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Foreword

A large part of our daily lives is governed by numbers. Howmany hours of sleep did

I get last night? Howmany unread messages are queued up in my inbox? Howmany

“friends” do I have on Facebook? What’s the upcoming Powerball payoff? How’s

my cholesterol count doing? Can I recall my daughter’s phone number, my grand-

daughter’s birthday? Numbers such as these encompass portions of our personal

and shared social reality. They roll around in our head, and they are part of what

determine our mood, our behavior, well-being, worries, and activity constraints.

Population projections also present us with numbers. But these are numbers of a

very different nature. Rather than simply reflecting a social reality (and associated

beliefs and behaviors), they serve to create a reality based on anticipation—a reality

unwitnessed, unobserved, and largely unknown. Yet, on the basis of such numbers,

schools are built (or closed), roads are widened, airport terminals expanded, munic-

ipal services extended, and marketing strategies altered. So this book is about the

second kind of number, the sort leading to anticipatory behaviors and, occasionally,

preemptive actions. It is the applied demographer’s difficult role to creatively deploy

the data, tools, and perspectives of the population sciences to carry out these tasks not

only ethically and transparently but with an experienced and disciplined hand. This

book provides a marvelously clear, well-organized, and comprehensive blueprint for

understanding and competently performing this role.

The authors are seasoned applied demographic practitioners. They have individ-

ually and collaboratively contributed mightily to the demographic literature. The

book is intellectually solid, methodologically encompassing, and—while retaining

the historically interesting material—firmly contemporary and up to date.

Early in my own career, one of my mentors rhetorically asked, “Why do we

make population projections? They always turn out to be wrong, so why do we

persist?” After a brief excursion through the standard reasons for why projections

are useful, he added, “Probably the most important reason for engaging in this

enterprise is so that we later know what to be surprised about.” Wonderfully said!

The point is that we live in a world of frenetic change. We are so habituated to

mindlessly accommodating to this change that we rarely pause long enough to say

“Wow!” and to reflect on what we thought, just a few years back, our present reality
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might look like. Projections and forecasts prepared yesterday permit us to do that

today. Today’s projections will serve that potentially chastening purpose tomorrow.

The overall narrative and thoroughly developed methodologies in A Practi-
tioner’s Guide to State and Local Population Projections will, of course, not

eliminate all of tomorrow’s surprises. One can indeed hope, however, that practi-

tioners who wisely select to use this book to guide their own demographic pursuits

will benefit from the authors’ skillful verve, their richly detailed methodological

coverage, and the numerous concrete examples presented throughout the material

to minimize the number and magnitude of future surprises.

This valuable compendium presents methods that are tried and tested alongside

those that are recent and innovative. The book revisits and updates most of the

topics treated in the authors’ earlier book, State and Local Population Projections:
Methodology and Analysis. However, the current book should not be understood as
a revised edition. Fresh attention is given to emerging methodological approaches

in small-area population forecasting (projecting) and, in particular, to new data

resources that have fundamentally altered the information content of forecasting

models. The material is treated with originality and conviction and benefits

immensely from real-life illustrations drawn from the authors’ own work. With A
Practitioner’s Guide to State and Local Population Projections, Smith, Tayman,

and Swanson have again secured their leading place as careful, practical, and

solidly competent applied demographic scholars.

University of North Carolina at Chapel Hill Paul R. Voss

June 2013
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Preface

A lot has happened since we published State and Local Population Projections:
Methodology and Analysis in 2001. Smart phones, electronic tablets, and the Cloud

have given us access to virtually endless sources of information, no matter where

we are. Improvements in technology, software, and computing hardware have

expanded the way we access, store, and analyze information. Facebook, Twitter,

and other social media sites have changed the way we communicate. Globalization

has altered the world’s economic system and 9/11 changed almost everything, from

international relations to the way we board airplanes.

A lot has happened in the field of applied demography as well. Data sources have

proliferated, methods have advanced, computing capabilities have mushroomed,

and new research has been published. One major change is that the decennial census

no longer includes a long form collecting detailed socioeconomic, demographic,

and housing information from a sample of census respondents. This information is

now collected in the American Community Survey (ACS), which differs in several

ways from the census long form. Particularly important for the production of

population projections is that the ACS collects data continuously rather than once

per decade, is based on a smaller sample size, uses different residence rules, and

measures migration over a 1-year rather than a 5-year period.

These and other changes have convinced us that a new book on state and local

population projections is needed. This new book retains and updates much of the

material included in our previous book, but covers a number of new topics as well.

We present a detailed discussion of the differences between ACS migration data

and the migration data collected in the decennial census, paying particular attention

to how these differences affect the construction of cohort-component projections.

We provide an illustration of how to use ACS migration data to project a county

population. We add a new chapter on projections of population-related variables

such as households, school enrollment, labor force participation, and persons with

disabilities. We expand our discussion of microsimulation models, scenario anal-

ysis, special populations, international migration, and the benefits of combining
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projections from several different models. Throughout the book, we incorporate

research findings that have appeared in the literature since the publication of our

previous book.

As before, we pay particular attention to problems encountered when making

projections for small areas (e.g., counties and subcounty areas). We describe a

number of data sources and projection methods, focusing on those that are most

accessible and can be used in a variety of circumstances.We discuss the strengths and

weaknesses of each and provide our thoughts on which are most useful for particular

purposes. We include many examples and illustrations, as well as equations and

verbal descriptions, in an attempt to present the material as clearly as possible.

A number of methods, data sources, and application techniques can be used for

constructing state and local population projections. Deciding which ones to include—

and how to present them—was not an easy task. We wanted the book to be

comprehensive but not long-winded, technically precise but not overly mathematical,

clearly written but not simplistic. We wanted it to be useful to analysts with a strong

background in demography yet accessible to those with little or no demographic

training. Most important, we wanted it to provide practical guidance to demogra-

phers, planners, market analysts, and others called upon to construct or evaluate state

and local population projections in real-world settings. The reader will have to decide

whether we have succeeded in accomplishing these often-conflicting goals.

We thank Paul Voss for writing the foreword to this book. It would be impos-

sible to find a person more qualified than Paul, given his numerous and important

contributions to the field of applied demography. We also thank Evelien Bakker and

Bernadette Deelen-Mans for shepherding the book through Springer’s production

process; their assistance was invaluable.

Above all, we express our gratitude to our wives—Rita, Melinda, and Rita—for

their love, encouragement, and patience as we worked on this book.
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Chapter 1

Rationale, Terminology, Scope

People are fascinated by the future. Palm readers, astrologers, and crystal-ball-

gazers down through the ages have found eager customers for their predictions and

views of the future. Modern-day analysts and forecasters—using computers and

mathematical models instead of tea leaves and chicken entrails—continue to find

willing audiences. The desire to see into the future is seemingly insatiable and

apparently has not been diminished by the relatively low success rates achieved by

visionaries and forecasters in the past (see Box 1.1).

The desire to foresee future population trends reflects much more than idle

curiosity. At the global level, many are concerned about the earth’s ability to

feed, clothe, and house the several billion people expected to be added to the

world’s population over the next 100 years. Nations and states are concerned

about the economic, social, political, and environmental consequences of popula-

tion growth and demographic change. At the local level, planning for schools,

hospitals, shopping centers, housing developments, roads, and countless other pro-

jects is strongly affected by expected population growth. Indeed, the success or

failure of such plans often depends on the extent to which projected growth is

realized over time. It is no wonder that population projections are of so much

interest to so many people.

Despite this high level of interest, the future is unknown and—in most

respects—unknowable. Many factors influence population growth and demo-

graphic change, often in unpredictable ways. No matter how accurate our data

and sophisticated our methodology, we still cannot “see” into the future. One

hundred years ago, who could have predicted the baby boom and bust, the tremen-

dous increase in life expectancy, or the dramatic shifts in foreign immigration that

occurred in the United States during the twentieth century? Who could have

predicted microwave ovens, interstate highways, space exploration, smart phones,

or the Internet? For that matter, who could have predicted the appearance of hula

hoops, pet rocks, Facebook, or Lady Gaga? AsWinston Churchill noted, “the future

is just one damn thing after another.”

We are not completely lost, however. Although individual events may be

unpredictable, patterns often emerge when the effects of individual events are
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combined. This is especially true in demography, where the momentum of demo-

graphic processes links the future with the past in clear and measurable ways. We

can study demographic trends, collect historical data, and build projection models

based on our knowledge of the past and our expectations for the future. Since the

future has roots in the past, these projections will often provide reasonably accurate

predictions of future population change. If constructed and interpreted properly,

population projections can be very useful tools for planning and analysis.

1.1 What Is a Population Projection?

1.1.1 Projections, Forecasts, Estimates

A variety of terms can be used to describe calculations of past and future

populations. Following demographic convention, we define a population projection
as the numerical outcome of a particular set of assumptions regarding future

population trends (Isserman and Fisher 1984; Keyfitz 1972; Pittenger 1976; Siegel

2002, p. 450; Weeks 2012, p. 344). Some projections refer to total population while

others provide breakdowns by age, sex, race, and other characteristics. Some focus

solely on changes in total population while others distinguish among the individual

components of growth—births, deaths, and migration.

Box 1.1 Blasts from the Past: Some Predictions that Missed the Boat

“I see no good reasons why the views given in this volume should shock the religious

sensibilities of anyone.”—Charles Darwin, The Origin of Species, 1869.

“This “telephone” has too many shortcomings to be seriously considered as a means

of communication. The device is inherently of no value to us.”—Western Union

internal memo, 1876.

“Heavier-than-air flying machines are impossible.”—Lord Kelvin, British

scientist, 1899.

“Who the hell wants to hear actors talk?”—H.M. Warner, Warner Brothers, 1927.

“Stocks have reached what looks like a permanently high plateau.”—Irving Fisher,

Professor of Economics, Yale University, 1929.

“I think there is a world market for maybe five computers.”—Thomas Watson,

Chairman of IBM, 1943.

“We don’t like their sound, and guitar music is on the way out.”—Decca Recording

Company, rejecting the Beatles, 1962.

“With over 50 foreign cars already on sale here, the Japanese auto industry isn’t

likely to carve out a big slice of the U.S. market.”—Business Week, August 2, 1968.

“640 K ought to be enough for anybody.”—Attributed to Bill Gates, founder of

Microsoft, 1981, but perhaps urban legend.
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Strictly speaking, population projections are conditional statements about the

future. They show what the population would be if particular assumptions were to

hold true. However, they make no predictions as to whether those assumptions

actually will hold true. By definition, population projections are always “right,”

barring a mathematical error in their calculation. Since they make no predictions

regarding the future, they can never be proven wrong by future events.

A population forecast, on the other hand, is the projection the analyst (i.e., the

person or agency making the projection) believes is most likely to provide an

accurate prediction of the future population. Whereas projections are

non-judgmental, forecasts are explicitly judgmental. They are unconditional state-

ments reflecting the analyst’s views regarding the optimal combination of data

sources, projection techniques, and methodological assumptions, leavened by per-

sonal judgment. Unlike projections, population forecasts can be proven right or

wrong by future events (or—to be more realistic—they can be found to have

relatively small or large errors).

Demographers have traditionally used the term projection to describe calcula-

tions of the future population. There are several reasons for choosing this termi-

nology. First, projection is a more inclusive term than forecast. A forecast is a

particular type of projection; namely, the projection the analyst believes is most

likely to provide an accurate prediction of the future population. Given this

distinction, all forecasts are projections but not all projections are forecasts.

Second—as we discuss later in this chapter—projections can serve other purposes

besides predicting the future population; we believe the term projection facilitates

the discussion of these alternative roles. Finally, demographers have often intended

their calculations of future population to be merely illustrative rather than predic-

tive; projection fits more closely with this intention than forecast.
We use both terms in this book, but use projection as the general term describing

calculations of future population. We use forecast and forecasting when the dis-

cussion focuses on predicting the most likely course of future population change.

We believe the critical factor is not the term itself, but rather the purposes for which

projections and forecasts are used (e.g., describing a hypothetical scenario or

selecting the most likely outcome).

A distinction can also be made between projections and estimates. This distinc-
tion is based on both temporal and methodological considerations. The most

fundamental difference is that projections refer to the future whereas estimates

refer to the present or the past. In addition, estimates can often be based on data for

corresponding points in time. For example, estimates for 2012 made in 2013 can be

based on data series—such as births, deaths, building permits, school enrollments,

tax records, and Medicare enrollees—reflecting population growth through 2012.

Projections for 2020 made in 2013, however, cannot use such data series because

those series do not yet exist.

The distinction between estimates and projections is not always clear-cut.

Sometimes no data are available for constructing population estimates. In these

circumstances, methods typically used for population projections are used for

population estimates. For example, calculations of a city’s age-sex composition
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in 2012 made in 2013 may have to be based on the extrapolation of 2000–2010

trends because data series reflecting post-2010 changes in age-sex composition may

not be available. Should these calculations be called estimates or projections?
In this book we refer to calculations extending beyond the date of the last

observed data point as projections; calculations for all prior dates are called

estimates. For example, if we have data through July 1, 2012, calculations for

dates on or before that day are called population estimates and calculations for dates
after that day are called population projections.

1.1.2 Alternative Approaches

There are many approaches to making population projections. Some are subjective,

others objective. Some are simple, others very complex. Causal models compete with

non-causal models. Data requirements range from small to large. Levels of disaggre-

gation vary from minimal to elaborate. There are also a variety of ways to classify

projectionmethods. Figure 1.1 shows the classification schemewe follow in this book.

A fundamental distinction in the general forecasting literature is between subjec-

tive and objective methods (Armstrong 1985). Subjective methods are those lacking a

clearly defined process for analyzing data and creating projections. Examples include

projections based on general impressions, intuition, personal experience, or analogy;

sometimes they are simply wild guesses. Even when subjective methods are based

partly on objective data and formal analyses, the exact nature of the projection

process is not clearly specified and cannot be replicated by other analysts.

Objective methods are those in which the projection process has been clearly

specified. Data sources, assumptions, and mathematical relationships are defined in

precise quantitative terms. Theoretically, the process can be specified so precisely

that other analysts could replicate the method and obtain exactly the same results.

Although subjective methods are used frequently for some types of forecasting

(e.g., technological change, geopolitical events), they are not commonly used for

population projections. In this book, we focus primarily on objective methods.

However, it is important to recognize that objective methods themselves contain

many subjective elements. All projection methods require choices regarding data

sources, time periods, functional forms, and so forth; that is, they all require the

application of judgment. In general, the more complex the method, the greater the

role of judgment in the projection process.

We describe four types of objective population projection methods: trend

extrapolation, cohort-component, structural modeling, and microsimulation.

Trend extrapolation methods are based on the continuation of readily observable

historical trends. They can be simple (e.g., linear extrapolation) or complex (e.g.,

ARIMA time series models). They are often used for projections of total popula-

tion, but can also be used for projections of a particular population subgroup (e.g., a

racial or ethnic group) or a particular component of growth (e.g., births or deaths).

Trend extrapolation methods are generally applied to a single data series (e.g., total
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population), but can also be applied to data expressed as ratios (e.g., a county’s

population as a share of the state’s population). The defining characteristic of trend

extrapolation methods is that projected values for a particular variable are based

solely on historical values of that variable.

The cohort-component method accounts separately for births, deaths, and

migration—the components of population growth. Most applications of this method

divide the population into age-sex groups (i.e., cohorts) and project the components

of growth separately for each cohort. The population can be further subdivided by

race, ethnicity, and other demographic characteristics. There are a number of ways

to construct cohort-component models and to project each component of growth.

Since the cohort-component method is used more frequently than any other method

of population projection, it is a major focus of this book.

Structural models focus on causal relationships between demographic and

non-demographic variables. Their defining characteristic is that projected values

for a demographic variable are based not only on its historical values, but on other

variables as well. In many instances, the non-demographic variables are economic

in nature. For example, we might develop a model in which job growth in one

geographic area attracts migrants from another geographic area. This model might

specify how many migrants arrive each year for each 1,000 new jobs created. Such

a model has both economic and demographic components and translates projections

of future job growth into projections of future migration. Whereas trend

Projection
Methods

ObjectiveSubjective

Cohort-
Component

Structural
Models

Simple Urban
Systems

Ratio Economic-
Demographic

Micro-
simulation

Trend
Extrapolation

Complex

Fig. 1.1 A typology of population projection methods
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extrapolation models tell us nothing about the causes of population change, struc-

tural models provide explanations as well as projections of future change.

Many types of structural models can be developed, ranging from simple recur-

sive models involving only a few variables and a single equation to huge systems of

simultaneous equations involving many variables and parameters. In this book we

discuss economic-demographic and urban systems models, the two types of struc-

tural models used most frequently for state and local population projections.

Microsimulation models focus on individual households and people rather than

on demographic groups. Each individual is treated as an autonomous entity and

interactions among individuals are accounted for using stochastic or deterministic

parameters reflecting individual preferences, behaviors, and tendencies. The moti-

vation behind these models is that aggregate behavior is composed of decisions

made by many individuals and that these decisions provide a basis for projecting

aggregate behavior. Microsimulation has a long history as a tool for policy analysis

and is increasingly being used as a population projection method.

These four approaches—trend extrapolation, cohort-component, structural

modeling, and microsimulation—are not mutually exclusive. Many projection

models combine elements from several approaches. For example, some cohort-

component models use structural models to project in- and out-migration while

others simply extrapolate previous migration trends. Although trend extrapolation

methods can be applied independently of the other two approaches, cohort-

component and structural models are generally used in combination with another

approach. Microsimulation models sometimes incorporate only demographic fac-

tors, but often incorporate non-demographic factors as well.

We discuss a wide variety of methods, models, and techniques in this book,

including those most commonly used for state and local population projections. The

ones we do not discuss either are not commonly used or are simply variants of other

methods. We believe these methods, models, and techniques reflect the current

“state of the art” and provide the reader with an ample set of tools for making state

and local population projections.

1.2 Why Make Population Projections?

1.2.1 Roles of Projections

1.2.1.1 Predicting Future Population Change

Population projections can play a number of roles. The most fundamental is to

predict future population change. Most data users (especially at the local level) use

projections as a guide for decision making, viewing them as forecasts regardless of

the intentions of the analyst(s) producing the projections. We give several examples

of the use of projections for decision-making purposes in the next section. When
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projections are used in this manner, it is imperative to pay close attention to the

plausibility of the underlying assumptions. If the assumptions are implausible, the

projections will not provide credible forecasts.

1.2.1.2 Analyzing Determinants of Population Change

Projections are often used as a tool to analyze the determinants of population

change. This is the “what if” role of projections. What effect would a 10% increase

or decline in birth rates have on a state’s population size and age composition?

What would be the effect of the elimination of all cancer deaths? What effect would

the opening of a new factory employing 2,000 people have on a county’s migration

patterns? What effect would future changes in demographic characteristics have on

government programs and infrastructure needs? In this “simulation” role, projec-

tions are not meant to predict future population changes, but rather to illustrate the

effects of specific changes in the model’s underlying assumptions.

1.2.1.3 Presenting Alternative Scenarios

The third role of projections is closely related to the second. Projections can be used

not only to analyze the determinants of population change, but also to give the data

user an indication of potential future scenarios. Since we cannot be sure what the

future will bring, it is helpful to consider projections based on various combinations

of assumptions. Charting the implications of different combinations of assumptions

gives the data user some idea of the potential variation in future population values.

These alternative scenarios are often based on expert judgment regarding the

appropriate combination of assumptions, but can also be based on formal tech-

niques, giving the data user a probabilistic description of the uncertainty inherent in

a particular projection (i.e., a prediction interval).

1.2.1.4 Promoting Agendas and Sounding Warnings

Projections can also be used to support a particular political or economic agenda or

to sound a warning. Here the emphasis shifts from what will happen to what could
or should happen. For example, suppose that a county’s population has been

projected to grow by 40% during the next 10 years. The county commission

might use those projections of rapid growth as a marketing tool to attract new

businesses to the area. Conversely, a citizen’s group concerned about the environ-

ment might use those projections as a warning and a call for action to reduce the rate

of growth. This role illustrates the political nature of population projections, a

characteristic that may affect how projections are made and how they are used.
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1.2.1.5 Providing a Base for Other Projections

Finally, population projections are often used as a base for constructing other types

of projections. For example, population projections can be used for school enroll-

ment projections by applying enrollment rates to the appropriate age groups. They

can be used for labor force projections by applying labor force participation rates to

the appropriate age, sex, racial, or ethnic groups. They can be used for projecting

the number of births by applying birth rates to the projected female population.

Analyses based directly or indirectly on population projections provide the basis for

many types of decision making in both the public and private sectors. As a practical

matter, this may be the most important use of population projections.

1.2.2 Projections and Decision Making

Population projections are interesting to demographers because they reveal a great

deal about the components of growth, the momentum of population change, and the

implications of particular assumptions. To most non-demographers, however, these

issues are—at best—only mildly interesting. The primary value of population

projections to most data users is how they can be used to improve real-world

decision making. The following examples illustrate some of the uses of population

projections.

1.2.2.1 Will Texas Run Out of Water?

Texas is a rapidly growing state drawing its water from aquifers, lakes, and rivers.

These sources are replenished over time through rainfall. But rainfall in Texas is

wildly variable over time and space, with averages ranging from over 40 in. per year

in the eastern part of the state to fewer than 10 in. in the western part. Agriculture

and industry are the major users of water, but households are important as well.

Population growth affects the demand for water directly through household forma-

tion and size and indirectly through its impact on the demand for agricultural and

industrial output. In 2012, the State of Texas published a 50-year state water plan

(Texas Water Development Board 2012). Population and household projections for

counties and subcounty areas played an important role in the development of

that plan.

1.2.2.2 Where Should Encinitas Put Its New Fire Stations?

Encinitas is coastal city in southern California. Local officials were concerned

about the city’s ability to respond to future demands for fire protection, and
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contacted the San Diego Association of Governments (SANDAG) for assistance in

determining how many stations were needed and where they should be located.

SANDAG developed a plan based on the projected number and location of house-

holds, road networks, travel times, access to “critical sites” (e.g., hospitals, schools,

nursing homes), and land use plans. Population and household projections at the

block level were used for constructing this plan (Tayman et al. 1994).

1.2.2.3 Does Hillsboro Need a New School?

Hillsboro is a suburb of Portland, Oregon. In the mid-1990s, the city had 20 ele-

mentary schools, four middle schools, and three high schools, with a total of nearly

16,500 students (Swanson et al. 1998). The school board faced a formidable

planning task because of rapid population growth and the pending unification of

separate elementary, middle, and high school districts. They contracted with a

group of consultants to study how to combine the current districts, determine

whether any new schools were needed, and develop attendance zones for each

school. The consultants developed a plan based on population projections by age,

sex, race, ethnicity, and income by traffic analysis zone. [Traffic analysis zones are

small, user-designed areas developed for transportation planning; they are typically

composed of one or more blocks]. These projections were then aggregated to form

projections for each attendance zone within the newly formed school district.

1.2.2.4 Can Hospital X Support a New Obstetrical Unit?

Hospital X is located in the central city of a medium-sized metropolitan area in the

southeastern United States. Seeking to establish an obstetrical unit in a suburban

satellite hospital, the administrators of Hospital X applied to the local health

planning board for approval. The approval process required that Hospital X dem-

onstrate the need for additional maternity services in the area. The application was

opposed by a nearby suburban hospital which already offered maternity services.

The opposing hospital retained a demographic consultant to determine if additional

maternity services were actually needed. The critical factor in the case was the

number of births projected for the satellite hospital’s service area. The consultant

used population projections by age and sex and assumptions regarding future birth

rates to demonstrate that the projected increase in births was insufficient to justify

the establishment of a new obstetrical unit (Thomas 1994).

1.2.2.5 What Does Population Growth Mean for Land Use in Dublin?

Dublin is a small but rapidly growing city in central Ohio. Its population was less

than 4,000 in 1980 but quadrupled by 1990 and nearly doubled again by 2000. Its

residents were concerned about dealing with the impact of additional future growth.
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Planners developed three series of population projections based on low, medium,

and high growth assumptions and traced out the implications of those projections

for residential, recreational, employment, and other types of land use (Klosterman

2007). These projections helped the city develop public policies affecting further

population and employment growth.

1.2.3 Forecasting and Planning

Any plan for the future must be based—at least in part—on a projection

(or forecast). Even the most mundane activities of everyday life illustrate this

point. When one walks out the door in the morning and decides whether to take

along an umbrella, one is forecasting the likelihood of rain that day. A household’s

saving decisions, a corporation’s investment decisions, a state government’s spend-

ing decisions, a local government’s road-building decisions, and a school board’s

hiring decisions all reflect plans based implicitly or explicitly on forecasts. The

examples described above show how population projections affect plans developed

by a variety of businesses and government agencies. Forecasting and planning are

closely intertwined.

They are not synonymous, however. Each has its own goals and objectives.

Forecasting attempts to predict the future, whereas planning seeks to affect
it. Isserman (1984) discussed three types of forecasts. Pure forecasts describe the

most likely future in the absence of intervention; contingency forecasts describe

possible futures under different assumptions; and normative forecasts describe the
desired future. These terms reflect the different roles played by projections. Since

the objective of planning is to affect the future, successful planning may render a

forecast obsolete and inaccurate; that is, active intervention may cause future

population trends to deviate from the paths they would have followed in the absence

of intervention. Consequently, there may be a fundamental conflict between plan-

ning and forecasting.

In addition, projections themselves may affect future growth. For example, areas

projected to grow rapidly may do so in part because the predicted growth attracts

job seekers and businesses wishing to relocate or expand. Areas projected to decline

may do so in part because businesses and workers are driven away by their

apparently poor prospects. In these circumstances, population forecasts influence

the very trends they seek to predict, perhaps even becoming self-fulfilling proph-

ecies (Isserman and Fisher 1984; Moen 1984). Planners may influence population

growth through their forecasts as well as their plans.

Government planners use a variety of tools to influence the pace, distribution,

and characteristics of population growth. Some local governments try to spur

growth by actively courting new businesses, reducing tax rates, extending infra-

structure into new areas, or improving the quality of government services. Others

attempt to restrict growth by setting limits on the number of residential building
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permits issued, denying water and sewer services, instituting impact fees on new

structures, banning certain types of industries, or limiting the number of unrelated

persons living in one household. State governments influence population growth

through policies affecting the economic environment, the cost of living, and the

quality of services.

Forecasting and planning are distinct but closely related activities. Particularly at

the local level, they are political in nature and require the balancing of differing

interests and viewpoints from a variety of stakeholders. Successful forecasting and

planning inform the policy-making process by presenting a variety of realistic

scenarios, facilitating community understanding, and preparing the public for

dealing with an uncertain future (Klosterman 2007; Smith 2007; Tayman 1996).

They not only react to projected population changes, but seek to influence those

changes as well. When public policy influences population growth, forecasting and

planning cannot be separated.

1.3 How Can This Book Help?

A great deal has been written about population projections. One branch of the

literature has addressed projection methodology (Booth 2006; Davis 1995;

Pittenger 1976; Siegel 2002; Wilson and Rees 2005). Another has focused on

analysis and evaluation, with a particular emphasis on forecast accuracy (Chi

2009; Keilman 1990; Long 1995; Rayer 2008; Smith and Sincich 1992; Stoto

1983). We cover both branches in this book. We describe and illustrate the most

commonly used projection methods, with an emphasis on problems unique to

applications for small areas. We also discuss the determinants of population

growth, quality of data sources, formation of assumptions, development of evalu-

ation criteria, and determinants of forecast accuracy. Our aim is to provide the

reader with an understanding not only of the mechanics of common projection

methods, but also of the complex analytical issues that make population forecasting

an art as well as a science. Box 1.2 lists some of the major producers of state and

local projections.

1.3.1 Objectives

We have three fundamental objectives in writing this book: to describe commonly

used projection methods, to analyze their strengths and weaknesses, and to provide

practical guidance to analysts called upon to produce population projections or use

them for decision-making purposes.
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Box 1.2 Who Makes State and Local Population Projections?

Federal government—The Census Bureau published its first set of state

population projections in 1952 and published several sets each decade

through the 1990s. It released an interim set of state projections in 2005 but

has not produced any additional sets since that time. Current plans call for a

new set of state projections by 2015. The Census Bureau produced a set of

projections for metropolitan areas in 1969 but has not made any other pro-

jections below the state level. The Bureau of Economic Analysis made

several sets of population projections for states, economic areas, and metro-

politan areas in the 1970s, 1980s, and 1990s, but has made no projections

since 1995.

State demographers—Most state governments designate an agency to pro-

duce “official” population projections. These agencies are often part of state

government but are sometimes part of a university. Most states make pro-

jections at the state and county levels; a few also make projections for

selected subcounty areas. Most states make projections by age, sex, and

race; a few also make projections by Hispanic origin. Representatives from

each state and the Census Bureau formed the Federal-State Cooperative

Program for Population Projections (FSCPP) in 1981. This organization pro-

motes the development and testing of projection methods; encourages the

collection and exchange of reliable data; and provides a forum for sharing

data, information, and ideas.

Local government agencies—Agencies such as city and county planning

departments and associations (or councils) of governments often make pop-

ulation projections for subcounty areas such as census tracts, block groups,

ZIP code areas, and traffic analysis zones. The level of geographic and

demographic detail varies from place to place.

Private vendors—A number of private data companies make population

projections for states, counties, and subcounty areas such as census tracts,

block groups, ZIP code areas, and a variety of customized geographic areas.

These projections often contain a high level of geographic and demographic

detail. They are produced on a regular schedule and are sold to data users in

the public and private sectors.

Other private businesses—Some business enterprises have staff members

who produce population projections for use within the company. Demo-

graphic consultants also produce a variety of customized projections under

contract with individual clients. These projections are often proprietary and

are not generally available for public use.

Note: In 1999, the U.S. Bureau of the Census officially changed its name to

the U.S. Census Bureau. For simplicity, we refer to this agency simply as the

Census Bureau.
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1.3.1.1 Describing Projection Methods

First, we describe a variety of population projection methods. Some are simple,

others much more complex. We use non-technical language whenever possible and

supplement the discussion with illustrations and step-by-step examples. We include

equations where they illuminate the discussion, but try not to overwhelm the reader

with mathematics. For complex methods, of course, the discussion necessarily

becomes more technical. We emphasize methods that most demographers, plan-

ners, market researchers, and other analysts will be able to use for state and local

projections. We provide step-by-step illustrations of the cohort-component method

and most of the trend extrapolation techniques, but do not provide detailed

illustrations for time series, structural, or microsimulation models or for the most

data-intensive applications of the cohort-component method (e.g., parameterized

multi-state models). Interested readers may consult the reference works cited for

further information on these methods.

1.3.1.2 Analyzing Strengths and Weaknesses

Simply knowing the mechanics of various methods is not enough; one must also be

aware of each method’s strengths and weaknesses. Otherwise, the analyst will be

unable to choose the method (or methods) that are best suited for a given set of

projections. Our second objective, then, is to develop a set of criteria for evaluating

the strengths and weaknesses of each projection method and show how to use those

criteria to evaluate the methods described in this book.

Each method has a specific combination of characteristics. Some have large data

requirements, others have small requirements. Some provide a great deal of demo-

graphic detail, others provide little. Some are time consuming and costly to apply,

others are quick and inexpensive. Some require a high level of modeling and

statistical skills, others require only simple skills. Some are easy to explain to data

users, others are difficult to explain. For any given purpose, then, some methods are

more useful than others. Only after considering the strengths and weaknesses of each

method can the analyst choose the one(s) best suited for a particular project.

Because population projections are so widely used as forecasts of future popu-

lation change, we examine forecast accuracy in detail, evaluating differences by

projection method, population size, growth rate, length of base period, length of

projection horizon, and launch year. We believe this discussion will help the analyst

choose the best method(s) for any particular purpose and provide a basis for judging

the uncertainty inherent in population projections.

1.3.1.3 Providing Practical Guidance

Our most fundamental objective is to provide practical guidance to demographers,

planners, market researchers, and others called upon to produce state and local
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population projections or to use projections for decision-making purposes. Describ-

ing alternative methods and discussing their strengths and weaknesses is necessary

but not sufficient for achieving this goal. One must also consider the context in

which projections are made. What theoretical models and data sources are most

appropriate for a particular type of projection? What social, economic, cultural, and

political factors might affect the choice of assumptions? What special circum-

stances must be considered? Are any adjustments to the models or data necessary?

If so, how can they be made? What potential pitfalls should the analyst watch out

for? We provide answers to these questions throughout the book.

This book will not answer every question, of course, but we believe it will help

the producers of population projections focus on the relevant issues, collect the

necessary data, develop and apply appropriate models, interpret results, and eval-

uate the trade-offs that must be made when demands are seemingly unlimited but

resources are not. Similarly, it will help users of population projections ask the right

questions and evaluate the quality of the answers they receive. Providing practical

guidance is the most important objective of this book.

1.3.2 Geographic Focus

Much of the research on population projections has focused on projections at the

national level (Bongaarts and Bulatao 2000; Cohen 1986; Hyndman and Booth

2008; Keyfitz 1981; Lee and Tuljapurkar 1994; Shang 2012; Stoto 1983). Although

this research has been very valuable, conclusions based on studies of national

projections are not always applicable to states and local areas. There are several

reasons why this might be true.

First, there are substantial differences in data availability and reliability between

national and subnational areas. Some data series are available only at the national

level. Others are available with greater frequency at the national level than at state

and local levels. Due to reporting, coverage, and sampling errors, data quality is

likely to be better for nations than for subnational areas (especially for small areas).

Consequently, certain projection methods that work well at the national level may

not work well (or work at all) at the state and local levels.

Second, migration—both international and domestic—plays a greater role in

population growth at the state and local levels than at the national level. Fertility

and mortality are the major determinants of population growth in most countries,

with international migration having a relatively small impact. Although interna-

tional migration has a larger impact on population growth in theUnited States than in

most countries, it still accounts for just over one-third of the nation’s annual

population growth and is relatively stable from year to year. In contrast, migration

is the primary determinant of population change in many states and local areas and is

much more volatile over time than either fertility or mortality. This volatility makes

migration more difficult to forecast accurately, adding a major source of uncertainty

to subnational projections that is small or non-existent in most national projections.

14 1 Rationale, Terminology, Scope



Finally, the small size of many local areas means that individual events have a

greater impact on population change than is the case for nations (and most states).

Examples include the construction of a prison, the growth of a college or university,

the opening of a new highway, and the closing of a major employer. Factors like

these cause population growth to be more volatile and unpredictable for small areas

than large areas. By small areas, we mean counties and subcounty areas such as

cities, townships, school districts, census tracts, and traffic analysis zones.

We believe an emphasis on states and local areas is justified by their unique

characteristics, by the relatively small amount of research that has been done at the

subnational level, and by the widespread use of small-area projections for decision-

making purposes. This emphasis means we pay special attention to problems of

data availability and reliability, the role of migration, and the impact of special

events and unique circumstances on population growth. However, except for urban

systems models, all the methods described in this book can be used for national

projections as well as for state and local projections.

We focus on data sources and geographic areas in the United States—the

country we know best—but much of our discussion is relevant for subnational

projections in other countries with regularly conducted censuses, good vital regis-

tration systems, and a wide range of administrative records. For countries just

developing these data resources, the discussion will provide a point of departure

but not a complete road map to the construction of population projections.

1.3.3 Coverage

This book is composed of four parts. Chapters 1 and 2 provide a general introduc-

tion to the book’s topics and terminology. Chapter 1 discusses the reasons for

making projections, defines some basic concepts, and describes the scope of the

book. Box 1.3 defines some of basic terms used throughout the book. Chapter 2 is a

primer on population analysis, covering additional demographic concepts and

terminology. This chapter will be review material and can be skipped by readers

with training in demography, but will be helpful to newcomers to the field.

Chapters 3, 4, 5, 6 and 7 focus on the cohort-component method. Chapter 3

provides an overview of the method, including a brief history of its development

and use. Chapter 4 discusses the mortality component, covering the calculation of

several mortality measures, sources of data, the construction of survival rates,

alternative approaches to projecting survival rates, and some examples of mortality

projections for states and local areas. Chapter 5 discusses the fertility component,

covering the calculation of several fertility measures, sources of data, a description

of the cohort and period perspectives, alternative approaches to projecting fertility

rates, and some examples of fertility projections for states and local areas. Chapter 6

discusses the migration component, covering a number of migration definitions and

measures, sources of data, the determinants of migration, alternative approaches to

projecting migration, and several critical issues related to migration projections for

states and local areas. Chapter 7 provides several step-by-step examples showing
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how to apply the cohort-component method and discusses some of its strengths and

weaknesses.

Chapters 8, 9, 10, and 11 discuss other approaches to projecting state and local

populations. Chapter 8 covers trend extrapolation methods, including a brief history

of their application, a description of the most commonly used methods, examples of

each method, and an assessment of their strengths and weaknesses. Chapter 9

covers economic-demographic and urban systems models—the two main types of

structural models used for state and local projections—and microsimulation. This

chapter discusses some of the theory underlying these models, gives examples of

how they can be used, and evaluates their strengths and weaknesses. Chapter 10

discusses several special circumstances that may be encountered when making

population projections and suggests some ways for dealing with them. Chapter 11

describes methods that can be used for projecting population-related variables such

as households, school enrollment, health characteristics, and the labor force.

The last part of the book focuses on evaluation and analysis. Chapter 12

describes several criteria for evaluating projections and compares the methods

discussed in this book according to these criteria. Chapter 13 analyzes forecast

accuracy and bias, covering alternative error measures, factors affecting accuracy

and bias, the potential for combining projections, and ways to account for uncer-

tainty. These two chapters will help readers judge the validity of population pro-

jections and determine how useful they are likely to be for decision-making

purposes. Chapter 14 summarizes many of the points made throughout the book

and provides practical guidance for making small areas projections. Finally, the

Epilogue speculates on where the field of population projections may be headed.

Box 1.3 Some Basic Terminology

Projection: The numerical outcome of a particular set of assumptions

regarding future population trends.

Forecast: The projection deemed most likely to provide an accurate predic-

tion of the future population.

Estimate: A calculation of a current or past population, typically based on

symptomatic indicators of population change.

Base year: The year of the earliest data used to make a projection.

Launch year: The year of the latest data used to make a projection.

Target year: The year for which the population is projected.

Base period: The interval between the base year and the launch year.

Projection horizon: The interval between the launch year and a target year.

Projection interval: The increments in which projections are made.

For example, if data from 2000 through 2010 are used to project the popu-

lation in 2020, then 2000 is the base year; 2010, the launch year; 2020, the

target year; 2000–2010, the base period; and 2010–2020, the projection

horizon. These projections would be made in 10-year intervals.
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1.3.4 Target Audience

This book is aimed primarily at two groups of readers. The first consists of analysts

working for state and local governments, private businesses, universities, and

non-profit organizations who are responsible for making population projections

for states and local areas. This group not only includes demographers, but also land

use planners, transportation planners, environmental planners, school district

administrators, market analysts, personnel managers, retirement benefits adminis-

trators, and sales forecasters. We believe this book gives practitioners the tools they

need to decide which data sources to use, which methods to apply, how best to

apply them, and what problems to watch out for. It also gives the users of

population projections the tools they need to evaluate the validity of the projections

they are using.

The second group is comprised of students in courses dealing with demographic

methods or state, regional, and local planning. We believe the book will be useful as

the primary textbook in courses focusing on population projections and as supple-

mentary reading for courses in which population projections are covered in a short

module. The book is not highly mathematical, but it assumes that readers have at

least a basic knowledge of mathematics and statistics. We believe it is suitable for

both graduate students and upper-level undergraduate students.
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Chapter 2

Fundamentals of Population Analysis

Demography is defined as the scientific study of population. Although it typically

focuses on the human population, many of its concepts, measures, and techniques

can be extended to non-human populations as well. It covers five basic topics:

1. The size of the population.

2. Its distribution across geographic areas.

3. Its composition (e.g., age, sex, race, and other characteristics).

4. Changes in population size, distribution, and composition over time.

5. The determinants and consequences of population growth.

In this chapter, we focus on the first four of these topics. We describe a number

of basic demographic concepts, define a number of commonly used terms, and

discuss several sources of demographic data. Our objective is to give readers with

little training or experience in formal demography a brief introduction to the field.

More comprehensive discussions can be found in Newell (1988), Poston and

Micklin (2005), Rowland (2011), Siegel and Swanson (2004), and Weeks (2012).

2.1 Demographic Concepts

2.1.1 Size

The most basic demographic concept is population size. Typically, population size
refers to the number of people residing in a specific area at a specific time. For

example, California had a population of 37,253,956 on April 1, 2010, whereas

Wyoming had a population of 563,626 (see Table 2.1). These were the largest and

smallest states in the United States, in terms of population size.

Population size is seemingly a simple concept, but there is some ambiguity

regarding how it is measured. Americans are a very mobile population, and many

people spend part of their time in one place and part in another (e.g., at home, at
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Table 2.1 Population change for states, 2000–2010

Change

2000 2010 Numerica Percentb

Northeast

Connecticut 3,405,650 3,574,097 168,447 4.9

Maine 1,274,779 1,328,361 53,582 4.2

Massachusetts 6,349,364 6,547,629 198,265 3.1

New Hampshire 1,235,807 1,316,470 80,663 6.5

New Jersey 8,414,764 8,791,894 377,130 4.5

New York 18,977,026 19,378,102 401,076 2.1

Pennsylvania 12,280,548 12,702,379 421,831 3.4

Rhode Island 1,048,259 1,052,567 4,308 0.4

Vermont 608,613 625,741 17,128 2.8

Midwest

Illinois 12,419,927 12,830,632 410,705 3.3

Indiana 6,080,827 6,483,802 402,975 6.6

Iowa 2,926,538 3,046,355 119,817 4.1

Kansas 2,688,925 2,853,118 164,193 6.1

Michigan 9,938,823 9,883,640 �55,183 �0.6

Minnesota 4,919,631 5,303,925 384,294 7.8

Missouri 5,596,564 5,988,927 392,363 7.0

Nebraska 1,711,230 1,826,341 115,111 6.7

North Dakota 642,237 672,591 30,354 4.7

Ohio 11,353,336 11,536,504 183,168 1.6

South Dakota 754,858 814,180 59,322 7.9

Wisconsin 5,363,757 5,686,986 323,229 6.0

South

Alabama 4,447,207 4,779,736 332,529 7.5

Arkansas 2,673,293 2,915,918 242,625 9.1

Delaware 783,559 897,934 114,375 14.6

District of Columbia 572,086 601,723 29,637 5.2

Florida 15,982,571 18,801,310 2,818,739 17.6

Georgia 8,186,653 9,687,653 1,501,000 18.3

Kentucky 4,042,193 4,339,367 297,174 7.4

Louisiana 4,469,035 4,533,372 64,337 1.4

Maryland 5,296,647 5,773,552 476,905 9.0

Mississippi 2,844,754 2,967,297 122,543 4.3

North Carolina 8,046,346 9,535,483 1,489,137 18.5

Oklahoma 3,450,451 3,751,351 300,900 8.7

South Carolina 4,012,023 4,625,364 613,341 15.3

Tennessee 5,689,427 6,346,105 656,678 11.5

Texas 20,851,820 25,145,561 4,293,741 20.6

Virginia 7,079,057 8,001,024 921,967 13.0

West Virginia 1,808,193 1,852,994 44,801 2.5

(continued)
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work, on vacation, or on a business trip). Where should these people be counted

when a census is conducted?

There are two basic approaches to answering this question. The de facto
approach counts people where they are physically located on census day, regardless

of how much time they spend at that location. Under this approach, all tourists,

business travelers, and seasonal residents present in Phoenix on census day are

counted as Phoenix residents, along with the usual residents of Phoenix who are in

town that day. Usual residents who are out of town on census day, however, are not

counted as Phoenix residents. The de jure approach counts people at their usual

(or permanent) place of residence, regardless of where they are physically located

on census day. Under this approach, tourists, business travelers, and other visitors

temporarily present in Phoenix on census day are counted as residents of Chicago,

Omaha, or any other place in which they normally reside. The first approach is used

in many countries lacking well-developed statistical systems. The second approach

is used in the United States, Canada, and most other industrialized countries and is

the approach we follow in this book.

The de jure approach means that many people physically present in an area at

one time or another are omitted from population counts, estimates, and projections.

These omissions may be substantial for some places. For example, it was estimated

that Florida had more than 1.2 million temporary residents spending at least

1 month in the state during the winter of 2005 (Smith and House 2007); these

people were not included in Florida’s official population estimates and projections.

The Census Bureau has established guidelines for determining place of residence

for population subgroups such as military personnel, college students, migrant

farmworkers, snowbirds, business travelers, and the homeless (Cork and Voss

Table 2.1 (continued)

Change

2000 2010 Numerica Percentb

West

Alaska 626,933 710,231 83,298 13.3

Arizona 5,130,247 6,392,017 1,261,770 24.6

California 33,871,653 37,253,956 3,382,303 10.0

Colorado 4,302,086 5,029,196 727,110 16.9

Hawaii 1,211,497 1,360,301 148,804 12.3

Idaho 1,293,957 1,567,582 273,625 21.1

Montana 902,200 989,415 87,215 9.7

Nevada 1,998,250 2,700,551 702,301 35.1

New Mexico 1,819,017 2,059,179 240,162 13.2

Oregon 3,421,524 3,831,074 409,550 12.0

Utah 2,233,183 2,763,885 530,702 23.8

Washington 5,894,281 6,724,540 830,259 14.1

Wyoming 493,786 563,626 69,840 14.1

United States 281,426,600 308,747,548 27,320,938 9.7

Sources: U.S. Census Bureau, 2000 and 2010 censuses
a2010 population � 2000 population
bPopulation change / 2000 population � 100
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2006). In spite of these guidelines, there is still a substantial amount of ambiguity

concerning who should or should not be included in official population statistics.

Chapter 6 provides a more detailed discussion of these issues.

Populations need not refer to geographic areas. For example, a population could

refer to all the employees of a company or all the enrollees in a healthcare plan.

Demographic analyses can be performed for populations defined for these entities

as well as for populations defined for geographic areas. In this book, however, we

focus primarily on populations defined for specific geographic areas.

2.1.2 Distribution

The distribution of a population refers to its geographic location. There are several

ways to define geographic areas. The most fundamental is the set of geographic

areas developed for statistical purposes such as collecting and reporting demo-

graphic data in the decennial census (U.S. Census Bureau 2011). The boundaries for

these areas are determined by the Census Bureau, in consultation with local

government agencies and user groups. These areas form the building blocks used

in constructing data sets for other types of geographic areas.

The most important geographic areas defined for statistical purposes are blocks,

block groups, and census tracts. Blocks are geographic areas bounded on all sides by
visible features such as streets or railroad tracks or by invisible boundaries such as

city or township limits. They are the smallest geographic units for which data are

tabulated. Block groups are clusters of blocks and generally contain between

600 and 3,000 residents. They do not cross state, county, or census tract boundaries

but may cross other types of boundaries. Census tracts are relatively permanent

areas designed to be homogeneous with respect to population characteristics, living

conditions, and economic status. They generally contain between 1,200 and 8,000

residents and do not cross state or county boundaries but may cross other types of

boundaries.

Geographic areas can also be defined according to administrative or political

criteria. Examples include states, counties, cities, townships, congressional dis-

tricts, school districts, and water management districts. For many purposes these

are the most important types of geographic areas that can be defined. They play an

important role in planning, budgeting, and political representation and are often

used for analyzing population growth and demographic change. However, geo-

graphic areas defined according to administrative or political criteria have several

limitations. Their boundaries are somewhat arbitrary and do not account for impor-

tant economic, cultural, social, or geographic factors. In addition, some of these

boundaries change over time, making it difficult (or impossible) to conduct time

series analyses.

Geographic boundaries can also be defined according to other criteria. The

U.S. Postal Service defines ZIP code areas for purposes of delivering the mail.

Businesses define service areas to identify the location of their customers or clients.

Local planners define traffic analysis zones for developing transportation plans.
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Population data pertaining to these geographic areas are typically based on data

collected or estimated for the statistical and administrative/political areas described

above. Clearly, a wide variety of geographic areas can be used when analyzing the

distribution of the population.

2.1.3 Composition

Composition refers to the characteristics of the population. For population pro-

jections, the most commonly used characteristics are age, sex, race, and ethnicity.

These are the characteristics we refer to most frequently in this book.

Age is perhaps the most important demographic characteristic because it has

such a large impact on so many aspects of life, for individuals as well as for society

as a whole. The age structure of a population affects its birth rate, death rate, and

crime rate. It affects the demand for public education, healthcare, and nursing home

care. It affects the housing market, the labor market, and the marriage market. It has

tremendous implications for Social Security, Medicare, and private pension sys-

tems. No other characteristic is more valuable for a wide variety of planning and

analytical purposes than age composition.

Sex composition is also important for many purposes. In fact, these two charac-

teristics are often combined to reflect the age-sex structure of the population

(Weeks 2012, p. 309). We use the term sex to refer to the strictly biological

differences between males and females; gender refers to non-biological differences
related to social, cultural, political, and economic factors.

The age-sex structure is often illustrated using population pyramids. Population
pyramids are graphic representations showing the number (or proportion) of the

population in each age-sex group. For countries, the shape of a pyramid is deter-

mined primarily by the population’s fertility history. For states and local areas,

migration plays an important role as well. A pyramid with a wide base reflects a

young population.

Population pyramids tell a great deal about a population. Consider Fig. 2.1,

which shows pyramids for the U.S. population in 1960 and 2010. Both populations

have more males than females in the youngest age groups. This reflects the larger

number of male births, a worldwide phenomenon (typically, there are about

105 male births for every 100 female births). In the middle and especially the

older age groups, however, both populations have more females than males. This

reflects the lower mortality rates of females than males, also a widespread

phenomenon. The impact of the baby boom—people born between 1946 and

1964—is clearly evident, with large numbers of children in 1960 and large numbers

of people in their 40s, 50s, and 60s in 2010.

Race and ethnicity are two other widely used demographic characteristics. Since

1997, the Office of Management and Budget (OMB) has required federal agencies

to use a minimum of five racial categories: White; Black or African American;

American Indian or Alaska Native; Asian; and Native Hawaiian or Other Pacific
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Islander (Humes et al. 2011). More detailed categories based on ethnicity and

national origin also can be used (e.g., Chinese, Filipino, and Samoan). In addition,

the population is often classified as Hispanic or non-Hispanic. It should be noted

that “Hispanic” is an ethnic category, not a racial category; consequently, people

are classified both by race and by Hispanic origin.

The 2000 census introduced an important change in the collection of racial data.

For the first time, respondents were allowed to list themselves as belonging to more
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Fig. 2.1 Population pyramids for the United States, 1960 and 2010 (Source: U.S. Census Bureau,

1960 and 2010 censuses)
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than one racial category; prior to that time, they could list only a single category.

The 2000 census thus included a large number of potential multi-race combinations,

in addition to the five single-race categories. This change has been controversial,

creating uncertainty regarding the interpretation and use of racial data and the

consistency of those data over time. In the United States, 2.4% of the population

was classified as belonging to more than one racial group in 2000 and 2.9% in 2010

(Humes et al. 2011). However, this proportion varies substantially from place to

place. For example, 23.6% of the population of Hawaii was classified as belonging

to more than one racial group in 2010, compared to only 1.1% of the population of

Mississippi (U.S. Census Bureau 2012b).

Composition also refers to characteristics such as marital status, household

relationship, employment status, income, education, and occupation. We discuss

methods for projecting several of these characteristics in Chap. 11.

2.1.4 Change

Population change is measured as the difference in population size between two

points in time (i.e., two specific dates). A point in time can correspond to the date of

a census or a population estimate. Since censuses are typically more accurate than

estimates, measures of change based on censuses are generally more accurate than

measures based on estimates.

Population change can be expressed in either numeric or percentage terms, as

shown in Table 2.1. Numeric change is computed by subtracting the population at

the earlier date from the population at the later date. A negative sign indicates a

population loss. Percent change is computed by dividing the numeric change by the

population at the earlier date and multiplying by 100. For example, Texas had a

population of 20,851,820 on April 1, 2000 and a population of 25,145,561 on April

1, 2010, yielding:

Numeric change : 25,145,561� 20,851,820 ¼ 4,293,741

Percent change : 4,293,741=20,851,820ð Þ 100ð Þ ¼ 20:6%

Texas had the largest numeric population change of any state between 2000 and

2010, but Nevada had the largest percent change (35.1%). Michigan was the only

state to lose population during the decade.

Population change can also be expressed in terms of an average annual numeric

change (AANC), which can be computed by dividing total change by the number of

years between the two dates:

AANC ¼ Pl � Pbð Þ=y
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where Pl is the population at the later date, Pb is the population at the earlier date,

and y is the number of years between the two. In Texas, for example, the population

grew by an average of 429,374 per year between 2000 and 2010:

AANC ¼ 25,145,561� 20,851,820ð Þ=10 ¼ 429,374

For some purposes it is helpful to express annual population change in relative

rather than numeric terms, or as annual percent changes (i.e., growth rates) rather

than as annual numeric changes. Average annual growth rates can be calculated in

two slightly different ways. The first is based on a geometric model:

r ¼ Pl=Pbð Þ 1=yð Þ � 1

where r is average annual geometric growth rate and the other terms are defined as

before. Again, using Texas as an example:

r ¼ 25,145,561=20,851,820ð Þ 1=10ð Þ � 1 ¼ :0189, or 1:89% per year

The geometric growth rate calculated in this manner is based on compounding in

discrete intervals (i.e., at specific dates). In this example, growth is compounded

once a year. Since population growth occurs continuously, it may be useful to use

an exponential model based on continuous compounding:

r ¼ ln Pl=Pbð Þ½ �=y

where r is the average annual exponential growth rate and ln is the natural

logarithm. For Texas, the average annual exponential growth rate is calculated as:

r ¼ ln 25,145,561=20,851,820ð Þ½ �=10 ¼ 0:0187, or 1:87% per year

Geometric and exponential growth rates are generally about the same. Geomet-

ric rates are always slightly larger than exponential rates because they are calcu-

lated at discrete intervals rather than continuously. The more rapidly growing the

area, the greater the difference between geometric and exponential growth rates.

The measures of population change described above are simple and straightfor-

ward. However, they are not always easy to implement properly because of changes

in geographic boundaries, changes in the accuracy of the base data, or changes in

definitions.

The geographic boundaries of states have been constant for a long time. The

same has been true for most counties, at least for the last several decades. Many

cities, metropolitan areas, block groups, voting districts, and ZIP code areas,

however, have experienced sudden (and sometimes large) boundary changes.

Although the Census Bureau attempts to hold census tract boundaries constant

from one decennial census to another (except for subdivisions into coterminous sets

of smaller tracts), changes at other levels of census geography occur frequently.

Analysts must be aware of changes in geographic boundaries and make adjustments
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when necessary. Consistent measures of population change are possible only if

geographic boundaries are held constant over time.

Changes in the accuracy of the base data also affect the measurement of

population change. For example, suppose that a city’s population was counted as

10,000 in 2000 and 11,000 in 2010, but that it was later discovered that the 2010

census had missed an apartment complex with 1,000 residents. The population

change based on the corrected numbers (2,000) would be twice as large as the

change based on the uncorrected numbers (1,000). Population estimates are typi-

cally less accurate than population counts; consequently, they introduce an addi-

tional source of error. It is often difficult to uncover and correct errors in the

underlying data, but in some places those errors have a substantial impact on

calculations of population change.

Changes in the definition or interpretation of demographic concepts can also

affect the measurement of change. Take race, for example. Respondents were

allowed to list only one racial category in the 1990 census but could list multiple

categories in 2000. This change in reporting practices may have contributed to

some unusual estimates of population change (e.g., the large increase in the number

of American Indians between 1990 and 2000). Problems of definition and interpre-

tation are particularly significant in censuses based on self-enumeration, such as

those in the United States and Canada. Although guidelines for answering questions

are provided, they are not followed in the same way by all respondents. Problems of

definition and interpretation potentially affect every type of data collected in a

census or survey, from the number of persons in a household to their detailed

characteristics.

Measures of population change always refer to a specific population and a

specific period of time; in most instances, they refer to a specific geographic area

as well. Population change can also be measured for various subgroups of the

population (e.g., females, Asians, and teenagers), different geographic areas (e.g.,

counties and cities), and different time periods (e.g., 1990–2000 and 2000–2010).

In other words, population change can refer to changes in size, distribution, or

composition, or to any combination of the three.

2.2 Components of Change

There are only three components of population change: births, deaths, and migra-

tion. A population grows through the addition of births and in-migrants, and

declines through the subtraction of deaths and out-migrants. Understanding these

three demographic processes is essential to understanding the nature and causes of

population change.
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2.2.1 Mortality

Mortality is the process by which deaths occur in a population. Changes in mortality

rates are determined primarily by changes in living conditions and advances in

medicine, public health, and science. Low-income countries typically have higher

mortality rates than high-income countries; within countries, low-income people

typically have higher mortality rates than high-income people. Education also has a

substantial impact on mortality rates, even when differences in income are

accounted for.

Mortality rates have declined tremendously over the last two centuries in

Europe, North America, and other high-income countries. They have also declined

dramatically in many lower-income countries, primarily over the last 60 years.

There is more variability in mortality rates within low- and middle-income coun-

tries than within high-income countries, but even high-income countries may

display substantial differences among various racial, ethnic, and socioeconomic

groups. Chapter 4 discusses several mortality measures, sources of data, alternative

viewpoints regarding future mortality trends, and several ways to implement the

mortality component of population projections.

2.2.2 Fertility

Fertility is the occurrence of a live birth (or births). It is determined by a variety of

biological, social, economic, psychological, and cultural factors. Biological factors

determine the physiological capacity to reproduce and socioeconomic and personal

factors determine perceptions of the costs and benefits of children. The availability

and effectiveness of contraceptives also plays a role, affecting the ability to control

the number and timing of births.

Fertility rates have declined dramatically over the last two centuries in Europe,

North America, and other high-income countries. Causes of this decline have

included higher costs and lower economic benefits of children, lower rates of infant

and child mortality, changes in female roles in the home and society, and improve-

ments in contraceptive efficiency. Fertility rates have declined significantly in

recent decades in many low- and middle-income countries as well, especially in

Asia and Latin America. In many African and Middle Eastern countries, however,

rates remain very high.

Although fertility rates are low (sometimes very low) in high-income countries,

there is often a substantial degree of variation from place to place and from one

racial, ethnic, or socioeconomic group to another. This is especially true in the

United States, which has a heterogeneous population and covers a vast geographic

area. Chapter 5 discusses several fertility measures, sources of data, several theories

of the determinants of fertility, and a variety of ways to implement the fertility

component of cohort-component projections.
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2.2.3 Migration

Migration is the process of changing one’s place of residence from one geographic

area to another. It typically refers solely to changes in place of usual residence,

thereby excluding all short-term or temporary movements such as commuting to

work, visiting friends or relatives, going away on vacation, and taking business

trips. Migration is often distinguished from local mobility, which refers to changes

of address within a particular community or geographic area. At the aggregate

level, factors affecting migration include area-specific characteristics such as wage

rates, unemployment rates, costs of living, and amenities (e.g., climate and recre-

ational opportunities). At the individual level, migration is also affected by a host of

personal characteristics such as age, education, occupation, and marital status.

The migration literature uses a number of descriptive terms. Gross migration
refers to the total number of migrants into or out of an area (e.g., 600 in-migrants

and 400 out-migrants). Net migration refers to the difference between the two (e.g.,
a net increase of 200). Domestic (or internal) migration refers to changes in

residence from one place to another within the same country. Foreign (or interna-
tional) migration refers to changes in residence from one country to another.

International migration is a minor component of population growth in many

countries but not in the United States, where it constitutes a large and increasing

proportion of growth. It is at the subnational level, however, that migration attains

its greatest importance. Migration levels vary tremendously from one place to

another in the United States and—for any given place—are subject to large, sudden

changes over time. Migration affects not only the total population of an area, but its

age, sex, race, income, education, and other characteristics as well. Chapter 6

discusses several migration definitions and measures, sources of data, the determi-

nants of migration, and alternative approaches to projecting migration.

2.2.4 Demographic Balancing Equation

The overall growth or decline of a population is determined by the interplay among

the processes of mortality, fertility, and migration. The nature of this interplay is

formalized in the demographic balancing equation:

Pl � Pb ¼ B� Dþ IM� OM

where Pl is the population at the end of the time period; Pb is the population at the

beginning of the time period; and B, D, IM, and OM are the number of births,

deaths, in-migrants, and out-migrants during the time period, respectively.

The difference between the number of births and the number of deaths is called

natural increase (B � D); it represents population growth coming from within the

population itself. It may be either positive or negative, depending on whether births
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exceed deaths or deaths exceed births. The difference between the number of

in-migrants and the number of out-migrants is called net migration (IM � OM);

it represents population growth coming from the movement of people into and out

of the area. It may be either positive or negative, depending on whether in-migrants

exceed out-migrants or out-migrants exceed in-migrants.

For the demographic balancing equation to be exactly correct, it must apply to a

geographic area with boundaries that do not change over time; in addition, there

must be no measurement errors in any of the equation’s variables. Since there will

virtually always be errors in one or more of the variables, an error term is sometimes

added to the right-hand side of the equation. This error term is often called the

residual error or error of closure (Siegel 2002, p. 403). Because the error term is

difficult to measure precisely, it is often lumped with one of the other terms in the

equation (usually, net migration).

The demographic balancing equation is one of the most basic formulas in

demography and has a number of uses. For example, if we have an accurate

population count in a census year (Pb) and reliable data on births, deaths, and in-

and out-migration, we can estimate the population in a later year (Pl) as:

Pl ¼ Pb þ B� Dþ IM� OM

Another common use of the demographic balancing equation occurs when there

are accurate data from two consecutive censuses and reliable data on births and

deaths, but no migration data. In this case, net migration can be calculated as a

residual by subtracting natural increase (B � D) from total population change

(Pl � Pb):

IM� OMð Þ ¼ �
Pl � Pb

�� B� Dð Þ

Table 2.2 shows natural increase and net migration for states for two time

periods: 1990–2000 and 2000–2010. There is a tremendous amount of variability

among states, especially for net migration. All states had positive natural increase

(i.e., more births than deaths) between 1990 and 2000 and all but West Virginia

between 2000 and 2010, but not all had positive net migration. Thirty-seven states

had positive net migration in both time periods, three had negative net migration in

both time periods, and 10 changed signs between the two decades. Two of the most

dramatic changes occurred in Illinois and Michigan, as both states had net

in-migration between 1990 and 2000 but substantial net out-migration between

2000 and 2010. It should be noted that because net migration is calculated as a

residual, it includes the effects of errors in census counts and vital statistics data.
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Table 2.2 Components of population change for states, 1990–2000 and 2000–2010

1990–2000 2000–2010

Population

change

Natural

increasea
Net

migrationb
Population

change

Natural

increasec
Net

migration

Northeast

Connecticut 118,534 165,232 �46,698 168,447 125,109 43,338

Maine 46,851 31,293 15,558 53,582 12,470 41,112

Massachusetts 332,939 291,224 41,715 198,265 235,834 �37,569

New Hampshire 126,555 62,165 64,390 80,663 44,954 35,709

New Jersey 667,014 441,571 225,443 377,130 400,946 �23,816

New York 986,248 1,095,767 �109,519 401,076 971,273 �570,197

Pennsylvania 397,706 288,561 109,145 421,831 178,552 243,279

Rhode Island 44,795 38,031 6,764 4,308 27,638 �23,330

Vermont 45,855 23,562 22,293 17,128 13,384 3,744

Midwest

Illinois 989,325 821,427 167,898 410,705 776,636 �365,931

Indiana 536,671 320,246 216,425 402,975 320,444 82,531

Iowa 149,707 98,780 50,927 119,817 115,127 4,690

Kansas 211,337 143,233 68,104 164,193 156,939 7,254

Michigan 643,536 560,369 83,167 �55,183 419,950 �475,133

Minnesota 543,966 285,869 258,097 384,294 329,921 54,373

Missouri 479,663 219,759 259,904 392,363 236,146 156,217

Nebraska 132,813 83,864 48,949 115,111 110,939 4,172

North Dakota 3,437 26,113 �22,676 30,354 25,412 4,942

Ohio 506,221 532,179 �25,958 183,168 415,988 �232,820

South Dakota 58,854 37,763 21,091 59,322 44,545 14,777

Wisconsin 471,988 240,995 230,993 323,229 243,030 80,199

South

Alabama 406,818 195,392 211,426 332,529 148,485 184,044

Arkansas 322,669 92,948 229,721 242,625 111,292 131,333

Delaware 117,391 42,538 74,853 114,375 43,020 71,355

District of

Columbia

�34,814 28,645 �63,459 29,637 25,118 4,519

Florida 3,044,500 437,858 2,606,642 2,818,739 518,080 2,300,659

Georgia 1,708,504 574,205 1,134,299 1,501,000 738,188 762,812

Kentucky 355,301 166,078 189,223 297,174 158,257 138,917

Louisiana 247,209 286,725 �39,516 64,337 228,198 �163,861

Maryland 515,894 333,979 181,915 476,905 315,953 160,952

Mississippi 269,279 154,413 114,866 122,543 150,189 �27,646

North Carolina 1,413,898 413,818 1,000,080 1,489,137 494,588 994,549

Oklahoma 304,875 150,341 154,534 300,900 169,789 131,111

South Carolina 525,713 210,991 314,722 613,341 194,031 419,310

Tennessee 812,224 242,081 570,143 656,678 246,497 410,181

Texas 3,864,693 1,922,477 1,942,216 4,294,533 2,297,568 1,996,965

Virginia 889,860 425,816 464,044 921,967 458,785 463,182

West Virginia 14,716 14,598 118 44,801 �968 45,769

(continued)
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2.3 Statistical Measures

Demographic analysis requires the use of statistical measures. Two types can be

identified. Absolute measures focus on single numbers such as population size,

births, deaths, natural increase, or net migration. Relative measures focus on the

relationship between two numbers; they are typically expressed as ratios, propor-

tions, percentages, rates, or probabilities. All the relative measures are similar to

each other, but each has a distinct meaning.

A ratio is simply one number divided by another. These could be any two

numbers; they do not need to have any particular relationship to each other. For

example, one could calculate the ratio of dogs to cats at the animal pound, the ratio

of cars to bicycles at an intersection, or the ratio of desserts to casseroles at a

potluck. To be useful, of course, the comparison of the two numbers should provide

some type of meaningful information.

Table 2.2 (continued)

1990–2000 2000–2010

Population

change

Natural

increasea
Net

migrationb
Population

change

Natural

increasec
Net

migration

West

Alaska 76,890 82,219 �5,329 83,298 74,205 9,093

Arizona 1,464,908 383,010 1,081,898 1,261,770 502,339 759,431

California 4,085,796 3,412,250 673,546 3,382,303 3,101,959 280,344

Colorado 1,007,613 313,030 694,583 727,110 397,694 329,416

Hawaii 103,268 113,360 �10,092 148,804 91,892 56,912

Idaho 287,223 96,049 191,174 273,625 126,335 147,290

Montana 103,135 36,067 67,068 87,215 33,954 53,261

Nevada 796,575 127,798 668,777 702,301 182,375 519,926

New Mexico 303,948 153,867 150,081 240,162 139,753 100,409

Oregon 579,187 156,019 423,168 409,550 161,540 248,010

Utah 510,333 296,308 214,025 530,702 385,583 145,119

Washington 1,027,612 383,639 643,973 830,259 376,031 454,228

Wyoming 40,197 29,185 11,012 69,840 29,946 39,894

Sources: State Population Estimates and Demographic Components of Population Change:

April 1, 1990 to July 1, 1999, U.S. Census Bureau. http://www.census.gov/popest/data/state/

totals/1990s/tables/ST-99-02.txt. Internet Release Date: December 29, 1999

Cumulative Estimates of the Components of Resident Population Change for the United States,

Regions, States, and Puerto Rico: April 1, 2000 to July 1, 2009 (NST-EST2009-04). U.S. Census

Bureau, Population Division, Internet Release Date: December 2009
aNatural Increase from July 1, 1999 to March 31, 2000 was estimated by taking 3/4 of the births

and deaths from 7/1/1998 and 7/1/1999 and controlling them to births and deaths for the U.S. for

that period
bNet migration is the population change less natural increase. The net migration shown here

includes international and domestic migration, census enumeration errors, and errors in the births

and deaths
cNatural Increase from July 1, 2009 to March 31, 2010 was estimated by taking 3/4 of the births

and deaths from 7/1/2008 and 7/1/2009 and controlling them to births and deaths for the U.S. for

that period
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A commonly used ratio in demography is the sex ratio, which is the number of

males divided by the number of females (typically multiplied by 100). In the United

States in 2010, there were 151,781,326 males and 156,964,212 females, yielding a

sex ratio of:

151,781,326=156,964,212ð Þ 100ð Þ ¼ 0:967ð Þ 100ð Þ ¼ 96:7

That is, there were 96.7 males for every 100 females in the United States. Sex ratios

can also be calculated for different subgroups of the population. For the

U.S. population aged 85 and older in 2010, for example, the sex ratio was:

1,789,679=3,703,754ð Þ 100ð Þ ¼ 0:483ð Þ 100ð Þ ¼ 48:3

That is, there were 48.3 males aged 85+ for every 100 females aged 85+. This low

ratio reflects the cumulative impact of differential mortality, as males have higher

mortality rates than females at every age.

A proportion is a special type of ratio in which the numerator is a subset of the

denominator. For example, we might calculate females, Hispanics, blondes, or

lefthanders as a proportion of the total population. In the United States in 2010,

there were 40,267,984 people aged 65 and older and a total population of

308,745,538. The proportion 65+ can thus be calculated as:

40,267,984=308,745,538 ¼ 0:130

If we multiply a proportion by 100, we get a percentage. For example, people

65 and older accounted for 13.0% of the U.S. population in 2010.

A rate is also a special type of ratio. A rate is the number of events occurring

during a given time period divided by the population at risk of the occurrence of

those events. For example, the death rate is the number of deaths divided by the

population exposed to the risk of dying and the birth rate is the number of births

divided by the population exposed to the risk of giving birth. In demography, rates

are generally based on a period of 1 year.

Although the concept of a rate is clear, it is often difficult or impossible to

develop an exact measure of the population at risk to the occurrence of an event. For

example, only females in their childbearing years are exposed to the risk of giving

birth. In addition, some die during the year and—for any given area—some move

away while others move in. How can the population exposed to the risk of giving

birth be measured?

Strictly speaking, the population at risk to the occurrence of an event is the

number of person-years of exposure experienced by the population during the

period under consideration (Newell 1988, p. 7). The mid-year population is often

used as an approximation of the number of person-years of exposure, based on the

assumption that births, deaths, and migration occur evenly throughout the year. For

example, the crude birth rate (CBR) is calculated by dividing the number of births
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during the year by the mid-year population. It is often multiplied by 1,000 to

express the CBR as the number of births per 1,000 persons:

CBR ¼ B=Pð Þ 1; 000ð Þ

where B is the number of births during the year and P is the mid-year population.

This is called a “crude” birth rate because the denominator—which includes men,

children, and older people—is only a crude approximation of the population

exposed to the risk of giving birth.

The crude death rate (CDR) is defined similarly:

CDR ¼ D=Pð Þ 1; 000ð Þ

where D is the number of deaths during the year and P is the mid-year population.

This is also a “crude” rate because not everyone represented in the denominator has

an equal exposure to the risk of dying. For example, males have a greater likelihood

of dying than females and older people have a greater likelihood of dying than

younger people.

In both the CBR and the CDR, the denominator is only a rough approximation

of the population exposed to the risk to the occurrence of an event. A commonly

used strategy for refining crude rates is to develop rates for specific age-sex

groups (racial and ethnic groups can be used as well). For age groups, the general

formula is:

nRx ¼ nEx=nPx

where x is the youngest age in the age interval, n is the number of years in the age

interval, nRx is the age-specific rate (ASR), nEx is the number of events, and nPx is

the mid-year population. For example, if x ¼ 20 and n ¼ 5, the ASR would be

based on data for the population 20–24. We will give a number of examples of

age-specific rates in Chaps. 4, 5 and 6, along with a variety of other demographic

rates.

In addition to the distinction between crude and age-specific rates, a distinction

can also be made between central rates and probabilities. In a central rate, the

denominator is an area’s population at the midpoint of a time period (typically, the

middle of a year) and the numerator is the number of events occurring in the area

during the time period. The denominator is meant to represent the average popu-

lation during the time period, or the total number of person-years of exposure to the

risk of an event. The CBR, CDR, and ASR defined above are all central rates. In a

probability, the denominator is the population at the beginning of the time period

and the numerator is the number of events occurring to that population during the

time period (Rowland 2011, p. 32).

Migration makes it difficult to calculate probabilities for states and local areas.

Consider age-specific death rates, for example. A true single-year probability can

be calculated using the population of an area at the beginning of the year and the
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number of deaths occurring during the year to members of the beginning popula-

tion. However, some deaths will be missed by the death registration system because

they occur to people who moved out of the area before they died and some deaths

will be improperly included because they occur to people who moved into the area

during the year. Consequently, it is difficult (if not impossible) to construct true

death probabilities. Central rates are widely used to approximate probabilities for a

variety of demographic measures. As discussed in Chap. 4, central rates can be

converted into probabilities when constructing life tables.

The term rate is used very loosely in demography, as it is elsewhere (Newell

1988, p. 7). Many measures called rates are really ratios. A growth rate, for

example, is a ratio of population change over a time period to the population at

the beginning of the time period. It is not a rate in a probabilistic sense because an

area’s growth comes not only from the population of the area itself, but from other

populations as well. Another commonly used measure in demography is the infant
mortality rate, which is the ratio of deaths to children less than age one to the

number of births during the year. We will follow demographic convention in this

book, using rate to refer to changes or events in relation to some reference

population. However, we remind the reader that rates typically are not true

probabilities.

2.4 Sources of Data

Demographic data are collected, produced, and distributed by a variety of federal,

state, and local government agencies and private companies. Data from primary

sources are available as printed publications, unpublished reports, and electronic

data files. In recent years, printed publications have become less frequent as more

and more data have become directly available on the Internet (see Box 2.1 for some

commonly used web sites). Primary data are often replicated in secondary sources

such as professional journals, textbooks, and statistical abstracts. In this section, we

briefly discuss the most important sources of demographic data in the United States.

2.4.1 Decennial Census

The decennial census is the most fundamental source of demographic data in the

United States. Census counts determine each state’s representation in Congress and

are used by state legislatures and local governments to redraw electoral boundaries.

They form the basis for the distribution of hundreds of billions of dollars in federal

and state funds each year through a variety of revenue-sharing and other programs.

Businesses and government agencies use them for planning, budgeting, marketing,

and policy-making purposes. Scholars and the media use them to analyze demo-

graphic trends. Furthermore, they form the basis for population estimates and

projections made during the 10 years leading up to the following census.
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The first census in the United States was conducted in 1790. Data were collected

by U.S. marshals and their assistants, who traveled on horseback throughout the

13 original states and four districts or territories (U.S. Census Bureau 2002). They

collected information on the number of free white males older and younger than age

16, free white females of any age, all other free persons, and slaves. Most American

Indians were not counted at all. Although slaves were counted, they were given a

weight of only 3/5 for apportionment purposes (the famous 3/5 compromise). The

marshals were not trained as census enumerators and did not follow any consistent

procedures or even use a uniform questionnaire. It took them 18 months to visit all

the households and tally the results (Anderson 1988, p. 14).

Many changes in census content and procedures have been made over the years.

More detailed information on age, sex, and race were collected and questions were

added regarding marital status, number of children, state of birth, income, educa-

tion, occupation, and other characteristics. The 1940 census was the first to include

a census of housing and the 1950 census was the last in which all data were

collected by enumerators going door-to-door. In 1960, the Census Bureau sent

questionnaires to about 60% of households by mail, asking respondents to fill out

the forms and hold them until a census enumerator picked them up. This worked so

well that the Census Bureau started using a mail out/mail back system for most

households in 1970.

The 1940 census introduced the practice of collecting a limited amount of

information from all households (sometimes called short-form data) and a larger

Box 2.1 Some Useful Web Sites for Population and Related Data

Organization Web Site Address

Federal-State Cooperative Program

for Population Estimates

http://www.census.gov/popest/fscpe/

Federal-State Cooperative Program

for Population Projections

http://www.census.gov/population/projections/

links/fscpp/

Guttmacher Institute http://www.guttmacher.org/index.html

Pew Research Center http://pewresearch.org

Population Reference Bureau http://www.prb.org

Social Security Administration http://www.ssa.gov

State Data Centers Program http://www.census.gov/sdc

U.S. Bureau of Economic Analysis http://www.bea.gov/index.htm

U.S. Bureau of Labor Statistics http://www.bls.gov

U.S. Bureau of Transportation http://bts.gov

U.S. Census Bureau http://www.census.gov

U.S. Geological Survey http://www.usgs.gov

U.S. Office of Immigration Statistics http://www.dhs.gov/immigration-statistics

U.S. National Center for Health Statistics http://www.cdc.gov/nchs

World Bank http://www.worldbank.org

World Factbook http://www.cia.gov/library/publication
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amount from a sample of households (sometimes called long-form data). The long

form asked the same questions as the short form, plus a number of other questions

covering a variety of socioeconomic, demographic, and housing characteristics.

The 2000 census, however, was the last to include a long form. For the 2010 census,

the Census Bureau returned to the use of a single form collecting a limited amount

of data. Detailed characteristics were stripped from the form and are now collected

through the American Community Survey (ACS), as described below.

The starting point for the modern census is an address list developed by the

Census Bureau. Called the Master Address File (MAF), this list is based on

addresses from previous censuses and is updated using postal delivery records

and data collected by local government officials. Addresses are assigned geo-

graphic coordinates such as latitude and longitude (i.e., geocoded) and allocated

to specific geographic areas using the Census Bureau’s Topologically Integrated

Geographic Encoding and Referencing (TIGER) system. Developed during the

1980s and first used in the 1990 census, this system includes geocodes for political

and administrative boundaries and a variety of natural and man-made features as

well as for the addresses contained in the MAF.

Most households are mailed census questionnaires in late March of the census

year and are asked to fill them out and return them by mail; in some rural areas

the forms are delivered by census enumerators. The Census Bureau follows a

number of procedures designed to maximize response rates and collect information

from non-responding households. In spite of these procedures, census data

are incomplete and sometimes incorrect. Post-enumeration surveys and demo-

graphic analyses are used to measure the extent and nature of census errors and

to develop estimates of the net undercount (or, in some instances, the net

overcount).

Ever since George Washington complained about an undercount in the very first

census, government officials and other interested parties have been concerned about

the accuracy of census results (Anderson and Fienberg 1999, p. 29). Census errors

may be caused by missed households, refusal to respond, recording errors, sampling

errors, geographic assignment errors, duplication errors, coding and data-

processing errors, and the incorrect imputation of missing data. The Census Bureau

estimated that there were about 16 million omissions in the 2010 census

(U.S. Census Bureau 2012a). These omissions were offset by a roughly equal

number of duplicates. Nationally, net census undercount as measured by demo-

graphic analysis has declined considerably over time, from 5.4% in 1940 to 0.1% in

2000 (Brown et al. 2010). In 2010, there was a net overcount of 0.1%

(Velkoff 2011)

The decennial census is a valuable source of demographic data, but it is

conducted only once every 10 years and—now that the long form has been

deleted—collects only a limited amount of information. Sample surveys can be

used to collect data on topics not included in the decennial census and at more

frequent intervals than once per decade.
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2.4.2 American Community Survey

The American Community Survey (ACS) is a relatively new survey conducted by the

Census Bureau. It was started on a trial basis in four sites in 1996 and expanded every

year through 2005, when it became fully operational (Mather et al. 2005). The ACS

samples approximately 250,000 households each month, collecting demographic,

socioeconomic, and housing data similar to that previously collected in the long

form of the decennial census. Data are reported annually for states, cities, counties,

census tracts, block groups, and other geographic areas, but the number of months

used to develop estimates depends on population size. Estimates based on 12 months

of pooled data are released only for places with at least 65,000 residents. Estimates

based on 36months of pooled data are released for placeswith at least 20,000 residents

and estimates based on 60 months are released for all places. Box 2.2 describes the

types of data collected in the 2010 decennial census and the ACS.

The ACS is conducted in a manner similar to that used for the decennial census. A

sample is drawn from a continuously updated MAF, with a larger proportion of

addresses sampled for small governmental units than for large units. The survey follows

the same mail-out/mail-back procedures as the decennial census, with non-respondents

contacted through telephone calls or personal visits from Census Bureau interviewers.

Responding to the ACS is required by law—as is responding to the decennial census—

but there has been some discussion recently about making it voluntary.

ACS data summaries are reported in a large number of profiles, tables, and maps

and are available on the Census Bureau’s web site. In addition to these pre-tabulated

products, data users can create custom tables and cross-tabulations using data from

Public Use Microdata Sample (PUMS) files. These files contain a sample of

individual records of persons and households, stripped of all identifying informa-

tion. PUMS data are available for regions, divisions, states, and a variety of

geographic areas with a population of at least 100,000 (U.S. Census Bureau 2009).

There are several important differences between the ACS and the decennial

census. One is the definition of residence rules (Cork and Voss 2006). The decen-

nial census follows a de jure approach, counting people as residents of their usual

place of residence regardless of where they are on census day. The ACS has

elements of both a de jure and de facto approach, as it counts people as residents

of the place they are living when they receive the survey questionnaire, as long as

they live there for at least 2 months. Differences in residence rules may lead to

differences in results, especially in places with large numbers of snowbirds, migrant

farm workers, and other types of temporary residents.

Another important difference is sample size. Whereas the sample for the 2000

census long form covered 16.7% of the addresses on the MAF, the sample for the

ACS typically covers only about 2.5% per year, or 12.5% when pooled over 5 years

(MacDonald 2006). This creates a substantially higher level of sampling error for

ACS data than long-form data. However, the ACS may have a lower level of

non-sampling error because it uses a small professional staff for non-response

follow-up, whereas the decennial census uses a large workforce of temporary

workers (MacDonald 2006).
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Long-form data were based on a sample drawn at a single point in time; namely,

the date of the decennial census. ACS data, on the other hand, are based on rolling

samples covering 1-, 3-, and 5-year time periods. ACS data thus provide estimates

for a period rather than for a point in time; this affects the interpretation of the

results. In addition, ACS data are controlled to population estimates, whereas long-

form data were controlled to decennial census counts.

The ACS clearly has several advantages compared to the census long form. By

far the most important is timeliness: The ACS provides annual data over the course

of a decade, whereas the decennial census provides data only once each decade.

This is a tremendous advantage for many purposes. Also, non-sampling errors may

be smaller because of the use of a professional staff and new questions can be added

without having to wait a full decade. But there are disadvantages as well. As noted

by Swanson and Tayman (2012, pp. 49–51), the smaller sample size of the ACS

leads to estimates with larger sampling errors; differences in residence rules

confound comparisons with population estimates and previous census results; and

using pooled data washes out the effects of year-to-year changes in some variables

(e.g., employment status). Furthermore, the ACS shows implausible results for

Box 2.2 Data collected in the 2010 decennial census and the ACS

2010 decennial census (all households):

Population: Name, relationship to householder, sex, age, date of birth,

Hispanic origin, race, and whether the person sometimes lives somewhere else.

Housing: Number of people in household and ownership status.

ACS (sample of households):

Population: Name, relationship to householder, sex, age, date of birth,

Hispanic origin, race, marital status, place of birth, citizenship status, year of

entry into the United States, school attendance, educational attainment, ethnic

origin (ancestry), language spoken at home, fluency in English, place of

residence 1 year ago, disability status, given birth within last year, living

with grandchildren, military service, and a series of questions related to

employment, occupation, transportation to work, and income.

Housing: Number of people in household, ownership status, type of

housing unit, year built, length of residence in current unit, number of

rooms, number of bedrooms, plumbing facilities, kitchen facilities, telephone

service, number of motor vehicles, type of heating fuel, cost of utilities,

condominium status, and whether any member of the household receives

food stamps or sometimes lives somewhere else.

For single-family units or mobile homes: size of lot, sale of agricultural

products, and presence of home business.

For renters: monthly rent and whether rent includes any meals.

For homeowners: value of property, real estate taxes, cost of insurance,

and a series of mortgage-related questions.

2.4 Sources of Data 39



some groups and geographic areas. We return to these issues in our discussion of

migration rates in Chap. 6.

2.4.3 Other Surveys

TheCurrent Population Survey (CPS) is a monthly survey of about 60,000 households

conducted by the Census Bureau for the U.S. Bureau of Labor Statistics. Begun in

1940, this survey originally focused on the collection of labor force and unemploy-

ment data. It has since been expanded to cover a variety of topics including occupa-

tion, industry, education, income, veteran status, marital status, living arrangements,

fertility, and migration, as well as demographic data on age, sex, race, and ethnicity.

Some variables are tabulated at the national, regional, and state levels and for large

metropolitan areas, but others are tabulated only at the national level. Small sample

sizes can lead to erratic trends for states and metropolitan areas.

The Census Bureau also conducts the American Housing Survey and the Survey

of Income and Program Participation. Both of these surveys provide useful infor-

mation on demographic, socioeconomic, and housing characteristics. Again, the

small sample size and nature of the sample universe limit the usefulness of these

surveys for applications involving states and local areas.

2.4.4 Vital Statistics

Data on events such as births, deaths, marriages, and divorces are called vital
statistics. In the United States, the collection of these data is the responsibility of

individual states, not the federal government. As early as 1639, the Massachusetts

Bay Colony began reporting births, deaths, and marriages as part of its administra-

tive/legal system (Bryan 2004). Other states gradually began doing the same thing

and today all states maintain records of births, deaths, and other vital events. The

federal government sets standards for the collection and reporting of these events,

compiles summaries of data collected by each state, and publishes a variety of

reports based on these data. The quality of vital statistics data is generally very good

in the United States and other high-income countries.

Before 1945, vital statistics reports were published by the Census Bureau.

Beginning in 1945, this task was taken over by the U.S. Public Health Service,

National Office of Vital Statistics. In 1960, this office was reorganized and became

part of the National Center for Health Statistics (NCHS), which today is a branch of

the Centers for Disease Control (CDC). Annual and monthly reports on births,

deaths, marriages, and divorces are available from the NCHS. It should be noted

that some of the concepts and definitions used by the NCHS do not precisely match

those used by the Census Bureau (Hahn et al. 1992); as a result, adjustments may

have to be made when combining population data from the Census Bureau with

vital statistics data from the NCHS (Sink 1997).
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Most states tabulate data at the county (or county-equivalent) level, but few go

beyond that to maintain regular data series for subcounty areas (Bogue 1998). Although

individual records generally contain the information needed to allocate them to different

types of subcounty areas (e.g., cities, census tracts), actually doing so requires a

substantial effort. Furthermore, errors in geocoding birth and death records at the

subcounty level are common (Flotow and Burson 1996). Analysts needing vital statis-

tics data for subcounty areas most likely will have to compile those data themselves.

2.4.5 Administrative Records

Administrative records are records kept by agencies of federal, state, and local

governments for purposes of registration, licensing, and program administration.

Although not designed specifically to do so, these records provide valuable infor-

mation on demographic events and subgroups of the population. We have already

discussed vital statistics, one type of administrative record commonly used in

demographic analyses. Others include Social Security, Medicare, Internal Revenue

Service, Office of Immigration Statistics, food stamps, drivers’ licenses, building

permits, school enrollment, voter registration, and property tax records. All these

data sources can be used for the production of population estimates and projections.

We will discuss several of these administrative records—and how they can be used

for population projections—later in this book.

2.4.6 Population Estimates

A final source of demographic data is population estimates produced by federal,

state, and local government agencies and private businesses. Population estimates

are not primary data in the same sense as the data sources discussed above; rather,

they are derived from (or based on) those data sources. They play an important role

in supplementing and updating data from the other data sources.

The Census Bureau was organized as a permanent government agency in 1902. It

described its plans for making population estimates in its first annual report, issued in

1903 (Bryan 2004). The plans called for estimates to be issued as of the first of June for

each year after 1900, covering the nation as a whole, each state, cities of 10,000 or

more, and the urban and rural parts of each state. These plans have changed conside-

rably over time and the Census Bureau currently produces annual estimates at the

national, state, and county levels by age, sex, race, and Hispanic origin. It also makes

annual estimates for cities, towns, and townships, but only for the total population.

Many state and local government agencies make population estimates. Some

states produce independent population estimates at the state, county, and/or city

level, while others rely on estimates produced by the Census Bureau. Most states

(along with the Census Bureau) participate in the Federal-State Cooperative
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Program for Population Estimates (FSCPE), which serves as a conduit for exchang-

ing demographic data and as a forum for discussing and evaluating population

estimation techniques and data sources. Some city and county governments—and

Councils of Governments or Metropolitan Planning Organizations for large metro-

politan areas—also produce population estimates, often for small areas such as

census tracts and traffic analysis zones. Finally, several private companies produce

estimates at the county and subcounty levels. Further information on the production

of population estimates can be found in Murdock and Ellis (1991), Rives

et al. (1995), Siegel (2002), and Swanson and Tayman (2012).

References

Anderson, M. J. (1988). The American census: A social history. New Haven: Yale University

Press.

Anderson, M. J., & Fienberg, S. E. (1999). Who counts? The politics of census-taking in
contemporary America. New York: Russell Sage.

Bogue, D. (1998). Techniques for indirect estimation of total, marital, and extra-marital fertility
for small areas and special populations. Paper presented at the meeting of the Federal-State

Cooperative Program for Population Projections, Chicago.

Brown, L. D., Cohen, M. L., Cork, D. L., & Citro, C. F. (Eds.). (2010). Envisioning the 2020
census. Washington, DC: The National Academies Press.

Bryan, T. (2004). Basic sources of statistics. In J. S. Siegel & D. A. Swanson (Eds.), The methods
and materials of demography (pp. 9–39). San Diego: Elsevier Academic Press.

Cork, D. L., & Voss, P. R. (Eds.). (2006). Once, only once, and in the right place: Residence rules
in the decennial census. Washington, DC: The National Academies Press.

Flotow, M., & Burson, R. (1996). Allocation errors of birth and death records to subcounty
geography. Paper presented at the meeting of the Population Association of America, New

Orleans.

Hahn, R., Mulinare, J., & Teutsch, S. (1992). Inconsistencies in coding of race and ethnicity

between births and deaths in U.S. infants: A new look at infant mortality, 1983 through 1985.

Journal of the American Medical Association, 267, 259–263.
Humes, K. R., Jones, N. A., & Ramirez, R. R. (2011). Overview of race and Hispanic origin: 2010.

2010 Census Briefs, C2010BR-02. Washington, DC: U.S. Census Bureau.

MacDonald, H. (2006). The American Community Survey: Warmer (more current) but fuzzier

(less precise) than the decennial census. Journal of the American Planning Association, 72,
491–503.

Mather, M., Rivers, K. L., & Jacobsen, L. A. (2005). The American Community Survey

Population bulletin, 60. Washington, DC: Population Reference Bureau.

Murdock, S. H., & Ellis, D. (1991). Applied demography: An introduction of basic, concepts,
methods, and data. Boulder: Westview Press.

Newell, C. (1988). Methods and models in demography. New York: The Guilford Press.

Poston, D. L., & Micklin, M. (Eds.). (2005). Handbook of population. New York: Springer.

Rives, N., Serow, W., Lee, A., Goldsmith, H., & Voss, P. R. (1995). Basic methods for preparing
small-area population estimates. Madison: Applied Population Laboratory.

Rowland, D. R. (2011). Demographic methods and concepts. New York: Oxford University Press.

Siegel, J. S. (2002). Applied demography. San Diego: Academic Press.

Siegel, J. S., & Swanson, D. A. (Eds.). (2004). The methods and materials of demography. San
Diego: Elsevier Academic Press.

42 2 Fundamentals of Population Analysis



Sink, L. (1997). Race and ethnicity classification consistency between the Census Bureau and the

National Center for Health Statistics. Population Division Working Paper Series, No. 17.
Washington, DC: U.S. Bureau of the Census.

Smith, S. K., & House, M. (2007). Temporary residents: A case study of Florida. Population
Research and Policy Review, 26, 437–454.

Swanson, D. A., & Tayman, J. (2012). Subnational population estimates. New York: Springer.

U.S. Census Bureau. (2002). Measuring America: The decennial censuses from 1790 to 2000.
Washington, DC: Government Printing Office.

U.S. Census Bureau. (2009). A compass for understanding and using American Community Survey
data: What PUMS data users need to know. Washington, DC: Government Printing Office.

U.S. Census Bureau. (2011). 2010 census redistricting data (Public Law 94–171) summary file,

Appendix A. Washington, DC.

U.S. Census Bureau. (2012a). Census Bureau releases estimates of undercount and overcount in

the 2010 census. Press release, May 22.

U.S. CensusBureau. (2012b). Two ormore races population 2010. 2010Census Briefs, C2010BR-13.
September 2012.

Velkoff, V. (2011). Demographic evaluation of the 2010 census. Paper presented at the annual

meeting of the Population Association of America, Washington, DC.

Weeks, J. R. (2012). Population: An introduction to concepts and issues. Belmont: Wadsworth

Publishing Company.

References 43



Chapter 3

Overview of the Cohort-Component Method

Webegin our discussion of population projectionmethods with the cohort-component

method, which has a longstanding tradition in demography (Bowley 1924; Cannan

1895; Whelpton 1928). The Census Bureau began using this method for national

projections in the 1940s and for state projections in the 1950s and has used some

version of the method ever since. A survey conducted by the Federal-State Cooper-

ative Program for Population Projections found that 89% of states making state-level

projections of total population used some form of the cohort-component method; for

states making projections by age, sex, and race, 95% used the cohort-component

method (Judson 1997). It is also widely used for projections at the county and

subcounty level. Although current applications of the cohort-component method are

more detailed and sophisticated than the earliest applications, its basic framework is

much like it was 100 years ago.

The cohort-component method is so widely used because it provides a flexible

yet powerful approach to population projection. It can incorporate many application

techniques, types of data, and assumptions regarding future population change. It

can be used at any level of geography, from nations down to states, counties, and

subcounty areas. Perhaps most important, it provides projections not only of total

population but also of demographic composition and individual components of

growth. The cohort-component method provides a good starting point for the study

of state and local population projections.

3.1 Concepts and Terminology

A cohortmay be defined as a group of people who experience the same demographic

event during a particular period of time and whomay be identified at later dates on the

basis of this common experience (Shryock and Siegel 1973, p. 712). For example, all

babies born during the 1990s comprise the birth cohort for that decade; all persons

married in 2005 form the marriage cohort for that year; and all immigrants entering

the United States between 2010 and 2012 make up the immigration cohort for that

S.K. Smith et al., A Practitioner’s Guide to State and Local Population Projections,
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3-year period. Cohorts can be defined for other significant events as well, such as

graduation from college or entry into the labor force.

For purposes of population projection, breaking the total population into sepa-

rate age cohorts was an important methodological innovation. Such a breakdown

allows the analyst to account for the substantial differences in mortality, fertility,

and migration rates found among different cohorts and to consider how those rates

change over time. For example, fertility rates are typically higher for women in

their late 20s than for women in their late 30s, but the rates for both groups rose

during the 1940s and 1950s and declined during the 1960s and 1970s. Mortality

rates for infants are higher than mortality rates for teenagers, but declined more

rapidly during the twentieth century. Migration rates are typically highest for

people in their 20s, but age patterns vary from place to place and change over time.

Age cohorts are typically split between males and females and are often

subdivided by race and ethnicity; occasionally, they are subdivided by other

characteristics as well. These divisions allow the analyst to account for additional

types of demographic variation and permit the construction of more finely detailed

projections.

The components of population change (births, deaths, and migration) were

described in Chap. 2. For several reasons, it is useful to distinguish among these

components when producing population projections. First, such distinctions enable

us to account separately for the demographic causes of population change. Is an

area changing primarily because of natural increase or net migration? Is the birth

rate unusually high or the death rate unusually low? Are in-migrants coming mostly

from other parts of the same state, from other states, or from abroad? If a population

is aging rapidly, is it because older people are moving in or younger people are

moving out? Making these distinctions is the first step in gaining insight into why

some areas are growing more rapidly than others and why growth rates and

demographic composition change over time.

Second, each component of change responds differently to changes in economic,

social, political, cultural, medical, environmental, and other factors. For example,

medical advances lead to greater life expectancies but have little impact onmigration,

whereas changing employment conditions have a substantial impact on migration but

little impact on life expectancies. Developing an understanding of non-demographic

causes of population change requires that population change be broken down into its

individual components.

Finally, the behavior of each component of change varies among places and

follows different trends over time. In one area, for example, the number of births

may be increasing and the number of deaths declining, while in another area the

opposite is occurring. In-migrants may exceed out-migrants in one county while

out-migrants exceed in-migrants in another. Separating the components of change

enables the analyst to account for these differences when developing assumptions

about future population trends.

Information on the components of population change is important for many

types of population analysis. Information on the demographic composition of the

population (i.e., its breakdown by age, sex, race, and other characteristics) is also
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important because overall birth, death, and migration patterns are strongly affected

by these characteristics. For example, births occur primarily to women between the

ages of 15 and 44, death rates are much higher for older persons than younger

persons, and migration rates are typically highest for people in their 20s and decline

steadily thereafter. Differences in demographic composition can have a major

impact on a population’s birth, death, and migration patterns.

Demographic composition differs considerably among states, counties, and

subcounty areas. Figure 3.1 shows the 2010 age structures for Utah and Florida.

Geographically, these states are on opposite sides of the continent; demographi-

cally, their age characteristics are at opposite ends of the spectrum as well, with

Utah having one of the youngest populations of any state and Florida one of the

oldest (Howden and Meyer 2011). These differences in age structure contribute to

Utah’s relatively high rate of natural increase and Florida’s relatively low rate.

Partly as a result of these differences, natural increase accounted for 73% of the

population growth in Utah between 2000 and 2010, whereas in Florida it accounted

for only 18% (see Table 2.2).

Differences in demographic composition are even greater among counties and

subcounty areas than among states. In Florida, for example, 43% of the population

in Sumter County was 65 and older in 2010, compared to only 9% in Leon County.

Just over 56% of the population in Gadsden County was black, compared to less

than 3% in Citrus County. More than 65% of the population in Miami-Dade

County was of Hispanic origin, compared to less than 2% in Baker County (Bureau

of Economic and Business Research 2012). Local variations like these are found
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throughout the nation. The cohort-component method allows the analyst to account

for these variations when developing population projections.

3.2 Brief Description of Procedures

By today’s standards, the earliest applications of the cohort-component method

were somewhat crude (Bowley 1924; Cannan 1895). Although they projected the

components of population change separately, early models did not fully account for

the effects of differences in age, sex, and racial composition on births, deaths, and

migration. This soon changed and birth and death rates were calculated separately

for each age-sex cohort in the population (Whelpton 1928). Cohort-component

models have since been extended to cover differences by race and ethnicity as well

(Campbell 1996; Ortman and Guarneri 2009). Figure 3.2 provides an overview of

the steps involved in applying the cohort-component method.

The starting point is the launch-year population (i.e., the population at the

beginning of the projection period) divided into age-sex cohorts. Age cohorts can

be defined in a number of ways, but 1- and 5-year groups are the most common. As

we show in Chap. 7, the construction of projections is simpler if the number of years

in the projection interval is equal to or exactly divisible by the number of years in

the age cohort (e.g., 5-year age cohorts for projections made in 5- or 10-year
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Fig. 3.2 Overview of the cohort-component method
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intervals, but not for projections made in 1-year intervals). The oldest cohort is

typically 75+ or 85+, although 100+ is sometimes used. Many applications of the

cohort-component method further subdivide the population by race and ethnicity.

This adds to the data requirements and number of calculations, but the logic and

procedures remain the same.

The first step in the projection process is to calculate the number of persons

surviving to the end of the projection interval. This is accomplished by applying

age-sex-specific survival rates to each age-sex cohort in the initial population.

These survival rates reflect the probability of surviving throughout the projection

interval; they are commonly based on life tables derived from compilations of

recent mortality data. Future survival rates can be based on the extrapolation of

historical trends, structural models, simulation techniques, or rates found in other

areas. Chapter 4 describes a number of approaches used for projecting survival

rates, the mortality component of population growth.

The second step is to project migration during the projection interval. Migration

rates are calculated for each age-sex cohort in the population. These rates can be

based on either gross migration data (i.e., separate calculations for in-migrants and

out-migrants) or net migration data (i.e., one calculation reflecting the net change

due to migration). Projections of future rates can be based on recent values, trend

extrapolations, simulated values, model schedules, or structural models. The appli-

cation of projected migration rates provides a projection of the number of persons in

each age-sex cohort who move into or out of an area during the projection interval

(or, for models using net migration data, the net change due to migration). These

numbers are added to or subtracted from the surviving population to provide a

projection of persons born before the launch date (e.g., persons aged five and older

for a 5-year projection interval). Chapter 6 discusses sources of migration data and

several approaches to projecting migration rates.

The third step is to project the number of births occurring during the projection

interval. This is accomplished by applying age-specific birth rates to the female

population in each age cohort. Projected birth rates can be based on recent values,

trend extrapolations, simulated values, model schedules, or structural models.

Chapter 5 describes sources of fertility data and several approaches to projecting

birth rates.

The final step in the process is to add the number of births (distinguishing

between males and females and adjusting for migration and mortality) to the rest

of the population, providing a projection of the total population by age and sex at

the end of the projection interval. This population serves as the base for projections

over the following interval. The process is repeated until the final target year in the

projection horizon has been reached. Chapter 7 gives several step-by-step examples

of the entire process and discusses the strengths and weaknesses of the cohort-

component method.

The logic underlying the cohort-component method is simple and straightfor-

ward. Collecting the data and developing the assumptions and procedures needed to

apply the method, however, is much more complicated. The next three chapters

provide a detailed description of the data sources, statistical measures, theoretical
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perspectives, and projection techniques that can be used for projecting the three

components of population change. We start with mortality, the simplest of the three

to forecast accurately. We then consider fertility, which presents more challenges.

We conclude with migration, the most difficult component to forecast accurately at

the state and local level.

References

Bowley, A. (1924). Births and population in Great Britain. The Economic Journal, 334, 188–192.
Bureau of Economic and Business Research. (2012). Florida estimates of population: April

1, 2011. Gainesville: University of Florida.

Campbell, P. R. (1996). Population projections for states by age, sex, race, and Hispanic origin:
1995 to 2050. PPL 47. Washington, DC: U.S. Bureau of the Census.

Cannan, E. (1895). The probability of a cessation of the growth of population in England and

Wales during the next century. The Economic Journal, 5, 506–515.
Howden, L. M., & Meyer, J. A. (2011). Age and sex composition: 2010. 2010 Census Briefs,

C2010BR-03. Washington, DC: U.S. Census Bureau.

Judson, D. (1997). FSCP member survey. Reno: Nevada State Demographer’s Office.

Ortman, J. M., & Guarneri, C. E. (2009). United States population projections: 2000 to 2050.

U.S. Census Bureau, from http://www.census.gov/population/www/projections/2009projec

tions.html

Shryock, H. S., & Siegel, J. S. (1973). The methods and materials of demography. Washington,

DC: U.S. Government Printing Office.

Whelpton, P. (1928). Population of the United States, 1925 to 1975. American Journal of
Sociology, 34, 253–270.

50 3 Overview of the Cohort-Component Method

http://www.census.gov/population/www/projections/2009projections.html
http://www.census.gov/population/www/projections/2009projections.html


Chapter 4

Mortality

Survival has been a central preoccupation of humankind since the origin of the

species. For most of history, however, human beings have not been particularly

successful at fending off deprivation, disease, destruction, and death. As recently as

200 years ago, life expectancy at birth was only 30–40 years, even in the most

economically advanced countries. These levels were not much higher than they had

been thousands of years earlier. In many low-income countries, life expectancies

remained at very low levels well into the twentieth century.

Substantial increases in life expectancies have occurred over the last century or

two. Driven by improved standards of living and scientific, medical, and public

health advances, life expectancies at birth have risen to the upper 70s or low 80s in

most high-income countries and the upper 60s or low 70s in many low- and middle-

income countries. Even the world’s poorest countries typically have life expectan-

cies of at least 50. These changes have had a dramatic impact on the size and

composition of the human population.

Life expectancy at birth in the United States rose from 47 to 77 during the

twentieth century and increased by more than a year between 2000 and 2010. It has

been estimated that more than 68 million Americans alive in 2000 (about 25% of

the total population) would have died without the improvements in survival rates

occurring after 1900; another 25% would never have been born because their

ancestors would have died before having children (White and Preston 1996).

Given the magnitude of past changes, the potential for future changes, and the

differences found among demographic groups, mortality clearly plays a central role

in the production of cohort-component population projections.

We start this chapter with a description of several mortality measures. We then

discuss survival, the converse of mortality: A person either lives from one point in

time to another or dies during that interval. We consider two types of survival rates,

focusing primarily on the one used most frequently for projections in the United

States. We discuss the data sources and techniques used in constructing survival

rates and consider several perspectives regarding future mortality trends. We pay

particular attention to the special problems of projecting survival rates for states and
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local areas and close with an assessment of the impact of mortality assumptions on

population projections.

4.1 Mortality Measures

The most commonly used mortality measures relate the number of deaths during a

particular period (usually a year) to the number of person-years of exposure to the

risk of dying (usually approximated by the midyear population). These measures

are typically defined as mortality rates, but are not rates in a true probabilistic sense

(see Chap. 2 for an explanation). In the United States, the mortality data used as

numerators for constructing mortality rates are collected by the vital statistics

agencies of each state and compiled by the National Center for Health Statistics

(NCHS). The population data used as denominators are taken from either decennial

censuses or intercensal estimates, depending on the year(s) for which the rates are to

be constructed.

4.1.1 Crude Death Rate

The simplest measure of mortality is the crude death rate (CDR), which is calcu-

lated by dividing the number of deaths during a year by the midyear population. It is

generally multiplied by 1,000 to reflect the number of deaths per 1,000 persons:

CDR ¼ D=Pð Þ 1,000ð Þ

where D is the number of deaths during the year and P is the midyear population.

For example, there were 2,465,936 deaths in the United States in 2010 and the

midyear population was estimated as 309,349,689, yielding a CDR of:

2,465,936=309,349,689ð Þ 1,000ð Þ ¼ 8:0

This means there were 8 deaths for every 1,000 residents of the United States in

2010. Crude death rates can be calculated separately for males and females and for

various racial, ethnic, occupational, educational, and other subgroups of the popu-

lation. For example, the CDR in the United States in 2010 was 7.9 for females and

8.1 for males:

Females : 1,234,721=157,241,696ð Þ 1,000ð Þ ¼ 7:9
Males : 1,231,215=152,107,993ð Þ 1,000ð Þ ¼ 8:1

Crude death rates can be calculated for different geographic regions as well. In

2010, CDRs for states ranged from 5.2 in Alaska to 11.5 in West Virginia (Murphy
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et al. 2012). For nations, CDRs ranged from 1 per 1,000 in Qatar and the United

Arab Emirates to 16 or 17 in Afghanistan, Chad, Nigeria, and the Demographic

Republic of Congo (Population Reference Bureau 2011).

The CDR provides an indication of the incidence of deaths relative to the overall

size of a population. For many purposes, however, the usefulness of the CDR is

limited because it does not account for one of the major determinants of mortality;

namely, the age structure of the population. A young age structure is a major reason

why the 2010 CDR for blacks (6.8) was lower than the CDR for whites (8.6) in the

United States, and why the CDR for Alaska (5.2) was lower than the CDR for West

Virginia (11.5). A second mortality measure deals with this problem by focusing on

deaths within each age group.

4.1.2 Age-Specific Death Rate

An age-specific death rate (ASDR) shows the proportion of persons in each age

group (x to x + n) that dies during a year:

nASDRx ¼ nDx=nPx

where x is the youngest age in the age interval, n is the number of years in the age

interval, nDx is the number of deaths of persons between the ages of x and x + n
during the year, and nPx is the mid-year population of persons between the ages of

x and x + n. For example, there were 111,908 deaths to males aged 45–54 in the

United States in 2010, and a midyear population of 22,148,815 males aged 45–54,

yielding an ASDR of:

10ASDR45 ¼ 111,908=22,148,815 ¼ 0:0051

ASDRs are typically calculated for 1-, 5-, or 10-year age groups. They are called

central death rates (denoted as nmx) because they are based on the average

population during the year, typically represented by the midyear population. To

control for short-run fluctuations, ASDRs are often based on a 3-year average rather

than a single year of mortality data; such adjustments are particularly important for

places with small populations. ASDRs are generally calculated separately for males

and females because of their well-known differences in longevity. They can also be

calculated separately for different races, ethnic groups, and other demographic

categories.

ASDRs are often expressed in terms of deaths per 100,000 persons. This conver-

sion is made by multiplying the ASDR by 100,000. In the example shown above, the

ASDR of 0.0051 can be expressed as 510 deaths per 100,000 males aged 45–54.

Figure 4.1 shows ASDRs for males in the United States in 2010. The J-shaped pattern

reflects the relatively high death rates for newborn babies, the considerably lower

rates for young children, the slowly increasing rates at the middle ages, and the more

4.1 Mortality Measures 53



rapidly increasing rates at the older ages. This general pattern is found for virtually

every population and population subgroup throughout the world. Although some

studies have found the rate of increase in mortality rates to slow down in the oldest

age groups (Horiuchi and Wilmoth 1998), others have questioned this finding

(Gavrilov and Gavrilova 2011).

4.2 Survival Rates

Survival rates show the probability of surviving from one age (or age group) to

another. There are two main approaches to constructing survival rates. One is based

on life tables, which are statistical tables summarizing a population’s mortality

characteristics. The other is based on a comparison of age cohorts in two consec-

utive censuses. The first is used much more frequently than the second for places

with good vital statistics data, but the second is useful for places lacking such data.

Also, the second approach can be very useful when the focus is on population

change over time rather than on survival rates per se.

4.2.1 Life Table Survival Rates

Life tables have a long history. In fact, the origins of formal demography are often

traced to Englishman John Graunt, who analyzed mortality records for London in
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the 1660s and developed a precursor to the modern life table (Weeks 2012, p. 73).

Other inexact life tables based on limited data were prepared for several places in

Europe during the seventeenth and eighteenth centuries. Joshua Milne constructed

the first scientifically correct life table for several parishes in England in 1815.

The first official life tables for the United States were prepared for 1900–1902

and have been produced at least once each decade ever since. Annual life tables for

the nation as a whole have been prepared every year since 1945. Life tables for

individual states have been produced in conjunction with every decennial census

since 1930, albeit with varying levels of detail for racial/ethnic groups. Life tables

for the urban and rural populations and for metropolitan and non-metropolitan areas

also have been produced on occasion (Kintner 2004).

4.2.1.1 Constructing Life Tables

The principal focus of a life table is the probability of dying between one exact age

and another. The starting point for constructing a life table for a particular year is a

complete set of ASDRs for that year (the nmx values described above). ASDRs,

however, are based on midyear population estimates. They do not provide exact

measures of the probability of dying because some people die before midyear. The

denominators of ASDRs therefore must be adjusted to account for deaths occurring

during the year. This is often done by assuming that deaths are evenly distributed

throughout the year. Using this assumption, the proportion dying during a specific

time interval (that is, the probability of dying between two exact ages) can be

calculated as:

nqx ¼ nDx= nPx þ 0:5ð Þ nDxð Þ½ �

If we divide both the numerator and denominator by nPx, we can express the

proportion dying (nqx) as a function of the central death rate (nmx):

nqx ¼ nmx= 1þ 0:5ð Þ nmxð Þ½ �

This transformation of nmx into nqx is an approximation; its accuracy depends on

the degree to which deaths are evenly distributed throughout the year. This assump-

tion will be valid for most age groups, but not for the very young or (to a lesser

extent) the very old. The validity of this assumption will also be reduced for areas in

which the population is growing (or declining) very rapidly.

The elements of a life table are defined as follows:

1. Proportion dying (nqx)—The proportion of persons who are alive at exact age

x but die before reaching exact age x + n. An exact age refers to a birthday. For
example, 5q30 refers to the proportion of persons alive on their 30th birthday who
die before reaching their 35th birthday.
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2. Number surviving (lx)—The number of persons who survive to exact age x, out
of a beginning cohort of 100,000 live births (called the radix).

3. Number dying (ndx)—The number of deaths between exact ages x and x + n, out
of the number of persons alive at the beginning of that interval.

4. Person-years lived during an age interval (nLx)—The summed total of person-

years lived between exact ages x and x + n, based on each person’s record of

survival during that age interval. For example, a person living from age 60 to

65 would count as five person-years lived during this 5-year interval; a person

dying at exact age 64 would count as four person-years lived.

5. Total person-years yet to be lived (Tx)—The summed total of person-years lived

during this and all following age intervals.

6. Life expectancy (ex)—The average number of years of life remaining to persons

alive at exact age x.

There are two types of life tables. A period life table is based on the ASDRs

calculated for a particular period of time (usually 1, 2, or 3 years). For example,

recent life tables prepared by the NCHS were based on mortality data and popula-

tion estimates for 2007 (Arias 2011). Life tables for states are typically based on

mortality data covering a 3-year period (e.g., 2009–2011) and population data for

the midpoint of that period (e.g., 2010). Period life tables may be interpreted as

showing the lifetime mortality patterns that would be experienced by a cohort of

newborn babies if the age-specific death rates observed at the time of their births

continued unchanged throughout their lifetimes.

A cohort life table, on the other hand, is based on the mortality patterns actually

experienced by members of a particular birth cohort (e.g., all persons born in 1900)

over their lifetimes. Age-specific death rates are calculated at each age as the cohort

moves from infancy through old age. Obviously, cohort life tables require many

more years of data than period life tables; consequently, they can be constructed

only for cohorts born long ago. Although they are valuable for analyzing mortality

trends over time, they are not very useful for producing population projections. In

this book we consider only period life tables. An example of cohort life tables for

the United States can be found in Bell and Miller (2005).

Life tables also can be classified as complete or abridged. Complete
(unabridged) life tables provide data by single year of age; abridged life tables

provide data by age group (usually 5-year groups, with the youngest group

subdivided at age one). Both types can be used for population projections.

Unabridged life tables are particularly useful for making projections by single

year of age and for single-year time horizons, whereas abridged life tables are

particularly useful for making projections for 5- or 10-year age groups and 5- or

10-year time horizons. Table 4.1 shows an abridged period life table for the

U.S. population in 2007 (Arias 2011).

Life tables are useful not only for mortality projections, but for many other

purposes as well. The same techniques used to measure mortality can be used to

measure the duration of variables such as marriage, employment, education, and the

housing stock. When two or more variables are combined into one life table, it is
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called a multiple-decrement table. For example, mortality and divorce can be

combined into one life table for married persons, with changes in marital status

being caused by either death or divorce. An extension of this technique with

particular relevance to many planners and policy makers combines mortality rates

with disability rates, providing an indication of changing needs for medical care,

living assistance, and institutionalization (Crimmins et al. 1997). Life tables also

play an important role in the highly mathematical field of stationary population
analysis. When used in this manner, some elements of the life table take on a

different interpretation than the ones given above (Kintner 2004).

The idea behind a period life table is clear: it summarizes the mortality (and

survival) probabilities observed in a particular population during a particular period

of time. The actual construction of a life table is not as simple as it might appear,

however. Problems include adjusting for the accuracy of the underlying death and

population data; smoothing out data fluctuations over time; adjusting for the digit

preference often found in age data reported in censuses and surveys; matching

Table 4.1 Abridged life table, total population, United States, 2007

Age

Person years lived

Probability of

dying during

age interval

Number

surviving

to age x

Number

dying during

age interval

In the age

interval

In this and all

subsequent age

intervals

Average

expectation

of life at age x

nqx lx ndx nLx Tx eox

0–1 0.006761 100,000 676 99,406 7,793,398 77.9

1–4 0.001140 99,324 113 397,023 7,693,992 77.5

5–9 0.000683 99,211 68 495,870 7,296,969 73.6

10–14 0.000839 99,143 83 495,562 6,801,099 68.6

15–19 0.003089 99,060 306 494,626 6,305,537 63.7

20–24 0.004906 98,754 485 492,591 5,810,911 58.8

25–29 0.004959 98,269 487 490,128 5,318,320 54.1

30–34 0.005524 97,782 540 487,600 4,828,192 49.4

35–39 0.007251 97,242 705 484,547 4,340,592 44.6

40–44 0.011003 96,537 1,062 480,214 3,856,045 39.9

45–49 0.016870 95,475 1,611 473,601 3,375,831 35.4

50–54 0.025217 93,864 2,367 463,734 2,902,230 30.9

55–59 0.035858 91,497 3,281 449,712 2,438,496 26.7

60–64 0.052469 88,216 4,629 430,149 1,988,784 22.5

65–69 0.077792 83,587 6,502 402,523 1,558,635 18.6

70–74 0.119029 77,085 9,175 363,858 1,156,112 15.0

75–79 0.191303 67,910 12,991 308,631 792,254 11.7

80–84 0.297772 54,918 16,353 234,712 483,622 8.8

85–89 0.441837 38,565 17,040 149,648 248,911 6.5

90–94 0.612543 21,526 13,185 72,247 99,263 4.6

95–99 0.778938 8,340 6,497 22,835 27,016 3.2

100+ 1.000000 1,844 1,844 4,181 4,181 2.3

Source: National Center for Health Statistics, National Vital Statistics Reports, United States
Abridged Life Tables, 2007, 59(9), Hyattsville, Maryland, 2011
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deaths during a calendar year with changes in age during the year; transforming

observed age-specific death rates into survival probabilities; and developing tech-

niques for converting unabridged to abridged life tables (and vice versa). For more

detailed discussions of life tables—including the use of Lexis diagrams that com-

bine period and cohort effects—see Bell and Miller (2005), Kintner (2004), and

Smith (1992).

4.2.1.2 Constructing Life Table Survival Rates

In countries with good vital statistics data, life tables provide the most frequently

used source of data for calculating survival rates. For population projections,

survival rates are often based on 5-year time horizons and 5-year age groups and

are calculated as:

5Sx ¼ 5Lxþ5=5Lx

where 5Lx+5 is the number of person-years lived between ages x + 5 and x + 10,
and 5Lx is the number of person-years lived between ages x and x + 5. For the
U.S. population aged 20–24 in 2007, for example, the 5-year survival rate is:

5L25=5L20 ¼ 490,128=492,591 ¼ 0:9950

In other words, given these survival rates, only about 5 out of 1,000 persons aged

20–24 in 2007 would be expected to die during the following 5 years.

Survival rates can be calculated for different time horizons and different age

groups by changing the subscripts in the equation shown above. For example, a

10-year survival rate for a 5-year age group can be calculated as:

10Sx ¼ 5Lxþ10=5Lx

Using the data in Table 4.1, a 10-year survival rate for persons aged 20–24 is:

5L30=5L20 ¼ 487,600=492,591 ¼ 0:9899

Due to the peculiar nature of mortality patterns in the first year of life, the 0–4

age cohort is often split into two groups: less than 1 and 1–4. Survival rates are

calculated separately for each group. Rates for children aged 1–4 are often calcu-

lated in the manner described above, but rates for infants less than age 1 are based

on procedures which account for the high mortality rates occurring in the first days

and weeks of life. Making this distinction may be important when the size of the

newborn cohort has been changing rapidly or when the projections are used for

detailed analyses of mortality.

The procedure for calculating survival rates for the oldest age group is slightly

different because it is an open-ended group. For this age group, T-values rather than

58 4 Mortality



L-values are used. Suppose that 85+ is the oldest age group to be projected. The

5-year survival rate for this age group is calculated as:

S80 ¼ T85=T80

where T85 and T80 are the total person-years lived after ages 85 and 80, respectively.
Using the data in Table 4.1, the 5-year survival rate for persons aged 80+ is

calculated as:

T85=T80 ¼ 248,911=483,622 ¼ 0:5147

In other words, given the continuation of 2007 mortality rates, only 51.5% of the

population aged 80+ would be expected to live for at least five more years. This

stands in sharp contrast to the 99.5% survival rate for the population aged 20–24.

Calculating survival rates for 1-year age groups requires an unabridged life

table, but the approach is the same. For example, a 5-year survival rate for a

1-year age group can be calculated as:

Sx ¼ Lxþ5=Lx

Using data from an unabridged life table for the United States in 2007 (Arias

2011), we can calculate the 5-year survival rate for 50-year-old males as:

L55=L50 ¼ 88,942=91,993 ¼ 0:9668

Survival rates are typically calculated separately for males and females and often

are further subdivided by race and ethnicity. The reason for drawing these distinc-

tions is that mortality rates vary from one demographic subgroup to another.

Table 4.2 shows that nqx values in the United States are highest for black males

and lowest for white females in every age group. Rates for white males and black

females fall somewhere in between. The use of separate rates is essential when

projections are made for different demographic subgroups, of course, but may also

be important when those subgroups are growing at different rates and have survival

rates that differ substantially from each other.

Although the NCHS publishes complete U.S. life tables for males and females

and for several racial/ethnic groups on an annual basis, it no longer publishes

abridged life tables for these demographic subgroups. However, abridged tables

can be constructed easily from complete tables by applying a set of simple calcu-

lations (Arias 2011). We used those calculations to develop the nqx values shown in
Table 4.2.
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4.2.2 Census Survival Rates

The second approach to constructing survival rates does not require age-specific

mortality data, making it particularly useful for countries (or regions) lacking vital

statistics data. This approach is based on the formation of ratios between age

cohorts in two consecutive censuses. These ratios are called census survival rates
and are calculated as:

nSx ¼ nPxþt, cþt=nPx,c

where x is the youngest age in the age interval, n is the number of years in the age

interval, P is the population size, c is the year of the second most recent census, and

t is the number of years between the two most recent censuses. In the United States,

for example, 16,817,924 residents aged 60–64 were counted in the 2010 census and

17,585,824 residents aged 50–54 were counted in the 2000 census, yielding a

census survival rate of:

5P60,2010=5P50,2000 ¼ 16,817,924=17,585,824 ¼ 0:9563

Census survival rates are typically constructed separately for males and females and

can be further differentiated by race, ethnicity, and other demographic characteristics

as well.

Table 4.2 Life table mortality rates (nqx) by age, sex, and race, United States, 2007

Age White females White males Black females Black males

0–1 0.00508 0.00618 0.01197 0.01451

1–4 0.00092 0.00113 0.00155 0.00180

5–9 0.00059 0.00070 0.00078 0.00102

10–14 0.00065 0.00091 0.00091 0.00141

15–19 0.00179 0.00398 0.00187 0.00639

20–24 0.00233 0.00678 0.00308 0.01058

25–29 0.00264 0.00651 0.00432 0.01130

30–34 0.00333 0.00688 0.00597 0.01276

35–39 0.00482 0.00861 0.00902 0.01555

40–44 0.00763 0.01295 0.01366 0.02190

45–49 0.01179 0.01983 0.02166 0.03349

50–54 0.01727 0.02989 0.03220 0.05427

55–59 0.02521 0.04248 0.04379 0.07811

60–64 0.03935 0.06191 0.06219 0.10764

65–69 0.06075 0.09230 0.08808 0.14507

70–74 0.09656 0.14170 0.12808 0.20022

75–79 0.16244 0.22553 0.19432 0.28126

80–84 0.26516 0.34518 0.28616 0.38090

85+ 1.00000 1.00000 1.00000 1.00000

Source: National Center for Health Statistics, National Vital Statistics Reports, United States
Abridged Life Tables, 2007 59(9), Hyattsville, Maryland, 2011
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This approach to constructing survival rates has several problems. The most

important is that the size of a cohort changes not only because of deaths but also

because of people moving into and out of an area. Consequently, census survival

rates mix the effects of mortality and migration and give misleading estimates of

survival probabilities for places with even moderate levels of in- or out-migration.

A second problem is that census survival rates are affected by changes in

coverage from one decennial census to the next. As noted in Chap. 2, no census

enumeration is perfect. Some people are missed, some are counted twice, and others

are counted in the wrong place. If coverage rates were the same in every census and

in every demographic subgroup, enumeration errors would create no major prob-

lems for constructing census survival rates. However, because coverage rates differ

from one subgroup to another and change over time, changes in coverage rates

introduce additional errors into the estimation of census survival rates.

Because of these problems, census survival rates are seldom used for mortality

projections in countries with good vital statistics data. As shown in Chaps. 6 and 7,

however, they can be used as measures of the joint effect of mortality and migra-

tion, making them very useful for constructing population projections for areas

lacking good migration data. For the remainder of this chapter, our discussion

focuses solely on life table survival rates.

4.3 Approaches to Projecting Mortality Rates

Mortality rates in the United States have been declining for many years. Figure 4.2

shows trends in female mortality rates for selected age groups between 1900 and

2010. Rates have fallen in every age group, especially the youngest. Similar

declines occurred for males as well. Will mortality rates continue declining in the

future? If so, how rapidly will they decline? If not, why not? Answers to these

questions are central to the construction of population projections and a variety of

approaches can be used for projecting mortality and survival rates.

4.3.1 Constant Rates

The simplest approach is to assume that recent mortality rates will continue

unchanged. This assumption will generally be reasonable for short projection

horizons of 5 or 10 years because mortality rates in more developed countries are

very low for most age groups and change relatively slowly over time, especially for

the younger and middle age groups. For longer horizons, however, the no-change

assumption may not be reasonable.

In most instances, we believe it is advisable to develop assumptions that take

into account potential changes in mortality rates. Mortality rates in the United

States have been declining for many decades and—although a reversal could
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occur—most observers believe the chances that rates will continue declining are

greater than the chances that they will remain constant or increase. It must be noted,

however, that mortality rates have not fallen uniformly in all geographic regions or

among all demographic groups, and many counties in the United States have fallen

behind in international comparisons of life expectancy in recent years (Kulkarni

et al. 2011).

The analyst must make a carefully reasoned assessment of recent mortality

trends and develop assumptions consistent with those trends. If it is assumed that

mortality rates are likely to change, there are a number of ways to project those rates

into the future. Following Olshansky (1988), we identify several basic approaches

to projecting mortality rates: the movement of current rates toward those observed

in a target population; the extrapolation of past trends; the reduction or elimination

of particular causes of death; tying future changes in mortality rates for one area to

changes projected for another area; and soliciting the input of a panel of experts.

4.3.2 Targeting

The targeting approach is based on the assumption that mortality rates in the

population to be projected will gradually converge toward those observed in

another population (i.e., the target). A target population is chosen which provides

a set of mortality rates believed to be realistic for the population to be projected.

This choice is based on similarities in socioeconomic, cultural, and behavioral
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characteristics; levels of medical technology; primary causes of death; and similar

factors. Statistical techniques ranging from simple percent reductions to complex

curve-fitting procedures can be used to guide the convergence of one set of rates to

another (Olshansky 1988).

The targeting approach has been around almost as long as the cohort-component

method itself and is frequently used, often in conjunction with other techniques.

Whelpton (1928) used targeting techniques for projections of the U.S. population,

with mortality rates in New Zealand used as target rates toward which U.S. rates

would move over a 50-year period. Nakosteen (1989) projected that county mor-

tality rates in Massachusetts would gradually move toward national rates, reaching

equality by 2020. The State of California projected that state-level survival rates

would converge toward the 2050 national-level survival rates published by the

Census Bureau (State of California 2012). As we show in the next section, the

targeting approach is often used in combination with trend extrapolation

techniques.

4.3.3 Trend Extrapolation

Mortality and survival rates can also be projected by extrapolating historical trends.

One practitioner of this approach is the Office of the Actuary in the Social Security

Administration (SSA), which has been projecting U.S. mortality and survival rates

since the 1930s. Initially, SSA projections accounted only for differences in mor-

tality rates by age and sex; since the 1950s they have accounted for differences in

the cause of death as well. In a recent set (Bell and Miller 2005), the SSA first

calculated average annual rates of decline in mortality rates between 1981 and 2001

for each age/sex/cause-of-death group; if the mortality rate increased during that

period for a particular group, that group’s rate was projected to decline at a rate

equal to 75% of the average decline for all groups. These rates of decline were

projected to continue unabated for the first 2 years in the projection horizon, but

were then projected to start converging toward target rates of decline, reaching

those rates by 2029. After 2029, rates of decline in mortality rates for each age/sex/

cause-of-death group were projected to remain constant. Assumptions regarding the

target rates of decline were based on expectations regarding the development of

new diagnostic and surgical techniques, changes in the prevalence of environmental

pollutants, changes in lifestyle (e.g., nutrition and exercise), and similar factors.

The Census Bureau also uses extrapolation techniques to make projections of

mortality and survival rates by age, sex, race, and ethnicity. In a set of national

projections, Day (1996) extrapolated 1980–1990 trends in survival rates into the

future, with adjustments to account for the impact of AIDS and several constraints

imposed on the resulting rates. More recent sets of national projections have also

extrapolated recent trends, but have projected that mortality rates will converge

toward a set of survival rates based on expert judgment (Hollmann et al. 2000; U. S.

Census Bureau 2008, 2012).
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Extrapolation techniques assume that the future will be similar to the past in

several important ways. This is not always a valid assumption. U.S. mortality rates

declined continuously throughout the twentieth century, but the pace of those

declines varied considerably. Rates of decline were fairly modest from 1900 to

the mid-1930s, much larger from the mid-1930s to the mid-1950s, considerably

smaller from the mid-1950s to the late 1960s, larger again from the late 1960s to the

early 1980s, and smaller throughout the 1980s and 1990s (Bell and Miller 2005).

Simple extrapolation techniques cannot pick up the timing and magnitude of

changes such as these.

A more sophisticated type of extrapolation technique attempts to capture some

of these changes through the use of time series models (Alders et al. 2007;

Hyndman and Booth 2008; Lee and Carter 1992; McNown and Rogers 1989;

Shang 2012; Torri and Vaupel 2012). Time series models account for changing

trends over time and provide probabilistic prediction intervals for each projection.

However, they require a high level of modeling expertise and have limited appli-

cability to small areas due to the lack of reliable data and the high degree of

variability in small-area mortality rates. In addition, projected changes tend to

level off or converge to constant oscillations within a relatively short period

(Land 1986). Time series models are used much more frequently for national

projections than for state and local projections.

4.3.4 Cause-Delay

Cause-delay models focus on the implications of delaying (or completely eliminat-

ing) the occurrence of one or more causes of death (Manton et al. 1980; Olshansky

1987). The basic premise behind this approach is that changes in lifestyle and

medical technology have delayed the occurrence of various types of deaths until

progressively older ages. Consequently, as time goes by each cohort faces smaller

mortality risks at each age than did the previous cohort.

Cause-delay models are often operationalized by assuming that cause-specific

mortality rates for one age group in a population will gradually move toward those

currently found in a younger age group in the same population (e.g., rates for 60–64

year olds will eventually become the same as those currently found for 55–59 year

olds). The impact of such changes can be substantial. One application of a cause-

delay model, for example, found that delaying cancer mortality rates by 10 years

raised life expectancy at birth by 1.3 years for white males. The complete elimina-

tion of cancer as a cause of death, however, raised life expectancy at birth by only

one additional year (Manton et al. 1980).

Cause-delay models are similar to targeting models in that one set of mortality

rates gradually converges toward another. They differ in that the target population

in cause-delay models is a younger cohort in the same population rather than the

same cohort in a different population. An advantage of cause-delay models com-

pared to targeting models is that by staying within the same population, cause-delay

64 4 Mortality



models control for many factors that cause mortality rates to differ from one

population to another. The primary issue in applying cause-delay models is decid-

ing what causes of death to focus on and how rapidly mortality rates for one cohort

will move toward those currently found in another cohort. To our knowledge,

cause-delay models have not been used in the preparation of official population

projections in the United States.

4.3.5 Synthetic Projection

Synthetic mortality or survival rates can be created by linking changes in rates for

one area to changes projected for a different area. This approach is similar to

targeting, but it adopts the rates of change in mortality or survival rates from the

model population rather than the rates themselves. This is a simple, straightforward

approach that is used frequently for state and local projections (Campbell 1996;

Department of Rural Sociology 1998; Smith and Rayer 2012; Treadway 1997).

Suppose that the middle series of the Census Bureau’s national projections is

accepted as a reasonable model of future changes in mortality rates by age, sex,

race, and ethnicity in New Jersey. Projected changes in national rates could then be

used to guide projected changes in New Jersey. For example, if survival rates for

females aged 70–74 in the national population were projected to increase by 1.2%

over the next 10 years, the same percent increase could be applied to survival rates

for females aged 70–74 in New Jersey. This procedure can be carried out for every

subgroup of the population, providing a complete set of projected survival rates.

The synthetic approach can be applied using either survival rates or mortality

rates. However, in order to ensure that projected survival rates do not take on values

greater than 1.0, survival rates are often converted into mortality rates before the

adjustments are made (Shryock and Siegel 1973, p. 453). The procedure is as

follows:

1. Mortality rates are calculated by subtracting survival rates from 1.0.

2. Adjustments to the mortality rates are made based on the changes projected for

the model population.

3. Mortality rates are converted back into survival rates by subtracting the adjusted

rates from 1.0.

Regardless of whether mortality or survival rates are used, the analyst must make

sure the projected rates are reasonable. If survival/mortality rates for the model

population are similar to those for the region being projected, the synthetic

approach will generally produce reasonable results (at least for short- and

medium-range projection horizons). If the rates are considerably different, how-

ever, changes in the model population may overstate or understate likely future

changes in the population being projected. In these instances, further adjustments

must be made or a different approach used.
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4.3.6 Expert Judgment

Many analysts base projections of mortality rates on their own judgment regarding

likely future trends. In fact, all the approaches described above require the use of

the analyst’s judgment as well as the application of the technique itself. Expert

judgment is typically informed by the evaluation of current mortality rates, past

mortality trends, and various socioeconomic, life style, medical, and technological

factors that might cause mortality rates to change in the future. Taking this

approach even further, projections can be based solely on expert judgment by

gathering data from a panel of experts and forming probabilistic projections (Lutz

et al. 1999). Data from a panel of experts can also be used in conjunction with one

or more of the objective techniques described above (Alders et al. 2007).

4.4 Implementing the Mortality Component

We have described the construction of mortality and survival rates and several

techniques that can be used to project those rates into the future. Where can the

analyst find a set of survival rates for a particular area? Which technique

(or techniques) should be used to project those rates into the future? How can

those techniques best be applied?What can be done if no current data can be found?

We offer the following suggestions for implementing the mortality component of

the cohort-component method.

4.4.1 Sources of Data

National life tables have been published annually since 1945 by the NCHS (Arias

2011) and several times each decade by the SSA (Bell andMiller 2005). In addition,

the NCHS has published life tables for states in conjunction with every decennial

census since 1930 (National Center for Health Statistics 2012). The NCHS does not

construct life tables for counties, but provides the data needed to construct such

tables upon request. It should be noted, however, that small population sizes,

missing data, and variations in data quality create special problems for county life

tables. The data needed to construct reliable life tables for subcounty areas are

virtually never available.

Must the analyst construct a new set of life tables if none are available for the

areas to be projected? Fortunately, this is rarely necessary. Large regional differ-

ences in age-sex-race-specific mortality rates have mostly disappeared in the United

States. Table 4.3 shows life expectancy at birth by race and sex for each state in

1999–2001. This is a handy way to summarize a population’s age-specific mortality

patterns. Although some differences can be seen, they are generally small, espe-

cially when compared to state-to-state differences in fertility and migration rates

(as shown in the next two chapters).
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Table 4.3 Life expectancy at birth by sex, United States and each state, 1999–2001

White females White males Black females Black males

Northeast

Connecticut 81.9 76.7 77.7 71.7

Maine 80.9 75.6 * *

Massachusetts 81.6 76.4 79.3 73.1

New Hampshire 81.3 76.5 * *

New Jersey 81.3 75.8 75.5 68.9

New York 81.5 75.8 77.8 70.1

Pennsylvania 80.7 75.0 75.3 67.3

Rhode Island 81.6 76.1 77.4 72.2

Vermont 80.9 76.3 * *

Midwest

Illinois 80.8 75.3 74.2 66.8

Indiana 80.0 74.2 76.6 67.5

Iowa 81.4 76.2 75.2 70.8

Kansas 81.0 75.5 75.0 68.5

Michigan 80.6 75.3 76.0 67.4

Minnesota 82.6 77.0 76.6 71.6

Missouri 79.9 74.3 74.5 67.2

Nebraska 81.1 76.1 74.7 69.2

North Dakota 82.7 76.7 * *

Ohio 80.0 74.6 74.9 68.6

South Dakota 82.6 76.4 * *

Wisconsin 81.9 76.1 74.3 68.4

South

Alabama 79.1 72.9 74.9 66.4

Arkansas 79.6 73.2 73.6 67.3

Delaware 80.6 75.2 72.9 70.3

District of Columbia 84.3 78.9 74.5 64.6

Florida 82.1 75.6 75.5 69.0

Georgia 79.5 73.9 76.2 68.3

Kentucky 78.4 72.7 74.5 69.0

Louisiana 79.4 73.5 75.3 66.5

Maryland 80.7 75.6 75.8 68.4

Mississippi 79.1 72.3 73.7 66.7

North Carolina 80.3 74.3 76.7 66.3

Oklahoma 78.8 73.0 74.3 69.0

South Carolina 80.0 73.8 75.4 67.3

Tennessee 79.3 73.3 74.2 66.9

Texas 80.4 74.7 74.8 69.2

Virginia 80.7 75.6 76.2 69.4

West Virginia 78.4 72.8 72.7 69.9

(continued)
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Because survival rates for many areas in the United States are similar, proxy

rates from a different area can generally be used for areas for which no life tables

have been constructed (e.g., state life tables can be used for county projections).

However, it is important to choose a model population with characteristics similar

to those of the area to be projected. If the population has large numbers of racial or

ethnic minorities with substantially different survival rates, it is advisable to make

separate projections for each racial/ethnic group or to construct survival rates

weighted by race and ethnicity. Applying proxy survival rates to the region’s

population in a recent year and comparing the resulting number of deaths with

the number actually occurring provides a test of the validity of the proxy rates.

Life tables based on small-area mortality and population data could be

constructed, of course. However, we believe the costs of constructing those

tables—combined with problems of data reliability—generally outweigh the ben-

efits. Furthermore, other types of errors typically swamp errors caused by the use of

proxy survival rates. We believe scarce resources can be better spent elsewhere.

(One exception may be places with unique population or mortality characteristics,

for which no reliable proxy rates can be found).

4.4.2 Views of the Future

Once a set of base survival rates has been chosen, the next step is to decide how to

project those rates into the future. Given the wide range of methods that can be

used, how can the analyst choose the one(s) that will be most appropriate for a

Table 4.3 (continued)

White females White males Black females Black males

West

Alaska 80.1 75.4 * *

Arizona 81.6 75.5 77.7 71.0

California 81.4 76.1 76.7 70.0

Colorado 81.3 76.2 76.6 71.7

Hawaii 83.3 78.4 * *

Idaho 80.5 76.5 * *

Montana 81.2 75.1 * *

Nevada 79.0 73.5 74.8 70.6

New Mexico 80.7 75.2 74.4 71.6

Oregon 80.2 75.7 78.2 70.7

Utah 80.9 77.0 * *

Washington 80.0 76.1 77.1 71.9

Wyoming 80.4 75.3 * *

United States 80.0 74.8 75.2 68.2

Source: National Center for Health Statistics, United States Decennial Life Tables, 1999–2001:
State Life Tables. http://www.cdc.gov/nchs/nvss/mortality/lewk4.htm

*Indicates that figure does not meet standards of reliability or precision (based on fewer than

20 cases)
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particular set of projections? This choice will be determined partly by the avail-

ability of relevant data but will also be affected by the analyst’s views regarding

future mortality trends.

Demographers, scientists, physicians, and healthcare experts are sharply divided

in their views of future mortality trends. One group of researchers believes it is

unlikely that life expectancy at birth will increase a great deal beyond the levels

currently found in low-mortality countries (Carnes and Olshansky 2007; Fries

1980, 1989; Olshansky et al. 1990). They point to the finite number of cell

doublings in a life span, the steady loss of organ capacity that begins around age

30 in human beings, the much smaller increases in life expectancy occurring at

older ages than younger ages during the twentieth century, the failure of many

people to adopt lifestyle habits known to increase health and longevity, and the

relatively modest increases in life expectancy that would be implied by even the

total elimination of several leading causes of death. Many researchers in this group

believe life expectancy at birth is likely to level off around age 85; some even

speculate that it might decline from current levels (Olshansky et al. 2005).

Another group of researchers believes considerably larger gains in life expec-

tancy are possible (Ahlburg and Vaupel 1990; Fogel and Costa 1997; Manton

et al. 1991; Torri and Vaupel 2012). They point to the technological and biomedical

advances that have already occurred and to the likelihood of further breakthroughs,

an increased awareness of the benefits of healthy lifestyles (e.g., reduced smoking,

improved nutrition, increased exercise), increased access to healthcare services, the

high life expectancies already found in several population subgroups that practice

healthy lifestyles and have access to good medical care, the persistence of mortality

declines throughout the twentieth century, and the tendency for past forecasts to

understate future increases in longevity. These researchers see life expectancies at

birth rising to 95, 100, or even higher by the end of the current century. Indeed,

Vaupel (2010) suggests that half of the children alive today in countries with high

life expectancies may live to be 100.

The Census Bureau and SSA are the two main sources of national population

projections in the United States. Both agencies project mortality rates using a combi-

nation of extrapolation techniques and the application of expert judgment. In recent

projections, the Census Bureau projected life expectancy at birth to rise from 76 to

81 between 2010 and 2050 for males and from 81 to 85 for females (U. S. Census

Bureau 2008). Over the same period, the SSA projected increases to 80 and 84 for

males and females, respectively (Social Security Administration 2012).

Ahlburg and Vaupel (1990) presented two alternative extrapolation scenarios,

one based on the continuation of 2% annual reductions in mortality rates at each

age and the other based on the continuation of 1% annual reductions. Both

scenarios are consistent with trends occurring in the United States at particular

times during the twentieth century. The first scenario produced life expectancies at

birth of 100 for females and 96 for males in 2080; the second produced life

expectancies of 89 and 84, respectively. The second scenario is similar to the

ARIMA time series forecasts produced by Lee and Tuljapurkar (1994), which

showed a life expectancy at birth (both sexes) of 86 in 2065, with a predicted

range of 81–90.
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When the purpose of projecting is to forecast the future population, the analyst
who anticipates only modest improvements in longevity may want to apply

assumptions similar to those used by the Census Bureau or the SSA. Conversely,

one who anticipates larger increases in life expectancy might favor assumptions

similar to Ahlburg & Vaupel’s rapid-reduction scenario. When the purpose of

projecting is simply to illustrate or analyze, these contrasting projections provide

an opportunity to explore the implications of alternative mortality scenarios.

4.4.3 Examples

The following examples illustrate two of the methods that can be used to project

future mortality. Both are from Florida, where demographers use a synthetic

approach tying projected changes in state survival rates to projected changes in

national survival rates (Smith and Rayer 2012). The starting point in these pro-

jections was a set of 5-year survival rates by age and sex, based on Florida life

tables for 1999–2001. These survival rates were adjusted upward at 10-year inter-

vals, based on adjustment factors derived from projected changes in U.S. survival

rates through 2050 (Hollmann et al. 2000, including unpublished data available on

the Census Bureau web site).

Adjustment factors (5Ax) were calculated for each age-sex group by forming

ratios of survival rates in projected year t + 10 to survival rates in year t:

5Ax ¼ 5Sx, tþ10=5Sx, t

where 5Sx,t+10 is the 5-year U.S. survival rate for age group x to x + 5 in year t + 10
and 5Sx,t is the 5-year survival rate for age group x to x + 5 in year t. For example,

the 5-year national survival rate for males aged 50–54 was 0.96106 in 2000 and was

projected to be 0.96500 in 2010. The adjustment factor for males aged 50–54 is

calculated as:

5S50,2010=5S50,2000 ¼ 0:96500=0:96106 ¼ 1:00410

Similar adjustment factors were calculated for males and females in each 5-year

age group through 80+. These adjustment factors were then multiplied by the 2000

Florida survival rates to give projected survival rates in 2010.

Table 4.4 shows 2000 survival rates, adjustment factors, and projected 2010

survival rates for males in Florida. Adjustments were also made for 2020, 2030, and

2040, the last year in the projection horizon. Survival rates for mid-decade years

(2015, 2025, and 2035) were made by interpolating between beginning-of-decade

and end-of-decade rates. The mortality assumption used in Florida, then, was that

the state’s age-sex-specific survival rates would change at the same rate as the

corresponding rates for the nation as a whole.
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All the adjustment factors shown in Table 4.4 were above 1.0, indicating that

survival rates were projected to increase for every age group. The increases were far

from uniform, however. Adjustments were smallest in the 5–9 age group (1.00015)

and generally increased with age thereafter, reaching 1.05641 for the oldest group.

This pattern reflects the fact that survival rates are already very high at the younger

ages, leaving those groups with little potential for further improvements.

The same Florida data can be used to illustrate another projection method.

Ahlburg and Vaupel (1990) made two sets of extrapolations, one based on 1%

annual reductions in age-specific mortality rates and the other based on 2% annual

reductions. We applied 1% annual reductions to 2000 mortality rates for males in

Florida to create projected rates for 2010 (Table 4.5). The first column shows 2000

survival rates; these are the same rates shown in the first column of Table 4.4. The

second column shows the mortality rates obtained by subtracting each survival rate

from 1.0. The third column shows the adjusted mortality rates for 2000 after 1%

annual reductions have been applied to the mortality rates shown in Column 2. The

fourth column shows the new survival rates implied by the adjusted mortality rates.

The 2010 survival rates shown in Table 4.5 are very similar to those shown in

Table 4.4. That is, the increases in survival rates projected by the Census Bureau

Table 4.4 Projected 2010 survival rates for Florida males, based on projected United States

survival rates

Age 2000 survival rate U.S. adjustment factor 2010 survival ratea

0–1 0.99146 1.00080 0.99225

1–4 0.99806 1.00017 0.99823

5–9 0.99891 1.00015 0.99906

10–14 0.99698 1.00026 0.99724

15–19 0.99378 1.00053 0.99431

20–24 0.99251 1.00041 0.99292

25–29 0.99202 1.00024 0.99226

30–34 0.98965 1.00053 0.99017

35–39 0.98511 1.00100 0.98610

40–44 0.97782 1.00184 0.97962

45–49 0.96898 1.00285 0.97174

50–54 0.95701 1.00410 0.96093

55–59 0.93941 1.00661 0.94562

60–64 0.91571 1.01001 0.92488

65–69 0.87969 1.01517 0.89303

70–74 0.82405 1.02483 0.84451

75–79 0.74043 1.03953 0.76970

80+ 0.51176 1.05641 0.54063

Sources: Florida Department of Health Office of Vital Statistics, Unpublished Abridged Life

Tables, 1999–2001

U.S. Census Bureau, Population projections of the United States by age, sex, race, Hispanic origin,

and nativity: 1999–2100. (NP-D5) Component assumptions of the resident population by age, sex,

race, and Hispanic origin: Lowest, middle, and highest series, 1999–2100. Internet Release Date:

May 2000
a2000 survival rate � adjustment factor
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were very close to those coming from a decline of 1% per year in mortality rates. In

general, differences in projection methodologies will not lead to large differences in

survival rates unless the projections are based on dramatically different assump-

tions or extend well into the future.

4.5 Conclusions

We have looked at a number of ways to project survival rates based on different

techniques, assumptions, and perspectives regarding future mortality trends. How

sensitive are population projections to these differences? How important is the

mortality component to the production of cohort-component population

projections?

In terms of its impact on total population size, the choice of mortality rates is not

very important, especially for short- and medium-range projections (i.e., less than

20 years). Long (1989) reported that for 20-year national projections, the

Table 4.5 Projected 2010 survival rates for Florida males, based on 1% annual declines in

mortality ratesa

Age

2000

survival rate

2000

mortality rateb
2010

mortality ratec
2010

survival rated

0–1 0.99146 0.00854 0.00772 0.99228

1–4 0.99806 0.00194 0.00175 0.99825

5–9 0.99891 0.00109 0.00099 0.99901

10–14 0.99698 0.00302 0.00273 0.99727

15–19 0.99378 0.00622 0.00563 0.99437

20–24 0.99251 0.00749 0.00677 0.99323

25–29 0.99202 0.00798 0.00722 0.99278

30–34 0.98965 0.01035 0.00936 0.99064

35–39 0.98511 0.01489 0.01347 0.98653

40–44 0.97782 0.02218 0.02006 0.97994

45–49 0.96898 0.03102 0.02805 0.97195

50–54 0.95701 0.04299 0.03888 0.96112

55–59 0.93941 0.06059 0.05480 0.94520

60–64 0.91571 0.08429 0.07623 0.92377

65–69 0.87969 0.12031 0.10881 0.89119

70–74 0.82405 0.17595 0.15913 0.84087

75–79 0.74043 0.25957 0.23475 0.76525

80+ 0.51176 0.48824 0.44155 0.55845

Source: Florida Department of Health, Office of Vital Statistics, Unpublished Unabridged Life

tables, 1999–2001
a1% annual decline in mortality for 10 years is represented by an adjustment factor of 0.90438

(i.e., 0.9910)
b1 � 2000 survival rate
c2000 mortality rate � 0.90438
d1 � 2010 mortality rate
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population projected under the high mortality assumption was only 1.0% below

that projected under the medium assumption; the population projected under the

low mortality assumption was only 1.3% above the medium projection. Even for a

50-year horizon, the total population projected under the high mortality assumption

was only 3% smaller than that projected under the medium assumption; the low

mortality assumption led to a population only 4% larger.

The impact of differences in mortality assumptions on projections of total

population may be somewhat larger at the state and local levels than at the national

level. States and local areas exhibit some variability in age-sex-specific mortality

rates, even after accounting for differences in race (Isserman 1993). They also have

the potential for larger changes in mortality rates in the future than would be

expected at the national level because the potential for changes in socioeconomic

and demographic characteristics is greater for states and local areas than it is for the

nation as a whole. However, a study of 30-year projections for 55 counties in West

Virginia found that using state mortality rates instead of county-specific rates led to

differences in total population that averaged only 1% (Isserman 1993). In general,

reasonable differences in mortality assumptions will have relatively little impact on

state and local projections of total population, even for fairly long-range

projections.

Differences in mortality rates among states and local areas are much smaller than

differences in fertility and migration rates (Smith and Ahmed 1990). In addition,

mortality rates change more slowly and consistently over time than fertility and

migration rates, making them easier to forecast accurately. As a result, differences

in mortality assumptions generally have much less impact on projections of total

population than do differences in fertility and migration assumptions.

For projections of the older population, however, differences in mortality rates

can have a substantial impact. Mortality rates for young and middle-aged persons in

the United States are already so low that there is little room left for further

improvement. Indeed, it has been estimated that eliminating all deaths below age

50 would increase life expectancy at birth by only 3.5 years (Olshansky et al. 1990).

Among older age groups, however, mortality rates are considerably higher, leaving

more room for improvement and creating more possibilities for differences in

projected rates.

This can be illustrated by comparing two sets of projections from the SSA.

Projections made in 1974 showed only 31.0 million persons aged 65+ in the year

2000, whereas projections made in 1984 showed 36.2 million. This increase of

more than five million was caused by changes in mortality assumptions for the

elderly population; it accounted for about 80% of the 6.4 million increase projected

for the total population (Olshansky 1988). Differences in projected mortality rates

clearly have more impact on the elderly population than on the population as a

whole.

Projections of the older population are particularly important for analyses of

healthcare, disability, housing, transportation, and entitlement programs like Social

Security and Medicare (Bennett and Olshansky 1996; Fogel and Costa 1997;

Martin et al. 2010; Rogers 1995; Smith et al. 2008). Does greater longevity lead
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to more years of healthy living or simply to longer periods of illness, disability, and

institutionalization? What are the connections between changes in mortality rates

and changes in health status? How does population aging affect transportation and

housing needs? What are the fiscal implications of an aging population? These are

hotly debated questions with tremendous social, economic, and ethical implica-

tions. Although decisions regarding mortality assumptions have a modest impact on

projections of total population for most states and local areas in the United States,

they are very important for other reasons.
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Chapter 5

Fertility

The term fertility refers to the occurrence of a live birth (or births) to an individual,
a group, or an entire population. It is determined by a combination of biological,

social, psychological, economic, and cultural factors. Biological factors affect

fecundity (i.e., the physiological capacity to reproduce), whereas social, psycho-

logical, economic, and cultural factors affect choices regarding whether to have

children, howmany to have, and when to have them. Although biological factors set

an upper limit on a woman’s lifetime fertility, most women bear children at levels

far below that limit. The broad array of factors affecting personal choices is thus

paramount in the study of fertility.

Fertility rates vary considerably among individuals and populations. Some

women have no children, others have one or two, and some have 10 or more. At

current rates American women will average about two births during their lifetimes.

This is considerably higher than the rates of 1.4 or fewer births per women found in

Japan, South Korea, Germany, Italy, Spain, and several other Asian and European

countries, but is much lower than the rates of 6.0 or higher found in Afghanistan,

Mali, Niger, Uganda, Zambia, and several other African countries (Population

Reference Bureau 2011). According to the Guinness World Records, the most

prolific mother ever was a Russian woman in the eighteenth century who was

reported to have borne 69 children through 27 pregnancies (Weeks 2012, p. 200).

Fertility rates change over time, sometimes rising and sometimes falling. During

colonial times, women in the United States averaged around eight births during

their lifetimes (Weeks 2012, p. 250). Fertility rates fell rapidly during the nine-

teenth and early twentieth centuries, reaching levels below 2.3 during the 1930s.

The baby boom raised them above 3.7 by the late 1950s but the baby bust dropped

them below 1.8 by the mid-1970s, their lowest levels ever. Rates rose to 2.1 in 2006

and 2007 but have since fallen below 2.0. Economic downturns—such as the severe

recession gripping the United States from 2007 to 2009—have often been found to

cause short-term declines in fertility rates (Sobotka et al. 2011). Figure 5.1 shows

total fertility rates in the United States from 1920 to 2010.

Whereas mortality rates fell relatively slowly and steadily during the twentieth

century, fertility rates fluctuated substantially, often within a relatively short time.
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These wide swings make it more difficult to construct accurate forecasts of fertility

rates than mortality rates. In this chapter we describe several fertility measures and

discuss two different perspectives from which fertility behavior can be viewed, one

focusing on births during a particular period of time (e.g., 1 year) and the other

focusing on the cumulative fertility behavior of a particular cohort of women as

they pass through their childbearing years. We describe a number of approaches to

projecting fertility rates and discuss sources of fertility data. Again, we pay special

attention to the problems of making projections for small areas. We close with an

assessment of the impact of fertility assumptions on population projections.

5.1 Fertility Measures

A number of measures have been developed to reflect fertility behavior. In this

section, we describe several of the most commonly used measures. All are based on

two types of data: the number of live births occurring in a geographic area during a

particular period (hereinafter referred to simply as births) and the population of that

area. These measures are called birth (or fertility) rates because they relate the

number of births to the population exposed to the risk of giving birth. However, as

discussed in Chap. 2, they are not rates in a true probabilistic sense.

Fertility rates typically refer to a calendar year. The numerator is the number of

births occurring during the year and the denominator is the midyear population.

Sometimes a 3-year average of births is used to smooth out the effects of annual

fluctuations; this is particularly important for areas with small populations. Some

measures use data for the entire population, while others focus on particular
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population subgroups. Birth data in the United States are collected by the vital

statistics agencies of each state and are compiled nationally by the National Center

for Health Statistics (NCHS). Population data are based on census counts or

estimates, depending on the year(s) for which the rates are to be constructed.

5.1.1 Crude Birth Rate

The simplest fertility measure is the crude birth rate (CBR), which is calculated by

dividing the number of births during a year by the midyear population. It is

generally multiplied by 1,000 to reflect the number of births per 1,000 persons:

CBR ¼ B=Pð Þ 1,000ð Þ

where B is the number of births during the year and P is the midyear population. For

example, there were 4,000,279 births in the United States in 2010 and a midyear

population of 309,349,689, yielding a CBR of:

4, 000, 279=309, 349, 689ð Þ 1,000ð Þ ¼ 12:9

That is, there were 12.9 births for every 1,000 residents of the United States in

2010. For states, CBRs in 2010 ranged from 9.8 in Maine and New Hampshire to

18.9 in Utah (Hamilton et al. 2011).

Crude birth rates can also be calculated for different racial or ethnic groups and

for different geographic regions. For example, there were 946,000 births to persons

of Hispanic origin in the United States in 2010 and a midyear population of

50,810,213, yielding a CBR of:

946, 000=50, 810, 213ð Þ 1,000ð Þ ¼ 18:6

That is, there were 18.6 births for every 1,000 persons of Hispanic origin

residing in the United States in 2010.

The usefulness of the CBR as a measure of fertility is limited because it does not

account for differences in demographic characteristics. Births occur only to females,

primarily those between the ages of 15 and 44. The age-sex structure of a population

thus has a major impact on its fertility behavior. Other fertility measures have been

developed to account for differences in age and sex characteristics.

5.1.2 General Fertility Rate

The general fertility rate (GFR) relates the number of births to the number of

females in their prime childbearing years. It is calculated by dividing the number
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of births by the number of females aged 15–44. It is typically expressed in terms of

births per 1,000:

GFR ¼ B=F15�44ð Þ 1,000ð Þ

where F15-44 is the midyear population of females aged 15–44. For example,

there were 4,000,279 births in the United States in 2010 and 62,401,146 women

aged 15–44, yielding a general fertility rate of:

4, 000, 279=62, 401, 146ð Þ 1,000ð Þ ¼ 64:1

GFRs can be calculated for different racial and ethnic groups and for different

geographic regions. For example, the GFR for Hispanic women in the United States

in 2010 was 80.3, compared to 58.7 for non-Hispanic whites and 66.6 for

non-Hispanic blacks. For states, GFRs ranged from 51.4 in New Hampshire to

86.7 in Utah (Hamilton et al. 2011).

The GFR (sometimes simply called the fertility rate) provides a more refined

measure than the CBR because it relates the number of births to the population most

likely to give birth. It has several shortcomings, however. Some births occur to

women younger than 15 or older than 44. More important, the distribution of

persons within the ages of 15–44 differs from one population to another and

changes over time. A third measure accounts for these differences by focusing on

birth rates for each individual age group.

5.1.3 Age-Specific Birth Rate

The age-specific birth rate (ASBR) is calculated by dividing the number of births to

females in a given age group by the number of females in that age group. It is

typically multiplied by 1,000 to reflect the number of births per 1,000 females:

nASBRx ¼ nBx=nFxð Þ 1,000ð Þ

where x is the youngest age in the age interval, n is the number of years in the age

interval, nBx is the number of births to females between the ages of x and x + n, and

nFx is the number of females between the ages of x and x + n. Rates can be

calculated by single year of age, but are more commonly expressed in 5-year age

groups. For example, there were 951,900 births to females aged 20–24 in the United

States in 2010 and a midyear population of 10,611,599, yielding an ASBR of:

5ASBR20 ¼ 951, 900=10, 611, 599ð Þ 1,000ð Þ ¼ 89:7

Table 5.1 shows ASBRs for the United States in 2010. Several things stand out.

First, ASBRs were very low for women younger than age 15 or older than age 44.
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Women in these two age groups accounted for less than 1% of all births, making

15–44 a reasonable choice for the denominator in the GFR. Second, ASBRs for

women in their twenties and early thirties were much higher than for women in any

other age group. This is not surprising, of course, and is a pattern found throughout

the world.

Because birth rates vary so much by age, focusing on ASBRs yields a great deal

of useful information. However, all this detail makes it difficult to evaluate changes

in fertility behavior over time and to compare differences among regions. The next

measure summarizes the entire array of ASBRs and facilitates such comparisons.

5.1.4 Total Fertility Rate

The total fertility rate (TFR) is the sum of all the individual ASBRs. When ASBRs

are computed for 1-year age groups, the TFR is calculated as:

TFR ¼
X

ASBRx

When age groups are defined in 5-year intervals, the TFR is calculated by

multiplying the sum of the ASBRs by 5 (to account for the fact that females

spend 5 years in each age group):

TFR ¼ 5
X

5
ASBRx

Total fertility rates based on 5-year age groups are generally about the same as

those based on 1-year age groups (Shryock and Siegel 1973, p. 484).

The TFR can be interpreted as the number of children a hypothetical cohort of

1,000 women would have during their lifetimes if none died and their fertility

Table 5.1 Age-specific birth rates, United States, 2010

Age Births Female population ASBRa

10–14 4,500 10,106,622 0.4

15–19 367,752 10,696,317 34.4

20–24 951,900 10,611,599 89.7

25–29 1,134,008 10,477,448 108.2

30–34 962,420 10,030,407 96.0

35–39 464,943 10,085,603 46.1

40–44 107,011 10,499,772 10.2

45–49 7,744 11,465,341 0.7

U.S. total 4,000,278 83,973,109

Sources: Hamilton et al. (2011), U. S. Census Bureau (2011)
aBirths / female population � 1,000
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behavior at each age conformed to a given set of ASBRs. Using the data from

Table 5.1, we can calculate the TFR for the United States in 2010 as:

TFR ¼ 5 0:4þ 34:4þ 89:7þ 108:2þ 96:0þ 46:1þ 10:2þ 0:7ð Þ ¼ 1, 929

TFRs are often expressed as the average number of births per woman, rather than

as the total number of births per 1,000 women. Using the example shown above,

women just entering their childbearing years in 2010 would have an average of 1.93

births by the time they stopped having children, if none died and 2010 ASBRs

remained constant.

The TFR is similar to life expectancy at birth (e0) in that both measures use

hypothetical cohorts and both assume that a given set of age-specific rates will

continue indefinitely. One measure shows the average number of children a cohort

of women would have if a given set of ASBRs persisted throughout their lifetimes.

The other shows the average length of life a cohort of newborn babies would have if

a given set of ASDRs persisted throughout their lifetimes. Because they have clear

intuitive meanings and are unaffected by the age-sex structure of a population, both

measures are useful for making comparisons among regions and over time.

Further refinements to these measures can be made. The gross reproduction rate

(GRR) is similar to the TFR but focuses on female births rather than total births.

The net reproduction rate (NRR) adjusts the GRR to account for survival rates at

each age. These measures are useful for many analytical purposes but are not

commonly used for population projections. Discussions of these and other fertility

measures can be found in Newell (1988), Estee (2004), and Smith (1992).

5.1.5 Child-Woman Ratio

A final measure sometimes used when making population projections is the child-

woman ratio (CWR):

CWR ¼ P0�4=F15�44ð Þ 1,000ð Þ

where P0-4 is the number of children aged 0–4 and F15-44 is the number of women

aged 15–44. For example, there were 69,520 children aged 0–4 in Maine in 2010,

and 241,923 women aged 15–44, yielding a CWR of 69,520 / 241,923 ¼ 0.2874, or

287 children for every 1,000 women aged 15–44. In Utah, the CWR was 263,924 /

623,651 ¼ 0.4232, or 423 children for every 1,000 women aged 15–44.

The CWR is neither a rate nor a true fertility measure. It is simply a ratio of one

population subgroup to another. It incorporates the effects of past mortality and

migration patterns as well as past fertility behavior. In contrast to most fertility

measures, it does not require any data specifically related to births. This is a major

shortcoming for many analytical purposes, but it can be useful for geographic areas

lacking vital statistics data. The CWR ratio is often used in analyses of less
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developed countries. As we show in Chap. 7, it can also be used in more developed

countries for projections of small areas lacking birth data.

5.2 Two Perspectives: Period and Cohort

Fertility can be viewed from two perspectives, each useful for particular purposes.

The period perspective is cross-sectional, focusing on births during a particular time

period (e.g., 1 year). All the fertility measures discussed above are period measures:

CBR, GFR, ASBRs, and TFR are based on the number of births occurring during a

year (or an average of several years) and the size of the midyear population. The

cohort perspective, on the other hand, is longitudinal, focusing on the cumulative

fertility behavior of a particular cohort of women (e.g., those born in 1960) as they

pass through their childbearing years. Each perspective has its advantages and

disadvantages and each has its proponents and critics. It is important to recognize

the differences and similarities between these two perspectives before considering

techniques for projecting fertility rates.

5.2.1 Defining the Relationship

Tables 5.2 and 5.3 illustrate the relationship between period and cohort fertility

measures. Table 5.2 shows annual ASBRs and TFRs at 5-year intervals from 1940

to 2010 for women in the United States. The rows summarize age-specific fertility

behavior for each year; the columns show the changes in ASBRs and TFRs over

time. Looking across each row shows the typical relationship between ASBRs and

age, with rates increasing from the teens to the twenties and declining thereafter.

Looking down each column shows the large increases and declines in fertility rates

that occurred during the baby boom and bust. Each row thus provides a snapshot of

fertility behavior at a particular point, and comparing rows provides an indication of

how those snapshots have changed over time.

A different picture emerges if we look at Table 5.2 diagonally instead of by rows

and columns. Consider females born in 1925–1929. They were age 10–14 in 1940,

15–19 in 1945, 20–24 in 1950, and so forth. The ASBRs for this cohort were 0.7 at

10–14, 51.1 at 15–19, 196.6 at 20–24, and so forth. If we add up all these ASBRs,

multiply by 5, and divide by 1,000, we get the cohort fertility rate (CFR):

CFR ¼ 5 0:7þ 51:1þ 196:6þ 190:5þ 112:7þ 46:2þ 8:1þ 0:3ð Þ=1, 000
¼ 3:03

The CFR calculated in this manner is sometimes called the cumulative fertility
rate or completed family size. In contrast to the TFR, the CFR is a measure of the
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actual fertility behavior of a real cohort of women over their lifetimes. Table 5.3

shows the ASBRs taken from the diagonals of Table 5.2 and the associated CFRs.

Age groups 10–14 and 45–49 were excluded from this table because they account

for such a tiny proportion of total births; excluding those groups allows us to

increase the number of cohorts for which CFRs can be calculated.

The typical age pattern is found, with ASBRs increasing as women move from

their teens to their twenties and declining as they move through their thirties and

forties. The impact of the baby boom and bust is clearly evident, with CFRs rising

for the first three birth cohorts (women who were in their twenties in the 1940s and

1950s) and declining for the following four cohorts (women who were in their

twenties in the 1960s and 1970s).

It is noteworthy that the changes over time in the cohort fertility rates shown in

Table 5.3 are considerably smaller than the changes in total fertility rates shown in

Table 5.2. This is a common empirical finding and suggests that changes in period

rates are caused partly by changes in the timing of births rather than solely by

changes in completed family size (Frejka and Sobotka 2008; Ni Bhrolchain 2011;

Van Imhoff 2001). A number of analysts have concluded that the low period

fertility rates found in the United States during the 1970s and the even lower

rates found in Europe during the 1990s were caused partly (some would say

primarily) by the decisions of many women to delay childbearing until older ages

(Bongaarts and Feeney 1998; Goldstein et al. 2009; Schoen 2004; Sobotka 2004).

This movement toward delayed childbearing in the United States can be seen in

Table 5.2. Age-specific birth rates for women above age 30 have been rising

steadily since 1980 while ASBRs rates have been falling or holding steady for

women less than age 30. Between 1980 and 2010, ASBRs fell by 35%, 22%, and

4% for ages 15–19, 20–24, and 25–29, respectively, while rising by 55%, 133%,

and 162% for ages 30–34, 35–39, and 40–44.

Table 5.2 Age-specific birth rates and total fertility rates, United States, 1940–2010

Year 10–14 15–19 20–24 25–29 30–34 35–39 40–44 45–49 TFRa

1940 0.7 54.1 135.6 122.8 83.4 46.3 15.6 1.9 2.30

1945 0.8 51.1 138.9 132.2 100.2 56.9 16.6 1.6 2.49

1950 1.0 81.6 196.6 166.1 103.7 52.9 15.1 1.2 3.09

1955 0.9 90.5 242.0 190.5 116.2 58.7 16.1 1.0 3.58

1960 0.8 89.1 258.1 197.4 112.7 56.2 15.5 0.9 3.65

1965 0.8 70.5 195.3 161.6 94.4 46.2 12.8 0.8 2.91

1970 1.2 68.3 167.8 145.1 73.3 31.7 8.1 0.5 2.48

1975 1.3 55.6 113.0 108.2 52.3 19.5 4.6 0.3 1.77

1980 1.1 53.0 115.1 112.9 61.9 19.8 3.9 0.2 1.84

1985 1.2 51.0 108.3 111.0 69.1 24.0 4.0 0.2 1.84

1990 1.4 59.9 116.5 120.2 80.8 31.7 5.5 0.2 2.08

1995 1.3 56.8 109.8 112.2 82.5 34.3 6.6 0.3 2.02

2000 0.9 47.7 109.7 113.5 91.2 39.7 8.0 0.5 2.06

2005 0.7 40.4 102.2 115.5 95.8 46.3 9.1 0.6 2.05

2010 0.4 34.4 89.7 108.2 96.0 46.1 10.2 0.7 1.93

Sources: Hamilton et al. (2011), U. S. Census Bureau (1961, 1985, 2012b)
a5 � (Sum of the age-specific rates) / 1,000
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It is also noteworthy that TFRs and CFRs have been fairly similar and quite

stable for the past 20 years. Total fertility rates ranged between 2.02 and 2.08

between 1990 and 2005. Cohort fertility rates for the 1950–1954, 1955–1959, and

1960–1964 birth cohorts—women who had largely completed their childbearing by

1995, 2000, and 2005, respectively—were virtually the same, ranging between 2.01

and 2.06. The trends diverged a bit between 2005 and 2010, when the TFR fell to

1.93—most likely because of a severe economic recession— while the CFR rose to

2.14. We discuss the implications of these findings for the construction of popula-

tion projections later in this chapter.

5.2.2 Assessing the Issues

Which is better for studying fertility, the period perspective or the cohort perspec-

tive? Many believe the cohort perspective is better. According to Ryder (1965,

1986, 1990), the cohort perspective more accurately describes the sequential nature

of childbearing than does the period perspective. Cohorts are socially and demo-

graphically distinct and their distinctiveness—including fertility attitudes and

behavior—tends to persist over time. Most theories of fertility focus on completed

family size rather than the timing of births. In addition, cohort measures change

more smoothly over time than do period measures; this is generally considered to be

an advantage. By focusing on the ASBRs of a particular cohort of women as they

pass through their childbearing years, the cohort perspective picks up age, period,

and cohort influences on fertility.

From the period perspective it is not clear whether year-to-year changes

in fertility rates reflect changes in long-term fertility behavior or simply a shift in

the timing of births. As an extreme example, consider the Year of the Fire Horse in

Japan (Ni Bhrolchain 2011). Many people believed 1966 would be an inauspicious

Table 5.3 Age-specific birth rates and cohort fertility rates, United States, birth cohorts

1920–1924 to 1965–1969

Year of birth 15–19 20–24 25–29 30–34 35–39 40–44 CFRa

1920–1924 54.1 138.9 166.1 116.2 56.2 12.8 2.72

1925–1929 51.1 196.6 190.5 112.7 46.2 8.1 3.03

1930–1934 81.6 242.0 197.4 94.4 31.7 4.6 3.26

1935–1939 90.5 258.1 161.6 73.3 19.5 3.9 3.03

1940–1944 89.1 195.3 145.1 52.3 19.8 4.0 2.53

1945–1949 70.5 167.8 108.2 61.9 24.0 5.5 2.19

1950–1954 68.3 113.0 112.9 69.1 31.7 6.6 2.01

1955–1959 55.6 115.1 111.0 80.8 34.3 8.0 2.02

1960–1964 53.0 108.3 120.2 82.5 39.7 9.1 2.06

1965–1969 51.0 116.5 112.2 91.2 46.3 10.2 2.14

Sources: Hamilton et al. (2011), U. S. Census Bureau (1961, 1985, 2012b)
a5 � (Sum of the age-specific rates) / 1,000
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year for a girl to be born and the TFR dropped by 26% before bouncing back the

following year. The dramatic drop in 1966 clearly reflected changes in the timing of

births, not their ultimate number. Wars, economic recessions, and other events may

cause similar (if less dramatic) short-term changes in the timing of births. These

changes may have a substantial impact on period fertility measures but little or no

impact on cohort measures.

Furthermore, more gradual but longer-lasting shifts in timing can cause period

measures to persistently overstate changes in completed family size. For example,

accelerated childbearing played an important role in the baby boom and delayed

childbearing played an important role in the baby bust. In the United States, these

timing shifts contributed to the rapid increase in period fertility rates during the

1940s and 1950s and their rapid decline during the 1960s and 1970s.

Proponents of the cohort perspective view cohorts as the vehicles of causation,

while periods simply reflect the consequences of changes in cohort behavior. Under

this view each birth cohort is unique, developing its own ideas, values, sentiments,

vocabulary, and style as its members age together and experience the same events,

institutions, economic conditions, and social norms at various stages of their lives.

As an Arab proverb puts it, “Men resemble the times more than they do their

fathers” (quoted in Ryder 1965, p. 853). Attitudes regarding sexuality, contracep-

tion, and ideal family size are strongly affected by “the times.”

Many studies of fertility behavior have been based on a cohort perspective (Bloom

and Trussell 1984; Bongaarts 2002; Lesthaeghe and Surkyn 1988; Ryder 1986,

1990). Some focused on parity-progression ratios, or the proportions of women at

each level of childbearing (e.g., no children, one child, two children) who go on have

at least one more child. Others focused on changes in the length of the time interval

between births. Some focused on marital fertility by combining marriage probabili-

ties with parity-progression ratios and birth intervals for married women. These

studies generated insights that might not have been apparent from a period perspec-

tive, such as changes in the incidence of childlessness or of very large families.

Studies based on a cohort perspective are not without problems, of course. First,

cohort analyses require a great deal of birth and population data. Such data may be

difficult to obtain for states and are often unavailable for counties and subcounty

areas. Even when available, data for small areas may be unreliable due to small

population sizes. When marriage rates, parity-progression ratios, and birth intervals

are incorporated, cohort analyses become even more data-intensive. Period ana-

lyses require much less data.

Second, complete cohort fertility data become available only after women reach

age 45 or 50. For younger women, only partial data can be used. In contrast,

complete period data become available as soon as the relevant vital statistics and

population data are tabulated.

Third, birth cohorts change over time because of deaths and migration. The

members of the current cohort of women aged 45–49 living in a particular area

may be quite different from those born there 45–49 years ago, especially for rapidly

growing states and local areas. The foundation of cohort analysis thus changes

over time.

86 5 Fertility



Finally, the theoretical basis of the cohort perspective—that each birth cohort is

unique and that this uniqueness persists over time—can be questioned. Some

researchers not only believe there is little empirical evidence supporting this

claim, but believe there is substantial evidence to the contrary (Ni Bhrolchain

1992). In particular, all cohorts appear to respond similarly to the factors affecting

fertility behavior during any particular period of time. Figure 5.2 illustrates this

point. ASBRs for all age groups between 15 and 39 in the United States rose

substantially during the 1940s and 1950s and declined substantially during the

1960s and 1970s. A number of researchers have concluded that completed cohort

fertility is not significantly different from an average of period fertility rates (Brass

1974; Ni Bhrolchain 1992; Foster 1990; Lee 1974).

Period analyses capture year-to-year changes in fertility behavior and use readily

available data. Cohort analyses are consistent with the sequential nature of childbear-

ing and reflect cumulative fertility levels. Each perspective illuminates particular

aspects of fertility behavior, but for projection purposes we believe most practitioners

will be better off using the period approach. Data for states and small areas are more

readily available for period measures than for cohort measures. Perhaps more impor-

tant, recent period data are available for all age groups, whereas complete cohort

fertility data become available only after women have passed through their childbear-

ing years. Furthermore, the theoretical basis of the cohort perspective—that each birth

cohort is unique and that this uniqueness persists over time—is particularly question-

able for states and local areas in which migration substantially alters the composition

of a birth cohort over time.
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The remainder of our discussion focuses on period fertility rates. However, the

analyst should keep the cohort perspective in mind when formulating assumptions

about fertility rates. Are changes occurring in the timing of births? If so, what impact

will they have on completed family size? Does the current TFR provide a reasonable

forecast of completed family size? Do current ASBRs provide a reasonable forecast

of future ASBRs? If recent changes have occurred, do they reflect a shift in the long-

run trend or were they simply short-run deviations from that trend? These questions

can be answered only after considering both period and cohort perspectives.

5.3 Approaches to Projecting Fertility Rates

Although CBRs or GFRs are occasionally used for population projections, births in

cohort-component models are typically projected by applying projected ASBRs to

projections of the female population by age. In this section, we discuss the

approaches most commonly used for projecting births and describe several specific

models and techniques that can be used with each approach.

5.3.1 Constant Rates

One common approach to projecting fertility rates is to hold current ASBRs constant

throughout the projection horizon (Day 1996; Treadway 1997; U. S. Census Bureau

2005). These rates are often based on the most recent year of data available, but can

also be based on an average of several years. In many applications, they are

calculated separately for different racial or ethnic groups. Holding rates constant

can be justified on either of two grounds.

One is that future fertility rates are not likely to be much different from current

rates. Although they fluctuated considerably over much of the twentieth century,

TFRs in the United States have been fairly stable since 1990. Furthermore, TFRs

and CFRs have been very similar over the last few decades; that is, period and

cohort measures have given similar estimates of completed family size. Declining

ASBRs for women younger than age 30 have been roughly offset by rising ASBRs

for women above age 30. A reasonable argument can be made that fertility behavior

in the United States has stabilized, making the continuation of current period rates a

reasonable projection technique.

A second justification for holding birth rates constant is the belief that neither the

direction nor the magnitude of future changes can be predicted accurately. The

argument here is not that current rates will remain constant, but rather that scientific

theories and historical data do not provide a reliable basis for predicting how those

rates will change. If upward or downward movements are equally likely, current

rates provide a reasonable forecast of future rates. This argument is supported by

the generally lackluster forecasting performance of previous fertility projections.
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For example, the vast majority of demographers failed to foresee either the timing

or the magnitude of the baby boom and baby bust. This does not speak well for our

ability to predict the course of future birth rates.

5.3.2 Trend Extrapolation

Another approach is based on the extrapolation of historical trends. This approach

will be useful when birth rates have been changing in a systematic manner and are

expected to continue to change systematically in the future. One early application of

this approach calculated the rates of decline in ASBRs between 1925–1929 and

1930–1934 and extrapolated those rates into the future, with adjustments to allow

for a gradual slowing in the rates of decline over time (Thompson and Whelpton

1933). Extrapolation techniques will be risky, of course, when no long-run trends

are discernible or when there is no firm basis for forecasting turning points.

Time series modeling is a type of extrapolation that has become widespread over

the last several decades, especially for projections at the national level. Some

models have focused directly on births, ignoring age-specific rates, the age structure

of the population, and even the total size of the population (McDonald 1981).

However, it is more common to focus on ASBRs or summary fertility indexes,

which are then converted into ASBR schedules (Alkema et al. 2011; Carter and Lee

1992; Lee and Tuljapurkar 1994). Time series models have been used for national

fertility projections in the United States (U. S. Census Bureau 2008), Australia

(Hyndman and Booth 2008), Europe (Alders et al. 2007), and elsewhere.

Time series models have two advantages over simple extrapolation techniques:

They use more historical information and their point forecasts are accompanied by

prediction intervals. However, forecasts from time series models are strongly

affected by the structure of the models themselves and by the changes in births or

birth rates occurring over the base period. These forecasts tend to move toward

constant levels or converge toward constant oscillations within a fairly short time;

they also tend to have very wide prediction intervals. Time series models would

seem to be more useful for short-range forecasts (e.g., less than 5 years) than for

long-range forecasts, especially for countries that have already gone through their

demographic transitions from high to low fertility rates (Land 1986; Lee 1993).

5.3.3 Targeting

The targeting approach is based on the assumption that birth rates in the population

to be projected will converge over time toward those found in another population

(i.e., the target). The target rates can be those currently observed in the target

population, rates projected for some future point in time, or rates based on the
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application of expert judgment. This approach is similar to the targeting approach

for mortality rates described in Chap. 4.

The targeting approach can be implemented by forming ratios of current birth

rates in the areas to be projected to current birth rates in the target population. Those

ratios can then be projected to gradually move toward 1.0 over time. For example,

one set of state projections produced by the Census Bureau assumed that ratios

of state to national birth rates (by age and race) would move linearly to 1.0 by 2020

(U.S Census Bureau 1979). For each state, the projected ratios were applied to

projected national birth rates to provide projections of state birth rates. A similar

approach has been used to tie county birth rates to national rates (Nakosteen 1989).

The targeting approach can be applied to different racial/ethnic groups as well as

to different geographic areas. For example, recent projections of the U.S. population

produced by the Census Bureau held age-specific birth rates for non-Hispanic whites

constant at levels observed between 1989 and 2009, while rates for other racial/ethnic

groups were projected to gradually converge toward those rates over time

(U.S. Census Bureau 2012a).

The assumption of convergence has some intuitive appeal, given the homoge-

nizing influences of popular culture, mass communication, and inter-regional

migration. The analysis of historical fertility trends provides ample empirical

support for the convergence of birth rates among racial/ethnic groups in the United

States, but provides only modest support for the convergence of birth rates among

geographic areas: State and regional birth rates have converged during some time

periods but not others (Ahlburg 1986; Isserman 1986). Recent projections made by

the Census Bureau have not assumed that state birth rates would converge toward

national birth rates over time (Campbell 1994, 1996; U. S. Census Bureau 2005)

but—as noted above—have assumed convergence among racial/ethnic groups

(U.S. Census Bureau 2012a). For any given set of projections, the analyst must

make a judgment call regarding whether the convergence of age-specific birth rates

among geographic areas or racial/ethnic groups is a reasonable assumption.

5.3.4 Synthetic Projection

Synthetic birth rates can be created by forming ratios of birth rates in one area to

those in another and applying those ratios to the birth rates projected for the second

area (called themodel population). Although any two areas could be used, ratios are
typically based on a smaller area and the larger area in which it is located (e.g.,

county/state or state/nation). ASBRs and GFRs are the measures most commonly

used in constructing these ratios. For example, if (ASBR of County X)/(ASBR of

State Y) ¼ 1.1, the projected ASBR for County X would be obtained by multiply-

ing the projected ASBR for State Y by 1.1.

Synthetic projection implicitly assumes that birth rates in the population to be

projected will change at the same rate as birth rates in the model population; the

analyst must decide whether or not this is a reasonable assumption. The synthetic
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approach is similar to targeting, but without assuming that birth rates in different

areas will converge over time. This approach has been widely used for state and

local projections (Campbell 1994, 1996; Wetrogan 1990).

5.3.5 Structural Models

Fertility is one of the most thoroughly studied topics in demography. Using the

tools of economics, sociology, psychology, anthropology, biology, and other dis-

ciplines, researchers have tried to determine why fertility rates are higher for some

individuals and populations than for others, and why those rates have changed over

time. Many theories of fertility behavior have been developed, critiqued, chal-

lenged, and revised (Becker 1960; Easterlin 1987; Lesthaeghe 1983; Mason

1997; Schoen et al. 1997). Empirical investigations have considered the effects of

income, education, religion, wages, female labor force participation, marriage,

race/ethnicity, and other variables on fertility. The insights gained through these

studies have been incorporated into several structural forecasting models (Ahlburg

1986; 1999; Sanderson 1999).

Using structural models for forecasting fertility rates has several problems

(Isserman 1986; Land 1986). First, the determinants of fertility behavior are not

completely understood, even after years of study. Consequently, the theoretical

foundations of structural models are somewhat weak. Second, using a structural

model requires the availability of forecasts of the model’s independent variables.

Such forecasts are often unavailable and, when they are, may not be very accurate.

Third, forecasts from structural models are typically based on the assumption that

the regression coefficients estimated from historical data will remain constant

throughout the forecast horizon; this is not likely to be true. Finally, the data needed

to construct structural models for small areas are seldom available.

We believe structural models of fertility are valuable for many analytical

purposes, including simulation and policy analysis. However, we do not believe

they are particularly useful for population forecasting at the state and local levels.

We believe the resources needed to develop structural models for projecting

fertility can be better used elsewhere. Chapter 9 provides a detailed discussion of

structural forecasting models, but focuses on migration rather than fertility.

5.3.6 Expert Judgment

Many analysts base projections of fertility rates on their own judgment regarding

future fertility trends. Expert judgment is typically informed by an evaluation of

current fertility rates, historical trends, rates in other areas, and various economic,

social, psychological, and cultural factors that might cause those rates to change.

Although projections can be based solely on expert judgment by gathering data
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from a panel of experts and forming probabilistic projections (Lutz et al. 1999),

expert judgment is more commonly used in combination with one or more of the

techniques described above. For example, expert judgment has been used in

conjunction with time series models to develop national fertility projections in

the United States (U. S. Census Bureau 2008) and Europe (Alders et al. 2007).

5.4 Implementing the Fertility Component

5.4.1 Sources of Data

Whenever possible, fertility projections should take into account the age and sex

structure of the population. To construct ASBRs and TFRs, the analyst must have

data on the number of births by age of mother (for the numerator) and counts or

estimates of the population by age and sex (for the denominator). Annual birth data

are available for states and counties with more than 100,000 residents from the

NCHS; data for counties with fewer than 100,000 residents are typically available

from each state’s office of vital statistics. Because of fluctuations in fertility

behavior over time (especially for small counties), it is common to use a 3-year

average of births (e.g., 2009–2011) instead of births from a single year in

constructing ASBRs. Birth data by race and ethnicity are generally available for

large counties but not always for small counties.

Population counts by age, sex, race, and Hispanic origin for states, counties, and

subcounty areas are available every 10 years from the decennial census. For

non-census years, population estimates must be used. The Census Bureau produces

annual estimates by age, sex, race, and Hispanic origin for states and counties. In

addition, county-level estimates of population characteristics can often be obtained

from state demographic agencies or other sources (e.g., private data companies).

Because population estimates are less accurate than decennial census data, ASBRs

based on intercensal or postcensal estimates are less reliable than those based on

decennial census data.

The birth data needed for constructing ASBRs are not available for most

subcounty areas. In addition, subcounty population estimates by age, sex, race,

and Hispanic origin are seldom available for non-census years. Consequently,

ASBRs for cities, census tracts, traffic analysis zones, and other subcounty areas

are rarely available.

What can the analyst do when ASBRs are not available at the subcounty level?

The most common solution is simply to use county- or state-level ASBRs. This

approach will often provide reasonable proxies for small-area ASBRs. However, in

some circumstances it may be important to account for differences in racial/ethnic

composition between the small area and the county (or state) because birth rates

often differ by race and ethnicity. This can be done in several ways. One is to make

separate projections for each racial/ethnic group, using the appropriate ASBRs for
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each group. Another is to calculate a weighted average of the ASBRs for racial/

ethnic groups, with the weights determined by the proportion of the area’s female

population found in each racial/ethnic group, by age. For example, if whites

account for 75% of the female population of an age group and blacks for 25%,

that ASBR could be calculated as:

ASBR ¼ 0:75 white ASBRð Þ þ 0:25 black ASBRð Þ

5.4.2 Views of the Future

As was true for mortality projections, the methods and assumptions chosen for

projecting fertility rates will be affected by the analyst’s views of the future.

However, uncertainty regarding future change is greater for fertility rates than for

mortality rates. Mortality rates have been steadily falling for many decades and

most observers believe they will continue falling; the main question is how far and

how rapidly they will fall. Fertility rates, on the other hand, have experienced large

declines and large increases during the last 100 years. Which way will future rates

move? Will they change a lot or only a little? The analyst’s answers to these

questions will have a large impact on the choice of techniques and assumptions

used in projecting fertility rates.

The starting point, then, must be the development of an informed outlook

regarding future fertility trends. Demographic transition theories have offered

explanations for why fertility rates in more developed countries moved from high

to low levels over the last two centuries, focusing on factors such as the rising costs

and declining economic benefits of children, declines in infant and child mortality,

and changes in female roles in the household and society (Caldwell 1982; Guinnane

2011; Lee 2003; Mason 1997). Economists, sociologists, anthropologists, psychol-

ogists, and others have offered explanations for why people continue to have

children in post-transition societies (Becker 1960; Margolis and Myrskyla 2011;

Morgan 2003; Schoen et al. 1997). This question was framed most starkly (and

sardonically) by economist Joseph Schumpeter: “Why should we stunt our ambi-

tions and impoverish our lives in order to be insulted and looked down upon in our

old age?” (quoted in Weeks 2012, p. 216).

Why indeed? What social, psychological, cultural, economic, and religious

factors cause people to continue having children in the twenty-first century? The

answer to this question lies at the heart of any discussion of future fertility rates.

Will American fertility rates decline to the very low levels found in a number of

European and Asian countries? Will there be another baby boom? Or, have fertility

rates in the United States reached some sort of equilibrium level at which they will

remain for a long time to come? The analyst must answer these questions before

choosing techniques and assumptions for projecting fertility rates.

Additional factors must be considered when making projections for states and

local areas. Income, education, and occupation—as well as race and ethnicity—

vary considerably from one place to another. These characteristics often have
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significant effects on fertility rates. The presence of a college, prison, military base,

or other institution may also have a substantial impact on aggregate fertility

measures. Differences in fertility rates are much greater among subcounty areas

than they are among states or even counties (Bogue 1998). Realistic projections will

be possible only if these differences are accounted for in the projection process.

We suggest that the analyst thoroughly review the underlying data before

developing fertility assumptions. Period birth rates by age of mother should be

examined to determine whether any unusual patterns are present and, if so, what

caused them. Trends in TFRs and individual ASBRs must be considered. If recent

changes in period rates have occurred, some assessment must be made as to whether

they reflect a shift in the long-run trend or simply a short-run deviation from that

trend. It is essential to view fertility rates from both a period and a cohort

perspective, evaluating changes in the timing of births and the potential impact of

those changes on completed family size.

If large institutional populations are present, their impact on ASBRs must be

accounted for. Changes in racial, ethnic, and socioeconomic characteristics must be

considered and decisions made regarding their impact on future fertility rates (e.g.,

whether rates for various racial or ethnic groups will converge over time). Espe-

cially for small areas, the quality of the underlying fertility and population data

must be evaluated and adjustments made if anomalies or errors are found. Even the

most prescient set of assumptions will be useless if there are errors in the

underlying data.

5.4.3 Examples

The following examples illustrate several ways to project fertility rates. The first is

a set of national projections produced by the Census Bureau in the mid-1970s

(U.S. Census Bureau 1975). These projections were based on a cohort fertility

model, using historical fertility data and birth expectations data from 1971 to 1974.

Three fertility assumptions were made. The medium assumption projected an

ultimate cohort fertility rate of 2.1, while the low and high assumptions projected

ultimate rates of 1.7 and 2.7, respectively. Cohort fertility rates for whites and

blacks were projected to converge over time, with the ultimate rates first being

achieved by the 1965 birth cohort for whites and by the 1970 birth cohort for blacks.

Period ASBRs for the years prior to reaching the ultimate rates were calculated by

interpolating between the values for 1973 (the last year for which estimates were

available) and their ultimate values. They were adjusted so that observed and

projected rates would be consistent with completed cohort fertility rates. Projected

ASBRs and TFRs for 1975, 1995, and 2015 are shown in Table 5.4.

It is interesting to compare these projections with a set produced in the mid-1990s

(Day 1996). The more recent projections were based on a period fertility approach

rather than a cohort approach. The reason for this change was the observation that

completed cohort fertility had remained fairly stable for several years, making current
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period rates a reasonable proxy for cohort rates (Day 1996). The starting point for

these projections was a set of ASBRs calculated for five race-ethnicity groups:

Hispanic, non-Hispanic white, non-Hispanic black, non-Hispanic American Indian,

and non-Hispanic Asian. These rates were based on fertility data from 1990 to 1992

and population data for July 1, 1991. The population data were adjusted for net census

coverage error using demographic analysis.

These projections used three fertility assumptions. Under the medium assump-

tion, ASBRs were projected to remain constant for each racial/ethnic group; that is,

they were not projected to converge over time. Because the five race-ethnicity

groups were growing at different rates, however, the medium assumption produced

overall ASBRs and TFRs that increased gradually over time (see Table 5.5). Under

the high fertility assumption, ASBRs for each race-ethnic group were projected to

rise by 15% by 2010. In the low series, they were projected to decline by 15%.

A comparison of Tables 5.4 and 5.5 shows the TFRs for the medium projections

to be quite similar: 2.11 (1995) and 2.10 (2015) in Table 5.4 and 2.06 (1995) and

2.14 (2020) in Table 5.5. The age patterns of childbearing are considerably differ-

ent, however. ASBRs for women 30–39 are consistently higher in Table 5.5 than

Table 5.4 and ASBRs for women 20–29 are consistently lower. These differences

reflect the trend toward delayed childbearing occurring over the last several

decades.

The Census Bureau also produced a set of state projections consistent with each

of these sets of national projections. The first set started with ASBRs by race for

each state, based on data from 1970 to 1975 (U.S Census Bureau 1979). Ratios of

state/national rates were constructed and were projected to move linearly toward

1.0, reaching that level by 2020. In other words, it was assumed that state ASBRs

would converge toward national ASBRs over time. As a final step, state ASBRs

were calculated by multiplying the interpolated ratios by the medium set of national

ASBRs.

The second set of state projections started with ASBRs calculated for five racial-

ethnic groups for each state (Campbell 1996). These rates were based on the annual

average number of births in each state between 1989 and 1993. Rates were held

Table 5.4 Projected age-specific birth rates and total fertility rates, United States, 1975–2015

Assumption-year 10–14 15–19 20–24 25–29 30–34 35–39 40–44 45–49 TFRa

Low-1975 1.0 54.3 110.0 99.5 49.1 20.0 5.0 0.4 1.70

Low-1995 0.2 38.8 116.5 114.4 50.4 16.6 4.0 0.3 1.71

Low-2015 0.2 37.3 116.8 117.8 50.1 14.2 3.3 0.2 1.70

Medium-1975 1.1 58.5 120.1 107.4 51.4 20.6 5.2 0.3 1.82

Medium-1995 0.3 47.5 143.8 142.0 63.0 20.7 4.9 0.3 2.11

Medium-2015 0.3 46.1 144.4 145.5 61.9 17.6 4.0 0.3 2.10

High-1975 1.1 65.4 131.1 117.0 54.7 21.7 5.4 0.4 1.98

High-1995 0.4 60.4 184.3 183.0 81.6 26.7 6.1 0.4 2.71

High-2015 0.4 59.2 185.6 187.1 79.6 22.6 5.2 0.4 2.70

Source: U.S. Census Bureau (1975)
a5 � (Sum of the age-specific rates) / 1,000
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constant throughout the projection horizon; that is, it was not assumed that state

rates would converge toward national rates over time.

The most recent set of state projections followed a simple procedure by holding

current ASBRs constant for each state (U. S. Census Bureau 2005). The Census

Bureau has not produced any state projections since that time, but is tentatively

planning to produce a new set by 2015.

In these examples—and in most other applications of the cohort-component

method—births are projected by multiplying projected ASBRs by the projected

female population. Chapter 7 provides several illustrations of how this process can

be carried out. A final example will be given here to show how births (or, more

precisely, the population in the youngest age group) can be projected indirectly

without the use of ASBRs.
Suppose that projections are to be made for census tracts, but there are no birth

data at the tract level. What can be done? One option is to develop a set of tract-

specific ASBRs using indirect techniques, as suggested by Bogue (1998). Devel-

oping these rates, however, would require a great deal of time and effort, making

this an expensive option. Another option is to use county-level ASBRs for each

census tract. This will be a viable option in many circumstances, but may not

provide reasonable results if there is a great deal of socioeconomic and demo-

graphic diversity among census tracts.

A third option is to construct a set of child-woman ratios and apply those ratios to

the projected female population aged 15–44. These ratios can be based on tract-

specific data from the most recent census. To take a hypothetical example, suppose

that a tract’s 2010 population included 400 children aged 0–4 and 1,100 women

aged 15–44, yielding a child-woman ratio of 0.3636. Suppose that the projected

female population aged 15–44 in 2015 is 1,200. The population aged 0–4 in 2015

could be projected as:

0:3636 1,200ð Þ ¼ 436

Table 5.5 Projected age-specific birth rates and total fertility rates, United States, 1995–2050

Assumption-year 10–14 15–19 20–24 25–29 30–34 35–39 40–44 45–49 TFRa

Low-1995 1.4 59.4 115.4 117.8 78.9 31.6 5.6 0.3 2.06

Low-2020 1.4 55.5 103.0 102.8 69.1 28.2 5.3 0.3 1.82

Low-2050 1.6 59.3 108.9 105.7 70.9 29.8 5.7 0.3 1.91

Medium-1995 1.4 59.4 115.4 117.8 78.9 31.6 5.6 0.3 2.06

Medium-2020 1.6 64.8 121.0 120.9 81.3 33.2 6.2 0.3 2.14

Medium-2050 1.8 69.7 128.2 124.2 83.8 34.9 6.8 0.4 2.24

High-1995 1.4 59.4 115.4 117.8 78.9 31.6 5.6 0.3 2.06

High-2020 1.9 74.1 139.1 139.0 93.5 38.2 7.2 0.3 2.47

High-2050 2.1 80.0 147.5 142.7 95.6 40.1 7.8 0.4 2.58

Source: Day (1996)
a5 � (Sum of the age-specific rates) / 1,000
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An alternative approach is to assume that the child-woman ratio in the census

tract will change at the same rate as the child-woman ratio in a larger area, such as

the county, or converge toward a target level over time. For example, if the child-

woman ratio for the county was 0.35 in 2010 and was projected to decline to 0.33 by

2015, the population aged 0–4 in 2015 could be projected as:

0:3636 1,200ð Þ 0:33=0:35ð Þ ¼ 411

This adjustment allows the analyst to account for projected changes in fertility

rates and age structure, while still incorporating the impact of tract-level fertility

characteristics. This approach offers a compromise between spending a large

amount of resources developing tract-specific fertility rates and completely ignor-

ing the existence of tract-level differences in fertility rates.

5.5 Conclusions

It has often been noted that fertility is the most problematic part of national

population projections (Keyfitz 1982; Ryder 1990; Siegel 1972). For example,

Long (1989) found that differences in fertility assumptions accounted for more of

the variation in long-run projections of the U.S. population than did differences in

either mortality or immigration assumptions. Clearly, fertility assumptions are

critical to the preparation of national population projections.

For states and local areas, however, fertility is usually less important than

migration in explaining differences in rates of population growth (Congdon 1992;

Smith and Ahmed 1990). At the subnational level, migration rates vary more from

place to place and change more dramatically over time than do fertility rates.

Fertility rates, however, display more variation than do mortality rates. As a result,

fertility rates can generally be forecasted more accurately than migration rates, but

not as accurately as mortality rates. Fertility assumptions typically have more

impact on state and local population projections than do mortality assumptions,

but not as much as migration assumptions.

Whereas differences in mortality assumptions have their largest impact at older

ages, differences in fertility assumptions have their largest impact at younger ages.

Changes in mortality and migration rates affect all age groups, but changes in

fertility rates immediately affect only the youngest. Long (1989) found fertility to

be the major cause of variability in national projections of the youngest age groups.

In a study of county population projections, Isserman (1993) found differences in

fertility assumptions to have a much larger impact on the youngest age group than

on the population as a whole. Over time, of course, the effects of differences in

fertility rates are cumulative and fertility assumptions have a major impact on both

the size and the age structure of the population (Siegel 2002, p. 596).
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Chapter 6

Migration

The United States is a nation of movers. In a typical year, about 15% of the

U.S. population moves to a different place of residence. Table 6.1 provides an

overview of moving in the United States between 2009 and 2010. Of the 305.6

million residents aged 1 and older in 2010, 258.6 million were living in the same

house as in 2009, 45.3 million had moved from another house in the United States,

and 1.8 million had moved from abroad. Of movers within the United States, about

64% moved to a different house in the same county, 21% moved to a different

county in the same state, and 15% moved to a different state.

Given this propensity for moving, it is not surprising that the United States is

among the countries with the highest migration rates (Molloy et al. 2011). About

5.4% of the U.S. population moved from one county to another between 2009 and

2010. Contrast this with Estonia, for example, where only 1.3% of the population

moved from one county to another in that year (Statistics Estonia 2010). About

0.6% of the U.S. population in 2010 moved from abroad during the previous year,

compared to about 0.2% of the population in Estonia.

The United States shares high mobility and migration rates with a number of

other countries in which the official language (or one of them) is English, including

Australia, Canada, and New Zealand. These four countries share longstanding

traditions of immigration, cultural values that emphasize personal freedom, and

public policies and housing markets that facilitate mobility (Gober 1993; Molloy

et al. 2011). At current rates, Americans will average 11–12 changes in residence

during their lifetimes (U.S. Census Bureau 2012a).

Moving rates vary considerably from state to state. For the nation as a whole,

2.2% of the population aged 1 and over lived in a different state in 2010 than in

2009. In the District of Columbia, 8.5% of the population aged 1 and over in 2010

lived in a different state than in 2009, compared to only 1.2% in California

(U.S. Census Bureau 2012b). Differences are even greater at the county level.

During the period from 2005 to 2009, 23.5% of the population aged 1 and older

living in the Aleutians West Census Area (a “county equivalent”) moved from a

different state, whereas no person aged 1 and older in Taylor County, Georgia

moved from a different state during that period (U.S. Census Bureau 2012c).

S.K. Smith et al., A Practitioner’s Guide to State and Local Population Projections,
The Springer Series on Demographic Methods and Population Analysis 37,

DOI 10.1007/978-94-007-7551-0_6, © Springer Science+Business Media Dordrecht 2013
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Combined with the potential for rapid changes in moving rates, these huge

differences make it difficult to forecast migration accurately. In this chapter, we

discuss a variety of concepts, measures, and definitions of mobility and migration

(see Box 6.1 for a summary of commonly used terms). We discuss a number of data

sources and describe several methods for measuring migration. To set the stage for

developing assumptions regarding future migration patterns, we consider the deter-

minants of migration and some of the characteristics of migrants. We then describe

the data and techniques that can be used to project future migration flows, focusing

on issues with particular importance for states and local areas. We close with an

assessment of the impact of migration on population projections.

Box 6.1 Some Common Migration Definitions

Mover: A person who changes his/her place of usual residence from one

address (e.g., house or apartment) to another.

Migrant: A person who changes his/her place of usual residence from one

political or administrative area to another.

Immigrant: A citizen or permanent resident of one country who has been

legally admitted to the host country in order to establish permanent residence

there.

Emigrant: A citizen or permanent resident of the host country who moves to

a different country in order to establish permanent residence there.

Gross Migration: The movement of migrants into or out of an area.

Net Migration: The difference between the number of in-migrants and the

number of out-migrants.

Internal (Domestic) Migration:Migration from one place to another within

the same country.

International (Foreign) Migration:Migration from one country to another.

Migration Interval: The period of time over which migration is measured.

Table 6.1 Movers in the United States, 2009–2010

Residence 1 year ago Number Percent

Population 1 year and older 305,628,607 (X)

Same house 258,552,348 84.6

Different house in the U.S. 45,326,114 14.8

Same county 28,850,018 9.4

Different county 16,476,096 5.4

Same state 9,732,867 3.2

Different state 6,743,229 2.2

Abroad 1,750,145 0.6

Source: Table DP02, Selected Social Characteristics in the United States

2010 American Community Survey 1-Year Estimates
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6.1 Concepts, Definitions, and Measures

It is much more difficult to measure or even to define migration than either

mortality or fertility. This is especially true for countries lacking a full population

registration system, such as the United States, which registers births and deaths but

not migration. Unlike births and deaths, migration involves two areas, one of origin

and one of destination. Some moves cover short distances, others cover long

distances. Some moves are temporary, others are permanent. Furthermore, people

are born and die only once but can move many times. How can mobility and

migration be defined and measured?

6.1.1 Place of Residence

For many Americans, the simple question “Where do you live?” does not have an

equally simple answer. Many retirees spend summers in New York, Illinois, or

Minnesota and winters in Arizona, Florida, or Texas. Itinerant farm workers follow

the harvest from place to place over the course of a year. Dual-career couples may

have one spouse working in New York City and the other working in Washington,

DC, getting together only on weekends. Children of divorced couples may spend

alternating weeks or months with each parent. Some college students spend the

school year in Madison, Wisconsin or Ithaca, New York and the summer in

Milwaukee or Buffalo. Members of rock bands and professional basketball teams

spend much of the year moving from city to city. A soldier serving in Afghanistan

may have Fort Campbell, Kentucky as his or her “home of record.” We know a

professor at the University of California, Riverside who is a registered voter and

owns a home in Las Vegas, endures a weekly commute between Las Vegas and

Riverside when classes are in session, stays in a small rental flat in Riverside during

the week, and files a non-resident state income tax return in California. Where do

these people live?

The answer to this question is crucial because mobility and migration typically

refer to “changes in one’s place of usual residence.” In the United States, “usual

residence” is defined as the place a person lives and sleeps more than any other

place (Cork and Voss 2006, p. 2). Under this definition, people with two or more

homes are counted at the one in which they spend the most time, college students

are counted at the place they are staying while attending college, and members of

the armed forces are counted at the location where they are based. If a person has no

usual place of residence, he or she is counted at the place he or she was staying on

census (or estimation day).

Due to this focus on changes in usual (or “permanent”) residence, traditional

measures of mobility and migration miss temporary moves such as commuting to

work, shifting between weekday and weekend homes, seasonal migration, business

trips, vacations, and life on the road in a recreational vehicle. These non-permanent
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moves are large in number and can have a substantial impact on both the sending

and receiving regions (Behr and Gober 1982; Happel and Hogan 2002; McHugh

et al. 1995; Rogers et al. 2010; Smith 1989; Swanson and Tayman 2011). Unfor-

tunately, the data needed to measure and evaluate temporary moves are sorely

lacking and temporary population movements have received relatively little atten-

tion among researchers in the United States and most other countries.

Population projections typically refer to the permanent resident population of a

state, county, or subcounty area. Accordingly, the measures of mobility and migra-

tion discussed in this chapter focus solely on changes in one’s place of usual

residence. Temporary, cyclical, and season migration are important research topics,

but lie outside the scope of this book.

6.1.1.1 Mobility and Migration

Although mobility can refer to changes in social or occupational status, to a

demographer it generally means changes in geographic location. We define mobil-

ity as any change in one’s place of usual residence from one address (e.g., house or

apartment) to another. The destination of a move can be as close as the apartment

building across the street or as far as a house across the country or around the world.

Migration, on the other hand, refers to moves across some type of political,

administrative, or statistically-defined boundary (Swanson and Stephan 2004). This

distinction is intended to differentiate between moves within a community and

moves from one community to another (or, more broadly, to differentiate between

short- and long-distance moves). This distinction is critical for some types of

analyses, but not for the topics addressed in this book. Our focus is on population

projections for states, counties, and subcounty areas such as cities, census tracts,

school districts, and market areas. We define all moves into or out of these

geographic areas as migration, regardless of the distance moved, the degree of

change in the living environment, or the size of the geographic area. Given this

focus, there is no need to differentiate between migration and mobility.

6.1.1.2 Gross and Net Migration

Migration can be viewed from either of two perspectives. Gross migration is the

movement of people into or out of an area; net migration is the difference between

the two. Table 6.2 shows in-, out-, and net migration for every state and the District

of Columbia between 2009 and 2010. These numbers exclude people coming from

abroad, Puerto Rico, and outlying territories such as American Samoa. As such,

they represent “domestic migration.”

Texas had 486,558 in-migrants and California had 573,988 out-migrants; these

represent the largest numbers of any state. Texas also had the largest net

in-migration balance (74,917) and California had the largest net out-migration

balance (�129,239). The state with the smallest number of in-migrants was
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Table 6.2 In-migrants, out-migrants and net migrants, by state, 2009–2010a

In-migrants Out-migrants Net migration

Northeast

Connecticut 77,333 89,360 �12,027

Maine 27,758 32,209 �4,451

Massachusetts 140,162 144,152 �3,990

New Hampshire 39,367 38,399 968

New Jersey 127,369 193,972 �66,603

New York 269,427 363,139 �93,712

Pennsylvania 235,580 209,810 25,770

Rhode Island 32,059 24,948 7,111

Vermont 22,529 18,380 4,149

Midwest

Illinois 203,959 277,579 �73,620

Indiana 127,353 130,170 �2,817

Iowa 72,557 66,922 5,635

Kansas 95,059 90,681 4,378

Michigan 116,149 178,207 �62,058

Minnesota 89,872 104,765 �14,893

Missouri 145,226 148,055 �2,829

Nebraska 51,290 43,531 7,759

North Dakota 30,100 24,450 5,650

Ohio 172,633 188,013 �15,380

South Dakota 25,777 27,915 �2,138

Wisconsin 93,065 111,240 �18,175

South

Alabama 108,723 99,221 9,502

Arkansas 79,127 64,264 14,863

Delaware 30,759 30,055 704

District of Columbia 51,244 56,052 �4,808

Florida 482,889 427,853 55,036

Georgia 249,459 244,992 4,467

Kentucky 118,443 92,999 25,444

Louisiana 97,889 88,131 9,758

Maryland 164,484 159,866 4,618

Mississippi 72,321 68,363 3,958

North Carolina 263,256 207,025 56,231

Oklahoma 106,511 90,616 15,895

South Carolina 152,441 117,569 34,872

Tennessee 159,778 143,135 16,643

Texas 486,558 411,641 74,917

Virginia 259,507 232,002 27,505

West Virginia 39,609 49,349 �9,740

(continued)
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Vermont (22,529); it also had the smallest number of out-migrants (18,830).

Delaware had the smallest net in-migration balance (704) and Wyoming had the

smallest net out-migration balance (�140).

Data can also be tabulated for specific place-to-place migration flows. For

example, of the 486,558 people moving to Texas between 2009 and 2010, 28,238

had been living in Oklahoma in 2009 (U.S. Census Bureau 2012b). Conversely, of

the 106,511 people moving to Oklahoma between 2009 and 2010, 26,969 came

from Texas. Thus, the net flow between Texas and Oklahoma was 1,269

(28,238–26,969), with Texas the net gainer and Oklahoma the net loser. Specific

state-to-state (and county-to-county) migration flows can be useful for analyzing

the determinants and consequences of migration and for developing multi-regional

projection models (Rogers 1985, 1995).

There are several advantages in using gross rather than net migration data for

population projections (Rogers 1990; Smith and Swanson 1998). First, gross migra-

tion is closer to the true migration process than is net migration. Some people move

into an area, somemove out, and others stay put. People may therefore be classified as

movers or non-movers and as in-migrants or out-migrants, but there is no such thing as

a “net migrant.” Net migration is an accounting procedure, not a migration process.

Second, focusing on net migration may mask the existence of large gross

migration flows. Delaware had a domestic net migration balance of only

704 between 2009 and 2010 (Table 6.2). Does this mean that only a few people

were moving into or out of Delaware? Absolutely not. The state had 30,759

in-migrants and 30,055 out-migrants between 2009 and 2010. Gross migration

data illuminate those moves, net migration data obscure them.

Third, gross migration data can be related to the size of the source population

from which migrants come, providing migration rates that approximate the proba-

bility of migrating. Because net migration data simply represent the difference

between the numbers of in- and out-migrants, they have no identifiable source

populations. Consequently, net migration rates do not reflect migration probabilities.

Table 6.2 (continued)

In-migrants Out-migrants Net migration

West

Alaska 36,326 94,692 �58,366

Arizona 222,725 176,768 45,957

California 444,749 573,988 �129,239

Colorado 186,366 140,620 45,746

Hawaii 53,581 49,218 4,363

Idaho 55,638 53,122 2,516

Montana 35,630 35,870 �240

Nevada 102,677 109,409 �6,732

New Mexico 73,605 50,438 23,167

Oregon 116,700 100,185 16,515

Utah 77,780 75,541 2,239

Washington 191,784 166,162 25,622

Wyoming 28,046 28,186 �140

Source: U.S. Census Bureau 2012b
aDomestic migrants only, excluding international migration
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Fourth, when net migration is calculated from the demographic balancing

equation as the difference between total population change and natural increase,

it captures all the measurement errors found in birth, death, and total population

data. These errors may be substantial (Isserman et al. 1982).

Finally, population projections based on net migration models sometimes lead to

unrealistic forecasts. When in- and out-migration flows are projected separately, the

projection model can account for differences in the demographic structures and

rates of growth of both the origin and destination populations. When in- and

out-migration flows are combined to form net migration, however, the model

cannot account for these differences. As demonstrated by Isserman (1993), Plane

(1993), and Smith (1986), projections based on net migration models can differ

considerably from projections based on gross migration models, particularly for

areas that are growing rapidly. We suggest ways for reducing these differences later

in this chapter.

Although gross migration models have a number of advantages for the produc-

tion of cohort-component population projections, net migration models have sev-

eral advantages as well (Smith and Swanson 1998). They require less data and are

simpler to apply than gross migration models, making them considerably less

resource intensive. Perhaps more important, they can be used when the data

required by gross migration models are unreliable or simply do not exist; this is

particularly important when making projections for small areas. Finally, if appro-

priate precautions are taken, there is nothing inherent in net migration models

causing them to produce less accurate forecasts than gross migration models,

especially for short- and medium-range projection horizons. We believe there are

many circumstances in which net migration models are more useful than gross

migration models. We give examples of both types of model in Chap. 7.

6.1.1.3 Length of Migration Interval

Migration data are typically derived from censuses, surveys, or administrative

records which report a person’s current place of residence and his or her place of

residence at some earlier point in time. For our purposes, a migrant is defined as a

person whose current place of residence is located in a different geographic area

than his/her earlier place of residence. National statistical offices have traditionally

used either 1- or 5-year intervals for developing gross migration statistics (Long and

Boertlein 1990). When net migration data are derived from two consecutive

decennial censuses using the demographic balancing equation, the interval is

10 years. What length of interval is best?

There is no definitive answer to this question. Migration data covering different

intervals simply reflect different aspects of the migration process. Short intervals pick

up most moves but are heavily affected by chronic movers and moves that turn out to

be temporary (Ihrke and Faber 2012; Morrison and DaVanzo 1986). Long intervals

cancel out some of the effects of chronic and temporary movers; consequently, they

may provide a better measure of long-term mobility. However, they miss the
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impact of multiple moves within the time interval and introduce measurement errors

for people who are unable to recall accurately the timing or location of earlier moves.

Long intervals also miss more people who move but die than do short intervals. For

any particular application, then, the appropriate length of interval will depend on the

availability of data and the purposes for which the data will be used.

In the United States, migration data were collected in the long form of every

decennial census between 1940 and 2000 (the long form was a more detailed

questionnaire sent to a sample of households). These data referred to a 5-year

period in every year except 1950, when 1-year migration data were collected

because of the disruptive effects of World War II. However, migration data are

no longer collected in the decennial census because the census no longer includes a

long form. Migration data are now collected in the American Community Survey

(ACS), which focuses on migration over a 1-year rather than a 5-year period

(U.S. Census Bureau 2009b). This change has important implications for the

construction of population projections.

Because of the impact of multiple moves and deaths of migrants, migration data

for one length of interval are not directly comparable to migration data for another

length of interval. Whereas birth and death data can be converted easily into

intervals of different lengths, attempting to convert migration data is a complex

and somewhat capricious undertaking. We return to this issue later in this chapter.

6.1.1.4 Migration Rates

A fundamental methodological problem in constructing cohort-component projec-

tions is choosing the appropriate population base (i.e., the denominator) for calcu-

lating mortality, fertility, and migration rates. Theoretically, the appropriate base

for any rate is the population exposed to the risk of the occurrence of the event

under consideration. For mortality and fertility, the choice is clear: For purposes of

projection, the population exposed to the risk of dying or giving birth is the

population of the state or local area being projected (adjusted to reflect the total

number of person-years lived during the time period). For migration rates, however,

the choice is not so clear. What is the population exposed to the risk of migrating?

A number of studies have addressed this question. Most, however, focused

primarily on whether the initial, terminal, or mid-point population should be used

to calculate migration rates, and what adjustments for births, deaths, and migration

during the time period should be made to estimate the total number of person-years

lived (Edmonston and Michalowski 2004; Hamilton 1965; Morrison et al. 2004).

These are important issues, but they do not address critical questions regarding

exposure to the risk of migration.

In fact, many studies have simply used the population of the area under consid-

eration as the denominator in the construction of migration rates, regardless of

whether those rates referred to in-migration, out-migration, or net migration (Long

1988; Meuser and White 1989). Yet the population of the area itself is clearly not

the population exposed to the risk of in-migration; after all, those people already
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live in the area. For net migration the issue is even more difficult because net

migration is a residual rather than an actual event; consequently, it has no true

at-risk population. Only for out-migration does the area under consideration repre-

sent the population exposed to risk; therefore, only for out-migration can rates be

calculated that approximate the probability of migrating. For in-migration and net

migration, “rates” calculated in this manner are simply migration/population ratios.

They provide measures of the contributions of in-migration or net migration to

population size, but provide no information on the propensity to migrate.

In-migration rates that approximate the probability of migrating can be developed,

however, by basing rates on the population of the area of origin rather than the area of

destination. For example, we can construct domestic gross migration rates for

Arizona by using the population of Arizona as the denominator for out-migration

rates and the population of the rest of the United States (that is, the national

population minus the Arizona population) as the denominator for in-migration

rates; we call the latter the “adjusted” U.S. population. In-migration rates can also

be defined for specific states or regions through the use of multi-regional models, but

this requires much more detailed data than is needed for a simple two-region model.

The migration data used in this example came from Public Use Microdata

Sample (PUMS) files for 2010; these files are based on a sample of ACS respon-

dents. Domestic in-migrants were tabulated using the file for the state of Arizona

and were defined as all respondents living in Arizona in 2010 who reported they

lived in some other state in 2009. Domestic out-migrants were tabulated using the

file for the United States and were defined as all respondents living in other states in

2010 who reported they lived in Arizona in 2009. Table 6.3 shows the number of

males and females entering and leaving Arizona between 2009 and 2010 for

selected single years of age, along with the population data needed to construct

migration rates. Because they are based on place of residence 1 year ago, ACS

migration data are best suited for cohort-component models with single-year age

groups and 1-year projection intervals.

Migration rates for each age-sex group are calculated by dividing migration by

the appropriate population in 2009, which represents the beginning of the migration

period. To calculate in-migration rates, we divide the number of in-migrants by the

adjusted U.S. population. For example, there were 4,508 male in-migrants aged

23 in 2009 and 2,073,186 males aged 23 who lived outside Arizona in 2009,

yielding an in-migration rate of:

4,508=2,073,816 ¼ 0:00217

or 2.17 in-migrants per 1,000 persons. To calculate out-migration rates, we divide

the number of out-migrants by the Arizona population. There were 3,290 male

out-migrants aged 23 and 43,956 males aged 23 living in Arizona in 2009, yielding

an out-migration rate of:

3,290=43,956 ¼ 0:07485
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Table 6.3 Domestic migration rates by selected single year of age and sex, Arizona, 2009–2010

Males

Jan 1, 2009 population

2009 age 2010 age In-migr

Out-

migr U.S. Arizona Adjusted U.Sa

In-

migration

rateb

Out-

migration

ratec

1 2 1,013 751 2,009,008 45,364 1,963,644 0.52 16.55

2 3 1,831 1,369 2,069,693 46,808 2,022,885 0.91 29.25

3 4 1,451 1,223 2,081,913 47,352 2,034,561 0.71 25.83

4 5 2,433 1,702 2,055,203 46,174 2,009,029 1.21 36.86

. . . . . . . . .

. . . . . . . . .

20 21 3,365 3,042 2,283,490 48,146 2,235,344 1.51 63.18

21 22 2,121 2,395 2,199,284 45,852 2,153,432 0.98 52.23

22 23 3,238 2,384 2,154,372 44,671 2,109,701 1.53 53.37

23 24 4,508 3,290 2,117,772 43,956 2,073,816 2.17 74.85

. . . . . . . . .

. . . . . . . . .

45 46 612 434 2,213,383 42,316 2,171,067 0.28 10.26

46 47 437 1,286 2,206,985 41,634 2,165,351 0.20 30.89

47 48 1,067 661 2,214,172 42,140 2,172,032 0.49 15.69

48 49 892 825 2,213,664 42,025 2,171,639 0.41 19.63

. . . . . . . . .

. . . . . . . . .

60 61 1,092 470 1,726,732 34,219 1,692,513 0.65 13.74

61 62 1,637 676 1,661,016 33,372 1,627,644 1.01 20.26

62 63 1,096 427 1,694,270 35,320 1,658,950 0.66 12.09

63 64 1,702 794 1,654,341 35,021 1,619,320 1.05 22.67

. . . . . . . . .

. . . . . . . . .

81 82 273 232 489,547 11,162 478,385 0.57 20.78

82 83 183 103 458,003 10,082 447,921 0.41 10.22

83 84 128 50 415,315 8,981 406,334 0.32 5.57

84þ 85þ 1,212 840 2,139,545 45,320 2,094,225 0.58 18.53

State Total 116,596 88,327 148,156,094 3,094,312 145,061,782 0.80 28.54

Females

Jan 1, 2009 population

2009 age 2010 age In-migr

Out-

migr U.S. Arizona Adjusted U.Sa

In-

migration

rateb

Out-

migration

ratec

1 2 2,018 1,319 1,926,374 43,258 1,883,116 1.07 30.49

2 3 799 1,609 1,983,272 45,239 1,938,033 0.41 35.57

3 4 1,117 1,181 1,992,927 45,351 1,947,576 0.57 26.04

4 5 1,014 1,347 1,964,366 43,998 1,920,368 0.53 30.62

. . . . . . . . .

. . . . . . . . .

20 21 2,771 3,315 2,187,145 44,437 2,142,708 1.29 74.60

21 22 1,901 2,165 2,108,284 42,372 2,065,912 0.92 51.10

22 23 2,526 2,856 2,064,507 40,750 2,023,757 1.25 70.09

23 24 2,656 1,382 2,035,745 40,731 1,995,014 1.33 33.93

. . . . . . . . .

. . . . . . . . .

45 46 444 477 2,247,104 42,009 2,205,095 0.20 11.35

46 47 1,948 807 2,264,280 42,041 2,222,239 0.88 19.20

47 48 1,277 1,214 2,272,429 42,203 2,230,226 0.57 28.77

48 49 1,541 669 2,276,431 42,361 2,234,070 0.69 15.79

. . . . . . . . .

. . . . . . . . .

(continued)
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or 74.85 out-migrants per 1,000 persons. Out-migration rates are much larger than

in-migration rates because the denominators for out-migration rates are much

smaller than the denominators for in-migration rates.

Although the rationale for constructing gross migration rates is clear, the same

cannot be said for net migration rates. Because net migration is the difference

between the number of in- and out-migrants, there is no true population at risk and

rates reflecting migration probabilities cannot be constructed. We follow conven-

tional terminology by referring to net migration ratios as “rates,” but the reader is

reminded that they are not rates in a probabilistic sense.

There are two basic methodological questions regarding the construction of

net migration rates: (1) Should the denominator reflect the population at the begin-

ning, middle, or end of the migration interval? and (2) Should the denominator reflect

the population of the region itself or the population of some other region?

With respect to the first question, we favor using the population at the beginning of

the interval as the denominator because it is unaffected bymigration during the interval

and corresponds to the launch-year population used for making projections. It is also

common to use the beginning population “survived” to the end of the migration period

using the appropriate survival rates (Irwin 1977; Pittenger 1976). This approach is a bit

more complicated but has the advantage of accounting explicitly for deaths ofmigrants.

Both approaches are acceptable and generally yield similar results. Themost important

thing to remember is that migration rates must be applied in a manner consistent with

the way they were computed; for example, if rates were based on the unadjusted

population at the beginning of the migration interval, they must be applied to the

unadjusted population at the beginning of the projection interval.

The answer to the second question depends on the characteristics of the area to

be projected. For regions losing population or growing fairly slowly, we favor using

Table 6.3 (continued)

Females

Jan 1, 2009 population

2009 age 2010 age In-migr

Out-

migr U.S. Arizona Adjusted U.Sa

In-

migration

rateb

Out-

migration

ratec

60 61 847 834 1,855,547 37,623 1,817,924 0.47 22.17

61 62 1,150 455 1,794,107 37,063 1,757,044 0.65 12.28

62 63 868 707 1,830,682 38,599 1,792,083 0.48 18.32

63 64 1,908 371 1,792,164 38,466 1,753,698 1.09 9.64

. . . . . . . . .

. . . . . . . . .

81 82 56 0 710,309 13,850 696,459 0.08 0.00

82 83 763 131 690,962 13,223 677,739 1.13 9.91

83 84 321 76 647,967 12,216 635,751 0.50 6.22

84þ 85þ 1,510 1,287 4,270,141 76,144 4,193,997 0.36 16.90

State total 105,262 83,316 153,374,824 3,130,988 150,243,836 0.70 26.61

Sources: U.S. Census Bureau: Maricopa County and National 2010 ACS PUMS; 2010 census;

July 1, 2008 and 2009 Intercensal Estimates
aU.S. population � Arizona population
bIn-migrants / adjusted U.S. population � 1,000
cOut-migrants / Arizona population � 1,000
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the population of the region itself for constructing net migration rates. For regions

growing very rapidly, however, there are advantages to using the population of the

rest of the country. Because there are more in-migrants than out-migrants, the rest

of the country rather than the region itself is the base population for the larger

number of total migrants; this provides a theoretical justification for making this

choice. Perhaps more important, using the population of the rest of the country as

the denominator reduces the impact of very high migration rates, which may be

more realistic for projections of rapidly growing areas. Smith (1986) provides a

more detailed discussion of these issues.

We illustrate the calculation of net migration rates using the same data

we used for gross migration rates. For males aged 23, net migration can be

calculated as:

4,508� 3,290 ¼ 1,218

This can be expressed as a rate by dividing it by the appropriate population.

Using the male population aged 23 living in Arizona in 2009 as the denominator,

the net migration rate can be calculated as:

1,218=43,956 ¼ 0:02771

or 27.71 per 1,000 persons. Net migration rates can also be calculated using the

population of the rest of the country as the denominator. Following this approach,

the net migration rate for males aged 23 can be calculated as:

1,218=2,073,816 ¼ 0:00059

or 0.59 per 1,000 persons. As noted above, we believe migration rates based on the

first approach are acceptable for projections of places with slow or moderate growth

rates, but the second is better for projections of rapidly growing places. When the

first approach is used, migration is projected by multiplying the migration rates by

the population to be projected; when the second approach is used, migration is

projected by multiplying the migration rates by the national population (minus the

population of the area to be projected).

6.1.1.5 International and Domestic Migration

An important distinction can be made between international (i.e., “foreign”) and

domestic (i.e., “internal”) migration. International migration refers to moves from

one country to another, whereas domestic migration refers to moves from one place

to another within a particular country (Swanson and Stephan 2004). Although

domestic migration has more impact than international migration on population

growth and demographic change in most states and local areas, international

migration is growing in importance and has a substantial impact in some places.

People moving into a country are typically called immigrants and people leaving

are called emigrants.
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It is no exaggeration to describe the United States as a nation of immigrants.

According to the Office of Immigration Statistics (2012), more than 75million people

have immigrated to the United States since 1820. The number of immigrants rose

steadily throughout the nineteenth century, peaking at 8.2 million in the first decade of

the twentieth century. It then started falling because ofWorldWar I and the passage of

restrictive immigration laws in 1921 and 1924. The Great Depression andWorldWar

II reduced the numbers to their lowest levels since the middle of the nineteenth

century. The post-war economic expansion and the easing of restrictive immigration

policies led to a reversal of the downward trend and the number of immigrants has

been rising steadily rising since the 1930s. The first decade of the twenty-first century

saw the largest number of immigrants in the nation’s history (see Fig. 6.1).

Several different categories of international migrants have been defined for the

United States (Edmonston and Michalowski 2004; Judson and Swanson 2011).

Technically, immigrants are citizens of other countries who have been legally

admitted for residence. Refugees and asylees are persons who have been granted

entry because they fear persecution for religious, political, or other reasons in their

home countries; although they are not initially classified as immigrants, many later

become immigrants by attaining permanent resident status. Most immigrants come

to the United States for economic or family-related reasons; less than 10% come as

refugees or asylum seekers (Martin and Midgley 2010). In addition, millions of

foreign citizens each year are granted temporary visas to enter the country for a

specific purpose, such as a vacation, a business trip, a temporary job, or to attend

school. Many stay only for a few days or weeks, but others remain for many years.
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Fig. 6.1 Documented immigrants to the United States, 1900–2009 (Source: Office of Immigration

Statistics 2012)
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Finally, there are illegal or unauthorized migrants who enter the country surrep-

titiously or who violate the terms of their visas. Although the number is not known

exactly, it is estimated that approximately 11 million undocumented entrants were

living in the United States in 2010 (Passel and Cohn 2011).

Immigrants are not evenly distributed throughout the country. More than 20% of

the population is foreign-born in California, New Jersey, and New York (Grieco

et al. 2012). In fact, more than a quarter of the nation’s foreign-born population

resides in a single state, California. Between 10% and 20% of the population is

foreign-born in Arizona, Connecticut, District of Columbia, Florida, Illinois, Mas-

sachusetts, Nevada, Rhode Island, Texas, Virginia, and Washington. In compari-

son, less than 5% of the population is foreign-born in 19 states, with West Virginia

having the smallest share at about 1%. The distribution of immigrants is even more

variable for cities and counties than it is for states.

Cohort-component projections often distinguish between international and

domestic migration flows because they follow different timing patterns and have

different demographic and socioeconomic characteristics. Separating international

from domestic migration can also have an impact on projected fertility and mor-

tality rates because immigrants often differ from the rest of the population in terms

of their fertility and mortality characteristics (Edmonston and Passel 1992;

Edmonston and Michalowski 2004).

No agency in the United States collects comprehensive data on the emigration of

U.S. residents to foreign countries. However, partial data are available from several

sources. One is the Internal Revenue Service (IRS), which provides annual reports

on the location (down to the county level) of current filers and the locations where

they filed the previous year. These reports include the number of tax returns filed

abroad by people residing in the United States the previous year. Another source is

the U.S. Department of State. U.S. residents living abroad often register with the

U.S. Embassy in the country in which they reside; although registration is not

mandatory, these records provide some information on emigration. Immigration

data collected by other countries can also be used to develop estimates of

U.S. residents who emigrated to those countries (U.S. Census Bureau 2011a).

The number of emigrants leaving the United States has been estimated to be

around 200,000 per year (Martin and Midgley 1999). Developing emigration

estimates is particularly important for states and local areas that have received

large numbers of immigrants in the past because emigration from the United States

has been found to occur primarily among foreign-born residents (Edmonston and

Passel 1992).

6.1.1.6 Assessing the Issues

Migration is a difficult concept to measure or even to define. Measures vary in their

treatment of distances traveled, time intervals covered, geographic boundaries

crossed, distinctions between temporary and permanent moves, and definitions of

place of usual residence. We have described migration as it is typically defined in the

United States, but conventional measures understate the true extent of population
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mobility and may distort the characteristics of migrants (Edmonston and

Michalowski 2004; Judson and Swanson 2011; Morrison et al. 2004; Zelinsky 1980).

Although these shortcomings have serious implications for analyses of the

determinants and consequences of migration, they do not necessarily present a

problem for the construction of population projections. The objective of population

projections is generally not to project the total number of moves or to classify them

as temporary, permanent, repeat, return, domestic, or international. Rather, it is to

project the overall impact of migration on the resident population of a particular

geographic area during a particular period of time. As long as the data accurately

reflect this aspect of the migration process, their inadequacies in capturing other

aspects are irrelevant. The critical issues are to find data sources that accurately

reflect historical migration trends and to develop realistic yet tractable models for

projecting those trends into the future. We turn to these issues next.

6.2 Sources of Data

Whereas birth and death data are readily available for states and counties—and are

generally considered to be quite accurate—the same cannot be said for migration

data. The ideal migration data set would include at least the following (Wetrogan

and Long 1990):

1. Data on both the origins and destinations of migrants.

2. Data disaggregated by age, sex, and race/ethnicity.

3. Data available in 1-year age groups.

4. Data available on an annual basis for a large number of time periods.

5. Data available on a timely basis.

6. Data consistent with the relevant population base for calculating migration rates.

In a perfect world, these data would be available for states, counties, and a

variety of subcounty areas. Unfortunately, no single data set even comes close to

meeting all these criteria. In fact, no central agency in the United States directly

tracks population movements, as is the case in a number of European countries with

population registers (see, for example, Statistics Finland 2004). Rather, migration

data must be derived from a variety of sources, each with its own strengths and

weaknesses.

6.2.1 Sample Surveys

6.2.1.1 American Community Survey

The American Community Survey (ACS) is a monthly survey conducted by the

Census Bureau. It samples approximately 250,000 housing units each month and is
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designed to provide accurate and timely demographic, socioeconomic, and housing

data on an annual basis for a variety of geographic areas in the United States (Citro

and Kalton 2007). It provides single-year data for all states and for cities, counties,

and other geographic areas with 65,000 residents or more. Data must be aggregated

over several years in order to provide estimates for smaller areas. Data based on

3-year aggregations are available for places with at least 20,000 residents and data

based on 5-year aggregations are available for all census-designated places, includ-

ing small towns, census tracts, and block groups (U.S. Census Bureau 2009a). In

2010, the ACS replaced the long form of the decennial census as a source for

detailed demographic, socioeconomic, and housing data in the United States.

As noted in Chap. 2, there are several important differences between the ACS

and the long form of the decennial census. The ACS has a smaller sample size, uses

different residence rules, and is based on a rolling monthly sample rather than being

conducted at a single point in time. There is also an important difference regarding

migration data: Whereas migration data in the decennial census were based on

place of residence 5 years earlier, migration data in the ACS are based on place of

residence 1 year earlier. All of these differences have important implications for the

production of population projections.

The Census Bureau provides summaries of ACS migration data on its website.

These summaries include in-migration data for states, counties, and subcounty

areas such as cities, school districts, zip code tabulation areas, census tracts, and

block groups. They include breakdowns by age, sex, race, and several other

characteristics but do not include cross tabulations of one characteristic by another

(e.g., age by sex). Summaries of out-migration data are not a part of regular ACS

products, but the Census Bureau has produced a series of reports showing in- and

out-migration data for counties and county equivalents (Benetsky and Koerber

2012). These reports include a limited amount of data on the characteristics of

migrants but do not include any cross tabulations.

More detailed characteristics are available from Public Use Microdata Sample

(PUMS) files. These files contain records for individual people and housing units

and can be tabulated in a variety of ways. Individual records have been stripped of

all identifying information and represent about 1% of the population. PUMS files

are available only for areas with at least 100,000 residents, which excludes 81% of

counties and the vast majority of subcounty areas in the United States (U.S. Census

Bureau 2011b).

6.2.1.2 Current Population Survey

The Current Population Survey (CPS) is a monthly survey of about 60,000 house-

holds conducted by the Census Bureau for the Bureau of Labor Statistics (http://

www.census.gov/cps/). Begun in 1940, the CPS was designed primarily to obtain

labor force information but questions on socioeconomic and demographic charac-

teristics (including geographic mobility) were added in 1947 (U.S. Census Bureau

2006). Unlike the ACS, the CPS uses the traditional census definition of residence
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and has a “point-in-time” orientation, making its data more consistent with the

decennial census than is true for the ACS. Furthermore, although the migration

question in the CPS is based on place of residence 1 year ago, the survey instrument

also includes a 5-year migration question in years ending in 0 and 5, making it

possible to construct 5-year migration rates consistent with rates based on data from

previous decennial censuses (Ihrke and Faber 2012).

Every spring (primarily in March), CPS interviewers ask questions on migration

and many other topics in the Annual Social and Economic Supplement. Because of

the small sample size, however, migration data are tabulated and released only at

the national and regional levels. Data on the number and characteristics of migrants

have been available since 1947 but questions on reasons for moving were added

only in 1998. In addition to regularly tabulated statistics, individual micro-data files

(similar to PUMS files) can be accessed to create customized cross tabulations

(U.S. Census Bureau 2006).

6.2.1.3 Other Surveys

Other surveys that have been used to study mobility and migration include the

American Housing Survey, the Survey of Income and Program Participation, and

the General Social Survey. These surveys provide data that are useful for some

types of analyses, but generally do not provide a sufficient basis for projecting state

and local migration because of their small sample sizes, the nature of their sampling

frames, the definitions of mobility and migration they use, and the levels of

demographic and geographic detail they provide.

6.2.2 Administrative Records

Administrative records kept by federal government agencies provide another source

of migration data. Three agencies of particular importance for our purposes are the

Internal Revenue Service (IRS), Office of Immigration Statistics (OIS), and

U.S. Postal Service (USPS).

6.2.2.1 Internal Revenue Service

By matching the addresses listed on annual income tax returns and adjusting for the

number of exemptions claimed on each return, the Census Bureau has created an

annual set of state-to-state and county-to-county migration flows. These data have

one important advantage over ACS migration data: Because they are based on a

much larger number of individual records, they are more reliable (i.e., smaller

sampling error) than ACS migration data.
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IRS migration data have several limitations, however. Not everyone files an

income tax return; in particular, people with low incomes are not required to file.

People moving to or from abroad are often missed. The address listed on a tax return

may be that of a bank, law office, accounting firm, or post office box rather than the

home address of the filer; this may lead to an inaccurate distribution of the

population at the local level. The methodology assumes that people listed as

exemptions on a tax return actually live (and move) with the filer; this may not

be true. Finally, IRS migration data provide no information on the demographic

characteristics of migrants and are not available below the county level.

In spite of these problems, IRS data provide useful information on annual

migration flows for states and counties. They cover more than 90% of the

U.S. population and provide migration estimates that remain relatively stable

over time. IRS data have been used by the Census Bureau for the production of

population estimates since the 1970s and for the production of population pro-

jections since the 1980s. For further discussion of the strengths and weaknesses of

IRS migration data, see Engels and Healy (1981), Gross (2005), Isserman

et al. (1982), and Wetrogan and Long (1990).

6.2.2.2 Office of Immigration Statistics

Official immigration statistics in the United States have been collected each year

since 1820 (Edmonston and Michalowski 2004). These data were compiled by

several different federal agencies until 1892, when this function was transferred to

the Immigration and Naturalization Service (INS) in the Department of Justice. In

2002, it was transferred to the newly formed Office of Immigration Statistics (OIS)

in the Department of Homeland Security.

The OIS produces annual statistics on the number of legal immigrants by type,

country of origin, place of intended residence, age, sex, marital status, occupation,

and several other characteristics. These statistics, however, are based on the year in

which a person was granted legal immigration status, which is not necessarily the

same as the year in which that person entered the country. Furthermore, they

exclude estimates of undocumented immigrants, which fluctuate from year to

year but were estimated at approximately 11 million in 2010 (Passel and Cohn

2011). Although the federal government started keeping records on emigration in

1908, they were discontinued in 1957 (Edmonston and Michalowski 2004). As

mentioned previously, emigration estimates can be developed using demographic

analysis and several administrative and census data sources.

6.2.2.3 U.S. Postal Service

The U.S. Postal Service (USPS) compiles data on changes of address through its

National Change of Address (NCOA) service (Martins et al. 2011). Groups that

subscribe to this service can obtain updates when a postal customer files a change-
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of-address form with the Postal Service. This data source is particularly useful for

monitoring small-area population changes and is one of the primary methods

private companies use to obtain change-of-address information for individuals.

Businesses can purchase the updates for as little as $5 per one thousand names.

6.2.2.4 The Private Sector

Thomas, Gould and Stillwell (2012) evaluated data available from a private com-

pany (Axciom) as a potential alternative to administrative records and surveys as a

source of migration estimates in England. These estimates were based on data from

an annual lifestyle survey done by this company. In addition, Axciom has other

types of data that can be used for estimating migration, including the NCOA data

compiled by the USPS (Martins et al. 2011). These data include length of residence

at the current location and many other variables. Records can be sorted and

aggregated to obtain migration flows by area, including information of a variety

of individual and household characteristics. Other companies (e.g., Experian)

provide similar services.

6.2.3 Indirect or Residual Estimates of Migration

The sources discussed above provide data on gross migration, or unidirectional

population moves into or out of a region. Estimates of net migration can be derived

from these gross migration data by subtracting the number of out-migrants from the

number of in-migrants. For example, Table 6.2 shows net migration calculated in this

manner for states. There are many circumstances, however, in which gross migration

data are not available. Under these circumstances, indirect estimates of net migration

can be made by comparing a region’s population at two points in time, measuring the

change due to natural increase, and attributing the residual to net migration. Several

different methods can be used to calculate net migration in this manner.

One is the vital statistics method, in which net migration (NM) is calculated by

rearranging the terms of the demographic balancing equation described in Chap. 2:

NM ¼ Pl � Pb � Bþ D

where Pl is the population in a given year, Pb is the population in some earlier year,

and B and D are the number of births and deaths that occurred between times b and l.
For example, Seminole County, Florida had a population of 365,199 in 2000 and

422,718 in 2010. It recorded 46,451 births and 27,173 deaths between 2000 and 2010.

Net migration during the decade therefore can be estimated as:

38,241 ¼ 422,718� 365,199� 46,451þ 27,173
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The vital statistics method can be used to calculate net migration for the entire

population or for subgroups of the population (e.g., racial groups). However, the

process is very cumbersome when applied to demographic subgroups (especially

classified by age) and requires collecting a great deal of data, which are frequently

unavailable for subcounty areas. To avoid these problems, a second residual

method is often used.

This is called the survival rate method. Instead of accounting for births and

deaths explicitly, this method uses life table survival rates to estimate the expected

population in each subgroup at the end of the period. Estimates of net migration are

then calculated as the difference between the expected population and actual

population. The most common form of this method is the forward survival rate
method (FSRM), in which net migration is estimated as:

NM ¼ nPxþy,l � xSnð Þ nPx,bð Þ

where nPx,b is the population age x to x + n in year b, nPx + y,l is the population age

x + y to x + n + y in some later year l, y is the number of years between b and l,
and xSn is the y-year survival rate for age group x to x + n. For example, Florida had

115,768 Hispanic males aged 20–24 in 2000, 162,331 Hispanic males aged 30–34

in 2010, and a 10-year survival rate of 0.9851, yielding a net migration estimate of:

48,288 ¼ 162,331� 0:9851ð Þ 115,768ð Þ

This method can be applied to every subgroup in the population to provide net

migration estimates for a number of demographic categories.

The reverse survival rate method (RSRM) can also be used. Under this approach,

the current population in a given subgroup is “reverse survived” back to the

preceding census; that is, the reciprocal of the survival rate is applied. The differ-

ence between the survivors and the earlier census count is calculated as the estimate

of net migration. Either of these approaches—or a combination of the two—can be

used to estimate net migration (Siegel 2002, p. 22). More detailed discussions of

these methods and other indirect estimates of net migration can be found in

Morrison et al. (2004) and Rogers et al. (2010).

The major advantage of indirect methods of estimating net migration is that they

can be applied when no direct data on in- and out-migration are available. Conse-

quently, they are particularly useful for projections of small areas. However, the

accuracy of these estimates depends on the accuracy of the underlying population

estimates (or counts) and the vital statistics (or survival rate) data. Vital statistics

and survival rate data in the United States are generally quite accurate, but the

accuracy of population estimates and census counts varies over time and from place

to place. In particular, changes in undercount (or overcount) from one census to

another may cause decadal estimates of net migration to be too high or too low. This

is seldom a problem for larger areas, but may be an issue for small areas (e.g.,

census tracts or block groups). Changes in geographic boundaries may also affect

net migration estimates; again, this generally will not be a problem for states and
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counties, but may be significant for cities, census tracts, zip code areas, and other

subcounty areas.

Estimates of net migration by age, sex, and race for states were produced for

each decade from 1870 to 1950 (Kuznets et al. 1957). These estimates were

extended to counties for each decade from 1950 to 2010 (Winkler et al. 2013).

Because net migration estimates by age, sex, and race/ethnicity are not available for

most subcounty areas, analysts making subcounty projections may have to start by

producing those estimates themselves.

It should be noted that residual estimates of net migration are consistent with the

time frame and residency rules used in the decennial census. Moreover, they can be

developed for any level of geography for which birth, death, and census data are

reported. Both of these advantages make residual estimates quite useful for cohort-

component population projections, especially for small areas.

We close this section by briefly mentioning the model-based migration estimates

developed by Rogers et al. (2010). This approach emphasizes three general areas:

(1) smoothing existing data that are irregular; (2) repairing existing data that are

defective; and (3) inferring migration where no (valid) data are available. Most of

the examples deal with out-migration flows and rates, but the techniques they

describe could be applied to in-migration flows and rates and even to net migration,

although defining denominators for migration rates would be a challenge. The basic

strategy they describe is to use all available information, with the aim of generating

age- and spatially-related patterns. Although the assumptions and techniques are

too complex to discuss here, the loss of long-form migration data makes the

development of model-based estimates particularly attractive.

6.3 Evaluating and Adjusting ACS Migration Data

6.3.1 Evaluating ACS Data

The ACS has replaced the long form of the decennial census as the primary source

of detailed migration data in the United States. As noted previously, there are

several differences between the ACS and the census long form: The ACS is

based on a rolling sample rather than a single point in time, uses different residence

rules, has a smaller sample size, and measures migration over a 1-year interval

rather than a 5-year interval. Furthermore, the Census Bureau does not plan to

release as much detailed migration data from the ACS as it did from the decennial

census. All these differences have implications for the calculation of migration

rates and the construction of cohort-component population projections.

The rolling sample changes the interpretation of migration data. In the decennial

census, migration data were based on a specific time period: place of residence

5 years ago (e.g., April 1, 1995 for the 2000 census). In the ACS, migration data are

based on place of residence 1 year prior to the month in which a person responds to
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the survey. One-year data are derived from all surveys conducted over a 12-month

period, 3-year data are derived from all surveys conducted over a 36-month period,

and 5-year data are derived from all surveys conducted over a 60-month period.

This is not necessarily a problem, but it changes the interpretation of the migration

data and complicates the construction of migration rates (e.g., what is the appro-

priate measure of the population at risk?).

The decennial census attempts to count people at their usual place of residence

whereas the ACS counts people who live at a particular address for at least

2 months. This difference most likely has little impact on the data collected in

most places, but may have a significant impact in places with large numbers of

seasonal and other temporary residents (e.g., snowbirds in Florida and Arizona).

Few studies have evaluated this impact, but there is some evidence that significant

differences exist for some variables (Swanson and Hough 2012; van Auken

et al. 2006). Further research is needed before we can fully evaluate the impact of

differences in residence rules on the migration data collected in the ACS.

The collection of 1-year rather than 5-year migration data affects the construc-

tion of migration rates. It is difficult to transpose 1-year migration data into 5-year

data; as a result, projections based on ACS migration rates will generally have to

use single-year age groups and 1-year projection intervals. This can be a problem

because 1-year migration rates are more strongly affected by short-run fluctuations

in economic conditions and by the impact of unique events than are 5-year rates;

this volatility raises the level of uncertainty for long-range population forecasts.

This problem can be reduced by using data collected over a 5-year period, but

cannot be eliminated completely. Furthermore, migration rates vary more across

single-year age groups than 5-year age groups because they are based on smaller

populations. This contributes to inconsistencies in age-specific migration rates, as

illustrated in the following section.

The smaller sample size of the ACS is particularly important. Even when

aggregated over a 5-year period, the sample size for the ACS is considerably

smaller than the sample size for the long form of the decennial census. This

makes ACS migration data less reliable (i.e., larger sampling error) than migration

data from decennial censuses, especially for demographic subgroups and geo-

graphic areas with small populations.

A final difference between the ACS and the decennial census is the reduction in

migration data products released by the Census Bureau. In previous decades, the

Census Bureau released a complete set of in- and out-migration data by age, sex,

and race for states and counties. Under current plans, the Census Bureau will be

releasing a more limited set of migration data products based on the ACS

(Benetsky, M., 2013, Personal communication). Specifically, it will release in-

and out-migration data for counties, broken down by three characteristics each

year (e.g., age, sex, and marital status). The data will not be cross tabulated and the

characteristics will change from year to year. As a result, more detailed demo-

graphic data (e.g., in- and out-migration broken down by age, sex, and race

simultaneously) will have to be derived from PUMS files or created by combining

data sets.
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Clearly, there are major differences between the ACS and the long form of the

decennial census. An important advantage of the ACS is its frequency and timeli-

ness: Data are released on an annual basis throughout the decade rather than only

once following a decennial census. An important disadvantage is its smaller sample

size, which reduces the reliability of the data. This creates a problem for the

construction and application of migration rates, particularly for small areas. How

can this problem be dealt with?

6.3.2 Adjusting ACS Data

Figure 6.2 shows raw (i.e., unadjusted) in- and out-migration rates from 2009 to

2010 for males and females by single year of age in Arizona. These rates are based

on the same data and procedures shown in Table 6.3.

The expected migration patterns are clearly visible. Both in- and out-migration

rates are highest for people in their twenties and early 30s and decline thereafter,

except for an increase in in-migration rates for people in their 60s. However, the

rates fluctuate wildly from one age group to another and show many irregularities.

For example, in-migration rates for males in the youngest age groups differ

substantially from rates for females; one would expect them to be about the same

because young children typically move with their parents. There is a tremendous

spike in the out-migration rate for females at age six; again, there is no reason to

expect this to be true. Above age 70, in-migration rates for males are much higher

than rates for females in some age groups and much lower in others. Similar

irregularities are found at other ages throughout the age distribution. These patterns

stand in sharp contrast to research showing that migration rates normally change

fairly smoothly over the age distribution (Rogers et al. 2010).

These fluctuations and irregularities are caused primarily by the small sample

size. One potential solution to this problem is to use 5-year ACS data rather than

data from a single year (Mather et al. 2005; Griffin and Waite 2006). This will raise

the sample size considerably, thereby improving the reliability of the data. How-

ever, it will not solve the problem completely, especially for demographic sub-

groups and geographic areas with small populations. Furthermore, using 5 years of

data makes it impossible to measure changes in annual migration patterns (Franklin

and Plane 2006).

Another potential solution is to adjust the migration data. This can be done using

nonlinear smoothing techniques (Vellman 1980). We apply two techniques, one based

on three observations (Smooth 3) and one based on five observations (Smooth 5). The

results for in-migration rates for males are shown in Fig. 6.3, along with the original

rates shown in Fig. 6.2. Although the smoothing techniques greatly reduce the

fluctuations, many irregularities are still apparent, such as the large jump between

ages 17 and 18 and the noticeable plateauing at several age groups.

We believe a better solution can be achieved by following a three-step

adjustment process (Rogers et al. 2010). First is to aggregate single-year age

6.3 Evaluating and Adjusting ACS Migration Data 125



data into broader age groups. Aggregating the data reduces many (but not all) of

the wildly fluctuating migration patterns found in the single-year age data.

Second is to construct in- and out- migration rates for these broader age groups

in the manner described previously. Third is to use interpolation procedures to

create single-year rates from the rates for broader age groups developed in the

second step. We illustrate this process using the migration data for Arizona

shown in Fig. 6.2.
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Table 6.4 shows the first two steps in the process. Migration data by single year

of age were aggregated into broader age groups (in some instances, they also were

adjusted to account for apparent anomalies and inconsistencies). These numbers

were then divided by the relevant populations to provide a set of in- and

out-migration rates. These rates are considerably more consistent across age groups

and between sexes than those shown in Fig. 6.2.

The final step of the adjustment process is to transpose the migration rates for

broader age groups back into rates by single year of age. This can be done using any

one of a number of interpolation methods, as described in Chap. 10. In this instance,

we used the cubic spline method, which we believe generally gives superior results

(McNeil et al. 1977). The results for females are shown in Fig. 6.4.

The target rates are those shown for 5-year age groups in Table 6.4. The rates for

single-year age groups are represented by the smooth lines. The single-year rates

follow the pattern implied by the spline target rates very well and the age patterns

are much smoother than those shown in Fig. 6.2. We believe the adjustment

techniques described here will generally lead to more reliable migration rates

than could be obtained using unadjusted data; these improvements will be partic-

ularly substantial when rates are calculated for racial/ethnic groups and for geo-

graphic areas with small populations.

Rogers et al. (2010) suggest an additional step that might further improve

age-specific migration rates from the ACS; namely, fitting model migration

schedules to the splined age profiles. MATLAB programming code for estimating

the parameters of such migration models can be found on the website of the

Institute of Behavioral Science at the University of Colorado (http://www.colo

rado.edu/ibs/pop/indirect_estimation_of_migration/scripts/model_migration_

schedules.html).
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Table 6.4 Domestic migration rates by 5-year age group and sex, Arizona, 2009–2010

Males

Jan 1, 2009 population

2009

age

2010

age

In-

migrants

Out-

migrants U.S. Arizona

Adjusted

U.Sa

In-

migration

rateb

Out-

migration

ratec

1–4 2–5 7,442 6,249 8,215,817 185,698 8,030,119 0.93 33.65

5–9 6–10 7,154 5,846 10,277,883 228,524 10,049,359 0.71 25.58

10–14 11–15 5,407 4,506 10,466,060 226,299 10,239,761 0.53 19.91

15–19 16–20 9,339 7,332 11,182,079 234,487 10,947,592 0.85 31.27

20–24 21–25 14,891 12,030 10,895,703 226,860 10,668,843 1.40 53.03

25–29 26–30 14,992 11,965 10,521,190 222,952 10,298,238 1.46 53.67

30–34 31–35 11,428 9,626 9,888,975 209,726 9,679,249 1.18 45.90

35–39 36–40 8,426 6,568 9,934,005 207,750 9,726,255 0.87 31.61

40–44 41–45 6,632 5,464 10,282,175 203,475 10,078,700 0.66 26.85

45–49 46–50 5,390 4,335 11,088,515 209,997 10,878,518 0.50 20.64

50–54 51–55 5,166 3,551 10,815,671 200,029 10,615,642 0.49 17.75

55–59 56–60 4,320 3,075 9,421,208 176,562 9,244,646 0.47 17.42

60–64 61–65 5,634 2,511 7,990,616 164,988 7,825,628 0.72 15.22

65–69 66–70 3,924 1,668 5,789,595 132,026 5,657,569 0.69 12.63

70–74 71–75 2,606 1,328 4,198,322 101,420 4,096,902 0.64 13.09

75–79 76–80 1,844 1,045 3,148,158 75,323 3,072,835 0.60 13.87

80–83 81–84 970 540 1,900,577 42,876 1,857,701 0.52 12.59

84+ 85+ 1,030 688 2,139,545 45,320 2,094,225 0.49 15.18

State total 116,595 88,327 148,156,094 3,094,312 145,061,782 0.80 28.54

Females

Jan 1, 2009 population

2009

age

2010

age

In-

migrants

Out-

migrants U.S. Arizona

Adjusted

U.Sa

In-

migration

rateb

Out-

migration

ratec

1–4 2–5 7,340 6,824 7,866,939 177,846 7,689,093 0.95 38.37

5–9 6–10 6,822 6,250 9,852,416 219,469 9,632,947 0.71 28.48

10–14 11–15 4,762 4,060 9,989,249 216,741 9,772,508 0.49 18.73

15–19 16–20 7,756 6,595 10,621,749 221,313 10,400,436 0.75 29.80

20–24 21–25 12,799 10,981 10,458,660 210,183 10,248,477 1.25 52.24

25–29 26–30 12,198 10,469 10,354,225 211,532 10,142,693 1.20 49.49

30–34 31–35 8,917 7,614 9,858,926 201,746 9,657,180 0.92 37.74

35–39 36–40 6,597 5,414 10,029,105 202,729 9,826,376 0.67 26.71

40–44 41–45 5,472 4,180 10,384,626 198,224 10,186,402 0.54 21.09

45–49 46–50 5,279 3,974 11,376,413 211,663 11,164,750 0.47 18.78

50–54 51–55 5,595 3,874 11,243,200 210,272 11,032,928 0.51 18.42

55–59 56–60 4,734 2,884 10,032,606 193,983 9,838,623 0.48 14.87

60–64 61–65 5,810 2,613 8,646,865 181,552 8,465,313 0.69 14.39

65–69 66–70 4,023 2,243 6,512,253 147,277 6,364,976 0.63 15.23

70–74 71–75 2,442 1,651 4,980,307 110,899 4,869,408 0.50 14.89

75–79 76–80 1,816 1,385 4,091,142 84,893 4,006,249 0.45 16.31

80–83 81–84 1,164 972 2,806,002 54,522 2,751,480 0.42 17.83

84+ 85+ 1,736 1,333 4,270,141 76,144 4,193,997 0.41 17.51

State total 105,262 83,316 153,374,824 3,130,988 150,243,836 0.70 26.61

Sources: U.S. Census Bureau: Arizona and National 2010 ACS PUMS; July 1, 2008 and 2009

Intercensal Estimates
aU.S. population � Arizona population
bIn-migrants / adjusted U.S. population � 1,000
cOut-migrants / Arizona population � 1,000
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The replacement of the census long form by the ACS presents a number of

challenges for the producers of population projections, but provides some benefits

as well. Migration researchers and other data analysts are just now starting to come

to grips with this new data source and will undoubtedly come up with ways to

maximize its usefulness and minimize its shortcomings. The three-step adjustment

process described here is one step in that direction. We expect that future research

will lead to additional improvements.

6.4 Determinants of Migration

Why do people move? How do they decide when and where to move? Perhaps more

important for population projections, why do some areas have more people moving

in than out while others have more moving out than in? What causes an area’s

migration patterns to change over time? It is helpful to consider some possible

answers to these questions before attempting to construct projections of future

migration flows. Although we cannot provide a complete discussion of the deter-

minants of migration in this chapter, we can point out some of the theoretical

perspectives and empirical findings that are particularly relevant to population

projections. More complete discussions can be found elsewhere (Greenwood

1997; Lee 1966; Long 1988; Massey et al. 2002; Morrison et al. 2004; White and

Lindstrom 2005; Zelinsky 1980).
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6.4.1 Theoretical Foundations

Studies of the determinants of migration are often based implicitly or explicitly on

the theory of utility maximization (Cushing and Poot 2004; DaVanzo and Morrison

1981; Greenwood 1997; Hunt 1993; Lee 1966; Molloy et al. 2011). The basic idea

is that each person (or household) considers all the advantages and disadvantages of

living at the current location, the advantages and disadvantages of living at all other

possible locations, and the full costs of moving from one location to another (i.e.,

money, time, and psychic costs). If the person (or household) determines that

moving would raise the overall level of utility by more than the cost of the move,

the decision to move is made, presumably to the location that will yield the greatest

gain in utility. Although terminology and areas of emphasis vary from study to

study, this basic theoretical foundation has been used by migration researchers in

economics, sociology, anthropology, geography, and other disciplines.

An alternative to the theory of utility maximization was provided by Massey

et al. (2002). Their approach was originally applied to international migration but

applies to domestic migration as well. It was developed because of the inability of

utility maximization theory to explain why specific origin-destination migration

flows persist in the face of changing economic conditions in the origin and

destination communities. It is based on the idea of social capital, which is created

when the relations among persons change in ways that facilitate action (Coleman

1990). Massey and his colleagues apply this theory to chain migration, arguing that

each act of migration creates social capital among people to whom the migrant is

related, thereby raising the odds of their migration. These chains are essentially

networks of social reciprocity, knowledge, and skills. In this approach, once the

number of network connections reaches a critical threshold, migration becomes

self-sustaining and tends to operate beyond the boundaries of utility maximization

in a narrowly economic sense.

As this brief discussion suggests, many factors influence decisions regarding

whether, where, and when to move. Some are personal characteristics such as age,

education, marital status, health status, occupation, social/psychological ties to the

community, and perceptions of risk. Others are characteristics of various locations,

including labor market conditions (e.g., wages, unemployment rates, rates of job

creation), costs of living (e.g., state and local taxes, land and housing prices), and

amenities (e.g., climate, topography, air and water quality, cultural and recreational

opportunities, availability of public goods). Moving costs—including opportunity

and information costs as well as direct out-of-pocket expenses—are also important.

An individual or household weighs all these factors when making migration

decisions.

Migration decisions also are strongly affected by one’s passage through the

stages of the life cycle (Goldscheider 1971; Pittenger 1976; White and Lindstrom

2005). Young children typically move with their parents, often with little input into

the migration decision. In early adulthood, young people move out of their parents’

homes to establish their own households, attend college, enter military service, and

130 6 Migration



so forth. Moves are frequent for young adults as they embark upon their careers, get

married, get divorced, establish families, and seek better housing. Moves become

less frequent as age increases, but still occur in response to changes in economic

conditions, job status, marital status, family size, neighborhood characteristics, and

social networks. Retirement from the labor force provides a new opportunity to

move, perhaps to an area with a warmer climate or a different mix of amenities.

Finally, declining health or the death of a spouse may induce additional moves in

the latter years of life.

These life cycle influences are clearly reflected in age-specific mobility and

migration rates. As shown in Fig. 6.5, mobility rates in the United States are

relatively high at ages 5–9, considerably lower at ages 10–17, increase dramatically

for people in their twenties, and decline steadily thereafter. These are typical

patterns found in many countries, in different regions within the same country,

and at various levels of geography. These patterns tend to persist over time and

from place to place even though overall migration levels may vary considerably.

They are so pervasive that model migration schedules have been developed to

summarize and codify their regularities (Pittenger 1976; Plane 1993; Rogers and

Castro 1984; Rogers et al. 2010).

These age patterns are consistent with one version of the theory of utility

maximization, in which migration is viewed as an investment in human capital

that entails costs and produces benefits (Clark 1986; DaVanzo and Morrison 1981;

Greenwood 1997; Sjaastad 1962). People will migrate if the present value of all

future gains in benefits outweighs the full cost of migration. After a person has

entered the labor force, further increases in age reduce the remaining number of

years over which to reap the benefits of migration; consequently, migration rates

would be expected to decline as age increases. That is precisely what the empirical
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evidence shows. Because this cost-benefit view implies that people will move to the

areas that maximize their net benefits, it also provides a basis for projecting regional

migration flows. We return to this idea in our discussion of structural models in

Chap. 9. These age-related patterns are also consistent with the ideas of social

capital and chain migration mentioned previously.

Not every state or local area fits this “typical” age pattern, of course. Places with

universities or military installations may have larger numbers of young adult

migrants than is ordinarily the case. Regions with depressed economies may have

unusually large outflows of young adults. Retirement communities may have

unusually large inflows of older adults. The unique characteristics of each state

and local area must be considered when developing the assumptions that will be

used for projecting migration rates.

6.4.2 Reasons for Moving

There are two basic approaches to studying reasons for moving (Lichter and

DeJong 1990). One is simply to ask movers about their reasons for moving.

According to the CPS, about 29% of movers in the United States in 2011–2012

cited family reasons (e.g., change in marital status, establish one’s own household),

49% cited housing reasons (e.g., bigger house, better neighborhood), 19% cited

employment reasons (e.g., job transfer, take a new job), and 3% cited some other

reason (U.S. Census Bureau 2012d). It should be noted that family and housing

reasons are often closely related; for example, an increase in family size may lead to

a desire for a larger house or apartment. Consequently, distinctions between family

and housing reasons for moving are somewhat blurred.

These numbers were strongly affected by the behavior of local movers because

they constitute the majority of movers in the United States. Housing and family

reasons are by far the most important motives for local moves, with employment

reasons falling far behind (Lichter and DeJong 1990). For intra-county movers in

2011–2012, for example, 59% moved for housing reasons, 30% for family reasons,

and only 10% for employment reasons.

For longer distance moves, however, employment-related reasons predominate.

Table 6.5 shows reasons for moving for all movers crossing county boundaries

between 2011 and 2012, by distance of move. Housing reasons accounted for 43%

of moves of less than 50 miles but only 22% of moves of more than 500 miles.

Employment reasons, on the other hand, accounted for 24% of moves of less than

50 miles but for 52% of moves of more than 500 miles. Family reasons also

declined as the distance of the move increased, but the changes were not as large

as for the other two sets of reasons. These results suggest that analysts should pay

special attention to local housing trends when making projections for very small

areas (e.g., census tracts, block groups) and should consider the potential impact of

changing economic conditions when making projections for large areas (e.g., states,

metropolitan areas).
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Reasons for moving vary considerably by age. In one study, job transfers,

looking for work, or taking a new job were the primary reasons for moving for

more than half the interstate migrants less than age 50 (Long 1988). Employment-

related reasons started to decline in importance around age 50, and for persons older

than age 65 they accounted for only a tiny proportion of interstate moves. Climate,

on the other hand, became increasingly important at older ages. Although it

accounted for less than 5% of interstate moves for persons less than age 50, seeking

a change in climate accounted for 13–15% of the moves for persons aged 50–64 and

30% for persons aged 65–69 (Long 1988). Health considerations also have a much

larger impact on migration decisions for older persons than younger persons

(Rogers 1992). Changes in the age distribution of the population may therefore

lead to substantial changes in migration patterns, especially for some states and

local areas (e.g., retirement areas).

Survey data on reasons for moving provide valuable insights into migration

behavior, but have several limitations (Lichter and DeJong 1990; Long 1988).

Some respondents may not know exactly why they moved or may not be able to

describe their reasons clearly. Some may be unable to disentangle and prioritize

within a web of multiple reasons. Some may lie, mislead, or rationalize regarding

their true motives. Others may simply forget. Indeed, one study reported that only

54% of migrants gave the same primary reason for moving both before and after the

move (McHugh 1985). Survey data help analysts formulate their assumptions

regarding future migration behavior, but do not provide definitive answers.

A second way to determine why people move is to infer motives using statistical

analyses of migration behavior. Under this approach, analysts seek to uncover

Table 6.5 Reasons for moving by distance, United States, 2011–2012a

Miles

Reason <50 50–199 200–499 500+ U.S. total

Family

Number 1,458 700 391 700 3,249

Percent 30.6 28.6 24.1 23.2 27.4

Employment

Number 1,128 911 783 1,568 4,390

Percent 23.7 37.3 48.2 52.0 37.1

Housing

Number 2,063 770 394 672 3,899

Percent 43.3 31.5 24.3 22.3 32.9

Other

Number 114 63 55 73 305

Percent 2.4 2.6 3.4 2.4 2.6

Total

Number 4,763 2,444 1,623 3,013 11,843

Percent 100.0 100.1 100.0 100.0 100.0

Source: U.S. Census Bureau, 2012 Current Population Survey, Annual Social and Economic

Supplement, Table 27
aData are for county-to-county movers
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systematic relationships between migration and personal characteristics (e.g., age,

education, marital status) and/or regional characteristics (e.g., wage rates, unem-

ployment rates, amenities). Studies of individual behavior typically find age to be the

most important predictor of mobility (Gober 1993; Long 1988; Molloy et al. 2011;

White and Lindstrom 2005). Education has also been found to be important, as

people with higher levels of education generally have higher migration rates than

people with lower levels, especially for long-distance moves (Greenwood 1997; Long

1988;Molloy et al. 2011). For strictly localmoves, however, people with higher levels

of education have been found to have lower mobility rates than people with lower

levels (Ihrke and Faber 2012). Beingmarried and having children living at home tends

to reduce the probability ofmoving (Greenwood 1997). Renters are considerablymore

mobile than homeowners, both with respect to local mobility (Ihrke and Faber 2012)

and long-distance migration (Molloy et al. 2011).

Structural models may also be developed with migration as the dependent

variable and various characteristics of migrants and/or the areas of origin and

destination as independent variables. The theoretical basis of these models is

frequently the concept of utility maximization, as described above. Empirically,

they can be tested using data at the individual or household level (Clark et al. 1996;

DaVanzo 1983; Graves and Linneman 1979;Morrison 1971) or using aggregate data

for counties, states, or other geographic areas (Clark and Hunter 1992; Coulombe

2006; Foot andMilne 1989; Greenwood and Hunt 1989). Structural models not only

add to our understanding of the determinants of migration, but also help explain why

some states and local areas are growing faster than others and why their migration

levels are increasing or declining over time. Results generated by these models can

be incorporated into population projection models to provide projections that are

consistent with various theories of migration or with alternative scenarios regarding

changing economic conditions. We discuss structural models in Chap. 9.

6.5 Migration Models

We have now described a number of concepts, measures, definitions, data sources,

and theoretical approaches used in the analysis of migration. We turn next to the

construction of migration models that can be used for cohort-component population

projections. We begin with models using gross migration data and close with

models using net migration data. The gross migration models focus on domestic

migration; projections of international migration are handled separately. The net

migration models combine the effects of domestic and international migration.

6.5.1 Gross Migration

We discuss two basic approaches to projecting gross migration in cohort-

component models. The first is based on historical data on in- and out-migration
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without reference to the places of origin and destination of those migrants; the

second is based on data covering specific place-to-place migration flows. Both

approaches were developed to provide a consistent set of projections for a large

number of places, such as all the states in the United States or all the counties in a

state. Both approaches also require a great deal of base migration data and a large

number of calculations. We also discuss simplified versions of both approaches that

retain a number of their useful features but require less data and fewer calculations.

Our examples are based on 5-year migration intervals and 5-year age groups

because those have been the most commonly used over the last several decades.

The same approaches could also be used for single-year intervals and age groups;

these will become more common as ACS data replace migration data collected in

the long form of the decennial census.

6.5.1.1 Migrant Pool Models

The first approach is based on the application of out-migration rates and

in-migration proportions for each region to be projected. This approach was used

by the Census Bureau for several sets of state population projections (U.S. Census

Bureau 1966, 1972, 1979). We describe it using a hypothetical example of state

projections, with 2000 as the launch year.

To begin, out-migration rates by age and sex are calculated for each state using

1995–2000 out-migration data from the decennial census as the numerators and

state populations by age and sex in 1995 as the denominators. Rates could be

broken down by race and ethnicity, if projections of those characteristics were

required. These rates form the basis of the projections. They can be used as they are

or—as described in the next section—can be adjusted to fit with alternative views of

the future.

With or without adjustments, out-migration rates are applied to the launch-year

populations of each state, providing projections of out-migrants from all states over

the 5-year projection horizon. These numbers are then summed, providing a “pool”

of potential in-migrants for each state. This pool is allocated to each state by

applying the proportion of all interstate migrants that went to each state during

the base period. For example, suppose that a state had 100,000 male in-migrants

aged 20–24 between 1995 and 2000 and that nationally there were a total of two

million interstate migrants in this age-sex group. Based on this proportion, that state

would be projected to receive 5% of the projected pool of male interstate migrants

aged 20–24 in each 5-year projection interval. Adjustments to these proportions to

account for changing assumptions regarding future migration patterns could also be

made, with the constraint that the sum of all state proportions is exactly 100%.

By basing projections of in-migration on the pool of available out-migrants,

migrant pool models assure that the total number of interstate in-migrants is exactly

equal to the total number of interstate out-migrants. State migration projections are

thus consistent with each other and with national projections, in which net internal
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migration must be zero. This is an important and useful characteristic of migrant

pool models.

International migration is generally projected separately from domestic migra-

tion in migrant pool models. Special populations such as military personnel and

college students are often projected separately as well. We describe approaches to

projecting foreign immigration and special populations in Chaps. 7 and 10.

Migrant pool models using the procedures described above can also be devel-

oped for counties, but the process is extremely data-intensive, time-consuming,

and tedious. In order to project the pool of potential in-migrants, out-migration rates

by age and sex (and perhaps by race and ethnicity) would have to be constructed

and applied to more than 3,100 counties (or county equivalents) in the United

States. A simplified version can be developed, however. Suppose that projections

are to be made for all the counties in a particular state. Out-migration rates can be

calculated and applied to those counties, providing a projection of the pool of

county out-migrants. This pool can be reduced by the number of migrants leaving

the state (using historical proportions), leaving a pool of migrants going to other

counties within the state. Intrastate migration into each county can then be based on

this pool and historical data showing the shares going to each county. Migration

from other states can be based on the national number of interstate migrants

(excluding those from the state under consideration) and historical data showing

the proportions of those migrants going to each county.

6.5.1.2 Multi-Regional Models

The second approach to projecting gross migration uses multi-regional models

based on specific place-to-place migration flows (Rogers 1985; Rogers and Wood-

ward 1991; Rogers et al. 2010). In these models, migration is viewed as part of an

integrated system of mortality, fertility, and origin-destination-specific population

flows by age and sex (and sometimes by other characteristics as well). For example,

interstate migration in a multi-regional model could be represented by a 51 � 51

matrix showing the number of people moving from each state to every other state

(including the District of Columbia), by age and sex. Migration rates are calculated

by dividing destination-specific gross migration flows by the population of each

state of origin, giving each state 50 sets of age-sex-specific out-migration rates, one

for each other state in the nation. Because they are based on the population at risk to

migration, these rates roughly represent the probabilities of moving from one state

to another during a given time period.

Multi-regional models have been used by the Census Bureau in several sets of

state population projections (Wetrogan 1988; Campbell 1996). Migration rates in

these models were based on data from three different sources. First, the decennial

census provided gross migration data by age, sex, and race for a 5-year migration

interval. Second, IRS records provided a time series of estimates of annual state-

to-state gross migration flows. Third, the CPS provided the data needed to convert

5-year migration rates into 1-year rates. These three sources were combined to

create a synthetic time series of annual state-to-state migration flows by age, sex,
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and race. This data series was used as a basis for projecting future migration flows

for each state. As described above for migrant pool models, international migra-

tion in multi-regional models is generally handled separately from domestic

migration.

6.5.1.3 Two-Region Models

The multi-regional model used by the Census Bureau was extremely data-intensive

and required many thousands of calculations. A greatly simplified version can be

developed by focusing on two regions, one representing the area to be projected and

the other representing the rest of the country. The population of the area to be

projected provides the base for calculating out-migration rates, and the population

of the rest of the country provides the base for calculating in-migration rates.

Isserman (1993) developed a two-region model for counties in West Virginia.

Out-migration rates were calculated for each county by dividing the number of

out-migrants by age and sex from 1975 to 1980 by the county’s 1975 population for

each age-sex cohort. In-migration rates were calculated by dividing the number of

in-migrants by the 1975 population of the United States (minus the county’s

population) by age and sex. These migration rates were calculated in a manner

similar to that shown in Table 6.3 for Arizona. Projections of out-migration were

made by applying out-migration rates to the county’s population, and projections of

in-migration were made by applying in-migration rates to the U.S. population

(minus the county’s population). Foreign immigration was lumped in with domestic

in-migration, but no separate projection was made for foreign emigration.

Two-region models retain many of the benefits of full-blown multi-regional

models while avoiding much of their cost. We believe they are easier to apply

than the simplified version of the migrant pool model described above. An example

illustrating the application of a two-region model is given in Chap. 7.

6.5.1.4 Assessment of Gross Migration Models

Gross migration models have several theoretical advantages over net migration

models and, in our previous book (Smith et al. 2001, pp. 101–104), were our

preferred approach to constructing cohort-component projections for states and

counties (but not for subcounty areas). With the ACS replacing the census long

form as the major source of detailed migration data, we have revised our opinion on

this point. As noted previously, migration data from the ACS have a number of

shortcomings compared to migration data from the decennial census. Adjustments

to the ACS data can reduce some but not all of these shortcomings. Moreover, ACS

migration data are best suited for single-year projection models, which require

significantly more resources to implement than 5-year models. Synthetic rates

based on a variety of data sources could also be constructed, but such an undertak-

ing would require a substantial investment of resources.
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We believe gross migration models can still be usefully employed for state-level

projections, especially when ACS data are combined with data from other sources.

At this point, however, we believe the scarce resources available for county and

subcounty population projections can generally be used more wisely by focusing on

net migration models rather than gross migration models. Future research, of

course, could cause us to revise our opinion on this point.

6.5.2 Net Migration

6.5.2.1 Top-Down Models

The first approach to projecting net migration focuses on estimates of total net

migration rather than separate estimates for each age-sex cohort. It requires two

steps. First, projections of total net migration are made, based on recent levels,

historical trends, structural models, or some other procedure. Second, these pro-

jections are broken down into age-sex categories, based on distributions observed in

the past. We call this a “top-down” approach because projections for individual

age-sex groups are derived from projections of total net migration. This was the

approach taken in the earliest sets of cohort-component projections made for states

and regions in the United States (Thompson and Whelpton 1933; U.S. Census

Bureau 1957).

The Census Bureau’s 1957 state projections provide an illustration of this

approach. Three different migration assumptions were made: one based on the

continuation of the average annual net migration levels observed for each state

between 1950 and 1955, one based on the levels observed between 1940 and 1955,

and one based on the levels observed between 1930 and 1955. These projections of

total net migration were then broken down into age-sex groups for each state

according to the distributions observed during the base period. The three different

migration assumptions provided the basis for developing several alternative sets of

population projections (U.S. Census Bureau 1957).

This approach has been used for the international migration component in

several sets of national population projections in the United States (Day 1992,

1996a, b) and for constructing county projections incorporating updated informa-

tion on net migration flows (Nakosteen 1989). In addition, several economic models

have focused on levels or rates of total net migration, both for analyzing the

determinants of migration and for forecasting future net migration flows (Clark

and Hunter 1992; Coulombe 2006; Greenwood and Hunt 1989; Murdock

et al. 1984).

6.5.2.2 Bottom-Up Models

The second approach to projecting net migration focuses on the development of

separate net migration rates for each age-sex cohort in the population (cohorts can
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also be broken down into racial or ethnic categories). Projections are based on the

application of age-sex-specific net migration rates to the base population by age and

sex. We call this a “bottom-up” approach because total net migration for an area is

the sum of the values projected for each age-sex group.

Most applications of this approach use the population of the area to be projected

as the denominator for the net migration rates. For example, projections for the state

of Alaska would use the population of Alaska as the denominator for calculating net

migration rates. We describe an alternative later in this section. We illustrate the

bottom-up approach using state projections published by the Census Bureau in 1983

(U.S. Census Bureau 1983).

Demographers at the Census Bureau used a combination of vital statistics and

survival rate techniques to estimate 1970–1980 net migration flows for each state,

by age and sex. They adjusted these estimates to account for changes in census

undercount between 1970 and 1980, and subtracted changes in the military popu-

lation to provide net migration estimates for the civilian population. Net migration

rates by age and sex were calculated by dividing these civilian net migration

estimates by the civilian populations of each state, by age and sex. The denomina-

tors used in these rates were the 1970 populations “survived” forward to 1980 using

10-year survival rates by age and sex. Projections for 1990 were made by applying

these migration rates to the “survived” 1980 civilian populations of each state.

Projections of the military population were added as a final step. The same pro-

cedures were repeated to provide projections for 2000.

Net migration models generally combine the effects of international and domes-

tic migration. When net migration is calculated as a residual, this is by far the

simplest approach. Separate projections of foreign immigration could be made,

however, by subtracting the impact of net foreign immigration from total net

migration in the base data, and developing separate assumptions regarding future

net flows of foreign and domestic migrants.

One drawback of net migration models is that they create inconsistencies in

projections for a group of areas. Consider projections for states, for example. The

application of constant net migration rates to states with rapidly growing

populations leads to steadily increasing levels of net in-migration over time, but

the application of constant rates to states with slowly growing (or declining)

populations leads to slowly growing (or declining) levels of net out-migration.

This creates an inconsistency because net internal migration for states must sum to

zero. It can also lead to bias because projections based on net migration rates tend to

be too high for rapidly growing places and too low for slowly growing or declining

places (Isserman 1993; Rogers 1990; Smith 1986).

Some of the problems associated with net migration models can be reduced by

changing the denominators used in constructing migration rates. Net migration

rates for rapidly growing areas can be based on the population of a larger geo-

graphic unit rather than of the area itself. For example, rates for rapidly growing

states can be based on the national population (minus the state population) rather

than the state population. This change has been found to greatly reduce projected

rates of increase for rapidly growing states (Smith 1986). Alternatively, projections

of net migration (or population) can be constrained or controlled in various ways to
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prevent unreasonably large increases or declines (Smith and Shahidullah 1995).

Chapters 7 and 10 discuss several ways to control population projections for smaller

areas to an independent projection of a larger area. We believe net migration

models can produce reasonable population projections if proper adjustments

are made.

6.5.2.3 Hamilton-Perry Method

The effects of net migration and mortality can be combined to create a simplified

version of the cohort-component method (Hamilton and Perry 1962; Smith and

Shahidullah 1995; Swanson et al. 2010). In this method, cohort-change ratios

(CCR) covering the time interval between the two most recent censuses are

calculated for each age-sex cohort in the population. These ratios are the same

as the census survival rates discussed in Chap. 4, but the notation is slightly

different:

nCCRx, l ¼ nPxþy,l=nPx,b

where nPx + y, l is the population aged x + y to x + y + n in year l; nPx,b is the

population age x to x + n in year b; x is the youngest age in an age interval; n is the
number of years in an age interval; l is the year of the most recent census; b is

the year of the second most recent census (or intercensal population estimate); and

y is the number of years between censuses or intercensal estimate and the latest

census.

For example, Whitman County, Washington had 2,182 residents aged 35–39 in

2000 and 1,967 residents aged 45–49 in 2010, yielding a cohort-change ratio of:

0:9015 ¼ 1,967=2,182

Cohort-change ratios can be calculated for each age-sex group in the population;

they can also be calculated for different racial/ethnic groups. Projections can then

be made by multiplying these ratios by the launch year population in each age-sex

group:

nPxþy,t ¼ nCCRx,lð Þ nPx,lð Þ

where nPx + y,t is the population age x + y to x + y + n in year target year t.
To extend our example of Whitman County, the 2010 census counted 2,003

residents aged 35–39. Using the CCR calculated above, we can project the popu-

lation aged 45–49 in 2020 as:

1,806 ¼ 0:9015ð Þ 2,003ð Þ
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The Hamilton-Perry approach is particularly valuable for census tracts and other

small areas in which data on the components of growth are difficult or impossible to

obtain. However, it can also be useful in larger areas if certain precautions are

taken. We give a complete numerical example and discuss the strengths and

weaknesses of this method in Chap. 7.

6.6 Implementing the Migration Component

Migration is difficult to measure or even to define. A number of complex issues

must be addressed when collecting data, choosing assumptions, making adjust-

ments, and formulating models. How can the migration component be implemented

in a cohort-component projection model?

6.6.1 Choosing Appropriate Models

The first issue that must be confronted is the choice of the projection model. Should

the model be based on gross or net migration data? Should it be a structural model

or one based on the extrapolation of past trends? If a structural model is used, what

explanatory variables should be included? If an extrapolation model is used, on

which migration rates should it be based and how should those rates be extrapolated

into the future? What demographic characteristics should be included?

The answers to these questions will depend primarily on three factors: the

expected use of the projections, the availability of input data, and the amount of

time and money available to complete the projections. If the projections will be

used to evaluate the demographic effects of different economic scenarios, a struc-

tural model is needed. If projections of specific origin-destination migration flows

are needed, a multi-regional model must be used. If projections by race and

ethnicity are needed, the migration data must include race and ethnicity character-

istics. The expected use of the projections is a major determinant of the choice of

projection model and the structure of that model.

Equally important is the availability and reliability of input data. As noted

previously, gross migration data are often unavailable for small areas. Net migra-

tion data, on the other hand, are available or can be developed for virtually any

geographic area with data from two consecutive censuses. The same is true for the

data required by the Hamilton-Perry method. The availability of reliable input data

is a critical factor in the choice of the migration model.

Resource constraints also play a role. Time and money costs increase with the

complexity of the method and with the level of geographic and demographic detail

required. In many instances, the amount of time and money available to complete a

project will have a significant impact on the choice of the projection method.
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6.6.2 Choosing Data and Assumptions

Migrant pool, multi-regional, two-region, and net migration models provide an

operational framework for calculating and projecting migration rates, but nothing in

the models themselves provides any guidance regarding the choice of data or

assumptions. Which historical migration rates provide the most realistic foundation

upon which to build a set of population projections? Will future rates be higher,

lower, or the same as those observed in the recent past? Will migration rates go up

for some regions and down for others? Will changes in migration rates be the same

for all age, sex, and racial/ethnic groups? There are no simple answers to these

questions. The analyst will have to develop assumptions based on personal knowl-

edge of historical migration patterns and expectations regarding future trends. A

number of different approaches can be followed in choosing migration rates and

projecting them into the future.

The simplest approach (and the most commonly used for small-area projections)

is to hold migration rates constant at recent levels. For example, one set of state

projections published be the Census Bureau assumed that 1970–1980 net migration

rates by age and sex would remain constant over the projection horizon (U.S. Census

Bureau 1983). In another set, gross out-migration rates and in-migration proportions

observed from 1955 to 1960 were held constant (U. S. Census Bureau 1966).

Migration rates from several different time periods can also be used. The Census

Bureau’s first published set of state projections were based on the average annual

levels of civilian net migration observed during three different historical time

periods: 1950–1955, 1940–1955, and 1930–1955. These three migration scenarios

were combined with several different fertility assumptions to provide four alterna-

tive sets of state projections. These alternative sets were not intended to be used as

predictions or forecasts, but simply as illustrative projections of the future popula-

tion under specific assumptions regarding changes in the components of growth.

Migration rates may not remain constant over time, of course. Does this imply

that holding recent rates constant is a poor assumption? No, not necessarily. Will

recent rates go up or down? Will they change a lot or only a little? Will the changes

be the same or different for various population subgroups? If we cannot answer

these questions with some degree of confidence, assuming that a recent set of

migration rates will remain unchanged may be the best assumption we can make.

If the analyst chooses to project changes in migration rates over time, what

approaches can be followed? One is to assume that a given set of migration rates

will gradually converge toward another set over time. For example, the Census

Bureau developed a series of state population projections using a migrant pool

model in which out-migration rates for each state were projected to converge

toward the average of all states over a 50-year period (U.S. Census Bureau 1966).

At the same time, it was assumed that in-migration distributions would converge

toward each state’s population distribution. The result of this approach was that

state differences in net migration rates declined over time. This outcome is consis-

tent with economic theories in which migration acts as an “equilibrating
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mechanism,” reducing regional differences in wages and economic opportunities

(Hunt 1993; Sjaastad 1962).

Another way to account for changing migration rates is to extrapolate past trends

into the future. The Census Bureau followed this approach in several sets of state

projections (Campbell 1996). For example, they used IRS migration data from 1975

to 1994 to create a series of 19 annual observations on each of 2,550 state-to-state

migration flows (i.e., 51 origin states and 50 destination states). They used these

data to produce annual state-to-state migration rates and projected those rates into

the future using a time series regression model:

i,jYt ¼ bð Þ i,jYt�1

� �

where i,jYt and i,jYt � 1 represent the first differences of the natural logarithms of the

migration rates from state i to state j in time periods t and t � 1, respectively, and

b is a coefficient estimated by the regression.

Research conducted at the Census Bureau has shown that projections from time

series models become increasingly inaccurate as the projection horizon increases.

For horizons of 10 years or longer, extrapolations of average annual values from the

base period were found to forecast migration rates more accurately than a time

series model (Campbell 1996). Because of these findings, the Census Bureau

gradually phased out the time series model as the projection horizon increased.

For the first 5 years of the projection horizon, projections were based exclusively on

the time series model. For the next 10 years, projections based on the average

annual values from the base period were gradually phased in. After 15 years,

projections were based exclusively on the average annual values found during the

base period. The procedures followed by the Census Bureau illustrate the fact that

extrapolating past migration trends can lead to unrealistic projections if carried too

far into the future.

Another approach to projecting migration rates is to develop structural models in

which migration is tied to projections of other variables. Economic variables are the

most commonly used for projection purposes. Structural models provide an alter-

native to holding recent migration rates constant, extrapolating changes in historical

rates, or assuming that rates will gradually converge toward another set of values.

They also permit migration trends to be related to various theories of migration or

alternative economic scenarios. We discuss structural models in Chap. 9.

6.6.3 Accounting for Unique Events and Special Populations

In addition to deciding which data, assumptions, and techniques to use for a set of

population projections, the analyst must decide how to account for unique events

and special populations. Unique events are those having a substantial but short-

lived impact on an area’s migration patterns and are not likely to be repeated. For
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example, the Mariel boatlift brought more than 125,000 Cuban immigrants to

Florida within a 6-month period in 1980, a volume of foreign immigration seen

neither before nor since. Most of these immigrants settled in south Florida, making

their impact on the local area much greater than their impact on the state as a whole.

Natural disasters can also have an impact. Swanson et al. (2009) estimated that

Hurricane Katrina reduced the 2010 populations of 79 ZIP code areas in Louisiana

and Mississippi by 311,150 people (21.2%) compared to what they would have

been had the hurricane not struck. Adjustments for these and similar events are

somewhat subjective, but must be made to avoid projecting events that are not

likely to be repeated.

Unique events often involve changes in special populations. Special populations

are groups of people who are in an area because of an administrative or legislative

action (Pittenger 1976). Examples include college students, prison inmates, military

personnel, and residents of nursing homes. Special populations are affected by a

different set of causal factors than the rest of the population; consequently, changes

in special populations are generally unrelated to changes in the rest of the popula-

tion. If changes in special populations are substantial, it is important to account for

them separately when implementing the cohort-component method. We discuss this

issue more fully in Chap. 10.

Accounting for unique events and special populations is especially important at

the county and subcounty levels because their impact is often highly localized,

affecting a few areas dramatically while leaving other areas largely unaffected.

Examples include the opening or closing of a military base, prison, or state mental

hospital; the development of a large housing project; the construction of a new road

or transportation system; and the growth or decline of a major employer. Events like

these can have a huge one-time impact on migration flows. If migration rates are not

adjusted, the analyst in essence will be projecting that these events will be repeated

in every future projection interval.

6.6.4 Accounting for Data Problems

As we have noted, migration data from the ACS differ in several important ways

from the migration data collected on the long form of the decennial census.

Particularly problematic for population projections is the smaller sample size and

1-year migration interval. Furthermore, less detail on the demographic character-

istics of migrants will be released by the Census Bureau than was the case for recent

decennial censuses. As has been true in previous censuses, no out-migration data

are available for most subcounty areas.

How can these and other data problems be handled? First, it is essential to study

the migration data carefully, looking for anomalies and inconsistencies among

different age, sex, and racial/ethnic groups. This is necessary for both gross and

net migration data and is especially important for small areas and when unusual

events occurred during the reference period. When anomalies or inconsistencies are
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found, adjustments to the migration data must be made or synthetic rates must be

developed. Adjustments can be made using the procedures described earlier in this

chapter. Synthetic rates for specific population subgroups can be based on data from

an adjacent age group, a corresponding sex or racial group, a similar county, a

larger geographic area, or a model migration schedule (Pittenger 1976; Rogers

et al. 2010). Making adjustments and developing synthetic rates is a time-

consuming and somewhat subjective process, but we believe it generally leads to

better projections than could be made by slavishly adhering to an official but

dubious migration data set.

6.6.5 Converting Data to Other Time Intervals

The ACS is currently the only source of detailed gross migration data for all areas in

the United States. It provides data for 1-year migration intervals, whereas gross

migration data from previous censuses covered 5-year intervals. Net migration

estimates can be constructed for a variety of migration intervals, but are most

reliable for 10-year intervals based on data from two consecutive decennial cen-

suses or 5-year intervals where quinquennial censuses are conducted (e.g. Australia,

Canada, New Zealand). Can migration data based on one interval be converted into

intervals of different lengths?

Conversions of net migration data can be made easily, at least for estimates of

total net migration. For example, 10-year estimates can be converted into 5-year

estimates simply by dividing by two. Because net migration data are measured as

residuals rather than actual events, the conversion process does not change the

interpretation of the data: Regardless of the interval covered, the data reflect the net

population change due to migration. However, such conversions mask temporal

variability within the net migration interval and will not be very accurate if

migration trends have changed substantially.

For example, net migration for San Diego County was estimated as 15,582

between 2000 and 2010, yielding a 5-year estimate of 7,791 for each half decade

(State of California 2011). Estimates based on annual birth, death, and population

data, however, indicated that net migration was 16,011 between 2000 and 2005

and �429 between 2005 and 2010. Dividing the 10-year estimate by two provided

an average of the two 5-year periods, but missed the impact of the severe economic

recession that reduced population growth dramatically in the latter part of the

decade. When net migration has been changing fairly rapidly over time, it will

generally be better to create new net migration estimates than to convert existing

estimates into intervals of a different length.

Converting age-specific net migration data to other time intervals is substantially

more complicated than converting estimates of total net migration. Consider net

migration from 2000 to 2010, for example. Persons aged 10–14 in 2000 were 15–19

in 2005 and 20–24 in 2010. This cohort thus passed through two different 5-year

age groups during the decade. Which one should be used for calculating 5-year net
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migration estimates for a 5-year age group? A common solution is to calculate the

10-year net migration flow for each age cohort, divide by two, and take an average

of two adjacent cohorts (Irwin 1977). In the example mentioned above, one would

use 10-year net migration estimates for persons aged 5–9 and 10–14 in 2000, divide

each by two, and take an average to obtain an estimate of 5-year net migration for

persons aged 10–14 in 2000. Although this “adjacent cohort” procedure works

fairly well if net migration rates do not vary too much from one age group to

another, it can lead to large errors in instances where there are large differences in

rates between adjacent cohorts (Irwin 1977).

For gross migration, the impact of multiple moves and deaths of migrants makes

it very difficult to convert data from one length of interval to another. For example,

5-year migration numbers cannot be calculated simply by multiplying 1-year

numbers by five. Studies of this relationship have found that multiplying 1-year

migration rates by five greatly overstates the actual 5-year migration rate (Ihrke

and Faber 2012; Rees 1977; Rogerson 1990). Although some research on

converting 1- and 5-year data to different intervals has been done, the conversion

factors have been found to vary from place to place and change over time (Long and

Bortlein 1990; Rogers et al. 2003). These studies focused primarily on total

migration flows; the conversion process would be much more complicated if

migration were divided into demographic subgroups (e.g., age and sex).

Because of these problems, it is risky to convert migration data for one interval

into data for an interval of a different length (especially for gross migration). In

most circumstances, we believe it is better to use projection intervals that are

consistent with the length of the migration interval rather than trying to convert

data from one interval to another. That is, it is better to use 1-year projection

intervals when using 1-year migration data, 5-year intervals when using 5-year

migration data, and 10-year intervals when using 10-year migration data. If pro-

jections for intervening target years are needed, they can be constructed using

interpolation procedures (see Chap. 10 for details). However, as noted below,

combining data from several different sources may facilitate the conversion of

data from on length of interval to another.

6.7 Conclusions

Migration has not received nearly as much attention from population researchers as

fertility and mortality, perhaps because of the lack of comprehensive data and

difficulties in developing clear definitions and adequate measures (Edmonston and

Michalowski 2004; Greenwood 1997; Morrison et al. 2004; Rogers et al. 2010). Yet,

migration is an important component of change affecting the size, composition, and

geographic distribution of the U.S. population. It is often the most volatile component

of population growth for states and local areas, both in terms of changes over time

and place-to-place differences for a given period of time. It is frequently the major

determinant of state and local population growth as well (Smith and Ahmed 1990).
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State and local migration is affected by factors that can change dramatically

within a short time. In San Bernardino County, California, for example, annual net

migration declined from 7,548 in 2006 to �17,214 in 2008 (State of California

2011). The fundamental reason for dramatic changes like this is that migration is

considerably more susceptible than either fertility or mortality to changes in

economic conditions, employment opportunities, housing patterns, transportation

conditions, and neighborhood characteristics. This volatility makes migration rates

more difficult to forecast accurately than either mortality or fertility rates (Irwin

1977; Kulkarni and Pol 1994; Nakosteen 1989; Pittenger 1976). Due to its potential

volatility and its impact on total population growth, migration contributes more to

the uncertainty of cohort-component projections for states and local areas than do

either mortality or fertility. In general, the smaller the geographic region, the

greater the difficulty of developing accurate migration forecasts.

Migration not only affects the total population of an area, but its age, sex, race,

ethnicity, income, education, and other characteristics as well. In California, for

example, non-Hispanic whites accounted for nearly 80% of the population in 1970

but only 40% in 2010. This rapid decline was caused primarily by foreign immi-

gration. In Sumter County, Florida, the population aged 65 and older rose from

13.1% of the total population in 1970 to 43.4% in 2010; this increase was caused by

primarily by the huge number of retirees moving into the county. The impact of

migration on the demographic characteristics of states and local areas can scarcely

be overstated.

We believe there are a number of research opportunities that may lead to better

migration projections. One is the development of synthetic migration rates based on

a combination of data sources and methods. The Census Bureau used this approach

in several sets of state population projections, drawing on data from the IRS, the

CPS, and the long form of the decennial census (Wetrogan 1988; Campbell 1996).

Rogers and colleagues used this approach to develop model migration rates based

on regularities in migration patterns (Rogers and Castro 1984; Rogers et al. 2010).

Smith and Rayer (2013) combined data from the IRS, CPS, and the ACS to

construct migration projections for the state of Florida. Synthetic migration rates

for specific demographic subgroups could also be developed, using data from

adjacent age groups, corresponding sex or racial groups, similar geographic areas,

or model migration schedules.

The use of multiple data sources and methods might be particularly useful for

converting migration data to intervals of differing lengths (e.g., 1- to 5-year).

Although research on this topic has not been particularly successful to date,

systematic relationships may be discovered that will permit useful conversions, at

least under some circumstances. If 1-year migration data could be converted into

5-year data, 5-year age groups and 5-year migration intervals could be used in the

construction of cohort-component population projections, most likely reducing the

degree of variability inherent in those projections.

We also believe research into time series methods, such as ARIMA models, may

yield useful techniques for forecasting migration. Most of the research on time

series forecasting models has focused on international migration at the national
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level (Bijak 2011; de Beer 1997; Hyndman and Booth 2008; Wilson and Bell 2004).

We are aware of only two studies that have applied these methods for subnational

forecasting. Lee et al. (2002) used a first order autoregressive model for forecasting

domestic and international migration to California and Campbell (1996) use a

lagged dependent variable model to forecast state-to-state domestic migration

flows. Time series migration models appear to perform best for short-range fore-

casts (Campbell 1996; Land 1986) and might be particularly useful during transi-

tion periods away from abnormally high or low migration levels. We believe that

creativity in the use of data sources and the application of disparate methods may

lead to substantial improvements in migration data sets and methodologies, with

beneficial implications for the production of population projections.

One potential threat regarding migration data sources must be mentioned.

Concerns about state and federal budget deficits may lead to cuts in funding for a

wide variety of government programs, including the ACS. If this were to happen,

the only source of detailed gross migration data would become less reliable or even

disappear, severely limiting the use of gross migration models for the construction

of cohort-component population projections.
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Chapter 7

Implementing the Cohort-Component

Method

We have now discussed mortality, fertility, and migration—the three components

of population change. In this chapter, we describe how to put these components

together in a complete projection model. We begin with a discussion of several

issues that must be considered when setting up a cohort-component model. Then,

we present three step-by-step examples, each based on commonly used computa-

tional procedures. These examples illustrate three different approaches to

projecting migration, the most difficult component of population growth to forecast

accurately for states and local areas. We close with an assessment of the strengths

and weaknesses of the cohort-component method.

Our strategy in this chapter is to describe the simplest, most straightforward

applications of the cohort-component method. In Chap. 10, we discuss several

additional factors that must be considered in some circumstances: adjusting for

special populations, controlling to independent population or migration totals, and

developing temporal or age-group interpolations.

7.1 General Considerations

To preserve the integrity of age cohorts as they progress through time, it is helpful

to follow two basic principles: (1) The number of years in the projection interval

should be greater than or equal to the number of years in the cohort, and (2) If the

number of years in the projection interval is greater than the number of years in the

cohort, it should be exactly divisible by the number of years in the cohort. For

example, 5-year cohorts are well suited for making projections in 5- or 10-year

intervals, but are not well suited for making projections in 1-year intervals. The

logic is simple: people aged 10–14 in 2015 will be 15–19 in 2020 (unless they die),

but there is no way to know exactly how many will be 11–15 in 2016. Models that

stray from these principles can be constructed, but are more complicated and less

precise.
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In the past, cohort-component models were often constructed using 5-year age

groups and 5-year projection intervals. 5-year intervals were consistent with the

most comprehensive source of detailed migration data—the 5-year mobility ques-

tion asked on the long form of the decennial census—and 5-year age groups

satisfied the needs of a wide range of data users. Chapter 6 describes several

cohort-component models in which projections were based on 5-year intervals

and 5-year age groups.

Starting in 2010, the decennial census no longer collects mobility data. Those

data are now collected in the American Community Survey (ACS), but the mobility

question refers to place of residence 1 year ago rather than 5 years ago. As a result,

the migration data are consistent with 1-year projection intervals and single years of

age but not with 5-year intervals and 5-year age groups.

Single-year cohort-component models can also be constructed and are likely to

become more widely used as the ACS replaces the decennial census as the primary

source of detailed migration data. Single-year models pick up subtleties missed by

5-year models, make it easy to calculate customized age groups (e.g., 5–17), and

provide a more detailed picture of changes in the age structure over time. However,

they are considerably more time-consuming and costly to construct and maintain

than 5-year models. For example, a single-year model with 100+ as the terminal age

group has 202 age-sex categories. In contrast, a 5-year model with 85+ as the

terminal age category has only 36 age-sex categories. For a 30-year projection

horizon, a single-year net migration model requires 202 separate birth, death, and

migration rates for each of 30 distinct time periods (18,180 rates). A 5-year net

migration model requires only 36 birth, death, and migration rates for six time

periods (648 rates). Data management and quality control issues for single-year

models become even more imposing when racial/ethnic groups are added to the

projections.

In some circumstances, migration data are available only in 10-year intervals

(e.g., net migration between two decennial censuses). A common practice is to

transform 10-year net migration rates into 5-year rates by dividing by 2 and

averaging two adjacent age cohorts (Irwin 1977). Pittenger (1976, p. 26) suggests

a similar approach, using geometric interpolation to create 5-year migration rates.

Both approaches are acceptable when net migration is relatively stable over the

course of the decade but—as noted in Chap. 6—can create problems when it

changes substantially. We prefer using 10-year migration rates and 10-year projec-

tion intervals in these circumstances.

Models that use 1-year intervals and single years of age provide the most

detail—annual projections for individual ages—but require the most data and

computations. Models using 5- or 10-year intervals and age groups require less

data and computations, but provide less detail. Because more data and computa-

tional requirements imply higher costs, a trade-off must be made between level of

detail and costs of production. The optimal choice for any particular application

will depend on the amount of time and money available, the availability of reliable

data, and the purposes for which the projections are used. We discuss these issues

more fully in Chap. 12.
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Cohort-component models are almost always stratified by age and sex; they are

often stratified by race and ethnicity as well. Racial categories can be very basic

(e.g., white and nonwhite) or more detailed (e.g., white; black; Asian; Native

Hawaiian or Pacific Islander; American Indian or Alaska Native). The most com-

monly used ethnic categories in the United States are Hispanic and non-Hispanic;

for example, recent national projections from the Census Bureau were stratified

both by race and by Hispanic origin (U.S. Census Bureau 2012). Less frequently,

projections are stratified by household relationship and marital status, often in

conjunction with projections of households (Day 1996; Zeng et al. 2006). Raising

the level of stratification allows the analyst to take explicit account of the differ-

ences in mortality, fertility, and migration rates found among different demographic

subgroups. It is obvious—but worth repeating—that additional stratification adds to

the costs and complexities of model implementation and maintenance.

Typically, each demographic subgroup in a cohort-component model is

projected separately (e.g., white females, white males, nonwhite females, and

nonwhite males). These projections are then combined to create projections of

other population groups. For example, projections of males and females are

summed to provide projections of the total population and projections of white

males and white females are summed to provide projections of the white popula-

tion. The female population is typically projected first because projections of

females are needed to develop projections of births. The procedures for applying

those rates are the same for each demographic subgroup.

Data availability is a major issue in the construction of cohort-component pro-

jections. Net migration estimates can be made for any area in which birth, death,

and population data are available for at least two points in time. Gross migration

data, however, are much less readily available and simply do not exist for many

geographic areas. In many instances, data availability plays an important role in the

choice of the projection model.

A final consideration before implementing the cohort-component method is the

impact of data error and data consistency. Data problems tend to increase as the

level of demographic detail increases and as population size declines. It is important

to verify historical population data and, if necessary, adjust the base data or develop

an alternative set of rates before running the projection model. Techniques for

adjusting and smoothing base data and developing model migration rates are

described in Chap. 6, Judson and Popoff (2004), and Rogers et al. (2010).

The cohort-component method requires that assumptions be made regarding

future mortality, fertility, and migration rates. The factors influencing these rates

and techniques for projecting future rates are discussed in Chaps. 4, 5 and 6. The

following examples focus primarily on the mechanics of applying the cohort-

component method, but the reader is reminded that the quality of the data and the

validity of the underlying assumptions are at least as important as the projection

methods themselves.
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7.2 Applying the Cohort-Component Method

We describe three applications of the cohort-component method, one based on a

gross migration model, the second on a net migration model, and the third on the

Hamilton-Perry method. We refer to these as Models I, II, and III, respectively.

Models I and II have many similarities, but differ with respect to age detail,

projection intervals, and approaches to projecting migration. Model I is based on

single years of age and uses 1-year gross domestic migration rates. Model II is

based on 5-year age groups and uses 5-year net migration rates. Model III

combines the mortality and migration components by using 10-year cohort-

change ratios and applies a different technique for projecting fertility than

Models I and II.

Applications of the first two models involve four basic modules or steps,

computed in the following sequence: mortality (or survival), migration, fertility,

and the final projection. In the third model (Hamilton-Perry), the first two modules

are combined. Figure 7.1 provides an overview of these four modules for Model I,

the most complex of the three models.

We apply all models using data for females in Maricopa County, Arizona and

develop projections from 2010 to 2040. We provide details on the computations

only for the first target year for each model (2011 for Model I, 2015 for Model II,

and 2020 for Model III); computations for the other target years follow the same

procedures. In all models, age refers to a cohort’s age at last birthday.

Few off-the-shelf software packages are available for constructing cohort-

component population projections; consequently, the analyst will generally have

to develop a customized computer program. If small numbers of projections are to

be made, they can be implemented fairly easily using an electronic spreadsheet. If

large numbers are needed, spreadsheets become cumbersome. In these instances it

is easier to construct projections using SAS, SPSS, or a similar statistical package,

or by using a formal programming language such as Java or C++. Relational

database systems (e.g., Oracle, MySQL, SQL Server, and DB2) are useful for

data documentation, storage, retrieval, and management. Software issues are

discussed more fully in Chap. 14.

7.2.1 Gross Migration (Model I)

International migrants often have different characteristics than domestic migrants

and are influenced by different motivating factors. Consequently, if international

immigration is an important component of growth for a particular state or local

area, it is useful to project it separately from domestic migration. In our first

example, we draw such a distinction. Using 2010 as a launch year and 2011 as a
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Fig. 7.1 The complete cohort-component model (Model I)
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target year, we develop a 1-year, two-region gross migration model for females in

Maricopa County, Arizona. The data required for this projection include:

1. 2010 female population by age,

2. Age-specific birth rates and the distribution of births by sex,

3. Age-specific survival rates for females,

4. Age-specific domestic in- and out-migration rates for females, and

5. Age-specific net international migration estimates for females.

The 2010 population data came from the decennial census. Age-specific birth

rates were calculated using 2010 birth and population data and the procedures

described in Chap. 5. Age-specific survival rates were based on Arizona life

tables for 2010, using the procedures described in Chap. 4. Domestic in- and

out-migration rates were based on 2007–2008 gross migration data for Maricopa

County—as reported in the ACS and national PUMS files—and 2007 population

estimates for Maricopa County and the United States. The procedures for calculat-

ing migration rates are described in Chap. 6. The data and assumptions used to

project net international migration are discussed later in this chapter.

7.2.1.1 Mortality Module

The first step in the projection process is to calculate the number of people in the

launch year (2010) who will survive to the target year (2011). This can be done by

multiplying the launch year population by the survival rate for each age group:

nSURVPxþz, t ¼ nPx, lð Þ nSxÞ
�

where x is the youngest age in the age group; n is the number of years in the age

group; z is the interval between the launch and target years; t is the target year; l is
the launch year; SURVP is the survived population; P is the population; and S is the
probability of surviving for z more years. In this example, l is 2010, t is 2011, and
z is 1 year.

Table 7.1 shows the application of survival rates for selected age groups. For

example, the survived population aged 5 in 2011 equals the population aged 4 in

2010 multiplied by its survival rate (i.e., the probability that a person aged 4 lives

one more year):

27,881Þ 0:99982ð Þ ¼ 27,876ð

If needed, deaths over the projection interval for a particular age group can be

calculated by subtracting the survived population aged x + z from the launch year

population aged x:

nDx, l to t ¼ nPx, l�nSURVPxþz, t
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For example, we can calculate the number of deaths to females aged 4 in

2010 as:

27, 881� 27, 876 ¼ 5

It should be noted that this projection does not refer to the number of deaths

actually occurring in Maricopa County between 2010 and 2011. Rather, it refers to

the number of deaths occurring to people who were living in Maricopa County in

2010. Although these two numbers will generally be very close (especially in

single-year models), they may not be identical because of the effects of migration

on deaths occurring within the county.

The computation for the oldest age group is slightly different from the compu-

tations for the younger age groups. The survival rate for the oldest age group in the

target year is applied to the sum of the populations in the two oldest age groups in

the launch year. For example, if the oldest age group in the target year is 85+, the

survival rate is applied to the population aged 84+ in the launch year.

In a 1-year model, the survival routine starts with the launch-year population

aged 0 (that is, less than age 1) to obtain the survived population aged 1 in the target

Table 7.1 Survived female population, Maricopa County, 2011 (Model I)

2010

Age

2011

Age

2010

Population

One-year

survival rate

2011 Survived

populationa
2010–2011

Deathsb,c

0 1 26,625 0.99495 26,491 134

1 2 27,157 0.99919 27,135 22

2 3 28,364 0.99960 28,353 11

3 4 28,475 0.99975 28,468 7

4 5 27,881 0.99982 27,876 5

· · · · · ·

· · · · · ·

· · · · · ·

40 41 28,160 0.99883 28,127 33

41 42 25,586 0.99868 25,552 34

42 43 25,229 0.99857 25,193 36

43 44 24,509 0.99845 24,471 38

44 45 24,751 0.99834 24,710 41

· · · · · ·

· · · · · ·

· · · · · ·

80 81 8,499 0.96598 8,210 289

81 82 7,798 0.95973 7,484 314

82 83 7,455 0.95610 7,128 327

83 84 6,940 0.95320 6,615 325

84+ 85+ 44,695 0.88963 39,762 4,933

Total 1,928,652 1,916,977 11,675
a2010 population � survival rate
b2010 population � 2011 survived population
cDoes not include deaths to females born between 2010 and 2011
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year. The projected population aged 0 in the target year is based on the number of

births occurring between the launch year and target year, as described in the fertility

module. In the present example, life expectancy at birth was projected to increase

from 82.6 in 2010 to 85.6 in 2040; this increase is consistent with trends projected

for the United States (Social Security Administration 2011).

7.2.1.2 Domestic Migration Module

The next step is to project domestic in- and out-migration by applying domestic

migration rates to the appropriate at-risk populations. For in-migration, the at-risk

population is the U.S. population minus the Maricopa County population; we call

this the “adjusted U.S. population.” For out-migration, the at-risk population is the

Maricopa County population. There are two main approaches to developing migra-

tion projections in this manner. The first uses migration rates applied to the launch-

year population “survived” to the end of the projection interval and the second uses

migration rates applied to the launch-year population. Either approach is acceptable

as long as it is applied consistently. We use the first approach in this example

because it is somewhat simpler to apply and leads to about the same results.

We project domestic migration in two steps. For in-migration, we multiply

projected in-migration rates by the adjusted U.S. population in the launch year.

For out-migration, we multiply projected out-migration rates by the Maricopa

County population, also in the launch year. The equations for projecting domestic

in- and out- migration are:

nAUSPx, l ¼ nUSPx, l�nPx, l

nINMIGxþz, l to t ¼ nAUSPx, lð Þ nINMIGRATExð Þ
nOUTMIGxþz, l to t ¼ nPx, lð Þ nOUTMIGRATExð Þ

where AUSP is the adjusted U.S. population; USP is the U.S. population; P is the

population of the area to be projected; INMIG is the projection of domestic

in-migration; INMIGRATE is the z-year domestic in-migration rate; OUTMIG is

the projection of domestic out-migration; and OUTMIGRATE is the z-year domes-

tic out-migration rate. As always, x is the youngest age in the age group; n is the

number of years in the age group; t is the target year; l is the launch year; and z is the
interval between the launch and target years.

As noted in Chap. 6, migration rates can be projected in a number of ways. In this

example, we hold them constant over the projection horizon. Table 7.2 shows the

domestic migration projections for 2010–2011 for selected age groups. As we did

with the survival rate computations, we combine the launch year populations of the

two oldest age groups before applying the migration rates for the oldest group. Also,

there is no domestic migration projection for the population aged 0 in 2011. Those

children were not yet born in 2010 and are accounted for in the fertility module.

As an illustration, consider the migration of females aged 42 in 2010. We

compute the number of in-migrants over the projection interval by multiplying
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the 2010 adjusted U.S. population age 42 by the in-migration rate for that age

group. Similarly, we compute the number of out-migrants by multiplying the 2010

county population aged 42 by the appropriate out-migration rate. The net change

due to domestic migration is simply the difference between the two. As shown in

Table 7.2, the specific computations are:

Domestic in-migrants : 0:000458ð Þ 2; 022; 366ð Þ ¼ 926

Domestic out-migrants : 0:029958ð Þ 25; 229ð Þ ¼ 756

Net change due to domestic migration : 926� 756 ¼ 170

A two-region model is a relatively simple application of a gross migration

model. More complex applications might include the calculation of separate

in-migration rates for migrants coming from a variety of locations such as nearby

counties, other counties within the same state, and places outside the state (Foot and

Milne 1989; Kanaroglou et al. 2009; Raymer et al. 2010). One set of state

Table 7.2 Projected domestic and international female migration, Maricopa County, 2010–2011

(Model I)

2010

Population

Migration

rate

2010–2011

Domestic migration Net intl. migration

2010

Age

2011

Age Maricopa Adj. U.S.a In Out Inb Outc Net

Allocation

share Netd

4,576e

0 1 26,625 2,056,120 0.000625 0.042717 1,285 1,137 148 0.01971 90

1 2 27,157 2,044,650 0.000630 0.042931 1,288 1,166 122 0.01971 90

2 3 28,364 2,033,087 0.000638 0.043399 1,297 1,231 66 0.01971 90

3 4 28,475 2,025,519 0.000645 0.043837 1,306 1,248 58 0.01971 90

4 5 27,881 2,022,379 0.000649 0.044078 1,313 1,229 84 0.01674 77

· · · · · · · · · · ·

· · · · · · · · · · ·

· · · · · · · · · · ·

40 41 28,160 2,165,542 0.000488 0.030956 1,057 872 185 0.01075 49

41 42 25,586 2,067,442 0.000471 0.030407 974 778 196 0.01097 50

42 43 25,229 2,022,366 0.000458 0.029958 926 756 170 0.01022 47

43 44 24,509 2,030,096 0.000447 0.029440 907 722 185 0.00840 38

44 45 24,751 2,086,481 0.000437 0.028867 912 714 198 0.00880 40

· · · · · · · · · · ·

· · · · · · · · · · ·

· · · · · · · · · · ·

80 81 8,499 754,933 0.000300 0.012830 226 109 117 0.00075 3

81 82 7,798 709,520 0.000282 0.012665 200 99 101 0.00056 3

82 83 7,455 682,278 0.000262 0.012557 179 94 85 0.00044 2

83 84 6,940 643,430 0.000239 0.012452 154 86 68 0.00015 1

84+ 85+ 44,695 4,423,975 0.000117 0.006967 518 311 207 0.00194 9

Total 1,928,652 155,550,825 96,240 70,818 25,422 1.00000 4,576
a2010 U.S. population � 2010 Maricopa County population
bIn-migration rate � adjusted U.S. population
cOut-migration rate � Maricopa County population
dAllocation share � control
eProjected U.S. net intl. migration � projected Maricopa County share of U.S. net intl. migration
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projections produced by the Census Bureau used a 51 by 51 matrix of origin-

destination-specific migration rates (Campbell 1996). The procedures used in more

complex models are similar to those described here for a two-region model.

7.2.1.3 International Migration Module

The migration rates described above refer solely to domestic migration, or move-

ments to and from other parts of the United States. We must also account for

international migration, or movements to and from other countries. There are

several ways to do this.

One is to project immigration and emigration separately. The Office of Immi-

gration Statistics (OIS) collects immigration data for the United States and reports it

annually for states and Core Based Statistical Areas (CBSAs). The ACS provides

data on the number of in-migrants who lived outside the United States 1 year ago;

these data are available for counties and subcounty areas as well as for states and

metropolitan areas. Either of these sources can be used as a basis for projections of

immigration. Projections of emigration can be based on previous estimates, such as

those produced by Martin and Midgley (1999). For example, Smith and Rayer

(2013) projected foreign immigration into Florida using PUMS files from the

2005–2009 ACS and projected emigration by assuming that it would equal

22.5% of projected immigration.

Given the lack of comprehensive and reliable emigration data—especially for

counties and subcounty areas—projections of international migration are generally

based on a net migration approach. The Census Bureau develops annual estimates

of net domestic and net international migration for every county in the United States

(U.S. Census Bureau 2011a). Some state demographic agencies develop similar

estimates for counties in their respective states. Net international migration can be

projected by holding recent levels constant, extrapolating previous trends, or

making adjustments based on alternative views of the future.

Projections of net international migration can also be made using shares rather

than levels (Center for the Continuing Study of the California Economy 2010; San

Diego Association of Governments 2010). For example, the Census Bureau esti-

mated that net international migration for the United States was 894,300 between

July, 2010 and July, 2011, with 15,500 occurring in Maricopa County (U.S. Census

Bureau 2011a). The county’s share of the national total can be calculated as:

15, 500=894, 300 ¼ 0:0173

Net international migration for Maricopa County can then be projected by

applying this share to national projections of net international migration. This is

the approach we used to construct the projections shown in Table 7.2. We held

the 2010 share constant over the projection horizon and applied it to net interna-

tional migration projections for the United States (U.S. Census Bureau 2009).

Alternatively, we could have extrapolated historical trends in Maricopa County’s

share of the national total or used expert judgment to adjust its future share.
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The ACS collects data on the year in which foreign-born persons came to live in

the United States. These data can also be used to project net international migration.

For example, 13.9 million foreign-born persons in the 2010 ACS reported that they

had entered the United States between 2000 and 2009. Of these, 187,496 were

living in Maricopa County in 2010. The county’s share of the nation’s net interna-

tional migration over this period can be calculated as:

187, 496=13, 863, 080 ¼ 0:0135

This estimate is similar to the one calculated above; it could also be used for

projecting net international migration in Maricopa County.

The methods described above focus on migration totals. How can the demo-

graphic characteristics of international migrants be projected? The simplest

approach is to assume that the future net international migration flow for a partic-

ular area will have the same characteristics as the flow for the nation as a whole.

This will be a reasonable assumption if the mix of countries sending migrants to an

area is similar to the mix for the United States and if the analyst believes that mix

will continue (data on the origins of international migrants for states and CBSAs are

available from the OIS). Another approach is to assume that the future net interna-

tional migration flow for an area will have the same characteristics as the immi-

grants reported in the ACS or by the OIS. Both approaches are approximations but

will provide reasonable projections in most circumstances. In the present example,

we used PUMS data from the 2007 to 2010 ACS to project the age distribution of

the net international migration flow in Maricopa County, holding that distribution

constant over the projection horizon.

7.2.1.4 Fertility Module

The third step is to project the number of births and the net impact of mortality and

migration on the youngest age group. This process has three steps. First, we multiply

the at-risk female population (by age) by the projected ASBRs and sum the results to

obtain a projection of the total number of births (by at-risk, we mean females of

childbearing age). Second, we allocate births between males and females using histor-

ical proportions. Finally, we survive the births to the target year to obtain the projection

of the youngest age group. The equations used in making these calculations are:

nATRISKFx, t ¼ nFPx, l � 0:5ð Þ nFDx, l to tð Þþ
nFINMIGxþz, l to tð Þ � nFOUTMIGxþz, l to tð Þ � nFINTMIGxþz, l to tð Þ

nBx, l to t ¼ nASBRx, tð Þ nATRISKFx, tð Þ
Bl to t ¼

P
nBx, l to t, where

P
is the sum across all age groups

MBl to t ¼ Bl to tð Þ PCTMð Þ
FBl to t ¼ Bl to t �MBl to t

nM0, t ¼ MBl to tð Þ nMS0ð Þ
nF0, t ¼ FBl to tð Þ nFS0ð Þ
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where ASBR is the age-specific birth rate; ATRISKF is the at-risk female popula-

tion; FP is the female population; FD is female deaths; FINMIG is the projection of

female domestic in-migrants; FOUTMIG is the projection of female domestic

out-migrants; FINTMIG is the projection of net female international migration;

B is the projection of total births; MB is the projection of male births; PCTM is the

percentage of births that are male; FB is the projection of female births; nM0,t is the

male population projection in the youngest age group; nMS0 is the male infant

survival rate; nF0,t is the female population projection in the youngest age group;

and nFS0 is the female infant survival rate. As always, x is the youngest age in an

age group; n is the number of years in the age group; l is the launch year; t is the
target year; and z is the interval between the launch and target years.

The equation for the at-risk population requires further elaboration. Some of the

original members of each cohort die, others move away, and new members move

in. We assume that women who die during the projection interval live through half

the interval (e.g., 0.5 years for a 1-year interval). Therefore, the population for each

age cohort in the launch year must be reduced by one-half the deaths occurring over

the projection interval. We further adjust the at-risk population by adding domestic

in-migrants, subtracting domestic out-migrants, and adding or subtracting net

international migration. Our final calculation of the at-risk population (ATRISKF),

then, is the female population in the launch year, minus one-half the female deaths

during the projection interval, plus female domestic in-migrants, minus female

domestic out-migrants, plus or minus female net international migration.

The TFR in Maricopa County was estimated as 2.10 in 2010. In the present

example, it is projected to increase to 2.15 by 2020 and then to decline gradually to

2.00 by 2040; this decline is consistent with national trends projected by the Social

Security Administration (2011). The age pattern of childbearing is held constant

over the projection horizon.

Table 7.3 shows the sequence used for projecting male and female births.

Column 2 shows the 1-year ASBR for selected age groups in 2011. The at-risk

population for each age group (Column 8) is calculated by starting with the 2010

population, subtracting one-half the deaths, adding domestic in-migrants,

subtracting domestic out-migrants, and adding or subtracting net international

migration. For females aged 40 in 2010, for example, the at-risk population is

calculated as:

28, 160� 0:5ð Þ 33ð Þ þ 1, 057� 872þ 49 ¼ 28, 378

Births are computed by multiplying the at-risk population in each age group by

the birth rate for that age group. For example, births for women aged 40 in 2010 are

calculated as:

28; 378ð Þ 0:026205ð Þ ¼ 744

A projection of the total number of births can be obtained by summing the births

projected for all ages. In this example, the sum is 56,909 for the 1-year projection

interval.
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Drawing on our discussion of the mortality module, we note that this is a

projection of the number of births between 2010 and 2011 to women living in the

county in 2011, not the number of births actually occurring in the county between

2010 and 2011. On average, migrants are at risk of giving birth within the county

during only half the projection interval. However, our concern is not the number of

births occurring within the county itself, but rather the location at the end of the

projection interval of children born during the interval. We assume that babies and

young children reside with their mothers at the end of the projection interval,

regardless of where they were born. As Isserman (1993) noted, this allows births

Table 7.3 Projected births and population aged 0, Maricopa County, 2011 (Model I)

Domestic

2010

Age ASBR

2010

Population Deaths In-migrants Out-migrants

Net intl.

migration

At risk

populationa Birthsb

15 0.007990 26,681 4 1,023 966 79 26,815 214

16 0.021732 26,950 4 1,194 1,109 83 27,116 589

17 0.036277 26,565 6 1,440 1,244 117 26,875 975

18 0.051088 27,239 10 1,747 1,442 130 27,669 1,414

19 0.065632 26,912 10 2,091 1,587 154 27,565 1,809

· · · · · · · · ·

· · · · · · · · ·

· · · · · · · · ·

25 0.119458 27,204 14 2,518 1,863 142 27,994 3,344

26 0.120868 26,578 14 2,357 1,747 142 27,323 3,302

27 0.120593 27,800 14 2,255 1,751 134 28,431 3,429

28 0.118909 27,512 14 2,196 1,669 119 28,151 3,347

29 0.115942 27,661 16 2,184 1,622 113 28,328 3,284

· · · · · · · · ·

· · · · · · · · ·

· · · · · · · · ·

40 0.026205 28,160 33 1,057 872 49 28,378 744

41 0.019414 25,586 34 974 778 50 25,815 501

42 0.012957 25,229 36 926 756 47 25,428 329

43 0.006611 24,509 38 907 722 38 24,713 163

44 0.000153 24,751 41 912 714 40 24,969 4

Total 792,772 574 52,027 39,330 2,963 807,858 56,909

Share of

Births

2010–2011

Birthsc,d
Survival

Ratee Age 0f

2010–2011

Infant

deathsg

Males 0.51 29,024 0.99178 28,785 239

Females 0.49 27,885 0.99439 27,729 156

Total 1.00 56,909 56,514 395

a2010 population � (0.5 � deaths) + in-migrants � out-migrants + net international migration
bASBR � at-risk population
cMales ¼ total births � 0.51
dFemales ¼ total births � male births
eProbability of surviving from birth to age 1
fBirths � survival rate
gBirths � 2011 population age 0
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and the migration of infants to be treated in a single step. Domestic in-migrants and

non-migrants are included in the population at risk but domestic out-migrants are

subtracted. Net international migration is added if it is positive, subtracted if it is

negative. This allows the number of births to be based on the county population at

the end of the projection interval.

The bottom panel of Table 7.3 shows the calculation of the population aged 0 in

2011. The first step is to divide projected births into males and females, using

historical data on the male proportion of total births (0.51). Birth projections for

each sex are calculated as:

Male births : 56; 909ð Þ 0:51ð Þ ¼ 29, 024

Female births : 56, 909� 29, 024 ¼ 27, 885

We then apply survival rates to the birth projections. The survival rates used in

Table 7.3 were derived from life tables and refer to the probability of surviving

from birth to age 1. We compute the population aged 0 as:

Male population : 29; 024ð Þ 0:99178ð Þ ¼ 28, 785

Female population : 27; 885ð Þ 0:99439ð Þ ¼ 27, 729

If desired, infant deaths from 2010 to 2011 can be computed by subtracting the

2011 population aged 0 from the projected births:

Male infant deaths : 29, 024� 28, 785 ¼ 239

Female infant deaths : 27, 885� 27, 729 ¼ 156

7.2.1.5 Final Projection Module

The final calculations combine the results from the mortality, migration, and

fertility modules. The projected population for each age group is calculated as the

survived population plus domestic in-migrants, minus domestic out-migrants, plus

or minus net international migration:

npxþz, t ¼ nSURVPxþz, t þ nINMIGxþz, l to t � nOUTMIGxþz, l to t � nFINTMIGxþz, l to t

Although the notation is somewhat different, this equation is similar to the

demographic balancing equation discussed in Chap. 2. The only difference is

the absence of births, which are accounted for in the fertility module and provide

the basis for the projection of the youngest age group. The final projection (Pt)

is the sum of the projections for all the age groups:

Pt ¼
X

n
pxþz, t

Table 7.4 shows the complete projection for selected age groups, including

components of change. Migration for the population aged 0 is shown as zero
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because it is captured in the projection of births. Overall, the number of females is

projected to grow from 1,928,652 to 1,974,704 between 2010 and 2011, an increase

of 46,052.

It is easy to calculate the overall components of change from Table 7.4. Births

can be computed by adding deaths of children born between 2010 and 2011 (156) to

the survived population aged 0 (27,729), yielding a projection of 27,885 births. This

is considerably more than the projection of deaths (11,831), which implies that the

total population is projected to experience a natural increase of 16,054. Maricopa

County’s female population also increases from both domestic and international

migration. Domestic in-migrants exceed domestic out-migrants by 25,422 and net

international migration adds another 4,576. Natural increase, net domestic migra-

tion, and net international migration thus account for 35%, 55%, and 10%, respec-

tively, of the change in Maricopa County’s female population between 2010

and 2011.

Again, we emphasize that these projections of births and deaths are approximations

for the numbers actually occurring within the county. For most places, differences

between projected births and deaths and those occurring within the area will be very

small. For places with high rates of domestic or international migration, however,

the differences may be substantial.

Table 7.4 Projected female population, Maricopa County, 2011 (Model I)

2010–2011 Migration

2010

Age

2011

Age

2010

Population

2011

Survived

Population

2010–2011

Deaths

Domestic

in-migrants

Domestic

out-migrants

Net intl.

migration

2011

populationa

Births 0 26,625 27,729b 156 0 0 0 27,729

0 1 27,157 26,491 134 1,285 1,137 90 26,729

1 2 28,364 27,135 22 1,288 1,166 90 27,347

2 3 28,475 28,353 11 1,297 1,231 90 28,509

3 4 27,881 28,468 7 1,306 1,248 90 28,616

4 5 27,779 27,876 5 1,313 1,229 77 28,037

· · · · · · · · ·

· · · · · · · · ·

· · · · · · · · ·

40 41 25,586 28,127 33 1,057 872 49 28,361

41 42 25,229 25,552 34 974 778 50 25,798

42 43 24,509 25,193 36 926 756 47 25,410

43 44 24,751 24,471 38 907 722 38 24,694

44 45 26,690 24,710 41 912 714 40 24,948

· · · · · · · · ·

· · · · · · · · ·

· · · · · · · · ·

80 81 7,798 8,210 289 226 109 3 8,330

81 82 7,455 7,484 314 200 99 3 7,588

82 83 6,940 7,128 327 179 94 2 7,215

83 84 6,525 6,615 325 154 86 1 6,684

84+ 85+ 38,170 39,762 4,933 518 311 9 39,978

Total 1,928,652 1,944,706 11,831 96,240 70,818 4,576 1,974,704

aSurvivedpopulation þ domestic in-migrants � domestic out-migrants + net internationalmigration
b2010–2011 survived births
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7.2.2 Net Migration (Model II)

We illustrate Model II using the same data and assumptions used in Model I, with

two differences: (1) We use net migration rates instead of gross migration rates, and

(2) We use 5-year age groups and 5-year projection intervals instead of single years

of age and 1-year intervals. The basic steps in the projection process are the same

for both models: surviving the population, projecting migration, projecting fertility,

and summing the components.

In this illustration, we used a 5-year migration interval based on data from 2005

to 2010. The 2005 female population in Maricopa County was based on the Census

Bureau’s intercensal population estimate for that year (U.S. Census Bureau 2011b).

The estimate of the 2005 age distribution (in 5-year age groups) was made by

averaging the age distributions from the 2000 and 2010 censuses; this is a com-

monly used procedure (Espenshade and Tayman 1982). For each age group,

estimates of net migration from 2005 to 2010 were made using the forward-

survival rate method described in Chap. 6. A 5-year migration interval is consistent

with the 5-year age groups used in this example; a 10-year interval based on net

migration between 2000 and 2010 also could have been used. Net migration

estimates developed in this manner capture the effects of both domestic and

international migration.

Net migration rates were calculated by dividing the 2005–2010 net migration

estimates by the 2005 adjusted U.S. female population by age. Alternatively, we

could have calculated net migration rates using Maricopa County’s female popu-

lation by age as denominators; we discuss the impact of following this approach

later in this chapter. Chapter 6 discusses several issues regarding the construction

and interpretation of net migration rates. To facilitate a comparison of results from

Models I and II, the net migration rates were weighted to produce migration flows

that were consistent with those coming from the gross migration model.

7.2.2.1 Mortality Module

Model II requires the use of 5-year survival rates. Other than that, the steps in the

mortality module are the same for Model II as they were for Model I. Table 7.5

shows the mortality calculations for Model II. Age-specific survival rates were

based on the 2010 life table for females in Arizona; they were projected to increase

over the projection horizon in a manner similar to that used for Model I.

7.2.2.2 Migration Module

Net migration models require only one set of migration rates. For each age group,

we project net migration by multiplying net migration rates by the adjusted

U.S. population in the launch year:
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nNETMIGxþz, l to t ¼ nAUSPx, lð Þ nNETMIGRATExð Þ

where NETMIG is the net migration projection; AUSP is the adjusted U.S. launch

year population; NETMIGRATE is the z-year net migration rate; x is the youngest

age in an age group; n is the number of years in the age group; l is the launch year;

t is the target year; and z is the interval between the launch and target years. If the

county population had been used as the denominator in constructing the net

migration rates, the county population in the launch year would have been used

in this equation instead of AUSP.
Table 7.6 shows the net migration projections for females in Maricopa County.

For females aged 45–49 in 2015, for example, we project net migration by multi-

plying the adjusted U.S. population aged 40–44 in 2010 by the net migration rate for

that age group:

10; 371; 927ð Þ 0:001018ð Þ ¼ 10, 559

As we did in Model I, we combine the launch year populations in the two oldest

age groups (ages 80–84 and 85+ in a 5-year model) before applying the migration

rate for the oldest age group. Also, we do not directly project net migration for the

population aged 0–4 in 2015; this age group is accounted for in the fertility module.

Table 7.5 Survived female population, Maricopa County, 2015 (Model II)

2010

Age

2015

Age

2010

Population

Five-year

survival rates

2015 Survived

populationa
2010–2015

Deathsb,c

0–4 5–9 138,502 0.99876 138,330 172

5–9 10–14 138,369 0.99948 138,297 72

10–14 15–19 135,874 0.99911 135,753 121

15–19 20–24 134,347 0.99830 134,119 228

20–24 25–29 129,341 0.99764 129,036 305

25–29 30–34 136,755 0.99658 136,287 468

30–34 35–39 131,224 0.99556 130,641 583

35–39 40–44 132,870 0.99397 132,069 801

40–44 45–49 128,235 0.98991 126,941 1,294

45–49 50–54 131,780 0.98495 129,797 1,983

50–54 55–59 124,017 0.97924 121,442 2,575

55–59 60–64 109,421 0.97159 106,312 3,109

60–64 65–69 100,312 0.95947 96,246 4,066

65–69 70–74 77,978 0.93919 73,236 4,742

70–74 75–79 58,416 0.90250 52,720 5,696

75–79 80–84 45,824 0.83955 38,472 7,352

80+ 85+ 75,387 0.60473 45,589 29,798

Total 1,928,652 1,865,287 63,365
a2010 population � survival rate
b2010 population � 2015 survived population
cDoes not include deaths to females born between 2010 and 2015
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7.2.2.3 Fertility Module

Several adjustments to the fertility module used in Model I must be made before it

can be used in Model II. First, 1-year fertility rates must be multiplied by 5 to reflect

5-year projection intervals. Second, an adjustment must be made to account for the

fact that females pass from one age group to another during the projection interval.

Because they spend half the interval in one age group and half in the next older

group (on average), ASBRs are typically calculated as the average of the rates for

those two groups. We call this the adjusted ASBR (ADJASBR):

nADJASBRx, t ¼ nASBRx, t þ nASBRxþ5, tð Þ=2

This adjustment can have a substantial impact on birth projections, especially

when the population is growing (or declining) rapidly or when some age groups are

considerably larger than others.

The equation identifying the at-risk female population also changes, with

projected net migration replacing separate projections of domestic in-and

out-migration and net international migration:

nATRISKFx, t ¼ nFPx, l � 0:5ð Þ nFDx, l to tð Þ þ nFNETMIGxþz, l to t

where ATRISKF is the at-risk female population; FP is the launch year female

population; FD is female deaths; FNETMIG is the projection of female net

Table 7.6 Projected female net migration, Maricopa County, 2010–2015 (Model II)

2010

Age

2015

Age

2010 Adjusted

U.S. populationa
Net migration

rate

2010–2015 Net

migrationb

0–4 5–9 10,181,755 0.000840 8,553

5–9 10–14 10,093,478 0.000794 8,014

10–14 15–19 9,838,775 0.001222 12,023

15–19 20–24 10,476,248 0.001454 15,232

20–24 25–29 10,550,611 0.001715 18,094

25–29 30–34 10,408,034 0.001522 15,841

30–34 35–39 9,960,566 0.000952 9,482

35–39 40–44 9,943,041 0.000741 7,368

40–44 45–49 10,371,927 0.001018 10,559

45–49 50–54 11,298,503 0.001099 12,417

50–54 55–59 11,157,986 0.001134 12,653

55–59 60–64 9,957,343 0.001240 12,347

60–64 65–69 8,633,145 0.000937 8,089

65–69 70–74 6,435,764 0.000596 3,836

70–74 75–79 4,952,632 0.000403 1,996

75–79 80–84 4,076,881 0.000150 612

80+ 85+ 7,214,136 0.000059 426

Total 157,542
a2010 U.S. population � 2010 Maricopa County population
bNet migration rate � adjusted U.S. population
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migration; and n, x, z, l, and t are as defined previously. Births for each age group

are projected by multiplying the adjusted ASBR by the at-risk female population:

nBx, l to t ¼ nADJASBRx, tð Þ nATRISKFx, tð Þ

Table 7.7 shows the calculation sequence for births and the population aged 0–4.

Column 3 shows the projected ASBR for each age group in 2015; these rates are

1-year rates multiplied by 5. Column 4 shows adjusted ASBRs, calculated as the

average of two adjacent sets of ASBRs. For example, the adjusted rate for females

aged 10–14 in 2010 is the average of the rates for ages 10–14 and 15–19. The rate

for females aged 40–44 in 2010 is one-half the rate for females aged 40–44 because

the rate for females older than age 44 is assumed to be zero. The life table survival

rate for the 0–4 age group refers to a 2.5-year horizon rather than a 5-year horizon

because it is assumed that births and deaths occur evenly throughout the 5-year

interval: On average, babies born during the interval face a 2.5-year horizon to the

end of the interval.

7.2.2.4 Final Projection Module

The final calculations combine the results from the mortality, migration, and

fertility modules (see Table 7.8). The basic equation is about the same as in Model I,

Table 7.7 Projected births and population aged 0–4, Maricopa County, 2015 (Model II)

5-Year birth rate 2010–2015

2010

Age 2015 Age Originala Adjustedb
2010

Population Deaths

Net

migration

At-risk

populationc Birthsd

10–14 15–19 0.00000 0.10976 135,874 121 12,023 147,837 16,227

15–19 20–24 0.21951 0.37786 134,347 228 15,232 149,465 56,477

20–24 25–29 0.53621 0.56939 129,341 306 18,094 147,282 83,861

25–29 30–34 0.60256 0.54017 136,755 468 15,841 152,362 82,301

30–34 35–39 0.47777 0.35472 131,224 583 9,482 140,415 49,808

35–39 40–44 0.23167 0.14042 132,870 802 7,368 139,837 19,636

40–44 45–49 0.04917 0.02459 128,235 1,293 10,559 138,148 3,397

Total 928,646 3,801 88,599 1,015,346 311,707

Share of

births

2010–2015

Birthse,f
Survial

rateg
2015 Population

aged 0–4h

2010–2015

Infant

deathsi

Males 0.51 158,971 0.99467 158,124 847

Females 0.49 152,736 0.99728 152,321 415

Total 1.00 311,707 310,445 1,262

aOne-year ASBR � 5
bAverage of ASBR for adjacent age groups
c2010 population � (0.5 � deaths) þ net migration
dAdjusted ASBR � at-risk population
eMales ¼ total births � 0.51
fFemales ¼ total births � male births
gProbability of surviving from birth to age 2.5
hBirths � survival rate
iBirths � 2010 population aged 0–4.
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except that separate terms for domestic in- and out-migration and net international

migration have been replaced by a single term for net migration:

npxþz, t ¼ nSURVPxþz, t þ nNETMIGxþz, l to t

The choice of the migration model can have a significant impact on population

projections. As shown in Table 7.9, Model I generates a net migration flow of

147,365 between 2010 and 2015 (including both domestic and international

migrants), whereas Model II generates a net migration flow of 157,542, a difference

of 6.9%. The differences become greater as the projection horizon increases.

Between 2035 and 2040, for example, net migration is 49.4% higher in Model II

than Model I. Projections from Model II would have been even higher if the

Maricopa County rather than the adjusted U.S. population had been used as the

denominator for calculating net migration rates.

Total population change is considerably greater for Model II than Model I.

Although migration accounts for most of this difference, births and deaths also

play a role. Births are higher in Model II than Model I because the number of

women of childbearing age is greater. Over the 30-year projection horizon, there are

90,000 more births and 12,600 fewer deaths in Model II than Model I (not shown

here). Because of these differences in projected population change, we believe it is

helpful to compare cohort-component projections with projections produced by

other projection methods. If the differences are substantial, it may be advisable to

Table 7.8 Projected female population, Maricopa County, 2015 (Model II)

Age

2010

Population

2015 Survived

population

2010–2015

Deaths

2010–2015

Net migration

2015

Populationa

0–4 138,502 152,321b 415 0 152,321

5–9 138,369 138,330 172 8,553 146,883

10–14 135,874 138,298 71 8,014 146,312

15–19 134,347 135,753 121 12,023 147,776

20–24 129,341 134,119 228 15,232 149,351

25–29 136,755 129,035 306 18,094 147,129

30–34 131,224 136,287 468 15,841 152,128

35–39 132,870 130,641 583 9,482 140,123

40–44 128,235 132,068 802 7,368 139,436

45–49 131,780 126,942 1,293 10,559 137,501

50–54 124,017 129,796 1,984 12,417 142,213

55–59 109,421 121,442 2,575 12,653 134,095

60–64 100,312 106,312 3,109 12,347 118,659

65–69 77,978 96,246 4,066 8,089 104,335

70–74 58,416 73,236 4,742 3,836 77,072

75–79 45,824 52,720 5,696 1,996 54,716

80–84 37,217 38,472 7,352 612 39,084

85+ 38,170 45,589 29,798 426 46,015

Total 1,928,652 2,017,607 63,781 157,542 2,175,149
aSurvived population þ net migration
b2010–2015 survived births
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control the projections of demographic characteristics (e.g., age, sex, race) coming

from the cohort-component model to projections of total population coming from

other projection methods, especially for net migration models, long projection

horizons, and areas that have been growing rapidly. Chapters 8 and 9 describe

other projection methods and Chap. 10 discusses several controlling techniques.

The two migration models also lead to differences in the age distribution (see

Fig. 7.2). Although the differences are small for most age groups, they are substan-

tially larger at the older ages. These differences highlight the importance of

thinking carefully about the implications of the choice of the migration model

before making a set of population projections.

7.2.3 Hamilton-Perry (Model III)

Hamilton and Perry (1962) proposed the use of cohort-change ratios as a short-cut

way to apply the cohort-component method. The Hamilton-Perry method is similar

Table 7.9 Net migration and population change, Models I and II, Maricopa County 2010–2040

Net migration Population change

Model II Model I Differencea Model II Model I Differencea

2010–2015 157,542 147,365 10,177 246,494 230,790 15,704

2020–2025 168,415 130,350 38,065 267,861 216,627 51,234

2035–2040 178,414 119,442 58,972 260,227 170,098 90,129

2010–2040 1,013,989 782,309 231,680 1,566,229 1,228,959 337,270
aModel II � Model I
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to a net migration model in which the denominator for migration rates is the

population of the area to be projected (in this example, Maricopa County). The

major difference is that it treats mortality and migration as a single unit rather than

separately. In addition, the fertility component is often simplified by using child-

woman ratios rather than ASBRs.

The Hamilton-Perry method projects population by age and sex using cohort-

change ratios (CCR) based on data from two consecutive censuses. These ratios are

the same as the census survival rates discussed in Chap. 4, but the notation is

somewhat different:

nCCRx ¼ nPxþy, l=nPx,b

where nPx+y,l is the population aged x + y to x + y + n in the most recent census

(l ), nPx,b is the population aged x to x + n in the second most recent census (b), and
y is the number of years between the two most recent censuses (l�b). Using 2000

and 2010 as an example, the CCR for the population aged 20–24 in 2000 would be

represented by:

5CCR20 ¼ 5P30,2010=5P20,2000

In the United States, the Hamilton-Perry method is most commonly used to project

5-year age cohorts in 10-year intervals. When mid-decade estimates (or censuses) are

available, 5-year intervals also can be used. The method can easily be adapted to

provide projections for additional characteristics such as race or ethnicity.

The basic formula for a Hamilton-Perry projection is:

nPxþz, t ¼ nCCRxð Þ nPx, lð Þ

Using data from the 2000 and 2010 censuses, for example, the formula for

projecting the population aged 30–34 in the year 2020 is:

5P30,2020 ¼ 5CCR20ð Þ 5P20,2010ð Þ

The quantity in the first set of parentheses is the CCR for the population aged

20–24 in 2000. If it is assumed this ratio will remain constant, the projection for the

population 30–34 in 2020 is the population 20–24 in 2010 multiplied by the CCR.

When there are 10 years between censuses, 10–14 is the youngest age group for

which projections can be made. How can the population aged 0–4 and 5–9 be

projected? Hamilton and Perry (1962) used the most recent age-specific birth rates

held constant over the projection interval. This procedure is valid, of course, but it

requires data on births by age of mother; these data are not always available,

especially for subcounty areas. We prefer a simpler approach that does not require

any data beyond that available in the decennial census. This approach uses two

child-woman ratios (CWRs) from the most recent census and applies them to the

projected female population in the appropriate age groups.
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For projecting the population 0–4, the CWR is defined as the population aged

0–4 divided by the female population aged 15–44. For projecting the population

aged 5–9, the CWR is defined as the population aged 5–9 divided by the female

population aged 20–49. The implementation of these ratios requires four projection

equations—two for females and two for males:

Females 0�4 : 5FP0, t ¼ 5FP0, l=30FP15, l
� �

30FP15, tð Þ
Males 0�4 : 5MP0, t ¼ 5MP0, l=30FP15, l

� �
30FP15, tð Þ

Females 5�9 : 5FP5, t ¼ 5FP5, l=30FP20, l
� �

30FP20, tð Þ
Males 5�9 : 5MP5, t ¼ 5MP5, l=30FP20, l

� �
30FP20, tð Þ

where FP is the female population,MP is themale population, l is the launch year, and
t is the target year. For example, the formula for projecting females aged 0–4 in 2020 is:

5FP0,2020 ¼ 5FP0,2010=30FP15,2010
� �

30FP15,2020ð Þ

Table 7.10 illustrates an application of the Hamilton-Perry method to project the

number of females in Maricopa County in 2020 (shown in the unadjusted column).

As the table shows, the method requires only a limited set of calculations. For

example, the female population aged 10–14 in 2020 is calculated as:

135, 874=118, 169ð Þ 138; 502ð Þ ¼ 159, 254

Projections of the oldest age group differ slightly from projections for the

other age groups. The calculations for the CCR require the summation of the

three oldest age groups to get the population aged 75+ in the base year. A ratio of

the population aged 85+ in the launch year (2010) to the population aged 75+ in

the base year (2000) forms the basis of the projection of the population aged 85+ in

the target year (2020):

CCR75þ : P85þ, l=P75þ, b ¼ 38, 170= 44, 942þ 30, 637þ 27, 185ð Þ ¼ 0:37143
Population 85þ in 2020 : 0:37143ð Þ 45, 824þ 37, 217þ 38, 170ð Þ ¼ 45, 021

In this example, it is assumed that the launch year CWRs remain constant over

the projection horizon. The two youngest age groups are thus projected by applying

these CWRs to projected females aged 15–44 and 20–49:

Females 15�44 : 159, 870þ 162, 735þ 178, 980þ 160, 047þ 154, 390þ 145, 962

¼ 961, 984

Females 20�49 : 162, 735þ 178, 980þ 160, 047þ 154, 390þ 145, 962þ 144, 779

¼ 946, 893

Females 0�4 : 0:17471ð Þ 961; 984ð Þ ¼ 168, 068

Females 5�9 : 0:17511ð Þ 946; 893ð Þ ¼ 165, 810
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This application of the Hamilton-Perry method holds CCRs constant over the

projection interval; this approach has been used in several previous studies (Smith

and Shahidullah 1995; Swanson et al. 2010). It is also possible to average together

CCRs from several recent censuses or to extrapolate trends observed between

censuses. However, time series approaches can be applied only if geographic

boundaries remain constant over time. For many subcounty areas, this is difficult

to achieve even for two censuses, much less for three or four (Pittenger 1976,

p. 186). Another approach is to construct ratios of CCRs for small areas (e.g.,

census tracts) to CCRs for a larger area (e.g., county) and apply those ratios to

projections of the larger area’s CCRs. This approach is similar to the synthetic

methods discussed in Chaps. 4 and 5.

Table 7.10 Projected female population, Maricopa County, 2020 (Model III)

2020 Population

Age

2000

Population

2010

Population CCRa Unadjustedb Adjustedc

0–4 118,169 138,502 n/a 168,068 160,824

5–9 116,278 138,369 n/a 165,810 158,663

10–14 107,992 135,874 1.14983 159,254 152,390

15–19 102,652 134,347 1.15539 159,870 152,980

20–24 106,048 129,341 1.19769 162,735 155,721

25–29 117,693 136,755 1.33222 178,980 171,266

30–34 115,287 131,224 1.23740 160,047 153,149

35–39 120,940 132,870 1.12895 154,390 147,736

40–44 112,714 128,235 1.11231 145,962 139,671

45–49 98,641 131,780 1.08963 144,779 138,539

50–54 88,376 124,017 1.10028 141,094 135,013

55–59 69,843 109,421 1.10929 146,182 139,881

60–64 56,526 100,312 1.13506 140,767 134,700

65–69 51,621 77,978 1.11648 122,166 116,901

70–74 50,132 58,416 1.03344 103,666 99,198

75–79 44,942 45,824 0.88770 69,221 66,238

80–84 30,637 37,217 0.74238 43,367 41,498

85+ 27,185 38,170 0.37143 45,021 43,081

Total 1,535,676 1,928,652 2,411,379 2,307,449d

Control 2,307,447

Adj. factor 0.9568994

Child-woman ratio, 2010

Ages 0–4/15–44 0.17471

Ages 5–9/20–49 0.17511
a2010 population age (x þ 10) / 2000 population age (x)
bPopulation in each of the two youngest age groups is calculated by multiplying the appropriate

CWR by the appropriate population
cUnadjusted projection � Adj. factor
dBased on the average of projections from several trend extrapolation techniques applied to three

base periods (1990–2010, 2000–2010, and 2005–2010). The average excluded the highest and

lowest projections
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7.3 Comparing Models I, II, and III

Theoretically, gross migration models are preferable to net migration models. Gross

migration is closer to the true migration process than is net migration. It can be

related to identifiable origin and destination populations, providing rates that

approximate migration probabilities. In addition, gross migration models may

provide more reasonable forecasts than net migration models in some circum-

stances, especially for long projection horizons and rapidly growing areas. How-

ever, gross migration models require more computations and more base data than

net migration models. These data are unavailable for many areas and, given the

relatively small sample sizes found in the ACS, may be less reliable as well.

Although gross migration models are conceptually superior, net migration models

are widely used in practice and generally can be tailored to produce forecasts that

are as accurate as those produced by gross migration models.

It should be noted that the manner in which net migration rates are calculated can

have a substantial impact on the resultant projections, especially in rapidly growing

areas. In our example, we used the adjusted U.S. population as the denominator in

constructing the rates. If we had used the Maricopa County population instead, the

projected net migration flow for 2010–2015 would have been 4% higher (163,994

compared to 157,542); for 2035–2040, it would have been 56% higher (277,863

compared to 178,414). These differences occurred because the Maricopa County

population is projected to grow more rapidly than the U.S. population. The analyst

must keep this issue in mind when calculating net migration rates.

The major advantage of the Hamilton-Perry method compared to both gross and

net migration models is that it has much smaller data requirements. Instead of

mortality, fertility, migration, and population data, the Hamilton-Perry method

simply requires population data by age and sex from two consecutive censuses

(or estimates). Consequently, it is much quicker, easier, and cheaper to implement

than a full-blown cohort-component model and is particularly useful for small-area

projections.

As noted in Chap. 2, the 2000 census was the first to allow respondents to list

themselves as belonging to more than one racial category. As a result, racial data

since 2000 are inconsistent with racial data prior to 2000. In addition, racial

classifications from the decennial census are not completely consistent with clas-

sifications used for vital statistics data, making it difficult to develop reliable

estimates of components of change for racial groups. Both of these issues create

problems for cohort-component projections. Because it can be based solely on data

from the two most recent censuses, the Hamilton-Perry method avoids these

problems and provides a viable alternative to a full-blown cohort-component

model, especially for projections of the multi-racial population (Swanson 2013).

One caveat regarding the Hamilton-Perry method should be mentioned. This

method is essentially a set of cohort growth rates applied to a beginning population.

As we show in Chap. 13, constant growth rates can lead to large forecast errors and

a strong upward bias when applied to rapidly growing places. Consequently, we
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believe it is generally advisable to control Hamilton-Perry projections to indepen-

dent projections of total population (Smith and Shahidullah 1995; Swanson

et al. 2010). Such an adjustment is illustrated in the last column of Table 7.10.

When this adjustment is made, the Hamilton-Perry method projects only the age

composition of the population, not its total size.

The three migration models used in our examples were based on data covering

three different lengths of base period: 1 year for Model I, 5 years for Model II, and

10 years for Model III. The analyst must decide whether the migration rates drawn

from a particular base period are likely to provide reasonable projections of future

migration flows. In most circumstances, we believe it is advisable to take an

average of rates from several different base periods, especially for long-range

projections. The impact of the length of the base period on forecast accuracy is

discussed in Chap. 13.

7.4 Conclusions

The cohort-component method is a mainstay in the demographer’s toolbox and is

not likely to relinquish its lofty position any time soon. It provides a theoretically

complete model that accounts for the individual components of growth and for the

impact of changes in demographic composition over time. It can incorporate many

different application techniques, types of data, and assumptions regarding future

trends. Perhaps most important, it provides projections not only of total population

but of the components of growth and changes in demographic composition as well.

The cohort-component method has its limitations, however. Perhaps the most

important is that it is very data-intensive and requires a large number of computa-

tions. A full cohort-component model requires mortality, fertility, migration, and

population data by age and sex (and perhaps other characteristics as well).

Collecting, verifying, and cleaning up these data is a tedious and time-consuming

process. The number of computations involved in applying the method is very

large. Consequently, the cohort-component method is relatively expensive to apply.

As we show in the next chapter, other projection methods are simpler, less data-

intensive, and less costly.

We believe it is helpful to compare cohort-component projections with pro-

jections produced by other projection methods. If the differences are large, possible

explanations for those differences must be considered. In some circumstances, it

may be beneficial to control the projections of demographic characteristics (e.g.,

age, sex, race) coming from the cohort-component method to projections of total

population coming from other projection methods. Controlling is most likely to be

beneficial for rapidly growing areas and long projection horizons, especially when

projections are made using net migration models or the Hamilton-Perry method.

Large data requirements preclude the use of some forms of the cohort-

component method at some levels of geography. Although seldom a problem for

states and large counties, the lack of data presents a formidable challenge for small
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counties and subcounty areas. Birth and death data are routinely available for

counties but not for most subcounty areas. Migration data are an even greater

problem. ACS migration data are quite limited, especially at the subcounty level.

Although PUMS files provide detailed migration information, they are often based

on a small sample size and are available only for places with at least 100,000

residents. IRS migration data are not tabulated below the county level and do not

provide breakdowns of demographic characteristics. Because of these data prob-

lems, the Hamilton-Perry method is often the best cohort-component model to use

for subcounty projections.

A final limitation of the cohort-component method is that—although it provides

the mathematical framework for making projections for cohorts and components of

growth—it provides no guidance regarding the choice of assumptions that will lead

to reasonable forecasts. Will mortality rates decline over the next 20 years? If so,

how rapidly? Will fertility rates go up or down? Will migration follow the patterns

observed over the last 10 years or revert to the patterns observed during the previous

10 years? What economic, social, cultural, political, or biological factors might

cause recent demographic trends to change course? Nothing in the cohort-

component method itself provides answers to these questions.

As Chaps. 4, 5 and 6 suggest, we must seek answers to these questions else-

where. Models based solely on demographic factors are limited in the range of

theoretical, policy, and planning questions they can address. However, structural

and microsimulation models can be developed that incorporate explanations of the

determinants of population growth directly into the projection method (see

Chap. 9). These models can be applied within the framework of the cohort-

component method, greatly increasing its usefulness for a variety of purposes.

This highlights one of the most important attributes of the cohort-component

method; namely, its flexibility. The cohort-component method can accommodate

a wide variety of application techniques and data sources. It is not surprising that it

continues to be the most widely used of all the population projection methods.
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Chapter 8

Extrapolation Methods

Early versions of the cohort-component method were developed in the late nine-

teenth and early twentieth centuries, but the method did not become widely used

until the middle of the twentieth century. Before that time projections were typi-

cally made by extrapolating historical population trends into the future, using one or

more of a number of mathematical formulas. Projections based on trend extrapo-

lations were made by such eminent “demographers” as Benjamin Franklin, Thomas

Jefferson, and Abraham Lincoln (Dorn 1950). In spite of their simplicity and lack of

theoretical content and demographic detail, early applications of this approach

often produced reasonably accurate forecasts of total population, even for projec-

tion horizons extending well into the future (Pritchett 1891; Pearl and Reed 1920).

Trend extrapolation methods were largely overshadowed by other methods by

the middle of the twentieth century, but have made a comeback in recent years as

new methods were developed and detailed evaluations of forecast accuracy and

utility were conducted. Relatively low costs and small data requirements make

these methods particularly useful for small-area projections. We discuss other

characteristics of trend extrapolation methods (including their forecast accuracy)

in Chaps. 12 and 13.

The defining characteristic of trend extrapolation methods is that future values of

any variable are determined solely by its historical values; that is, these methods

assume that change over the projection horizon will follow previous trends. In this

chapter, we describe and illustrate a number of trend extrapolation methods that

have been used for state and local population projections. Descriptions of extrap-

olation methods used in other fields can be found in Armstrong (2001), Granger

(1989), Mahmoud (1984), Makridakis et al. (1989), and Schnaars (1986).

There are many different ways to measure historical population values and

project them into the future using trend extrapolation methods (Davis 1995; Irwin

1977; Isserman 1977; Pittenger 1976; Rayer 2007). It is convenient to organize

them into three categories. Simple extrapolation methods are those that have simple

mathematical structures and require data for only two points in time. We cover

three simple methods: linear extrapolation, geometric extrapolation, and exponen-

tial extrapolation. Complex extrapolation methods require data from a number of
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points in time, have more complicated mathematical structures, and require statis-

tical estimation of the model’s parameters. We cover five complex methods: linear

trend models, polynomial curve fitting, exponential curve fitting, logistic curve

fitting, and ARIMA time series models. Ratio extrapolation methods express the
population of a smaller unit as a proportion of the population of a larger unit; for

example, a county’s population can be expressed as a proportion of a state’s

population. We cover three ratio methods: constant-share, shift-share, and share-

of-growth.

We illustrate these methods using data from 1990 to 2010 for Franklin County

and Grays Harbor County in the State of Washington. Franklin County is located in

eastern Washington and contains a diverse economy rooted in agriculture, bio- and

high-technology, and manufacturing. The U.S. Department of Energy’s Hanford

site is located near Franklin County. Grays Harbor is a coastal county in western

Washington whose economy is based primarily on wood and paper products and

seafood processing industries; this area has been impacted by a decline in the timber

industry.

Table 8.1 and Fig. 8.1 show the base data for Franklin County and Grays Harbor

County. Franklin County was the fastest growing county in the state between 1990

and 2010, growing by 108.6%, while Grays Harbor County was one of the slowest

growing, growing by only 13.4%. In 1990, Grays Harbor County had 26,702 more

people than Franklin County. By 2010, the population of Franklin County exceeded

that of Grays Harbor County by almost 5,400 people. Table 8.1 also includes the

state-level data needed to apply the ratio methods.

For consistency, we use a 20-year base period for all 11 methods. For methods

requiring only two data points, we use the population in 1990 and 2010. For

complex methods requiring more data, we use all of the annual data between

1990 and 2010. We make projections for both counties from 2010 to 2040 using

each of the 11 methods.

Although there are exceptions, trend extrapolation methods are used most

frequently for projections of total population. As discussed in Chaps. 4, 5, 6, they

can also be used for projecting individual components of change in the cohort-

component method. We focus primarily on projections of total population in this

chapter, but also provide an example of a ratio method used for projecting popu-

lation by racial/ethnic group.

8.1 Simple Extrapolation

8.1.1 Linear

The linear extrapolation method (LINE) assumes that the population will change by

the same number of persons in the future as it did in the past. Past and future time

periods are usually measured by years, but can be measured by decades or other
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intervals as well. Using years as the time period, average annual numeric change

during the base period is computed as:

AANC ¼ Pl � Pbð Þ=y

where AANC is the average annual numeric change during the base period; Pl is the

population in the launch year; Pb is the population in the base year; and y is the

number of years in the base period (for a review of terminology, see Box 1.3).

Population projections using the linear extrapolation method are computed as:

Pt ¼ Pl þ zð Þ AANCð Þ

where Pt is the population in the target year and z is the number of years in the

projection horizon.

Table 8.1 Population of Washington and Franklin and Grays Harbor

Counties, 1990–2010

Year Washington Franklin Grays Harbor

1990 4,866,692 37,473 64,175

1991 5,021,335 38,522 64,309

1992 5,141,177 39,077 64,636

1993 5,265,688 40,092 64,930

1994 5,364,338 41,280 65,441

1995 5,470,104 42,516 65,820

1996 5,567,764 43,694 66,172

1997 5,663,763 45,180 66,553

1998 5,750,033 46,465 66,568

1999 5,830,835 47,900 66,766

2000 5,894,143 49,347 67,194

2001 5,970,330 50,473 68,709

2002 6,059,316 52,286 69,229

2003 6,126,885 54,907 69,445

2004 6,208,515 58,576 70,069

2005 6,298,816 62,572 70,812

2006 6,420,258 66,371 71,582

2007 6,525,086 69,582 72,038

2008 6,608,245 72,230 72,295

2009 6,672,159 75,111 72,569

2010 6,724,540 78,163 72,797

Avg. annual change 92,892.4 2,034.5 431.1

Percent change 38.2% 108.6% 13.4%

Avg. annual growth ratea 1.6% 3.7% 0.6%

Sources: Intercensal Estimates of April 1 Population and Housing,

2000–2010. Washington State OFM, Forecasting Division, Oct. 2011

Intercensal Estimates of April 1 Population and Housing, 1990–2000. Wash-

ington State OFM, Forecasting Division, 2002–2003
aExponential growth rate
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The average annual numeric change between 1990 and 2010 and the 2015

population projection for Franklin County are:

AANC ¼ 78,163� 37,473ð Þ=20 ¼ 2,034:5
P2015 ¼ 78,163þ 5ð Þ 2,034:5ð Þ ¼ 88,336

The corresponding calculations for Grays Harbor County are:

AANC ¼ 72,797� 64,175ð Þ=20 ¼ 431:1
P2015 ¼ 72,797þ 5ð Þ 431:1ð Þ ¼ 74,953

Different base periods and projection horizons can be accommodated by simply

changing the years used to define the base year (b), launch year (l ), and target year

(t). For example, projections for 2025 are:

Franklin County : 78,163þ 15ð Þ 2,034:5ð Þ ¼ 108,681

Grays Harbor County : 72,797þ 15ð Þ 431:1ð Þ ¼ 79,264

8.1.2 Geometric

The geometric extrapolation method (GEO) assumes that the population will

change at the same annual percentage rate over the projection horizon as during

the base period. The average geometric rate of population change during the base

period is computed as:

r ¼ Pl=Pbð Þ 1=yð Þ � 1
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where r is the average geometric rate of change; Pl is the population in the launch

year; Pb is the population in the base year; and y is the number of years in the base

period. Given this formula, a population projection using the GEO method is

expressed as:

Pt ¼ Plð Þ 1þ rð Þz

The annual rate of geometric change between 1990 and 2010 and the 2015

population projection for Franklin County are:

r ¼ 78,163=37,473ð Þ 1=20ð Þ � 1 ¼ 0:03744

P2015 ¼ ð78,163Þ 1þ 0:03744ð Þ5 ¼ 93,933

The corresponding calculations for Grays Harbor County are:

r ¼ 72,797=64,175ð Þ 1=20ð Þ � 1 ¼ 0:00632

P2015 ¼ 72,797ð Þ 1þ 0:00632ð Þ5 ¼ 75,127

8.1.3 Exponential

Geometric growth rates are based on compounding at discrete time intervals (in this

example, once each year). Another approach to calculating growth rates is based on

continuous compounding (EXPO). This approach more nearly represents the

dynamics of population growth because growth generally occurs continuously

rather than at discrete intervals. Under this approach, the annual growth rate is

computed as:

r ¼ ln Pl=Pbð Þ½ �=y

where r is the average annual exponential rate of change; ln is the natural logarithm;

Pl is the population in the launch year; Pb is the population in the base year; and y is
the number of years in the base period. A population projection using the exponen-

tial change method is expressed as:

Pt ¼ Plð Þ erzð Þ

where e is the base of the system of natural logarithms (approximately 2.71828).

The annual rate of exponential change from 1990 to 2010 and the 2015 popu-

lation projection for Franklin County are:

r ¼ ln 78,163=37, 473ð Þ=20 ¼ 0:03676
P2015 ¼ 78,163ð Þ e 0:03676ð Þ 5ð Þ� � ¼ 93,934
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The corresponding calculations for Grays Harbor County are:

r ¼ ln 72,797=64, 175ð Þ=20 ¼ 0:00630
P2015 ¼ 72,797ð Þ e 0:00630ð Þ 5ð Þ� � ¼ 75,127

Growth rates based on an exponential model are similar to those based on a

geometric model, especially for places that are not growing rapidly. The average

annual geometric and exponential growth rates from 1990 to 2010 for slowly

growing Grays Harbor County are 0.632% and 0.630%, respectively. For the

more rapidly growing Franklin County, they are 3.744% and 3.676%. Exponential

growth rates are always smaller than geometric growth rates because they reflect

continuous compounding rather than compounding at discrete intervals.

For both areas, the EXPO projections are almost identical to the GEO pro-

jections for the year 2015. Even when carried out to 2040, the projections are

identical for Grays Harbor County and differ only by four for Franklin County. If

applied consistently, the GEO and EXPO methods will provide virtually identical

projections. Rather than repeating the same results, we report solely on the EXPO

method in the remainder of this chapter.

Both the GEO and EXPO methods can lead to very high projections in rapidly

growing places. Consider an example from Palm Coast, a rapidly growing city in

Florida. A continuation of its 2000–2010 exponential growth rate (6.5% per year)

would cause its population to double about every 11 years. In 40 years its popula-

tion would be more than 12 times larger than its 2010 population (95,696), reaching

almost 1,190,000; in 80 years, it would be 154 times larger (almost 15 million).

Clearly, these are not reasonable projections. These two methods must be used

cautiously for long-range projections, especially for rapidly growing places.

8.2 Complex Methods

Complex extrapolation methods differ from simple methods in several ways. They

require additional time points over the base period and thus can provide a more

complete picture of the historical pattern of population change. Their more complex

mathematical structures provide a wider range of possible assumptions regarding

population trends than simpler methods. In addition, the statistical algorithms for

estimating their parameters provide a basis for constructing prediction intervals

around the population forecasts (Bongaarts and Bulatao 2000, Chap. 7; Tayman

2011). However, complex extrapolation methods are considerably more difficult to

implement than simple trend or ratio methods. We compare the forecast accuracy of

simpler and more complex methods in Chap. 13.

Three basic steps are typically followed when applying complex extrapolation

methods. The first is to assemble historical population data at equal time intervals

during the base period. Population projections typically use annual intervals

(Pflaumer 1992; Saboia 1974; Tayman et al. 2007) or intervals between censuses
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(Isserman 1977; Leach 1981). The data must be based on consistently defined

geographic boundaries for each time point; adjustments will be required in areas

that have experienced shifts in boundaries, which is often the case for subcounty

areas.

The second step is to choose a mathematical model and estimate its parameters

through a process known as curve fitting (Alinghaus 1994). The choice of a

particular model also reflects judgments about the nature of population change

and the most likely future population trend (Davis 1995, p. 17). Typically, graphs,

statistical correlation measures and tests, and analysis of residuals are used to

evaluate how well a model fits the historical data; however, a close fit does not

guarantee an accurate (or even a reasonable) forecast.

The essential assumption underlying both simple and complex extrapolation

methods is that the functional relationship between historical population change

and time will remain constant over the course of the projection horizon. For

complex methods, this implies that the model’s coefficients will describe future

relationships as well as they described past relationships. If these relationships

change, projections are not likely to provide accurate forecasts regardless of how

well the model fit the data during the base period.

The final step is to use the mathematical model and estimated parameters to

prepare the population projections. In complex extrapolation models, population

is the dependent variable and time is the independent variable. In this section,

we describe and illustrate five complex extrapolation models: linear trend, poly-

nomial curve fitting, exponential curve fitting, logistic curve fitting, and ARIMA

time series models. The projections illustrating these methods are based on

21 data points for Franklin County and Grays Harbor County that represent annual

population data from 1990 to 2010. For ease of interpretation, we express time as

integers ranging from 1 to 51 (1 ¼ 1990, 2 ¼ 1991, . . ., 21 ¼ 2010, 22 ¼
2011, . . ., 51 ¼ 2040). The decision on the measurement of time is not substan-

tively important, as long as a consistent coding scheme is used for both the base

and projection periods.

8.2.1 Linear Trend

The linear trend model is the simplest and most familiar of the complex trend

extrapolation methods. This model assumes that the population will change by a

constant numerical amount, as determined by its historical population change. This

assumption is identical to that underlying the simple linear method discussed

earlier, but is operationalized differently. The linear trend model is based on the

equation for a straight line:

Y ¼ aþ bX
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where Y is the dependent variable (e.g., population); X is the independent variable

(e.g., time); a is the intercept term; and b is the slope. The terms Y and X are the

model’s variables. They represent the data used in estimating the model and take on

values that vary with each observation. The terms a and b are the model’s param-

eters (or coefficients). They represent the statistical relationships between the

independent and dependent variables. Their values remain constant for any partic-

ular application of the model but vary from one application to another.

In a diagram, the intercept term reflects the population value where the line

estimated by the model crosses the Y-axis (i.e., X ¼ 0). The slope measures the

projected annual change in population. A positive slope reflects a growing popula-

tion and a negative slope reflects a declining population. Ordinary least squares

(OLS) regression techniques are used to estimate a and b.
For Franklin County, the estimated intercept and slope are 30,635.0 and 2,028.1,

respectively. The slope indicates that the county’s population will increase by about

2,028 annually over the projection horizon; this is very close to the average annual

increase of 2,034 occurring over the base period. The equation has an adjusted r2 of

0.937. The adjusted r2 is a measure of the “goodness of fit” of an equation, showing

the proportion of variation in the dependent variable that can be attributed to

variation in the independent variable(s). Values for this measure fall between

0 and 1. The high value for Franklin County shows that a linear model fits the

historical data quite well.

For Grays Harbor County, the estimated intercept and slope are 62,982.5 and

473.9, respectively. The adjusted r2 is 0.976, showing that a linear model fits the

data slightly better for Grays Harbor County than for Franklin County. The slope

indicates that Franklin County’s population will increase by about 474 annually

over the projection horizon; this is higher than the average annual increase of

431 occurring over the base period.

Population projections can be constructed by plugging the estimated parameters

into the model as follows:

Pt ¼ aþ bXt þ cf

where Pt is the population in the target year; a and b are the estimated parameters;

Xt is the time value corresponding to the target year; and cf is the calibration factor.
The calibration factor requires explanation. In any curve-fitting procedure, it will

be unusual for the estimated and observed values in the launch year to be identical.

The calibration factor is an adjustment that makes the projected population consis-

tent with the launch year population. The calibration factor is computed by

subtracting the predicted population from the observed population in the launch

year. If the difference is negative (positive), the estimates will be adjusted down-

ward (upward) by a constant amount. This adjustment produces a parallel shift in

the trend line that makes it pass directly through the launch year population. Other

adjustment procedures can also be used (Isserman 1977; Treyz 1995, pp. 55–57).
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We recommend making such adjustments when applying complex extrapolation

methods.

The OLS regression results, calibration factors, and 2015 population projection

for Franklin County, using the value of 26 for time, are:

cf ¼ 78,163� 73,224 ¼ 4,939

P2015 ¼ 30,635:0þ 2,028:1ð Þ 26ð Þ þ 4,939 ¼ 88,305

The corresponding results for Grays Harbor County are:

cf ¼ 72,797� 72,935 ¼ �138

P2015 ¼ 62,982:5þ 473:9ð Þ 26ð Þ � 138 ¼ 75,166

Projections for different target years can be made by changing the X value in the

equation. For example, a projection for 2025 would use an X value of 36 and a

projection for 2040 would use an X value of 51. In most instances, projections from

the linear trend model will be similar to the projections from the LINE method.

8.2.2 Polynomial Curve Fitting

Like the EXPO and GEO methods discussed earlier, polynomial curves can be

useful for basing projections on non-linear patterns (i.e., patterns in which popula-

tion change is not a constant numeric value). The general formula for a polynomial

curve is:

Y ¼ aþ b1Xþ b2X
2 þ b3X

3 þ . . .þ bnX
n

Again, Y and X refer to population and time, respectively. In contrast to the linear

trend, a polynomial curve has more than one term for the time variable; conse-

quently there are more parameters to estimate. These terms are represented by

raising the time variable to different powers. The coefficients for a polynomial

curve (a, b1, b2, . . ., bn) can be estimated using OLS regression techniques. These

coefficients include a measure of the linear trend (b1) and measures of the

non-linear pattern (b2, b3, . . .., bn). Polynomial curves can have any number of

terms on the right-hand side of the equation. The highest exponent in the equation is

called the degree of the polynomial. The linear model previously discussed is a first

degree polynomial; a second degree contains X and X2; a third degree polynomial

contains X, X2, and X3; and so forth. Although polynomial curves of any degree can

be used, polynomials higher than third degree are seldom used for population

projections.

To illustrate a projection based on a polynomial curve, we use a second degree

polynomial (sometimes called a quadratic function). This function includes time
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(the linear term) and time squared (also called the parabolic term) on the right-hand
side of the equation:

Pt ¼ aþ b1Xt þ b2Xt
2 þ cf

A quadratic curve can produce a variety of growth scenarios, depending on the

signs and magnitudes of the two slope coefficients (see Fig. 8.2). Positive values for

both coefficients will result in the population growing at an increasing rate over the

projection horizon, while negative values for both coefficients will result in a

population declining at an increasing rate. A positive linear term and a negative

quadratic term will cause a population to increase at a decreasing rate; eventually

this population will stop growing and start declining. A negative linear term and

positive quadratic term will cause a population to decline at a decreasing rate;

eventually this population will stop declining and start growing. As with EXPO and

GEO, projections based on a quadratic curve can lead to very high (or low) pro-

jections for places that were growing (or declining) rapidly during the base period.

We use OLS regression techniques to estimate the coefficients in the quadratic

equation. The regression results, calibration factor, and 2015 population projection

for Franklin County are:

cf ¼ 78,163� 78,961 ¼ �798

P2015 ¼ 38,274:3þ 35:2ð Þ 26ð Þ þ 90:6ð Þ 262
� �� 798 ¼ 99,637

The corresponding results for Grays Harbor County are:

cf ¼ 72,797� 73,443 ¼ �646

P2015 ¼ 63,658:4þ 297:6ð Þ 26ð Þ þ 8:0ð Þ 262
� �� 646 ¼ 76,158

For Franklin County, the parabolic term is significant at α ¼ 0.05 and the

adjusted r2 for the equation is 0.995, or 0.058 points higher than for the linear

model. This indicates that the parabolic term helps describe population growth in

Franklin County. Moreover, the parabolic coefficient is substantially larger than the

coefficient on the linear term, which loses its statistical significance. The population

projection for Franklin County is driven primarily by the quadratic, non-linear term

and the quadratic model yields the highest projection of any trend extrapolation

method (see Table 8.7).

For Grays Harbor County, the squared term in significant at α ¼ 0.05 but the

adjusted r2 is only 0.008 points higher than for the linear model. In contrast to the

quadratic model for Franklin County, the coefficient of the linear term in the Grays

Harbor equation (297.6) is much larger than the coefficient of the quadratic term

(8.0). Yet, the significance and positive value of the quadratic coefficient has a

notable impact on the projection for Grays Harbor County, which is generally

higher than for the other extrapolation methods (see Table 8.7).

194 8 Extrapolation Methods



8.2.3 Exponential Curve Fitting

Non-linear trends in the historical data can also be projected using curves based on

logarithmic or other transformations of the base data (Draper and Smith 1981,

Chap. 5; Isserman 1977; Stock and Watson 2003, Chap. 6). Common transforma-

tions include reciprocal functions using the inverse of time; power functions using

the natural logarithms of time and population; logarithmic functions using the

natural logarithm of time; and exponential functions using the natural logarithm

of population. We use the exponential function to illustrate the use of data

transformations:

ln Yð Þ ¼ aþ bX

Similar to the linear trend model, the exponential curve has only one variable for

time (X), but the population (Y) is transformed by taking its natural logarithm.

Using the transformed population variable, OLS is used to estimate the parameters
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(a and b) for the exponential model. The slope coefficient is interpreted as the

average annual rate of change.

Solving the regression equation with the future value of time yields a projection

of the natural logarithm of the population:

ln Ptð Þ ¼ aþ b Xtð Þ þ cf

The projection of the population itself is then obtained by applying the rules of

natural logarithms; that is, e is raised to the power based on the regression results

(adjusted for re-transformation bias):

Pt ¼ eln
�
Pt

�
smeð Þ

� �

The population cannot be projected simply by taking the exponential function of

ln (Pt) because of retransformation bias (Manning 1998). To correct for this bias, ln
(Pt) is multiplied by a “smearing estimator” (sme) prior to taking the exponential

function. The sme is calculated by computing the mean of the antilog of the

residuals Duan (1983), and it usually yields a value between 1 and 2. The sme is

very close to 1.0 in our examples, which means the level of bias is well under 1%.

We believe the retransformation bias will usually be small in complex exponential

models for projecting population.

The regression results, calibration factors, smearing estimators, and 2015 pop-

ulation projection for Franklin County are:

cf ¼ 11:26655� 11:22590 ¼ 0:04065
sme ¼ 1:000653

ln P2015ð Þ ¼ 10:43601þ 0:03761ð Þ 26ð Þ þ 0:04065½ � 1:000653ð Þ ¼ 11:46210
P2015 ¼ e11:46210 ¼ 95, 045

The corresponding results for Grays Harbor County are:

cf ¼ 11:19543� 11:19857 ¼ �0:00314
sme ¼ 1:000018

ln P2015ð Þ ¼ 11:05297þ 0:00693ð Þ 26ð Þ � 0:00314½ � 1:000018ð Þ ¼ 11:23029
P2015 ¼ e11:23029 ¼ 75, 379

The exponential model fits the data well for both counties. The adjusted r2 is

0.979 for Grays Harbor County and 0.974 for Franklin County. The slope coeffi-

cients indicate that the populations of Franklin County and Grays Harbor County

will increase by approximately 3.8% and 0.7% annually over the projection hori-

zon, respectively. These growth rates are slightly higher than those observed over

the base period (3.7% and 0.6%).
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8.2.4 Logistic Curve Fitting

The extrapolation models considered so far are not constrained by any limits to

change. In these methods, population growth (or decline) can go on forever (or over

the length of the forecast horizon, anyway). In many instances this will not be a

reasonable assumption. In particular, the compounding effects of exponential or

geometric growth rates and some nonlinear models can lead to very high pro-

jections when carried too far into the future.

The logistic curve—one of the best-known growth curves in demography—deals

with this problem by including an explicit ceiling (or upper limit) on the size of the

population (Pittenger 1976, pp. 62–67; Romaniuc 1990). It depicts an S-shaped

pattern representing an initial period of slow growth rates, followed by a period of

increasing growth rates, and finally a period of declining growth rates that approach

zero as a population approaches its upper limit. The idea of limits to growth is

intuitively plausible and is consistent with Malthusian and other theories of

constrained population growth.

Due in large part to the work of Pearl and Reed (1920) and Yule (1925), the

logistic curve was a popular projection method in the early decades of the twentieth

century. Although its usefulness for projections has been questioned (Brass 1974;

Marchetti et al. 1996), several studies have shown that logistic curves often provide

reasonably accurate population forecasts (Dorn 1950; Leach 1981). Other curves

containing asymptotic ceilings on population size include modified exponential and

Gompertz models (Davis 1995, Chap. 3; Pittenger 1976, pp. 67–68). In addition, the

modified exponential and hyperbolic curves may be useful for projecting rapidly

declining populations because they set lower limits on population size (Davis 1995,

Chap. 3).

To implement our logistic model, we add a calibration factor to the three-

parameter logistic curve suggested by Keyfitz (1968, p. 215):

Y ¼ a= 1þ b e�cX
� �� �þ cf

where Y is population, X is time, a is the upper asymptote (or population limit);

b and c are parameters that define the shape of the logistic curve; e is the base of the
natural logarithm; and cf is the calibration factor. In using a logistic curve for

population projections, one must determine the magnitude of the upper asymptote

and the time required to reach it. These factors are based on the values of the three

parameters (a, b, and c), which can be estimated using iterative least squares

techniques (Keyfitz 1968, pp. 215–218). Other computational procedures for esti-

mating these parameters are shown in Pittenger (1976, pp. 62–66) and Shryock and

Siegel (1973, pp. 382–385). Unlike parameters in an ordinary regression model, the

estimated parameters in a logistic model may not be consistent with realistic

interpretations of population growth (e.g., a may not represent a reasonable upper

limit for population size). Other specifications are available for the logistic curve,
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including some with more than three parameters (Pielou 1969, pp. 19–32; Sieber

and Wild 1989, p. 331).

Some software packages (e.g., SPSS) require an independent estimate of the

upper asymptote before the model’s other parameters can be estimated, whereas

other packages (e.g., NCSS) estimate all parameters within the context of the

model. We used the NCSS statistical package because it does not require an

independent estimate of the upper asymptote. This is a useful feature because it

takes some of the guesswork out of the estimation process. For purposes of

comparison, we ran the logistic model using both statistical packages and obtained

almost identical projections when the NCSS estimate of the upper asymptote was

used in the SPSS logistic curve algorithm.

For a three-parameter logistic model, the regression results, calibration factors,

and 2015 population projection for Franklin County are:

cf ¼ 78, 163� 76, 577 ¼ 1, 586

P2015 ¼ 1,000,000,000= 1þ 30,176:6ð Þ e �0:03989ð Þ 26ð Þ� �� �þ 1,586 ¼ 95,065

The corresponding results for Grays Harbor County are:

cf ¼ 72,797� 73, 053 ¼ �256

P2015 ¼ 12,973,757:9= 1þ 204:6ð Þ e �0:00701ð Þ 26ð Þ� �� �� 256 ¼ 75,388

The logistic model fits the data well for both counties. The adjusted r2 for Grays

Harbor County and Franklin County are 0.981 and 0.978, respectively. The pro-

jections are shown in Table 8.2. Although the estimated a parameters are not

reasonable estimates of upper population limits for either county, the projections

themselves seem reasonable and fall within the range of projections from the other

extrapolation methods (see Table 8.7).

To illustrate the impact of imposing more realistic values for the upper limit, we

re-estimated the logistic model using a values of 250,000 and 90,000 for Franklin

County and Grays Harbor County, respectively. These upper limits are in line with

the highest projections for 2040 shown in Table 8.7. As shown in the top panel of

Table 8.2, reducing the upper limit has a substantial impact on the projections, most

notably for Franklin County where the 2040 projection falls by more than 90,000

persons (35.6%). The 2040 projection for Grays Harbor County falls by about 8,000

persons (8.7%).

Examining the changes over 5-year periods, we see that under the initial model,

numeric changes in both counties increase continuously over the projection hori-

zon, reflecting no asymptotic pattern (bottom panel of Table 8.2). When more

realistic upper limits are imposed, the asymptotic nature of the logistic curve

becomes apparent. For Franklin County, the 5-year change peaks at 15,007 for

2025–2030 and drops to 14,200 by 2035–2040. For Grays Harbor County, the

change peaks 5 years earlier (2020–2025) at 1,591 and declines to 1,140 by

2035–2040.
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Logistic models are consistent with various theories of population growth and

with empirical evidence from many situations in which populations (including

non-human populations such as yeast cells and fruit flies) move from low to high

to low rates of growth. However, they are dependent upon the same basic assump-

tions as other trend extrapolation methods; namely, that future population changes

emerge directly and smoothly from past population changes and that historical

relationships remain constant over time. In addition, it is difficult to develop

reliable estimates of the model’s parameters, and relatively small differences in

the parameters (especially the upper limit) can lead to large differences in popula-

tion projections. Because of these problems, logistic models are no longer widely

used for population projections.

8.2.5 ARIMA Models

The last complex extrapolation method is the Autoregressive Integrated Moving

Average (ARIMA) model. Popularized by Box and Jenkins (1976), ARIMAmodels

have been used extensively in the analysis and projection of demographic attributes

measured over time (Land 1986). They have been applied to individual components

Table 8.2 Population projections: Logistic curve fitting, Franklin and Grays Harbor Counties,

2015–2040

Total population

Franklin County Grays Harbor County

Target

year

Upper

Asymptotea
Upper

Asymptoteb
Percent

difference

Upper

Asymptotec
Upper

Asymptoted
Percent

difference

2015 95,065 91,302 �4.0 75,391 74,736 �0.9

2020 115,696 105,417 �8.9 78,074 76,498 �2.0

2025 140,880 120,177 �14.7 80,850 78,089 �3.4

2030 171,622 135,184 �21.2 83,725 79,519 �5.0

2035 209,146 150,003 �28.3 86,700 80,798 �6.8

2040 254,950 164,233 �35.6 89,781 81,938 �8.7

Population change

Franklin County Grays Harbor County

Projection

horizon

Upper

Asymptotea
Upper

Asymptoteb
Percent

difference

Upper

Asymptotec
Upper

Asymptoted
Percent

difference

2010–2015 16,902 13,139 �22.3 2,594 1,939 �25.3

2015–2020 20,631 14,115 �31.6 2,683 1,762 �34.3

2020–2025 25,184 14,760 �41.4 2,776 1,591 �42.7

2025–2030 30,742 15,007 �51.2 2,875 1,430 �50.3

2030–2035 37,524 14,819 �60.5 2,975 1,279 �57.0

2035–2040 45,804 14,230 �68.9 3,081 1,140 �63.0
aAsymptote = 1.0 billion
bAsymptote = 250,000
cAsymptote = 12.4 million
dAsymptote = 90,000
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of population change (Carter and Lee 1986; de Beer 1993; McNown and Rogers

1989) as well as to estimates of total population (Alho and Spencer 1997; Saboia

1974; Pflaumer 1992; Tayman et al. 2007). Some believe ARIMA models are

preferable to regression-based extrapolation methods because they produce more

accurate coefficient estimates and smaller errors over the projection horizon

(Granger and Newbold 1986, pp. 205–215; Jenkins 1979, pp. 88–94; McDonald

1979). Furthermore, the dynamic and stochastic framework of ARIMA models

provides a statistical basis for developing probabilistic intervals around a specific

population projection (Box and Jenkins 1976, Chap. 5; Nelson 1973, Chap. 6).

However, the methods used in ARIMA modeling are considerably more com-

plex than those used in other extrapolation methods, making them more difficult to

implement and explain to data users. We provide a general overview of ARIMA

modeling in this section, but suggest that readers consult standard texts for more

details on implementing these models (Box and Jenkins 1976; Brockwell and Davis

2002; Chatfield 2000; Jenkins 1979; Montgomery et al. 2008; Yaffee and McGee

2000).

ARIMA models attempt to uncover the stochastic mechanisms that generate a

historical data series. These processes are measured using the patterns observed in

the data series; these measurements form the basis for developing population

projections. ARIMA models focus on the processes of autoregression, moving

average, and differencing.

The autoregressive process has a memory in the sense that it is based on the

correlation of each observation with all preceding observations. The impact of

earlier observations is assumed to diminish exponentially over time. The number

of preceding observations incorporated into the model determines its “order.” For

example, in a first-order autoregressive process, the current observation is explicitly

a function only of the immediately preceding observation. However, the immedi-

ately preceding observation is a function of the one before it, which is a function of

the one before it, and so forth. Consequently, all preceding observations influence

current observations, albeit with a declining impact. In a second-order

autoregressive process, the current observation is explicitly a function of the two

immediately preceding observations; again, all preceding observations have an

indirect impact.

The moving average process attempts to account for “shocks” to the system (i.e.,

events that have a substantial but short-lived impact on time series patterns). The

order of the moving average process defines the number of time periods affected by

a given event.

A stationary time series (i.e., one with constant differences over time) is needed

to properly construct an ARIMAmodel. The differencing process is used to achieve

such a series. First-order differences (i.e., an observation minus its preceding value)

are usually sufficient, but second-order differences (i.e., differences between dif-

ferences) have been found to be useful for population projections (McNown and

Rogers 1989; Saboia 1974; Tayman et al. 2007). Logarithmic and square root

transformations may also be useful for stabilizing the variance of a time series.
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The most general ARIMAmodel is expressed as ARIMA (p, d, q), where p is the
order of the autoregressive term, d is the degree of differencing, and q is the order of
the moving average term. (ARIMA models based on time intervals of less than

1 year may also require seasonal terms for p, d, and q). The first step in developing

an ARIMAmodel is to identify the best values for p, d, and q, which typically range
from 0 to 2; it is uncommon that p + q > 3 in ARIMA models of population and

other demographic variables (Alho and Spencer 2005, p. 207). The d value is

determined first because a stationary series is required to properly identify the

autoregressive and moving average processes (Box and Jenkins 1976, p. 174;

Granger 1989, p. 72).

A time series should contain enough observations for model identification and

parameter estimation. Convention suggests that a minimum of 50 observations is

needed for ARIMA modeling (McCleary and Hay 1980, p. 20; Meyler et al. 1998;

Saboia 1974), but there is no hard-and-fast rule. Some analysts believe 60 observa-

tions are needed; others believe 30 will suffice (Yaffee and McGee 2000, p. 4).

Several applications have used fewer than 15 observations, apparently with reason-

able success (Campbell 1996; Voss and Kale 1985).

The traditional approach for identifying the best values for p, d, and q focuses on
assessing the patterns of the autocorrelation function (ACF) and partial autocorre-

lation function (PACF) (Box and Jenkins 1976, Chap. 6). This quasi-formal

approach to identification is subjective and highly dependent on the skill and

interpretation of the analyst (Granger and Newbold 1986, pp. 77–78; Meyler

et al. 1998). To help with this problem, more objective methods have been devel-

oped such as statistical tests for stationarity (Dickey et al. 1986; Elliot et al. 1996;

Phillips and Perron 1988) and statistics such as the Akaike Information Criterion

(AIC) and Bayesian Information Criterion (BIC), which can be used to select the

best values for p and q while avoiding a model with too many parameters

(Brockwell and Davis 2002, pp. 187–193). It is not unusual to evaluate several

tentative models before the best model is selected. An acceptable ARIMA model

will have random residuals, no significant values in the ACF and PACF, and the

smallest possible values for p, d, and q. The portmanteau test can be used to

evaluate the null hypothesis of randomness in a model’s residuals (Ljung and

Box 1978).

Calculation of population projections from the other complex extrapolation

methods requires only the proper value for the time variable and the model’s

parameters; they are easy to recreate. The formulas used in computing projections

from ARIMA models depend on the specification of the values for p, d, and q.
Furthermore, projections for a target year may depend on prior projections or a

combination of the historical and prior projected values. The temporal sequence of

values required will depend on the degree of differencing and the order of the

autoregressive and moving average parameters. Developing these projections can

be tedious, especially if probabilistic prediction intervals are involved. Fortunately,

ARIMA modeling software can be used. Box and Jenkins (1976, pp. 135–138) and

Nelson (1973, pp. 144–147) provide details on computing values past the launch

year for a wide variety of ARIMA models.
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We identified the “best” parameters for p, d, and q using the ACF, PACF,

statistical tests, and the AIC and BIC for Franklin County and Grays Harbor County.

We used annual observations from 1990 to 2010 to be consistent with the base period

used for the other extrapolation methods. Because 21 observations are fewer than is

normally recommended for ARIMA modeling, we also examined a larger dataset

based on 51 annual observations from 1960 to 2010 (not shown here). We found that

the orders of p, d, and q for the best ARIMA models did not change and the

projections were fairly close to those based on the shorter data series.

As shown in Fig. 8.1, the time series for Franklin County is not stationary. A

non-stationary series will have an autoregressive parameter estimate close to 1.0

and the autocorrelation function will decline very slowly (Nelson 1973, pp. 75–77).

Both of these conditions were seen in the population data series for Franklin

County. These conditions persisted even after first-order differences were calcu-

lated. Second-order differences were examined and their plot over time showed no

discernible pattern. The Dickey-Fuller test confirmed that a second-order difference

was required to create a stationary series. The patterns of the ACF and PACF and

the BIC statistic suggest that Franklin County’s historical population followed a

first-order autoregressive process with no moving average process. The significant

parameter estimate (θ) was 0.376. Checks of the residuals, the ACF, the PACF, and
the portmanteau test revealed no problems with the adequacy of the ARIMA (1, 2,

0) model for Franklin County, which included a constant term.

The time series for Grays Harbor County also is not stationary (see Fig. 8.1). A

plot of the first-order differences over time showed no discernible pattern and the

Dickey-Fuller test confirmed that a first-order difference was required to create a

stationary series. The patterns of the ACF and PACF and the BIC statistic suggested

that Grays Harbor County’s historical population series followed a first-order

moving average process with no autoregressive process. The significant parameter

estimate (θ) was �0.315. Checks of the residuals, the ACF, the PACF, and the

portmanteau test revealed no problems with the adequacy of the ARIMA (0, 1, 1)

model, which included a constant term.

Many different ARIMA models can be specified for population projections,

reflecting different assumptions that yield different forecasts and prediction inter-

vals (Cohen 1986; Keilman et al. 2002; Lee 1974; Sanderson 1995; Tayman

et al. 2007). For example, projections from an ARIMA model with a second-

order difference and a constant term tend to follow a non-linear trajectory reflecting

a quadratic trend, whereas projections from an ARIMA model with a first-order

difference and a constant term tend to follow a linear growth trajectory.

The population projections for Franklin County from the ARIMA (1, 2, 0) model are

closest to those from the complex quadratic method and exceed those from the other

trend extrapolation methods that assume non-linear population change (see Table 8.7).

The non-linear trend in the Franklin County projection is evident from Fig. 8.3. The

population grows by 3,200 during the first year of the projection horizon (2010–2011)

and annual increases climb steadily thereafter, reaching 5,787 by 2039–2040.

The projections for Grays Harbor County from the ARIMA (0, 1, 1) model are

almost identical to projections from the simple LINE method and are similar to those
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from the complex linear trend method (see Table 8.7). The linear trend in the Grays

Harbor County projection is evident from Fig. 8.3. One characteristic of a linear

ARIMA model is that projections will eventually reach and maintain a constant

numeric difference similar to the mean of the historical series (Land 1986; McCleary

and Hay 1980, p. 213). The population of Grays Harbor County grows by 209 during

the first year of the projection horizon. Annual increases climb to 425 by 2013–2014

but remain constant thereafter. To put these numbers in perspective, the average

annual change in the county’s population between 1990 and 2010 was 431.

The presence or absence of first-order auto-regressive and moving average terms

does not have much impact on forecasts from linear ARIMA models (Alho 1990;

Tayman et al. 2007; Voss et al. 1981). For example, the population projections for

2040 for Grays Harbor County from ARIMA (1, 1, 0) and ARIMA (0, 1, 1) models

are virtually identical.

8.3 Ratio Methods

Ratio methods express the population of a smaller area (or group) as a proportion of

the population of a larger area (or group). For example, a county’s population can

be expressed as a proportion of a state’s population and the number of Hispanics in

a county can be expressed as a proportion of the total population of the county.

Ratio methods are mostly used where there is a perfect hierarchical structure; that

is, where the smaller units are mutually exclusive and exhaustive and can be
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aggregated to equal the larger unit. For example, census blocks can be aggregated

successively into block groups, census tracts, counties, states, and the nation.

Similar to simple extrapolation methods, ratio methods have small data require-

ments and are easy to apply. In addition, these methods can be constructed so that

the sum of the projections for the smaller units equals the projection for the larger

unit. We discuss three commonly used ratio methods: (1) constant-share, (2) shift-

share, and (3) share-of-growth. Ratio methods require an independent projection of

the population of the larger unit, which for most examples in this chapter is the State

of Washington. These projections are 7,022,200 for 2015, 7,411,977 for 2020,

8,154,193 for 2030, and 8,790,981 for 2040 (State of Washington 2011). We also

use the shift-share method to produce a projection by race/ethnicity for the City of

Oceanside, California, where the projection of the total population is 214,530 in

2040 (San Diego Association of Governments 2011).

8.3.1 Constant-Share

In the constant-share method (CONSTANT), the smaller unit’s share of the larger

unit’s population is held constant at a level observed during the base period.

Typically, it is the share observed in the launch year. A projection for the smaller

unit is made by applying this share to an independent projection of the larger unit’s

population (shown in bold):

Pit ¼ Pil=Plð Þ Ptð Þ

where Pit is the projection for the smaller unit i in target year t; Pil is the population

of the smaller unit in the launch year; Pl is the population of the larger unit in the

launch year; and Pt is the projection for the larger unit in the target year.

The 2015 projections for Franklin County, Grays Harbor County, and the

remainder of the State using the CONSTANT method are shown in Table 8.3. In

this example, we held shares constant at 2010 launch year values, but shares for any

previous point in time (or an average of previous shares) could also be used. The

CONSTANT method requires data from only one point in time, making it partic-

ularly useful for areas where changing geographic boundaries, poor records, and/or

Table 8.3 Population projections: Constant-share method, Franklin and Grays Harbor Counties

and balance of state, 2015

2010 2010–2015 change

Population Share 2015 Projectiona Number Percent

Franklin County 78,163 0.01162 81,598 3,435 4.4

Grays Harbor County 72,797 0.01083 76,050 3,253 4.5

Balance of state 6,573,580 0.97755 6,864,552 290,972 4.4

Total 6,724,540 1.00000 7,022,200b 297,660 4.4
a2010 share � 2015 State projection
bForecast of the State Population, Nov. 2011 Forecast. Washington State OFM Forecasting Division
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inadequate production time make it impossible to construct a reliable historical data

series. Another beneficial attribute of this method is that projections for all the

smaller units add to the projection for the larger unit. The main drawback, of course,

is that it treats all smaller units exactly the same; that is, it assumes that the

populations of all smaller units will grow at the same rate as the larger unit’s

population. In many instances, this will not be a reasonable assumption.

8.3.2 Shift-Share

In contrast to the constant-share method, the shift-share (SHIFT) method accounts

for changes in population shares over time. Different approaches can be used for

extrapolating the historical trend in the shares (Gabbour 1993). We describe a shift-

share method that assumes a linear trend in shares over the projection horizon:

Pit ¼ Ptð Þ Pil=Plð Þ þ z=yð Þ Pil=Plð Þ � Pib=Pbð Þð Þ½ �f g

where i denotes the smaller unit; P is the larger unit; z is the number of years in the

projection horizon; y is the number of years in the base period; and b, l, and t refer to
the base, launch, and target years. The z/y term implements the linear trend and

relates the length of the base period to the length of the projection horizon. For

example, a projection with a 20-year base period and a 5-year horizon would add

0.25 (i.e., 5/20) times the historical change in population share to the share in the

launch year and a projection with a 20-year base period and a 25-year horizon

would add 1.25 (i.e., 25/20) times the historical change to the share in the launch

year. The 2015 projections for Franklin County, Grays Harbor County, and the

remainder of the state using the SHIFT method are shown in Table 8.4.

Table 8.4 Population projections: Shift-share method, Franklin and Grays Harbor Counties and

balance of state, 2015

1990 2010 Change in share

Population Share Population Share 1990–2010 2010–2015a

Franklin County 37,473 0.00770 78,163 0.01162 0.00392 0.00098

Grays Harbor County 64,175 0.01319 72,797 0.01083 �0.00236 �0.00059

Balance of state 4,765,044 0.97911 6,573,580 0.97755 �0.00156 �0.00039

Total 4,866,692 1.00000 6,724,540 1.00000 0.00000 0.00000

2015 2010–2015 change

Shareb Projectionc Number Percent

Franklin County 0.01260 88,480 10,317 13.2

Grays Harbor County 0.01024 71,907 �890 �1.2

Balance of state 0.97716 6,861,813 288,233 4.4

Total 1.00000 7,022,200d 297,660 4.4
a0.25 � 1990–2010 change in share
b2010 share þ 2010–2015 change in share
c2015 share � 2015 State projection
dForecast of the State Population, Nov. 2011 Forecast. Washington State OFM, Forecasting Division
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Ratio methods can also be used to project demographic subgroups. Table 8.5

illustrates the use of the SHIFT method to project the 2040 population by race/

ethnicity for the City of Oceanside, California. This example uses a 10-year base

period from 2000 to 2010. The length the projection horizon is 30 years, meaning

that the change in shares between 2000 and 2010 is projected to triple by the year

2040. In this example, the Hispanic share of the population is projected to increase

over the projection horizon while the shares of the other two groups are projected to

decline.

An important problem inherent in the SHIFT method is that it can lead to

substantial population losses in areas that grew very slowly (or declined) during the

base period. This problem is more acute when projections cover relatively long

horizons (e.g., 20 or more years). For example, in 2040 the population projections for

Franklin County and Grays Harbor County are 153,852 and 64,086 (see Table 8.7).

Are these projections reasonable? Perhaps for Franklin County, but probably not for

Grays Harbor County. SHIFT can even lead to negative numbers, which obviously is

not a reasonable projection. This problem can be dealt with by incorporating

constraints on projected population shares or on the projected rates of change in

those shares. The SHIFT method must be used cautiously for long-range projections,

especially for places whose population shares have been declining.

8.3.3 Share-of-Growth

The third ratio method focuses on shares of population change rather than popula-

tion size. In this method (SHARE), it is assumed that the smaller unit’s share of the

population change occurring in the larger unit will be the same over the projection

horizon as it was during the base period. This method is sometimes called the

apportionment method (Pittenger 1976, pp. 89–101; White 1954). Using the

SHARE method, the projection of a smaller unit is:

Pit ¼ Pil þ Pil � Pibð Þ= Pl � Pbð Þ½ � Pt � Plð Þf g

where the components are defined as shown for the SHIFT method.

Table 8.5 Population projections by ethnic group: Shift-share method, City of Oceanside, 2040

Shares 2040 2010–2040 change

Ethnic Group 2000 2010 Change Sharea Populationb Number Percent

Non-Hispanic White 0.53599 0.48388 �0.05211 0.32755 70,269 �10,580 �13.1

Non-Hispanic Other 0.16164 0.15734 �0.00430 0.14444 30,987 4,697 17.9

Hispanic 0.30237 0.35878 0.05641 0.52801 113,274 53,327 89.0

Total 1.00000 1.00000 0.00000 1.00000 214,530c 47,444 28.4
a2010 share þ (3 � 2000–2010 change in share)
b2040 share � 2040 Oceanside total population projection
c2050 Forecast, San Diego Association of Governments, Oct. 2011
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The 2015 projections for Franklin County, Grays Harbor County, and the

remainder of the state using the SHARE method are shown in Table 8.6. In many

instances, this method seems to provide more reasonable projections than either the

CONSTANT or SHIFT methods. However, SHARE runs into problems when

population change in the smaller unit has the opposite sign of change in the larger

unit. For example, suppose that the population of the larger unit grew by 3,000 over

the base period and the population of the smaller unit declined by 750; the smaller

unit’s share of population change would be computed as �750/3,000, or �0.25. If

the larger unit were projected to grow by 5,000 over the projection horizon, the

smaller unit would be projected to decline by 1,250. This is probably not a

reasonable result. If anything, the smaller unit is likely to decline by a smaller

amount (or even increase a bit) because the larger unit is projected to have more

population growth in the future than in the past.

In situations such as these, the SHARE method should not be used in the manner

just described. Rather it must be adjusted in some way, such as by using a variant of

the plus-minus method described in Chap. 10. Some applications of this method

simply project zero change for the smaller unit when its change is in the opposite

direction of change in the larger unit (Pittenger 1976, p. 101).

8.3.4 Other Applications of Ratio Methods

The ratio methods described and illustrated in this chapter were used solely for

population projections, but they have many other applications in demography.

Some of these are discussed in Chaps. 4 and 5, where we describe the use of ratios

for relating projections of mortality or fertility rates in one area to rates projected

for another area. In Chap. 9, we describe a simple application of structural models

based on ratios.

In addition, ratios are frequently used in combination with population projec-

tions to develop projections of other variables or demographic characteristics.

Table 8.6 Population projections: Share-of-growth method, Franklin and Grays Harbor Counties

and balance of state, 2015

1990–2010 change Population 2010–2015 change

Number Share 2010 2015a Numberb Percent

Franklin County 40,690 0.02190 78,163 84,682 6,519 8.3

Grays Harbor County 8,622 0.00464 72,797 74,178 1,381 1.9

Balance of state 1,808,536 0.97346 6,573,580 6,863,340 289,760 4.4

Total 1,857,848 1.00000 6,724,540 7,022,200 297,660c 4.4
aPopulation 2010 þ population change 2010–2015
bShare of pop change 1990–2010 � State pop change 2010–2015
cForecast of the State Population, Nov. 2011 Forecast. Washington State OFM, Forecasting

Division
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For example, projections of households can be made by applying projected “house-

holder” rates by age and sex to population projections by age and sex. Householder

rates are simply ratios of the number of householders to the number of persons,

calculated for each age-sex group. Similarly, projections of the labor force can be

made by applying projected labor force participation rates by age and sex to

population projections by age and sex (race and ethnicity can also be used).

Labor force participation rates are simply ratios of the number of persons in the

labor force to the total number of persons, calculated for each age-sex group.

Projections of school enrollment, persons with disabilities, and many other

variables can be made following similar procedures. We explore some of these

applications in Chap. 11.

8.4 Analyzing Projection Results

Using the 11 extrapolation methods and the 20-year base period from 1990 to 2010,

we projected the total population of Franklin County and Grays Harbor County for

the years 2020, 2030, and 2040 (see Table 8.7). What can these projections tell us?

Most of the projections for Grays Harbor County are similar. Except for the

polynomial model and two of the three ratio methods, all the projections for 2040

fall between 82,366 and 89,781. This is a common result. When they have the same

base period and launch year, projections for areas with slow or moderate growth

rates often fall within a fairly narrow range. This outcome is found not only

for trend extrapolation methods but—as we show in Chap. 13—for most other

projection methods as well.

The reasons for the three exceptions are clear. Projections based on the

polynomial model were influenced by the quadratic term, which translates

into relatively large population increases. CONSTANT yields relatively high

projections because it assumes that the population of Grays Harbor County will

grow at the same rate as the state as a whole, whereas it grew much more slowly

during the base period. SHIFT assumes that Grays Harbor County’s share of the

state population will continue to decline; these steadily declining shares lead to a

steadily declining population. CONSTANT and SHIFT will generally produce

results that are quite different from other trend extrapolation methods whenever

population growth in the smaller unit differs substantially from growth in the

larger unit.

Projections for Franklin County show much more variation among methods

than projections for Grays Harbor County. Projections based on non-linear

models (GEO, EXPO, quadratic, exponential, logistic) are decidedly higher

than those based on linear models (LINE, linear). Projections from the ARIMA

model fall in between, as the effect of compound growth rates is muted

because of the first-order auto-regressive term; a model with a higher-order

autoregressive term would have created a more explosive growth trajectory
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(Tayman et al. 2007). These results illustrate the impact of applying compounding

growth rates in areas that have been growing rapidly. In most instances, this will

not be a reasonable assumption (especially for projection horizons longer than 5 or

10 years).

The three ratio methods also show a substantial degree of variation in Franklin

County, but SHIFT now produces the highest projections and CONSTANT the

lowest, reversing the pattern seen for Grays Harbor County. This result is not

surprising, since the population of Franklin County grew much more rapidly than

the state’s population during the base period, whereas the population of Grays

Harbor County grew much more slowly.

Given this degree of variability, how does one decide which trend extrapolation

method or methods to use for constructing a set of population projections? One

approach is to take an average of projections from several methods. This is the

approach followed by the Bureau of Economic and Business Research at the

University of Florida in its production of county projections of total population

(Smith and Rayer 2012). Using a combination of five extrapolation methods and

three base periods, they produced nine projections for each county and calculated

three averages, one using all nine projections, one in which the highest and lowest

projections were excluded, and one in which the two highest and two lowest were

excluded. In most counties the third average was used as the baseline projection.

When averaging several projections, one must decide on which methods to include

Table 8.7 Population projections based on alternative extrapolation methods, Franklin and Grays

Harbor Counties, 2020–2040

Franklin Grays Harbor

Extrapolation method 2020 2030 2040 2020 2030 2040

Simple

LINE 98,508 118,853 139,198 77,108 81,429 85,730

GEO 112,884 163,028 235,446 77,531 82,573 87,942

EXPO 112,888 163,040 235,473 77,531 82,572 87,942

Complex

Linear 98,444 118,724 139,005 77,536 82,275 87,015

Quadratic 125,619 191,192 274,881 79,940 88,687 99,037

Exponential 114,725 167,154 243,545 78,039 83,641 89,646

Logistic 115,696 171,622 254,950 78,074 83,725 89,781

ARIMAa 118,182 158,985 212,828 76,823 81,065 85,307

Ratio

CONSTANT 86,127 94,752 102,151 80,272 88,310 95,206

SHIFT 100,655 126,716 153,842 71,526 69,066 64,086

SHARE 93,218 109,472 123,418 75,987 79,431 82,386

Projection range

Numeric difference 39,492 96,440 172,730 8,746 19,621 34,951

Percent difference 46% 102% 169% 12% 28% 55%
aFranklin County ARIMA (1,2,0) and Grays Harbor ARIMA (0,1,1); 20-year base period

8.4 Analyzing Projection Results 209



and whether the average should be weighted or unweighted. We discuss these issues

in greater detail in Chap. 13.

8.5 Conclusions

Trend extrapolation methods have a long history in demography. In spite of the

ascendancy of the cohort-component method and the development of structural and

microsimulation models over the last half century, these methods are still com-

monly used for population projections, especially for small areas. They have a

number of useful characteristics, but some serious shortcomings as well.

Simple trend and ratio extrapolation methods have very small data requirements.

LINE, GEO, EXPO, SHIFT, and SHARE can be applied using total population data

from only two points in time. CONSTANT requires data from only one point in

time. These methods are easy to apply and to explain to data users. They do not

require sophisticated modeling or programming skills; in fact, they can be applied

rather easily using only a hand calculator. Because of their small data requirements

and ease of application, these methods can be applied in a timely manner and for

very little cost. They are particularly useful for small areas, where data availability

and reliability create substantial problems for more complex or sophisticated

methods.

Complex trend extrapolation methods require data from a number of points in

time; this requirement prevents the use of these methods in many small areas.

Complex extrapolation methods also require greater modeling and statistical skills

than simple extrapolation methods, especially for developing logistic and ARIMA

time series models. However, compared to cohort-component and structural

models, even complex trend extrapolation methods are characterized by low

costs, timeliness, and small data requirements. In addition, several of these methods

can be used to develop prediction intervals to accompany population forecasts. We

return to this point in Chap. 13.

Trend extrapolation methods suffer from several shortcomings. They do not

account for differences in demographic composition or for differences in the

components of growth. Because they have no theoretical content beyond the

structure of the model itself, they cannot be related to behavioral or socioeconomic

theories of population growth (the logistic model is an exception). Consequently,

they are not useful for analyzing the determinants of population growth or for

simulating the effects of changes in particular variables or assumptions. In addition,

they can lead to unrealistic or even absurd results if carried too far into the future

(see Box 8.1).

The basic assumption underlying trend extrapolation methods is that—in terms

of the population change specified by a particular method—the future will be just

like the past. Given the changes that have occurred over time, that assumption

would seem to be questionable if not completely unrealistic. Just how useful are

trend extrapolation methods? How accurate are their projections when used as
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forecasts? How does their forecast accuracy compare with the accuracy of other

commonly used projection methods? We provide some answers to these questions

in Chaps. 12 and 13.

Box 8.1 One Man’s View of Extrapolation Methods

“In the space of one hundred and seventy-six years the Lower Mississippi has

shortened itself two hundred and forty-two miles. That is an average of a trifle

over 1 mile and a third per year. Therefore, any calm person, who is not blind or

idiotic, can see that in the Old Oolitic Silurian Period, just a million years ago next

November, the Lower Mississippi River was upward of one million three hundred

thousand miles long, and stuck out over the Gulf of Mexico like a fishing-rod. And

by the same token any person can see that seven hundred and forty-two years from

now the Lower Mississippi will be only a mile and three-quarters long, and Cairo

and New Orleans will have joined their streets together, and be plodding comfort-

ably along under a single mayor and a mutual board of aldermen. There is something

fascinating about science. One gets such wholesale returns of conjecture out of such

a trifling investment of fact.”

Mark Twain, Life on the Mississippi, p. 136.

References

Alho, J. M. (1990). Stochastic methods in population forecasting. International Journal of
Forecasting, 6, 521–530.

Alho, J. M., & Spencer, B. D. (1997). The practical specification of the expected error of

population forecasts. Journal of Official Statistics, 13, 203–225.
Alho, J. M., & Spencer, B. D. (2005). Statistical demography and forecasting. New York:

Springer.

Alinghaus, S. L. (1994). Practical handbook of curve fitting. New York: CRC Press.

Armstrong, J. S. (2001). Extrapolation of time series and cross-sectional data. In J. S. Armstrong

(Ed.), Principles of forecasting: A handbook for researchers and practitioners (pp. 217–244).
Norwell: Kluwer Academic.

Bongaarts, J., & Bulatao, R. A. (Eds.). (2000). Beyond six billion: Forecasting the world’s
population (pp. 188–217). Washington, DC: National Research Council.

Box, G. E., & Jenkins, G. M. (1976). Time series analysis: Forecasting and control. San

Francisco: Holden-Day.

Brass, W. (1974). Perspectives in population prediction: Illustrated by the statistics in England and

Wales. Journal of the Royal Statistical Society, A, 137, 532–570.
Brockwell, P. J., & Davis, R. A. (2002). Introduction to time series and forecasting (2nd ed.). New

York: Springer.

Campbell, P. R. (1996). Population projections for states by age, sex, race, and Hispanic origin:
1995 to 2050. PPL 47. Washington, DC: U.S. Census Bureau.

Carter, L. R., & Lee, R. D. (1986). Joint forecasts of U.S. marital fertility, nuptiality, births, and

marriages using time series models. Journal of the American Statistical Association, 81,
902–911.

Chatfield, C. (2000). Time series forecasting. Boca Raton: Chapman & Hall/CRC.

Cohen, J. E. (1986). Population forecasts and the confidence intervals for Sweden: A comparison

of model-based and empirical approaches. Demography, 23, 105–126.

References 211

http://dx.doi.org/10.1007/978-94-007-7551-0_12
http://dx.doi.org/10.1007/978-94-007-7551-0_13


Davis, C. H. (1995). Demographic projection techniques for regions and smaller areas.
Vancouver: UBC Press.

de Beer, J. (1993). Forecast intervals of net migration: The case of the Netherlands. Journal of
Forecasting, 12, 585–599.

Dickey, D. A., Bell, W. R., & Miller, R. B. (1986). Unit roots in time series models: Tests and

implications. American Statistician, 74, 427–431.
Dorn, H. F. (1950). Pitfalls in population forecasts and projections. Journal of the American

Statistical Association, 43, 311–334.
Draper, N. R., & Smith, H. (1981). Applied regression analysis (2nd ed.). New York: Wiley.

Duan, N. (1983). Smearing estimate: A nonparametric retransformation method. Journal of the
American Statistical Association, 78, 605–610.

Elliot, G., Rothenberg, T. J., & Stock, J. H. (1996). Efficient tests for an autoregressive unit root.

Econometrica, 64, 813–836.
Gabbour, I. (1993). SPOP: Small area population projection. In R. E. Klosterman, R. K. Brail, &

G. B. Earl (Eds.), Spreadsheet models for urban and regional analysis (pp. 69–84). New

Brunswick: Rutgers University, Center for Urban Policy Research.

Granger, C. W. (1989). Forecasting in business and economics (2nd ed.). San Diego: Academic.

Granger, C. W., & Newbold, P. (1986). Forecasting economic time series (2nd ed.). San Diego:

Academic.

Irwin, R. (1977). Guide for local area population projections. Technical Paper # 39. Washington,

DC: U.S. Census Bureau.

Isserman, A. M. (1977). The accuracy of population projections for subcounty areas. Journal of the
American Institute of Planners, 43, 247–259.

Jenkins, G. M. (1979). Practical experiences with modeling and forecasting time series. Jersey:
Gwilym Jenkins & Partners (Overseas) Ltd.

Keilman, N., Pham, D. Q., & Hetland, A. (2002). Why population forecasts should be

probabilistic-illustrated by the case of Norway. Demographic Research, 6, 409–454.
Keyfitz, N. (1968). An introduction to the mathematics of population. Reading: Addison Wesley.

Land, K. C. (1986). Methods for national population forecasts: A review. Journal of the American
Statistical Association, 81, 888–901.

Leach, D. (1981). Re-evaluation of the logistic curve for human populations. Journal of the Royal
Statistical Society A, 144, 94–103.

Lee, R. D. (1974). Forecasting births in post-transition populations: Stochastic renewal with

serially correlated fertility. Journal of the American Statistical Association, 69, 607–617.
Ljung, G. M., & Box, G. E. (1978). On a measure of a lack of fit in time series models. Biometrika,

65, 297–303.
Mahmoud, E. (1984). Accuracy in forecasting: A survey. Journal of Forecasting, 3, 139–159.
Makridakis, S. G., Wheelwright, S. C., & Hyndman, R. J. (1989). Forecasting: Methods and

applications (3rd ed.). New York: Wiley.

Manning, W. G. (1998). The logged dependent variable, heteroscedasticity, and the

retransformation problem. Journal of Health Economics, 17, 283–295.
Marchetti, C., Meyer, P. S., & Ausubel, J. H. (1996). Human population dynamics revisited with

the logistic model: How much can be modeled and predicted? Technological Forecasting and
Social Change, 52, 1–30.

McCleary, R., & Hay, R. A. (1980). Applied time series analysis for the social sciences. Beverly
Hills: Sage.

McDonald, J. (1979). A time series approach to forecasting Australian total live-births. Demog-
raphy, 16, 575–601.

McNown, R., & Rogers, A. (1989). Forecasting mortality: A parameterized time series approach.

Demography, 26, 645–660.
Meyler, A., Kenny, G., & Quinn, T. (1998). Forecasting Irish inflation using ARIMA models.

Technical Paper Series 3/RT/98. Dublin: Central Bank and Financial Services Authority of

Ireland.

Montgomery, D. C., Jennings, C. J., & Kulahci, M. (2008). Introduction to time series analysis and
forecasting. Hoboken: Wiley.

212 8 Extrapolation Methods



Nelson, C. R. (1973). Applied time series analysis for managerial forecasting. San Francisco:

Holden-Day.

Pearl, R., & Reed, L. J. (1920). On the rate of growth of the population of the United States since

1790 and its mathematical representation. Proceedings of the National Academy of Science, 6,
275–287.

Pflaumer, P. (1992). Forecasting U.S. population totals with the Box-Jenkins approach. Interna-
tional Journal of Forecasting, 8, 329–338.

Phillips, P. C., & Perron, P. (1988). Testing for a unit root in time series regression. Biometrika, 75,
335–346.

Pielou, E. C. (1969). An introduction to mathematical ecology. New York: Wiley.

Pittenger, D. B. (1976). Projecting state and local populations. Cambridge, MA: Ballinger

Publishing Company.

Pritchett, H. S. (1891). A formula for predicting the population of the United States. Publications
of the American Statistical Association, 14, 278–296.

Rayer, S. (2007). Population forecast error: Does the choice of summary measure of error matter?

Population Research and Policy Review, 26, 163–184.
Romaniuc, A. (1990). Population projection as prediction, simulation and prospective analysis.

Population Bulletin of the United Nations, 29, 16–31.
Saboia, J. L. (1974). Modeling and forecasting populations by time series: The Swedish case.

Demography, 11, 483–492.
San Diego Association of Governments. (2011). 2050 regional growth forecast, from http://

profilewarehouse.sandag.org/profiles/fcst/city12fcst.pdf.

Sanderson,W. C. (1995). Probability, complexity, and catastrophe in a collapsible model of population

development and environmental interactions. Mathematical Population Studies, 5, 259–279.
Schnaars, S. P. (1986). A comparison of extrapolation models on yearly sales forecasts. Interna-

tional Journal of Forecasting, 2, 71–85.
Shryock, H. J., & Siegel, J. S. (1973). The methods and materials of demography. Washington,

DC: U.S. Government Printing Office.

Sieber, G. A., & Wild, C. J. (1989). Nonlinear regression. New York: Wiley.

Smith, S. K. & Rayer, S. (2012). Projections of Florida population by county, 2011–2040. Florida
Population Studies, Bulletin 162. Gainesville, FL: Bureau of Economic and Business

Research, University of Florida.

State of Washington. (2011). Forecast of the state population: November 2011, from http://www.

ofm.wa.gov/pop/stfc/stfc2011/stfc_2011.pdf.

Stock, J. H., & Watson, M. W. (2003). Introduction to econometrics. Boston: Addison Wesley.

Tayman, J. (2011). Assessing uncertainty in small area forecasts: State of the practice and

implementation strategy. Population Research and Policy Review, 30, 781–800.
Tayman, J., Smith, S. K., & Lin, J. (2007). Precision, bias, and uncertainty for state population

forecasts: An exploratory analysis of time series models. Population Research and Policy
Review, 26, 347–369.

Treyz, G. I. (1995). Regional economic modeling: A systematic approach to economic forecasting
and policy analysis. Boston: Kluwer Academic.

Voss, P. R., & Kale, B. D. (1985). Refinements to small area projection models: Results of a test
based on 128 Wisconsin communities. Paper presented at the Population Association of

America, Boston.

Voss, P. R., Palit, C. D., Kale, B. D., & Krebs, H. C. (1981). Forecasting state populations using
ARIMA time series techniques. Madison: Applied Population Laboratory, University ofWisconsin.

White, H. R. (1954). Empirical study of the accuracy of selected methods of projecting state

populations. Journal of the American Statistical Association, 49, 480–498.
Yaffee, R. A., & McGee, M. (2000). An introduction to time series analysis and forecasting: With

applications of SAS and SPSS. San Diego: Academic.

Yule, G. U. (1925). The growth of population and the factors which control it. Journal of the Royal
Statistical Society, 38, 1–58.

References 213

http://profilewarehouse.sandag.org/profiles/fcst/city12fcst.pdf
http://profilewarehouse.sandag.org/profiles/fcst/city12fcst.pdf
http://www.ofm.wa.gov/pop/stfc/stfc2011/stfc_2011.pdf
http://www.ofm.wa.gov/pop/stfc/stfc2011/stfc_2011.pdf


Chapter 9

Structural and Microsimulation Models

Suppose that a new freeway extending into the sparsely populated outskirts of

Denver were built. What impact would that freeway have on the population and

housing growth of these outlying areas? Suppose that a large meatpacking plant

were built in a small town in Iowa. What impact would the new plant have on the

town’s population growth and demographic characteristics? Suppose that a large

military base in South Carolina were closed as part of a cutback in the federal

defense budget. What impact would this base closure have on the population and

economy of the county in which the base was located?

Demographers, planners, and other decision makers often face questions like

these, but the projection methods described thus far are unable to provide any

answers. This is where structural modeling comes into play. Structural models use

statistical techniques that base population changes (or—more commonly—changes

in a particular component of population growth) on changes in one or more

independent (i.e., explanatory) variables. Structural models are invaluable for

many planning and policy-making purposes because they explicitly account for

the influence of factors such as employment, rents, wage rates, land use, housing,

and the transportation system (Johnston and McCoy 2005; Treyz 1995; Zhou

et al. 2009).

Structural models can be expressed in many ways. Some focus on total popula-

tion. For example, population growth for census tracts might be based on the spatial

distribution of employment opportunities and housing prices within a county.

Others focus on specific components of population growth, such as migration.

For example, county migration projections might be based on projected changes

in wage rates and employment. When structural models focus on a particular

component of population growth, they are generally linked to a cohort-component

model in order to complete the projection.

Some structural models are relatively simple, containing only a few variables

and equations (Mills and Lubuele 1995). Others are very complex, with huge

systems of simultaneous equations involving many variables and parameters

(Zandy and Posar 2010). Likewise, the procedures for projecting a model’s inde-

pendent variables range from simple extrapolation and shift-share techniques to

S.K. Smith et al., A Practitioner’s Guide to State and Local Population Projections,
The Springer Series on Demographic Methods and Population Analysis 37,

DOI 10.1007/978-94-007-7551-0_9, © Springer Science+Business Media Dordrecht 2013
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formal multi-equation statistical models. We do not discuss the procedures for

projecting a model’s independent variables in this chapter; such descriptions can

be found elsewhere (Bolton 1985; Greenberg et al. 1978; Hunt and Abraham 2005;

Putman 1991; Treyz 1993).

We discuss two categories of structural models. The first covers economic-
demographic models, which are typically used to project population and economic

activities for counties, labor market areas, metropolitan areas, and states. The

second covers urban systems models, which are used primarily for projecting

population, housing, land use, economic activities, and transportation patterns for

census tracts, block groups, blocks, and other small geographic areas. Although

economic-demographic and urban systems models are distinguished largely by

differences in geographic scale, they typically provide different explanations of

the causes and consequences of population change.

For many years, population projections were made primarily at the national and

state levels. In recent decades they have been made at progressively lower levels of

geography. Taking this trend to its logical conclusion suggests the development of

projections for individual households and people. This approach—commonly

referred to as microsimulation—has become increasingly popular during the last

decade and has been used in scientific as well as policy-supporting research in

Europe, Australia, Canada, and the United States (Dekkers and Zaidi 2011).

Microsimulation models sometimes incorporate only demographic variables, but

often incorporate non-demographic variables as well (O’Neill et al. 2001).

Our objective in this chapter is to provide a general introduction to the use of

structural and microsimulation models for developing population projections. We

do not attempt to provide detailed descriptions of all the processes, techniques, and

strategies that can be used to formulate, build, calibrate, test, and implement these

models. Such descriptions can be found elsewhere (Gilbert 2008; Jin and Fricker

2008; Pagliara et al. 2010; Putman 1991; Treyz 1993; Troitzsch et al. 2010).

9.1 Structural Models: Economic-Demographic

A properly constructed economic-demographic model is not simply a collection of

disparate variables and equations, but represents a distinct theoretical framework

postulating a variety of interrelationships among demographic, economic, and other

variables. Such models have been widely used for analyzing the determinants and

consequences of fertility, mortality, and migration for many years. For purposes of

population projection, however, they generally focus on migration. We know of

only a few instances in which economic-demographic models have been used for

projecting fertility or mortality rates, and then only for projections of large areas

such as nations or regions of the world (Ahlburg 1986, 1999; Sanderson 1999).

Mortality and fertility models for small areas have been proposed (Isserman 1985),

but to our knowledge have not been implemented.
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There are several reasons for focusing on migration in projections for states and

local areas. First, migration rates are more volatile than mortality and fertility rates,

having the potential to change much more rapidly within a short period. Second,

migration generally has a greater impact on population change than either births or

deaths in areas that are growing or declining rapidly. Third—and perhaps most

important for small-area projections—economic fluctuations have a greater impact

on migration patterns than on mortality and fertility rates. For these reasons, we

confine our discussion to models focusing on migration or changes in total

population.

We begin this section by describing several factors that influence state and local

migration patterns. We then discuss and illustrate two classes of models in which

these factors are used to project migration or total population. Recursive models

account for the impact of one or more independent variables on population change,

but do not consider the impact of population change on those variables.

Non-recursive models, on the other hand, allow for two-way interactions; that is,

they consider both the determinants and the consequences of population change.

9.1.1 Factors Affecting Migration

Human capital theory has guided many studies of the determinants of migration

(Greenwood 1997; Poot et al. 2009; Sjaastad 1962). According to this theory,

migration is an investment in human capital involving both costs and benefits.

People migrate if the present value of all future gains in benefits is expected to

outweigh the full costs of migration. This theory echoes Ravenstein’s words from

more than a century ago, that people migrate primarily “to ‘better’ themselves in

material respects” (Ravenstein 1889, p. 286). Narrowly interpreted, this theory

implies that people will move to the area in which their economic opportunities

are expected to be the greatest.

Economic opportunities are typically measured using variables such as job

growth, unemployment rates, wages, and income. In addition to their theoretical

relevance, data on these variables are readily available for many geographic areas

and points in time. The U.S. Bureau of Economic Analysis (BEA), for example,

provides time series data for wages and income for states, counties, and metropol-

itan areas. The U.S. Bureau of Labor Statistics (BLS) provides historical labor

force, employment, and unemployment data for states, metropolitan areas, and

many counties.

As noted in Chap. 6, economic factors are not the only ones affecting the

decision to migrate. Amenities such as climate, crime rates, and coastal location

play a major role (Clark and Murphy 1996; Graves and Linneman 1979; Schachter

and Althaus 1989; Zhang 2008). Life cycle changes such as marriage, divorce,

childbirth, and retirement are also important, as are personal characteristics such as

age, education, income, family ties, and residential preferences (Astone and

McLanahan 1994; DaVanzo and Morrison 1978; Fuguitt and Brown 1990; Mincer
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1978; Radu 2008). In addition, social networks are known to have an important

impact on migration flows to some areas (Anjos and Campos 2010; Massey

et al. 1987).

From a theoretical perspective, a complete migration model should include a

variety of economic and non-economic variables. Using such a model for migration

projections, however, would be very difficult. In addition to the problem of finding

reliable historical data, all the independent variables themselves must be projected

(Stillwell 2005). Such projections are seldom available, especially for small areas.

Since projections of economic variables are more likely to be available than pro-

jections of non-economic variables, narrowly economic models have a distinct

advantage over theoretically richer formulations for projecting migration.

We discuss three economic factors that influence state and local migration

patterns: employment, the unemployment rate, and wages (or income). Although

this list is not exhaustive, these variables have a substantial impact on migration and

are often included in economic-demographic models. We also discuss the role

played by amenities, focusing on two theories of migration that offer opposing

views regarding the relative importance of economic factors and amenities as

determinants of migration. Understanding the determinants of migration is essential

before a valid model can be constructed.

9.1.1.1 Employment

More than 40 years ago, the American Statistical Association suggested that studies

of internal migration focus on the relationship between the growth in jobs and the

movement of people (American Statistical Association 1977, p. 7). Within the

human capital framework, it is assumed that potential migrants perceive areas

with increasing employment opportunities to be more attractive than areas with

few or declining employment opportunities. It would be expected, then, that areas

with relatively high (low) rates of job growth would have relatively high (low) rates

of population growth due to migration.

This expectation is strongly supported in the empirical literature. Studies using a

variety of employment and migration measures have found results consistent with

the predictions of economic theory (Ashby 2007; Clark and Hunter 1992; Cutler

and Davies 2007; Greenwood 1975; Treyz et al. 1992). Simply put, jobs attract

people and people create jobs. This finding forms the foundation of virtually every

economic model of migration in use today.

The exact nature of the employment-migration relationship, however, varies

over time and among geographic areas (Greenwood 1981, pp. 40–46; Greenwood

and Hunt 1984, 1991; Plane 1989). New jobs can be filled not only by new

migrants, but also by the local population through a reduction in the unemployment

rate, an increase in labor force participation, or changes in commuting patterns

(Congdon 1992; Partridge and Rickman 2006). At the extreme, migrants may take

all the new jobs in an area or they may not take any; the reality usually lies

somewhere in between. These factors—plus the time and money costs of a job
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search—help explain the lag often seen between employment changes and subse-

quent population movements (Greenwood 1985).

To clarify the roles of commuting patterns and migration as responses to changes

in local employment opportunities, it is useful to view an area in terms of its labor

market. A labor market can be defined as the range of employment opportunities

available to a worker without changing his or her place of residence (Fischer and

Nijkamp 1987). Labor markets often span a number of counties, extend across state

lines, and reflect commuting distances of one, two, or even more hours. Workers

can respond to new job opportunities not only by migrating (i.e., changing resi-

dence), but also by adjusting their daily commuting patterns. For example, many

residents in southern Riverside County, California commute more than 150 miles

each day (round trip) to jobs in San Diego County. Similar examples can be found

in labor markets throughout the United States.

Human capital theory suggests that in-migration should be positively related to

changes in job opportunities. This expectation has been strongly supported in the

empirical literature. It might also be expected that out-migration would be inversely

related to changes in job opportunities. That is, when the economy is strong and

employment is growing, fewer persons would be expected to leave the area in

search of employment elsewhere. Conversely, when the economy is weak and

employment is stagnant or declining, more people would be expected to leave the

area to seek jobs elsewhere.

The empirical evidence for out-migration is not nearly as strong as it is for

in-migration. The relationship between employment and out-migration has often

been found to be non-linear and weaker than the relationship between employment

and in-migration (Kriesberg and Vining 1978; Plane et al. 1984). Some studies

(Greenwood 1975; Schachter and Althaus 1989) have found the expected negative

relationship, but others have found a positive relationship between in- and

out-migration; that is, places with high (low) levels of in-migration also have

high (low) levels of out-migration (Meuser and White 1989; Plane 1989; Stone

1971). Why might this be true? One explanation is that areas with large numbers of

in-migrants have populations that are relatively migration-prone, thereby raising

the likelihood of out-migration. Another explanation is that in-migration creates its

own counter-stream, as in-migrants return to their previous places of residence.

Whatever the explanation, the empirical evidence provides a stronger basis for

projecting in-migration than out-migration.

The overall strength of the employment-migration relationship, however,

implies that measures of employment are likely to be useful in structural models

of migration. In fact, the employment-migration relationship forms the basis of

most of the structural models in use today.

9.1.1.2 Unemployment Rate

The unemployment rate is a widely watched measure of the economy, as evidenced

by the emphasis attached to the unemployment figures released each month by the
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BLS. In general, a high unemployment rate is a sign that the economy is not

creating enough jobs for those wanting to work. Conversely, a low unemployment

rate is a sign of a “healthy” economy creating jobs for most of those wanting to

work. In the human capital framework, migrants perceive areas with low unem-

ployment rates as attractive and areas with high unemployment rates as unattrac-

tive. Areas with rising unemployment rates would therefore be expected to have

increasing levels of out-migration and declining levels of in-migration, while areas

with falling unemployment rates would be expected to have increasing levels of

in-migration and declining levels of out-migration.

Despite the theoretical rationale and the findings of a few studies (Foot and

Milne 1989; Hamalainen and Bockerman 2004; Haurin and Haurin 1988), much

empirical research on this topic has found unexpected signs or insignificant effects

(Clark and Hunter 1992; Gallin 2004; Greenwood 1975, 1985; Schachter and

Althaus 1989). What might explain these poor empirical results? Gordon (1985)

believes the rate of employment growth is more important to potential migrants

than the unemployment rate, swamping its observed effect. Haurin and Haurin

(1988) believe that employment and wage variables have been improperly included

in migration equations, minimizing the true impact of the unemployment rate.

Another explanation is based on the statistical issue of simultaneity: when the

unemployment rate is measured at the end of the migration period, it not only

influences migration but is also influenced by migration (Greenwood 1981).

The relatively small size of the unemployed population also may be a factor,

masking the true relationship between the unemployment rate and migration. Since

high unemployment rates are likely to be of more concern to the unemployed than

the employed, the effects of unemployment on migration may not be apparent in

studies using aggregate data (Greenwood 1985). Consequently, unemployment

effects may be more evident in studies using micro data than studies using aggre-

gate data. For example, DaVanzo (1978) analyzed survey data for individuals and

found the unemployed to be more likely to move than jobholders. She concluded

that higher unemployment rates did indeed encourage out-migration. Several stud-

ies have supported DaVanzo’s findings, but others have failed to confirm them

(Greenwood 1997).

The empirical evidence on the unemployment-migration relationship is some-

what murky. Some studies have found significant effects with the expected signs,

but others have found no significant effects or even effects with the wrong signs.

Based on this evidence, we believe that unemployment rates will generally not

perform as well as other economic variables in structural models used for projecting

migration.

9.1.1.3 Wages and Income

The human capital model suggests that wages (or income) should be positively

associated with in-migration and negatively associated with out-migration. Areas

with relatively high wages or incomes would therefore be expected to attract a
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relatively large number of in-migrants and lose a relatively small number of

out-migrants, while areas with relatively low wages or incomes would be expected

to attract relatively few in-migrants and lose a relatively large number of

out-migrants.

General support for these expectations is found in the literature (Foot and Milne

1989; Gallin 2004; Schachter and Althaus 1989; Treyz et al. 1992). However, the

strength of this effect—although greater than for the unemployment rate—is not as

great as it is for measures of job growth (Greenwood 1981; Isserman et al. 1985).

Several explanations have been offered for the relatively weak influence of

wages (or income) on migration. Household data have shown that wages are not

always the most prominent factor in a person’s motivation for moving, especially

for people in older age groups (Gibbs 1994; Long and Hansen 1979). Isserman

et al. (1985) noted that capital may be attracted to low-wage regions, thereby raising

employment opportunities and attracting in-migrants; this “employment effect”

might obscure the relationship between wages and migration. Vijverberg (1993)

suggested that higher wages might actually discourage migration because of

diminishing marginal returns to income. Krieg and Bohara (1999) found that

using aggregate earnings data obscures the effect of wages on migration because

unmeasured personal characteristics such as ambition, drive, and the quality of

schooling—which have a positive impact on migration—are not picked up in the

data. Simultaneity bias has also been suggested as a possible explanation for the

lack of a clear relationship between income and migration (Sjaastad 1960), but this

explanation has not been supported in several studies using two- and three-stage

least squares estimation techniques (Greenwood 1975, 1981).

The empirical evidence on the relationship between migration and wages

(or income) is generally consistent with the predictions of human capital theory,

but is not particularly strong. Wage (or income) data have been used successfully in

a number of projection models, but do not play as large a role as employment as a

determinant of migration.

9.1.1.4 Amenities

The discussion thus far has focused on economic determinants of migration.

However, people also consider a variety of other factors when making migration

decisions. We use the term amenities to describe the non-economic characteristics

of an area, such as climate, topographical features, cultural attractions, recreational

opportunities, air quality, and crime rates. Because amenities have a substantial

impact on the quality of life in an area, it would be expected that they would also

have an impact on migration patterns. How important are amenities compared to

economic factors as determinants of migration? This question has given rise to two

competing theories of migration.

Before the 1970s, most migration research focused on regional differences in

economic variables such as wages, employment, and income. This research was

based on the assumption that the economic system was in a constant state of
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disequilibrium, as reflected by the existence of persistent geographic differences in

economic opportunities. Migration thus acts as an “equilibrating mechanism”

shifting people from one area to another, thereby reducing these differences over

time. Geographic differences in economic opportunities tend to persist, however,

because the labor market is slow to adjust to changes. Although disequilibrium

theorists acknowledge that geographic differences in amenities may affect migra-

tion, they believe differences in economic opportunities are the main explanatory

factors (Hunt 1993; Sjaastad 1962).

An alternative theory has gained adherents over the last few decades, in part

because of the failure of economic variables to provide consistent explanations of

migration in empirical studies (Greenwood 1997). Equilibrium theory postulates

that differences in amenities—rather than differences in economic opportunities—

are the main determinants of migration (Clark et al. 2003; Graves 1983; Graves and

Linneman 1979; Krupka 2009). Equilibrium theorists assume that labor markets,

land markets, and the migration process itself are efficient. Consequently, migration

quickly eliminates any significant geographic differences in economic opportuni-

ties and promptly restores equilibrium (Graves and Knapp 1988; Schachter and

Althaus 1989). Observed regional differences in wages or income are simply

compensating for regional differences in amenities. Equilibrium theorists also

believe that failing to account for amenities in migration equations can lead to

model misspecification and biased parameter estimates (Graves 1980).

The empirical evidence related to this debate is mixed. Some studies have found

support for the predictions of equilibrium theory (Clark and Murphy 1996; Graves

and Mueser 1993; Rickman and Rickman 2011; Schachter and Althaus 1989) while

others have found support for the predictions of disequilibrium theory (Carlino and

Mills 1987; Greenwood et al. 1986; Greenwood and Hunt 1989) or cast doubt on the

equilibrium perspective (Evans 1990; Henderson 1982; Hunt 1993; Treyz

et al. 1993).

A substantial amount of empirical evidence shows that both economic opportu-

nities and amenities influence migration, and that including both types of variables

generally improves migration modeling (Greenwood et al. 1991; Partridge and

Rickman 2006). The life cycle literature further suggests that economic variables

are more important to working-age people and that amenity variables become more

important as people become older (Clark and Hunter 1992). We believe both types

of variables have important effects on migration, but structural models used for

population projections generally focus primarily on economic factors. Conse-

quently, our discussion of structural models focuses on the economic determinants

of migration.

9.1.2 Recursive Models

Recursive models are based on one-way interactions: independent variables influ-

ence dependent variables but dependent variables do not influence independent

222 9 Structural and Microsimulation Models



variables. In recursive models, the basic assumption is that the economic factors

affecting migration are themselves unaffected by migration. Is this a reasonable

assumption? Probably not. Over time, migration has a direct impact on job growth,

wages, unemployment rates, and a host of other economic and non-economic

variables. From a theoretical perspective, then, recursive models do not reflect the

full range of interactions between migration and the economy.

Recursive models do, however, pick up a number of important effects and are

simpler to develop and easier to apply than models that account for two-way

interactions. Consequently, they are well represented in the literature and in prac-

tice. Recursive models have been developed for explaining and projecting net

migration flows (Clark and Hunter 1992; Greenwood et al. 1986, 1991; Greenwood

and Hunt 1991; Haurin and Haurin 1988) and gross migration flows (Ashby 2007;

Greenwood 1975; Schachter and Althaus 1989). Recursive relationships have also

been incorporated into several multi-regional migration models (Campbell 1996;

Foot and Milne 1989; Isserman et al. 1985; Rogers and Williams 1986).

We discuss three general approaches to designing and implementing recursive

models. First, we look at models using regression analysis to project migration as a

direct statistical function of a set of economic variables; following conventional

practice, we refer to these as econometric models. Second, we examine an approach

that treats migration as a balancing factor, adjusting for differences between the

projected supply and demand for labor. Finally, we discuss a method that uses

population/employment ratios to derive population projections from employment

projections.

9.1.2.1 Econometric Models

Under the econometric approach, equations are developed in which migration is

determined by one or more independent variables, such as those discussed in the

previous section. Using historical data and regression techniques, parameters are

estimated for each independent variable. Migration projections are made by apply-

ing the parameter estimates to projections of the independent variables. The

migration equations are typically integrated into a larger structural model providing

projections of the entire economy.

Parameter estimates are typically based on time series data measured at annual

intervals. Since the equations are recursive, they can usually be estimated using

ordinary least squares (OLS) regression techniques. The presence of

autocorrelation—a likely possibility with time series data—may require more

complicated techniques such as those described by Cochrane and Orcutt (1949)

and Bates and Watts (1988, pp. 92–96).

Another common practice is to use non-linear transformations such as the

natural logarithm (Stock and Watson 2010, Chap. 8). Non-linear transformations

not only help correct statistical problems such as non-normality in the regression

residuals, but also may provide a better description of the relationship between the

independent variables and migration. A crucial assumption in most econometric
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projection models is that parameters and functional forms do not change over the

projection horizon. In other words, it is assumed that the historical relationships

between migration and the independent variables remain constant over time.

Net migration models require the estimation of a single migration equation

(unless net migration is divided into several categories to account for differences

in demographic characteristics, such as age). Simple gross migration models

require the estimation of two equations, one for in-migrants and one for

out-migrants. Regardless of the approach, the model-builder attempts to construct

equations that accurately portray the influence of the independent variables on

migration. Variables such as changes in employment and wage rates are typically

used to measure area-specific economic conditions. A potentially useful strategy is

to define economic conditions for one area in relation to those found in another area,

most often the nation. This approach provides a mechanism for capturing the effects

of national economic trends on the local economy (Freeman 2001; Greenwood

1981; Treyz et al. 1993). Furthermore, by focusing on relative rather than absolute

changes in economic conditions, this strategy is consistent with human capital

theory’s emphasis on comparisons of economic conditions in different geographic

areas.

Multi-regional models require the most data because they incorporate specific

place-to-place migration flows. For example, a state-to-state model (including the

District of Columbia) involves 2,550 gross migration flows (51 by 50). In compar-

ison, a net migration model for states requires only 51 migration flows and a

two-region gross migration model requires only 102. Large data requirements

present a formidable challenge in the construction of multi-regional models.

Isserman et al. (1985) developed a Markov transition model using annual IRS

data to project multi-state migration flows. They constructed a transition matrix

reflecting the probability that a person will migrate from one state to another

(or remain in the same state). This model incorporated the size and characteristics

of the origin population, changes in economic conditions at all potential destina-

tions, and base year migration probabilities by origin and destination. The authors

constructed an economic attractiveness index based on the ratio of employment

growth to unemployed workers as a measure of economic conditions. They used

empirically-based parameter estimates to measure the impact of changes in the

attractiveness index on migration.

Gravity models represent another approach to modeling multi-regional migra-

tion flows. In a gravity model, a migration flow is directly related to the size of the

origin and destination populations and inversely related to the distance between the

two areas. These models can be adjusted to include other determinants of migration

as well. Foot and Milne (1989), Rogers (1967), and Yano et al. (2003) provide

examples of gravity models incorporating economic factors. We discuss gravity

models in more detail later in this chapter.
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9.1.2.2 Balancing Labor Supply and Demand

Another widely used recursive model matches independently derived projections of

labor supply and labor demand to determine migration. If supply exceeds demand,

workers are projected to move out of the area; if demand exceeds supply, workers

are projected to move in. In both cases migration tends to restore the balance

between labor supply and demand. We refer to this as a balancing model.
A balancing model is a two-part model in which labor supply is determined

using a traditional cohort-component model (with one important difference

discussed below) and labor demand is determined by economic factors. Such a

model is typically used to project only the migrants most affected by changes in

employment opportunities; other migrants must be projected using other tech-

niques. Unlike an econometric forecasting model, a balancing model does not

require formal statistical equations or time series data to project future levels of

migration. In addition, it does not require the implementation of a large-scale model

of the economy. Consequently, balancing models are less costly to implement and

easier to use than econometric models and are more accessible to a wider range of

practitioners.

We present a brief overview of the steps involved in developing and

implementing a balancing model. Actually applying the model, however, requires

detailed computations and the specification of a number of assumptions. Murdock

and Ellis (1991, pp. 221–222) provide a simple numerical example illustrating the

use of a balancing model for population projections.

The first step is to project the demand for labor, which is usually represented by

some measure of employment opportunities (e.g., the total number of jobs). It is

typically projected using export-base models, input-output models, or shift-share

techniques (Greenberg et al. 1978; Miller and Blair 2009; Murdock et al. 1984). In

some instances, projections of labor demand are based on large-scale econometric

models (Reeve and Perlich 1995).

The second step is to project the supply of labor. This usually involves a cohort-

component model in which mortality and fertility rates are applied in the usual

manner, but migration rates are assumed to be zero; in other words, the population

is “closed” to migration. Labor force participation (LFP) rates are projected by

assuming that current rates will remain constant, that local rates will follow national

trends, or that some other trend will prevail. The BLS provides national projections

of LFP rates by age, sex, race, and Hispanic origin (Toossi 2012). Labor supply is

then projected by multiplying the projected population by the appropriate LFP

rates. Although labor supply can be projected using LFP rates based on the total

population, it is more common to use rates broken down by age, sex, race, and other

demographic characteristics.

The third step is to derive the migration projection by matching labor supply and

labor demand. This can be done using a variety of procedures ranging from

relatively simple to relatively complex (Murdock and Ellis 1991, p. 219). For

example, Murdock et al. (1984) developed a model specifying four types of labor

9.1 Structural Models: Economic-Demographic 225



demand and labor supply broken into age-sex groups. Murdock et al. (1987)

describe this model in detail. In the simplest model, the volume of net migration

is equal to the gap between labor supply and demand. Net in-migration occurs when

labor demand is greater than labor supply and net out-migration occurs when labor

supply is greater than labor demand. This assumption can be relaxed by setting

thresholds that trigger the migration response; that is, it can be assumed that

migration will not occur until labor supply and labor demand are out of balance

by more than some predetermined amount (Murdock et al. 1984).

The matching procedure in the third step determines the net number of workers

that leave or enter the area. The fourth step converts these migrating workers into a

projection of all “economic” migrants, including other family members, by apply-

ing various characteristics to the migrating workers (e.g., marital status and family

size). The assumptions made for these characteristics can markedly influence the

size of the migrant population and require careful attention (Murdock and Ellis

1991, p. 220).

The economic migrants projected in the fourth step do not represent all migrants;

in particular, they exclude groups such as retirees, military personnel, and interna-

tional migrants whose moves are largely unaffected by changes in local economic

conditions. The fifth step projects these groups using procedures such as those

described in Chap. 7. Adding these migrants to those projected in Step 4 completes

the migration projection.

A final step ascribes demographic characteristics to the migrants. This can be

done in a number of ways. One commonly used procedure is to give migrants the

same characteristics as the U.S. population when net migration for an area is

positive and the same characteristics as the local population when net migration

is negative (Center for the Continuing Study of the California Economy 2010).

9.1.2.3 Population/Employment Ratios

Our final recursive model does not single out migration or any other individual

component of population change. Rather, it develops population projections from

employment projections and the projected ratio of population to employment (P/E).

In its simplest form, this model uses projections of total employment and holds the

P/E ratio constant at its most recent value. However, since P/E ratios are known to

vary by demographic characteristic and to change over time, this simple approach is

not commonly used (Murdock and Ellis 1991, p. 217). More refined approaches can

be followed, such as projecting trends in P/E ratios or segmenting projections into

person of working ages (e.g., 18–64), retirement ages (e.g., 65+), and young

dependent ages (e.g., <18) (U.S. Bureau of Economic Analysis 1995). Despite

some drawbacks, this approach offers an easy and inexpensive way to derive

population projections from economic projections.
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9.1.3 Non-Recursive Models

Recursive projection models have been criticized on both statistical and theoretical

grounds because they view economic-demographic relationships as one-sided:

They account for the influence of economic factors on population growth, but do

not account for the influence of population growth on economic conditions. How-

ever, a large body of evidence shows that demographic variables are not only

affected by economic variables, but influence those variables as well (Muth 1971;

Partridge and Rickman 2003; Plane 1993). Non-recursive models address this

problem by incorporating relationships that simultaneously depict both the eco-

nomic determinants and consequences of demographic change. Although they have

more complicated mathematical structures and larger resource requirements than

recursive models, a number of non-recursive projection models have been devel-

oped and implemented (Conway 2001; Mills and Lubuele 1995; Treyz and Treyz

2004).

We have explained how economic factors—especially changes in

employment—affect migration and population growth. Almost 50 years ago,

Borts and Stein (1964) argued that the opposite is also true: Migration is not only

influenced by changes in employment, but influences employment as well. They

based their argument on the premise that an area’s labor demand curve is perfectly

elastic; therefore, employment will increase by the same amount as the shift in the

labor supply curve. Since labor supply is affected by migration, employment must

be affected by migration as well.

A fundamental question has been posed: Do people follow jobs or do jobs follow

people? In a groundbreaking study, Muth (1971) found support for both views, but

concluded that the evidence more strongly favored the Borts and Stein hypothesis.

Specifically, Muth estimated that every 10 new jobs attract between six and seven

new migrants, but every 10 new migrants create 10 additional jobs. Steinnes (1982)

concluded that causality runs only one way, from change in residence to change in

manufacturing employment. His study rekindled the causality debate.

Greenwood et al. (1986) found that migrants fill about five out of every 10 new

jobs, a bit lower than Muth’s estimate. Turning to migration’s impact on employ-

ment, they estimated an effect about 36% higher than Muth’s. Similarly, Clark and

Murphy (1996) and Mills and Lubuele (1995) found stronger support for the

hypothesis that jobs follow people than for the hypothesis that people follow

jobs. Carlino and Mills (1987), Freeman (2001), and Mathur and Song (2000),

however, found the impact of employment growth on population growth to be

greater than the impact of population growth on employment growth. Partridge and

Rickman (2003) found that people follow jobs and jobs follow people, but that the

impacts were similar in both directions.

Although these studies reached different conclusions regarding the magnitude

and significance of various economic-demographic relationships, they provide

sufficient empirical evidence to conclude that causal relationships do indeed run

in both directions: economic conditions affect migration flows and migration flows
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affect economic conditions. How can both effects be accounted for in a projection

model?

The simplest case is a two-equation simultaneous model of migration and

employment:

MIG ¼ α0 þ α1EMPþ α2WAGEþ μ1
EMP ¼ β0 þ β1MIGþ β2WAGEþ μ2

where MIG is migration, EMP is employment, WAGE is wages, α and β are the

estimated parameters, and μ is the residual. Migration is the dependent variable in

the first equation and an independent variable in the second, while employment is

the dependent variable in the second equation and an independent variable in the

first.

Migration and employment are referred to as endogenous variables because they

are determined within this system of equations. WAGE is an exogenous variable

because it is determined outside the system; it is thought to influence both migration

and employment, but not to be influenced by them. This model allows for reciprocal

causality: employment affects migration and migration affects employment. The

parameters α1 and β1 provide estimates of the impact of employment on migration

and of migration on employment, respectively.

Parameter estimation in non-recursive models is a complex undertaking. In

addition to issues such as identification and the use of instrumental variables,

statistical problems occur when an explanatory variable in one equation appears

as a dependent variable in another equation. This violates a principal assumption of

OLS regression analysis; namely, that explanatory variables are not correlated with

residuals. Consequently, OLS regression coefficients are biased and inconsistent.

This problem is often handled using special estimation algorithms such as 2- and

3-stage least squares. However, Joun and Conway (1983) found that OLS tech-

niques often produce accurate forecasts and reasonable simulation results, even for

non-recursive models. Detailed discussions of these and related issues can be found

in Paxton et al. (2011).

9.2 Structural Models: Urban Systems

The second category of structural models is urban systems models. These models

are used to determine the distribution of residential and nonresidential activities

within urban or metropolitan areas (Anas and Liu 2007; Hunt and Abraham 2005;

Pinto and Antunes 2007). Like economic-demographic models, urban systems

models incorporate economic factors such as jobs, unemployment rates, and

income and use historical data to develop statistical parameter estimates. However,

they differ from economic-demographic models in several important ways.

First is geographic scale. Economic-demographic models typically focus on

relatively large areas such as nations, regions, states, counties, and metropolitan
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areas. Urban systems models typically focus on much smaller areas such as census

tracts, block groups, traffic analysis zones, and parcels. (Traffic analysis zones are

user-designed areas developed for transportation planning; they are typically com-

posed of one or more blocks). Second, the variables used in urban systems models

differ from those used in economic-demographic models. Along with jobs, unem-

ployment rates, and income, urban systems models typically incorporate land use

(e.g., land costs, development costs, and development potential) and transportation

characteristics (e.g., travel costs, times, and distances). Third, urban systems

models use a somewhat different set of statistical tools than economic-demographic

models. In particular, geographic information systems (GIS) play an important—

perhaps essential—role in the implementation of urban systems models (Buliung

et al. 2005; Sui 1998). Finally, urban systems models generally require significantly

more time and resources to implement than economic-demographic models. One

survey found that it typically costs between $750,000 and $1,500,000 to implement

an urban system model in a large metropolitan area (Johnston and McCoy 2005).

Urban systems models can project not only population but also housing, employ-

ment, income, land-use, and transportation characteristics. They can be used to

examine a variety of issues that cannot be addressed in most economic-

demographic models (e.g., air quality, traffic congestion, loss of open space, and

the fiscal implications of land-use decisions). In this section, we discuss models that

focus on small geographic areas, incorporate both residential and non-residential

land uses, and have links with transportation factors. We do not consider other types

of small-area structural models, such as those relying primarily on an econometric

approach (Greenwood 1981; Levernier and Cushing 1994).

Urban systems models vary widely in their theoretical approaches, mathematical

algorithms, data requirements, and ease of implementation. Presenting a detailed

description of these models is beyond the scope of this book, but we can provide an

overview highlighting some of the questions they attempt to answer and some of the

ways they go about providing those answers.

9.2.1 A Brief History of Urban Systems Models

The 1950s saw the emergence of computer models linking land use, residential and

non-residential activities, and the transportation system. Although computers made

urban systems models possible, it was sociopolitical conditions that provided the

impetus for their development. For example, the desire to use scientific methods to

assess the impact of new highways and analyze urban problems spurred the

development of new models (Putman 1991, p. 1). Although many early modeling

efforts did not succeed, the following 20 years yielded a wealth of information

about spatial relationships within urban areas. This period saw the publication of

several groundbreaking works revolutionizing urban systems models and urban

planning practices (Harris 1965; Lowry 1964).
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Lee (1973) wrote a scathing critique of urban systems models and predicted their

demise. His main criticisms centered on their overly ambitious but mostly

unachieved goals, the lack of sufficient data and computing power, and an inade-

quate understanding of the urban development process. This influential paper—

along with factors such as the lack of technical skills among planners and institu-

tional resistance to new methods—slowed the development and implementation of

urban systems models in the United States (Batty 1994; Harris 1994). Although

some work continued (Putman 1991), the most important theoretical and practical

advances occurred in other countries (Anas 1982; Echenique 1983; Wilson 1974).

More than 40 years have passed since Lee (1973) predicted the demise of urban

systems models, but they are more widely used today than ever before. The number

of groups working on these models has grown steadily and at least 20 centers on

four continents are now actively engaged in urban modeling research (Pinto and

Antunes 2007). This resurgence of interest began in the 1990s and was evidenced in

a 1994 symposium on urban systems models published by The Journal of the
American Planning Association. This was the journal’s first collection of articles

on this topic in more than two decades. One year later the U.S. Department of

Transportation and the U.S. Environmental Protection Agency co-sponsored a

conference on urban systems models. Many similar conferences have been held

since that time.

What accounts for this renewed interest? In part, it stems from two pieces of

federal legislation: the Intermodal Surface Transportation Efficiency Act of 1991

(ISTEA)—which was reauthorized as TEA21 in 1998 and SAFETEA-LU in

2005—and the Clean Air Act Amendments of 1990. The transportation legislation

mandated that transportation plans consider the long-range effects of interactions

among land-use patterns, residential and non-residential activities, and the trans-

portation system. The Clean Air Act Amendments specified that the analysis of air

quality must take into account interrelationships between travel patterns and the

location of homes, businesses, shopping, and recreational activities. In 2008, the

State of California adopted Senate Bill 275 that required the use of “advanced”

urban models to analyze the effects of urban form and the transportation system on

future greenhouse gas emissions. Even without federal mandates, policy-makers are

under increasing pressure from environmentalists, developers, and the public to

address issues associated with urban form, land use, and the transportation system

(Borning et al. 2008; Jin and Fricker 2008). Urban systems models provide a

systematic and empirical way to analyze these issues and evaluate policy options.

Equally important are increases in computing power, the development of GIS

systems and object-oriented programming, and the greater availability of electronic

data (Pinto and Antunes 2007; Stevens et al. 2007). These changes have provided

the infrastructure needed to develop and implement urban systems models, over-

coming some of the data and technological limitations noted by Lee (1973).

Significant advances have also been made in understanding the processes and

patterns of urban development (Anas and Liu 2007; de la Barra 2005; Hunt

et al. 2005; Wegener 2004). Despite these advances, however, there are still

significant challenges regarding theoretical and empirical realism, computational
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speed, resources, agency skill sets, usability, and the integration of these models

into the participatory decision-making process (Timmermans 2003; Waddell 2011).

Urban system models are expensive to develop and implement and are beyond

the reach of many agencies. The TELMUT system represents one effort directed at

expanding the use of urban system models by reducing the barriers and difficulties

in their applications (Pozoukidou 2007; Putman 2010). Rule-based or sketch-

planning models also offer simpler alternatives for investigating the interrelation-

ships between land-use and transportation systems. Examples include

CommunityViz (Walker and Daniels 2011), WhatIf? (Pettit and Wyatt 2009), and

Urban Footprint (Calthorpe Associates 2012).

9.2.2 Components of Urban Systems Models

Urban systems models vary considerably in their theoretical approaches, mathe-

matical designs, data requirements, and ease of implementation, but they typically

consist of three major components—regional population and economic forecasts,

land use and activity, and transportation. Regional projections are often produced

using economic-demographic models such as those discussed in the previous

section. The land use and activity component consists of a complex set of pro-

cedures for distributing population and economic activities within a region. The

transportation component provides projections of transportation system character-

istics, such as traffic volumes and speeds on roadways and on public transportation

systems.

A fundamental characteristic of urban systems models is the incorporation of

explicit, iterative relationships connecting land-use characteristics, activity loca-

tion, and the transportation system. The transportation system is influenced by land-

use configuration and the travel needs of people and businesses and is regulated by

government plans and policies. Changes in transportation supply, in turn, affect

residential and business location decisions, thus influencing the land-use configu-

ration. Land use is a general term covering a variety of characteristics such as

housing and employment densities and floor space; residential, commercial, and

industrial zoning designations; the supply of buildable land; and local growth

policies. Links with the transportation system are often defined as accessibility

measures based on travel times, distances, and costs.

Land-use and activity models reconcile the demand for residential and

non-residential activities with the available supply of buildable land. One approach

is to hold the supply of buildable land constant (Gouldner et al. 1972). If demand

exceeds supply, growth shifts to an alternate zone with a sufficient supply of

buildable land to support that particular activity. Another approach is to use land-

pricing mechanisms to reconcile gaps between supply and demand (de la Barra

2005; Hunt and Abraham 2005; Simmonds 2010). Excess demand can also be

satisfied by allowing housing and employment densities to rise (Putman 2010).
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Transportation has long been modeled using a four-step approach: trip genera-

tion, trip distribution, mode choice, and traffic assignment (McNalley 2007;

Southworth 1995). The first step uses trip generation rates to determine the number

of trips that occur in each area. These trips are classified by type (e.g., home to

work, home to shopping) for zones of origin and destination. The second step

matches origins and destinations, creating an origin-destination matrix for all

types of trips and all possible pairs of zones. The third step separates trips by

mode of travel, such as one-person auto, carpool, public transportation, biking, or

walking. Discrete choice logit models are typically used to determine mode choice

(Ben-Akiva and Lerman 1985; McFadden 1974; Smirnov 2010). The final step

determines the number of trips that occur on particular streets, highways, and transit

routes. Traffic assignment accounts for street and highway capacities in order to

prevent more trips from occurring than could realistically be expected; it can also

simulate the effects of drivers choosing alternative routes because of traffic

congestion.

Although four-step models have been in use for almost 50 years, they have been

criticized on a variety of grounds (Meyer and Miller 2001). Some analysts claim

these models cannot effectively support analyses of contemporary policy concerns

such as induced travel, road pricing, vehicle emissions, freight movement, alterna-

tive land-use policies, and non-motorized travel (Transportation Research Board

2007). Four-step models are not behavioral in nature and rely on aggregate statis-

tical correlations among demographic and economic variables and travel patterns.

Furthermore, they often have difficulty picking up the effects of small changes in

the variables and changes in travel behavior that reflect the trade-offs of costs,

convenience, and time-savings.

A new generation of highly disaggregated activity-based transportation models

has emerged to address these issues (Algers et al. 2005; Bradley et al. 2010; Bhat

et al. 2003). In an activity-based model, travel is derived from participation in

activities and depends on the organization of those activities. Travel patterns are

organized within activity-based models as sets of related trips known as tours. The

socioeconomic characteristics of individual households are developed from survey

data and other data sources, and are used to project household interactions and

travel patterns at a highly disaggregated level. Although activity-based models

improve sensitivity to relevant factors in some important new policy areas, there

is considerable debate as to how well these advantages can be realized in practice

and whether the cost of model development and maintenance can be justified

(Virginia Department of Transportation 2009).

9.2.3 Land-Use and Activity Models in Use Today

At least 20 different land-use and activity models have been used in metropolitan

areas throughout the world. Although these models share some common features,

they represent a wide range of theoretical and empirical perspectives and vary
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considerably in terms of comprehensiveness, reliability, and implementation (Hunt

et al. 2005; Timmermans 2003; Waddell and Ulfarsson 2004; Wegener 2004). In

this section, we provide a brief overview of several of the most commonly used

models.

9.2.3.1 DRAM and EMPAL: Descendants of Lowry’s Gravity Model

Gravity models are based on the idea that interactions between areas i and j are
determined by their relative population sizes and the distance between them. Lowry

(1964) developed two gravity models linking the spatial distributions of basic

employment (e.g., manufacturing and transportation), population-serving employ-

ment (e.g., retail trade and services), and population. A number of models building

on this basic framework soon followed (Crecine 1968; Gouldner et al. 1972). Many

land-use and activity models in use today are the direct descendants of Lowry’s

seminal work. Two of the most successful are the Disaggregated Residential

Allocation Model (DRAM) and Employment Allocation Model (EMPAL), which

have been continuously updated and refined over the last 40 years (Putman 2010).

DRAM and EMPAL are production-constrained spatial interaction gravity

models with similar equation structures. Although separate, they are closely inte-

grated with each other. DRAM produces residential projections (households, pop-

ulation, and income) and EMPAL produces non-residential projections

(employment). Both models incorporate three important modifications not found

in previous models: (1) they use multivariate, multi-parametric attractiveness

functions, (2) they include consistent balanced zonal constraint procedures, and

(3) they contain additive lagged terms.

DRAM can allocate households into as many as eight income categories and

allows up to nine variables in its attractiveness function. A constraint procedure

permits the analyst to investigate the effects of policies imposing limits on growth,

such as restricting the development of steep hillsides or habitat-preserve areas. The

inclusion of a lagged household variable converts DRAM from a purely cross-

sectional model into a quasi-dynamic model of household location (Wegener

2004).

EMPAL projects the geographic location of between four and eight categories of

employment. Unlike its predecessors, EMPAL does not require the exogenous

location of basic employment as a starting point. Rather, basic employment location

in this model interacts directly with the location of other activities within the region.

This formulation is believed to reflect economic interactions more accurately than

previous formulations, especially in light of the declining economic impact of

heavy manufacturing industries (Prastacos 1986).

Aggregate spatial interaction models like DRAM and EMPAL have been crit-

icized because they ignore the economics of urban land markets, lack behavioral

content, overemphasize the role of transportation, and lack sensitivity to changes in

the urban form (Borning et al. 2008; Johnston and McCoy 2005). The economics of

land-use and transportation systems are becoming more important as policy-making
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criteria, especially in this era of tight budgets where the costs and benefits of future

projects are hotly debated. The difficulty of these models in assessing the efficacy of

compact urban form, walkable communities, and transit-accessible development

has highlighted their limitations in the current policy environment. A new gener-

ation of urban system models, based on utility-maximizing, discrete choice multi-

nomial logit formulations has been developed to address these limitations. Some of

these models are discussed below.

9.2.3.2 PECAS (Production, Exchange, and Consumption Allocation

System)

The idea that land and transportation systems might be viewed as markets with

endogenously determined prices and costs is rooted in urban economics (Alonso

1964; Wingo 1961). In this tradition, PECAS simulates spatial economic systems

by clearing spatial submarkets for various goods and services in a short-run

equilibrium, with floor space supply handled separately based on development

event probabilities (Hunt and Abraham 2005). PECAS is composed of two mod-

ules. One is the activity allocation (AA) module, which runs on a set of land-use

areas. AA represents how activities locate within the space provided by developers

and how these activities interact with each other at a given point in time and across

land-use areas. The other is the space development module (SD), which represents

the actions of developers in the provision of space (land and floor space) where

activities can locate, including new development, demolition, and redevelopment.

SD is a disaggregated model and runs on small grid cells or parcels within each

land-use area.

The PECAS AA module represents spatially disaggregated “make” and “use”

input-output tables. “Make” tables identify the commodities produced by specific

activities and “use” tables define how those commodities are consumed. Commod-

ities include goods and services, labor, and space (land and/or floor space). The

movement of these commodities from areas where they are produced to areas where

they are consumed is the economic basis for travel and transportation in AA. The

transportation system influences the attractiveness of particular areas through its

impact on travel distances, costs, times, and associated (dis)utilities.

For each commodity, a three-level nested logit model (derived from a single

utility function using random utility theory) is used to allocate: (1) the quantities

purchased among various exchange locations, (2) the quantities sold among various

exchange locations, (3) the production and consumption of commodities by activ-

ities, and (4) categories of industries and households in various areas. The utility of

alternatives in these models is influenced by the prices and characteristics of

transporting the commodity to and from exchange locations. Prices are established

at exchange locations so that the quantity bought equals the quantity sold; in other

words, the spatial allocation procedure assumes that there is a short-run equilibrium

in the commodity market.
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In the PECAS SD module, each grid cell or parcel has a set of attributes,

including: (1) a quantity of existing space, (2) zoning rules specifying the types

and densities of space permitted, (3) the costs and fees associated with development

of each type of space, and (4) the price (rent) for each type of space. Developers act

to change the types of space and/or the quantities of space on parcels or grid cells. A

Monte Carlo process determines the specific type of event associated with each

parcel. Logit models assign selection probabilities to each event that is permitted

according to the permitted space types and quantities. The utility functions in these

models calculate the expected net revenues to the developer for the available

options, incorporating the prices and the costs for transition, maintenance and

servicing in each case.

9.2.3.3 UrbanSim

UrbanSim reflects an interdisciplinary research effort directed toward developing

operational tools to support the assessment of land-use, transportation, and envi-

ronmental policies and plans (Waddell 2002, 2011). It has both aggregated and

disaggregated components and emphasizes behavioral theory and transparency.

This approach leads to an explicit treatment of individual agents such as households

and firms, their locations, and the choices and interactions these agents make. The

UrbanSim framework includes an explicit representation of real estate demand,

supply, and prices within which agents make decisions. Unlike other urban systems

models that use an equilibrium solution at each time point and are not path

dependent, UrbanSim predicts dynamic changes over time (Borning et al. 2008;

Simmonds et al. 2011).

Rather than a single model, UrbanSim is a family of models employing a range

of techniques and approaches. Household and economic mobility models focus on

the relocation decisions of households and firms. These models allocate new and

moving households to residential locations and allocate firms to non-residential

locations. Variables used in the household-location model include attributes of

housing (e.g., price, density, and age), neighborhood characteristics (e.g., land

use, density, average property values, access to retail establishments), and regional

accessibility to jobs. The employment-location model includes real estate charac-

teristics (e.g., price, type of space, density, age), neighborhood characteristics (e.g.,

average land values, land-use mix, employment), and regional accessibility to

population. The real estate development model uses a multinomial logit model

that simulates development choices (e.g., no change, new development, and rede-

velopment). Variables in this model include characteristics of the area (e.g., current

development, policy constraints, land and improvement values), characteristics of

the site location (e.g., proximity to highways, arterials, and existing development),

and regional accessibility to population. The land-price model uses hedonic regres-

sion techniques to estimate changes in land prices as the characteristics of locations

change over time.
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9.2.3.4 DELTA

The DELTA land-use/economic modeling package has been developed since the

mid-1990s (Simmonds 1999, 2010). It consists of four components: (1) a transpor-

tation model, (2) an economic model, (3) an urban activity model, and (4) a

migration model. DELTA is designed to allow interactions among these four

components. The transportation and urban activity models are applied at the

small-area level, whereas the migration and economic models are applied at larger

levels of geography.

DELTA uses a spatial input-output model to forecast sectors of the economy.

These forecasts are influenced by changes in output and productivity, costs of

transportation (from the transportation model), consumer demands for goods and

services, and commercial rents (from the urban activity model). Changes in

employment by sector are passed to the urban activity model, which forecasts the

location of households and jobs within the larger area. Residential and

non-residential locations are influenced by the supply of floor space, accessibility,

and environmental variables. Household location decisions are influenced by

accessibility to workplaces and services, and business location decisions are

influenced by accessibility to potential workers and customers. The locations of

households and jobs interact with the transportation model to generate travel

demands. Households determine consumer demand for goods and services in

each area for use in the economic model. The rents arising from competition for

property in each area affect both the economic and migration models. The migra-

tion model forecasts migration among the larger areas based on job opportunities

and housing costs from the urban activity model.

The urban activity component is implemented through four submodels. In the

transition submodel, household and demographic changes are expressed as rates of

household formation, changes from one status to another (e.g., couples without

children to couples with children), and household dissolution. More complex

changes are represented by combinations of transition rates, which are

(at present) independent of other factors within the model. The car-ownership

submodel predicts the changing proportion of households having 0, 1, and 2+

cars, mostly in response to changes in income. The location submodel model

predicts the relocation of households and jobs, given the property markets in

which they are competing for space. The employment status submodel is the one

part of the package that works primarily in terms of persons rather than of

households. It first calculates the demand for labor by socioeconomic group,

given the number and location of new jobs by sector. The second stage of this

submodel adjusts the employment status of economically active individuals and the

commuting patterns of workers until the required number of workers is supplied to

each zone.

DELTA also has development and area-quality submodels. The development

submodel predicts the operation of the private sector development process. This

submodel takes into account the effect of the planning system, measured through
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the quantities of each type of development permitted in each small area. Developers

are motivated by the expected profitability of development, estimated by comparing

rents with construction costs. The area-quality submodel deals with the existence of

positive and negative cycles of urban quality. Positive influences result from rising

average incomes, declining vacancy rates, and similar factors. This submodel is

important to the overall design of the model because it represents processes that

tend to maintain or to enhance the differences between more and less prosperous

areas within cities.

9.2.3.5 RELU-TRAN

RELU-TRAN is a spatially disaggregated general equilibrium model of a metro-

politan economy and its land use that is based on a number of models that have been

developed over the past 30 years (Anas 1982; Anas and Arnott 1997; Anas and Liu

2007). Rather than using linear, quadratic, or other standard programming methods,

RELU-TRAN requires the solution of highly non-linear equations systems using

non-standard and innovative iterative algorithms that exploit the special features of

those equations. Numerical solutions of models using iterative techniques are not

well practiced within the field of transportation and land-use modeling, but are

gaining broader applicability to solve a variety of problems (Anas and Liu 2007;

Judd 1998).

Based on microeconomic theory, RELU-TRAN equilibrates floor space, land

and labor markets, and markets for the products of industries. Product markets

include development (construction and demolition), spatial inter-industry linkages,

commuting, and discretionary travel. People can re-locate to residences or jobs

outside the area; income can originate either inside or outside the area; assets inside

the area can be owned by outsiders; and firms can purchase inputs produced either

inside or outside the area. Each person makes choices concerning whether to work,

where to work, and where to reside. These decisions are subject to a budget

constraint (e.g., rent values, travel costs, income, and taxes) and are assumed to

maximize utility. Landlord behavior depends on the short-run supply of building

floor space. A landlord operates floor space by maximizing profit under perfect

competition and the only decision a landlord makes is to offer floor space for rent or

withhold it from the market. Developers are profit-maximizing, competitive firms;

they take building prices and construction and demolition costs as given. Devel-

opers buy vacant land (or a building) and decide whether and what kind of building

to build (or whether to demolish an existing building).
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9.3 Microsimulation Models

Population projections have been made at progressively lower levels of geography

in recent decades. Taking this trend to its logical conclusion implies the develop-

ment of models based on the activities of individual units, such as persons,

households, vehicles, organizations, or firms. These are known as microsimulation

models (from microanalytic simulation). They are able to perform highly detailed

analyses of activities such as highway trips, financial and economic transactions,

and demographic changes.

Microsimulation models are distinguished from other projection models in that

they operate at the level of individual units, with each unit represented by a record

containing a unique identifier and a set of associated attributes (e.g., a list of persons

with age, sex, income, and pension status or a list of vehicles with origin, destina-

tion, and operational characteristics). These models start with a database containing

estimates of the characteristics of each individual unit; these estimates are often

based on synthetic estimation techniques (Muller and Axhausen 2011; Rahman

et al. 2010; Williamson 2013). A set of rules (i.e., transition probabilities) is applied

to each unit, leading to simulated changes in its status and behavior over time.

These rules may be deterministic (e.g., changes in tax liability resulting from

changes in tax regulations) or stochastic (e.g., probabilities of dying, marrying,

giving birth, or moving). In either case, the rules lead to a variety of outcomes.

Importantly, the outcomes reflect both overall aggregate changes and the ways in

which those changes are distributed across populations and geographic areas.

Microsimulation as a tool for policy analysis has a long history (Mitton

et al. 2000; Orcutt et al. 1976; Troitzsch et al. 2010). The motivation behind

microsimulation models is that aggregate behavior is determined by the decisions

made by many individuals; therefore, it is useful to develop models of the activities

of individual units. This framework is well suited for analyzing problems that

require the modeling of interactions among policies and a variety of economic,

social, and demographic conditions. For instance, microsimulation models have

been used to assess the distributional implications of changes in social security,

personal taxes, and pensions (Panis and Lillard 1999; van Sonsbeek 2011); the

implications of changing income thresholds for the payment of state benefits

(Brown and Harding 2002); disability costs faced by older persons (Morciano

et al. 2012); and the effects of changes in transportation and land-use policies on

travel patterns (Bradley et al. 2010; Vovsha et al. 2002).

Microsimulation models have also received attention as a population projection

tool (Andreassen 1993; Harding and Gupta 2007; Zinn et al. 2010). Non-spatial

projection models include APPSIM in Australia (Harding et al. 2010), SADNAP in

the Netherlands (van der Werf et al. 2007), DEMOSIM in Canada (Malenfant

et al. 2011), and a model covering the Houston-Galveston metropolitan area

(Messen and Joshi 2010). Spatial projection models rely heavily on the methods

developed for non-spatial models, but seek to address geographical questions as

well (Tanton and Edwards 2013). Ballas et al. (2005) describe SMILE, a spatial
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microsimulation model designed to analyze the impact of policy changes and

economic development in rural areas in Ireland. Wu and Birkin (2013) describe

Moses, a spatial microsimulation model that projects the population of the United

Kingdom through discrete demographic processes at a fine spatial scale. A number

of urban system models have also adopted a spatial microsimulation framework,

including UrbanSim (Waddell et al. 2003), ILUTE (Salvini and Miller 2005),

ILUMASS (Moeckel et al. 2007), and RAMBLAS (Veldhuisen et al. 2000).

There are significant challenges in implementing microsimulation models.

Development costs, maintenance requirements, and agency skill sets present sub-

stantial barriers because these models typically require investments of several

person-years to develop and additional person-years to maintain (Edwards 2010;

Harding 2007). It is difficult to develop reliable base data and reasonable transition

probabilities; in fact, the lack of high-quality, comprehensive, longitudinal socio-

economic data often forces modelers to generate less reliable synthetic data for

building behavioral transitions. Stochastic variability is another issue (Salvini and

Miller 2005). Testing the stability of a microsimulation model is important, as

multiple runs (in cases where random effects exist) may result in significantly

different results even when the inputs are the same. Ease of use, long run-times,

and assessment (validation) of results are also critical issues in implementation

(Birkin 2013; Harding et al. 2010).

Microsimulation models reflect complex real-life events and provide a valuable

tool for analyzing both the aggregated and disaggregated effects of existing policies

and proposed policy changes. Despite the challenges involved in their development

and implementation, major advances have been made in the techniques used to

create and validate these models. Microsimulation models meet the increasing

demand for highly disaggregated projections and it is likely that efforts to refine

and improve them will continue. Clarke and Harding (2013), Harding (2007),

Gilbert (2008, pp. 1–6), Heppenstall et al. (2012), and Mainzer and Chua (2012)

discuss the similarities and differences between microsimulation models and sev-

eral other individual-level modeling approaches.

9.4 Conclusions

Structural and microsimulation models require more resources and are more diffi-

cult to implement than other projection methods discussed in this book. They

require a large amount of base data, sophisticated model-building skills, complex

statistical procedures, and intricate computer programs. These requirements make

them costly to develop, apply, and maintain, putting them out of reach for many

organizations.

Are these models worth the effort and resources they require? The answer to this

question depends on the purposes for which the projections will be used. If the only

objective is to enhance forecast accuracy, these models are not worth their added

cost and complexity. The accuracy of population projections from structural and
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microsimulation models is heavily dependent on the accuracy of the base data,

synthetic populations, transition probabilities, projections of the model’s indepen-

dent variables, and assumptions regarding the model’s structure and its stability

over time. As we show in Chap. 13, there is no evidence that more complex models

provide more accurate population forecasts than can be obtained from simpler, less

expensive methods.

For a number of purposes, however, structural and microsimulation models are

very useful. Perhaps their greatest advantage is their ability to address a wide range

of theoretical, policy, and planning questions (Borning et al. 2008; Mitton

et al. 2000; Treyz 1995). Decision making and planning at all levels increasingly

require detailed information on a broad array of inter-related variables, geographic

areas, and individual behaviors. Structural and microsimulation models are well

suited to meet these needs. In addition, they can provide population projections that

are consistent with a variety of employment, transportation, land-use, and other

types of projections. This attribute is extremely important in many circumstances.

Structural and microsimulation models are much more useful than other projec-

tion methods for purposes of simulation and scenario analysis. Although other

methods (particularly the cohort-component method) can be used for developing

simulations and analyzing alternative scenarios, structural and microsimulation

models permit the investigation of a wider range of variables and inter-

relationships. They can also be used to evaluate the implications of particular

decisions and to suggest policy changes when these decisions lead to unintended

or undesirable consequences (Bargain 2007; Schmidt et al. 1997; Tayman 1996).

In some circumstances, simulations and scenario analyses are considerably more

important than the development of a specific projection or forecast. For example,

what impact would greater labor productivity and higher wages have on migration

into an area? How might changes in the age structure affect the demand for

housing? What effect would a more restrictive U.S. immigration policy have on

the local economy? What effect would a 15% cut in the defense budget have on an

area’s population growth? How would a policy restricting residential development

affect land prices and housing affordability? What impact would greater housing

density have on traffic patterns and air quality? What impact would a new baseball

stadium have on the geographic distribution of residential and non-residential

development? How would location- or time-specific pricing influence the use of

public transportation? These and many other questions can be investigated most

thoroughly within the framework of structural and microsimulation models, which

may explain why these models are more widely used today than ever before.

Finally, data users and decision makers often view projections from structural

and microsimulation models as being more authoritative than projections from

other methods. It is widely understood that wages and employment opportunities

affect migration patterns, that land-use and transportation characteristics affect

decisions regarding where people live, and that pricing mechanisms affect travel

behavior and the location of households and firms. Data users and decision makers

may therefore conclude that models incorporating these and similar factors are

more credible than models that exclude them. In fact, they may even equate model
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complexity with forecast accuracy. These perceptions often give structural and

microsimulation models an advantage over other projection methods; this advan-

tage may be particularly important when projections must be defended in a public

(and perhaps highly politicized) forum. We address these issues more fully in

Chaps. 12 and 13.
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Chapter 10

Special Adjustments

Population projection models can be applied in a relatively straightforward manner

in many situations, without consideration of any factors beyond those discussed in

previous chapters. However, there are circumstances in which the model must be

adjusted to account for confounding characteristics or events. One of the most

common adjustments is for special populations such as college students and prison

inmates. Failing to account for special populations can lead to unreasonable and

inconsistent projections. Whether any specific set of projections requires an adjust-

ment, of course, is a question that must be answered on a case-by-case basis.

There are also circumstances in which a set of projections must be controlled to

an independent projection or adjusted to provide additional temporal or age detail.

In this chapter, we discuss the circumstances in which unadjusted projections might

provide unacceptable results and describe ways for making the necessary adjust-

ments. We also describe several methods for controlling to independent projections

and interpolating within age groups or between target years. The adjustments

described in this chapter increase the complexity of the projection process, but

often lead to substantial improvements in the quality and usefulness of the

projections.

10.1 Special Populations

A special population is a group of persons located in an area because of an

administrative or legislative action (Pittenger 1976, p. 205). Common types include

college students, prison inmates, residents of nursing homes, and military personal

and their dependents. Special populations complicate the projection process

because their growth or decline is not necessarily determined by the same factors

affecting the rest of the population; consequently, they often follow different

growth trends.

Special populations typically have different demographic characteristics as well.

For example, military personnel and college students are concentrated primarily in
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the young adult ages, residents of nursing homes are concentrated primarily in the

older ages, and prison populations often have a high concentration of males and

racial minorities. Another confounding characteristic is that special populations

may not age in place like other population groups. Instead, their age structures may

remain stable over time. For example, a college town sees a large inflow of persons

aged 17–19 and a large outflow of persons aged 21–23 every year. Consequently, a

substantial proportion of the town’s young adult population replaces itself repeat-

edly rather than aging in place.

Special populations do not create problems for population projections if they

comprise a small proportion of the total population or if their growth rates and

demographic characteristics are similar to the rest of the population. In these

circumstances, no special adjustments are needed. When special populations follow

different trends and account for a substantial proportion of the total population,

however, adjustments must be made.

Unfortunately, there is no rule of thumb defining “different” or “substantial.”

Consequently, the analyst must evaluate each situation separately, focusing on the

special population’s demographic composition, growth trends, components of

growth, and—perhaps most important—its share of total population. It is a good

bet that special populations will have a significant impact on projections in areas

with a large prison, military installation, college, or university. Nursing homes,

boarding schools, and mental institutions are sometimes important as well. The

impact of special populations is generally greater in small areas than large areas; for

example, a prison may have little impact on the total population of a large county

but may comprise the entire population of a census tract.

10.1.1 Accounting for Special Populations

Projections can be adjusted for the impact of special populations by following

several steps (Fig. 10.1). First is to create estimates of the “regular” population (i.e.,

residents that are not part of the special population) by subtracting estimates of the

special population from estimates of the total population. Second is to project the

regular population, using the methods described in earlier chapters. Third is to

project the special population itself, using one of the approaches described below.

The final step is to add the projection of the special population to the projection of

the regular population.

How can special populations be projected? One approach is to develop a cohort-

component model for the special population itself, using fertility, mortality, and

migration rates that pertain specifically to that population (Pittenger 1976, p. 205).

This approach will be useful if the special population accounts for a large propor-

tion of the total population, if the necessary data are available, and if reasonable

assumptions about future trends in fertility, mortality, and migration rates for the

special population can be made. Data limitations often make this approach imprac-

tical, especially for small areas.
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Another approach is to hold the special population constant over the course of

the projection horizon. This approach will be useful if the size and demographic

composition of the special population has been relatively stable over time and is

expected to remain so in the future. It will also be useful if the direction and

magnitude of future changes are completely unpredictable at the time the projection

is made; if increases and declines are equally likely, it often makes sense to hold the

population constant.

Finally, projections of special populations can be based on historical trends or

information collected from the administrators of facilities such as colleges, prisons,

or nursing homes. Administrators often have information on planned changes in the

facility’s capacity and enrollment. This information can be used in conjunction with

the analyst’s judgment regarding future population trends (Smith and Rayer 2012).

Combinations of several approaches can also be used, such as holding the demo-

graphic composition of the special population constant while allowing for changes

in its total size.

10.1.2 Data Sources and Adjustments

Data for special populations are often available from government agencies (e.g.,

inmates in state prisons) and specific institutions (e.g., students enrolled in a college

or university). These data often include breakdowns by age, sex, race, and/or

ethnicity. Data regarding the components of growth for special populations,
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however, generally are difficult to obtain. This can create problems not only for

projections of the special population itself, but also for projections of the regular

population in places where the special population constitutes a substantial propor-

tion of the total population.

County-level in-migration data for some special populations can be obtained

from the American Community Survey (ACS), using either summary files or Public

Use Microdata Sample (PUMS) files. Data are available for persons residing in

group quarters facilities such as military barracks, prisons, and college dormitories,

but not for military dependents (i.e., the spouses and children of military personnel)

and for college students not living in dormitories. Estimates for these groups can be

made using PUMS data that identify all households headed by military personnel or

students, but these estimates are far from perfect. Since PUMS data are available

only for counties and subcounty areas with 100,000 residents or more, they cannot

be used for small area projections.

Migration data for residents of group quarters present a problem even when they

are available. ACS data refer to migration over a 1-year period, but group quarters

status is noted only for the estimate year. For example, the 2010 ACS provides

migration information for persons who resided in group quarters facilities in 2010,

but not for persons who resided in those facilities in 2009. This creates a problem

for constructing out-migration rates because group quarters status in the earlier year

is at least as important as group quarters status in the later year (perhaps more

important).

It is also difficult to obtain mortality and fertility data specific to special

populations. Birth and death certificates in some counties identify persons associ-

ated with the military, but this is the exception rather than the rule. Fertility and

mortality data pertaining to other special populations are even more difficult to

obtain. If these data are needed, the analyst may simply have to make an educated

guess. Fortunately, the development of fertility and mortality rates specific to a

special population is generally unnecessary, either because the special population’s

contribution to births and deaths is very small or because rates for the special

population are similar to rates for the population as a whole. The military popula-

tion (including dependents) may be an exception because fertility rates for this

group are often higher than for the non-military population. If the military popula-

tion comprises a substantial portion of the total population, it may be advisable to

account separately for its fertility behavior (see Box 10.1).

Obtaining special population data is considerably more difficult for subcounty

areas than for counties. The decennial census provides subcounty-level data on the

number and age/sex characteristics for some types of special populations but not for

others. There are several ways to deal with the lack of special population data. One

is to identify a small area—such as a census tract or individual block—in which the

entire population belongs to the special population group. In instances like this, data

defining the total population also define the special population. Those data can then

be used to estimate the characteristics of similar special populations in nearby areas.

For example, suppose that projections are to be made for a census tract containing a

prison. Suppose further that two particular blocks within that census tract are
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identified as containing solely prison inmates. The demographic characteristics of

those two blocks can be used as an estimate of the characteristics of the prison

population for the entire census tract.

We have also found the use of proxy rates from similar areas or similar sub-

groups to be helpful in places where special populations constitute a substantial

proportion of the total population. For example, if the opening of a prison had a

substantial impact on the age-specific migration rates observed for males in a

particular county, it would not be a good idea to use those rates for constructing

projections of the regular population. This problem can be dealt with by using

age-specific migration rates for females for projections of both males and females

(migration rates for males and females are often similar). Alternatively, age-specific

rates for males in counties with similar demographic characteristics could be used.

Solutions like these may not be perfect, but they are better than making no

adjustments at all.

Box 10.1 Estimating Military Birth Rates

Birth certificates in some counties report the military status of parents,

providing an excellent source of data on military births. In most counties,

however, birth certificates do not include this information. Administrators of

military installations sometimes maintain birth data, but gaining access to

those data is often difficult. When complete data on military births are

available, the analyst can easily develop estimates of military birth rates

and incorporate them directly into the projection process. Unfortunately,

such data are seldom available. How can estimates of military birth rates be

developed for places lacking these types of data?

One possibility is to use PUMS data from the ACS to calculate

child-woman ratios (CWRs) for the military and total populations. An adjust-

ment factor can be developed by forming a ratio of the military CWR to

the total CWR. Estimates of military age-specific birth rates (ASBRs)

can then be made by applying this adjustment factor to the ASBRs calculated

for the entire population. This approach assumes—perhaps incorrectly—

that the pattern of ASBRs is the same for military and non-military

populations.

Another possibility is to obtain information on births occurring in military

hospitals. This information can be obtained directly from the hospital or from

birth certificates. Although useful, this information excludes data on births

to military families that did not occur in military hospitals. When direct

information on military births is not available, the analyst may have to

combine information from a variety of sources to estimate military birth

rates. Developing reasonable estimates may require a substantial degree of

thought and creativity.
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The presence of a special population is a red flag warning the analyst to pay

special attention to the data and assumptions used in the projection model. If the

special population is large enough and differs significantly from the rest of the

population in terms of its demographic characteristics and growth rates, it must be

accounted for separately in the projection model. Sometimes the data for making

the necessary adjustments are readily available, sometimes they are not. When data

are unavailable, the analyst will have to become particularly creative. Developing

reasonable adjustments for special populations is essential for developing reason-

able population projections.

10.1.3 Illustrating the Impact of a Special Population

We show two examples to illustrate the impact of special populations on population

projections. The first uses data from San Diego County, California to illustrate

the impact of a large military population on a projection. San Diego has one of the

largest concentrations of military personnel in the United States. In 2010, the

uniformed military personnel (89,270) accounted for 2.9% of the county’s total

population. This population is heavily male (91%) and is concentrated in the 18–29

age group (69.7%). Given their numbers and age distribution, the uniformed

military population is likely to have a substantial impact on projections by age

for San Diego County.

We developed two alternative sets of population projections for males in San

Diego County, both using 2010 as a launch year and 2015 as a target year. One set

used a basic (i.e., unadjusted) cohort-component model and the other used an

adjusted model that separated uniformed military personnel from the civilian

population. In the basic model, net migration rates were based on the total popu-
lation. In the adjusted model, net migration rates were based on the civilian
population and were applied solely to that population. An independent projection

was made for the uniformed military population, in which it was assumed that no

change in that population would occur after 2010. The fertility and mortality

assumptions used in the two models were identical.

Net migration age patterns for the two models are shown in Fig. 10.2. The basic

model shows high levels of net in-migration for ages 15–19 and 20–24, followed by

net out-migration for age 25–29. These patterns were strongly affected by move-

ments in the military population. The adjusted model shows net in-migration for all

three groups, but at much lower levels for ages 15–19 and 20–24. This is a more

typical pattern for an area with net in-migration.

Table 10.1 shows projections of the male population from the basic and adjusted

models. The two projections of total population are very similar, differing by only

259. However, there are significant differences in some age groups. For ages 15–19

and 20–24, projections from the basic model exceed those from the adjusted model

by 5.6% and 7.3%, respectively; for ages 25–29, projections from the basic model
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Fig. 10.2 Male net migration by age group, San Diego County, 2010–2015

Table 10.1 Alternative projections of the male population, San Diego County, 2015

Age

Cohort component model Differencea

Basicb Adjustedc Number Percent

0–4 115,269 115,269 0 0.0

5–9 104,312 104,312 0 0.0

10–14 99,989 99,989 0 0.0

15–19 109,955 103,830 6,125 5.6

20–24 136,981 127,029 9,952 7.3

25–29 144,232 155,178 �10,946 �7.6

30–34 133,264 135,965 �2,701 �2.0

35–39 113,633 114,454 �821 �0.7

40–44 106,982 107,720 �738 �0.7

45–49 105,265 105,986 �721 �0.7

50–54 109,484 109,819 �335 �0.3

55–59 103,257 103,314 �57 �0.1

60–64 85,913 85,926 �13 0.0

65–69 69,177 69,189 �12 0.0

70–74 44,997 44,989 8 0.0

75–79 29,528 29,528 0 0.0

80–84 21,530 21,530 0 0.0

85+ 23,224 23,224 0 0.0

Total 1,656,992 1,657,251 �259 <�0.1%
aBasic model � adjusted model
bNo adjustment for uniformed military population
cSeparate projections for uniformed military and civilian populations
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are 7.6% below those from the adjusted model. In general, the basic model tends to

overstate the population aged 15–24 and understate the population aged 25–54.

Differences between the two models were very small for ages 55 and above. We

believe that by separating the military and civilian populations, the adjusted model

provides more realistic projections of the young adult age groups.

Our second example uses census tract 100.14 in southern San Diego County,

which contains a state prison and a county detention facility. In 2010, these two

facilities contained 6,300 prisoners, which accounted for 36% of the census tract’s

population (see Table 10.2). We developed two alternative projections of total

population for this census tract, using 1990–2010 as the base period and 2020 as

the target year. Both projections were based on the linear extrapolation (LINE)

method. One used the trend in the total population and the other used the trend in the

regular (i.e., non-prison) population. In the latter, the prison population was

projected to remain constant at its 2010 level.

Accounting separately for the prison population leads to a 2020 projection that is

3,150 persons lower (�11.9%) than the projection based on the trend in the total

population. The average annual changes in the prison and regular populations over

the base period were 315 and 559, respectively. The failure to adjust for the impact

of the prison population implies that the prison population will continue to grow by

315 per year. This is highly unlikely because the prison is already occupied above

its capacity level.

These examples illustrate the impact special populations can have on population

projections. The effects would be even greater if the projections were extended

further into the future. In circumstances like these, it is important to take explicit

account of special populations when making population projections.

10.2 Controlling

Analysts making population projections often face two distinct but related prob-

lems. One is how to make projections of demographic composition (e.g., age, sex,

race) match an independent projection of total population or migration. The second

Table 10.2 Alternative projections of the total population, census tract 100.14, San Diego

County, 2020

Population 1990 2010

2020a

Basicb Adjustedc

Prison 0 6,300 n/a 6,300

Regular 200 11,379 n/a 16,969

Total 200 17,679 26,419 23,269

% in Prison 0% 36% n/a 27%
aBased on the simple linear extrapolation technique
bNo adjustment for the prison population
cSeparate projections for prison and non-prison populations
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is how to make projections for a number of geographic areas add up to an

independent projection for a larger area (e.g., how to make the sum of census

tract projections match a county projection). Controlling is the term we use to

describe this adjustment process; raking is another commonly used term.

There are several reasons for controlling one set of projections to another. One is

the requirement that a set of projections be consistent with an “official” projection

that has been developed, adopted, or sanctioned by a governmental body or some

other decision-making unit. Another is to tie projections of demographic composi-

tion or geographic distribution from an older set of projections to a projection of

migration or total population from a more recent set. Perhaps most important,

controlling facilitates the construction of projections that are consistent across

demographic subgroups and geographic areas; it ensures that projections of demo-

graphic characteristics sum to projections of total population and that projections

for small geographic areas sum to projections for larger geographic areas.

10.2.1 Controlling to Independent Projections

In this section, we describe several methods for controlling projections of demo-

graphic characteristics to independent population or migration projections. We

illustrate these methods using a 2015 projection of females in Pima County,

Arizona based on a cohort-component model and 5-year net migration data.

These projections have a launch year of 2010 and use 2010 birth and survival

rates and 2000–2005 net migration rates (derived from the forward survival rate

method described in Chap. 6). In the first two illustrations, we control the age

distribution from the initial projection for 2015 to an independent projection of the

total female population for the same year. In the third illustration, we control the

initial net migration projections by age to an independent projection of total female

net migration.

10.2.1.1 Projections of Total Population

The simplest method for controlling demographic characteristics to an independent

projection of total population is to use a raking procedure based on a single

adjustment factor. This factor can be computed by dividing the total population

from the independent projection by the total population from the initial projection.

The initial projections for each demographic subgroup are then adjusted by multi-

plying each one by the adjustment factor:

FACTORt ¼ CNTLPt=Pt
CPc, t ¼ Pc, tð Þ FACTORtð Þ
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where FACTORt is the adjustment factor in target year t; Pt is the initial projection

of total population in the target year; CNTLPt is the independent projection of total

population in the target year (i.e., the control total); Pc,t is the initial projection for

demographic subgroup c in the target year; and CPc,t is the controlled projection for

subgroup c in the target year.

Table 10.3 shows the initial and controlled projections for the female population of

Pima County in 2015. The initial (uncontrolled) projection is 531,642 and the inde-

pendent control total is 540,000, yielding an adjustment factor of 540,000/

531,642 ¼ 1.015721. The adjusted (controlled) projection for each age group is

computed bymultiplying the original projection by 1.015721. The sum of the adjusted

age groups is equal to the independent total of 540,000 (within rounding error).

In this example, projections of age groups for females were controlled to an

independent projection of the total female population. The same method can be

Table 10.3 The raking method: Controlling to an independent projection of the female popula-

tion, Pima County, 2015

Age

2015 Projection

Initiala Controlledb Differencec
Change

2010–2015d

0–4 30,440 30,919 479 457

5–9 30,533 31,013 480 631

10–14 30,500 30,979 479 750

15–19 32,445 32,955 510 �2,190

20–24 40,849 41,491 642 4,650

25–29 34,970 35,520 550 2,931

30–34 31,470 31,965 495 2,066

35–39 30,121 30,595 474 1,451

40–44 30,005 30,477 472 1,805

45–49 29,570 30,035 465 �2,666

50–54 34,327 34,867 540 59

55–59 37,194 37,779 585 4,227

60–64 36,352 36,923 571 6,234

65–69 32,663 33,176 513 8,450

70–74 24,928 25,320 392 6,428

75–79 17,920 18,202 282 3,148

80–84 13,024 13,229 205 818

85+ 14,331 14,556 225 1,926

Total 531,642 540,001 8,359 41,175

Initial population projection 531,642

Independent population projection 540,000

Adjustment factore 1.015721
aProjection developed by authors
bInitial projection � adjustment factor
cControlled projection � initial projection
dControlled projection � 2010 population
eIndependent population projection / initial population projection
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applied using different demographic subgroups and different control populations.

For example, projections of males and females could be based either on a different

adjustment factor for each sex or on a single adjustment factor for both sexes. If the

projections are further specified by two ethnic categories (e.g., Hispanic and

non-Hispanic), projections for Hispanic males, Hispanic females, non-Hispanic

males, and non-Hispanic females could be based on four separate adjustment

factors (one calculated separately for each sex/ethnic group), on two separate

adjustment factors (one for each ethnic group), or on a single adjustment factor

based on the controlled and uncontrolled projections of the total population.

The choice of the appropriate control group will depend on the availability and

reliability of independent projections for various demographic subgroups. For

subgroups with similar growth characteristics, it is generally not necessary to

develop separate control totals and adjustment factors. The main thing to remember

when applying this method is that the sum of the demographic subgroups for which

adjustments are made must equal the control total used in computing the adjustment

factor (within rounding error).

10.2.1.2 Projections of Population Change

The first approach to controlling works well when the adjustments are moderate or

small. When adjustments are large, this approach may produce unsatisfactory

results because some demographic subgroups may be adjusted by a larger or

smaller amount than is warranted. In these circumstances, a method that focuses

on population change over the projection interval rather than the population in the

target year may produce better results.

The steps for applying the second approach are simple. First, changes in total

population over the projection interval are calculated for both the independent

projection and the initial projection. Second, a ratio of the two projected changes

is formed and applied to the change initially projected for each demographic

subgroup, producing a set of adjusted changes. Finally, these adjusted changes

are added to the launch year population totals for each subgroup to provide a

controlled projection for the target year.

Although the concept underlying this approach is simple, its implementation

becomes more complicated when some demographic subgroups are projected to

increase while others are projected to decline. To illustrate this problem, suppose that

there are only two subgroups.One is projected to increase by 250 and the other to decline

by 150, implying a total population change of 100. Suppose further that the projected

change for the independent projection (i.e., the control total) is 120. These numbers

produce an adjustment factor of 120/100 ¼ 1.2. Applying this factor to the changes

originally projected for the two subgroups (250 and�150) produces adjusted changes of

300 and �180. These changes add to 120, which is consistent with the change for the

independent projection. However, the adjustment causes the subgroup losing population

to lose evenmore thanwas initially projected. Given that projected growth for the entire

population has been adjusted upward, this may not be a reasonable outcome.
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This points to an important problem with using a simple raking procedure for

adjusting projected population changes: when some demographic subgroups are

projected to increase and others to decline, a raking procedure based on a single

adjustment factor causes both population gains and losses to become larger or

smaller (depending on the direction of the adjustment). This is not a logical

outcome. In most instances, a better outcome would be that adjustments for all

demographic subgroups are positive when the overall adjustment is upward and

negative when the overall adjustment is downward.

This can be accomplished by using two separate adjustment factors—one for

subgroups projected to grow and one for subgroups projected to decline. This

adjustment procedure is known as the plus-minus method (Judson and Popoff

2004). The equations for the plus-minus method are:

CNTLCHG ¼ CNTLP� Pl
PCHGc ¼ Pc, t � Pc, l
ABSUM ¼ P��PCHGc

��
SUM ¼ P

PCHGc

POSFACTOR ¼ ABSUMþ CNTLCHG� SUMð Þð Þ=ABSUM
NEGFACTOR ¼ ABSUM� CNTLCHG� SUMð Þð Þ=ABSUM
If PCHGc > 0, then CPc, t ¼ Pl þ PCHGcð Þ POSFACTORð Þ
If PCHGc < 0, then CPc, t ¼ Pl þ PCHGcð Þ NEGFACTORð Þ

where CNTLP is the independent projection of total population (i.e., the control

projection); Pl is the total population in the launch year l; CNTLCHG is the

population change between launch year and target years for the independent

projection; PCHGc is the population change for a demographic subgroup c from

the initial (uncontrolled) projection; ABSUM is the sum of the absolute values of

uncontrolled population changes for each demographic subgroup; SUM is the sum

of the uncontrolled population changes for each demographic subgroup;

POSFACTOR is the adjustment factor for demographic subgroups projected to

increase; NEGFACTOR is the adjustment factor for demographic subgroups

projected to decrease; CP is the controlled population projection for a demographic

subgroup; and Σ represents the sum over all demographic subgroups.

As these equations show, the formulas for the positive and negative adjustment

factors are similar, differing only by a single sign in the numerator. In fact, if

projected changes for all demographic subgroups have the same sign, the plus-

minus method produces the same results as the single-factor raking procedure. It

should also be noted that the sum of the two adjustment factors is equal to 2.

Table 10.4 shows the application of the plus-minus method to the projection of

females in Pima County. The adjustment factors indicate that population changes for

age groups gaining population are increased by just over 18% (1.183757), while

population changes for age groups losing population are lowered by the same percent-

age (0.816243). Comparing the controlled and uncontrolled columns, we see that the

adjustment process works as expected. The gains become larger for age groups

projected to increase and the losses become smaller for age groups projected to decline.
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A comparison of Tables 10.3 and 10.4 shows how the two alternative controlling

methods affect the results. In terms of the projections themselves, the differences

are not particularly large. In terms of projected changes between 2010 and 2015,

however, there are some notable differences. The 0–4 age group provides a good

illustration. In the initial projection, this group declined by 22 between 2010 and

Table 10.4 The plus-minus method: Controlling to an independent projection of the female

population change, Pima County, 2010–2015

2015 projection 2010–2015 change

Age

2010

population Initiala Controlledb Diff.c Initiald Abs. value Controllede

0–4 30,462 30,440 30,444 4 �22 22 �18

5–9 30,382 30,533 30,561 28 151 151 179

10–14 30,229 30,500 30,550 50 271 271 321

15–19 35,145 32,445 32,941 496 �2,700 2,700 �2,204

20–24 36,841 40,849 41,585 736 4,008 4,008 4,744

25–29 32,589 34,970 35,408 438 2,381 2,381 2,819

30–34 29,899 31,470 31,759 289 1,571 1,571 1,860

35–39 29,144 30,121 30,301 180 977 977 1,157

40–44 28,672 30,005 30,250 245 1,333 1,333 1,578

45–49 32,701 29,570 30,145 575 �3,131 3,131 �2,556

50–54 34,808 34,327 34,415 88 �481 481 �393

55–59 33,552 37,194 37,863 669 3,642 3,642 4,311

60–64 30,689 36,352 37,393 1,041 5,663 5,663 6,704

65–69 24,726 32,663 34,121 1,458 7,937 7,937 9,395

70–74 18,892 24,928 26,037 1,109 6,036 6,036 7,145

75–79 15,054 17,920 18,447 527 2,866 2,866 3,393

80–84 12,411 13,024 13,137 113 613 613 726

85+ 12,630 14,331 14,644 313 1,701 1,701 2,014

Total 498,826 531,642 540,001 8,359 32,816 45,484 41,175

Calculation of plus-minus adjustment factors:

Sum of initial pop change (SUM) 32,816

Sum of abs. value of initial pop change (ABSUM) 45,484

2010 population 498,826

Independent population projection 540,000

Independent population changef (CNTLCHG) 41,174

Positive adjustment factorg 1.183757

Negative adjustment factorh 0.816243

Sum of adjustment factors 2
aProjection developed by the authors
b2010 population + controlled population change
cControlled population projection � initial population projection
dInitial population projection � 2010 population
ePositive initial population change � positive adjustment factor or negative initial population

change � negative adjustment factor
fIndependent population projection � 2010 population
g(ABSUM + (CNTLCHG � SUM)) / ABSUM
h(ABSUM � (CNTLCHG � SUM)) / ABSUM
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2015. When single-factor raking was applied, it increased by 457 (Table 10.3).

When the plus-minus method was applied, it declined by 18 (Table 10.4). The plus-

minus method thus produced an increase that was much more in line with the initial

projection than did single-factor raking. We believe the plus-minus method will

generally produce more reasonable results than single-factor raking when some

subgroups are increasing and others are declining.

One weakness of the plus-minus method should be mentioned. This occurs when

the difference between the control total (CNTLCHG) and the sum of the

uncontrolled projections (SUM) exceeds the sum of the absolute values of the

uncontrolled projections (ABSUM). When this happens, one of the adjustment

factors must be negative, reversing the signs of the projected changes. One solution

to this problem is to transform the distribution of projected changes by adding or

subtracting a fixed constant to each value before computing the adjustment factors

(San Diego Association of Governments 1998). The control total also must be

modified by the total amount added to or subtracted from the distribution. After the

factors are applied, the controlled values are transformed back to the original scale

by the amount of the fixed constant.

10.2.1.3 Projections of Migration

The examples illustrated in Tables 10.3 and 10.4 show how to control population

characteristics from one projection to the total population from another projection.

In some instances, however, the application may call for controlling to an indepen-

dent projection of migration rather than to an independent projection of total

population. This may occur when migration (rather than total population) is the

variable of interest or when the focus is on the components of change rather than

population per se. It should also be noted that controlling to an independent

projection of total population or population change makes projections of the

components of growth inconsistent with projections of total change.

Consider Table 10.3, for example. The controlled projection for the population

aged 0–4 in 2015 is 479 persons higher than the projection based exclusively on births

and infant deaths (i.e., the initial uncontrolled projection). Howmany of these additions

were the result of a larger number of births?Howmanyweremigrants?Howmany died

during the projection interval? There are no satisfactory answers to these questions.

When the focus is on components of change, the most satisfactory solution to

this problem is to control to a projection of migration rather than to a projection of

population or population change. A new migration projection can be obtained by

rearranging the terms in the demographic balancing equation described in Chap. 2.

This defines net migration as total population change minus births plus deaths. For

females in Pima County, for example, the level of net migration consistent with the

population change implied by the independent (control) projection is:

540;000� 498;826ð Þ � 30;527þ 20;721 ¼ 31;368
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Table 10.5 The plus-minus method: Controlling to an independent projection of female net

migration, Pima County, 2010–2015

Age

2010

population

2015 surv.

populationa

Net migration 2010–2015 2015 population projection

Inititala
Abs.

value Controlledb Initialc Controlledd Diff.e

0–4 30,462 30,440 0 0 0 30,440 30,440 0

5–9 30,382 30,359 174 174 223 30,533 30,582 49

10–14 30,229 30,366 134 134 172 30,500 30,538 38

15–19 35,145 30,202 2,243 2,243 2,877 32,445 33,079 634

20–24 36,841 35,085 5,764 5,764 7,392 40,849 42,477 1,628

25–29 32,589 36,753 �1,783 1,783 �1,279 34,970 35,474 504

30–34 29,899 32,477 �1,007 1,007 �723 31,470 31,754 284

35–39 29,144 29,765 356 356 457 30,121 30,222 101

40–44 28,672 28,967 1,038 1,038 1,331 30,005 30,298 293

45–49 32,701 28,380 1,190 1,190 1,526 29,570 29,906 336

50–54 34,808 32,205 2,122 2,122 2,721 34,327 34,926 599

55–59 33,552 34,079 3,115 3,115 3,995 37,194 38,074 880

60–64 30,689 32,591 3,761 3,761 4,823 36,352 37,414 1,062

65–69 24,726 29,435 3,228 3,228 4,140 32,663 33,575 912

70–74 18,892 23,180 1,748 1,748 2,242 24,928 25,422 494

75–79 15,054 16,974 946 946 1,213 17,920 18,187 267

80–84 12,411 12,542 482 482 618 13,024 13,160 136

85+ 12,630 14,832 �501 501 �359 14,331 14,473 142

Total 498,826 508,632 23,010 29,592 31,369 531,642 540,001 8,359

Calculation of plus-minus adjustment factors:

Sum of initial net migration (SUM) 23,010

Sum of abs. value of initial net migration

(ABSUM)

29,592

2010 population 498,826

Independent population projection 540,000

Independent population changef 41,174

Birthsa 30,527

Deathsa 20,721

Independent net migration 2010–2015

(CNTLCHG)g
31,368

Positive adjustment factorh 1.28244

Negative adjustment factori 0.71756

Sum of adjustment factors 2
aProjection developed by the authors
bPositive original population change � positive adjustment factor or negative original population

change � negative adjustment factor
cSurvived population þ initial net migration
dSurvived population þ controlled net migration
eControlled population projection � initial population projection
fIndependent population projection 2015 � population 2010
gIndependent projection of population change � births þ deaths
h(ABSUM þ (CNTLCHG � SUM)) / ABSUM
i(ABSUM � (CNTLCHG � SUM)) / ABSUM
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In the example shown in Table 10.5, we use the plus-minus method to control the

net migration projections to a new net migration total. Since the externally derived

migration control total is larger than the uncontrolled projection of net migration,

the adjustment process raises migration gains in age groups with net in-migration

and reduces migration losses in age groups with net out-migration.

The plus-minus method can also be used to control projections of gross in- and

out-migration to an independent net migration control total. In this application,

in-migrants are treated as the group with positive changes and out-migrants are

treated as the group with negative changes. For example, if the independent

projection of net migration were higher than the initial projection, this adjustment

would raise the number of in-migrants and reduce the number of out-migrants.

10.2.2 Controlling to Projections of Larger
Geographic Areas

Population projections are often prepared for a number of geographic areas and for

the composite of those areas (e.g., all counties within a state, all census tracts within

a county). In this section, we discuss methods for reconciling projections at

different levels of geography. These methods make the sum of the projections for

the smaller areas equal to the projection for the larger area.

The simplest way to achieve this reconciliation is to use a bottom-up approach

in which the projection for the larger area is simply calculated as the sum of

the projections for the smaller areas. A bottom-up approach is most useful

when the sum of the projections for the smaller areas is not significantly different

from the projection for the larger area.

If the differences are large—or if there are other reasons for holding the pro-

jections for the larger area constant—a bottom-up approach will not work. In these

circumstances, some type of controlling procedure must be used. If controlling

involves only one variable—a single dimension—we can use one of the controlling

methods described in the previous section. If controlling involves several variables,

however, more complicated procedures must be used. The following examples

illustrate single-dimensional and multi-dimensional controlling.

10.2.2.1 Single-Dimensional Controlling

There are 42 subregional areas (SRAs) in San Diego County, each composed of one

or more census tracts. The San Diego Association of Governments (2011)

constructed a set of population projections by racial/ethnic group for census tracts

and SRAs in the county. However, those projections did not include any informa-

tion from the 2010 census. We created a new set of projections for 2020 for one

SRA and its six constituent census tracts in which the initial 2010 projections were
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adjusted to be consistent with 2010 census counts (not shown here). The projections

for the SRA were broken down into several racial/ethnic groups but the projections

for census tracts were of total population only. Because of the adjustments, the new

SRA projections were no longer consistent with the racial/ethnic breakdown found

in the initial census tract projections.

We apply a single-factor raking procedure to illustrate how the initial racial/

ethnic projections for census tracts can be controlled to the new SRA racial/ethnic

projections. The procedure is very simple. First, the initial census tract projections

are added together for each racial/ethnic group. Second, adjustment factors are

computed by dividing the new SRA projections by the sum of the initial census tract

projections, for each racial/ethnic group. These adjustment factors are shown in the

top panel of Table 10.6. Finally, the adjustment factors are multiplied by the initial

projections of each census tract for each racial/ethnic group, providing a set of

controlled projections (shown in the bottom panel of Table 10.6). The adjustments

raise the projections for Hispanics by about 2% but reduce the projections for the

other racial/ethnic groups, with particularly large reductions for non-Hispanic

whites (�8.5%) and non-Hispanic blacks (�13%).

The controlled racial/ethnicity projections for census tracts now sum to the SRA

projection for each race/ethnicity group (except for one small difference due to

rounding). However, the projections of total population for each tract are now

different than they were initially, as seen by comparing the “Total Pop” columns

in the initial and controlled projections. This is the major problem with a single-

dimensional controlling procedure: Making projections consistent across one

dimension makes them inconsistent across another.

10.2.2.2 N-dimensional Controlling

How can we make the initial census tract projections consistent with the new 2020

SRA race/ethnicity projections and the new 2020 census tract projections of total

population? The methods discussed so far cannot solve this problem. Rather, a

procedure is needed that can control across several dimensions simultaneously; this

is sometimes called n-dimensional controlling. It can be accomplished using the

iterative proportions (IP) method, which approximates a least squares solution in

order to obtain convergence in all n dimensions (Deming 1943, Chap. 7; Judson and

Popoff 2004). This method can handle a wide range of situations.

Three main conditions must be met in the most common application of the IP

method. First, all projections must be greater than or equal to zero. Second, there

must be independent projections for the totals of each controlling dimension. For

example, if we are controlling census tract projections to a SRA projection by race/

ethnicity, we must have independent projections of the total population of each

census tract and of the SRA’s population by race/ethnicity. Third, the sum of all

projections over all dimensions must be equal; for example, the sum of the race/

ethnicity projections for the SRA must be equal to the sum of the total population

projections for the census tracts.
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We illustrate n-dimensional controlling using the two dimensions described in

the previous example. One represents a demographic characteristic (race/ethnicity)

and the other represents the total population of several geographic regions (six

census tracts and a SRA). The IP method begins with an initial matrix, whose body

contains the initial population projections by racial/ethnic group for each census

tract in the SRA. The column control total is the new population projection by

racial/ethnic group for the larger geographic area (the SRA) and the row control

total is the new total population projection for each census tract. These row and

column totals are often called marginals. The goal of the IP method is to adjust the

matrix so that, when summed vertically, census tract projections within each racial/

ethnic group equal the SRA projections for the corresponding group and, when

summed horizontally, census tract projections across racial/ethnic groups equal the

total population for each census tract.

We achieve this goal by applying a single-factor raking procedure over and over,

alternating sequentially between rows and columns. Starting with rows, we apply a

row-specific raking factor to each cell in each row; we repeat this process for all

rows. After this step, the sum of racial/ethnic groups matches the total population

Table 10.6 The raking method: Controlling to a population by ethnic group in a larger area,

selected census tracts, San Diego County, 2020

Census tract

Initial projection by ethnic groupa

Hispanic NH-White NH-Black NH-Other Total pop

208.01 1,010 3,975 40 236 5,261

208.05 1,052 2,158 87 125 3,422

208.06 2,538 3,507 145 350 6,540

208.07 575 1,777 5 132 2,489

208.08 1,670 10,178 193 600 12,641

208.09 2,998 5,027 44 270 8,339

Sum of census tractsb 9,843 26,622 514 1,713

SRA controlc 10,040 24,380 447 1,676

Adjustment factord 1.020014 0.915784 0.869650 0.978400

Controlled projection by ethnic group

Census tract Hispanic NH-White NH-Black NH-Other Total pop

208.01 1,030 3,640 35 231 4,936

208.05 1,073 1,976 76 122 3,247

208.06 2,589 3,212 126 342 6,269

208.07 587 1,627 4 129 2,347

208.08 1,703 9,321 168 587 11,779

208.09 3,058 4,604 38 264 7,964

Sum of census tractsb 10,040 24,380 447 1,675

SRA controlc 10,040 24,380 447 1,676

Differencee 0 0 0 1
a2050 Regional Growth Forecast, San Diego Association of Governments, October 2011
bSum of the population projection in each census tract
cIndependent SRA population projection developed by the authors
dSRA control / sum of the population projection in each census tract
eSRA control � sum of the controlled population projection in each census tract
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for each census tract. However, the sum of projections for all the census tracts

within each racial/ethnic group no longer matches the SRA total. We then apply a

column-specific raking factor to each cell in each column. After this step, the sum

of the cells in each column matches the SRA total for each racial/ethnic group, but

the sum of the cells in each row no longer matches the total population for census

tracts. By continuing this sequence of adjustments we eventually arrive at a

convergence in which cells in both rows and columns sum to the marginal totals

(except for small differences due to rounding).

The rate of convergence is relatively fast, typically requiring between two and

four cycles of horizontal and vertical adjustments to achieve complete agreement in

one dimension and close agreement in the other (Deming 1943, Chap. 7). It does not

matter whether one begins the process by adjusting rows or columns; the results are

essentially the same. One can refine the IP method to handle both positive and

negative adjustments by using the plus-minus method described earlier to deter-

mine two separate adjustment factors to use in the iterative process.

Table 10.7 shows the mechanics of the IP method. The first panel (“Beginning

Matrix, First Iteration”) shows the initial conditions and the elements needed to

apply the IP method. The main body of the matrix is contained in columns 2–5 and

the rows for the six census tracts; the cells of this matrix show the uncontrolled

projections produced by the San Diego Association of Governments (2011). Col-

umn 6 shows the sum of the racial/ethnic group projections for census tracts and

Column 7 (Census Tract Control) shows the row marginals (i.e., the independent

total population projection for each census tract). The row labeled “Sum of Census

Tracts” shows the uncontrolled projections by racial/ethnic group for the SRA. The

row labeled “SRA Control” shows the column marginals (i.e., the independent

racial/ethnic group projection for the SRA).

For columns, the population control totals are smaller than the sum of the

uncontrolled projections for all racial/ethnic groups except Hispanics. For rows,

the population control totals are smaller than the sum of the uncontrolled pro-

jections for all census tracts. The two numbers in bold print (�2,149) are particu-

larly important. They represent the total amount of the adjustment required in the

rows and columns in order to make the projections consistent across both dimen-

sions; they must be equal for the IP method presented here to work properly. The

row and column adjustment factors are computed as the ratio of the control total to

the sum of the corresponding cells; they are computed separately for each census

tract and each racial/ethnic group. Except for Hispanics, all the adjustment factors

in the first panel are below 1.0, indicating that downward adjustments are

necessary.

The second panel of Table 10.7 (“Rows Adjusted, First Iteration”) shows the

population projections by racial/ethnic group for each census tract after we adjusted

them to match the row control totals. For example, the adjusted Hispanic population

in census tract 208.01 is:

1; 010ð Þ 0:946398ð Þ ¼ 956
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Table 10.7 The iterative proportions method: Controlling a population projection in two

dimensions, selected census tracts, San Diego County, 2020

Census

tract

Beginning matrix, first iteration

Hispanic

NH-

White

NH-

Black

NH-

Other

Sum of

ethnic

groupsa

Census

tract

control Differenceb
Row

Factorc

208.01 1,010 3,975 40 236 5,261 4,979 �282 0.946398

208.05 1,052 2,158 87 125 3,422 3,333 �89 0.973992

208.06 2,538 3,507 145 350 6,540 6,114 �426 0.934862

208.07 575 1,777 5 132 2,489 2,308 �181 0.927280

208.08 1,670 10,178 193 600 12,641 12,224 �417 0.967012

208.09 2,998 5,027 44 270 8,339 7,585 �754 0.909581

Sum of

census

tractsd

9,843 26,622 514 1,713 �2,149

SRA

control

10,040 24,380 447 1,676

Differencee 197 �2,242 �67 �37 �2,149

Column

factorf
1.020014 0.915784 0.869650 0.978400

Rows adjusted, first iteration

Census

tract Hispanic

NH-

White

NH-

Black

NH-

Other

Sum of

ethnic

groupsa

Census

tract

control Differenceb
Row

factorc

208.01 956 3,762 38 223 4,979 4,979 0 1.000000

208.05 1,025 2,102 85 122 3,334 3,333 �1 0.999700

208.06 2,373 3,279 136 327 6,115 6,114 �1 0.999836

208.07 533 1,648 5 122 2,308 2,308 0 1.000000

208.08 1,615 9,842 187 580 12,224 12,224 0 1.000000

208.09 2,727 4,572 40 246 7,585 7,585 0 1.000000

Sum of

census

tractsd

9,229 25,205 491 1,620 �2

SRA

control

10,040 24,380 447 1,676

Differencee 811 �825 �44 56 �2

Column

factorf
1.087875 0.967268 0.910387 1.034568

Columns adjusted, first iteration

Census

tract Hispanic

NH-

White

NH-

Black

NH-

Other

Sum of

ethnic

groupsa

Census

tract

control Differenceb
Row

factorc

208.01 1,040 3,639 35 231 4,945 4,979 34 1.006876

208.05 1,115 2,033 77 126 3,351 3,333 �18 0.994628

208.06 2,582 3,172 124 338 6,216 6,114 �102 0.983591

208.07 580 1,594 5 126 2,305 2,308 3 1.001302

208.08 1,757 9,520 170 600 12,047 12,224 177 1.014692

208.09 2,967 4,422 36 255 7,680 7,585 �95 0.987630

(continued)

270 10 Special Adjustments



After the first set of adjustments all the row adjustment factors are 1.0 (or very

close to 1.0), indicating convergence to the projections of total population for the

census tracts. In addition, the total amount of adjustment now required is close to

zero (�2) for both the sum of racial/ethnic groups and the sum of census tracts).

However, the sum of census tract projections for each racial/ethnic group is still

inconsistent with the control totals. In fact, the column adjustment factor for

non-Hispanic other races has changed from a value less than 1.0 in Panel 1 to a

value of greater than 1.0 in Panel 2.

The third panel (“Columns Adjusted, First Iteration”) shows the population

projections by racial/ethnic group for each census tract after we adjusted them to

Table 10.7 (continued)

Columns adjusted, first iteration

Census

tract Hispanic

NH-

White

NH-

Black

NH-

Other

Sum of

ethnic

groupsa

Census

tract

control Differenceb
Row

factorc

Sum of

census

tractsd

10,041 24,380 447 1,676 �1

SRA

control

10,040 24,380 447 1,676

Differencee �1 0 0 0 �1

Column

factorf
0.999900 1.000000 1.000000 1.000000

Columns adjusted, third iteration

Census

tract Hispanic

NH-

White

NH-

Black

NH-

Other

Sum of

ethnic

groupsa

Census

tract

control Differenceb
Row

factorc

208.01 1,052 3,658 35 233 4,978 4,979 1 1.000201

208.05 1,114 2,017 77 125 3,333 3,333 0 1.000000

208.06 2,551 3,110 122 332 6,115 6,114 �1 0.999836

208.07 584 1,593 5 126 2,308 2,308 0 1.000000

208.08 1,794 9,648 172 609 12,223 12,224 1 1.000082

208.09 2,944 4,355 36 252 7,587 7,585 �2 0.999736

Sum of

census

tractsd

10,039 24,381 447 1,677 �1

SRA

control

10,040 24,380 447 1,676

Differencee 1 �1 0 �1 �1

Column

factorf
1.000100 0.999959 1.000000 0.999404

aSum of the population projections in each ethnic group
bCensus tract control � sum of the population projections in each ethnic group
cCensus tract control / sum of the population estimates each ethnic group
dSum of the population projections in each census tract
eSRA control � sum of the population projections in each census tract
fSRA control / sum of the population projections in each census tract
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match the column control totals. For example, the adjusted Hispanic population in

census tract 208.01 is now:

956ð Þ 1:087875ð Þ ¼ 1, 040

All of the column adjustment factors are now 1.0 (or very close to 1.0),

indicating convergence to the population projections by racial/ethnic group for

the SRA, but the column adjustments have made the sum of the racial/ethnic

group projections for census tracts inconsistent with the total population projections

for census tracts. However, the differences are much smaller than they were before;

none is greater than 177. This comparison shows that significant convergence to

both marginal totals has occurred after only one full iteration of the process.

The last panel of Table 10.7 (“Columns Adjusted, Third Iteration”) shows the

results after three full iterations. As is evident from this panel, the census tract

projections by race/ethnicity have now converged (within rounding error) to both

the SRA control totals for each racial/ethnic group and to the population control

totals for each census tract.

The IP method—and other controlling methods—may not always come as close

to the independent (control) projections as the examples shown here. Raising the

level of demographic detail and reducing the geographic scale can cause multipli-

cative adjustment routines to lose their efficiency because the computations may

not change the original values as much as is needed to produce complete conver-

gence. For example, integer values less than 5 will not change unless the adjustment

is at least 10% (e.g., 5 times 1.09 still equals 5 after rounding to the nearest integer).

If this occurs with enough frequency, controlling falls short of its intended objec-

tive. This problem can be alleviated (but not solved completely) by using decimal

points instead of integers.

To handle circumstances where multiplicative adjustments are not adequate,

alternative mathematical controlling strategies have been developed (e.g., San

Diego Association of Governments 1998). These involve probabilistic assignment

routines and/or iterative schemes that apply small additive adjustments to the

uncontrolled observations. Private data vendors do some of the most innovative

work in this area but—for obvious reasons—are reluctant to reveal their trade

secrets.

10.3 Providing Additional Temporal and Age Detail

Many applications of the cohort-component method use 5-year age groups and

produce projections in 5-year intervals. With a launch year of 2010, for example,

projections might be made for 2015, 2020, 2025, and 2030 for the age groups 0–4,
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5–9, 10–14, . . ., 85+. What if a projection is needed for 2017 instead of 2020 or a

projection for ages 15–17 rather than 15–19? In this section we discuss some

methods for disaggregating projections by age and interpolating between target

years.

The methods discussed in this section are somewhat imprecise. They do not

reflect all the subtleties in the age distribution or pick up temporal growth patterns

as well as a single-year cohort-component model. They are very useful, however,

because they offer a reasonable and cost-effective alternative to the application of a

single-year projection model.

10.3.1 Adding Temporal Detail

The creation of projections for intermediate years can be viewed as an interpolation

problem. Suppose that our goal is to develop annual projections for the years

between two target years. We describe three approaches to interpolation that do

not require data beyond what is directly available from the projection model itself.

The first assumes that change occurs linearly over the projection interval, which

means that numerical changes are the same for each year in the interval. The second

assumes that change occurs geometrically over the projection interval, which

means that percent changes are the same for each year in the interval. The third

uses osculatory methods that incorporate information from several different pro-

jection intervals.

We illustrate each approach using a set of population projections by age for San

Diego County (San Diego Association of Governments 2011), focusing on annual

interpolations between target years 2025 and 2030. Because they exhibit sharply

contrasting growth patterns, we use a different age group to illustrate each

approach. Although the interpolations illustrated here are for 1-year intervals, the

same methods could be used for other intervals as well (e.g., quarters, months).

These methods can be used for constructing interpolations not only for age groups,

but for total population, specific racial or ethnic groups, and other variables as well.

10.3.1.1 Linear Interpolation

For linear interpolation, the average annual numeric change between launch year

l and target year t is calculated as the difference between the populations at the

beginning and end of the interval, divided by the number of years in the interval:

AANC ¼ Pt � Plð Þ=z

where AANC is the average annual numeric change; Pt is the population in the

target year; Pl is the population in the launch year; and z is the number of years in
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the projection interval. It should be noted that Pl refers to the start of any projection

interval. For example, a projection for 2015 is made using 2010 as the initial launch

year; the 2015 projection then serves as the launch year for a 2020 projection.

We can compute the average annual change for total population or for any

demographic characteristic (e.g., an age group). The annual change is successively

added (or subtracted, in the case of a population loss) to the population at the

beginning of the projection interval to obtain a projection for the intermediate

years:

Plþw ¼ Pl þ AANCð Þ wð Þ

where w is the number of years between the beginning of the projection interval and

the intermediate year. To illustrate linear interpolation, we develop annual popula-

tion projections for the population aged 0–4:

Population in 2020 : 240, 110
Population in 2025 : 245, 972

AANC : 245, 972� 240, 110ð Þ=5 ¼ 1, 172

2021 projection : 249, 110þ 1, 172 ¼ 241, 282

2022 projection : 249, 110þ 1; 172ð Þ 2ð Þ ¼ 242, 454

2023 projection : 249, 110þ 1; 172ð Þ 3ð Þ ¼ 243, 626

2024 projection : 249, 110þ 1; 172ð Þ 4ð Þ ¼ 244, 798

10.3.1.2 Geometric Interpolation

Geometric interpolation assumes that the annual percent change is the same for

each year in the projection interval. It uses the average annual growth rate to

determine an intermediate year projection, based on the geometric formula

described in Chap. 2:

GF ¼ Pt=Plð Þ 1=zð Þ

GF is a growth factor that represents 1.0 plus the average annual population

growth rate over the projection interval. This factor is between 0.0 and 1.0 for

population losses and greater than 1.0 for population gains. A growth factor of 1.0

indicates no change in the population. Much like calculating the balance in a bank

account using compound interest, the population at the beginning of the projection

interval is compounded by the average annual rate of population growth to obtain a

projection for the intermediate years:

Plþw ¼ Plð Þ GFwð Þ
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To illustrate, we develop annual population projections for population aged

80–84:

Population in 2020 : 57, 094
Population in 2025 : 69, 907

Growth factor : 69,607=57,094ð Þ 1=5ð Þ ¼ 1:04132
2021 projection : 57; 094ð Þ 1:04132ð Þ ¼ 59, 453

2022 projection : 57; 094ð Þ 1:04132ð Þ2 ¼ 61, 910

2023 projection : 57; 094ð Þ 1:04132ð Þ3 ¼ 64, 468

2024 projection : 57; 094ð Þ 1:04132ð Þ4 ¼ 67, 132

10.3.1.3 Osculatory Interpolation

The third approach—osculatory interpolation—produces smoother interpolations

than either linear or geometric interpolation because it incorporates more informa-

tion about population changes over time. Specifically, osculatory interpolation

methods incorporate information on population change during the time intervals

immediately before and after the projection interval, as well as information from the

projection interval itself. For example, interpolations for 2020–2025 include infor-

mation from 2015 to 2020 and 2025–2030 as well as from 2020 to 2025.

A number of different methods can be used to construct osculatory interpola-

tions. All are based on equations that combine two overlapping polynomial func-

tions. Although the construction of these equations is somewhat complex, the

application of the coefficients derived from them is not complicated. Judson and

Popoff (2004) present coefficients for some of the most commonly used osculatory

interpolation methods (i.e., Karup-King, Sprague, Beers Ordinary, and Beers

Modified).

To illustrate osculatory interpolation, we use Karup-King coefficients to develop

interpolations for each year within a 5-year interval. There are three types of Karup-

King coefficients. Middle-interval coefficients are used for most intervals in the

projection horizon; they incorporate information from time intervals immediately

before and after the projection interval. Last-interval coefficients are used for the

final interval in the projection horizon (e.g., 2035–2040 for projections through

2040). They are not as reliable as middle-interval coefficients because they use

information from only one side of the projection interval (i.e., the preceding

interval). First-interval coefficients are also available, but are seldom needed

because historical data are usually available. For example, if the first projection

interval were 2010–2015, we could use the 2005 estimates and 2010 census to

provide data for the time period immediately preceding the first projection interval.

Using Karup-King middle-interval coefficients, we created annual interpolations

for 2021–2024 for the population aged 30–34 (Table 10.8). These coefficients were

obtained from Judson and Popoff (2004, Table C-13, Panel A) and are applicable for

annual interpolations within 5-year projection horizons or, more generally, between
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any two points at intervals of 0.2. There are four coefficients for each year in the

interval for which interpolations are to be made. These coefficients correspond to:

1. Five years before the beginning of the interval (i.e., 2015).

2. The beginning of the interval (i.e., 2020).

3. The end of the interval (i.e., 2025).

4. Five years after the end of the interval (i.e., 2030).

For the intermediate computations we multiply the coefficients by the population

projection for the appropriate year. For example, for 2021 the intermediate calcu-

lations are:

�0:064ð Þ 215; 026ð Þ ¼ �13, 761:7
0:912ð Þ 247; 905ð Þ ¼ 226, 089:4
0:168ð Þ 260; 936ð Þ ¼ 43, 837:2

�0:016ð Þ 242; 920ð Þ ¼ �3, 886:7

To obtain the population projection for an intervening year we sum the four

intermediate calculations for that year. For 2021, the projection is:

�13, 761:7þ 226, 089:4þ 43, 837:2� 3, 886:7 ¼ 252, 278

Interpolations based on the Karup-King method are essentially weighted aver-

ages of projected (or estimated) populations. For each interpolation year, the

weights sum to 1.0. For the years defining the beginning and end of the projection

Table 10.8 Karup-King interpolations between target years 2020 and 2025, population aged

30–34, San Diego County

2015 2020 2025 2030

Populationa 215,026 247,905 260,936 242,920

Middle-interval coefficients

Year G1 (2015) G2 (2020) G3 (2025) G4 (2030)

2021 �0.064 0.912 0.168 �0.016

2022 �0.072 0.696 0.424 �0.048

2023 �0.048 0.424 0.696 �0.072

2024 �0.016 0.168 0.912 �0.064

Intermediate calculationsb

Year G1 (2015) G2 (2020) G3 (2025) G4 (2030)

Population

projectionc

2021 �13,761.7 226,089.4 43,837.2 �3,886.7 252,278

2022 �15,481.9 172,541.9 110,636.9 �11,660.2 256,037

2023 �10,321.2 105,111.7 181,611.5 �17,490.2 258,912

2024 �3,440.4 41,648.0 237,973.6 �15,546.9 260,634
a2050 Regional Growth Forecast. San Diego Association of Governments, Oct. 2011
bCoefficient � population in the appropriate year
cSum of the intermediate calculations for each year
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interval the weights are directly related to the distance between the interpolation

year and the beginning and ending years. That is, the closer the interpolation year is

to the projection year, the greater the weight assigned to that projection year. For

example, the 2020 population is assigned a weight of 0.912 for the 2021 interpo-

lation; the weight drops to 0.696 for 2022, 0.424 for 2023, and 0.168 for 2024.

Conversely, the weight assigned to the 2025 population increases steadily through-

out the interval. Interpolations from osculatory methods thus fit more smoothly with

population changes observed for earlier and later time periods than do either linear

or geometric interpolation methods.

Another osculatory interpolation method that has emerged in recent years is

based on cubic splines. Like other osculatory methods, cubic splines fit a piecewise

cubic polynomial to a portion of the data, but constrain the relationship of one cubic

spline to the next one in the series (Judson and Popoff 2004). We do not provide a

detailed description of this method because the computations are more difficult to

show than computations for other osculatory methods. However, we constructed a

set of cubic spline interpolations using Microsoft Excel and a free add-in developed

by SRS1 Software (http://www.srs1software.com). An evaluation of those

interpolations—and those produced by the other interpolation methods—is pro-

vided in the next section.

10.3.1.4 Evaluation

Which approach to interpolation is best? Linear and geometric methods require the

least data and are the simplest to apply. The computations for osculatory interpo-

lation methods are more extensive, require external multipliers, incorporate pro-

jections for intervals outside of the interval being interpolated, and may require

computer software. However, coefficients for several osculatory interpolation

methods are readily available and can be applied fairly easily. We believe the

choice of interpolation method should be based not only on computational simplic-

ity, but also on characteristics such as the magnitude, trend, and direction of

projected population change.

Figure 10.3 shows projected population change in 5-year intervals from 2015 to

2030 for the three age groups used in our illustrations (0–4, 30–34, and 80–84). The

growth patterns suggest which interpolation method (or methods) might be most

appropriate for each age group. Linear interpolation seems suitable for ages 0–4

because the projections show relatively constant numeric change in each of the

three periods. The steadily increasing numeric changes shown for ages 80–84

suggests the use of geometric interpolation. Finally, osculatory interpolation is

likely the best approach when the growth pattern changes direction and has clearly

defined turning points, such as shown for ages 30–34.

To judge the suitability of alternative interpolation methods in different population

change scenarios, we examined the accuracy of each method for each age group.

We measured accuracy by comparing the interpolations with results derived

from an independent set of annual projections for 2021, 2022, 2023, and 2024.
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These independent projections were produced using a single-year cohort-component

projection model. We call the differences between the interpolations and the

projections errors, under the assumption that a single-year projection model will

provide more reliable projections for the intermediate years than will an interpolation

method based on projections of broader age groups. We calculated the mean absolute

percent error for the four interpolated years for each interpolation method and each

age group.

Figure 10.4 shows the results of these comparisons. They generally support our

suggestion that the choice of interpolation method should be based on projected

patterns of change. The osculatory methods performed substantially better than the

other two methods for both the 30–34 and 80–84 age groups. In particular, neither

the linear nor geometric interpolation methods were able to pick up the dramatic

shifts in population growth observed for the 30–34 age group. Linear interpolation

performed poorly for both the 30–34 and 80–84 age groups, which were character-

ized by rapidly declining and increasing numeric changes, respectively. Geometric

interpolation performed better than linear interpolation for the 80–84 age group, but

not as well as the osculatory methods. For ages 0–4, which exhibited an approxi-

mately linear growth trend over the three 5-year periods, errors were very low for

all four methods.

The osculatory methods produced the lowest errors in two of the three age groups,

reflecting the advantage of incorporating information from several time periods into

the interpolation procedure. They were substantially more accurate than either the
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linear or geometric methods under the scenarios of steadily increasing growth (ages

80–84) and rapidly changing growth patterns (ages 30–34). We believe osculatory

methods represent the best approach to interpolation when growth patterns are

projected to change rapidly. However, all four methods had similar errors under the

scenario of roughly constant numeric increases (ages 0–4). This suggests that simpler

methods provide an acceptable alternative to more complex methods when projected

population change remains relatively constant over time.

The methods described above used a period approach for interpolating between

projected age groups (e.g., population aged 20–24 in both 2010 and 2020). A cohort

approach also could be used (e.g., population aged 20–24 in 2010 and 30–34 in

2020). A cohort approach is more complicated when using grouped data, but may

be better at picking up subtleties in the age distribution, especially when interpo-

lating to years within a longer projection interval (e.g., 10 years instead of 5 years).

Descriptions of the cohort approach to interpolation may be found in Bryan (2004)

and Shryock and Siegel (1973).

10.3.2 Adding Age Detail

The division of broad age groups into smaller age groups can also be viewed as an

interpolation problem. It can be achieved using a number of different methods

(Judson and Popoff 2004). We discuss three of the most commonly used: rectangular
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distribution, osculatory interpolation, and historical patterns. The data required by the

rectangular distribution and osculatory methods are available from the projections

themselves, whereas the historical patterns method requires additional data. To

illustrate these methods, we use 2020 projections for ages 15–19 in El Dorado

County, California (State of California 2007). El Dorado is a small, mostly rural

county near Lake Tahoe in northeast California.

10.3.2.1 Rectangular Distribution

The simplest method for splitting age groups into smaller categories is to apply a

rectangular distribution, which assumes that all the smaller groups (e.g., 1-year age

groups) have identical shares of the larger group (e.g., 5-year age group). The

numbers in each of the smaller groups can be computed by dividing the population

of the larger group by the number of subdivisions desired. For example, the

projected population aged 15–19 in El Dorado County in 2020 is 12,991. Using

the rectangular distribution method, the population within each 1-year age group is

computed as:

12, 991=5 ¼ 2, 598

It is simple to create a projection for any age or age group within the 15–19

group by multiplying the 1-year number by the width of the age group desired. For

example, a population projection for the population aged 18–19 is computed as:

2; 598ð Þ 2ð Þ ¼ 5, 196

10.3.2.2 Osculatory Interpolation

Osculatory interpolation methods for splitting age groups are similar to those

described above for interpolating between target years. However, instead of using

data for earlier and later time periods, they use data for younger and older age

groups. This allows these methods to pick up some of the effects of past fertility and

migration patterns on the overall age structure of the population. Judson and Popoff

(2004) present coefficients for several osculatory methods that can be used for

splitting age groups. Although the concepts are similar, these are not the same as the

coefficients used for interpolating between two points in time.

Again, we use Karup-King coefficients to illustrate the use of osculatory inter-

polation. Several sets of coefficients are available, corresponding to different sizes

of age groups (e.g., dividing 10-year age groups into 5-year age groups or 1-year

age groups). We use the coefficients needed for dividing 5-year age groups into

1-year age groups.

To illustrate this method, we divide the projected population aged 15–19 in El

Dorado County in 2020 into single years of age (Table 10.9). As before, we use

middle-interval coefficients. First- and last-interval coefficients have been
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constructed for the youngest (0–4) and oldest (85+) age groups, but interpola-

tions for these groups are not as reliable as interpolations for other groups

because they use information from only one side of the relevant age group

(Judson and Popoff 2004).

There are three coefficients for each single year of age: one corresponding to the

group to be subdivided (15–19), one corresponding to the next younger group

(10–14), and one corresponding to the next older group (20–24). For the interme-

diate calculations we multiply the coefficients by the population in the appropriate

5-year age group. For example, the intermediate calculations for age 18 are:

�0:032ð Þ 12; 449ð Þ ¼ �398:4
0:224ð Þ 12; 991ð Þ ¼ 2, 910:0
0:008ð Þ 11; 780ð Þ ¼ 94:2

To obtain the projection for each year of age we sum the three intermediate

calculations for each age group. For age 18, the projection is:

�398:4þ 2, 910:0þ 94:2 ¼ 2, 606

Karup-King and other osculatory interpolation methods are self-normalizing

in the sense that the sum of the projections for the single years of age within an

age group sum to the projected population of that group (within rounding error).

Table 10.9 Karup-King single age interpolation, population aged 15–19, El Dorado County, 2020

10–14 15–19 20–24

Populationa 12,449 12,991 11,780

Middle-interval coefficients

Age G1 (10–14) G2 (15–19) G3 (20–24)

15 0.064 0.152 �0.016

16 0.008 0.224 �0.032

17 �0.024 0.248 �0.024

18 �0.032 0.224 0.008

19 �0.016 0.152 0.064

Intermediate calculationsb

Age G1 (10–14) G2 (15–19) G3 (20–24)

Population

projectionc

15 796.7 1,974.6 �188.5 2,583

16 99.6 2,910.0 �377.0 2,633

17 �298.8 3,221.8 �282.7 2,640

18 �398.4 2,910.0 94.2 2,606

19 �199.2 1,974.6 753.9 2,529
aState of California, Department of Finance, population projections for California and its counties

2000–2050, by age, gender and race/ethnicity, Sacramento, CA, July 2007
bCoefficient � population in the appropriate 5-year age group
cSum of the intermediate calculations for each age
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This occurs because the weights for the age group to be interpolated (e.g., 15–19)

sum to 1.0 and the weights for the immediately younger and older age groups sum

to zero.

10.3.2.3 Historical Patterns

The rectangular distribution method assumes that all the smaller groups within a

larger group have identical shares of the larger group’s population. Osculatory

methods assume that the population distribution across broader age groups provides

a reasonable representation of the distribution within a given age group. If the

distribution within an age group has a special or distinctive pattern, however, these

methods will not yield reasonable results. For example, places with a college or

university will have a relatively large number of persons aged 18–19, throwing off

the typical distribution within the 15–19 age group. Rural areas may have relatively

small proportions of persons aged 18–19 because of high rates of out-migration in

that age group. Atypical distributions within other age broad groups may occur in

places with large military installations, prisons, high levels of retiree migration, and

so forth.

One way to handle these situations—or, for that matter, the entire disaggregation

process—is to split broader age groups into smaller groups using historical data on

the distribution of persons within those groups. We call this the historical patterns
method. It requires the compilation and integration of data beyond that needed by

the other two methods. The additional effort required to collect those data depends

on the number of age groups involved, the number of historical time points used,

and the number of strata involved (e.g., two sexes and five racial/ethnic groups).

Despite the additional data requirements, the application of the historical pat-

terns method is not complicated. To illustrate this method, we split El Dorado

County’s projected population 15–19 in 2020 into two subgroups: 15–17 and

18–19. We describe two approaches based on the number of persons aged 18–19

as a share of the number aged 15–19. In the last two censuses (2000 and 2010),

these shares were 0.3441 and 0.3587, respectively. The projection for the popula-

tion aged 15–17 is calculated as a residual by subtracting the projection of the

population aged 18–19 from the projection of the population aged 15–19.

The first approach assumes that the most recent population share does not

change; this is the constant share method described in Chap. 8. For example, we

can project the population aged 18–19 in 2020 by multiplying the 2010 share by the

2020 projection for the population aged 15–19:

12; 991ð Þ 0:3587ð Þ ¼ 4, 660

The second approach is based on the continuation of recent trends in population

shares; this is the SHIFT method described in Chap. 8. In our example, the share

increased between 2000 and 2010. This approach assumes that the share will

increase by the same amount between 2010 and 2020. To project the 2020 share,
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we simply subtract the 2000 share from the 2010 share and add that result to the

2010 share. We then apply the projected share to the projected population aged

15–19 in 2020:

0:3587þ 0:3587� 0:3440ð Þ ¼ 0:3734
12; 991ð Þ 0:3734ð Þ ¼ 4, 851

As is true for all projection methods, one must be careful when specifying the

assumptions used in the historical patterns method. The most widely used assump-

tion is that the share from the most recent census will remain constant. This

assumption avoids the error of extrapolating short-term changes that prove to be

temporary. The SHIFT method will be appropriate if there is evidence that recent

changes in shares reflect a long-term trend. The historical patterns method is

particularly useful for places with institutional populations that retain a constant

age structure year after year (e.g., colleges and universities).

10.3.2.4 Evaluation

Figure 10.5 shows the projected population aged 18–19 as a proportion of the

projected population aged 15–19 in 2020 for El Dorado and Yolo Counties. As
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Fig. 10.5 Projections of the population aged 18–19 as a proportion of the population aged 15–19,

El Dorado and Yolo counties, 2020
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noted above, El Dorado County is a small rural county near Lake Tahoe, whereas

Yolo County is a medium-sized county in north central California and is home to

the University of California, Davis.

Although the projections generated by the four alternative methods in El Dorado

County differ from each other, the differences are relatively modest: All four

methods have between 35% and 40% of the population aged 15–19 in the 18–19

age group. The two historical methods have the lowest proportions, which may be

reflecting the out-migration teenagers after they graduate from high school. For

Yolo County, projections from the historical patterns methods differ substantially

from projections from the Karup-King and rectangular distribution methods.

Because of the university, Yolo County has a much higher proportion of persons

aged 18–19 than most counties. In places like Yolo County, the rectangular pro-

portions and osculatory methods do not provide satisfactory results. These exam-

ples emphasize the importance of considering the unique characteristics of an area

before deciding on an interpolation strategy (or, more generally, before deciding on

the entire projection strategy).

10.4 Conclusions

There are circumstances in which the projection methods described in this book

cannot be applied in a simple, straightforward way. Missing or inaccurate data,

complicated population dynamics, and unique characteristics or events sometimes

mean a basic projection model must be adjusted before reasonable projections can

be made. In addition, even reasonable projections sometimes need to be modified to

make them as useful as possible.

In this chapter, we described several adjustment procedures for dealing with the

impact of special populations; for controlling one set of projections to another; and

for adding temporal and age detail. These procedures will not solve every problem

that might be encountered, of course, but they will help the analyst deal with some

of the special circumstances that confound the production of population

projections.

Projections could also be adjusted to account for the impact of census enumer-

ation errors. However, enumeration errors at the national level have declined

steadily since 1950 (except for a small increase between 1980 and 1990) and

were very close to zero in both 2000 and 2010 (Brown et al. 2010; U.S. Census

Bureau 2012). Given that enumeration errors are generally small and vary consid-

erably from place to place—and that estimates of errors for local areas themselves

contain a substantial amount of error—we do not believe it is necessary to adjust

population projections for census enumeration errors except in very unusual

circumstances.
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Chapter 11

Related Projections

The previous chapters focused on projections of total population and the basic

demographic characteristics of age, sex, and race/ethnicity. Such projections are

useful for many purposes, but there are circumstances in which projections of

households, school enrollment, health, disability, income, poverty, employment,

labor force, and other population-related variables are needed for purposes of

planning, budgeting, policy analysis, and program administration. These projec-

tions are related to population projections in that they are strongly affected by

population size and demographic composition, but they are influenced by other

factors as well.

In this chapter, we describe two methods for making projections of socioeco-

nomic characteristics, health characteristics, and a variety of population subgroups

(e.g., persons in prison or enrolled in government benefits programs). One method

derives these projections from population projections by age (and sometimes by

sex, race, and ethnicity as well) and the other employs cohort-change ratios similar

to those described in Chap. 7. We illustrate the application of these methods using

projections of school enrollment, disability, labor force, and households. For

simplicity, we refer to these as “population-related” projections to distinguish

them from projections of basic demographic characteristics (i.e., age, sex, and

race/ethnicity).

11.1 Concepts, Definitions, Methods

Socioeconomic and health characteristics possess a feature that distinguishes them

from strictly demographic characteristics; namely, they are “achieved” rather than

“ascribed.” Ascribed characteristics such as age, sex, and race/ethnicity are largely

set at birth, while achieved characteristics such as educational attainment, marital

status, and labor force status change over time (Stark 2007). This distinction is not

totally clear-cut, however, because a person’s sex or gender classification can be

S.K. Smith et al., A Practitioner’s Guide to State and Local Population Projections,
The Springer Series on Demographic Methods and Population Analysis 37,
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altered and his/her racial and ethnic identity may vary according to the prevailing

social context (Alba and Islam 2009; Kaneshiro et al. 2011).

Because they can change substantially over time, population-related character-

istics are generally more difficult to project accurately than strictly demographic

characteristics. Fortunately, many achieved characteristics are closely related to

ascribed characteristics through their association with stages of the life cycle. For

example, entering kindergarten, graduating from high school, getting married,

giving birth, entering and exiting the labor force, and suffering a disability are

activities associated with population aging. Projections of a population’s age

structure (and, to a lesser extent, its sex and race/ethnicity structure) thus provide

a basis for projecting population-related characteristics.

We describe two basicmethods for constructing population-related projections (for

further discussion, see George et al. (2004) and Siegel (2002, Chap. 11). Both have

small data requirements and are relatively easy to apply, making them particularly

useful for small-area projections. The first is the participation-ratio method (also

known as the participation-rate method, prevalence-ratio method, and incidence-rate

method), in which projections of population-related variables are derived from pop-

ulation projections through the use of ratios. The second is the cohort-progression
method, in which projections of population-related variables are developed by sur-

viving forward persons with the characteristics of interest. Although more complex

methods can be used—and offer several advantages in some circumstances—we

believe the methods described here will be adequate for many purposes.

11.1.1 Participation-Ratio Method

In this method, current and historical data are used to construct ratios reflecting the

proportion of the population having the characteristic of interest (e.g., enrolled in

school). Ratios are typically constructed separately for each age group and are often

broken down by sex, race, and ethnicity as well. They can be projected by holding

them constant, extrapolating recent trends, tying them to projected changes in other

places, using structural models, or relying on expert judgment. The projected ratios

are then applied to population projections by age (and often by sex, race, and

ethnicity) to obtain projections of the characteristic of interest. There are three

steps in applying this method:

1. Calculate launch year participation ratios: PRc,d,l ¼ Pc,d,l / Pd,l
2. Project those ratios into the future: PRc,d,l+z

3. Apply the projected ratios to the projected population:

Pc,d,l+z ¼ (PRc,d,l+z) (Pd,l+z)

where PR is the participation ratio; P is the population; c is the characteristic of

interest (e.g., enrolled in school); d is the demographic group (e.g., an age-sex

cohort); l is the launch year; and z is the length of projection interval. These steps

are followed for each demographic group and for each interval over the projection

horizon, providing a complete set of projections for the characteristic of interest.
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11.1.2 Cohort-Progression Method

In this method, the population with the characteristic of interest is projected directly

rather than as a proportion of the larger population. There are two steps in applying

this method. First, a cohort-progression ratio is constructed for each demographic

category using data from the base year and the launch year (e.g., 2000 and 2010).

Second, the population with the characteristic of interest for each demographic

group is projected by multiplying this ratio by the relevant launch year population:

1. Calculate cohort-progression ratios: CPRc,d,l ¼ Pc,d,l/Pc,d�z,l�z

2. Apply those ratios to the launch year population: Pc,d+z,l+z ¼ (CPRc,d,l) (Pc,d,l)

The terms in these equations are the same as those used for the participation-ratio

method, except that z now refers to the interval between the base year and the launch

year as well as the projection interval. This interval can be of any length (e.g., a year

or a decade), but must be the same for both the projection interval and the base period.

Ratios are constructed for each demographic category and are applied for each

interval over the projection horizon. The cohort-progression method is essentially

the same as the Hamilton-Perry method discussed in Chaps. 6 and 7, the only

difference being that the cohort-change ratios now refer to the population with a

particular characteristic rather than to the population as a whole.

11.1.3 Other Considerations

What issues must an analyst address when preparing population-related projec-

tions? Perhaps the most fundamental is obtaining the necessary data. Both the

participation-ratio and cohort-progression methods require age-specific data on

the variable of interest, and perhaps sex- and race/ethnicity-specific data as well.

These data are often available from administrative records (e.g., enrollment data

from school district administrators) or surveys (e.g., income data from the ACS).

Clearly, the availability of reliable data is essential for the production of reasonable

projections.

The participation-ratio method requires population data for constructing ratios and

a set of population projections to which the projected ratios can be applied. Popula-

tion data from the decennial census or post-censal estimates can generally be used as

denominators in the ratios. If reliable data for either the numerator or denominator

are not available for a particular area, ratios from similar areas can be used as proxies

(e.g., county ratios used for census tract projections). If independently produced

population projections are not available, they can be constructed using the methods

described in previous chapters.

The participation-ratio method requires that ratios be projected into the future.

As noted previously, this can be done in a number of different ways. Making

reasonable choices regarding future ratios is crucial to the reliability of the
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projections but is largely a subjective process. Thorough knowledge of historical

trends and the factors affecting the variable of interest is essential. In some

circumstances, it may be advisable to consult an expert in the field before making

these choices and to apply several alternative assumptions in order to provide a

range of projections.

For the cohort-progression method, projections of the variable of interest are

based solely on its previous growth patterns, with no consideration of the factors

affecting that variable or overall population trends. This may be a risky approach

for some types of projections, especially when the projections extend very far into

the future. For example, if younger cohorts do not follow the same labor force

participation patterns as older cohorts—perhaps by entering the labor force at an

older age or retiring at a younger age—the cohort-progression method will produce

inaccurate forecasts of the labor force. The analyst must decide whether the future

changes implied by the cohort-progression method are reasonable, based on his/her

knowledge of the variable of interest and overall population trends.

Reasonable projections of population-related variables can be made only if the

analyst makes reasonable choices regarding participation and cohort-progression

ratios. Thorough knowledge of the population-related variables—and how they are

related to the stages of the life cycle—are essential (Martins et al. 2012, pp. 83–98;

Modigliani 1970; O’Rand and Krecker 1990). The following illustrations focus on

the mechanics of applying the participation-ratio and cohort-progression methods,

but the reader is reminded that the quality of the data and the validity of the

underlying assumptions are at least as important as the projection methods

themselves.

11.2 Illustrations of Population-Related Projections

11.2.1 School Enrollment

School enrollment projections are critical for determining future needs for educa-

tional facilities, equipment, and staffing. We start with an illustration of the

participation-ratio method, projecting the number of students enrolled in public

schools in Shelby County, Tennessee in the 2019–2020 school year.

The first step in the projection process is to calculate participation ratios in the

launch year, using 2009–2010 enrollment data provided by school administrators

and population data from the 2010 census. Grades were organized into three groups:

pre-kindergarten and kindergarten; grades 1–8; and grades 9–12. Ratios of the

enrollments for these groups to their corresponding age groups were computed

using 0–4 for pre-kindergarten and kindergarten, 5–14 for grades 1–8, and 15–19

for grades 9–12. Although the age groups do not precisely match the ages of

children by grade, this lack of correspondence will generally not be a problem as

long as the ratios are applied consistently. We use broad grade groups in this
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example, but more detailed projections could be made if they were needed and if the

necessary data were available (e.g., single-year participation ratios based on enroll-

ment in individual grades).

The 2010 participation ratio for pre-kindergarten and kindergarten was 0.21358.

This was calculated by dividing the number of children enrolled in pre-kindergarten

and kindergarten (14,237) by the number of children aged 0–4 (66,659). For grades

1–8 and 9–12, the ratios were 0.71404 and 0.66037, respectively. These participa-

tion ratios are not closer to 1.0 because the number of grades in each grade group

was smaller than the number of years in the corresponding age group and some

children living in Shelby County were home schooled or attended private schools.

The second step in the projection process is to project the participation ratios

ahead 10 years. Based on an analysis of previous trends, it was assumed that the

ratios would be the same in 2019–2020 as they were in 2009–2010. If there had

been evidence that these ratios were changing in a predictable manner, alternative

assumptions could have been developed. As a final step, the participation ratios are

applied to a set of 2020 projections for the corresponding age groups. The input

data, participation ratios, and projections for 2019–2020 are shown in Table 11.1.

The number of kindergarteners and pre-kindergarteners and students in grades 1–8

is projected to increase slightly over the 10-year period while the number of

students in grades 9–12 is projected to decline.

Our second illustration uses the cohort-progression method, which is similar to

the Hamilton-Perry method but focuses on the number of students in each grade

rather than the number of persons in each age group. When used for school

enrollment projections, the cohort-progression method is often called the “grade-

progression method.” Grade-progression ratios (GPR) are calculated by dividing

the number of students in a given grade in a given year by the number of students in

the prior grade in the prior year. The cohort-progression method is particularly

useful for developing short-range projections by grade.

Because data on the number of pre-kindergarten children are generally not

available, an alternative procedure must be used for projecting the number of

kindergarteners. One approach is to divide the number of kindergarteners in a

given year by the sum of first and second graders in the same year and apply this

ratio to the projected number of first and second graders in the target year. Another

Table 11.1 School enrollment projections by grade group, Shelby County, Tennessee, 2019–2020

Grade group

2010

Populationa
2009–2010

Enrollment Ratio

2020

Populationb
2019–2020

Enrollmentc

Kindergartend 66,659 14,237 0.21358 69,711 14,889

1–8 134,250 95,860 0.71404 135,665 96,870

9–12 71,799 47,414 0.66037 63,666 42,043

Total 272,708 157,511 269,042 153,802

Sources: National Center for Education Statistics (http://nces.ed.gov/ccd/bat/), U.S. Census

Bureau, 2010 census
aAges 0–4 for kindergarten, 5–14 for grades 1–8, and 15–19 for grades 9–12
bProjection derived using the Hamilton-Perry Method
c2010 ratio � 2020 population
dIncludes pre-kindergarten
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approach is to calculate the ratio of kindergartners in a given year to births 5 years

earlier and multiply this ratio by the number of births 5 years prior to the target year.

Either approach is acceptable for most short-range projections.

We illustrate the grade-progression method using public school data from Santa

Barbara, California. We use fall enrollment data in 2010 and 2011 to project fall

enrollment by grade in 2012. For example, there were 5,060 students in grade 2 in

2010 and 5,001 students in grade 3 in 2011, yielding a grade progression ratio of

0.98834. By multiplying this ratio by the number of second graders in 2011 (5,345),

we project that there will be 5,283 third graders in 2012. This procedure is applied

to all grades between K and 11 to project the number of students in grades 1 through

12 in the following year. The results are shown in Table 11.2.

We project the number of kindergarteners using a ratio of kindergarteners to the

number of students in grades 1 and 2. In 2011, there were 5,512 students in

kindergarten and 10,878 students in grades 1 and 2, yielding a ratio of 0.50671.

By multiplying this ratio by the projected number of students in grades 1 and 2 in

2012 (11,051), we project that there will be 5,600 kindergarteners in 2012.

11.2.2 Disability

The older population of the United States is large and growing rapidly. There were

35 million persons aged 65 and older in 2000, representing 12% of the total

Table 11.2 School enrollment projections by grade, Santa Barbara County,

California School District, 2012

Grade 2010 2011 GPRa 2012b

K 5,498 5,512 0.50671c 5,600d

Grade 1 5,373 5,533 1.00637 5,547

Grade 2 5,060 5,345 0.99479 5,504

Grade 3 4,827 5,001 0.98834 5,283

Grade 4 4,860 4,871 1.00912 5,047

Grade 5 5,020 4,852 0.99835 4,863

Grade 6 4,834 5,021 1.00020 4,853

Grade 7 5,046 4,833 0.99979 5,020

Grade 8 4,833 5,032 0.99723 4,820

Grade 9 5,097 4,998 1.03414 5,204

Grade 10 5,125 5,068 0.99431 4,970

Grade 11 5,196 5,042 0.98380 4,986

Grade 12 5,278 5,222 1.00500 5,067

Total 66,047 66,330 66,764

Source: California Department of Education, http://dq.cde.ca.gov/dataquest
a2011 enrollment grade x / 2010 enrollment grade x � 1 (except for grade K)
bProgression ratio grade x � 2011 enrollment grade x � 1 (except for grade K)
c2011 enrollment grade K / 2011 enrollment grades 1 and 2
dProgression ratio grade K � 2012 enrollment grades 1 and 2
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population. This population is projected to reach almost 84 million by 2050, or

21% of the total population (U.S. Census Bureau 2012b). Since the prevalence of

many disabilities rises with age, the aging of the population is likely to bring

substantial increases in the number of disabled persons.

Smith et al. (2008) used the participation-ratio method to project the number of

persons with a particular type of disability; namely, mobility limitations. First, they

constructed mobility limitation ratios by age and sex using population data from the

2000 census and data on mobility limitations from 2000 Public Use Microdata

Sample (PUMS) files. These ratios are shown in Table 11.3.

Then, they developed three scenarios regarding changes in those ratios between

2000 and 2050. Under the medium scenario, ratios were projected to remain

constant through 2050. Under the low and high scenarios, they were projected to

fall or rise by 5% per decade, respectively. They applied the projected ratios to

projections of the U.S. population by age and sex. The results for the medium

scenario are shown in the last column of Table 11.3. Under this scenario, the

number of persons with mobility limitations was projected to grow by 109%

between 2000 and 2050; under the low and high scenarios, it was projected to

grow by 59% and 163%, respectively (not shown here).

Table 11.3 Projections of the U.S. population with mobility limitations by age and sex, 2050

Males

2000 2050

Agea Population With limitation Ratio Population With limitationb

<35 60,949,682 1,121,581 0.01840 92,751,167 1,706,621

35–44 22,795,548 1,244,430 0.05459 24,899,130 1,359,244

45–54 18,432,972 1,644,908 0.08924 22,902,724 2,043,839

55–64 11,582,552 1,814,774 0.15668 22,152,960 3,470,926

65–74 8,245,839 1,794,954 0.21768 18,294,495 3,982,346

75–84 4,815,313 1,507,354 0.31303 12,774,881 3,998,921

85+ 1,306,660 618,657 0.47346 8,188,551 3,876,951

Total 128,128,566 9,746,658 0.07607 201,963,908 20,438,848c

Females

2000 2050

Agea Population With limitation Ratio Population With limitationb

<35 58,747,107 1,024,801 0.01744 89,183,536 1,555,361

35–44 23,124,437 1,303,179 0.05636 24,574,905 1,385,042

45–54 19,172,397 1,812,554 0.09454 22,931,099 2,167,906

55–64 12,590,270 2,039,293 0.16197 22,654,996 3,669,430

65–74 9,989,648 2,313,961 0.23164 19,602,520 4,540,728

75–84 7,577,579 2,760,742 0.36433 15,773,852 5,746,887

85+ 3,045,737 1,852,722 0.60830 13,432,080 8,170,734

Total 134,247,175 13,107,252 0.09764 208,152,988 27,236,088c

Source: Smith et al. (2008) and unpublished data
aData for population 5 years and older
b2000 ratio � 2050 population
cSum of the age groups
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The participation-ratio methodology can be used for making a wide variety of

projections related to health and disability status (Arterburn et al. 2004; Singer and

Manton 1998). Assumptions regarding future changes in prevalence rates are

critical to the validity of those projections, of course, making knowledge of the

variable of interest essential. Given the differences of opinion often found among

experts, it may be advisable to construct projections based on several alternative

sets of assumptions.

11.2.3 Labor Force

Projections of the number and characteristics of persons in the labor force are

critical to many types of long-range economic planning. The Bureau of Labor

Statistics (BLS) uses the participation-ratio method to project the labor force in

the United States. These projections are made by applying labor force participation

ratios (LFPR) by age, sex, race, and ethnicity (developed by the BLS) to population

projections developed by the U.S. Census Bureau (Toossi 2012). The same method

can be used for labor force projections at the state and local level. We illustrate this

method using data for King County, Washington to project changes in the overall

labor force by age between 2010 and 2020 (see Table 11.4).

Three steps are required. First, LFPRs for King County in 2010 are calculated for

each age group by dividing the number of persons in the labor force by the

population in the age group. For example, there were 128,842 persons aged

20–24 in 2010, of whom 96,905 were in the labor force, yielding a LFPR of 0.752.

Table 11.4 Labor force projections by age, King County, Washington, 2020

2010 U.S. LFPR 2020

Age Populationa Labor force LFPRb 2010 2020 LFPRc Population Labor forced

16–19 94,455 31,571 0.334 0.349 0.265 0.254 92,914 23,600

20–24 128,842 96,905 0.752 0.714 0.659 0.694 140,398 97,436

25–44 607,121 522,387 0.860 0.827 0.816 0.849 617,791 524,505

45–54 290,298 244,759 0.843 0.812 0.808 0.839 286,869 240,683

55–64 227,541 164,848 0.724 0.649 0.688 0.768 267,971 205,802

65–74 112,002 31,658 0.283 0.257 0.310 0.341 187,378 63,896

75+ 93,760 5,423 0.058 0.074 0.100 0.078 113,662 8,866

Total 1,554,019 1,097,551 0.706 0.647 0.625 0.682 1,706,983 1,164,788e

Sources: U.S. Census Bureau, 2010 census and 2010 1-year American Community Survey, State

of Washington Forecasting Division, 2012, http://www.ofm.wa.gov/pop/gma/projections12/

GMA_2012_county_pop_projections.pdf
aCivilian non-institutional population
bLabor force / population
c2010 LFPR � (US LFPR 2020 / US LFPR 2010)
d2020 LFPR � 2020 population
eSum of the age groups
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Second, county-level LFPRs are projected into the future by assuming that they

would change at the same rate as national LFPRs (as projected by the BLS). For

example, the national LFPR for the 20–24 age group was projected to fall from

0.714 in 2010 to 0.659 in 2020, a decline of 7.7%. Applying this decline to the King

County LFPR of 0.752 in 2010 yields a projected LFPR of 0.694 in 2020. LFPRs

are projected to decline for the four youngest age groups and to increase for the

three oldest groups. Again, we note that there are a number of ways to project

participation ratios into the future.

Third, the projected LFPRs are applied to population projections by age. The

population and labor force projections are shown in the last two columns of

Table 11.4. For example, the projected population aged 20–24 is 140,398 in

2020. Applying a projected LFPR of 0.694 yields a labor force projection of

97,436 for this age group. The total population of King County is projected to

increase by 9.8% between 2010 and 2020, while the labor force is projected to

increase by only 6.1%.

11.2.4 Households

According to Census Bureau definitions, a household consists of all persons who

occupy a housing unit (U.S. Census Bureau 2012a). A householder is the person

(or one of the people) in whose name the housing unit is owned or rented (house-

holders were formerly called “household heads”). Because the number of house-

holders is equal to the number of households, the methods used for projecting

socioeconomic and health characteristics can also be used to project households.

Household projections are important because they are closely related to the demand

for housing and to a whole host of consumer goods and services (Martins

et al. 2012).

When it is used to project households, the participation-ratio method is often

called the “headship-rate” or “householder-ratio” method. To illustrate this method,

we return to Shelby County, Tennessee. Using age-specific data for 2000 and 2010,

we project the number of households in 2020 (see Table 11.5). Again, there are

three steps in the projection process.

The first is to calculate householder ratios in 2000 and 2010 by dividing the

number of householders in each age group by the total population of that group. For

example, there were 18,157 householders aged 15–24 and 138,249 persons aged

15–24 in 2010, yielding a householder ratio of 0.13134. Ratios are calculated for

each age group up to age 75+.

The second step is to project those ratios to 2020. This could be done by holding

them constant, extrapolating past trends, basing them on changes projected for

other populations, or tying them to projected changes in marriage patterns and

living arrangements. In this illustration, we project householder ratios by extrapo-

lating the changes occurring between 2000 and 2010. For example, the householder
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ratio for the 15–24 age group was 0.16060 in 2000 and 0.13134 in 2010, yielding an

extrapolated ratio of 0.10741 in 2020.

The third step is to apply the projected householder ratios to the projected

population by age in 2020. This is shown in the last two columns of Table 11.5.

For example, the projected population aged 15–24 is 128,447 and the projected

ratio is 0.10741, yielding a projection of 13,796 households. The total number of

households is calculated by adding up the projected households in each age group.

Overall, the number of households is projected to grow by 1.0% between 2010 and

2020, compared to an increase of 1.7% between 2000 and 2010.

If desired, projections of housing units (HU) can be derived from projections of

households by dividing by the occupancy rate (OR). For example, the occupancy

rate for Shelby County was 88.1% in 2010. Assuming that this rate remains constant

to 2020, the projected number of housing units can be calculated as:

394, 499 ¼ 347, 554=0:881

Housing units for small areas can also be projected directly, using data on

historical trends, zoning requirements, the amount of buildable land, and other

Table 11.5 Household projections by age of householder, Shelby County, Tennessee, 2020

2000 2010

Age Population Householders

Householder

ratioa Population Householder

Householder

ratioa

15–24 127,761 20,518 0.16060 138,249 18,157 0.13134

25–34 135,215 66,835 0.49429 129,758 60,084 0.46305

35–44 143,667 78,884 0.54908 124,961 68,048 0.54455

45–54 120,797 71,234 0.58970 132,868 75,677 0.56957

55–64 67,670 42,127 0.62254 105,675 65,091 0.61595

65–74 47,910 31,488 0.65723 52,478 34,722 0.66165

75+ 41,671 27,280 0.65465 42,746 22,315 0.52204

Total 684,691 338,366 726,735 344,094

2020

Age Householder ratioa,b Populationc Householdsd

15–24 0.10741 128,447 13,796

25–34 0.43378 140,412 60,908

35–44 0.54006 119,897 64,751

45–54 0.55013 115,568 63,577

55–64 0.60943 115,992 70,689

65–74 0.66610 81,893 54,549

75+ 0.41629 46,324 19,284

Total 748,533 347,554

Sources: U.S. Census Bureau, 2000 and 2010 censuses
aHouseholders / population
bAssumes that the percent change in the householder ratio from 2000 to 2010 will continue to 2020
cProjection derived using the Hamilton-Perry Method
d2020 householder ratio � 2020 population
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relevant factors (Population Research Center 2009; Southern California Associa-

tion of Governments 2013). As noted in Chap. 9, these projections are often tied to

urban systems or microsimulation models. Population projections can be derived

from these direct projections of housing units by applying the well-known and

widely used housing unit method (Swanson and Tayman 2012, Chap. 7):

Popt ¼ HUtð Þ ORtð Þ PPHtð Þ þ GQtð Þ

where t is the target year; PPH is the average household size, and GQ is the group

quarters population.

11.3 Conclusions

The participation-ratio and cohort-progression methods described in this chapter

are conceptually simple and relatively easy to apply. More complex methods for

projecting households, school enrollment, health status, employment, income, and

other population-related variables have also been developed (Lindh and Malmberg

2007; Sweeney and Middleton 2005; Zeng et al. 2006). More complex methods

draw on a greater variety of inter-relationships among variables and provide a richer

array of detailed characteristics than simpler methods; for some purposes, they will

be more useful than the methods described here. However, the methods described

here require considerably less data and can be applied more easily than more

complex methods; these are important advantages when resources are scarce and

time is short. Their relatively small data requirements are particularly important for

small-area projections because many types of data are not available for small areas.

We believe there are many circumstances in which the methods described here will

provide useful projections of population-related variables.

Although the participation-ratio and cohort-progression methods have been

widely used, the usefulness of the projections they produce will depend on the

validity of their underlying assumptions. The illustrations presented in this chapter

depict several different approaches to projecting future participation ratios. In the

school enrollment projections, ratios were held constant; in the disability projec-

tions, three alternative assumptions regarding future ratios were applied; in the

labor force projections, county ratios were assumed to change at the same rate as

national ratios; and in the household projections, previous changes in the ratios

were extrapolated into the future. Structural models and expert judgment could also

be used. Developing reasonable assumptions regarding future participation ratios—

or deciding whether the changes implied by applying constant cohort-progression

ratios are reasonable—is an important part of the development of any set of

population-related projections. Thorough knowledge of historical trends and the

factors affecting the variables of interest is essential. Although the participation-

ratio and cohort-progression methods are capable of producing reasonably accurate

forecasts, there is no guarantee that they will actually do so.
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Population-related projections can be used to address a broad array of socioeco-

nomic and health-related issues. The methods described in this chapter have been

used to develop caseload forecasts for the Supplemental Nutrition Assistance

Program (SNAP) and the Temporary Assistance for Needy Families (TANF)

program in Oregon (Vaidya, K., 2012, Senior Demographer, Oregon Office of

Economic Analysis. Salem, OR, personal communication); forecasts of the number

of people receiving “in-home” disability benefits in Washington (Deschamps, E.,

2012, Deputy Director, Washington State Caseload Forecast Council. Olympia,

WA, personal communication); long-range forecasts of K-12 school enrollment,

also in Washington (Steiger, J., 2012, Director, Washington State Caseload Fore-

cast Council. Olympia, WA, personal communication); forecasts of the number of

obese adults in the United States (Arterburn et al. 2004); forecasts of disability rates

and Medicare costs in the United States (Bhattacharya et al. 2004); and forecasts of

the number of households in France (National Institute of Statistics and Economic

Studies 2005). Clearly, population-related projections play an important role in

many types of real-world decision making.
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Chapter 12

Evaluating Projections

We have now discussed the four major approaches to making population pro-

jections: the cohort-component method, trend extrapolation methods, structural

models, and microsimulation models. All these approaches include a variety of

models, techniques, assumptions, special adjustments, and types of data that can be

used to produce the desired projections. Given all the possibilities, how does one go

about choosing the specific models, techniques, assumptions, and data sources to

use for a particular set of projections? Is there a single “best” approach, or at least

some that are better than others? Are some approaches better under some circum-

stances, while others are better under other circumstances? How can we even go

about answering these questions?

In this chapter we describe a number of criteria that can be used to evaluate

population projections. We begin with a discussion of the criteria we believe are

most important: provision of necessary detail, face validity, plausibility, costs of

production, timeliness, ease of application and explanation, usefulness as an ana-

lytical tool, political acceptability, and forecast accuracy. After describing these

criteria we consider how they must be balanced against each other when choosing

projection methods. We close with an assessment of how different methods stack up

according to these criteria. Forecast accuracy is such an important criterion that we

devote an entire chapter to its measurement and evaluation (Chap. 13). Further

discussion of criteria for evaluating population projections may be found in

Ahlburg (1995), Booth (2006), Keilman (1990), Long (1995), and Siegel (2002).

We distinguish between two types of projections. General-purpose projections
are those produced without reference to a specific use or data user. Examples

include projections produced by the Census Bureau for all states in the United

States, projections produced by a state demographer for all the counties in his/her

state, and projections produced by a private company for all the census tracts

in the United States. Customized projections are those produced for a particular

data user or a specific purpose. Examples include population projections by block

group for developing a county’s transportation plan, birth projections by market

S.K. Smith et al., A Practitioner’s Guide to State and Local Population Projections,
The Springer Series on Demographic Methods and Population Analysis 37,

DOI 10.1007/978-94-007-7551-0_12, © Springer Science+Business Media Dordrecht 2013
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area for evaluating a hospital’s need for obstetrical services, and school enrollment

projections by grade level for evaluating a school district’s need for additional

facilities.

12.1 Evaluation Criteria

12.1.1 Provision of Necessary Detail

Perhaps the most fundamental criterion for evaluating population projections is

whether they provide the level of geographic, demographic, and temporal detail

required by the data user. State projections are of little use to someone needing

county projections. Projections of total population are of little use to someone

needing projections by age and sex. Projections for 2020 are of little use to someone

needing projections for 2040.

When projections are made for a specific client or for a particular purpose, it is

easy to determine whether they provide the necessary level of detail. In fact, the

producer can make sure of this. When general-purpose projections are made by a

government agency, university, research institute, or private company, however, it

is much more difficult to determine whether they meet user needs. What geographic

areas should be covered? What demographic characteristics? What projection

intervals and time horizons? It is virtually impossible to meet all user needs with

one set of projections because needs vary so much across data users.

12.1.1.1 Geographic Detail

Many data users need population projections for states and counties. These needs

can be met fairly easily because the geographic boundaries for states and most

counties remain relatively stable over time and many types of data are routinely

available at the state and county levels. In addition, the number of states and

counties is finite and relatively manageable; there are more than 3,100 counties or

county equivalents nationwide, with the largest numbers in Texas (254) and

Georgia (159). Most states have fewer than 100 counties or county equivalents.

For subcounty areas, however, the number of potential areas—and even the

ways in which those areas might be defined—is virtually endless. Possibilities

include cities, census tracts, block groups, blocks, zip code areas, school districts,

traffic analysis zones, and many types of market or service areas. Projections that

meet the needs for geographic detail for the vast majority of data users would have

to be made at the block or even the parcel level. Those projections could then be

aggregated to fit the geographic region required by each individual data user. Such a

process, of course, would be extremely expensive and fraught with problems of data

availability and reliability.
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12.1.1.2 Demographic Detail

The need for demographic detail also varies from user to user. Some require only

total population numbers while others require breakdowns by age, sex, race, and/or

ethnicity. Some need age data in single-year groups; for others, 5- or 10-year groups

are sufficient. Some require projections of specific population subgroups such as

college students, military personnel, seasonal residents, and persons with disabil-

ities. Others require projections by income, education, occupation, poverty status,

or other socioeconomic and demographic characteristics. Again, the potential for

variation in user needs is virtually endless.

12.1.1.3 Temporal Detail

By temporal detail, we mean the length of the projection horizon and the length of

time interval between projection dates. Some data users need projections for 1- or

2-year horizons, some need projections for 5- or 10-year horizons, and a few need

projections for horizons stretching 50 years and beyond. Some need projections

only in 5- or 10-year intervals, some need annual projections, and a few need

quarterly or even monthly projections. The longer the horizon and the shorter the

interval, the greater the potential usefulness of a set of projections to a broad range

of data users. However, data and techniques that are satisfactory for short-range

projections may be unsatisfactory for long-range projections. In addition, data and

techniques suitable for projections made in 5- or 10-year intervals may be

unsuitable for monthly, quarterly, or annual projections.

12.1.1.4 Meeting User Needs

The needs of the largest number of potential data users can be met (at least

theoretically) by making projections that are highly disaggregated by geographic

area and demographic characteristic and that cover long time horizons in frequent

intervals. Armed with these building blocks, data users can put together projections

that cover the specific geographic areas, demographic characteristics, and projec-

tion horizons they need. For example, block projections produced at annual inter-

vals 20 years into the future can be added together to provide projections of school

districts, traffic analysis zones, or market areas within a county, using whatever

demographic categories and time horizons that might be needed.

The greater the degree of disaggregation, however, the greater the data require-

ments, the lower the reliability of the data, the higher the costs of production, and

the lower the expected degree of forecast accuracy for each detailed category.

These are strong incentives against the production of highly disaggregated pro-

jections. As a result, most producers of general-purpose projections provide

12.1 Evaluation Criteria 303



projections that cover a limited number of geographic areas, demographic catego-

ries, and time horizons.

The Census Bureau, for example, makes projections by age, sex, race, and

Hispanic origin for the nation as a whole. It also makes projections for states on

an irregular basis (one, two, or three times each decade). The Census Bureau has

never made projections for counties but did make one set of projections for

metropolitan areas (U.S. Census Bureau 1969). Many state demographic agencies

make projections by age and sex (and sometimes by race and/or Hispanic origin) for

counties within their state, but few make projections for subcounty areas. Some

local and regional governments make projections (with widely varying degrees of

demographic detail) for census tracts, traffic analysis zones, or other subcounty

areas within their boundaries. Several private companies make projections for all

counties in the United States, with a few breaking them down into a variety of

subcounty areas.

Projection horizons typically vary by level of geography. For example, horizons

are often longer for national projections than for state and local projections.

Although some projections are made in 1-year intervals, 5-year intervals are the

most frequently used. As discussed in Chap. 10, interpolation procedures can be

used to transform projections made in 5- or 10-year intervals into projections for

intervening years.

The most basic criterion for judging the potential usefulness of a set of popula-

tion projections, then, is whether those projections provide the level of geographic,

demographic, and temporal detail needed for any particular purpose. If the pro-

jections cannot at least come close to meeting those requirements, they will not be

very useful regardless of how well they do with respect to other criteria. General-

purpose projections will be able to meet the needs of many data users for many

purposes, but some projects will require that projections be created specifically for

the purposes at hand.

12.1.2 Face Validity

By face validity, we mean the extent to which a projection uses the best methods for

a particular purpose, is based on reliable data and reasonable assumptions, and

accounts for relevant factors. Because of the effects of population and geographic

size, evaluating face validity is considerably more complex and time-consuming for

small areas (e.g., census tracts) than for large areas (e.g., states).

12.1.2.1 Choice of Methods

The face validity of a method depends primarily on the purposes for which the

projections will be used. All the methods discussed in this book can be used for

projections of total population; even simple methods will be acceptable for many
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purposes. For projections by age group, the analyst must account for shifts in age

structure over time; this implies the use of some variant of the cohort-component

method. For projections of the components of growth, the model must distinguish

among the effects of fertility, mortality, and migration. Projections incorporating

interactions among economic, land-use, transportation, and demographic variables

require the use of structural models and projections for individual persons and

households require the use of microsimulation models.

Does the degree of complexity or sophistication affect the face validity of a

projection method? We believe that it does, but only to the extent to which

complexity or sophistication is required to accomplish the purposes for which the

projections will be used. For projections used strictly as forecasts of total popula-

tion, neither a sophisticated structural model nor a complex multi-regional model is

necessarily better than a simple extrapolation of recent trends. For projections

tracing out the implications of alternative economic, land-use, transportation, or

demographic scenarios, however, structural models or relatively complex cohort-

component models will be required. The face validity of a particular model or

technique cannot be generalized; rather, it is conditional upon the specific purposes

for which the projections will be used.

12.1.2.2 Data and Assumptions

Face validity is affected by the quality of the data and assumptions used to create

the projections. Although they are not perfect, data from complete censuses are

generally quite accurate, especially for areas with large populations. Data from

sample surveys such as the American Community Survey (ACS) are less reliable,

especially for small areas. Postcensal population estimates are less accurate than

decennial census data, especially for small areas and places that are growing or

declining rapidly. Vital statistics data are highly accurate for states and counties,

less accurate for subcounty areas (if they are even available). The quality of data

used in structural and microsimulation models varies by type and geographic area.

An important part of assessing the face validity of population projections, then, is

evaluating the quality of the input data and making adjustments when necessary to

correct for apparent errors.

The timeliness of input data may also affect face validity. Demographic data

vary in terms of time lags and frequency of release. Decennial census data are

available only once every 10 years, whereas birth, death, and other vital statistics

data are available annually. Migration data based on IRS records are also available

annually, but with roughly a 2-year time lag. ACS data are released annually but are

based on 1-, 3-, or 5-year time periods, depending on the area’s population size. For

small areas, then, ACS estimates (including migration estimates) reflect 5 years of

accumulated data rather than data from a single year.

The application of any projection method requires that certain assumptions be

made. Cohort-component projections require assumptions regarding future fertility,

mortality, and migration rates. Structural and microsimulation models require
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assumptions regarding the form of the model, the choice of independent variables,

and the estimation of parameters. Even simple extrapolation methods are based on

assumptions regarding the length of the base period and adjustments for special

events and potential growth constraints. Assessing the “reasonableness” of the

underlying assumptions is an important aspect of evaluating face validity.

12.1.2.3 Accounting for Relevant Factors

Face validity is also determined by the extent to which the projection methodology

accounts for the impact of factors affecting population change. Drawing on the

discussion byMurdock et al. (1991), we suggest that the following factors may have

an impact on small-area projections:

1. Physical features, such as the size of an area and the prevalence of potentially

growth-constraining factors such as flood plains, lakes, mountains, and environ-

mentally protected areas.

2. Location characteristics, such as distances from recreational areas, major

employers, and shopping centers.

3. Land-use patterns and policies, including population density, land-use plans, and

zoning or regulatory restrictions.

4. Housing characteristics, such as housing density, household size, and housing

units by type (single family, multifamily, mobile home).

5. Transportation characteristics, such as current and likely future access to major

highways, airports, railways, and other modes of transportation.

6. Socioeconomic characteristics, such as income, education, occupation, and

poverty status.

7. Population characteristics, such as population size, rate of change, distribution

within the area, and composition (e.g., age, sex, race, ethnicity).

8. Demographic processes (mortality, fertility, migration).

9. Special populations, such as persons residing in prisons, college dormitories, and

military barracks.

Several examples illustrate how these factors might be accounted for. Suppose

that county projections are made in 5-year intervals from 2010 to 2030, based on

historical data from 2005 to 2010. Suppose further that a state prison housing 1,000

inmates was built in a small county in 2007. If the addition of those inmates is not

explicitly accounted for in the base data, the projections would in effect be

assuming that 1,000 inmates will be added to the population every 5 years between

2010 and 2030. This will probably not be a reasonable assumption. This effect can

be accounted for by taking the inmates out of the base data, making the projections

based on the remaining data, and adding independent projections of inmates as a

final step in the projection process (see Chap. 10 for further details).

As a second example, suppose that projections for census tracts (CT) are made

based on population trends from 2000 to 2010. Suppose further that CT 123 grew

very rapidly during that period, from 1,000 residents in 2000 to 5,000 in 2010. If no
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adjustments were made, that tract would be projected to continue growing rapidly

in future decades. This will not be a realistic assumption if no more developable

residential land is available in CT 123. Situations like this can be dealt with by

introducing growth constraints based on factors such as the availability of vacant

land, zoning restrictions, and topographical features.

We are not suggesting that all the factors mentioned above must be accounted

for in every set of projections, of course. In many instances, reliable, up-to-date data

will not be available. Even if data are available, our understanding of all the

processes at work is generally insufficient to permit us to improve on the results

of a basic (i.e., unadjusted) projection model. In addition, for states and large

counties the effects of some factors will be swamped by the effects of other factors,

or the effects of a particular factor in one area will be offset by opposite effects in

another area.

We do suggest, however, that these factors be considered at some point during

the projection process and that adjustments be made when necessary and feasible.

Such adjustments are especially important for projections of subcounty areas

because the impact of these factors is largest in small areas. These adjustments

cannot guarantee that accurate forecasts will be made, but at least they can reduce

one potential source of error.

12.1.3 Plausibility

By plausibility, we mean the extent to which a projection is consistent with

historical trends, with the assumptions inherent to the model, and with projections

for other areas. Plausibility is closely related to face validity; in fact, the two may be

thought of as opposite sides of the same coin. Face validity focuses on the inputs

into the projection process, whereas plausibility focuses on the outcomes. If a

projection is not based on valid data, techniques, and assumptions, it is not likely

to provide plausible results.

Plausibility, of course, is a subjective concept. Just as beauty is in the eye of the

beholder, so too is plausibility. A trend that appears eminently plausible to one

observer may seem totally implausible to another. How can plausibility be

evaluated?

There are a number of ways. One is to compare numerical tables summarizing

historical and projected values of key variables. For example, suppose that we want

to evaluate a set of county projections. We could construct a table showing the

average annual change in total population projected for each county for future time

periods (e.g., 2010–2015, 2015–2020. . .) and compare those changes with the

changes observed during several historical periods (e.g., 2000–2005 and

2005–2010). We could construct another table comparing the age, sex, and race

distributions projected for future years (e.g., 2020 and 2030) with those observed in

the past (e.g., 2000 and 2010). Are the projections consistent with the underlying

assumptions? Are projected changes consistent with those observed in the past? If
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not, what are the reasons for the differences? Is one of the assumptions invalid?

Have some special circumstances been overlooked? Were errors made while

entering data or writing computer programs? Answering questions like these pro-

vides one type of “plausibility check.”

Plausibility can also be evaluated by comparing projections for one area with

those for another. For example, trends for one county can be compared with trends

for another county or for the state as a whole. Are the changes in total population

size projected for one area consistent with those projected for another? What about

projected changes in the age, sex, and race distribution? Can reasonable explana-

tions be given for any diverging trends?

Checking for consistency between projected and historical values and compar-

ing projections for one area with those for another requires a substantial investment

of time and effort, but has a potentially large pay-off. Given their subjective nature,

however, plausibility checks must be viewed as suggestive rather than conclusive.

They provide hints and clues, but cannot “prove” that one set of projections is better

than another. In particular, relying too much on comparisons with past trends might

cause the analyst to miss the beginning of a new trend (see Box 12.1).

Box 12.1 Plausibility and Assumption Drag

Assumption drag is “the continued use of assumptions long after their validity

has been contradicted by the data” (Ascher 1978, p. 53). Assumption drag is a

common problem in forecasting and may be caused by several factors. First is

the socialization of experts, determined by their education, training, and

association with other experts. The “received wisdom” in any field is not

often questioned. Second, if recent data seem to contradict longstanding

assumptions, they are often viewed as temporary deviations from trends

rather than as changes in the trends themselves. Third, there are often delays

in the collection and dissemination of data, leading to substantial lags

between the point at which trends start to change and the point at which

those changes are finally incorporated into forecasting models.

Assumption drag means that projections that are consistent with past

population trends may not provide the best forecasts of future population

change. Analysts must consider this possibility when evaluating the plausi-

bility of population projections, especially projections used as forecasts. All

objective projection methods—even cohort-component and structural

models—are extrapolations of one type or another. The critical question is,

how can we tell when the model’s underlying trends have started (or will

start) to change? This is the most difficult question in population forecasting

(or any other type of forecasting, for that matter).
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12.1.4 Costs of Production

The costs of production for a set of population projections are determined primarily

by labor costs. A well-made projection requires that a great deal of time must be

spent considering all relevant details; collecting, verifying, and cleaning up input

data; putting together a projection model; and evaluating the plausibility of the

results. Other costs (e.g., computer hardware and software, purchases of proprietary

data) are small in comparison.

Very little research has focused on the costs of constructing population pro-

jections. Just how high are those costs and how do they vary by method, level of

geographic and demographic detail, and frequency of application? Logic and

personal experience suggest that costs increase with the degree of methodological

complexity, the level of geographic and demographic detail provided, and the

attention paid to special populations and unique events. However, costs can be

expected to decline with the number of times a specific application is repeated; it

takes more time to produce a set of projections for the first time than to repeat the

process additional times.

Can economies of scale reduce the costs of production? That is, can projections

for a large number of places be made for a lower average cost than projections for a

small number of places? One study reported that producing a set of cohort-

component projections for counties required about 2,000 person-hours in Ohio

and 1,000 person-hours in Washington (Swanson and Tayman 1995). Since Ohio

had about twice as many counties as Washington (88 compared to 39), these results

suggest that economies of scale had little impact on the costs of production. If

projections are made simply by feeding data into a projection model and spitting out

the results, economies of scale will have a large impact on the costs of production. If

attention is paid to the reliability of the input data, the potential impact of local

characteristics, and the plausibility of the projection results, however, the benefits

of economies of scale are likely to be small.

Further research on the costs of production would be very helpful. Other things

being equal, lower costs are preferable to higher costs. Other things, however, are

rarely equal. Trade-offs must be made between costs of production and other

attributes of population projections. Assessing the costs of production—and their

relationship to other projection attributes—is central to the evaluation process.

12.1.5 Timeliness

There are several aspects to the concept of timeliness. We covered one in the

discussion of face validity; namely, the frequency with which input data are

released and the time lag between the reference date and the date when the data

actually become available. Another is the frequency with which projections are

produced. The Census Bureau produced two or three sets of state projections each
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decade between 1950 and 2000, but produced only one set between 2000 and 2010.

Demographers in some states produce state and county projections on an annual

basis, some produce them every other year, and some produce them at irregular

intervals (Judson 1997). Frequent revisions are particularly important for small

areas because of the volatility in their growth patterns.

A third aspect of timeliness is the amount of time needed to construct the

projections. This is determined by the scope of the project and by the number of

analysts available to work on it. Production time takes on particular importance

when a set of customized projections is created for a specific client. The client (who

may be someone within the same organization as the analyst) may require that the

projections be completed within a short (perhaps unreasonably short) period. In

some circumstances, production time is a major factor determining the choice of

projection methods.

12.1.6 Ease of Application and Explanation

Ease of application is determined by the amount of time and the level of expertise

needed to collect, verify, and adjust the input data; develop a projection model; and

generate the desired projections. This criterion will be particularly important for

analysts with limited training or expertise in the production of population pro-

jections or who face severe time or budget constraints.

Ease of explanation refers to the extent to which data users can be provided with
a clear description of the data sources, assumptions, and techniques used in

producing the projections. For some data users, this criterion is irrelevant. They

are interested only in the projections themselves, not in how they were produced.

Other data users, however, can truly evaluate (and properly use) a set of projections

only if they understand how those projections were made. Indeed, some may have

little or no use for projections based on unknown methods or “black box” models.

For those data users, the clearer and more complete the description of the method-

ology, the more valuable the projections.

12.1.7 Usefulness as an Analytical Tool

Population projections are used most frequently as forecasts, or as predictions of

future trends in population size, distribution, and composition. However—as noted

in Chap. 1—they are also used to analyze the components of growth, trace out the

effects of recent trends or specific changes in those trends, demonstrate the sensi-

tivity of population growth to particular variables or assumptions, and relate

changes in demographic variables to changes in economic or other variables. In

some circumstances the extent to which projections can be used for these purposes

is the main determinant of their usefulness.
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Projections can answer a wide variety of questions. What impact would a 10%

decline in the birth rate have on future population size and composition? What

would be the impact of the elimination of a particular cause of death? How would

the expansion of a major employer affect a county’s migration rates? What would

the continuation of current growth rates mean for future water consumption? How

is population aging likely to affect the inflow and outflow of funds in public or

private pension systems? The answers to these and similar questions can teach us a

great deal about the determinants and consequences of population growth and

demographic change.

12.1.8 Political Acceptability

Population projections are never produced in a vacuum. They are influenced by the

context in which they are produced and by the perspectives of those who produce

(or approve) them. Cohort-component models are based on assumptions regarding

future mortality, fertility, and migration rates. Structural and microsimulation

models are based on decisions regarding which variables to include and how to

estimate the parameters. Even simple extrapolation models involve choices regard-

ing data and technique(s), length of base period, special populations, unique events,

and potential growth constraints. All projections are political statements in the

sense that they are based on a particular view of the determinants of population

change.

The political acceptability of population projections can be interpreted in several

ways. One is the extent to which projections made by technical analysts are

acceptable to the persons or agencies sponsoring the projections. Sponsoring parties

are often government agencies, but can be businesses or non-governmental orga-

nizations as well. These parties may have strong vested interests in the projected

numbers and may seek to influence those numbers. Another interpretation of

political acceptability is the extent to which projections are accepted as unbiased,

reasonable, or authoritative by data users and members of the general public. This

will be determined by the reputation and track record of the analyst or agency

producing the projections. Both interpretations are important, but we focus primar-

ily on the first in the present discussion.

As Moen (1984) pointed out, population growth and distribution are deeply

imbedded in politics. A county government might want to show that the county has

a rapidly growing population and a healthy economy in order to attract new

businesses and residents. An environmental group might want to show that there

is a need for growth restrictions or more stringent pollution regulations. A real

estate developer might want to show that there is a need for additional housing and

roads. A school board or parents group might want to show that there is a need for

another elementary school. In these examples, projections are meant to play an

active rather than a passive role; that is, they are meant to influence future growth
rather than simply chart the likely course of that growth.
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Political considerations can create problems for analysts constructing population

projections. Dennis (1987) described a case in which three governmental agencies

were given the task of constructing projections of vehicle miles traveled in the

Denver metropolitan area. It was anticipated that these projections would have a

major impact on the funding and planning activities of each agency. In the early

stages of the projection process the projections were based on parameter estimates

developed jointly by the technical staffs of the three agencies. These estimates were

developed in a “veil of ignorance,” or without knowing their impact on the final

projections. This approach helps minimize bias and ensure objectivity. However, an

impasse developed when the results were found to be politically unacceptable to

one of the agencies. Eventually, the impasse was broken only after decision-making

power was passed to a different governmental agency, with the final decision based

on political considerations rather than technical merit.

Tayman and Swanson (1996) cited an example from Detroit, where the technical

staff of the planning department produced a set of projections showing a population

loss between 1980 and 1990. Those projections were consistent with previous

trends, but were viewed as unacceptable by political decision makers; they were

revised upward to show a population increase. This revision was based strictly on

political considerations; all the technical factors pointed to a population decline.

(The original projections were later found to have been considerably more accurate

than the revised projections).

McKibben (1996) described a situation in which political opposition was suc-

cessfully overcome. A small, largely rural county in Indiana had been experiencing

steady declines in school enrollment for years. The school board formulated a long-

term building and consolidation plan that called for the closing of three small

elementary schools located in the rural areas of the county. This plan was strongly

opposed by a sizable segment of the rural population and by several members of the

school board, who believed the widely publicized “echo of the baby boom” would

produce enough enrollment growth to justify renovating those schools and keeping

them open. A group of consultants was hired by the school board to make 10-year

projections of school enrollment by grade. Their projections showed further

declines in school enrollment and were initially met with widespread disbelief

and fervent opposition. However, by providing a clear description of the data,

techniques, and assumptions used in developing the projections, the consultants

were able to convince most of the skeptics that future declines in school enrollment

were more likely than future increases.

The potential conflict between political and technical considerations raises a

number of difficult questions. What role should political considerations play in the

projection process? How can the (perhaps conflicting) viewpoints of a variety of

interest groups be incorporated? At what point does the incorporation of political

considerations cause the projections (and the analyst) to lose credibility? What is

the analyst to do when the person who signs his/her paycheck wants to change the

projections for purely political reasons?

In our experience, major conflicts between political and technical considerations

occur relatively rarely. When they do occur, however, they create thorny ethical and
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procedural dilemmas. In these circumstances, balancing political acceptability with

technical legitimacy may be the most difficult part of the projection process. In the

long run, we believe the negative consequences of producing unreasonable,

politically-motivated projections far outweigh whatever short-run benefits they

might provide.

Political influences are not uniformly negative, however. There are circum-

stances in which such influences have a positive impact on the validity and

usefulness of population projections. This can occur, for example, when the pro-

jections are produced as part of a comprehensive urban plan. Tayman (1996)

described the interplay between the construction of population projections and

the development of a growth management strategy in the San Diego metropolitan

area. This strategy incorporated policies related to housing, public transportation,

commuting, employment, government services, environmental considerations, and

alternative land uses. The development of several sets of hypothetical projections

allowed public officials to observe the potential effects of different policies and

choose the policies expected to be most beneficial for the county. The projections

ultimately adopted were the ones consistent with the policies that were to be

implemented.

The Tayman study illustrates an “active” approach to population forecasting.

Under this approach, political decision makers first decide which future outcomes

are the most desirable and then design policies to achieve those outcomes. If the

policies prove to be successful, projections consistent with those policies are more

realistic than projections that ignore the political context in which they are made. In

circumstances like these, incorporating the influence of political considerations

improves forecast accuracy and enhances the overall usefulness of the projections.

As we have shown, political factors can have either a positive or negative impact

on the validity and usefulness of population projections. When evaluating pro-

jections, then, data users must be aware of the context in which they were made.

Who made the projections? Why were they made? What roles were they expected

to play? Did the producers have a vested interest in the projection results? Did they

provide a clear description of the methodology and a convincing explanation for

using particular methods and making particular assumptions? The answers to these

questions will provide important information for judging the validity of the

projections.

12.1.9 Forecast Accuracy

The final criterion for evaluating population projections is forecast accuracy. For

many data users this is the most important criterion, in demography and many other

fields as well (Booth 2006; Siegel 2002; Yokum and Armstrong 1995). To briefly

summarize the empirical evidence, we can say that forecast errors are generally

larger for small places than large places; are generally larger for places with very

high or negative growth rates than for places with moderate, positive growth rates;
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generally increase with the length of the projection horizon; and vary from one

launch year to another. The degree of complexity or sophistication of the method-

ology, however, has no consistent impact on forecast accuracy, at least for pro-

jections of total population. Given its importance, we take an in-depth look at

forecast accuracy in the next chapter.

12.2 A Balancing Act

All the criteria discussed above are potentially important for choosing the data,

techniques, and assumptions that will be used in constructing a set of population

projections or for evaluating a set produced by someone else. The relative impor-

tance of each criterion, however, varies according to the purposes for which the

projections will be used.

The provision of necessary detail is essential for all purposes. If data for the

relevant geographic areas, demographic categories, and time periods are not avail-

able, the projections will not be very useful. Face validity, plausibility, and time-

liness would also seem to be almost universally important; exceptions might be

when projections are used simply to illustrate the outcomes of hypothetical scenar-

ios or to push a particular political agenda. Ease of application and costs of

production generally do not matter to the data user, but are important to the

producer. In fact, these criteria may drive the choice of projection methods when

time is limited or budgets are tight. Ease of explanation is unimportant for some

data users, critical for others. Political acceptability and analytical usefulness are

essential in some circumstances, irrelevant in others. Forecast accuracy may be the

most important criterion when projections are used to guide decision making, but is

irrelevant when projections are used for simulations or as political propaganda.

Indeed, there are circumstances in which planning and intervention may be

intended to prevent projections from providing accurate forecasts (Isserman 1984).

Choosing the relevant criteria for evaluating a set of projections is a balancing

act. Some criteria may be much more important than others and decisions based on

one criterion may be inconsistent with decisions based on another. Choices must be

made regarding which criteria are most important for a particular set of projections

and—when they conflict with each other—which to rank ahead of the other. An

optimal projection strategy can be chosen only after weighing the relative impor-

tance of each of the evaluation criteria.

12.3 Comparing Methods

Once the relevant evaluation criteria have been chosen, a second type of balancing

act occurs as the specific data, methods, procedures, and assumptions used to create

the projections are chosen. How do various projection methods stack up according
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to the criteria discussed in this chapter? Table 12.1 summarizes our views regarding

the characteristics of the projection methods covered in this book. These rankings

are somewhat imprecise because of the potential variability in the ways each

method can be applied (e.g., the cohort-component method can be applied using

simplified Hamilton-Perry procedures or complex multi-regional models). How-

ever, they will give the reader a quick overview of the strengths and weaknesses of

the different approaches to constructing population projections.

12.3.1 Provision of Detail

12.3.1.1 Geographic Detail

Trend extrapolation methods have the smallest data requirements of all the methods

that can be used for projecting total population. The simplest methods require data

from only one or two points in time; more complex methods (e.g., time series

models) require data from a number of points in time. Since total population data

are readily available (or can be developed) for many different levels of geography

and for many different points in time, trend extrapolation methods perform very

well in terms of their ability to provide projections for a wide variety of geographic

areas, including very small areas.

Table 12.1 Rating projection methods

Evaluation criteria

Simple

extrapolationa
Complex

extrapolation

Cohort-

component

Structural/

microsim

Geographic detail **** *** *** ***

Demographic detail * * **** ****

Temporal detail - - - -

Face validity - - - -

Plausibility - - - -

Cost of production **** *** ** *

Timeliness **** *** ** *

Ease of application **** *** ** *

Ease of explanation **** ** *** *

Usefulness as

analytical tool

* * *** ****

Political acceptability - - - -

Forecast accuracy - - - -
aIncludes simple and ratio methods

Notation:

****Top ranking

***Second ranking

**Third ranking

*Lowest ranking

-Cannot generalize
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Cohort-component models do not perform quite as well in this regard. They

require mortality, fertility, and migration data, as well as population data by age,

sex, and perhaps other characteristics as well. Structural and microsimulation

models require historical and projected data on the independent variables. These

data are often unavailable or of questionable reliability for subcounty areas. How-

ever, the Hamilton-Perry method, urban systems models, and microsimulation

models have all been applied to very small geographic areas, showing that data

availability is not an insurmountable obstacle. Adjustments may have to be made,

but cohort-component and structural models can be used for projections covering a

wide variety of geographic areas.

12.3.1.2 Demographic Detail

One of the major advantages of the cohort-component method is that it can provide

projections by age, sex, race, and other population characteristics. Structural

models can also be used for projections of population characteristics, but are

generally used in conjunction with a cohort-component model. Microsimulation

models provide very detailed projections of demographic characteristics for indi-

vidual households and persons. In terms of providing projections of demographic

characteristics, then, cohort-component, structural, and microsimulation models

perform very well.

Trend extrapolation methods do not perform nearly as well in this regard. They

are generally used only for projections of total population or for projecting birth,

death, or migration rates; consequently, they generally provide no projections of

demographic detail. Could this shortcoming be overcome? Could trend extrapola-

tion methods be applied to subgroups of the population, rather than to the popula-

tion as a whole? For groups not differentiated by age (e.g., females, blacks,

Hispanics), it may be reasonable to apply trend extrapolation methods because

people generally do not change from one group to another (e.g., female to male,

black to white). We are aware of several instances in which trend extrapolation

methods have been used in this manner (Leach 1981; Smith and Rayer 2012) and

we believe these methods may be useful for projections of race, ethnicity, and

perhaps other demographic characteristics for small areas (see Chap. 8). For age

projections, however, some type of cohort approach must be used. Trend extrapo-

lation methods applied to specific age groups are not likely to provide acceptable

results (Long 1995).

12.3.1.3 Temporal Detail

Trend extrapolation, cohort-component, structural, and microsimulation models are

about equal in their ability to produce projections covering specific intervals and

time horizons. Some methods that are acceptable for short projection horizons,
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however, may not be valid for long projection horizons. Chap. 13 discusses why

this might be true.

12.3.2 Face Validity and Plausibility

Many of the factors affecting face validity are the same for trend extrapolation,

cohort-component, structural, and microsimulation models. All four approaches

require that attention be paid to the quality of the input data, to the reasonableness

of the assumptions regarding future growth, and to factors such as the physical

features of an area, potential growth constraints, and the impact of special

populations or unique events. However, face validity is also affected by the

purposes for which the projections will be used. All four approaches can provide

valid projections of total population, but some type of cohort model must be used

for projections of age groups. Structural models must be used for projections

incorporating interactions between demographic and other variables, and

microsimulation models must be used for projection of individual households and

persons. The face validity of a projection method cannot be properly judged without

considering the purposes for which the projections will be used.

It is also impossible to generalize regarding the plausibility of trend extrapola-

tion, cohort-component, structural, and microsimulation models. All four are capa-

ble of producing either plausible or implausible results, depending on the particular

techniques and assumptions employed. For example, the extrapolation of recent

growth rates may provide plausible 20-year projections for a county that has been

growing by 1% per year, but implausible projections for a county that has been

growing by 10% per year. Similarly, the specific assumptions used for mortality,

fertility, and migration rates will determine the plausibility of cohort-component

projections. The plausibility of projections from structural and microsimulation

models will be determined by the structure of the models themselves and the nature

of the assumptions regarding future values of the independent variables and other

parameters. For all four approaches, plausibility can be evaluated only after com-

paring projected trends with those observed in the past and those projected for other

areas.

12.3.3 Costs and Timeliness

Costs of production—which are determined primarily by labor costs—vary tre-

mendously by projection method. Simple extrapolation methods (including ratio

methods) have the smallest data requirements and take the least time to apply. They

are the least expensive of all the projection methods. More complex extrapolation

methods have larger data requirements and take more time to apply, but are still

relatively inexpensive. Cohort-component methods require considerably more time
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for model development and data collection than trend extrapolation methods.

Structural and microsimulation models are also very time-intensive, often requiring

a large investment in data collection, model building, and testing. Urban systems

and microsimulation models are particularly expensive to develop and implement.

Raising the level of methodological complexity and sophistication is likely to

raise the level of expertise needed to produce a set of projections. Since persons

with higher skill levels can command higher wages than persons with lower skill

levels, this is likely to lead to higher costs as well. Incorporating the potential

impact of special populations, unique area-specific events, and potential growth

constraints adds considerably to the costs of production, regardless of the method-

ology employed.

There are several aspects to the concept of timeliness. It can refer to how up-to-

date the input data are, the frequency with which projections are produced, or the

amount of time required by the production process. Trend extrapolation methods

perform better than cohort-component, structural, and microsimulation models on

all three of these aspects. Due to their small data requirements and relatively simple

mathematical structures, trend extrapolation methods can generally incorporate

more recent data, be applied more frequently, and be produced in less time than

either cohort-component or structural models. Specific applications of cohort-

component, structural, and microsimulation models differ considerably from each

other, depending on the level of complexity and degree of sophistication employed.

In general, the simpler the method, the more timely the projection is likely to be.

12.3.4 Ease of Application and Explanation

Simple extrapolation methods are the easiest to apply and to explain to data users

because they have the simplest mathematical forms, the smallest data requirements,

and the least amount of disaggregation. More complex extrapolation methods are

more difficult to apply and to describe clearly. The cohort-component method is

also more difficult to apply because of its large data requirements and complex set

of inter-relationships. Although the basic concepts underlying this method can be

explained easily, a full description of all the data sources, techniques, and assump-

tions requires a lengthy discussion. Structural and microsimulation models are the

most difficult to apply and to explain clearly in terms of their technical details,

especially when they involve large numbers of simultaneously determined equa-

tions and detailed parameters. Interpreting projection results is fairly simple for

extrapolation and cohort-component models, but can be difficult for structural and

microsimulation models.
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12.3.5 Usefulness as an Analytical Tool

Population projections are often used to trace out the implications of alternate

demographic scenarios, evaluate the impact of changes in economic conditions,

and conduct other types of analyses. They can also be used as teaching tools to

demonstrate these effects to students, government officials, business leaders, and

the general public. How do various projection methods stack up according to this

criterion?

Simple extrapolation methods are not useful for most analytical purposes. They

are not directly related to any theories of population growth, to any variables

affecting population growth, or to any of the components of population growth.

Complex extrapolation methods are only slightly more useful. The logistic method

can be related to a theory of growth in which the population first grows slowly, then

enters a period of rapid growth, and eventually levels off (Romanuic 1990). Time

series models provide prediction intervals indicating the degree of uncertainty

surrounding specific projections (de Beer 1993; Lee 1993; Tayman et al. 2007).

For most analytical purposes, however, neither simple nor complex extrapolation

methods are very useful.

The cohort-component method, on the other hand, is very useful. It can deter-

mine the proportion of population growth caused by each individual component. It

can trace out changes in the demographic composition of the population. It can

demonstrate the sensitivity of population projections to specific changes in indi-

vidual components of growth. These analyses raise our understanding of population

dynamics and improve our ability to plan for the future.

Structural and microsimulation models are even more useful. Models can be

developed investigating the effects of a variety of economic, social, cultural, and

other factors affecting fertility, mortality, migration, or total population change.

These models can be constructed to cover both the determinants and the conse-

quences of population growth and demographic change. They can be used to create

population projections that are consistent with a variety of economic, land use, and

transportation projections. Regardless of their forecasting capabilities, structural

and microsimulation models are extremely useful for analytical purposes.

12.3.6 Political Acceptability

It is impossible to generalize regarding the political acceptability of population

projection methods. In some instances a method may be unacceptable simply

because it cannot produce the type of projections required. For example, simple

extrapolation methods will not be acceptable when an inter-related set of economic-

demographic projections are needed. In other instances, any method may be

politically acceptable if the analyst or agency producing the projections has a

good reputation and a proven track record.
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Sometimes political acceptability is determined by the outcome of the projection

process rather than by the methods employed. From this perspective, any projection

method is acceptable as long as it provides the desired results. If it does not provide

the desired results, it is not acceptable regardless of its technical merits. Conse-

quently, any projection method may be politically acceptable in some circum-

stances and unacceptable in others.

One warning about the political acceptability of simple methods should be

mentioned. Simplicity is sometimes interpreted as simple-mindedness. The use of

simple methods may make the analyst appear to be lazy or incompetent, whereas

the use of complex methods may make him/her appear to be diligent, highly skilled,

and trustworthy. Perceptions may be more important than reality, especially when

projections must be approved by an outside group or when they produce contro-

versial results. In some circumstances, structural and microsimulation models may

be more acceptable than other projection methods simply because they take into

account the largest number of factors affecting population growth.

12.3.7 Forecast Accuracy

We will provide a detailed discussion of forecast accuracy in the next chapter. To

preview that discussion we can say that no single projection method has been found

to provide consistently more accurate forecasts of total population than any other

method. In specific circumstances, however, some methods tend to perform better

than others.

12.4 Conclusions

Evaluating population projections is a two-step process. The first step is to choose

the criteria upon which the projections will be evaluated. Potential criteria include

the provision of necessary detail, face validity, plausibility, costs of production,

timeliness, ease of application and explanation, usefulness as an analytic tool,

political acceptability, and forecast accuracy. The choice of criteria will depend

on the purposes for which the projections will be used and the constraints imposed

on the analyst producing the projections. For any given purpose some criteria may

be very important, some may be moderately important, and a few may be

completely unimportant.

The second step is to use these criteria to guide the selection of projection

methods. Simple extrapolation methods are characterized by timeliness, ease of

application and explanation, low costs of production, and applicability to very small

areas; however, they cannot provide much demographic detail and have little

usefulness as an analytical tool. More complex extrapolation methods share

many of these attributes, but typically require more data and modeling expertise.
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Cohort-component methods are much more costly and less timely, but are more

useful as analytical tools and are capable of providing a rich array of demographic

detail. Structural and microsimulation models are the most data-intensive, time-

consuming, and costly, but are capable of providing a variety of inter-related

projections and offer the greatest analytical usefulness.

Again, we are left with a balancing act. The importance of each criterion must be

weighed against the importance of all the others, and the characteristics of each

method must be weighed against the characteristics of all the other methods.

Typically, costs and timeliness must be traded off against analytical usefulness

and richness of geographic and demographic detail. The most fundamental task

facing the analyst is to choose the optimal bundle of characteristics based on the

resources available and the purposes for which the projections will be used. This

choice will guide the analyst through the selection of projection methods, the

collection of input data, and all the other steps of the projection process.
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Chapter 13

Forecast Accuracy and Bias

Demographers often claim they are not in the business of predicting the future. To

emphasize that point, they typically call their calculations of future population

“projections” rather than forecasts or predictions. They frequently produce several

sets of projections rather than a single set, often without providing any indication of

the relative likelihood of their occurrence. This reluctance to predict is not surpris-

ing, given the frequency with which past forecasts have been wide of the mark.

But data users want forecasts, not projections. They want the analyst’s views of

what will actually happen in the future, not some series of hypothetical scenarios or

conditional probabilities. In fact, data users generally interpret projections as fore-

casts regardless of the analyst’s intentions and whatever terminology or disclaimers

might be used. A basic fact of life for demographers is that their “projections”

become forecasts as soon as they reach the public.

Given the widespread use of population projections as forecasts—and the many

planning decisions and funding allocations tied to those projections—it is essential

to evaluate the forecast accuracy and bias of the most commonly used projection

methods. This chapter provides such an evaluation. We start with a description and

discussion of various statistics that can be used to measure forecast accuracy and

bias. We then provide an overview of the empirical evidence, focusing on the

effects of differences in projection methodology, population size, growth rate,

length of base period, length of forecast horizon, and launch year. We also consider

the possibility of producing forecasts by combining several projections. We close

with a discussion of ways to account for the uncertainty inherent in population

projections. Throughout this chapter, we use the terms projection and forecast
interchangeably because we are interpreting projections as if they were meant to

be used as forecasts of future population.

S.K. Smith et al., A Practitioner’s Guide to State and Local Population Projections,
The Springer Series on Demographic Methods and Population Analysis 37,

DOI 10.1007/978-94-007-7551-0_13, © Springer Science+Business Media Dordrecht 2013
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13.1 Measuring Accuracy and Bias

13.1.1 Defining Forecast Error

We define forecast error (E) as the difference between the population forecast (F)
for a particular geographic area in a particular target year (t) and the actual

population (A) for the same area and year:

Et ¼ Ft � At

For example, if the population of a county had been projected to be 55,000 in

2010 and the actual population turned out to be 50,000, the forecast error would be

5,000. If the population had been projected to be 45,000, the forecast error would be

�5,000.

Forecast errors are often expressed as percent differences rather than as numeric

differences. This specification is useful when measures of relative error rather than

numeric error are needed. The use of percent errors (PE) is particularly helpful

when making comparisons across geographic areas because—without adjustments

for population size—errors for places with large populations would swamp the

effects of errors for places with small populations:

PEt ¼ Ft � Atð Þ=At½ � 100ð Þ

In the above example, if the population of a county had been projected to be

55,000 in 2010 and the actual population turned out to be 50,000, the percent error

would be (5,000/50,000) (100) ¼ 10%. If the population had been projected to be

45,000, the percent error would be (�5,000/50,000) (100) ¼ �10%.

Population counts from the decennial census are typically used as proxies for the

“actual” population of an area. For postcensal or intercensal years, population

estimates produced by the Census Bureau, state demographic agencies, or private

data companies are often used. These proxies are not perfect, of course. Even

census counts are subject to errors that may be substantial for a few places or

demographic groups.

Enumeration and estimation errors undoubtedly have an impact on individual

population forecast errors. They can either raise or lower errors, depending on

whether they reinforce or offset the differences between projected and actual

populations. Because of these offsetting effects—and the high levels of accuracy

found in most census counts in the United States—the impact of enumeration/

estimation errors on average forecast errors is probably not very great, especially

for longer projection horizons. Most empirical studies do not attempt to adjust for

enumeration or estimation errors when evaluating population forecast accuracy.
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13.1.2 Common Error Measures

A number of summary error measures can be found in the general forecasting

literature (Armstrong and Collopy 1992; Fildes 1992; Hyndman and Koehler 2006;

Mahmoud 1987; Makridakis and Hibon 2000). We describe several, including the

ones most commonly used to evaluate population forecasts.

The first two measures refer to the average error for a set of n individual

forecasts:

Mean Error MEð Þ ¼ P
Et=n

Mean Absolute Error MAEð Þ ¼ P��Et

��=n

The first measure takes account of the direction of error; consequently, positive

and negative errors offset each other. In fact, they could offset each other

completely, resulting in a ME of zero even when individual errors are large. For

example, three forecasts with errors of 400, 200, and �600 would yield a ME

of zero.

The second measure ignores the direction of the errors, so positive and negative

errors do not offset each other. This measure—sometimes called the mean absolute
deviation—shows the average difference between forecasted and actual

populations, regardless of whether the forecasts were too high or too low. Using

the example cited above, forecasts with errors of 400, 200, and �600 would yield a

MAE of 400.

These measures are based on the numerical differences between projected and

actual populations; they do not account for differences in the size of the populations

being projected. Yet a forecast error of 1,000 has a very different meaning for a

place with 2,000 residents than a place with 200,000 residents. The next two

measures account for population size by focusing on percent errors rather than

numerical errors:

Mean Algebraic Percent Error MALPEð Þ ¼ P
PEt=n

Mean Absolute Percent Error MAPEð Þ ¼ P��PEt

��=n

The MALPE (often called the mean percent error) is a measure in which

positive and negative values offset each other. Consequently, it is often used as a

measure of bias (Chi 2009; Keilman 1999; Rayer 2008; Smith 1987; Tayman and

Swanson 1996). A positive MALPE reflects a tendency for forecasts to be too high

and a negative MALPE reflects a tendency for forecasts to be too low. The

proportion of positive errors (%POS) or negative errors (%NEG) are other com-

monly used as measures of bias (Smith and Sincich 1992; Voss and Kale 1985;

White 1954).

The MAPE, on the other hand, is a measure in which positive and negative

values do not offset each other. It shows the average percent difference between

forecasts and actual populations, regardless of whether the individual forecasts
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were too high or too low. The MAPE is a widely used measure of forecast accuracy,

both in evaluations of population projections (Chi and Voss 2011; Long 1995;

Rayer 2008; Smith 1987; Tayman and Swanson 1996) and in the general forecast-

ing literature (e.g., Armstrong 1983; Ashton and Ashton 1985; Mahmoud 1984;

Makridakis and Taleb 2009).

Sometimes it is important to use error measures that give more weight to large

errors than small errors; for example, when a large error has a disproportionately

large impact on the cost of being wrong. In these situations, the following measures

can be used:

Mean Squared Error MSEð Þ ¼ P
Etð Þ2=n

Root Mean Squared Error RMSEð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

Etð Þ2=n
q

Although these two measures are used for evaluating many types of forecasts

(Armstrong and Collopy 1992; He and Xu 2005; Hendry and Clements 2004;

Mahmoud 1987), they are of limited use for evaluating population forecasts

because errors for places with large populations swamp errors for places with

small populations. This problem can be dealt with by using percent errors rather

than absolute errors. A number of studies have used the Root Mean Squared Percent

Error (RMSPE) to evaluate population forecasts (Chi 2009; Chi and Voss 2011;

Keilman 1990; Smith and Sincich 1992):

Root Mean Squared Percent Error RMSPEð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

PEtð Þ2=n
q

Some accuracy measures focus on other aspects of the distribution of errors

rather than the mean value. The median absolute percent error (MEDAPE) is the

percent error which falls right in the middle of the distribution: half the absolute

percent errors are larger and half are smaller. This measure is useful when the

objective is to highlight the “typical” error and ignore the effects of outliers. The

90th percentile error (90PE) is the absolute percent error larger than exactly 90% of

all other absolute percent errors. This measure gives an indication of the range of

errors and can be used to construct prediction intervals (Rayer et al. 2009; Smith

and Sincich 1988; Tayman et al. 1998). We return to this topic later in this chapter.

Other error measures can also be used. Theil’s U-statistic measures the differ-

ence between errors produced by a formal forecasting method and a naı̈ve alterna-

tive, such as the assumption that no change will occur. This statistic squares the

errors so that large errors are given heavier weights than small errors (Theil 1966).

The proportionate reduction in error (PRE) also shows the extent to which a

forecast can improve on the naı̈ve assumption of no change, but without giving

heavier weights to large errors (Tayman and Swanson 1996). In order to reduce the

impact of outliers, some analysts have constructed mean errors based on statistical

transformations of absolute percent errors (Mahmoud 1987; Tayman et al. 1999;

Swanson et al. 2011).
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All the measures discussed above focus on differences in population levels in the

target year. This is the approach most commonly used to evaluate population

forecast accuracy. An alternative approach focuses on differences between

projected and actual growth rates rather than differences between projected and

actual population sizes. Keyfitz (1981), Stoto (1983), Long (1995), and Mulder

(2002) used this approach for evaluating national population projections; Tayman

(1996) used it for evaluating census tract projections. This approach is often used

for evaluating short-run economic and business forecasts, but is not commonly used

for evaluating population projections. We present several examples of this

approach later in this chapter.

13.1.3 Selection Criteria

In the general forecasting literature, accuracy measures are used not only to show

how well forecasts have performed over the projection horizon, but also to show

how well a particular model fit the data observed during the base period (Ascher

1981; Makridakis 1986; Pant and Starbuck 1990). For population projections,

however, accuracy measures are generally used only to show how well

(or poorly) projections have performed as forecasts of future population. Given

the many different statistics that can be used to measure forecast accuracy and bias,

how can one go about choosing the most appropriate measure(s)?

A number of researchers have discussed criteria that might be used to select

measures of forecast error (Ahlburg 1995; Armstrong and Collopy 1992;

Makridakis 1993; Rayer 2007; Swanson et al. 2011). Several criteria are mentioned

frequently. Error measures should be reliable; that is, repeated applications should

yield similar results. They should be valid, in the sense that they actually measure

what they are purported to measure. They should convey as much information

about forecast errors as possible and should be easy for the data user to understand.

They should be sensitive to differences in error distributions, but should not be

unduly influenced by outliers.

It has also been noted that error measures should be related to loss functions that

specify the cost of forecast errors to data users (Ahlburg 1995; Fildes 1992). For

example, if the cost of forecast errors is linear in absolute terms, an error measure

such as the MAE is appropriate. If the cost of errors is linear in percent terms, a

measure such as the MAPE is appropriate. If the cost of large errors is dispropor-

tionately high, a measure that assigns larger weights to larger errors is appropriate

(e.g., MSE, RMSE, or RMSPE). If the direction of error is important, measures such

as ME, MALPE, or %POS are useful. The best error measure for any given data

user, then, depends on the purposes for which the projections are to be used.

However, data users rarely know the exact costs associated with forecast errors.

Even if they did, loss functions would be difficult to estimate because error

distributions are usually unknown and rarely conform to standard statistical

assumptions (Armstrong and Fildes 1995; Bryan 1999). Perhaps more important,
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population projections are typically produced for general use rather than for a

specific use by a particular data user. Consequently, it is impossible to specify a

unique loss function that will be best for all data users and for all purposes. For

these reasons, loss functions are seldom used to evaluate the forecast accuracy of

population projections.

The MAPE is used more frequently than any other error measure in evaluations

of population forecast accuracy (Ahlburg 1995; Swanson et al. 2011). It is a good

choice as a general accuracy measure because it “incorporates the best character-

istics among the various accuracy criteria” (Makridakis 1993, p. 528). Because of

the impact of a few large errors, however, the MAPE may overstate the “typical”

error in a set of projections; when this is a concern, the MAPE can be re-scaled

(MAPE-R) to reduce the impact of outliers (Swanson et al. 2011; Tayman

et al. 1999). Despite this shortcoming, we believe the MAPE provides a reasonable

measure for evaluating forecast accuracy under a wide variety of circumstances.

The MALPE is widely used as a measure of bias and provides a simple but

effective way to investigate the tendency for projections to be too high or too low.

The next section discusses the empirical evidence on population forecast accuracy

and bias, focusing on differences among methods and the effects of differences in

population size, growth rate, length of base period, length of projection horizon, and

launch year. Due to their generally favorable characteristics and frequency of use in

the literature, the MAPE and MALPE are the measures we report most often.

Can valid conclusions be drawn when only a few error measures are analyzed?

For most purposes, we believe they can. Although different error measures provide

different perspectives on accuracy and bias, error patterns are generally stable

across a variety of error measures (Rayer 2007). That is, the impact of factors

such as population size, growth rate, and length of projection horizon on forecast

accuracy is generally about the same regardless of which error measure is used. The

same is true for alternative measures of bias. Consequently, we believe a few well-

chosen error measures will be sufficient for most evaluation purposes.

When population projections are used to guide real-world decision making,

however, the analyst should consider more than the standard measures of forecast

error. In particular, it is important to consider the cost of being wrong. When

population projections are used for planning the location of a retail outlet,

constructing a new electric power plant, or adding a wing to a hospital, what are

the implications of inaccurate forecasts? Will the cost of forecasting too little

growth be considerably greater than the cost of forecasting too much growth?

Will small errors have little impact on costs, but large errors have a disproportion-

ately large impact? These are the types of questions the analyst must answer when

using population projections to guide decision making.
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13.2 Factors Affecting Accuracy and Bias

13.2.1 Projection Method

Projection methods differ tremendously in terms of data requirements, mathemat-

ical structure, degree of disaggregation, number of variables included, choice of

assumptions, and modeling skills required. A common perception among both the

producers and the users of population projections is that complex methods are more

accurate than simple methods (Alho 1997; Beaumont and Isserman 1987; Irwin

1977; Keyfitz 1981; Pittenger 1980). Other analysts have challenged this percep-

tion, claiming it is not supported by the empirical evidence (Chi 2009; Kale

et al. 1981; Pflaumer 1992; Rayer 2008; Smith and Sincich 1992). Who is right?

Do increases in methodological complexity—including the use of structural and

microsimulation models—lead to smaller forecast errors? More generally, what

does the empirical evidence show regarding the accuracy of various population

projection methods?

Before we can answer these questions, we must develop a framework for

evaluating the complexity of various projection methods. Smith and Sincich

(1992) classified methods according to their mathematical and causal structures.

Mathematical structures range from very simple (e.g., linear extrapolation) to very

complex (e.g., multi-regional cohort-component models). Causal structures may

specify that population variables are affected solely by their own historical values

(e.g., ARIMA time series models) or by other variables as well (e.g., structural

models). Combining these two characteristics yields a 2-by-2 matrix with four types

of methods: simple extrapolative, simple structural, complex extrapolative, and

complex structural/microsimulation.

This classification scheme could be enriched by considering several additional

factors. Long (1995) highlighted three types of complexity: model specification,

degree of disaggregation, and the selection of assumptions and alternative scenar-

ios. The complexity of a model is determined not only by its mathematical

structure, but also by the number of factors it takes into account and the ease with

which it can be explained to data users. The degree of disaggregation refers to the

level of demographic detail provided by the projections (e.g., age, sex, race).

Selection complexity is determined by the manner in which assumptions are

made and by the number of alternative scenarios provided. In cohort-component

models, for example, assumptions regarding future fertility, mortality, and migra-

tion rates may be based on their most recent values, on time series extrapolations of

historical values, or on structural models. The number of scenarios may also vary

widely. Projections from the Census Bureau have provided as many as 30 and as

few as two alternative scenarios (Spencer 1989; Campbell 1996).

Other factors could be considered as well, such as linear vs. nonlinear models,

the level of modeling skills required, and the degree of interaction among variables
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(Armstrong 1985; Ascher 1981). It is unlikely that a standard classification scheme

can be developed that will fully cover all the possibilities. Furthermore, as Rogers

(1995) pointed out, the simple vs. complex classification is really a continuum

rather than a dichotomy. Methods should be defined in relative rather than absolute

terms, or as “simpler vs. more complex” rather than “simple vs. complex.” Most

methods can be classified as relatively simple when compared to one method and

relatively complex when compared to another.

In this chapter we classify projection methods as relatively simple or complex

according to their mathematical structures, data requirements, degree of disaggre-

gation, and level of modeling skills required. We classify them as structural/

microsimulation or extrapolative according to whether they are affected by eco-

nomic and/or other variables or solely by their own historical values. Other things

being equal, we view structural/microsimulation models as more complex than

strictly extrapolative methods. According to these criteria, we rank commonly used

projection methods as follows:

1. Simple: Linear extrapolation, exponential (or geometric) extrapolation,

constant-share, shift-share, and share-of-growth methods. These methods are

mathematically simple and require relatively little input data and few modeling

skills.

2. More complex: Regression, logistic, and ARIMA time series models. These

methods are considerably more mathematically complex and require more input

data and modeling skills than simple trend extrapolation methods. However,

they rely primarily on highly aggregated data and do not account for the effects

of other variables.

3. Most complex: Cohort-component, structural, and microsimulation models.

These models are mathematically complex, highly disaggregated, and require

large amounts of input data. The assumptions used in these models can be

relatively simple (e.g., fertility, mortality, and migration rates remain constant

at current levels) or very complex (e.g., fertility, mortality, and migration rates

are derived from structural or time series models).

The ranking of specific models and techniques is not always clear-cut. Cohort-

component models have greater data requirements and a higher level of disaggre-

gation than ARIMA time series models, but require fewer statistical modeling

skills. Specific applications of the cohort-component method may themselves

vary considerably in terms of simplicity or complexity. Structural and

microsimulation models also vary a great deal, from simple recursive models

containing few variables to large simultaneous equation models containing hun-

dreds of variables and parameters. Box 13.1 lists abbreviations for the projection

methods evaluated in this chapter.
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Box 13.1 Abbreviations for Projection Methods

LINE: Linear extrapolation.

EXPO: Exponential extrapolation.

SHIFT: Shift-share.

SHARE: Share-of-growth (this method is sometimes called the apportion-

ment method).

ARIMA: ARIMA time series model.

CB: Cohort-component model used by the Census Bureau.

NPA: Economic-demographic model used by the National Planning

Association.

BEA: Economic-demographic model used by the Bureau of Economic

Analysis (the BEA projections were formerly called OBERS, an acronym

derived from the Office of Business Economics and the Economic Research

Service).

13.2.1.1 Projections of Total Population

Numerous studies have evaluated the accuracy of forecasts of total population

based on alternative projection methods. Although our list is no doubt incomplete,

we summarize the results of all the studies we have seen. Of these studies, ten

compared cohort-component models with one or more trend extrapolation methods;

two compared structural models with cohort-component models that do not incor-

porate causal relationships; three compared structural models with trend extrapo-

lation methods; and two compared a number of trend extrapolation methods,

cohort-component models, and structural models. To our knowledge there have

been no studies that have evaluated the accuracy of population forecasts from

microsimulation models. What does the evidence show?

White (1954) compared the accuracy of cohort-survival projections for states with

the accuracy of projections from a number of simple trend extrapolation methods:

linear, geometric, and several ratio methods similar to SHIFT and SHARE. Using

1930–1940 and 1930–1950 as projection horizons, she found that errors from all the

methods were about the same, except for one application of the SHIFT method,

which had considerably larger errors than the other methods. Errors from the trend

extrapolation methods were sometimes larger and sometimes smaller than errors

from the cohort-survival model, but the differences were generally small, leading her

to conclude that no particular method was clearly superior to all other methods.

Leach (1981) evaluated several sets of logistic, component, and cohort-

component projections for the population of Great Britain. Using target years

between 1931 and 1971, he found no evidence that component or cohort-

component projections were consistently more accurate than logistic extrapola-

tions. In fact, he concluded that the logistic curve can provide more reliable
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projections of total population than the component method. This study, however,

was based on a fairly small number of empirical observations.

Kale et al. (1981) evaluated the forecast accuracy of several sets of population

projections for states in the United States. This study covered early component

projections, cohort-component projections produced by the Census Bureau, pro-

jections from a ratio technique, ARIMA time series models, and employment-based

projections produced by the Bureau of Economic Analysis and the National Plan-

ning Association. These projections were made between the 1930s and the 1970s,

with horizons ranging from 5 to 25 years. They found errors from all methods to fall

within a fairly narrow range for any given length of projection horizon and

concluded that the particular method used for population projections doesn’t

seem to matter.

Stoto (1983) compared 5- and 10-year cohort-component projections made by

the United Nations in the 1950s and 1960s for 24 regions of the world with simple

geometric extrapolations. He found the geometric extrapolations to exhibit almost

no bias and to produce errors that were equal to or smaller than those produced by

the cohort-component projections. He concluded that simpler methods were better

than more complicated methods for some purposes.

Murdock et al. (1984) compared population projections from 1970 to 1980 for

counties in North Dakota and Texas. Two sets of projections were made, one using

a simple economic-demographic model and one using a traditional cohort-

component model. They found the level of accuracy for these two sets of pro-

jections to be nearly identical.

Pflaumer (1992) compared the accuracy of ARIMA time series projections with

the accuracy of traditional cohort-component projections of the U.S. population,

using a variety of forecast horizons and launch years between 1930 and 1980. He

found the errors to be similar and concluded that ARIMA models produce popula-

tion forecasts that are at least as reliable as those produced by cohort-component

models.

Using projection horizons ranging from 5 to 20 years, Long (1995) compared

several sets of national and state-level cohort-component projections produced by

the Census Bureau with those generated by simple geometric extrapolations. He

found no consistent differences in forecast accuracy. In fact, for national projec-

tions the geometric extrapolations had smaller errors than the cohort-component

projections in a large majority of the comparisons. He concluded that a case for

complexity in projection methods cannot be made on the basis of accuracy alone.

Mulder (2002) reported similar results in a study of 17 sets of national projections

produced by the Census Bureau between the 1940s and 1990s; like Long, she found

that the geometric extrapolations generally outperformed the cohort-component

model.

Morgenroth (2002) evaluated the accuracy of 5-year projections based on

cohort-component, regression-based, and simple extrapolation methods for

counties in Ireland. He found the simple extrapolation methods to be at least as

accurate—and in some instances considerably more accurate—than the more

complex methods.
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Wilson (2007) evaluated the accuracy of national population projections in

Australia. He found the cohort-component projections produced in the 1960s and

1970s to be less accurate than the extrapolation of previous growth rates, but the

opposite was true for projections produced in the 1980s and 1990s.

Rayer (2008) compared cohort-component projections for a sample of states,

counties, and subcounty areas in the United States with averages based on several

extrapolation methods. At every level of geography, he found accuracy and bias to

be about the same for the trend extrapolations as for the cohort-component pro-

jections. He concluded that these two approaches to population projection generally

provide similar results.

Chi (2009) developed several structural models incorporating a variety of

demographic, socioeconomic, transportation, and land use characteristics for

1,837 minor civil divisions (MCDs) in Wisconsin. Using data from 1970 to 2000,

he compared projections derived from the structural models with projections based

on simple trend extrapolation methods. He found the former to be slightly more

accurate but to display more bias. He concluded that the results did not support the

premise that knowledge-based structural models can outperform simple extrapola-

tion methods. Chi and Voss (2011) extended the analysis to include spatial effects

that account for the spillover of population growth from one MCD to another but

found errors for the structural models to be a bit larger than errors for the simple

extrapolation methods. Chi et al. (2011) tested the model using data for census

tracts in Milwaukee, again finding no improvement over the forecasting perfor-

mance of simple extrapolation methods.

In perhaps the most comprehensive evaluation of subnational projections to date,

Smith and Sincich (1992) evaluated five sets of state population projections with

launch years ranging from the mid-1950s to the early 1980s and projection horizons

extending from 5 to 20 years. Their analysis covered four simple trend extrapola-

tion methods (LINE, EXPO, SHIFT, SHARE), an ARIMA time series model, the

Census Bureau’s application of the cohort-component method, and two

employment-based structural models (one from the Bureau of Economic Analysis

and the other from the National Planning Association). They used several measures

of accuracy and bias, and conducted formal statistical tests of differences in errors

by method. Table 13.1 summarizes the results, showing forecast errors averaged

across all launch years. Errors for all series of Census Bureau projections have been

averaged together and are depicted as CB.

Except for EXPO projections for longer forecast horizons (and, to a lesser extent,

SHIFT projections), accuracy levels were similar for all projection methods. For

10-year horizons, for example, MAPEs for all projections fell between 6% and 7%.

For 20-year horizons, the range was 11–16% (11–13%, excluding EXPO). The

EXPO projections had a consistent upward bias and the ARIMA projections had a

consistent downward bias; projections from the other methods displayed little ten-

dency to be too high or too low. Analyses by method, launch year, and forecast

horizon found differences in errors to be small and statistically insignificant for

almost every possible combination of method, launch year, and horizon. The authors

concluded that there is no evidence that complex and/or sophisticated techniques

produce more accurate or less biased forecasts than simple, naive techniques.
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Table 13.1 Measures of accuracy and bias for state population projections: averages covering all

launch years

Length of projection horizon (Years)

Measure Technique 5 10 15 20

MAPE LINE 3.5 6.0 8.0 11.3

EXPO 3.9 7.0 10.6 16.2

ARIMA 3.3 6.3 9.1 11.5

SHIFT 3.8 6.4 9.2 13.4

SHARE 3.6 6.0 8.2 11.7

CB 3.7 6.1 8.3 12.4

NPAa 4.3 6.8 8.4 –

BEA 4.0 6.5 9.1 12.8

RMSPE LINE 5.1 8.2 10.8 14.3

EXPO 6.3 11.7 20.2 33.0

ARIMA 4.6 8.2 11.7 14.8

SHIFT 5.5 9.3 13.2 18.7

SHARE 5.2 8.4 11.3 15.2

CB 5.0 8.2 10.7 15.1

NPAa 5.3 8.5 10.3 –

BEA 5.8 8.8 11.6 15.2

90PE LINE 7.7 11.8 26.4 22.3

EXPO 8.6 13.6 21.3 32.0

ARIMA 7.2 13.6 18.9 23.6

SHIFT 8.1 13.1 19.5 27.7

SHARE 7.8 12.1 17.9 23.4

CB 8.1 13.2 17.5 24.7

NPAa 8.3 13.4 17.9 –

BEA 9.7 14.1 18.3 26.1

MALPE LINE 0.1 �0.5 �1.1 �1.9

EXPO 1.2 2.4 4.3 7.8

ARIMA �1.1 �2.8 �4.4 �6.0

SHIFT 0.4 0.2 �0.2 �0.8

SHARE 0.4 0.2 0.2 0.4

CB �0.7 �1.1 �0.4 2.4

NPAa �2.4 �0.9 �0.6 –

BEA 1.7 �3.6 �2.6 �4.9

% POS LINE 51.3 46.7 47.5 44.7

EXPO 59.0 60.4 61.5 60.7

ARIMA 40.6 40.0 36.0 34.7

SHIFT 54.0 51.6 51.5 46.7

SHARE 54.0 51.2 54.0 49.3

CB 44.4 46.0 50.3 55.7

NPAa 33.0 46.0 49.0 –

BEA 64.0 34.0 43.0 40.0

Source: Smith and Sincich (1992)
a20-year projection horizon not available
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We know of only two empirical studies that have not shared this conclusion.

Keyfitz (1981) compared national cohort-component projections published by the

United Nations in the late 1950s with projections based on the extrapolation of

1950–1955 exponential growth rates. He found the cohort-component projections

to have smaller forecast errors than the exponential extrapolations. When he used

projected growth rates for 1955–1960 instead of actual growth rates for 1950–1955

as the base for the exponential extrapolations, however, much of the difference in

errors was wiped out. It also should be noted that for long-range projections, 5-year

base periods (such as those used by Keyfitz) have been found to produce larger

forecast errors than either 10- or 20-year base periods, especially for the exponen-

tial method and for rapidly growing areas (Smith and Sincich 1990). We return to

this issue later in this chapter.

Sanderson (1999) evaluated projections of the world population and projections

of birth and death rates for several countries. He compared results from standard

cohort-component models with results from structural models. He found that pro-

jections from the structural models were more accurate than cohort-component

projections in the majority of the comparisons. Recognizing the limitations of his

very small sample size, however, Sanderson stopped short of concluding that

structural models generally provide more accurate forecasts than extrapolation

methods. Rather, he concluded that structural models can improve forecast accu-

racy when projections from structural models are averaged together with projec-

tions from other models. We return to the potential benefits of combining forecasts

later in this chapter. It also should be noted that Sanderson’s study covered birth and

death rates but did not consider migration, the most volatile component of popula-

tion growth at the state and local level.

The Census Bureau sponsored a great deal of research on the development of

economic-demographic projection models during the 1980s (Long and McMillen

1987). The resulting model for states—called ECESIS—was found to be more

useful for simulation purposes than for population forecasting and the Census

Bureau has never used the model for its “preferred” series of state projections;

instead, it continued to use trend extrapolation methods for projecting components

of growth (Campbell 1994, 1996; U.S. Census Bureau 2005). Although a structural

model was used in the mid-1990s to produce an alternative series of migration

projections, extrapolation methods were considered to be the best available for state

projections (Campbell 1996).

There is a substantial body of evidence, then, supporting the notion that more

complex methods—including structural models—do not produce more accurate

forecasts of total population than can be achieved with simple trend extrapolation

methods; in fact, some studies have found the opposite to be true. There is very little

evidence suggesting that more complex methods consistently produce more accu-

rate forecasts than simple methods. We believe the weight of the evidence is

sufficient to conclude that—to date—neither the sophistication of structural models

nor the complexity of time series and cohort-component models has led to consis-

tently greater forecast accuracy for projections of total population than can be

achieved with simple extrapolation methods.
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Why is it that complex methods do not produce more accurate forecasts than

simpler methods? We believe there is a certain irreducible level of uncertainty

regarding the future. No projection method—no matter how complex or

sophisticated—can consistently improve forecast accuracy beyond that level.

Based on the evidence to date, it appears that the relatively small amount of

historical information contained in simple trend and ratio extrapolation methods

provides as much guidance to this uncertain future as does the much larger amount

of information contained in more complex and sophisticated methods.

Cohort-component projections are generally no more accurate than trend extrap-

olations because forecasting fertility, mortality, and migration rates is just as

difficult as forecasting changes in total population (perhaps more difficult). This

difficulty offsets the potential advantages offered by data disaggregation and the

stability of the age-sex structure. Will the application of time series methods or the

development of new data sources improve the accuracy of cohort-component pro-

jections? We doubt it. Projections will still be based on the extrapolation of past

trends, and those trends will most likely be highly correlated with those underlying

the simple extrapolation methods. It is unlikely that more complex approaches to

extrapolating past trends will lead to any significant improvements in forecast

accuracy.

What about structural and microsimulation models? Might improvements in

those models lead to improvements in forecast accuracy? Again, we are doubtful.

Knowledge regarding the determinants of population change is far from perfect.

Consequently, it is impossible to construct models that realistically incorporate the

effects of all the factors affecting population change. Even if such models could be

constructed, there is no certainty that past relationships between independent and

dependent variables will remain constant in the future. More critical yet, even if

those relationships were to remain constant, the future values for the independent

variables themselves would still be unknown. Is there is any reason to believe these

variables can be projected more accurately than demographic variables? We do not

believe so. In fact, given the relative stability of demographic processes, the

opposite is more likely true.

We do not mean to imply that all relatively simple methods perform equally well

under all circumstances. On the contrary, there are circumstances in which some

simple methods produce less accurate or more biased forecasts than other simple

methods or more complex methods. We investigate some of these possibilities later

in this chapter. “Simple” should not be confused with “simplistic.” Informed

judgment is needed to determine when and how simple methods can best be

applied.

One further caveat should be mentioned. Most of the empirical studies discussed

above focused on projection horizons ranging between 5 and 25 years. Little

empirical evidence exists for very short horizons (i.e., less than 5 years) or very

long horizons (i.e., greater than 25 years). Our conclusions regarding forecast

accuracy thus refer to projections spanning horizons of 5–25 years. We will look

at the relationship between forecast errors and length of forecast horizon later in this

chapter.
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13.2.1.2 Projections in Other Fields

The discussion so far has focused exclusively on the forecast accuracy of popula-

tion projections. What about studies of forecast accuracy in other fields, such as

business, economics, political science, sociology, psychology, and meteorology?

What does the evidence show regarding the forecasting performance of different

methods? In particular, how do simple methods compare with more complex

methods and how do structural models compare with strictly extrapolative

methods?

Studies covering variables as diverse as GNP, employment, inflation, housing

starts, company earnings, sales of particular products, market share, crime rates,

psychiatric diagnoses, and annual rainfall have found results similar to those

reported here for population projections. Many analysts have concluded that com-

plex or statistically sophisticated forecasting methods are generally no more accu-

rate than simpler methods (Armstrong 1985; Ascher 1981; Crone et al. 2011;

Mahmoud 1984; Makridakis and Hibon 2000; Schnaars 1986). Others have con-

cluded that structural models are generally no more accurate than trend extrapola-

tion methods (Brodie and De Kluyver 1987; LeSage 1990; Makridakis 1986). Some

have even questioned the value of incorporating expert judgment in the forecasting

process, at least beyond some minimal level (Pant and Starbuck 1990).

There is not unanimity on these conclusions, however, particularly with respect

to the benefits of structural models. A number of analysts believe that structural

models do produce more accurate forecasts than strictly extrapolative methods, at

least for short projection horizons (Armstrong 1985; Batchelor and Dua 1990;

Clemen and Guerard 1989; Fildes 1985; Leitch and Tanner 1995). For example,

West and Fullerton (1996) made forecasts of a number of economic and demo-

graphic variables for metropolitan areas in Florida, using structural models and four

different trend extrapolation methods. Their forecasts extended from one to ten

quarters. They found that on average the structural models performed better than

the extrapolation methods. However, the relative performance of several of the

extrapolation methods improved as the forecast horizon increased, so that by the

ninth and tenth quarters errors for the extrapolation methods were virtually identical

to those for the structural models. They also found that differences in the complex-

ity of extrapolation methods had no impact on forecasting performance: simple

linear and exponential extrapolations performed just as well as more complex time

series models.

Most of the studies from non-demographic fields focused on forecasts of 2 years

or less. This time frame is very different from that used in most studies of

population projections, which typically focus on horizons of 5 years or longer.

Consequently, it is important to note that several of the studies finding that

structural models produce more accurate forecasts than trend extrapolation methods

also found the superiority of structural models to decline as the forecast horizon

increased. Clemen and Guerard (1989) and Leitch and Tanner (1995) found the

superior performance of structural models to disappear within four quarters; West
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and Fullerton (1996) found the same result within ten quarters. Armstrong (1985),

however, reported exactly the opposite: Structural models are likely to be more

accurate than strictly extrapolative models for long-term forecasts, but not for short-

term forecasts.

13.2.1.3 Evaluating the Evidence

A substantial body of evidence supports the conclusion that more complex methods

generally do not lead to more accurate forecasts of total population than can be

achieved with simpler methods. This evidence has been drawn from studies cover-

ing a wide variety of methods, launch years, forecast horizons, and geographic

regions. Studies from other fields have found similar results. Although one method

may have greater accuracy than another for a particular set of projections, no single

model or technique is consistently more accurate than all the others. On the

contrary, most models and techniques produce similar results when applied in

similar circumstances (e.g., launch year, target year, level of geography).

This does not imply, of course, that complex methods should never be used.

There are many purposes for which complex methods are very useful, such as

evaluating components of growth, providing demographic detail, conducting sim-

ulations, evaluating alternative scenarios, and connecting population projections to

other types of projections. The political benefits of complex methods may also be

important in some circumstances. Complex methods (including structural and

microsimulation models) clearly have several important advantages over simple

extrapolation methods. Greater forecast accuracy, however, is not one of them.

13.2.2 Population Size

Many studies covering a variety of projection methods, geographic regions, launch

years, and time horizons have found forecast accuracy to improve as population

size increases (Isserman 1977; Murdock et al. 1984; Rayer 2008; Smith and Sincich

1988; White 1954). This relationship has been found even when the effects of

variables such as the population growth rate have been accounted for (Rayer and

Smith 2010; Smith 1987; Tayman et al. 2011). Similar results have been found in

evaluations of population estimates.

A number of studies, however, have found this relationship to weaken

(or disappear completely) once a certain population size has been reached (Schmitt

and Crosetti 1951; Smith 1987; Smith and Shahidullah 1995; Tayman 1996;

Tayman et al. 2011). The threshold level at which the relationship begins to weaken

varies with the size of the geographic unit under consideration. For example, the

relationship begins to weaken at a smaller population size for projections of

counties than for projections of states. It appears that not only does population
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size matter, but so does the relationship between population size and the size of the

geographic area.

A clear relationship between forecast errors and population size is generally

found only for measures of accuracy (e.g., MAPE), not for measures of bias (e.g.,

MALPE). A number of studies have found no consistent relationship between

population size and bias (Murdock et al. 1984; Rayer and Smith 2010; Smith and

Sincich 1988). Even when a relationship is found, it is often specific to a particular

projection method or time period or is caused by a spurious correlation rather than

by population size per se (Smith 1987; Tayman et al. 1998). Although the evidence

is not completely clear-cut, it appears that population size has no predictable impact

on the tendency for population projections to be too high or too low.

Table 13.2 illustrates the relationship between population size and forecast

errors. It shows errors for 10-year projections for counties in the United States

(Smith 1987). For all four projection methods, MAPEs declined steadily as popu-

lation size increased. MAPEs for the smallest counties were approximately twice as

large as MAPEs for the largest counties. Differences in MAPEs among the smallest

size categories were quite large, but differences among the largest categories were

very small. MALPEs also showed a strong positive relationship with population

size, but this relationship was spurious, caused by a positive correlation between

population size and growth rate.

The effect of population size on forecast accuracy can also be seen by comparing

errors for different types of geographic units. For 10-year projection horizons,

MAPEs for states generally average 4–8% (Kale et al. 1981; Smith and Sincich

1988, 1992; White 1954). For counties, they generally average 8–14% (Murdock

Table 13.2 Errors for 1980 county population projections by size

MAPE

Population size in 1970 N LINE EXPO SHIFT Average

<5,000 302 20.8 18.0 25.1 21.2

5,000–14,999 918 15.9 14.7 18.4 16.3

15,000–24,999 555 12.6 11.8 14.4 12.9

25,000–49,999 539 11.8 11.3 13.0 11.9

50,000–99,999 324 10.2 11.0 11.3 10.7

100,00+ 333 9.3 11.7 10.5 10.3

All counties 2,971 13.7 13.1 15.7 14.1

MALPE

Population size in 1970 N LINE EXPO SHIFT Average

<5,000 302 �18.0 �14.2 �22.3 �18.2

5,000–14,999 918 �15.0 �13.5 �17.7 �15.4

15,000–24,999 555 �11.7 �10.5 13.5 �11.9

25,000–49,999 539 �9.1 �7.2 �10.0 �8.8

50,000–99,999 324 �5.6 �1.9 �5.7 �4.4

100,00+ 333 2.7 7.4 3.3 4.5

All counties 2,971 �10.6 �8.3 �12.3 �10.4

Source: Smith (1987)
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et al. 1984; Rayer 2008; Smith 1987). For census tracts and similarly sized areas,

they generally average 15–21% (Murdock et al. 1984; Rayer and Smith 2010;

Smith and Shahidullah 1995; Tayman 1996). For areas smaller than census tracts,

errors are even larger (Tayman et al. 1998, 1999). Clearly, the larger the population

of the area to be projected, the more accurate the forecast is likely to be.

13.2.3 Population Growth Rate

Population growth rates also have a strong impact on forecast errors. Growth rates

can be measured for either the base period or the projection horizon. Both

approaches are valid for analytical purposes, but we believe it is more useful to

focus on the base period because information on growth rates over the projection

horizon is not available at the time a set of projections is made. Consequently, if

insights gained from studying the relationship between growth rates and forecast

accuracy are to be used in making population projections, they must be based on

growth rates during the base period.

MAPEs have been found to be smallest for places with small but positive growth

rates over the base period and to increase as growth rates deviate in either direction

from those low levels (Rayer 2008; Rayer and Smith 2010; Smith 1987; Smith and

Shahidullah 1995; Tayman et al. 2011). That is, there is a U-shaped relationship

between forecast accuracy and population growth rates, with the largest errors

typically found for places that are either growing or declining rapidly.

Bias is also strongly affected by differences in population growth rates. A

number of studies have found that places losing population over the base period

tend to be under-projected whereas rapidly growing places tend to be over-

projected (Rayer 2008; Rayer and Smith 2010; Smith 1987; Smith and Shahidullah

1995; Tayman et al. 2011).

Table 13.3 uses the same county projections as Table 13.2. For all four methods,

there is a strong U-shaped relationship between growth rates and MAPEs. MAPEs

were smallest for counties with growth rates between 0% and 15%, somewhat

larger for counties with growth rates of 25–50% or with moderate negative growth

rates, and much larger for counties with growth rates above 50% or below �10%.

The effect of very high growth rates on errors was greatest for EXPO and the effect

of very low growth rates was greatest for SHIFT.

Table 13.3 also shows a strong positive relationship between growth rates and

MALPEs. MALPEs have large negative values for counties losing more than 10%

of their populations during the base period, but those values increase steadily as the

growth rate increases, eventually reaching positive levels for three of the four

projection methods. The SHIFT method had the strongest downward bias for

counties losing population and the EXPO method had the strongest upward bias

for rapidly growing counties.

What caused the patterns shown in Table 13.3?We believe theywere caused by the

tendency for extreme growth rates to regress toward the mean over time (Smith 1987).
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As shown in Table 13.4, the vast majority of counties that lost population or grew

very slowly during one decade grewmore rapidly during the following decade (or lost

less rapidly). Conversely, the vast majority of counties that grew very rapidly during

one decade grew more slowly during the following decade. As a consequence, pro-

jections based on periods of very rapid growth are likely to be too high and projections

based on periods of large population declines are likely to be too low. This “regression

toward the mean” phenomenon provides an explanation not only for the U-shaped

relationship between growth rates and MAPEs, but also for the strong positive

relationship between growth rates and MALPEs.

Why do growth rates regress toward the mean over time? To answer this

question, we must consider the components of growth. Migration is typically the

demographic variable most responsible for differences in growth rates among states

and local areas (Congdon 1992; Cushing and Poot 2004; Smith and Ahmed 1990).

Mortality and fertility rates do not differ nearly as much from place to place as do

migration rates, and do not change as rapidly over time. For states and local areas,

then, migration is the demographic variable that usually contributes most to differ-

ences in population growth rates and to changes in those rates over time.

In order for rapidly growing areas to maintain high growth rates, levels of net

in-migration must continue increasing year after year. Yet if out-migration rates are

based on the size of an area’s population and in-migration rates are based on the size

of the population outside that area, levels of net in-migration can increase only if

in-migration rates go up or out-migration rates go down (Smith 1986). Similarly,

Table 13.3 Errors for 1980 county population projections by growth rate

MAPE

Population growth

rate 1960–1970 N LINE EXPO SHIFT Average

<�10% 516 20.5 17.0 25.0 20.8

�10–0% 800 13.3 13.0 15.8 14.0

0–10% 766 10.6 10.5 12.0 10.9

10–25% 558 11.0 10.8 11.9 11.2

25–50% 243 13.9 13.9 14.5 13.9

50–100% 75 19.8 23.7 20.3 20.3

100%+ 13 24.1 47.5 24.6 28.3

All counties 2,971 13.7 13.1 15.7 14.1

MALPE

Population growth

rate 1960–1970 N LINE EXPO SHIFT Average

<�10% 516 �20.3 �16.6 �24.9 �20.6

�10–0% 800 �12.5 �12.2 �15.2 �13.3

0–10% 766 �8.2 �8.0 �9.8 �8.7

10–25% 558 �4.9 �3.0 �5.3 �4.4

25–50% 243 �6.1 0.6 �4.6 �3.4

50–100% 75 �6.0 12.1 �1.3 1.6

100%+ 13 �6.1 40.4 1.4 11.9

All counties 2,971 �10.6 �8.3 �12.3 �10.4

Source: Smith (1987)

13.2 Factors Affecting Accuracy and Bias 341



for areas losing population, levels of net out-migration must eventually decline

because the source of out-migrants is growing more slowly than the source of

in-migrants. As a result, it is unlikely that an area will maintain an extremely high or

low rate of population growth for extended periods of time.

There are several other reasons for expecting extreme migration rates to become

more moderate over time. Rapidly growing areas have increasing numbers of

“migration-prone” residents who are likely to move again, whereas declining

areas have declining numbers of such residents. Some in-migrants may become

disenchanted with their new locations and return to their former places of residence.

It could also be argued that migration itself is a “self-equilibrating mechanism” that

causes the comparative advantage of one area over another to fade over time,

leading to more moderate rates of in- or out-migration (Greenwood 1997; Hunt

1993; Sjaastad 1962).

In summary, theory and empirical evidence both suggest that extreme growth

rates are likely to regress toward the mean over time. Consequently, projections

based on historical growth trends will often be too high for rapidly growing areas

and too low for declining or very slowly growing areas. As we explain later in this

chapter, this finding provides a basis for developing an alternative approach to the

construction of population projections.

13.2.4 Length of Horizon

On average, forecast accuracy declines as the projection horizon becomes longer.

This result has been found in many studies of population projections (Keilman

1990; Keyfitz 1981; Rayer 2008; Smith and Sincich 1992) as well as studies in other

fields (Batchelor and Dua 1990; Makridakis and Hibon 2000; Schnaars 1986;

Zarnowitz 1984). Such a result is not surprising, of course. The farther into the

future a projection extends, the greater the opportunity for unforeseen events to

occur and for factors affecting population growth to diverge from their predicted

trends.

Table 13.4 Comparison of decade growth rates for counties, 1950–1980

Growth rate

in decade t

Counties with higher growth

rate in decade t + 1 than

decade t

N Number Percent

<�10% 1,271 1,125 88.5%

�10–0% 1,532 1,221 79.7%

0–10% 1,354 883 65.2%

10–25% 1,031 487 47.2%

25–50% 485 157 32.4%

50–100% 213 42 19.7%

100%+ 56 3 5.4%

All counties 5,942 3,918 65.9%

Source: Smith (1987)
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What does the error-horizon relationship look like? Several studies in the general

forecasting literature have reported errors that grew about linearly with increases in

the projection horizon (Ascher 1981; Schnaars 1986). Many studies of population

projections have found the same thing for measures of accuracy (Kale et al. 1981;

Rayer 2008; Rayer and Smith 2010; Schmitt and Crosetti 1951; Smith 1987; White

1954). Table 13.1 illustrates this relationship for several projection methods and

measures of error.

Smith and Sincich (1991) analyzed the error-horizon relationship in detail,

testing for linearity using several projection methods, measures of error, launch

years, size categories, and growth-rate categories. They made projections for states

using four simple extrapolation methods (LINE, EXPO, SHIFT, SHARE), 10-year

base periods, and launch years at the beginning of every decade between 1910 and

1970. Projection horizons ranged from 5 to 50 years, in 5-year intervals.

For all four methods, they found MAPEs to increase about linearly as the

projection horizon increased to 35 years; after 35 years, MAPEs began to deviate

from the linear trend (especially for the EXPO technique). The same basic results

were found for projections for each individual launch year and when states were

divided into size and growth-rate categories. Statistical tests provided formal

confirmation of this generally linear relationship. The only exceptions were

MAPEs produced by the EXPO projections, which grew at an increasing rate for

states with high growth rates during the base period. An approximately linear

relationship was found for several other measures of forecast accuracy as well

(e.g., RMSPE, 90PE), but it was not as strong as the relationship for MAPE. The

MAPE-horizon relationship is illustrated in Fig. 13.1 for the LINE and EXPO

methods.

Keyfitz (1981) and Stoto (1983) analyzed a large number of population pro-

jections made for countries using the cohort-component method and several extrap-

olation methods. Instead of using the MAPE as a measure of error, they focused on

the difference between the projected rate of population increase and the actual rate

realized over time. They concluded that this difference tends to remain constant

over the entire length of the projection horizon.

This conclusion is virtually the same as Smith and Sincich’s conclusion that the

MAPE grows about linearly with the projection horizon. For example, if the

projected rate of increase differed from the actual rate by 1% per year, differences

between the projected and actual populations would be about 5% after 5 years,

about 10% after 10 years, and so forth. The only differences would be caused by the

effects of compounded growth rates, which would be small for short-and medium-

range projections.

Further research will add to our ability to generalize these results. Would a linear

relationship be found for other measures of error? Would it be found for other

commonly used projection methods? Would similar results be found for small

geographic units, which often exhibit high levels of growth-rate volatility over

time? Would a linear relationship be found for projections of fewer than 5 years?

What about horizons of 40 or 50 years? There are still many gaps in our
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understanding of the relationship between population forecast errors and the length

of the projection horizon.

The empirical regularities discussed above refer only to measures of accuracy,

not to measures of bias. Most studies have focused solely on accuracy, but those

that also considered bias reported no clear consistent relationship between forecast

errors and the length of the projection horizon. Smith and Sincich (1991) found

MALPEs to differ from one projection method to another, from one size-growth

category to another, from one launch year to another, and over the length of the

projection horizon. Table 13.1 shows no clear relationship between measures of

bias (MALPE and %POS) and the length of the projection horizon. We do not

0

10

20

30

40

50

60

5 10 15 20 25 30 35 40 45 50

M
A

P
E

Years to Projection Horizon

0

20

40

60

80

100

120

5 10 15 20 25 30 35 40 45 50

M
A

P
E

Years to Projection Horizon

Population < 1 million, Growth Rate > 25%

Population < 1 million, Growth Rate < 25%

Population > 1 million, Growth Rate > 25%

Population > 1 million, Growth Rate < 25%

LINE

EXPO

Fig. 13.1 MAPEs for state population forecasts by length of horizon (Source: Smith and Sincich

1991)

344 13 Forecast Accuracy and Bias



believe the length of the projection horizon has any consistent impact on the

tendency for projections to be too high or too low.

13.2.5 Length of Base Period

The length of the base period is one of the most fundamental decisions that must be

made when producing population projections, but few studies have considered how

this decision is made and what effect it has on population forecast errors. If simple

extrapolation methods are used, what historical period should be used as the basis

for those extrapolations? If a time series model is used, how many observations are

needed? If a cohort-component model is used, what historical time period should be

considered in choosing the appropriate mortality, fertility, and migration rates?

How many data points are needed to construct reliable structural models?

A common rule of thumb for trend extrapolation methods is that the length of the

base period should roughly correspond to the length of the projection horizon (Alho

and Spencer 1997; Kale et al. 1985). For example, 5 years of base data may be

sufficient for a 5-year projection, but 20 years of data are needed for a 20-year

projection. Is this valid? What does the empirical evidence show?

Smith and Sincich (1990) made population projections for states using three

simple extrapolation methods (LINE, EXPO, SHIFT) and annual population data

from 1900 to 1980. Projections were made for 1-, 5-, 10-, 20-, and 30-year horizons

using base periods of 1, 5, 10, 20, 30, and 40 years. For all three methods they found

that MAPEs for 1-year horizons were virtually identical for base periods of 1, 5,

10, and 20 years; they were slightly larger for base periods of 30 and 40 years. For

5-year horizons there was a barely discernible U-shaped relationship between

MAPEs and the length of the base period. For all three methods, projections derived

from 10-year base periods had slightly smaller MAPEs than projections derived

from either shorter or longer base periods. They concluded that for short projection

horizons, differences in the length of the base period have very little impact on

forecast accuracy.

For longer horizons, however, differences in the length of the base period had a

much larger impact (Fig. 13.2). For LINE and SHIFT, MAPEs declined steadily as

base periods increased from 1 to 5 to 10 years, but changed very little thereafter.

This pattern was found for all three horizons, but was most consistent for 20- and

30- year horizons. For EXPO, a similar pattern was found for the 10-year horizon,

but for the 20- and 30-year horizons MAPEs continued to decline as the base period

increased to 40 years. For increases in base periods beyond 20 years, however, the

declines were very small.

The authors refined their analysis by controlling for the effects of population

size and growth rate (not shown here). They concluded that except for EXPO

and SHIFT projections of rapidly growing states, increasing the base period beyond

10 years did not lead to greater forecast accuracy. In fact, longer base periods

sometimes led to larger forecast errors. It appears that too short a base period
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(e.g., 1 or 5 years) may incorrectly interpret short-run fluctuations as long-run

trends, whereas too long a base period (e.g., 30 or 40 years) may reflect historical

trends that are no longer valid. For EXPO and SHIFT projections of rapidly

growing states, however, increasing the base period from 10 to 20 years led to

substantial improvements in forecast accuracy, especially for the 30-year horizons.

Increases beyond 20 years generally led to no further improvements.

Why does a longer base period improve the forecasting performance of the

EXPO and SHIFT methods in rapidly growing places? Again, we believe the

explanation lies with the tendency for extreme growth rates to regress toward

the mean over time (Smith 1987). For rapidly growing places, the EXPO method

projects a high, unchanging growth rate and the SHIFT method projects an increas-

ing share of the parent population. Very high growth rates, however, are generally

not maintained for long periods. Consequently, using a longer base period helps

reduce the large errors and strong upward bias often found in EXPO and SHIFT

projections for places that grew rapidly during the 10 years immediately before the

launch year.

Smith and Sincich (1990) also considered whether differences in the length of

the base period have an impact on the tendency of population projections to be too

low or too high. They found no consistent relationship between MALPEs and the

length of the base period. They concluded that the degree of bias for simple

extrapolation methods was not significantly affected by differences in the length

of the base period.

How do the results reported by Smith and Sincich compare with those found in

other studies of population projections? Using a ratio method similar to SHIFT,

White (1954) found that a 60-year base period led to considerably larger errors in

projections of state population than did a 30-year base period. Voss and Kale (1985)

made forecasts of minor civil divisions in Wisconsin and found that a 30-year base

period produced slightly more accurate forecasts than a 10-year base period for the

EXPO technique. They also found that weighting more recent decades in the base
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period more heavily than more distant decades improved forecast accuracy.

Beaumont and Isserman (1987) made LINE and EXPO projections for states that

grew by more than 20% during the decade immediately prior to the launch year. For

EXPO projections they found that a 40-year base period produced smaller errors

and less upward bias than a 10-year base period; for LINE, however, they found that

a 40-year base period did not improve forecast accuracy and led to considerably

more bias. Rayer (2008) evaluated 10-, 20- and 30-year base periods for county

projections based on several extrapolation methods and lengths of horizon. He

found only slight differences in most instances. The only exception was for EXPO

projections covering a 30-year horizon, for which a 20-year base period yielded a

substantially smaller error than a 10-year base period. The results of all these

studies were generally consistent with those reported by Smith and Sincich (1990).

At the beginning of this section we cited a rule of thumb stating that—for

extrapolation methods—the length of the base period should roughly correspond

to the length of the projection horizon. The evidence we have presented supports

that rule to some extent, but not completely. For short-range projections, a short

period of historical data appears to be sufficient. For long-range projections, at least

10 years of base data are needed to achieve the best possible results. However, base

periods longer than 10 years are generally not necessary, and may even cause

forecast accuracy to deteriorate. The only exceptions are EXPO and SHIFT pro-

jections of rapidly growing areas (and, to a smaller degree, SHIFT projections of

declining areas), where increasing the base period to 20 years seems to improve

forecast accuracy by moderating the impact of extreme growth rates.

The studies cited above used simple extrapolation methods for projecting total

population. Little research on this issue has been done for other projection methods.

In a study of cohort-component projections for the Netherlands, Keilman (1990)

found that 10 years of base data led to more accurate forecasts of deaths than did

5 years of base data; however, he found no significant impact of differences in base

period on forecasts of births. We are not aware of any other studies on this topic.

There is no uniformity among practitioners regarding the choice of the base

period to be used for population projections. Simple extrapolation methods have

been applied using anywhere between 1 and 60 years of base data. Time series

models often use 50 or more observations, but some demographic applications have

used as few as 11 (Voss and Kale 1985). Some cohort-component models use only

the most recent data for constructing mortality, fertility, and migration rates, while

others use a long time series or rely on expert judgment. For structural models the

length of base period seems to depend primarily on the number of years for which

relevant data series are available. Although the evidence is clear for simple extrap-

olation methods, more research is needed before we can draw firm conclusions

regarding the optimal length of base period for other projection methods.
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13.2.6 Launch Year

Some time periods are characterized by a high degree of stability in demographic

trends while others are characterized by sudden dramatic changes. Since all objec-

tive projection methods are extrapolations of one type or another, the degree of

stability is likely to have an impact on forecast accuracy. It might therefore be

expected that forecast errors would be larger for some time periods (i.e., launch

years) than for others. In fact, a number of researchers have found this to be true, at

least to some extent (Long 1995; Mulder 2002; Rayer et al. 2009; Smith and Sincich

1988).

Long (1995) evaluated forecast errors for a number of national and state pro-

jections produced by the Census Bureau. At the national level he evaluated pro-

jections made between the mid-1940s and mid-1980s, using the RMSE of the

annual growth rate as a measure of error. For 5-year horizons, he found the

RMSE to vary from less than 0.1% to almost 1.0%. For 15-year horizons, it varied

from less than 0.2–1.1%. Errors were highest for projections made during the

mid-1940s, but showed no clear trend from the 1950s onward, bouncing up and

down from one launch year to another. Mulder (2002) also reported substantial

differences from one launch year to another in a study of the Census Bureau’s

national projections.

For state projections, Long evaluated projections made between the mid-1960s

and mid-1980s. For 5-year horizons, he found MAPEs to vary between approxi-

mately 3% and 5%. For 15-year horizons, MAPEs varied from less than 6% to more

than 12%. Again, there was no clear trend regarding changes in accuracy over time.

The proportional differences in accuracy by launch year noted by Long were

considerably smaller for state projections than for national projections. This is

because errors for state projections were based on averages covering all states,

whereas errors for national projections were based on a single projection for each

launch year. Generally, one would expect more instability in error characteristics

for a single place than for an average covering many places.

Smith and Sincich (1988) also evaluated the forecast accuracy of state pro-

jections, but covered a broader range of launch years, considered the direction of

errors as well as their magnitude, and evaluated variances as well as means. Using

10-year base periods and 10- and 20-year horizons, they made projections for the

50 states using four trend extrapolation methods (LINE, EXPO, SHIFT, SHARE)

and an average of the projections from all four methods (AVE). They used all

decennial census years from 1910 to 1980 as launch years. Table 13.5 shows the

MAPEs and MALPEs for the 10-year projections, by launch year.

MAPEs were largest for the 1910 launch year, especially for the EXPO method.

Thereafter, MAPEs fluctuated within a range of approximately 4–8%, with most

falling between 6% and 8%. After 1910, there was no apparent trend over time:

MAPEs sometimes increased from one launch year to the next and sometimes
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declined. These data show some variation from one launch year to another, but not a

great deal.

Results were considerably different for MALPEs, which ranged between �7%

and +14% (with most falling between �5% and +5%). All methods had positive

errors for launch years 1910, 1930, 1960, and 1980 and negative errors for launch

years 1940, 1950, and 1970; all except EXPO had negative errors for launch year

1920. These data reflect a high degree of variation from one launch year to another,

but do not show any consistent trends over time or any general tendency for

projections to be too high or too low.

The authors used statistical tests to evaluate stability over time in the means and

variances of forecast errors. They concluded that there was a high degree of stability

for the means and variances of absolute percent errors, somewhat less stability for

the variances of algebraic percent errors, and no stability at all for the means of

algebraic percent errors. Since the MALPE is a measure of bias, this implies that the

study of past forecast errors can tell us little (if anything) about the likelihood that

current projections will be too high or too low. However, the stability observed for

the means and variances of absolute percent errors implies that the study of past

errors can tell us something about the expected degree of accuracy of current

projections.

Rayer et al. (2009) conducted a similar analysis of forecast errors for counties.

Using several extrapolation methods and a sample of 2,482 counties with stable

geographic boundaries between 1900 and 2000, they evaluated a series of

Table 13.5 Errors for 10-year population projections for states by launch year, 1910–1980

MAPE

Launch year LINE EXPO SHIFT SHARE Average

1910 8.4 15.6 9.5 11.0 10.9

1920 6.6 7.3 6.7 7.4 7.0

1930 6.5 8.6 7.1 7.8 7.5

1940 7.9 7.3 7.8 7.8 7.7

1950 6.9 5.6 6.6 6.7 6.4

1960 4.4 7.3 5.0 6.0 5.6

1970 8.4 7.9 8.3 8.5 8.2

1980 6.1 8.0 6.9 6.4 6.2

MALPE

Launch year LINE EXPO SHIFT SHARE Average

1910 5.2 14.1 7.1 7.9 8.6

1920 �1.4 1.2 �0.6 �0.8 �0.4

1930 3.5 5.9 4.4 3.8 4.4

1940 �6.8 �5.9 �6.6 �6.6 �6.5

1950 �5.2 �2.6 �4.5 �4.7 �4.2

1960 1.3 5.4 2.4 2.0 2.8

1970 �3.7 �1.7 �3.1 �3.3 �2.9

1980 3.5 6.4 4.5 4.2 3.6

Source: Smith and Sincich 1988, 1992 and unpublished data
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population projections with 20-year base periods; 10-, 20-, and 30-year horizons;

and target years at 10-year intervals between 1930 and 2000. The results for the

trimmed means are shown in Table 13.6. For MAPEs, there was a substantial

degree of stability from one target year to another, albeit with some indication

that errors have become smaller in recent decades. For MALPEs, no stability was

apparent, as errors varied considerably from one target year to another.

Several other studies have compared forecast errors from different launch years.

Keyfitz (1981) and Stoto (1983) focused on national-level projections; Kale

et al. (1981) focused on projections for states; Smith (1987) focused on projections

for counties; and Isserman (1977) focused on projections for townships. All found

roughly the same results reported by Smith and Sincich (1988) and Rayer

et al. (2009): Measures of accuracy were similar (but not identical) from one launch

year to another, but measures of bias varied considerably. More research—covering

a variety of projection methods, geographic regions, error measures, forecast

Table 13.6 Population forecast errors for U.S. counties by target

year and length of horizon

Target year Horizon MAPE MALPE

1930 10 12.2 2.2

1940 10 11.2 0.4

1950 10 11.2 2.9

1960 10 10.3 0.3

1970 10 9.6 �2.4

1980 10 13.2 �9.5

1990 10 7.8 4.0

2000 10 6.2 �3.5

Average 10 10.2 �0.7

S.D. 10 2.3 4.4

1940 20 20.2 5.9

1950 20 19.9 3.6

1960 20 23.0 6.4

1970 20 16.7 �0.5

1980 20 21.4 �12.1

1990 20 19.4 �9.3

2000 20 11.4 0.7

Average 20 18.9 �0.8

S.D. 20 3.8 7.3

1950 30 33.1 14.0

1960 30 32.9 8.5

1970 30 31.9 9.0

1980 30 22.9 �9.8

1990 30 29.3 �11.9

2000 30 27.8 �14.5

Average 30 29.5 �0.8

S.D. 30 4.2 12.6

Source: Rayer et al. (2009)
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horizons, and launch years—will help us refine these conclusions. Information on

the stability of error distributions over time is crucial for the construction of

empirical prediction intervals, a subject we turn to later in this chapter.

13.3 Projections of Demographic Characteristics

Many studies have evaluated forecast accuracy for projections of total population,

but only a few have considered the accuracy of projections of demographic

characteristics such as age, sex, race, or ethnicity. In a study of national population

projections made between 1950 and 1980 in the Netherlands, Keilman (1990) found

errors to be greatest for the youngest and oldest age groups. Projections were

generally too high for the youngest age groups and too low for the oldest, indicating

that forecasters underestimated future declines in fertility rates and increases in

survival rates for the elderly. Keilman (1999) evaluated projections made by the

United Nations between the 1950s and 1980s for seven regions in the world. He

again found that errors were generally largest for the youngest and oldest age

groups, although the direction of error was not the same in every region.

The results presented by Keilman were based on analyses of national and

regional projections, where migration typically plays a small role in overall popu-

lation change. Consequently, errors in projections of age structure were caused

primarily by errors in the mortality and fertility assumptions. For states and local

areas, however, migration is the most volatile component of population change and

is the major determinant of differences in growth rates (Kulkarni and Pol 1994;

Long and McMillen 1987; Nakosteen 1989). As a result, errors for states and local

areas are likely to be largest in the young adult age groups because those age groups

typically have the highest migration rates.

Smith and Shahidullah (1995) evaluated 10-year projections for census tracts in

three counties in Florida. They found that MAPEs ranged from 20% to 29% for

individual age groups and were generally largest for ages 25–34 and 65+. The

results for ages 25–34 are not surprising, nor are the results for age 65+ when one

recalls that Florida is a retirement state with high levels of elderly migration. On

average, MAPEs for individual age groups were about 40% larger than the MAPE

for the population as a whole (17.6%).

Smith and Tayman (2003) evaluated a series of age-group projections at the

national, state, and county levels in the United States. At the national level, they

found that errors for projections produced between the 1950s and 1980s were

generally largest at the youngest ages, reflecting the difficulty of projecting fertility

rates during periods when those rates were changing rapidly. This result is similar to

that reported by Keilman (1990, 1999).

For state projections produced during the 1970s, 1980s, and 1990s, they found

that MAPEs tended to be largest for the <5 and 25–34 age groups, reflecting the

difficulty not only of projecting fertility rates but also projecting migration rates. On
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average, MAPEs for individual age groups were typically 10–30% larger than

MAPEs for the total population.

For counties in Florida, they found that MAPEs were generally largest in the

25–34 age group. However, they also found relatively large errors in the 55–64 and

65+ age groups. This is similar to the results reported by Smith and Shahidullah

(1995). On average, MAPEs for individual age groups were 45–55% larger than

MAPEs for the total population. They concluded that the impact of migration on

population change becomes larger as the geographic unit becomes smaller.

For short projection horizons, Smith and Tayman (2003) found that errors for

particular age groups were sometimes two, three, or even four times larger than for

other age groups. They noted, however, that cohorts pass through succeeding age

groups as the projection horizon becomes longer, experiencing the error character-

istics of each group as they do so. Relatively large and small errors are thus

averaged together, causing differences in errors among age groups to become

smaller. They speculated that for very long horizons, forecast errors are likely to

be about the same for all age groups.

An interesting question is whether differences in methodological complexity

might have a greater impact on forecast accuracy for projections of demographic

characteristics than for projections of total population. Long (1995) provided one

answer to this question by comparing two sets of national population projections:

the Census Bureau’s cohort-component model and a simple model in which the

exponential growth rate for each age group in the year immediately prior to the

launch year was extrapolated into the future. Focusing on two age groups (15–19

and 60–64), he found errors for 10-year projections to be much larger for the

exponential extrapolations than for the cohort-component projections. He con-

cluded that cohort-component models are more accurate than simpler methods for

projecting population by age group.

We believe a better simple model can be constructed by using a decade rather

than a single year as the base period and by extrapolating by cohort rather than by

age group (Hamilton and Perry 1962). This model is discussed in Chaps. 6 and 7.

Although it breaks the population into age groups, it is still a simple model,

requiring only data by age (or age and sex) in two consecutive censuses rather

than age-specific fertility, mortality, and migration rates and assumptions regarding

future changes in those rates. This model incorporates the effects of population

momentum and provides projections of the demographic characteristics of a pop-

ulation, making up for two of the major shortcomings of simple extrapolation

methods.

Using data for states and for counties in Florida, Smith and Tayman (2003)

compared age-group projections based on the Hamilton-Perry method with those

based on more complex cohort-component models. They found the forecasting

performance of the simpler Hamilton-Perry method to be very similar to that of the

more complex models. Once again, a simple method was found to produce forecasts

that were every bit as accurate as those produced by a more complex method.

We are not aware of evaluations of forecast accuracy for projections of racial,

ethnic, and other characteristics of the population. Such evaluations—along with
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further research on the accuracy of age projections—would provide interesting and

useful information.

13.4 Combining Forecasts

A common finding in the general forecasting literature is that a combination of

forecasts often leads to greater accuracy and less variability than can be achieved

using individual forecasts by themselves (Armstrong 2006; Crone et al. 2011;

Hendry and Clements 2004; Makridakis and Hibon 2000; Webby and O’Connor

1996). This result has been found for many types of forecasts, including gross

national product, inflation, corporate earnings, stock prices, exchange rates, elec-

tricity demand, tourism, psychiatric diagnoses, rainfall, and sunspot cycles. Why

might this be true?

Theoretically, the best model should provide the most accurate forecasts. How-

ever, statistical models are based on the assumption that data patterns and mathe-

matical relationships remain constant over time. This is rarely the case.

Consequently, models that fit the data well during the base period do not necessarily

provide accurate forecasts, and models that provide the best forecasts for one time

period do not necessarily provide the best forecasts for other periods (Armstrong

2001b; Fildes 1992; Makridakis 1986; Pant and Starbuck 1990).

Combinations of forecasts work well for several reasons. First, each individual

method and data set provides potentially useful information; using several forecasts

thus increases the total amount of information going into the final forecast. Second,

offsetting errors tend to cancel each other out, meaning that a combined forecast has

a smaller risk of making a large error than an individual forecast. Finally, it is

important to note that—even though combined forecasts do not outperform every

individual forecast in every situation—there is no way to know in advance which of
the individual forecasts (or forecasters) will perform better or worse than the

combination for a particular set of forecasts. A number of empirical studies have

concluded that combined forecasts are generally more accurate than most (some-

times all) of the individual forecasts making up the combination (Armstrong 2001a;

Becker and Clements 2008; He and Xu 2005; McNees 1992; Schnaars 1986;

Zarnowitz 1984).

Combining can be done in a number of ways. Individual forecasts can be based

on different methods or different specifications of the same method. Combinations

can incorporate the effects of many individual forecasts or only a few. They can be

averages in which each individual forecast is weighted equally (i.e., a simple

average); averages in which the highest and lowest individual forecasts are

excluded (sometimes called a trimmed mean); or averages in which some forecasts

are weighted more heavily than others. For weighted averages, weights can be

based on objective criteria such as previous forecasting performance or on subjec-

tive criteria such as the personal judgment of experts.
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There is no consensus in the literature regarding the best way to combine

forecasts. Bates and Granger (1969) suggested the use of weights based on the

size of errors found in previous applications of the individual forecasting tech-

niques. Although some researchers have found weighted averages to produce more

accurate forecasts than simple averages (e.g., Ashton and Ashton 1985;

Hoogerheide et al. 2010), there is no guarantee that weights found to be optimal

in the past will prove to be optimal in the future. Given this uncertainty, many

researchers have concluded that a simple average or trimmed mean will generally

perform at least as well as more sophisticated weighted averages (Armstrong

2001a; Genre et al. 2013; Hendry and Clements 2004; Pant and Starbuck 1990;

Stock and Watson 2004).

How many individual forecasts should be used in combining? Some empirical

investigations have used only two while others have used 20 or more. The consen-

sus in the general forecasting literature seems to be that the greater the number of

individual forecasts, the better (Granger 1989; Makridakis and Winkler 1983;

Webby and O’Connor 1996). However, a large part of the improvement in perfor-

mance comes with the first four or five forecasts included in the combination;

further additions result in smaller and smaller improvements. It appears that many

of the benefits of combining can be achieved with a relatively small number of

individual forecasts (Armstrong 2001a; Ashton and Ashton 1985; Clemen 1989).

Although combining has been a common practice among forecasters for many

years, demographers have been slow to embrace it for the production of population

projections. Why might this be true? There are several possible explanations. One is

the longstanding tradition in demography of producing sets of illustrative pro-

jections rather than a single forecast. If projections are intended simply to illustrate

the outcomes of various combinations of assumptions, there is no need to consider

various combinations of projections (or to be concerned with forecast accuracy, for

that matter). Another explanation is that the dominance of the cohort-component

method in official population projections has prevented demographers from inves-

tigating other methods. A third explanation is that demographers have been

searching for one “true” model of population change and are unwilling to give up

that quest. Using a combination rather than a single forecast may be viewed as an

admission that the analyst has been unable to build a properly specified model.

Whatever the explanation, we believe combining offers the same potential

benefits to population projections that have been achieved in other fields. Combin-

ing could be done using projections from several methods, including cohort-

component, structural, and microsimulation models as well as various extrapolation

methods, or it could be done using several alternative sets of assumptions for a

given method (e.g., different combinations of mortality, fertility, and migration

assumptions for cohort-component projections). It could be done using simple

averages, trimmed means, or weighted averages based on historical observations

or professional judgment. Multiple regression analysis could be used to uncover

statistical regularities and to estimate optimal weights. Many approaches are

possible.
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It should be noted that some demographers have shown an interest in the

potential benefits of combining. Voss and Kale (1985) made projections for

minor civil divisions in Wisconsin using 11 extrapolation techniques. In evaluating

forecast errors over a 10-year horizon, they found that the average of all 11

techniques had smaller errors than the majority of the individual techniques, and

that no single technique consistently outperformed the average. Isserman (1993)

made cohort-component projections for counties in West Virginia, using migration

rates based on an average of rates from two decades. Ahlburg (1999) found that

combining projections of births from an economic-demographic model with pro-

jections from the Census Bureau’s cohort-component model improved the forecast

accuracy of the cohort-component model. Sanderson (1999) found that averaging

projections from structural models with projections from extrapolative models

often led to more accurate forecasts than could be achieved by relying on a single

model. Shang (2012) found that averaging forecasts of life expectancy from a

number of time series models led to improved forecast accuracy.

One approach to combining that may prove to be particularly useful is the

“composite” method described by Isserman (1977). This method is based on the

assumption that some models or techniques perform substantially better (or worse)

than others under particular circumstances or for places with particular character-

istics. If consistent patterns can be observed with enough regularity to draw general

conclusions, forecasts for particular places can be based solely on the models or

techniques found to be most accurate for places with those characteristics.

Empirical evidence shows that the EXPO method often performs poorly for

rapidly growing places and the SHIFT method often performs poorly for places

with low or negative growth rates. This evidence—drawn from projections cover-

ing various time periods and different levels of geography—suggests that EXPO

should not be used for projections of rapidly growing places and SHIFT should not

be used for projections of places losing population. Smith and Shahidullah (1995)

tested the composite approach by constructing an average that excluded EXPO

projections for rapidly growing places and SHIFT projections for slowly growing or

declining places. They found the composite approach to produce more accurate

forecasts for census tracts than could be achieved using an average of all methods.

Rayer and Smith (2010) evaluated a variety of projection methods for subcounty

areas in Florida and found the composite approach to produce more accurate

forecasts than any of the individual methods, simple averages, or trimmed means.

We believe that looking for methods that work particularly well (or poorly) in

particular situations will lead to greater improvements in forecast accuracy than

could be achieved by looking for the method that performs best in all situations.
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13.5 Accounting for Uncertainty

There is no uncertainty regarding the production of illustrative population pro-

jections. Unless a mathematical error is made in the underlying calculations,

illustrative projections are exact representations of the hypothetical future popula-

tion. For population projections used as forecasts, however, the story is very

different. As our preceding discussion has shown, population forecasts entail a

tremendous amount of uncertainty, especially for long time horizons and for places

with small or rapidly changing populations. About the only thing we know for sure

is that our forecasts are going to be wrong. If we are good forecasters—and lucky—

the errors will be small. If we are not so good—or not so lucky—the errors may

be huge.

How can we deal with this uncertainty? Two basic approaches have been used in

the past. One is to produce several alternative projections or scenarios based on

different methods or sets of assumptions. The other is to develop statistical predic-

tion intervals based on historical data. Each approach has its strengths and

weaknesses.

13.5.1 Alternative Scenarios

The traditional approach to dealing with uncertainty has been to construct several

alternative sets of projections. These alternative scenarios can be based on the

application of different projection methods, but a more common practice is to apply

different sets of assumptions using the cohort-component method. This approach

has a long history (Thompson and Whelpton 1933; Whelpton et al. 1947) and has

been an integral part of the Census Bureau’s state and national projections for many

years. It has been widely used by state and local demographers as well. Among the

producers of “official” population projections, constructing a range based on

alternative sets of assumptions is the most common way to deal with uncertainty.

Alternative scenarios are typically developed using various combinations of

mortality, fertility, and migration assumptions. For example, one set of

U.S. projections used three assumptions for each of the three components of

population growth, yielding 27 different projection series (Spencer 1989). Making

an additional assumption for foreign immigration brought the total to 30. For the

year 2080, these projections ranged from 185 to 501 million.

Most sets of projections do not contain nearly as many alternative scenarios.

National projections generally have 10 or fewer series; indeed, some have had only

three (U.S. Census Bureau 1950). An early set of state projections had four

alternative series, based on combinations of two fertility assumptions and two

migration assumptions for each state (U.S. Census Bureau 1966). A more recent

set had only two, one based on a time series model of migration and the other based

on an economic model of migration (Campbell 1996). There are exceptions, but the
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most common practice is to construct two, three, or four series when producing

alternative projection scenarios.

Two interpretations can be given to the individual series in a set of alternative

projections. One is that each series gives a reasonable view of future population

change and that no particular series is any better than any other. This is the

interpretation given to the Census Bureau’s state projections from the 1950s to

the early 1990s (U.S. Census Bureau 1957, 1966, 1972, 1979; Wetrogan 1990). Not

only did Census Bureau analysts decline to designate a “preferred” or “most likely”

series, but they took great pains to emphasize that the projections were not intended

as to be used as forecasts or predictions. Of course, most data users promptly

disregarded those warnings and chose a particular series (typically the middle

one) as the forecast.

The second interpretation is that although each series provides a reasonable view

of the future, one particular series is preferred to all others. The designation of a

“preferred” or “most likely” series can be based on an empirical investigation of

past forecast errors or on a subjective evaluation of the assumptions used in

producing each series. This is the interpretation given to the state projections

produced by the Census Bureau during the 1990s (Campbell 1994, 1996). In

these projections, one particular series was designated as “preferred” and the others

were simply alternatives. The Census Bureau’s most recent state projections,

however, contained only a single series and specified that the projections were

not intended to be used as forecasts of future population trends (U.S. Census Bureau

2005).

There are also several interpretations of the range of projections itself. One is

that the highest and lowest series provide a “reasonable” range around the preferred

series. It is expected that the range will contain the future population observed in the

target year, although no specific probability statements are made (Whelpton

et al. 1947; U.S. Census Bureau 1950). Another is that the series making up the

highest and lowest projections simply provide alternative views of the future. Under

this interpretation, there are no stated expectations that the range will contain the

future population (U.S. Census Bureau 1957).

The assumptions for mortality, fertility, and migration used in each projection

series are typically based on historical values and the analyst’s views regarding

reasonable future changes in those values. However, the highest and lowest series in

the range generally are not based on the highest and lowest levels each component

of growth could feasibly reach. Consequently, there is no guarantee that the

projected range will encompass the future population. In fact, several studies

have reported that subsequent populations often fall outside the projected range

(Alho and Spencer 1997; Keyfitz 1981; Stoto 1983). It has also been found that the

range of individual point forecasts produced by several different projection

methods provides a poor indicator of uncertainty. A range constructed in this

manner typically understates the true level of uncertainty, sometimes by a substan-

tial margin (McNees 1992).

Forecast uncertainty can also be assessed by comparing more broadly defined

projection scenarios (Tayman 2011). For example, scenarios can be based on
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alternative assumptions regarding land use patterns, the transportation system,

housing and transportation policies, the environment, and social equity factors.

Under this approach, uncertainty is evaluated by considering various policy

options; it is not intended to show a specific range of values for a particular area.

One such evaluation compared 2030 forecasts for San Diego County assuming

current land use plans, which constrain housing production, with an unconstrained

housing forecast (San Diego Association of Governments 2006). The results

showed that restricting housing production resulted in larger household sizes,

fewer population-serving jobs, upward pressure on homes prices, a very low

vacancy rate, and an increase of 100,000 more commuters from outside the county.

This approach is a relatively benign way to illustrate forecast uncertainty to data

users. It is not likely to raise questions about staff or model credibility because the

focus is on “what if” questions rather than on precise measures of uncertainty

(Tayman 2011).

Producing alternative scenarios has several benefits. One is that it makes it easy

to observe the effects of differences in assumptions. For example, suppose that two

series are based on identical mortality and migration assumptions, but one assumes

that fertility rates will increase by 10% while the other assumes that fertility rates

will fall by 10%. Differences in population size and age structure caused solely by

differences in fertility rates can easily be determined by comparing these series.

Outcomes from other combinations of assumptions can also be compared.

Another benefit is that alternative scenarios give the data user several options

from which to choose. Because each series is based on clearly defined mortality,

fertility, migration or other assumptions, the data user can make choices based on

his/her judgment regarding the validity of those assumptions. This will be partic-

ularly important when the data user has a high level of technical expertise and

knowledge of the area being projected. Of course, if the data user lacks knowledge

and expertise, this benefit will be lost.

The primary limitation of producing a range of projections based on alternative

scenarios is that it does not provide an explicit measure of uncertainty. How likely

is it that any particular series will provide an accurate forecast of future population

change? How likely is it that the future population will fall within the range

suggested by two alternative series? These questions cannot be answered simply

by producing a range. Alternative scenarios may provide several reasonable views

of the future, but they do not provide data users with a clear idea of the degree of

uncertainty surrounding a population forecast.

13.5.2 Prediction Intervals

The second approach focuses on statistical measures of uncertainty. Prediction

intervals based on statistical theory and data on error distributions provide an

explicit estimate of the probability that a given range will contain the future

population. These intervals are sometimes called forecast intervals, probability
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intervals, confidence intervals, or confidence limits. We call them prediction
intervals to distinguish them from traditional confidence intervals which—strictly

speaking—apply only to sample data.

Two types of prediction intervals have been used most frequently for

population forecasts. One is based on the development of statistical models

of population growth and the other is based on empirical analyses of errors

from past population projections. Both rely on the assumption that historical or

simulated error distributions can be used to predict future error distributions.

13.5.2.1 Model-Based Intervals

Model-based prediction intervals capitalize on the stochastic (or random) nature of

population processes. They can be developed in a number of ways. Past applica-

tions have included maximum likelihood estimators of population growth rates

(Cohen 1986); Monte Carlo simulations of fertility and migration rates (Pflaumer

1988); regression-based projection models (Swanson and Beck 1994); Bayesian

projection models (Alkema et al. 2011); models based on the opinions of a group of

experts (Lutz et al. 1999; San Diego County Water Authority 2002); and time series

models covering mortality rates (Lee and Carter 1992), life expectancy (Torri and

Vaupel 2012), fertility rates (Lee 1993), net migration (de Beer 1993), and total

population size (Alders et al. 2007; Hyndman and Booth 2008). Although much of

the research on model-based intervals has focused on national or regional pro-

jections, recent research has extended the analysis to subnational projections as well

(Cameron and Poot 2011; Tayman et al. 2007; Wilson and Bell 2004).

Time series models (especially ARIMA models) are the models most commonly

used for developing prediction intervals for population projections. These models

assume that the pattern (structure) of the data does not change over time, that errors

are normally distributed with a mean of zero and a constant variance, and that errors

are independent of each other (Makridakis et al. 1987). Time series models require

a fairly long series of historical observations and can be difficult to apply, especially

when attempting to combine prediction intervals for all three components of growth

and developing intervals for various subgroups of the population.

Providing a detailed description of model-based prediction intervals is beyond

the scope of this book, but we can give several examples of the intervals produced

by these models and compare them to the high and low projection series produced

using the traditional approach. Lee and Tuljapurkar (1994) projected a population

of 398 million for the United States in 2065, with a 95% prediction interval of

259–609 million. This range is wider than the spread between the low and high

projections produced by the Census Bureau at about the same time; those pro-

jections ranged from 276 to 507 million in 2050, with a medium projection of

383 million (Day 1992). The previous set of Census Bureau projections reported

much lower numbers and a slightly smaller range, with a medium projection of

300 million and a range of 230–414 million for 2050 (Spencer 1989).
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Pflaumer (1992) made two time series projections of the U.S. population, one

based on population size and the other based on the natural logarithm of population

size. The first model produced a medium projection of 402 million in 2050, with a

95% prediction interval of 277–527 million. These numbers are similar to the

Census Bureau’s projections from the same time. The second model produced a

medium projection of 557 million, with a 95% prediction interval of 465–666

million. These numbers are much higher and provide a narrower range than the

Census Bureau’s projections.

McNown et al. (1995) made time series projections of the components of growth

for the U.S. population, as well as total population size. For 2050, they projected a

total population of 373 million, with a 95% prediction interval ranging from 243 to

736 million. The total fertility rate was projected to be 2.46 in 2050, with a 95%

prediction interval ranging from 0.91 to 5.53. Life expectancy at birth for males was

projected to be 75.5, with a 95% prediction interval ranging from 68.5 to 82.8. For

fertility these intervals are much larger than those found in the Census Bureau

projections, which assumed that the total fertility rate would range only from 1.83

to 2.52 in 2050 (Day 1992). For mortality the intervals are not much different than

those reported by the Census Bureau, in which life expectancy at birth was

projected to range between 75.3 and 87.6 in 2050.

Swanson and Beck (1994) developed a regression-based model for making

short-term county population projections in the state of Washington. They com-

pared the 2/3 prediction intervals associated with this model to census counts of

Washington’s 39 counties in 1970, 1980, and 1990. They found the prediction

intervals to contain the 1970 census count in 30 counties (77%), the 1980 census

count in 24 counties (62%), and the 1990 census count in 31 counties (79%). These

results suggest that Swanson and Beck’s 2/3 prediction intervals provided a rea-

sonably accurate view of forecast uncertainty.

Model-based prediction intervals are valid only to the extent that the assump-

tions underlying the models are valid. In spite of their objective appearance, they

are strongly influenced by the analyst’s judgment. The models themselves are often

complex and require a substantial amount of base data. They are subject to errors in

the base data, errors in specifying the model, errors in estimating the model’s

parameters, and future structural changes invalidating the model’s parameter esti-

mates (Lee 1992). In addition, alternative forecasting models can be specified, each

providing different (perhaps dramatically different) prediction intervals (Cohen

1986; Lee 1974; Tayman et al. 2007).

In spite of these problems, model-based prediction intervals offer one important

benefit: they provide explicit probability statements to accompany point forecasts.

The intervals are often wide, exceeding the low and high projections produced by

official statistical agencies. Given that many data users (and producers) tend to

overestimate the accuracy of population projections, model-based prediction inter-

vals provide an important reality check.
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13.5.2.2 Empirically-Based Intervals

The second type of prediction interval is based on empirical analyses of errors from

past projections. Keyfitz (1981) took some 1,100 national projections made

between 1939 and 1968 and, for each one, calculated the difference between the

projected annual growth rate and the rate actually occurring over time. He found

this difference to be largely independent of the length of horizon over which the

projections were made. He calculated the RMSE for the entire sample to be

approximately 0.4 percentage points and developed 2/3 prediction intervals by

applying that error to the growth rates projected for each country. For example, if

a country were projected to grow by 2% per year for the next 20 years, the

probability would be approximately 2/3 that the actual growth rate would be

somewhere between 1.6% and 2.4%.

Keyfitz refined his analysis by separating countries according to their population

growth rates, finding a RMSE of 0.60 for rapidly growing countries, 0.48 for

moderately growing countries, and 0.29 for slowly growing countries. He illus-

trated this refinement by applying the 0.29 RMSE to the U.S. growth rate of 0.79%

per year projected by the Census Bureau, yielding annual growth rates of 0.50% and

1.08%. Applying those growth rates to the 1980 population of 260 million produced

a range of 245–275 million in 2000. He concluded that the odds were about 2 to

1 that this range would contain the U.S. population in that year.

Stoto (1983) followed a similar approach, but analyzed projections containing

more temporal and geographic diversity. Like Keyfitz, he calculated forecast error

as the difference between the projected annual growth rate and the rate actually

realized over time. He differentiated between two components of error, one related

to the launch year of the projection and the other to seemingly random events (the

residual). For more developed countries, he found the launch-year component to

have a distribution that was stable over time and centered around zero, implying

that the projections were unbiased. For less developed countries, he found the

variance of the launch-year component to be stable but that earlier sets of pro-

jections had a strong downward bias (although recent sets had little bias). The

second component (the residual) was found to have a stable distribution but to have

occasional outliers. For both components, the variance was larger for less devel-

oped countries than more developed countries.

Stoto calculated the standard deviations for these two components of error and

constructed prediction intervals in a manner similar to that used by Keyfitz. He

applied those intervals to projections of the U.S. population and estimated that there

was about a 2/3 probability that an interval of 241–280 million would contain the

actual population in 2000, and a 95% probability that an interval of 224–302

million would contain that population. He compared his results to projections

produced by the Census Bureau, concluding that the Census Bureau’s low and

high series were very similar to a 2/3 prediction interval. Keyfitz (1981) had

reached the same conclusion.
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Smith and Sincich (1988) also used the distribution of past forecast errors to

construct prediction intervals, but followed a different approach. They modified a

technique developed by Williams and Goodman (1971), in which the predicted

distribution of future forecast errors was based directly on the distribution of past

forecast errors. An important characteristic of this technique is that it can accom-

modate any error distribution, including the asymmetric and truncated distributions

typically found for absolute percent errors.

Using population data for states from 1900 to 1980, Smith and Sincich used four

simple extrapolation methods to make a series of projections covering 10- and

20-year horizons. They calculated absolute percent errors for each target year by

comparing projections with census counts, focusing on the 90PE for each set of

projections (i.e., the absolute percent error larger than exactly 90% of all absolute

percent errors). They investigated two approaches to constructing 90% prediction

intervals, one using the 90PE from the previous set of projections and the other

using the 90PE from all other sets of projections. They found both approaches to

provide relatively accurate prediction intervals. For most individual target years,

88–94% of state forecast errors fell within the predicted 90% interval. Summing

over all target years, 91% of all forecast errors fell within the predicted 90%

interval. They concluded that stability in the distribution of absolute percent errors

over time made it possible to construct useful prediction intervals for state

projections.

Rayer et al. (2009) used the Williams & Goodman approach to construct and test

prediction intervals for a large sample of counties in the United States. Using data

by decade from 1900 to 2000, they constructed county forecasts covering 10-, 20-,

and 30-year horizons and calculated forecast errors for each target year. Although

the center of the algebraic error distributions shifted considerably from one decade

to the next, the shape remained relatively constant over time. They evaluated the

performance of 90% prediction intervals based on the distribution of absolute

percent errors and found that—aggregated over all decades—errors for 91% of

the counties fell within the prediction intervals for all three horizons. Although

there was some variation from decade to decade, the proportion of errors falling

within the intervals was usually between 88% and 93% and never varied by more

than 10 percentage points.

Smith and Rayer (2012) followed a similar approach in testing prediction

intervals for county projections in Florida. Using forecast errors for target years

1985, 1990, and 1995, they constructed 2/3 prediction intervals for projections with

launch years 1995, 2000, and 2005 and counted the number of counties in which the

subsequent population counts or estimates fell within the predicted intervals. They

found that 43 counties (64%) fell within the predicted range for 5-year horizons and

49 counties (73%) for both 10- and 15-year horizons. These numbers were fairly

close to the 45 counties implied by the prediction intervals. Given the year-to-year

volatility of Florida’s population growth, this reflects a reasonably good forecasting

performance.

Tayman et al. (1998) developed statistically-based prediction intervals for

subcounty population forecasts in San Diego County. They started by projecting
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the population residing in grid cells, which are geographic areas of 2,000 ft. by

2,000 ft. defined for the most densely populated parts of the county. The projections

had 1980 as a launch year and 1990 as a target year. Using repeated sampling

techniques and randomly selected grid cells, they developed projections for a large

number of areas varying in size from 500 to 50,000. Forecast errors were calculated

by comparing the 1990 projections with 1990 census counts.

Rather than constructing prediction intervals for the population forecasts per se,

Tayman and his colleagues developed predictions for the mean errors implied by

those forecasts. Empirical prediction intervals for MAPEs and MALPEs were

developed using an approach similar to that used by Williams and Goodman

(1971) and Smith and Sincich (1988). For areas with 500 persons, they found a

95% prediction interval of 67.4–80.3% for the MAPE. For areas with 50,000 or

more, the interval was 9.7–11.5%. For MALPE, the intervals were wider but

centered closer to zero.

13.5.2.3 Evaluating the Evidence

Under formal definitions, probability statements about the accuracy of population

projections cannot be made because the distribution of future forecast errors is

unknown (and unknowable) at the time projections are made. However, it is

possible to construct prediction intervals based on specific models of population

change or on the distribution of errors from past projections. If current projection

methods are similar to those used in the past, and if the degree of uncertainty is

about the same in the future as it was in the past, then we can assume that future

forecast errors will be drawn from the same distribution as past forecast errors

(Keyfitz 1981). If this is true, prediction intervals will provide a reasonable (albeit

imperfect) view of the uncertainty surrounding current population projections.

The critical question, of course, is whether the distribution of forecast errors

does indeed remain stable over time. Smith and Sincich (1988) showed that the

distribution of absolute percent errors for states remained relatively stable over the

decades of the twentieth century; Rayer (2009) and Smith and Rayer (2012)

reported similar results for counties. Stoto (1983) divided forecast errors into two

components and found the distributions of both components to remain fairly stable

over time for national projections made between the 1940s and the 1970s. Some

empirical evidence, then, supports the notion that the distribution of population

forecast errors remains relatively stable over time.

More research is needed on how to construct and interpret population prediction

intervals. Which approach is best? What are the effects of differences in projection

method, launch year, geographic region, and length of horizon? How can intervals

be developed for demographic subgroups (e.g., age, sex, race) that are consistent

with each other and with intervals for the entire population? Much remains to be

done, but the potential pay-off is high. Although we may never be able to forecast a

specific population with a high degree of accuracy, we may be able to develop

relatively accurate forecasts of the distribution of errors surrounding our population
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forecasts. Providing a realistic estimate of the uncertainty inherent in population

forecasts may be the most useful service the producers of population projections

can provide to their users.

13.6 Conclusions

To close this chapter, it may be helpful to summarize the empirical evidence

regarding forecast accuracy and bias for population projections. Forecast accuracy

generally increases with population size but tends to level off among larger places.

It tends to be greatest for places with slow but positive growth rates and decline as

growth rates deviate in either direction from those levels. Errors for individual

places vary substantially from one launch year to another, but the distribution of

absolute percent errors tends to remain fairly stable over time. Mean absolute

percent errors grow about linearly with the projection horizon but mean algebraic

percent errors follow no consistent pattern. For long-range projections based on

simple extrapolation methods, 10 years of base data are generally necessary (and

sufficient) to maximize forecast accuracy but 20 years may be needed for some

methods (e.g., EXPO). For projections of total population no single model or

technique is consistently more accurate than any other. Averages of several fore-

casts are often more accurate than individual forecasts. These results have been

found so frequently that we believe they can be accepted as general characteristics

of population forecast errors.

No general conclusions can be drawn regarding the direction of forecast errors.

Some individual projections have large positive errors, others have large negative

errors. Some sets of projections exhibit a substantial upward bias, others exhibit a

substantial downward bias. There is no way to know in advance whether a partic-

ular projection (or set of projections) will be too high or too low. Over time, positive

and negative errors seem to be roughly in balance. In this sense, we believe most

population projection methods are unbiased.

What level of error might a data user expect from a set of population forecasts?

Using the evidence cited in this chapter, and assuming that MAPEs grow about

linearly with the projection horizon, we have developed a set of “typical” MAPEs

by level of geography and length of horizon (Table 13.7). For states, MAPEs grow

from 3% for 5-year horizons to 18% for 30-year horizons; for counties, they grow

from 6% to 36%; and for census tracts, they grow from 9% to 54%. Errors for any

specific set of projections will be affected by factors such as projection method,

population size, growth rate, and launch year, of course, but we believe these

numbers provide reasonable ballpark estimates of likely forecast errors.

These errors illustrate the high degree of uncertainty inherent in population

projections, especially for small areas and for long projection horizons. Data

users should be aware of these errors before making decisions based on population

projections. Projections that extend very far into the future simply cannot provide

highly accurate forecasts. This may be disheartening news for the users of
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population projections, but it is a realistic portrayal of forecast accuracy, given the

current state of the art.

Given this high degree of uncertainty, why should an analyst even bother making

small-area projections? There are several reasons. First, the projection process itself

is educational. It teaches a great deal about the area(s) being projected, including

the stability of geographic boundaries over time, historical demographic and socio-

economic trends, special population subgroups, the occurrence of unique or unusual

events, and the potential impact of growth constraints. The process of collecting and

analyzing data provides insights that deepen the analyst’s understanding of the

population dynamics of the projection area(s).

Second, projections are useful for evaluating demographic scenarios. What

impact would a 10% decline in the total fertility rate have on the age structure of

the population? How would the continuation of recent in- and out-migration rates

affect future levels of net migration? What would be the demographic impact of the

opening of a new factory employing 2,500 workers? Projection models are useful

for answering a broad array of analytical questions and for providing an indication

of the range of future possibilities. The ability to trace out the implications of

particular scenarios is a valuable tool in planning for (or attempting to influence)

future population trends.

Finally—and perhaps most important—there is really no alternative to making

population projections. If one is not willing to make projections, he/she must either

ignore potential change or assume that no change will occur. Neither of these

options is particularly attractive. Ignoring potential change is not likely to be

helpful in most circumstances; ignorance generally is not bliss. Furthermore, the

assumption that no change will occur is itself a projection, albeit a naı̈ve and often

ill-founded one. Projections based on no-change assumptions often lead to less

accurate forecasts than could be obtained using other projection methods, espe-

cially for large or rapidly growing places (Tayman 1996). Although population

forecasts are almost always in error—sometimes by a wide margin—they represent

our best hope of planning intelligently for the future.

Forecast accuracy is a very important characteristic of population projections,

but it is not the only criterion upon which projections should be judged. In the final

analysis, projections can best be judged on the basis of their overall “utility,” or

their value in improving the quality of information upon which decisions are based

(Swanson and Tayman 1995). Even though they cannot provide perfect predictions

of future population trends, projections can point to potential growth constraints,

highlight areas that are likely to lose population or grow very rapidly, show the

Table 13.7 “Typical” MAPEs for population projections by level of geography and length of

horizon

Level of

geography

Length of projection horizon (Years)

5 10 15 20 25 30

State 3 6 9 12 15 18

County 6 12 18 24 30 36

Census tract 9 18 27 36 45 54
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implications of alternative public policy or land use decisions, and play other useful

roles (Tayman 1996).

Do projections provide a stronger basis for decision-making than the alternative,

which is to notmake projections? If so, are the gains large enough to offset the costs

of making those projections? If these two questions can be answered affirmatively,

population projections can play an important role in planning and analysis in spite

of their sometimes less-than-stellar performance as forecasts.

References

Ahlburg, D. (1995). Simple versus complex models: Evaluation, accuracy, and combining.

Mathematical Population Studies, 5, 281–290.
Ahlburg, D. (1999). Using economic information and combining to improve forecast accuracy in

demography. Unpublished paper. Rochester: Industrial Relations Center, University of

Minnesota.

Alders, M., Keilman, N., & Cruijsen, H. (2007). Assumptions for long-term stochastic population

forecasts in 18 European countries. European Journal of Population, 23, 33–69.
Alho, J. (1997). Scenarios, uncertainty and conditional forecasts of the world population. Journal

of the Royal Statistical Society A, 160(part 1), 71–85.
Alho, J., & Spencer, B. (1997). The practical specification of the expected error of population

forecasts. Journal of Official Statistics, 13, 203–225.
Alkema, L., Raftery, A. E., Gerland, P., Clark, S. J., Pelletier, F., Buettner, T., & Heilig, G. K.

(2011). Probabilistic projections of the total fertility rate for all countries. Demography, 48,
815–839.

Armstrong, J. (1983). Relative accuracy of judgmental and extrapolative methods of forecasting

annual earnings. Journal of Forecasting, 2, 437–447.
Armstrong, J. (1985). Long range forecasting: From crystal ball to computer. New York: Wiley.

Armstrong, J. S. (2001a). Combining forecasts. In J. S. Armstrong (Ed.), Principles of forecasting:
A handbook for researchers and practitioners (pp. 417–439). Norwell: Kluwer.

Armstrong, J. S. (2001b). Evaluating forecasting methods. In J. S. Armstrong (Ed.), Principles of
forecasting: A handbook for researchers and practitioners (pp. 443–472). Norwell: Kluwer.

Armstrong, J. S. (2006). Findings from evidence-based forecasting: Methods for reducing forecast

error. International Journal of Forecasting, 22, 583–598.
Armstrong, J., & Collopy, F. (1992). Error measures for generalizing about forecasting methods:

Empirical comparisons. International Journal of Forecasting, 8, 69–80.
Armstrong, J., & Fildes, R. (1995). Correspondence on the selection of error measures for

comparisons among forecasting methods. Journal of Forecasting, 14, 67–71.
Ascher, W. (1981). The forecasting potential of complex models. Policy Sciences, 13, 247–267.
Ashton, A., & Ashton, R. (1985). Aggregating subjective forecasts: Some empirical results.

Management Science, 31, 1499–1508.
Batchelor, R., & Dua, P. (1990). Forecaster ideology, forecasting technique, and the accuracy of

economic forecasts. International Journal of Forecasting, 6, 3–10.
Bates, J., & Granger, C. (1969). The combination of forecasts. Operational Research Quarterly,

20, 451–468.
Beaumont, P., & Isserman, A. (1987). Comment. Journal of the American Statistical Association,

82, 1004–1009.
Becker, R., & Clements, A. E. (2008). Are combination forecasts of S&P 500 volatility statistically

superior? International Journal of Forecasting, 24, 122–133.

366 13 Forecast Accuracy and Bias



Brodie, R., & De Kluyver, C. (1987). A comparison of the short term forecasting accuracy of

econometric and naive extrapolation models of market share. International Journal of Fore-
casting, 3, 423–437.

Bryan, T. (1999). Small area population estimation technique using administrative records and
evaluation of results with loss functions and optimization criteria. Paper presented at the

Federal Committee on Statistical Methodology Research Conference, Washington, DC.

Cameron, M. P., & Poot, J. (2011). Lessons from stochastic small-area population projections: The

case of Waikato subregions in New Zealand. Journal of Population Research, 28, 245–265.
Campbell, P. R. (1994). Population projections for states, by age, sex, race, and Hispanic origin:

1993 to 2020. Current Population Reports, P-25, No. 1111. Washington, DC: U.S. Bureau of

the Census.

Campbell, P. R. (1996). Population projections for states by age, sex, race, and Hispanic origin:
1995 to 2050. PPL 47. Washington, DC: U.S. Census Bureau.

Chi, G. (2009). Can knowledge improve population forecasts at subcounty levels? Demography,
46, 405–427.

Chi, G., & Voss, P. R. (2011). Small-area population forecasting: Borrowing strength across space

and time. Population, Space and Place, 17, 505–520.
Chi, G., Zhou, X., & Voss, P. R. (2011). Small-area population forecasting in an urban setting: A

spatial regression approach. Journal of Population Research, 28, 185–201.
Clemen, R. (1989). Combining forecasts: A review and annotated bibliography. International

Journal of Forecasting, 5, 559–583.
Clemen, R., & Guerard, J. (1989). Econometric GNP forecasts: Incremental information relative to

naive extrapolation. International Journal of Forecasting, 5, 417–426.
Cohen, J. (1986). Population forecasts and the confidence intervals for Sweden: A comparison of

model-based and empirical approaches. Demography, 23, 105–126.
Congdon, P. (1992). Multiregional demographic projections in practice: A metropolitan example.

Regional Studies, 26, 177–191.
Crone, S. F., Hibon, M., & Nikolopoulos, K. (2011). Advances in forecasting with neural

networks? Empirical evidence from the NN3 competition on time series prediction. Interna-
tional Journal of Forecasting, 27, 635–660.

Cushing, B., & Poot, J. (2004). Crossing boundaries and borders: Regional science advances in

migration modeling. Papers in Regional Science, 83, 317–338.
Day, J. (1992). Population projections of the United States, by age, sex, race, and Hispanic origin:

1992 to 2050. Current Population Reports, P-25, No. 1092. Washington, DC: U.S. Bureau of

the Census.

de Beer, J. (1993). Forecast intervals of net migration: The case of the Netherlands. Journal of
Forecasting, 12, 585–599.

Fildes, R. (1985). Quantitative forecasting–the state of the art: Econometric models. Journal of the
Operational Research Society, 36, 549–580.

Fildes, R. (1992). The evaluation of extrapolative forecasting methods. International Journal of
Forecasting, 8, 81–98.

Genre, V., Kenny, G., Meyler, A., & Timmermann, A. (2013). Combining expert forecasts: Can

anything beat the simple average? International Journal of Forecasting, 29, 108–121.
Granger, C. (1989). Invited review: Combining forecasts–twenty years later. Journal of Forecast-

ing, 8, 167–173.
Greenwood, M. (1997). Internal migration in developed countries. In M. Rosenzweig & O. Stark

(Eds.), Handbook of population and family economics (pp. 647–720). Amsterdam: Elsevier

Science B.V.

Hamilton, C., & Perry, J. (1962). A short method for projecting population by age from one

decennial census to another. Social Forces, 41, 163–170.
He, C., & Xu, X. (2005). Combination of forecasts using self-organizing algorithms. Journal of

Forecasting, 24, 269–278.

References 367



Hendry, D. V., & Clements, M. P. (2004). Pooling of forecasts. The Econometrics Journal, 7,
1–31.

Hoogerheide, L., Kleijn, R., Ravazzolo, F., Van Dijk, H. K., & Verbeek, M. (2010). Forecast

accuracy and economic gains from Bayesian model averaging using time-varying weights.

Journal of Forecasting, 29, 251–269.
Hunt, G. (1993). Equilibrium and disequilibrium in migration modelling. Regional Studies, 27,

341–349.

Hyndman, R. J., & Booth, H. (2008). Stochastic population forecasts using functional data models

for mortality, fertility and migration. International Journal of Forecasting, 24, 323–342.
Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy.

International Journal of Forecasting, 22, 679–688.
Irwin, R. (1977). Guide for local area population projections. Technical Paper #39. Washington,

DC: U.S. Bureau of the Census.

Isserman, A. (1977). The accuracy of population projections for subcounty areas. Journal of the
American Institute of Planners, 43, 247–259.

Isserman, A. (1993). The right people, the right rates: Making population estimates and forecasts

with an interregional cohort-component model. Journal of the American Planning Association,
59, 45–64.

Kale, B., Voss, P. R., Palit, C., & Krebs, H. (1981). On the question of errors in population
projections. Paper presented at the meeting of the Population Association of America,

Washington, DC.

Kale, B., Voss, P. R., & Krebs, H. (1985). Small area population projections: The Wisconsin
experience. Paper presented at the meeting of the Federal State Cooperative Program for

Population Projections, Boston.

Keilman, N. (1990). Uncertainty in national population forecasting. Amsterdam: Swets and

Zeitlinger.

Keilman, N. (1999). How accurate are the United Nations world population projections? In

W. Lutz, J. Vaupel, & D. Ahlburg (Eds.), Frontiers of population forecasting (pp. 15–41).

New York: The Population Council. (A supplement to Population and Development Review,
24).

Keyfitz, N. (1981). The limits of population forecasting. Population and Development Review, 7,
579–593.

Kulkarni, M., & Pol, L. (1994). Migration expectancy revisited: Results for the 1970s, 1980s and

1990s. Population Research and Policy Review, 13, 195–202.
Leach, D. (1981). Re-evaluation of the logistic curve for human populations. Journal of the Royal

Statistical Society A, 144, 94–103.
Lee, R. (1974). Forecasting births in post-transition populations: Stochastic renewal with serially

correlated fertility. Journal of the American Statistical Association, 69, 607–617.
Lee, R. (1992). Stochastic demographic forecasting. International Journal of Forecasting, 8,

315–327.

Lee, R. (1993). Modeling and forecasting the time series of U.S. fertility: Age distribution, range,

and ultimate level. International Journal of Forecasting, 9, 187–212.
Lee, R., & Carter, L. (1992). Modeling and forecasting U.S. mortality. Journal of the American

Statistical Association, 87, 659–675.
Lee, R., & Tuljapurkar, S. (1994). Stochastic population forecasts for the United States: Beyond

high, medium, and low. Journal of the American Statistical Association, 89, 1175–1189.
Leitch, G., & Tanner, J. (1995). Professional economic forecasts: Are they worth their costs?

Journal of Forecasting, 14, 143–157.
LeSage, J. (1990). Forecasting metropolitan employment using an export-base error-correction

model. Journal of Regional Science, 30, 307–323.
Long, J. (1995). Complexity, accuracy, and utility of official population projections.Mathematical

Population Studies, 5, 203–216.

368 13 Forecast Accuracy and Bias



Long, J., & McMillen, D. (1987). A survey of Census Bureau projection methods. Climatic
Change, 11, 141–177.

Lutz, W., Sanderson, W., & Scherbov, S. (1999). Expert-based probabilistic population projec-

tions. In W. Lutz, J. Vaupel, & D. Ahlburg (Eds.), Frontiers of population forecasting
(pp. 139–155). New York: The Population Council. (A supplement to Population and Devel-
opment Review, 24).

Mahmoud, E. (1984). Accuracy in forecasting: A survey. Journal of Forecasting, 3, 139–159.
Mahmoud, E. (1987). The evaluation of forecasts. In S. Makridakis & S. Wheelwright (Eds.), The

handbook of forecasting (pp. 504–522). New York: Wiley.

Makridakis, S. (1986). The art and science of forecasting: An assessment and future directions.

International Journal of Forecasting, 2, 15–39.
Makridakis, S. (1993). Accuracy measures: Theoretical and practical concerns. International

Journal of Forecasting, 9, 527–529.
Makridakis, S., & Hibon, M. (2000). The M3-competition: Results, conclusions and implications.

International Journal of Forecasting, 16, 451–476.
Makridakis, S., & Taleb, N. (2009). Decision making and planning under low levels of predict-

ability. International Journal of Forecasting, 25, 716–733.
Makridakis, S., &Winkler, R. (1983). Averages of forecasts: Some empirical results.Management

Science, 29, 987–996.
Makridakis, S., Hibon, M., Lusk, E., & Belhadjali, M. (1987). Confidence intervals: An empirical

investigation of the series in the M-competition. International Journal of Forecasting, 3,
489–508.

McNees, S. (1992). The uses and abuses of ‘consensus’ forecasts. Journal of Forecasting, 11,
703–710.

McNown, R., Rogers, A., & Little, J. (1995). Simplicity and complexity in extrapolative popula-

tion forecasting models. Mathematical Population Studies, 5, 235–257.
Morgenroth, E. (2002). Evaluating methods for short to medium term county population forecast-

ing. Journal of the Statistical and Social Inquiry Society of Ireland, 31, 111–136.
Mulder, T. J. (2002). Accuracy of the U.S. Census Bureau national population projections and their

respective components of change, Population Division Working Paper Series, No. 50.

Suitland: U.S. Census Bureau.

Murdock, S. H., Leistritz, F., Hamm, R., Hwang, S., & Parpia, B. (1984). An assessment of the

accuracy of a regional economic-demographic projection model. Demography, 21, 383–404.
Nakosteen, R. (1989). Detailed population projections for small areas: The Massachusetts expe-

rience. Socio-Economic Planning Science, 23, 125–138.
Pant, P., & Starbuck, W. (1990). Innocents in the forest: Forecasting and research methods.

Journal of Management, 16, 433–460.
Pflaumer, P. (1988). Confidence intervals for population projections based on Monte Carlo

methods. International Journal of Forecasting, 4, 135–142.
Pflaumer, P. (1992). Forecasting U.S. population totals with the Box-Jenkins approach. Interna-

tional Journal of Forecasting, 8, 329–338.
Pittenger, D. (1980). Some problems in forecasting population for government planning purposes.

The American Statistician, 34, 135–139.
Rayer, S. (2007). Population forecast accuracy: Does the choice of summary measure of error

matter? Population Research and Policy Review, 26, 163–184.
Rayer, S. (2008). Population forecast errors: A primer for planners. Journal of Planning Education

and Research, 27, 417–430.
Rayer, S., & Smith, S. K. (2010). Factors affecting the accuracy of subcounty population forecasts.

Journal of Planning Education and Research, 30, 147–161.
Rayer, S., Smith, S. K., & Tayman, J. (2009). Empirical prediction intervals for county population

forecasts. Population Research and Policy Review, 28, 773–793.
Rogers, A. (1995). Population forecasting: Do simple models outperform complex models?

Mathematical Population Studies, 5, 187–202.

References 369



San Diego Association of Governments. (2006). 2030 Regional growth forecast. San Diego.

San Diego County Water Authority. (2002). Regional water facilities master plan. Appendix C:

Development of probabilistic water demand forecasts. San Diego.

Sanderson, W. (1999). Knowledge can improve forecasts: A review of selected socioeconomic

population projection models. In W. Lutz, J. Vaupel, & D. Ahlburg (Eds.), Frontiers of
population forecasting (pp. 88–117). New York: The Population Council. (A supplement to

Population and Development Review, 24).
Schmitt, R., & Crosetti, A. (1951). Accuracy of the ratio method for forecasting city population.

Land Economics, 27, 346–348.
Schnaars, S. (1986). A comparison of extrapolation models on yearly sales forecasts. International

Journal of Forecasting, 2, 71–85.
Shang, H. L. (2012). Point and interval forecasts of age-specific life expectancies: A model

averaging approach. Demographic Research, 27, 593–644.
Sjaastad, L. (1962). The costs and returns of human migration. Journal of Political Economy, 70,

80–93.

Smith, S. K. (1986). Accounting for migration in cohort-component projections of state and local

populations. Demography, 23, 127–135.
Smith, S. K. (1987). Tests of forecast accuracy and bias for county population projections. Journal

of the American Statistical Association, 82, 991–1012.
Smith, S. K., & Ahmed, B. (1990). A demographic analysis of the population growth of states,

1950–1980. Journal of Regional Science, 30, 209–227.
Smith, S. K., & Rayer, S. (2012). An evaluation of population forecast errors for Florida and its

counties, 1980–2010. Paper presented at the Conference on Applied Demography, San

Antonio.

Smith, S. K., & Shahidullah, M. (1995). An evaluation of population projection errors for census

tracts. Journal of the American Statistical Association, 90, 64–71.
Smith, S. K., & Sincich, T. (1988). Stability over time in the distribution of population forecast

errors. Demography, 25, 461–473.
Smith, S. K., & Sincich, T. (1990). The relationship between the length of the base period and

population forecast errors. Journal of the American Statistical Association, 85, 367–375.
Smith, S. K., & Sincich, T. (1991). An empirical analysis of the effect of the length of forecast

horizon on population forecast errors. Demography, 28, 261–273.
Smith, S. K., & Sincich, T. (1992). Evaluating the forecast accuracy and bias of alternate

population projections for states. International Journal of Forecasting, 8, 495–508.
Smith, S. K., & Tayman, J. (2003). An evaluation of population projections by age. Demography,

40, 741–757.
Spencer, G. (1989). Projection of the population of the United States by age, sex, and race: 1988 to

2008. Current Population Reports, P-25, No. 1018. Washington, DC: U.S. Bureau of the

Census.

Stock, J. H., & Watson, M. W. (2004). Combination forecasts of output growth in a seven-country

data set. Journal of Forecasting, 23, 405–430.
Stoto, M. (1983). The accuracy of population projections. Journal of the American Statistical

Association, 78, 13–20.
Swanson, D. A., & Beck, D. (1994). A new short-term county population projection method.

Journal of Economic and Social Measurement, 20, 25–50.
Swanson, D. A., & Tayman, J. (1995). Between a rock and a hard place: The evaluation of

demographic forecasts. Population Research and Policy Review, 14, 233–249.
Swanson, D. A., Tayman, J., & Bryan, T. M. (2011). MAPE-R: A rescaled measure of accuracy for

cross-sectional subnational population forecasts. Journal of Population Research, 28,
225–243.

Tayman, J. (1996). Forecasting, growth management, and public policy decision making. Popu-
lation Research and Policy Review, 15, 491–508.

370 13 Forecast Accuracy and Bias



Tayman, J. (2011). Assessing uncertainty in small area forecasts: State of the practice and

implementation strategy. Population Research and Policy Review, 30, 781–800.
Tayman, J., & Swanson, D. A. (1996). On the utility of population forecasts. Demography, 33,

523–528.

Tayman, J., Schafer, E., & Carter, L. (1998). The role of population size in the determination and

prediction of population forecast errors: An evaluation using confidence intervals for

subcounty areas. Population Research and Policy Review, 17, 1–20.
Tayman, J., Smith, S. K., & Lin, J. (2007). Precision, bias, and uncertainty for state population

forecasts: An exploratory analysis of time series models. Population Research and Policy
Review, 26, 347–369.

Tayman, J., Smith, S. K., & Rayer, S. (2011). Evaluating population forecast accuracy: A

regression approach using county data. Population Research and Policy Review, 30, 235–262.
Tayman, J., Swanson, D. A., & Barr, C. (1999). In search of the idea measure of accuracy for

subnational demographic forecasts. Population Research and Policy Review, 18, 387–409.
Theil, H. (1966). Applied economic forecasting. Amsterdam, Holland: North-Holland Publishing.

Thompson, W., & Whelpton, P. (1933). Population trends in the United States. New York:

McGraw-Hill.

Torri, T., & Vaupel, J. W. (2012). Forecasting life expectancy in an international context.

International Journal of Forecasting, 28, 519–531.
U.S. Census Bureau. (1950). Illustrative projections of the population of the United States: 1950 to

1960. Current Population Reports, P-25, No. 43. Washington, DC.

U.S. Census Bureau. (1957). Illustrative projections of the population, by state, 1960, 1965, and

1970. Current Population Reports, P-25, No. 160. Washington, DC.

U.S. Census Bureau. (1966). Illustrative projections of the population of states: 1970 to 1985.
Current Population Reports, P-25, No. 326. Washington, DC.

U.S. Census Bureau. (1972). Preliminary projections of the population of states: 1975–1990.
Current Population Reports, P-25, No. 477. Washington, DC.

U.S. Census Bureau. (1979). Illustrative projections of state populations by age, race, and sex:

1975 to 2000. Current Population Reports, P-25, No. 796. Washington, DC.

U. S. Census Bureau. (2005). Interim population projections for states by age and sex: 2004 to
2030. Suitland, MD: Population Projections Branch, Population Division.

Voss, P. R., & Kale, B. (1985). Refinements to small-area population projection models: Results of
a test based on 128 Wisconsin communities. Paper presented at the meeting of the Population

Association of America, Boston.

Webby, R., & O’Connor, M. (1996). Judgmental and statistical time series forecasting: A review

of the literature. International Journal of Forecasting, 12, 91–118.
West, C., & Fullerton, T. (1996). Assessing the historical accuracy of regional economic forecasts.

Journal of Forecasting, 15, 19–36.
Wetrogan, S. I. (1990). Projections of the population of states by age, sex, and race: 1989–2010.

Current Population Reports, P-25, No. 1053. Washington, DC: U.S. Bureau of the Census.

Whelpton, P., Eldridge, H., & Siegel, J. S. (1947). Forecasts of the population of the United States:
1945–1975. Washington, DC: US Government Printing Office.

White, H. (1954). Empirical study of the accuracy of selected methods of projecting state

populations. Journal of the American Statistical Association, 49, 480–498.
Williams, W., & Goodman, M. (1971). A simple method for the construction of empirical

confidence limits for economic forecasts. Journal of the American Statistical Association,
66, 752–754.

Wilson, T. (2007). The forecast accuracy of Australian Bureau of Statistics national population

projections. Journal of Population Research, 24, 91–117.
Wilson, T., & Bell, M. (2004). Probabilistic regional population forecasts: The example of

Queensland, Australia. Geographical Analysis, 39, 1–25.
Zarnowitz, V. (1984). The accuracy of individual and group forecasts from business outlook

surveys. Journal of Forecasting, 3, 11–26.

References 371



Chapter 14

A Practical Guide to Small-Area Projections

We have provided a great deal of information on the construction and evaluation of

population projections in this book, covering the most commonly used projection

methods, potential data sources, criteria for evaluating projections, and character-

istics of forecast errors. All this information may have left the reader feeling a bit

intimidated or perhaps completely overwhelmed. How can a demographer, planner,

market researcher, or other analyst proceed when called upon to construct a set of

population projections?

In this chapter, we present a set of guidelines we hope will alleviate some of this

apprehension and anxiety (see Box 14.1). These guidelines are intended as a

summary of the material presented throughout the book and as a road map guiding

the analyst through the projection process. They will not provide answers to every

question, of course, but at least they will provide a checklist highlighting the issues

that must be considered and the choices that must be made. We believe they will

help the analyst make reasonable choices and—perhaps more important—avoid

potentially disastrous pitfalls.

These guidelines focus on projections for small areas (i.e., counties and

subcounty areas) for two reasons. First, the demand for small-area projections is

large and growing rapidly. They are used for planning when and where to build new

schools, roads, hospitals, and shopping centers; whether to expand the capacity of

an electric power plant or a public transportation system; how to tailor a marketing

plan to fit the needs of a specific client; and how to balance population growth with

environmental concerns. We believe this demand will continue to grow.

Second, population size and data availability create methodological problems

for small-area projections that do not exist (or are much less severe) for projections

of larger areas. Consequently, some issues that must be dealt with when making

projections for small areas are not present when making projections for large areas.

In spite of this focus on small areas, much of the discussion in this chapter is

applicable to state and national projections as well.

S.K. Smith et al., A Practitioner’s Guide to State and Local Population Projections,
The Springer Series on Demographic Methods and Population Analysis 37,

DOI 10.1007/978-94-007-7551-0_14, © Springer Science+Business Media Dordrecht 2013
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Box 14.1 How to Make Small-Area Projections

1. Determine what is needed

• Demographic characteristics

• Geographic regions

• Length of horizon and projection interval

• Time and budget constraints

• Other considerations

2. Construct the projections

• Choose projection method(s)

• Collect and evaluate data

• Adjust for special events

• Control for consistency

• Account for uncertainty

3. Review and document results

• Internal review

• External review

• Documentation

14.1 Determine What is Needed and the Resources

Available

The first step in the projection process is to determine exactly what is needed and

the time and money available to complete the project. This may seem almost too

obvious to mention, but clients (i.e., the persons, agencies, or organizations

requesting the projections) are often unsure about what they really need and what

the costs are likely to be. Consequently, it is essential to discuss all aspects of a

project at the very beginning, covering the relevant details clearly and completely.

It is also helpful to discuss the purposes for which the projections will be used. This

will help the analyst determine the type of projections needed and choose the most

appropriate data sources and projection methods.

The process will be different for general-purpose projections than for custom-

ized projections. General-purpose projections are those produced without reference

to a specific use or data user, whereas customized projections are those produced for

a single data user or a particular purpose. Decision-making criteria can be more

clearly defined for customized projections than for general-purpose projections.

Consequently, the decisions underlying general-purpose projections must be based

on the analyst’s expectations regarding the primary needs of the majority of data

users. Time and budget constraints will play an important role in these decisions
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because the production of greater geographic and demographic detail requires

greater resources.

Failing to clearly define all aspects of a project at the very beginning is an

invitation to disaster, leading to wasted resources, unsatisfactory results, and

unhappy clients. The following checklist will help the analyst identify the issues

that must be resolved before starting the projection process.

14.1.1 Demographic Characteristics

Should the projections refer simply to total population size or also to characteristics

such as age, sex, race, and ethnicity? If age-group projections are needed, what are

the relevant age categories (e.g., 1-year groups or 5-year groups)? What racial or

ethnic categories are needed? What types of cross tabulations are required? For

example, if projections of the Hispanic population are needed, should they be made

by age, sex, and race? The client will generally be able to answer these questions,

but may not realize their importance unless prompted by the analyst. Knowing the

purpose for which projections will be used helps determine which demographic

characteristics are required.

Age, sex, race, and ethnicity are the characteristics most commonly included in

population projections. For some purposes, however, projections of other charac-

teristics or population subgroups may be needed. Examples include persons with

disabilities, the institutionalized population, the seasonal population, persons in the

labor force, school enrollment, and the number of commuters. The projection model

may also be used to project the components of population growth (births, deaths,

and migration). Again, knowing the purposes for which the projections are to be

used helps determine the type of projections needed.

14.1.2 Geographic Areas

Population projections are often made for well-defined areas such as states and

counties. The geographic boundaries for these areas are easy to determine, match up

clearly with the boundaries used for tabulating many types of data, and generally

remain stable over time. For subcounty areas, however, the situation may be very

different.

Boundaries for subcounty areas are subject to sudden and dramatic changes. It is

not uncommon for cities to annex adjoining areas, for census tracts to be

subdivided, for ZIP code areas to be reconfigured, for service areas to be redefined,

and for new school districts to be formed. The analyst must determine whether the

boundaries of the area to be projected have changed during the period for which

historical base data have been collected. If the boundaries have changed, the analyst

must decide whether to try to account for future boundary changes or simply hold
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current boundaries constant. We believe it is generally advisable to hold current

boundaries constant, but there may be circumstances in which accounting for

potential future changes may be useful (e.g., projections for a city with a history

of frequent annexations). If current boundaries are held constant, historical data

must be adjusted to reflect a geographic area that remains constant over time;

otherwise, historical changes in the base data will mix the effects of boundary

changes and population changes, thereby confounding the projection process. If

boundary changes have occurred but no relevant data are available, the analyst may

have to make subjective adjustments based on anecdotal evidence or use projection

methods requiring data from only one point in time (e.g., the constant share

method).

Sometimes projections must be made for areas lacking well-defined boundaries.

For example, a client may have only a rough idea of the geographic boundaries

defining the service area for a hospital, automobile dealership, or retail establish-

ment. In these instances, the analyst and client will have to work together to

establish a clear set of boundaries. Customer records or a sample survey may

help determine the relevant area. When delineating the boundaries of a geographic

area, it is helpful to match boundaries with those used for tabulating historical base

data (e.g., counties, cities, census tracts, or block groups). This will make it easier to

collect reliable data.

Also, there may be circumstances in which the population to be projected is not

defined geographically (e.g., the number of veterans from the armed forces or the

number of retirees from a company). In these circumstances, of course, geographic

boundaries are irrelevant (unless one is also concerned with the geographic distri-

bution of that population, such as the number of veterans residing in New Jersey).

14.1.3 Length of Horizon and Projection Interval

What time span and projection intervals are needed? Should the projections extend

for 5 years, 10 years, 20 years, or longer? Should they be made in 1-year, 5-year, or

10-year intervals?

Data availability plays an important role in the choice of projection interval.

Annual data may be unavailable for some subcounty areas, making it difficult to

make projections in 1-year intervals. Although data can be adjusted to match

different time intervals, this process is subject to a number of problems (see the

discussion of migration adjustments in Chap. 6). In most instances, we believe it is

advisable to match projection intervals with the time periods for which data are

available. For example, when using net migration data derived from two consecu-

tive censuses, it is better to make projections using 10-year intervals than try to

convert 10-year data into 1- or 5-year data. If annual projections are needed, they

can be made by interpolating between target years (see Chap. 10).
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14.1.4 Time and Budget Constraints

It is essential to start with a clear understanding of the time, money, and other

resources available for developing the projections. This is true regardless of

whether the client is an outside party or someone from within the analyst’s own

agency or organization. Indeed, many of the decisions made throughout the pro-

jection process will be affected by deadlines and available resources. In general, the

greater the amount of demographic and geographic detail required and the greater

the attention paid to an area’s unique characteristics and special populations, the

greater the time and other resources needed to construct the projections. An

inadequate budget or too short a time frame will lead to low levels of quality (for

the projections) and high levels of stress (for the analyst and the client).

It takes more time to construct a set of projections the first time than it does to

repeat the process a second, third, or fourth time. Developing a projection model

from scratch and collecting, analyzing, and adjusting input data are very time-

consuming tasks. Updating a set of projections is much simpler. The best advice for

first-time producers of population projections is the same as for someone about to

remodel his/her kitchen: allow twice as much time as you think the project

should take.

14.1.5 Other Considerations

A variety of other factors must be considered. Will the projections be used solely as

forecasts or will they play other roles (e.g., trace out the effects of different

assumptions or scenarios)? Do they need to be tied to some other type of projection

(e.g., census tract projections controlled to an independent county projection)? Will

they be subject to some type of review process? If so, what parties will participate in

this process? Will those parties have a strictly advisory role or will they have the

power to require changes in the methodology, assumptions, or results? If there are

disagreements, how will they be resolved?

Political considerations may be particularly important. In some instances, the

analyst has complete freedom to select methods and assumptions; in other

instances, outside parties are involved (e.g., clients, government agencies, groups

of data users). In these instances, it may be helpful to put together an advisory panel

made up of representatives from each party. Members of this panel can provide

input regarding geographic areas, data, techniques, assumptions, projection inter-

vals, and so forth. This input is likely to improve both the quality and the political

acceptability of the projections (Tayman 2011). Conflicts can be resolved more

easily early in the production process than at the end. Even when not required by

law, achieving consensus among major stakeholders may raise the credibility of the

projections.
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As discussed in Chap. 12, political considerations can have either a positive or

negative impact on the quality of projections, depending on the specific circum-

stances involved. Independent analysts have the option of saying “no” to a project if

they believe political influences will harm their professional reputations or com-

promise the integrity of the projections. Staff members working within a govern-

ment agency or private business may not have this option; refusing to participate in

a project or to accept non-technical input may be tantamount to handing in one’s

resignation. Clearly, political considerations can present the analyst with thorny

ethical dilemmas.

14.2 Construct the Projections

14.2.1 Select Computer Software

The first step in constructing a set of projections is to select the computer software

that will be used to organize and manipulate the input data, develop the projection

algorithms, and present the projection results. Three broad types of software can be

used: electronic spreadsheets (e.g., Excel, Google Docs, and Apache Open Office),

statistical analysis packages (e.g., SAS, SPSS, and R), and customized routines

written using computer programming languages (e.g., C++, Java, and Python).

Several critical issues must be considered when selecting the appropriate software:

1. How does the software handle input data? The most useful software will be adept

at handling data from multiple system platforms (UNIX, PC, mainframe, the

cloud) and a variety of distribution media and file formats. Although many data

files are now downloadable, some historical data series are available only in

paper records, CDs, or even mainframe cartridges. File structures have become

more complex as programmers seek to increase efficiencies related to machine

readability and automatic data processing and hierarchical structures have

become commonplace (e.g., PUMS data). The use of relational database man-

agers (e.g., Access, Oracle, SQL) to store, retrieve, and manage information

from large data sets can greatly facilitate the development of population pro-

jections, especially for detailed characteristics covering a large number of

geographic areas.

2. How adept is the software at formulating and modifying the algorithms that will

be used in constructing the projections? How does it handle the sequence of data

transformations and modeling steps required by the projection model? Statistical

analysis packages and formal programming languages perform these functions

very well and can easily accommodate changes in data and statistical routines.

Spreadsheets are somewhat unwieldy because changes in the number of obser-

vations or operations cannot be handled seamlessly. Rather, formulas or

worksheets must be duplicated, adding to the workload and creating additional

opportunities for error. Although the use of macros can substantially reduce
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these problems, the drawbacks of spreadsheets become more acute with

increases in the number of areas and level of demographic detail being projected.

3. How does the software present its output? Projection results are typically

released as reports, tables, charts, and maps, in both hard-copy and computer-

readable formats. Headers, footers, and appended notes must be programmed

from scratch when a customized routine is used, but those functions are already

included in most statistical packages and spreadsheets, along with relatively

easy-to-use graphing and table-generating capabilities. Some software packages

produce web-enabled files and generate a multi-purpose data warehouse capable

of accepting queries from web browsers. This is very useful for disseminating

projections data quickly and easily. In addition, providing metadata describing

the structure, content, and context of data files greatly increases their usability

and quality.

Off-the-shelf software packages for most population projection methods are

very limited. For trend extrapolation and cohort-component projections, the few

packages currently available are either difficult to use or are not flexible enough to

make them applicable in a variety of settings and special circumstances. The only

exception is structural models, for which some software packages are available (but

expensive).

The analyst making population projections will generally have to write his/her

own computer programs, using a spreadsheet, statistical analysis package, and/or

programming language. We believe spreadsheets are particularly useful when the

projections do not involve too many computations, but statistical analysis packages

or programming languages are more useful when the projections cover a large

number of areas or require complex programming. It should be noted that most of

the computations, tables, and figures shown in this book were done using a

spreadsheet program.

14.2.2 Choose Projection Method(s)

The next step is to choose the methods to be used for making the projections. This

choice will depend on the purposes for which the projections will be used; the level

of geographic and demographic detail needed; the amount of time, money, and

other resources available; and the availability of relevant input data.

A variety of methods can be used for projections of total population. Simple

extrapolation methods such as linear, exponential, shift-share, and share-of-growth

will often be sufficient, especially for short-to-medium time horizons. The reader is

reminded, however, of the potential problems of using the exponential method for

places that grew rapidly during the base period or using the shift-share method for

places that either grew or declined rapidly (see Chap. 13).

Simple extrapolation methods can also be used for projections of racial or ethnic

groups, but projections by age will require some type of cohort approach. Although
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cohort-component models based on gross migration data are theoretically superior

to models based on net migration data, the lack of reliable data often poses a serious

problem for gross migration models (see Chap. 6 for further discussion). Net

migration models have smaller data requirements, are easier to apply, and generally

can be tailored to produce forecasts that are as accurate as those produced by gross

migration models. Even the relatively simple Hamilton-Perry method provides

reasonably accurate forecasts in many circumstances; this method is particularly

useful for projections of subcounty areas. In order to avoid a tendency to over-

project the populations of rapidly growing areas, however, it is advisable to control

projections based on net migration models and the Hamilton-Perry method to

independent projections of net migration or total population, at least in those areas.

Other considerations come into play as well. Projections made for purposes of

simulation or policy analysis generally require the use of a cohort-component

model and perhaps a structural or microsimulation model. Projections of population

subgroups such as prison inmates, seasonal residents, or public school enrollees

require models that specifically account for those subgroups.

An important point to remember when choosing a projection method is that no

single model or technique is better than all others for all purposes. Rather, each has

its own strengths and weaknesses and must be evaluated according to its face

validity, timeliness, cost, data requirements, ease of application, and other charac-

teristics. Some of these characteristics are complementary (e.g., low costs, low data

requirements, and ease of application typically go together), but others conflict with

each other (e.g., greater geographic and demographic detail imply greater time and

money costs).

In the final analysis, the choice of projection method will be determined by the

analyst’s judgment regarding the optimal combination of these characteristics. As a

general rule it is best to use the simplest method that can accomplish the task at

hand. This allows the analyst to spend more time on activities that are likely to have

an impact on the quality of the projections (e.g., checking for errors in the input

data, adjusting for unique events, and reviewing the projection results), while

spending less time on activities that are not likely to matter very much (e.g.,

developing an unnecessarily complex projection model). The reader is also

reminded of the potential benefits of combining projections from a variety of

methods, perhaps using different base periods or sets of assumptions (see

Chap. 13). We believe combining is particularly valuable for small-area projec-

tions, where the potential for large errors is greatest.

14.2.3 Collect and Evaluate Data

The availability and quality of input data has a major impact on the choice of the

projection method. Simple trend extrapolation and ratio methods only require total

population data for two points in time (one point for the constant share method).

Time series models require data for many points in time. The Hamilton-Perry
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method requires data by age and sex (and perhaps other characteristics) from two

points in time. More complex cohort-component models require data on births,

deaths, and migration and the demographic make-up of the population. Structural

models require data on explanatory variables as well as dependent variables. Urban

systems models require data on vacant land, zoning restrictions, employment,

transportation systems, and similar variables. Microsimulation models require

data on the activities of individual units such as persons, households, vehicles,

organizations, or firms.

The lack of appropriate data may cause the analyst to choose a different method

than would have been chosen under ideal circumstances. Population data are almost

always available for at least two points in time (e.g., the two most recent censuses)

but annual time series data are unavailable for many subcounty areas, making it

difficult or impossible to use complex extrapolation methods. Fertility and mortal-

ity data are generally available for states and counties but are often unavailable for

subcounty areas; detailed in- and out- migration data are difficult to obtain even for

states and counties. When fertility, mortality, and migration data are not available,

cohort-component projections can be made using the Hamilton-Perry method or

model schedules (i.e., rates from another source thought to be representative of the

projection area). Options are more limited when the data required by structural and

microsimulation models are unavailable; in those circumstances, those models

generally cannot be used.

Whatever methods are chosen, efforts must be made to obtain the most recent

data available. The decennial census is an excellent source, providing data on total

population and basic demographic characteristics down to the block level. For years

after or between censuses, estimates of total population are often available. When

such estimates are not available, they can be constructed using a variety of data

sources and estimation techniques (Siegel 2002; Smith and Cody 2013; Swanson

and Tayman 2012). Data on detailed demographic and socioeconomic characteris-

tics can be obtained from the American Community Survey (ACS) but may contain

large sampling errors for small areas. Using recent data is important because growth

trends sometimes change rapidly, especially for small areas.

It is also important to evaluate the quality of the input data. Although it is the

closest thing to a “gold standard” for demographic data in the United States, the

decennial census is not error-free. Errors are often corrected within a year or two

after the census, but they sometimes go uncorrected until the following census

(or even longer). Census errors often cancel out at higher levels of geography but

for small areas they can be substantial, especially for some population subgroups

(e.g., age, sex, and racial categories). Postcensal population estimates are subject to

even larger errors than decennial census data. Data sources used for particular types

of projections—such as birth and death statistics, IRS migration records, group

quarters data, and employment forecasts—are also subject to error. It is essential to

examine all input data, note potential errors, and make corrections or adjustments

when possible. This is a time-consuming task, but can have a huge pay-off in terms

of improving the quality of the projections.
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How long a base period is needed? As noted in Chap. 13, there is little uniformity

among practitioners. Choices vary according to projection method, length of

projection horizon, and availability of historical data. For simple extrapolation

methods only a few years of base data are needed for projections extending a few

years into the future. Given the impact of reporting errors and random fluctuations

in historical data series, however, we believe it is risky to use a single year of base

data for any projection, even one covering a single year. For projections extending

beyond 5 years, approximately 10 years of base data are needed to achieve the

greatest possible forecast accuracy. Longer base periods can be used, but they will

not necessarily raise forecast accuracy. One exception is EXPO projections for

rapidly growing areas and SHIFT projections for rapidly growing or declining

areas, where increasing the base period to 20 years seems to improve forecast

accuracy by moderating the impact of extreme growth rates.

Very little research has considered this question for other projection methods.

Some analysts believe at least 50 observations are necessary for applying time

series methods (McCleary and Hay 1980) but this does not imply that 50 observa-

tions are needed to maximize forecast accuracy. In fact, some analysts have used as

few as 11, apparently with reasonable results (Voss and Kale 1985). Cohort-

component models often use the most recent data on migration and fertility rates,

without attempting to account for changes over time. Many applications of struc-

tural and microsimulation models appear to use whatever data are available.

Other than for simple extrapolation methods, there are currently no general

guidelines regarding how much base data should be used in constructing population

projections. In making this decision the analyst must rely on his/her professional

judgment, informed by theoretical considerations and empirical evidence. In some

instances this decision will be determined primarily by the availability of

relevant data.

14.2.4 Adjust for Special Events

It is important to adjust the base data for the effects of any special events that may

have occurred. For example, large state prisons were built in several small Florida

counties during the past decade. The populations of some of these previously slowly

growing counties suddenly grew by 5, 10, or even 15% over a period of just a

year or two. If projections were made using that decade as a base period and taking

no account of these events, the analyst in essence would be projecting the con-

struction of similar prisons during each future decade. This will generally not be a

reasonable assumption. When this occurs, adjustments should be made by taking

the special population out of the base data, making projections using the remaining

data, and adding back a separate projection of the special population, as illustrated

in Chap. 10.

Other types of special events may also have substantial, one-time-only effects on

population growth. Examples include the opening or closing of a military base,

382 14 A Practical Guide to Small-Area Projections

http://dx.doi.org/10.1007/978-94-007-7551-0_13
http://dx.doi.org/10.1007/978-94-007-7551-0_10


college, or retirement home; the construction of a large housing development; and

the addition or loss of a major employer. The effects of such events on population

change are particularly great for areas with small populations. For areas with large

populations, the effects of these types of events tend to cancel each other out and

can usually be ignored.

Adjusting for special events requires intimate knowledge of the area to be

projected. It also requires the application of professional judgment. Which events

should be accounted for and which should be ignored? Should expectations of

future events be considered or only events that have already occurred? Are there

any spin-off effects of these events that might affect other aspects of population

growth (e.g., what are the employment implications of building a new prison)? The

analyst must answer these and similar questions before constructing the projections.

In addition to accounting for special events, the analyst must consider the

potential effects of any constraints that may restrict future population growth.

Constraints may be physical (e.g., swamps, lakes, flood plains) or political (e.g.,

zoning restrictions, land use plans, building moratoria). Such constraints are rarely

important at the state level, but are often critical for county and especially

subcounty areas. Some projection methods account for such constraints explicitly

(e.g., urban systems models), but their impact should be considered when using

other methods as well.

14.2.5 Control for Consistency

It is generally advisable to control small-area projections to projections of larger

areas. For example, county projections might be controlled to state projections, or

census tract projections controlled to county projections. Although there is no

evidence that controlling improves forecast accuracy (Isserman 1977; Voss and

Kale 1985), it does make small-area projections consistent with each other and with

projections of larger areas. This will be particularly important when larger-area

projections are “official” projections whose use is mandated by law or some other

requirement. Controlling can be achieved using simple raking procedures or more

complex approaches based on population change (see Chap. 10).

14.2.6 Account for Uncertainty

We can be pretty sure the sun will set tonight and rise again tomorrow morning. The

earth has been rotating on its axis for a long time and the chances of that changing

anytime soon are so slim that—for all practical purposes—we can accept its

continuation as a certainty. Most future events, however, are subject to some degree

of uncertainty. Will it rain tomorrow? Will the stock market go up or down next

year? Will the Cubs ever win another World Series?
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The course of future population change is also uncertain. The degree of uncer-

tainty grows as the projection horizon becomes longer and as the size of the

population becomes smaller. We can be much more confident of a 1-year forecast

than a 20-year forecast. Similarly, we can be more certain of the future size of the

U.S. population than the future size of the population living in Portland, Maine. The

errors reported in Chap. 13 illustrate the uncertainty inherent in population

forecasts.

We believe it is important to provide data users with some indication of

uncertainty. This can be done in several ways. One is to construct a range of

projections based on two or more methods or different specifications of a particular

method. For example, projections might be made using several trend extrapolation

methods and/or different base periods for each one. A more common approach is to

produce several sets of cohort-component projections based on different combina-

tions of assumptions. For example, fertility rates could be projected to rise by 10%,

fall by 10%, or remain constant. Migration rates could be based on data from the

last 2 years, 5 years, or 10 years.

The primary benefit of producing a range of projections is that it shows the

populations stemming from different models, techniques, or sets of assumptions.

The primary limitation is that it does not provide an explicit measure of uncertainty.

How likely is it that the future population will fall within the range suggested by

two alternative projections? How likely is it that any particular projection will

provide an accurate forecast of future population change? These questions cannot

be answered simply by producing a range.

An explicit measure of uncertainty can be given by constructing prediction

intervals to accompany population forecasts (see Chap. 13). These intervals can

be based on specific models of population growth or on empirical analyses of past

forecast errors. Model-based intervals are difficult to produce and are subject to a

variety of specification errors. Empirically-based intervals require the collection of

a large amount of historical data. Both are valid only to the extent to which future

error distributions are similar to past or simulated distributions. In spite of these

problems, prediction intervals offer one major advantage over a range of projec-

tions: They provide an explicit measure of the uncertainty surrounding future

population growth.

Forecast uncertainty can also be assessed by comparing more broadly defined

projection scenarios. For example, scenarios can be based on alternative assump-

tions regarding land use patterns; the transportation system; and housing, economic,

fiscal, and environmental policies. Under this approach, uncertainty is evaluated by

considering various policy options; it is not intended to show a specific range of

values or a precise numerical estimate for a particular area.

Another way to provide data users with some indication of uncertainty is to

construct tables summarizing errors from previous forecasts for the area to be

projected or for areas with similar characteristics. Although this approach does

not provide an explicit range or prediction interval, it does provide an assessment of

past performance and—by extension—a basis for predicting future performance.
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Of course, it is important to remember that—as buried in the small print of mutual

fund advertisements—past performance is no guarantee of future performance.

In some instances data users may be better off using a high or low projection

rather than the forecast or “most likely” projection. For example, suppose that the

cost to a city of building too large a sewer system is relatively small, but the cost of

building too small a system is very large. To reduce risk it may be advisable to use a

projection from the high series or at the high end of the prediction interval for

planning the size of the system. Estimates of the cost of being wrong may play an

important role in the choice of the projection to be used for any particular purpose.

Measures of uncertainty help the data user make these choices.

Population projections used as forecasts are subject to error, especially for small

areas, areas that have been growing or declining rapidly, and for long forecast

horizons. These errors are caused by our inability to correctly predict the future

course of mortality, fertility, and migration. We believe it is important to convey

this information to the data user. Although it may be disappointing, information on

potential errors will give data users a more realistic view of the future and help them

plan more effectively for the uncertainty inherent in population projections.

14.3 Review and Document the Results

The analyst may believe the job is finished once the steps described above have

been completed. That would be a mistake. At this point, the projections should be

viewed as strictly preliminary. Before they are finalized they must be thoroughly

reviewed and evaluated. Are the results plausible? Do they make sense given

historical population trends in the area and projected trends in other areas? Are

they consistent with the area’s demographic characteristics and economic condi-

tions? It is possible that there were flaws in the original projection methodology and

assumptions, that errors were made in data entry or programming, or that something

important was overlooked. A review and evaluation of the results will often

uncover such problems. As the final step in the projection process, the entire

methodology must be documented, describing all data sources, models, techniques,

and assumptions.

14.3.1 Internal Review

By internal review, we mean an examination of the results by the person or agency

producing the projections. This can be done in a variety of ways (Dion 2012;

Murdock et al. 1991). We suggest several that we have found to be particularly

helpful.

Suppose we are reviewing a set of county projections. It is useful to observe

historical population trends and to compare past changes with projected changes.
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Table 14.1 shows average annual population changes for Florida and several of its

counties from 1980 to 2010. Duval and Marion exhibited fairly stable changes over

the entire time period, albeit with a bit of a decline in 2005–2010 due to the severe

economic recession near the end of the decade. Broward exhibited changes that

increased steadily during the 1980s and 1990s but declined rapidly thereafter.

Sumter exhibited changes that rose rapidly over time and Pinellas exhibited

changes that declined rapidly, becoming negative for 2005–2010. Union exhibited

substantial volatility over the entire time period.

Rapidly changing trends is a red flag warning the analyst to investigate the

accuracy of the input data. If no errors are found, potential causes of the changes

must be considered. There are logical explanations for several of the trends shown

in Table 14.1. The volatility in Union County’s population was caused by fluctu-

ations in its large prison population. Increases in Sumter County’s prison popula-

tion contributed its growth in the late 1990s, but the main cause of the large

population increase since 2000 was the development of a huge retirement commu-

nity. Pinellas County is geographically small and densely populated; the steady

decline in its population growth since 1980 was caused primarily by the growing

scarcity of open space for further expansion. The severe recession in 2007–2009

slowed population growth almost everywhere in the state. Figuring out the causes of

recent trends will help the analyst refine the methodology and perhaps revise the

assumptions used in creating the projections.

Analyzing historical trends gives the analyst a basis for evaluating the plausi-

bility of the projections. Are projected changes consistent with historical changes?

If not, why not? If a logical explanation cannot be found, it may be a tip-off that an

error was made in choosing the projection techniques, developing assumptions, or

writing computer programs. Inspecting patterns of population change over the

projection horizon also provides helpful clues. Do the projected changes become

larger, smaller, or remain about the same as the horizon becomes longer? Is there a

logical explanation for this pattern? If not, this is another red flag that must be

investigated.

Similar tables could be constructed showing percent changes rather than

numeric changes, or showing county population as a share of state population.

These alternative forms provide different perspectives for viewing population

change and judging plausibility. The specific form doesn’t matter. What matters

Table 14.1 Average annual population change for Florida and selected counties, 1980–2010

Place 1980–1985 1985–1990 1990–1995 1995–2000 2000–2005 2005–2010

Broward 21,307 26,139 34,644 38,862 23,828 1,182

Duval 9,615 10,779 9,543 11,639 9,853 7,224

Marion 7,291 7,178 6,040 6,777 8,274 6,202

Pinellas 14,552 10,073 7,222 6,745 2,295 �3,286

Sumter 670 791 888 3,466 3,163 4,852

Union 87 �70 457 181 273 145

Florida 315,075 323,118 279,612 329,368 359,066 204,631

Source: Bureau of Economic and Business Research, University of Florida, unpublished data
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is having a set of numbers that provides a basis for comparing projected changes

with historical changes and for comparing changes in one area with changes in

another.

It is also useful to construct summary tables for population characteristics such

as age, sex, race, and ethnicity. Table 14.2 provides an example showing historical

data for broad age groups for Florida and several of its counties. Several patterns

stand out. One is the huge differences in age structure found among the three

counties. Alachua County is the home of the University of Florida and has a very

young population. Sumter County is a magnet for retirees and has a very old

population (in fact, it had the highest proportion aged 65+ of any county in the

United States in 2010). Seminole County falls in between, with an age structure

similar to the nation as a whole. Not surprisingly, Florida’s population is consid-

erably older than the U.S. population.

Another pattern that stands out from this table is the aging of the population over

time. The proportion less than age 15 declined more or less steadily between 1980

and 2010 for Florida and all three counties. The proportion aged 65+ remained

fairly constant for the state as a whole but increased in the three counties, especially

Sumter. The aging of the baby boom generation is also apparent. The proportion

aged 15–44 declined steadily between 1990 and 2010 for Florida and all three

counties and the proportion aged 45–64 increased. The continued aging of this

generation will lead to large increases in the proportion aged 65+ over the next few

decades.

Similar tables could be made showing the proportions female, black, Hispanic,

and so forth. All would provide data for judging the plausibility of the projections.

Are projected changes in demographic characteristics consistent with past changes?

Are they consistent with previous and expected changes in birth rates, death rates,

Table 14.2 Percent distribution of the population by age for Florida, and selected counties,

1980–2010

Place Age 1980 1990 2000 2010

Florida <15 19.3 18.8 19.0 17.5

15–44 41.8 43.3 40.7 38.2

45–64 21.6 19.7 22.7 27.0

65+ 17.3 18.2 17.6 17.3

Alachua <15 19.0 18.7 16.6 14.7

15–44 60.5 57.6 54.5 51.6

45–64 13.5 14.5 19.3 22.9

65+ 7.1 9.2 9.6 10.8

Seminole <15 23.5 21.2 21.0 18.5

15–44 46.2 49.5 44.7 41.5

45–64 20.5 19.0 23.6 28.0

65+ 9.8 10.3 10.6 12.0

Sumter <15 20.7 18.6 13.1 7.4

15–44 40.0 36.9 32.2 20.3

45–64 22.6 22.2 27.3 28.9

65+ 16.7 22.3 27.4 43.4

Source: Bureau of Economic and Business Research, University of Florida, unpublished data
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and migration patterns? Are the changes projected for one area consistent with

those projected for another? If not, is there a logical explanation for the differences?

Answers to these questions help the analyst evaluate the projections’ plausibility

and uncover any errors that may have been made.

Inspecting historical population changes and comparing them with projected

changes is a tedious and time-consuming process; so too is comparing projections

for one area with those for another. However, such an exercise is well worth the

effort. It improves the analyst’s understanding of the population dynamics of

the areas being projected, uncovers data and computational errors, illustrates the

consequences of questionable assumptions, and highlights the impact of factors

such as special populations and growth constraints. Sometimes it points to the

omission of factors that should have been included. We believe the internal review

process is useful for projections at all levels of geography, but is particularly helpful

for small areas because of their greater potential for error.

14.3.2 External Review

By external review, we mean an examination of the results by clients, public

officials, advisory boards, and various groups of data users. In some circumstances

there is no formal external review. Once the results have been reviewed internally,

the process is complete. This is the case for general-purpose projections produced

by the Census Bureau, by some state and local government agencies, and by most

private data companies.

Even in these circumstances, however, projections may be subject to a great deal

of informal external review. Data users often communicate their views (sometimes

quite forcefully) regarding the projection methodology and results. These com-

ments may refer to the validity of the data, techniques, and assumptions used in

constructing the projections; to the level of geographic or demographic detail

provided; or to the plausibility of the results. Feedback from data users sometimes

has an impact on the production of future projections. For example, data producers

may be persuaded to provide more demographic detail, to extend the projections

further into the future, or even to revise the basic methodology.

In other circumstances a formal external review is a central part of the projection

process (Tayman 1996, 2011). This is often the case for customized projections

produced for a particular client or a particular purpose (e.g., local transportation

planning). The client should always be given the opportunity to review and com-

ment on the results before the projections are finalized; indeed, such an opportunity

may be legally required. Given his/her knowledge of the projection area, the client

may be able to spot irregularities the analyst missed. Those observations may lead

to improvements in the quality of the projections.

A formal review gives the analyst a chance to describe the projection method-

ology to the client(s), explain why particular techniques and assumptions were

used, and answer any questions that might arise. The review process itself may help
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the analyst convince the clients of the validity of the projections, which may be

critical when the projections must have the clients’ approval before they can be

finalized. The review also gives the client an opportunity to make suggestions

regarding the optimal format in which to display the projections. Of course, issues

regarding geographic areas, age categories, projection horizons, and similar details

should have been resolved before work on the projections was begun.

If the reviewers are dissatisfied with the results, the external review may be the

most difficult part of the entire projection process. Dissatisfaction may be based on

purely technical grounds, such as the choice of data sources, techniques, or

assumptions. It is more likely, however, that dissatisfaction will be based on

political and economic considerations. Population projections are used for distrib-

uting government funds, allocating various types of permits, regulating the expan-

sion of businesses, and planning the development of infrastructure and public

facilities. They may even determine the salaries of public officials and the winners

and losers in high-stakes games allocating political power and economic resources.

It is no wonder that population projections are sometimes so controversial.

In some circumstances external reviewers play only an advisory role; in other

circumstances they have the power to require that changes be made. This may put

the analyst in a precarious position, attempting to balance technical competency

with political expediency. At its best an external review presents new insights,

provides a final opportunity to catch errors, and promotes public support and

acceptance. At its worst it destroys the integrity of the process and the credibility

of the projections. The successful analyst may have to be as skilled in the arts of

political persuasion and negotiation as in the technical aspects of population

forecasting.

14.3.3 Documentation

A complete written description of the projection methodology should accompany

the projections. This report should cover data sources, projection methods, assump-

tions, special adjustments, and any other factors considered in constructing the

projections. The reasons for choosing the forecast or “most likely” projection

should be spelled out clearly. It is also helpful to discuss the range of projections,

including the expected degree of forecast accuracy of the “most likely” projection,

given its past performance or some other measure of uncertainty. A comparison of

projected trends with past trends and with projections in other areas provides a

context for considering the implications of the projections.

The methodological description should be comprehensive but clear, covering all

aspects of the projection process in terms that can be understood by the data user.

Balancing completeness and clarity can be tricky. It is sometimes helpful to put the

most technical material in an appendix or a separate report. Alternatively, a general

description of the methodology and results can be put in an executive summary,

with the detailed description in the main body of the report. A clear description of
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the methodology helps data users understand and evaluate the projections and

decide how they might best be used. For some data users the projections will be

worthless without a description that is detailed enough to allow the results to be

replicated.

Writing up the methodological description also helps the analyst review the

entire projection process and note any parts requiring further consideration. Are

some data sources of dubious quality? Are some assumptions particularly ques-

tionable? Have all the relevant factors been taken into account? What improve-

ments might be made next time around? Documenting all the steps in the projection

process helps the analyst uncover weak spots in the methodology and develop a

strategy for dealing with them.

Thorough documentation is also essential for replicating the projections at a later

date. It is much easier to repeat or revise a methodology used successfully in the

past than to create a new one from scratch. Written documentation is particularly

important when staff turnover takes away the analyst(s) with direct knowledge of

the methodological details of an earlier set of projections. New staff members will

be extremely grateful for a clear, comprehensive description of the projection

methodology used previously.

14.4 Conclusions

The guidelines presented in this chapter will not answer every question and solve

every problem that might be encountered when making small-area population

projections. Every set of circumstances is unique in one way or another, with

special factors that must be considered before reasonable projections can be

made. Consequently, every set of projections is unique. However, there are many

commonalities shared by virtually all small-area projections; these commonalities

provide a basis for developing a general set of guidelines.

Following these guidelines will not guarantee the accuracy of population fore-

casts, of course. Even the most brilliant analyst—armed with high-quality data,

sophisticated models, and extensive knowledge of the area—may produce a fore-

cast that turns out to be wildly inaccurate. There are no crystal balls, no magic

potions, and no guarantees, but we believe these guidelines can help the analyst

focus on the relevant issues, make reasonable choices, and avoid common mistakes.

These are modest accomplishments, perhaps, but at least they provide some degree

of comfort in a world of high pressure, high stakes, and limited resources.

Seldom—if ever—does an analyst have unlimited resources when constructing a

set of population projections. Consequently, trade-offs have to be made. More time

spent on one phase of the projection process (e.g., data collection) typically implies

less time available for another phase (e.g., developing a methodology). Greater

geographic coverage typically reduces the amount of demographic detail that can

be included. A common objective in the field of applied demography is to do what is

necessary to support practical decision making while minimizing time and money
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costs (Swanson et al. 1996). We believe the guidelines discussed in this chapter will

help the analyst focus on the relevant issues and make the trade-offs needed to

produce the best possible projections for the lowest possible cost.
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Epilogue: Some Final Thoughts

Using the past to project the future has been likened to driving a car by looking in the

rear view mirror (Beck 1996). There is certainly some truth in this analogy. All the

projection methods discussed in this book were based—in one way or another—on the

extrapolation of past trends. But what is the alternative? If the windshield is covered

with mud but the back window is clear, what offers the greater chance for keeping the

car on the road (or at least on the shoulder): staring into the blank windshield in front of

us or drawing inferences from the curves, hills, and potholes in the road behind us?

In reality, all objective projectionmethods—including cohort-component, structural,

and microsimulation models as well as simple trend extrapolation techniques—are

based on historical observations. Likewise, subjective projections based on intuition,

experience, or expert judgment are distilled from the analyst’s knowledge and

understanding of past experiences. Only visions of the future inspired by dreams, tea

leaves, or the stars may be truly free of the past. Even for these, who knows what part of

a visionwas actually inspired by historical events?AsKeyfitz (1982) noted, pending the

discovery of a truly behavioral way of projecting the future, we cannot afford to be

ashamed of extrapolating the regularities observed in the past.

How can the extrapolation of past regularities be improved? Population projec-

tion methods differ primarily with respect to the time frames they cover, the

variables they include, the ways in which those variables are related to each

other, and their assumptions regarding future changes in variables and their inter-

relationships. Future changes in the field of population projections will therefore

stem from changes in the availability of data, the development of new tools for

organizing and manipulating data, new insights regarding the determinants of

population change, and the development of new models or methods based on

these new insights. The inspired analyst will incorporate factors not previously

considered or will put them together in creative new ways. That inspiration,

however, will still be firmly rooted in the past.

What recent developments might change the way population projections are

made? Are any new methods or data sources being investigated? Will changes in

computing capabilities and geographic information systems have an impact? Are

any “paradigm shifts” imminent?
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Paradigm shift (Source: Thaves 1989 (reprinted with permission))

The availability of mortality, fertility, and migration data has evolved over the

years. We don’t anticipate any major changes in the availability or quality of

mortality and fertility data in the foreseeable future, but important changes in

migration data are already occurring. Annual migration estimates based on IRS

records became available during the late 1970s. Not only were these data more

timely than migration data from the decennial census, but they made it possible to

apply projection methods based on annual data series (e.g., ARIMA time series

models).

Even more important has been the loss of the census long from and its replace-

ment by the American Community Survey (ACS). ACS migration data are based on

a smaller sample size than long-form migration data, refer to a 1-year rather than a

5-year migration interval, and are available annually rather than once per decade. In

addition, the Census Bureau will be releasing fewer detailed migration tables for the

ACS than it did for the decennial census (see Chap. 6). These differences will have

a major impact on the way cohort-component projections are made, especially for

small areas. In particular, we believe net migration models (including the Hamilton-

Perry method) will be used more frequently than in the past; gross migration models

will be used less frequently; when gross migration models are used, they will often

be based on synthetic data series drawn from several data sources such as the ACS,

the Current Population Survey, and the IRS records; and models based on single-year

age groups and migration intervals will become more common.

Population projections are often based on population estimates. These estimates are

typically derived from symptomatic indicators of population change such as births,

deaths, tax records, building permits, electric customers, school enrollment, and

Medicare enrollees. Changes in information technology will increase the number

and variety of data series that might be used as symptomatic indicators, and will

make them more readily available to a larger number of data users. In addition, the

expansion of geographic information systems will make it possible to tabulate these

data at lower and lower levels of geography. These changes will have an important

(albeit indirect) impact on population projections, especially for very small areas.
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The utilization of data at smaller and smaller levels of geography (all the way

down to the individual parcel, household, or person) would not be possible without

the tremendous improvements in computing capabilities that have occurred over the

years. We see no reason why further improvements will not continue to be made.

Combined with the appearance of new types of data, we expect that advances in

computing capabilities will lead to projections covering increasingly detailed

socioeconomic and demographic characteristics at ever smaller units of geography.

Of particular importance in this regard is the emergence of “Big Data.” This term

refers to the huge amount of digital data that have become available in recent years

from an ever-expanding number of sources. It includes both structured and unstruc-

tured data and is characterized by massive volume, velocity (i.e., frequency), and

variety (Dijcks 2012). It encompasses traditional administrative records from

government agencies as well as a vast array of business transactions, e-mail

messages, web searches, social media postings, spatial movements, photos, and

surveillance videos. The emergence of Big Data was facilitated by the development

of new software systems and the ability to store tremendous amounts of data in the

cloud. We believe it will lead to new approaches to making population estimates

and projections.

We don’t know exactly what these new approaches will be, but we expect them

to be innovative and extremely useful. For example, the location-tracking capabil-

ities of cell phones may facilitate the development of estimates of temporary

population movements such as commuting and seasonal migration. These estimates

of temporary movements could be combined with estimates of permanent residents

to construct estimates of the de facto population; projections based on historical

trends in that population could also be developed. De facto-based estimates and

projections would be invaluable for a wide variety of planning purposes in both the

public and private sectors (e.g., emergency management, infrastructure needs, and

the demand for various types of goods and services). Big Data may indeed herald a

paradigm shift, not only in demography but in other fields as well.

We believe the data and methods used in constructing population projections

will continue to evolve, both along the lines suggested in this book and in ways not

yet imagined. There will be changes in the ways we think about the future

(Romaniuc 2003, 2010) and in our perceptions of how the past shapes the future

(Mead 1932). Despite these changes, we cannot escape the fact that the future is

uncertain. Donald Rumsfeld, Secretary of Defense in the George W. Bush admin-

istration, famously warned about unknown “unknowns,” those things we don’t

know that we do not know (U.S. Department of Defense 2002). Nassim Taleb,

essayist and scholar, warned of “Black Swans,” those rare events that have an

extreme impact but are essentially unpredictable (Taleb 2007). As we strive to

improve the accuracy, scope, and overall usefulness of population projections—and

achieve some successes along the way—the essential uncertainty of the future will

keep us humble as forecasters. As noted in Chap. 13, providing a clear warning

about forecast uncertainty may be the most useful service the producers of

population projections can provide to the users of their projections.
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The widespread availability of data and software will make it possible for more

and more people to make population projections and to make them faster, cheaper,

and with greater detail than ever before. The Internet- and cloud-based services will

allow unprecedented access to projections at home, work, and on the road. These

trends will be generally beneficial for data users and will raise the overall usefulness

of population projections. However, it will also lead to more projections based on

ill-founded assumptions, inadequate attention to detail, vested political or economic

interests, and a poor understanding of the causes of population growth and demo-

graphic change. Data users will face a broader array of options than ever before and

will have to do their homework in order to make the best possible decisions. We

hope this book will help them as they go through that decision-making process.
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Glossary

Administrative records Records kept by agencies of federal, state, and local

governments for purposes of registration, licensing, and program administration.

These records provide information on demographic events and population

changes and are frequently used for constructing population estimates.

Age structure (see Population composition)

Age-specific rate A statistical measure that relates the number of demographic

events (e.g., births, deaths) for a specific age group to the corresponding at-risk

population. Age-specific rates are typically calculated by dividing the annual

number of events by the midyear population in each age group.

American Community Survey (ACS) Amonthly household survey conducted by

the Census Bureau designed to provide socioeconomic and demographic infor-

mation for states, counties, and a variety of subcounty areas. The ACS covers

approximately 250,000 households each month and has replaced the long form

of the decennial census.

At-risk population The set of people to whom a demographic event (e.g., birth,

death, and migration) might potentially occur. Ideally, the at-risk population is

measured by the total person-years lived during the relevant time interval. In

practice, it is often approximated by the midyear population.

Autoregression Integrated Moving Average (ARIMA) model A model that

bases projections of future values in a time series on the patterns of change in

its historical values. Historical values are typically expressed as differences and

future values are expressed as a function of previous values and previous errors.

Base year The year of the earliest data used to make a projection.

Big data Digital data characterized by massive volume, velocity (i.e., frequency),

and variety. It encompasses traditional administrative records as well as a vast

array of business transactions, email messages, web searches, social media

postings, spatial movements, photos, and surveillance videos.

Block group A cluster of blocks, typically containing between 250 and 550 hous-

ing units at the time of a decennial census.
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Block A small geographic area bounded on all sides by identifiable features (e.g.,

roads, rivers, property lines, city limits). A block is the lowest geographic level

for which decennial census data are tabulated.

Bottom-up model In a hierarchically nested geographic system, a model in which

an estimate or projection for a higher-level geographic unit (e.g., a state) is

computed by summing the estimates or projections for lower-level geographic

units (e.g., counties).

Census survival rate A measure of survival from one census year to another. For

censuses conducted every 10 years, it is calculated by dividing the population

age t + 10 in one census by the population age t previous census. Also called a

cohort-change ratio, this measure includes the effects of mortality, migration,

and census enumeration errors.

Census tract A small, relatively permanent statistical subdivision of a county.

Census tracts are designed to be homogenous with respect to population and

socioeconomic characteristics and typically contain between 2,500 and 8,000

persons at the time of a decennial census. Although census tract boundaries are

intended to remain constant over time, changes reflecting population growth or

decline often occur.

Census A count of the entire population of a specific geographic area at a specific

time. The U.S. government has conducted a census every l0 years since 1790;

that is, the United States has a decennial census. The Census Bureau and state

and local governments occasionally conduct special censuses for particular

cities, counties, and other small areas for years between decennial censuses.

Child-woman ratio The number of children (e.g., aged 0–4) divided by number of

women of childbearing age (e.g., aged 15–44) at a given point in time.

Closed population A population in which there is no migration and population

growth is determined solely by births and deaths. For example, the population

of the world as a whole is “closed,” whereas the population of New York City

is not.

Cohort A group of people who experience the same significant event during a

particular time interval. For example, all persons married in 2013 are the

marriage cohort for that year and all persons born during the 1990s are the

birth cohort for that decade.

Cohort perspective A longitudinal view of demographic events and other life

experiences for a particular cohort as it progresses through time.

Cohort-change ratio (see Census survival rate)

Cohort-component method A method in which the components of population

change are projected separately for each age-sex group in a population.

Components of population change The demographic events that determine pop-

ulation change: births, deaths, and migration. A population grows through the

addition of births and in-migrants and declines through the subtraction of deaths

and out-migrants.

Controlling The process of adjusting a geographic or demographic distribution to

an independently derived total. For example, county population projections can

be controlled to an independent state projection and age groups from one
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projection can be controlled to the total population from another projection.

Raking is a synonym.

Core-Based Statistical Area (CBSA) A geographic area defined by the

U.S. Office of Management and Budget based around an urban center of at

least 10,000 people and adjacent areas that are socioeconomically tied to the

urban center by commuting. CBSAs include both metropolitan areas (urban

centers with at least 50,000 residents) and micropolitan areas (urban centers

within between 10,000 and 50,000 residents).

Crude rate A statistical measure in which the number of demographic events

during a time interval is divided by the total population. For example, the crude

birth rate is the annual number of births divided by the midyear population.

Current Population Survey (CPS) A sample survey of approximately 60,000

U.S. households conducted monthly by the Census Bureau. The survey collects

data covering a wide range of social, economic, and demographic characteris-

tics. Some characteristics are available annually for states and large metropolitan

areas, but many are available only at the national and regional levels.

Curve fitting The process of finding the mathematical formula that describes a

particular data set (typically measured over time).

De facto population A census concept that defines an enumerated person on the

basis of his or her actual location at the time of the census.

De jure population A census concept that defines an enumerated person on a basis

other than his or her actual location at the time of the census. The most common

basis is the person’s place of usual residence, typically defined as the place the

person lives and sleeps more than any other place.

Demographic balancing equation A demographic formula in which population

change is expressed as births minus deaths plus in-migrants minus out-migrants.

An error term is sometimes included to account for measurement errors.

Domestic migration (see Internal Migration)

Econometric model An equation (or set of equations) in which the relationships

between independent and dependent variables are estimated using statistical

methods. For population projections, independent variables are typically eco-

nomic variables and dependent variables are demographic variables.

Emigration (see International migration)

Error of closure A term added to the demographic balancing equation to account

for errors in population counts (or estimates) and errors in the measurement of

the components of population change.

Estimate A calculation of a current or past value of a variable (e.g., population).

Estimates are often based on symptomatic indicators of change in the variable’s

values, but can also be based on extrapolation or interpolation methods.

Extrapolation The process of using mathematical formulas or graphical proce-

dures to determine values that fall beyond the last known value in a series of

numbers.

Face validity The extent to which a projection uses the best methods for a

particular purpose, is based on reliable data and reasonable assumptions, and

accounts for the effects of relevant factors.
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Forecast The projection selected as the one most likely to provide an accurate

prediction of the future value of a variable (e.g., population).

Forecast error The difference between forecasted and actual (or estimated)

values of a variable. The magnitude of the difference—measured in either

numeric or percent terms—is called accuracy and the direction of the difference
is called bias.

Foreign migration (see International migration)

General fertility rate The number of births during a time interval (e.g., a year)

divided by the number of women of childbearing age (e.g., 15–44). Fertility rate
is a synonym.

Geocoding The assignment of a specific geographic location (e.g., latitude and

longitude) to a person, household, or other entity. These locations are often

based on information regarding addresses, intersections, or other clearly recog-

nized landmarks.

Geographic Information System (GIS) A chain of operations involving the

collection, storage, analysis, and manipulation of data referenced by geographic

or spatial coordinates.

Gravity model A model based on the assumption that the movement of people

between two geographic areas (e.g., migration or commuting) is directly related

to the size of their populations and inversely related to the distance between the

two areas.

Gross migration The movement of migrants into or out of an area.

Hamilton-Perry method An abbreviated cohort-component method in which

projections of population change are based on cohort-change ratios.

Immigration (see International migration)

Internal (or domestic) migration Migration from one place to another within the

same country. People who enter an area are called in-migrants and people who

leave are called out-migrants.

International (or foreign) migration Migration from one country to another.

People entering a country are called immigrants and people leaving a country

are called emigrants.

Interpolation The process of using mathematical formulas, graphic procedures,

and/or values from a related data series to calculate intermediate values that fall

between two known values.

Labor force The sum of the employed (full-time or part-time) and unemployed

(without a job but actively seeking work) populations at a given point in time.

Labor force participation rate The proportion of the population in the labor

force. The labor force participation rate is typically calculated by dividing the

labor force population by the total adult population (e.g., age 16 and older).

Rates can also be calculated for specific subgroups of the population (e.g., age,

sex, race).

Launch year The year of the most recent data used to make a projection.

Life expectancy The average number of years of life remaining to people who

reach a given age, assuming the continuation of a particular set of age-specific

survival rates.
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Life table survival rate A statistical measure that shows the probability of

surviving from one exact age (or age group) to another, given a particular set

of age-specific death rates.

Life table A statistical table showing measures of mortality, survival, and life

expectancy for each age group in the population. Period life tables use mortality

and age data from a single point in time, whereas cohort life tables use data for a
particular birth cohort as it ages over time. Complete life tables contain infor-

mation by single year of age, whereas abridged life contain information for

broader age groups (e.g., 5 or 10 years).

Long form The decennial census questionnaire given to a sample of households

(approximately one in six) in every U.S. census between 1940 and 2000. This

questionnaire collected information on a wide range of socioeconomic, demo-

graphic, and housing characteristics. The long form was discontinued after the

2000 census and has been replaced by the American Community Survey (ACS).

Master Address File (MAF) A set of records maintained by the Census Bureau

that attempts to contain the address of every housing unit in the United States.

The MAF forms the basis of the decennial census, the ACS, and a number of

other surveys.

Metropolitan area A geographic area represented by a large population nucleus

and adjacent communities that have a high degree of economic and social

integration with the nucleus. A metropolitan area consists of one or more

counties and must contain either a place with a minimum population of 50,000

or a Census Bureau-defined urban area with a total population of at least

100,000.

Microsimulation models Models that operate at the level of individual units

(persons, households, firms), with each unit represented by set of associated

attributes.

Migrant A person who changes his or her place of usual residence from one

political or administrative area to another.

Migration interval The period of time over which migration is measured.

Migration The process of changing place of usual residence from one political or

administrative area to another.

Mobility The process of changing place of usual residence from one address (e.g.,

house or apartment) to another. The move can be as short as across the street or

as long as across the country or around the world.

Model schedule A set of age-specific demographic rates (birth, death, migration)

based on mathematical models summarizing the empirical regularities found in

many populations. Different schedules can be identified for populations with

differing characteristics. Model schedules can be used for estimates and pro-

jections of populations for which detailed demographic data are missing or

unreliable.

Mover A person who changes his or her place of usual residence from one address

(e.g., house or apartment) to another.

Multiregional model A model in which migration is represented by

origin–destination-specific gross migration flows. For example, a multiregional
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model may contain a 51 � 51 matrix depicting migration between each pair of

states and the District of Columbia.

Natural increase (decrease) The excess of births (deaths) over deaths (births).

Net migration The difference between the number of in-migrants and the number

of out-migrants.

Nonrecursive model A structural model that accounts for two-way interactions

between independent and dependent variables. For example, the model may

account for the effect of wage rates on migration and the effect of migration on

wage rates.

Period perspective A cross-sectional view of demographic events and other life

experiences in which the combined events and experiences of all cohorts are

measured at a given point in time.

Person-years lived The total number of years lived by a population during a given

time interval (e.g., 5 years). It is calculated by adding up the exact number of

years (or fractions thereof) lived by each member of the population during the

interval.

Place of residence According to Census Bureau guidelines, this is the place where

a person lives and sleeps more than any other place. It is sometimes called the

place of usual or permanent residence.
Plausibility The extent to which a projection is consistent with historical trends,

with the assumptions inherent in the model, and with projections for other areas.

Population composition The classification of members of a population according

to one or more characteristics such as age, sex, race, ethnicity, income, and

educational attainment.

Population distribution The spatial spread of a population among geographic

areas such as states, counties, census tracts, and parcels.

Prediction interval An estimate of the probability that a given range of pro-

jections will encompass the actual future value of the variable (e.g., population).

Prediction intervals can be based on past forecast errors, statistical models,

expert judgment, or a combination of these approaches.

Projection horizon The interval between the launch year and target year of a

projection.

Projection interval The increments in which projections are made. For population

projections, 1- and 5-year intervals are the most common.

Projection The numerical outcome of a particular set of assumptions regarding

future values of a variable (e.g., population).

Public Use Microdata Sample (PUMS) A small sample of responses selected

from the decennial census or a survey such as the American Community Survey.

PUMS data sets provide population, housing, and socioeconomic information

for individual respondents but are available only for places with a large number

of residents (e.g., 100,000 or more).

Raking (see Controlling)

Recursive model A structural model that accounts only for one-way interactions

between independent and dependent variables. For example, the model may
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account for the effect of wage rates on migration, but not the effect of migration

on wage rates.

Sex ratio The number of males per 100 females.

Short form The decennial census questionnaire collecting information on a lim-

ited number of demographic and housing characteristics. Between 1940 and

2000, the short-form went to approximately five in six households in the United

States. In 2010, it went to all households.

Special population A group of persons who reside in an area because of an

administrative or legislative action. Common types include prison inmates,

residents of nursing homes and college dormitories, and military personnel and

their dependents.

Structural model A statistical model that relates changes in population (or one of

its components) to changes in one or more variables (e.g., employment, income,

land use, and the transportation system).

Survival rate (see Census survival rate; Life table survival rate)

Synthetic population A data base containing the hypothetical or synthetic char-

acteristics of each individual unit (e.g., person, household). These characteristics

are derived from the distribution of population characteristics in small geogra-

phies (e.g., census tracts, block groups, or blocks) and are used in

microsimulation models.

Synthetic projections Projections of demographic rates for one population that

are based on the changes in those rates projected for another population. For

example, age-specific death rates for a state could be projected to change at the

same rate as age-specific death rates for the United States.

Synthetic rates Demographic rates based on data from several different sources.

For example, age-sex-race-specific death rates for a county could be based on the

corresponding state-level rates or migration rates for males could be based on

rates for females in places with a large male-only prison. Synthetic rates are

similar to rates from model schedules but can be based on a broader variety of

data sources and estimation techniques.

Target year The year for which a variable is projected.

Time series An ordered sequence in which the values of a variable are measured at

equally spaced time intervals.

Top-down model In a hierarchically nested geographic system, a model in which

projections for a lower geographic level (e.g., counties) are adjusted so that they

add to a projection for a higher geographic level (e.g., a state).

Topological Integrated Geographic Encoding and Referencing System

(TIGER) A digital database developed by the Census Bureau in which resi-

dential addresses, physical features (e.g., streets, rivers), political boundaries

(e.g., cities, counties), and census statistical boundaries are assigned exact

spatial locations.

Total fertility rate The average number of children that a group of woman would

have during their lifetimes if none died and their fertility behavior conformed to

a given set of age-specific birth rates.
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Traffic Analysis Zone (TAZ) A small geographic area designed for purposes of

transportation modeling and planning. A TAZ is usually smaller than a census

tract.

Trend extrapolation method A projection method in which projected values of a

variable are based solely on its historical values.

Vital statistics Data that reflect the registration of vital events such as births,

deaths, marriages, divorces, and abortions.

ZIP code area A postal delivery area delineated by the U.S. Postal Service.

Although ZIP code areas do not always correspond to census geographic bound-

aries, they are widely used for small-area demographic analyses.
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