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Preface

Since the industrial revolution, climate changes caused by greenhouse gas emis-
sions have attracted the attention globally from a diverse community including
both politicians and scientists; however, the pending issues on the research of the
climatic impact of land cover and land-use changes via terrestrial biogeophysical
processes is far from resolved. The scientific community needs to provide com-
prehensive scientific support for global change adaptation. Land cover and land-
use changes directly lead to change in the surface condition, thereby changing the
surface albedo and surface roughness, and then affects surface heat balance and
water cycles. In addition, the urban expansion causes aggravation of urban heat
island effect. It is of significance to understand climatic impacts accompanied by
biogeophysical processes induced by land-use changes, which is critical for food
safety, extreme climate, biodiversity protection, and a series of problems. Land-
use change, in turn, is occurring in the context of climate changes at a variety of
scales.

Quantitative analysis for the impacts of land use and land cover changes on
surface climate is one of the core scientific issues to understand the influence of
human activities on global climate. This book first comprehensively analyzed the
primary scientific issues about the impacts of land use and land cover changes on
the surface climate in Chap. 1. Major models used in the study of land use impact
on climate were introduced in Chap. 2, which lay a foundation for the subsequent
researches in this book. While in Chap. 3, major methods of projecting the land
use change were introduced, this would facilitate the study in the land use change
impact.

From Chaps. 4 to 6, studies of climate effect of different types of land use
change were introduced respectively. In Chap. 4, the climate effect due to the
cultivated land change was simulated in typical areas, namely Northeast China and
Northern China plain. Chapter 5 focuses on the grassland change. In Chap. 6,
studies on the urban land change impact were introduced. Three case studies were
made in different designated study areas, namely Beijing–Tianjin–Tangshan
Metropolitan area, Jiangsu, and Wuhan Metropolitan. When it comes to the dif-
ferent areas worldwide, Chap. 7 proves that the methods and models showed
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above can be applied to other countries in the world. Finally yet importantly,
Chap. 8 explores the advancement in the models, data, and application for
observing and estimating the land use impacts on surface climate, and points out
further research needs and priorities, which hopefully will provide some references
for related studies.

The authors claim full responsibility for any errors appearing in this work.

April 2014 Xiangzheng Deng
Burak Güneralp

Jinyan Zhan
Hongbo Su
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Chapter 1
Systematic Modeling of Land Use Impacts
on Surface Climate

Xiangzheng Deng, Burak Güneralp and Hongbo Su

1.1 Introduction

LUCC, in which human activities play a dominant role, interacts with environment
and has significant effects on ecosystems at local, regional and global scales, and
consequently directly or indirectly exerts great influence on global climate changes
(Foley et al. 2005; Pachauri and Reisinger 2007; Feddema et al. 2005). People
have come to realize that global change always consists of a series of regional
change with various processes and patterns according to more and more obser-
vations. On one hand, the initial regional change will gradually extend to inter-
regional and even larger scales, which consequently influences global
environment. Therefore, it is necessary to first take into account local and regional
climatic effects of LUCC in this research. On the other hand, the impacts of LUCC
on regional climate systems also vary greatly since there are the great differences
in the physical, chemical and biological characteristics of land surface in different
regions on the earth. For example, deforestation may lead to temperature increase
in the tropic zone, while it may lead to surface temperature decrease in frigid zone
(Bonan 2008). Consequently, in order to completely reflect the relationship
between LUCC and climatic factors, it is necessary to: (1) make comparisons
among various case studies in different regions and at multiple spatiotemporal
scales; (2) analyze the spatiotemporal processes and land surface parameters of
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LUCC and the climate response. However, there have been very few relevant
researches.

It has long been known that land use changes caused by human activities such
as deforestation, and agriculture practices have some effects on climate (Foley
et al. 2005; Pachauri and Reisinger 2007; Feddema et al. 2005; Bonan 2008;
Kueppers and Snyder 2012). Land use changes influence climate by changing the
properties of land surface which is not only the direct heat source of the tropo-
sphere, but also one of the main sources of atmospheric vapor water (Betts et al.
1996). Therefore, change of land surface parameters will directly affect land
surface-atmosphere interaction and consequently alter thermodynamic and
dynamic characteristics of the atmosphere, and finally lead to different climate
processes and patterns. Land use activities have significantly changed regional
land cover, thus leading to climate changes. For example, deforestation, affores-
tation, reclamation and urbanization, all influence the energy budget and Bowen
ratio of land surface, the distribution of the precipitation among the soil water,
runoff and evapotranspiration (Phillips et al. 2009; Pielke et al. 2007; Arora and
Montenegro 2011). Human-induced land use activities also have important influ-
ence on regional climate system, e.g., temperature, evapotranspiration, precipita-
tion, wind field, atmospheric pressure etc., especially temperature and precipitation
(Pielke et al. 2007; Arora and Montenegro 2011; Degu et al. 2011). In addition,
recent researches suggest that LUCC may affect the extremes in temperature and
precipitation (Woldemichael et al. 2012).

LUCC affects local, regional and global climate system through various bio-
geochemical and biogeophysical processes (Arora and Montenegro 2011;
Meiyappan and Jain 2012). For example, biogeochemical process can indirectly
affect climate by altering the rate of the biogeochemical cycle and thereby
changing the chemical composition of the atmosphere. Besides, it may also affect
the climate through the absorption or emission of greenhouse gases (Friedlingstein
and Prentice 2010). By contrast, biogeophysical process directly affects the
physical parameters that determine absorption and disposition of energy at land
surface (Arora and Montenegro 2011). For example, it influences albedo or
reflective properties of land surface (Dirmeyer and Shukla 1994), alters absorption
rate of solar radiation and hence influences energy availability at land surface
(Georgescu et al. 2011). In addition, surface hydrology and vegetation transpira-
tion characteristics also affect how received energy is distributed into latent and
sensible heat fluxes (Feddema et al. 2005). Vegetation structure can affect surface
roughness and thereby alter momentum and heat transport.

Owing to the limitation of knowledge and the lack of interdisciplinary cooper-
ation, there is still insufficient understanding of the procedures mechanism of cli-
mate process and how LUCC influences regional climate and consequently
influences global climate (Feddema et al. 2005). There are parallel studies of bio-
geochemical and biogeophysical effects of land use changes on climate in their
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respective fields, and there are few researches on their joint effects on climate.
However, there are still a lot of uncertainties in the current knowledge, and it is still
very difficult to objectively assess the contribution of land use changes to climate
change. For example, IPCC (Pachauri and Reisinger 2007) believed that the
increase of CO2 in the atmosphere will reinforce radiative forcing, 1/3 of which was
contributed by land use changes, and consequently increase the temperature. So it is
of great importance to objectively analyze the biogeochemical and biogeophysical
effects of land use changes on surface climate (Foley et al. 2005). It is necessary to
carry out further researches on the development of more accurate monitoring and
modeling methods, which are essential to the understanding of these interactions
and feedbacks (Bathiany et al. 2010). However, how to integrate biogeophysical and
biogeochemical processes is the major challenge in current studies.

The impacts of land use changes on climate are the synthetic effects of biogeo-
physical process and biogeochemical process. But which of the two kinds of pro-
cesses makes a greater contribution to climate change at regional scale, or which one
plays a dominant role? What effects will the improvement of the regional climate
model have on LUCC simulation? This chapter reviewed the history and methods of
the relevant researches, and summarized the influence of LUCC on regional climate
system and the simulation strategies according to the researches in recent decades.
Finally, the application of regional climate models in the development and man-
agement of agricultural land and urban land are discussed.

1.2 Mechanism Research on the Influence of LUCC
on Surface Climate

The research on the influence of land use changes on surface temperature and
precipitation can be dated back to the 1970s. Land use changes can alter various
physical characteristics of land surface, including parameters such as albedo
(Dirmeyer and Shukla 1994), upward long-wave radiation and surface roughness
and vegetation parameters such as vegetation coverage and leaf area index (LAI).
All changes of these parameters perturb surface energy budget, water balance and
atmospheric boundary layer (Lambert et al. 2011). So it can be said that changes in
the parameters of land surface and vegetation is the fundamental reason for the
effects of land use changes on the atmosphere (Brovkin et al. 1999). By the 1980s,
researchers realized that land use influences the climate not only through the change
in physical characteristics of the land surface, but also the amount of greenhouse
emission. Thereafter, there were more and more researches on the effects of land use
on carbon cycle. The influence of land use changes on the climate involves not only
biogeophysical process, but also biogeochemical process.

1 Systematic Modeling of Land Use Impacts 3



1.2.1 Influence of Physical Characteristics on Climate

Charney (1975) first explored the relationship between the change of albedo and
the drought in the Sahara region. Thereafter, there were a lot of researches on the
influence on regional climate (e.g., temperature and precipitation), which is
exerted by single parameter of physical characteristics of the land surface (e.g.,
albedo, roughness, leaf area index and soil moisture) (Shukla and Mintz 1982;
Lambin and Geist 2006). The change in the underlying landscape alters the energy
and moisture budgets of the land surface at regional scale, which in turn lead to the
changes in the fluxes of heat, water, and dynamics of the near-surface atmosphere
and influence the key thermodynamic and dynamic properties of the air, which is
of great importance to air convection (Brovkin et al. 2013). The evidence to
support this statement comes from the sensitivity studies that explore the impacts
of change in characteristics of land surface (Wickham et al. 2012).

There is another considerable evidence of the significance of land surface
processes generated through regional-scale perturbation experiments and resear-
ches on deforestation (Shukla et al. 1990), desertification (Salvati and Bajocco
2011) and land use changes. These researches all indicated LUCC contributed to
the large and statistically significant change in temperature, rainfall and other
variables at continental or regional scales.

First and foremost, some important researches on the sensitivity of climate to
the change of land surface evapotranspiration were performed by Davin and
Noblet-Ducoudré (2010), which provided significant evidence that the change of
the land surface evapotranspiration can lead to great changes in temperature and
precipitation. For example, deforestation will lead to the decrease of evapotrans-
piration, while the decrease of latent heat will increase the near-surface temper-
ature and lead to higher sensible heat flux (Davin and de Noblet-Ducoudré 2010).
There is a high transpiration rate in the tropic rainforest, with the decrease of
transpiration rate due to the disappearance of the tropic rainforest may lead to
regional warming and drought in the future (Defries et al. 2002). In addition, the
change in evapotranspiration also influences water content in the atmosphere, and
reduces the greenhouse effect and consequently reduces the temperature. While the
decrease of cloud covers will increase the solar radiation, and consequently
strengthen the temperature (Dessler 2010). Therefore, due to the large number of
parameters, it is difficult to quantitatively compare the two feedbacks and there is
great uncertainty (Pachauri and Reisinger 2007).

Land surface albedo is the fraction of solar energy (shortwave radiation)
reflected from land surface into space. It represents the reflecting power of the land
surface, and plays a key role in influencing the radiation balance and energy
balance of the land surface (Lynch et al. 1999). The change of land surface albedo
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directly alters the solar radiation absorbed by land surface, subsequently leads to
the change in the long-wave radiation of land surface into space and sensible heat
and latent heat, and finally influences the temperature (Chapin et al. 2005). Some
of the key work demonstrating the sensitivity of climate to land surface albedo was
performed by Charney et al. (1975). Without regard to the influence of advection
process, the increase will lead to the decrease of the solar radiation absorbed by
land surface, increase the land surface temperature, subsequently increase the
long-wave radiation into the space and decrease the sensible heat and latent heat,
and lead to the potential to decrease the temperature, and vice versa (Chapin et al.
2005). Lower land surface albedo indicates lower reflectivity and higher shortwave
absorption of the land surface. Taking forest coverage as an example, its albedo is
generally lower than that of the nudation and other vegetation types (Houldcroft
et al. 2009). Historical deforestation in the middle-latitude zone led to the increase
of the land surface albedo, which is especially remarkable after snowfall in the
winter, and might have made northern hemisphere colder (Feddema et al. 2005).

Leaf area index is an important indicator that represents the canopy structure and
productivity of the plant community. It directly influences the ability of plant to acquire
and utilize solar energy and indirectly influence the canopy impedance ratio. Besides,
being an important parameter of land surface albedo, it also directly influences the
interaction between land surface and the atmosphere (Bonan and Pollard 1992). More
recent studies have focused on the role of the leaf area index in influencing the climate.
The relevant researches indicate that leaf area index is closely related with precipita-
tion, temperature and specific humidity, etc. (Copeland et al. 1996).

The significance of roughness has also been well realized. Land surface
roughness has impacts on the turbulent flow between land surface and the atmo-
sphere and subsequently influences the local diffusion flux. If diffusion flux is
higher, it will reduce the near-surface air temperature under the condition of no
other feedback mechanisms (Bathiany et al. 2010). Deforestation will decrease
land surface roughness and reduce the turbulent flow, and will consequently
increase the temperature in theory. However, less turbulent flow will lead to the
decrease of heat and moisture transfer, which will increase the temperature and
moisture gradients between land surface and the atmosphere and in turn alleviate
the warming effect. Davin and Noblet-Ducoudré (2010) analyzed the sensitivity to
the roughness during the conversion of the forest to the grassland. Their result
indicates that the change in roughness will make global temperature increase by
0.29 �C, and the increase will be even more obvious in the tropic zone.

1 Systematic Modeling of Land Use Impacts 5



1.2.2 Impacts on the Biogeochemical Process

The influence of the land use change on the biogeochemical process, especially the
discharge or absorption of the greenhouse gases such as CO2 in the atmosphere
due to the land use change, can alter the concentration of the greenhouse gases in
the atmosphere and consequently influence the climate. The historical accumula-
tive carbon loss due to the land use change was estimated to be 180–200 PgC
(House et al. 2002), and the land use change contributed to 10–30 % of the carbon
discharge due to human activities. The deforestation, afforestation, forest resto-
ration and agricultural activities are the major approaches through which the land
use influences the carbon cycle. There are many researches on the influence of the
land use change on the carbon cycle, most of which focused on the deforestation,
especially the deforestation in the tropic rainforest. Since the 1850s, the global
forest area decreased by 20 %, and the carbon emission due to the deforestation
accounted for 90 % of the carbon emission caused by the land use change and
33 % of the man-made carbon emission (including the discharge from the fossil
fuel burning and land use change).

The influence of the afforestation and forest restoration on the carbon cycle has
also gradually become the hot issue in the relevant researches. Although the
reforestation has not significantly influenced the terrestrial carbon sink at the global
scale, it has played an important role in the carbon sink at the regional scale. For
example, the man-made forests in China has stored over 0.45 Gt carbon since the
1970s (Fang et al. 2001). Some researches indicated the forest restoration played a
key role in the carbon sink resulting from the land use (Pacala et al. 2001).

The productivity of the forest and decomposition of organic matters in the soil
both influence the change of CO2 in the atmosphere and the climate pattern, and
consequently influence the terrestrial carbon sink). When the photosynthesis rate is
bigger than the respiration rate, and discharge rate of the biogenic volatile organic
compounds (BVOC), and the decomposition rate of organic carbon, the forest
plays a role as the carbon sink (Heimann and Reichstein 2008). Besides, the
deforestation will reduce the potential carbon sequestration (House et al. 2002). In
addition, the higher temperature and higher CO2 concentration will increase the
NPP, which will lead to the negative feedback and make more CO2 in the
atmosphere sequestrated. The radiative forcing due to the carbon emission
resulting and the accelerated respiration due to the higher temperature will lead the
positive feedback, in which the organic matters will decompose more rapidly
(Friedlingstein et al. 2006). For example, there is an extreme example in the
climate-carbon cycle, i.e., the tropic rainforest in Amazon will gradually succeed
into other vegetation if the temperature continuously increases and the precipita-
tion continuously decreases.

6 X. Deng et al.



The agricultural activities also have significant impacts on the carbon cycle. For
example, the conversion of the natural vegetation to the cultivated land, loss of
plant biomass and increased decomposition of organic matters in the soil, all make
the agricultural activities become one of the major sources of CO2 emission. By
contrast, the utilization of the high yield variety and fertilizers, irrigation and no-
till agriculture all contribute to the reduction of carbon loss and increase the
absorption of carbon in the agricultural regions (Friedlingstein et al. 2006). For
example, the no-till agriculture in the USA has increased the organic content in the
soil, reaching 1.4 Gt carbon in the past 30 years. However, the increase of the
organic matters in the soil can only last for 50–100 years, after that a new equi-
librium of carbon cycle will be reached (Smith et al. 1997).

A lot of BVOC are generated by the plants and then released into the atmo-
sphere. These compounds have significant influence on the physical and chemical
characteristics of the atmosphere due to their great amount. Although the BVOC
have no direct influence on the radiation balance of the atmosphere, they affect the
longevity of the methane in the atmosphere and play an important role in the
formulation of the ozone and secondary organic aerosols (SOAs). The SOAs can
directly influence the climate since they can scatter or absorb the solar radiation
and consequently decrease or increase the temperature (Spracklen et al. 2008). The
overall influence of the SOAs on the climate system has not been accurately
quantified so far, they may mainly play a role in decreasing the temperature
(Chapin et al. 2005). The SOAs also have significant indirect impacts on the
climate, i.e., they may act as the cloud condensation nuclei (CCN) in the formation
of the clouds. In fact, the BVOCs released by the boreal forest has made the local
CCN increased by 100 % (Spracklen et al. 2008), which in turn influences the
number of water drops in the cloud and makes the albedo of the atmosphere
increased by 3–8 %.

There will be an albedo difference ranging from -1.8 to -6.7 W/m2 in the
regions between 60–90�N since the albedo increases due to the indirect influence
of BVOC. This means that owing to the feedback among BVOC released by the
trees, SOA, CNN and land surface albedo, the boreal forest will make the local
climate colder. The influence of BVOC on CCN is considered to be the most
important in the boreal forest since the regional air pollution is slight (Spracklen
et al. 2008). In addition, the net emission of carbon released due to the defores-
tation depends on the land use type converted from the forest or the temporal scale
of the regeneration of the forest and the feedback mechanism mentioned above.
According to the simulation which only takes into account the biogeochemical
influence, the complete deforestation will make the global temperature increase by
0. 09 or 0.19 �C if the forests between 50–60�N and 0–10�S were completely
felled (Chapin et al. 2005). This is because of the great amount of biomass in the
tropic zone and depends on the total biomass of different forest types.

1 Systematic Modeling of Land Use Impacts 7



The impacts of LUCC on the regional temperature and precipitation are the
synthetic effects of the processes mentioned above. There has been great progress
in the research on the single process and their synthetic effects. Besides, the
impacts of the land cover change happen at certain temporal and spatial scales. For
example, the mesoscale land cover change influences the regional temperature
through the land surface albedo in short and medium terms, while the geochemical
process influences the change in temperature at larger temporal and spatial scales.

1.3 Simulation of the Effects of LUCC on the Regional
Climate Model

1.3.1 Development from the Global Climate Models
to the Regional Climate Models

The climate model consists of the set of equations that can be used to determine
the characteristics and evolution of the components of the climate system
according to the fundamental physical laws such as the law of conservation of
energy and law of conservation of mass. Then the climate model is constructed by
routinize the set of equations with the computer. The climate model can be used to
not only simulate the current climate, but also simulate the climate change caused
by the change in the boundary conditions (Kattenberg et al. 1996). Therefore, the
climate model will serve as the most important test tool if the people wish to study
the climate and its change with the experimental method.

The earliest researches on the regional climate effects generally used Global
Climate Models (GCMs), and carried out the sensitivity test with the force-
response method (Pielke et al. 1998), i.e., represent the land use changes with the
changes of the land surface parameters (e.g., albedo, roughness and evapotrans-
piration). Generally, the control experiment is first carried out with the GCMs, and
then the land surface parameters are changed to carry out the simulation and
thereafter compare with the reference test so as to analyze the response of the
climate to the land use changes (Himiyama and Bicik 2012). Thereafter, the
method was applied to many researches on the response of climate to the change of
the land surface parameters such as the evapotranspiration, roughness, stomatal
conductance and leaf area index.

The GCMs have been widely used in the study of climate change, and a lot of
effective work has been done in the simulation of influence of the LUCC on the
global temperature and precipitation at large scale and the research on the climate
effects of trace gases in the atmosphere, etc. (Salmun and Molod 2006). However,
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it is difficult to simulate the regional climate at small scales precisely with the
GCMs due to the limitation of the resolution. Besides, the resolution is very low in
the GCMs (above 100–200 km), so they cannot be used to describe the complex
terrain and land surface characteristics. Therefore, there is some bias and uncer-
tainties in the simulation of the regional climate change with the GCMs (Brovkin
et al. 2006), which influences the credibility of the simulation result.

Regional climate models were proposed during the late 1980s and the early
1990s and have become important tools in regional climate researches. Regional
climate model can describe the detailed characteristics of the land surface with
high resolution, and also can more reasonably simulate the regional forcing, such
as terrain, rivers/lakes and urban buildings. Besides, they reflect the climate
characteristics caused by strong regional forcing; consequently, they have been
widely used in regional climate researches.

More attention has been paid to the response of regional and local climate to
land use changes rather than that of global climate. However, the resolution of the
current climate models, e.g., the global ocean-atmosphere-land system with high
complexity and the Earth system model of the moderate complexity, is generally
too low when the model is used at local and regional scales. In recent decades,
high resolution regional climate models, e.g., RegCM2, RegCM3, RAMS, RIEMS,
RegCM-NCC and IPCR-RegCM, have been widely used in the research on
regional land use change. For example, these models have been applied to the
desertification experiment, deforestation experiment in the tropic rainforest, veg-
etation restoration experiment, etc. Besides, some researchers analyze the impacts
of land use change on regional temperature and precipitation, and the influence of
land use changes on the fundamental regional climate characteristics at the
national scale (Himiyama and Bicik 2012; Diffenbaugh 2009) by comparing the
current land use data and the data of potential natural vegetation.

1.3.2 Research on the Integration of the Improved Land
Surface Model and Regional Climate Model

Although some regional climate models have higher resolution (below 100 km),
there are still a lot of great challenges in the simulation of the land surface
processes. For example, it is still necessary to represent the land surface process
which is very important to the climate at the small scales, although there is little
evidence that the simulation with climate models can provide reliable information
at small scales. Since the atmosphere and the land surface integrate into an
inseparable whole system through the exchange of energy, dynamics and moisture,
it is the key to the successful simulation with the regional model to construct a land
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surface model that can accurately and precisely simulate the interaction between
the atmosphere and the land surface.

By contrast with the regional climate model, the land surface model focuses
more on the interaction between the atmosphere and the land surface, and can
calculate the exchange of energy, dynamics and moisture between the land surface
and the atmosphere. The scholars have gradually realized the importance of the
land surface process in the climatology, geobiochemistry and weather forecasting,
etc. since the 1970s. Since the middle 1980s, many researchers have studied the
issue of deforestation in the tropical rain forest in the Amazon watershed and
carried out a lot of sensitivity analysis (Malhi et al. 2009).With the development of
the land surface process model, more biophysical processes of vegetation were
introduced. The researches constructed complex parameterization schemes of the
exchange of radiation, moisture, energy and dynamics above the vegetation, which
can more realistically reflect the role of vegetation in the land surface process,
especially the role of vegetation in the water budget and energy budget of the land
surface.

Since the 1990s, the researches gradually considered the water-vapor absorp-
tion of vegetation and introduced the biochemical process that the vegetation
absorbs CO2 for photosynthesis into the land surface model according to the
relationship between the photosynthesis and plant water. There have been many
improved land surface models, e.g., the Land Surface Model (LSM), improved
Simple Biosphere model (SiB2) (Sellers et al. 1996), Community Land Model
(CLM) (Bonan et al. 2002). These improved land surface models have a better
ability to simulate the carbon flux and daily and seasonal cycle of CO2 concen-
tration, and can be used to simulate the enhanced greenhouse effect due to the
increase of CO2 concentration in the atmosphere. The latest land surface models
focus more on the biogeochemical process.

With the continuous development of the regional climate model, a great many
of researchers have applied the coupled regional land surface model to the study of
various physical processes and their impacts on the regional climate, energy
budget and interactions between the land surface and the atmosphere. The relevant
researches mainly focused on the schemes of the soil-vegetation-atmosphere
interaction.

1.4 Application of Regional Climate Model

1.4.1 Agricultural Land Development and Management

The area of cultivated land has continuously increased so as to meet the demand of
people for food all over the world, with 1,140 million hectares (Mha) forests
converted into cultivated land during 1700–1992 in the whole world (Klein
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Goldewijk et al. 2011). More attention has been paid to the influence of farmland
management on climate, e.g., irrigation, no-till agriculture and crop rotation,
among which the influence of irrigation received the most attention. The change in
irrigation has been expected to influence local climate since it directly influences
soil moisture, which will further affect land surface albedo, evaporation and var-
iation in regional temperature and precipitation. The irrigation area has increased
very rapidly during the past centuries. For example, global irrigation area was
8.0 Mha in 1800, it increased to 40 Mha in 1900 and further increased 2.7 Mha in
2000 (Kueppers et al. 2007). The global irrigation water accounts for 70 % of the
water used by human beings (Douglas et al. 2009). The irrigation districts mainly
include China, India, Pakistan, Thailand, North America and the Aral Sea
watershed (Kueppers et al. 2007).

There have been very few quantitative studies of how the climate responds to
irrigation. The simulation studies in many regions indicated that increased soil
moisture due to irrigation will generally lead to significant decrease of local
average and maximum temperature (Tmax), while the change of the minimum
temperatures (Tmin) varies among regions (Kueppers et al. 2008). Irrigation will
make the regional moisture in the atmosphere increase significantly, and conse-
quently lead to regional precipitation increase under the appropriate weather
conditions (Douglas et al. 2009). Besides, irrigation plays a role in reducing the
difference between regional temperature and daily temperature (Oyama and Nobre
2004; Kueppers et al. 2008; Douglas et al. 2006; Lobell et al. 2009).

Irrigation affects surface climate mainly through the redistribution of latent heat
and sensible heat. When the irrigation area increases, the latent heat will increase
while the sensible heat will decrease. The increase of latent heat will further lead to
the increase of cloud coverage and decrease of the net radiation of land surface. The
researches have indicated that there are obvious seasonal variations of the tem-
perature decrease due to the irrigation. The temperature will reduce significantly in
the dry season and insignificantly in rainy season (Douglas et al. 2006; Lobell et al.
2009). Besides, there is obvious regional heterogeneity of the temperature decrease
due to the irrigation (Lobell et al. 2009). The simulation researches indicated that
the difference in the irrigation area will lead to the difference in soil moisture. The
difference in the response of the cloud to the irrigation is the main reason for the
difference in the regional climate. The cooling effect of irrigation in some regions
(e.g., North America, northwest part of India, northeast part of China) is comparable
to the warming effect in the magnitude, and consequently plays a role in alleviating
the climate warming (Kueppers et al. 2007). However, according to the prediction
of land use changes, the irrigation area in these regions will show a decreasing trend
in the future decades, which will aggravate the climate warming.
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1.4.2 Urbanization and Its Regional Climate Effect

Urbanization is an extreme way in which human activities alter the underlying
surface properties and influence the local climate. The urban heat island effect due
to urbanization is an extreme example of the influence of LUCC on regional
climate. The urbanization has contributed to 50 % of the increase of land surface
temperature in the USA since 1950 (Stone 2009). The city differs greatly from the
natural land cover. The widespread impervious surface and the roof and wall of
buildings, etc. in the cities, all influence the energy flux, circulation of water and
other materials. They can reduce the evaporation from land surface, make it dif-
ficult to eliminate land surface heat, and consequently lead to the increase of land
surface temperature (Li et al. 2011). Besides, man-made heat emission and
decrease of vegetation coverage also contribute to the increase of land surface
temperature. In some cities, local people have grown a lot of plants or painted the
roofs write so as to reduce the reflectivity of the urban land surface and alleviate
the urban heat island effect (Wong and Lau 2013).

Considerable progress has been made in the development of urban climate
models which is able to predict/simulate meteorological conditions from regional
to building scales. The results of current qualitative researches indicate that the
lowest daily air temperature increases more than the highest daily air temperature,
which leads to the decrease of daily temperature difference (Murata et al. 2012).
Besides, the Bowen ratio and canopy temperature of cities will increase with the
proportion of impervious surface (Ge et al. 2007). In addition, previous researches
have mainly focused on the urban heat island effect of big cities.

1.5 Summary

This chapter reviews the advances in the researches on the influence of LUCC on
surface climate, including how LUCC influences the surface climate, the relevant
simulations and their improvement and the application in case studies, the main
findings can be summarized as follows. A large number of researches have doc-
umented the important effects of LUCC on regional climate system. Besides,
biogeophysical and biogeochemical effects of large-scale LUCC have also been
studied. But the relevant researches on their mechanism have generally studied
biogeophysical and biogeochemical effects separately. It is the main means of the
research on the effects of land use changes on the climate to carry out numerical
simulation with a series of climate models of different complexities. The regional
climate models have higher resolution and can reflect the climatic characteristics
caused by local forcing, and have been widely used in the research on some
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representative land use changes, e.g., deforestation in the tropic zone, desertifi-
cation, irrigation of the cultivated land and urbanization.

Although there have been many consentaneous conclusions in many aspects of
the current researches, there is still great uncertainty in the simulation of LUCC
effects on the regional climate. First, the climate system contains multi-scale
dynamics and interactions between multiple weather systems. Second, there is
great variation in the influence of land use changes in different regions of climate
system. Therefore, in order to reduce the uncertainty in these relevant researches,
on one hand, it is necessary to precisely examine and depict the parameters of
LUCC and other parameters of land surface, which depends on the development of
remote sensing techniques. On the other hand, it is still necessary to strengthen the
research on land surface process. It not only requires mathematical–physical
models that can effectively simulate the interaction between land surface and the
atmosphere, but also needs to improve the observation techniques so as to
understand the essence of land surface process and provide reasonable initial value
parameters for mathematical–physical models.

Urbanization has significant influence on local climate, e.g., urban heat island
effect due to the urbanization and the effects of urban aerosol on precipitation.
However, since the area of the city is generally very small, it is difficult to
parameterize the urban land surface due to its great complexity, and there have
been no researches on the simulation of urbanization process in regional climate
models, either. In fact, with the development of the society and economy, urban
population will continually increase and urban area will further expand, and
consequently the effects of urbanization on the climate will be more and more
important. The assessment and prediction of the influence of urbanization will be
one of the major directions in the relevant researches in the future.

As the intersection between the researches on land use changes and climate
change, the researches on climate effects of future land use changes mainly focus
on two important issues. Firstly, great efforts have been made to understand the
climate effects of past and current LUCC, however, there have been very few
researches for future LUCC. Secondly, how to predict land use changes in the
future and assess its influence on future climate may become a hot issue in the
relevant research fields.
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Chapter 2
Land Use Change Dynamics Model
Compatible with Climate Models

Jinyan Zhan, Jiyuan Liu, Yingzhi Lin, Feng Wu and Enjun Ma

Land Use/Cover Change (LUCC) is an important part of the global environmental
change, which has always been the scientific hot spot. There are two primary
factors that contribute to climate change: land use change and greenhouse gas
emission (Kalnay and Cai 2003). This chapter focuses on the Land Use Change
Dynamics (LUCD) model which can be compatible with climatic models,
including three sub-modules, namely economic module, vegetation change mod-
ule, and agent-based module.

Firstly, the economic module is capable of estimating the demand of land use
changes in economic activities and maximizing economic utility. In this sense,
Computable General Equilibrium (CGE) modeling approach can include land as a
production factor into the economic module. Second, vegetation change module
provides the probability of vegetation change driven by climate change. The Agro-
ecological Zone (AEZ) model is supposed as the optimal option for constructing
the vegetation change module because it is naturally correlated with AEZs facil-
itating the coupling of economic module and vegetation change module. Third, the
agent-based module identifies if the land use change demand and vegetation
change can be realized and provides the land use change simulation results, which
are the underlying surfaces needed by Regional Climate Models (RCMs). By
importing the RCMs’ simulation results of climate change and providing the
simulation results of land use change for RCMs, the LUCD model would be
compatible with RCMs.
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On the other hand, the climate model is an effective tool to study LUCC on surface
climate, but how should it be applied to the research on the regional effects of LUCC?
The framework of LUCD model compatible with RCMs is introduced in this chapter.
Framework and modules of LUCD models are introduced in the first part. The
Weather Research and Forecasting (WRF) Model, as a next-generation mesoscale
numerical weather prediction system, is explained in detail in the second section.

The land use simulation model is an important tool to analyze the LUCC, which
plays a key role in influencing the global climate. However, there have been few
global LUCC simulation models, especially these that can be used to analyze the
interaction among the socioeconomic development, climate change and LUCC.
The Global Change Assessment Model (GCAM) and the GTAP-AEZ model take
account of the influence of social economy and climate change at the global scale,
but they may have some parameter errors due to the rough parameter setting. This
study aims to compare the simulation results obtained with the GCAM model and
GTAP-AEZ model and optimize their parameters according to the specific con-
ditions of China, presented in the last section.

2.1 LUCD: Framework and Modules

LUCC is an important part of the global environmental change, which has always
been the academic hot spot. Many simulation experiments have proven that the
simulation results of RCMs are sensitive to underlying land use and land cover
changes (Shepherd et al. 2010). While the interaction between land use change and
climate change has been fully realized, most RCMs introduce LUCC data exoge-
nously (Cai et al. 2010). Always, they apply the LUCC data of one year of history as
underlying surfaces and keep them constant ignoring the interaction between LUCC
and climate variations. This section provides a framework of LUCD model com-
patible with RCMs to introduce parameterized LUCC into regional climate change
modeling endogenously. Several suggested models are introduced and some specific
parameter processing approaches are explained in detail. This modeling framework
helps to enhance the understanding of the coupling mechanism of land use system
and climatic system, and strengthen the simulation capability of land system.

Land system is geographically complex, which is composed of natural factors,
human land use activities, and other impact factors (GLP 2005). Land use change
simulation is a prediction of when, where, why, and how land use pattern changes
(Deng et al. 2010a, b). However, studies on land use change processes are often
challenged by the complex and unexpected human activities and natural con-
straints. Land use change emerges from the interactions among various compo-
nents of the coupled human–landscape system and feeds back to the subsequent
development of these interactions (Le et al. 2008). Most land use change simu-
lation models simulate successional pattern change of land use under the macro
background of the regional population growth, economic development, social
progress, changes in the natural environment, and other facts (Liu and Deng 2010).
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On the whole, the land use change simulation models can be broadly divided into
three major categories: empirical statistical model, agent-based model (ABM), and
raster neighborhood relationship-based model (Liu et al. 2005a, b).

There are abundant empirical statistical models applied in land use change
simulation. This kind of models can be broadly divided into two categories:
econometric model that describes the process of land use change by establishing
equations between land use and its influencing factors, and mechanism model
identifying the relationship of land use change and its driving factors at grid levels.
A typical example of the latter is the Conversion of Land Use and its Effect at Small
regional extent (CLUE-S) model whose application in land use change simulation is
currently in the ascendant (Veldkamp and Fresco 1996). The CLUE-S model is
constructed to simulate land use change and its effects on environment at meso-
micro scale. It has the capability of synchronously simulating the changes of mul-
tiple types and introduces the dynamic driving factors (such as population and
economic growth) to improve the simulation accuracy.

Since the 1990s, along with the rapid development of complexity science, ABM
began to be applied in land use change research. The Agent-based Models of Land
Use and Cover Change (ABM/LUCC) was specially discussed by LUCC Report
No.6, in which the development prospect of ABM in land use change simulation is
highly valued (McConnell 2001). The ABM can be divided into two categories.
One is simulation model of landscape scale mainly based on traditional spatial
modeling techniques and the other depicts human decision-making processes and
their interactions (Semboloni et al. 2004; Zhang et al. 2013). The latter mainly
identifies the linkage between agents and environment by describing the interac-
tion and affiliation of independent agents (Manson 2006). It is found that the
agents would get more benefits under the scenario without climate changes in the
long term, even though the total income is lower than that of under the scenario
with climate changes. Studies showed that ABM is efficient in describing the
interaction between macro individual and micro individual.

As a representative of raster neighborhood relationship-based model, CA model
is widely used in land use change simulation, especially urban expansion. Syphard
et al. (2005) analyzed the distinction of LUCC caused by urban expansion in areas
with different slope with the CA model. One of the superiority of the CA model in
land use change simulation is that it supports visualization of the simulation
process. The structure of the CA model makes it difficult considering the impacts
of land use policies. By combining ABM and Cellular Automata (CA) model, the
simulation of land use change is characterized by multi-scale and becomes more
effective in multi-objective decision making.

The existing models including CLUE-S model, ABM, and CA model are not
compatible with RCMs. The CLUE-S model needs an input of the land use
structure and ignores the influences of climate zone change on land use change.
The ABM and CA model is good at urban expansion simulation but vegetation
change driven by natural environment condition change. In this study, we devel-
oped a LUCD model in compatible with RCMs to describe the interdependencies
and feedback mechanisms among social economics, ecosystem environment as
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well as irrational decision making process. The LUCD model describes a com-
bined and complex system composed of social economic, ecosystem components,
and decision making process and consequences. It provides a consistent and
comprehensive framework of land use change modeling and emphasis on how the
models work together. By introducing Agro-ecological zone (AEZ) based on the
simulation results of RCMs, the LUCD model is compatible with RCMs and
constitutes an iterative simulation system of LUCC and climate changes.

2.1.1 Land Use Change Dynamics Model

2.1.1.1 Model Structure

LUCD model constitutes of three modules, namely economic module, vegetation
change module, and agent-based module. The economic module calculates the
land demand for all economic activities maximizing economic utility of land uses.
The vegetation change module provides the probability of vegetation change
driven by climate changes. And the agent-based module identifies that if the land
demand and vegetation change can be realized and provides the land use change
simulation results, which are the underlying surfaces needed by RCM. To feed the
LUCD model results into RCMs, the land use system applied in the LUCD model
should be consistent with the underlying surfaces used in RCMs (Fig. 2.1). By
iteratively using the output of one model as the input of another, the LUCD model
is compatible with RCMs. In Fig. 2.1, the dotted lines show the data transmission
between the LUCD model and RCMs, while the solid lines stand for the flow of
information in the LUCD model. The LUCD model provides the simulated land
use for RCMs as underlying surface data, then RCMs can simulate the climate
change resulted from the land use change. The results of climate change simulated
by RCMs are further imported into the LUCD model, affecting land use change.

The economic module estimates the land use change demand driven by human
activity. The current condition of land uses are introduced into this module as one
of the limitations of economic activities as well as land use decisions. The equi-
librium of markets determines the commodity supply and in turn influences the
land use demand. Combining the land use demand, the limited amount of land as
well as the current land use status, the land use change demand is obtained. The
vegetation change module describes the possible vegetation change driven by
climate change. The AEZ is the key concept that links the climate change and
vegetation change and helps to couple human activity with climate change. The
climate change leads to change of AEZs, which determines the growth of vege-
tation (Stehfest et al. 2007). Consequently, the climate change affects not only the
evolution of natural vegetation but also the human activities including planting and
breeding. By overlying the AEZs on the current vegetation pattern, the suitability
of vegetation change can be evaluated. The agent-based module describes the
procedure of land use decision coupled with the land use change demand and
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vegetation change suitability using the agent-based simulation technology. This
module identifies whether or not the theoretical land use change demand and the
possible vegetation change estimated by the economic module and the vegetation
change module can be realized. The output of this module, land use change, is the
underlying surfaces that are needed by RCMs. By embedding the LUCD in RCMs,
an iterative simulation system of land use change and climate change is con-
structed (Fig. 2.1).

2.1.1.2 Economic Module

The economic module should provide a comprehensive macroeconomic frame-
work to describe market-oriented economies. CGE model is suggested to be
appropriate for such a macroeconomic framework. For convenient application, the
way that induces land into the economic module under a CGE modeling frame-
work is proposed as well in this study (Fig. 2.2). Land is one of the three primary
factors input in commodity production. And there are five components: producers,
households, government, trade, and markets in CGE model. Producers decide
demand of inputs including primary factors of land, labor, and capital, and supply
of outputs (commodities) to maximize their profits. Households decide demand of
commodities and supply of their endowments of labor and capital to maximize
their economic utility. Government imposes taxes and expends them in public
consumption and savings. The savings of government and households transform
into investment according to reserve requirements, which is also an important
component in demand. And we employ the small-country assumption that the

Fig. 2.1 Framework of feeding LUCD model results into RCMs simulation
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study area is too small to affect prices in international markets. Thus, import and
export prices, which this country faces, are given for it in foreign currency terms.
The demand and supply of commodities and primary factors are equilibrated in
markets by price adjustment. With this module, we can compute land uses in
various equilibriums to simulate what will happen in the future.

Though CGE models are good at describing the quantities and prices variation
as others, we do not introduce land prices but land area in the economic module.
This is because the land prices vary along with not only time but also location and
productivity, etc. And as a macroeconomic model, CGE model do not support a
diverse prices modeling framework. Thus, we summarize land uses in economic
development as follows.

Yi;e ¼ bi;e

Y
h

F
bh;i;e

h;i;e

Y
l
Aec

1l;i;e

l;i;e ð2:1Þ

Aecl;i;e ¼
fl;i;eYi;e

bi;e
ð2:2Þ

where, i is the index of commodities; e is the index of AEZs; l is the index of land
use type; h is the index of primary factors (labor and capital); Yi,e is the value
added of the ith firm in the eth AEZ; Aecl,i,e is the input area of the lth land use
type for ith commodity production in the eth AEZ; Fh,i,e is the input of the hth
factor by the ith firm in the eth AEZ; bi,e is the scaling parameter in production
function, also called total factor productivity (TFP); fl,i,e is the share parameter in
production functions; and bh,i,e is the share parameter in production functions.
Considering the value added is proportional to the input land area under the certain
technique condition and primary factors input, the input area of each land use type
is calculated by Eq. (2.2).

The input land area of each type of land use per unit of each commodity output
is inversely correlated with primary factors input besides TFP. Consequently, the

Fig. 2.2 Overview flow chart of economic module applying a CGE modeling framework
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share parameter, fl,i,e, is determined by the input of the hth factor by the ith firm in
the eth AEZ, Fh,i,e.

fl;i;e ¼ fl; eðFlabor; i; e;Fcaptial; i; eÞ ð2:3Þ

The land demand input in commodity production is determined by the eco-
nomic system, because the economic links in the comprehensive macroeconomic
framework provided by CGE model are tightly connected with each other. Each
shock to economic system will influence the area demand of lands input in
commodity production. For example, the growth in the rate of direct tax will lead
to an increase in government revenues and a decrease in household income. Then,
the structure differences of investments and consumptions between government
and household determine the change of commodity demand structure. Under the
market-clearing condition, the commodity production and supply structure should
be altered. And finally, the area demand of lands input in commodity production
will change.

As one of the economic models, the economic module assumes that the ultimate
purpose of economic development is to increase the economic utility of household.
Household’s economic utility is dependent on the amount of consumption of
commodity, which are purchased from producers.

Uec ¼
Y

i
Xpvi

i ð2:4Þ

where, Uec is the economic utility; Xpi is the amount of consumption of the ith
commodity; and vi is the share parameter in the economic utility function.

The economic utility is indirectly restrained by the area of land used for eco-
nomic development. In reality, the earnings from endowments of land are the
component household’s income which is the constraint of household consumption.
And the input of land in production by producer determines the output and supply
of commodity. Nevertheless, we only consider the constraint function of land in
production in this module because the earnings from the endowment of land are
not included when accounting income constraints. The economic development can
be summarized as the following optimization problem:

maximize
Ueco; Uentf g

Uec ¼
Y

i
Xpvi

i ð2:5Þ

subject to

Tland ¼
X

e

X
l

X
i
Aecl;i;e ð2:6Þ

where, Tland is the total land area which is exogenously defined. Equation (2.5)
shows the objective function of economic utility to be maximized; and Eq. (2.6) is
a total land area constraint equation meaning that total land areas used for com-
modity production must equal to the total land area used in economic activity on
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the left-hand side of the equation. The simulated land use change demand at
regional scale can be allocated to grids by using DLS model (Deng et al. 2010a, b),
CLUE-S model (Verburg et al. 2002) and CA model (Lau and Kam 2005) etc.

2.1.1.3 Vegetation Change Module

The vegetation change module assesses the growth suitability of specific vegeta-
tion and provides the possibility of vegetation change. There are many models
including Dynamic Global Vegetation Model, Holdridge Life Zone Model, and
AEZ model that can be used to describe the vegetation change driven by climate
change. In this study, we propose AEZ model as the optimal option because it is
naturally correlated with AEZs facilitating the coupling of economic module and
vegetation change module. We also illustrate how to estimate the possibility of
vegetation change using AEZ model. The AEZ model is developed by Food and
Agriculture Organization (FAO) of the United Nations with the collaboration of
the International Institute for Applied Systems Analysis (IIASA) (Schmidhuber
and Tubiello 2007). Climate, topography, and soil characteristics are three key
inputs of the AEZ model. The model can estimate the climate limited vegetation
productivity. Assuming that the estimated climate limited productivity of the vth
type of vegetation in the pixel p in the tth year is Yv,p,t, the possibility of vegetation
change of the vth type of vegetation in the pixel p in the (t + 1)th year is

Pv;p;tþ1 ¼
Yv;p;tþ1 � Yv;p;t

Yv;max

ð2:7Þ

where, Yv,max is the maximum climate limited productivity of the vth type of
vegetation; and Pv,p,t+1 is the possibility of vegetation change of the vth type of
vegetation in the pixel p in the (t + 1)th year.

A positive Pv,p,t+1 implies that the vth type of vegetation in the pixel p will
expand or be more thickly forested in the (t + 1)th year, while a negative Pv,p,t+1

means that the vth type of vegetation in the pixel p will be inclined to degrade in
the (t + 1)th year. The possibility of vegetation change provides the comparison
criterion of specific vegetation change of different pixel in different time. When
comparing the superiority of different vegetation in the specific pixel and time, a
superiority index, Sv,u,p,t, is proposed.

Sv;u;p;tþ1 ¼
Yv;p;tþ1 � Yv;p;t

Yu;p;tþ1 � Yu;p;t
ð2:8Þ

where, Sv,u,p,t+1 is the superiority index of the vth type of vegetation compared with
the uth type of vegetation in the pixel p in the (t + 1)th year.

The superiority index cannot depict the dominance relations between two types
of vegetation by itself. The application of this index should combine with the
possibility of vegetation change. For instance, when Pv,p,t+1 is positive and
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Sv,u,p,t+1 is larger than 1, the vth type of vegetation is more superior than the uth
type of vegetation in the pixel p in the (t + 1)th year. A more exact mathematical
formula for judging the dominance relations of multiple types of vegetation is
proposed in the agent-based module.

2.1.1.4 Agent-based Module

Determination of land use change is partly characterized by non-rationality such as
tradition and custom. The agent-based module identifies if the land use change
demand simulated by economic module and the possible vegetation change assessed
by vegetation change module can be realized under the background of irrational
decisions. Agent-based modeling is able to simulate land use change by measuring
the individual behavior and results of land use over time. Take the decision of land
use change of a given household for instance. The dissimilarities between a given
household h and all defined household groups in the population can be measured.

Dh;g ¼
XS

s¼1

ws
Vh;s � �Vg;s

� �2

Vh;s þ �Vg;s

�� ��

" #
ð2:9Þ

where, Dh,g is the distance from household h (h = 1, 2, …, H) to the household
group g (g = 1, 2, …, G). Vh,s is the value of variable s (s = 1, 2, …, S) repre-
senting the character of household h. �Vg;s is the average value of variable s of
households in household group g; ws is the weight coefficient of the variable s in
explaining the character of household and household group.

The household h is assigned into the most similar household group and makes
the same land use change decision with the household group.

g0 ¼ arg min Dh;1; Dh;2; � � � ; Dh;g; � � � ; Dh;G

� �
ð2:10Þ

where, g0 is the most similar household group to household h. By establishing a
case database of land use change decision, we can assign each household into one
similar enough household group and deduce the land use decision. It helps correct
the land use change results simulated of economic module based on ideas of
optimization.

For the assessment result of vegetation change module, the agent-based module
also provides a criterion to judge which kind of vegetation change will happen in a
specific pixel.

Lv;p ¼
1;

if for 8u 6¼ v; Pv;p;tþ1 [ 0 and Sv;u;p;tþ1 [ 1 or � 0;

or Pv;p;tþ1� 0 and Sv;u;p;tþ1 [ 0 or � 1;

0;
if for 8u 6¼ v; Pv;p;tþ1 [ 0 and Sv;u;p;tþ1 [ 0 or � 1;

or Pv;p;tþ1� 0 and Sv;u;p;tþ1 [ 1 or � 0:

8
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>>>:
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where, Lv,p = 1 denotes that the vth type of vegetation is the dominant vegetation
in the pixel p and Lv,p = 0 denotes that the vth type of vegetation is not the
dominant vegetation in the pixel p. This criterion defines that for any other veg-
etation type u, when Pv,p,t+1 is positive and Sv,u,p,t+1 is larger than 1 or no larger
than 0, or Pv,p,t+1 is not positive and Sv,u,p,t+1 is smaller than 0 or no larger than 1,
the vth type of vegetation is dominant vegetation in the pixel p in the (t + 1)th
year; when Pv,p,t+1 is positive and Sv,u,p,t+1 is larger than 0 or no larger than 1, or
Pv,p,t+1 is not positive and Sv,u,p,t+1 is larger than 1 or no larger than 0, the vth type
of vegetation is not the dominant vegetation in the pixel p in the (t + 1)th year.

For a specific pixel, vegetation change will happen as long as the productivity
of the new dominant vegetation exceeds that of the original dominant vegetation.

LVp;tþ1 ¼ v; if for 8u 6¼ v; RYv;p;tþ1 [ RYu;p;tþ1 ð2:12Þ

RYv;p;tþ1 ¼ RYv;p;t þ
RYv;p;t

RYp;t
Yv;p;tþ1 ð2:13Þ

RYp;0 ¼
X

v

Av;p;0

Ap
Yv;p;0 ð2:14Þ

where, LVp,t+1 denotes the new vegetation type that characterized the pixel p in the
(t + 1)th year. RYv,p,t+1 is the productivity of the vth type of vegetation in the pixel
p in the (t + 1)th year. RYp,t is the total productivity of all the vegetation in the
pixel p in the tth year; RYp,0is the total productivity of all the vegetation in the
pixel p in the base year. Ap is area of pixel; Av,p,0 is area the vth type of vegetation
in the pixel p in the base year; and Yv,p,0 is the productivity of the vth type of
vegetation in the pixel p in the base year.

2.1.2 Concluding Remarks on LUCD Model

In this part, we introduced the LUCD model which is compatible with RCMs to
provide endogenous underlying surface for climate modeling. This model is
constituted by economic module, vegetation change module, and agent-based
module. The economic module calculates the land use change demand driven by
economic activities aiming at maximizing economic utility. The vegetation change
module evaluates the probability of vegetation change driven by climate change.
These two modules depict the land surface process under the condition of rational
decision making and ideal circumstances. To couple the economic module and
vegetation change module, the AEZ is introduced in the LUCD model. The agent-
based module identifies if the land use change demand and vegetation change can
be realized under the condition of irrational decision making and multiple vege-
tation competition. By introducing the simulation results of the LUCD model in
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RCM and applying the simulation results of RCM in the LUCD model, a coupled
simulation system of land surface system simulation can be established.

In addition to the modeling framework, several suggested models are intro-
duced and some specific parameter processing approaches are explained in detail
for the constitution of the LUCD model. For the economic module, a CGE
modeling framework and the difference between land and other production factors
in CGE model are introduced. The effects of climate change on human activities
are also taken into consideration by establishing production function for each
AEZ. The AEZ model is suggested for the vegetation change module and two
indexes (possibility of vegetation change and superiority index) are supposed to
determine the climate-induced vegetation change. For the agent-based module, an
example of land use change decision making and the criterion of vegetation
change is provided.

To ensure the output on LUCC of LUCD model easily feed into RCMs, the
classification system of LUCC should be comparable with that needed by RCMs as
underlying surface. The classification system determines the choice of driving
factors that affect land use change, vegetation change as well as decision making
processes in the LUCD model. And the specific parameter processing approaches
provided in this study can also serve as valuable examples even if a new modeling
approach is used in the LUCD model.

2.2 Weather Research and Forecasting Model

With the development of the climate models and land surface process models, the
numerical simulation has become widely used to study the influence of LUCC on
climate. The WRF Model is a next-generation mesoscale numerical weather
prediction system designed to serve both atmospheric research and operational
forecasting needs. It features two dynamical cores, a data assimilation system, and
a software architecture allowing for parallel computation and system extensibility.
The model serves a wide range of meteorological applications across scales
ranging from meters to thousands of kilometers. The effort to develop WRF model
began in the latter part of the 1990s and was a collaborative partnership principally
among the National Center for Atmospheric Research (NCAR), the National
Oceanic and Atmospheric Administration,1 the Air Force Weather Agency
(AFWA), the Naval Research Laboratory, the University of Oklahoma, and the
Federal Aviation Administration (FAA).

1 National Oceanic and Atmospheric Administration are represented by the National Centers for
Environmental Prediction (NCEP) and the (then) Forecast Systems Laboratory (FSL).
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WRF model allows researchers to produce simulations reflecting either real
data (observations, analyses) or idealized atmospheric conditions. WRF model
provides operationally forecasting, flexible and computationally efficient platform,
offering advances in physics, numerics, and data assimilation contributed by many
research community developers. WRF model is currently used at National Centers
for Environmental Prediction (NCEP), the AFWA, and other centers.

2.2.1 Development of WRF Model

WRF model has a large worldwide community of users (over 20,000 in over 130
countries), and workshops and tutorials are held each year at NCAR. There are two
dynamical core versions of WRF model, each with its own web page. The
Advanced Research WRF (ARW) is supported to the community by the NCAR
Mesoscale and Microscale Meteorology Division.2 The WRF-NMM (NMM) is
supported to the community by the Developmental Test bed Center (DTC).3 The
development of WRF model with ARW dynamic core is shown in Table 2.1.

The ARW model represents the latest developments following a particular
modeling approach that uses time-splitting techniques to efficiently integrate the
fully compressible nonhydrostatic equations of motion. The ARW is suitable for
use in a broad range of applications across scales ranging from meters to thousands
of kilometers. The main application includes idealized simulations (e.g., LES,
convection, baroclinic waves), parameterization research, data assimilation
research, forecast research, and real-time NWP. Besides, hurricane research,
regional climate research, coupled-model application as well as teaching.

The Mesoscale and Microscale Meteorology Division of NCAR is currently
maintaining and supporting a subset of the overall WRF code. The WRF modeling
system software in the public domain is freely available for community use. The
WRF modeling system consists of four important major programs, which are WRF
Preprocessing System (WPS), WRF-DA, ARW solver, and the post-processing
and visualization tools.

2.2.2 Application of WRF Model

WRF model is mainly applied to the weather and climate research when horizontal
resolution is 1–10 km. It can also be applied to numerical simulation, physical
parameterizations research, data assimilation, numerical ideal test and provide
meteorological field for air quality model.

2 For detailed information: http://www.mmm.ucar.edu/wrf/users.
3 For detailed information: http://www.dtcenter.org/wrf-nmm/users.
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The key consideration of WRF model is to forecast the important weather
process from the cloud scale to the synoptic scale, including pre-processing
module WPS (WRF processing system) and main module ARW. WPS is not only
the pre-processing part of mode data, but also the part that provides some initial
boundary before the three-dimensional variation systems established. It is mainly
responsible for the standard grid data preprocessing and terrain data preprocessing.
WPS modules include three sub-modules: geogrid, ungrib, metgrid. Among them,
main function of geogrid is to define and create land patterns. In the geogrid
module, users can set the projection domain, range size, regional location, nesting,
and other parameters. According to these custom settings, geogrid will interpolate
topography, land use, soil type, and other data to the defined region network, the
data format is NetCDF. Ungrib module’s main function is converting standard grib
files into ones that can be recognized by metgrid. Typically grib files have many
different formats; the same meteorological elements may have different elements
code. For these different formats, WPS provides the corresponding Vtable function
pointer, such as AWIP, GFS, etc. Metgrid module is for meteorological data
interpolation. It interpolates the meteorological of large area into calculated grid of

Table 2.1 Development of WRF model with ARW dynamic core

Version Release
time

Note

WRF V1.0 2000.11 The first version was released
WRF V1.1.1 2001.11 The third version was released. WRF V1.1 was not changed much,

except for two error revision
WRF V1.2 2002.4 The fourth version was officially released. Then V1.2.1 was released in

May 22nd
WRF V1.3 2003.3
WRF V2.0 2004.5 The nested versions was released, including single and double nested

and 3-dimensional variational data assimilation system (3DVAR),
and NMM was added and EM nesting was released

WRF V2.1 2005.8 EM becomes ARW
WRF V2.2 2006.11 WRF preprocessing system (WPS) was issued to replace the WRF

standard initialization (WRF SI), and WPS was released
WRF V3.0 2008.4 WPS has been used, adding global ARW version
WRF V3.1 2009.4
WRF V3.2 2010.4
WRF V3.3 2011.4 4DVAR was updated
WRF3.4 2012.4 QNSE PBL method was added, as well as the Noah MP(multi-physics)

land surface model, and variation of sea-ice albedo with T were
allowed, thus, Noah and Noah MP were in new shared sea-ice
module.

Sfclay option 1 code was modified and cleaned up.
WRF3.5 2013.4 New land-surface models such as RUC LSM, PX LSM, and CLM4

land were included.
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pattern (including the horizontal direction and the vertical direction), and provides
initial and boundary condition file for the model.

In WRF model, the original land use data come from the global 24 types of land
use and land cover classified by United States Geographical Survey land use
systems (USGS). Each land use types have different roughness, albedo, and other
parameters, affecting the flow of meteorological fields, precipitation, temperature,
or temperature.

In WRF simulation, each grid point has a land cover type based on the land
cover dataset being used for the model run. The properties (surface albedo, surface
emissivity, moisture availability, surface roughness length) of each land cover type
depend on the land surface model used in the WRF run. The land-surface model is
the component that takes care of the processes involving land-surface interactions.
For the WRF runs, the parameterization scheme of physical processes in the model
should be set, USGS classification data set need to be used to specify land cover
types and their properties.

The interactions between the atmosphere and other earth system components,
which are important drivers of regional climate, are not well explained in most
RCMs models. Although more and more of these interactions are now represented
in GCMs, global models lack the spatial resolution to represent regional-scale
processes and feedbacks. Biases in simulating regional precipitation, for example,
can have far-reaching consequences in fully coupled models of the climate system,
because water integrates across the physical, biological, and chemical components.

Therefore, WRF is strongly recommended to address a wide range of science
questions specific to regional-scale processes, and forcing and response. Examples
include interactive coupling of the RCM with sea ice and ocean models to rep-
resent air–sea interactions; chemistry and aerosol models, including dust, to rep-
resent chemistry–aerosol–cloud–radiation feedbacks; and marine and terrestrial
ecosystem models to represent biogeochemical cycling processes. Additionally,
developing more comprehensive treatments of land surface and hydrological
processes, including river routing, subsurface flow, lake, land use, fires, and land
ice, will enable a more dynamic representation of land–atmosphere feedbacks. It is
noted that some development efforts are already underway in the framework of the
Community Land Model (CLM) and Noah land surface model that have been
implemented in WRF. Building data assimilation capabilities for the coupled
model will enable the development of regional analyses of the Earth system; an
example is an ocean and land data assimilation system. Finally, to facilitate model
coupling, participants recommended accelerating the transition of WRF to the
Earth System Modeling Framework (ESMF) (Tolstoy et al. 2004).
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2.3 Global Models Combining Emission Scenarios
with Land Use Changes

The land use simulation model is an important tool to analyze the LUCC, which
plays a key role in influencing the global warming. However, there have been very
few global LUCC simulation models, especially the models that can be used to
analyze the interaction among the socioeconomic development, climate change,
and LUCC. The Global Change Assessment Model (GCAM) and the GTAP-AEZ
model are two models that take account of the influence of social economy and
climate change at the global scale, but they may have some parameter errors due to
the rough parameter setting. This study aims to compare the simulation results
obtained with the GCAM model and GTAP-AEZ model and optimize their
parameters according to the specific conditions of China. First, we simulated the
land use structure in China in 2010 with the two models and compared the sim-
ulation results with the real one. Second, we calibrated these parameters of models
according to the China’s national conditions and implemented the simulation
again. The result indicates the calibrated GCAM can provide more accurate
simulation result of land use, which can provide significant reference information
for the land use planning and policy formulation to mitigate the climate change in
China.

2.3.1 Overview of Global LUCC Simulation Models

Humans have transformed significant portions of the Earth’s land surface,
10–15 % of which is currently dominated by agricultural crop or urban-industrial
areas, and 6–8 % is pasture (Vitousek et al. 1997).These land use changes have
important implications for future climate changes, and consequently, great
implications for subsequent land use changes (Deng et al. 2013; Nunes and Auge
1999; Turner 1994). Climate change and land use change are both global driving
forces of environmental change, and the impact assessments generally show that
interactions between them can lead to serious challenges to the provision of
ecosystems services. Besides, in many cases it is impossible to determine the
impacts of climate change without consideration of LUCC. LUCC is a widespread,
significant, and accelerating process, and it has been one of the research cores of
the international programmes, such as the International Geosphere-Biosphere
Programme (IGBP) and the Global Environmental Change Human Dimensions
Programme (IHDP) and is also one of the global environmental research focuses
and cutting-edge issues (Liu and Deng 2010). LUCC is driven by human activities,
and in many cases it also leads to changes that impact the humans, therefore,
LUCC modeling is a critical way for formulating effective environmental policies
and management strategies (Jiang et al. 2012). Understanding the role of land use
change in the global environmental change requires the analysis of historical land
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cover conversions and projection of possible future land use changes, both of
which heavily rely on the land use simulation models. Besides, the land use
simulation model also provides an essential approach for stakeholder to project
and evaluate the potential consequences of policy decisions and other actions. As
more scholars realized the importance of LUCC, the land use simulation model has
become an important tool for the analysis of both the mechanism and the spatial
distribution of LUCC in the past and future (Deng et al. 2012; Hu et al. 2004).

The land use simulation models include Markov model, logistic function model,
regression model, econometric model, dynamic systems model, spatial simulation
model, linear planning model, nonlinear mathematical planning model, mechanistic
GIS model, CA model, and so on (Flamenco-Sandoval et al. 2007). All of these
models may help to explore the combined effects of social policies, individual
behavior, and other drivers of the land use change, however, most of them have
some drawbacks. For example, the Markov model has been widely used to simulate
the land use change, but it involves no spatial factors, so the land use change cannot
be spatially explicitly reflected. The CLUE-S model can comprehensively analyze
the regional LUCC process and driving force, but it can only be used in the spatial
allocation so far, while the nonspatial changes must be estimated with other methods
(Deng et al. 2008). Therefore, although some models can be used to simulate land
use change, there are still some serious drawbacks (Liu and Deng 2010; Cai et al.
2004). Moreover, there were few global models to simulate the LUCC, especially in
the study of the interaction mechanism among the social economy, climate change,
and LUCC. In some sense, the GTAP-AEZ model and the Global Change Assess-
ment Model (GCAM) are more useful in the land use simulation, which can simulate
the land use change of each agricultural ecological zone (AEZ), combined with the
influences of social economy and climate change at global scale (Sands and
Leimbach 2003; Lee 2004; Burniaux and Lee 2003). However, the parameters of
these models are rough and the simulation accuracy needs to be improved.

In the preparation for the fifth Assessment Report of the Intergovernmental
Panel on Climate Change (IPCC AR5), the international community is developing
new advanced Earth System Models (ESMs) to address the combined effects of
human activities (e.g., land use and greenhouse gas emissions) on the carbon-
climate system. Besides, the four Representative Concentration Pathways (RCPs)
scenarios of the future (2005–2100) have been provided by the four Integrated
Assessment Model (IAM) teams, which are used as input to the ESMs for the
future carbon-climate projection (Moss et al. 2008; Moss et al. 2010). This study
aims to compare the simulation results of land use change obtained from the
GCAM and GTAP-AEZ model and improve the simulation accuracy through
optimizing the input parameters of the models, and the calibrated GCAM can be
used to provide more scientific reference information of land use change for the
land use planning and policy formulation to mitigate the climate change in China.
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2.3.2 Key Methods and Models to Combine Emission
Scenarios with Land Use Changes

2.3.2.1 GCAM Model

GCAM is a dynamic recursive model of land use and land cover, economy,
agriculture, and energy, which fully integrates the energy and agriculture systems
with economic equilibrium in the energy and agriculture markets (Wise et al.
2009). GCAM consists of four modules, i.e., Edmonds-Reilly-Barnes model (ERB)
(Edmonds et al. 1997), Agriculture and Land use simulation model (AgLU) (Sands
and Leimbach 2003; Thomson et al. 2005), Model for the Assessment of Green-
house gas Induced Climate Change (MAGICC) (Wigley and Raper 1992), and
Regional Climate Change Scenario Generator (SCENGEN) (Hulme et al. 1995).
The inputs of GCAM include capital, labor, initial land use allocation, all of which
need to be provided by researchers.

The land allocation diagram (Fig. 2.3) shows how land is allocated among
alternative land uses types, selection of land use is based on maximizing economic
return at a region, profit per hectare is equal to revenue (yield per hectare times
price received) less production cost (yield per hectare times nonland cost per unit
of output). This relationship is shown in Eq. (2.15)

pri;l;m;p ¼ yi;l;m;p � Pi;l;m � Gi;l;m

� �
ð2:15Þ

where pri;l;m;p is the economic return of the land as a profit rate ($/ha-yr), yi;l;m;p is
yield per hectare for land use i in region j at location p (calories/ha). Pi;l;m is the
market price for the product produced by land use i (units $/yield units: calories or
m3). Gi;l;m is the non-land cost per unit of output in land use (units are $/yield units:
calories or m3), i is an index for land use type. l is the region index. p is an index
for geographical location within a region.

While calculating profit rate pr of forest products is different somewhat because
of the time lag between planting and harvest. The profit rate expression for forest
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Fig. 2.3 Land use allocation framework of GCAM
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products includes a term that discounts future earnings into the present; this for-
ward price is denoted by �Pi;l;m.

pri;lm;p ¼
r

1þ rð Þ45�1
� Pi;l;m � Gi;l;m

� �
ð2:16Þ

where r is the interest rate ($/$ that is unitless).
In order to determine the share of land allocated to each land use type, land use

shares should be calculated numerically, by summing over the land distributions
implied in Eqs. (2.15) and (2.16). We use instead a reduced-form expression for
land shares that effectively sums over the index p in Eqs. (2.15) and (2.16) based
on maximizing profit rates, which is at the core of finding land shares that provide
the yields leading to maximum profits.

With the specific assumptions on the functional form of the yield distribution,
the share of land allocated to use i is given by a logit share equation:

Si;l;m ¼
pri;l;m

1
k

P
p

pri;l;m;p
1
k

ð2:17Þ

where k is a positive parameter that determines the rate that land shares change in
response to a change in profit rate. �pri;l;m is the average profit rate using land use
type i, which is the profit rate evaluated at an average or intrinsic yield, �yi

Land use for a specific purpose is calculated based on this logit-based share of
total land:

Landusei;l;m ¼ Si;l;m � Totallandl ð2:18Þ

2.3.2.2 GTAP-AEZ Model

The GTAP-AEZ model is based on the GTAP-E model, which allows for sub-
stitution between capital and energy, and between various fuels in sectoral pro-
duction. Sectors may substitute energy for capital when the rise of energy price is
more than that of the capital rental (Fig. 2.4). The inter-fuel substitution comprises
of three sub-nestings: (a) electricity versus non-electricity composite; (b) coal
versus non-coal composite; and (c) among oil, gas, and petroleum products. For
example, sectors may substitute coal for non-coal fuel (a composite of oil, gas, and
petroleum products) when coal is more expensive than non-coal fuels.

Based on the RCP 4.5 scenario, potential future economic activities are
assumed. Using this land use model, equilibrium solutions are then found. The
inputs used for the production are capital, labor, land, and other intermediate
inputs. In the GTAP-AEZ model, we recognize a unique production function for
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each of the land-using sectors located in a specific AEZ. For example, the paddy
rice sector located in AEZ 1 has a different production function from the paddy
rice sector located in AEZ 6. This is to identify the difference in the productivity of
land of different climate characteristics. Nevertheless, all the paddy rice sectors
located in the AEZ6 produce homogenous output to meet market demand.

We assume that transition of land in a specific AEZ can occur only between
sectors whose land is appropriate for their use. This is a new concept beyond the
standard GTAP model, in which land is assumed to be transformable between uses
of crop growing, livestock breeding, or timber plantation, regardless of climatic or
soil constraints. Facts show that most plants can only grow on land that is under
certain temperature, moisture, soil type, land form, etc. We believe that the
introduction of the agro-ecological zoning (AEZ) renders a sound presentation of
sector competition for land.

We split the total sector land rent into 18 AEZs according to the AEZ-specific
production shares derived from the data provided by the Center for Sustainability
and the Global Environment (SAGE) (Lee 2004) as follows.

Biomass Energy Demand

GTAP
(Computable General 

Equilibrium
Model)

Food Consumption Pattern

GDP growth rate

Population growth rate

Captial&Investment

 AEZ boundary

Cropland

Pasture

Forests

Biomass farmland

Total Factor productivity

Fig. 2.4 Framework of the GTAP-AEZ model The GTAP-E model is a multisector, multi-
region, and recursive dynamic CGE model that extends the standard GTAP model through
including the international capital mobility, endogenous capital accumulation, and the adaptive
expectations of investment. This model is distinguished for its disequilibrium mechanism of
determining the regional supply of investments. This disequilibrium mechanism includes the
adjustment of the expected rate of return toward an actual return rate within each region and
adjustment of the regional expected return rate toward the global return rate. These lagged
adjustment mechanisms, as well as the mechanism of determining the composition of capital and
allocation of wealth are parameterized according to the econometric estimation documented by
Golub (Golub 2006). In the analysis of the equilibrium of land use, it is assumed that the land is
distributed among sectors for the maximization of profits in each period with similar capital and
labor, although the land use does not change rapidly

2 Land Use Change Dynamics Model Compatible with Climate Models 37



Lca ¼ Lc � ½
X

i2SAGECROPS¼c

Pi � Qia

Hia
� Hia=

X

a2AEZS

X

i2SAGEROPS¼c

Pi � Qia

Hia
� Hia�

c 2 LANDUSE; i 2 SAGECROPS; a 2 AEZS:

ð2:19Þ

where Lca is the land rent accrued to the land use sector c in AEZ a; Lc is the land
rent of the land use sector c, with no AEZ distinction; Pi is the per-ton price of
SAGE’s land use type i; Qia is the production (ton) of SAGE’s land use type i in
AEZ a; and Hia is the harvest area of SAGE’s land use type i in AEZ a. TheP
i2SAGECROPS

operator means to aggregate over the disaggregated land use type i to

the corresponding aggregated land use sector c. Note that we assume the per-ton
land production price Pi is homogenous across the AEZs.

2.3.3 Scenarios

The Integrated Assessment Models (IAMs) explored a range of technological,
socioeconomic, and policy futures that could lead to particular concentration
pathways and magnitudes of climate change, which is represented by the RCPs.
The RCPs include four different scenarios (Table 2.2), i.e., one mitigation scenario
leading to a very low forcing level (RCP2.6), two medium stabilization scenarios
(RCP4.5/RCP6), and one very high baseline emission scenarios (RCP8.5), all of
which could be obtained with different combinations of economic, technological,
demographic, policy, and institutional futures. The development of the RCPs in the
first phase allows climate modelers to proceed with experiments in parallel to the
development of emission and socioeconomic scenarios, expediting the overall
scenario development process (Moss et al. 2010). Coupled carbon-cycle climate
models can then as well calculate associated emission levels (which can be
compared to the original emissions of the IAMs) (Hibbard et al. 2007).

Two important characteristics of RCPs are reflected in their names. The word
‘‘representative’’ indicates that each of the RCPs represents a large set of scenarios
in the literatures. In fact, as a set, the RCPs should be compatible with the full
range of emissions scenarios available in the current scientific literatures, with and
without the climate policy. The words ‘‘concentration pathway’’ means to
emphasize that these RCPs are internally consistent sets of projections of the
components of radiative forcing that are used in subsequent phases rather than the
final new and fully integrated scenarios, i.e., they are not a complete package of
socioeconomic, emission, and climate projections. The use of the word
‘‘concentration’’ instead of ‘‘emissions’’ also emphasizes that concentrations are
used as the primary product of the RCPs and designed as inputs for climate models
(Wu et al. 2013).
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The RCP4.5 scenario is a stabilization scenario in which the total radiative
forcing is stabilized shortly after 2100, without overshooting the long-run radiative
forcing target level (Liu et al. 2005a, b). RCP4.5 includes long-term, global
emissions of greenhouse gases, short-lived species, and land use-land cover in a
global economic framework which stabilizes the radiative forcing at 4.5 Watts per
square meter (W/m2), approximately 650 ppm CO2-equivalent in the year 2100
without ever exceeding that value. The defining characteristics of this scenario are
enumerated in Moss’ papers (Moss et al. 2008; Moss et al. 2010). RCP 4.5 was
updated from earlier GCAM scenarios to incorporate the historical emissions and
land cover information and follows a cost-minimizing pathway to reach the target
radiative forcing. The necessity to limit emissions in order to reach this target leads
to the changes in the energy system, including shifts to electricity, lower emissions
energy technologies and the deployment of carbon capture and geologic storage
technology. In addition, the RCP4.5 emission price is also applicable to the land
use emissions. The simulated future emissions and land use were downscaled from
the regional scale to the grid scale to facilitate the transfer to climate models.
While there are many alternative pathways to achieve a radiative forcing level of
4.5 W/m2, the application of the RCP4.5 provides a common platform for climate
models to explore the response of the climate system to stabilizing the anthro-
pogenic components of radiative forcing. Therefore, the RCP4.5 scenario is used
in this study, under which the land use change is simulated with GCAM. Besides,
the GTAP-AEZ model, which is similar to GCAM, is also used to analyze the land
use structure in AEZs, and the results obtained with the two models were finally
compared.

2.3.4 Results and Analysis

The results indicate that the land use area in different AEZs, which are obtained with
the GCAM model and the GTAP-AEZ model, are generally consistent. The pasture
land areas simulated with the two models differ most greatly, but are still generally
consistent in different AEZs. Besides, the results obtained with the GTAP-AEZ
model and the GCAM model both show that the grassland is approximately equally

Table 2.2 Description of RCPs

RCPs Description Publication-IA Model

CP8.5 Rising radiative forcing pathway leading
to 8.5 W/m2 in 2100

MESSAGE (Riahi et al. 2007)

RCP6 Stabilization without overshoot pathway
to 6 W/m2 at stabilization

AIM (Y. Hijioka 2008)

RCP4.5 Stabilization without overshoot pathway
4.5 W/m2 at stabilization after 2100

GCAM (Smith and Wigley 2006)

RCP2.6 Peak in radiative forcing at *3 W/m2

before 2100 and decline
IMAGE (Van Vuuren et al. 2006)
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distributed in different AEZs, but the grassland area in different AEZs differs a bit
more greatly in the result obtained with the GCAM model. In addition, the results
obtained with the two models show that the forestland is mainly located in AEZ9-
AEZ12, while the shrubland and cropland are mainly in AEZ7-AEZ13. What’s
more, the built-up land, the area of which is the smallest, is generally distributed in
AEZ10 (Fig. 2.5). Comparing the results obtained with the two models, we found
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Fig. 2.5 Simulated land use area in 14 AEZs in 2010 using the GCAM model (a) and GTAP-
AEZ model (b) (hectare)
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that the distribution of different land use types among AEZs is approximately
consistent, but with some difference between them.

There is still some difference between the real land use area and that obtained
with the two models, and the simulation result with the GTAP-AEZ model is better
than that with the GCAM model (Fig. 2.6). The results show that the area of
cropland and forestry land simulated with the GCAM model and the GCAM model
are far higher than the real one, which is 2.13 and 1.96 times larger than the real
one, respectively. However, the areas of grassland and built-up land simulated
with the two models are both lower than real values. This indicates there is still
some inaccuracy in data of the land use structure, industry structure, and social
economic situation of China in the global simulation. For example, the forest land
should be divided into economic forest lands and ecological forest lands, but not
distinguished in this study, leading to the significant difference between the sim-
ulated and real areas for the forest land.

There is an extremely complex socioeconomic structure and land use structure
in China, both of which have changed greatly due to the rapid economic
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Fig. 2.6 The comparison of land use area between simulated and real in 2008 (hectare)

Table 2.3 The adjustment of
GCAM input parameters (%)
in 2010

Input parameters Previous parameters Adjusted parameters

GDP growth 10 10.4
Labor growth 0.4 0.4
Capital growth 12.6 12.8
TFP growth 0.9 1.1
Population growth rate 0.8 0.5
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development of China and consequently made it very difficult to accurately sim-
ulate the land use change in China using models with static data. For instance, the
estate price in China has fluctuated prominently during the past decades, but a
static estate price is first used in the GCAM model in this study, which makes it
obviously difficult to simulate the constantly changing industrial structure in
China. Therefore, it is necessary to calibrate the models before simulating the land
use change.

In order to more accurately simulate the change of the land use structure in
China according to the reality and improve the precision of future scenario sim-
ulation, we calibrated the parameters of the GCAM model and the GTAP-AEZ
model (Table 2.3). The influence of policy intervention is included in the models
according to the specific national condition of China, and other parameters were
also calibrated. In this study, the price of agricultural products is set to increase by
1.5 % every year, TFP will increase by 0.1 %, and the annual population growth
rate will decrease from 0.8 to 0.5 %. The results indicate that the land use structure
simulated with the calibrated GCAM model becomes much more accurate than
before and has more closely approached to the reality. Besides, the simulation
accuracy with the calibrated GCAM model is much higher than that with the
calibrated GTAP-AEZ model (Fig. 2.7).

2.3.5 Concluding Remarks on Combining Emission
Scenarios with Land Use Changes

This study simulated the LUCC in China under the RCP 4.5 scenario with GCAM
and GTAP-AEZ, and compared the simulated and real land use structures. The
simulation results obtained with GCAM and GTAP-AEZ are generally consistent,
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Fig. 2.7 The comparison of land use area in China in 2010 simulated with the calibrated GCAM
model and the GTAP model and the real values (hectare)
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but also with some difference, and the land use structure simulated with GTAP-
AEZ is more close to the real conditions in some AEZs than that obtained with
GCAM. For example, the consistence between the forest land area simulated with
GCAM and the real one reached more than 80 %, while that with GTAP-AEZ
reached only 37 %. Overall, GCAM involves the driving factors of the rapid
economic development, which makes the simulation more close to the reality.
However, neither of the two models takes account of the impacts of policies on
socioeconomic development, which also has great influence on the land use change.
Therefore, it is necessary to calibrate the models through optimizing the model
input parameters. When the models are calibrated through adjusting these socio-
economic parameters according to the specific conditions, the overall simulation
accuracy of GCAM reached 82 % and that of GTAP-AEZ also reached 60 %. So
that it is possible and necessary to improve the simulation accuracy through cali-
brating input parameters of the models according to the specific conditions.

In recent decades, more and more land use simulation models have been
developed, but it is still a hard task to implement the calibration of input
parameters for these models. In the study, the land use structure of China in 2010
is simulated with GCAM and GTAP-AEZ under the RCP 4.5 scenario, both of
which were further calibrated through adjusting the input parameters, focusing on
comparing the accuracy of the results simulated by two models. The result indi-
cates the simulated areas of cropland and forest land with both two models are
higher than the real one, while the simulated areas of grassland and built-up land
were lower than the real values, and the accuracy is greatly improved after the
calibration.

2.4 Summary

The framework of LUCD model compatible with RCMs was introduced, which
has been divided into three sub-modules. The modeling approaches of three
modules of the LUCD model should be accordant with specific RCM, so that we
make the LUCC classification flexible in the LUCD model. However, due to the
uncertainties of climate change, economic development, and other factors, it is
very difficult to accurately simulate the long-term land use change in the future.
Therefore, it is necessary to study more deeply on how to optimize the parameters
according to the specific conditions in the future.

Finally, we introduced the Global Change Assessment Model (GCAM) and the
GTAP-AEZ model which can take account of the influence of social economy and
climate change at the global scale. We simulated the land use structure of China in
2010 with the two models and compared the results with the real one. Also, we
calibrated these parameters of models according to the China’s national conditions
and implemented the simulation again. The result indicates that the calibrated
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GCAM can provide more accurate result of land use, which can provide significant
reference information for the land use planning and policy formulation to mitigate
and adapt the climate change in China.
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Chapter 3
Spatially Explicit Land-Use
and Land-Cover Scenarios for China

Feng Wu, Qun’ou Jiang, Yongwei Yuan, Qian Xu and Xing Li

In climate modeling, land use data is applied as underlying surfaces and definitively
determines the simulation results of regional climate. Researches show that Land
Use and Cover Change (LUCC) not only affects the terrestrial ecosystem biodi-
versity, energy balance, water cycle, but also exerts influence on climate and social
economy (Berg et al. 2010; Liu and Diamond 2005). Besides, LUCC is a significant
performance of material and energy interactions between human and global envi-
ronment. It not only affects the geographical distribution of terrestrial ecosystem
patterns and productivity, but also objectively reflects how human influence bio-
geochemical cycles and the structure and function of ecosystem (Jiang et al. 2013).

Some achievements have been made in the researches on LUCC, but it still far
from being able to meet the need to alleviate and adapt to global environmental
change. Meanwhile, LUCC contributes to climate change and variability at global,
regional and local scales (Hibbard et al. 2010). With the progress of researches on
climatic modeling over the past decades, it has been widely recognized that there is
an urgent need to accurately characterize land surface as boundary conditions in
climate modeling (Hibbard et al. 2010; Sertel et al. 2010). Land cover datasets, which
are often derived from the remote sensing images, have been widely used to describe
underlying surface conditions in climate models. But the accuracy of these datasets is
still not high enough to meet the requirement of high resolution climate simulation.

F. Wu (&)
State Key Laboratory of Water Environment Simulation, School of Environment, Beijing
Normal University, Beijing 100875, China
e-mail: wuf.dls@gmail.com

Q. Jiang
School of Soil and Water Conservation, Beijing Forestry University, Beijing 100038, China

Y. Yuan
Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China

Q. Xu � X. Li
School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan
430074, China

X. Deng et al. (eds.), Land Use Impacts on Climate, Springer Geography
DOI: 10.1007/978-3-642-54876-5_3, � Springer-Verlag Berlin Heidelberg 2014

47



In the Sect. 3.1 of this chapter, we choose China as the study area, and explore
possible land use change trends based on the AgLU module and ERB module of
global change assessment model (GCAM model). In the second section, scenarios
of future LUCC in China are simulated. This study predicts the future structure of
land use/cover on the basis of GCAM and econometric model with the socio-
economic factors as the driving forces. The future spatial pattern of land use/cover
in China is simulated with the Dynamics of Land System (DLS) under the Busi-
ness as Usual (BAU) scenario, Rapid Economic Growth (REG) scenario and
Cooperate Environmental Sustainability scenario (CES). Last but not least, LUCC
data is reclassified to simulate regional impacts of LUCC on climate in the third
section. We combined land cover data with land use data to generate high accuracy
underlying surface information that can be applied in climatic simulation.

3.1 Possible Trends of Land Use Changes in China

LUCC is one of the core research focuses of International Geosphere-Biosphere
Programme (IGBP) and the International Human Dimension Programme (IHDP)
on Global Environmental Change.

Scholars conducted a lot of studies on LUCC to reveal the relationship of land,
environment, population and social development. In this study, we aim to investigate
how LUCC affect CO2 emissions and tried to reveal the influential mechanism of
LUCC to CO2 emissions. To achieve this goal, we simulate land use changes with
AgLU module of GCAM model, and then project CO2 emissions with ERB module
based on the simulated land use change. The comparison of scenarios’ results indicated
that CES scenario reflects sustainable development and is more suitable for devel-
opment in China. Scenario-based analysis provide more suitable development route of
China towards sustainable development based on future structural change of land uses.

3.1.1 Data

3.1.1.1 Land Use Data

We use TM/ETM+ images from 1990 to 2010 as data source, which are provided
by the Resources and Environment Data Center, Chinese Academy of Sciences
(CAS) (Liu et al. 2003). The Landsat TM/ETM+ data are further grouped into six
aggregated classes of land cover, we use the five types land use: cultivated land,
forest land, grassland, bare land and built-up areas including urban areas. Culti-
vated land includes paddy and dry farming land. Forest land includes timberland,
shrub and others (e.g., orchards). Grassland includes dense, moderate and sparse
grassland. Bare land includes sandy land, Gobi, Salina, wetland, bare soil, bare
rock and others (such as alpine desert and tundra). Built-up land includes urban
areas, rural settlements and others (such as roads and airports).
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3.1.1.2 Socio-Economic Data

Socio-economic data include total population, population density and growth rate
of per capita income, proportion of agricultural population, urbanization ratio,
GDP and price index of oil, gas, coal, and hydropower from 1990 to 2010. Among
them, population, GDP, population density, proportion of agricultural population
and urbanization ratio are derived from the Statistical Yearbook of China and the
provincial statistical data. Price index of natural gas, coal, and hydropower are
mainly extracted from the Energy Statistics Yearbook. Average household income
growth ratio, which reaches about 11.24 % from 1990 to 2010, is obtained by
looking for literatures and other relevant materials.. Population, average income
growth ratio and commodity market prices are the main parameters of AgLU
module and the relevant specific data will be used in the section of scenario design.

3.1.2 Methods

3.1.2.1 GCAM Model

GCAM model is an integrated assessment model that focuses on energy and
agriculture sectors. It is a partial-equilibrium model that designed to examine long-
term, large-scale changes in global and regional energy system where the char-
acteristics of existing capital stocks are not the dominant factor in determining the
dynamics of energy system. The markets in GCAM are defined for oil, gas, coal,
biomass, carbon, and agricultural products. The goal of land use allocation is
achieved through AgLU module that drove by factors of population, labor pro-
ductivity growth and the price of resources in the market. Besides, through
incorporation of the ERB module, emissions of greenhouse gases can be calculated
(Brenkert et al. 2003).

3.1.2.2 Land Allocation

Land allocation diagram shows how land is allocated among alternative land uses.
Determination of land use is based on maximizing economic return at each
location. Per hectare profit is equal to revenue (per hectare yield multiply price
received) subtract production cost (per hectare yield times per unit of output non-
land cost). This relationship is shown in Eq. (3.1).

pri;l;m;p ¼ yi;l;m;p � Pi;l;m � Gi;l;m

� �
ð3:1Þ

where pri;l;m;p is the economic return of the land as a profit rate ($/ha�yr); yi;l;m;p is
yield per hectare for land use i in region j at location p (calories/ha); Pi;l;m is the
market price for the product produced by land use i ($/calories or $/m3). Gi;l;m is
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the non-land cost per unit of output in land use ($/calories or $/m3). i is an index
for land use type. l is the region index. p is an index for geographical location
within a region.

Profit rate (pr) calculation for forest products is somewhat different because of
the time lag between planting and harvest. Profit rate expression for forest products
includes a term that allocates future earnings into the present and distributes those
earnings over 45 years; this forward price is denoted by Pi;l;m,

pri;lm;p ¼
r

1þ rð Þ45�1
� Pi;l;m � Gi;l;m

� �
ð3:2Þ

where r is the interest rate (unitless).
To determine the share of land allocated to each land use type, land use shares

would, in general, be calculated numerically by summing the land distributions
implied in Eqs. (3.1) and (3.2). In integrated modeling context, however, we wish
to work on large regional scales. We use instead a reduced-form expression for
land shares that effectively sums up the index p in Eqs. (3.1) and (3.2) based on
maximizing profit rate which is the core of finding land shares that provide the
yields leading to maximum profits.

With specific assumptions on the functional form of yield distribution, the share
of land allocated to use i is given by a logit share equation as follows.

Si;l;m ¼
pri;l;m

1
k

P
p

pri;l;m;p
1
k

ð3:3Þ

where k is a positive parameter that determines the rate that land shares change in
response to a change in profit rate. pri;l;m is the average profit rate using land i,
which is the profit rate evaluated at an average or intrinsic yield, yi, for land use i.

Land use for a specific purpose is calculated based on this logit-based share of
total land:

Land usei;l;m ¼ Si;l;m � Total landl ð3:4Þ

3.1.2.3 CO2 Emissions

Carbon emissions are accounted for in two separate categories, those from industry
and fossil fuel use and those as net land-use emissions. Land-use emissions have
different implications for carbon-cycle than industrial emissions, which are the
sum of emissions from fossil-fuel and cement production.
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CO2 Emissions from the AgLU Module

Carbon emissions from land-use change are calculated as the difference in carbon
stock between periods. Land use changes over time in response to changing
demands, income, agricultural technologies, and prices of agricultural products.
Each regional land-use category is assigned a carbon density for soils and above
ground plant material. Changes in land use are translated directly to changes in
carbon stocks. The net carbon emissions equal to the product of area of land use
changes multiply carbon densities for each land-use change class.

For crops, pasture, forests, and bare land, the carbon emissions from above
ground are calculated as follows:

EmLCi;l;m ¼
Xnr

l¼1

CLdensl;i �
Land usei;l;m � Land usei;l;m�1

N step

� �
ð3:5Þ

where i is an index for land use: crops, pasture, forests, and bare land.
Carbon emissions from soils are based not only on land use changes, but also on

decomposition of carbon according to decay rates. Thus, 60 % of soil carbon is
assumed to decay when land use change occurs during the simulated time period
(Pd0 = 0.6); 30 % of the soil carbon is assumed to only decay in the next time
period (Pd�1 = 0.3), and 10 % of the soil carbon is assumed to decay during the
second time period-30 years-after the land use change occurs (Pd�2 ¼ 0:1).

EmSCi;m ¼
Xnr

l¼1

Xm

m¼m�2

CSdensl;i � Pdm �
Land usem � Land usem�1

N step

� �" #
ð3:6Þ

CO2 Emissions from ERB Module

Carbon dioxide emissions from fossil fuel use in the ERB module are calculated
under the condition that global fuel demands have been determined. Emissions are
equal to carbon emission coefficient times the amount of fuel used. Energy
transformations (such as synthetic fuels, electricity generation, and hydrogen
production) are associated to the region where the transformation occurs.

For conventional oil, gas, coal, and biomass, emissions are calculated as fol-
lows. If RemFrac2;l parameter is not equal to zero, carbon removal through
scrubbing technology are taken into consideration. Emissions from direct biomass
burning are set to zero in most scenarios.

EmSCi ¼COi �
�

FFcons � 1� SedFili;l
� �

� RemFrac2;l

� ESUui;l;mguui;l;mgiji þ ESHhi;l;mghhi;l;mgiji

� �
biggr�

ð3:7Þ
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where COi is the emission coefficient of oil, gas, coal or biomass; SedFili;l is the
fraction of feedstock that is not combusted; RemFrac2;l is the fraction of emissions
that can be scrubbed during electricity and/or hydrogen generation; ESUui;l;m is the
energy (in Joules) that needs to be combusted as secondary energy (electricity) to
meet demand and that needs to be converted to primary energy for emission
calculations by multiplying with the conversion coefficients guui;l;m and giji;
ESHhi;l;m is the energy (in Joules) that needs to be combusted as secondary energy
(hydrogen) to meet demand and that needs to be converted to primary energy for
emission calculations by multiplying with the conversion coefficients ghhi;l;m and
giji. ghhi;l;m is the transformation efficiency when electricity and hydrogen is
produced. giji is the transformation efficiency from primary to secondary fuel
conversion. FFcons equals to primary fuel demanded for transformation into
secondary fuel supply.

For each of the end-use sectors emissions are based on fuel mode demands,
attributing shale oil production emissions and flared emissions to the industrial
sector.

EmSCk ¼
X

j

COj � Fjkj;k;l;m � 1� SedFilj;l
� �

ð3:8Þ

where COj is the emission coefficient of oil, gas, coal or biomass; SedFilj;l is the
fraction of the feedstock that is not combusted; Fjkj;k;l;m is the primary fuel
demands.

3.1.3 Scenarios

3.1.3.1 Socio-economic Analysis on China

With a rapid development of economy in China in the past 30 years, GDP has a great
increase from 364.52 billion Yuan at the beginning of reform and opening up to
34.05 trillion Yuan in 2009, with an average annual GDP growth rate of 9.6 %. This
growth rate is significantly higher than those of most other countries worldwide.
Meanwhile, China is rapidly industrialized and urbanized. Urbanization level in
China rose from 18 % in 1978 to 46.6 % in 2009, and it will reach 65 % by 2030.
Urban population growth will not only directly bring about the increase of consumer
demand, but also put forward more requirements for urban infrastructure invest-
ment. Industrialization and urbanization will certainly exacerbate some structural
contradictions, which will raise the cost of labor, land, natural resources and social
undertakings. However, industrialization and urbanization is still the main internal
driver for economic growth for a long time in China.

China’s population growth has stepped into the phase with the character of ‘‘low
birthrate, low death rate and low growth’’ since the early twenty-first century. Some
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studies have shown that total population will reach the peak around 2030, and then
begin to gradually decline and thus enter a negative growth phase. After 2015,
China’s working-age population will decline and labor supply in China will
gradually decline in the next 20 years.

According to statistics report released by National Bureau of Statistics, the
proportion of the added value of first, second and tertiary industry to GDP was
10.2 %, 46.9 %, and 42.9 % in 2001. In comparison to 1990, the proportion of
primary industry decreased by 16.9 %, while the secondary industry and tertiary
industry increased by 5.6 % and 11.4 % respectively. Overall, China’s industrial
structure changes in the past 20 years sustained the main changing characteristics
since the 1970s. In other words, the proportion of primary industry declined, the
secondary industry consolidated its position, and the tertiary industry significantly
increased. In addition, the industrial structure will be further optimized in the
future.

With the continuous development of global economy, the demand for resources
and energies will continue to grow. Supply-demand balance of resources and
energy determines the price of energies and resources, such as oil, natural gas, and
coal. According to China Statistical Yearbook, in 2009, China’s total energy
production was 2.75 billion tons; however, the consumption has reached 3.07
billion tons. There was an obvious gap between consumption and demand.
Meanwhile, coal and oil accounted for a large share in China’s total energy pro-
duction, and the percentage of coal and oil was 70.4 and 17.9 % correspondingly.
While the hydro-power, nuclear power and wind power is relatively slow growing
and only accounts for 7.8 % of total energy production. However, with the con-
straints of resources and energy, the impacts of resources and energy on human
social-economic development will become more and more obvious. According to
the forecasts of International Energy Agency and the U.S. Department of Energy,
despite global demand for energy resources continuously grew between 2005 and
2030, the overall supply and demand will be close to equilibrium in the future.

3.1.3.2 Scenarios Design

According to the characteristics of social-economic development in the past
30 years in China, we design three social-economic development scenarios, i.e.
BAU, REG and CES. BAU scenario is designed according to the economic
development process and the structural characteristics in China combining the
factors with most possible changes such as population, factor endowments and
technological advances. This scenario reflects likely changing trends of social-
economic development, and also provides a reference which can be compared with
other scenarios. REG scenario is designed to explore land use changes under
accelerating social-economic development. CES scenario is designed to simulate
the possible trends of land use changes under the effect of increasing environ-
mental pressure.
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BAU Scenario

In a long term, investment and improvement in productivity and changes in labor
supply determine the overall economic growth situation. Labor supply depends on
the total amount and age structure of population. Population age structure and
changes of total labor numbers have significant effects on the labor force immi-
gration. Population growth is impacted by several factors, such as family planning
policy, improvement of people’s living standards, lifestyle changes, among which
national population policy is the major influencing factor. In this study, population
growth is exogenous variable, and population forecast is from the Institute of
Population and Labor Economics. According to this forecast, China’s population
will peak in 2037 with approximate 1.47 billion, while the peak of working-age
population will occur in 2017–2027 with about 10 million. According to the
proportion of labor forces to the working-age population labor in 2006, the total
labor resources in the whole country will be about 820 million at the moment when
the working-age population is in the peak, and it will increase by 40 million in
comparison to 2006.

Productivity improvement is mainly reflected as the changes of total factor
productivity (TFP) in the model. Through studies on TFP in the past 30 years, we
found that there are amounts of factors affecting TFP in China, such as institutional
reform, human capital spillover effect, technological capital, market reform,
urbanization, foreign investment effect, foreign trade effect, infrastructure and
administrative costs, and final consumption rate. Although previous quantitative
research produced different results, most of the studies show that the average
annual growth rate of TFP in China is between 2 and 4 %. In a long run, some
significant factors of promoting TFP growth will continue to play an important
role, for example, reform will be further deepened, urbanization will be steadily
pushed forward, rural labor force will continue to be migrated, and human capital
will be accumulated. Therefore, in BAU scenario, model assumes that the average
annual growth rate of TFP continues to follow the development ratio in the past
during 2008–2050, and remain at the level of about 2 %.

China’s demand for energy has surged to fuel its rapidly expanding industrial
and commercial sectors as well as households experiencing rising living standards.
Previous studies indicated that average energy consumption has risen by 5.2 %
since 1978, while during 2001–2007, the primary energy consumption has soared
through an average annual increase of 9.8 %, and the GDP has increased by
10.2 % in the same period (Liu et al. 2011). Previous studies also showed that
from 1999 to 2008, the average growth rate of coal production in China was
11.37 %, which was almost twice as much as that of 5.81 % from 1982 to 1996. In
2008, coal production in China rose to 2716 million tons (40 % of global coal
production) (Lin and Liu 2010). Moreover, integrated modeling that considering
the factors of population growth, economic growth and industrial structure chan-
ges, technological advance, environmental impact and energy security estimated
that in 2050 primary energy demand will reach 3,440–4,150 Mtce. The structure of
energy get improved significantly, and the proportion of coal in primary energy
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consumption from 60 % in 1990 (excluding biomass 76.2 %) declined to 47.7 %
in 2050 (51.9 %), while oil and gas from 14.8 % (18.7 %) increased to 26.3 %
(28.6 %). Primary energy supply capacity would increase from 1,302 Mtce in
1990 to 2,980–3,740 Mtce in 2050, which coal 2,500–2,700 Mtce, crude
100–200 Mt, natural gas 120 billion cubic meters to 1,400 cubic meters.

Under BAU scenario, urbanization and industrialization will continue to be
pushed forward, the level of urbanization will increase 0.35–0.55 % per year, and
it will be expected to be 52 % in 2015, 65 % in 2030, and up to around 70 % in
2050. Taking into account of the international economic environment and changes
of comparative advantage in China, export growth rate will gradually reduce under
this scenario. Trade surplus will continue to exist in a long time with a gradually
declining trend, and the balance between import and export will be achieved by
2050 and rise steadily during 2050–2100 (Table 3.1).

Control Scenario One: REG Scenario

Under REG scenario, reforms will be putted forward quickly and smoothly, the role
of market in the allocation of resources will be enhanced obviously, structural
adjustment will be vigorously promoted, and the economic growth pattern will
make rapid progress. The specific settings are as follows: (i) price of all kinds of
resources will be straightened out, there will be a more rational allocation for
resources, and resource use efficiency will be improved. The external cost of eco-
nomic activities will be internalized by the means of taxation and energy. (ii) Public
expenditure structure of government will be adjusted and the proportion of the
expenditure on education, medicine, scientific research and social welfare will be
increased. Many studies have found that the low proportion of government spending
on public services is one of the significant reasons to a lower consumer will.
Therefore, adjusting the structure of government expenditure is helpful to promote
the coordinated development of consumption and investment. (iii) Barriers of labor
force immigration are eliminated, and the process of urbanization is accelerated.
Urbanization is the significant drivers to promote the optimal allocation of
resources, economic growth and industrial structure adjustment. (iv) Development
of support service is intensified and industrial structure is further upgraded. In this
model, the accelerated development of services is reflected by the higher TFP
growth and lower tax levels (Table 3.2).

Table 3.1 The growth rate (%) of economic factors under BAU scenario in 2008–2100

2008–
2010

2011–
2015

2016–
2020

2021–
2025

2026–
2030

2031–
2040

2041–
2050

2051–
2075

2076–
2100

GDP growth 8.7 7.9 7.0 6.6 5.9 5.6 5.5 4.6 3.9
Labor growth 0.4 0.5 0.0 0.0 -0.3 -0.3 -0.4 -0.6 -0.9
Capital growth 12.6 9.4 8.4 7.8 6.7 6.2 5.9 5.4 4.8
TFP growth 0.9 2.0 2.0 1.9 2.0 1.9 1.9 1.9 1.8
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Control Scenario Two: CES Scenario

CES scenario mainly considers the following aspects of changes: (i) Slow
urbanization. Slow urbanization restricts not only the smooth and effective
immigration of labor force, but also the upgrading of consumption structure and
industrial structure optimization. (ii) Slow recovery of world economy, serious
trade protection and slow export growth. Exports are the significant motive force
of economic growth, and the annual growth rate of China’s exports has been over
20 % since 2000. The proportion of exports to GDP has also gradually increased
from about 23.3 % in 2000 to 36.9 % in 2008, with an increase of 13.6 % during
8 years. In the situation of slow economic growth, industrial structure adjustment
and optimization will also be difficult. (iii) Higher international energy prices and
restricted energy imports. In recent years, with the rapid economic development,
the dependence on some kinds of resources especially crude oil and iron ore was
also rising. In 2007, China produced 186 million tons of crude oil and imported
211 million tons, obviously, the imports have exceeded domestic production. Once
the international energy and resource prices rise, energy imports are restricted,
which will be a greater constraint to economic development. (iv) Slow progress in
system reform and slow technological innovation and efficiency improvement.
Low innovation ratio may cause slow efficiency improvement, and result in slow
conversion of development patterns and slow growth rate. Under this scenario, the
TFP value is lower than that under BAU scenario by 0.4 % (Table 3.3).

Table 3.2 The growth rate (%) of economic factors under the REG scenario in 2008–2100

2008–
2010

2011–
2015

2016–
2020

2021–
2025

2026–
2030

2031–
2040

2041–
2050

2051–
2075

2076–
2100

GDP growth 8.7 8.4 7.2 6.6 5.8 5.7 5.6 4.9 4.3
Labor growth 0.4 0.5 0 0 -0.3 -0.4 -0.4 -0.8 -1.2
Capital growth 12.6 9.2 7.5 6.8 5.5 4.6 3.9 2.9 2.1
TFP growth 0.9 2.7 2.7 2.6 2.6 2.6 2.5 1.9 1.8

Table 3.3 The growth rate (%) of economic factors under the CES scenario in 2008–2100

2008–
2010

2011–
2015

2016–
2020

2021–
2025

2026–
2030

2031–
2040

2041–
2050

2051–
2075

2076–
2100

GDP growth 8.7 7.0 5.7 5.1 4.3 3.5 2.8 2.6 2.3
Labor growth 0.4 0.5 0.0 0.0 -0.3 -0.3 -0.4 -0.5 -0.8
Capital growth 12.6 9.2 6.9 6.1 4.9 4.2 3.4 2.5 1.8
TFP growth 0.9 1.3 1.6 1.4 1.5 1.3 1.2 1.1 0.9
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3.1.4 Land Use Changes Under Different Scenarios

3.1.4.1 Accuracy Analysis of Land Use Simulation

GCAM model is applied to simulate structure and amount of land use types in
1990, 2005 and 2010. We analyze land use simulation accuracy according to the
comparison of simulated land use and real land use in 1990, 2005 and 2010
(Fig. 3.1, Table 3.4).

As seen from the comparison of simulation results and real land use in 1990,
2005 and 2010 in Fig. 3.1, we found that the simulation results is similar to the real
land use change. Cultivated land increases due to population growth and domestic
demand expansion. A larger demand for timber because of social and economic
development, so that forestry area shows a downward trend overall, but the
decreasing ratio is declining. As for the grassland, overgrazing has caused serious
area shrinking. In the past decades, with rapid economic development, urbaniza-
tion is rising all the way and it brings about the built-up area keeping expanding in
recent years. We are unconcerned about desert, Gobi and other land that is difficult

Fig. 3.1 Comparison of simulated land use and real land use; a the real land use area in 1990,
2005 and 2010; b simulated land use area in 1990, 2005 and 2010 (1,000 km2)

Table 3.4 Simulation accuracy (%) of land use allocation

Cultivated
land

Unutilized
land

Forestry
area

Grassland Built-up
area

Average
error

Total average
error

1990 -14.63 -5.06 15.61 -12.72 1.74 9.95 8.67
2005 -7.50 3.23 -12.35 14.03 -2.85 7.99
2010 -5.21 2.93 -12.56 13.75 5.92 8.07
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to reclaim in this study. We also assumed no change in GCAM model. Besides,
according to the accuracy analysis in Table 3.4, the total average error is about
8.67 %. The good accuracy of simulation indicates that the model is suitable to
simulate land use change trends of China.

3.1.4.2 Simulation of Land Use Change Under Three Scenarios

Land Use Change Under BAU Scenario

Under BAU scenario, we use GCAM model to simulate the trends of land use
changes that drove by inertial socio-economic growth (Fig. 3.2).

As shown in Fig. 3.2, under BAU scenario, cultivated land increases first and
then decreases. The total forestry area is relatively stable, while the managed
forestry area shows a downward trend during 1990–2005, then increases gradually
after 2005, and stabilizes in 2080. The unexplored forestry area reduces before
2080, and then steps into a stage of steady increase. Due to expansion of the range
of human activities, the managed grassland goes up until 2065, and then is in a
steady stage during 2065–2095. As for the unexplored grassland, it declines from
1990 to 2050, and tend to be stable after then. The total grassland also decreases
first and then in a stable condition. Urban area under BAU scenario has no sig-
nificant expansion, but it will still increase steadily, and the extent is relative small.
Because of the current rapid development, more food demand requires more
cultivated land, thus cultivated land increases rapidly, and it will reach the max-
imum before the middle of twenty-first century. With the technological develop-
ment, agricultural productivity increases gradually, and the decreasing dependence
on cultivated land needs less cultivated land, so that cultivated land decreases all
the way since the middle of twenty-first century, and the rate of declining will
gradually increase first and then gradually decrease.

Land Use Change Under REG Scenario

In REG scenario, under the drive of socio-economic and simulation results with
GCAM model, we obtained the land use change trends (Fig. 3.3).

The simulation results of land use under REG scenario show that the obvious
land use characteristics is that urban area increased significantly due to rapid
urbanization. Cultivated land still increases first during 2010–2035 and then
decreases after then. Accelerated economic development promotes the rising
demand for timber, As shown in Fig. 3.3, the total forestry area decreases sig-
nificantly, and the explored forestry area increases all the way. Rapid economic
development accelerates the scarcity of resources; moreover, the demand gap will
be widened under REG scenario. The total area of grassland is in a downward
trend, and the unexplored grassland reduces all the way, while the explored
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grassland grows obviously. Under this scenario, it can be seen that explored
grassland has been seriously damaged due to overgrazing.

Land Use Change Under CES Scenario

Under CES scenario, the speed of socio-economic development slowed down.
Driven by socio-economic factors, simulation results of land use change trends are
obtained with GCAM model (Fig. 3.4).
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Fig. 3.2 Land use change trends of China under BAU scenario during 1990–2095; a Land use
change trends of cultivated land, forest land, grassland and built-up land; b trends of managed and
unmanaged forest land; c trends of grazed and other grassland (1,000 km2)
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According to Fig. 3.4, cultivated area increases from 1990 to 2035 and
decreases after then under CES scenario. As for the forestry area, the imple-
mentation of conservation measures has protected the forestry area excellently, so
the forestry area increases all the way from 2005 to 2050, although it decreases
during 1990–2005. After 2050, it will make small range of reduction. The
unmanaged forestry area has been reduced all the time, while it will rise after
2070. The total forestry area decreases first and then increases due to the imple-
mentation of environmental conservation strategy. Grassland decreases during
1990–2030 and then increases after 2030. According to Fig. 3.4, unexplored
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grassland has been in a downward trend during 1990–2065, and then become
stable after 2065, while the explored grassland increases obviously. Therefore,
CES scenario has positive effect on the protection of environment, and it is con-
sistent with the model of sustainable development and low-carbon economic
development. Apparently, urbanization still plays an irreplaceable positive role in
the process of social-economic development, and the built-up area also has an
increasing trend under CES scenario.
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Fig. 3.4 Land use change trends of China under CES scenario during 1990–2095; a Land use
change trends of cultivated land, forest land, grassland and built-up land; b trends of managed and
unmanaged forest land; c trends of grazed and other grassland (1,000 km2)
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3.1.5 CO2 Emissions from Land Use Change

As shown in Fig. 3.5, under BAU scenario, CO2 emissions will have a certain
amount of increase in the coming decades and begin to drop down around 2065
although it will be extremely slow. CO2 emissions will continue to accumulate
over the next 50 years, and CO2 emissions are maintained at the relative high level
for a long time under BAU scenario. Therefore, although it will not cause the
serious pressure on environment under BAU scenario, the negative effect is still
profound, and it is not suitable for current environment. Under REG scenario, CO2

emissions are at a higher level compared to the other two scenarios. CO2 emissions
have rising trends all the time. The greenhouse effect is serious currently, so
controlling CO2 emission is the primary objective of developing low carbon
economy around the world. It can be seen from the simulation results under REG
scenario, it is contrary to the strategic goal of sustainable development although
rapid economic development can be obtained. Therefore, REG scenario can’t meet
the requirements of social development. Differently, under CES scenario, CO2

emissions are beginning to show a downward trend in 2030, and have maintained
at a low level after 2070, which is close to the level in 1990s. This scenario is
beneficial to protect environment, and relieve environmental pressures in line with
the strategic objectives of sustainable development. Moreover, it ensures the
steady development of social economy as well. Therefore, this scenario achieves
double win, not only protects environment, but also promotes economic devel-
opment. Thus, CES scenario is the most suitable scenario in this study.
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3.1.6 Concluding Remarks on the Tendency of Land Use
Changes in China

In this study, three scenario, i.e. BAU scenario, REG scenario and CES scenario
are designed. We use the GCAM model to simulate land use change from 2015 to
2095 and estimate the impact of land use change on CO2 emissions that drove by
social economy factors, then find which kind of land use change can adapt to
climate change. The main conclusions are presented as follows.

BAU scenario kept the development trend in the past decades, and there is still
a relatively high speed of economic development. However, it needs time to digest
and absorb the great achievements brought by rapid economic development in the
coming period in order to make all the aspects adapt to the development
requirement, such as the promotion of environmental protection technology, the
rationalization of emission standard, and the further narrowing of urban and rural
gaps. When the whole society adapts to the economic development achievements,
the bubble economy cannot be formed and the future economy will show more
steady improvement. Simulation results indicate that CO2 emissions will be at an
extreme high level for a long time in China under BAU scenario. Government
should take the appropriate measures or polies at different stages to meet the real
requirements of social-economic development. Therefore, baseline scenario is not
suitable for controlling future CO2 emission.

Under REG scenario, the rapid growth of GDP and population brings about the
increasing pressure on environment. The adjustment of industrial structure espe-
cially the rising proportion of secondary industry will lead to the growing of
energy consumption and demand. For example, the total amount of exploitation
and import of oil, natural gas and coal is obviously increasing. Besides, the rapid
urbanization will consume more energy and resources. According to the simulation
results of this scenario, CO2 emissions will rise sharply and stay at an extreme high
level, and it will not meet the sustainable development and low-carbon economic
development model. Moreover, this scenario will lead to serious environmental
crisis. Therefore, it is undesirable.

CES scenario focuses on the purpose of environment protection, and controls
the growth rate of GDP and population. The setting for urbanization level is
consistent with the one under BAU scenario in order to avoid further pressure on
environment. The adjustment of industrial structure is to vigorously develop the
tertiary industry reduce the proportion of the first industry, and control the
development of the secondary industry. Under this scenario, the industrial struc-
ture optimization can be sped up, and CO2 emission can be effectively controlled.
Therefore, this scenario is more suitable for China.

This study is closely related with socio-economic factors and climate change
through taking land use change as the core influencing factor of climate change
and the socioeconomic development as the driving force, and the results of this
study are of great practical significance and far-reaching research value. However,
there are still some shortcomings in this study. Firstly, there are various factors of
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the socioeconomic development, which were not taken into account in the scenario
design. Therefore, it is necessary to implement more detailed analysis of socio-
economic drivers of land use change in the future study. In addition, the impacts of
socioeconomic factors on the land use change are represented in approach
parameterization, which have some limitations since they failed to thoroughly
reveal how socioeconomic development influences land use change. Meanwhile,
only three scenarios, which can set general direction of socioeconomic develop-
ment, were designed in this study, but they cannot provide more specific details. In
this aspect, more scenarios should be designed in the future research so as to fully
reveal the best land use change to adapt to the climate change, e.g., more specific
scenarios of the same type can be designed under the CES scenarios.

3.2 Scenarios of LUCC in China

The core part of researches on LUCC includes driving force, driving mechanism,
their effects and model simulation of LUCC. In the past decades, scholars of
different fields have paid great attention to LUCC, mainly focusing on the
spatiotemporal change, driving mechanism, eco-environmental impacts and sim-
ulation of LUCC (Hasselmann et al. 2010). The research on the spatiotemporal
analysis of LUCC mainly focuses on the change in quantity and spatial pattern
(Patarasuk and Binford 2012). While the research on driving mechanism of LUCC
makes great contribution to revealing basic processes of LUCC and its driving
factors, further predicting future changes and formulating their corresponding
policies. Currently, there have been various models to reveal the mechanism,
explore their driving factors and simulate dynamic process of LUCC (Liu et al.
2008; Munroe and Müller 2007).

Previous models for forecasting LUCC in the future mainly covered empirical
statistical models, agent-based models, methods based on relationships of adjacent
grids in a dynamic simulation of land system (Zhao et al. 2011). The empirical
statistical models can extract those major driving factors of LUCC and explore the
reasons through its spatiotemporal processes. The Conversion of Land Use and
Effects (CLUE) model and Conversion of Land Use and Effects at Small Region
Extent (CLUE-S) model are two representative empirical statistical models
(Veldkamp and Fresco 1996). However, there is generally a very large spatial scale
and low resolution used in the simulation with the CLUE model, while the CLUE-S
is mainly applied in dynamic simulation of regional land use at small scales
(Verburg et al. 1999). The simulation of the structural change of land use with the
Agent-based Model (ABM) has many advantages, but it generally concentrates on
small study area. The Cellular Automaton (CA) simulates the processes of cellular
evolution rules, but it requires a variety of spatial statistical methods to assist in this
detection (White and Engelen 2000). Many scholars have tried to explore land use
change through other methods and models, such as land-use dynamic degree model
(Liu et al. 2003), identification model of driving forces (Geist and Lambin 2002),
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and DLS model. The DLS model is capable of simulating the spatial dynamics of
LUCC, and case studies indicate that it is an effective tool to simulate the process of
land use change (Yin et al. 2010; Deng et al. 2008).

One of major issues is to settle temporal data of current research on driving
force of LUCC which is only from simple perspectives. Therefore, it is significant
to obtain the long-term temporal data of LUCC parameters. For that purpose, this
study simulates structural changes of land use in China with the GCAM through an
econometric model with socioeconomic factors as the driving forces. Thereby an
econometric model is set up to forecast the built-up area change, and the changing
trend of land use is simulated based on different scenarios of socioeconomic
development. Thereafter the DLS model is used to forecast the future spatial
pattern of LUCC in China.

3.2.1 Scenario Design and Downscaling Simulation Method

3.2.1.1 Scenario Design

In this study, three scenarios were designed according to characters of historical
socioeconomic development of China, including the BAU scenario, REG scenario
and CES scenario. The BAU scenario mainly reflects future changing trends of
population and economy, which provides the baseline trend of land use change.
Based on the BAU scenario, the REG scenario and CES scenario were designed
according to main risks and adjusted direction of China’s medium and long-term
development plan. It is assumed that under the BAU scenario urbanization and
industrialization will continue, the TFP that is on behalf of scientific and tech-
nological progress will develop by following the historical development trend, and
China’s population will peak in 2030s, but the population growth rate will grad-
ually reduce. The REG scenario assumes that the industrial structure adjustment
would be smoothly carried out, resource allocation and industrial structure would
be more reasonable, while the speed of economic growth will keep steady. Under
the CES scenario, the population growth rate is lower than it is under the BAU
scenarios, the urbanization rate is relatively lower and GDP would increase with a
lower rate (Table 3.5).

3.2.1.2 Data

Input data used in this study include the baseline structure land use/cover data and
historical socio-economic data for both GCAM model and econometric model, and
the baseline land use/cover data and some driving factors data for DLS model.

The baseline data of land use/cover change are derived from the dataset of
National Basic Research Program of China. With these spatial distribution data,
the initial land use allocation data in 2000 used by GCAM model could also be

3 Spatially Explicit Land-Use and Land-Cover Scenarios for China 65



T
ab

le
3.

5
P

ro
je

ct
ed

ch
an

ge
ra

te
s

of
G

D
P

(%
)

an
d

po
pu

la
ti

on
(P

O
P

,
%

)
in

C
hi

na
,

20
11

–2
10

0

S
ce

na
ri

os
20

11
–2

01
5

20
16

–2
02

0
20

21
–2

02
5

20
26

–2
03

0
20

31
–2

04
0

20
41

–2
05

0
20

51
–2

07
5

20
76

–2
10

0

G
D

P
B

A
U

7.
90

7.
00

6.
60

5.
90

5.
60

5.
50

3.
90

2.
40

R
E

G
8.

30
7.

35
6.

93
6.

20
5.

88
5.

78
4.

10
2.

52
C

E
S

7.
51

6.
65

6.
27

5.
61

5.
32

5.
23

3.
71

2.
28

P
O

P
B

A
U

6.
24

4.
10

1.
67

-
0.

14
-

1.
04

-
3.

99
-

5.
54

-
5.

12
R

E
G

6.
55

4.
30

1.
75

-
0.

13
-

0.
99

-
3.

79
-

5.
26

-
4.

87
C

E
S

5.
93

3.
89

1.
59

-0
.1

5
-

1.
10

-
4.

19
-

5.
82

-
5.

38

N
ot

e
T

he
da

ta
co

m
e

fr
om

re
se

ar
ch

es
by

D
en

g
et

al
.(

20
08

),
L

ut
z

an
d

S
am

ir
(2

01
0)

,a
nd

S
am

ir
et

al
.(

20
10

).
T

he
ch

an
ge

ra
te

s
of

G
D

P
ar

e
ex

pa
nd

ed
to

21
00

ac
co

rd
in

g
to

hi
st

or
ic

al
ch

an
gi

ng
tr

en
d.

U
nd

er
th

e
C

E
S

sc
en

ar
io

,t
he

ra
te

s
of

po
pu

la
ti

on
gr

ow
th

ra
te

an
d

G
D

P
in

cr
ea

se
ar

e
5

%
lo

w
er

th
an

th
at

un
de

r
th

e
B

A
U

sc
en

ar
io

,
w

hi
le

th
ey

ar
e

5
%

hi
gh

er
un

de
r

th
e

R
E

G
sc

en
ar

io
th

an
th

e
B

A
U

sc
en

ar
io

66 F. Wu et al.



obtained. The dataset is originally established with a 1 9 1 km grid scale using the
land use/cover classification system of the United States Geological Survey
(USGS) based on the remote sensing image and ground information of 2000
(Fig. 3.6). The socio-economic data include the population, population density and
growth rate of per capita income, the proportion of agricultural population,
urbanization ratio, GDP and price index of oil, gas, coal and hydropower. As
essential input parameters, they are used in the GCAM model.

The input variables of driving factors in DLS model include natural environ-
ment data and social economic data. The natural environment data include basic
geographic information data set of climate, location, terrain, soil property. The
meteorological data used in this study, including near-surface temperature and
precipitation, were all from meteorological stations of China Meteorological
Administration, which were interpolated into 1 km resolution grid data with the
Kriging interpolation algorithm, and got annual average value between 1998 and
2002. Location data include grid distance data and neighborhood land use/cover
structure data. Among them, the grid distance data are the distance data of each
grid center to the nearest road (including highway, state roads, provincial roads,
county roads, and other roads), and provincial capital city, cities, water body and
their ports, which were extracted and calculated based on 1:250000 basic geo-
graphical information data. The data neighborhood of land use/cover structure
were calculated as the area percentage of the same land use/cover type with the
target grid in rectangular ranges of 11 9 11 grids surrounding the target grid.
Terrain data include slope, aspect, plain area ratio, altitude, topography and other
data. Slope and elevation data were extracted based on 1:250,000 digital elevation

Fig. 3.6 Land use/cover data with USGS classification system in 2000 in China
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models. The soil attribute dataset were from 1:10,000,00 soil database built up in
the second general survey of soil in China, and interpolated with the Kriging
interpolation algorithm. This dataset includes data of loam proportion, organic
content, Nitrogen content, phosphorus content, potassium content, the content of
rapid available phosphorus, the content of rapid available potassium, pH value.

3.2.1.3 Models

The Agriculture and Land Use (AgLU) module of GCAM and simulated land use
change trend data under three scenarios in the future were used to complete the
structure land use simulation. AgLU module is a dynamic partial equilibrium
economic model, at the core of the AgLU model is a mechanism that allocates land
among cropland, grassland, forestry area, and other land and the economic return
from each land use type in each region is maximized. The three primary drivers of
land use change are population growth, income growth, and autonomous increases
in future crop yields.

As there is no simulation function for built-up area in the GCAM model, an
econometric model is set up to simulate the built-up area. In order to optimize the
simulation results, the coefficients in the econometric model were calibrated
according to the variation of population, GDP and urbanization ratio year by year.

The major driving factors in GCAM model are GDP and population with no
urbanization ratio involved in, thus, urbanization ratio variable should be added.
American urban geographer Northam has researched the process of urbanization in
various countries in the world (Northam 1971). His studies indicated that the
process of urbanization was expressed as an S. Therefore, the equation is built as
follows:

y ¼ 1=ð1þ o � e�btÞ ð3:9Þ

where y represented the urbanization ratio, t represented time, q and b are
parameters. It could be deformed as follows:

lnð1=y� 1Þ ¼ ln o� bt ðor y1 ¼ a0 þ a1tÞ ð3:10Þ

The urbanization ratio over the years is obtained from statistical yearbook, and
according to which the parameters q and b in the formula are obtained from the
simulation. Hence, the calculated equation of urbanization is worked out as
follows:

y ¼ 1=ð1þ 4:5748e�0:04tÞ ð3:11Þ
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Afterwards, the impact on built-up area of population, GDP and urbanization
ratio, as socio-economic indicators, are estimated by econometric model as
follows:

Yt ¼ a0 þ a1X1t þ a2X2t þ a3X3t þ et ð3:12Þ

where Yt stands for the area of built-up area, X1t represents population, X2t is GDP,
X3t is urbanization ratio, a0 is intercept. et is random error term, which is a random
variable independent with other explaining variables, and assumed it satisfied
normal distribution with zero expectation and homoscedasticity.

DLS model presumes that the change of land use pattern is affected by both the
historic land use pattern and the driving factors within the pixel and adjacent pixels
(Yin et al. 2010). DLS model includes three modules: driving force analysis
module, scenario analysis module and spatial allocation module.

DLS model analyzes balance between supply and demand of land resources at
the grid scale through spatial allocation module, which can be used to realize the
spatial allocation of structural data of land use so as to simulate LUCC under
different scenarios (Yin et al. 2010; Deng et al. 2008). DLS model provides
response function about land system structural changes. In addition, based on
evaluation of the suitability of land use type distribution, DLS will express spatial
dominant of possible scenarios on regional change of land system structure by
estimating the response function. DLS expresses the difficulty level of conversion
from one land type to other land types through defining transformation rule.
Spatial allocation module calculates the number of grids to allocate. As for the
grids needing distribution, the model would calculate the distribution probability
of the different land use/cover types and allocate those.

3.2.2 Simulation of the Pattern of LUCC in China

3.2.2.1 Simulation Scheme

The simulation scheme is as follows. The structural data of LUCC were simulated
on the basis of GCAM combined with the econometric model. Based on the
correspondence table of USGS classification and GCAM classification (Table 3.6),
we allocated the land area in the structural data of LUCC with the original area
percentage of each land use/cover type in last year as the weight. So the data of
demand for each land use/cover type of USGS classification in each year during
2010–2100 are obtained.

ldi;tþ1 ¼
ldk;j;tP

ldk;j;t
� ldgj;t ð3:13Þ
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where ldi,t+1 is the predicted area of the ith land use/cover type of USGS classi-
fication in year t + 1. ldgj,t is the predicted area of the ith land use/cover type of
USGS classification in year t. ldk,j,t is the predicted area of the kth land use/cover
type of USGS classification, which corresponds to the jth land use/cover type of
GCAM classification in year t.

3.2.2.2 Simulation Results

In the future, the land use/cover in China will be continually changed by human
activities and climate changes, and their spatial pattern will change dynamically as
well.

(i) The simulated changes of LUCC. In the study, we simulated the changes of
LUCC in China in the future using GCAM model combined with the econo-
metric model under the three scenarios (Fig. 3.7). The simulated results show
the changing trends of different land use/cover in three different scenarios.

Table 3.6 Mapping table of land use/cover types of USGS and GCAM classification systems

ID USGS_Code USGS_Name GCAM_Code

1 100 Urban and built-up land 50
2 211 Dryland cropland and pasture 10
3 212 Irrigated cropland and pasture 10
4 213 Mixed dryland/irrigated cropland and pasture 10
5 280 Cropland/grassland mosaic 10
6 290 Cropland/woodland mosaic 10
7 311 Grassland 30
8 321 Shrubland 20
9 330 Mixed shrubland/grassland 30
10 332 Savanna 30
11 411 Deciduous broadleaf forest 20
12 412 Deciduous needleleaf forest 20
13 421 Evergreen broadleaf forest 20
14 422 Evergreen needleleaf forest 20
15 430 Mixed forest 20
16 500 Water bodies 40
17 620 Herbaceous wetland 40
18 610 Wooded wetland 40
19 770 Barren or sparsely vegetated 30
20 820 Herbaceous tundra 30
21 810 Wooded tundra 30
22 850 Mixed tundra 30
23 830 Bare ground tundra 30
24 900 Snow or ice 40

Note in the column ‘‘GCAM_Code’’, 10 represents Cropland; 20 represents Forestry area rep-
resents 30, Grassland represents 40 represents Water area; 50 represents Built-up area
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On the whole, built-up area, forestry area will show an increasing trend under
the three scenarios. On the contrary, cropland, grassland and water area will
show a decreasing trend under the three scenarios. However, grassland and
forestry area change at the fastest rate under CES scenario, at the lowest rate
under REG scenario, while other types change at the lowest rate in CES
scenario and fastest rate in REG.
Statistical analysis of the simulation result indicated that land cover will
change as follows. The area of built-up area will increase most rapidly during
2000–2010, with the 10-year increasing rate reaching 3.86, 5.05 and 2.98 %
under the BAU scenario, REG scenario and CES scenario, respectively. The
built-up area will increase rapidly during 2010–2060 under the BAU scenario
and CES scenario with the 10-year increasing rate as 0.54 and 0.44 million ha,
respectively. Whereas, the 10-year increasing rate tends to slow down during
the latter time period of 2060–2100 with the 10-year increasing rate only as

Fig. 3.7 Simulated changes of LUCC area (measured in million ha) in China, 2010–2100
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0.15 and 0.08 million ha, respectively. Under the REG scenario the
increasing trend of built-up area tends to be rapid on the whole during
2010–2100, with the 10-year increasing rate reaching 0.5 million ha and the
total area of built-up area reaching 5.05 million ha. By contrast, cropland and
water area both show a decreasing trend under all the three scenarios, espe-
cially the REG scenario, under which their 10-year decreasing rates reach
0.23 and 1.28 %, respectively. Under the BAU scenario and CES scenario,
the change of these two land cover types tends to slow down, with their 10-
year decreasing rates reaching 0.19 and 0.15 %, 1.17 and 1.03 %, respec-
tively. The increase of forestry area reaches to 19.77, 17.74 and 22.79 million
ha under the BAU scenario, REG scenario and CES scenario, respectively.
While, the changes of grassland under the BAU scenario, REG scenario and
CES scenario show a decreasing trend with the rates of 3.12, 2.67 and 3.80 %,
respectively.

(ii) The spatial pattern of land use/cover change. The simulation results indi-
cated that the spatial patterns of land cover in China under the three sce-
narios are consistent on the whole, but with some regional difference
(Fig. 3.8). The spatial pattern of land cover in China in the future is as

Fig. 3.8 Simulated spatial pattern of LUCC in China in 2010, 2050 and 2100 under the Business
as Usual scenario (a), Rapid Economic Growth scenario (b) and Cooperate Environmental
Sustainability scenario (c)
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follows. The urban and built-up land has special requirement for location,
the spatial pattern of the built-up land in the future will show significant
regional differentiation under the joint influence of natural factors, socio-
economic factors, topographic conditions, etc. In the eastern part of China,
the urban and built-up land will continue to gather in the three major plain
regions (i.e., Northeast China Plain, North China Plain and Middle-Lower
Yangtze Plain), Yangtze River Delta and Pearl River Delta, it will show an
expanding trend on the original basis. In the western part of China, the urban
and built-up land will mainly concentrate in the regions such as Sichuan
Basin, Guanzhong Basin, Hetao Plain, Hexi Corridor, oases in Xinjiang
Province. While with the implementation of policies to exploit the land
resources on the low hill and gentle slope, the land in hills with gentle slope,
mountains and plateaus may also become urban and built-up in the future.

The cropland, including dryland cropland and pasture, irrigated cropland and
pasture, mixed dryland/irrigated cropland and pasture, cropland/grassland mosaic
and cropland/woodland mosaic, will still be contiguously distributed in the three
major plain regions (i.e., Northeast China Plain, North China Plain and Middle-
Lower Yangtze Plain), Sichuan Basin, Hexi Corridor, oases in Xinjiang Province,
etc. Besides, it will also gather in some alluvial plains and regions of the low hill
and gentle slope. In addition, in the marginal areas between cropland, grassland
and forest land, there may be some farming-grazing or farming-forestry ecotones,
which include various land cover types.

Grassland is mainly located in Inner Mongolia, Qinghai-Tibet Plateau in the
western part of China. While in the eastern part of China, grassland will be mainly
distributed in the regions of the low hill and gentle slope, and it will generally be
mixed with cropland or forest land. There will be great regional heterogeneity of the
distribution of land cover types that mainly include the forest land, such as shrubland,
mixed shrubland/grassland, deciduous broadleaf forest, deciduous needleleaf forest,
evergreen broadleaf forest, evergreen needleleaf forest and mixed forest. In the
northern part of China, the forest land will be mainly located in Northeast China, e.g.,
Greater Khingan Mountains, Lesser Khingan Mountains, Changbai Mountains and
Liaodong Basin. While in the southeast part (e.g., Lingnan area, Taiwan), southwest
part (e.g., the Yunnan-Guizhou Plateau, Sichuan Basin and Guangxin Province), the
forest land will be mainly distributed in the regions of hills and mountains.

Some land use/cover types, including water bodies, herbaceous wetland and
wooded wetland, will still remain in the original regions, but will show an
shrinking trend on the whole on the original basis; In spatial pattern, there will be
more of these land use/cover types in the eastern part and less in the western part,
more in the southern part and less in the northern part. Savanna, herbaceous
tundra, wooded tundra and bare ground tundra will be located in the Alpine
regions of Himalaya Mountains. There is no mixed tundra in China.

Snow or ice will be mainly distributed in the regions above the snow line in the
high mountains (Tianshan Mountains, Qilian Mountains, Kunlun Mountains and
Himalaya Mountains) in the southwest and northwest part of China. Barren or
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sparsely vegetated land will mainly gather in the arid desert areas centering on
Taklimakan Desert in Tarim Basin, Qaidam Basin, etc. In the northwest part of
China, including the Alpine arid regions in Qinghai-Tibet Plateau, middle part of
Inner Mongolia, northwest part of Gansu Province, etc.

3.2.3 Concluding Remarks on Scenarios of the Future
LUCC

In this study, three scenarios of the future LUCC in China are designed on the
basis of the trends of future socioeconomic development and national policies
(e.g., Grain for Green). The simulation results showed that spatial pattern of land
use/cover in China under the three scenarios is consistent on the whole, but with
some regional difference. The simulation results based on different scenarios
reflect spatial pattern of land use/cover of China in the future to some extent,
which have important policy implications and scientific supporting on land use
planning and sustainable development of the society and can provide the input
underlying surface data for the climate models.

There are still some uncertainties in the results of scenario simulation of future
land use/cover change due to those uncertain driving factors since the land system
is a complex system that is closely associated with human activities and natural
conditions. Moreover, this study uses the land use/cover classification system
correspondence from the GCAM model with five categories of classification into
USGS with 24 categories, which also lead to the risk of uncertainties. Therefore,
the simulation results cannot represent actual change of area of different land use/
cover types and their spatial pattern, but they can still make good sense in rea-
sonable confidence interval to a certain extent due to the robustness of the model.

3.3 Reclassified LUCC for the Simulation of Regionalized
Impacts

The temporal land cover datasets have been widely used in numerous climate
simulation projects. Most attention has been paid to effects of the accuracy of the
land cover data on the climate simulation. The accuracy of temporal land use data
from CAS is higher than 90 %, but the high-precision land cover data is absent.
We overlaid the land cover maps of the IGBP, Global Land Cover2000 (GLC),
University of Maryland Data (UMD) and Data Center for West China (WESTDC),
and the grids with agreement of classification were selected as the sample grids.
We can combine the land cover data with the land use data to generate land cover
data of high accuracy for the climate simulation. By comparing results obtained
with different decision tree classifiers with the WEKA toolkit for data mining, this
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study find that the C4.5 algorithm is suitable for converting land use data to land
cover data of IGBP classification. We reset the decision rules with Net Primary
Productivity (NPP) and Normalized Difference Vegetation Index (NDVI) as the
indicators. The dataset with the accuracy of 88.96 % is divided into 66 % training
data and 34 % testing data. The validated accuracy of the classified land cover data
is 83.14 % by comparing with the Terrestrial Ecosystem Monitoring Sites (TEMS)
and high resolution images. Therefore, we may produce the temporal land cover
data using this method, which can meet the accuracy requirement of climate
simulation and that can be the parameters of dynamical downscaling in regional
climate simulation.

Many land cover data of China have been produced in recent years with the
remote sensing data. The previous study showed that the result of the precipitation
study would be greatly influenced if the accuracy of land cover data is under 80 %,
and the result may be worse as the accuracy continue to decrease (Ge et al. 2007).
Unfortunately, neither the overall nor class-specific accuracy of most datasets can
meet the common requirements of the regional climate modeling. Therefore, it is
necessary to produce the land cover dataset with high accuracy for the climate
simulation based the existing land use dataset, land cover datasets and some
ancillary datasets. These available data with a high level of uncertainty may be
improved by the combining the different data sources so as to meet the require-
ment of climate simulation.

The researches on the climate modeling vary substantially in the spatial and
temporal scales. So the temporal land cover datasets are essential to the develop-
ment of a cohesive climate model. The CAS has constructed a land use dataset that
includes the data of 1988, 1995, 2000 and 2005 (Liu et al. 2003). However, there are
still no comparisons of land cover datasets at the regional scale, especially in China
where the land use is changing drastically due to rapid economic development and
anthropogenic disturbance. Many studies have indicated that the disagreement
among the land cover datasets primarily resulted from the differences of sensors,
spatial resolutions, algorithms, and classification schemes (Kaptué Tchuenté et al.
2011); Among them, the difference in the classification schemes is considered to be
the key reason for disagreement of the land cover datasets and the main obstacle to
comparing different land cover datasets. Therefore, it can make great contribution to
climate change research if we can take advantage of the long-term land use datasets
from the CAS, and use an appropriate method to convert them to the International
Geosphere Biosphere Programme (IGBP) land classification scheme. It consists of
seventeen categories (Table 3.7) and is widely accepted and used in the simulation
of climate changes (Gao and Jia 2012).

The decision tree is one of the most powerful classification algorithms to
classify land cover type of remote sensing image (Simard et al. 2010). The
decision tree technique is more suitable for the analysis of categorical outcomes.
Besides, it is easy to interpret, computationally inexpensive and capable of dealing
with noisy data. Furthermore, its prediction model is more understandable to the
users. The decision tree classifiers include the C4.5/C5.0/J48, NBTree, Simple-
Cart, REPTree, BFTree, etc., among which the C4.5/C5.0/J48 classifier is the most
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Table 3.7 Types and descriptions of IGBP land cover classification scheme

Code Type Descriptions

1 Evergreen needleleaved
forest

Land is dominated by trees with a per cent canopy cover[60 %
and height [2 m. Almost all trees remain green all year.
Canopy is never without green foliage

2 Evergreen broadleaved
forest

Land is dominated by trees with a per cent canopy cover [60 %
and height [5 m. Almost all trees remain green all year
Canopy is never without green foliage

3 Deciduous
needleleaved forest

Land is dominated by trees with a per cent canopy cover[60 %
and height [2 m. Consists of seasonal Needleleaved tree
communities with an annual cycle of leaf-on and leaf-off
periods

4 Deciduous broadleaved
forest

Land is dominated by trees with a per cent canopy cover[60 %
and height [2 m. Consists of seasonal Broadleaved tree
communities with an annual cycle of leaf-on and leaf-off
periods

5 Mixed forests Land is dominated by trees with a per cent canopy cover[60 %
and height [2 m. Consist of tree communities with
interspersed mixtures or mosaics of other four forest cover
types. None of forest types [60 % of landscape

6 Closed shrublands Land with woody vegetation less than 2 m tall and with shrub-
canopycover [60 %. The shrub foliage can be, either
evergreen or deciduous

7 Open shrublands Lands with woody vegetation less than 2 m tall and with shrub
canopy cover between 10–60 %. The shrub foliage can be
either evergreen or deciduous

8 Woody savannas Land with herbaceous and other understorey systems and with
forest canopy between 30 and 60 %. The forest cover height
exceeds 2 m

9 Savannas Land with herbaceous and other understorey systemsand with
forest canopy between 10 and 30 %. The forest cover height
exceeds 2 m

10 Grasslands Land with herbaceous types of cover. Tree and shrub cover is
less than 10 %

11 Permanent wetlands Land with a permanent mixture of water and herbaceous or
woody vegetation that cover extensive areas. The vegetation
can be present In either salt, brackish or fresh water

12 Croplands Land is covered with temporary crops followed by harvest and a
bare soil period (e.g. single and multiple cropping systems).
Note that perennial woody crops will be classified as the
appropriate forest or shrubs land cover type

13 Urban and built-up Land covered by buildings and other man-made structures. Note
that this class will not be mapped from the AVHRR imagery
but will be developed from populated places layer that is part
of Digital Chart of the World

14 Cropland/natural
vegetation mosaic

Land with a mosaic of croplands, forest, shrublands, and
grasslands in which no one component comprises more than
60 % of the landscape

15 Snow and ice Lands under snow and/or ice cover throughout the year

(continued)
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popular and powerful one (Ghose et al. 2010). The C4.5 classifier is selected in this
study according to the accuracy assessment to identify the vegetation disaggre-
gation classification in the farming-pastoral ecotone of north China.

The ecotones are recognized as one of the most important objects of the eco-
logical research, since they are unstable and very sensitive to the surrounding
environment. Besides, ecotones are more suitable for the study of the land cover
mapping for the climate simulation. The farming-pastoral ecotone has received a
lot of attention from academic community due to its largest area, longest span and
typical characteristics. It involves nine provinces and 106 counties, with a total
area of 654, 564 km2 (Liu et al. 2007). The total population in this area is
3.14 9 107, with the average population density of 47.9 persons per square kilo-
meter. The land use has changed drastically throughout farming-pastoral ecotone
of North China after the widespread and profound economic reform that was
initiated in the early 1980s (Dong and Xu 2009), and the current ratio of the
cropland, forest land and grassland is 1.0: 1.17: 3.67 (Fig. 3.9). The temperature
rise has been more and more obvious in the past 50 years, with an average increase
rate of 0.4 �C/10a (Friedl et al. 2002).

3.3.1 Data Preparation

This study presents an inference rule of spatial data mining to distinguish forest
types based on the consistent grids in the data of the IGBP Data and Information
System (IGBPDIS, Bartholomé and Belward 2005),1 GLC (GLC2000, Ran et al.
2012),2 multi-source Integrated Chinese Land Cover (WESTDC, Liu et al. 2005)3

and UMD4 land cover data in 2000. The classification rule is first rectified so as to
improve accuracy in 2000. Then the land use data of 1988, 1995 and 2005 were
converted to the land cover data according to this inference rule.

In this study, we also used the land use database developed by the CAS. The
data are available during four periods, i.e., year 1988, year 1995, year 2000 and

Table 3.7 (continued)

Code Type Descriptions

16 Barren or sparsely
vegetated

Land of exposed soil, sand, rocks or snow and never has more
than 10 % vegetated cover during any time of the year.

17 Water bodies Oceans, seas, lakes, reservoirs, and rivers. Can be either fresh or
salt water.

1 For more imformation: http://edcdaac.usgs.gov/modis/mod12q1v4.asp.
2 For more imformation: (http://www.gem.jrc.it/glc2000).
3 For more imformation: (http://westdc.westgis.ac.cn).
4 For more imformation: (http://www.landcover.org).
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year 2005, which are limitedly applied for a hierarchical classification system of
25 land cover classes. The data team also spent considerable time validating the
precision of the interpretation of TM images and land cover classification by
extensive field surveys (ground validation). The validation result indicated that the
average precision of the interpretation reached 95 %. The 1*1 km land use map of
China is derived from 1:100,000 land use database. It includes two kinds of data,
one was geocoded with the greatest-area method (i.e., if a cell has more than one
possible code or it contains two or more polygons, the code of the polygon with the
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Fig. 3.9 The location and 2000 year’s land use map of farming-pastoral ecotone in North China
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greatest area in the cell is used). The other was geocoded with area percentage grid
method, in which each cell can be divided into 25 layers to record the area of each
type (Liu et al. 2003). Besides, the vegetation map can provide the reference
information of vegetation since the change of forest categories is slight in the short
term. The vegetation map of China reflects detailed information on the distribution
of vegetation and includes horizontal and vertical zones of 11 vegetation groups,
54 vegetation types, 135 biome units and 796 sub-biome units (DeFries and
Townshend 1994).

The mapping of land cover data in 2000 based on the data mining is a benchmark
of the long term land cover dataset. It is necessary to collect the ancillary data due to
the absence of other data series. Data of physical geography include information on
terrain slope, information on vegetation property variability and so on. Information
on the terrain slope and the plain area proportion are derived from DEM data
covering the entire China at the scale of 1:250,000. These data are provided by the
Data Center for Resources and Environmental Sciences, CAS. The meteorological
data, including the annual temperature and annual precipitation, are acquired from
China Meteorological Bureau. The NDVI dataset come from the Pathfinder dataset
of Earth Resources Observation System (EROS), it is extracted from the NOAA/
AVHRR-NDVI images. The spatial resolution of images is 1 km 9 1 km, and their
temporal resolution is 15 days. In order to guarantee the data quality, all the data
have all been preprocessed with the internationally accepted reliable approach
(Chen et al. 2004). Besides, in order to eliminate the noise caused by the cloud
pollution and the atmospheric influence, we also smooth the time-series NDVI data
with the Savitzky-Golay smoothing filtering method (Ahlqvist 2008). The NPP data
during 1985–1999 come from the remote sensing data of NOAA/AVHRR, and that
during 2000–2010 come from the NPP product of MODIS.

3.3.2 Methodology

The working procedure of the classification is as follows. First, based on the
definition of mosaics type, we produce the Cropland/Natural vegetation mosaics
data by using the grid area percentage dataset in CAS land use system. Then other
types of land use except for forest and woods are achieved by utilizing grid
maximum area mapping with two sub-classification definition between the CAS
and IGBP. Thereafter, we check out and determined the grids whose type were
consistent with the forest and woods among the WESTDC, UMD, GLC and
IGBPDIS land cover data, at the same time we identify the boundary of the forest
and woods, which are consistent with CAS land use, generate them into the sample
data. Finally, we realize the conversion of forest types of IGBP scheme with the
C4.5 classifier (Fig. 3.10).

The land use types are first transformed into the land cover types. It is easy to
transforming some land use types, e.g., 3 classes of developed and mosaic lands,

3 Spatially Explicit Land-Use and Land-Cover Scenarios for China 79



2 classes of artificial lands, 1 class of water among the IGBP land cover
classification.

It only needs to transform from many to one or one to one (Table 3.8). For
example, the Paddy land and Dry land in the land use map of CAS are explicit and
correspond to the cropland class definition in the IGBP, so it only needs to
aggregate them into cropland with the binary grid. It is more feasible to judge the
land cover classification of Cropland/Natural Vegetation Mosaic with the area
percentage grid data of Paddy lands, Dry lands, Forest, Shrub lands, among which
no single type comprises more than 60 % of the landscape. The land cover of
Cropland/Natural Vegetation Mosaic is mainly located in the Inner Mongolia,
Liaoning, Hebei, Shaanxi, Shanxi, provinces, with a total area of about
730,00 km2 in 2000 (Fig. 3.11). The 8 classes of land cover types including the
IGBP10-IGBP17 were transformed, which account for nearly half of the total land
area. In addition, there is a little savanna in China, which is convenient to judge
based on the temperature and land use type. However, the 8 classes of vegetation
(forest, shrubs, and herbaceous vegetation) and the leaf attributes (evergreen and
deciduous), and the leaf types (broadleaved and coniferous) are difficult to
determine because we lack of vegetation information.

3.3.2.1 Selecting the Spatial Agreement Samples of Vegetation for Data
Mining

The closed forest and other forest classes are arbor forest classes in land use
classifications of CAS. They do not concretely specify the forest type information.
However, this provides an accurate boundary for the forest; therefore, we need an
inference rule to transform between forest in land use classification system and
IGBP forest categories: evergreen needle-leaf forest, evergreen Broadleaved

Land Use Data from CAS Land cver data

C4.5 classifier

WESTDC UMD GLC IGBPDIS

The agreement grids of classification

Export the spatial data to ASCII file

Forest/woodsOther Classification
Cropland/Natural

vegetation mosaics

geocoded with area
percentage grid method

geocoded with the greatest-area method

Land cover data using IGBP scheme

Mapping

Overlay analysis

Fig. 3.10 The work flow of mapping based on multi-source spatial data mining approach
Sect. 3.3.2.1 Mapping the land use types to determinate the land cover classification
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forest, deciduous needle-leaf forest, deciduous Broadleaved forest and mixed
forest based on the ancillary data in 2000.

The degree of overlap between any two land cover classes based on the feature
definitions of the classification schemes is used to select sample grids among the
IGBPDIS, WESTDC, UMD and GLC data (Ahlqvist 2008). The degree of agree-
ment for each grid is determined by the overlap metric, which indicates the feature-
based similarity among different land cover products. If the classes of two products
are identical or mostly overlapped for a given grid, then the grid will be assigned a
value of 1, which indicates that the two classes of different classification schemes
completely agree with each other. Otherwise, the grid will be assigned a value of 0.
Finally, agreement and disagreement maps will be created over the entire region,
which highlight areas that have a high confidence of classification (Fig. 3.12). In
other words, the sample grids could be selected from the agreement degree maps.

In this study, the method improves the classification results by further applying
the data mining technique and using ancillary information. The detailed DEM
data, NDVI, NPP and meteorological data were utilized as ancillary information to
separate those vegetation classes, the ecological characteristics of are very dif-
ferent. The vegetation types are closely related to physiographic factors and
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Fig. 3.11 The distribution of Cropland/Natural vegetation mosaics in 1 km grid all over North
China

82 F. Wu et al.



meteorological conditions. The topography at every grid could be described by
landform classes (e.g. hill, slope, depression et al.) by processing the raw elevation
data, and the meteorological data of observation could be interpolated to 1 km grid
cell. Therefore, these datasets could be expressed with the 1 km grid data. The
additional information sources were used to refine result of the C4.5 classifier. We
overlapped land cover maps and these ancillary data, and sampled the dataset for
ASCII text format with the ArcInfo WorkStation toolkit. Thereafter the dataset for
the training and testing the classifier of data mining in the WEKA toolkit is
constructed.

3.3.2.2 Constructing the Classification Method to Identify
Vegetation Types

Many classification methods have been proposed by researchers in the fields of
machine learning, pattern recognition and statistics. In this study, we focuses on
the classification methods to convert forest and grassland classification to the
IGBP land cover scheme. In this case, the hidden and valuable knowledge
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Fig. 3.12 The agreement grids of classification among GLC, UMD, IGBPDIS and WESTDC
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discovered in related ancillary databases is summarized in the decision tree
structure. This classification with the technique of decision tree can be performed
without complicated computation, and this method can be used for both the
continuous and categorical variables. We find that the C4.5 classifier achieved the
highest accuracy among these methods for the land cover identification. The
classifier is developed on the basis of the decision tree learning, which is a heu-
ristic, one-step look ahead (hill climbing), non-backtracking search through the
space of all possible decision trees.

The specific principles of this classifier are as follows. First, the initial sample data
were recursively partitioned into sub-groups. Then gain values of all the attributes of
sample data are calculated, according to the numerical value of which attributes to
select classification. Next, the attribute with the largest gain value is used in logical
test, and each test forms a branch, and subsets of samples (training data) satisfying
outcomes at those child nodes are moved to their corresponding child nodes.
Thereafter, this process runs recursively on each child node until the needed leaf
nodes are obtained. Finally, the decision tree is modified according to relevant
empirical knowledge. The C4.5 classifier is one of the decision tree families that can
produce both decision tree and rule-sets; The C4.5 classifier uses two heuristic
criteria to rank proper tests, i.e., the information gain that uses the attribute selection
measure, which minimizes the total entropy of subset, and default gain ratio that
divides the information gain provided by the test outcomes. Note that the information
gain algorithm is described as the Gain function (A) as follows:

i. The attribute with the highest information gain is selected.
ii. S contains Situples of the class Ci (i = 1, …, m). m means the number of

classification.
iii. The information measure or expected information is required to classify any

arbitrary tuple:

IðS1; . . .; SmÞ ¼ �
Xm

i¼1

Si

S
log2

Si

S
ð3:14Þ

iv. Entropy of attribute A with values {a1, a2, …, av} is calculated.

EðAÞ ¼
Xv

j¼1

S1j þ . . .þ Smj

S
IðS1j; . . .; SmjÞ ð3:15Þ

v. The information gain means how much can be gained by branching on the
attribute A:
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GainðAÞ ¼ IðS1; S2; . . .; SmÞ � EðAÞ ð3:16Þ

The attribute A contains the DEM, longitude, latitude, annual temperature,
annual precipitation, NPP, NDVI and other ancillary spatial data. We calculate the
gain ratio to select the attributes that can generate the ancillary information of
classification (Table 3.9). There are about 35,396 sample cells of the closed forest
and other forest. The gain ratio for training dataset is calculated, the biggest value
of which is 0.27, indicating that NDVI-12 is the most suitable to be the attribute
for the forest categories. The forest is further divided into two sub-categories
according to the NDVI-12 and NDVI-3, i.e., the forest with the NDVI-12 reaching
0.53 and NDVI-3 reaching 0.39 is categorize into the evergreen forest, while the
forest with the NDVI-12 below 0.53 and NDVI-3 reaching below is categorized
into the deciduous forest. Although the gain ratio of DEM and temperature is
higher than that of the NPP, it is difficult to distinguish the forest type according to
them. Therefore, we distinguish Broadleaved, Needleleaved and mixed forest
according to the NPP. Broadleaved forest is more than 445, and that of Needle-
leaved forest is less than 297, and the forests with the middle NPP value is
categorized into the mixed forest.

The accuracy of different classifiers is compared with the WEKA toolkit. We
reset the decision tree rule using the NPP and NDVI according to the aforemen-
tioned information. The WEKA toolkit is a collection of machine learning algo-
rithms for data mining tasks. It contains tools for data pre-processing, classification,
regression, clustering, association rules and visualization. It is also very suitable for
developing new machine learning schemes.

Table 3.9 The attribute Gain Ratio value for constructing decision tree

Name Gain ratio Rank Description

X 0.03 8 Rectangular coordination of Longitude
Y 0.22 2 Rectangular coordination of latitude
PA 0.12 6 0.1mmannual precipitation
TA 0.20 3 0.1 �C annual accumulated temperature
DEM 0.15 4 Elevation
LFM 0.11 7 Landform type
NDVI-3 0.22 2 Normalized differential vegetation index in March
NDVI-12 0.27 1 Normalized differential vegetation index in December
NPP 0.14 5 Net primary productivity (g C/m2/year)
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3.3.3 Results and Discussion

3.3.3.1 Evaluating the Accuracy of the Land Cover Classification

Using the method mentioned above, a Serving Climate Simulation Land Cover
(SCSLC) map is generated with a decision rule based on multi-source spatial data
mining in the farming-pastoral ecotone of North China (Fig. 3.13). To analyze the
characteristics of this map, we compare the area of each land cover class in this map
with other three popular land cover maps, i.e., the WESTDC map, UMD map and
GLC map. The overall areas of each land cover class in the four maps were shown
according to the same classification (Table 3.10). It is notable that the SCSLC map
using the C4.5 classifier is similar to the WESTDC map, but there is remarkable
increase in the cropland/natural vegetation mosaics and the corresponding decrease
in grassland. We also find that the accuracy of the GLC map and UMD map is lower
than that of the SCSLC and WESTDC. The GLC map ignores the urban and Built-up
land and the UMD ignores the Water Bodies in the farming-pastoral ecotone of North
China, but two kinds of land cover types are vital to the climate simulation.
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Fig. 3.13 The transformed land cover map over farming-pastoral ecotone in 2000
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Throughout the classification process, the accuracy of the classification maps is
assessed by a set of 35,396 sample points selected with the stratified random
sampling method; these sampling points were randomly selected for each of the
classes in the first generated classification map in this research. For each map, a
confusion matrix is created and the accuracy is measured. The use of measure-
ments such as the overall accuracy, Kappa statistics, producer’s accuracy and
user’s accuracy have been quite common and have been explained in detail in
numerous publications. The confusion matrix is constructed with the land cover
data using the decision rule and the large scale land cover mapping with the
integration of multi-source information, which is recognized as the real data. The
result indicates that an overall accuracy of 88.69 % is achieved, which suggests
that it gained about a 17.69 % increase in accuracy in comparison to the WESTDC
map (Table 3.11).

Table 3.10 Comparison of different classification among the IGBPDIS, SCSLC, WESTDC and
UMD products (km2)

Class name WESTDC SCSLC GLC UMD

Evergreen needleleaved forest 13,174 11,532 19,250 9,075
Deciduous needleleaved forest 312 4,309 25,702 10,819
Deciduous broadleaved forest 36,330 32,120 33,971 67,687
Mixed forests 6,680 3,434 123 3,529
Closed shrublands 7,219 4,878 16,212 24,049
Open shrublands 4,198 4,945 184,674
Grasslands 267,639 234,562 325,539 265,344
Permanent wetlands 18,731 18,284 10,055
Croplands 195,069 161,682 163,214 7,038
Urban and built-up 10,274 9,059 5,182
Cropland/natural vegetation mosaic 7,419 84,276
Barren or sparsely vegetated 47,482 46,324 29,255 48,860
Water bodies 11,739 10,861 2,945 9

Table 3.11 The confusion matrix for the vegetation classification from land use type to land
covers scheme

Class EN DN DB MF CS OS Classified
total

Number
correct

Accuracy

Producer’s User’s

EN 87,920 452 121 389 9,754 8,792 90.14 90.86
DN 990 5,346 327 213 5,985 5,346 89.32 84.62
DB 720 72 4,783 412 5,339 4,783 89.59 87.70
MF 7,130 448 223 4,956 6,340 4,956 78.17 83.02
CS 3,268 123 3,391 3,268 96.37 89.95
OS 365 4,222 4,587 4,222 92.04 97.17
Reference

total
96,760 6,318 5,454 5,970 3,633 4,345 35,396 31,367

Overall classification accuracy = 88.62 % Overall kappa statistics = 0.86

EN evergreen nedleleaved forest, DN deciduous needleleaved forest, DB deciduous broadleaved forest,
MF mixed forests, CS closed shrublands, OS open shrublands
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In addition, we draw the Receiver Operating Characteristic (ROC) curve of
each forest classification decision rule using the WEKA. The true positive rate
(sensitivity) is plotted in the false positive rate (1-Specificity) function for different
cut-off points in the ROC curve. Each point in the ROC curve represents a sen-
sitivity/specificity pair corresponding to a particular decision threshold. A test with
the perfect discrimination (no overlap in two distributions) is carried out on the
ROC curve that passes through the upper left corner (100 % sensitivity, 100 %
specificity). The closer to the upper left corner the ROC curve is, the higher the
overall accuracy of the test is. The area under ROC curve (AUC) for evergreen
needleleaved forest, deciduous needleleaved forest, deciduous broadleaved forest,
mixed forest, open shrub land and closed shrub land are 0.82, 0.91, 0.93, 0.91, 0.85
and 0.85, respectively (Fig. 3.14). The biggest value of AUC is assigned to the
evergreen Broadleaved forest, indicating that the result gained by the evergreen
broadleaved forest should be better than other four models.

3.3.3.2 Validation with the Ground Reference Data

It is difficult to carry out the validation of the large-scale map for all land cover
types in all regions due to lack of reference data that can represent the ‘true’ land
cover. Gong performed the validation of a global land cover map using the ground-
truth sample land cover data from the global flux site (Gong 2009). In this study,
the accuracy of the input land use data is high and has been validated in 2000. So
we only need to validate the accuracy of the forest type and grassland type. The
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Fig. 3.14 The ROC curve value of different vegetation class rule
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ground reference data, which come from multiple sources such as field investi-
gations, TEMS and 2 samples from high-resolution images obtained via Google
Earth, are used to validate land cover products (Table 3.12). The results show that
overall accuracy of the SCSLC map is 83.14 % which is much higher than that of
the GLC land cover map (68 %) and the UMD land cover map (52 %).

In addition, the temporal characteristics are also very important to the valida-
tion of the information of the vegetation type. We compare the temporal NDVI
value of the transformed land cover data to analyze characteristics of different
forest types. We evaluate the dataset according to phenological traits of vegetation
which are closely related to the temperature as well as the elevation. Vegetation
dynamics presents some important short-term and long-term ecological processes.
The continuous temporal observations of the land surface parameters with the
satellite can reveal their seasonal and annual development. In this study, we use
vegetation indices of classified forests to characterize the state and dynamics of
vegetation. In most cases, different types of vegetation have different phonological

Table 3.12 The ground sample sites for validation over the farming-pastoral ecotone of North
China

Longitude (�E) Latitude (�N) Station Land cover types

123.01 51.78 Huzhong Temperate coniferous forests
121.56 50.83 DaXinAnLing Cold coniferous forests
127.53 45.38 MaoErShan Temperate deciduous forest
127.09 42.40 ChangBaiShan Temperate mixed forest
119.94 49.33 HuLunBeiEr Temperate meadow steppe
116.32 44.13 XiLinGeLe Temperate grassland
117.45 43.50 XiLinHaoTe Leymuschinensis steppe
115.99 41.27 Google earth Evergreen needleleaved forest
115.61 40.60 Google earth Temperate mixed forest
111.72 40.61 ShaErQin Grassland
124.91 41.82 QinYuan Deciduous broad-leaved forest
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Fig. 3.15 The NDVI characteristics of different vegetation types
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patterns. The NDVI value of the deciduous broadleaved forest is the highest in
those four types of vegetation, and that of open shrublands is the lowest. The
statistical curve from the classified land cover maps shows that the evergreen land
cover had no remarkable change during the study period. However, the deciduous
forest has a single peak in the sliding curve of NDVI in a year (Fig. 3.15). The
possible reason is that the deciduous broadleaved forests are mainly located in the
temperate zone, while the needleleaved forests are mainly in a cold-temperate
zone or on mountains in a temperate zone.

3.3.4 Concluding Remarks on the Reclassified LUCC

In this chapter, this study aims to improve vegetation classification accuracy of the
land cover in North China by employing the technique of data mining different
satellite-derived land cover data of China, higher-precision land use data and other
ancillary spatial data. By computing the gain value of attributes for the vegetation
classification, the results showed that special monthly NDVI information is the
most important, and temperature is more sensitive than precipitation to the local
land cover changes. Vegetation classification method identifies the classes
including closed forest, shrubland and grassland with their exclusive spectral
feature parameters.

The accuracy of land cover classification is assessed by comparing the classi-
fication results with some reference data that is proved with actual land cover. In
this study, we find the accuracy of the C4.5 classifier is 88.96 %, which is higher
than others, including NBTree, SimpleCart, REPTree and BFTree. Besides, we
calculate the confusion matrix and ROC value of vegetation classification. The
kappa factor is 0.87 and the ROC value almost reach 0.90 in a lump sum, but the
ROC value of the deciduous broadleaved forest is only 0.74. The validation all
over China show that the overall accuracy of the land cover map is 83.14 %, which
is over 80 % and higher than that of other land cover maps matching requirement
of climate simulation work. Therefore, the results indicate provable improvement
of modeling accuracy for simulation of the land surface processes over China and
which can be introduced as parameters of dynamical downscaling into other
regional climate simulation.

To summarize, the developed classifier in this study can rapidly convert the
high resolution CAS land use types into the land cover types for climate simulation
work at regional climate models. Moreover, time-series NDVI and NPP data
retrieved from the remote sensing data can fast generate high resolution time-
series vegetation data and automatically recognize dynamic parameters input of
the regional climate model, which can also efficiently improve the accuracy of
regional climate simulation model. In addition, the results may provide supports to
other land surface scientific researches.
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3.4 Summary

In this chapter, specific simulations of land use changes were introduced. In the
first section, we assess the possible trends of land use change that drove by social
and economic development in order to better mitigate climatic change, especially
CO2 emissions. We use AGLU module of GCAM model to assess corresponding
land use structural changes, and then use land use change to obtain the CO2

emissions under each scenario. By setting three different socio-economic devel-
opment scenarios,, we can choose the optimized scenario of reducing CO2 emis-
sions, which provides a theoretical basis of land use planning to climate change
mitigation.

In the second section, we predict the future structure of land use/cover with the
aid of GCAM and an econometric model. Spatial allocation of future land use/
cover in China is simulated with the DLS under three scenarios, i.e., BAU sce-
nario, REG scenario and CES. The simulation results show that land use/cover in
China will change continually due to human activities and climate change, and the
spatial pattern of land use/cover will also change as time goes by. Besides, the
spatial pattern of land cover in China under these three scenarios is consistent on
the whole, but with some regional variance. Built-up area will increase rapidly
under all three scenarios, however, most of the other land cover types will show a
decreasing trend to different degrees under different scenarios.

To date, high-precision land cover data to support climatic modeling in China is
absent. To this end, in the third section of this chapter, we first overlay the land
cover maps of the IGBPDIS, GLC, UMD and WESTDC, and select the grids with
agreement of classification as the sample grids. We then combine the land cover
data from CAS with the land use data to generate land cover data of high accuracy
for climate simulation. The produced temporal land cover data using this method
can meet the accuracy requirement of climate simulation and can be applied as the
parameters of dynamical downscaling in regional climate simulation.
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Chapter 4
Projected Impacts of Cultivated Land
Changes on Surface Climates in China

Qingling Shi, Haiming Yan, Ruijie Qu and Zhaohua Li

China, as a typical agricultural country with large demand for grain in the world, is
vitally important to international grain market. According to Medium and Long
Term Planning Outline of National Food Security (2008–2020), the grain output of
China would reach 545 billion kg by 2020. Substantial cultivated land would be
reclaimed in China in order to meet the growing food demands, which would
greatly influence the future surface climate. The cultivated land reclamation in
Northeast China has lasted for many years since the last century due to population
continual growth and economic development at the cost of large-scale overcon-
sumption of resources. As a result, the frequent and uneven occupation and rec-
lamation of cultivated land have led to the significant dynamic change of the
spatial pattern of cultivated land in Northeast China. This chapter analyzes the
possible effects of cultivated land change on the climate in Northeast China and
North China Plain based on the simulation result of the Weather Research and
Forecast (WRF) model.

The possible effects of the climate change on the grain yield and the potential
influence on the food security were analyzed in the first part. In the second part, we
also focus on the Northeast China and analyze the possible biogeophysical effects of
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cultivated land change on the climate in northern China during 2010–2030 on the
basis of simulation with WRF model. In terms of the climatic effects of past land use
change, the last part of this chapter explores the impacts of land use/cover change on
the near-surface temperature in the North China Plain in year 1992 and 2005.

4.1 Impacts of Cultivated Land Reclamation
on the Climate and Grain Production in Northeast
China in the Future 30 years

Northeast China as an important commodity grain production base in China makes
important contribution to the global food security, while the historical large-scale
cultivated land reclamation is of great importance to the formation and develop-
ment of this commodity grain production base. Northeast China currently provides
30–35 million tons of grain every year, accounting for 13 % of the national total
grain output. Besides, Northeast China as the core region of grain production of
China will undertake the tasks of making the grain output increase by 15.05 billion
kg, which will account for 30.1 % of the newly increased grain output. Therefore,
the grain production in Northeast China will have great impacts on the Asian and
even global food security (Deng et al. 2010a).

Except for the restriction of the cultivated land area, the grain production in
Northeast China is also influenced by the climate change. The heat resource during
the growth season of crops has shown an increasing trend in Northeast China, and
the temperature has increased significantly in the past decades. For example, the
relevant research indicates that the temperature in Northeast China has increased
by 1.43 �C in the past century (Sun et al. 2006), which is two times higher than the
global average level and three times higher than the national average level. The
rapid temperature rise will surely have significant impacts on the growth of crops.
It has been widely accepted that the climate change is influenced by the human
activities (Pielke et al. 2011), and the land use change as one of the major
approaches through which the human activities influence the climate change, has
received more and more attention (Anderson et al. 2012). The change of the spatial
pattern of cultivated land in Northeast China will surely lead to the climate change
at local and regional scales. The historical data indicate that along with the cul-
tivated land reclamation, there has been significant climate change in Northeast
China, including the obvious change of the spatial pattern of temperature, and
precipitation. (Deng et al. 2006).

Some of previous studies predict the climate change in the future just simply
according to history climate data and their variation trends (Peterson et al. 2002).
It is well known that there is uncertainty in climate change and abnormal weather
always occur especially in recent decades, which made the history trend unre-
liable to represent the real one. Therefore, the shortage of this method was
obvious. For that reason, some scientists devoted to predict future climate with
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models (Hijmans and Graham 2006). The WRF model is a next-generation
mesoscale numerical weather prediction system developed by a group of scien-
tists from different institutes. This model is of strong robustness for predicting the
climate changes with various parameters, such as temperature, precipitation,
radiation, and heat flux. Besides, in this study, the underlying surface data
adopted in WRF model was simulated data given by the Dynamics of Land
Systems (DLS) model.

4.1.1 Data and Methodology

4.1.1.1 Introduction of the Study Area

Northeast China (115�050 * 135�020 E, 38�400 * 53�340 N) has a total land area
of 1.24 million km2 and covers 209 counties in Heilongjiang Province, Jilin
Province, Liaoning Province, and Inner Mongolia Autonomous Region (Fig. 4.1).
It is the largest producing area of the corn, high quality japonica rice, and soybean
as well as the major production base of the agriculture, forestry, animal husbandry,
and industry in China. The total cultivated land area in this area is approximately
227 million hectare, accounting for 18.5 % of the national cultivated land area.
The area under crops is approximately 173 million ha and the total grain output is
approximately 87 million t in Northeast China, which account for 16.4 and 17.6 %
of the national total amount, respectively.

As a monsoon climate of medium latitudes, the amount of precipitation in
Northeast China decreases from the east and southeast to the west and northwest
on the whole area. The winter is cold and long, while there are frequent winds and
little rainfall in the spring in Northeast China. In the summer, the temperature is
high and the rainfall is very rich, the amounts of precipitation range from 400 to
700 mm in most part of Northeast China in the summer, accounting for 50–70 %
of the annual precipitation. According to the observation data of climate change
from 2000 to 2010, we calculated the change trend of temperature and precipi-
tation in Northeast China. The results showed that the temperature increased
slightly in the decade, the average growth rate per annum was 0.44 %. While the
average annual precipitation was in similar circumstance, its average growth rate
per annum was 1.16 %. There are often sunny days and the southwest winds
prevail in the autumn, but the amount of precipitation is slightly more than in the
spring. Northeast China is the coldest area in China since it is at the high altitudes,
the temperature in this region is very low in the winter and the annual temperature
difference is very large, showing obvious characteristics of the continental climate.
Besides, Northeast China can be divided into three climatic zones from north to
south, i.e., the cold temperate zone, the cool temperate zone, and the warm tem-
perate zone since it extends across a wide latitude and longitude. In addition, it can
be further divided into several climatic zones from east to west, i.e., Three River
Plain Humid Climate Zone, Lesser Khingan Mountains Climate Zone, Great
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Khingan Mountains Sub-humid Climate Zone, Songliao Plain Sub-humid Climate
Zone, West Liaohe Plain, and Eastern Inner Mongolia Arid Climate Zone.

Northeast China is the fertile grain production area with great potential capa-
bility of development and significant contribution to the national food security.
Most part of the Northeast Plain and the valleys and tablelands between Changbai
Mountains has been reclaimed for cultivated land so far. These regions have been
the major farming area for agricultural production in Northeast China, but at the
cost of the disappearance of primary forests and grasslands. The scale of the grain
production is very large, the major crops including the corn, soybean and rice,
because high level of agricultural mechanization in Northeast China have been
developed as the earliest reclamation area of agricultural mechanization with its
best cultivatable soil conditions since the last century of China. In addition, total 6
billion km2 of the forest area accounts for 28.1 % of the total national forest stock
in Northeast China.

This chapter analyzes the impacts on the climate change of cultivated land
reclamation by analyzing the change of temperature and precipitation numerical
predicted on the basis of cultivated land change in 30 years in Northeast China,
which was simulated by DLS model in previous study (Deng et al. 2010b). The
changing trend of the climate in the future is predicted in the context of the change
of the spatial pattern of cultivated land, and the impacts of the climate change on

Fig. 4.1 Main land use types of Northeast China in 2010
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grain production is also analyzed. This will not only provide a typical case study to
the research on the global climate change, but also some reference for the
development of social industry structure.

Meanwhile, the trend of climate change and regional climate effects of Land
Use and Cover Change (LUCC) in Northeast China indicate that there will be more
complex and significant climate change in Northeast China. Which means the
change trends of temperature and precipitation were not simply increasing or
reducing by year, they were up and down and what’s more, they showed different
tendencies in different seasons. Therefore, it is of great significance to study the
impacts of cultivated land reclamation on the climate and grain production in
Northeast China and the results can provide significant technical support and
policy suggestions for the development of Northeast China.

4.1.1.2 Experiment Design

In order to draw the impact on climate change of cultivated reclamation, two
simulated tests were designed in this study; control test and sensitivity test
(Table 4.1).The two sets of test used the climate forcing data between January of
2000 and December of 2010, and the difference between them is the underlying
surface data. In the control test, the test period is from January of 2000 to
December of 2010. The land cover data of 2000 is used as underlying surface data
in the test. As to sensitivity, its test period is from January of 2030 to December of
2040. And with land cover data of 2040 as its underlying surface data. The
experiment is designed to avoid the influence of forcing data and simultaneously to
focus the impact of land use change, specially the cultivated land reclamation on
the climate variation. Thereby, the effect on grain production of the reclamation of
cultivated land in the Northeast China would be uncovered in this study.

4.1.1.3 Data and Processing

As the simulation time is January of 2000 to December of 2010 and January of
2030 to December of 2040, the underlying surface data used in this study are the
land use/cover data in 2010 and 2040 as mentioned in the experiment design
section. The former period of data is the real land use/cover data provided by Data
Center for Resources and Environmental Sciences, CAS. And the latter data is
simulated by DLS model with the land use/cover data of 1 km resolution in 1985,
1995, 2000, and 2005 as its simulated initial year data. The data of four time
periods were obtained from Data Center for Resources and Environmental Sci-
ences, CAS. The database is constructed from remote sensing digital images by the
US Landsat TM/ETM satellite with a spatial resolution of 30 by 30 m (Deng et al.
2010c). According to the simulated results, the cultivated land reclamation data
during 2030–2040 were obtained in Northeast China (Fig. 4.2) (Deng et al.
2010d). According to the simulation results with the DLS model, the cultivated
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land area in Northeast China will increase by 288 thousand km2 during
2030–2040, with an increment rate of 21.62 %. The newly increased cultivated
land will mainly be located in Eastern part of Three River Plain, western part of
Songnen Plain, Hilly, and mountainous area in Great Khingan Mountains and
Lesser Khingan Mountains, and Hulunbuir Region. Besides, the newly increased
cultivated land will be mainly converted from the forests, grasslands, and unused
land (Deng et al. 2010d).

Table 4.1 Schemes of the simulation test with WRF model

Test Test period Underlying surface
data

Climate forcing data

Control test 2000.01–2010.12 Land cover data of
2010

Climate forcing data between 2000.01
and 2010.12

Sensitivity
test

2030.01–2040.12 Land cover data of
2040

Climate forcing data between 2000.01
and 2010.12

Fig. 4.2 Conversion amount of other land use types into cultivated land in Northeast China
during 2030–2040
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Table 4.2 Land use/cover types of the USGS classification system

Code Description Code Description

1 Urban and built-up land 14 Evergreen needle leaf forest
2 Dryland cropland and pasture 15 Mixed forest
3 Irrigated cropland and pasture 16 Water bodies
4 Mixed dryland/irrigated cropland and

pasture
17 Herbaceous Wetland

5 Cropland/Grassland Mosaic 18 Wooded Wetland
6 Cropland/woodland Mosaic 19 Barren or sparsely vegetated
7 Grassland 20 Herbaceous Tundra
8 Shrubland 21 Wooded Tundra
9 Mixed shrubland/Grassland 22 Mixed Tundra
10 Savanna 23 Bare ground Tundra
11 Deciduous broadleaf forest 24 Snow or Ice
12 Deciduous needle leaf forest 99 Interrupted areas (goodes homolosine

projection)
13 Evergreen broadleaf forest 100 Missing data

Due to the land use/cover data classification mechanism in WRF model is the
USGS classification system (Table 4.2), and the simulated land use/cover data in
2040 with DLS model were classified by the land cover classification of IGBP. The
simulated data were reclassified into USGS classification system with classifier we
developed before. In addition, the scale of these data is 1:100000 and the inter-
pretation accuracy exceeds 92 % (Liu et al. 2010).

The climate forcing data used in this study were the geographically segmented
(GEOG) data obtained from NCEP FNL (Final) Operational Global Analysis data,
which is updated every 6 h. This dataset has been constructed and updated since July
of 1999 with the data assimilation of almost all kinds of observation data (e.g., the
remote sensing data and ground-based observation data), it has the spatial resolution
of 1� 9 1� and the vertical height of 27 layers. And the time period of the data were
truncated from the January of 2000 to December of 2010. Then the climate forcing
data were prepared on the basis of these data. The NCEP/FNL dataset has higher
accuracy and spatial resolution and includes more kinds of environmental variables
than the datasets of NCEP I, NCEP II and EAR40. This study has used the Noah land
surface parameterization scheme, with which the simulation result is more stable and
reasonable. The data of the temperature field and precipitation field in this scheme
were interpolated with the large scale information.

4.1.2 Results

The change of cultivated land in Northeast China is directly caused by the human
activities in the context of the special regional geographical conditions, such as the
plenty of the complex mountains in this region. The population growth is
the fundamental reason for the expansion of cultivated land in Northeast China, the
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economic development is an important human driving factor, and the macro policy
is also one of the driving factors of the land use change. With the continual
population growth and rapid economic development in Northeast China, there will
be more demand for the land resources, which will surely lead to the change of the
amount, structure, mode, and intensity of land use. It is forecasted that the pop-
ulation of China will rise to the peak during 2030–2040, reaching 1.5–1.6 billion.
The cultivated land area in China will certainly be increased so as to meet the
enormous demand of the large population for grain, forage, dairy products, etc. It
is inevitable that a lot of land will be reclaimed for agricultural cultivation in
Northeast China Since it is the most important commodity grain base with the
greatest development potential in China. For these reasons, this study simulated
the climate change under the condition of cultivated land reclamation during
2030–2040 based on the WRF model and predicted the future changing trend of
the temperature, precipitation in Northeast China. The simulation results indicate
that the temperature in Northeast China will show an increasing trend, while the
precipitation will show a decreasing trend. The average temperature in Northeast
China shows an increasing trend on the whole during the simulation period. The
temperature will increase in most parts of Northeast China in January except few
areas where it shows a decreasing trend; while in August, it shows an increasing
trend in almost all the parts of Northeast China. The temperature change varies
greatly among regions; it shows an increasing trend from the southeast to the
northwest on the whole, with the largest increment of 2 �C. The temperature
increases most obviously in the northern part of Great Khingan Mountains and
Lesser Khingan Mountains, while it increases most slightly in Liaohe Plain,
Liaodong Peninsula and southern part of Changbai Mountains (Fig. 4.3). The
temperature rise in these regions is closely related with the land use conversion in
the future, for example, the conversion from forests and grasslands into cultivated
land. Great Khingan Mountains and Lesser Khingan Mountains lead to the
increase of the regional near-surface temperature not only in the regions with land
use conversion, but also in the regions without land use conversion.

The simulation result indicates that there is no significant change of the annual
precipitation in Northeast China during 2030–3040, but there is some fluctuation
of the seasonal precipitation. The precipitation will increases most greatly in the
middle part of Heilongjiang Province and the eastern part of Jilin Province and
Liaoning Province. Besides, the precipitation will increase most significantly in the
summer, and it will decrease in some regions in the winter. The precipitation will
show a decreasing trend on the whole in January; it will show very different
changing trends in different regions in August, but still show a decreasing trend on
the whole. The precipitation will decrease by 80 mm on average in January, with
the largest decrement reaching 120 mm. By comparison, it will change more
significantly in August (Fig. 4.4). The precipitation will decrease most greatly in
Liaodong Peninsula and the southern part of Changbai Mountains, while it will
increase obviously in the northern part of Great Khingan Mountains and Songnen
Plain. In addition, it will show great difference at the local scale during different
periods since there are some instabilities of the precipitation.
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The previous researches have indicated that the climate change will have sig-
nificant impacts on the crop yields, and there is significant regional difference of
these impacts (Deng et al. 2010c; Sun et al. 2006b). When the temperature
increases by 1 �C, the per unit area yields of the wheat and soybean may increase
by 2–40 %, and the decrement is higher in the northeast part than it is in the
southwest part of Northeast China. When the precipitation increases by 10 %, the
grain yield will increase by approximately 10 % in the western and southwest part,
while it is the contrary in the southeast part (Ma 1996). However, the temperature
rise may aggravate the decrease of precipitation, since they generally appear
simultaneously. In addition, the previous research indicate that when the tem-
perature increases by 2 �C and the precipitation decreases by 20 %, the grain yield
in the western part of Northeast China will decrease by 10–18 % (Ma 2008).
Therefore, the future grain yield in Northeast China will show a decreasing trend
on the whole, and the grain yield and soybean yield may decrease by at least 10 %
in the future.

Fig. 4.3 Temperature change in Northeast China in DJF (December, January and February)
(left) and JJA (June, July and August) (right) during 2030–2040

Fig. 4.4 Change of precipitation in Northeast China in DJF (left) and JJA (right) caused by land
use/cover change during 2030–2040

4 Projected Impacts of Cultivated Land Changes on Surface Climates in China 103



This study simulated the climatic effects of cultivated land reclamation in
Northeast China during 2030–2040. The simulation results indicate that it will
inevitably aggravate the drought disaster in Northeast China. In summary, the
regions with the most extreme temperature change are mainly located in the
northern part of Great Khingan Mountains and Lesser Khingan Mountains; while
the regions with the significant precipitation change mainly gathered in the
northern part of Great Khingan Mountains and Songnen Plain. Since these regions
are located in the major grain producing areas in Northeast China, the climate
change due to the cultivated land reclamation will have great impacts on the grain
yield in Northeast China.

4.1.3 Concluding Remarks on the Cultivated Land
Reclamation

The change of the spatial pattern of land use in Northeast China in the future, mainly
including the expansion of cultivated land, will influence the supply function of
regional ecosystem services to some degree. It should be noted that although the
cultivated land area in Northeast China will show an increasing trend, the population
will increase more rapidly, which will lead to the reclamation of some marginal land
that is not very suitable for reclamation. Since the rapid population growth will lead
to more demand for the food and land resources, some problems such as the defor-
estation, reclaiming land from lakes, and grassland reclamation, may be more serious
and lead to a vicious cycle. Besides, some of the newly increased cultivated land may
be not reasonably used, and the extensive operation is still very widespread, which
will inevitably lead to the deterioration and waste of the land resources. The decline
of soil fertility will undermine the potential of grain yield increase, influence grain
production capacity of Northeast China, and subsequently influence the grain pro-
duction capacity of whole China, and consequently threaten the self-supply of grain
and national food security. It is necessary to properly implement some measures in
the planning of the future agricultural development in Northeast China on the pre-
mise of guaranteeing the strategic grain demand of the whole nation. Besides, it is
necessary to improve the scientific and technological level of agricultural cultivation,
promote the ecological construction, and enhance the land utilization rate. In addi-
tion, it is necessary to implement different agricultural production countermeasures
according to the impacts of climate change on different crops in different regions,
e.g., adjusting the of the layout of crop variety and planting structure, enhance the
measure to prevent disasters so as to ensure the long-term and steady development of
grain production.

The temperature will show an increasing trend on the whole, which will have
negative impacts on the growth of the major crops, such as rice, corn, soybean, and
wheat. The regional climate change will also directly and indirectly influence the
behaviors of the peasants. For example, it will directly lead to the change of the
planting structure and tillage measures; besides, it will lead to the change of the
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grain yield, indirectly change the income of peasants, and consequently alter their
production activities. In addition, since different crops have different adaptive
capacities to climate change, which will greatly influence the peasants’ choice of
the kinds of crops and consequently lead to more serious imbalance of the plan-
tation structure. For example, in the middle and western part of Northeast China,
where one of major crops is the rice, when the temperature increases and the
precipitation decreases, the local peasants may replace the rice with other crops or
offset the impacts of climate change on the rice by using more fertilizers or
irrigating the crops with more water. So the grain production in Northeast China
has some potential to adapt to the temperature rise, and it is of great significance to
alleviate the negative impacts of the temperature rise on grain production and
guarantee food security in Northeast China to give full play to this potential.

This study has mainly aimed at the simulation and prediction of the change of
temperature and precipitation caused by the cultivated land reclamation in the future.
In order to forecast the climate change in the future more accurately, it is necessary to
quantitatively analyze the changing trends of the temperature and precipitation, and
comprehensively take into account the future changes of the monsoon, general
atmospheric circulation, change of other land use types, etc. in the climate model and
data analysis. Therefore, there is still something to explore in the future researches.
First, the regional climate change is caused by various factors, including not only the
human activities, but also the natural factors such as the solar activity. Besides, there
are also various human activities that influence the regional climate change in
Northeast China, but only the cultivated land reclamation has been taken into account
in this study, so more influencing factors should be included in the future research.
Second, there are some uncertainties in the simulation. Due to those influenced
factors, the effects of some of them on the climate change may not be captured in the
simulation analysis, which will lead to some uncertainties in the simulation results.
So it is necessary to make further sensitivity analysis in the future research so as to
make the simulation results more accurate.

4.2 Possible Biogeophysical Effects of Cultivated Land
Conversion in Northeast China in 2010–2030

Human activities are widely recognized as one of the major contributors to climate
change, through both combustion of fossil fuels and land use activities (Lobell
et al. 2006), with the LUCC considered as the major influencing factor. Many
studies have revealed the extent to which land cover changes have affected local
and regional and even global climate (Marland et al. 2003). For example, previous
studies suggested that human-induced land cover change from forest to cultivated
lands could lead to a cooling of 0.25 �C on a global basis, and northern mid-
latitude agricultural regions are about 1–2 �C cooler in the winter and spring
compared to the pre-industrial state due to replacement of forest by cultivated
lands. A lot of observations and simulation experiments have suggested that the
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LUCC at various scales has been the most important approaches through which the
human activities influence the climate (Feddema et al. 2005), and it is of great
importance to study the influence of LUCC on the regional climate.

Improved understanding of how human activities influence climate is needed to
guide policies aimed at mitigating or adapting to climate change (Lobell et al. 2006).
However, most of current climate mitigation policies do not generally incorporate
the effects of changes in the land surface on the surface albedo, the fluxes of sensible
and latent heat to the atmosphere, and the distribution of energy within the climate
system, all of which can affect the local, regional, and global climate, and therefore
these policies might lead to land-management decisions that do not produce the
intended climatic results (Marland et al. 2003). Besides, a number of models have
been used to study the impacts of LUCC on the climate, but most of them do not
account for geographically explicit changes in land surface characteristics associated
with land cover changes (Sitch et al. 2005). In addition, there are many land use
changes not reflected in land cover that can potentially influence climate, including
both conversion and other modifications (Feddema et al. 2005), e.g., changes
occurring within existing cultivated lands that have the potential to affect local and
global climate (Lobell et al. 2006). Moreover, scientific understanding and tools are
increasingly becoming available to address the broader implications of land surface
interactions within the climate system for national and international policy. It is
plausible to implement more in-depth researches on the effects of LUCC on the
climate change with the geographically explicit tools.

China is one of the largest developing and populous countries. The large
demand of grain for feeding increasing population generates a large demand of
cultivated land for increasing agricultural production as well as other types of land
use demands for rapid economic development. Northern China, as a grain pro-
duction base with adequate cultivated land resource, is protecting the food security
and economic development of whole China (Fig. 4.5). In Northern China, popu-
lation density with economy growth is relatively high, and continuous population
growth and accelerating economic development would further lead to dramatic
LUCCs and consequently exert more significant impacts on the climate change. In
fact, the land use has changed a lot in this region after the Chinese economy
structural reformation was initiated in the early 1980s. The area of high quality
cultivated land has shrunk due to the growing land demand of the urban expansion
and infrastructure construction in this region (Jiang et al. 2012). Meanwhile the
regional climate in Northern China has changed greatly due to the disturbance of
human activities, especially the land use change in the past decades. For example,
the temperature has risen more and more obviously in the past decades, which
further led to the increased drought time, more dramatic precipitation fluctuation,
decreased climate productivity, and more frequent climate disasters (Liu et al.
2008). Previous researches have indicated that there is surely some correlation
between the significant climate change and the large-scale LUCC in Northeast
China in recent decades (Liu 2007). Therefore, it is of great importance to analyze
the interaction between the LUCC and climate change to understand the impacts of
LUCC on the grain production in Northeast China since the land resource is
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indispensable to most essential human activities and provides the basis for agri-
cultural and forest production, recreation and settlement, etc. In this study, the
potential biogeophysical effects of cultivated land change were analyzed on the
base of the scenario analysis on the land use change and simulation of climate
change with WRF model.

4.2.1 Data and Methodology

The simulation is implemented based on the land cover data and forcing data under
different scenarios. First, the scenario analysis is carried out on the future LUCC in
Northeast China, which provides the time series underlying surface data for the
simulation with WRF model. Three scenarios of land use change are designed
according to characters of socioeconomic development in the study area, and the
structural change of land use is simulated with the module of Agriculture and Land
Use in the Global Change Assessment Model (GCAM), with the socioeconomic
factors as the driving force. Thereafter, the future spatial pattern of land cover during
2010–2030 is simulated with the DLS model (Deng et al. 2008), and finally the climate
effects of the land use change is analyzed based on simulation with WRF model.

4.2.1.1 Scenario Design of Land Use Change

Three scenarios, including the Business as Usual (BAU) scenario, Rapid Economic
Growth (REG) scenario, and Coordinated Environmental Sustainability (CES)
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Fig. 4.5 Location of Northeast China. Northeast China mainly covers Heilongjiang Province, Jilin
Province, Liaoning Province, and the southeastern part of Inner Mongolia Autonomous Region
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scenario, were designed based on the historical changing trends of land cover and
the historical and future trends of socio-economic development. This study selected
the population, total factors productivity (TFP), gross domestic product, (GDP) and
national policy as the variables of socio-economic development, the changing trends
of which are different under different scenarios. The BAU scenario mainly reflects
historical development trend of the population and economy, which provides the
reference to compare with other scenarios. It is assumed that the urbanization and
industrialization will continue under the BAU scenario; TFP, which is on behalf of
the scientific and technological progress, will develop following the historical
development trend, and China’s population is expected to peak in 2030, but the
population growth rate will gradually reduce. The REG scenario and CES scenario
were designed according to the main risks and adjustment directions of the medium
and long-term development of China. The REG scenario assumes that the structural
reform of industries would be smoothly carried out, the resource allocation and
distribution of the industrial structure will be more reasonable, and the economy will
develop more and more quickly. Under the CES scenario, the population growth rate
is lower than that of BAU scenario, the urbanization rate is relatively lower, and
population and GDP would increase with a lower rate. Finally, with the socioeco-
nomic factors as the driving force, the structural change of land use under each
scenario is simulated with the module of Agriculture and Land Use in GCAM.

4.2.1.2 Simulation with the DLS Model

This study simulated the spatial pattern of land cover change in the study area with
the DLS model, which is a collection of programs that simulates pattern changes in
land uses by conducting scenario analysis of the area of land use change (Deng et al.
2008). The DLS model can export a macroscopic map of land use by estimating the
effects of driving factors of spatial pattern changes, formulating land use conversion
rules and scenarios of land use change, and simulating dynamic spatiotemporal
processes of land use changes (Deng et al. 2008). The simulation with the DLS model
includes four steps. First, the statistical relationship between the spatial distribution
of land use types and the driving factors is analyzed at the regional and grid scales,
and the key driving factors were extracted according to the effects of the natural
environment and socio-economic factors on the spatial patterns of regional land use.
Then the changing trend of the selected key driving factors is predicted based on their
historical characteristics and current status at the regional level. Thereafter, a proper
scenario is identified and used to foresee the balances between the supply and
demand of land resources. Finally, the spatial allocation of land cover is implemented
at 1 9 1 km grid pixel level, and the spatial pattern map of land cover is generated.
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4.2.1.3 Simulation with WRF Model

WRF model is a next-generation mesoscale model developed by a group of sci-
entists from different institutes (Hernández-Ceballos et al. 2012).It consists of
three parts, including pre-processing module of mode (WPS), main module of
model (ARW), and assimilation module of mode and post-processing tools of
mode data (WRF-VAR). The ARW is used to analyze the impacts of land use/
cover change on the land surface heat flux in this study. This study calculates the
flux of momentum, sensible heat, latent heat and radiation, etc. between the land
surface and the atmosphere from the perspective of the water balance and energy
balance with WRF model. Based on the Noah land surface parameterization
scheme, and focused on the sensible heat flux and latent heat flux, the study reveals
the impacts of the future land use change on the regional climate change.

The land net radiation is the energy source of near-surface temperature change,
and the latent heat flux and sensible heat flux are two key components of the land
surface energy balance. Both of them are closely related with the efficient energy
of the land surface and are influenced by the land surface characteristics and soil
water and heat conditions. Besides, under the condition of certain land surface net
radiation the underlying surface influences the temperature through influencing the
sensible heat flux, latent heat flux, and soil heat flux.

Rn ¼ H þ LE þ G ð1:1Þ

Where Rn is the land surface net radiation, H is the sensible heat flux, LE is the
latent heat flux, and G is the soil heat flux.

The land surface net radiation heavily depends on the sensible heat flux and
latent heat flux since there is generally very limited heat flux into soil, and the
underlying surface can directly influence the latent heat flux and consequently
indirectly influence the near-surface temperature. Therefore, this study has mainly
focused on the influence of land use change on the latent heat flux and sensible
heat flux. Since the temperature is generally very low in the spring and winter in
Northeast China, this study has only calculated the sum of the latent heat flux and
sensible heat flux in the summer and autumn.

The parameterization scheme of the WRF model in this study includes the Noah
land surface parameterization scheme, CAM3 radiation scheme, WSM3-class
simple ice microphysics (MP) scheme, Grell-Devenyi ensemble scheme for
cumulus convection, and YSU boundary layer scheme. The data of the lateral and
boundary conditions came from the NCEP/FNL, being updated every 6 h. This
dataset has been constructed and updated since July of 1999 with the data
assimilation of almost all kinds of observation data (e.g., the remote sensing data
and ground-based observation data), it has the spatial resolution of 1� 9 1� and the
vertical height of 27 layers. The NCEP/FNL dataset has higher accuracy and
spatial resolution and includes more kinds of environmental variables than the
datasets of NCEP I, NCEP II, and EAR40. The land surface parameters in WRF
model under different conditions of land cover were adjusted according to the
result of scenario analysis of the future land use change.
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The simulation scheme in this study is as follows. The land cover dataset of
year 2010 with the United States Geological Survey’s (USGS) classification sys-
tem is used as the baseline underlying surface data in this study. Then, the
structural changes of land use in year 2010 and 2030 under different scenarios
were simulated with the module of GCAM and the future spatial pattern of land
cover is simulated with the DLS model. Furthermore, the land use data is used as
the input underlying surface data of the WRF model to simulate the impacts of
land cover change on the climate change.

4.2.1.4 Data and Processing

The input data of WRF model mainly include the underlying surface data and
climate forcing data. The 1 km resolution land cover data of the USGS classifi-
cation system in year 2010 were used as baseline data in this study. The baseline
data of land use/cover change were derived from the dataset of the National Key
Programme for Developing Basic Science in China (Grant No. 2010CB950900).
These data of the 1 km resolution were extracted from Landsat TM/ETM images
and classified according to the USGS classification system, the interpretation
accuracy of which exceeds 92 % (Liu et al. 2010). The land use/cover data in year
2020 and 2030 were predicted with the data of land conversion among land cover
types. Since different communities have different classification systems for the
land cover data, this study used the USGS classification, which includes 24 land
cover types. First, the 1 km resolution land cover data of USGS classification in
year 2010 were extracted from the USGS remote sensing images, and were used as
the land cover data in the baseline year. Then the land conversion data, which are
used to forecast the land use change (land conversion among different land cover
types) during 2010–2030, were simulated with the DLS model based on the dif-
ferent scenarios designed according to the land demand. Finally, the 1 km reso-
lution land cover data were converted into the 10 km resolution data according to
the requirement of WRF model.

The forcing data needed in WRF model include the wind field, surface air
temperature, long-wave radiation, and short-wave radiation. This study used the
climate forcing data from NCEP/FNL (Final) Operational Global Analysis data,
which is updated every 6 h. This dataset has been constructed and updated since
July of 1999 with the data assimilation of the remote sensing data and ground-
based observation data, etc. The NCEP/FNL dataset has higher accuracy and
spatial resolution, and it has the spatial resolution of 1 9 1� and the vertical height
of 27 layers. The static land surface data were the GEOG data provided by WRF
model, which were replaced with the land use/cover data under different scenarios
in the further simulation. This study has used the Noah land surface parameteri-
zation scheme, with which the simulation result is more stable and reasonable. The
data of the temperature field and precipitation field in this scheme were interpo-
lated with the large scale information.
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4.2.2 Results and Discussion

4.2.2.1 Cultivated Land Change Under Different Scenarios

The simulation results indicate that the land use change in Northeast China during
2010–2030 is mainly characterized by the conversion from cultivated land into
forests or urban and built-up land under the three scenarios; the total cultivated
land area will show a decreasing trend (Fig. 4.6). The land use change will follow
the historical trend under the BAU scenario; the cultivated land will mainly change
into urban and built-up land and forests, the newly increased area of which will
reach approximately 3,782 and 1,471 km2 by 2030, respectively. Besides, a few
water bodies will convert into cultivated land under the BAU scenario. By com-
parison, there will be more cultivated land converted into urban and built-up land
under the REG scenario and forests under the CES scenario, the newly increased
area of which reach 1,889 and 3,798 km2, respectively. In addition, the cultivated
land change will show significant spatial heterogeneity under the three scenarios.
The conversion from cultivated land into forests mainly appears in the southern
part of Heilingjiang Province, southern and middle part of Jilin Province, and
southern and eastern part of Liaoning Province. While the conversion from cul-
tivated land into urban and built-up land will mainly appear in the southern and
eastern part of Liaoning Province, middle part of Jilin Province, and eastern part of
Helongjiang Province. What is more, compared to the BAU scenario, more cul-
tivated land change will convert into urban and built-up land in the regions around
cities under the REG scenario. More cultivated land will change in forests in the
regions far from cities under the CES scenario, especially in some important water
conservation area such as Three River Plain and Changbai Mountains.

The land use change in Northeast China is greatly influenced by the socio-
economic activities, with the conversion from cultivated land into forests and
urban and built-up mainly driven by the governmental policies, socioeconomic
development, and urbanization. For example, a series of major ecological con-
struction projects have been implemented, e.g., Three-North Forest Shelterbelt
Program and Green for Grain Project, all of which greatly promoted the expansion
of the forests in Northeast China. For example, a lot of mixed dryland/irrigated
cropland has converted into grassland or mixed forests in the eastern part of Inner
Mongolia Autonomous Region, middle, and eastern parts of Heilongjiang Province
and Jilin Province; the vegetation degradation in Northeast China has been under
control to some degree. Besides, the urban land expansion has led to the occu-
pation of cultivated land around the cities. The simulation results also suggest that
more cultivated land around the metropolis and small cities will be occupied since
the socioeconomic development leads to more demand for land resources. In
summary, under the influence of urbanization and governmental policies, the
spatial heterogeneity of cultivated land reclamation and occupation will lead to
more significant spatial heterogeneity of cultivated land, which will exert signif-
icant impacts on the regional climate.
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4.2.2.2 Influence of Future Cultivated Land Change on the Land
Surface Energy Balance

The simulation under the three scenarios all indicate that the average latent heat flux
in Northeast China shows a decreasing trend, while the average sensible heat flux
shows an increasing trend, but both of them show some regional heterogeneity
(Fig. 4.7). Compared to 2010, the latent heat flux in 2030 will decrease by
0.05–0.07 W/m2 on average and show a decreasing trend on average. The latent heat
flux will decrease slightly in most part of the study area. It will decrease significantly
in only a few regions, such as the western part of Jilin Province and southern part of
Heilongjiang Province, where a lot of cultivated land will change into urban and
built-up land, with a decrement of approximately 10 W/m2 on average. While the
latent heat flux will increase obviously in the northeast part of Inner Mongolia
Autonomous Region and the eastern boundary regions of Heilongjiang Province and
Jilin Province, where the cultivated lands occupy a large fraction of the total land
area, and the cultivated land will mainly convert into forests.

The sensible heat flux in 2030 will show an increasing trend on the whole
compared to that in 2010, with the average value increasing by 0.06–0.07 (Fig. 4.8).
The simulation result indicates that the sensible heat flux will increase slightly in
most part of the study area, with the increment of approximately 0.3 W/m2. The
simulation results under the three scenarios suggest that the sensible heat flux will
increase most obviously in the northern part of Great Khingan Mountains and Lesser
Khingan Mountains, where a lot of cultivated land will change into urban and built-

Fig. 4.6 Changing trends of total cultivated land area in Northeast China during 2010–2030
under the three scenarios
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up land. While it will increase most slightly in Liaohe Plain, Liaodong Peninsula,
and southern part of Changbai Mountains, where the cultivated land will mainly
change into forests or grassland and the decreased albedo will substantially increase
the evaporative flux. In summary, in the regions of returning cultivated land to
forests, the forest expansion will increase the evapotranspiration, increase the latent
heat flux, decrease the sensible heat flux, and consequently lead to the decrease of
the near-surface temperature (Deng et al. 2010d). While in the regions of urbani-
zation, the decrease of evapotranspiration due to conversion from cultivated land
into urban and built-up land will lead to significant decrease of latent heat flux and
obvious increase of sensible heat flux, which is the main cause of the near-surface
temperature rise (Liu 2011).

The difference in the change of the latent heat flux and sensible heat flux under
the three scenarios is mainly due to the difference in the land use change, espe-
cially the difference in cultivated land change. The simulation results in this study
suggest that more cultivated land will convert into urban and built-up land in the
regions around cities under the REG scenario, while more cultivated land will
convert into forests in the regions far from cities under the CES scenario. All these
conversions will lead to obvious vegetation cover change, which will further lead
to significant spatial heterogeneity of the latent heat flux and sensible heat flux.
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Fig. 4.7 Difference between the latent heat flux in Northeast China in 2010 and 2030 under
different scenarios (W/m2). a Spatial pattern of the latent heat flux in 2010, b Difference of the
latent heat flux between 2010 and 2030 under the BAU scenario, c Difference of the latent heat
flux between 2010 and 2030 under the REG scenario, d Difference of the latent heat flux between
2010 and 2030 under the CES scenario
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The result indicates that the latent heat flux increases most obviously in the regions
where the cultivated land mainly converts into forests, while the sensible heat flux
increases most obviously in the regions where the cultivated land mainly converts
into urban and built-up land in Northeast China. A lot of research has indicated
that the terrestrial vegetation cover change can influence the land surface energy
budget through altering the land surface albedo, roughness, etc., and consequently
change precipitation and temperature. In Northeast China, the conversion from
cultivated land into nonagricultural land has been the main reason for the soil
moisture change in regions around cities. The irrigation to cropland can increase
the latent heat flux and decrease sensible heat flux, and consequently have cooling
effects on the land surface. However, the conversion from irrigated cropland into
urban and built-up land has greatly weakened this cooling effect since it decreases
the land surface roughness and increases the land surface albedo, which leads to
the decrease of evapotranspiration as well as the land surface net radiation, and
consequently decreases the latent heat flux and increases the sensible heat flux.
Furthermore, returning cultivated land to forests have positive effects on restoring
the soil water environment, and afforestation can significantly increase the solar
radiation absorbed by the land surface, making the evapotranspiration increase,
which will increase the latent heat flux and decrease the sensible heat flux, and
consequently decrease the temperature. In fact, the land use has changed greatly
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Fig. 4.8 Difference between the sensible heat flux in Northeast China in 2010 and 2030 under
different scenarios (W/m2). a Spatial pattern of the sensible heat flux in 2010, b Difference of the
sensible heat flux between 2010 and 2030 under the BAU scenario, c Difference of the sensible
heat flux between 2010 and 2030 under the REG scenario, d Difference of the sensible heat flux
between 2010 and 2030 under the CES scenario
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due to the urbanization, but returning cultivated land into forests, etc. in Northeast
China in the past decades led to more significant spatial heterogeneity of cultivated
land that further lead to spatial heterogeneity of impacts of land use on the climate.

4.2.2.3 Implication for the Land use Management

Human activities have contributed to anthropogenic climate change through a
variety of processes, including both of growth or degradation of surface vegetation
and the changes in the land surface; however, impacts of the latter one are not
currently being incorporated into the development of climate change mitigation
policies (Marland et al. 2003). For example, some previous researches have
quantified the potential of crop management changes to sequester greenhouse
gases, but the biogeophysical effects of most management changes have been less
widely considered (Lobell et al. 2006). The cultivated land change in Northeast
China is directly caused by the human activities (Deng et al. 2010d), and the land
use management can exert great influence on the cultivated land change, especially
the conversion between the cultivated land and other land use types, which will
further influence the climate change. The population growth is still the funda-
mental reason for the expansion of cultivated land in Northeast China, and the
economic development and the macro policy are important driving factors of the
land use change. With the rapid economic development and accelerated urbani-
zation, more cultivated land will be converted into urban and built-up land (Deng
et al. 2010a). Meanwhile, with more attention paid to the environmental protec-
tion, some cultivated lands will also be returned to forests, especially in Northeast
China, where there were once a lot of forests converted into cultivated land due to
the population growth and improper land management. Therefore, there will surely
be more demand for the land resources as the population continually increases and
the economy rapidly develops in Northeast China, which will lead to further land
use change and subsequently exert more influence on the regional climate.

Improved understanding of how human activities influence climate is needed to
guide policies aimed at mitigating or adapting to climate change since the land use
management can exert great influence on the land use change and subsequently
influence the regional climate change (Lehmann 2013). Over the past several
centuries, human intervention has markedly impacted land surface characteristics
and atmospheric composition in Northern China, in particular through large-scale
land conversion for cultivation and burning of fossil fuels (Sitch et al. 2005). These
land cover change may play a significant role in driving future climate change
(Lobell et al. 2006). The land use change in Northern China influences the climate
change through not only the expansion of agriculture into natural ecosystems, but
also the changes occurring within existing cultivated land. For example, historical
clearing of forests for cultivated land is likely to have a cooling effect due to the
greater albedo of croplands relative to forests (Lehmann 2013). Besides, changes
occurring within existing agricultural lands can also have important consequences
for climate, for example, the increases in irrigation and leaf area index and
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reductions in tillage all have a physical cooling effect through increasing the
planetary albedo (Liu 2011). In addition, some researches showed how refores-
tation in the temperate and boreal zones can also lead to a net warming, with the
biogeophysical (snow-albedo feedback) exceeding biogeochemical effects, thereby
accelerating rather than mitigating climate change (Sitch et al. 2005). However,
more information on the sensitivity of climate to these management changes is
needed to identify the climate-related trade-offs associated with future policy and
management decision (Lobell et al. 2006). In summary, more and more attention
should be paid to LUCC, since it is one of the major ways the human activities
influence the climate change, and more in-depth researches should be carried out
on the climate effects of LUCC since there are still some uncertainties in current
research results.

More rational land use management measures should be implemented
according to the local conditions of the study area in order to reduce the adverse
climate effects of land use change while striving to meet the land demand of
economic development. For example, it is necessary to control the loss of forests
during the land reclamation in order to fulfill their role in regulating the climate
and preventing water and soil erosion in Northern China. It is urgent to improve
the forest management to minimize the loss of existing forests in order to minimize
human-induced climate change at all scales. Meanwhile, more efforts should be
made to restore the structures and functions of native ecosystems to minimize the
human impacts on the climate system. Besides, it is feasible to alleviate the climate
change through returning cultivated land to forests or grassland, and it is necessary
to further implement the ecological construction projects such as the Project of
Three North Shelterbelt. In addition, it is feasible to promote management changes
such as reduced tillage and increased irrigation in consideration of their climate
effects, and management practices that demonstrably mitigate regional or global
climate change might be encouraged through incentives to farmers (Lehmann
2013). In addition, it is also necessary to adjust the crop composition and convert
dry cropland into irrigated cropland in order to regulate the climate and increase
the grain yield and consequently contribute to the sustainable development of the
regional agriculture.

4.2.3 Concluding Remarks on Biogeophysical Effects
of Cultivated Land Conversion

In this chapter, we analyzes the potential climate effects of cultivated land change
in Northeast China during 2010–2030 based on the scenario analysis on the land
use change and the simulation. The simulation results indicate that the land use
change in Northeast China will be mainly characterized by the conversion from
cultivated land into forests and urban and built-up land during 2010–2030, with the
total cultivated land area showing a decreasing trend, which will inevitably
influence the regional climate. Besides, the result of the simulation indicates that
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average latent heat flux in the whole Northeast China would show a decreasing
trend during 2010–2030 under the three scenarios, while the average sensible heat
flux will show an increasing trend. In addition, there is significant spatial heter-
ogeneity in the change of both the latent heat flux and sensible heat flux. The latent
heat flux will decrease slightly in most parts of the study area, but it will decrease
most obviously in some regions where a lot of cultivated land will change into
urban and built-up land, while it will increase most obviously in some parts of the
study area where the cultivated land will mainly change into forests.

By comparison, the sensible heat flux will show an increasing trend on the
whole during 2010–2030, the simulation results under three scenarios suggest that
it will increase most obviously in the northern part of Great Khingan Mountains
and Lesser Khingan Mountains, where a lot of cultivated land will change into
urban and built-up land, while it will increase most slightly in the regions where
the cultivated land will mainly change into forests or grassland. Although there are
some uncertainties in the simulation result, it still can provide some useful
information for the land managers to regulate the land use more scientifically.

4.3 Estimated Effects of Land Cover Changes on the Near-
Surface Temperature in North China

The North China Plain has been selected as the study area in this study. First, it has
long been one of the most densely populated regions in China, its current city
density is relative high, and industries and agriculture are well-developed in this
region. The rapid economy growth and increasing population have led to dramatic
land use/cover change in this region, and human disturbance to natural environ-
ment is especially significant, which greatly influences sustainable development of
whole China. Second, the North China Plain is a typical area of monsoon climate
as well as the transient region between the humid and subhumid region and the
arid and semiarid region. On the one hand, the plain agriculture can be sustained
for a long time due the local climatic conditions. On the other hand, the local
climatic conditions also lead to more frequent droughts, make the agricultural
production extremely unstable and consequently may lead to greater economic loss
and more extensive social influence. Therefore, it is of great importance to study
the influence of LUCC on the climate in the North China Plain.

This study first tests the ability of WRF model to simulate the change of the
near-surface temperature in the North China Plain, based on which the static land
use data in WRF are then replaced. Thereafter, the modified WRF is used to study
the influence of the land use/cover change on the near-surface temperature in the
North China Plain in year 1992 and 2005. The result can contribute to a better
understanding of the influencing factors of the climate in the North China Plain so
as to minimize the negative influence and maximize the positive influence on the
regional climate, which is helpful to the scientific regional land use planning and
management in China in the future.
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4.3.1 Method and Data Processing

4.3.1.1 Model and Experiment Design

With the development of the atmospheric models and land surface process models,
the numerical simulation has become a widely used approach to study the influ-
ence of climate on vegetation. WRF model has been widely used in the global
climate and achieved good simulation result, and we use the ARW-WRF (Edition
3.3) in this study.

The location and size of the simulation area have great influence on the sim-
ulation result (Seth and Giorgi, 1998) The center line of the simulation area was set
to be 36� N, 117� E in this study. The Lambert projection was used, with the two
standard parallels being 26 and 46� N, respectively. The spatial resolution was set
to be 20 km, and there were 112 grid points in the east-west direction and 97 grid
points in the north-south direction in the whole simulation area.

The lateral boundary forcing data, that came from the NCEP/FN dataset, are
updated every 6 h. This dataset has the spatial resolution of 1 9 1� and the vertical
height of 27 layers, and it has been established and updated since July of 1999 with
the data assimilation of almost all kinds of observation data (e.g., remote sensing
data and ground-based observation data). In comparison to the datasets of NCEP I,
NCEP II, and EAR40, the NCEP/FNL dataset has higher accuracy and spatial
resolution, and it includes more kinds of environmental variables.

In the parameterization scheme of physical processes in the model, the cumulus
parameterization scheme adopted the Grell–Devenyi ensemble scheme, the
boundary layer process scheme was YSU, and the shortwave radiation scheme was
the CAM scheme, while the land surface process scheme was Noah land surface
model. The boundary buffer was set to be four layers of grid points, and the
boundary conditions adopted the relaxation scheme. The time interval of the model
integration was set to be 5 min, and that of the radiation process and cumulus
convection was 30 and 5 min, respectively. There were 27 layers in the vertical
direction and the atmospheric pressure at the top layer was 50 hPa.

The test scheme in this study is as follows (Table 4.3). There are two sets of
tests, one is the control test and the other is the sensitivity test. The land cover data
of 1985 is used in the control test and that of 2005 is used in the sensitivity test.
The two tests are both implemented with the climate forcing data between October
of 2005 and December of 2007.

4.3.1.2 Processing of Land Cover Data

It is necessary to reclassify the land use/cover data with the USGS land cover
classification, which includes 24 land-cover and land-use types and set the spatial
resolution to be 20 km according to the requirement of the WRF model. Therefore,
the land use/cover data of the IGBP land cover classification are first reclassified
with the USGS land cover classification system, and then the spatial resolution of

118 Q. Shi et al.



the data is converted from 1 to 20 km. The land use/cover data used in this study
are extracted from the Chinese subset of the Global Land Cover Characteristics
database, which is developed based on the AVHRR data with the support of IGBP-
DIS in 1992, and the China subset of the MODIS land cover data product in 2005.
The two datasets have the spatial resolution of 1 km and adopt the IGBP classi-
fication. On the basis of the data of the IGBP land cover classification, we for-
mulate the transformation method from the IGBP land cover classification to the
USGS land cover classification (Table 4.4), and establish the land-use and land-
cover dataset of the North China Plain of the USGS classification.

The LUCC data are further upscaled on the basis of the data mentioned earlier so
as to embed the high resolution underlying surface data into the large-scale climate
model. In this study, the 1 km resolution land-cover and land-use data of USGS
classification are upscaled into the 20 km resolution data. Besides, the three kinds of
data are integrated in a system of seven land cover types, and their area consistency
and spatial consistency are analyzed so as to check the change of the classification
accuracy of the land-cover and land-use data before and after the reclassification and
upscaling. The result shows the difference of the total area between the land-cover
and land-use data after reclassification and upscaling the initial data (Table 4.4).

There is a high overall consistency between the 1 km resolution initial data of
the IGBP classification and USGS classification in year 1992 and 2005, except the
slight difference in the total area of grassland, water bodies, and unused land.
Besides, the 20 km resolution data of USGS classification differed from both of the
other two kinds of Land-cover and land-use data. The result of the comparison
between the initial data and the upscaled USGS data of year 1992 indicates the
area of irrigated cropland and pasture, grassland, and water bodies decreased by
2.69, 7.78, and 41.42 %, respectively; while the area of dryland cropland and
pasture, deciduous broadleaf forest, urban and built-up land, and unused land
increased by 0.62, 0.46, 1.68, and 153.66 %, respectively. By contrast, that of year
2005 indicates the area irrigated cropland and pasture, deciduous broadleaf forest,
water bodies, and urban and built-up land decreased by 6.46, 7.43, 36.35 and
4.87 %, respectively; while the area of dryland cropland and pasture, grassland,
and unused land increased by 1.41, 17.29, and 101.11 %, respectively (Table 4.5).

The error matrix is used to assess the spatial consistency between the initial data
and the data after reclassification in this study. The result indicates that the con-
sistency of the land use/cover types except the unused land has all exceeded 95 %
(Table 4.6). The consistency of the urban and built-up land is the highest, reaching
99.25 %, followed by that of dryland cropland and pasture, which is 98.76 %. The
overall consistency has reached 96.84 % and the Kappa coefficient is 0.95, indi-
cating the reclassification result has a high classification accuracy.

Table 4.3 Schemes of the simulation test

Test Test period Land cover data used in the WRF model

Control test 2005.10–2007.12 Land cover data of 1985
Sensitivity test 2005.10–2007.12 Land cover data of 2005
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Table 4.4 Remapping tables of land-cover and land-use classification

USGS land cover classification Correspondence IGBP land cover classification

01 Urban and built-up land 14 / 01 01 Evergreen needle leaf
02 Dryland cropland and pasture 13 / 02 02 Evergreen broadleaf
03 Irrigated cropland and pasture 12 / 03 03 Deciduous needle leaf
04 Mixed dryland/irrigated

cropland and pasture
11 / 04 04 Deciduous broadleaf

05 Cropland/Grassland Mosaic 15 / 05 05 Mixed forest
06 Cropland/Woodland Mosaic 08 / 06 06 Closed shrublands
07 Grassland 09 / 07 07 Open shrublands
08 Shrubland 08 / 08 08 Woody savannas
09 Mixed Shrubland/Grassland 10 / 09 09 Savannas
10 Savanna 07 / 10 10 Grasslands
11 Deciduous broadleaf forest 17 / 11 11 Permanent wetlands
12 Deciduous needle leaf forest 02 / 12 12 Croplands
13 Evergreen broadleaf forest 01 / 13 13 Urban and built-up
14 Evergreen needle leaf forest 05 / 14 14 Cropland mosaics
15 Mixed forest 24 / 15 15 Snow and ice
16 Water bodies 19 / 16 16 Bare soil and rocks
17 Herbaceous Wetland 16 / 17 17 Water bodies
18 Wooded Wetland
19 Barren or sparsely vegetated
20 Herbaceous Tundra
21 Wooded Tundra
22 Mixed Tundra
23 Bare Ground Tundra
24 Snow or Ice

Table 4.5 Comparison table of area percentage (%) of each land-cover and land-use types
among various kinds of classification systems

Class 1992 2005

IGBPa USGSb USGSc IGBPa USGSb USGSc

Irrigated cropland and pasture 4.09 4.09 3.98 3.87 3.87 3.62
Dryland cropland and pasture 66.11 66.11 66.52 64.52 64.52 65.43
Deciduous broadleaf forest 6.48 6.48 6.51 6.55 6.55 6.06
Grassland 7.07 7.37 6.52 6.79 6.78 7.96
Water bodies 3.09 2.00 1.81 3.27 2.43 2.08
Urban and built-up land 12.34 12.34 12.57 14.46 14.46 13.76
Unused land 0.82 1.61 2.08 0.54 1.39 1.09
Total 100 100 100 100 100 100
a represents the 1 km resolution data of IGBP classification
b represents the 1 km resolution data of USGS classification
c represents the 20 km resolution data of USGS classification
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4.3.1.3 Processing of meteorological data

The observation data, which are used to make a comparison with the simulated
temperature in this study, come from the meteorological stations in the North
China Plain. The meteorological data of the same period (January 2006-December
2007) of the simulation are used in this study. The 20 km resolution temperature
data are obtained by interpolating the monthly average temperature data from the
57 meteorological stations in the North China Plain with the Kriging interpolation
method.

4.3.2 Results

4.3.2.1 Characteristics of LUCC in the North China Plain
during 1992–2005

Figure 4.9 shows the LUCC data of the North China Plain, which are obtained by
reclassification and upscaling of high resolution data. The map shows that the
cropland was mainly located in the plain region and accounted for 70 % of the
total area of the North China Plain.

Table 4.6 Error matrix of accuracy assessment for reclassifying land-cover and land-use types

Irrigated
cropland
and
pastureb

Dryland
cropland
and
pastureb

Deciduous
broadleaf
forestb

Grasslandb Water
bodiesb

Urban
and built-
up landb

Unused
landb

Irrigated
cropland
and
pasturea

97.32 0.32 2.04 0.02 0.15 2.88 0.03

Dryland
cropland
and
pasturea

0.23 98.74 3.43 2.02 0.05 3.2 0.2

Deciduous
broadleaf
foresta

0.54 0.04 96.45 4.43 0.23 0.3 0.22

Grasslanda 0.34 0.26 5.23 93 0.4 0.54 0.17
Water

bodiesa
0.37 0.24 0.01 0.05 97.78 0.27 0.23

Urban and
built-up
landa

0 0 0 0 0 99.25 0

Unused landa 0.02 0.1 0.07 0.12 0.14 0.69 90.86
a,b represent land-cover and land-use types before and after reclassification, Overall accu-
racy = 96.84 %,Kappa coefficient = 0.9503
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The LUCC data of the North China Plain in 1992 and 2005 are overlaid to
further analyze the conversion and inner change of each land cover type. The result
indicates that the LUCC is mainly characterized by the increase of the urban and
built-up land and decrease of the dryland cropland, the changing rate of which
reached 2.12 and 1.59 %, respectively. By contrast, the changing rates of other
land cover types are not more than 0.5 %. The result suggests that the newly
increased urban and built-up land is mainly located in the Beijing-Tianjin-Tang-
shan zone and large and around medium-sized cities, such as Shijiazhuang,
Zhengzhou, Ji’nan, Qingdao, and Lianyungang; besides, the newly increased urban
and built-up land mainly converted from the dryland cropland, accounts for
60.55 % of the conversion of the dryland cropland (Fig. 4.10).

4.3.2.2 Ability of the WRF Model to Simulate the Temperature
Change in the North China Plain

The test results obtained with the standard WRF model is first compared with the
ground-based observation data to assess the ability of the WRF model to simulate
the climate in the North China Plain. The daily average temperature is calculated
as the average value of the temperature at 00:00, 06:00, 12:00, and 18:00 so as to
keep consistent with the ground-based observation criteria. The results indicate
that the WRF model can simulate the spatiotemporal change of temperature very
well (Fig. 4.11). According to the monthly change of daily average temperature in
the whole study area, the highest temperatures in the observation data and

0 100 200

1992
N

50

(km)

20000

1992

Province boundary
Urban and built-up land
Dryland cropland and pasture
Irrigated cropland and pasture
Grassland
Deciduous broadleaf forest
Water  bodies
 Wetland
Barren or sparsely vegetated land

01 00 200

2005
N

50

(km)

20000

2005

Province boundary
Urban and built-up land
Dryland cropland and pasture
Irrigated cropland and pasture
Grassland
Deciduous broadleaf forest
Water bodies
Wetland
Barren or sparsely vegetated land

Fig. 4.9 The LUCC map after upscaling in 1992 and 2005
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simulation data both appear around July, and the lowest temperatures in the
observation data and simulation data both appear around January. The decreasing
rate of the temperature during September and November is a bit higher than that
during March and May, i.e., the temperature decreases a little more quickly in the
autumn than it increases in the spring.

According to the spatial pattern of the daily average temperature in February
and August, both simulation data and the ground-based observation data indicate
the temperature is lower in the north part and higher in the south part, it is colder in
the mountainous area and warmer in the plain area in the regions at the same
latitude, and it is warmer in the inland region than in the coastal region (Fig. 4.12).
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Fig. 4.10 Map of the unchanged and newly increased urban and built-up land (a), and map of the
unchanged and decreased dryland cropland (b)
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Fig. 4.11 Comparisons of simulated and observed values of the monthly average temperature at
2 m above the ground

4 Projected Impacts of Cultivated Land Changes on Surface Climates in China 123



For example, the temperature difference between the Fuyang observation station in
the extreme north and the Zunhua observation station in the extreme north is as
high as 5 �C in February and 2–3 �C in August. While that between the Cheng-
shantou observation station in the extreme east and the Shijiazhuang observation
station in the extreme west are 1–1.5 and 0.2–0.3 �C, respectively.

There is still some difference between the observed and simulated temperatures,
i.e., the simulated temperature is lower than the observed temperature on the
whole. For example, the annual daily average temperature of the 57 observation
stations is 14.19 �C on average, while the simulated value is 12.74 �C. According
to the monthly temperature change, the simulated value is lower than the observed
value in most months except November and December, and the maximum dif-
ference between them reaches 3.34 �C in August. By contrast, the data of the
seasonal temperature change suggests the simulated temperature is lower than the
observed temperature in all seasons. The difference is the most significant in the
summer, reaching 2.68 �C; while it is relatively small in the spring, autumn, and
winter, being 1.67, 0.99, and 0.44 �C, respectively (Table 4.7).

There is also some difference in the spatial patterns of the observed and sim-
ulated temperatures (Fig. 4.13). In comparison with the observed temperature, the
simulated temperature is higher than in the mountainous area and lower in the
plain area. For example, there is a large difference between the observed and
simulated daily average temperature in February and August. There are 49
observation stations with the significant difference between the observed and
simulated daily average temperatures (reaching the significance level of 95 %) in
February, 39 out of which have the simulated value 2.00 �C lower than the
observed value on average. While the simulated temperature of the other 10

Fig. 4.12 Simulated value of the daily average temperature in the North China Plain in February
and August

124 Q. Shi et al.



observation stations is 1.09 �C higher than the observed temperature on average.
The observation stations with the lower simulated temperature are mainly located
in the middle part of Hebei Province and Shandong Province, while that with the
higher simulated temperature mainly concentrate in the eastern piedmont of Tai-
hang Mountain and inner part of Henan Province. By contrast, the differences
between the observed and simulated daily average temperatures in August in 42
observation stations reach the significance level. The simulated value of the 17 out
the 42 observation stations is 0.51 �C lower than the observed value on average.
While the simulated temperature of the other 25 observation stations is 0.98 �C
higher than the observed one on average. The observation stations with the lower
simulated temperature are mainly located in Henan Province and Hebei Province.

In summary, the analysis suggests the WRF model can simulate the seasonal
change and spatial pattern of temperature in the North China Plain very well. Although
there is some difference between the observed and simulated value, with the simulated
temperature being lower than the observed temperature on the whole, there is no
significant difference in the spatial patterns of the observed and simulated tempera-
tures on the whole. There is only some large difference in very few areas, indicating
the WRF model has a great advantage in the simulation of the climate in the plain area.

Table 4.7 Simulated and observed values of the seasonal average temperature at 2 m above the
ground surface in the North China Plain (�C)

Season Winter Spring Summer Autumn

Simulated value 0.89 12.76 23.03 14.27
Observed value 1.33 14.43 25.72 15.27
Ratio between simulated value and observed value 0.44 1.67 2.68 0.99

Fig. 4.13 Difference between the observed and simulated daily average temperature in the North
China Plain in February and August
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4.3.2.3 Analysis of Test Results

The LUCC in the North China Plain, which was characterized by the regional
urbanization, had led to some changes of the near-surface temperature. The annual
average temperature was 14.61 and 14.64 �C in the control test and sensitivity test,
respectively. The LUCC in the North China Plain made the regional near-surface
temperature increase by 0.03 �C/year. All the months except January and June
were characterized by a temperature increase during 1992–2005. Besides, the
LUCC in the North China Plain also led to an increase of the near-surface tem-
perature in all the seasons, among which the temperature increment was the
highest in the summer and the lowest in the winter, reaching 0.05 and 0.02 �C,
respectively. The monthly and seasonal temperature differences in the control test
and the sensitivity test were as shown in Fig. 4.14.

The spatial patterns of temperature increase are consistent in the spring and the
autumn on the whole, both indicating a significant temperature increase in the
North China Plain (Fig. 4.15). The amplitude of the temperature increase is rel-
atively small in the spring (generally around 0.03 �C), while it is very large in the
autumn (above 0.04 �C on average). The temperature increases most greatly in
the summer, increasing by 0.05 �C/year on average, and exceeding 0.1 �C in the
Circum-Bohai-Sea Region and reaching 0.2 �C in the Beijing-Tianjin-Tangshan
zone. Besides, there are much wider regions with a significant temperature in the
summer than in the other three seasons. Although the temperature increases in the
winter on the whole, it still decreases in most regions, especially in the Yanshan
Moutain, Circum-Bohai-Sea Region, Shandong Peninsula, etc.

The spatial pattern of the seasonal temperature change corresponded to that of
the LUCC on the whole. The temperature generally increased in the regions where
the urban and built-up land increases. The temperature increment was very high in
these regions, and the degree and the range of influence of temperature increase
varied significantly among reasons. Taking the Beijing-Tianjin-Tangshan zone as
an example, the temperature increment was very large and the range of the
influence of temperature rise was very wide in the summer in this region. The
regional temperature increased by 0.06–2.8 �C in the summer, and the temperature
change due to expansion of urban and built-up land influenced a wide area around
the Beijing-Tianjin-Tangshan zone. The temperature increment was largely the
same in the spring and the autumn, reaching 0.03–3 �C. However, the temperature
rise mainly influenced Beijing and Tianjing in the spring, and Beijing and some
areas in the north part of Hebei Province in the autumn. The temperature rise was
only obvious in the regions where urban and built-up land increased, while in other
regions the temperature generally decreased by 0.01–0.06 �C, which might be
caused by the wind velocity, which was generally high enough in north China in
the winter and consequently reduced the tendency of temperature rise resulting
from the increase of urban and built-up land (Arnfield 2003; Johnson et al. 1991).

The temperature changes most greatly in the urban and built-up land among all
the land use/cover types in the North China Plain (0.1 �C/year), followed by the
irrigated cropland and pasture (0.06 �C/year). While the temperature increases most
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slightly in the grassland, with an increment of only 0.01 �C/year (Fig 4.16). The
result is largely consistent with the result of the research of Lim et al. (2005), in
which the climate in the northern hemisphere was simulated with the ‘‘CRU-NNR’’
model at the 5 9 5� resolution (the OMR trend value of the urban and built-up land,
crop land, broadleaf forest, and bare land was 0.034/year, 0.02 �C/year, 0.002 �C/
year, and 0.02 �C/year, respectively). However, the simulated result is still some-
what higher, which may be because the ERA40 reanalysis indirectly included the
ground-based observation data and consequently made the OMR trend values
smaller than the results obtained with the numerical simulation.

The vegetation plays an important role in influencing the near-surface tem-
perature. For example, one of the main reasons for the near-surface temperature in
different land-cover and land-use types is the amount and the density of the
vegetation. On the whole, the better the vegetation cover is, the lesser will be the
temperature rise. It may be caused by little evaporation in the barren land, and the
land surface heat mainly gets into the atmosphere in the form of sensible heat. By
contrast, there is higher soil humidity in the densely vegetated land, which makes
the land surface heat mainly get into the atmosphere in the form of latent heat and
consequently reduces part of the temperature rise of the land surface. In addition,
the heat island effect in the urban region also leads to the rise of the near-surface
temperature. By contrast, the temperature increment is less in the water bodies,
mainly because the specific heat capacity of water bodies is very large, which
makes the temperature increase very slow, and consequently makes the near-
surface temperature lower (Su et. al 2005). Furthermore, there is great difference
between the irrigation intensities of the dryland cropland and irrigated cropland,
which leads to great difference in their physical characteristics, and consequently
makes the temperature increments in them differ greatly.

The change of the average near-surface temperature corresponding to each kind
of land use/cover change was summarized in this study. The following figure
shows the temperature change in the eight major kinds of land use/cover change
that involve a large area of land (Fig 4.17). The result showed that the conversion
from dryland crop to forest and built-up land made the near-surface temperature
increase by 0.13 �C/year, while the conversion from dryland crop to grassland
made the near-surface temperature decrease by 0.1 �C/year. By contrast, the other
conversion types only made the near-surface temperature increase by
0.01–0.04 �C/year.

The conversion of croplands to built-up lands can lead to the changes in the
roughness and albedo of the land surface, which cause the change in the radiation
flux of the land surface and consequently make the regional near-surface tem-
perature increase. Besides, changes of the underlying surface due to the urbani-
zation can alter physical processes, such as the energy balance of the land surface
and lead to the ‘‘five island effects’’ (i.e., dark islands, heat islands, dry islands, wet
islands, and rain islands), decreasing the wind velocity and lead to the variable city
climate, and consequently influencing the structure and development of the
boundary layer to change the climate in a large area. Moreover, the conversion
from grasslands to dryland croplands can decrease the albedo of the land surface,
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increase the net radiation of land surface, and consequently make the sensible heat
increase and lead to the increase of the daily average temperature.

4.3.3 Concluding Remarks on the Studies of North China

The land use/cover change in the North China Plain during 1992–2005 is mainly
characterized by the increase of urban and built-up lands and the decrease of
dryland croplands. The urban and built-up lands increased by 2.12 %, and the
dryland cropland decreased by 1.59 %, while other land use/cover types changed
by no more than 0.5 %. Besides, the newly increased urban and built-up land is
mainly located in the Beijing-Tianjin-Tangshan zone and around large and med-
ium-sized cities such as Shijiazhuang, Zhengzhou, Ji’nan, Qingdao, and Lian-
yungang. In addition, the newly increased urban and built-up lands mainly
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converted from the dryland cropland and accounted for 60.55 % of the conversion
of the dryland cropland during this period.

There is no significant difference in the spatial patterns of the observed and
simulated temperatures on the whole, except some slightly large difference in few
areas. The land use/cover change in the North China Plain, which is mainly
characterized by the regional urbanization, has caused significant change of the
near-surface temperature. It led to a regional near-surface temperature rise of
0.03 �C/year. Besides, the spatial pattern of the temperature change corresponded
to that of the land use/cover change on the whole, i.e., the temperature mainly
increase significantly in the regions where the urban and built-up land expanded;
In addition, the degree and range of the influence of the temperature rise varied
greatly among reasons. The temperature changed most significantly in the urban
and built-up land (0.1 �C/year), followed by the irrigated cropland and pasture
(0.06 �C/year). The temperature generally change by 0.02–0.05 �C/year in the
forest, water bodies, and dryland cropland and pasture, and it changed most
slightly in the grassland (0.01 �C/year). Among the all the types of land use/cover
change that involved a large area of land, the conversion of dry land into forest and
built-up land led to the greatest near-surface temperature increment, reaching
0.13 �C/year. While the conversion of dry land and pasture into grassland made
the near-surface temperature decrease by 0.1 �C/year. By contrast, the other
conversions only made the near-surface temperature change by 0.01–0.04 �C/year.

In comparison to the increase of the greenhouse gases that has a global influ-
ence, the land use/cover changes exert more influence at the regional scale.
Generally, the better the vegetation cover is, the lesser will be the temperature rise.
For example, the urban heat island effect in the urban regions where there is less
vegetation will lead to greater increase of the near-surface temperature. Besides,
the temperature increment in the water bodies is generally lower, and consequently
leads to a lower near-surface temperature since the water has a large specific heat
capacity and its temperature generally increases more slowly. What’s more, the
change of the underlying surface due to the urbanization can alter the physical
processes such as the energy balance of the land surface, and consequently lead to
the climate change in a large area. For example, the conversion from the cropland
to the urban and built-up land can change the roughness and albedo of the land
surface, and consequently cause the change in the radiation flux of the land surface
and lead to significant increase of the regional near-surface temperature.

Since this study is preliminary, there are still some deficiencies as follows. First,
there is still some difference between the upscaled land use/cover data and the
initial data, which leads to some uncertainties in the simulated climatic effects of
the land use/cover change. Second, the result may change if the calculus of the
data of a long period is carried out since the study of the impacts of the land use/
cover change on the temperature in the North China Plain is based on the sensi-
tivity test of the numerical integration of the data of only two years in this study. In
addition, there are some uncertainties in the result since there are various feed-
backs within the climate system.
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4.4 Summary

The studies in this chapter mainly focused on the climate effects of the cultivated land
change in China. In the first part, we first generally analyzed the cultivated land
reclamation and the climate change, e.g., the change of temperature and precipitation
in Northeast China during 2000–2010. Then on the basis of these data, the climatic
effects of cultivated land reclamation in Northeast China during 2030–2040 were
simulated by the WRF model, which has been elaborately introduced in Chap. 2.
Finally, the possible effects of the climate change on the grain yield and the potential
influence on the food security were analyzed on the basis of the simulation results.
The simulation result indicated that the temperature in Northeast China would be
increasing on the whole, while the precipitation would be decreasing. Based on the
simulation results, this study proposed some measures and policies to cope with the
future drought and guarantee the grain yield so as to meet the increasing demand for
grain due to the continual population growth.

In the second part, we analyzed the possible biogeophysical effects of cultivated
land change on the climate in northern China during 2010–2030 on the basis of
simulation with the WRF model. The simulation results indicate that the total
cultivated land area in northern China will decrease during 2010–2030, mainly
converting into urban and built-up land and forests due to the urbanization and
governmental policies. Besides, the cultivated land change will lead to the increase
of the sensible heat flux in the regions where a lot of cultivated land will convert
into urban and built-up land; while it will make the latent heat flux increase in the
regions where the cultivated land will mainly convert into forests, mainly through
influencing the evapotranspiration.

In the last part, we explored the impacts of land use/cover change on the near-
surface temperature in the North China Plain in year 1992 and 2005. The results
indicated that the land use/cover change in the North China Plain, which was
characterized by the regional urbanization, had led to significant changes in the
near-surface temperature, making the regional near-surface temperature increase
by 0.03 �C/year on average.

Overall, there are still some uncertainties in the research on the climatic effects of
the land use/cover change; also it is still necessary to carry out more in-depth
researches on a series of issues such as the improvement of the climate model and the
resampling method of the land use/cover change data, especially the land cover data.
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Chapter 5
Simulation of the Plausible Climate
Effects of Ecological Restoration
Programs in China

Qun’ou Jiang, Enjun Ma, Yanfei Li and Anping Liu

This chapter focuses on the climate effect of ecological restoration programs in
China. The fourth assessment report of Intergovernmental Panel on Climate Change
(IPCC AR4) indicated that the human activities are a significant influencing factor of
climate change. Deforestation, grassland degradation, and desertification, which are
mainly induced by human activities, have been greatly intensified due to the irra-
tional exploitation of the natural resources, rapid population growth, and the
expansion of road network in the past decades. Some ecological restoration programs
have been recently carried out, e.g., Green for Grain Project, which can affect the
climate through not only the carbon sink but also the thermal properties of the land
surface. The land cover affects the surface roughness and consequently influences the
transfer of local momentum and heat (Bonan and Pollard 1992).

Since the mid-1970s, scholars studied the impact of deforestation, grassland
degradation, desertification, irrigation, and other land cover changes by using the
global and regional climate model patterns. According to those researches, it can
be concluded that the land use/cover change alters the land roughness, soil
hydrological and thermal features, which lead to the further changes of the tem-
perature, precipitation, downward shortwave radiation, sensible heat, and latent
heat (Loridan et al. 2011). Therefore, it is meaningful to study the effects of land
cover change not only on the climate, but also on the energy balance, and it will
provide the significant reference for land use planning and climate adaptation to
explore how the land cover impacts the climate and energy balance.
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This chapter includes three case studies. The first one attempts to predict the
potential effects of artificial vegetation change on the regional climate in Jiangxi
Province. Based on the Weather Research and Forecasting (WRF) model, a
comparative analysis is carried out on the future temperature and precipitation
under four hypothetical vegetation cover scenarios. The second case study simu-
lates the land cover in the semiarid grassland area of China under the future
scenarios with the DLS model and analyzes the effects of land cover conversion on
the energy balance through the numerical simulation, which may provide some
valuable information for the land use planning and climate change alleviation. As
for the biosphere feedback on regional climate in Northwest China, the potential
effects of grassland degradation on regional climate have also been explored in the
overgrazing area of Northwest China from 2010 to 2040 in the third case studies.

5.1 A Scenario-Based Analysis of Afforestation and Its
Impact on the Regional Surface Climate in Jiangxi
Province, China

Jiangxi Province is covered by large forestry area, and a series of afforestation
project has been carried out in Jiangxi Province. The Green for Grain project is
implemented in 2000, while ‘‘one big and four small’’ project has been in full
operation since 2008. As we know, these projects influence land use conversion
and climate change (Deng et al. 2011a, b). The assessment of potential effects of
artificial vegetation change on the regional climate in Jiangxi Province is mean-
ingful for climate change mitigation and rational land management.

The forestry area in Jiangxi Province had exceeded 63.1 % by 2010, which is
much higher than the national average level (Deng et al. 2011a, b). The area of
needle-leaved forestry area reaches 5.65 million hm2, accounting for 68.1 % of the
arbor area and 52.7 % of the total forestry area in Jiangxi Province, and it will
continue to increase due to afforestation. Meanwhile, the broadleaf forest recovery
will be one of the competitors of the needleleaf forest expansion due to the favorable
water and heat resources. There are currently five kinds of forests in Jiangxi Prov-
ince, i.e., the deciduous broadleaf forest, deciduous needleleaf forest, evergreen
broadleaf forest, evergreen needleleaf forest, and mixed forest. The needleleaf
forests have expanded due to the afforestation in this region, however, the broadleaf
forests are recovering owing to the suitable climatic conditions. Based on the
simulation with WRF model, we carry out a comparative analysis on the future
temperature and precipitation under four hypothetical vegetation cover scenarios.
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5.1.1 Data and Methodology

5.1.1.1 Simulation Scheme

On the whole, the forest change in Jiangxi Province is characterized by the
competition between the needleleaf forests and the broadleaf forests. To cover the
potential effects of the forest vegetation change on regional climate, four hypo-
thetical vegetation cover scenarios are designed in this study, including the sce-
narios of deciduous broadleaf (DB), deciduous needleleaf (DN), evergreen
broadleaf (EB), and evergreen needleleaf (EN), and it means all of the forests are
DB, DN, EB, and EN under the four different scenarios, respectively. The forest
pattern in year 2000 is regarded as the baseline scenario (BL). The effects of
afforestation on the regional climate can be measured with the differences of the
simulation results under the four hypothetical scenarios and the BL scenario.

Ei ¼ Ri � ri

where i refers to the precipitation and temperature; Ei is the effects of the vege-
tation change on the climate under the four hypothetical scenarios; Ri is the
simulation results under the four hypothetical scenarios with extreme vegetation
cover; and ri is the simulation results under the BL scenario.

5.1.1.2 Atmospheric Forcing Data

The Global Forecast System (GFS) is a global spectral data assimilation and
forecast model system produced by National Centers for Environmental Prediction
(NCEP), and dozens of atmospheric are available through this dataset which is on
0.5-degree by 0.5-degree grids prepared operationally every six hours (00:00,
06:00, 12:00, and 18:00 UTC). The NCEP GFS final (FNL) gridded analysis
datasets from January 2000 until the current day can be obtained from its official
website, while this study used the data of NCEP GFSFNL version of 2010 as the
atmospheric forcing dataset of WRF model.

5.1.1.3 Underlying Surface Data

The underlying surface data under the scenarios of DB, DN, EB, and EN as well as
BL, which are required in the scenario-based simulation, were derived from the
dataset of National Basic Research Program of China. The dataset was originally
established with the 1 km 9 1 km grid data based on the satellite remote sensing
images and ground information of year 2000, and it used the land use and land
cover classification system of the United States Geological Survey (USGS). In this
study, the 1 km grid data were first resampled into the 5 km grid data. The
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statistical results of the underlying surface data suggest that more than 40 % are
covered by the forests (2,717 pixels) in Jiangxi Province (Fig. 5.1), and about
30 % of them were covered by the broadleaf forests, while the needleleaf forests
accounted for more than 52 % of the total forestry area.

The underlying surface data under the DB, DN, EB, and EN scenarios are
generated by replacing all the forests with one specific type of forests, respectively.
For instance, the underlying surface data under the DB scenario was generated by
replacing all the forestry area by the deciduous broadleaf forests, and consequently
all the forestry area in Jiangxi Province is covered by the deciduous broadleaf
forests under the scenario of BD. And similarly, the underlying surface data of DN,
EB, and EN were generated by altering the property of pixels.

Fig. 5.1 Forest area of Jiangxi Province in 2000
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5.1.2 Impacts of Afforestation on the Regional Surface
Climate

The simulation results in 2010 are finally obtained under the scenarios of DB, DN,
EB, and EN as well as BL.

5.1.2.1 Effects on the Annual Average Temperature

The simulation results showed that there were significant effects of the vegetation
change on the annual average temperature in Jiangxi Province. Among the results
under the four hypothetical extreme scenarios, there were overall cooling effects
under the scenarios of DB and DN, while warming effects under the scenarios of
EB and EN (Fig. 5.2). The statistics indicates that the deciduous broadleaf
expansion under the scenario of DB will make the annual average temperature
decrease by 0.08 �C. This cooling effect will mainly happen in the southern part of
Jiangxi Province. For some area there, the annual average temperature will even
decline by more than 0.2 �C. By comparison, the expansion of deciduous nee-
dleleaf forests under the scenario of DN only shows slight cooling effects, it is
notable that the cooling effects also mainly happen in the southern part of Jiangxi
Province, but are not as significant as that under the scenario of DB. The results
under the scenarios of DN indicate there are some warming effects in the areas
near the northern and western boundary of Jiangxi Province, while the overall
effects of the expansion of deciduous needleleaf forests make the annual average
temperature decrease by 0.02 �C under the scenario of DN.

The spatial pattern of the warming effects under the scenario of EB is consistent
with the pattern of forests in Jiangxi Province, and the evergreen broadleaf
expansion will make the annual average temperature increase by 0.03 �C
(Fig. 5.2). The annual average temperature under the scenario of EN will increase
by 0.01 �C more than that under the scenario of BL. In summary, the deciduous
forest plays a positive role in decreasing the annual average temperature while
evergreen forest contributes to the increase of annual average temperature, and the
effect of needleleaf forest expansion on annual average temperature is much more
significant than that of broadleaf forest. This may be due to the differences between
the thermal properties of the deciduous and evergreen forests.

5.1.2.2 Effects on the Annual Average Precipitation

The expansion of deciduous forests leads to significant change of the spatial
pattern of the annual average precipitation in Jiangxi Province regardless of the
scenarios. The simulation results showed that the expansion of deciduous broad-
leaf forests will make the annual average precipitation in the southeast part of
Jiangxi Province decrease by more than 400 mm (Fig. 5.3). Besides, the annual
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average precipitation in the northwest part of Jiangxi Province will also increase
by more than 250 mm. However, the expansion of the deciduous broadleaf forests
will make the overall annual average precipitation in the simulation area decrease
by 47 mm under the scenario of DB. By comparison, the drought effects of the
deciduous needleleaf forest expansion under the scenario of DN area is little
slighter than that of under the scenario of DB, it will make the annual average
precipitation decrease by 33 mm in the study area on the whole. What’s more, the
spatial pattern of the climatic effects under the scenario of DN is similar with that
under the scenario of DB.

Fig. 5.2 Simulated effects of afforestation on the annual average temperature (measured in
degrees Celsius) in Jiangxi Province
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In comparison, the simulation results under the scenarios of EB and EN indi-
cated that the overall effects of the evergreen forest expansion on the annual
average precipitation are not as significant as that under the scenarios of DB and
DN. In most part of Jiangxi Province, the evergreen forest expansion will make the
annual average precipitation increase by 50–200 mm under the scenarios of EB
and EN (Fig. 5.3). The drought effects under the scenarios of EB and EN will
mainly happen in the area near the eastern boundary of Jiangxi Province. The
annual average precipitation will decrease by 2.6 and 3.9 mm under the scenarios

Fig. 5.3 Simulated effects of afforestation on the annual average precipitation (measured in
millimeters) in Jiangxi Province
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of EB and EN, respectively. On the whole, the deciduous forest expansion may
aggravate the drought, while the expansion of evergreen forests may increase the
annual average precipitation in most of the regions in Jiangxi Province. So the
expansion of evergreen forests is more favorable than the expansion of deciduous
forests since the seasonal drought is one of the main problems that restrain the
agricultural production in Jiangxi Province.

5.1.2.3 Effects on the Monthly Climate

The effects of afforestation on the monthly average temperature vary from month to
month under all the four scenarios (Table 5.1). Under the scenario of DB, the
deciduous broadleaf forest expansion will result in a relatively stable decrease of the
monthly average temperature in most of the months, by about 0.07–0.08 �C, and it
will decrease most in January and least in July, by about 0.12 and 0.05 �C, respec-
tively. By comparison, there is a slighter decrease of the monthly average temper-
ature due to the deciduous needleleaf forest expansion under the scenario of DN than
that of under the scenario of DB, moreover, it will decrease by no more than 0.03 �C
from April to October. The afforestation even has no effects on monthly average
temperature in March, November, and December under the scenario of DN.

In contrast to the effects under the scenarios of DB and DN, the evergreen
broadleaf forest expansion will lead to some increase of the monthly average
temperature (Table 5.1). The simulation results show that the monthly average
temperature will increase by 0.03–0.05 �C from October to March under this
scenario, and it will decrease by 0.01–0.02 �C in April, May, and June. Besides,
there are no significant effects of the evergreen broadleaf forest expansion on the
monthly average temperature in July, August, and September. There are more

Table 5.1 Simulated effects of afforestation on the monthly average temperature in Jiangxi
Province (measured in degrees Celsius)

Month DB DN EB EN

Mean Std. Mean Std. Mean Std. Mean Std.

Jan -0.12 0.09 -0.06 0.06 0.05 0.06 0.03 0.05
Feb -0.09 0.07 -0.05 0.06 0.03 0.05 0.02 0.05
Mar -0.07 0.07 0.00 0.05 0.05 0.05 0.02 0.05
Apr -0.07 0.06 -0.03 0.05 0.02 0.04 0.01 0.04
May -0.08 0.07 -0.02 0.05 0.01 0.05 -0.01 0.05
Jun -0.08 0.08 -0.03 0.06 0.01 0.06 0.00 0.06
Jul -0.05 0.08 -0.02 0.07 0.00 0.07 -0.01 0.07
Aug -0.06 0.08 -0.01 0.07 0.00 0.06 -0.01 0.07
Sep -0.08 0.08 -0.03 0.06 0.00 0.06 -0.01 0.06
Oct -0.07 0.06 -0.01 0.04 0.03 0.04 0.01 0.04
Nov -0.08 0.07 0.00 0.06 0.05 0.06 0.02 0.05
Dec -0.07 0.07 0.00 0.05 0.05 0.06 0.03 0.05
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complex effects of expansion of the evergreen needleleaf forests under the scenario
of EN, which makes the monthly average temperature decrease from May to
September and increase from October to April (Table 5.1). On the whole, the
variation of the monthly average temperature change under the scenarios of DN,
EB, and EN is similar to that of under the scenario of DB.

Afforestation can affect the monthly average temperature via multiple ways
such as albedo, potential evapotranspiration, and leaf area index. Considering the
plentiful water and heat resources in Jiangxi province, albedo is most likely to be
the principal cause resulting in the monthly average temperature changes. The
changes of albedo under all the four scenarios are provided to help to identify the
reasons of monthly average temperature changes (Table 5.2). A larger increase in
albedo shows a severer decrease trend in monthly average temperature. It implies
that the cooling effect is due to the low surface net radiation caused by high albedo
under the scenarios of DB and DN. And on the contrary, the declines of albedo
under the scenarios of EB and EN may be the major causes of monthly average
temperature increase in Jiangxi Province. The variation of monthly average tem-
perature change also has a convergence trend with that of albedo change. The
correlation coefficient of monthly average temperature change and albedo change
reaches -0.77, which also implies that the temperature changes are mainly derived
from the changes of albedo driven by afforestation.

The effects of afforestation on the monthly average precipitation are more
significant than that on the monthly average temperature. The precipitation in
Jiangxi Province will decrease greatly in the summer under the scenarios of DB
and DN (Table 5.3). Under the scenario of DB, the monthly average precipitation
will decrease by 10.63, 11.50, and 8.63 mm in June, July, and August, respec-
tively. Although the decrement of the monthly average precipitation is smaller
than that of under the scenario of DN, it still reaches 10.42 mm in July. The
drought effects of the deciduous forest expansion will last throughout the year

Table 5.2 Simulated effects of afforestation on albedo in Jiangxi Province (magnified by 10-3)

Month DB DN EB EN

Mean Std. Mean Std. Mean Std. Mean Std.

Jan 11.31 30.52 3.59 27.43 -7.61 28.73 -7.61 28.73
Feb 11.56 30.37 3.75 27.17 -7.57 28.36 -7.56 28.39
Mar 11.51 31.18 3.70 28.05 -7.71 29.26 -7.71 29.25
Apr 11.75 27.83 3.93 24.15 -6.57 25.03 -6.57 25.03
May 12.05 22.80 4.24 17.93 -4.78 18.16 -4.78 18.16
Jun 12.35 20.04 4.54 13.99 -3.58 13.54 -3.58 13.54
Jul 12.34 19.75 4.52 13.59 -3.47 13.12 -3.47 13.12
Aug 12.33 19.92 4.52 13.84 -3.54 13.39 -3.54 13.39
Sep 12.31 20.44 4.49 14.60 -3.77 14.27 -3.77 14.27
Oct 11.80 24.03 3.99 19.62 -5.31 20.22 -5.31 20.22
Nov 11.58 27.10 3.77 23.40 -6.40 24.40 -6.40 24.40
Dec 11.26 28.63 3.57 25.42 -7.10 26.62 -7.08 26.63
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under the scenarios of DB and DN. By contrast, there are slight effects of the
evergreen forest expansion on the monthly average precipitation under the sce-
narios of EB and EN (Table 5.3).The monthly average precipitation will decrease
most in August under the scenario of EB, with a decrement of 1.29 mm, while it
will decrease by no more than 3 mm under the scenario of EN. Overall, there are
no significant variations for the monthly average temperature change among the
scenarios of DB, DN, EB, and EN.

Above all, the effects of annual average temperature show a decreasing order:
EB [ EN [ DN [ DB. By comparison, the expansion of deciduous needleleaf
forests under the scenario of DB shows evident cooling effects. In addition, the
cooling effects mainly happen in the southern part of Jiangxi Province and the
effects of annual average precipitation of the evergreen forests are larger than the
deciduous forests.

5.1.3 Concluding Remarks on Afforestation in Jiangxi
Province

This study analyzes the impacts of afforestation on the regional climate at different
temporal scales under four designed scenarios in Jiangxi Province. The main
conclusions are follows:

(i) The deciduous forest expansion plays a positive role in decreasing the
annual average temperature, while the evergreen forest expansion makes the
annual average temperature increase. On the whole, the effects of the nee-
dleleaf forest expansion on the annual average temperature are not as sig-
nificant as that of the broadleaf forest. The expansion of deciduous forests

Table 5.3 Simulated effects of afforestation on the monthly average precipitation in Jiangxi
Province (measured in millimeters)

Month DB DN EB EN

Mean Std. Mean Std. Mean Std. Mean Std.

Jan -0.16 5.01 -0.18 4.96 -0.06 5.09 -0.01 4.92
Feb -1.03 10.98 -0.89 11.85 0.03 10.60 0.25 10.65
Mar -0.57 10.43 -0.86 11.87 0.07 10.79 0.20 9.93
Apr -2.39 21.93 -1.77 20.83 0.20 22.28 1.44 22.67
May -5.10 43.83 -4.01 41.78 0.34 48.23 -0.99 46.52
Jun -10.63 61.72 -6.37 55.74 -1.20 57.79 -0.34 55.14
Jul -11.50 59.29 -10.42 61.17 -0.89 61.26 -2.95 60.15
Aug -8.63 42.27 -4.86 42.42 -1.29 40.29 -1.89 42.31
Sep -6.79 39.63 -3.48 39.87 0.11 40.48 0.06 38.69
Oct -0.29 9.19 -0.29 8.96 0.09 8.74 0.23 9.01
Nov -0.25 1.40 -0.21 1.35 0.03 1.30 0.07 1.32
Dec -0.03 1.77 -0.08 1.72 -0.03 1.77 0.02 1.69
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may aggravate the seasonal drought in Jiangxi Province, while the expan-
sion of evergreen forests is more favorable since it may increase the annual
average precipitation in most part of Jiangxi Province.

(ii) There are significant effects of afforestation, especially the deciduous forest
expansion, on the monthly average precipitation. There is only slight change
in the monthly average temperature caused by afforestation. What’s more,
the deciduous forest expansion may result in severe drought at the local
scale in the summer in Jiangxi Province.

5.2 Projection of the Biogeophysical Effects of Green
for Grain Project in the Semiarid Grassland Area

Loess Plateau is mainly located in the arid and semiarid area of China with a
fragile ecological environment (Fig. 5.4). Poor land use practices have resulted in
the serious soil erosion, land degradation, desertification, and deterioration of the
ecological environment (Clarke 2000). To speed up the construction of ecological
environment in Western China, the government had implemented the project of
Green for Grain, which has achieved desirable results. It not only prevents the soil
erosion and ecological environment degradation effectively, but also promotes the
development of grass industry, animal husbandry, and agriculture industries after
the policy is implemented comprehensively (Kang 1985). However, when we are
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concerned about the benefits of the Green for Grain project, it should be noted
whether such large-scale land cover changes will impact the regional climate. Will
it relieve the drought to some extent or make it more serious? Does it have effects
on energy balance of near surface? Returning cropland to forestry area or grassland
will continue in the next few decades to protect the ecological environment;
therefore, the contribution of land cover changes to the energy flux of near surface
becomes one of the significant issues (Kang 1985).

To quantify the effects of land cover changes on energy balance in the Loess
Plateau, it is essential for regional ecological environment construction. This study
simulates the spatial heterogeneity of land cover changes based on the Dynamics of
Land System (DLS) model, estimates the surface energy variation at a regional scale
based on the principle of energy balance and similarity theory of boundary layers with
the WRF model, and finally explores the response mechanism of the temporal and
spatial variation of surface energy on land cover changes. The results will provide the
scientific reference for the land use planning and climate change mitigation.

5.2.1 Data Source and Handling

5.2.1.1 Land Cover Data

Different communities have different land cover classification systems, and this
study applies the classification system of USGS with 24 types of land cover. First,
1 km land cover data in 2010 are extracted from the remote sensing images, and the
year 2010 is taken as the baseline year. Then two kinds of scenario, e.g., coordinated
environmental sustainability (CES) scenario, rapid economic growth (REG) sce-
nario, etc., are designed. The land cover data during 2010–2050 are simulated by
DLS model based on the land demand estimated under the two scenarios. Finally,
the 1 km resolution land cover data from 2010 to 2050 were resampled into 10 km
resolution data according to the requirement of the WRF model.

5.2.1.2 Forcing Data

The forcing data required in the WRF model, including wind field, surface air
temperature, longwave radiation, shortwave radiation, and so on, are derived from
the dataset of the fifth phase of the Climate Model Intercomparison Project
(CMIP5). CMIP5 consists of 29 global climate models, and the dataset of Geo-
physical Fluid Dynamics Laboratory CM3 (GFDL-CM3) model are adopted in this
study. It incorporates an atmospheric chemistry model within the fully interactive
framework of the atmosphere, ocean, land, and sea ice components, and has four
Representative Concentration Pathways (RCPs) scenarios such as RCP2.6,
RCP4.5, RCP6.0, and RCP8.5. This study analyzed the energy balance under the
RCP6.0 scenario, the CO2 concentration under this scenario rank in the
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intermediate level, and it is more tally with the actual situation in China. Since the
dataset has been established and updated since July 1999, all the data needed in
this study can be obtained, e.g., the surface observation data and the remote
sensing data.

5.2.2 Methodology

5.2.2.1 Experiment Design

The WRF model is developed into two versions, one is for business, another one is
for research, and this study adopts the latter one, namely ARW (Advanced
Research WRF), to carry out the relevant simulation. To simulate the energy
distribution of near land surface more accurately, this study applies three-layer
nested structure including D01, D02, and D03, and the area ratio of three layers is
3:2:1. The spatial resolution of output of D03 is set to 1 km (Fig. 5.5). The air
temperature, sea ice, and soil moisture data required by the model are updated
every day.

The parameterization scheme of physical processes in the WRF model is as
follows. The longwave radiation scheme and shortwave radiation scheme adopted
RRTM and Dudhia, respectively, the boundary layer process scheme utilized YSU,
and the land surface process scheme used NOAH Land surface model (Table 5.4).
The simulation was implemented with the climate forcing data from January of
2010 to December of 2050.

Fig. 5.5 Schematic diagram of scheme design for three-layer nested WRF model

5 Simulation of the Plausible Climate Effects 147



T
ab

le
5.

4
D

es
ig

n
of

W
R

F
m

od
el

an
d

re
la

ti
ve

de
sc

ri
pt

io
n

W
R

F
D

es
ig

na
ti

on
D

es
cr

ip
ti

on

S
im

ul
at

io
n

pe
ri

od
20

10
_0

1_
01

–2
05

0_
12

_3
1

T
im

e
re

so
lu

ti
on

D
ay

D
01

/0
2/

03
la

nd
co

ve
r

da
ta

U
S

G
S

M
ic

ro
ph

ys
ic

s
pa

ra
m

et
er

iz
at

io
n

sc
he

m
e

W
S

M
3

It
in

cl
ud

es
w

at
er

va
po

r,
cl

ou
d

w
at

er
,

ra
in

,
cl

ou
d

ic
e,

sn
ow

,
an

d
cl

ou
d

w
at

er

L
on

gw
av

e
ra

di
at

io
n

sc
he

m
e

R
R

T
M

It
us

es
pr

e-
se

t
ta

bl
es

to
ac

cu
ra

te
ly

re
pr

es
en

tl
on

gw
av

e
pr

oc
es

se
s

du
e

to
w

at
er

va
po

r,
oz

on
e,

C
O

2
,a

nd
tr

ac
e

ga
se

s
(i

f
pr

es
en

t)
as

w
el

l
as

ac
co

un
ti

ng
fo

r
cl

ou
d

op
ti

ca
l

de
pt

h
S

ho
rt

w
av

e
ra

di
at

io
n

sc
he

m
e

D
ud

hi
a

It
is

a
si

m
pl

e
do

w
nw

ar
d

in
te

gr
at

io
n

of
so

la
r

fl
ux

,
ac

co
un

ti
ng

fo
r

cl
ea

r-
ai

r
sc

at
te

ri
ng

,
w

at
er

va
po

r
ab

so
rp

ti
on

(L
ac

is
an

d
H

an
se

n
19

74
),

an
d

cl
ou

d
al

be
do

an
d

ab
so

rp
ti

on
.

It
us

es
lo

ok
-u

p
ta

bl
es

fo
r

cl
ou

ds
fr

om
S

te
ph

en
s

(1
97

8)
L

an
d

su
rf

ac
e

pr
oc

es
s

sc
he

m
e

N
oa

h
la

nd
su

rf
ac

e
m

od
el

U
ni

fi
ed

N
C

E
P

/N
C

A
R

/A
F

W
A

sc
he

m
e

w
it

h
so

il
te

m
pe

ra
tu

re
an

d
m

oi
st

ur
e

in
fo

ur
la

ye
rs

,
fr

ac
ti

on
al

sn
ow

co
ve

r
an

d
fr

oz
en

so
il

ph
ys

ic
s

B
ou

nd
ar

y
la

ye
r

pr
oc

es
s

sc
he

m
e

Y
S

U
N

on
-l

oc
al

-K
sc

he
m

e
w

it
h

ex
pl

ic
it

en
tr

ai
nm

en
t

la
ye

r
an

d
pa

ra
bo

li
c

K
pr

ofi
le

in
un

st
ab

le
m

ix
ed

la
ye

r

C
um

ul
us

pa
ra

m
et

er
iz

at
io

n
sc

he
m

e

K
ai

n–
F

ri
ts

ch
It

ut
il

iz
es

a
si

m
pl

e
cl

ou
d

m
od

el
w

it
h

m
oi

st
up

dr
af

ts
an

d
do

w
nd

ra
ft

s,
in

cl
ud

in
g

th
e

ef
fe

ct
s

of
de

tr
ai

nm
en

t,
en

tr
ai

nm
en

t,
an

d
re

la
ti

ve
ly

cr
ud

e
m

ic
ro

ph
ys

ic
s

148 Q. Jiang et al.



5.2.3 Scenario Design

Based on the characteristics of socialeconomic development in the past 30 years,
we design two kinds of socialeconomic development scenarios, that is, REG
scenario and CES scenario. Among the two scenarios, the social and economic
development process such as population, factor endowments, and technological
advances are all taken into account in Loess Plateau. Under the REG scenario, it
assumes that the reforms will be put forward quickly and smoothly, the role of
market in the allocation of resources will be enhanced obviously, structural
adjustment will be vigorously promoted, and the economic growth pattern will
make progress. CES scenario mainly considers that it is developed with slower
urbanization, slow recovering of the world economy, serious trade protection, slow
export growth, higher international energy prices, restricted energy imports, slow
progress in system reform, and slow technological innovation and efficiency
improvement.

5.2.4 Land Cover Changes from 2010 to 2050
in the Semiarid Grassland Area of China

This study simulates the land cover of the semiarid grassland area of China from
2010 to 2050 under two kinds of scenarios by DLS model, and the robust of the
DLS model has been proven through investigation, so the simulation results is
trustworthy. The simulation results illustrate that the spatial distribution of land
cover in the study area has no disruptive changes from 2010 to 2050, but the
changing ratio will gradually slow down. The analysis on land cover change
between different periods indicates that the conversion types are mainly dominated
by the conversion between cropland and grassland, but the tendency and scale of
the major land cover changes are various under different scenarios.

Under the CES scenario, the grassland cover shows an increasing trend.
Although the forestry area will rise in some parts of the study area to some extent,
the total forestry area will show a slight downward trend from 2010 to 2050.
Maybe the harsh natural conditions restrict the forestry area expansion, and it is
notable that the largest part of the newly increased forest cover is shrubland.
Additionally, the CES scenario takes the Green for Grain project into account,
which promotes the growth of grassland area and the decrease in the cropland area.
In the period of 2010–2030, the grassland will grow by 4.8 %, and it will increase
4.4 % during the period of 2030–2050. Most of the increased grasslands are
converted from cropland, and are mainly distributed in the Shanxi Province,
southern Shaanxi Province, southeast of Gansu Province, and some areas of
Ningxia. As for the cropland, it will reduce by 22.6 9 103 km2 from 2010 to 2030,
and by about 19.8 9 103 km2 in the period of 2030–2050. Barren or sparsely
vegetated land is another kind of land cover which is mainly converted to
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grassland or shrubland in the north and middle of the semiarid grassland area of
China due to ecological recovery construction (Fig. 5.6). Another significant
conversion is cropland to urban area, and the expanded urban area is mainly
located in the surroundings of the cities. Western China is in the rapid process of
urbanization and industrialization; therefore, urban area expansion cannot be
prevented in the immediate future.

Fig. 5.6 Land cover change under different scenarios from 2010 to 2050 a REG scenario, b CES
scenario, c Baseline year
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The socioeconomic development and rapid urbanization mean that more lands are
converted to urban area. During the period of 2010–2050, there will be an increase of
5.3 9 103 km2 for urban area in the semiarid grassland area of China under the REG
scenario, most of which is converted from cropland. Correspondingly, there is less
cropland converted to grassland or forestry area. Compared to the CES scenario, the
grassland will increase only by 23.3 9 103 km2 during the period of 2010–2030,
while with an increase of 4.2 % in the period of 2030–2050. The expansion of
grassland is mostly concentrated in the eastern part of Loess Plateau (Fig. 5.6). On
contrary, most of the cropland is located in the southern part of the study area
including the central and southern Shanxi Province, southern Shanxi Province, and
southeastern Gansu Province. It is notable that there are more water resources in the
eastern and southern part of study area, which is beneficial for forest growing. Under
the REG scenario, some areas of grasslands are degraded to bare land or are turned
into cropland in the western part of the semiarid grassland area of China.

5.2.5 Effects of Land Cover Conversion on Energy Balance
in the Semiarid Grassland Area of China

This study simulates the latent heat flux and downward shortwave radiation by the
WRF model, and then summarizes the latent heat flux and downward shortwave
radiation on different types of land cover. The results indicate that the energy
fluxes vary with the land covers, so the land cover conversion will produce dif-
ferent effects on regional environment and climate, however, the extent of their
impacts and sensitive region has obvious temporal and spatial disparity. In addi-
tion, the statistical results show that forestry area has highest latent heat flux with
36.0 W/m2, while urban area has relative low latent heat flux which is 15.0 W/m2

(Table 5.5). As for the downward shortwave radiation, the urban area is highest
with 295.0 W/m2, while it is lowest for cropland and pasture.

5.2.5.1 Latent Heat Flux

The simulation results show that the barren or sparsely vegetated land in the
western parts of Inner Mongolia Autonomous Region and northern Shaanxi
Province has lower latent heat flux, while it is higher in the southern areas which

Table 5.5 Statistics of heat flux and radiation (measured in W/m2) of different land covers

land cover types Latent heat flux Downward shortwave radiation

Cropland and pasture 24.9 279.6
Grassland 25.3 284.0
Forestry area 36.0 289.9
Urban area 15.0 295.0
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are mostly covered by grassland, shrubland, cropland, and pasture. Actually, the
forestry area also has higher latent heat flux; however, it has no obvious effects on
energy flux since the forestry area in the study area is extremely small.

The annual average latent heat flux in the semiarid grassland area of China will
not change obviously from 2010 to 2050, with only 3.2 W/m2 increment. How-
ever, there will be various climate effects in different areas from 2010 to 2050
(Fig. 5.7). Due to the impacts of the Green for Grain project, the latent heat flux
will increase in the middle part of Shanxi Province, southern part of Ningxia
Province, southern and southeast part of Gansu Province, with the increment
ranging from 1.2 to 20.4 W/m2. The grassland degradation could lead to the
decrease of latent heat flux in the middle part of Inner Mongolia Autonomous
Region, north of Ningxia Province, northwest of Shaanxi Province because of the
conversion from grassland to barren or sparsely vegetated land, with a decrease of
3.2 W/m2 (Fig. 5.7).

To predict the energy balance in the future, this study simulates the energy flux
under two scenarios. The results illustrate that the latent heat flux under the CES
scenario is higher than that of under the REG scenario due to the fact that more
ecological constructions are conducted under the CES scenario, which will pro-
duce more latent heat flux. It can be seen from the Fig. 5.7 that the two scenarios
have similar spatial distribution of latent heat flux, but there are regional
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Fig. 5.7 Latent heat flux changes under different scenarios in 2030 and 2050 in the semi-arid
grassland area of China (W/m2) a REG scenario in 2030, b CES scenario in 2030, c REG scenario
in 2050, d CES scenario in 2050
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differences as well. The CES scenario has smaller areas within the range of
4–14 W/m2 especially in the central regions, but larger areas within the range of
44–64 W/m2.

5.2.5.2 Downward Shortwave Radiation

Downward shortwave radiation is one of the significant factors influencing the
energy balance of climate system. This study simulates the downward shortwave
radiation in different periods under the REG scenario and CES scenario from 2010
to 2050. The results indicate that the downward shortwave radiation is weak in the
Inner Mongolia Autonomous Region, the northern part of Shaanxi Province, and
Ningxia Hui Autonomous Region, while it is stronger in the southeastern area of
Loess Plateau. This is because the northern part of Loess Plateau is covered mainly
by the overlapped zone of the grassland and barren or sparsely vegetated land,
while the land cover in the southeastern part is dryland cropland pasture. It can be
seen from here that the Green for Grain project will reduce the downward
shortwave radiation. However, different scenarios have different kinds of land
cover changes, so the downward shortwave radiation under two different scenarios
has significant spatial and temporal disparity.
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Fig. 5.8 Downward short wave radiation changes under different scenarios in 2030 and 2050 in
the semi-arid grassland area of China (W/m2) a REG scenario in 2030, b CES scenario in 2030,
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According to the statistical analysis on the downward shortwave radiation at the
grid scale, it can be found that the annual average downward shortwave radiation
will have no obvious changes from 2010 to 2050 without regarding the scenarios,
which will grow consistently from 280.4 to 282.1 W/m2 under the CES scenario,
and that under the REG scenario will increase from 276.2 to 280.5 W/m2 (Fig. 5.8).
Although the Green for Grain project can reduce the downward shortwave radiation,
the urban area expansion will lead to more downward shortwave radiation, and that
is why there is a higher increment of downward shortwave radiation under the REG
scenario. On comparing the downward shortwave radiation under two different
scenarios, it can be seen that it is higher under the REG scenario than that of under
the CES scenario in the period of 2010–2050. The spatial distribution of downward
shortwave radiation in 2030 and 2050 under the REG scenario represents that the
area, whose downward shortwave radiation is less than 265 W/m2, is expanding
especially in the northern and middle region and the western part of the semiarid
grassland area of China due to the ecological recovery (Fig. 5.8). For example, the
barren or sparsely vegetated lands are improved to be grassland gradually.

5.2.6 Concluding Remarks on Biogeophysical Effects
of Green for Grain Project

This study applies the DLS model to simulating the land cover distribution from
2010 to 2050 under the CES scenario and REG scenario, and then analyzes the
effects of land cover change on the regional energy balance in the semiarid grassland
area of China through implementing the numerical simulation with the WRF model.
Latent heat and radiation are the main factors influencing the energy balance, so this
study selects two indexes including latent heat and downward shortwave radiation
to explore the energy balance in the study area. The conclusions are as follows:

(i) There will be no significant change in the spatial pattern of the land cover in
the study area during 2010–2050. The changing ratio of all the land cover
types will show a decreasing trend with time. Under the CES scenario, the
grassland shows an increasing trend, while the forest cover is shrinking
because the harsh natural conditions restrict the forestry area expansion, and
shrubland accounts for the largest percentage of the newly increased forest
cover. Barren or sparsely vegetated land will be mainly converted to
grassland or shrubland. During the period of 2010–2050, there will be an
increase in urban area under the REG scenario, and the main land cover
converted to urban area is cropland. Compared to the CES scenario, the rate
of increase of grassland will be lower, and the expansion of grassland is
mainly concentrated in the western part of Loess Plateau.

(ii) The simulation results indicate that there will be no obvious changes in
energy flux of near surface under the CES scenario, and the latent heat flux
and downward shortwave radiation will all have small-scale increase.
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Therefore, the land cover conversion maybe has no great impact on climate in
the coming 40 years. However, the spatial disparity of energy flux is extre-
mely significant. The Green for Grain project makes the latent heat increase
to some extent, while the grassland degradation could lead to the decrease of
latent heat due to the conversion from grassland to barren or sparsely vege-
tated land. As for the downward shortwave radiation, it can be seen that it is
higher under the REG scenario than that of under the CES scenario in the
study period. Urbanization and the decrease in forestry area will offset the
energy flux reduction brought by grassland expansion to some extent.

Although we have carried out an estimation for the effects of land cover change
on energy balance by the WRF model, there are certain limitations in our analysis.
First, there is uncertainty on the prediction of socialeconomic developments,
moreover, the accuracy of the prediction for the socialeconomic development
determines the prediction for the land cover change, which further impacts the
simulation of regional climate. Therefore, there is uncertainty on all of the sim-
ulations. Second, there are various factors that influence the regional energy flux,
but in this study, only the land cover change is taken into account to analyze its
impacts on the regional energy flux.

5.3 Numerical Simulation of the Effects of Grassland
Degradation on the Surface Climate in Overgrazing
Area of Northwest China

As one of the most widespread land use type, grassland covers about 40 % of the
total area of China. It can not only provide amount of food and materials such as
milk, meat, forage, etc., but also can regulate the regional climate, e.g., the mit-
igation of greenhouse gas (GHG) emissions through soil organic carbon (C) and
nitrogen (N) sequestration (Fan et al. 2008; Barthold et al. 2013). In the past
decades, the grassland degradation and desertification in Northwest China have
greatly intensified due to the livestock overgrazing, rapid population growth,
irrational exploitation of the natural resources, and the expansion of road network
in recent years (Xu et al. 2012; Deng et al. 2011a, b). Furthermore, the grassland
degradation has led to the decline of grassland productivity and increased the
frequency of extreme climate events such as droughts and fierce freeze-up, which
have seriously influenced the sustainable development of animal husbandry (Deng
et al. 2011a, b). Therefore, it is of great importance to study the influence of
grassland degradation on the climate in the overgrazing area of Northwest China
(Bounoua et al. 2002).

Some studies have found that the grassland degradation in overgrazing areas of
Northwest China has brought about obvious effects on the regional climate (Nobre
et al. 1991; Foley et al. 1996; Gibbard et al. 2005). However, those researches
mainly focused on the effects of grassland degradation in the historical period,
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while this study aims to explore the potential impacts of grassland degradation on
climate change in overgrazing area of Northwest China from 2010 to 2040.

5.3.1 Data and Methodology

5.3.1.1 Case Study Area

The overgrazing area of Northwest China is located between 104� 040 and
114� 020 E, 32�400 and 41� 200 N, with a total land area of 811,856 km2, and
covers five provinces including Ningxia Province, the southeast part of Gansu
Province, Shaanxi Province, the western part of Shanxi Province, and the middle
and southwest part of Inner Mongolia Autonomous Region (Fig. 5.9). This area
stretches across the eastern monsoon region and northwest arid region, with an
annual average temperature of 5–10� and the annual precipitation of 200–800 mm,
and is close to the Qinghai–Tibet alpine region, approximately located in the
transition zone of the three major natural zones of China. There is very limited
water resource, the spatiotemporal distribution of which is very imbalanced, and
there are frequently meteorological disasters. It is one of the largest grazing areas,
and is also the major production base of the animal husbandry industry in China.

The grassland and cultivated land are the dominant land use types in this region,
accounting for 36.19 and 29 % of the total area, respectively. The irrational uti-
lization of grassland resources is very common due to overgrazing and over-
reclamation under the background of one-sided pursuit of economic benefit since
the 1980s, which has led to the continual degradation of the grassland. The

Fig. 5.9 Location of the study area and the distribution of land use type in the overgrazing areas
of Northwest China
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proportion of grassland accounting for the total area of Northwest China has
decreased from about 36 % in 1995 to 31 % in 2008, and most of grassland
degraded into barren land and croplands. The intensive grassland degradation has
resulted in more and more acute contradiction between the human and nature,
economic development, and eco-environmental conservation.

5.3.1.2 Data Resource

The data required in this study are similar to the ones in the second case study, and
have the same derivation. The differences are that the data in this case study are
from 2010 to 2040, so we will not illustrate them again over here.

5.3.1.3 Test Design

The parameterization scheme of physical processes in the WRF model in this study
is as follows (Table 5.6). It mainly includes the WSM 3-Class simple ice physical
scheme, ensemble cumulus convection schemes of Grell-Devenyi ensemble, YSU,
CAM3 radiation schemes, and consolidated NOAH land surface parameterization
scheme (Snyder et al. 2004).

In this study, two numerical simulation tests, including the control test and
sensitivity test, are designed and performed with the same horizontal resolution
and parameterization scheme in order to analyze the effects of grassland degra-
dation on the regional climate more accurately. The control test is designed as a
reference case, which uses the land cover data of 2010 and assumes that the land
cover will not change during 2010–2040. On contrary, the sensitivity test supposes
that the land cover change with time, therefore, it will apply the simulated land
cover from 2010 to 2040, in which part of grassland converted into bare land,
croplands, or urban area. The center of the simulated area is located at 37�530 N,
109�10 E with two standard parallels of 39� N and 35� N, including 27 grid points
in the east–west direction, and 48 grid points in the north–south direction. The
simulation period is 30 years from January 1st, 2010 to December 31st, 2040.

Table 5.6 Parameterization
scheme of physical processes
in the WRF model

Classification of schemes Scheme option

Physics parameterization scheme WSM 3-class simple ice
Cumulus parameterization scheme Grell-Devenyi ensemble
Boundary layer process scheme YSU
Radiation scheme CAM 3 radiation
Land surface process scheme Noah land surface model
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5.3.2 Results

5.3.2.1 Forecast of Future Grassland Degradation in Overgrazing
Areas of Northwest China During 2010–2040

The grassland in Northwest China mainly concentrates in the southern and middle
part of Inner Mongolia and Ningxia Province, the northeast of Gansu Province and
southern part of Shaanxi Province, accounting for about 35 % of the total area of
overgrazing areas in Northwest China. This study stimulates the grassland change
in overgrazing areas of Northwest China from 2010 to 2040, and the results
indicated that the grassland degradation is still severe in the future 30 years
because of the increasing population and unreasonable use of the grassland, and
the conclusion is coherent with that of previous study (Wu et al. 2013). The main
conversion will be between grassland and croplands, bare land and urban land.

This study also statistically analyzes the number of grid cells converting from
grassland into other land types between 2010 and 2040. The result indicates that
there will be 55 grids converting from grassland into other land types from 2010 to
2040 in the study area (Fig. 5.10). About 48 % of the converted grassland will
convert into croplands, which mainly distributed in the southeast part of Inner
Mongolia Autonomous Region, northwest part of Shaanxi Province, and northeast

Fig. 5.10 Conversion from
grassland to other land use
types between 2010 and 2040
of the overgrazing areas in
Northwest China
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part of Gansu Province. The obvious conversion from grassland into barren land
will mainly occur in southern and central part of Inner Mongolia and Shanxi
Province, southern part of Ningxia Province, and southeast part of Gansu Province,
accounting for 42 % of the total number of converted grids. There will be nine
grids converting from grassland into urban land, accounting for about 10 % of the
total number of converted grids. In summary, the grassland in overgrazing areas of
Northwest China will be mainly converted into barren land and croplands.

5.3.2.2 Result of the Control Test

This study first simulates the temperature and precipitation in 2010 with WRF
model, then validates the correction of simulation, and the results indicate that
WRF model can simulate the temporal change of temperature very well
(Figs. 5.11a and 5.12a). According to the monthly temperature change in the entire
study area, the simulated temperature is roughly consistent with the observed value
in the spring and winter, and the difference between them ranges from 0 to 0.5 �C

Fig. 5.11 Difference between the observed and simulated monthly temperature (a) and
precipitation (b) in 2010 in the overgrazing areas of Northwest China
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(Fig. 5.11a). However, the temperature is obviously lower than the observed value
in both the summer and autumn, with the difference ranging from 0.5 to 2.5 �C. As
shown from Fig. 5.12a, the stimulated annual average temperature is lower than
the observed value, and the difference between them ranges from 0.2 to 1.4 �C,
indicating that there is only slight difference between the stimulated and observed
annual average temperature.

The simulated precipitation in the spring and autumn of 2010 is lower than the
observed value, and the difference between them ranges from 5 to 40 mm in most
of the months except June (Fig. 5.11b). Figure 5.12b reveals that the annual
precipitation of 2010 in overgrazing areas of Northwest China, especially the
southeast part of Gansu Province and northwest of Shaanxi Province, is lower than
the observed value, and the difference between them generally ranges from 5 to
30 mm. Overall, the difference between the simulated and observed monthly and
annual change of precipitation is not extremely obvious. Therefore, the WRF
model can also simulate the monthly and annual change of precipitation very well.

5.3.2.3 Effects of Grassland Degradation on the Land Surface
Temperature

The impacts of grassland degradation on the temperature in overgrazing areas of
Northwest China can be analyzed through calculating the difference in the annual
average near-surface temperature (air temperatures at 2 m above the ground)

Fig. 5.12 Difference between the simulated and observed annual average temperature (a, �C)
and annual precipitation (b, mm) in the overgrazing areas of Northwest China in 2010
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between the results of the control test and sensitivity test. The simulation result
indicates that there will be different climate effects of the grassland degradation in
different areas and seasons from 2010 to 2040 in the overgrazing areas of
Northwest China (Fig. 5.13). Besides, the results of the two tests showed that the
grassland degradation would increase the land surface albedo, which could lead to
the decrease of near-surface temperature in the winter in the middle part of Inner
Mongolia Autonomous Region, southwest of Ningxia Province, northwest of
Shanxi Province due to the conversion from grassland to barren land and urban
land with the decrement reaching 0.2 �C (Fig. 5.13a). Although the near-surface
temperature of the winter increased in the middle part of Shaanxi Province and
northern part of Shanxi Province due to the decrease of land surface albedo caused
by conversion from grassland to croplands. The grassland degradation can mainly
result in the decrease of the near-surface temperature in winter in the study area.

The impacts of grassland degradation are more complicated and widespread in
the summer than those in winter. The grassland degradation can decrease the
surface albedo, which will result in the increase of the near-surface temperature in
the overgrazing areas of Northwest China, with an increment of about 0.4–1.2 �C
(Fig. 5.13b). The temperature most obviously rise in the southwest of Inner
Mongolia and middle part of Shaanxi with the increment of about 1.2 �C.
Although surface temperature of summer decrease in the southern part of Inner
Mongolia, the southern part of Shaanxi Province, southeast of Gansu Province
with the drop scale of about 0.4 �C (Fig. 5.13b), which would be caused by the
conversion from grassland to croplands since there is obvious difference between

Fig. 5.13 Difference in the annual average temperature (�C) in winter (a) and summer (b) from
2010 to 2040 in the overgrazing areas in Northwest China between the sensitivity test and the
control test
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the surface albedo of croplands and grassland and the higher evapotranspiration of
the croplands. The grassland degradation would mainly lead to the increase of
surface temperature in summer in the overgrazing areas of Northwest China.

5.3.2.4 The Effect of Grassland Degradation on Precipitation

The simulation result indicates that the grassland degradation can cause the decrease of
precipitation in the winter in most parts of the overgrazing areas in Northwest China,
with a decrement from 0 to 12 mm (Fig. 5.14a). Particularly, the annual precipitation
in the northwest part of Shanxi Province, southern part of Inner Mongolia Autonomous
Region will decline most obviously due to the serious grassland desertification, with a
decrement of about 12 mm. Besides, in the summer, the conversion from grassland to
barren land can result in the obvious decrease of precipitation in northern and central
part of Shanxi Province, northern part of Inner Mongolia and Ningxia Province, with
the decrement ranging from about 4 to 20 mm (Fig. 5.14b).

The numerical simulation of temperature and precipitation in the next 30 years
shows that the grassland degradation in the overgrazing areas of Northwest China
will make the climate change to show a dry-warm trend according to the results of
the control test and sensitivity test. The results are consistent with theoretical
analysis results that the underlying surface change will lead to regional climate
change (Boucher et al. 2012), i.e., the vegetation degradation will cause the
increase of surface albedo, and thereby leads to the decrease of precipitation and
increase of temperature.

Fig. 5.14 Difference in the annual precipitation (mm) in the winter (a) and summer (b) from
2010 to 2040 in overgrazing areas of Northwest China between the sensitivity test and control test
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5.3.3 Concluding Remarks on the Surface Climatic Effects
of Grassland Degradation

Based on the analysis of grassland change in the future, this study analyzed the
impacts of grassland degradation on the regional climate in the overgrazing areas
of Northwest China through implementing the numerical simulation with the WRF
model. The conclusions of this study are as follows.

(i) WRF model can simulate the spatial pattern and change of temperature and
precipitation very well, although the simulated value is a bit lower than the
observed value. Besides, the grassland of Northwest China would mainly
degrade into croplands, bare land, and urban land over the next 30 years.
The most obvious grassland change will occur in the central part of Inner
Mongolia Autonomous Region, northwest part of Shaanxi Province.

(ii) The grassland degradation will make the climate change show a dry-warm
trend in the overgrazing areas of Northwest China in the future 30 years.
The impacts of grassland degradation on the climate will vary in different
seasons. In summer, the grassland degradation will lead to the increase of
surface temperature and decrease of precipitation. While in winter, it will
lead to the decrease of both the precipitation and temperature.

(iii) There are generally various impacts of land cover change on the climate
change. However, this study has only analyzed the effects of grassland
degradation on the temperature and precipitation. Actually there are other
kinds of land use conversion which will also have effects on climate
change, therefore, more land use conversions should be taken into account
in the future research. In addition, there are various factors that influence
the regional climate, but only the land cover change is used to analyze the
impacts of grassland degradation on the regional climate in this study,
which leads to some uncertainties of the results. Therefore, more efforts
should be made in the future researches on the sensitivity test to reduce the
uncertainties of the results.

5.4 Summary

This chapter focused on the climate effect of ecological restoration programs in
China, and carried out three case studies in China. In the first case, we assessed the
potential effects of artificial vegetation change on the regional climate in Jiangxi
Province, China. Based on the simulation with the WRF model, a comparative
analysis was carried out on the future temperature and precipitation under four
hypothetical vegetation cover scenarios. The simulation results indicated that the
vegetation change would have significant effects on the regional climate. The
simulated effects of annual average temperature showed a decreasing order:
evergreen broadleaf [ evergreen needleleaf [ deciduous needleleaf [ deciduous
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broadleaf, and the effects of annual average precipitation of the evergreen forests
would be bigger than the deciduous forests. The deciduous forests play a positive
role in decreasing the annual average temperature, while the evergreen forests
promote the annual average temperature rise. Besides, the expansion of deciduous
forests may result in severe drought in the summer in Jiangxi Province.

In the second case, we simulated the land cover under the future scenarios, and
analyze the effects of land cover conversion on energy balance in the semiarid
grassland area of China through the numerical simulation with the WRF model.
The results indicate that the grassland will show a steadily upgrowing trend under
the CES scenario. Compared to the CES scenario, the rate of increase in grassland
cover is lower, while the rate of increase in urban land cover will be higher under
the REG scenario. Although the conversion from cropland to grassland will reduce
the energy flux, the expansion of urban area and decreasing of forestry area will
bring about more energy flux. As a whole, the energy flux of near surface will
obviously not change under the CES scenario, and the climate therefore will not be
possible to be influenced greatly by land cover change. The energy flux under the
REG scenario is higher than that under the CES scenario.

The last case study investigated the effects of biosphere feedback in grassland
of Northwest China. Based on the forecast of the conversion pattern from grass-
land to other land use types in next 30 years, the potential effects of grassland
degradation on regional climate in the overgrazing area of Northwest China from
2010 to 2040 have been explored with the WRF model. The analysis results show
that grassland will mainly convert into bare land and croplands, which account for
42 and 48 % of the total converted grassland area, respectively. The grassland
degradation during next 30 years will result in the increase of temperature in
summer, with an increment of 0.4–1.2 �C, and the decrease of temperature in
winter with a decrement of 0.2 �C. In addition, grassland degradation will cause
the decrease of precipitation in both summer and winter, with a decrement of
4–20 mm. On the whole, those research conclusions can offer valuable informa-
tion for the land use planning and climate change adaptation.
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Chapter 6
Regional Climate Impacts of Future
Urbanization in China

Xinli Ke, Jinyan Zhan, Enjun Ma and Juan Huang

Urbanization is one of the most important anthropogenic influences on surface
climate. The process of urbanization has a profound impact on local, regional, and
global climate change by natural to artificial land use/cover changes and anthro-
pogenic heat emissions. Therefore, with the rapid urbanization, the impact of
urbanization especially urban land expansion on global climate change has been
one of the hot topics in research fields (Lei et al. 2008). In some specific areas,
urban land use change even surpasses greenhouse gases in regulating climate,
becoming an important factor which exerts impact on regional and global climate
change (Jin et al. 2005). Previous studies have analyzed the effects of urban land
surface change at the microscale; however, it is also necessary to study how both
the past and future urbanization might affect the weather and surface climate.

Urban agglomeration has gradually become the main form of urbanization in
China. This chapter presents three case studies on surface climatic impacts of further
urbanization in China. The first case study aims to identify the impact of urban land
use change on regional temperature and precipitation in summer in the Beijing-
Tianjin-Tangshan Metropolitan (Great Beijing) area during 2030–2040. The second
study carries out scenario analysis of land use change, and simulated the future
regional temperature with Weather Research and Forecasting (WRF) model in
Southern Jiangsu province, another typical region of urbanization in China. Finally,
the last case study analyzes the impact of urbanization on surface climate under
different urbanization patterns, i.e., baseline scenario, centralized urbanization
scenarios, and decentralized urbanization scenarios in Wuhan Metropolitan region.
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6.1 Simulated Climate Impacts of Future Urbanization
for the Great Beijing Area

In recent years, with the development of remote sensing technology, the studies of
the impacts of urbanization on regional climate has made a great progress by using
remote sensing technology to extract information on land use changes, land sur-
face temperature, and precipitation (Mitra et al. 2012). These methods provided a
good support to describe the impacts of urbanization on surface climate rather than
the impact mechanism of urbanization on surface climate. Therefore, it is neces-
sary to introduce numerical simulation in investigating the key process that
urbanization affects regional climate change from the perspective of the mecha-
nism. Sensitivity experiments of two-dimensional scale model showed that sen-
sible heat fluxes caused by urban surface changes played a key role in climate
change, and roughness changes affected the spatial heterogeneity of climate
change. Sensitivity test of RAMS/TEM coupled model indicated that UHL plays a
key role in inducing downwind convective systems (Rozoff et al. 2003).

Metropolitan cities in China have shown the ‘‘spread’’ and ‘‘aggressive’’
expansion accompanied by regional urban development and megalopolis forma-
tion since the reform and opening up, resulting in increasing effects on climate
change (Tang et al. 2013). Great Beijing area is the economic center of northern
China, and it plays a strategically important role in the political and economic
development of the whole China (Kuang et al. 2011). Therefore, the primary
objectives of this study are (i) to analyze the relationship between urbanization and
climate in the Great Beijing area during 1995–2005 and (ii) to identify the impact
of urbanization on temperature and precipitation in summer based on scenario-
based simulaiton results during 2030–2040.

6.1.1 Data and Methodology

6.1.1.1 Study Area

The Great Beijing area is located in North China Plain between 38�250–41�50 N,
115�250–119�250 E. It covers Beijing Municipality and Tianjin Municipality and
the cities of Tangshan, Langfang, and Qinhuangdao (TLQ) of Hebei Province,
with a total area of 55,000 km2 and a resident population of 29,368,600. Most of
the area is plain and the hilly area is only 1.98 km2. The area belongs to the
continental monsoon climate. The average annual temperature is from 10 to 12 �C,
with the mean temperature of -1.9 �C in January and 26.4 �C in July. The average
annual precipitation is from 75 to 500 mm with an uneven time distribution, which
mainly occurs during summer with 72 % of the total annual rainfall.

Great Beijing area is defined as the political, cultural, and economic center of
China. The Eleventh National Five-Year Plan concluded development of this region.
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The Great Beijing area developed quickly with high land use intensity, especially the
large-scale science and technology parks, economic zones, industrial parks, and other
new development zones. Thus the conflict between rapid city growth and water and
soil resources has become increasingly pronounced.

6.1.1.2 Simulation Scheme

This study simulates the climate change in the Great Beijing area during
2030–2040 based on the control and sensitivity tests with WRF model. Two
simulation tests are conducted for summer (June–August) during 2030–2040
(Table 6.1) under the same condition except the underlying surface in order to
indicate the impact of urbanization on temperature and precipitation. First, the
underlying surface data of 1992–1993 in WRF model is replaced since it cannot
exactly reflect the land surface condition after 2000. The land cover data in 2010
are used as the underlying surface data for the control test, and the land cover data
in 2030 predicted on the basis of the trend of social-economic simulation is used
for the sensitivity test. The simulation results of the control test and sensitivity test
are then compared, and the effects of urbanization on summer temperature and
precipitation are finally examined. The effects of future urban expansion on surface
climate can be explained with Ei.

Ei ¼ Ri � ri

where i refers to the precipitation and temperature; Ei is the effect of the future
urbanization on the climate; Ri is the result of the simulation with the predicted
underlying surface, and ri is the result of the simulation with the baseline under-
lying surface.

The parameterization schemes in this study are listed in Table 6.2. The Grell-
Devenyi ensemble scheme was adopted in the cumulus parameterization scheme,
with YSU being the boundary layer process scheme, and the CAM scheme being
both long-wave radiation and shortwave radiation scheme, while the land surface
process scheme was the Noah land surface model. The boundary buffer was set to
be four layers of grid points, and the relaxation scheme was adopted in the
boundary conditions. The time interval of the model integration was set to be
5 min, and that of the radiation process and cumulus convection was 30 and 5 min,
respectively. There were 27 layers in the vertical direction and the atmospheric
pressure at the top layer was 50 hPa.

The lateral boundary forcing data was from the National Centers for Envi-
ronmental Predictions (NCEP) operational Global Final (FNL) Analyses (NCEP/
FNL) and was updated every 6 h. The dataset was established on the basis of the
assimilation of almost all kinds of observational data (e.g., remote sensing data and
ground-based observation data) with a spatial resolution of 1� 9 1� gird and a
vertical height of 27 layers, and it has been updated to now since July, 1999.
Compared with dataset of NCEP I, NCEP II, and EAR40, the NCEP/FNL not only
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has the higher accuracy and spatial resolution, but also involves more kinds of
environmental variables. The data of future force filed were from the fifth phase of
the Coupled Model Intercomparison Project (CMIP5) which produces a state-of-
the-art multimodel dataset. The model output analyzed by researches forms the
basis for the Fifth Assessment Report of the Intergovernmental Panel on Climate
Change (Taylor et al. 2012), and two time scales of projections of future climate
change are provided. The first one is the near term (out to about 2035), and the
other one is the long term (out to 2100 and beyond). Model output of the RCP 6.0
such as air temperature, specific humidity, sea level pressure, eastward wind,
northward wind, geopotential height from 2010 to 2040 were used as the atmo-
spheric forcing dataset of WRF model.

Urban land use data, which were extracted from Landsat TM images in 1995
and Landsat ETM, images from the China–Brazil Earth Resources satellite
(CBERS) in 2005 (Liu et al. 2003, 2010), was acquired from the data center of the
Chinese Academy of Sciences. The land use change during 1995–2005 has been
described Table 6.3. The predicted land use and land cover data in 2030 were
derived from the database of Representative Concentration Pathway (RCP6.0).
The new urban area pixels during 2010–2030 derived from RCP 6.0 was overlaid
to the map of baseline underlying surface, then the underlying surface data in 2030
was transformed to grid data of 30*30 km of USGS data by resampling.

6.1.2 Results and Discussion

6.1.2.1 Spatiotemporal Pattern of Urban Expansion Since 1995

Urban expansion is one of the key characteristics of land use change in the Great
Beijing area from 1995 to 2005, the spatiotemporal pattern of which was analyzed
according to remote sensing data (Table 6.3). During 1995 and 2005, the total area
of cultivated land and forests decreased by 0.98 and 2.15 %, respectively, while
the urban land area increased by 3.34 %, with an average annual rate of 0.33 %.

Table 6.1 Schemes of the simulation test

Test Test time Land cover data used in WRF

Control test 2030.01.01–2040.12.31 Land cover data of 2010
Sensitivity test 2030.01.01–2040.12.31 Land cover data of 2030

Table 6.2 Configuration of
the physical parameterization
schemes in WRF

Physical processes Scheme option

Microphysics scheme Lin et al.
Cumulus scheme Grell-Decenyi ensemble
Land surface process Noah land surface model
Short wave radiation CAM scheme
Long-wave radiation CAM scheme
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Urban expansion is the main driving factor of the shrinkage of cultivated land and
forests. The socioeconomic development and geographical factors, such as the
population growth, policy, and economic development, all affect the urban
expansion and subsequent landscape changes.

6.1.2.2 Spatiotemporal Dynamics of Temperature and Precipitation
in the Great Beijing Area during 1995–2005

There was slight temperature change in the Beijing-Tianjin-Tanghsan Metropoli-
tan area from 1995 to 2005 (Fig. 6.1). Overall, temperature showed an increasing
trend in most part of the study area, especially around the metropolitan Beijing and
in the costal metropolitan area of Tianjin and Tangshan, with an average
increasing rate of 0.023 �C/year. However, temperature has decreased to some
degree in northeast and northwest part of the study area. The regions that con-
verted from other land use types into cities has shown relatively higher temper-
ature rise, indicating that urbanization has some influence on temperature in the
Great Beijing area. At the same time, precipitation showed an increasing trend in
metropolitan Tangshan and northeast part of Beijing Metropolitan, while it showed
a downward trend in the west and south part of Beijing. According to the results
mentioned above, it can be concluded that the process of urbanization has affected
regional temperature and precipitation to a certain extent in the Great Beijing area.

6.1.2.3 Urban Area Change from 2010 to 2030

There will be obvious conversion from other land use types to urban area in Great
Beijing area during 2010–2030 (Fig. 6.2). Urban area in this region would con-
tinue to increase during 2010–2030, and the newly increased urban land will
mainly concentrate in the regions around downtown of Beijing and Tianjin City.
Land use conversion mainly results from the joint effects of both the internal
factors and external factors such as terrain, traffic, economic factors, cultural
tradition, and behaviors of the government officials.

Table 6.3 The area precentage and the changes of main land use (%) in Beijing-Tianjin-
Tangshan Metropoliatn area, 1995–2005

Year/period Cultivated land Forestry area Grassland Water Built-up area Unused land

1995 48.48 24.59 6.32 5.54
14.14

0.92

2005 47.50 22.45 6.74 5.08
17.48

0.76

Changea -0.10 -0.21 0.04 -0.05
0.33

-0.02

Note a represents the change rate calculated with the following equation: A2005
i � A1995

i

� �
=ð10Þ,

where A2005
i means the area proportion of land use type i in 2005, A1995

i means the area proportion
of land use type i in 1995
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Fig. 6.1 Simulated changes of temperature (left) and precipitation (right) in Beijing-Tianjin-
Tangshan Metropolitan area during 1995–2005

Fig. 6.2 Conversion from other land use types to urban area in Beijing-Tianjin-Tangshan
Metropolitan area during 2010–2030
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6.1.2.4 Results of the Numerical Simulation

Figure 6.3 depicted the simulated impact of future urban expansion on average annual
temperature in the study area during 2030–2040. There will be significant warming
effects in the summer, mainly occurring in the downtown and eastern part of Beijing
Metropolitan. Transformation from vegetated land to urban land results in significant
differences of near-surface temperature. As a result, the temperature would increase
obviously in the regions with urban expansion, mainly owning to UHL effect, which is
consistent with the results of previous researches (Wang et al. 2002).

Surface temperature is determined with surface energy balance equation.

�qLvðw0q0Þsfc þ Rn � S� qcpChuðTsfc � TÞ ¼ 0

where the first item refers to latent heat flux; the second item refers to net radiation
flux; the third item refers to soil heat flux; and the forth item refers to sensible heat flux.

Part of net radiation flux is absorbed by the earth’s surface, which further
influences latent heat flux and sensible heat flux, with the rest transformed into soil
and soil heat flux. The heat transfer in soil complies with the thermal diffusion
equation.

Fig. 6.3 Difference in the projected monthly average temperature in summer between the
control test and sensitivity test in the Beijing-Tianjin-Tangshan Metropolitan area during
2030–2040
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where T is soil layer temperature; H refers to soil water content; C means specific
heat of soil layer; Kt is thermal conduction system.

There will be much more population in new cities, which will need and con-
sume a lot of heat/power due to their activities (transportation, air conditioning,
industries), thus exerting significant impacts on the balance of surface energy. It
has been reported that surface temperature is determined by radiation flux, sensible
heat flux, latent heat flux, specific heat of soil layer, and thermal conduction
system, while surface temperature also affects sensible heat flux and latent heat
flux (Miglietta et al. 2009). In urbanized area surface temperature, which magnifies
sensible heat flux and soil heat flux, will rise due to the increase of net surface
shortwave radiation and decrease of latent heat flux. All these changes along with
the increase of human-induced heat emission will lead to temperature increase.

Urban expansion has significant impacts on precipitation in summer during
2030–2040 in the study area (Fig. 6.4). In general, there is an obvious heterogeneity
of local precipitation change, and there will be some precipitation increase in urban
areas, which may be due to the extended urban boundary and increased secondary

Fig. 6.4 Projected summer precipitation difference of monthly average temperature between
control test and sensitivity testin Beijing-Tianjin-Tangshan Metropolitan area, 2030–2040
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outflow activity. Shepherd also showed that expansion of future urban land might
result in a more expensive area of rainfall (Shepherd et al. 2010). Urbanization
would increase the emission of atmospheric pollutants, cause the heat island effect,
and lead to land use change. The volatile air layer can lead to thermal convection
easily due to UHL effect, which can increase thermal convection and convective
precipitation. Moreover, buildings of different heights can not only cause
mechanical turbulence, but also hinder the moving slow precipitation system, thus
leading to increase of precipitation. At the same time, there are intensive human
activities in urban regions, which lead to the emission of a large amount of green-
house gases, aerosol, and other particulate matters. On one hand, these materials
increase the condensation nucleus for precipitation; on the other hand, these
materials intensify the UHL effect in urban regions. Under the condition of sufficient
moisture, there will more precipitation due to increased condensation nucleus above
the municipal areas and relatively high underlying surface temperature, which may
account for the increase of precipitation in this region in summer.

6.1.3 Concluding Remarks on Future Urbanization and its
Climate Effects in the Great Beijing Area

Urban climate change results from the interaction between human activities and
local climate change in essence. The change of underlying surface properties and
human-induced heat emission will lead to the difference between urban and rural
temperature, which will further change local climate forcing field and conse-
quently lead to the redistribution of climate factors, such as the wind, cloud, and
precipitation. This study investigated the contribution of urban land use change to
the change of temperature and precipitation in Great Beijing area during
2030–2040 with the WRF model based on the latest actual urban land cover data
from 1995 to 2005.

The impact of urbanization on regional climate change is a very complex and
challenging problem and it is necessary to carry out more in-depth research since
there are still some uncertainties in the current research. For example, more efforts
should be made to comprehensively investigate the contribution of urbanization to
the change in annual temperature and precipitation, extreme climate, latent heat
flux at land surface, wave flux at ground surface. Meanwhile, it is necessary to
carry out further research on how to quantitatively measure the inner link between
urban development and climate factors and how this inner link will change when
climate factors change. Urban area in this region would increase continuously, and
urban expansion leads to continual increase of local temperature and will make
precipitation in summer show an increasing trend during 2030–2040.

The results of this study indicated that the anthropogenic land cover change has
significant impacts on regional climate in the Great Beijing area, which can provide
scientific reference for optimizing land use management and planning to mitigate
and adapt to regional climate change in the future. For example, government can
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increase the proportion of urban green land in urban land use planning and take
urban forests as an important component of the ecological infrastructure to promote
the ability of cities to mitigate and adapt to climate change.

6.2 Estimated Biogeophysical Effects of Urbanization
in Southern Jiangsu Province

Southern Jiangsu province is located in the Yangtze River Basin in China (Fig. 6.5),
with superior geographical environment, pleasant climate and convenient irrigation,
vast plains, and fertile soil. There are five cities in Southern Jiangsu province,
including Nanjing, Zhenjiang, Changzhou, Wuxi, and Suzhou. Southern Jiangsu
province has been China’s most prosperous place because of due to the well-
developed agriculture. Southern Jiangsu province also has a geographical advantage
that it neighbors Shanghai and is Shanghai’s largest hinterland. Because of its
natural connection with Shanghai in geography, Southern Jiangsu province becomes
Shanghai’s most direct economic radiation zone, taking and digesting its industrial
transfer, absorbing and creating a lot of employment opportunities. Southern
Jiangsu province seized the opportunity and thus became a typical model of China’s
economic development since China’s reform and opening up.

With Shanghai’s role in driving the economic development, the Southern
Jiangsu province grows rapidly in economic development and urbanization. In
2008, the regional GDP of Southern Jiangsu province was 1.85 trillion Yuan,
accounting for 6.4 % of the whole country. Southern Jiangsu province is also
relatively dense with cities and towns, and urbanization level is high. In 2008, the
urbanization rate in Southern Jiangsu province reached 67.7 %, and per capita
GDP reached 61,823 Yuan reaching the level of moderately developed countries.

In this study, we first simulate the region’s future land use change scenarios
based on DLS (Dynamics of Land System) model, and then processed the DLS
simulation results in order to satisfy the requirements of underlying surface of
WRF model. On this basis, WRF model is used to simulate the impacts of future
land use change on regional climate change to scientifically understand the core
parameters and the key process of the impacts of future land use change on
regional climate change, and thereafter to provide scientific basis for rational
regional land use planning to mitigate climate change.

6.2.1 Data and Methodology

6.2.1.1 Data Sources

Data used in this study includes land use data, socioeconomic data, and natural
environmental indicators of Southern Jiangsu province.
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Land use data is mainly used for scenario-based simulations of land use change.
In this study, land use data of Southern Jiangsu province in 2000 and 2008 are
obtained through remote sensing images interpretation. These land use data are
composed of six land types, including farmland, forestry land, grassland, built-up
land, water bodies, and bare land. Among them, land use data in 2000 came from
the Land Use Database of Data Center Resources and Environment, Chinese
Academy of Science (Liu et al. 2002). The database consists of interpretation
results from Landsat TM/ETM+ images with a spatial resolution of 30 9 30 m.
Land use data in 2008 is interpreted from Landsat ETM+ images by the authors.

Social and economic statistical data includes the population of Southern Jiangsu
province, per capita retail sales of social consumer goods, the total investment in
fixed assets, per capita fiscal revenue, the gross output of the second industry, and
grain yield per unit area from 2000 to 2008. The above data comes from Jiangsu
Statistical Yearbook.

Natural environmental indicators include DEM, the distance from the city at all
levels, the distance from the railways, the distance from the roads, and the distance
from the rivers. DEM data comes from Shuttle Radar Topography Mission
(SRTM) of NASA. This part hierarchically calculated the distance from the city at
all levels to each 100 9 100 m grid. Using the Landsat TM/ETM+ geometric
correction in 2000 that covered Southern Jiangsu province to outline the major
river systems and the network of transport of the study area and to work out the
distance from each 100 9 100 m grid to railways, roads and rivers.

6.2.1.2 DLS Model

DLS is a land use dynamic simulation model based on land use change mecha-
nism, DLS model consists of four modules, including scenario analysis module,
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Fig. 6.5 Location of Southern Jiangsu
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spatial analysis module, the conversion rules module, and spatial analysis modules
(Fig. 6.6). Scenario analysis module is used to express the changed needs of a
variety of land use types under different scenarios. Spatial analysis module is used
to calculate the probability values of various land use types in each grid unit
through spatial regression analysis for driving factors. Transfer rules module is
used to express possibility and ease of a certain type of land transfer to another
type of land on each grid cell. Space allocation module implements spatial dis-
tribution pattern of various land use types under different scenarios on the grid.

There are mainly four steps to carry out dynamic simulation of land use based
on DLS. First, conversion rules module analyzes statistical relationship between
land use types distribution and driving factors from the two scales of region and
grid, measures effects of the natural environment and socioeconomic factors on
temporal patterns of regional land use, and extracts the key factors which affect
land use types distribution. Second, based on the history of land use characteristics
and the status of regional land use changes, spatial analysis module predicts the
trends that key factors influence land use patterns, and then select a reasonable
scenario. Third, according to supply–demand situation of different industries on
land under this scenario during the time cross-section of forecast period, scenario
analysis module allocates area demand of different land types to various industries.
Finally, by balance analysis of grid-scale land type area’s demand and supply,
spatial allocation module achieves spatial distribution of different kinds of land use
types on the grid scale and generate spatial pattern of land use.

According to the estimated result of experiential model, the contribution on
land use change of various independent variables can be calculated. Based on this,
prediction of land use in 2010 and 2050 in Southern Jiangsu can be worked out.
Under the linear hypothesis, land use change process can be presented as the
following formula.
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MYi ¼ f ð. . .; xt
i; . . .Þ � f ð. . .; xt�1

i ; . . .Þ ¼ f ðMxiÞ ð6:1Þ

where, MYi is the change area of land useYi, xt
i and xt�1

i are the value of inde-
pendent variables in time t and t � 1 respectively, and Mx is the changed value of
independent variables.

6.2.2 Results

6.2.2.1 Scenario Analysis of Future Land use in Southern Jiangsu
Province

Future land use conditions in Southern Jiangsu province are simulated under two
scenarios in this part (Fig. 6.7). After 30 years’ development under the reform and
opening up policy in China, the Southern Jiangsu province has achieved rapid
socioeconomic progress. Meanwhile, resources and environment in Southern Ji-
angsu province are also under tremendous pressure and have become increasingly
prominent in the process of rapid economic development. Particularly, farmland
resources in this area are facing significant stress of reduction with rapid urban
expansion. Therefore, the development of Southern Jiangsu province is facing new
opportunities and challenges. In this context, this part sets future land use scenarios
as REG scenario and CES scenario for the study area. The core of REG scenario is
that land use demands have the priority in land use change. Land use change in
Southern Jiangsu province has served the purpose of economic development in the
past 30 years; therefore, it can be considered that land use scenario in Southern
Jiangsu province was REG scenario in the past 30 years. The core of CES scenario
is to achieve coordination between economic development and environmental
protection. Therefore, the purpose of land use in CES scenario is to realize the
transformation of economic development so as to protect natural resources and
environment by sacrificing the speed of economic development rationally.

This study simulates land use change in Southern Jiangsu province during 2010
to 2050 under REG scenario and CES scenario with DLS model (Fig. 6.6). The
result under REG scenario suggests that built-up land expansion in 2010 mainly
concentrates on the core urban areas of Nanjing, Zhenjiang, Suzhou, Wuxi, and
Changzhou, which is consistent with the trend of current land use change in
Southern Jiangsu province. While the simulation result under CES scenario indi-
cates that built-up land will expand dispersedly in the whole study area, including
the main urban areas of Nanjing, Zhenjiang, Suzhou, Wuxi, and Changzhou will
be restrained to some degree.

The simulation result in year 2050 indicates that there is still a great demand of
economic development for the land resource under REG scenario due to a high
speed of development in Southern Jiangsu province. Built-up land will expand most
obviously around the main urban areas of Nanjing, Zhenjiang, Suzhou, Wuxi, and
Changzhou, where the area of cultivated land and forests will further decrease.
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There will also be some expansion of built-up land in small–medium cities, which
puts great pressure on the surrounding cultivated land and forest. Under CES sce-
narios, the speed of economic development will be restrained to some degree, and
land use intensity will be further improved and the consumption of land resources
due to economic development will also be restrained. Although there will be some
expansion of built-up land around the main urban areas of Nanjing, Zhenjiang,
Suzhou, Wuxi, and Changzhou, the expansion degree is much limited compared to
that under REG scenario. The area of cultivated land and forest will decrease
slightly due to built-up land expansion, but the decreased area has been under

SuzhouWuxi

Nanjing

Changzhou

Zhenjiang

118°E

32
°N

31
°N

32
°N

31
°N

32
°N

31
°N

32
°N

31
°N

32
°N

31
°N

32
°N

31
°N

32
°N

31
°N

SuzhouWuxi

Nanjing

Changzhou

Zhenjiang

SuzhouWuxi

Nanjing

Changzhou

Zhenjiang

Urban and built-up land
Dryland cropland and pasture
Irrigated cropland and pasture
Mixed dryland/irrigate d cropland and pasture
Cropland/grassland mosaic
Cropland/woodland mosaic
Grassland
Shrubland
Mixed shrubland/grassland
Deciduous broadleaf  forest
Evergreen broadleaf  forest
Evergreen needleleaf forest
Mixed forest
Water bodies

SuzhouWuxi

Nanjing

Changzhou

Zhenjiang

119°E 120°E 121°E

118°E 119°E 120°E 121°E

118°E 119°E 120°E 121°E

118°E 119°E 120°E 121°E

118°E 119°E 120°E 121°E 118°E 119°E 120°E 121°E

118°E 119°E 120°E 121°E 118°E 119°E 120°E 121°E

(a) (b)

(c) (d)

Fig. 6.7 Results of land use change simulation. a and b Show the simulation results of land use
in Southern Jiangsu in year 2010 under REG scenario and CES scenario, respectively; c and
d show the simulation results of land use in Southern Jiangsu in year 2050 under REG scenario
and CES scenario, respectively
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control compared to that under REG scenarios, in particular, the shrinkage of forest
is well controlled in these regions. By comparison, built-up land in small–medium
cities still expands dispersedly, but the expansion speed is obviously restrained.

6.2.3 Impacts of Future Land use Change on Regional
Temperature in Southern Jiangsu Province

Based on the simulation results of future land use change in Southern Jiangsu
province, the WRF model was used to simulate the impacts of land use change on
regional climate change under different scenarios. The underlying surface data
were first generated through up-scaling and reclassifying the simulation results of
land use change according to the requirement of WRF model. The static under-
lying surface data in the WRF model were then replaced with the dynamic ones in
2010 and 2050 under REG scenario and CES scenario, thereafter future regional
climate change was simulated and finally the climate effects of different under-
lying surfaces were analyzed (Fig. 6.8).

The simulation results indicate that the changing trends of monthly average
temperatures under different scenarios are consistent on the whole. The highest
monthly average temperatures all appear in June, July, and August, and the lowest
ones all appear in November, January, and February. This result shows that the
changes of underlying surface do not affect monthly temperature change trend; it
only affects the values of average temperature. There is significant difference on
monthly average temperatures during different periods under different scenarios.
The simulation results indicate that regional monthly average temperature in 2010
under CES scenario is the lowest on the whole, while that in 2050 under REG
scenario is the highest. Besides, monthly average temperature in 2010 under REG
scenario is slightly higher than in 2050 under CES scenario. In addition, there are
also some differences in monthly average temperatures between different under-
lying surfaces during different periods. Overall, the greatest difference in monthly
average temperatures appears in summer, while there is no significant difference in
winter, with that in January being the slightest.

The simulation results indicate that there are significant impacts of the under-
lying surface on the spatial pattern of monthly average temperature under different
scenarios, especially in 2050 under REG scenario and in 2010 under CES scenario
(Fig. 6.9). Figure 6.9a and b suggest that there is no significant difference between
the spatial pattern of monthly average temperature on the underlying surfaces
under REG scenario and CES scenario in 2010, and monthly average temperature
under REG scenario is only slightly higher than that under REG scenario. How-
ever, Fig. 6.9c and d indicate that the regions with high temperature in 2050 under
REG scenario are much wider than that under CES scenario, especially around the
center of big cities such as Nanjing, Zhenjiang, Suzhou, and Wuxi. According to
the comparison of results between monthly average temperature in 2050 under
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REG scenario and the other scenarios, the range of high-temperature regions is
much wider in 2050 under REG scenario than the other scenarios.

The biggest difference in monthly average temperature under different scenarios
is in July, therefore, the impacts of different underlying surfaces on temperature
can be more clearly revealed through comparing the spatial pattern of monthly
average temperature in July (Fig. 6.10). The impacts of different underlying sur-
faces on the spatial pattern of temperature in Southern Jiangsu province in July are
consistent with that on monthly average temperature, but it is more significant in
July. Taking the results in 2050 under REG scenario and CES scenario (Fig. 6.10c
and d) as examples, the high-temperature region in Nanjing has expanded into a
separate continuous region in 2050 under CES scenario, while the scope of the
high-temperature region in Zhenjiang is still very limited. Besides, the high-
temperature regions in Suzhou, Wuxi, and Changzhou have also expanded into a
large continuous district, but its scope and temperature range are both smaller than
that in 2050 under REG scenario.

6.2.4 Key Impact Mechanisms of Future Land use Change
on Regional Temperature in Southern Jiangsu
Province

According to surface energy budget equation, there is close relationship between
surface net radiation, land surface albedo, downward shortwave radiation, down-
ward long-wave radiation, and land surface emissivity.
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Fig. 6.9 Spatial pattern of the monthly average temperature in Southern Jiangsu under different
scenarios (�C). a and b Show the simulation result of average temperature of land use in Southern
Jiangsu in year 2010 under REG scenario and CES scenario, respectively; c and d show the
simulation result of average temperature of land use in Southern Jiangsu in year 2050 under REG
scenario and CES scenario, respectively
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Fig. 6.10 Spatial pattern of
the monthly average
temperature in Southern
Jiangsu in July under
different scenarios (�C). a and
b Show the simulation result
of monthly average
temperature in Southern
Jiangsu in July of land use in
year 2010 under REG
scenario and CES scenario,
respectively; c and d show
the simulation result of
monthly average temperature
in Southern Jiangsu in July of
land use in year 2050 under
REG scenario and CES
scenario, respectively
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Rn ¼ RS
n þ Rl

n ¼ ð1� aÞFs
d þ eFl

d � reT4 ð6:2Þ

where Rn is surface net radiation, RS
n is shortwave radiation, Rl

n is long-wave
radiation, a is land surface albedo, FS

d is downward shortwave radiation, .e is land
surface emissivity, Fl

d is downward long-wave radiation, T is land surface tem-
perature. Land net radiation is the energy source of land surface temperature
change. This study has focused on how the underlying surface change influences
land surface albedo, downward shortwave radiation, downward long-wave radia-
tion, and land surface emissivity in order to clarify the key influencing mechanism
of future land use change on regional temperature in Southern Jiangsu province
(Fig. 6.11).

Land use change in Southern Jiangsu province mainly influences land net
radiation through exerting impacts on land surface albedo and emissivity, and land
use change influences the spatial heterogeneity of land surface emissivity most
greatly under both scenarios (Fig. 6.11). Figure 6.11a suggests that land surface
albedo will be the lowest in 2050 under REG scenario, while it will show no
significant difference under the other scenarios. Moreover, Fig. 6.11b suggests that
land surface emissivity will be obviously lower in 2050 under REG scenario than
the other scenarios, under which it will show no significant difference. In addition,
Fig. 6.11c and d indicate that there will not be significant difference in downward
long-wave radiation and downward shortwave radiation under all scenarios. In
summary, under the condition that there is no significant difference between
downward long-wave radiation and downward shortwave radiation, there will be
lower land surface albedo and emissivity in 2050 under REG scenario, which
consequently greatly increases land surface net radiation and thus lays foundation
for the warming effects.

This study analyzed the impacts of the spatial heterogeneity of land surface
emissivity on the spatial pattern of temperature in the hottest month (July) since
the difference in land surface emissivity is the main reason for the warming effects
in 2050 under REG scenario (Fig. 6.12).

Under all four scenarios, there are always continuous districts with lower land
surface emissivity in Nanjing, Zhenjiang, Suzhou, Wuxi, and Changzhou, where
urban land is the main part of the underlying surface (Fig. 6.12). However, the
result clearly shows that land surface emissivity in these continuous districts is
obviously lower in 2050 under REG scenario than the other scenarios, which may
be mainly because that the underlying surface will change more greatly in 2050
under REG scenario.

What’s more, land surface energy budget equation suggests that under the
condition of certain land surface net radiation, the underlying surface mainly
influences temperature through influencing sensible heat flux, latent heat flux, and
soil heat flux.
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Rn ¼ H þ LE þ G ð6:3Þ

where Rn is land surface net radiation, H is sensible heat flux, LE is latent heat
flux, and Gis soil heat flux.

Since there is generally very limited heat flux into the soil layer, land surface
net radiation is mainly influenced by sensible heat flux and latent heat flux, while
the underlying surface can directly influence latent heat flux and consequently
influence near-surface temperature (Fig. 6.13).

In order to further analyze the impacts of the variation in latent heat flux on the
spatial pattern of temperature, we investigate the spatial pattern of latent heat flux
under different scenarios (Fig. 6. 14). It can be seen that there is no significant
difference in the spatial pattern of latent heat flux in Southern Jiangsu province
under different scenarios. However, the variation range of latent heat flux in 2050
is smaller under REG scenario than under the other scenarios.
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Fig. 6.11 Influence of the future land use change on the key biogeophysical parameters in
Southern-Jiangsu. a and b Show the influence of the future land use change on albedo and surface
emissivity; c and d show the influence of the future land use change on downward long-wave
radiation and downward shortwave radiation (W/m2)
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6.2.5 Concluding Remarks on Urbanization and its Climate
Effects in Southern Jiangsu Province

(i) Land use change in Southern Jiangsu province shows different changing
trends under different scenarios, but it is mainly characterized by the
expansion of urban land and shrinkage of cultivated land and forest. Under
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Fig. 6.12 Spatial pattern of the land surface emissivity in Southern Jiangsu under different
scenarios. a and b Show the simulation result of land surface emissivity of land use in Southern
Jiangsu in year 2010 under REG scenario and CES scenario, respectively; c and d show the
simulation result of land surface emissivity of land use in Southern Jiangsu in year 2050 under
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Fig. 6.14 Spatial pattern of
the latent heat flux in
Southern Jiangsu under
different scenarios (mm).
a and b Show the simulation
result of latent heat flux of
land use in Southern Jiangsu
in year 2010 under REG
scenario and CES scenario,
respectively; c and d show
the simulation result of latent
heat flux of land use in
Southern Jiangsu in year
2050 under REG scenario and
CES scenario, respectively
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REG scenario, urban land expansion in Southern Jiangsu province will
keep at a fast rate; urban land will mainly expand around the central cities,
mainly occupying cultivated land and forests. By contrast, built-up land
will expand dispersedly in the whole study area under CES scenario, and
built-up land expansion around the main cities will be restricted to some
degree.

(ii) Monthly average temperature in Southern Jiangsu province shows a con-
sistent changing trend under different scenarios, but temperature range
shows significant difference. The highest value of monthly average tem-
perature appears in July under all scenarios, while the lowest one appears
in January. Besides, regional monthly average temperature is the highest in
2050 under REG scenario and the lowest in 2010 under CES scenario. In
addition, the difference in monthly average temperatures is the greatest in
summer and the smallest in winter.

(iii) There is significant influence of the underlying surface on the spatial
pattern of temperature. The spatial pattern differs most greatly in 2050
under REG scenario and in 2010 under conservation scenario, especially in
July. The range of high-temperature regions is much wider in 2050 under
REG scenario than in 2010 under CES scenario. The high-temperature
regions are much wider in 2050 under REG scenario than it is under CES
scenario, especially in big cities such as Nanjing, Zhenjiang, Suzhou, and
Wuxi.

(iv) Land use change in Southern Jiangsu province mainly influences regional
temperature through altering land surface net radiation and latent heat flux.
Land surface net radiation, which depends on land surface albedo and
emissivity, downward long-wave radiation and downward shortwave
radiation, plays a dominant role in influencing temperature. Meanwhile,
there is no significant influence of land use change on the spatial pattern of
latent heat flux. In addition, land surface albedo and emissivity play the
most important roles in influencing land surface net radiation, and there is
no significant influence of the underlying surface on downward long-wave
radiation and downward shortwave radiation.

This study revealed the influence of future land use change (especially urban
land expansion) on regional temperature in Southern Jiangsu province, and ana-
lyzed the impacts of land use change on the key biogeophysical parameters from
the perspective of land surface radiation budget and energy balance. The result of
this study is of great significance to the selection of reasonable land use mode to
mitigate regional climate change. The precipitation as another important aspect of
regional climate change has not been involved in this study. Therefore, it is still
necessary to carry out more in-depth research on the influence of land use change
on regional climate change.
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6.3 Projected Climate Impacts of Urbanization
in Wuhan Metropolitan

Rational choice of urbanization patterns is the hot issue for government and
academia. On one hand, many economists have conducted comparative study of
urbanization pattern from the perspective of economic efficiency, and given the
basis of urbanization model selection. On the other hand, natural scientists have
proved that urban land expansion is one of the most important reasons for global
climate change. Urban land expansion has a non-negligible impact on regional
climate by changing the underlying surface. As an important place for human
settlements, urban development should be evaluated form both environmental
effects and its impact on human welfare when pursuing economic efficiency.
Therefore, not only economic efficiency differences but also the environmental
effects of urban development and its impact on human living conditions should be
considered to choose a rational urban land expansion pattern. Especially in the
context of global climate change, studying impacts of underlying surface on
regional climate change has an important guiding significance for selection of
rational urbanization patterns. China is currently in the period of rapid urbaniza-
tion. In the coming period, China will maintain a high speed of urbanization.
Therefore, rational choice of urbanization model has a special significance for
China.

Wuhan Metropolitan is an important urban agglomeration after the rise of
Central China following the Yangtze River Delta, Pearl River Delta, and the Bohai
Sea Rim in China. It is also the first batch of pilot area of the ‘‘resources-saving
and environment-friendly’’ society construction in China. Therefore, it is urgent to
figure out the impact of different urban land expansion patterns on climate change
in Wuhan Metropolitan, which will find out a reasonable urban land expansion
pattern to mitigate regional climate change in Wuhan Metropolitan.

In this case study, we set up three kinds of urbanization scenarios: baseline
scenario, centralized urban land expansion scenario, and decentralized urban land
expansion scenario. The Partitioned and Asynchronous Cellular Automaton Model
is then employed to simulate urban land expansion patterns under different sce-
narios in Wuhan Metropolitan in 2020. The results are taken as a land use/cover
underlying surface data to be input into WRF model, and impacts of urban land
expansion on regional climate change under three different scenarios of urban
land expansion pattern are simulated. Through comparative analysis urban land
expansion under three different scenarios, we generate the spatiotemporal variation
of its impacts on surface climate, which will provide a reasonable response of
urbanization patterns to climate change in Wuhan Metropolitan.
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6.3.1 Study Area and Data Sources

6.3.1.1 Study Area

Wuhan Metropolitan is located in the middle of Hubei province, China. It is the
urban agglomeration which takes Wuhan as the center, and is composed of eight
cities of Huangshi, Ezhou, Huanggang, Xiaogan, Xianning, Xiantao, Tianmen, and
Qianjiang within 100 km, with a total area of about 5.78 9 104 km2, accounting
for 31.1 % of land area in Hubei Province (Fig. 6.15). By the end of 2008, the
resident population of Wuhan Metropolitan was 2994.6 million, the annual GDP
reached 697.211 billion Yuan, accounting for 61.5 % of the province’s total GDP,
it is also an important economic development centers in Hubei Province, and an
important strategic fulcrum of ‘‘rise of central China.’’ Wuhan Metropolitan faces
many development opportunities as the comprehensive reform pilot area of
‘‘resource-saving and environment-friendly’’ society. However, to this end, the
rapid development of Wuhan Metropolitan could not only focus on socioeconomic
development but also concentrate about ecological and environmental effects in
the fast urbanization process. Therefore, it is beneficial to analyze effects of dif-
ferent urbanization pattern on regional climate and select reasonable urbanization
patterns for Wuhan Metropolitan region accordingly.

6.3.1.2 Data Sources

Land use data, interpreted from remote sensing images in 2000 and 2008, is mainly
used for scenario simulations of future land use change, for Wuhan Metropolitan
region. It includes five land types, i.e., farmland, forestland, grassland, built-up land
and water bodies, and built-up land contains urban land, rural residential and other
construction land. Among them, land use data in 2000 came from the Land Use
Database of Data Center Resources and Environment, Chinese Academy of Science.
The resource of this database is Landsat TM/ETM+ image interpretation with a spatial
resolution of the 30 9 30 m. Land use dataset are then resampled to 100 9 100 m
raster dataset. Land use data in 2008 came from the CBERS (China–Brazil Earth
Resource Satellite) image interpretation with a spatial resolution of 20 9 20 m. The
interpretation results are also resampled to 100 9 100 m grid. Specific process
includes geometric correction, radiometric correction, boundary cropping, supervised
classification, and visual interpretation, and accuracy assessment.

Natural environmental indicators in this study are the same to the previous case
study for Southern Jiangsu province, namely DEM, distance from the city at all
levels, distance from the railway, road and river. Social and economic statistical
data in this study include population data of Wuhan Metropolitan cities, per capita
retail sales of social consumer goods, the total investment in fixed assets, per
capita income, and second industry gross grain yield per unit area from 2000 to
2008. These data comes from Hubei Statistical Yearbook.
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Climate data includes annual precipitation and annual average temperature data.
Based on China weather site observation data, spline interpolation arithmetic method
is employed to interpolate meteorological site’s observation data to get grid form of
annual precipitation and annual average temperature surface in research region.

6.3.2 Methodology

6.3.2.1 Research Framework

The basic idea of scenario analysis on the impacts of urban land expansion on
climate change is performed by Fig. 6.16. Based on setting urban land expansion
scenarios in Wuhan Metropolitan, the Partitioned and Asynchronous Cellular
Automata Model is employed to carry out the scenarios simulation of urban land
use expansion in Wuhan Metropolitan, so as to get spatiotemporal pattern of urban
land expansion. By converting urban land expansion simulation results to under-
lying surface data to be input into WRF model, regional climate change under
different scenarios in Wuhan Metropolitan can be carried out. By comparing
analysis on climate change effects of urban land expansion under different sce-
narios, it is helpful to get reasonable urban land expansion pattern for mitigation
climate change in Wuhan Metropolitan.

Urban land Expansion Scenario

Urban land expansion pattern scenarios of Wuhan Metropolitan are set up first. In
this part, three urbanization pattern scenarios are setup. They are baseline scenario,
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centralized urban land expansion scenario, and decentralized urban expansion
scenario. On this basis, the Partitioned and Asynchronous Cellular Automata
model is employed to simulate urban land expansion under different scenarios. In
Partitioned and Asynchronous Cellular Automata model, urban land expansion
scenarios and regional socioeconomic development conditions are used to cali-
brate asynchronous evolving speed, regional land use change laws and regional
differences of socioeconomic conditions are used to calibrate transformation rules
in each partition, and built-up demand decided by economic development and
farmland demand decided by food security are used to calibrate global stopping
condition. After these, urban land expansion patterns under different scenarios in
Wuhan Metropolitan can be carried out.

Scenario Analysis of Urban Land Expansion on Surface Climate

The underlying surface data of Wuhan Metropolitan for climate model are pro-
cessed first. By scale transformation and type transformation, scenario simulation
results of urban land expansion can be converted to underlying surface data for
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Fig. 6.16 Research framework of scenario analysis of urban land expansion on climate change
impacts
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WRF model. Keeping lateral boundary conditions and all other parameters of WRF
model unchanged, processed land use/cover underlying surface data are input into
WRF model to simulate regional climate change in Wuhan Metropolitan. After
these processes, regional climate change under different urbanization patterns in
Wuhan Metropolitan can be figured out. Through scenario analysis of regional
climate change under different urbanization patterns, optimal urbanization patterns
which can mitigate climate change in Wuhan Metropolitan can be worked out.

6.3.2.2 Partitioned and Asynchronous Cellular Automata Model

Cellular automata model has the ability to simulate spatial and temporal evolution
of complex systems. The ‘‘bottom-up’’ research idea fully reflects the concept that
local individual behaviors of complex systems will produce global and orderly
pattern. Therefore, cellular automata model has natural advantages in urban land
expansion simulation (Li et al. 2007). However, most cellular automata models
have some limitations in simulating urban land expansion. On one hand, it ignores
spatial heterogeneities existing in urban land expansion and its influencing factors
to use the unified cellular transformations rules for all cells in urban land
expansion simulation. On the other hand, it ignores the spatial heterogeneities of
urban land expansion speed to employ same evolving speed for all cells. Both of
them become the barrier of simulation accuracy improving for cellular automata
model (Ke and Bian 2010). In this model, spatial data mining methods are
employed to dig out partitions for cellular automata model and separately cellular
transformation rules for each partition are dig out by Decision Tree Algorithm.

Transformation rules for each partition are made up of three sections: trans-
formation probability for each partition, unit constraints, and neighborhood
development density (Li et al. 2007). It can be showed by the following formula.

Pt
d;ij ¼ ½1þ ð�lncÞa� � Pg � conðst

ijÞ � Xt
ij

where pt
d;ij is transformation probability for each partition, c is random number

ranging from 0 to 1, a is the parameter which controlling random variable effect
level. It is an integer which ranges from 1 to 10, Pg is transformation probability
which decided by urban expansion influencing factors, conðst

ijÞ is constraint con-

dition of unit, Xt
ij is neighborhood function which means effect of neighborhood to

cellular automata transformation probability.
In these above parameters, c and a is introduced to add random factors in

cellular automata model to imitate effect and intervention of all kinds of uncertain
factors in land use processes. Pg is obtained from geographical phenomenon
change data and is related to impact factors by the method of spatial data mining. It
remains unchanged in the process of the whole simulation. Xt

ijis a very important
factor. It changes over time and can be performed by the following formula.
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Xt
ij ¼

P
3�3
ðsij ¼ t arg etÞ

3� 3� 1

con st
ij

� �
is unit constraint condition represent cellular which cannot transform to

urban land, such as water and high mountain. For example, when a cell represents

basic farmland preservation area, con st
ij

� �
� 0, because it is constraint to devel-

opment in this area.
Pg is regional land use change regulations mined from data of regional land use

and related influencing factors. In our research, C5.0 Decision Tree Algorithm is
applied to calculate regional land use change rules. Decision Tree Algorithm is a
typical data mining classification algorithm. Its main role is to reveal the structured
information of the data. The created tree structure is visual, easy to understand, and
deal with nonlinear data. The hidden knowledge rules in data can also be extracted.
Therefore, Decision Tree Algorithm can be used to dig out cellular transformation
rule (Ke et al. 2009). In C5.0 Tree Decision Algorithm, clusters are determined by
the fellow formula.

Iðr1; r2; . . .; rmÞ ¼ �
Xm

i¼1

pi � log2ðpiÞ

where ri is the subset of dataset S which belongs to cluster Ci, Pi is the probability
of every sample belongs to Ci, and I is the information gain.

Asynchronous evolving speed is determined by two parts, level of social-eco-
nomic development and urbanization scenario. Compared with the conditions of
social and economic development level, urbanization patterns play much more
important role in urban land expansion speed. Therefore, in order to clarify the
influential difference of urban land expansion on regional climate change in dif-
ferent urbanization pattern of Wuhan Metropolitan, asynchronous evolving speed
for Partitioned and Asynchronous Cellular Automata Model is decided by
urbanization patterns. Under baseline scenario, the evolving speed for each cellular
in Wuhan Metropolitan follows in the history of law, mainly determined by the
regional differences of socioeconomic development. Under centralized urbaniza-
tion scenario, the greater the cities are, the higher the urban land expansion prefers
and the faster urban land expands. Under decentralized urbanization scenario, the
smaller the size of cities is, the higher priority and the slower speed of urban land
expansion is. Asynchronous evolving speed in Partitioned and Asynchronous
Cellular Automata Model can be figured out by the following formula.

vij pri ¼
priorityij

prioritymax � prioritymin

� vmax � vminð Þ þ vmin

Where vij is transformation speed of cell (i, j), priorityij is urban land devel-
opment priority of cell (i, j), prioritymax is the maximum of all-region’s urban land
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development priority, prioritymin is the minimum of all-region’s urban land
development priority, vmax and vmin are all-region’s maximum and minimum of
cellular transformation speed.

Since cellular automaton model does not have the concept of transform speed
but only evolution interval, so we need to convert evolutionary speed to evolution
interval here.

Intervalij pri ¼
1

vij pri

� 	

The above formula is the corresponding evolution interval of evolving speed.
Accordingly, we can estimate asynchronous evolution interval of urban land
expansion for Wuhan Metropolitan.

6.3.3 Results

6.3.3.1 Urbanization Pattern Scenarios for Wuhan Metropolitan

Urbanization patterns are divided into two categories: centralized and decentral-
ized urbanization. Centralized urbanization has three main features: First, urban
scale structure is centralized. It is mainly performed that large cities, metropolitan,
and medium-sized cities lead in development. Second, cluster is the main feature
of city metropolitan. It is mainly showed that formation and development of
various levels and influential metropolitan intensive areas. Third, urban land use
become more intensified spatially. In our research, centralized urbanization mainly
refers to the first characteristic, namely, cities, metropolitan, and medium-sized
cities lead in development. Corresponding decentralized urbanization, the main
characteristics is that small towns lead in development.

According to urbanization patterns, three scenarios of urban land expansion are
designed. They are baseline scenario, centralized urban land expansion scenario,
and decentralized urban land expansion scenario in this research. Under baseline
scenario, urban land expansion in Wuhan Metropolitan follows its historical law.
Under centralized urban land expansion scenario, large cities lead in development,
while small towns’ urban land use expansion speed is controlled. Under decen-
tralized urban land expansion scenario, priority in the development is achieved by
small towns, metropolitan urban land expansion are controlled. Accordingly, by
setting the asynchronous evolution interval of Partitioned and Asynchronous
Cellular Automata Model, urban land expansion patterns in Wuhan Metropolitan
under different scenarios can be simulated. Taking centralized urbanization sce-
nario for example, large cities will receive the prior development. At the same
time, cities have higher evolving speed, and the corresponding evolution should be
given a smaller interval. Accordingly, we could set three asynchronous evolution
intervals of urban land expansion under different scenarios in Wuhan Metropolitan
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(Table 6.4). Under each scenario, the demand of urban land for whole Wuhan
Metropolitan is 819,784 hm2, while the demand of farmland in the whole is
25,741,94 hm2.

6.3.3.2 Scenario Simulation of Urban Land Expansion for Wuhan
Metropolitan

According to asynchronous evolution intervals that set by urban land expansion
scenario for Wuhan Metropolitan and combing transform rules for each partition
and global stopping conditions which were determined by socioeconomic condi-
tions and natural resource endowments in Wuhan Metropolitan, the Partitioned and
Asynchronous Cellular Automata Model can be employed to carry out urban land
expansion patterns under each scenario in Wuhan Metropolitan (Fig. 6.17). As
could be seen, spatial patterns of urban land use results in very similar results
under baseline scenario and centralized scenario for Wuhan Metropolitan. The
difference lies in that the speed of urban land expansion in big cities and small
cities are different but both developed under baseline scenario. However, under
centralized urbanization scenario, the speed of urban land use expansion for big
cities and small cities has a very significant variation. Urban land use expansion in
Wuhan and its surrounding areas is very rapid, but urban land use of other areas in
Wuhan Metropolitan expanded very slowly. Compared with former two scenarios,
urban land use expansion law of Wuhan Metropolitan is distinctly different in
decentralized urbanization scenario: Wuhan and its surrounding areas urban land
expansion are very small although urban land expansion is obvious in corre-
sponding small urban areas.

The underlying surface of WRF model is classified based on classification
criteria of USGS data, while Land Use/Cover in urban land expansion simulation
was divided into five categories: farmland, forestland, grassland, water bodies, and
built-up land. Therefore, the simulation results cannot be directly used as under-
lying surface input data. Based on original underlying surface data of WRF model,
urban land expansion simulation results are converted to raster datasets which have
same scale with underlying surface data of WRF model by spatial analysis tools in
ArcGIS. Grid data in original underlying surface data are then displaced by urban
land use type in corresponding grid in processed urban land expansion simulation
results. The obtained new underlying surface data contains urban land expansion
in Wuhan Metropolitan under various scenarios (Fig. 6.18).

6.3.3.3 Scenario Analysis of Urban land Expansion on Climate
Change Impacts

We kept boundary conditions and other initial field of WRF model constant, and
substituted Wuhan Metropolitan’s underlying surface data under different sce-
narios for WRF model. Regional climate change under different scenarios in
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Wuhan Metropolitan can thus be figured out, especially the spatial pattern of
temperature and precipitation.

Under different scenarios of urbanization patterns, the impact of underlying
surface changes on temperature had obvious differences (Fig. 6.19). Overall, the
warming effect under three scenarios is significantly different. Among these three
scenarios, the most obvious warming effect is centralized urban land expansion
scenario, followed by baseline scenario, while the smallest warming effect is
decentralized urban land expansion scenario. Temporally, the strongest warming

0 25 50 100
N

(km)

N
0 25 50 100

(km)

Farmland
Forest land
Grass land

Water body
Built-up land

N
0 25 50 100

(km)

(a) (b)

(c)

Fig. 6.17 Spatial pattern of land use under different urbanization scenarios in Wuhan
Metropolitan. a baseline scenario. b Centralized urbanization scenario. c Decentralized
urbanization scenario
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effect difference of three scenarios appears at the hottest month of the year (June,
July, and August). In colder months (January, February, November, and December),
the difference of warming effect under three scenarios is small.

Under different scenarios of urbanization, there are significant differences of
spatial patterns of impacts of land surface on temperature change (Fig. 6.20). From
the differences of three scenarios, variation between centralized and decentralized
urban land expansion scenario is the biggest, while there are small differences
between centralized urban land expansion scenario and baseline scenario. Com-
pared to decentralized urban land expansion scenario, the spatial range of warming
effect is much stronger under centralized urban land expansion scenario, and the
magnitude of temperature difference was greater too. Compared to baseline sce-
nario, the spatial range of warming effect was a little stronger and more concen-
trated in centralized urban land expansion scenario, and the magnitude of

Urban and built-up land
Dryland, cropland, and pasture
Irrigated cropland and pasture
Cropland/grassland mosaic
Cropland/woodland mosaic
Grassland
Shrubland
Savanna
Deciduous

Water bodies
broadleaf forest

(a) (b)

(c)

Fig. 6.18 Underlying surface data of Wuhan Metropolitan under different scenarios. a Baseline
scenario. b Centralized urbanization scenario. c Decentralized urbanization scenario
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Fig. 6.20 Spatial pattern of warming effect under different scenarios (�C)
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temperature difference is also smaller. Temporally, colder month (in January as an
example) warming differences are small, but the hotter months (in July for
example) warming differences are much significant. From the perspective of
annual average level, the biggest warming difference still lies between centralized
urban land expansion scenario and decentralized urban land expansion scenario,
the minimum warming difference lies between centralized urban land expansion
scenario and baseline scenario. Among three scenarios, the warming effect caused
by underlying surface changes is widest and strongest under centralized urban land
expansion scenario. Under decentralized urban land expansion scenario, the
warming scope and magnitude caused by the underlying surface changes is the
smallest.

Under different scenarios of urban land expansion, the difference of impact of
underlying surface changes on precipitation is not particularly significant
(Fig. 6.21). Overall, the precipitation of decentralized urban land expansion sce-
narios is maximum, slightly higher than the other two scenarios. The precipitation
of centralized urbanization scenarios is minimal, slightly lower than the other two
scenarios. From the aspects of time series, precipitation under different scenarios
presents an appearance of consistent monthly, the peak of precipitation appeared in
July. Precipitation differences among three scenarios are largest near precipitation
peak.

As the spatial distribution is concerned, precipitation under centralized urban
land expansion scenario and baseline scenario is relatively concentrated, while
spatial precipitation under decentralized urban land expansion scenario is rela-
tively dispersed (Fig. 6.22). There is a wider scope, greater intensity of rainfall
centers under centralized urban land expansion scenario and baseline scenario.
Under decentralized urban land expansion scenario, precipitation center presented
decentralized characteristic, namely, there were two smaller and weaker precipi-
tation centers which are more evenly distributed in space.
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Fig. 6.21 Precipitation under different scenarios
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6.3.4 Concluding Remarks on Urbanization and its Climate
Effects in Wuhan Metropolitan

We carried out urban land expansion scenario simulation under different urbani-
zation patterns based on Partitioned and Asynchronous Cellular Automata Model
for Wuhan Metropolitan region. The impact of the underlying surface changes on
regional temperature and precipitation under different urbanization scenarios are
simulated and analyzed by WRF model. Results showed that:

(i) Under different urban land expansion scenarios, warming effect of urban
land expansion has significant variations. Warming effect under centralized
urbanization pattern is the most significant, far higher than it under
decentralized urbanization scenario. Warming effect under decentralized
urban land expansion scenario is much weaker than the other two sce-
narios. Besides, the spatial distribution of warming effect also has signif-
icant differences. The warming effect of centralized urban land expansion
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Fig. 6.22 Spatial distribution of precipitation under different scenarios (mm). a Baseline
scenario. b Centralized scenario. c Decentralized scenario
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is widest and strongest among three urban land expansion scenarios. The
warming effect of decentralized urban land expansion scenario is on the
opposite.

(ii) The different effects of different urban land expansion scenarios on
regional average precipitation are not very significant. Overall, regional
precipitation is largest under decentralized urban land expansion scenario,
slightly higher than the other two scenarios. On the opposite, regional
precipitation under centralized urban land expansion scenario is smallest.
Precipitations under difference scenarios are comparatively consistent
temporally. Meanwhile, spatial distribution of precipitation has significant
differences. The spatial distribution of precipitation is more concentrated
under centralized urban land expansion scenario, and presents a wider
scope, greater intensity of rainfall center. The distribution of precipitation
is more dispersed and the rainfall centers are still dispersed under decen-
tralized urban land expansion.

(iii) Decentralized urban land expansion pattern is the suitable urbanization
pattern for mitigating climate change. Under decentralized urban land
expansion scenario, underlying surface change has little effect on climate
change, and showing a uniform distribution pattern in space. Under cen-
tralized urban land expansion scenario, there is a greater impact on climate
change, and the distribution is more concentrated in the space.

By analyzing effects of urban land expansion on regional temperature and
precipitation under different urban land expansion patterns, we concluded that
decentralized urban land expansion pattern is rational for ‘‘resources-saving and
environment-friendly’’ society construction. In further studies, we need to discuss
in-depth the spatial and temporal laws of regional underlying surface change on
other parameters that could affect ecological environment and its effect on human
welfare under different urban land expansion scenarios.

6.4 Summary

This chapter includes three case studies on the impact of future urbanization on
surface climate in China.

First, we analyzed the impact of urban land use change on regional temperature
and precipitation in summer in the Great Beijing area during 2030–2040 based on
the simulation results of WRF and archived data land use change and climate
change during 1995–2005. Results showed that urbanization in this area has
affected regional climate and has the potential to the increase of temperature and
precipitation in summer during 2030–2040. These results can support sustainable
urban planning to mitigate and adapt to climate change in the future.

Second, we performed a scenario-based simulation of influence of land use
change on regional temperature in Southern Jiangsu province, a typical region of
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urbanization in China. This study projected future land use change, and then
simulated the future regional temperature with WRF model. The influencing
mechanism of land use change on regional temperature was analyzed from the
perspective of land surface radiation budget and energy balance. The results
indicated that: (i) the monthly average temperature was obviously higher under
Rapid Economic Growth (REG) scenario than under Cooperate Environmental
Sustainability (CES) scenario in 2050, especially in the hottest month (July). (ii)
The extent of high-temperature regions is much wider under REG scenario than it
is under CES scenario in 2050. (iii) The land surface net radiation and latent heat
flux are two key factors through which land use change affects regional temper-
ature in Southern Jiangsu province, and latent heat flux plays a dominant role. (iv)
Land use change mainly influences land surface net radiation through altering land
surface albedo and emissivity.

Last, we further simulated climatic impacts of urban land expansion under
different urbanization patterns in Wuhan Metropolitan. We designed three
urbanization patterns scenarios, i.e., baseline scenario, centralized urbanization
scenarios, and decentralized urbanization scenarios. We applied Partitioned and
Asynchronous Cellular Automata Model to simulate spatial patterns of urban land
expansion under these scenarios. The results showed that decentralized urbani-
zation is a reasonable urbanization pattern to mitigate climate change in rapid
urbanization period in this study area. It can provide a scientific basis for the
rational choice of urban land expansion pattern in Wuhan Metropolitan in the
context of climate change, and also shed lights on choosing rational urban
development models for the other regions.
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Chapter 7
International Comparisons of the Modeled
Climate Effects of Land Use Changes

Yingzhi Lin, Fan Zhang, Yi Qu, Zhihui Li and Tao Zhang

Previous chapters focus on the climate effects responding to different types of land
use changes in China. This chapter furthers the researches on the land use impacts
on climate from a global perspective. Five distinguished cases for estimating the
impacts of land surface changes on climate through the world are introduced
separately. The first one still focuses on the possible impacts of underlying cul-
tivated land reclamation on the future climate change, but we move the study area
to India where land reclamation became the dominated land conversion comparing
with other economies. Specifically, the future cultivated land reclamation is pro-
jected for the climate model’s performance to estimate the potential effects on
local energy flux and temperature in summer and winter.

Further, global deforestation plays a vital role in regulating climate through
biogeophysical and biogeochemical effects (Bonan 2008). Currently, deforestation
is one of the typical land cover changes, and its impacts on climate are not the
same at different scales. Tropical deforestation will induce lower evaporate rates
and make the local climate drier and warmer (Costa and Foley 2000). However,
the boreal forests will change the climate in different ways in comparison with
other forests. In order to understand the biogeophysical effects of different forests
change on the climate, the European Russia boreal forest region is firstly chosen as
the study area to study the regional temperature variation induced by future boreal
deforestation. Besides, the tropical forest in Brazilian Amazon is also considered
to model the potential climatological variability caused by future forest vulnera-
bility over the twenty-first century.

As mentioned in Chap. 5, the grassland plays an important role in the eco-
system services supply, but it can rarely find out the influences of grassland change
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on regional climate. In the next study, we aim to simulate the climatological
changes caused by future grassland change in Mongolia under Representative
Concentration Pathways (RCPs) for the years 2010–2020 and 2040–2050.

In terms of the urbanization impacts on climate in developed megalopolis, there
are still no sufficient evidences for understanding the relationships between future
urban expansion and regional climate at the scale of megalopolis, whose urban
area are still expanding, such as New York, Beijing, Seoul, Chicago, and Moscow.
Therefore, we present some evidences for supporting the effects of future urban
expansion on regional climate based on the model simulation of precipitation and
temperature in the Northeast megalopolis of the United States of America (USA).

7.1 Potential Climate Impacts of Land Reclamation
in India

India is a typical region of the reclamation of cultivated land in the global land use
and land cover change (Delucchi). Cultivated land expansion is usually caused by
the intermediate needs of the growing population. According to the fifteenth
population survey in 2011, the total population of India has exceeded 1.21 billion,
accounting for 17.5 % of the world population and ranking second all over the
world. It is assumed that the population of India is expected to exceed that of
China in 2030 (Kunzig 2011). The continuous population growth has posed a great
challenge to the food security, so Indians have progressively reclaimed the cul-
tivated land while promoting modern agriculture so as to meet the domestic food
demand. Subsequently, these large scale anthropogenic reclamation leads to the
land use and land cover changes, which inevitably influences the exchange and
distribution of the energy, moisture, and momentum between the biosphere and
atmosphere, and affects the radiation balance and water cycle (Feddema et al.
2005; Pielke et al. 2002). Hence, this study attempts to quantitatively project the
potential biogeophysical effects caused by the future large-scale reclamation of
cultivated land with the WRF model performance.

7.1.1 Model and Data

7.1.1.1 Simulation Schemes

The simulation domain is illustrated in Fig. 7.1. The spatial resolution of land cover
maps is 30 km 9 30 km, and there were 79 grid cells in the east-west direction and
111 grid cells in the north-south direction in the whole simulation area (Only a small
eastern part of India is not included in the study area). The temporal duration of the
WRF simulation is set to 2010–2050 in this study. The parameterization schemes
mainly include the Noah land surface parameterization scheme (Ek et al. 2003),
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CAM3 radiation scheme (Gettelman et al. 2008), WSM3-class simple ice micro-
physics (MP) scheme (Challa et al. 2009), Grell-Devenyi ensemble scheme for
cumulus convection, and YSU boundary layer scheme (Hong et al. 2006).

The fifth phase of the Coupled Model Intercomparison Project (CMIP5) pro-
duced a state-of-the-art multi-model dataset advancing our knowledge of climate
variability and climate change. This model output, which is analyzed by
researchers worldwide, underlies the Fifth Assessment Report by the Intergov-
ernmental Panel on Climate Change (Taylor et al. 2012). It provides projections of
future climate change on two timescales, near term (out to about 2035) and long-
term (out to 2100 and beyond). Model output of the latter of Representative
Concentration Pathway (RCP) 6.0, such as air temperature, specific humidity, sea
level pressure, eastward wind, northward wind, and geopotential height from 2010
to 2050 was used as the atmospheric forcing dataset of WRF model.

The parameters of the Noah land surface parameterization is adjusted for the
application in India case. In addition, the vegetation parameters related with the
land cover as well as the land cover change are revised since this study mainly
focuses on the effects of the land cover changes rather than those of the radiation
process.
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7.1.1.2 Data

There are two sets of tests included in the experimental design, one is the control
test and the other is the prediction test (Table 7.1). The land cover data in 2010 and
the predicted land cover data in 2050, both in the classification of US Geological
Survey (USGS), were used as the underlying land surface data in the control test
and prediction test, respectively. The land cover data in 2010 were obtained from
the National Basic Research Program of China, and the land cover data in 2050 is
projected based on the work of the Asia-Pacific Integrated Model (AIM) modeling
team at the National Institute for Environmental Studies (NIES), Japan. The reason
why we choose RCP6.0 scenario is that it is a stabilization scenario where total
radiative forcing is stable after 2100 without overshoot by employment of a range
of technologies and strategies for reducing greenhouse gas emissions (Fujino et al.
2006). Only the underlying cultivated land is highly concerned to focus on the
research purpose in which the reclamation’s effects would be modeled.

7.1.2 Results

7.1.2.1 Cultivated Land Changes in India

2Cultivated land is widely distributed in India, and the total area of the cultivated
land and pasture reaches around 2.07 million km2, accounting for 73.03 % of the
study area. There are mainly four kinds of cultivated land in India according to the
USGS classification, i.e., the dryland cropland and pasture, irrigated cropland and
pasture, cropland/grassland mosaic, and cropland/woodland mosaic. The dryland

Table 7.1 Description of the experimental design

Test Test period Forcing data Land cover data in WRF model

Control test 2010–2050 2010–2050 Land cover data of 2010
Prediction test tetest 2010-2050 2010–2050 Land cover data of 2050

Table 7.2 The simulated and observed values of the annual average near-surface temperature
(�C) in India for the year of 2010

City Coordinates Location Observed Simulated Difference

Ludhiana (31.05 N,77.34E) North 14.2 13.0 -1.2
Madural (10.19 N,79.23E) South 35.0 33.5 -1.5
Chenni (14.05 N,80.29E) Plain 16.6 17.4 0.8
Bangalore (13.92 N,77.12E) Mountainous area 33.2 32.9 -0.3
Visakhapatnam (18.90 N,83.28E) Coastal area 30.9 30.3 -0.6
Hyderabad (18.23 N,78.27E) Inland 32.8 32.7 -0.1

Note The historical data is collected from http://sdwebx.worldbank.org/climateportal/index.cfm
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cropland and pasture owns the largest area among the four kinds of cultivated land,
reaching nearly 1.18 million km2 (56.76 % of the total cultivated land area), mainly
located in Gangetic Plain, Malwa Plateau, and the northern part of Deccan Plateau.
The irrigated cropland and pasture ranks second with the coverage of 0.67 million
km2 (32.10 % of the total cultivated land area), and it is mainly distributed in the
northern part of Indus plain, eastern part of India Peninsula, and the coastal plain in
the southern part of India. There are only a few cropland/grassland mosaics
(9.82 %) in the northern part of Indus plain and the middle part of India Peninsula,
and the cropland/woodland mosaic is kept with the least area (1.32 %), which is
sparsely distributed in the coastal area in the southwest part of India (Fig. 7.1a).

According to the projected land cover data in 2010–2050, the total conversion
area of the cultivated land will be about 1.16 million km2, and changed cells cover
most part of India except Gangetic Plain and the coastal area in the southeast part of
India, including the conversion from other land use types into the cultivated land as
well as the conversion from the dryland cropland into the irrigated cropland
(Fig. 7.1b). The dominated land use change is the conversion from the dryland
cropland into the irrigated cropland, accounting for 50.23 % of the total conversion
area. The corresponding converted grid cells are mainly located in the flat regions,
e.g., Indus Pain and the middle part of India Peninsula. Additionally, the cells of
conversion from other land use types into the irrigated cropland (48.15 % of the
total conversion area) mainly distributes in the plain and coastal area in the
northeast part of Eastern Ghats Mountain, the northern part of Western Ghats
Mountain, and some undeveloped regions with certain water sources in the
southwest part of India. In the second conversion type, 93 % of the expanded
cultivated land is from grassland and shrub, with only 7 % from forest. The least
proportion of changed land is converted from other land use types into the dryland
cropland, and only sparsely distributed in Malwa Plateau. Totally, there has been a
large proportion of dryland cropland in India, and most of them will be changed into
the irrigated land with higher productivity due to the improvement of the irrigation
conditions, progress of irrigation techniques, and increase of the food demand.

7.1.2.2 Model Validation

The result indicates that the maximum temperature of both the historical data and
the simulation result appears around March, while the minimum occurs in
November. The decrease rate during the period from September to November is a
little bit higher than that during January and March (Fig. 7.2).

The simulation result showed that the modeled temperature is lower than the
observations on the whole. Specifically, the observed data indicate the annual daily
average temperature is 29.06 �C, while the simulation result is 27.70 �C. As for
the monthly temperature change, the simulated temperature is lower than the
observed one in all months except February, and the difference in September is the
most significant, reaching 2.69 �C. With regard to the seasonal change, the sim-
ulated temperature is less than the observations of all seasons except the winter.
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The difference between the simulated and observed data in the spring and autumn
is 1.89C and 1.77 �C, respectively, and it is relatively small in the summer and
winter, only reaching 0.95 �C.

In summary, WRF model has a high ability to simulate the temperature in India
at different temporal and spatial scales with accepted tolerance. The simulated
results is a little bit lower than the observations, and the spatial pattern indicates
that there is no significant difference between the simulated and observed values in
most regions.

7.1.2.3 Possible Impacts of the Cultivated Land Reclamation
on the Energy Flux

The reclamation of cultivated land in study area may lead to significant change of
the energy flux, which might augment the temperature variation through the land–
atmosphere interaction and the atmospheric circulation. Table 7.3 shows the
simulated monthly and annual differences of latent heat flux and sensible heat flux
between 2010 and 2050. These differences are caused by the reclamation of cul-
tivated land (Deng et al. 2013; Liu and Deng 2011). The result shows that the
cultivated land reclamation will induce the increase of the latent heat flux increases
(0.84 W/m2) and decrease of the sensible heat flux (1.03 W/m2).

The simulation result indicates that there is obvious seasonal fluctuation of heat
fluxes (Table 7.3). For example, on average, the latent heat flux in the monsoon
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season (roughly August to October) increases by 0.73 W/m2, while the sensible
heat flux decreases by 0.90 W/m2. By comparison, on average, the latent heat flux
before the monsoon season (roughly April to July) increases by 1.56 W/m2, while
the sensible heat flux decreases by 1.72 W/m2. This indicates that the changes on
heat fluxes before the monsoon season are larger than that in the monsoon season.

7.1.2.4 Possible Impacts of the Cultivated land Reclamation on Air
Temperature

(i) Overall conditions of the near-surface temperature

Since the near-surface temperature is extreme in the summer and winter, we
have mainly focused on the forecast of the monthly average temperature in the
summer and winter for the study area of India. The spatial heterogeneity of the
monthly average temperature in the summer and winter from 2010 to 2050 is
shown in Fig. 7.3. The result indicates that the future reclamation of cultivated
land in India will have some impacts on the monthly average temperature in the
summer and winter. In comparison to the base year 2010, the land reclamation will
drive the monthly average temperature decrease and increase by 0.22 �C and
0.11 �C in the summer and winter, respectively, for 2050 in India. It has a cooling
effect on the temperature in India on the whole and it is consistent with the
conclusion of Feddema et al. (Feddema et al. 2005) that agriculture expansion can
contribute to the decrease of the daytime temperature at the low or middle lati-
tudes. This may be caused by the conversion from some other land use types into
the irrigated cropland during the reclamation of cultivated land in India, and the
increased irrigation plays an important role in decreasing the temperature. Besides,
the conversion from grasslands and forest land into the dryland cropland can

Table 7.3 Projected differences of monthly and annual heat fluxes (W/m2) between 2010 and
2050 in India

Latent heat flux Sensible heat flux

Jan 0.14 -0.42
Feb 0.54 -0.78
Mar 0.68 -0.95
Apr 1.80 -2.00
May 1.06 -1.17
Jun 1.40 -1.54
Jul 1.99 -2.18
Aug 0.47 -0.64
Sep 1.50 -1.61
Oct 0.23 -0.45
Nov 0.18 -0.33
Dec 0.11 -0.29
Average 0.84 -1.03
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increase the surface sensible heat flux while decreasing the latent heat flux and
evapotranspiration. Consequently, the monthly average temperature increases.

Our simulation results indicate the temperature variability also varies at spatial
scales. In summer, the monthly average temperature in most regions of India
decreases to some degree, among which it decreases most significantly in Gangetic
Plain in the north part, with the decrement of 0.70 �C. As this region has good
irrigation conditions, the newly reclaimed cultivated land can be irrigated and
consequently makes the temperature decrease. In contrast, the temperature has not
changed that much in some parts of the Eastern Ghats Mountain and the Western
Ghats Mountain where the altitude is relatively high. The temperature increases by
0.57 �C in the regions along Himalayas Mountain and the west part of the Western
Ghats Mountain. In winter, the monthly average temperature increases to some
degree in most parts of India (approximately 64.52 % of the study area) due to the
reclamation of cultivated land. These regions are mainly located in the plateaus
and part of the plain, where there is very limited agricultural irrigation in the
winter and the reclamation of cultivated land has limited cooling effects. Con-
versely, the monthly average temperature keeps stable in the rest of the study area
(approximately 35.15 %) where mainly in the plain the agriculture industry is
originally well developed. In addition, the monthly average temperature shows a
decreasing trend in only 0.32 % of the whole region, which is sparsely distributed
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in some areas near the Himalayas Mountain. Generally from the Fig. 7.3, we can
also conclude that the impacts of land reclamation will not only be exerted on the
local climate but also transmitted to neighboring areas.

(ii) Relationship between Land Use and Cover Change (LUCC) and the changes
of near-surface temperature

The results show that the changes from evergreen broadleaf forest to irrigated
cropland and pasture (designated as the conversion of 13–3 for convenience, the
same below) or the changes from mixed forest to irrigated cropland and pasture
(15–3) will cause an increase on the monthly average temperature separately by
0.31 and 0.21 �C in summer (Fig. 7.4a). These two types of land conversion will
induce the decrease on latent heat flux and increase on sensible heat flux, leading
to an overall increase on land surface temperature. The warming effect caused by
the deforestation will not be offset by the cooling effect of cropland irrigation in
this case. In addition to these two types of cultivated land reclamation, other land
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use changes have cooling effect on the surface temperature, among which the
conversion from barren or sparsely vegetated land to irrigated cropland and pasture
(19–3) will lead to a maximum decrease of the monthly average temperature (i.e.,
-0.40 �C), this is because the vegetation coverage is relatively low in the less
vegetated land. While they are converted into irrigated cropland and pasture, latent
heat flux would be increased and sensible heat flux decreased resulting in the
reduction of the monthly average temperature. Besides, the cooling effect of
conversion from cropland/woodland mosaic to irrigated cropland and pasture
(6–3) is the least (i.e., -0.04 �C). In winter (Fig. 7.4b), different types of recla-
mation will cause an universal rise on the monthly average temperature. The
conversion from evergreen broadleaf forest to irrigated cropland (13–3) will lead
to a maximum increase on the monthly average temperature, with 0.17 �C.

In conclusion, the effects of cultivated land reclamation on temperature vary
between seasons. Meanwhile, the impacts of different cultivated land reclamation
types on temperature are also different; this is because different types of cultivated
land reclamation will lead to different changes in vegetation types and farmland
management modes, which will result in changes of latent heat flux and sensible
heat flux, and thus lead to different effects.

7.1.3 Concluding Remarks on Land Reclamation in India

After testing and verifying the WRF model in simulating the temperature of India,
we updated the land cover data, and simulated the possible impacts of cultivated
land reclamation on the temperature in India. India is with vast cultivated land
reclaimed for agricultural production; there is, however, still a trend of reclamation
of cultivated land in the future since the population growth. The area of LUCC due
to the reclamation of cultivated land is projected to reach 1.16 million km2, among
which includes around 584.33 thousand km2 of converted area from the dryland
cropland to the irrigated cropland as well as nearly 560.12 thousand km2 of
converted area from other land use types into irrigated cropland, accounting for
50.23 and 48.15 % of the total conversion area, respectively. The proportion of
cultivated land and pasture in the study area will increase from 73.03 to 85.28 %.

The land reclamation will increase the latent heat flux and decrease the sensible
heat flux, which may be the reason for the downward trend of the monthly average
temperature in India on the whole. Specifically, it mainly decreases the tempera-
ture in summer, while increases the temperature in the winter. Besides, the rec-
lamation of cultivated land influences not only the local climate, but also the
regional climate in the neighboring districts.

This study is still preliminary and there are still some uncertainties to be further
mitigated in simulating the climatic effects of the LUCC. For example, there are
many factors influencing the regional climate and they generally act synthetically,
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such as other land use and land cover changes and atmospheric circulations.
Besides, the reclamation of cultivated land in India also influences many other
climatic indicators, such as precipitation and runoff, only some of which have been
taken into account in this study. There may be some uncertainties and interactions
between these indicators and it is necessary to complement the sensitivity analysis
in the forthcoming researches.

7.2 Possible Impacts of Boreal Deforestation on the
Near-Surface Temperature in the European Russia

There have been many researches focusing on the impacts of the high-latitude
boreal deforestation on climate change. As boreal forest is the largest continuous
terrestrial ecosystem in the world, boreal forest has the potential to influence the
climate by altering the radiation budget. Bonan (2008) found that loss of boreal
forests provided a positive feedback for glaciation, whereas boreal forest expan-
sion during the mid-Holocene amplified warming. Bathiany et al. (2010) identified
that in the future 100 years, the deforestation at the northern latitudes (45–908N)
will lead a decrease of 0.25 �C in global annual mean temperature, while the
afforestation had equally large warming effects combining both biochemical and
biophysical effects. And through latitude-specific large-scale deforestation exper-
iment, Bala et al. revealed that the difference of the global average temperature
between the standard case without deforestation and the experiment with boreal
deforestation at high latitude in year 2100 is -0.8 �C (Bala et al. 2007). Based on
observations, Lee et al. found that for the site pairs at 458N, the mean annual
temperature difference induced by deforestation is 0.85 ± 0.44 �C (± mean
standard deviation) (Lee et al. 2011). Overall, most researches identified that at
higher latitudes, boreal deforestation will results in cooling effects due to that the
boreal forests with lower albedo being replaced by other types of vegetation with
higher albedo, such as crops and grasslands. (Pielke et al. 2002). Boreal defor-
estation will lead to a large increase in albedo especially in winter (Lawrence and
Chase 2010), Also boreal deforestation can alter surface heat balance by altering
evaporative heat transfer caused by evapotranspiration from vegetation, and by
changes in surface roughness(Ellis and Pontius 2007).

European Russia with high coverage of boreal forest has gone through intensive
human activities. The largest part of the boreal forests is located in Russia, and
about half of the boreal forests are still primary, with very limited impacts from
forestry and other human activities. While the most intensely managed part of the
boreal forest is in Scandinavia and western Russia (European Russia), where only
patches of old-growth forests remain in reserves. Some researchers have showed
that European Russia has experienced fluctuant forest cover change. Baumann
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et al. found that the temperate forests in European Russia underwent substantial
change during 1990–2010, with a decrease rate of 1 % in total area between 1990
and 1995 and an increase rate of 1.4 % between 2005 and 2010, which may be
caused by the logging and afforestation on abandoned croplands (Baumann et al.
2012). Hansen et al. reported that Russia has the third largest area of gross forest
cover loss. Russia’s forest loss is geographically widespread due to deforestation
in the European and far-eastern parts of the country and forest fires throughout
Siberia (Hansen et al. 2010). Potapov et al. (2011) indicated that the forest cover is
central part of European Russia was between 16 and 50 % (average forest cover of
36 %). The low forest cover within these regions is a result of a long history of
conversion from forests to croplands.

Thus, the European Russia where has experienced fluctuant land cover change
and serious forest loss due to the intensive human activities is selected as a typical
area to detect the impacts of deforestation on the near-surface temperature
(Fig. 7.5).

Fig. 7.5 Accumulated fraction of conversion from forests to croplands between 2000 and 2100
in the study area. The black box is the boundary of the study area
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7.2.1 Data and Methodology

7.2.1.1 Data Processing

The data used in this study include land cover data, climate forcing data, and
meteorological observation data. In this study, the 1 km 9 1 km resolution land
cover data of the USGS classification system in year 2000 derived from USGS
Land Cover Institute, including 24 land cover types, were used as the baseline
data. The land cover data of year 2010 and 2100 were predicted with the data of
land conversion data, which were derived from the Asia-Pacific Integrated Model
with the global economy model (AIM/CGE) based on RCPs 6.0 scenario. In the
AIM/CGE model, land resource was treated as a production factor for agriculture,
livestock, forestry, and biomass energy production. Urban land area expanded due
to the population and economic growth, while the cropland area expanded for
meeting the increasing food demand. The land cover data and underlying land
surface change data during 1500–2100 can be obtained through data fusion at
0.5� 9 0.5� resolution (Hurtt et al. 2011).

As there is difference in the spatial resolution and classification system between
the land cover data of the USGS classification system and the RCP-based land
conversion data, it is necessary to project the future land use and land cover data
and upscale it to a higher resolution (1–10 km) as the requirement of WRF model.
As it is well acknowledged that regional climate models (RCMs) with spatial
resolution at or coarser than 30 km are unable to produce accurate climate fore-
casts (Jin and Miller 2007). Higher resolution allowed the model to feature the
regional geophysical conditions and predict the regional climate with more
accuracy. For example, WRF simulations can be done at a resolution of 4 km,
which allows many small scale features, such as mountains and coastlines, for our
purposes (Mawalagedara and Oglesby 2012). In this study, we set the resolution of
the land cover data to be 5 km 9 5 km in WRF model. Taking the processing
of land cover data of year 2100 as an example, first, the accumulated fraction of
different kinds of land conversion in each 0.5� 9 0.5� grid from 2000 to 2100 was
calculated (Fig. 7.5). Then the dominant conversion type (with maxima conversion
amount) of each grid cell could be identified, and thereafter whether the land cover
type of grids changed or not was identified through setting threshold value of the
conversion rate. The threshold values were mainly set to reveal the conversion
trend, as to each type of conversion, the threshold value was set to be the 50th

percentile of the conversion rate. The land cover data in year 2010 and 2100 were
further obtained from the land cover data of the USGS classification in year 2000
and the land conversion data during 2000–2010 and 2000–2100. Finally the
underlying land surface data were transformed to grid data of 5 km 9 5 km
through resampling.

Model output of RCP 6.0, such as air temperature, specific humidity, sea level
pressure, eastward wind, northward wind, and geopotential height from 2000 to
2100 were used as the atmospheric forcing dataset in the WRF model. In addition,
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the meteorological observation data, which were used to validate the WRF model
in this study, were collected from European Climate Assessment & Dataset.1

7.2.1.2 Scenario-Based Experiment Design

The Advanced Research WRF (ARW-WRF) is used in this study. The Lambert
projection is used, with the two standard parallels both being 57� N, central
meridian 48� E. The study area is located in European Russia, and it contains 192
grid cells in the east-west direction and 174 grid cells in the north-south direction.

The parameterization scheme of physical processes in the model (Table 7.4) is
as follows. The Microphysics parameterization Scheme adopted the scheme
introduced by Lin et al. (1983). The cumulus parameterization scheme adopted the
Grell-Devenyi ensemble scheme. The boundary layer process scheme was fol-
lowed the scheme of Yonsei University (YSU). The long-wave radiation scheme
and shortwave radiation scheme were both the Community Atmosphere Model
(CAM) scheme, and the land surface process scheme was Noah land surface
model. The boundary buffer was set to be four layers of grid points, and the
boundary conditions adopted the relaxation scheme. The time interval of the model
integration was set to be 5 min, and that of the radiation process and cumulus
convection was 30 and 5 min, respectively. There were 27 layers in the vertical
direction, and the atmospheric pressure at the top layer was 50 hPa.

The experiment design in this study is as follows (Table 7.5). The simulation was
implemented with the land cover data in three separated years as the land surface.
The land cover data of the year 2000 (Fig. 7.6) with the USGS classification system
was used in the baseline scenario, while the land cover data of year 2010 and 2100
were used in the sensitivity tests. The monthly and seasonal simulation results were
compared. Firstly, the simulation results of monthly temperature in year 2010 was
used to validate the WRF model, then spatial difference of the near-surface tem-
perature in the winter between 2000 and 2010 were analyzed, and at last the monthly
near-surface temperature between 2010 and 2100 was compared.

Table 7.4 Parameterization scheme of physical processes in the model

Classification of schemes Scheme option

Microphysics parameterization scheme Bulk microphysics schemes introduced by Lin
et al.(1983)

Cumulus parameterization scheme Grell-Devenyi ensemble
Boundary layer process scheme YSU
Long-wave radiation scheme CAM Long-wave radiation
Shortwave radiation scheme CAM Shortwave radiation
Land surface process scheme Noah land surface model

1 For more information, please refer to http://eca.knmi.nl/dailydata/predefinedseries.php.
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7.2.1.3 Land Cover Change in the Study Area of European Russia

The main land cover types in the study area are the croplands (four types of
cropland in USGS classification, with ‘‘Dryland Cropland and Pasture’’ (DCP) and
‘‘Cropland Woodland Mosaics’’ (CWM) dominating) and forests (four types of
forest in USGS classification, with ‘‘Evergreen Needleleaf Forest’’ (ENF) and
‘‘Mixed Forest’’ (MF) dominating), accounting for about 53 and 44 % of the total
land area, respectively. The land conversion types in the region are mainly
dominated by the conversions between croplands and forests.

From 2000 to 2010, the land cover conversion is dominated by the conversion
from croplands to forests (mainly from CWM type to MF in the northern part of
the study area) and conversion from forests to croplands (mainly from MF to DCP
in the southern part of the study area) in different parts of the study area. Statistics
analysis shows that the grids dominated by the conversion from croplands to
forests account for 26.18 % of all the grids in the study area, and grids dominated
by the conversion from forests to croplands accounts for 27.80 % of all the grids.

Table 7.5 Design of the simulation scheme

Simulation Period of forcing data Land cover data used in WRF model

Control simulation:
Year 2000 as the baseline year

2000 Land cover data of year 2000

Sensitivity simulation I: Year 2010 2010 Land cover data of year 2010
Sensitivity simulation II: Year

2100
2100 Land cover data of year 2100
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Fig. 7.6 Land cover of the study area in year 2000
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Totally, the forests coverage in the study area will decrease from 44.40 to 44.07 %,
while that of the croplands will increase from 53.04 to 53.37 %. The conversion
between the forests and croplands will be in balance during 2000–2010. However,
the spatial heterogeneity of the land conversion will redistribute the land cover
types. For example, the croplands in the northern part of study area have a ten-
dency to be converted to forests, while the scattered forests in the southern part
tend to be converted to croplands (Fig. 7.7).

By 2100, the conversion from forests to croplands will dominate in the study
area. The grids presenting the conversion from forests to croplands will account
for 37.4 % of all the grids. Then the croplands coverage will go up to 72.27 % of
the total land area, while the forests coverage will decrease to 25.31 % (Fig. 7.8).
It indicates that there is a strong tendency of conversion from forests to croplands
in this region in the future 100 years.

The coverage percentage of different land cover type in year 2000, 2010, and
2100 which were calculated based on the amount of grids of each land cover type
are shown in Table 7.6.

7.2.1.4 Validation of the Simulation Result

As shown in Fig. 7.9, the change trends of both simulated and observed monthly
average temperature in the study area were relatively similar, and the difference
between the observed and simulated values generally fluctuates around zero. To
examine whether the difference was significant or not, a paired T-test was con-
ducted to test the difference between simulated values and observed values. The
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Fig. 7.7 Land cover of the study area in year 2010
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null hypothesis was that there was no significant difference between those two
samples, and the P value of the paired T-test was 0.91 at the significance level of
0.05, which indicated that there was no significant difference between the simu-
lated values and observations. Thus, the WRF model has the ability to simulate the
temperature change.

7.2.2 Results

7.2.2.1 Analysis of Temperature Change

As a result of the land conversion during 2000–2010, the simulated monthly
average temperature during the winter (December, January, and February)
increased in most part of the study area compared with that in year 2000
(Fig. 7.10). The spatial pattern of the temperature change during winter is highly
related to the land cover and land cover change. The average temperature in the
winter generally increased in the regions where mainly covered by croplands or
where the boreal forest expands. In the southern part of the study area, which was
mainly covered by dryland cropland, the forests were converted into croplands;
consequently the temperature increment was relatively higher. The average tem-
perature increment generally declines as the distance to forested regions decreases.
In general, the land cover change in the study area is almost in balance from 2000
to 2010, there was very slight change of the average temperature in the winter (no
more than 0.023 �C/year), and the spatial distribution of temperature change
corresponds to land use and land cover change.
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Table 7.6 Coverage percentage of various land cover type (%)

USGS land cover classification Coverage percentage

2000 2010 2100

1 Urban 0.65 0.59 0.62
2 Dryland cropland and pasture 31.07 28.59 32.21
3 Irrigated cropland and pasture 0.00 0.00 0.00
5 Cropland/Grassland mosaic 1.07 0.78 1.01
6 Crop/woodland mosaic 20.90 24.00 39.05
Sum of Cropland 53.04 53.37 72.27
7 Grassland 0.18 0.12 0.03
8 Shrub land 0.01 0.01 0.01
10 Savanna 0.12 0.07 0.00
11 Deciduous broadleaf forest 0.24 0.06 0.01
12 Deciduous broadleaf forest 0.27 0.13 0.02
14 Evergreen needleleaf forest 9.87 8.54 6.76
15 Mixed forest 33.85 35.33 18.51
16 Water bodies 1.74 1.74 1.74
Sum of forests 44.22 44.07 25.30
18 Wooded Wetland 0.00 0.00 0.00
19 Barren or sparsely vegetated 0.02 0.02 0.01
21 Wooded tundra 0.00 0.00 0.00
22 Mixed tundra 0.01 0.01 0.01
Total 100 100 100

Fig. 7.9 Comparison of simulated and observed values of the monthly average near-surface
temperature at 2 meters above the ground of the study area
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The land cover change in the study area in year 2100 is mainly characterized by
the conversion from forests to croplands, and it will lead to change of the near-
surface temperature. The annual temperature will decline, while the monthly
average temperature will increase from February to June and decrease from July to
January (Fig. 7.11). In the boreal forest region, the temperature change mainly
results from the change of albedo due to snow masking (Bathiany et al. 2010). As
snow covers the surface and boreal forests are converted to croplands, the albedo of
the land surface will increase and the net surface solar radiation will reduce, thus
leading to the cooling effect, which offsets the warming effect due to the decrease of
evaporation-transpiration. Therefore, near-surface temperature during the winter
will change most intensively, decreasing by 1.81 �C on average. In the northern
hemisphere, solar radiation begins to strengthen in June, and becomes the strongest
around July and August. The conifer forests (needle-leaf forests) have lower
evapotranspiration rate (defined as ratio of latent heat flux to available energy) than
the deciduous broadleaf forests in the summer, which can lead to the higher rates of
sensible heat flux(Bonan 2008). From 2010 to 2100, most Evergreen Needleleaf
forests will be converted to croplands, and thus the cooling effect due to the albedo
increase is also stronger than the warming effect due to the decrease of evapo-
transpiration in the previous needle-leaf forest area during July and August, and
consequently makes the average temperature decrease by 0.30 �C. While in the
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Fig. 7.10 Difference of simulated monthly average temperature in the winter between year 2000
and 2010 (�C) in the study area
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spring, snow will melt and the solar radiation is not very high, the warming effect
due to the evapotranspiration reduction of evergreen needle-forests cannot be offset
by the cooling effect due to the increase of surface albedo, and consequently the
monthly average temperature will increase by 0.86�C in the spring. In general, the
result indicated that the high albedo resulting from deforestation of boreal forests
has negative impacts on the temperature, i.e., boreal deforestation will make the
temperature decrease, especially during the snow season.

7.2.3 Concluding Remarks on Case Study of Boreal
Deforestation in European Russia

The land cover change in the study area, which was mainly characterized by the
conversion between boreal forests and croplands, will lead to significant change of
the near-surface temperature, especially in the next century. It will make the
regional near-surface temperature decrease by 0.58 �C in future 100 years
(0.0058 �C/year on average) with the temperature change varies greatly in dif-
ferent seasons. The temperature changes most drastically in the winter, with an
average decrease of 1.81 �C. And the temperature will decrease by 0.30 �C in the
summer, while in the spring it will increase by 0.87 �C. The temperature change is
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mainly due to the increase of surface albedo caused by boreal deforestation, which
offset the warming effect due to evapotranspiration reduction.

The results of this study basically reveals the impacts of boreal deforestation on
regional climate changes, but there are still some uncertainties about the influence of
the future land cover change since only biogeophysical effects were taken into
consideration, without considering the biochemical effects through some other key
influencing factors, such as carbon emission. Since the impacts of land cover change
are very complex, it is still necessary to carry out more in-depth researches on a series
of issues, such as combination of biochemical and biophysical models, which take
both the biogeophysical and biogeochemical processes into account. In addition,
there are still some aspects that should be improved to better detect the impacts of
deforestation on climate changes. First, it is still necessary to further explore the data
assimilation methods to harmonize the data from different sources. Second, there are
many factors that may influence the climate change, and it is necessary to do some
sensitivity experiments to detect the main factors and minimize the uncertainties.

7.3 Potential Impacts of Future land Surface Changes
on Regional Climate over the Brazilian Amazon

Forests, covering more than 30 % of terrestrial land (Deng et al. 2010), mainly
comprise tropical, temperate, and boreal types from which provide invaluable
ecological, socioeconomic, and mental public goods and services for humanity.
Among these forest types, tropical forest occupies nearly 20 % of total forest land
area, appropriates more than 30 % of net primary production (NPP) in the ter-
restrial ecosystem. This outstanding biomass can sequester a great deal of CO2,
maintaining above 25 % on land surface (Bonan 1997), which doubles or triples
that of temperate and boreal forests (Malhi et al. 2008). Well-functioned tropical
forests could effectively accelerate the evapotranspiration rate, cool the atmo-
spheric temperature, and increase the rainfall. Some earlier experimental simula-
tions in which the tropical forest was entirely replaced with less vegetated lands
(Bonan 1997; Negri et al. 2004) suggested that these changes would induce
slightly unstable in surface temperature, in comparison to the decrease of pre-
cipitation, evapotranspiration, and soil moisture. The tropical deforestation will
also reduce the cloud cover caused by the increase of surface albedo and decrease
of surface roughness. Though tropical forest could mitigate surface warming
through considerable evaporative cooling effect, the temperature would increase if
the surface albedo rose to a large extent induced by deforestation, which would
offset the water and energy exchange feedback effects, compared with the
reduction of convection and precipitation (Phillips et al. 2009). Therefore, no
debate of this issue would be complete without taking the tropical forest as a
significant component into account in climate change researches.
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The Amazonia tropical forest with an area of 6 million km2, nearly 80 % of its
original area, covers half of the global remaining tropical forests, and approxi-
mately 60 % is located in the Brazilian Amazon region. The annual average forest
clearing rate in Brazil has accelerated during the period from 1994 to 2005 and
showed a decreasing trend in recent years, increased from 1.3 9 104 km2 in
1990–1994 to above 2.0 9 104 km2 in the next two years, then slightly declined to
1.9 9 104 km2 until 2005 and less than 0.7 9 104 km2 in 2011 (Duchelle et al.
2013). Meantime, the quality of forest has also experienced a significant loss, which
can be illustrated by the figures in Table 7.7. Given the massive ecological services
in water maintaining and climate regulation, the annual average precipitation in
Amazon reaches 2,500 mm, and it can discharge over a trillion m3 of water into the
ocean. Without these tropical forest featured by low albedo, great radiative forcing,
and high evapotranspiration rate, the local residents should not have had such
habitable zones with a cool and wet boundary (Werth and Avissar 2002). Although
the tropical forests are an indispensable component of regional ecological system
and humanity, anthropogenic activities have caused the shift of climatic states by
disturbing and clearing the tropical forests (Ramos da Silva et al. 2008). This land
surface change would destabilize regional climatic and hydrometerological vari-
ability (Baidya Roy and Avissar 2002), and then induce the climate anomalies, such
as change in precipitation and temperature (Schneider et al. 2004).

Numerous researches have been conducted to assess the potential climatolog-
ical changes of tropical deforestation in (Brazilian) Amazon using the global or
regional climate models (Ke et al. 2012), and shared a common view that the vast
tropical forest plays a pivotal role in changing climatic conditions. But these
studies are lacking thorough and profound investigation due to the demerits of
numerical models and data availability. As to the Global Climate Models (GCMs),

Table 7.7 The forest area and biomass stock in Brazil from 1990 to 2005

Categories 1990 2000 2005

Forest area (106 hectares)
Primary 460.51 433.22 415.89
Modified natural 54.44 54.71 56.42
Productive plantation 5.07 5.28 5.38
Total 520.03 493.21 477.70

Biomass stock (103 million metric tonnes oven-dry weight)
Above ground biomass 86.09 82.68 79.22
Below ground biomass 24.43 22.86 22.02
Dead wood 6.88 6.56 6.36
Total 117.40 112.10 107.60

Note This table shows a dramatic reduction in both forest quantity and quality. The data is
obtained from the website of Food and Agriculture Organization of the United Nations, global
forest resources assessment, 2005. For more information, please refer to http://www.fao.org/
forestry/country/32185/en/bra/, http://www.fao.org/forestry/country/32183/en/bra/
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its rough resolution is inappropriate to reveal the land surface–atmosphere inter-
actions for regional simulation cases. Importantly, it is worth pointing out that the
entire Amazon forests have been entirely converted into less vegetated lands in
terms of pasture, savanna, and cropland in the GCMs performances. Though this
unrealistic assumption could help to understand the importance of tropical
deforestation to regional and global climate changes as a whole, it is unable to help
reveal the regional anthropogenic climate changes mechanism. In contrast,
although the regional climate models (RCMs) with higher resolution are better at
revealing the mesoscale effects of land surface changes on regional climate vari-
ability, the potential climate uncertainties induced by future land surface modifi-
cation and vegetation alteration are still far from known.

Thus, the scientific objective of this case study is to estimate the potential
impacts of future tropical deforestation on regional climate changes in Brazilian
Amazon during 2090–2100 with WRF model performance. For this purpose, a
relative rational underlying land surface with high resolution should be projected
firstly. Given the observations and investigations showed that remarkable progress
in curbing tropical forests recession has been made in recent years, the prevailing
unreasonable land surface scenarios in which the entire forests are replaced with
lower coverage vegetation would not be used in this part. We analyze the char-
acteristics of forest land conversion between 2005 and 2100, and then the land
surface map in particular years could be identified. Thereafter, the control and
simulation experiments are designed for WRF modeling.

7.3.1 Data and Methodology

7.3.1.1 Data

The data used in this part include land surface data and lateral climate forcing
data. The respectable land cover product, generated by the GCAM model under
the state-of-the-art scenario (RCPs), is used to analyze the land cover conversions,
such as the changing trend and the fraction, which is critical to project the future
land surface properties (Hurtt et al. 2011). These data harmonized the historical
land uses and the future land surface scenarios for studying the anthropogenic
impacts and the annually fractional landscape patterns and land surface transitions
for the period 1500–2100 at 0.58 9 0.5 8 resolutions. For the purpose of this
study, the forest land conversions during the period from 2005 to 2100 will be
identified.

There are three steps to predict and generate the future land surface maps.
Firstly, the fraction of transitioned cells that converted from the primary forest
and the secondary forest into other land cover types, including cropland, pasture,
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and built-up land, was calculated during 2005–2100. Then the transformation
thresholds were set to identify the targeted grid cells with vast changed area. In
this study, by considering the potential joint efforts to curb the deforestation in
the future that may result in reaching the saturation point of forest clearing rate,
we then set quite lower thresholds than current deforestation rate (0.7 %). The
fraction thresholds of grid cells that converted from forest land to dryland
cropland and pasture (pasture) and cropland/woodland mosaic (woodland) were
0.15 and 0.02, respectively, and the grid cells would be considered converting
from forest to pasture if both thresholds were reached. Therefore, the conversion
thresholds might have had influences on the future land surface projection.
Finally, label and replace the initial land surface map in 2005, which is pro-
cessed with USGS land cover classification at the resolution of 30 km 9 30 km
and will be used in the control experiment. By doing this, a relative reasonable
future land surface in 2100 is generated as compared with that of most resear-
ches in which replacing the entire tropical forest with cropland or savanna
vegetation types (Schneider et al. 2004). Thereafter, a rectangle region was
selected as the study area covering the changed grid cells as many as possible
(Fig. 7.12). High resolution with this grid size can also help to reveal the land-
atmosphere interactions as well as the cumulus parameterization and weather.
The climate forcing data is same as the data used in previous section (Sect. 7.2
boreal deforestation). The buffer zone of the lateral boundary is set to four layers
of grid points. WRF model integrates at a 5-minute step, as well as the cumulus
convection processes operation, but run the radiation process at a 0.5 hour step.
Additionally, the observations of certain climate indicators in the year 2010 are
collected for validation.

7.3.1.2 WRF Model and Experiments

The ARW-WRF is used in this study. To assess the model performance, the land
cover data and meteorology data in 2010 is used to validate the WRF model. This
model is set up with a grid of 63 9 49 cells, and each one representing a
30 km 9 30 km area, centered at 58S, 568W.

For assessing the impacts of tropical deforestation on climate change, other
variables are controlled but to modify the land surface and relative properties in
the model schemes. To achieve this goal, two experiments are designed, including
the control experiment and simulation experiment. In the control experiment,
which is regarded as the reference case, the current land surface map in 2005 is
used as the basic land cover data, maintaining constant in the whole simulation
process. By contrast, the simulation experiment is designed with the implemen-
tation of project land surface map in 2100 in which certain numbers of grid cells
are converted from the forests into dryland cropland and pasture (pasture) and
cropland/woodland mosaic (woodland) (Fig. 7.12). This replacement will result in
changing of corresponding biogeophysical parameters, such as root depth, canopy
height, and other variables in WRF model. The climatic metrics in terms of
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sensible heat flux, latent heat flux, precipitation, and temperature in two experi-
ments are simulated and processed into annual domain-averaged variables during
the simulation period of 2090–2100.

7.3.2 Results and Discussion

7.3.2.1 Future land Surface Properties

In the Brazilian Amazon, the entire forest accounts for 78.07 % of the total area in
the year 2005, totally contributed by the evergreen broadleaf forest. According to
the statistical analysis, the projected deforested land occupies 18.23 % of the study
area during the period from 2005 to 2100. The ratio of cells, in which forest is
converted into pasture and woodland, to the total grid cells in the study area is 5.12
and 13.11 %, respectively. Specifically, the primary forest degrades by 13.36 % of

Fig. 7.12 The land surface properties in Brazilian Amazon. Only forests and water bodies are
showed in the land cover layer (1 km 9 1 km, USGS land cover classification). Grid cells in
which forests are converted into the pasture (yellow) and woodland (darkgreen) are provided in
the land surface change layer (0.58 9 0.58). The study area (red rectangle) covers most changed
forest land cells
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the study area, among which 32.04 % is converted into the pasture and 67.96 % is
transitioned into the woodland. The secondary forest decreases by 4.33 % in the
study area, among which 19.40 % is transitioned from forest into pasture and
80.60 % into the woodland. Furthermore, the proportions of each cell in which
primary forest is converted to pasture and woodland range from 0 to 56.51 % and
from 0 to 20.70 % separately from 2005 to 2100, in comparison to those of the
secondary forest range from 0 to 37.70 % and from 0 to 15.31 %, respectively.

Figure 7.12 provides the geographical distribution of changed forest land. The
degraded and transitioned grid cells primarily distribute in the periphery of the
entire Amazon, or along the rivers. Particularly, most grid cells in which forests
are converted into pasture are mainly located in the northwest part of the study
area, where contains a great deal of water resource supplied by the dense water
network. By contrast, the cells in which forest is converted into cropland are
principally distributed in the most disturbed and populated area, especially the
transition zones between forests and other land cover types.

7.3.2.2 Heat Fluxes

The yearly averaged sum of sensible and latent heat flux serves as an indicator
for estimating the energy exchange between land surface and atmosphere during
2090–2100. Generally, based on the model analysis, deforestation will cause a
reduction in surface heat flux with approximate 5 W/m2 per month (Fig. 7.13).
In the control simulation, the surface heat flux in the east is greater than that in
the west, but the eastern area will see a decline in the deforestation simulation.
This progressive decrease in the total heat flux illustrates the importance of
increase in surface albedo and radiation caused by deforestation. Specifically, the
annual average sensible heat flux will increase to some extent, especially in the
west region covering most deforested areas during the period of 2090–2100,
while the latent heat flux shows a significant downward trend in the same period.
Such spatial gradient of heat flux will increase the convection by generating a
thermally driven circulation, leading to rising of the sensible heat flux over the
west part and falling over the east part, which will redistribute the temperatures.

7.3.2.3 Precipitation and Temperature

On the whole, the annual domain-averaged precipitation will decrease, while the
temperature will increase during the simulation period. Deforestation in Brazilian
Amazon will induce a monthly reduction in precipitation (1.05 mm) and a monthly
increase in surface temperature (0.12 �C). The Fig. 7.13 also shows that the
deforestation will cause a significant precipitation reduction in rainy season, but a
slight decrease in dry season. Correspondingly, the surface temperature nearly
increases to a large extent in rainy season and moderately goes up to a higher level
in dry season.
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The spatial distribution of differences in surface temperature between the
control test and sensitivity test is significantly influenced by the forest land
changes. Obviously, the surface temperature increases over the western region,
associated with the reduction of precipitation and soil moisture that will reduce the
latent heat flux discharge from the land surface into atmosphere. Massive defor-
ested areas experience a significant increase of temperature and decrease of pre-
cipitation. In addition, deforestation will intensify the precipitation shift by
increasing its amount in the southeast region and even further, and decreasing the
precipitation in the northwest region (Fig. 7.14). The precipitation variability can
be explained by that deforestation may influence the propagation of squall lines,
which will reduce the water supply in these regions. Meanwhile, the convection
and speed effects will also impose a negative feedback in these regions.

To study the spatial heterogeneity of these climatic metrics in longitude and
latitude direction, the average surface temperature and precipitation in different
zones were calculated (Fig. 7.14, down panels). Apparently, the surface temper-
ature fluctuates dramatically in the western region and almost remains stable in the
eastern part, which means that the surface temperature has a longitudinal distri-
bution characteristic. Meanwhile, the zonally average temperature of north region
increases most greatly by 0.0350 �C in year 2100 induced by deforestation, while

Fig. 7.13 Annual cycles’ domain-averaged in the years 2090–2100 between 49 and 638W and
128S–28N. All flux is in W/m2, surface temperature in�C, precipitation in mm. Solid line is the
control simulation, and the dashed line is deforestation simulation
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that of central region has a less increment of 0.0272 �C, as compared to that of
south region with a similar growth by 0.0274 �C. For the precipitation, those of the
central region and the southern region fluctuate more strongly than that of the
northern region. The zonally annual average precipitation in northern region and
central region will decrease by 0.433 and 0.147 mm, respectively, while it will
slightly increase by 0.09 mm in the south region.

Variability of climate is also calculated on each land cover type according to
the model results in 2100 with the resolution of 30 km 9 30 km (Fig. 7.15). The
statistical analysis indicates that the average precipitation and latent heat flux in
the evergreen broadleaf forest area will experience a decrease of 0.15 mm and
0.40 W/m2, respectively, while the temperature will increase by 0.02 �C. Since
forests are converted into pasture and woodland, the corresponding climatic
conditions in pasture will have a significant reduction of precipitation and latent
heat flux, and increase of surface temperature. Unexpectedly, though the latent
heat flux of cropland will drop at a significant level, the precipitation will grow to

Fig. 7.14 The top panels show the yearly-averaged deviations of surface temperature (top-left) and
precipitation (top-right) in the year 2100 (deforestation minus control). The surface temperature is
contoured at a 0.2 �C interval, and the precipitation is contoured at a 5 mm interval. The down
panels are zonally averaged surface temperature and precipitation differences (deforestation minus
control). Green line indicates the north region between 28N and 28S of the Brazilian Amazon, red
line is the central region between 2 and 8 8S, and blue line is the south region between 8 and 12 8S,
the dash lines are averages of zonally surface temperature and precipitation
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some extent, as well as the temperature. This can be explained by that the flux and
wind speed gradient will accelerate the convection and telecommunication in the
study area, which will offset the negative effects of hydrometerological anomalies.
Thus, the land cover structure, which means the area and continuity of each land
cover type, will also rouse uncertainties to regional climate changes.

7.3.3 Concluding Remarks on the Anthropogenic Tropical
Forests Changes

In this case study, WRF model is used to simulate the effects of future tropical
deforestation on regional climate between 2090 and 2100 in Brazilian Amazon.
High resolution land surface maps (30 km 9 30 km) with USGS land use and land
cover classification, projected from the respectable land surface product, are uti-
lized in this model. Land surface changes are quite different from previous studies.
Forests are mainly converted into pasture and woodland, distributed along the edge
of the study area and river branches. The simulated climatic results caused by these
potential future land surface changes show that expanding deforestation will
principally trigger the reduction of precipitation and increase of surface temper-
ature in the deforested area. The sum of sensible heat flux and latent heat flux tends
to show a decline at the same period.

However, only the impacts of deforestation on climate are evaluated in this
study. In fact, various intangible factors will impose a synthetic effect on
regional and global biogeophysical and biogeochemical processes, which will
influence the hydrological cycle and energy budget, and further result in the
climate changes. Thus, the sensitivity analysis on other factors should be
required in further studies.

7.4 Impacts of Future Grassland Changes on Surface
Climate in Mongolia

Mongolia is located in the middle of Asia with bordering Russia to the north and
the Inner Mongolia of China to the south, east, and west. It is the second-largest
inland country all over the world with total area of 1.56 million km2, ranking the
18th in the world. Much of the country’s area (*70 %) is covered by steppes
(Fig. 7.16). Mongolia is located in the Mongolian Plateau. Most areas are
mountainous region with eastern part comprising hills and plains, and the southern
part is Gobi desert. Mongolia is far away from the coast and has obvious inland
climate characteristics. There is a large difference of the daily and seasonal tem-
peratures. The winter in Mongolia is cold and long and the summer is warm and
short. According to the data from Mongolia Meteorological Administration from
1960 to 2006, the temperature is relatively low with annual average temperature of
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Fig. 7.15 The zonally averaged difference of precipitation (mm), temperature (�C) and latent
heat flux (W/m2) of different land covers in Brazilian Amazon in 2100
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-5 �C or even much lower while it is 4 �C in the southern part of plain (Vay-
key,er 2009). The hottest month is July, the average temperature in the areas of
Altai County, Bat-olzi County, and Batkhorob County reaches 10–15 �C. The
temperature in Gobi desert and the eastern plains of Mongolia is more than 20 �C
(Humphrey 1978). And average annual precipitation in Mongolia is 200–300 mm
from 1980 to 2006 (Zhang et al. 2007; Vaykey,er 2009). In recent 20 years, the
global average temperature has risen by 0.74 �C, while average temperature of
Mongolia rose from 1.5 to 2.5 �C, which is two or three times of the world average
level (Yatagai and Yasunari 1994). Storm and drought are the two main nature
disasters for the agriculture and animal husbandry production.

The pillar industry in Mongolia’s national economy is always stock farming.
Given approximately 30 % of the population is nomadic or semi-nomadic,
grassland is quite important in Mongolia. Revealing the effects of grassland
change on climate is of global importance in such a typical region. Its grassland is
mainly divided into Forest Grassland, Typical Grassland, Mountain Grassland,
Desert Grassland, and Desert. Since the 1960s, due to overgrazing, herds imbal-
ance, the excessive use of pastures, and the effects of global warming, the dec-
rement of species in Forest Grassland, Typical Grassland, Mountain Grassland,
Desert Grassland, and Desert are 50, 44.73, 30.3, 23.8, and 26.7 %, respectively.
The forage grass of high quality was gradually recessed or replaced by inferior
plants (bushes, shrubs, etc.) (Barger et al. 2004). Many species of plants decreased
greatly and forage quality declined year by year. From 1961 to 2006, the rates of
pasture production in Forest Grassland, Typical Grassland, Mountain Grassland,
Desert Grassland, and Desert declined by 40.54, 52.17, 39.28, 33.33, and 39.28 %,
respectively (Vaykey,er 2009). The above studies have shown that the
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Mongolia’s grassland degraded seriously, which may lead to the increase of carbon
dioxide and other greenhouse gasses. Subsequently, it has driven the temperature
rise in Mongolia and redistributed the precipitation, destabilized the natural eco-
systems, and even threatened the human food supply and living environment.

7.4.1 Data and Methodology

7.4.1.1 Underlying Surface Data and Atmospheric Forcing Data

There are two types of input data in WRF model, the underlying land surface data
and atmospheric forcing data. An advanced very high resolution radiometer
(AVHRR) grid data with resolution of 1 km 9 1 km of the United States Geo-
logical Survey’s (USGS) classification system spanning a 12-month period (April
1992–March 1993, henceforth, 1993) is used as the baseline underlying surface
data in this study. The predicted land conversion data with 0.5� 9 0.5� resolution
from 2010 to 2050 are developed by the Asia-Pacific Integrated Model (AIM)
modeling team at the National Institute for Environmental Studies (NIES), Japan.
This data is used to project the land surface data in the future utilized in the WRF
model. To investigate the effects of future grassland degradation on climate, we
only focused the grassland conversion of this data, though change information of
all kinds of land use and land cover types are available. Supposing other types of
land use changes are not considered in this research, the newly grassland con-
version pixels derived from AIM (RCP 6.0) were overlaid to the land surface map
in the baseline. Thereafter, both of these two major underlying land surface data
were transformed to grid data with the resolution of 50 km 9 50 km by resam-
pling. Model outputs under RCP 6.0, such as air temperature, specific humidity,
sea level pressure, eastward wind, northward wind, and geo-potential height from
2010 to 2050, were used as the atmospheric forcing dataset in the WRF model.

7.4.1.2 Experimental Design

WRF model based on the Eulerian mass solver was used to investigate the tem-
perature and precipitation changes driven by future grassland degradation in this
study. Two sets of tests (control test and simulation test) were designed, the land
surface in the baseline and the predicted underlying land surface data were used in
these two tests from 2010 to 2050, respectively. The effects of future grassland
degradation on climate can be measured by the difference of these two series of
simulated results.

Ri ¼ Ci � Si ð1Þ
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where R is the effects of future grassland degradation on climate, refers to average
annual and monthly temperatures and average annual and monthly precipitations,
and C and S are the simulated results of WRF model with future projected land
surface and the land surface in the baseline, respectively.

The effects of grassland degradation on temperature and precipitation for each
period of 2010–2020 and 2040–2050 were simulated. Concretely, the temperature
and precipitation of each period of 2010–2020 and 2040–2050 with basic land sur-
face were modeled first, then those of 2010–2020 and 2040–2050 under the projected
land surface data was simulated. Finally, the effects of future grassland degradation
on climate were measured by the difference between these two series of simulated
results. By doing this, it can also reduce the biases induced by other factors.

7.4.2 Results

7.4.2.1 Effects on the Annual Average Temperature

The simulated results show that there will be a upward trend of annual average
temperature with an increment of 0.1–0.3 �C during 2010–2020 (Fig. 7.17). In
addition, the temperature decreases gradually from west to east, and climbs up
first, then declines progressively from north to south. The annual average tem-
perature changes significantly by 0.3 �C in the northwest of Mongolia where
grassland covers most. Only a small area near the sea in the northeast, the tem-
perature falls by approximately 0.1 �C. Generally, the annual average temperature
changes obviously in the most significant degraded areas, such as Alli county, Ada
Chad’s county, and Altay city. This indicates that the grassland degradation has a
great influence on the local temperature change in Mongolia.

We also use the same method to simulate the effects of grassland degradation
on the average annual temperature from 2040 to 2050. The simulated result shows
that the annual average temperature will increase by 0.1–0.4 �C during 2040–2050
(Fig. 7.18). Compared with the simulated results of 2010–2020, the regions
experienced increase of annual average temperature expanded significantly, and
these regions are mainly distributed in northwestern and central regions of
Mongolia. In this period, the annual average temperature increases by about
0.1 �C. Besides, the temperature decreases by almost 0.1 �C in some areas of
southwestern and eastern regions of Mongolia.

7.4.2.2 Effects on the Annual Average Precipitation

The degradation of grassland leads to the significant change of the spatial pattern
of the annual average precipitation in Mongolia. The simulated result during
2010–2020 indicates the annual average precipitation will decrease by more than
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Fig. 7.17 Effects of future grassland degradation on average annual temperature between year
2010 and 2020 (measured in degree Celsius) in Mongolia

Fig. 7.18 Effects of future grassland degradation on average annual temperature between year
2040 and 2050 (measured in degree Celsius) in Mongolia
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40 mm in the northwestern and eastern parts of Mongolia (Fig. 7.19) and decrease
by over 20 mm in the central part of Mongolia. Totally, the degradation of
grassland will make the annual domain-averaged precipitation decrease by 25 mm.

In the future, the annual average precipitation will decrease by 15–50 mm
during 2040–2050 caused by grassland degradation in most parts of Mongolia.
Simulation results show that there is a downward tendency of annual average
precipitation from the outside to the central areas, and the minimum average
annual precipitation is 15 mm (Fig. 7.20). The annual average precipitation
decreases obviously in the northwestern and eastern parts of Mongolia, while this
change in the central part is relatively small. This result also illustrates that the
precipitation variance is strongly related to the grassland degradation.

7.4.2.3 Effects on the Monthly Average Temperature and Precipitation

The impacts of grassland degradation on the monthly average temperature vary
from month to month during 2010–2020 and 2040–2050 (Fig. 7.21). The simulated
result indicates that the monthly average temperature in the above two periods are
much similar and have obvious seasonal characteristics. Specifically, grassland
degradation has a significant impact on the monthly temperature in Mongolia, the
change scale of monthly average temperature are 0.025–0.075 �C. Compared with
the results of control test, the monthly average temperature increases continuously,
and the growth rate increases first and then decreases. The maximum change of
monthly average temperature appears in July with 0.075 �C, while the minimum
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change occurs in December and January, the change scale being 0.025-0.03�C. The
simulated result about monthly average temperature is further confirmed that the
grassland degradation would lead to higher temperature.

The grassland occupies largely in Mongolia and decrease significantly from 1.3
million hectares to 0.9 million hectares from 1990s onward. Overall, the simulated
results of the monthly average precipitation during 2010–2020 and 2040–2050 are
quite similar. The precipitation in summer is significantly higher than in winter,
and the range of monthly average precipitation variation is from –3 to 5 mm
(Fig. 7.22). It can be seen clearly that precipitation changes obviously in June-
August, the monthly average precipitation in the three months is 3–5 mm higher
than that in the baseline year, while in the other months the monthly average
precipitation is lower than that in the baseline.
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7.4.3 Concluding Remarks on Grassland Degradation
in Mongolia

This study analyzed the impacts of the grassland degradation on annual and
monthly average temperature and precipitation climate change with the WRF
model at the national levels in Mongolia.

Despite the spatial resolution of the data and simulation duration, the data are
still reliable in assessing the impacts of the grassland degradation on the climate
change. The results indicate that grassland degradation has an obvious effect on the
regional temperature and precipitation in the next 40 years in Mongolia. Annual
average temperature and precipitation change significantly from April to
September, the maximum change appears in July. The difference between the
simulation test and control test is regarded as the impacts of grassland degradation
in Mongolia. The results show that the annual average temperature changes
obviously in the northwest, southeast, and middle-east of Mongolia, approximately
-0.1–0.4 �C, and about 70 % areas of Mongolia have experienced an increment in
the annual average temperature with 0.1–0.3 �C. Besides, annual average pre-
cipitation change in Mongolia has also obviously regional and seasonal charac-
teristics. Overall, there has been a falling trend of average annual precipitation
change in most regions of Mongolia. The most significant changes occur in July
and August, with 30–50 mm. Furthermore, the difference between the simulated
test and control test showed that in July and August the monthly average tem-
perature increase most obviously by 0.06–0.075 �C from 2010 to 2050. In winter
the temperature rise is relatively slow, about 0.02–0.03 �C. The most significant
change of monthly average precipitation appears in April and September, the
change value is 2–5 mm.

In this study, we only consider the impact of grassland degradation on tem-
peratures and precipitation, without reporting the energy balance, circulation,
monsoon, and other climate factors. More importantly, there are still some other
issues that need to be resolved in the further studies. Firstly, the climate effect
could be caused by some other factors except for grassland degeneration, such as
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solar activity and other human activities. Secondly, some uncertainties may hide
behind the data processing, parameterization, and WRF model itself. Therefore,
there is still further work to do in order to get more accurate assessment.

7.5 Impacts of Future Urban Expansion on Regional
Climate in the Northeast Megalopolis, USA

Urban expansion is regarded as one of the most noticeable effects of human
activities that cover a very small fraction of Earth’s land surface, but notably
affects climate. It usually removes and replaces crops and natural vegetation with
non-evaporating and non-transpiring surfaces, such as metal, asphalt, and concrete
(Basara et al. 2010).These artificial surfaces are characterized by specific thermal
properties (albedo, thermal conductivity, and emissivity), which are different from
those of nonurban areas (Weng et al. 2004).The alteration of regional thermal
properties along with urban expansion will inevitably result in the redistribution of
incoming solar radiation and affect the surface energy budgets (Zhang et al. 2009).
Consequently, the wind velocity, mixing layer depth, and thermal structures in the
boundary layer, as well as the local and regional atmospheric circulations are
changed (Lei et al. 2008).

The primary objective of this study is to determine the influences of future
urban expansion on regional climate at different temporal scales in developed
megalopolis. The major contribution of this case study is that it will provide
evidences for influences of future urban expansion on regional climate at the scale
of megalopolis and helps to understand the integrated effects of combination and
interaction of multiple cities and their surroundings.

7.5.1 Data and Methodology

7.5.1.1 Study Area

The Northeast megalopolis is the most populous and largely developed mega-
lopolis of USA. It is constituted by a number of cities including Baltimore, Boston,
Harrisburg, Newark, New York City, Philadelphia, Portland, Providence, Rich-
mond, Springfield, Hartford, and Washington (Gottmann 1964). The megalopolis’s
population is expected to reach sixty million by 2025. This megalopolis is chosen
as case study area because it is one of the most typical megalopolis globally, which
can be regarded as the example of future megalopolis development.
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7.5.1.2 Data and Process

An AVHRR grid data of 1 km 9 1 km of the United States Geological Survey’s
(USGS) classification system spanning a 12 month period (April 1992–
March1993, henceforth, 1993) is used as the baseline underlying surface data in
this study (Fig. 7.21). And the predicted land use and land cover data of
0.5� 9 0.5� from 2010 to 2100 are derived from the Asia-Pacific Integrated Model
(AIM) modeling team at the National Institute for Environmental Studies (NIES),
Japan. The reason that we choose RCP 6.0 is because it is a stabilization scenario
where total radiative forcing is stabilized after 2100 without overshoot by
employment of a range of technologies and strategies for reducing greenhouse gas
emissions (Y. Hijioka 2008). Supposing other type of land use and cover
remaining stable, the new urban area pixels derived from the AIM output of RCP
6.0 were overlaid to the map of baseline underlying surface. Consequently, two
major underlying surface data, including the baseline underlying surface data
directly derived from AVHRR data of 1993 and the predicted underlying surface
data by overlaying the urban expansion information to the map of baseline
underlying surface, were finally obtained (Fig. 7.23). Both of these two underlying
surface data were transformed into grid data with a 50 km 9 50 km resolution by
resampling (Fig. 7.24). According to the AIM data, urban area in the Northeast
megalopolis had expanded rapidly during the period 1993–2010 and would con-
tinue to expand during the period 2010–2100. Model output, such as air temper-
ature, specific humidity, sea level pressure, eastward wind, northward wind, and
geopotential height from 2010 to 2100 were used as the atmospheric forcing
dataset of WRF-ARW model (Fig. 7.23).

7.5.1.3 Simulation Scheme

The WRF-ARW model based on the Eulerian mass solver is used in this study to
investigate the temperature and precipitation change driven by future urban
expansion in the study area. Simulation from 2010 to 2100 with a constant

WRF-ARW
model

Simulation results with 
baseline underlying surface

Simulation results with 
predicted underlying surface

Effects of future urban 
expansion on climate

AVHRR data, 1993

Land use and cover
data of RCP 6.0, 

2010-2100

Atmospheric forcing 
data of RCP 6.0from

CMIP 5

Baseline
underlying surface

Predicted
underlying surface
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underlying surface (the pattern of urban area as well as other land use and land
cover types in the study area is fixed to that of 1993, namely, baseline underlying
surface) was implemented first, whose results are regarded as references. The
effects of future urban expansion on climate can be measured by the difference of
the simulation results with predicted underlying surface and baseline underlying
surface (Fig. 7.23).

Ei ¼ Ri � ri

where, i refers to average annual and monthly temperature, and average annual and
monthly precipitation; E is the effects of future urban expansion on climate; and
R and r are the simulation results of WRF-ARW model with predicted underlying
surface and baseline underlying surface, respectively.

The average effects of urban expansion on temperature and precipitation for
each period of 2010–2020, 2040–2050, and 2090–2100 were calculated. In the
simulation of three periods, the baseline underlying surface data and predicted
underlying surface data were used. Concretely, the temperature and precipitation
of each period of 2010–2020, 2040–2050, and 2090–2100 with baseline under-
lying surface were obtained first. And then the simulation of temperature and
precipitation of three periods of 2010–2020, 2040–2050, and 2090–2100, were
continuously modeled by using the predicted underlying surface of 2010, 2040,
and 2090, respectively. By doing this, the impacts of urban expansion can be
estimated by the difference of each period, and it can also reduce the simulation
bias induced by discontinuous simulation. The original simulation results were
hourly and aggregated into average annual data and average monthly data.

7.5.2 Results and Discussion

7.5.2.1 Average Annual Temperature Effects

Figure 7.25 depicts the simulated effects of future urban expansion on average
annual temperature in the Northeast megalopolis, USA. From the variation in
average annual temperature change, it is shown that temperature will be locally
and regionally affected by future urban expansion (Fig. 7.25). The largest change
in average annual temperature will occur in the new urban area (expanded urban
area during 1993–2100), which can be certainly referred to urban heat island
(UHI) effects. The strongest UHI will lead to an increase of 5.73 �C in average
annual temperature in some new urban area. And for most newly expanded urban
areas, the average annual temperature will increase by 2–5 �C 1993 to the period
of 2090–2100. The effects of future urban expansion on average annual temper-
ature will be strengthened along with urban area increase. For instance, conversion
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from deciduous broadleaf forest to urban area will drive the average annual
temperature of the pixel (39�59́N, 75�50́W) growing by 3.15, 3.53, and 3.76 �C in
the period of 2010–2010, 2040–2050 and 2090–2100, respectively.

There will be some nonurban pixels experiencing average annual temperature
decrease due to future urban expansion, while the annual average temperature of
most nonurban areas will be steady. The significant annual average temperature
decrease will mainly happen in the south of the Northeast megalopolis with mixed
forest (Fig. 7.25). Statistics shows that this annual average temperature decrease
will range from 0.40 to 1.20 �C. Consequently, the cooling effect in this area will
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be more and more notable along with the urban expansion. This may be caused by
the strengthened UHI effect due to urban expansion, which will enhance the rising
flow of urban area and reduce the inflow of cold wet air stream from the sea.

7.5.2.2 Average Annual Precipitation Effects

The urban expansion will mainly decrease the average annual precipitation. The
spatial pattern of average annual precipitation change will be approximately
opposite with that of average annual temperature change (Fig. 7.26). For some
new urban area and nearby pixels, the average annual precipitation will decrease
by 10–50 mm, while it will reduce by more than 100 mm for some pixels in the
south region of the Northeast megalopolis. This reduction may be caused by
changes in surface hydrology that extend beyond the UHI effect. There are lots of
researches that argue urban expansion resulting in an increase of urban precipi-
tation (Kleerekoper et al. 2012; Lin et al. 2008). However, our simulation showed
that the impact of future urban expansion in Northeast megalopolis with mega
cities on precipitation has different rules. This simulation result is consistent with
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the findings of Guo et al. and Zhang et al., though their study area of Beijing is
much smaller than ours on scale (Guo et al. 2006; Zhang et al. 2009). The urban
expansion will produce less evaporation, higher surface temperatures, and larger
sensible heat fluxes. This leads to less water vapor and hence less convective
available potential energy. Combination of these factors induced by urban
expansion contributes to regional precipitation reduction in general. Concretely,
due to urban expansion in the Northeast megalopolis, the average annual precip-
itation of the simulation area will decrease by 5.75 mm, 7.10 mm, and 8.35 mm in
the period of 2010–2010, 2040–2050, and 2090–2100, respectively.

7.5.2.3 Average Monthly Temperature Effects

Figure 7.27 depicts the monthly variation of average temperature change driven by
future urban expansion. The urban expansion in the Northeast megalopolis will
result in an average monthly temperature increase in original urban area (urban
area in 1993) in April, May, June, July, and August and decrease in other months
in the period of 2010–2020 (Fig. 7.27, Panel A). The cooling effect in winter may
be caused by the local circulation change driven by surface energy budgets change.
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Along with urban expansion in the periods of 2040–2050 and 2090–2100, the
cooling effect will be underscored, which can be referred to the enhancement of
UHI effect. The urban expansion during these two periods will result in an average
monthly temperature increase from February to October and decrease in other
three months. The average monthly temperature increase in June and July in
original urban area will exceed 0.4 �C in the period of 2090–2100 due to urban
expansion. On the whole, the future urban expansion will lead to an average
monthly temperature increase in original urban area.

The warming effect of future urban expansion in new urban area will be more
significant than that in original urban area, especially in summer (Fig. 7.27, Panel
B). In June, the average monthly temperature increase by 1.92, 3.16 and 3.59 �C in
new urban area in the period of 2010–2010, 2040–2050 and 2090–2100, respec-
tively. There will be also cooling effect in new urban area in November,
December, and January during the period of 2010–2020. The differences of
average monthly temperature among the three simulation periods indicate that the
UHI effect in new urban area will be enhanced along with urban expansion.
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Moreover, the future urban expansion will also impact the average monthly
temperature in nonurban area. We counted the number of pixels with average
monthly temperature changes exceeding ±0.5 �C (Fig. 7.28, Panel A). This
number indicates these areas severely influenced by future urban expansion on
average monthly temperature. The influence will be large during the period from
July to January at least 20 pixels, which means an area of more than 5.00 9 104

km2 will be affected by future urban expansion. Especially in the period of
2090–2100, the urban expansion will lead to the change on average monthly
temperature with more than ±0.5 �C in a vast area of 1.10 9 105 km2. Further, the
increase of pixels in which average monthly temperature changes exceeding
±0.5 �C at the temporal scale indicates that more area will be influenced by future
urban expansion. In sum, the larger the urban area expands, the more notable will
be the effects on average monthly temperature.
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7.5.2.4 Average Monthly Precipitation Effects

There will be slightly negative effects of future urban expansion on average
monthly precipitation in original urban area. Similarly with average monthly
temperature, the change of average monthly precipitation in original urban area
caused by future urban expansion will be more significant in summer than that in
winter (Fig. 7.29, Panel A). The average monthly precipitation will decrease
in original urban area and reach its maximum of 0.49 mm, 0.69 mm, and 0.71 mm
in July in the period of 2010–2020, 2040–2050, and 2090–2100, respectively, and
it will fall to its minimum of 0.04 mm in December in the period of 2010–2020,
and 0.02 and 0.01 mm in January in the period of 2040–2050 and 2090–2100,
respectively. The effects of future urban expansion on average monthly precipi-
tation will continuously increase from January to July, and then start to decline
until December. This change of average monthly precipitation in original urban
area may be driven by the local circulation change caused by surface energy
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budgets change and can be easily found to become increasingly serious along with
future urban expansion.

The drought effect of future urban expansion in new urban area will be more
significant than that in the original urban area (Fig. 7.29, Panel B). The most
significant reduction of average monthly precipitation will occur in October with
11.82, 9.23, and 8.14 mm in the period of 2010–2020, 2040–2050, and 2090–2100,
respectively. Thereafter, the precipitation in new urban area starts to fall and
reaches its minimum (between 2 and 3 mm) in May. More interesting, we also find
that the more expanded urban area will weaken drought effect in new urban area.
This can be deduced from the fact that the average monthly precipitation decreases
in the periods of 2040–2050 and 2090–2100 will be smaller than that in the period
of 2010–2020. This can be explained that the enhancement of UHI effect in the
Northeast megalopolis will arouse the inflow of humid air from the Atlantic.

To investigate the effects of future urban expansion on average monthly pre-
cipitation in nonurban area, we counted the number of pixels with average monthly
precipitation changes exceeding ±1 mm (Fig. 7.28, Panel B). The results show
that the impacts of future urban expansion on average monthly precipitation in
nonurban areas will be larger in summer than in winter. Additionally, the larger the
urban area expands, the larger area of which the average monthly precipitation will
be affected by urban expansion. For instance, the number of pixels with average
monthly precipitation changes exceeding ±1 mm in July will be 35 (covering an
area of 8.75 9 104 km2) in the period of 2090–2100, and 32 (covering an area of
8.00 9 104 km2), and 24 (covering an area of 6.00 9 104 km2) in the period of
2040–2050 and 2090–2100, respectively. It implies the area with average monthly
precipitation changes exceeding ±1 mm will spread persistently along with the
urban expansion.

7.5.3 Concluding Remarks on the Effects of Urban
Expansion in the Northeast Megalopolis, USA

A simulation-based research on the intension and scope of influences of future
urban expansion on regional climate in developed megalopolis was implemented.
The average annual and monthly temperature and precipitation change caused by
urban expansion from 1993 to 2100 were presented taking the Northeast mega-
lopolis, USA as a case study area. Some conclusions were drawn as follows:

(i) The future urban expansion will result in the increase of the average annual
temperature, ranging from 2 to 5 �C in new urban area and decrease in the
south of the Northeast megalopolis, ranging from 0.40 to 1.20 �C. The
average annual precipitation in the study area will reduce by 5.75, 7.10 and
8.35 mm due to urban expansion in the period of 2010–2020, 2040–2050,
and 2090–2100, respectively. This reduction is especially severe in the
south region of the Northeast megalopolis.
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(ii) The effects of future urban expansion on average monthly temperature will
vary from month to month and become more and more obvious in not only
original and new urban area but also nonurban area. The warming effect of
future urban expansion in original and new urban area will be more sig-
nificant in summer than in winter, and there will be a cooling effect in
winter in original urban area.

(iii) The effects of future urban expansion on average monthly precipitation will
be significant in new urban area. The drought effect in new urban area will
weaken along with urban expansion. The nonurban areas where influenced
by urban expansion on precipitation will be larger in summer than winter
and will increase with urban expansion.

(iv) The rules of how urban expansion in the metropolis influences the climate
differ from those in a single city. A large-scale study on the impacts of
urban expansion on climate helps to understand the integrated effect of
combination and interaction of multiple cities and their surroundings. This
integrated effect may crucially determine the climate patterns.

7.6 Summary

In this chapter, we have five case studies based upon WRF model from a global
perspective, which shows that the method introduced in this book is not only
suitable for study in China, but also can be applied to other countries in the world.

In the case study, the impacts of cultivated land reclamation on the future
climate change in India were analyzed by forecasting the future cultivated land
reclamation and its related changes of energy flux and temperature in summer and
winter. The results show that under the future situation of increasing food demand,
reclamation of cultivated land in India will lead to a large amount of land con-
version. These types of land conversion will overall result in increase of latent heat
and decrease of sensible heat flux, which will eventually reduce the regional
average temperature. Furthermore, this impact on climate change is seasonally
different, i.e., reclamation of cultivated land mainly decreases the temperature in
the summer, while increases the temperature in the winter.

In the second case study, the regional temperature variation induced by future
boreal deforestation in European Russia was simulated based on future land cover
change and WRF model. The results indicated that WRF model has good ability to
simulate the temperature change in European Russia. The land cover change in
European Russia, which was characterized by the conversion from boreal forests to
croplands in the future 100 years, will lead to significant change of the near-
surface temperature. Generally, the regional annual temperature will decrease by
0.58 �C in future 100 years. Though the boreal deforestation will reduce the
evapotranspiration, the increase of surface albedo caused by the snow masking
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will result in cooling effects to some extent and make the near-surface temperature
decrease in most seasons except the spring.

The third case study aimed to model the potential climatological variability
caused by future tropical deforestation in the Brazilian Amazon over the twenty-
first century. The study results show that the forests in the Brazilian Amazon will
primarily convert into dryland cropland and pasture in the northwest part and into
cropland/woodland mosaic in the southeast part, with 5.12 and 13.11 % of the
study area, respectively. These land surface changes will therefore lead to the
significant reduction of the sum of sensible heat flux and latent heat flux and
precipitation and the increase of the surface temperature. Furthermore, the vari-
ability of surface temperature is observed with close link to the deforested areas.

The fourth case study simulated the climatological changes caused by future
grassland changes in Mongolia for the years 2010–2020 and 2040–2050. In order
to detect the impact on climate change, two experiments were designed in this
study: control experiment and simulation experiment. And the simulation results
showed that the future grassland degradation will lead to an increasing trend on
temperature and a decreasing trend on precipitation in some areas of Mongolia.
The result of this study can provide some theoretical and scientific support for the
development and strategy plan in Mongolia.

In the last case, some evidences for influences of future urban expansion on
regional climate in the Northeast megalopolis, USA, were presented. The model-
based analysis shows that future urban expansion will significantly jeopardize the
regional climate change. The warming effect of future urban expansion in original
and new urban area and drought effects in nonurban area will be more serious in
summer than in winter. However, a cooling effect will turn up in original urban area
in winter. All these indicate that the future urban expansion in the Northeast meg-
alopolis will be a serious climate signal. In addition, this research further shows that
study at the scale of megalopolis helps to understand the integrated effect of com-
bination and interaction of multiple cities and their surroundings, which may cru-
cially determine regional climate pattern and should be highly valued in the future.
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Chapter 8
Concluding Remarks on Improved Data,
Upgraded Models and Case Studies

R. B. Singh, Chenchen Shi and Xiangzheng Deng

This chapter explores the advancement in data, models, and application for
observing and estimating land use impacts on surface climate, and points out
further research needs and priorities, which will provide some references for
related studies. The reclassification of time series land cover data can meet the
accuracy requirement of climate simulation and can be used as the parameters of
dynamical downscaling in regional climate simulation, which enhances the data
processing and laid a good foundation for Land Use and Cover Change (LUCC)
simulation.

There have been tremendous changes of global land use pattern in the past
50 years, which has enormous influence on global climate change. Quantitative
analysis for the impacts of LUCC on surface climate is one of the core scientific
issues to understand the influence of human activities on global climate. For
instance, the diverse roles of LUCC on precipitation have been documented and
sustained rapid land conversions make human-induced disturbances of climate
system continue and become even more significant (Pielke et al. 2007). The review
paper of Deng et al. (2013a), comprehensively analyzed the primary scientific
issues about the impacts of LUCC on regional climate and systematically reviewed
the progress in relevant researches. In this chapter, we summarize the major
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findings of improved data, upgraded models, and case studies in observation and
estimation of land use impacts on surface climate.

8.1 Advancement in LUCC Dataset

8.1.1 Overview of the Previous Dataset

LUCC has been recognized as a key component in global environmental change.
However, land cover products were applied to most of the climate models until the
recent 20 years. These products were initially compiled from maps, ground sur-
veys, and various national statistical sources, which have inherent limitations
(Matthews 1983; Olson et al. 1983; Cihlar 2000). In the mid-1990s, global-scale
land cover products generated from remote sensing images became available.
Various land cover datasets were usually generated from classification and inter-
pretation of remote sensing images, including MSS/TM/ETM+, SPOT, MODIS,
and so on, which have been used in numerous climate modeling studies at regional
and global scales. Since the 1990s, a series of land use/cover datasets have been
produced in many international institutes and countries, such as Global Land
Cover Characteristics (GLCC) (Loveland et al. 2000), University of Maryland land
cover dataset (UMD) (Hansen and Reed 2000), OGE dataset (Olson 1994a, b).
These products were interpreted artificially with computer aids and then verified
by systematic field survey. The need of land use/cover dataset with high accuracy
for climate simulation has been recognized widely in the climate modeling
community (Ge et al. 2007). Previous studies showed that the result of regional
precipitation study would be greatly influenced if the accuracy of land cover data
is under 80 %, and the result may get progressively worse as the accuracy con-
tinues to decrease (Feddema et al. 2005). Therefore, the accuracy of land cover
data is of crucial importance to the climate study. For example, in China, large
amount of land cover data have been produced in recent years using the remote
sensing data (Ran et al. 2012).Unfortunately, neither the overall nor class-specific
accuracy of most datasets was able to meet the common requirements of regional
climate modeling.

The disagreement and low accuracy among these land cover datasets primarily
resulted from the differences in the sensors, spatial resolutions, classification
schemes, and algorithms (Herold et al. 2008). Moreover, most of the land cover
datasets derived from remote sensing are not 100 % accurate. A new statistical
measure was developed to evaluate land cover datasets in land–climate interaction
research, which calculates biophysical precision of land cover datasets using 1 km
monthly MODIS Leaf Area Index (LAI) product (Ge et al. 2009). Spatial data
mining is proposed to produce a higher accuracy land cover map, whose classi-
fication system should be compatible with the accepted classification system used
in regional climate simulation (Ran et al. 2012; Wu et al. 2013).
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8.1.2 Classification of LUCC Data for Climate Models

There are a number of schemes that have been proposed for land cover categori-
zation from regional to global-scale, including the International Geosphere–Bio-
sphere Programme (IGBP)—Data and Information Systems: Land Cover Working
Group land cover categorization scheme (Belward and Loveland 1995), a six-class
biome categorization, the Simple Biosphere Model scheme (Sellers et al. 1996), and
the Federal Geographic Data Committee vegetation characterization and informa-
tion standards (F. G. D. Committee 1996). Many parameters in land surface model
are identified based on land cover types; for instance, time-invariant model variables
(e.g., vegetation reflectance, canopy top height, canopy base height, root depth, and
leaf respiration factor) in the Simple Biosphere Model 2 (SIB2) (Sellers et al. 1996)
and the Common Land Model (CoLM) (Dai et al. 2001). Thus, the specific land
cover classification units must not only be discernible (with high accuracy) from
remotely sensing image and ancillary data but also be directly related to the physical
characteristics of land surface. The IGBP scheme embraces the same philosophy but
with modifications to be compatible with existing schemes used by environmental
models, to incorporate land use in addition to land cover and to represent mosaics
(Belward and Loveland, 1995).

In order to enhance the studies on land use/cover change, data have to be updated to
increase the accuracy. Time series land cover datasets have been widely used in
numerous climate simulation projects. Most attention has been paid on effects of the
accuracy of land cover data on climate simulation. Though there are temporal land use
data with accuracy higher than 90 % (Wu et al. 2013), the high-precision land cover
data is still absent. Therefore, there is an urgent need to reclassify the LUCC dataset to
feed into Global Climate Models (GCMs) and Regional Climate Models (RCMs). For
example, in a case study on North China, Wu et al. (2013) overlaid the land cover
maps of the IGBP-DIS, GLC (Loveland et al. 2000), University of Maryland Data
(UMD) and Data Center for West China (WESTDC), and selected the compatible
grids with classification as sample grids. They then combine land cover data with land
use data to generate new land cover data of high accuracy for climate simulation.
Their study showed that the C4.5 algorithm was suitable for converting land use data
to land cover data of IGBP classification. The temporal land cover data produced by
their method can meet the accuracy requirement of climate simulation and can be used
as the parameters of dynamical downscaling in regional climate simulation, which
constitutes a significant improvement in data processing.

8.1.3 Data Resolution and Reliability

Land surface has considerable heterogeneity because of the existence of different
land cover types such as bare area, water bodies, urban land, trees, and snow/ice,
which vary over small distance. This surface variability not only determines the
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microclimate but also affects mesoscale atmospheric circulation (Hartmann 1994;
Weaver and Avissar 2001; Yang 2004). The accurate land cover maps are the
foundation for land surface, ecological and hydrological modeling, carbon and
water cycle studies, and research on global climate change (Sellers et al. 1997).
With many land cover products from different sources becoming available for a
given region of the Earth, a challenge arises as to which product is optimal for a
land–climate modeling study. Traditional classification accuracy assessment is
primarily dependent on ground-based surveys or interpretation of high-spatial
resolution aerial photos and satellite images. By comparing the classified land
cover dataset with the ground-truth data, error metrics can be developed to report
the commission and omission errors. Measures of accuracy, such as the Kappa
coefficient of agreement, are frequently calculated to express classification accu-
racy (Congalton 1991; Foody 2002). Therefore, the researcher should take full
advantage of geographic knowledge in GIS database to support classification to
improve the accuracy of land cover classification.

Accurate representation of land surfaces is an important factor for climate
modeling. However, little attention has been paid to the effect of land cover
classification accuracy on climate simulations. In reality, land cover accuracy
rarely reaches the commonly recommended 85 % target (Ge et al. 2007). The
accuracy of land use classification is approximate 73–77 % using decision-tree
classification methods and thereby increasing mapping efficiency by 50 % (Homer
et al. 2004). In addition, most assessments of classification accuracy were con-
ducted using the same dataset as was used to train the classifier. Therefore, the
classified accuracy was overstated. Spatial data mining techniques for land cover
classification is also applied. The accuracy of land cover data that is accomplished
by different methods could reach 88.62 % (Wu et al. 2013). Inaccurate repre-
sentation of land cover will lead to differences in simulating sensible heat flux,
latent heat flux, and many other variables depending on vegetation and land use
parameters. Remote sensing provides accurate representation of Earth’s surface at
different spatial and temporal scales and is an attractive source for creating high
accuracy land cover data. Therefore, it is feasible to take advantage of the existing
land cover data from different sources to make a high accuracy land cover data
using spatial data mining method. The information fusion strategy is proposed to
produce a higher accuracy land cover map of China (Ran et al. 2010), whose
classification system should be compatible with the widely accepted classification
system used for surface climate simulation.

8.2 Upgraded Models

Studies on LUCC processes are often challenged by the complex nature and
unexpected behavior of both human drivers and natural constraints. Therefore, we
need a land use change dynamic model to simulate the interdependencies and
feedback mechanisms between social, economic, and ecosystem environments.
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Land use change emerges from the interactions among various components of the
coupled human-landscape system, which then feeds back to the subsequent
development of those interactions (Le et al. 2008). Currently, there are a lot of
evaluation models to simulate the spatiotemporal process and patterns of land use
change (Deng et al. 2013b).

8.2.1 Current Models

8.2.1.1 Empirical Statistical Model

There are numerous empirical statistical models applied to land system dynamics
simulation (Verburg et al. 2008; Liu and Deng 2010). The empirical statistical
model can provide the information of key driving forces of land use change and
reflect the time lag effect of response. Moreover, the data input could be multi-
scaled. However, certain deficiencies exist in this kind of model, as the model
requires to be driven by the data of exogenous land use change rate and amount.
Besides, the conversion rule of land use should be manually set. Therefore, the
model could not provide references for other regions except for the study area.

8.2.1.2 Econometric Model

Econometric model is a policy evaluation model based on sustainable utilization of
land which can evaluate the influence of policy factors on land use and promote
mixed land for sustainable development. For example, European Commission FP6
framework research programme SENSOR ‘‘Sustainability Impact Assessment:
Tools for Environmental, Social and Economic Effects on Multifunctional Land
Use in European Regions’’ aims to develop tools for ex-ante impact assessment for
European policies related to rural land use (Helming et al. 2006). It includes a
detailed macroeconometric model called NEMESIS, which models cross-sector
impacts, being the major characteristic of this project (Jansson et al. 2008). As it
applies a cross-sector approach to land use, it is suitable for large region. The
Dynamics of Land System (DLS) model as another representative econometric
model can simulate the dynamics of land system at the fine-grid scale through
analysis of land use allocation constraints, and simulation of land supply and
demand balance. Several case studies show that DLS is able to measure the
influence of natural and socioeconomic driving factors and predict the future
LUCC, which could provide meaningful decision-making information for land use
planning and management (Deng et al. 2010).
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8.2.1.3 Agent-Based Model

Since the 1990s, with the rapid development of computational power, agent-based
models began to be applied in LUCC research, and agent models for Land Use and
Cover Change (ABM/LUCC) studies have been gradually developed (Evans and
Kelley 2004). Agent-based model has high flexibility. However, the flexibility of
ABM model increases the uncertainty of the model and thus brings the difficulties
for model validation. Agent-based model strives to simulate the individual and
group behavior together, but the individual decision-making behavior is diverse
and complicated. In addition, previous research showed that ABM model is sen-
sitive to the climatic conditions, which gave credit to ABM on modeling the
impact of LUCC on climate.

8.2.1.4 Coupled Econometric and ABM Model

The combination of agent-based model and econometric model can simulate
complex decision problem of land use in a better way, so as to provide new
methods for simulation of land use dynamics.

Coupled econometric and ABM model in the areas of land use will get rec-
ognition and application in the future. The coupled model can simulate both
individual and group decision behaviors through considering the interaction
among the combination of micro and macro decisions at the same time. The
integration of econometric and agent-based model combines the process of social
and economic factors with land use dynamics. This integrated model can be used
not only in the simple scenario simulation of land use but also in complex scenario.
These two kinds of models are interconnected and interdependent on each other,
which constitute a complex system with hierarchical heterogeneity.

Among recent studies on land use models, Deng et al. (2013b) introduced a land
use change dynamic (LUCD) model embedded in regional climate model (RCM).
The Agro-Ecological Zone (AEZ) model is supposed as the optimal option for
constructing one of the constitute modules. The other module, agent-based mod-
ule, identifies land use change demand and vegetation change and provides land
use change simulation results which are the underlying surfaces needed by RCM.
By importing land use simulation results to regional climate modeling, the LUCD
is embedded in RCM. The coupled simulation system of LUCD and RCM will be
extraordinarily powerful in land surface system simulation. The innovation of
these studies lies in that current research could only simulate land cover changes
through vegetation change module in RCM and GCM but not the land use
changes. However, this study simulated land use dynamics, which is a break-
through in systematically reporting the land use change and its impact on surface
climate.
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8.2.2 Scenario Development

Scenario analysis of land use change and dynamic prediction involves many
driving factors that affect land use change, which has always been the attention of
academia worldwide. Through simulating regional land use change under different
scenarios, rational forecasting and evaluation of future land use could be made,
which will offer scientific reference for sustainable land use planning and man-
agement at regional and national scale.

Climate scenarios are plausible representations of future climate conditions,
which can be produced using a variety of approaches, and among which, regional
climate models are increasingly popular (Moss et al. 2010). There is a notable
increase in interest in regional-scale climate scenarios and projection methods,
especially for impact and adaptation assessment (Solomon et al. 2007).

The Intergovernmental Panel on Climate Change (IPCC) has been working on
the scenarios of potential future anthropogenic climate change, the underlying
driving forces, and the response options. According to IPCC (Kriegler et al. 2010;
Nakicenovic et al. 2000), socioeconomic scenarios consist of qualitative narrative
descriptions of future trends and quantitative assumptions (also called the story-
line) about key socioeconomic variables, and could facilitate the exploration of
long-term consequences of anthropogenic climate change and available response
options. A reliable database and an appropriate method shall be adopted to
facilitate the study of land use impact on surface climate, and the scenario analysis
can be adopted to perform macrostructure change. In the study of Xu et al. (2013),
three kinds of scenarios were designed based on the socioeconomic development.
They simulated land use trends under three different scenarios including baseline
scenario and two control scenarios (risk scenario and rapid development mode
transformation scenario), and obtained the most suitable scenario to control CO2

emissions of the three scenarios. Their scenarios excel other scenarios as they
compile the IPCC scenarios with the specific situation in the research area. With
the scenario analysis, it is possible to provide a theoretical basis for the future land
use planning in mitigating the impact of climate change. As the first attempt of
systematic analysis of LUCC scenarios and with the dataset produced by their
study, their research laid a good foundation for relevant researches.

8.3 Case Studies of Land Use Impacts on Surface Climate

With an improved database and model base, climate model shall be introduced in
order to apply this simulation platform to study land use impact on surface climate.
Climate change in China has been simulated in recent years by many scholars. The
representative methods include Gao et al. simulated climate change in China using
the Abdus Salam International Centre for Theoretical Physics (ICTP) Regional
Climate Model version 3 (RegCM3) (Gao et al. 2012). The RegCM3 can reproduce
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the observed spatial structure of surface air temperature and precipitation well.
However, RegCM3 is a hydrostatic model so far, which limits the further increase of
its resolution beyond *10 km (Wu et al. 2012). Wu and Fu (2013) used a linear
fitting method to estimate the change of precipitation intensity spectra at different
spatial scales in China. Qu et al. (2013) used WRF to explore the impacts of land
cover change on the near-surface temperature in a research in Northern China Plain.
They tested and verified the ability of WRF to simulate the near-surface temperature
in the study area. Notably, LUCC dynamic model and LUCC reclassification were
also applied to form a good systematic modeling of LUCC. Coupled with WRF
Model, land use impact on climate was well simulated in this study.

Based on the compiled climate model, climate change influence on ecosystem
indicators could be further explored. Zhang et al. (2013a, b) first reported the
climate impact on grassland. Their study took a macro and mesoscale analysis of
the possible changing trends of net primary productivity (NPP) of local grasslands
under four RCPs scenarios. The results showed that grassland productivity will be
greatly affected by the fluctuations of precipitation and temperature.

With the above-mentioned studies, LUCC and future climatic scenarios simu-
lation in particular areas were conducted. Simulation of LUCC and its climatic
effects were integrated through linking the functions of the newly developed
models with those of the existing models.

Further, studies related to land use changes associated with climate variations
were promoted with the advances in research methods. Deng et al. (2013c) con-
ducted a revisit to the impact of land use changes on human well-being through
altering the ecosystem provisioning services. LUCC and climate change exert
tremendous influence on ecosystem provisioning services in agriculture, forest
and/or grassland ecosystem. In order to tackle the ecosystem provisioning services
problems, measures were taken, which increased the input and reduced the out-
come, at the same time augmented the health risk, and harming human well-being.

Recently, satellite meteorology products and applications get more and more
attention. However, it cannot replace surface measurements. For example, satellite
data in the form of GCM needs observed data for model validation and improves
the quality of statistical and scientific significances in research methods. Therefore,
increasing emphasis should be given to integrate observed and simulated datasets
for improving understanding about land use impacts on surface climate.

8.4 Summary

This chapter reviewed the progress of the studies on observing and estimating the
impact of land use change on surface climate from the perspective of improved
models, enhanced data, and widely expanded applications. The major findings
include: The reclassification of time series land cover data can meet the accuracy
requirement of climate simulation and can be used as the parameters of dynamical
downscaling in regional climate simulation, which enhanced the data processing
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and laid a good foundation for LUCC simulation. Land Use Change Dynamics
Model compatible with RCMs is a great breakthrough in systematically reporting
the changes of land use/cover. Scenarios analysis performed the macrostructure
change, which facilitated the study on the impact of land use change on surface
climate. Land use change dynamic model and land use reclassification can be
applied to form a good systematic modeling of LUCC. Coupled with WRF Model,
land use impact on surface climate was well simulated.

Despite the progresses in these studies there are still some research needs,
which should be further addressed. For example, LUCC parameters need to be
precisely expressed to make sure of the accuracy of simulation. It is necessary to
strengthen the observation of land surface processes due to the variations in the
impact of land use change on surface climate.

The researches of observing and estimating land use impact on surface climate
should mainly focus on two aspects: (i) exploring the climate effects of future
LUCC since the current studies have mainly addressed on the past and current
LUCC and (ii) improving the prediction of land use changes in the future and
assessing its influence on future surface climate.
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