/ Ω |∆  (8.53)

Like in Section 8.3.1, we may suppose that there are stages 0 and 1. In stage 
0, firms may invest to learn the market; in stage 1, they may participate in the 
investment game described in Section 8.2. Before stage 0, all firms believe 
that the return function follows RΩ(x). Given stage 0 firm-effort vector x0 = 
(x0i|i = 1,2,…,n), we suppose that Θ is in the form of Θ( )0x  and each Δi is in the 
form of ∆( , )0 0,x xi i− . Thus, Θ( )0x  reflects the communal learning effect and the 
∆( , )0 0,x xi i− ’s reflect firms’ individual take-aways. The true value of Ω will be 
revealed only after stage 1.

We suppose that the a used in Equation 8.12 is replaced by some function 
ã(x0) and the bi used in Equation 8.50 is replaced by some function b x xi i( , )0 0,− . 
With effort-dependent substitutions, we can achieve counterparts of the ear-
lier Equations 8.51 through 8.53. For instance, for ã(∙), we may suppose that 
there is a positive constant α to satisfy Equation 8.14; for function b( )⋅ , we may 
suppose the existence of some positive constant to satisfy

 � …b x x
x

x
i ni i

i

i

( , ) =
1

, = 1, 2, ,0 0,
0

0
− +

∀β
β

. (8.54)

These function forms reflect that more can be learned through the exertion 
of greater efforts, and that the marginal return in learning decreases with 
effort levels. We have simplified the matter by letting b x xi i( , )0 0,−  depend on 
x0i only. In the above, α again indicates the effectiveness of communal learn-
ing, while β indicates the strength of individual takeaways. At the extreme 
of β = 0, the final signal ∆( , )0 0,x xi i−  will always be useless noise; at the other 
extreme of β = +∞, ∆( , )0 0,x xi i−  will be Θ( )0x  itself under the convention that 
+∞ ∙ 0 = +∞. This last case is what we have just studied in Section 8.4.

We may use xi = (x0i, x1i(L), x1i(H)) to describe firm i’s strategy. In it, x0i is 
the firm’s stage 0 learning effort, while x1i(δ) is its stage 1 investment level 
when it has learned δ as the realization of ∆( , )0 0,x xi i− . Let us use f(xi, x−i) to 
describe the average payoff to firm i, when it adopts policy xi = (x0i, x1i(L), 
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x1i(H)) while others have adopted policy profile x−j = ((x0j, x1j(L), x1j(H))|j ≠ i). 
We have
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(8.55)

where, according to effort-dependent versions of Equations 8.52 and 8.54,
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and according to effort-dependent versions of Equations 8.14, 8.53, and 8.54,
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(8.57)

Inside Equation 8.55, the 1/2 is the chance for firm i’s observation Δi to be 
either L or H, p(δj|δi; x0i, x0j) is the conditional probability P[Δj = δj|Δi = δi] 
when firms’ learning-effort vector is x0 = (x0i|i = 1,2,…,n), and q(ω|δi; x0i, x0,−i) 
is the conditional probability P[Ω = ω|Δi = δi] under the same learning-effort 
vector. Note that firm i’s decision is only dependent on δi, whereas its payoff 
is dependent on the actual Ω-realization ω.
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When β < +∞, different firms receive different signals, and Equation 8.55 
is much more difficult to analyze than its counterpart (Equation 8.17) at 
β = +∞. Outcomes will diverge depending on whether or not firms share 
these signals. It turns out that the concerned problem can become entangled 
even when we assume that there are n = 2 firms and that the return func-
tion r x x( ) = . Our preliminary analysis is numerical in nature, from which 
we may draw some conclusion on conditions that favor information sharing 
among firms. But more extensive analysis is still needed.

8.6  Concluding Remarks

We formulated a capacity investment game in which identical firms contest 
for market shares and watch out for their investment returns at the same 
time. Overcapacity appears as a natural outcome of this game. By introduc-
ing uncertainty to the market size and adding a stage 0 of competitive infor-
mation gathering to the game, we enabled the investigation of information 
and learning in a competitive setting. Our theoretical analysis confirmed the 
severe underlearning effect when incentives exist for “free riding.”

Extending on the learning framework in Section 8.3, we may further 
model, as we did in Section 8.5, the case where different firms receive dif-
ferent signals. Outcomes will diverge depending on whether or not firms 
share these signals. We may then study whether or not information shar-
ing brings in additional benefits. So far we have found that analysis would 
become numerically entangled even for two firms. But we hope that, in 
future research, some minor adjustments to the current framework could 
pave the way for more major insights.

Appendix

A. Proof of Proposition 8.1

It all hinges on hn. Note that

 ′ ′′ + − ⋅ ′ −






− ′′h x r nx
n
nx

r nx
r nx

nx
c xn( ) = ( )

1
( )

( ) ( )), (8.58)

which, by (r2), (r02), and (c2), is strictly negative. By l’Hôpital’s rule,

 hn(0+) = r′(0+) − c′(0+), (8.59)
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which is strictly positive by (cr). Also, by (r3), (c1), and (c2), we know that 
hn(x) < 0 will occur when x is large enough. Therefore, xn

* is in existence and 
unique.

B. Proof of Proposition 8.2

By (r02), (c2), and (8), we know that in(z) is increasing in n at any fixed z. Thus, 
zn
*  is increasing in n, as it is the unique root of the decreasing function in(z).

C. Proof of Proposition 8.3

By (c2) and (10), we know that h1n(z) is increasing in n at any fixed z. Thus, 
z n1
*  is increasing in n, as it the unique root of the decreasing function h1n(z). 

On the other hand, x z nn n1 1
* = * /  is the unique root for the decreasing function 

r′(nx) − c′(x). By (r2), we know that the function is decreasing in n. Thus, we 
know that x n1

*  is decreasing in n.

D. Proof of Theorem 8.1

We clearly have z z1 11
* = * . Let us focus on the case where n ≥ 2. Comparing 

Equation 8.8 with Equation 8.10, we have

 i z i z
n

n
r z

z
r zn n( ) ( ) =

1 ( )
( )1− − ⋅ − ′






, (8.60)

which is strictly positive by (r02). With zn
* and z n1

*  being roots, respectively, of 
the functions in and i1n, we therefore have z zn n

* > *
1 .

E. Proof of Lemma 8.1

By Equation 8.21, we have
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(8.61)
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That is, we have
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and

 
T r x y L r x y L x y L
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By (r2), we have Q1 < 0 and Q2 < 0; S1, S2, and S3 are all apparently strictly 
positive; also, by (r02), we have T1 < 0 and T2 < 0. Therefore, we have 
∂ ′ ∂g z x y xL L L L( , , ) 00 / < . Symmetrically, we can show that ∂ ′ ∂g z x y xH H H H( , , ) 00 / < .

F. Proof of Proposition 8.4

Because jn(x) is strictly decreasing in x, we know from Equation 8.23 that 
hnL(z0, xL) is strictly decreasing in xL. By l’Hôpital’s rule, we know that jn(0+) = 
r′(0+), and hence

 h z
r

nL( , 0 ) =
(0 ) 1

20
+

+′ −
, (8.66)

which is strictly positive by (cr). Also, by (r3), we know that hnL(z0, xL) < 0 will 
occur when xL is large enough. Therefore, the root x znL

* ( )0  is in existence and 
unique. The result on x znH

* ( )0  can be achieved symmetrically.

G. Proof of Proposition 8.5

From Equations 8.23 and 8.25, we see that

 h x h x j nx
L

j nx
H

nL nH n n(0, ) = (0, ) =
1
2

1
4

− + ⋅ 





+ 











. (8.67)
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Therefore, the unique roots xnL
* (0) and xnH

* (0) of the preceding two identical 
functions should be equal to each other. Rewriting Equations 8.23 and 8.25, 
we note that

 h z x j nx
L z

j nx
H

nL L n
L

n
L( , ) =

1
2

1
2
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4 40
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+
+

⋅ 
α 




− 











j nx

L
n

L , (8.68)

and
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j nx

H
n

H . (8.69)

Because jn(x) is strictly decreasing in x and H > L > 0, we know that jn(nxL/H) >  
jn(nxL/L) and jn(nxH/L) < jn(nxH/H). Hence, hnL(z0, xL) is decreasing in z0 and 
hnH(z0, xH) is increasing in z0. Being roots of decreasing functions hnL(z0, ∙) and 
hnH(z0, ∙), we therefore know that x znL

* ( )0  is decreasing in z0 and that x znH
* ( )0  is 

increasing in z0.

H. Proof of Lemma 8.2

First, we always have Q(a, 0) = −1. Now we analyze Q(a, ∙) for a ≥ 0. Note that

 
∂

∂
⋅ −

+
Q a w

w
a w

w
( , )

=
(1 2 )

(1 )4 , (8.70)

and

 
∂

∂
⋅ −

+

2

2 5

( , )
=

6 ( 1)
(1 )

Q a w
w

a w
w

. (8.71)

It is easy to see that Q(a, ∙) has a local maximum at 1/2. We have

 Q a
a

,
1
2

=
4
27

1





− . (8.72)

Therefore, when a ∈ [0, 27/4), the function Q(a, ∙) is never above 0 for w ∈ R+; 
when a ∈ [27/4, +∞), however, Q(a, ∙) is above 0 in an interval containing 1/2, 
whose left- and right-end points are the two desired roots w0(a) and w*(a).
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I. Proof of Proposition 8.7

We know the following from Lemma 8.2: When An ∈ [0, 27/4), the function 
Q(An, ∙) is never above 0 for w ∈ R+, and hence g x yn( , )0 0  is never increasing 
in x0; when An ∈ [27/4, +∞), however, Q(An, ∙) is above 0 in the interval [w0(An), 
w*(An)] containing 1/2.

Now, we know that g x yn( , )0 0  is decreasing in x0 when α(x0 + y0) ∈ [0, 
w0(An)), increasing in x0 when α(x0 + y0) ∈ [w0(An), w*(An)), and decreasing 
in x0 again when α(x0 + y0) ∈ [w*(An), +∞). When An ≥ 27/4, we may define 
Dn so that

 D g B gn n
n

n= , 0 (0, 0)α
α

⋅ 





−








  . (8.73)

We can show that (Dn ≥ 0) ⇒ (Cn ≥ 0), and hence (Cn < 0) ⇒ (Dn < 0). By 
Equations 8.32 and 8.73, we have

 D
A B

B
Bn

n n

n
n=

2 (1 )

2

2⋅ +
− , (8.74)

which, because Q(An, Bn) = Q(An, w*(An)) = 0, leads to

 D
B B

n
n n=

( 1)
2

⋅ −
. (8.75)

By Equation 8.75 and the fact that Bn ≥ 1/2, we have (Dn ≥ 0) ⇒ (Bn ≥ 1). But 
by Equation 8.37, Bn ≥ 1 leads to Cn ≥ 0.

When An < 27/4, as gn( , 0)⋅  is decreasing, gn(0, 0)  is greater than g xn( , 0)0  
for any x0 ∈ R+. Also, g x n xn( ,( 1) )0 0−  is smaller than g n xn(0,( 1) )0−  for any 
x0 ∈ (0, +∞), because g n xn( ,( 1) )0⋅ −  is decreasing too. Hence, we have xn0

* = 0.
When An ≥ 27/4 and Cn as defined in Equation 8.36 is positive, it follows that 
g B n n B nn n n( ( ),( 1) ( ))/ /α α−  is greater than g n B nn n(0,( 1) ( ))− / α , the only other 

local maximum of g n B nn n( ,( 1) ( ))⋅ − / α ; thus, g B n n B nn n n( ( ),( 1) ( ))/ /α α−  is 
greater than g x n B nn n( ,( 1) ( ))0 − / α  for any x0 ∈ R+. Also, g x n xn( ,( 1) )0 0−  is 
smaller than g B n n xn n( ( ),( 1) )0/ α −  for any x0 ∈ (Bn/(nα), +∞), since g n xn( ,( 1) )0⋅ −  
is decreasing when the argument is above Bn/(nα). Hence, we have x B nn n0

* = ( )/ α .
When An ≥ 27/4 but Cn < 0, we have Dn < 0 according to the above. Hence, 

it follows that gn(0, 0)  is greater than g Bn n( , 0)/α , the only other local maxi-
mum of gn( , 0)⋅ ; thus, gn(0, 0) is greater than g xn( , 0)0  for any x0 ∈ R+. Also, 
g x n xn( ,( 1) )0 0−  is smaller than g B n x n xn n(( ( 1) ) 0,( 1) )0 0/α − − ∨ −  for any x0 ∈ 
(0, +∞). Hence, we have xn0

* = 0.
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J. Proof of Proposition 8.8

We know the following from Lemma 8.2: When A1 ∈ [0, 27/4), the function 
Q(A1, ∙) is never above 0 for w ∈ R+, and hence g xn1 0( )  is never increasing in 
x0; when A1 ∈ [27/4, +∞), however, Q(A1, ∙) is above 0 in the interval [w0(A1), 
w*(A1)] containing 1/2. In the latter case, g n1 ( )⋅  has two local maximums, 0 and 
B1/(nα). Whether x n1 0

* = 0 or x B nn1 0 1
* = ( )/ α  depends solely on whether or not 

 g g B nn n1 1 1(0) ( ( )) > 0− / α , which, according to Equation 8.44, is the same as C1 < 0.

K. Proof of Theorem 8.3

From Equation 8.35, it is clear that An is decreasing in n, and increasing in 
γ and α. For a ∈ [27/4, +∞), we may take derivative of a on the equation Q(a, 
w*(a)) = 0 while in consultation with Equation 8.34, to obtain

 
dw a

da
w a
w a a

w a
w a

* *
*

*
*

( )
=

( )
3(1 ( ))

=
( ( ))

2( ( )) 32

2

3+ − + (( ( )) 12w a* −
, (8.76)

which is positive since w*(a) ≥ 1/2. Hence, just because An is so, Bn = w*(An) is 
decreasing in n, and increasing in γ and α.

By Equation 8.37, we have

 Cn = G(n, Bn), (8.77)

where

 G k b
k b kb b

kb b k
( , ) =

(2 2) ( 1)
2 ( )

3

2

− ⋅ + ⋅ −
⋅ − +

. (8.78)

Taking derivatives, we have

 
∂

∂
⋅ − − ⋅ + +G k b

k
b k b b kb

D k b
( , )

=
[1 ( 1) (2 3 )]

( , )

2 2

, (8.79)

and

 
∂

∂
G k b

b
N k b
D k b

( , )
=

( , )
( , )

, (8.80)
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where

 N(k, b) = 2(k − 1)2 ∙ b3 + 6k(k − 1) ∙ b2 + k(3k − 1) ∙ b − k2, (8.81)

and

 D(k, b) = 2 ∙ (kb − b + k)3. (8.82)

From Equation 8.35, we have, when treating An as a function of n, γ, and α,
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∂
− − − − ⋅

−
A
n

n
n

n A
n n

n n=
(4 3)

8
=

(4 3)
2

2

4 2

αγ
. (8.83)

In view of Q(An, Bn) = 0, this leads to
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∂
− − ⋅ +

− ⋅
A
n

n B
n n B

n n

n

=
(4 3) (1 )

(2 )

3

2 . (8.84)

Combining the preceding while treating Cn as a function of n, γ, and α, we 
obtain

 

∂ ∂ ∂ ∂ + ∂ ∂

×

C n G k b k G k b bn k n b Bn k n b Bn
/ / /= ( , ) ( , )= , = = , =| |

* / /dw a da A n n B B

J

w a Bn n n n( ) = ( 1) (1 )

(

( )=| * × ∂ ∂ − − ⋅ ⋅ +

⋅ nn B n n nB B n Bn n n n, ) [(2 ) ( ) (2 1)],2 3/ − ⋅ − + ⋅ −
 (8.85)

where

 J(k, b) = 3b3 − b(1 + 9b(1 + b)) ∙ k + (1 + b)(8b2 + 4b − 1) ∙ k2. (8.86)

Note that J(∙, b) is a quadratic function with the minimum achieved at k0(b) = 
1 − (7b3 + 15b2 +5b − 2)/(2 ∙ (8b3 + 12b2 + 3b − 1)), which is below 1 for b ≥ 1/2. 
Thus, for k ≥ 1 and b ≥ 1/2, we have J(k, b) ≥ J(1, b) = 2b3 + 3b2 + 2b − 1 ≥ 0. Thus, 
we know that ∂Cn/∂n ≤ 0, and hence Cn is decreasing in n.

For k ≥ 1 and b ≥ 1/2, D(k, b) as defined in Equation 8.82 is clearly positive. 
Also, from Equation 8.81, we have

 N k b k k k k k k
k

( , )
1
4

( 1)
3
2

( 1)
1
2

(3 1) =
(9 1)2 2≥ ⋅ − + ⋅ − + ⋅ − − − (( 1)

4
0

k − ≥ . (8.87)
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By (80), we may achieve from this the positivity of ∂G(k, b)/∂b. Hence, just 
because Bn is so, Cn is increasing in γ and α.

The remaining results are simple consequences of the above trends of An, 
Bn, and Cn, as well as Propositions 8.7 and 8.8.

We now know that the strictly positive zn0
* -value of Bn/α is decreasing in 

n. Suppose n has been increased. Then, it will be less likely for An ≥ 27/4 and 
Cn ≥ 0 to occur, and hence less likely for zn0

*  to assume the strictly positive 
value. Therefore, zn0

*  is decreasing in n.
We also know that the strictly positive zn0

* -value of Bn/α is increasing in γ. 
Suppose γ has been increased. Then, it will be more likely for An ≥ 27/4 and 
Cn ≥ 0 to occur, and hence more likely for zn0

*  to assume the strictly positive 
value. Therefore, zn0

*  is increasing in γ.
Moreover, we know that the strictly positive αzn0

* -value of Bn is increasing 
in α. Suppose α has been increased. Then, it will be more likely for An ≥ 27/4 
and Cn ≥ 0 to occur, and hence more likely for αzn0

*  to assume the strictly posi-
tive value. Therefore, αzn0

*  is increasing in α.

L. Proof of Theorem 8.4

From Theorem 8.3, we know that An and Cn are all decreasing in n. Hence, 
from Equation 8.48, we have

 k k
A A C

Kn n

n n n

* * =
1, < 27 4, 27 4 < 0,

1/
when / or / and

+

≥
(( ) ( ), 27 4 0,

( ),
1 1 1B K B A C

K B
n n n n

n

/ when / and

i
+ + +≥ ≥

nn all other cases.








  (8.88)

From Equation 8.49, it is easy to check that, as b increases from 1/2 to 

+∞, K(b) increases from 2 2
2 2

H L H L+( ) +( )/  to H/L. By Theorem 8.3 
again, we know that Bn is decreasing in n. Combining these together, we will 
have k kn n

* * 11/ + ≥  in all situations.
The increase of kn

* in α is a simple consequence of Equation 8.48, the above 
fact about the K(b) function, and the increase of An, Bn, and Cn in α as stipu-
lated in Theorem 8.3.
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9
A Multiperiod Multiclass High-Speed Rail 
Passenger Revenue Management Problem

Ying Qin, Zhe Liang, Wanpracha Art Chaovalitwongse, 
and Shaozhong Xi

ABSTRACT In this chapter, we study a multiperiod multiclass rail pas-
senger revenue management (MPMC-RPRM) problem. In MPMC-RPRM, we 
assume that the unsatisfied demand from a previous period can be recap-
tured by the later period, and the unsatisfied demand from a class can be 
recaptured by other classes. To formulate the MPMC-RPRM, we first propose 
a basic model (BM). Because there are a large number of binary variables and 
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big-M constraints in the basic model, it is very time consuming to obtain the 
optimal solutions for the real-life large-scale problems. Therefore, we pro-
pose a two-stage heuristic to solve the problem. In the first stage, we decom-
pose each trip into a number of consecutive legs. Instead of maximizing the 
total revenue from all origin–destination pairs, we maximize the total rev-
enue from all legs. The result of the first-stage heuristic provides a set of 
trains needed. In the second stage of the heuristic, we maximize the total 
revenue from all the origin–destination pairs on a restricted BM model, in 
which only the set of trains that have been fixed in the first stage can be used. 
The computational results show that the two-stage heuristic provides a bet-
ter solution than the basic model in a much shorter time. We also extend our 
model and solution approach with some real-life considerations.

KEY WORDS: decomposition heuristic, integer programming, passenger revenue 
management, rail transportation, scheduling.

9.1  Introduction

Half a century ago, on October 1, 1964, the first modern high-speed rail, 
Shinkansen, began to service passengers between Tokyo and Osaka with a 
top speed of 210 km/h (130 mph). Since then, the development of high-speed 
rail has brought enormous economic growth and spread prosperity all over 
the world. Today, high-speed rails (HSRs) are being operated in many coun-
tries and areas, including the Shinkansen in Japan, Eurostar, Acela Express in 
the Northeast Corridor of the United States, and China Railways Highspeed 
(CRH), to name but a few. In recent years, the demand for high-speed rail 
has been growing, partially because other modes of major transport have 
faced increasing challenges such as highway congestion, cancelations and 
delays of flights, increasing cost of fuel, and so forth. Also, rail transpor-
tation is more energy and cost efficient than cars and airplanes. Bureau of 
Transportation Statistics data shows that the passenger rail is 30%–50% 
more energy efficient than cars and airplane. Despite the rapid growth of the 
HSRs, financial profitability remains a serious challenge for almost all HSRs. 
A recent report by the Reason Foundation showed that only two HSRs in the 
world are profitable: Paris–Lyon in France and Shinkansen between Tokyo 
and Osaka in Japan (Feigenbaum, 2013). Therefore, it is critical to optimize 
the revenue of the day-to-day operations to ensure the sustainability of HSR. 
However, unlike airline revenue management, for which one can easily find 
copious literature, there is very little research that focuses on rail passenger 
revenue management (RPRM).

In this chapter, we focus on a multiperiod multiclass RPRM problem (MPMC-
RPRM). The main difference between our problem and the others in the 
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RPRM literature is that we assume a portion of the unsatisfied demand from 
the previous period contributes to the demand of the next period. Similarly, 
we assume a portion of the unsatisfied demand from one seat class can be 
captured by the adjacent seat classes. By considering the spilled demands 
between periods and seat classes, we provide a more realistic description 
of passenger booking behavior. We then present a complete mathematical 
programming formulation to solve the problem. Because there are a large 
number of binary variables and big-M constraints in the proposed model, 
it is impossible to solve real-life large-scale problems in a reasonable time. 
Therefore, we propose a decomposition-based two-stage heuristic to solve 
the problem efficiently.

The remainder of the chapter is organized as follows. In Section 9.2, we give 
a brief review of the RPRM problems. In Section 9.3, we define the MPMC-
RPRM formally and propose a basic mathematical model for the problem. In 
Section 9.4, we present a two-stage heuristic to solve the proposed models 
efficiently. In Section 9.5, we discuss some model extensions for operational 
considerations. In Section 9.6, we provide the computational experience for 
the set of the test cases. Section 9.10 concludes the chapter.

9.2  Background

In this section, we provide a detailed review of the RPRM problem. We 
also provide background information on a particular HSR, Chinese CRH 
between Beijing and Shanghai, which motivates our research in this chapter.

9.2.1  Rail Passenger Revenue Management

The RPRM is closely related with the airline revenue management (ARM), 
where the airline companies try to maximize the profits from a fixed perish-
able resource, that is, airline seats. Extensive literature is available on ARM, 
and one can refer to McGill and Van Ryzin (1999), Talluri and Van Ryzin (2004), 
Bertsimas and de Boer (2005), Cooper and Gupta (2006), Cooper and de Mello 
(2007), Barnhart et al. (2009), Zhang et al. (2010), Lan et al. (2011), and Aydin et 
al. (2013) for a comprehensive review. On the other hand, only a very limited 
number of papers available for RPRM. Ciancimino et al. (1999) presented a 
deterministic model and a probabilistic model for a multileg single-fare 
railway seat allocation problem. Their computational study showed increas-
ing revenue when applying both models. Bharill and Rangaraj (2008) devel-
oped a model to estimate the cross-price demand elasticity when the ticket 
fare and cancelation cost change for a premium segment of Indian Railways. 
The authors then used the demand elasticity to estimate the demand and to 
analyze the existing pricing strategies. You (2008) proposed a constrained 
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nonlinear integer programming model for a two-fare multileg seat allocation 
problem. The author also developed a heuristic that hybridizes the math-
ematical approach and particle swarm optimization framework to find the 
booking limits for the problem. Armstrong and Meissner (2010) provided a 
comprehensive review on both passenger and freighter rail revenue man-
agement. The authors categorized the RPRM literature by seven problem 
properties such as class fare, number of legs, number of services, pricing 
strategies, and so on. The authors also pointed out two major differences 
between the RPRM problem and the traditional ARM problem. The first is 
that no overbooking is considered in the RPRM because normally the load of 
a train is less than 100%, and a small number of customers are still allowed 
to be on board even after all the seats have been occupied. The second is that 
the legs in RPRM are highly correlated because most rail trips contain multi-
ple adjacent legs, whereas in ARM, the majority of trips contain only a single 
leg or two connecting legs. Dutta and Ghosh (2012) presented a linear mathe-
matical model for a multiperiod multiclass multileg seat allocation problem. 
However, their multiperiod multiclass model can be decomposed directly 
into multiple single-period single-class models because there is no inter-
relationship between any two planning periods or any two classes in terms 
of demands and ticketing decisions. Cirillo and Hetrakul (2011) presented an 
optimization model for a multiperiod single-leg dynamic pricing problem. 
In their model, the authors used a multinomial logit model to estimate the 
passenger choice of booking day, and a least squares regression model for 
the demand of each market. Hetrakul and Cirillo (2013) used several statistic 
models, including multinomial logit, mixed logit, and latent class models to 
estimate the demand of online passenger advanced booking. Their results 
shown that fare price, advance booking (number of days before departure), 
and departure day of week can be used to determine the demand of advance 
online booking. They suggested that the proposed demand estimation mod-
els can be used to support the railway revenue management policies such 
as pricing and seat allocation. Recently, Crevier et al. (2012) proposed solv-
ing the operation planning and revenue management simultaneously for rail 
freight transportation using a bilevel mathematical formulation. Two pricing 
policies are proposed and their impacts on the model are analyzed.

9.2.2  High-Speed Rail in China

In the last seven years, China has built more than 13,000 kilometers of high-
speed rail and plans to extend it to 20,000 kilometers by the end of 2015. In 
2013, the daily ridership of China CRH was more than 1.45 million (China 
Railway Corporation, 2014), and in a recent report from the New York Times, it 
was predicted that “China’s high-speed rail network will handle more pas-
sengers by early 2014 than the 54 million people a month who board domes-
tic flights in the United States” (Bradsher, 2013). One of the busiest CRHs 
is Beijing–Shanghai high-speed railway (BSHR), which is 1318 kilometers 
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(819 miles) long and passes 23 cities along the line (Wikipedia, 2014), as 
shown in Figure 9.1.

The travel time from Beijing to Shanghai is 5.5 hours on average, ranging 
from 4 hours 48 minutes to 6 hours depending on the number of stops along 
the line. In year 2013, the average daily ridership of BSHR is 230,000, and the 
average occupancy rate of the train is 76.9% (China.com, 2014).

Currently, fixed fare policy is operated for all the passenger services in 
China. Passengers can buy tickets online or directly from the railway stations 
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up to 2 weeks before the departure. Similarly to air tickets, each train ticket 
is for a particular seat in the train. For the BSHR, three classes are available: 
business class, first class, and second class. Two fleets are operated for BSHR, 
mainly differing in the number of seats available. One of the fleets contains 
13 business class seats, 85 first class seats, and 854 second class seats, and 
the other fleet contains 26 business class seats, 123 first class seats, and 776 
second class seats.

The ticket price of all CRH is determined mainly on the basis of the travel 
distance between the origin and destination stations (as shown in Figure 9.2). 
The base price per kilometer is 0.79 Chinese yuan for first class and 0.46 for 
second class. When the total travel distance is more than 500 kilometers, the 
excesspart is discounted by 10%, and when the total travel distance is greater 
than 1000 kilometers, the excesspart is discounted by 20%. For example, the 
distance between Beijing station and Shanghai station is 1318 kilometers, the 
computed ticket price is 500 × 0.46 + 500 × 0.46 × 0.9 + 318 × 0.46 × 0.8 = 554, 
and the real-life ticket price is 553 Chinese yuan.

Every day 33 round trips are operated between Beijing and Shanghai from 
7:00 a.m. (earliest departure time) to 11:30 p.m. (latest arrival time). During 
the peak hour, high-speed trains depart from Beijing or Shanghai every 
5 minutes. Despite the high passenger volume, BSHR still suffered net losses 
of 3.5 billion RMB (US$570 million) in 2012. How to efficiently use the expen-
sive resources and generate the maximum profit is always a great challenge 
in the RPRM.

Motivated by this challenge, we study the revenue of BSHR by focusing 
on a multiperiod multiclass rail passenger revenue management (MPMC-
RPRM) problem in this chapter. The major difference between our problem 

1000

800

600

400

200

Travel distance (km)

1st class
2nd class

Ti
ck

et
 p

ric
e 

(C
hi

ne
se

 y
ua

n)

0
0 500 1000 1500

FIGURE 9.2
Ticket price of Beijing–Shanghai high-speed railway.
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and the others in the RPRM literature is that we assume a portion of the 
unsatisfied demand from the previous period contributes to the demand of 
the next period. Similarly, we assume a portion of the unsatisfied demand 
from one seat class is transferred to the adjacent seat classes. By considering 
the spilled demands between periods and seat classes, we provide a more 
realistic description of passenger booking behavior. We then try to maxi-
mize the BSHR revenue by (1) optimizing the long-term daily train schedule 
and (2) allocating the seats to different legs of each train.

9.3  Problem Definition and Basic Formulation

In this section, we first provide a mathematical definition of MPMC-RPRM. 
Then we present a basic model (BM) to the problem. We also provide a trip-
based model (TBM), which can be viewed as a Dantzig–Wolfe reformulation 
of BM and explain the reasons for the weak LP relaxation of TBM and BM.

9.3.1  Problem Definition

In this chapter, we consider a rail alone a set of stations S, starting from sO 
and ending at sD. Define S′ = S\{sO, SD}. There is a set of L legs, each leg l ∈ L 
connecting two adjacent stations. We offer J possible journeys, each journey j 
is defined by a pair of origin–destination stations, and contains one or more 
connecting legs. Define Jl as the set of journeys containing leg l. We have a set 
of discretized time T, and a train can only depart from sO at a time t ∈ T. For 
each train, we have a set of C seat classes, and the number of seats available 
for class c ∈ C is nc. The ticket price of a c-class seat for journey j is denoted as 
rcj. In this research, we also make the following two assumptions.

All the trains depart from sO and arrive at sD. No trains can originate a trip 
from a station other than sO, and no trains can terminate the trip at a station 
other than sD. For simplicity, we use the term “trip” to represent a train trav-
eling from sO to sD in the reminder of the chapter. For example, trip t is used 
to represent the train depart from sO at time t.

The extra time for a train to make a stop at station s ∈ S′ is negligible, and 
the travel times of all the trains are the same regardless of the number of stops 
during the trip. Currently, the stopover time at any station s ∈ S′ is less than 
3 minutes in BSHR. The average travel time is 331 minutes and the standard 
deviation is 19 minutes for all 66 trips. Therefore, it can be seen that assump-
tion 2 is basically realistic. The underlying implication of assumption 2 is that 
if train A departs earlier than train B, train A will arrive at all the intermediate 
stations earlier than train B. This assumption is true for 56 out of all 66 trips 
for the BSHR, and for the remaining 10 trips, the train surpasses the previous 
train and arrives at sD before the previous train for less than 30 minutes.
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Because of the preceding two assumptions, we can define dcjt as the demand 
of the c-class seats for journey j in the trip t. It is important to note that dcjt is 
the demand accumulated from time t − 1 to t, assuming the demand before 
t − 1 has already been fully satisfied. In other words, we divide the demand of 
any journey j over the complete planning horizon into |T| partitions, and in 
each partition, the demand is denoted by dcjt. For example, assume we have a 
railway containing three stations A, B, and C, and a single class c, as shown 
in Figure 9.3. We have three possible trips whose departing times are t1 = 
9:00 a.m., t2 = 9:05 a.m., and t3 = 9:10 a.m., respectively. Let j1 be the journey 
between station A and station C, and j2 be the journey between station B and 
station C. Assuming the travel time of j1 is 3 hours, and the travel time of j2 is 
1 hour. In Table 9.1, we show the demands of different journeys in different 
trips. Here, dcj t1 1

= 100 represents that the demand of journey j1 in trip 1 is 100 
at 7:00 a.m.; dcj t2 1

= 150 means that the demand of journey j2 in trip 1 is 150 at 
9:00 a.m. It is noted that the demand of j2 is indexed by t1 = 7:00 a.m. instead 
of 9:00 a.m. because the train that departing from station A at 7:00 a.m. will 
capture this demand. Also notice that dcj t1 2

 is only 10 because it contains only 
the demand accumulated from 7:01 a.m. to 7:05 a.m. Similarly, dcj t1 2

 is the 
demand accumulated from 7:06 a.m. to 7:10 a.m.

Then we define αct(t+1) as the spilled demand conversion rate from time t to 
time t + 1 for class c, when dcjt cannot be fully satisfied. Now assuming we only 
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Trip 3
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7:00 a.m.

9:10 a.m.

9:05 a.m.

9:00 a.m.

A B

10:10 a.m.

10:05 a.m.

10:00 a.m.

C

j1

j2

FIGURE 9.3
An example containing three trips between three cities.

TABLE 9.1

Demand of Three Trips at Different 
Times

t dcj t1
dcj t2

t1 = 7:00 a.m. 100 150
t2 = 7:05 a.m. 10 5
t3 = 7:10 a.m. 10 5

© 2016 by Taylor & Francis Group, LLC

  



239Rail Passenger Revenue Management Problem

operate two trips at t1 and t3 in the example shown in Figure 9.3, the capac-
ity of the train is nc = 80, and α αct t ct t1 2 2 3

= = 1
 
, then the real demand of j1 in 

the trip departing at t3 is equal to (max )( , 0)
1 1 1 2 1 2 2 3 1 3

d n d dcj t c ct t cj t ct t cj t− × + × + =α α
(20 10) 1 10 = 40+ × + . Similarly, we define βcc′t as the spilled demand conver-
sion rate from class c to c′, when the demand dcjt cannot be fully satisfied. One 
shall notice that α βct t

c C c
cc t( 1)

{ }
1+

′∈
′+ ≤∑ \

. αct(t+1) can be viewed as the demand 
conversion rate for the cost-sensitive passengers, and βcc′t can be viewed as 
the demand conversion rate for the time-sensitive passengers.

For a trip departing at t, there is a fixed train operating cost, et. The objec-
tive of the proposed MPMC-RPRM problem is to decide which trips should 
be operated and the passengers allocated at each trip, so that the daily opera-
tional profit is maximized. Because the spilled demands between periods 
and seat classes are recaptured, we cannot decompose the problem into mul-
tiple single-period single-class RPRM problems directly. Therefore, we have 
to formulate the problem over the complete planning horizon.

9.3.2  Basic Model

To facilitate our discission, we first define the following variables.

ut: the binary variable such that ut = 1 if the trip t is selected in the 
result, and 0 otherwise

xcjt: the number of the c-class seats allocated for c-class demand for jour-
ney j in the trip t

vc′cjt: the binary variable such that vc′cjt = 1 if c-class seats are allocated for the 
spilled demand from class c′ for journey j in the trip t, and 0 otherwise

yc′cjt: the number of c-class seats allocated for the spilled demand from 
class c′ for journey j in the trip t

zcjt: the accumulated c-class demand for journey j in the trip t. It is worth 
mentioning that zcjt = dcjt if there is no spilled demand from the previ-
ous time t − 1; otherwise zcjt > dcjt.

δcjt: the spilled demand of class c for journey j in trip t

Given the above variables, the BM for the MPMC-RPRM problem is for-
mally defined as follows:

 max
\

r x r ycj cjt

j Jc Ct T

cj c cjt

c C cc Cj∈∈∈
′

′∈∈∈
∑∑∑ ∑∑+

{ }JJt T

t t

t T

e u∑∑ ∑
∈ ∈

−  (9.1)

 s t x y n u c C lcjt

j Jl

c cjt c t

c C cj Jl

. . ,
{ }∈

′
′∈∈

∑ ∑∑+ ≤ ∀ ∈ ∀ ∈
\

LL t T, ∀ ∈ , (9.2)

 zcjt = dcjt + αc(t−1)tδcj(t−1) ∀c ∈ C, ∀j ∈ J, ∀t ∈ T, (9.3)
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 δcjt cjt cjt cc jt

c C c

z x y c C j J t T= , ,
{ }

− − ∀ ∈ ∀ ∈ ∀ ∈′
′∈
∑

\

, (9.4)

 yc′cjt ≤ βc′ct(zc′jt − xc′jt) + Mc′cjt(1 − vc′cjt) ∀c ∈ C, ∀c′ ∈ C\{c}, ∀j ∈ J, ∀t ∈ T, (9.5)

 yc′cjt ≤ Mc′cjtvc′cjt ∀c ∈ C, ∀c′ ∈ C\{c}, ∀j ∈ J, ∀t ∈ T, (9.6)

 xcjt, yc′cjt, zcjt, δcjt ≥ 0, integers ∀c ∈ C, ∀c′ ∈ C\{c}, ∀j ∈ J, ∀t ∈ T, (9.7)

 ut, vc′cjt ∈ {0, 1} ∀c ∈ C, ∀c′ ∈ C\{c}, ∀j ∈ J, ∀t ∈ T. (9.8)

The objective function in Equation 9.1 is to maximize the overall profit, 
which is equal to the total revenue from tickets minus the total operational 
cost. The constraints in Equation 9.2 ensure that the total passengers trav-
eling through any leg l of class c is less than the capacity of the train. The 
constraints in Equation 9.3 ensure that the accumulated demand of c-class 
for journey j at time t contains two parts, the original demand for period t 
and the spilled demand from the previous period t − 1. The constraints in 
Equation 9.4 compute the spilled demand of class c. Together with the non-
negative constraints of variable δcjt, we also ensure that the number of the 
c-class seats for journey j of time t is less than or equal to the accumulated 
demand zcjt at time t. We assume that δcjt = 0 when t = 0 to avoid the confusion 
at the boundary condition. Equations 9.3 and 9.4 can be viewed as demand 
balance constraints, which is illustrated in Figure 9.4.

For each node zcjt, we have two incoming flows, dcjt and αc(t−1)tδcj(t−1). Similarly, 
we have three outgoing flows for node zcjt: they are xcjt, yc′cjt, and δcjt. The 
constraints in Equations 9.5 and 9.6 ensure that the converted demand from 

˜ cj(t–1)

˜ cjt

dcjt zcjt

yc'cjtxcjt

FIGURE 9.4
Demand flow balance between variables.
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other classes to c-class is correctly computed, that is, yc′cjt = βc′ct max{zc′cjt − xc′jt, 0}. 
Specifically, if vc′cjt = 0, yc′cjt has to be 0; otherwise yc′cjt = βc′ct(zc′jt − xc′jt). Here, the 
smallest value of Mc′cjt can be computed as follows.

 

M n d nc cjt c c ct c t t c jt c

t

t

′ ′ ′ ′ ′ ′ ′
′

−


∑= , 0,
=0

min maxβ α





















∀ ∈ ∀ ′ ∈ ∀ ∈ ∀ ∈c C c C c j J t T, { }, ,\ .

  
  (9.9)

Here αc′t′t is the demand transaction rate from time t′ to time t for class 

c′, and α ′ ′ ′ ′
′∑ c t t c jt

t

t
d

=0
 computes the total accumulated demand from time 0 

to time t for class c′ of journey j. Therefore, max 0,
=0

α ′ ′ ′ ′ ′
′

−{ }∑ c t t c jt c
t

t
d n  is 

the maximum possible number of unsatisfied demand at time t if trip t is 
selected in the solution. Therefore, Mc′cjt is the maximum possible number of 
demand that can be transferred from class c′ to c for journey j at time t. The 
constraints in Equations 9.7 and 9.8 are the integer and binary constraints for 
variables.

From our preliminary study, we find it is impractical to solve this model 
directly within a reasonable time for large test cases because there are a large 
number of binary/integer variables and big-M constraints. Therefore, we 
relax the integer constraints for (x, y, z, δ). We denote this relaxation as R(BM). 
The space complexity of this model is large, approximately O(|C|2|S|2|T|) 
binary variables and O(|C|2|S|2|T|) constraints.

9.3.3  Plan-Based Model and Analysis of the LP Relaxation

As we can see from BM in Equations 9.1 through 9.8, if we do not have 
constraints in Equation 9.4, the BM can be decomposed into T indepen-
dent single-period multiclass problems. That is, the only linkage between 
T single-period multi class problems is through the spilled demands. This 
motivate us to reformulate MPMC-RPRM problem in such a way that each 
variable in the new formulation represent a complete solution to a single-
period multiclass RPRM (SPMC-RPRM) problem. In the reformulation, these 
variables are linked by the constraints that balance the demands of adjacent 
periods. We want to maximize the profit by selecting a single-period solution 
from each period.

Formally, define Pt as the set of all the possible solutions for a SPMC-RMRP 
on t. To avoid confusion, we use term “plan” to represent a single-period 
solution. Each plan p ∈ Pt, it contains detailed information about the accu-
mulative demand zcjt, seats allocated for the basic demand, and the spilled 
demand between classes xcjt, and the spilled demand for the next period, δcjt. 
However, unlike in the BM where these values are the decision variables, 
these values are constants for any given p in the reformulation. To facilitate 
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our discussion, we also define the following notations for each of the plan 
p ∈ Pt. Define the binary parameter up such that up = 1 if the trip of plan p 
is scheduled, and 0 otherwise. Define the binary parameter ups if the trip of 
plan p stops at station s. Define the nonnegative parameter xcjp as the c-class 
seats for journey j in plan p. Define the nonnegative parameter yc′cjp as the 
spilled demand from c′-class to c-class for journey j in plan p. Define zcjp as 
the accumulated c-class demand for journey j in plan p. Define δcjp as the 
spilled c-class demand for journey j in plan p. We then define the binary vari-
able θp such that θp = 1 if plan k is selected in the solution and 0 otherwise. 
The profit of plan p can be calculated as follows:

 r r x r y e up cj cjp

j Jc C

cj c cjp t p

c C cc Cj

=
{ }∈∈

′
′∈∈

∑∑ ∑∑+ −
\∈∈

∑ ∀ ∈ ∀ ∈
J

tp P t T, . (9.10)

The mathematical formulation of the plan-based model (PBM) is then 
given by

 max rp p

p Ptt T

θ
∈∈

∑∑  (9.11)

 s t t Tp

p Pt

. . = 1θ
∈

∑ ∀ ∈ , (9.12)

 α δ θ θct t cjp p cjt

p Pt

cjp p

p Pt

d z c C j J( 1)

1

= ,+
∈ ∈ +

+ ∀ ∈ ∀ ∈∑ ∑ ,, ∀ ∈t T, (9.13)

 θp ∈ {0,1} ∀p ∈ Pt, ∀t ∈ T. (9.14)

The objective function (Equation 9.11) is to maximize the overall profit. The 
constraints in Equation 9.12 ensure that one plan is selected for each period 
t. The spilled demand constraints shown in Equation 9.13 ensure the accu-
mulated demand is from three sources, the spilled demand of the previous 
period, the original demand of the current period, and the spilled demand 
from other classes of the current period. There are O(|C||S|2|T|) constraints 
in this model, which is much less than the number of constraints in BM. 
In fact, it is not hard to see that PBM is a Dantzig–Wolfe decomposition of 
BM, and like many other Dantzig–Wolfe reformulation, PBM contains a large 
number of plan variables.

Despite the fact that there are millions of possible plans for any real-life 
test cases, Dantzig–Wolfe decomposition usually provides better LP relax-
ation to the original IP model. However, in our problem the LP relaxation of 
PBM is very poor. We illustrate the situation in the following example.
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Consider a problem with a single class, a single journey, and a single 
period. The demand is d = 70, the train capacity n = 100, the ticket price 
r = 10, and fixed cost e = 800. We have three possible plans p1, p2, and p3, as 
shown in Table 9.2.

It is obvious that the optimal IP solution is θp1
= 1  and the revenue is 0. 

However, the optimal LP relaxation is θp2
= 0.7 and θp1

= 0.3, and the revenue 
of the LP relaxation is 140. This is because the revenue of the LP relaxation 

70
100 2

×




rp  is strongly affected by demand d in the LP relaxation of PBM. It 

is easy to see that when d ≤ e/r, the difference between optimal LP relaxation 
and optimal IP is equal to d × (nr − e)/n, and the IP–LP gap is always 1. When 
d is slightly less than er, the LP relaxation of PBM provides little (and prob-
ably misleading) information on the optimal IP solution. In fact, this is also 
the case for BM.

9.4  A Decomposition-Based Two-Stage Heuristic

As we can see from the previous section, BM and PBM could provide poor 
LP relaxation to MPMC-RPRM and branch-and-bound has to be used to 
obtain the optimal IP solution, which could take a very long computational 
time. Therefore in this section, we propose a two-stage decomposition-based 
heuristic, in which we decompose each journey into a set of consecutive legs.

9.4.1  Decomposition-Based Model

In the decomposition model, instead of considering all journey J, we decompose 
every j into a set of consecutive legs denoted by Lj. We also approximate the rev-
enue rj by a set of rl, where l ∈ Lj. As we discussed in Section 9.2, the ticket price rj 
is affected by the travel distance linearly. Although there are two discount levels 
when the travel distance is more than 500 kilometers and 1000 kilometers, the 
number of journeys that are longer than 500 kilometers and 1000 kilometers is 
much less than the number of journeys that are shorter than 500 kilometers. For 
example, in BSHR, there are a total of 238 journeys and 138 of them are less than 
500 kilometers, and only 24 journeys are longer than 1000 kilometers. Therefore, 

TABLE 9.2

Comparison Between Optimal LP Relaxation and Optimal IP Solution of PBM

Schedule Depart or Not Seat Allocated Revenue rp Optimal IP Optimal LP

p1 No 0 0 1 0.3
p2 Yes 100 200 0 0.7
p3 Yes 70 –100 0 0
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using rl instead of rj is a reasonable approximation for MPMC-RPRM. To facili-
tate our discussion, we define the following additional notations.

Additional notations:
dlt: the accumulated demand for leg l of trip t. Here, d dlt jt

j Jl

=
∈∑

rl: the ticket price for leg l

Additional variables:
xclt: the number of the c-class seats allocated for c-class demand for 

leg l in the trip t
vc′clt: the binary variable such that vc′clt = 1 if c-class seats are allo-

cated for the spilled demand from class c′ for leg l in trip t, and 
0 otherwise

yc′clt: the number of c-class seats allocated for the spilled demand 
from class c′ for leg l in the trip t

zclt: the accumulated c-class demand for leg l in the trip t
δclt: the spilled demand of class c for leg l in trip t

Given this notation, the decomposition-based model (DM) for MPMC-
RPRM can be formulated as follows:

 max
\

r x r ycl clt

l Lc Ct T

cl c clt

c C cc Cj∈∈∈
′

′∈∈∈
∑∑∑ ∑∑+

{ }JJt T

t t

t T

e u∑∑ ∑
∈ ∈

−  (9.15)

 s t x y n u c C l L t Tclt c clt c t

c C c

. . , ,
{ }

+ ≤ ∀ ∈ ∀ ∈ ∀ ∈′
′∈
∑

\

, (9.16)

 zclt = dclt + αc(t−1)tδcl(t−1) ∀c ∈ C, ∀l ∈ L, ∀t ∈ T, (9.17)

 δclt clt clt cc lt

c C c

z x y c C l L t T= , ,
{ }

− − ∀ ∈ ∀ ∈ ∀ ∈′
′∈
∑

\

, (9.18)

yc′clt ≤ βc′ct(zc′lt − xc′lt) + Mc′clt(1 − vc′clt) ∀c ∈ C, ∀c′ ∈ C\{c}, ∀l ∈ L, ∀t ∈ T, (9.19)

 yc′clt ≤ Mc′cltvc′clt ∀c ∈ C, ∀c′ ∈ C\{c}, ∀l ∈ L, ∀t ∈ T, (9.20)

 xcjt, yc′clt, zclt, δclt ≥ 0, integers ∀c ∈ C, ∀c′ ∈ C\{c}, ∀l ∈ L, ∀t ∈ T, (9.21)

 ut, vc′clt ∈ {0,1} ∀c ∈ C, ∀c′ ∈ C\{c}, ∀l ∈ L, ∀t ∈ T. (9.22)
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Similar to Equation 9.23, Mc′clt can be computed as follows.
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The space complexity of DM is much less than that of BM, approximately 
O(|C|2|S||T|) binary variables and O(|C|2|S||T|) constraints, which greatly 
reduces the difficulty of the model.

9.4.2  Two-Stage Heuristic

The results of DM provide the set of selected trips ut; however, it cannot 
provide  detailed information on how many seats should be allocated to each 
journey j. To resolve this issue, we fix the variable ut in BM based on the results 
from DM, and then resolve the restricted BM. From our preliminary result, 
the restricted BM can be solved in very short time, and we can get the desired 
information on how many seats should be allocated to each journey j.

9.5  Model Extensions

In this section, we discuss two possible extensions of the proposed model. In 
particular, we first extend the model to handle multiple fleets. Then we also 
extend the model to incorporate the social welfare consideration.

9.5.1  Multiple Fleets

The traditional fleet assignment problem for aircraft or vehicles is to assign 
a variety of aircraft or vehicle fleets to individual flights or jobs based on 
passenger demands, revenues, operating costs, and so forth, so that the total 
profit is maximized (Hane et al., 1995; Sherali et al., 2006; Dumas et al., 2009; 
Liang and Chaovalitwongse, 2013). On the other hand, in the traditional rail 
industry, maximizing the operational revenue is often achieved by separat-
ing and recombining locomotives and cars at various locations in the rail 
network based on the demands (Cordeau et al., 2001; Lingaya et al., 2002; 
Cacchiani et al., 2010). However, a high-speed train is built more like an air-
craft rather than a traditional train, because a car of a high-speed train cannot 
be easily attached or detached in the operation. Different fleets of high-speed 
trains have different capacities and operation costs. Therefore, instead of con-
sidering a single fleet, it is natural to extend our proposed model to handle 
multiple fleets, so that the total operational revenue is maximized.
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The BM can be extended to handle the multiple fleets. This is done by intro-
ducing a new set of available fleets, I, and increasing the dimensionality of 
parameters and variables with fleet index. For each train in fleet i ∈ I, we have 
a set of  Ci seat classes, and the number of seats available for class ci is nc

i. For 
a train of fleet i departing at t, there is a fixed train operating cost et

i. Define ut
i 

as the binary variable such that ut
i = 1 if the train of fleet i departing at time t is 

selected in the result schedule, and 0 otherwise. Define vc cjt
i

′  as the binary vari-
able such that vc cjt

i
′ = 1 if c-class seats are allocated for the spilled demand from 

class c′ for journey j in the train of fleet i departing at t, and 0 otherwise. Define 
xcjt

i  as the number of the c-class seats allocated for journey j in the train of fleet 
i departing on t. Define yc cjt

i
′  as the number of c-class seats allocated for the 

spilled demand from class c′ for journey j in the train of fleet i departing at t. 
The multifleet basic model (MFBM) for the MPMC-RPRM problem is given by

 max
\
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 zcjt ≤ dcjt + αc(t−1)tδcj(t−1) ∀c ∈ C, ∀j ∈ J, ∀t ∈ T, (9.28)
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c cjt
i
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 u v i I c C c C c j J t Tt
i

c cjt, {0,1} , , { }, ,′ ∈ ∀ ∈ ∀ ∈ ∀ ′ ∈ ∀ ∈ ∀ ∈\ . (9.32)

The MFBM extends the BM presented in Equations 9.1 through 9.8 by intro-
ducing a new dimensionality of fleet index i to the load-related decision vari-
ables x and y. Also, the MFBM has a set of additional assignment constraints in 
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Equation 9.25 to ensure that only one fleet can be selected at any given period. 
The above model can be easily adapted to DM and the proposed two-stage 
heuristic.

9.5.2  Incorporating the Social Welfare

To achieve not only the profitability of BSHR, but also the economic and social 
impact on the population along the BSHR, it is important to ensure a certain 
number of stopovers at every city alone the BSHR. Economists and transporta-
tion experts cite CRH as one reason for China’s continued economic growth. 
Although it might be unprofitable to make any stopover at a city from a finan-
cial point of view, such stopovers are considered crucial for the economic and 
social development of the regions. There are two ways to incorporate such the 
social welfare in the proposed model. We could directly maximize the social 
welfare as a part of objective function. However, it is very hard to provide an 
accurate estimation on the value of social welfare, and the objective function 
could become highly nonlinear and the models become very difficult to solve 
computationally. Therefore, our approach is to impose a set of hard constraints, 
so that the minimum number of stopovers at every city has to be more than a 
predetermined lower bound. This can be easily achieve in BM as follows.

 ut ≥ wst ∀s ∈ S′, ∀t ∈ T, (9.33)

 x y Mw scjt

j Jsc C

c cjt

j Jsc C cc C

st

∈∈
′

∈′∈∈
∑∑ ∑∑∑+ ≤ ∀ ∈ ′

\{ }

SS t T, ∀ ∈ , (9.34)

 w K s Sst s

t T

≥ ∀ ∈ ′
∈

∑ , (9.35)

 wst ∈ {0,1} ∀s ∈ S′. (9.36)

Here, Ks is the minimum number of stopovers at station s. The constraints 
in Equation 9.33 ensure that trip t can stop at station s only if trip t is selected 
in the solution. The constraints in Equation 9.34 are the logic constraints 
that ensure if station s is the departing or arrival station of any on board 
demand, wst must be equal to 1. The constraints in Equation 9.35 ensure that 
the total number of stopovers has to be greater or equal to Ks. The constraints 
in Equation 9.36 are the binary variable constraints.

9.6  Computational Results

In this section, we report empirical results of the proposed models using a 
Dell  Precision T7600 workstation with two INTEL Xeon E5-2643 CPUs of 
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3.3 Ghz, and 64 GB of memory on a 64-bit Windows 7® platform. Computational 
times reported in this section were obtained from the laptop’s internal tim-
ing calculations. All the mathematical modeling and algorithms were imple-
mented in MS Visual C++ 2010. All LP and MIP problems were solved using 
a CPLEX callable library version 12.5 with a default setting.

9.6.1  Test Case Generation

The realistic test instances used to benchmark the proposed models are 
created by utilizing the historical ticket selling records for BSHR by China 
Railway Corporation from March to May 2014.

In particular, we construct two test sets with 44 and 132 periods. Because 
the daily planning horizon is 11 hours, from 7:00 a.m. to 6:00 p.m., the dura-
tion between adjacent possible departures for the two test sets are 15 minutes 
and 5 minutes respectively. For each test sets, we create two test instances 
with 11 and 22 legs, respectively. The test instance with 11 legs contains 
10 largest cities along the BSHR, and the test instance with 22 legs passing 
through all 21 cities along the BSHR. It can be seen that the largest test cases 
are larger than the current daily BSHR in terms of the number of legs and the 
number of possible periods. We consider only two seat classes, the first class 
and second class, in our test cases. The spilled demand transfer ratio from 
first class to second class is 0.15, and from second class to first class it is 0.05.

The daily demand of the test instances are obtained by computing the 
average daily from the historical data. We then use a mixture of two inde-
pendent normal distributions to model a morning peak centered on 9:00 a.m. 
and an evening peak on 6:00 p.m. to model for daily demand (as shown in 
Figure 9.5). The 9:00 a.m. peak has a weight of 60% and the 6:00 p.m. peak a 
weight of 40%.
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FIGURE 9.5
Demand over time.
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We assume that the demand loss follows an exponential distribution. 
Specifically, in our model we assume that the unsatisfied demand decays 
by half every 2 hours, which is equivalent to losing 2.85% of the demand 
every 5 minutes. Therefore, the spill demand transfer ratios are 97.15% for 
5-minute-interval test cases and 91.69% for 15-minute-interval test cases. We 
assume that the et = 400k Chinese yuan for all t ∈ T. For each test instances, 
we also create three scenarios, in which the demands are set to 0.8, 1.0, and 
1.2 times the average historical demand. Therefore, we have all together 12 
test scenarios, and each scenario is named by pattern T–A–B–C, in which A 
is the number of legs, B is the number of periods, and C is the demand ratio 
factor.

9.6.2  Computational Results on the Basic Model

In this section, we report the performance of the basic model. The computa-
tional time is set to be 2 hours. In Table 9.3, we record the number of variables, 
binary variables, and constraints of BM. We also provide best IP solutions, 
best LP bound, IP–LP gap, and the computational time of BM. Here, the IP–
LP gap is computed as IP − LPIP × 100%. All the computational times are 
recorded in seconds.

As we can see from Table 9.3, BM cannot obtain an optimal solution for 
any test scenario within 2 hours of computational time, possibly because 
there are a large number of binary variables and constraints in BM. The aver-
age IP–LP gap is 6.62%, ranging from 1% to more than 14%. The IP–LP gaps 
increase significantly when the number of periods increases. The demand 
ratio also affects the IP–LP gap greatly. The IP–LP gap increases significantly 
when the demand gets lower.

9.6.3  Computational Results on Two-Stage Heuristic

Table 9.4 presents the performance characteristics of the two-stage heuristic. 
The performance characteristics are (1) the problem size of DM (columns, 
rows, and binaries); (2) the computational results of DM (IP solution, best LP 
bound, IP–LP gap, computational time); and (3) the computational results of 
restricted BM (second stage of the two-stage heuristic).

As we can see from Table 9.4, the number of columns, rows, and binary 
variables is much less than that of BM. We can solve all 44-trip test scenarios 
in less than 6 minutes in the first stage of the heuristic using DM. However, 
the computational time increases drastically with the number of trips in the 
problem. We can only get a near-optimal solution for all 132-trip test sce-
narios. The average IP–LP gap for 132-trip scenarios is 3.33%. In the second 
stage of the heurisitc, all the restricted BM can be solved optimally within 
1 minute. The objective value between DM in the first stage of the heuristic 
and restricted BM in the second stage of the heuristic is 14.61%. There could 
be two reasons for this. First, a large number of demands are traveling from 
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TABLE 9.3

Performance of BM

Test Scenario
Number 

of Columns
Number 

of Binaries
Number 
of Rows

IP 
Solution

LP 
Solution

IP–LP 
Gap (%)

Solution 
Time

Number 
of Trips

T-11-44-0.8 29,524 6292 25,080 3357 3554 5.87 7200 14
T-11-44-1.0 29,524 6292 25,080 4344 4491 3.40 7200 18
T-11-44-1.2 29,524 6292 25,080 5306 5406 1.89 7200 22
T-11-132-0.8 88,572 18,876 75,240 3293 3649 10.82 7200 14
T-11-132-1.0 88,572 18,876 75,240 4265 4603 7.92 7200 18
T-11-132-1.2 88,572 18,876 75,240 5097 5629 10.43 7200 21
T-22-44-0.8 112,288 23,232 92,840 4063 4197 3.29 7200 17
T-22-44-1.0 112,288 23,232 92,840 5189 5292 1.98 7200 22
T-22-44-1.2 112,288 23,232 92,840 6338 6412 1.17 7200 27
T-22-132-0.8 336,864 69,696 278,520 3951 4521 14.44 7200 17
T-22-132-1.0 336,864 69,696 278,520 5104 5629 10.28 7200 21
T-22-132-1.2 336,864 69,696 278,520 6222 6713 7.90 7200 27
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TABLE 9.4

Performance of the Two-Stage Heuristic

Test Scenario

First-Stage DM Second Stage

Number 
of Trips

Number 
of Columns

Number 
of Binaries

Number 
of Rows

IP 
Solution

LP 
Solution

IP–LP 
Gap (%)

Solution 
Time

IP 
Solution

Solution 
Time

T-11-44-0.8 4884 1012 4840 3966 3966 0.00 76 3378 8 14
T-11-44-1.0 4884 1012 4840 5096 5096 0.00 98 4325 9 18
T-11-44-1.2 4884 1012 4840 6208 6208 0.00 86 5285 8 22
T-11-132-0.8 14,652 3036 14,520 3943 4089 3.72 7200 3354 12 14
T-11-132-1.0 14,652 3036 14,520 5062 5200 2.73 7200 4295 11 18
T-11-132-1.2 14,652 3036 14,520 6167 6325 2.57 7200 5250 11 22
T-22-44-0.8 9724 1980 9680 4753 4753 0.00 327 4075 22 17
T-22-44-1.0 9724 1980 9680 6069 6069 0.00 217 5187 28 22
T-22-44-1.2 9724 1980 9680 7384 7384 0.00 90 6321 25 27
T-22-132-0.8 29,172 5940 29,040 4794 5036 5.05 7200 4120 29 17
T-22-132-1.0 29,172 5940 29,040 6165 6363 3.22 7200 5285 29 22
T-22-132-1.2 29,172 5940 29,040 7442 7645 2.74 7200 6401 38 27
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Beijing to Shanghai, and the real ticket price (553 Chinese yuan) and the 
approximated price by legs (606 Chinese yuan) are different. Another reason 
is that because all journeys are decomposed into legs, the solution of DM has 
more seats × kilometers sold than that of BM. In BM, if any leg of a journey 
violates the seat capacity constraints, the ticket for the entire journey cannot 
be sold. However, in DM we can still sell the unaffected legs even if some 
legs of the journey violate the seat capacity constraints.

9.6.4  Comparison of the Results

In this section, we compare the solutions of BM, two-stage heuristic, and a 
genetic algorithm (GA) in Table 9.5. The GA has been used successfully in many 
large-scale combinatorial optimization problems. Therefore, it is natural for us 
to compare the proposed two-stage heuristic with a general heuristic such as 
GA. The detailed implementation of GA is given in the Appendix. The gaps for 
the two-stage heuristic and GA reported in Table 9.5 are computed based on the 
BM solution; for example, gap for the two-stage heuristic is computed as

  
BM Solution Heuristic Solution

BM Solution
_ _−

.

As we can see from Table 9.5, the two-stage heuristic provides the best solu-
tions on average. Particularly, the two-stage heuristic obtains the best solutions 
for 8 out of 12 test scenarios. For these 8 test scenarios, the average improvement 
from the BM solution is more than 2%. For the remaining 4 test scenarios, the 
average gap between the BM and two-stage heuristic is less than 0.3%. When the 
test scenarios are large, the two-stage heuristic performs much better than BM. 

TABLE 9.5

Comparison of BM, Two-Stage Heuristic, and GA

Test Scenario

BM Two-Stage Heuristic GA

Value Time Value Gap (%) Time Value Gap (%) Time

T-11-44-0.8 3357 7200 3378 0.62 84 3163 –5.76 7200
T-11-44-1.0 4344 7200 4325 –0.44 107 4140 –4.69 7200
T-11-44-1.2 5306 7200 5285 –0.38 94 4933 –7.03 7200
T-11-132-0.8 3293 7200 3354 1.87 7200 2842 –13.69 7200
T-11-132-1.0 4265 7200 4295 0.70 7200 3855 –9.61 7200
T-11-132-1.2 5097 7200 5250 3.01 7200 4532 –11.08 7200
T-22-44-0.8 4063 7200 4075 0.31 349 3447 –15.15 7200
T-22-44-1.0 5189 7200 5187 0.00 245 4681 –9.79 7200
T-22-44-1.2 6338 7200 6321 –0.26 115 5534 –12.68 7200
T-22-132-0.8 3951 7200 4121 4.30 7200 3401 –13.93 7200
T-22-132-1.0 5104 7200 5285 3.56 7200 4344 –14.89 7200
T-22-132-1.2 6222 7200 6401 2.88 7200 5468 –12.12 7200

Note: The best solutions are in bold.
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Even for small test scenarios, when the total demand is low, the two-stage heu-
ristic performs significantly better than BM. GA performs worst on all the test 
scenarios. Also, it is noted that the computational time of the two-stage heuristic 
for 44-trip scenarios is much less than that of BM and GA.

9.7  Conclusions

In this chapter, we studied a MPMC-RPRM problem. Different from other 
research work in the literature, the problem we studied recaptures the 
spilled demands between different time intervals and different classes. We 
present a basic mathematical model for the problem. Because there are a 
large number of binary variables and big-M constraints, it is hard to solve the 
real-life large-scale problem using the proposed model in a reasonable time. 
Therefore, we proposed a two-stage decomposition-based heuristic to solve 
the problem. We also demonstrate that the proposed models can be extended 
to model some real-life operational consideration. The computational results 
show that proposed two-stage decomposition-based algorithm outperforms 
the basic model and GA significantly.

In this chapter, we make the two assumptions. First, all the trains have to 
depart from sO and arrive at sD. In the real operations, it is possible for a train 
to start or end at a station other than sO or sD. By doing so, more demand 
might be captured and more revenue might be generated. Thus, extending 
the proposed model to handle this situation becomes an interesting and 
important future research direction. Second, we assume that the extra time 
for a train to make a stop at station s ∈ S\{sO, sD} is negligible. Therefore, it 
could be impractical to implement such a schedule because the later train 
might surpass the previous train in real operations. Therefore, integrating 
the detailed time-tabling decisions in the proposed model undoubtedly 
becomes an important future research direction. Finally, in our model, we 
have only considered the constant demand. In-depth work to handle the 
stochastic demand most likely will lead to better profits, and remains to be 
tested in our future study.

Appendix

GA has been used to solve many nondeterministic polynomial time (NP-hard) 
combinatorial optimization problems. Therefore, we propose a GA to solve 
MPMC-RPRM. The basic idea of our GA is that in each individual of the pop-
ulation, a subset of trips are fixed to 1 (ut = 1), and then we solve the restricted 
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BM for the best possible objective value. The objective value is used as the 
fitness of the individual. Intuitively, the proposed GA tries to search the best 
set of trips (ut) in the solution. Here, we use the list of binary value ut, ∀t ∈ 
T as the chromosome of individuals. Therefore, the size of the chromosome 
is |T|.

The GA starts with the generation of an initial population. The value of 
the initial population is set to 200 in our computation. From our prelimi-
nary study, the computation time increases with the number of selected trips 

ut
t T∈∑ . Therefore, we compute an upper bound on the number of trips that 

can be selected as d L ncjt c
j Jll Lt T

| |×
∈∈∈ ∑∑∑ . In each generation, we always 

select the top 80 individuals as the parents for the next generation, and these 
top 80 individuals are also carried to the next generation.

In the crossover procedure, we try to avoid a situation in which two trips 
that are close to each other are selected. Intuitively, if two trips are close to 
each other, the later trip usually cannot capture sufficient demands. Once 
the crossover operator has been applied and the offspring population has 
replaced the parent population, the mutation operator is applied to the off-
spring population. Specifically, for each ut in the chromosome, a t is randomly 
chosen with probability pm = 0.05, and the value of ut is changed to 1 − ut. In 
our computation, GA terminates until 2 hours computational time is reached.
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