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Foreword 
Imaging is considered as one of the most effective – if not the most effective – in vivo 
sampling techniques applicable to chronic serious illnesses like cancer. This simple yet 
comprehensive textbook in medical imaging informatics (MII) promotes and facili-
tates two different areas of innovation: the innovations in technology that improve the 
field of biomedical informatics itself; and the application of these novel technologies 
to medicine, thus, improving health. Aside from students in imaging disciplines such 
as radiological sciences (vs. radiology as a service), this book is also very pertinent to 
other disciplines such as cardiology and surgery. Faculty and students familiar with 
this book will come to have their own ideas how to innovate, whether it be in core 
technologies or in applications to biomedicine. 

Organizationally, the book follows a very sensible structure related to the process of 
care, which can in principle be summarized in three questions: what is wrong; how 
serious is it; and what to do? The first question (what is wrong) focuses mostly on 
diagnosis (i.e., what studies should be obtained). In this way, issues such as individu-
ally-tailored image protocol selection are addressed so that the most appropriate and 
correct study is obtained – as opposed to the traditional sequential studies. For example, 
a patient with knee pain and difficulty going up stairs or with minor trauma to the knee 
and evidence of effusion is directly sent for an MRI (magnetic resonance imaging) 
study rather than first going to x-ray; or in a child suspected of having abnormal (or 
even normal) brain development, MRI studies are recommended rather than traditional 
insurance-required computed tomography (CT). The role of imaging, not only in 
improving diagnosis but reducing health costs is highlighted. The second question 
(how serious is it) relates to how we can standardize and document image findings, on 
the way to providing truly objective, quantitative assessment from an imaging study as 
opposed to today’s norm of largely qualitative descriptors. Finally, the third question 
is in regard to how we can act upon the information we obtain clinically, from imaging 
and other sources: how can decisions be made rationally and how can we assess the 
impact of either research or an intervention? 

The textbook has been edited by two scientists, an Associate Professor and a Professor 
in MII who are both founders of this discipline at our institution. Contributions come 
from various specialists in medical imaging, informatics, computer science, and bio-
statistics. The book is not focused on image acquisition techniques or image process-
ing, which are both well-known and described elsewhere in other texts; rather, it 
focuses on how to extract knowledge and information from imaging studies and 
related data. The material in this textbook has been simplified eloquently, one of the 
most difficult tasks by any teacher to simplify difficult material so that it is under-
standable at all levels. 
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In short, this textbook is highly recommended for students in any discipline dealing 
with imaging as well as faculty interested in disciplines of medical imaging and 
informatics. 
 

Hooshang Kangarloo, MD 

Professor Emeritus of Radiological Sciences, Pediatrics, and Bioengineering 
University of California at Los Angeles 

 

With the advancement of picture archiving and communications systems (PACS) into 
“mainstream” use in healthcare facilities, there is a natural transition from the dis-
ciplines of engineering research and technology assessment to clinical operations. 
While much research in PACS-related areas continues, commercial systems are 
widely available. The burgeoning use of PACS in a range of healthcare facility sizes 
has created entirely new employment opportunities for “PACS managers,” “modality 
managers,” “interface analysts,” and others who are needed to get these systems 
implemented, keep them operating, and expand them as necessary. The field of medical 
imaging informatics is often described as the discipline encompassing the subject 
areas that these new specialists need to understand. As the Society of Imaging Infor-
matics in Medicine (SIIM) defines it: 

Imaging informatics is a relatively new multidisciplinary field that intersects 
with the biological sciences, health services, information sciences and com-
puting, medical physics, and engineering. Imaging informatics touches every 
aspect of the imaging chain and forms a bridge with imaging and other 
medical disciplines.1 

Because the technology of PACS continues to evolve, imaging informatics is also 
important for the researcher. Each of the areas comprising the field of imaging infor-
matics has aspects that make for challenging research topics. Absent the research these 
challenges foster and PACS would stagnate. 

For the student of medical imaging informatics, there is a wealth of literature available 
for study. However, much of this is written for trainees in a particular discipline. 
Anatomy, for example, is typically aimed at medical, dental, veterinary, and physical 
therapy students, not at engineers. Texts on networks or storage systems are not 
designed for physicians. Even primers on such topics tend not to provide a cross-
disciplinary perspective of the subject. 
                                                           
1  Society of Imaging Informatics in Medicine website: http://www.siimweb.org. 
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The authors of Medical Imaging Informatics have accepted the challenge of creating a 
textbook that provides the student of medical imaging informatics with the broad 
range of topical areas necessary for the field and doing so without being superficial. 
Unusual for a text on informatics, the book contains a chapter, A Primer on Imaging 
Anatomy and Physiology, subject material this writer knows is important, but is often 
lacking in the knowledge-base of the information technology (IT) people he works 
with. Similarly, many informatics-oriented physicians this writer knows do not have 
the in-depth understanding of information systems and components that IT experts 
have. Such is the subject matter of the “middle” chapters of the book – Chapter 3: 
Information Systems & Architectures, Chapter 4: Medical Data Visualization: Toward 
Integrated Clinical Workstations, and Chapter 5: Characterizing Imaging Data. The 
succeeding chapters are directed towards integrating IT theory and infrastructure with 
medical practice topics – Chapter 6: Natural Language Processing of Medical Reports, 
Chapter 7: Organizing Observations: Data Models, Chapter 8: Disease Models, Part I: 
Graphical Models, and Chapter 9: Disease Models, Part II: Querying & Applications. 
Finally, because a practitioner of medical imaging informatics is expected to keep up 
with the current literature and to know the bases of decision making, the authors have 
included a chapter on Evaluation. With the statistical methods and technology assess-
ment areas covered, the reader will gain the understanding needed to be a critical 
reader of scientific publications and to understand how systems are evaluated during 
development and after deployment.  

Structured in this way, this book forms a unique and valuable resource both for the 
trainee who intends to become an expert in medical imaging informatics and a refer-
ence for the established practitioner. 

 

Steven C. Horii, MD, FACR, FSIIM 

Professor of Radiology, 
Clinical Director, Medical Informatics Group, and  

Modality Chief for Ultrasound 
Department of Radiology 

University of Pennsylvania Medical Center 
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Preface 
This book roughly follows the process of care, illustrating the techniques involved in 
medical imaging informatics. Our intention in this text is to provide a roadmap for the 
different topics that are involved in this field: in many cases, the topics covered in the 
ensuing chapters are themselves worthy of lengthy descriptions, if not an entire book. 
As a result, when possible the authors have attempted to provide both seminal and 
current references for the reader to pursue additional details.  

For the imaging novice and less experienced informaticians, in Part I of this book, 
Performing the Imaging Exam, we cover the current state of medical imaging and set 
the foundation for understanding the role of imaging and informatics in routine clinical 
practice: 

 Chapter 1 (Introduction) provides an introduction to the field of medical imaging 
informatics and its role in transforming healthcare research and delivery. The 
interwoven nature of imaging with preventative, diagnostic, and therapeutic elements 
of patient care are touched upon relative to the process of care. A brief historic 
perspective is provided to illustrate both past and current challenges of the discipline. 

 Chapter 2 (An Introduction to Imaging Anatomy & Physiology) starts with a 
review of clinical imaging modalities (i.e., projectional x-ray, computed tomography 
(CT), magnetic resonance (MR), ultrasound) and a primer on imaging anatomy 
and physiology. The modality review encompasses core physics principles and 
image formation techniques, along with brief descriptions of present and future 
directions for each imaging modality. To familiarize non-radiologists with medical 
imaging and the human body, the second part of this chapter presents an overview 
of anatomy and physiology from the perspective of projectional and cross-
sectional imaging. A few systems (neurological, respiratory, breast) are covered in 
detail, with additional examples from other major systems (gastrointestinal, 
urinary, cardiac, musculoskeletal).  

More experienced readers will likely benefit from starting with Part II of this book, 
Integrating Imaging into the Patient Record, which examines topics related to 
communicating and presenting imaging data alongside the growing wealth of clinical 
information: 

 Once imaging and other clinical data are acquired, Chapter 3 (Information Systems 
& Architectures) tackles the question of how we store and access imaging and 
other patient information as part of an increasingly distributed and heterogeneous 
EMR. A description of major information systems (e.g., PACS; hospital informa-
tion systems, HIS; etc.) as well as the different data standards employed today to 
represent and communicate data (e.g., HL7, DICOM) are provided. A discussion 
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of newer distributed architectures as they apply to clinical databases (peer-to-peer, 
grid computing) and information processing is given, examining issues of scal-
ability and searching. Different informatics-driven applications are used to high-
light ongoing efforts with respect to the development of information architectures, 
including telemedicine, IHE, and collaborative clinical research involving imaging.  

 After the data is accessed, the challenge is to integrate and to present patient 
information in such a way to support the physician’s cognitive tasks. The longitud-
inal EMR, in conjunction with the new types of information available to clinicians, 
has created an almost overwhelming flow of data that must be fully understood to 
properly inform decision making. Chapter 4 (Medical Data Visualization: 
Toward Integrated Clinical Workstations) presents works related to the visualiz-
ation of medical data. A survey of graphical metaphors (lists and tables; plots and 
charts; graphs and trees; and pictograms) is given, relating their use to convey 
clinical concepts. A discussion of portraying temporal, spatial, multidimensional, 
and causal relationships is provided, using the navigation of images as an example 
application. Methods to combine these visual components are illustrated, based on 
a definition of (task) context and user modeling, resulting in a means of creating 
an adaptive graphical user interface to accommodate the range of different user 
goals involving patient data. 

Part III, Documenting Imaging Findings, discusses techniques for automatically 
extracting content from images and related data in order to objectify findings: 

 In Chapter 5 (Characterizing Imaging Data), an introduction to medical image 
understanding is presented. Unlike standard image processing, techniques within 
medical imaging informatics focus on how imaging studies, alongside other clinical 
data, can be standardized and their content (automatically) extracted to guide 
medical decision making processes. Notably, unless medical images are standard-
ized, quantitative comparisons across studies is subject to various sources of bias/ 
artifacts that negatively influence assessment. From the perspective of creating 
scientific-quality imaging databases, this chapter starts with the groundwork for 
understanding what exactly an image captures, and commences to outline the dif-
ferent aspects encompassing the standardization process: intensity normalization; 
denoising; and both linear and nonlinear image registration methods are covered. 
Subsequently, a discussion of commonly extracted imaging features is given, 
divided amongst appearance- and shape-based descriptors. With the wide array of 
image features that can be computed, an overview of image feature selection and 
dimensionality reduction methods is provided. Lastly, this chapter concludes with 
a description of increasingly popular imaging-based anatomical atlases, detailing 
their construction and usage as a means for understanding population-based 
norms and differences arising due to a disease process. 
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 Absent rigorous methods to automatically analyze and quantify image findings, 
radiology reports are the sole source of expert image interpretation. In point of 
fact, a large amount of information about a patient remains locked within clinical 
documents; and as with images, the concepts therein are not readily computer un-
derstandable. Chapter 6 (Natural Language Processing of Medical Reports) 
deals with the structuring and standardization of free-text medical reports via 
natural language processing (NLP). Issues related to medical NLP representation, 
computation, and evaluation are presented. An overview of the NLP task is first 
described to frame the problem, providing an analysis of past efforts and applica-
tions of NLP. A sequence of subtasks is then related: structural analysis (e.g., section 
and sentence boundary detection), lexical analysis (e.g., logical word sequences, 
disambiguation, concept coding), phrasal chunking, and parsing are covered. For 
each subtask, a description of the challenges and the range of approaches are 
given to familiarize the reader with the field. 

 Core to informatics endeavors is a systematic method to organize both data and 
knowledge, representing original (clinical) observations, derived data, and conclu-
sions in a logical manner. Chapter 7 (Organizing Observations: Data Models) 
describes the different types of relationships between healthcare entities, particularly 
focusing on those relations commonly encountered in medical imaging. Often in 
clinical practice, a disease is studied from a specific perspective (e.g., genetic, 
pathologic, radiologic, clinical). But disease is a phenomenon of nature, and is thus 
typically multifaceted in its presentation. The goal is to aggregate the observations 
for a single patient to characterize the state and behavior of the patient’s disease, 
both in terms of its natural course and as the result of (therapeutic) interventions. 
The chapter divides the organization of such information along spatial (e.g., 
physical and anatomical relations, such as between objects in space), temporal 
(e.g., sequences of clinical events, episodes of care), and clinically-oriented 
models (i.e., those models specific to representing a healthcare abstraction).  
A discussion of the motivation behind what drives the design of a medical data 
model is given, leading to the description of a phenomenon-centric data model to 
support healthcare research. 

Finally, in Part IV, Toward Medical Decision Making, we reflect on issues pertain-
ing to reasoning with clinical observations derived from imaging and other data 
sources in order to reach a conclusion about patient care and the value of our decision: 

 A variety of formalisms are used to represent disease models; of these, probabilistic 
graphical models have become increasingly popular given their ability to reason 
in light of missing data, and their relatively intuitive representation. Chapter 8 
(Disease Models, Part I: Graphical Models) commences with a review of key 
concepts in probability theory as the basis for understanding these graphical models 
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and their different formulations. In particular, the first half of the chapter handles 
Bayesian belief networks (BBNs), appraising past and current efforts to apply 
these models to the medical environment. The latter half of this chapter addresses 
the burgeoning exploration of causal models, and the implications for analysis and 
positing questions to such networks. Throughout, a discussion of the practical 
considerations in the building of these models and the assumptions that must be 
made, are given. 

 Following the discussion of the creation of the models, in Chapter 9 (Disease 
Models, Part II: Querying & Applications), we address the algorithms and tools 
that enable us to query BBNs. Two broad classes of queries are considered: belief 
updating, and abductive reasoning. The former entails the re-computation of pos-
terior probabilities in a network given some specific evidence; the latter involves 
calculating the optimal configuration of the BBN in order to maximize some 
specified criteria. Brief descriptions of exact and approximate inference methods 
are provided. Special types of belief networks (naïve Bayes classifiers, influence 
diagrams, probabilistic relational models) are covered, illustrating their potential 
usage in medicine. Importantly, issues related to the evaluation of belief networks 
are discussed in this chapter, looking to standard technical accuracy metrics, but 
also ideas in parametric sensitivity analysis. Lastly, the chapter concludes with 
some example applications of BBNs in medicine, including to support case-based 
retrieval and image processing tasks. 

 Chapter 10 (Evaluation) concludes by considering how to assess informatics 
endeavors. A primer on biostatistics and study design starts this chapter, including 
a review of basic concepts (e.g., confidence intervals, significance and hypothesis 
testing) and the statistical tests that are used to evaluate hypotheses under differ-
ent circumstances and assumptions. A discussion of error and performance  
assessment is then introduced, including sensitivity/specificity and receiver opera-
tive characteristic analysis. Study design encompasses a description of the differ-
ent types of experiments that can be formed to test a hypothesis, and goes over the 
process of variable selection and sample size/power calculations. Sources of study 
bias/error are briefly described, as are statistical tools for decision making. The 
second part of this chapter uses the foundation set out by the primer to focus 
specifically on informatics-related evaluations. Two areas serve as focal points: 
evaluating information retrieval (IR) systems, including content-based image 
retrieval; and assessing (system) usability. 
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PART I 
Performing the Imaging Exam 
 

Wherein an introduction to medical imaging informatics (MII) is provided; as is a
review of the current state of clinical medical imaging and its use in understanding 
the human condition and disease. For new students and the informatician with a 
minimal background in medical imaging and clinical applications, these chapters help 
provide a basis for understanding the role of MII, the present needs of physicians and 
researchers dealing with images, and the future directions of this discipline. 

 
 

Chapter 1 – Introduction 
Chapter 2 – A Primer on Imaging Anatomy and Physiology 
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Chapter 1 
Introduction 
ALEX A.T. BUI, RICKY K. TAIRA, AND HOOSHANG KANGARLOO 

edical imaging informatics is the rapidly evolving field that combines 
biomedical informatics and imaging, developing and adapting core methods 
in informatics to improve the usage and application of imaging in healthcare; 

and to derive new knowledge from imaging studies. This chapter introduces the ideas 
and motivation behind medical imaging informatics. Starting with an illustration of the 
importance of imaging in today’s patient care, we demonstrate imaging informatics’ 
potential in enhancing clinical care and biomedical research. From this perspective, we 
provide an example of how different aspects of medical imaging informatics can 
impact the process of selecting an imaging protocol. To help readers appreciate this 
growing discipline, a brief history is given of different efforts that have contributed to 
its development over several decades, leading to its current challenges.  

What is Medical Imaging Informatics? 
Two revolutions have changed the nature of medicine and research: medical imaging 
and biomedical informatics. First, medical imaging has become an invaluable tool in 
modern healthcare, often providing the only in vivo means of studying disease and the 
human condition. Through the advances made across different imaging modalities, 
majors insights into a range of medical conditions have come about, elucidating matters 
of structure and function. Second, the study of biomedical informatics concerns itself 
with the development and adaptation of techniques from engineering, computer science, 

(large amounts of) electronic clinical data. Medical imaging informatics is the dis-
cipline that stands at the intersection of biomedical informatics and imaging, bridging 
the two areas to further our comprehension of disease processes through the unique 
lens of imaging; and from this understanding, improve clinical care. 

Beyond the obvious differences between images and other forms of medical data, the 
very nature of medical imaging set profound challenges in automated understanding 
and management. While humans can learn to perceive patterns in an image – much as 
a radiologist is trained – the nuances of deriving knowledge from an image still defy 
the best algorithms, even with the significant strides made in image processing and 

M 

Biomedical informatics is transforming the manner by which we deal and think with 
and other fields to the creation and management of medical data and knowledge.
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Figure 1.1: The process of care can be roughly summarized in three stages: 1) what is 
wrong, which entails identifying the problem and establishing a differential diagnosis; 
2) how serious is it, which involves testing the differential diagnosis and determining 
the extent of the problem; and 3) what to do, which based on analysis of test results, 
concludes with a treatment decision. 

computer vision. Imaging informatics research concerns itself with the full spectrum 
of low-level concepts (e.g., image standardization; signal and image processing) to 
higher-level abstractions (e.g., associating semantic meaning to a region in an image; 
visualization and fusion of images) and ultimately, applications and the derivation of 
new knowledge from imaging. Notably, medical imaging informatics addresses not 
only the images themselves, but encompasses the associated data to understand the 
context of the imaging study; to document observations; and to correlate and reach 
new conclusions about a disease and the course of a medical problem. 

The Process of Care and the Role of Imaging 
From a high-level perspective, the healthcare process can be seen in terms of three 
clinical questions (Fig. 1.1), each related to aspects of the scientific method. For a 
given patient, a physician has to: 1) ascertain what is wrong with the patient (identify 
the problem, develop a hypothesis); 2) determine the seriousness of a patient’s con-
dition by performing diagnostic procedures (experiment); and 3) after obtaining all 
needed information, interpret the results from tests to reach a final diagnosis and 
initiate therapy (analyze and conclude). At each point, medical imaging takes on a 
critical role: 

1. What is wrong? Patient presentation, for the most part, is relatively subjective. 
For example, the significance of a headache is usually not clear from a patient’s 
description (e.g., my head throbs). Imaging plays a major role in objectifying 
clinical presentations (e.g., is the headache secondary to a brain tumor, intra-
cranial aneurysm, or sinusitis?) and is an optimal diagnostic test in many cases to 
relate symptoms to etiology. In addition, when appropriately recorded, imaging 
serves as the basis for shared communication between healthcare providers,  
detailing evidence of current and past medical findings. 
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2. How serious is it? For many conditions, the physical extent of disease is visually 
apparent through imaging, allowing us to determine how far spread a problem has 
become (e.g., is it confined to a local environment or is it systemic?). Moreover, 
imaging is progressively moving from qualitative to quantitative assessment. 
Already, we use imaging to document physical state and the severity of disease: 
tumor size in cancer patients; dual energy x-ray absorptiometry (DXA) scores in 
osteoporosis; cardiothoracic ratios; arterial blood flow assessment based on 
Doppler ultrasound; and coronary artery calcification scoring are all rudimentary 
metrics that quantify disease burden. On the horizon are more sophisticated 
quantitative imaging techniques that further characterize biophysical phenomena. 

3. What to do? Treatment is contingent on an individual’s response: if a given drug 
or intervention fails to have the desired effect, a new approach must be taken to 
resolve the problem. For many diseases, response assessment is done through 
imaging: baseline, past, and present studies are compared to deduce overall  
behavior. By way of illustration, many of today’s surgical procedures are assessed 
on a follow-up imaging study; and the effects of chemotherapy are tracked over 
time (e.g., is the tumor getting smaller?). Additionally, contemporary image-
guided interventional techniques are opening new avenues of treatment. 

As the ubiquity and sophistication of imaging grows, methods are needed to fully real-
ize its potential in daily practice and in the full milieu of patient care and medical 
research. The study of medical imaging informatics serves this function. 

Medical Imaging Informatics: From Theory to Application 
There are two arms to medical imaging informatics: the development of core informatics 
theories and techniques that advance the field of informatics itself; and the translation 
of these techniques into an application that improves health. To demonstrate, we first 
consider the reasons for the improper use of imaging today, and then how imaging 
informatics can impact these issues. 

Improving the Use of Imaging 

The process of providing an accurate, expedient medical diagnosis via imaging can 
fail for several reasons (Fig. 1.2):  

 Sub-optimal study selection. The first potential point of failure arises when an 
imaging study is requested. Given the fairly rapid changes across all elements of 
imaging technology, it is unrealistic to believe that a physician can always make 
up-to-date if not optimal decisions about an imaging exam [9]. Thus, the wrong 
study may be requested for a given patient. To reduce this problem, practice 
guidelines have been introduced, but are often generic and do not take into  
account the specific condition of the patient. 
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Figure 1.2: Identification of potential problems in the diagnostic process. In emergency 
cases, the process may also fail due to excessively long times to completion. 

 Poor acquisition. The next potential point of failure occurs during study acquisi-
tion. Problems arise due to poor instrumentation (e.g., sensitivity), equipment 
calibration, poor data acquisition methods, or poor technique. For example, due to 
the very technical nature of imaging procedures, the average clinician is unable to 
determine the most specific diagnostic protocol; this process is often left to a 
technologist or radiologist, who without fully knowing the context of the patient, 
may not use ideal acquisition parameters. 

 Poor interpretation. Study interpretation presents an additional point for potential 
failure. Poor study interpretation can be due to inadequate historical medical 
information, poor information filtering/presentation, or poor/mismatched skills 
by the study reader. Studies have shown that historical clinical information can 
improve the perception of certain radiographic findings [3]. Poor information 
presentation often leads to important data being buried within the medical record. 
Finally, study reading itself can be improved by providing users with the facility 
to retrieve relevant data from online medical literature, or by choosing the best-
matched readers (i.e., generalist vs. specialist) for a particular exam. However, 
currently available search techniques do not support specific and directed retrievals 
and no electronic framework exists for efficiently matching a given exam with the 
most appropriate reader for that exam. 

 Poor reporting. The last potential point of failure concerns reporting of study 
results, which is a key concern in the coordination of care as related to the diagno-
sis and intervention for a given case. This lack of coordination is due to: 1) poor 
documentation of study results; and 2) difficulties communicating the results of 
tests to referring healthcare providers. These inefficiencies can lead to problems 
such as initiating treatment before a definitive diagnosis is established, and  
duplicating diagnostic studies. 
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From this perspective, medical imaging informatics aims to improve the use of imaging
throughout the process of care. For example, what is the best imaging method to assess 
an individual’s given condition? Are there image processing methods that can be 
employed to improve images post-acquisition (e.g., histogram correction, denoising, 
etc.)? These and other questions motivate medical imaging informatics research. 
Indeed, imaging plays a significant role in the evaluation of patients with complex 
diseases. As these patients also account for the majority of expenses related to health-
care, by improving the utility of imaging, cost savings can potentially be realized. 

Choosing a Protocol: The Role of Medical Imaging Informatics 

To further highlight the role of medical imaging informatics, we consider the task of 
choosing an imaging protocol when a patient first presents in a doctor’s office, addressing 
issues related to sub-optimal study design. When a primary care physician (PCP) 
decides to obtain an imaging study to diagnosis or otherwise assess a problem, the 
question arises as to which imaging modality and type of study should be ordered. 
Furthermore, the ability to make the best decisions regarding a patient is variable across 
individual physicians and over time. Individual physician biases often creep into decision 
making tasks and can impact the quality and consistency of healthcare provided [1, 6]. 

To ground this discussion, we use an example of a 51 year-old female patient who 
visits her PCP complaining of knee pain. The selection of an appropriate imaging 
protocol to diagnosis the underlying problem can be thought of in three steps: 1) standard-
izing the patient’s chief complaint, providing a structured and codified format to 
understand the individual’s symptoms; 2) integrating the patient’s symptoms with past 
evidence (e.g., past imaging, medical history, etc.) to assess and to formulate a differ-
ential diagnosis; and 3) selecting and tailoring the imaging study to confirm (or deny) 
the differential diagnosis, taking into account local capabilities to perform and evaluate an 
imaging study (there is no point in ordering a given exam if the scanner is unavailable 
or unable to perform certain sequences). We elaborate on each of the steps below, 
illustrating current informatics research and its application. 

Capturing the chief complaint. As mentioned earlier, a patient’s description of his or 
her symptoms is very subjective; for physicians – and computers more so – translating 
their complaints into a “normalized” response (such as from a controlled vocabulary) 
is tricky. For instance, with our example patient, when asked her reason for seeing her 
doctor, she may respond, “My knee hurts a lot, frequently in the morning.” Consider 
the following two related problems: 1) mapping a patient-described symptom or con-
dition to specific medical terminology/disease (e.g., knee hurts = knee pain → ICD-9 
719.46, Pain in joint involving lower leg); and 2) standardizing descriptive terms 
(adjectives, adverbs) to the some scale (e.g., Does “a lot” mean a mild discomfort or a 
crippling pain? Does “frequently” mean every day or just a once a week?).  
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Several informatics endeavors related to the automated structuring of data are  
pertinent here. Electronic collections of validated questionnaires are being created, 
formally defining pertinent positive/negative questions and responses (e.g., see the 
National Institutes of Health (NIH) PROMIS project [7] and related efforts by the 
National Cancer Institute, NCI). Such databases provide a foundation from which 
chief complaints and symptoms can be objectified and quantified with specificity: 
duration, severity, timing, and activities that either trigger or relieve the symptom can 
be asked. Likewise, existing diagnostic guidelines intended for non-physicians, such 
as the American Medical Association Family Medical Guide [5], can be turned into 
online, interactive modules with decision trees to guide a patient through the response 
process. Markedly, an inherent issue with such questionnaires is determining how best 
to elicit responses from patients; aspects of visualization and human-computer inter-
action (HCI) thus also come into play (see Chapter 4). Apart from structured formats, 
more complicated methods such as medical natural language processing (NLP) can be 
applied to structure the statement by the patient, identifying and codifying the chief 
complaint automatically. Chapter 6 provides an overview of NLP research and  
applications. 

Assessing the patient. The chief complaint provides a basis for beginning to under-
stand the problem, but a clinician will still require additional background to establish 
potential reasons for the knee pain. For example, does the patient have a history of a 
previous condition that may explain the current problem? Has this specific problem 
occurred before (i.e., is it chronic) or did any specific past event cause this issue (e.g., 
trauma to the knee)? The answers to these questions are all gleaned from questioning 
the patient further and an exploration of the medical record.  

information and a readily searchable index to patient data: rather than manually 
inspect past reports and results, the system should locate germane documents, if not 
permit the physician to pose a simple query to find key points. Informatics work in 
distributed information systems concentrates on the problems of data representation 
and connectivity in an increasingly geographically dispersed, multidisciplinary health-
care environment. Patients are commonly seen by several physicians, who are often at 
different physical locations and institutions. As such, a patient’s medical history may 
be segmented across several disparate databases: a core challenge of informatics is to 
find effective ways to integrate such information in a secure and timely fashion (see 
Chapter 3). For imaging, past exams should be made available; but instead of the 

An array of medical and imaging informatics research is ongoing to enrich the elec-
tronic medical record’s (EMR) functionality and to bring new capabilities to the point 
of care. A longstanding pursuit of the EMR is to provide an automated set of relevant 

whole study, only (annotated) sentinel image slices that detail a problem could be  
recalled. Although manual image capture and markup is presently used, automated 
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techniques are being investigated to identify anatomical regions and uncover potential 
abnormalities on an image (e.g., CAD); and to segment and quantify disease based on 
domain knowledge (see Chapter 5). For textual data, such as generated from notes and 
consults (e.g., a radiology report), NLP techniques are being developed to facilitate 
content indexing (see Chapter 6). To aggregate the information into a useful tool, a 
data model that matches the expectations of the clinician must be used to organize the 
extracted patient data (see Chapter 7), and it must then be presented in a way con-
ducive to thinking about the problem (see Chapter 4). 

Specifying the study. Based on the patient’s responses and review of her record, the 
PCP wishes to differentiate between degenerative joint disease and a meniscal tear. If 
a patient complains of knee pain, then traditionally as a first step an x-ray is obtained. 
But if the patient’s symptoms are suggestive of pain when going up stairs, then a knee 
magnetic resonance (MR) imaging study is warranted over an x-ray (this symptom 
being suggestive of a meniscal tear). When asked whether going up stairs aggravates 
the knee pain, the patient indicated that she was unsure. Thus, her PCP must now 
make a decision as to what imaging test should be ordered. Furthermore, the selection 
of the imaging exam must be tempered by the availability of the imaging equipment, 
the needed expertise to interpret the imaging study, and other potential constraints 
(e.g., cost, speed of interpretation, etc.). 

First, supporting the practice of evidence-based medicine (EBM) is a guiding principle 
of biomedical informatics, and hence medical imaging informatics. The development 
and deployment of practice guidelines in diagnosis and treatment has been an enduring 
effort of the discipline, suggesting and reminding physicians on courses of action  
to improve care. For instance, if the patient’s clinician was unaware of the sign of a 
meniscal tear, the system should automatically inform him that an MR may be indicated 
if she has knee pain when climbing stairs; and supporting literature can be automatic-
ally suggested for review. Second, formal methods for medical decision-making are 
central to informatics, as are the representation of medical knowledge needed to inform 
the algorithms [10]. Techniques from computer science, ranging from rudimentary rule-
bases to statistical methods (e.g., decision trees); through to more complex probabilistic 
hidden Markov models (HMMs) and Bayesian belief networks (BBNs) are finding 
applications in medicine (see Chapter 8). For example, the evidence of the patient’s 
medical history, her response to the physician’s inquiries, the availability of imaging, 
and the relative urgency of the request can be used in an influence diagram to choose 
between the x-ray and MR (see Chapter 9). Such formalizations are providing new 
tools to model disease and to reason with partial evidence. Essential to the construction of 
many of these models is the compilation of large amounts of (observational) data from 
which data mining and other computational methods are applied to generate new 
knowledge. In this example, these disease models can be used: to identify further 
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questions that can be asked to further elucidate the patient’s condition (improving the 
likelihood of choosing an optimal imaging exam); and to select the type of imaging 
study, and even its acquisition parameters, to best rule in/out elements of the differential 
diagnosis. 

Ultimately, an electronic imaging infrastructure that expedites accurate diagnosis can 
improve the quality of healthcare; and even within this simple example of choosing an 
imaging protocol, the role of informatics is apparent in enhancing the process of care. 
When used appropriately, medical imaging is effective at objectifying the initial 
diagnostic hypothesis (differential diagnosis) and guiding the subsequent work-up. 
Given a chief complaint and initial assessment data, one can envision that specialists 
or software algorithms would select an imaging protocol for an appropriate medical 
condition even before a visit to the PCP. The PCP can then access both objective 
imaging and clinical data prior to the patient’s visit. Medical imaging informatics 
research looks to improve the fundamental technical methods, with ensuing translation 
to clinical applications. 

Cost Considerations 

An “appropriate” process of care that disregards issues related to utilization review 
and approvals required for imaging studies can be very effective for care of the patient 
as well as cost-effective. In one study performed by us for a self-insured employer 
group, we removed all of the requirements for (pre-)approval of imaging studies and 
allowed primary care physicians to order imaging based on their diagnostic hypothesis 
and the need of the patient. The imaging costs were instead capitated for the employer 
group. The number of cross-sectional images, particularly CT and MR, more than 
doubled and the number of projectional images decreased. However, the net effect was 
not only significant cost savings to the employer group but also much higher quality 
and satisfaction by patients [12]. A follow-up study further showed improved health 
(lowered incidence of chronic disease, decreased number of hospitalizations and 
emergency room visits, etc.), continued high levels of patient satisfaction, and lowered 
expenditures within the cost-capitated imaging environment relative to a control group 
[4]. All of this is to suggest that it is not necessarily the overuse of imaging that is 

Some have targeted the cost of imaging as a major problem in healthcare within the 
United States: one 2005 estimate by the American College of Radiology (ACR) 
was that $100 billion is spent annually on diagnostic imaging, including computed 
tomography (CT), MR, and positron emission tomography (PET) scans [2]. While 
acknowledging that many factors are contributing to these high costs it is, however, 
important to separate out two issues: the healthcare cost savings generated as a result 
of imaging, in light of earlier diagnoses and quality of life; and the true cost of  
performing an imaging study (i.e., versus what is charged). 
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inherently costly, and that there are in fact cost-savings introduced through the un-
restricted use of imaging. Of course, a capitated cost agreement with unfettered usage 
of imaging is not the norm. Unfortunately, the cost of imaging studies is rarely the true 
cost of performing the study. As an example, presently charges for a brain MR  
imaging study with and without contrast are in excess of $7,000 at some institutions – 
largely because of professional fees and attempts to recoup costs (e.g., from non-
paying and uninsured individuals). Yet in one internal study we conducted in the 
1990s to understand the real cost of CTs and MRs, it was concluded that the price of 
an MR study is no more than $200 and the price of a CT less than $120. These costs 
included technologists time, materials used (e.g., contrast) and the depreciation of the 
scanning machines over five years. Even adjusting for inflation and a moderate profes-
sional fee, one can argue that the charges seen today for imaging largely outpace 
the true cost of the exam. Hence, a current practical challenge for medical imaging 
informatics is to develop new paradigms of delivery that will encourage the use of 
imaging throughout the healthcare environment while still being cost-effective. 

A Historic Perspective and Moving Forward 
Medical imaging informatics is not new: aspects of this discipline have origins span-
ning back over two or more decades [14]. As such, it is useful to consider this field’s 
interdisciplinary evolution to understand its current challenges and future. Below, we 
consider four different eras of technical research and development.  

PACS: Capturing Images Electronically  

Concurrent to the progress being made with respect to CT and MR imaging, initial 
efforts to create an electronic repository for (digital) imaging in the 1980s led to the 
creation of picture archive and communication systems (PACS). [8, 11] provide some 
perspective on the early development of PACS, which focused on linking acquisition 
devices (i.e., scanners), storage, intra-site dissemination of studies, and display tech-
nologies (soft and hard copy). With the introduction of PACS, some of the physical 
limitations of film were overcome: images were now available anywhere within an 
institution via a display workstation, and multiple individuals could simultaneously 
view the same study. Preliminary work also highlighted the need to integrate PACS 
with other aspects of the healthcare environment and for common data standards to be 
adopted. Development of the latter was spearheaded by a joint commission of the 
ACR in conjunction with the National Electrical Manufacturer’s Association (NEMA), 
later leading to establishment of the now well-known DICOM (Digital Imaging and 
Communication in Medicine) standard. While some academic research in PACS is still 
being performed today, arguably much of this work has transitioned to industry and 
information technology (IT) support. 
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Teleradiology: Standardizing Data and Communications 

In 1994, DICOM version 3.0 was released, setting the stage for digital imaging and 
PACS to be embraced across a broader section of the healthcare arena. At the same 
time, MR and CT scanners were becoming widespread tools for clinical diagnosis. 
Recognizing early on the potential for data networks to transmit imaging studies 
between sites, and partly in response to a shortage of (subspecialist) radiologists to 
provide interpretation, the next major step came with teleradiology applications. [18] 
describes the genesis of teleradiology and its later growth in the mid-1990s. Key tech-
nical developments during this era include the exploration of distributed healthcare 
information systems through standardized data formats and communication protocols, 
methods to efficiently compress/transmit imaging data, and analysis of the ensuing 
workflow (e.g., within a hospital and between local/remote sites). Legal policies and 
regulations were also enacted to support teleradiology. From a clinical viewpoint, the 
power of teleradiology brought about consolidation of expertise irrespective of (physi-
cal) geographic constraints. These forays provided proof positive for the feasibility of 
telemedicine, and helped create the backbone infrastructure for today’s imaging-based 
multi-site clinical trials. Although DICOM provided the beginnings of standardization, 
there was a continued need to extend and enhance the standard given the rapid changes 
in medical imaging. Moreover, researchers began to appreciate the need to normalize 
the meaning and content of data fields as information was being transmitted between 
sites [15]. Newer endeavors in this area continue to emerge given changes in underly-
ing networking technology and ideas in distributed architectures. For instance, more 
recent work has applied grid computing concepts to image processing and repositories. 

Integrating Patient Data  

Alongside teleradiology, medical informatics efforts started to gain further pro-
minence, launching a (renewed) push towards EMRs. It became quickly evident that 
while many facets of the patient record could be combined into a single application, 
incorporating imaging remained a difficultly because of its specialized viewing 
requirements (both because of the skill needed to interpret the image, and because of 
its multimedia format). Conversely, PACS vendors encountered similar problems: 
radiologists using imaging workstations needed better access to the EMR in order to 
provide proper assessment. Hence in this next major phase of development, processes 
that were originally conceived of as radiology-centric were opened up to the breadth 
of healthcare activities, sparking a cross-over with informatics. For example, the 
Integrating the Healthcare Enterprise (IHE) initiative was spawned in 1998 through 
HIMSS and RSNA (Healthcare Information and Management Systems Society, Radio-
logical Society of North America), looking to demonstrate data flow between HL7 and 
DICOM systems. Additionally, drawing from informatics, researchers began to tackle 
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the problems of integration with respect to content standardization: the onset of struc-
tured reporting; the creation and use of controlled vocabularies/ontologies to describe 
image findings; and the development of medical natural language processing were all 
pursued within radiology as aids towards being able to search and index textual reports 
(and hence the related imaging). Though great strides have been made in these areas, 
research efforts are still very active: within routine clinical care, the process of docu-
menting observations largely remains ad hoc and rarely meets the standards associated 
with a scientific investigation, let alone making such data “computer understandable.” 

Understanding Images: Today’s Challenge  

The modern use of the adage, “A picture is worth ten thousand words,” is attributed to 
a piece by Fred Barnard in 1921; and its meaning is a keystone of medical imaging 
informatics. The current era of medical imaging informatics has turned to the question 
of how to manage the content within images. Presently, research is driven by three 
basic questions: 1) what is in an image; 2) what can the image tell us from a quantita-
tive view; and 3) what can an image, now correlated with other clinical data, tell us 
about a specific individual’s disease and response to treatment? Analyses are looking 
to the underlying physics of the image and biological phenomena to derive new 
knowledge; and combined with work in other areas (genomics/proteomics, clinical 
informatics), are leading to novel diagnostic and prognostic biomarkers. While efforts 
in medical image processing and content-based image retrieval were made in the 
1990s (e.g., image segmentation; computer-aided detection/diagnosis, CAD), it has 
only been more recently that applications have reached clinical standards of accept-
ability. Several forces are driving this shift towards computer understanding of  
images: the increasing amount and diversity of imaging, with petabytes of additional 
image data accrued yearly; the formulation of new mathematical and statistical tech-
niques in image processing and machine learning, made amenable to the medical 
domain; and the prevalence of computing power. As a result, new imaging-based 
models of normal anatomy and disease processes are now being formed.  

Knowledge creation. Clinical imaging evidence, which is one of the most important 
means of in vivo monitoring for many patient conditions, has been used in only a 
limited fashion (e.g., gross tumor measurements) and the clinical translation of derived 
quantitative imaging features remains a difficulty. And, in some cases, imaging remains 
the only mechanism for routine measurement of treatment response. For example, a 
recent study suggests that while common genetic pathways may be uncovered for 
high-grade primary brain tumors (glioblastoma multiforme, GBM), the highly hetero-
geneous nature of these cancers may not fully lend themselves to be sufficiently prog-
nostic [17]; rather, other biomarkers, including imaging, may provide better guidance. 
In particular, as the regional heterogeneity and the rate of mutation of GBMs is high 
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[13], imaging correlation could be important, providing a continuous proxy to assess 
gene expression, with subsequent treatment modification as needed. In the short-term, 
the utilization of imaging data can be improved: by standardizing image data, pre- and 
post-acquisition (e.g., noise reduction, intensity signal normalization/calibration, con-
sistent registration of serial studies to ensure that all observed changes arise from 
physiological differences rather than acquisition); by (automatically) identifying and 
segmenting pathology and anatomy of interest; by computing quantitative imaging 
features characterizing these regions; and by integrating these imaging-derived fea-
tures into a comprehensive disease model. 

One can assume that every picture – including medical images – contain a huge 
amount of information and knowledge that must be extracted and organized. Knowl-
edge can be conveniently categorized twofold [16]: implicit, which represents a given 
individual’s acumen and experience; and explicit, which characterizes generally 
accepted facts. Clearly, implicit knowledge is advanced through current informatics 
endeavors, as employed by the individual scientist and clinician. But informatics can 
further serve to create explicit knowledge by combining together the implicit knowl-
edge from across a large number of sources. In the context of healthcare, individual 
physician practices and the decisions made in routine patient care can be brought 
together to generate new scientific insights. That is to say that medical imaging 
informatics can provide the transformative process through which medical practice 
involving imaging can lead to new explicit knowledge. Informatics research can lead 
to means to standardize image content, enabling comparisons across populations and 
facilitate new ways of thinking. 
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n understanding of medical imaging informatics begins with knowledge of  
medical imaging and its application toward diagnostic and therapeutic clinical  
assessment. This chapter is divided into two sections: a review of current  

imaging modalities; and a primer on imaging anatomy and physiology. In the first 
half, we introduce the major imaging modalities that are in use today: projectional 
imaging, computed tomography, magnetic resonance, and ultrasound. The core physics 
concepts behind each modality; the parameters and algorithms driving image formation; 
and variants and newer advances in each of these areas are briefly covered to familiarize 
the reader with the capabilities of each technique. From this foundation, in the second 
half of the chapter we describe several anatomical and physiologic systems from the 
perspective of imaging. Three areas are covered in detail: 1) the respiratory system; 
2) the brain; and 3) breast imaging. Additional coverage of musculoskeletal, cardiac, 
urinary, and upper gastrointestinal systems is included. Each anatomical section begins 
with a general description of the anatomy and physiology, discusses the use of different 
imaging modalities, and concludes with a description of common medical problems/ 
conditions and their appearance on imaging. From this chapter, the utility of imaging 
and its complexities becomes apparent and will serve to ground discussion in future 
chapters. 

A Review of Basic Imaging Modalities 
The crucial role of imaging in illuminating both the human condition and disease is 
largely self-evident, with medical imaging being a routine tool in the diagnosis and the 
treatment of most medical problems. Imaging provides an objective record for docu-
menting and communicating in vivo findings at increasingly finer levels of detail. This 
section focuses on a review of the current major imaging modalities present in the 
clinical environment. As it is beyond the ability of a single chapter to comprehensively 
cover all aspects of medical imaging, we aim only to cover key points: references to 
seminal works are provided for the reader. Also, given the scope of this field, we omit 
a discussion of nuclear medicine, and newer methods such as molecular and optical 
imaging that are still largely seen in research environments. 

A 
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Projectional Imaging 
The genesis of medical imaging and radiography started in 1895 with the discovery of 
x-rays by Roentgen. Today, the use of x-ray projectional imaging comes only second 
to the use of laboratory tests as a clinical diagnostic tool. 

Core Physical Concepts 

A thorough handling of x-ray physics can be found in [15, 19]. X-rays are a form of 
electromagnetic (EM) radiation, with a wavelength ranging from 0.1-10 nm, which 
translates to photons with an energy level of 0.12-125 keV. Above a certain energy 
level (~12 keV), x-rays are able to penetrate different materials to a varying degree: it 
is this phenomenon that is taken advantage of in projectional x-ray imaging. Recall 
from basic physics that when a photon hits an atom, there is a chance of interaction 
between the photon and any electrons. There are essentially three different ways that 
an x-ray can interact with matter within the diagnostic energy range: 

1. Photoelectric effect. The well-known photoelectric effect involves the interaction 
of a photon with a low-energy electron. If the photon has sufficient energy, then 
the electron is separated from the atom, with any excess energy from the photon 
being transformed into the electron’s kinetic energy (Fig. 2.1a). The emitted elec-
tron is referred to as a photoelectron. Given the absence of an electron in the 
lower energy levels, an electron from a higher energy level moves down to take 
its place; but in order to do so, it must release its extra energy, which is seen in the 
form of a photon (characteristic radiation). Thus, the photoelectric effect generates 
three products: a photoelectron; a photon (characteristic radiation); and an ion (the 
positively charged atom, hence the phrase ionizing radiation). This type of inter-
action typically occurs with the absorption of low-energy x-rays. 

2. Compton effect. Rather than being absorbed, when a high-energy photon collides 
with an electron, both particles may instead be deflected. A portion of the pho-
ton’s energy is transferred to the electron in this process, and the photon emerges 
with a longer wavelength; this effect is known as Compton scattering (Fig. 2.1b). 
This phenomenon is thus seen largely with higher-energy x-rays. Compton scat-
tering is the major source of background noise in x-ray images. Furthermore, 
Compton scattering is a cause of tissue damage. 

3. Coherent scattering. Lastly, an x-ray can undergo a change in direction but no 
change in wavelength (energy) (Fig. 2.1c). Thompson and Rayleigh scatter are 
examples of this occurrence. Usually < 5% of the radiation undergoes this effect. 
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A fourth type of interaction is possible, known as pair production. Pair production 
involves high energy x-rays and elements of high atomic weight. When a high-energy 
photon comes close to a nucleus, its energy may be transformed into two new 
particles: an electron and a positron (excess energy from the photon is transferred as 
kinetic energy to these two particles) (Fig. 2.1d). For the most part, pair production is 
rare in medical x-rays given the high level of energy needed. 

The degree to which a given substance allows an x-ray to pass through (versus absorb-
ing or scattering the x-ray) is referred to as attenuation. Denser materials, particularly 
comprised of larger atoms, such as the calcium in bone, will absorb more x-rays than 
soft tissue or fluids. Indeed, photoelectric effects are proportional to the cube of the 
atomic number of the material. A projectional image is thus formed by capturing those 
x-ray photons that are successfully transmitted from a source through an object to a 
detector that is designed to capture the photons. 

Dosage. We briefly touch upon the issue of ionizing radiation and patient exposure. 
Typically, we speak of radiation dosage to describe the amount of radiation absorbed 
by tissue. The amount of radiation absorbed by tissue is measured in terms of energy 
absorbed per unit mass; this unit is called a gray (Gy), and is defined as: 1 Gy = 1 J/kg. 
A dose equivalent is a weighted measure that accounts for the fact that some types of 
radiation are more detrimental to tissue than others; the unit for this measure is called 
a sievert (Sv). A sievert is defined as: 1 Sv = 1 J/Kg x radiation weight factor, where 
the radiation weight factor (RWF) depends on the type of radiation. For example, the 

Figure 2.1: Interaction of x-rays with matter, envisioning an atom and its electrons in
terms of a nucleus and orbitals. (a) The photoelectric effect results in the complete
transfer of the energy from an x-ray photon to an electron, which leaves the atom as a
photoelectron. Another electron then moves from a higher to lower orbit and in the
process emits characteristic radiation. (b) The Compton effect results in scattering of
the x-ray photon with a portion of the photon’s momentum transferred as kinetic
energy to the electron. (c) Coherent scattering involves the deflection of the x-ray photon
in a new direction. (d) Pair production occurs when the x-ray photon interacts with the
nucleus, its energy being transformed into two new particles, an electron and position. 
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RWF for x-rays is 1; for neutron radiation, the RWF is 10; and for α-particles, the 
RWF is 20. The average dose of radiation that a person receives annually from natural 
sources is ~360 μSv. Regulations state that the maximal allowable maximal amount 
for most individuals is 1 mSv/year; and for those individuals working closely with 
radiation, 50 mSv/year. As a point of comparison, a single chest x-ray provides ~500 
μSv. Ultimately, a key drive of imaging technology is to minimize the total amount of 
ionizing radiation exposure to the patient while balancing the ability of the modality to 
provide diagnostic images. 

Imaging 

Fig. 2.2 outlines the rudimentary idea behind using x-rays as a means to create medical 
images. A controlled and focused source of x-rays is allowed to pass through the ana-
tomy of interest; a detector is then responsible for quantifying the amount and pattern 
of x-ray photons, converting the information into a visual image. Detailed discussions 
of projectional image formation can be found in [36, 39]. 

X-ray generation. X-rays are generated when electrons of sufficient energy hit certain 
materials. Generally speaking, a source of electrons is generated by heating a metal 
cathode (filament) made of tungsten coil; an electrical current is used to induce 
thermionic emission. These released free photoelectrons are then accelerated toward a 
rotating target anode, usually made of tungsten, copper, or molybdenum. On hitting 
this surface, the photoelectrons decelerate, leading to the emission of x-ray radiation 
and thermal energy. In particular, the x-rays are created when the accelerated photo-
electrons release some of their energy in interacting with an atom. Two processes 
generate these x-rays: 1) bremsstrahlung (German for “breaking radiation”), where the 
electron collides with a nucleus and its kinetic energy is completely converted into 
x-ray photons; and 2) K-shell emission, in which the accelerated electron hits another 
lower-energy bound electron resulting in the same outcome as the photoelectric effect 

Figure 2.2: An x-ray source is focused into a beam that penetrates the patient, result-
ing in attenuated x-rays. A filter then removes scatter generated from photon-electron
interaction, and the x-rays are detected by a scintillating material that transforms the
signal (e.g., into light or an electrical current). The result is a detectable latent image. 
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(a photoelectron and characteristic radiation are generated). X-rays produced by the 
former phenomenon are the most useful, and are sometimes referred to as white radia-
tion. Fig. 2.3a shows the structure and components of an x-ray tube. A voltage is 
applied to produce a current across the cathode/anode; and as the voltage increases, 
the current also increases until a maximal point is reached, the saturation current, in 
which current is limited by the cathode temperature. An x-ray beam’s “intensity” is 
thus measured in terms of milliamperes (mA). Note that the number of x-ray photons 
generated by the tube is dependent on the number of electrons hitting the anode; this 
quantity is in turn ultimately controlled by the cathode material’s saturation current. 
Changing the cathode material will therefore result in a different beam intensity. Addi-
tionally, the x-rays are of varying energy levels (i.e., polychromatic); for medical im-
aging, we typically want to use only a portion of this spectrum. For example, there is 
no reason to expose a patient to non-penetrating x-rays (< 20 keV). The glass encasing 
the vacuum in which the cathode/anode apparatus exists within an x-ray tube helps to 
remove some low-energy x-rays. Further filters constructed of thin aluminum can also 
be placed in the path of the x-ray photons: for instance, a 3 mm layer of aluminum will 
attenuate more than 90% of low-energy x-rays. This filtering process to remove the 
lower-energy x-rays is called beam hardening. Similarly, copper layers are also some-
times used as filters in order to block high-energy x-rays. The choice of material and 
the thickness of the filter will determine preferential removal of high- and low-energy 
x-rays. The x-ray photons generated from this process emanate in all directions; there-
fore, the x-ray tube is encased in (lead) shielding, with a small aperture to permit some 
of the x-rays to escape. A collimator is used to further refine the beam, limiting its size 
and controlling the amount permitted to pass through to the patient. 

Grids. As the x-rays pass through an object, photons generated as a result of scattering 
effects occur (e.g., Compton effect), thus resulting in signal noise that degrades end 
image quality (the consequence is sometimes called radiographic fog). To minimize 
this effect, a (anti-scatter) grid made of high attenuation material is typically placed in 
front of the detector to block scatter: regularly spaced gaps (or x-ray transmitting 
material) allow select rays through based on directionality (Fig. 2.3b). By way of illus-
tration, the grid may consist of alternating strips of aluminum and lead, the former 
material transmitting and the latter absorbing the x-rays. The geometry of the grid 
ultimately affects the degree of scatter that impacts image formation. 

Image contrast. In x-ray images, contrast refers to the difference in visible grayscales 
seen as a result of differences in attenuation. Given the process of generating a pro-
jectional image, there are in general four variables that control the contrast seen in a 
latent image: 1) thickness, in which two objects of the same composition, but one 
thicker than another, when imaged together the thinner object will produce more con-
trast; 2) density, where more dense materials (e.g., a solid vs. a liquid) will produce 
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higher x-ray attenuation; 3) material, where the effective atomic number and attenua-
tion curve dictate interaction with x-ray photons; and 4) x-ray tube voltage, which 
controls the energy of the photons and hence the degree of penetration (higher voltage 
increases contrast). The first three of these variables can be explained by examining an 
x-ray’s intensity as it passes through a material. X-ray intensity, I, through a material 
is given by the following equation: I = I0e-μt where I0 is the incident x-ray intensity, μ 
is the linear attenuation coefficient, and t is the thickness of the material. μ reflects the 
removal of x-ray photons from a beam through the interaction of electrons in the material: 
the higher the electron density, the more likely an interaction between an electron and 
x-ray photon. 

Conventional image formation. Photographic films coated with materials sensitive to 
x-rays are still perhaps the most commonly used means of forming images. The pro-
cedure of exposing film to photons generates a latent image that can then be processed 
to create a visible image. The film itself is usually a transparent plastic sheet that is 
covered with a radiation-sensitive emulsion; silver halide (i.e., a compound formed by 
silver and a halogen, such as silver bromide) crystals in gelatin is often used for this 
purpose. In brief, when a silver halide crystal absorbs x-ray photons, imperfections in 
the crystal (so-called sensitivity specks) will turn into regions of metallic silver. If a 
sufficient number of silver atoms are present in an area, the crystal is rendered develop-
able so that the use of a developing solution will change the entire crystal into silver. 
Hence, those areas that are exposed to more photons will be developed more. On film, 

 

Figure 2.3: (a) Cutaway illustration of a x-ray vacuum tube and its components.
A potential difference is created between a cathode/anode, resulting in electrons hitting a
metal surface. The result is x-ray photons, which are emitted through a collimator. The
entire assembly is encased in a vacuum tube and typically shielded. (b) A grid is used
to remove smatter arising from the Compton effect. 

developed regions are shown as black. Because of the relatively low effective atomic  
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number of the film, only 3-5% of the x-rays will actually react with the emulsion (the 
rest pass directly through). Lower-energy light photons are actually easier for film to 
capture. Based on this fact, an intensifying screen is used to enhance the interaction 
between the film and the x-ray photons. One intensifying technique is to use a fluores-
cent screen made up of a layer of phosphor that absorbs the x-rays and re-emits visible 
radiation that is picked up by the silver halide crystals. Current screens can achieve 
intensification of up to 250x. Thus, combined screen-film systems can reduce the 
exposure time – but at the cost of some loss of detail due to diffusion effects from 
fluorescence. 

Other techniques have also been explored for generation of a latent image. Ionography 
is one means of detection predicated on a chamber filled with a gas (such as xenon) at 
high pressure (~5-10 atmospheres). A high potential difference is generated across the 
chamber, resulting in a strong electric field. The chamber also contains electrodes, one 
of which is covered by a thin foil. When the x-ray photons interact with the gas mole-
cules, ion pairs are generated inside the ionization chamber. The ions are attracted to 
the chamber sides, while the free electrons move toward the electrodes. The electrons 
thus form a charge pattern on the foil based on the concentration of x-ray photon 
exposure; this pattern is the desired latent image. Xeroradiography is another method 
of x-ray image formation: a plate formed of layers of aluminum, selenium, and aluminum 
oxide is charged and subsequently exposed to the x-rays. When the x-ray photons 
impinge on the selenium, a positive charge discharges in proportion to the amount of 
x-ray exposure; this technique exploits the principle of photoconduction. The selenium 
surface thus forms a latent image. For the most part, ionography and xeroradiography 
are less common today given the advent of digital detectors (see below). 

Computed radiography. Unlike film, which must act both as an image receptor and 
as the image display medium, computed radiography (CR) systems separate the task of 
photon detection and image display. Photostimulable luminescent phosphor plates 
(PSL phosphor plates) are used as the primary image receptor material in CR. These 
“imaging plates” are similar in concept to conventional radiographic intensifying 
screens. The major difference between CR and conventional intensifying screens is in 
the luminescence process. Conventional screens are designed so that the x-ray photon 
energy absorbed within the phosphor results in prompt fluorescent emission. PSL 
imaging plates on the other hand are designed so that a large portion of the absorbed 
x-ray energy is stored within the PSL phosphor material as trapped excited electrons. 
This stored energy gives rise to a sort of latent image in the PSL plate itself. As such, 
computed radiography systems are often referred to as storage phosphor systems.  



24 D. Aberle et al. 

Once the PSL plate is exposed, the next stage is CR image formation. At a high level, 
this process is based on the use of a laser to stimulate the trapped electrons to emit 
visible light, and a photomultiplier tube (PMT) that captures the light signal and trans-
forms it into a detectable current that quantifies the degree of x-ray photon exposure. 
The image formation process can be broken up into three major steps: 

1. Image pre-read. Before the imaging plate is actually scanned, a pre-read of the 
plate is performed. A survey of points is made using a low power laser to deter-
mine the minimum, maximum, and mean exposure values on the plate. These 
values are used to optimize the high voltage and amplifier gain settings on the 
photomultiplier and signal conditioning circuits. The minimum, maximum, and 
mean exposure values are also used to determine the appropriate digital transfor-
mation tables (see below) for optimal image display. The pre-read stimulates only 
a small percentage of the total trapped electrons on the plate so that the latent 
image is relatively unaltered. A pre-read is analogous to exposure readings per-
formed on autofocus/auto-exposure cameras that automatically set shutter speed 
and aperture size based on survey information about the light intensity in various 
image zones. 

2. Image main read. Given the information from the pre-read, the main read samples 
the imaging plate at several points (~4 million over an 8 x 10" area). Each sampled 
point details the number of trapped electrons in a particular area of the imaging 
plate. When a point on an exposed plate is stimulated by the laser beam (spot size 
between 80-200 μm), the trapped electrons in the spot are released and return to a 
ground state; in doing so, luminescence radiation with intensity proportional to the 
absorbed x-ray energy is liberated. This visible light is then amplified by a PMT, 
which detects the photons and generates a current signal proportional to the num-
ber of x-ray photons. The laser scans the PSL plate in a raster format, and de-
tection of the PMT current signal is accordingly synchronized. The analog PMT 
signal is then transformed into a digital value, thereby allowing a digital matrix 
representation of the visible image to be computed. 

3. Image processing. The digital image is then optimized, usually via tonal conver-
sion and edge enhancement. The goal of the tonal conversion is to optimize the 
image contrast based on: 1) display transfer characteristics; 2) anatomical region 
of interest; and 3) review medium. In the first stage, a transformation curve is 
employed based on the capture of the x-rays to the PSL plate is employed. Photo-
stimulable phosphors have a much wider dynamic range than x-ray film: the 
former’s exposure range is about 10,000:1, meaning that the linear response for 
PSL intensity can go from 5 microroentgens to 50 milliroentgens. In the second 
stage, the PMT signal digitization to a value (usually a range of 210 values is 
selected) is transformed dependent upon algorithms that attempt to optimize 
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1  There remains some ambiguity in terminology, as digital radiography is sometimes 

used to refer to an umbrella term for both computed radiography and direct radio-
graphy. Here, we refer to digital radiography as a separate entity from computed 
radiography. 

image contrast based on the anatomical region under examination. Preferred 
lookup tables and the minimum, maximum, and average PSL values obtained during 
the pre-read operation are used to compute a transform curve. In the third stage, 
the transformation goes from a digital pixel value to an analog value (e.g., optical 
density or luminance), depending upon the characteristic curve of the film or 
monitor on which the final image is viewed. Edge enhancement is often per-
formed on CR images to present an image to the radiologist that is “sharper.” This 
operation is often useful for bone imaging to accentuate fine lines and boundaries 
between structures. The algorithm used in most CR systems to create an edge 
enhanced image is called unsharp masking. 

Digital radiography. Not to be confused with CR, digital radiography (DR; also 
referred to as direct radiography1) forgoes the use of the cartridge containing the PSL 
and separate reader to process the latent image. Instead, digital x-ray sensors are used 
and the latent image data are transferred directly from a detector to a review monitor. 
[17, 88] provide earlier descriptions of DR systems; and a more recent general discus-
sion is found in [50]. The different technologies that have been developed as digital 
detectors can be grouped twofold: 

1. Indirect conversion. In this first category, a scintillator is used as an intermediate 
between the detection of x-ray photons and the generation of visible light, much 
like an intensifying screen. A scintillator is a material that exhibits the property 
of luminescence when excited by ionizing radiation. The visible light is then 
detected in a number of ways. Charge-coupled device (CCD) cameras are one 
method. A CCD camera is a relatively small image sensing device (~3-5 cm2) that 
contains a photoactive region. One or more of CCDs are combined in a digital 
detector, with the image from the scintillator downscaled using an optical lens or 
fiber optics to project onto the smaller area of the CCD’s light-sensitive area. 
From the CCD, the image can then be read. Alternatively, an amorphous silicon 
photodiode circuitry layer integrated with a thin-film transistor (TFT) array can be 
used. Using this method, a large flat-panel sensor is constructed by the deposition 
of silicon with an array of photodiodes, subsequently covered with a scintillator. 
When this scintillator emits light, the photodiodes are activated and generate an 
electric charge; the TFT array then records this information to generate an image, 
with this array correlating directly to the image’s pixels. 
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2. Direct conversion. A range of solid state materials can be used to detect x-rays. 
For instance, lithium-doped germanium or silicon can detect x-rays. Photons hit-
ting these materials cause the formation of an electron hole pair that can be  
detected. Current direct conversion methods use a photoconductor, such as amor-
phous selenium, to convert x-ray photons directly into electrical charges. As in 
xeroradiography, the charge pattern on the selenium is proportional to the incident 
x-ray exposure; however, a TFT array is instead used to record the electric charge 
and to create a digital representation.  

Flat-panel detectors (both direct and indirect) have resolution only dependent on the 
recording device (i.e., the TFT array). Present pixel sizes are on the order of 200 μm 
for use in thoracic imaging, and 50-100 μm for mammography. A key advantage of 
direct radiography over CR is the almost immediate generation of the visual image 
while still preserving the ability to perform digital image processing to improve image 
quality and reduce noise/artifacts.  

Fluoroscopy. The fundamental idea behind fluoroscopy is to use x-rays to provide 
real-time display of anatomy/physiology, allowing visualization of movement. The 
original design entailed the use of a fluorescent screen as the detector, allowing an 
observer to view images directly. Unfortunately, such images are often dim: significant 

an input phosphor layer coupled with a photocathode, a vacuum tube, and a smaller 
output phosphor layer integrated with an output window for display. X-rays photons 
hit the input phosphor (usually cesium iodide, doped with sodium onto an aluminum 
substrate), which in turn scintillates and emits light photons picked up by the photo-
cathode. The photocathode, often made of an antimony-cesium alloy, produces electrons 
that are accelerated through a vacuum and focused onto the output phosphor layer. 
This final phosphor layer luminesces brightly in response to the concentrated elec-
trons, showing the latent image. The image intensifier thus results in a brighter image 
through two effects: 1) flux gain, where the electrons accelerated through the vacuum 
produce more light as they strike the output phosphor; and 2) minification, as the 
number of light photons is concentrated in a smaller display. The input image’s 
brightness is enhanced by a factor of approximately 105 times. Frequently used with 
image intensifiers are video cameras to record the images. 

More recently, digital fluoroscopy has come about with the introduction of flat-panel 
detectors; additionally, the video camera has been replaced with a CCD-based camera. 
This change introduces new capabilities, such as road mapping, which allows the 
viewer to temporarily store and display the most recent fluoroscopic image on a screen 
(e.g., for interventional procedures, such as the placement of guide wires). Digital 

improvement was brought about when x-ray image intensifier tubes were introduced, 
providing much brighter images. The simplest image intensifier tubes are composed of 
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subtraction angiography is another ability, wherein pre- and post-contrast images are 
combined together to examine the distribution of contrast. And like computed radio-
graphy, an advantage of digital fluoroscopy is the ability to perform further image 
processing to optimize image visualization. For example, frame averaging and edge 
enhancement can be used to improve image presentation. 

Projectional image artifacts. In medical imaging, one often talks of spatial resolution – 
that is, the ability to visually resolve fine details. Higher spatial resolution implies 
better discrimination of smaller objects. In projectional imaging, there are four sources 
of unsharpness that decrease spatial resolution: 

1. Motion blur. Although radiologic image exposure times are relatively short, they 
are not instantaneous. During this time, a patient may move and/or physiologic 
processes occur (e.g., normal cardiac motion), therefore causing a blurring artifact 
as the boundaries of an object are spread over the detector’s field. 

2. Geometric blur. In reality, an x-ray source is not an idealized point source of pho-
tons. Thus, geometric unsharpness occurs due to the physical geometry of image 
acquisition and image formation, and is influenced by factors such as the size of 
the x-ray source, the distance between the source and the patient, and the distance 
from the patient to the detector. Regions at the edge of an object will be formed 
such that x-ray intensity will gradually increase/decrease, causing unsharpness. 
These regions are called penumbra. 

3. Absorption blur. X-rays are not uniformly absorbed by an object; rather, there is a 
gradated change in x-ray absorption across its boundary. Consider, for instance, 
the difference between an object who’s edges are parallel to the cone of an x-ray 
beam, versus a perfect sphere: the former will have sharply defined edges as 
absorption will be uniform, whereas the different points of the sphere will  
encounter varying amounts of x-ray photons (the center will see maximal 
amounts, the outer regions the minimum). 

4. Detector blur. Lastly, the detector itself can introduce certain phenomena that will 
create image blur. For instance, the use of an intensifying screen will result in a 
finite amount of diffusion given the distance between the screen and the film. 

[19, 36] provides further details on the geometry of the radiographic image and the 
reasons for unsharpness. 

Computed Tomography 
Key work during the mid-20th century in x-ray reconstruction and the theory behind 
axial tomography led to the development of the first commercial computed tomo-

 

graphy (CT) scanner in 1971 for clinical purposes [37]. Relative to conventional  
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projectional x-ray imaging where subtle differences in attenuation (less than 5%) are 
often lost, CT provides much improved subject contrast with discrimination less than 
1% and the current generation of multi-slice CT scanners provide sub-millimeter reso-
lution. We note here that the core physical concept behind CT, x-ray attenuation, is 
described prior; below, we focus on the principles that enable image formation. The 
reader is referred to [15] for a complete handling of CT imaging. 

Imaging 

The projection of an x-ray through an object can be defined through a set of line inte-
grals, representing the total attenuation of the beam as it travels through the different 
materials composing the object. Recall from the discussion of projectional imaging 
that x-ray attenuation through one material is described by the equation, I = I0e-μt. The 
attenuation effect is cumulative so that the transmission of an x-ray through multiple 
substances is given by the formula: 
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where μ(x,y) is the attenuation coefficient at point (x, y) along the beam’s path. Given 
an xy-plane through the object, let r represent the path of an x-ray beam in this plane. 
Then the above equation can be rewritten in terms of the total attenuation, p: 
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where θ is the angle formed between r and the x-axis (i.e., r = xcosθ + ysinθ). The 
function, p(r, θ), is referred to as the Radon transform. By recovering μ(x, y) via an 

infinite number of measurements, one can reconstruct μ(x, y) perfectly; CT thus uses 
multiple narrow x-ray beams through the same point in order to collect enough data to 
sufficiently approximate μ(x, y) and reconstruct an image. A sinogram is the raw data 
obtained from a tomographic reconstruction, a visual representation of the Radon 
transform. Each row of the sinogram represents a different projection through the 
object (Fig. 2.4b). 

Reconstruction algorithms. Central to CT imaging is a means to efficiently perform 
the inverse Radon transform. Several algorithms exist for this purpose, and can be 
categorized threefold [36]: 

 

 

inverse Radon transform, a cross-sectional image of the object in the xy-plane is possible: 
this process is the premise behind tomographic reconstruction. In theory, given an 
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Figure 2.4: Demonstration of CT image reconstruction process. (a) Example black
and white image source image with two shapes is shown. (b) A sinogram is a visual
representation of the Radon transform, where each row/column of the sinogram repre-
sents projection information. A sinogram with 180 samples for the image in (a) is
shown. (c) Simple back-projection results in a blurring of the image. (d) Different kernels
can be applied in filtered back-projection to handle the blurring caused by a point-
spread function. Here, a Hamming filter is used to improve the reconstruction; although
improved, there are still subtle imaging artifacts relative to the original image. 

1. Simple back-projection. The most straightforward method to reconstruct a 2D 
image starts by assuming an empty, equally-spaced image matrix. As each x-ray 
beam contributes to the estimation of μ, the algorithm aims to sum the attenuation 
from each beam for point (x,y) in the image matrix. The relative contribution of 
each x-ray path (ray) through the object can be determined knowing the angle at 
which the ray is transmitted. This procedure is known as simple back-projection. 
The back-projection is created by “smearing” a ray back through the image in the 
direction it was originally acquired. Conceptually, one can think of this algorithm 
as adding the value of μ to each pixel based on the rays going through the pixel. 
While simple to implement, simple back-projection tends to blur image features 
(Fig. 2.4c) as the point spread function of a back-projection is circularly symmetric, 
decreasing as an inverse function of the radius (1/r). 

2. Filtered back-projection. To overcome the blurring in simple back-projection, 
each ray can be filtered or convolved with a kernel prior to the back-projection. In 
filtered back-projection, the filter has the effect of weighting the center of a ray 
while underweighting the periphery, thus counteracting the blur. Mathematically, 
the convolution operation in the spatial domain is represented by p'(x) = p(x) ⊗ 
k(x) where p(x) is the original projection data, k(x) is the kernel, p'(x) is the resultant 
filtered data, and ⊗ represents the integral convolution operation. Alternatively, 
this same operation can be considered in the frequency domain using a Fourier 
transform (FT), p'(x) = FT-1(FT(p(x)) x K(f)), where K(f) = FT(p(x)). This trans-
formation is often called the Fourier slice theorem. The advantage of considering 
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Figure 2.5: (a) Different filters. A ramp function can be used to undo blurring, but
is sensitive to noise. Other filters attempt to compensate for higher frequency values.
(b) Example of different reconstruction filters. From left to right: original image, non-
filtered image from simple back-projection, ramp filter, Shepp-Logan filter, cosine
filter. The bottom row shows a magnified region in the lower-left the image, where
subtle reconstruction artifacts are removed.

this process in the frequency domain is that the convolution operation is transformed 
into a multiplication. Various kernels exist dependent on the imaging application 
(e.g., soft tissue or bone visualization), and will affect the in-plane resolution and 
noise seen in the final image. For instance, in the frequency domain, one can 
apply the Ram-Lak filter to undo the 1/r blurring phenomena; however, this 
method is highly sensitive to noise, especially at higher frequencies. More robust 
techniques include the use of a Shepp-Logan, cosine, or Hamming filters that 
compensate with high-frequency roll-off (Fig 2.4d; Fig. 2.5). For the most part, 
filtered back-projection is the method used today in clinical CT scanners. 

3. Series expansion. Both simple and filtered back-projection algorithms can be run 
while raw image data is acquired, allowing for more immediate reconstruction. In 
comparison, series expansion techniques (also known as iterative techniques and 
algebraic reconstruction) require that all x-ray attenuation data be available 
before reconstruction commences. Series expansion techniques involve solving 
large systems of linear equations based on the observed attenuations from each 
ray; the linear system represents the target image for reconstruction. Examples of 
these methods include the algebraic reconstruction technique (ART); iterative 
least-squares technique (ILST); and simultaneous iterative reconstruction tech-
nique (SIRT). [43] provides a thorough discussion of these methods. 

We note here that the image grid used in reconstruction can be seen as a discretization 
superimposed on a physical region; as such, the mapping between a given pixel (voxel) to 
a single point in space is imperfect. For instance, what if the pixel boundary encom-
passes two different types of materials (e.g., bone and soft tissue; air-surface boundaries)? 
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The resultant attenuation for that pixel is an intermediate value of the two substances. 
This artifact is referred to as partial voluming2. Under CT, partial volume averaging 
often happens when structure boundaries are almost parallel to the CT slice. 

Hounsfield units. The results of a reconstruction algorithm are a measure of the 
attenuation for a given pixel location (x,y). These values are normalized to Hounsfield 
units (HU) prior to generation as final image. Specifically: 
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where μ(x,y) is the computed attenuation value and μwater is the attenuation coefficient 
of water at the given x-ray beam energy level. For most CT scans, this transformation 
results in a scale of -1,000 to 3,000 Hounsfield units. These values are principally a 
representation of a given substance’s interaction with x-ray beams due to its density 
and Compton scattering. Air, therefore, has an HU value of -1,000; and water is 0 HU. 
Although ranges vary, bone and contrast agent are typically more than 1,000 HU; and 
soft tissues (including fat) range from -300 to 100 HU. [15] notes that the presence of 
hydrogen has some influence on the CT value of a substance, allowing for visualization 
of hydrogenous/fatty tissues on computed tomography; but the predominant factor in 
determining image contrast between substances remains density. 

Display: Windowing and leveling. Based on Hounsfield units, anatomical CT images 
have a typical grayscale value range of 212 bits (4,096 values). Early image displays 
were only capable of displaying a grayscale range of 28 (256 values); and psychomet-
ric studies of the human eye have shown that we are only capable of discerning 40-100 
shades of gray simultaneously (dependent on the viewing environment). Hence, CT 
values are often “downscaled” to a range of 8 bits using a mapping function. This 
process is referred to as window and leveling, and establishes a (linear) transformation 
between Hounsfield units and visual grayscale: by altering the mapping, alternate 
tissues and phenomena become more prominent through improved visual contrast 
(Fig. 2.6a). The window refers to the size of the subset of the HU scale that is mapped 
to grayscale: the values below the window are mapped to 0 (black) and values above 
the window are mapped to 255 (white). This parameter therefore governs the degree of 
contrast seen in the image: narrower (smaller) windows are more contrasted. The level 
refers to the location of the midpoint of the window (i.e., where on the HU scale is the 
window located). Default window-level ranges are often associated with anatomical 
regions (e.g., window-level settings exist for lung, liver, bone, etc.). Fig. 2.6b-c illus-
trate the effect of different window-level settings on the same CT data. 
                                                           
2  In point of fact, the partial voluming effect is not unique to computed tomography, 

but also occurs with other imaging modalities, such as magnetic resonance. 
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Figure 2.6: (a) Graphical depiction of a linear transform for window and leveling. The 
Hounsfield units are mapped to grayscale values dependent on the given ramp func-
tion. The window defines the degree of contrast, while the level specifies what portion 
of the spectrum is seen. (b) A thoracic CT image shown at a bone window-level set-
ting (window = 2000, level = 500). (c) The same image, seen using a lung window-
level setting (window = 1500, level = -650). As shown, different anatomical features 
become apparent using different window-levels. 

CT scanner design. The design of CT scanners has gone through several generations, 
changing the shape of the emitted x-ray beam; the relative motion of the x-ray source, 
detectors, and patient; and the number of detectors. For instance, the first generation of 
CT scanners employed a narrow beam x-ray source, a single detector, and a translate-
rotate acquisition paradigm wherein the emitter and detector would move parallel to 
each other for a short distance (i.e., translate), and then would rotate around the gantry 
and repeat the process. The second generation increased the number of detectors and 
introduced a fan beam x-ray geometry, thus minimizing translation; and ensuing 
generations would completely eliminate translational motion. The resultant progres-
sion of CT architectures has brought about faster image acquisition: whereas the first 
generation would require minutes to acquire a single slice, by the third generation a 
single slice could be obtained in 0.5-1.0 sec. using hundreds of detectors. Table 2.1 
summarizes the first four generations of scanners.  

A significant improvement in CT scanners was the incorporation of slip rings in 3rd 
and 4th generation scanners. Prior to the use of slip rings, power to the x-ray tubes 
generating the beams was supplied through wired cabling; and data acquired by the 
detectors were transmitted back similarly. This design practically limited the amount 
of gantry rotation to 400-600 degrees before the cables would have to be reversed, 
thus completely stopping the patient movement through the scanner. With slip rings, 

 

power could be provided and data received without cables, allowing continuous rotation  
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Table 2.1: Summary of the first four generations of CT scanner designs, illustrating 
the evolution of change in x-ray beam geometry, and the number and placement of 
detectors. The relative motion and position of the x-ray source and detectors are illus-
trated in the rightmost column, where the object to be scanned lies in the middle. 

of the x-ray source. The consequence was the development of helical (spiral) CT scan-
ning, in which the patient could be moved continuously through the scanner with the 
x-ray beams tracing out a spiral-like path through the body (Fig. 2.7a). Helical CT 
scanning requires reprocessing of the data into series of planar (axial) image datasets. 
The benefits of helical CT include: 1) faster scanning of a larger anatomical volume, 
and hence decreased amounts of contrast media needed to visualize regions; 2) decreased 

  Geometry Detectors Motion Comment  

1st
 g

en
er

at
io

n Pencil-beam Single  
detector 

Rotate-
translate 
around 
patient 

The detector and the x-ray 
source moved linearly across a 
field of view (FOV) to acquire 
projection data, and then  
rotated 1 degree, repeating the 
process across a 180° arc.  
A single slice took several  
minutes to obtain data. 

2nd
 g

en
er

at
io

n Narrow fan 
beam 

Array of 
detectors 

Rotate-
translate 
around 
patient 

Additional detectors (~30) were 
added, allowing fan beam  
geometry to be introduced. This 
provided some speed-up, but at 
the cost of additional scatters 
radiation detection. 

3rd
 g

en
er

at
io

n Wide fan beam, 
with the apex of 
the fan being the 
x-ray tube 

Array of 
detectors  

Rotate 
around 
patient 

The array was increased to 
include hundreds of detectors, 
removing translational move-
ment; and the angle of the x-ray 
beam was increased.  
Unfortunately, this architecture 
is subject to ring artifacts if the 
detectors are not properly  
calibrated. 

4th
 g

en
er

at
io

n Wide fan beam, 
normalizing the 
apex of the fan 
to be the  
detector 

Ring of de-
tectors  

Rotate  
x-ray 
source 
only 

Thousands of stationary  
detectors (4,000) are placed in a 
360° ring around the patient, 
removing the need for detector 
movement and canceling ring 
artifacts. 
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motion artifacts from patient and/or physiological movement (e.g., faster scan times 
can permit single breath-hold inspiration); and 3) continuous slice acquisition and 
reconstruction, allowing image slice interpolation (i.e., there are no gaps between 
image slices). In particular, the feasibility of volumetric acquisition paved the way for 
CT angiography (see below) and 3D image processing and visualization techniques, 
including multi-planar reformations (i.e., interpolating viewing in other planes, such as 
coronal or sagittal) and maximum intensity projections (MIPs).  

Varied methods have been explored to quicken CT image acquisition speeds with 
respect to scanner design: 

 Electron-beam (ultrafast) CT scanning. One method for speeding CT image 
acquisition was seen with the development of electron-beam computed tomo-
graphy (EBCT; also sometimes referred to as ultrafast CT and cine CT). In EBCT, 
the gantry itself is a large x-ray tube; and instead of moving the x-ray source as in 
conventional CT, the electron beam focal point (and hence, the x-ray focal point) 
is swept across the tube’s anode and around the patient using magnetic fields. As 
in 4th generation scanners, a stationary bank of x-ray detectors is used to capture 
the resultant attenuation data. As EBCT removes all mechanical motion, a scan 
can be completed extremely quickly, with ~20 images per second (presently, 
some EBCT commercial systems claim a single image sweep in 0.025 seconds). 
As such, EBCT is useful in cardiac imaging. Despite its speed advantage, the cost 
of EBCT and other technical issues have hampered widespread adoption and 
newer spiral CT scanner designs are now providing similar capabilities. 

 Multi-detector CT scanners. Recognizing that a time-limiting step in earlier 
generations of CT scanners was the physical speed with which an x-ray beam 
could be produced, engineers looked for ways to better utilize those x-rays that are 
already produced. Recall from projectional imaging that a collimator is used to 
control the size of an x-ray beam; by opening the collimator in a CT scanner, the 
beam broadens, allowing more x-rays through but at the expense of increasing 
slice thickness (and therefore, decreasing spatial resolution). To surmount this 
problem, multiple detector arrays (or rings) are instead used, changing the image 
formation process so that slice thickness is dependent on the physical size of the 
detectors rather than the x-ray beam. A single rotation of the x-ray source can 
therefore generate multiple image slices. Using multiple rows, the coverage in the 
z-axis is anywhere from 24-40 mm. This technique is known as multi-detector 
computed tomography, or more commonly, multislice CT (MSCT). In a fixed 
array detector, the rows of detectors in an MSCT system are of equal size in the 
z-axis; in contrast, in an adaptive array detector, the rows are of assorted dimen-
sions, often with the smallest in the center and growing in size toward the outer 
rows (Fig. 2.7b). Multislice helical scanners allow slice thickness to be specified 
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 as part of the (spiral) reconstruction process, combining the information from dif-
ferent rows. As a result, both narrow slices for high-resolution detail and for 3D 
image post-processing can be derived from the same acquisition dataset. [83] pro-
vides a recent discussion of the underlying technology and current trends. As of 
the end of 2008, commercial MSCT systems had upwards of 320 detector rows 
and can provide sub-millimeter resolution in the z-axis, with nearly isotropic 
voxel sizes. New techniques have been developed for multislice CT sampling. For 
example, double z-sampling uses periodic motion of the x-ray beam’s focal point 
in the longitudinal direction to enhance data sampling along the z-axis. Given the 
rapid acquisition of imaging data across multiple detectors, a challenge lies in 
moving the data from the gantry to the computer: for instance, a 64-slice CT system 
can produce up to 180 to 200 MB/s.  

CT x-ray detectors. The first few generations of CT scanners employed xenon-based 
detectors, using the ionization of the gas by an x-ray photon to induce a current and 
measure attenuation (much like the use of ionography in projectional imaging). But 
the limitations of this approach – particularly given its low x-ray detection efficiency 

Figure 2.7: (a) Example of helical (spiral) CT scanning process. As the body moves
through the scanner, the x-ray tube rotates continuously around the gantry, tracing out
a helical path. The width of the spiral path is controlled by the x-ray tube collimation.
(b) The top shows the difference between a single detector, where collimation drives
slice thickness, and the use of multiple detectors. An example of the pathway when
multiple detectors are used in a helical CT scanner is shown below. (c) Pitch describes
the rate of movement of the table relative to the gantry rotation. A pitch value of 1.0 is
equal to contiguous axial scanning. Higher pitches decrease radiation dosage, but can
introduce require interpolation across a larger spatial volume. For instance, the arbi-
trary image plane shown in the bottom figure uses projection data from farther away
than a pitch of 1.0.  
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3  Although for some commercial multi-detector scanners, the slice thickness is 

independent of table speed because of the helical re-interpolation algorithm. 

and the rapid millisecond response rate needed for modern CT systems – has led to 
the use of solid-state detectors. Materials for solid-state detectors include light-
scintillating compounds like cadmium tungstate (CdWO4), cesium iodide (CsI), and 
ceramic materials doped with rare-earth oxides; principally, the choice of materials is 
driven by high detection efficiency and low fluorescence decay time (allowing for fast 
gantry rotations and the production of artifact-free images). The emitted light is then 
detected by a silicon photodiode, amplified, and converted into a digital signal (see 
also the prior discussion with respect to digital radiography).  

CT acquisition parameters. Apart from the reconstruction algorithm and kernel, 
several variables influence how a CT study is obtained and the level of detail and 
appearance of the images; major parameters are below: 

 Slice thickness and collimation. The size of the x-ray beam, and thus the amount 
seen across detectors is controlled by the collimator opening. In single detector 
scanners, collimation therefore controls the slice thickness (i.e., z-axis dimension). 
In MSCT, slice thickness is specified during reconstruction by combining infor-
mation from several detectors. For conventional CT, with all other parameters 
being equal (e.g., equal kV and mA settings), increasing the slice thickness linearly 
increases the number of detected x-ray photons and increases the signal-to-noise 
(SNR) ratio. Increasing slice thickness in these systems will result in improved 
contrast resolution, but decreased spatial resolution and increased partial 

the line spread function in the z-axis. The slice sensitivity profile is driven by the 
finite width of the x-ray focal spot, the penumbra of the collimator, and the finite 
number of attenuation projections taken from around the patient. 

 Table feed/tube rotation. This parameter specifies the rate of table movement 
(e.g., 5 mm/sec) through the scanner for a given rotation of the x-ray tube. For 
conventional CT, a volume is scanned section by section. Table movement  
between rotations can therefore be used to generate overlapping acquisition data 
(with an increase in radiation dosage to the patient); or conversely, discontinuous 
information (e.g., for detecting gross findings, such as trauma). For spiral and 
multislice CT, the table feed rate is used to control pitch3. 

 Pitch. The concept of pitch comes into play when considering spiral CT. For 
single detector spiral CT, collimator pitch is defined as the ratio of table feed per 
rotation to the collimation (i.e., slice thickness), whereas for multi-detector systems, 
detector pitch is given as the ratio of table feed per rotation to detector width: 

voluming effects. An oft discussed concept is a slice sensitivity profile, which is 
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In 3rd generation CT scanners, detector pitch determines ray spacing; in 4th 
generation scanners, detector pitch affects view sampling. The relation between 
detector and collimator pitch is given by dividing the former by the number of 
detector arrays. In general, a (collimator) pitch < 1.0 produces overlap between 
sections (and more radiation dosage); pitch = 1.0 indicates no gaps, and for single 
detector systems, is equivalent to a contiguous axial scan from a conventional CT 
scanner; and if pitch > 2.0, there is an introduction of gaps in the acquisition and 
possible artifacts due to an under-sampled volume. Fig. 2.7c visualizes the differ-
ences between pitches and the generation of image slices from the acquisition 
data: as the pitch increases, the sampling points to reconstruct the image become 
farther apart. 

 Tube potential (kVp) and current (mAs). As in projectional imaging, the x-ray 
tube’s voltage and current impacts the production of x-ray photons. The higher the 
voltage, the more higher-energy x-ray photons will be produced, boosting image 
contrast. The tube current affects the total number of emitted x-ray photons, and 
thus affects exposure time and the overall darkness of the image; increasing mAs 
will decrease noise and increase contrast. Both parameters must be balanced 
accordingly to minimize the radiation dose to the patient. 

Image quality and artifacts. The challenge of a CT protocol is to minimize radiation 
dosage while maximizing spatial and contrast resolution to provide clinically viable 
images. CT image noise and artifacts occurs for any number of reasons, including the 
above acquisition parameters and the choice of reconstruction method [7, 38]. For 
instance, partial voluming was described earlier, and can result in a loss of detail. And 
as with other modalities, patient movement, either voluntarily or due to normal physio-
logic processes (e.g., cardiac movement, breathing) is another source of imaging arti-
facts. More specific to CT is beam hardening, a phenomenon in which lower-energy 
x-rays are attenuated more than higher-energy x-rays when passing through tissue, 
thus skewing the average energy distribution toward the latter: the beam is said to 
“harden.” Denser materials, like bone, cause a higher degree of beam hardening. The 
extent of this shift differs dependent on the projection angle of the beam through the 
material, which ultimately affects the reconstruction algorithm. Visually, beam hard-
ening can result in cupping artifacts, where for a given uniform object, x-rays are 
attenuated more in the center than in the edges of the object; and streaking in the region 
between two dense objects. Most scanners typically have algorithms that will correct 
for beam hardening artifacts given the relative attenuation of each x-ray. There are two 
other causes for streaking. First, photon starvation can cause streaking. Attenuation is  
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at its greatest when an x-ray beam travels horizontally through a material; and in the 
case of a high attenuation substance (e.g., bone), an insufficient number of photons 
may reach the detector, causing noisy projection data. When reconstructed, this phe-
nomena tends to be magnified and results in horizontal banding across the image. 
Again, most modern scanners incorporate methods to correct for photon starvation by 
modulating the x-ray tube current dynamically during acquisition, or through image 
post-processing. Second, the presence of metal objects (e.g., surgical clips, dental fill-
ings, prosthetic devices) will also cause streaking: the high density and attenuation of 
such materials is beyond the normal range. Algorithms to minimize the streaking caused 
by metal are an active area of research (e.g., by re-interpolating the attenuation profile). 

Helical CT scanning is prone to additional imaging artifacts due to the method of 
interpolation and reconstruction. For example, for multislice CT, helical interpolation 
can produce a windmill artifact, which arises as rows of detectors intersect the recon-
struction plane [75]. To minimize this occurrence, z-filter helical interpolators can be 
used. And a cone beam effect occurs with wider collimation: the x-ray beam begins to 
take on a cone-shape, as opposed to the assumed flat plane of the detectors. The out-
come is akin to partial voluming, and tends to be more pronounced for data on the 
outer rows of the detector array. As the number of detector rows and longitudinal 
space covered by detectors increases, cone beam effects worsen overall. As a result, 
newer multislice CT systems have altered the reconstruction algorithms to accommodate 
cone-beam geometries.  

Radiation dosage. The radiation dosage of a CT scan is controlled by several factors, 
including the beam energy, collimation, and pitch. [15] provides the following equation 
with regard to the relationship between SNR, pixel dimensions (Δ), slice thickness (T), 
and radiation dosage (D): 

T
SNRD

3

2

Δ
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In general, the radiation dosage from a CT scan is somewhat higher than that of an 
equivalent radiographic study. Table 2.2 provides approximated amounts of radiation 
for different anatomical regions. Unlike projectional imaging, the radiation exposure 
from CT differs in several ways: 1) CT generates a continuous field around the patient, 
resulting in radially symmetric exposure, whereas radiography exhibits a higher radia-
tion field at the point of entry than at exit; 2) CT x-ray beams are highly collimated to 
a much smaller target volume as compared to a radiograph; and 3) CT x-rays typically 
entail higher kVp and mAs to increase contrast and improve SNR, therefore increasing 
overall radiation. As such, specific parameters of radiation dosage due to CT have 
been created. For instance, the multiple scan average dose (MSAD) takes into con-
sideration the fact that although x-ray beams are highly focused per slice, there is an  
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Parameter Head Thorax Abdomen Pelvis 

Scan range (cm) 15 31 24 15 

Slice thickness (mm) 5 5 5 3 

Scan time (sec) 32 32 40 40 

Tube current (mA) 200 150 250 250 

Organ of interest Eye lens Lung Liver Bladder 

Organ dose (mSv) 22.2 22.1 21.7 19.1 

Effective dose (mSv) 0.9 6.3 6.8 3.9 

Table 2.2: Effective dose estimates for different anatomical regions for conventional 
axial CT and spiral CT with pitch value 1.0. 

accumulative effect to neighboring slices as the radiation profile is not perfect: instead, 
the periphery receives additional exposure. Thus, for instance, when a slice at position 
x is acquired, the volume at position (x – 1) and position (x + 1) will also receive some 
radiation (e.g., due to scattering). MSAD thus computes the mean dose to tissue given 
a large series of scans: 

dzzD
I series )(1MSAD ∫=  

where I represents the interval of the scan length, Dseries(z) is the dose at position z 
resulting from the series of CT scans; and the integral is evaluated from -I⁄2 to I⁄2. An 
approximation to MSAD is given by the CT dose index (CTDI). [59] provides a formal 
review of these radiation dose metrics for CT. 

Additional CT Applications 

Computed tomography technology is continually evolving, both with respect to the 
underlying scanner hardware and the software techniques used to reconstruct the 
images. Furthermore, CT is being seen in an increasing number of cancer screening 
applications (e.g., lung, virtual colonoscopy). Several adaptations and applications of 
CT imaging are described below. 

Positron emission tomography (PET)/CT. A well-known nuclear medicine imaging 
technique is PET, which looks to detect gamma rays emitted by an injected short-life 
radioactive compound. This compound, called a radiopharmaceutical, radiotracer, or 
radionuclide, is given intravenously and dependent on what type of isotope is injected, 
emissions occur either as a single photon, which forms the basis for single photon 
emission tomography (SPECT); or with a higher energy level, positrons, which form the 
basis for positron emission tomography. Typically, the tracer is incorporated into a bio-
logically active molecule that will be absorbed by a tissue of interest; fluorodeoxyglucose  
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Figure 2.8: (a) Example of fused PET/CT data. Here, tracer uptake is seen in the 
calyx of the kidney as it circulates through the blood; color coding is used to indicate 
concentration. (b) Demonstration of CT angiography. The highlighted region shows a 
cerebral artery demarcated by contrast. (c) A 3D reconstruction of the CTA region. 

(FDG) is commonly used for this purpose. The concentration of tracer in a given tissue 
is then measured by scintillating-based detectors. SPECT/PET therefore gives some 
sense of physiological and metabolic processes, and is often used to ascertain the degree 
of activity in a given region (e.g., a tumor, brain function, etc.). Unfortunately, the resolu-
tion of PET is much lower than other modalities; hence it is often used in conjunction 
with CT. PET/CT scanners are increasingly common, allowing for simultaneous 
acquisition of both channels of image data; and ensuing registration and image fusion 
of metabolic and spatial information (Fig. 2.8a). 

CT perfusion. Broadly, perfusion is defined as the steady-state delivery of blood to 
tissue, assessing the volume per unit time. The underlying theory behind CT perfusion 
is that given intravenous contrast bolus, the attenuation of tissue will change based on 
its delivery through the bloodstream and subsequent uptake. Images taken pre- and 
post-contrast can provide quantitative maps of the change in attenuation. Notably, 
regions of tissue not receiving sufficient blood (and therefore, oxygen) are made detect-
able. For this reason, CT perfusion has been studied with respect to cerebrovascular 
flow; for instance, the method has been used in the assessment of stroke and other 
neuro-pathology [23, 48, 57]. 

CT angiography. With the advent of helical CT, computed tomography angiography 
(CTA) was introduced and is now commonly used to visualize arterial and venous 
blood vessels throughout the body, including in the brain, heart, lungs, and abdomen. 
CTA can be used to detect aneurysms, arteriovenous malformations, vessel narrowing 
(e.g., atherosclerotic disease, stenosis), and thrombosis (blood clots in veins). A bolus 
of contrast agent is injected into a periphery vein, and CT images are subsequently 
taken of the region. Relative to traditional catheter angiography, CTA offers a less 
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Dual source and dual energy CT. Rather than use a single x-ray tube, a dual source 
CT (DSCT) scanner incorporates a second x-ray tube and set of detectors, offset at 90° 
from the first tube/detector arrangement. One tube/detector pair covers the entire scan 
field, whereas the second provides a more limited scope, central to the field of view. 
DSCT provides better temporal resolution while also reducing the radiation dosage. 
Introduced in 2005, initial demonstrations of this technology have been for coronary 
CTA [25] and other cardiac scans. Running the two x-ray tubes at different energy 
levels (e.g., one at 80 kVp and another at 140 kVp) presents dual energy CT. A limitation 
of conventional CT is that tissues of different chemical compositions may have similar 
x-ray attenuation and thus appear similarly on images. This problem can potentially be 
solved by examining the behavior of the material at two different energies, providing 
spectral information within a single scan [42]. Information from the detector-tube pairs 
are reconstructed separately, and then post-processing is applied to compute dual-
energy information. Potential applications for dual energy CT include the generation 
of iodine contrast maps (including its separation from high-attenuation tissue, such as 
bone) and lung perfusion. 

Magnetic Resonance 
Developed for clinical purposes in the 1970s, magnetic resonance (MR) imaging is 
based on the use of a strong magnetic field to align the nuclear magnetization of 
hydrogen atoms in water molecules. The application of a radiofrequency (RF) field 
alters the atom’s alignment, creating a rotating magnetic field that is measurable by 
sensors; subsequent changes in the RF field (and hence, detected magnetic field) per-
mit an image to be constructed. Today, MR is a standard cross-sectional imaging 
modality that is useful for visualization given its ability to image soft tissue (muscles, 
joints, brain), fat, and bone (specifically, bone marrow).  

Core Physical Concepts 

[55] provides a more detailed handling of basic MR physics, which we review here. 
All nuclei possess intrinsic angular momentum, also known as nuclear spin, which 
affects all dynamical nuclear properties (e.g., the interaction of nuclei with magnetic 

invasive, faster means of imaging blood vessels. Multi-detector CT has further  
improved CT angiography (MD-CTA), providing faster scanning (and less patient 
motion artifacts), improved contrast, and reduced need for contrast material (for arterial 
phase studies) [46, 68]. For example, MD-CTA provides high spatial resolution contrast 
casts of intracranial aneurysms, with the advantages of characterizing the intramural 
and peri-aneurismal environment, and the accurate depiction of the location and extent 
of intramural calcification, intraluminal thrombus, and of impinging surrounding 
bony structures (Fig. 2.8b). 
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fields, etc.). Additionally, spin is a fundamental property of all elementary particles: 
electrons, neutrons, and protons all possess intrinsic spin, as do particles with a zero 
rest-mass (e.g., photons) (Fig. 2.9a). Nuclear spin has two components: 1) the con-
tribution of spin by individual nucleons (i.e., neutrons and protons); and 2) the orbital 
angular momentum of the nucleons. This orbital motion is actually caused by the spin-
ning of the collective nucleons forming a nucleus, rather than by the independent 
orbital motion of the individual nucleons. Nuclear spin comes in multiples of ½ and is 
either positive or negative. A nucleus’ net nuclear spin is dependent on the number of 
protons and neutrons present: particles with opposite spins will cancel out each other’s 
contributions so that the net spin is dependent on the number of unpaired protons and 
neutron (each adding ½ spin to the net spin). Thus, hydrogen nuclei (1H, 1 proton, no 
neutrons) exhibit a non-zero spin and as a result there is a magnetic dipole moment – 
similar to how in classical electrodynamics, a rotating electrically charged body generates 
a magnetic moment. Recall from basic physics that a magnetic moment is a vector 
quantity (i.e., it has both a quantitative component and a direction).  

Spins and external magnetic fields. When spins are placed in a strong external mag-
netic field (such as emitted by an MR scanner), the nucleons precess around an axis 
along the direction of the field4 (Fig. 2.9b, Fig. 2.9c). The frequency of precession  
is governed by the Larmor equation, ω0 = γB0, where ω0 is the angular frequency; γ is 
the gyromagnetic ratio, a constant specific to the nuclei; and B0 is the strength of the 
applied magnetic field. Specifically, protons will align themselves in either a low- or 

Figure 2.9: (a) A property of all nuclei is the nuclear spin. In addition, each elementary 
particle has an intrinsic spin. An atom with a non-zero net spin generates a magnetic 
dipole moment. (b) When an external magnetic field (B0) is applied to the particles, 
the magnetic moments align with the field, being either parallel or opposite in direc-
tion. (c) The alignment to B0 is not exact; instead, the nucleons precess around the axis 
with an angular frequency, ω0, given by the Larmor equation. 

                                                           
4  By convention, the direction of the field is taken to be the z-axis. 

high-energy state, corresponding to the relative parallel or opposing alignment of the  
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spin to the external magnetic field (Zeeman effect). The number of nuclei that move 
into the lower energy state is only slightly greater that those that move into the higher 
energy state – the difference in numbers is less than 0.001% but is enough to be 
exploited in MR imaging, with the exact proportion determined by the strength of the 
externally applied magnetic field and temperature. The sum of the magnetization vectors 
from all of the spins is the termed the net magnetization. The net magnetization vector, 
M, consists of two parts: 1) the longitudinal magnetization, Mz, which arises from the 
excess of protons in the lower energy state and causes net polarization parallel to the 
external magnetic field (i.e., in the z-axis); and 2) the transverse magnetization, Mxy, 
which is due to coherence forming between two protons (i.e., becoming in phase), 
causing net polarization perpendicular to the external magnetic field (i.e., in the  
xy-plane).  

Applying a radiofrequency pulse. When the system is stable, the transverse magneti-
zation component is zero; but when energy is introduced into this system, both the 
longitudinal and transverse components change. If an electromagnetic wave, such as 
an RF pulse, is introduced to a stable spin system at the same angular frequency as ω0, 
then the energy is absorbed via resonance and the net magnetization moves away from 
the direction of the main magnetic field: the spins are excited such that the longitudi-
nal magnetization tips away from the z-axis, and the protons become in phase (Fig. 
2.10a). Note that the angle at which the RF pulse is applied relative to B0 determines 
the extent to which net magnetization vector is affected. This angle is commonly 
referred to as the flip angle, α.  

Figure 2.10: (a) The net magnetization vector is closely aligned with the z-axis when
in equilibrium. When energy is introduced (e.g., an RF pulse), the longitudinal (Mz)
and transverse (Mxy) magnetization vectors are affected, pushing the net magnetization
toward the xy-plane. (b) The amount of 1H protons available alters the T1 and T2
properties of a substance. For example, the T1 relaxation for fat is shorter than that of
water. (c) Example of a spin echo and the difference between T2 and T2*. A 90° RF
pulse initiates the sequence; subsequently, a 180° RF pulse is used to flip spins, creat-
ing another signal peak. 
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Once the RF pulse is terminated, the protons begin to re-radiate the absorbed energy at 
the same resonance frequency; this signal is detected via the scanner’s RF coil (by 
induction of a current). The initial amplitude of this signal is given by the amount of 
“tipping” from the z-axis toward the xy-plane. A flip angle of 90° produces maximal 
tipping into the xy-plane. As the absorbed energy dissipates, both Mz and Mxy return to 
an equilibrium state: recovery of excited spins to the longitudinal magnetization to the 
z-axis is called T1 relaxation or recovery (also called spin-lattice relaxation); and the 
restoration of the transverse magnetization to zero is called T2 relaxation (also called 
spin-spin relaxation). T1 is a specific measure of how long it takes for Mz to return to 
63% of its original value and is associated with the enthalpy of the spin system (the 
amount of spins in parallel/anti-parallel state). T2 is quantified by the amount of time 
it takes Mxy to return to 37% of its original value and is associated with a system’s 
entropy (the amount of spins in phase). In particular, the T2 phenomenon results from 
spin-spin interactions where two nearby protons can cause each other to “flip” so that 
one changes from anti-parallel to parallel alignment, while the other changes from 
parallel to anti-parallel (i.e., one gains the excitation energy from the other). Phase 
coherence with other excited protons is lost during this exchange and the end result is 
a relaxation of the transverse magnetization. T1 and T2 will vary dependent on the 
material (Fig. 2.10b). 

The T2 signal generated from spin-spin relaxation decays quickly due to the loss of 
coherence. This signal is referred to as free induction decay (FID). T2 assumes a per-
fect external magnetic field – but in reality, fields often have inhomogeneities and 
external sources of interference exist, causing a further loss of phase coherence. T2* 
therefore reflects the additional compounding effect of imperfections in the external 
magnetic field. To recover some of the some signal and information about the environ-
ment, a technique called spin echo is sometimes used: a refocusing RF pulse is used so 
that the spins are flipped 180°, inverting the phase-position of each spin. In flipping 
the spins, those protons precessing faster are effectively made “behind” spins that 
were precessing at a slower rate. After some time, the spins will have caught up with 
each other and a “spin echo” is created: a signal peak is seen when this occurs (Fig. 
2.10c). The time taken for this signal peak to be seen is referred to as the echo time (TE). 

Imaging 

So, what do T1 and T2/T2* mean in terms of imaging human tissue? The protons that 
generate MR signals are primarily those in cellular fluids and lipids (i.e., the nuclei of 
hydrogen atoms that are relatively free to move within their environment). The hydrogen 
protons in tightly-bound environments such as within proteins or DNA usually do not 

 

contribute to MR signals, and the same situation exists for those in solid structures  
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Table 2.3: Examples of average T1 and T2 times for different types of tissues. T1 
relaxation times are much higher than T2 relaxation times.  

Tissue T1 (msec) T2 (msec) Tissue T1 (msec) T2 (msec) 

Muscle 870 47 Gray matter (brain) 920 100 

Liver 490 43 White matter (brain) 790 92 

Kidney 650 58 CSF 2400 160 

Lung 830 80    

such as bone. We can first of all consider a water molecule moving through its environ-
ment within tissue as a result of local chemical and physical forces. The magnetic 
properties of its two hydrogen protons generate a small magnetic field of ~1 mT and 
the molecule’s motion is therefore also influenced by the magnetic properties of the 
other water molecules in its vicinity (and reciprocally influences their motion). When 
excited protons are involved following RF excitation, it is the interactions with their 
local environment that cause them to lose their excess energy and return to the lower 
energy state with the emission of RF radiation (i.e., this can be seen as the basis for 
re-establishing longitudinal magnetization during relaxation). The rate at which 
molecules can move within their environment is related to their size and thus small 
molecules have a low probability for interaction. Hence liquids such as cerebral spinal 
fluid (CSF) have long T1 values, for instance (Table 2.3). Medium-sized molecules 
(e.g., lipids), in contrast, move more slowly, have a greater probability for interaction 
as a result, and exhibit relatively short T1 values. In contrast, T2 relaxation reflects 
spin-spin interactions, which tend to happen much more rapidly than T1 relaxation; T2 
values are therefore generally less than T1 values (Table 2.3). 

As T2 arises mainly from neighboring protons, a higher interaction probability exists 
with larger molecules over smaller molecules. Macromolecular environments will 
therefore display shorter T2 values than water-based fluids (e.g., CSF). A final point to 
note is that both T1 and T2 measurements in a small volume of tissue result from the 
integrated motional effects of all compounds that contain hydrogen protons in that 
volume, be they those of small molecules, lipids or macromolecules. 

Gradients and k-space. Thus far, discussion has only centered about the idea that we 
can detect changes in nuclear spins – but this information must be spatially localized 
in order to construct an image. To this end, MR scanners use gradients. Gradients are 
linear variations of the magnetic field strength in a selected region. Typical gradient 
systems are capable of producing gradients from 20-100 mT/m (for a 2.5T MR scanner). 
Three types of gradients are applied, according to the axis of imaging (x-, y-, or z-axis; 
Fig. 2.11). We first consider the z-axis: for instance, the magnetic field strength may 
be weakest at the top of the patient’s head, and increase in strength to the strongest 
strength at the patient’s feet. The consequence is that the Larmor frequency changes 
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Figure 2.11: Cross-section of an MR scanner, showing the relationship of the gradient 
coils (x-, y-, and z-coil), the RF transceiver (i.e., RF pulse generator and receiver), the 
external magnet, and the patient table. The z-coil surround the entire table and permit 
slice selection. The y-coil is to the left/right of the table and is responsible for phase 
encoding. The x-coil is atop and below the patient, and is used for frequency encoding. 
A computer is responsible for coordinating the execution of the pulse sequence across 
the magnets/coils and taking information from the digitizer to create an image. 

gradually along the z-axis, and a mapping is created between field strength, position, 
and angular frequency: by emitting the corresponding ω, only the matched portion 
along the z-axis will respond. The selection of the region in the z-axis is often referred 
to as slice selection. A shallow gradient will produce a thicker slice, while a steeper 
gradient produces a thinner slice. Next, we examine the problem of determining the 
(x,y) position of a signal within the slice, which is referred to as spatial encoding. 
Spatial encoding consists of two steps: phase encoding and frequency encoding. For 
phase encoding, a magnetic gradient is applied in the y-axis after the original RF pulse. 
Spins higher in this linear gradient are affected more and become more in phase relative 
to spins lower in this new y-axis gradient. This change in phase therefore induces a 
unique phase to be associated with each point in the y-axis; from this phase, the  
y-position can be computed. For spatial encoding, a third linear gradient is applied, 
this time in the x-axis, with the effect of shifting the Larmor frequencies of the spins 
such that along the direction of the x-axis gradient, the spins become slower. This 
alteration in the frequency permits the x-position to also be identified by examining 
the frequency of a given point. The full mathematics of this process is beyond the 
scope of this chapter; the reader is instead referred to [15] for the particulars. 

The (x,y) information obtained from phase and spatial encoding are stored in k-space, 
a 2D or 3D matrix (dependent on whether a single image slice or image volume is 
being considered). The y-axis of k-space represents phase information, while the  
x-axis captures angular frequency information. Note that k-space coordinates therefore 
have no correspondence to an image’s coordinates. From this k-space representation, 
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a 2D/3D (discrete) Fourier transform is applied to transform the frequency data into a 
spatial domain. For 2D slices, the current clinical MR scanner resolution is about  
1 mm3, while research models can exceed 1 µm3.  

Pulse sequences and image contrast. The contrast in MR images are dominated by 
three inherent tissue characteristics: proton density, ρ; T1; and T2. By varying the 
nature and timing of the RF pulses, different tissues and pathologies can be empha-
sized to take advantage of differences in these characteristics. An MR pulse sequence 
describes a timed set of RF and gradient pulses, wherein the interval between the RF 
pulses and the amplitude and shape of the gradients is given. In general, an MR pulse 
sequence specifies (in order): 1) the slice selection gradient; 2) the excitation RF 
pulse; 3) the phase encoding gradient; 4) the generation of an echo (e.g., secondary RF 
pulse); and 5) the frequency encoding gradient. There are three categories of common 
MR pulse sequences: spin echo (SE); inverse recovery; and gradient echo. MR pulse 
sequence design is an ongoing research area; we briefly cover these sequences below 
and refer to [11, 85] for additional information. 

As mentioned earlier, spin echo imaging is characterized by the use of a slice-selective 
90° RF pulse, after which transverse magnetization decays with T2*; followed by a 
180° RF pulse to refocus the spins. Two parameters help to characterize the RF com-
ponent of these pulse sequences: the time of repetition (TR) indicates the amount of 
time that elapses between 90° RF pulses, which in turn determines how much of Mz is 
recovered by a tissue; and TE impacts how much measurable signal in Mxy is lost due 
to dephasing. With variations on TR and TE, three MR contrast images are defined:  

1. Proton (spin) density images. The first type of image uses a long TR and short TE, 
which controls for both T1 and T2 relaxation. As a result, the contrast in proton 
density images is due primarily to variations in the concentrations of mobile 1H. 

2. T1-weighted images. T1-weighted images use a short TR and short TE. The short 
TR only allows tissues with a short T1 relaxation to fully recover (e.g., fat) – sub-
stances with longer T1 properties will only partially recover. For example, at short 
TRs the difference in relaxation time between fat and water can be detected. The 
use of a short TE minimizes the loss of the transverse signal due to T2 relaxation.  

3. T2-weighted images.T2-weighted images employ a long TR and a long TE. The 
long TR value allows all tissues to reach full longitudinal magnetization, while the 
long TE highlights any tissue with a long traverse magnetization (e.g., fluid). 

In general, spin echo images proffer excellent image quality due to recovery from the 
echo signal; however, this improvement in image quality comes at the cost of a longer 
scan time (and ensuing motion artifacts). Also, T1-weighted images are better at 
visualizing anatomy, while T2-weighted images are more sensitive to pathology. 
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An inverse recovery (IR) pulse sequence is a variation of spin echo that uses an 
additional 180° RF pulse before the first 90° RF pulse. The effect is that longitudinal 
magnetization is completely flipped (i.e., inverted), but leaving Mxy unaffected (i.e., it 
remains zero). Thus, only T1 relaxation occurs, at which point the 90° RF pulse is 
applied. The interval between the first 180° and 90° RF pulses is called the inversion 
time (TI). By changing TI, image contrast is affected by varying the degree of longitud-
inal magnetization. Two common IR pulse sequences are short TI inversion recovery 
(STIR) and fluid-attenuated inverse recovery (FLAIR). STIR is often employed to 
suppress the signal arising from fat. In comparison, FLAIR uses a long TI that results 
in almost complete suppression of high T1 materials (e.g., CSF) while providing 
visualization of fat, edema, and tumors (particularly in neurological studies, such as 
with brain tissue). 

Lastly, gradient echo (GRE) pulse sequences use a scanner’s gradient coils instead of 
additional RF pulses to generate an echo signal. The frequency encoding gradient (see 
above) is changed so that it is first applied with a negative polarity, which removes 
phase coherence between spins; and then the gradient is reversed, thereby causing the 
spins to rephase, which in turn forms a gradient echo. The advantage of GRE  
sequences is that as there is no need for a 180° RF pulse, a very short TR can be 
achieved, which in turn results in faster imaging that is more resistant to motion arti-
fact. The tradeoff, however, is that GRE sequences do not permit a long T1 recovery; 
and furthermore, there is no recovery from T2*. Given the relatively fast nature of 
these pulse sequences, there is a potential for T1 signals to remain between cycles (i.e., 
the system does not return to equilibrium within the time allotted). Thus, some GRE 
pulse sequences add a signal to purposely cause dephasing before the next RF pulse; 
this process is called spoiling and sequences using this technique are referred to as 
spoiled GRE. Two clinically popular spoiled GRE sequences are spoiled gradient echo 
(SPGR) and FLASH (fast low shot angle). Different image contrasts in spoiled GRE 
sequences are similar to SE, but introduce the use of the flip angle: proton-density 
images are obtained with a long TR, low flip angle, and short TE; T1-weighted images 
are given by decreasing TR and increasing the flip angle; and T2*-weighted imaging 
occurs with long TR and long TE. 

Signal-to-noise ratio. As might be imagined, the quality of an MR image is beholden 
to a number of practicalities, ranging from hardware concerns such as the strength and 
homogeneity of the external magnetic field, and limitations of the RF coils (e.g., thermal 
noise); through to motion artifacts (patient movement in the scanner); and ultimately 
the image reconstruction parameters. At each stage, noise is introduced into the pro-
cess, resulting in image degradation. In MR, the ratio of this noise to the MR signal is 
referred to as the signal-to-noise ratio (SNR), where the desire is to have a high SNR. 
For example, SNR increases with field strength, permitting higher resolution and 
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faster scanning. However, higher field strengths have increased safety concerns and 
are more costly. Likewise, increasing the number of scan repetitions or increasing 
pixel resolution (i.e., larger pixels) will improve SNR, but at the expense of time and 
the ability to see finer details within the image. [85] provides a summary of the 
parameters that affect SNR. Alternatively, it is possible to employ denoising algo-
rithms as part of the post-processing of an MR image to improve quality. 

Additional MR Imaging Sequences 

The versatility of MR is demonstrated by the numerous adaptations of the core tech-
nology and the continued research in the field. A few of the more prominent uses and 
applications of MR that are now clinically seen are described below. 

Diffusion MRI. Diffusion techniques are based on the measurement of Brownian 
motion in water; by understanding how water moves, one can infer information about 
the local (anatomical) environment [31]. Instead of a homogeneous magnetic field, a 
linear gradient is imposed, resulting in varying rates of precession. A pulsed gradient 
spin echo sequence extends a standard SE with two additional diffusion gradient 
pulses to create a diffusion-encoding gradient. The diffusion-encoding gradient causes 
phase shift to vary with position: all spins that remain in the same location will return 
to their initial state; however, any spins that have moved (i.e., due to diffusion) will 
experience a different total phase shift. The result is that the diffusion of water mole-
cules along a field gradient reduces the MR signal: the higher the degree of diffusion, 
the greater the loss of signal. Images will therefore show low signal intensity where 
diffusion along the applied diffusion gradient is high. The amount of diffusion-
weighting in an image is given by the amount of expected signal loss, calculated as: 
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where S is the resultant signal intensity, S0 represents the original signal intensity, γ is 
the gyromagnetic ratio, G is the strength of the gradient, δ is the duration of the pulse, 
Δ is the time between the two diffusion-gradient pulses, and D is the diffusion con-
stant. Typically, this equation and degree of diffusion-weighting is summarized in 
terms of the b-value. 

The displacement of water molecules follows one of two basic patterns: isotropic 
diffusion, where the net random displacement in any direction is equal (e.g., free diffu-
sion, like in a fluid such as CSF with no constraints on spatial direction); and anisot-
ropic diffusion, where the movement of water is confined to certain directions due to 
high-density regions (e.g., such as along a fiber). Diffusion-weighted MRI (DWI) 
visualizes the variation in water molecule mobility, irrespective of these displacement 
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patterns. Based on the above equation, if the same volume is repeatedly scanned but 
with different diffusion gradients, one can quantitatively assess the diffusion constants 
of the local environment. This calculation of the diffusion constants is known as the 
apparent diffusion coefficient (ADC). ADC values can then be mapped spatially to 
create an image with diffusion serving as the basis for visual contrast. Such ADC-
based images are referred to as ADC maps. Dissimilar to DWI, diffusion tensor MRI 
(DTI) tries to quantify anisotropy by ascertaining the direction of water molecule 
movement. By varying the direction of the diffusion-gradient field, different values of 
D are obtained for a given point in space, providing information on the local structures 
that restrict water movement. The directionality of water movement at a point can then 
be represented in 3D by a tensor – in this case, a 3 x 3 symmetric positive matrix, with 
the overall direction corresponding to the matrices’ main eigenvector. Because of the 
difficulty in visualizing tensors, another method of quantifying the degree of anisotropy is 
fractional anisotropy (FA), which transforms the tensor to a scalar representation that 
is more readily presented. Presently, DTI is used for fiber tracking (e.g., such as in the 
brain). Diffusion-weighted images are sensitive to motion artifact. DTI, in particular, 
because of the number of gradient changes needed, suffers from long scan times 
and/or noise. However, both DWI and DTI are active areas of research and develop-
ment, given their unique ability to illuminate anatomical structures. 

MR angiography (MRA). MR angiography is primarily used for visualization of 
vasculature, including aneurysms and cardiovascular function. Perhaps the most common 
MRA technique today, contrast-enhanced magnetic resonance angiography (CE-MRA) 
is based on T1 values for blood and the use of an MR contrast agent to affect this 
value (i.e., a relaxation-enhancing medium). By reducing blood’s T1 value, image 
formation is no longer dependent on the flow of blood, but rather, the detection of the 
contrast. CE-MRA uses a spoiled GRE sequence with a short TR to have low signal 
(due to the longer T1) from the stationary tissue and short TE to minimize T2* effects. 
CE-MRA hence proffers fast acquisition and high-quality images over large regions 
of vasculature. Other modes of MRA take advantage of the flow of blood and other 
fluids to induce a range of imaging artifacts that can be used to visualize surrounding 
tissue: 

1. Time of flight angiography (TOF). Spins flowing into a slice selection region are 
initially unaffected by the magnetic field; on entering the area, they emit a higher 
MR signal. 2D TOF uses this fact (Fig. 2.12a) with a flow-compensated gradient 
echo sequence to reconstruct (e.g., via maximum intensity projection) from multiple 
images a 3D image of the vessels akin to that seen with to conventional angio-
graphy. 
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2. Phase contrast angiography (PCA). Spins moving parallel to a magnetic field 
develop a phase shift proportional to the velocity of the spin. Knowing this, PCA 
uses a bipolar gradient that dephases (and hence encodes) the spins in proportion 
to their velocity. This information can then be used to calculate the relative 
magnitude of flow and direction, generating flow velocity maps. 

More recently, tagged MRI velocimetry using proton spins that have been magnetic-
ally tagged by various methods have shown potential as a noninvasive technique for 
measuring flow volume and velocity (see below). 

Perfusion MR. Unlike MRA, perfusion MR imaging is designed to quantify micro-
circulatory tissue perfusion rather than the gross flow from larger vascular axes. 
Though the chief use of perfusion MR has been in cerebral studies (e.g., stroke), more 
recently work has been done to apply this modality to assess myocardial perfusion 
[41] and cancer. MR perfusion studies utilize some type of intravascular tracer, which 
can be categorized twofold: 1) exogenous materials, such as in injected contrast; and 
2) endogenous materials, such as tagged 1H nuclei. Dynamic susceptibility contrast 
(DSC) MR is an example of the former, measuring the decrease in T2/T2* during the 
first pass of the tracer through the capillary bed. An example of the latter is arterial 
spin labeling (ASL; also referred to as arterial spin tagging), which marks inflowing 
water proton spins in arterial blood to visualize flow, and has been used for assessment 
of tumor response (e.g., for anti-angiogenesis agents) and cerebral blood flow [20, 86].  

Magnetic resonance spectroscopy (MRS). Although MR focuses on the use of 
hydrogen atoms in water, other biological compounds contain 1H and other nuclei also 
naturally respond to the presence of an external magnetic field (e.g., phosphorous, 

Figure 2.12: (a) Example of TOF MR angiography for treatment of an intracranial
aneurysm. (b) Example of 2D magnetic resonance spectroscopy for primary brain
tumors. Detected metabolites peaks are labeled in the spectrum at the top. 



52 D. Aberle et al. 

fluorine)5. MRS uses these insights to provide biochemical information on a region 
and is beginning to see clinical usage. The underlying principle of MRS is chemical 
shift. The presence of electrons around a nucleus dampens the effect of a magnetic 
field. Based on the configuration of a molecule, therefore, the magnetic field will be 
experienced to lesser or greater extent: 1H signals from compounds will exhibit 
slightly different frequencies dependent on their local chemical environment. This last 
point implies that the Lamor frequencies of different compounds will therefore vary. 
To take advantage of this fact, MRS uses a water-suppressing pulse sequence to 
remove the predominant signal from H2O; a chemical shift selective (CHESS) tech-
nique or an inversion recovery sequence akin to that used for fat suppression is used. 
Detected MR signals therefore arise from metabolites in the body. As in standard 
chemical spectroscopy, a spectrum is plotted. Each metabolite has a known frequency, 
which can be used to identify its peaks in the spectrum and its relative concentration 
based on the area under the peak. Early work on 1D 1H MR spectroscopy demon-
strated the ability to detect several metabolic intermediates (NAA, lactate, choline, 
creatine, myo-inositol, glutamine, and glutamate) [45, 65, 80, 81]. However, under 
conventional 1D 1H MRS, the spectral peaks of several key compounds overlap (e.g., 
methyl, GABA). Alternatively, 2D MRS (Fig. 2.12b) enables the unambiguous resolu-
tion of overlapping peaks of 1D MRS, allowing a more detailed map of the chemical 
environment of protons, thus complementing the metabolic information obtained from 
other modalities such as PET (positron emission tomography). Applications of MRS 
include assessment of different cancers, including brain and prostate [74, 79], and 
neurological disorders. 

Functional MRI (fMRI). The details of fMRI are largely outside of the scope of this 
text, and we only briefly describe it here; the reader is referred to [16] for a compre-
hensive discussion. The association between hemodynamics and neural activity has 
been long known: active cells consume oxygen, so portions of the brain that exhibit 
higher levels of oxygen are likely activated. This principle serves as the foundation for 
fMRI, a now standard tool for neurological mapping. fMRI uses the blood oxygenation 
level dependent (BOLD) effect as the basis for spatially highlighting brain activity: the 
difference in magnetic susceptibility between oxygenated and deoxygenated blood is 
used to establish MR T2* signal variation. As such, a T2*-weighted GRE pulse 
sequence is often used for fMRI studies. In theory, repeated measurements provide a 
statistical basis for mapping those regions that are associated with thought processes 
and/or a given activity. Unlike other methods for establishing brain activity, fMRI 
does not require injections of radioactive isotopes, scan times can be short, and resolution 

                                                           
5  However, arguably only 1H and 31P exist at sufficient levels of concentration in vivo 

to be detectable presently. 
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is relatively good (currently on average 2.5 x 2.5 mm). Although there is some recent 
debate in regard to the interpretation of the BOLD effect and fMRI [54], its utility as a 
tool has spawned new insights into neurological function [84]. 

Ultrasound Imaging 
Descriptions of medical applications based on the principles of sonar (sound naviga-
tion and ranging) began to appear shortly after the end of World War II. Donald et al. 
developed the first prototype ultrasound scanner and reported its diagnostic utility in 
identifying normal abdominal organs and several common pathological processes [22]. 
Since the original description of its diagnostic utility, ultrasonography has emerged as 
the most frequently utilized imaging technique in the world.  

High frequency sound waves, ranging from 1-20 MHz, are employed to generate 
cross-sectional images of the human body. The ultrasound transducer, which contains 
one or more piezoelectric crystals, is used both as a sender and a receiver of sound 
waves. An electrical current passing through the piezoelectric crystal causes it to 
vibrate and generate sound waves that propagate through the body tissues (Fig. 2.13a). 
The reflected echoes returning to the crystal are then converted back into electrical 
pulses. These signals are processed by the scan converter into shades of gray and dis-
played on a monitor as a cross-sectional image [69, 70]. The strength of the returning 
echoes is dependent on the physical characteristics of the particular biological tissue. 
The ability of a material to return an echo is referred to as echogenicity. As not all 
biological tissues behave similarly, organ delineation and disease detection are achiev-
able via ultrasound imaging. Today’s ultrasound image displays provide several 
capabilities to help assess structure and fluid flow: 

 A (amplitude) mode. The characteristics of a single ultrasound beam are analyzed 
as the sound wave travels through the body and returns to the source transducer. 
The display of A-mode information can be likened to that of an oscilloscope. 

 B (brightness) mode. Also known as gray scale ultrasound imaging, B-mode is 
currently the standard method to display diagnostic images. Tissue differences are 
recorded in shades of gray depending on their strength and distance from the 
source transducer. A strong reflector of sound waves is displayed as a bright dot. 

 M (motion) mode. M-mode is a type of B-mode imaging whereby a series of 
B-mode dots are displayed on a moving time scale. This technique is presently 
used to record fetal heart rate and perform other cardiac imaging procedures.  

 Real-time B scan. This modality provides a cinematic view of the area being 
evaluated, displaying sequential images in real-time.  
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 Doppler sonography. The direction of blood flow and velocity within blood 
vessels are assessed in real-time using Doppler principles. Clinical applications 
include the evaluation of arterial and venous flow in normal and diseased organs, 
as well as blood vessels. There are two types of Doppler ultrasound commonly used 
in clinical practice: Color Doppler and power Doppler. Color Doppler is used to 
visualize the velocity and direction of blood flow within a vessel (Fig. 2.13c) [33]. 
Power Doppler is a newer technique that overcomes some of the limitations of the 
conventional color Doppler (but does not assess the direction of blood flow). 

In addition, 3D/4D ultrasound systems are now becoming viable, allowing for 2D 
ultrasound images to be rendered in 3D and motion displayed in real-time. In view of its 
low cost to acquire and maintain, portability, pain free application, and lack of ionizing 
radiation, ultrasonography is now a widely used technique for evaluation of diseases in 
both pediatric and adult populations, including its use in pregnant women to assess the 
fetal well-being. Real-time imaging capabilities provide instant and continuous visual 
feedback of organ structures and blood flow patterns. This characteristic is particularly 
important when performing ultrasound-guided interventional procedures. In addition, 
there are endoscopic, intra-cavitary, intra-operative, and intravascular ultrasound 

Figure 2.13: (a) Basic principles of ultrasound. A transducer produces sounds waves 
via a piezoelectric element stimulated by electrodes. As the sound waves pass through 
the surface boundary of different materials, a portion of the energy is absorbed, and 
the rest reflected. (b) Based on the change in a reflected sound wave from a moving 
object, Doppler ultrasound can provide flow velocity data. (c) Color Doppler longitudinal 
ultrasound image of the right upper extremity demonstrates normal brachial artery and 
vein. Flow away from the transducer is displayed in red (right brachial artery), while 
flow towards the transducer is displayed in blue (right brachial vein). 

 

systems available for use in specific clinical conditions. Acquiring good quality 
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diagnostic images, however, is dependent upon the skill of the operator. Poorly trained 
personnel tend to create poor quality images by inferior scanning techniques and 
improper selection of transducers. 

More recent technical innovations are contributing significantly to the advancement of 
the field of diagnostic ultrasound imaging:  

 Ultrasound microbubble contrast agents. These bubbles provide augmentation of 
the ultrasound signal, enhancing Doppler and gray scale images. The microbubble 
particles are less than 10 μm in diameter and therefore cross capillary beds easily. 
Microcirculation and vessel flow can be demonstrated by using microbubble con-
trast agents using harmonics (see below). Drug delivery to a specific target in the 
body, such as a tumor, has been achieved by incorporating ligands on the surface 
of the microbubble to recognize receptors on the cell membrane. Other therapeutic 
options include sonoporation, or the transient increase in cell membrane per-
meability during intravascular ultrasound.  

 Harmonic imaging. Images are constructed from returning echoes having 2-3x the 
frequency of the original transmitted frequency (i.e., harmonic waves), resulting 
in images with a higher spatial resolution, reduced SNR, and improved image 
contrast [34, 53]. Harmonic imaging has been used to improve the resolution of 
ultrasound images in conjunction with microbubble ultrasound contrast agents.  

 High intensity focused ultrasound (HIFU). This technique uses high intensity 
focused ultrasound waves to heat and destroy tissue at previously determined spe-
cific depths. This technology is currently used for the ablation of uterine fibroids. 

 Elastography. This technique is used to measure the mechanical stiffness of organs 
and has been shown to be helpful in identifying tumors of the prostate, thyroid 
gland, breast and liver [34, 66]. For example, diseased tissues such as found in 
tumors and inflammatory lesions, tend to be harder than surrounding normal 
tissue; based on this observation, elastrography can help distinguish malignancies.  

An Introduction to Imaging-based Anatomy & Physiology 
Given this basic background on core imaging modalities, we now turn to the use of 
imaging to understand human anatomy and physiology. This primer will serve to 
ground our examples and discussions in the chapters to come. Rather than provide an 
extensive review of each anatomical region, a more detailed overview of two systems, 
neurological and respiratory, are provided along with coverage of the specific use of 
imaging for mammography; subsequently, we review other core anatomy/physiology 
and the role of imaging. 
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Respiratory System 
The respiratory system has the critical function of facilitating gas exchange between 
the air and circulating blood. At this interface, oxygen (O2) diffuses from the alveoli 
into the respiratory alveolar capillaries and carbon dioxide (CO2) diffuses from the 
capillaries into the alveoli. This gas exchange provides the basis for cellular meta-
bolism of all cells in the body. Beyond providing a surface area for gas exchange, the 
respiratory system must also: move air to and from this exchange surface; protect the 
respiratory surfaces from exposure to the environment, inhaled substances, and poten-
tial pathogens; and produce sounds. The respiratory system is divided into the upper 
respiratory system extending from the nose to the pharynx and the lower respiratory 
system, which extends from the larynx (voice box) to the pulmonary alveoli. The upper 
respiratory system conducts air to the ultimate units of gas exchange; during which it 
filters, warms and humidifies incoming air to protect the lower, more delicate gas 
exchange surfaces. The respiratory tract has both conducting and respiratory portions: 
the conducting portions transport air to the deeper parts of the lungs; the respiratory 
portions participate in gas exchange. The upper respiratory system is purely conductive; 
whereas the lower respiratory system has both conducting and respiratory components. 
The lower respiratory system is the focus of this section. 

The Larynx and Trachea 

Air from the upper respiratory system enters the larynx through a small opening called 
the glottis. The passage of air through the glottis vibrates the vocal cords (the walls of 
the glottis) and produces sound waves. The larynx is essentially a cylinder with 
incomplete cartilaginous walls supported by ligaments and muscles (Fig. 2.14a). Three 
large cartilages form the larynx:  

1. The thyroid cartilage, a large U-shaped cartilage that forms the anterior and 
lateral walls of the larynx. The prominent anterior portion of the thyroid cartilage 
is the Adam’s apple, or thyroid prominence. 

2. The crycoid cartilage, located below the thyroid cartilage, is larger posteriorly 
and provides support in addition to the thyroid cartilage. 

3. The epiglottis is a shoe-horned shaped elastic cartilage with ligamentous attach-
ments to the thyroid cartilage below and the hyoid bone above. The epiglottis 
projects superior to the glottis and form a lid over it during swallowing to prevent 
the movement of food or liquid into the lower respiratory tract.  

The trachea is a tube extending from the cricoid cartilage to the origins of the main 
stem bronchi. It is roughly 2.5 cm in diameter and extends ~11 cm in length. The 
trachea is lined by a pseudostratified ciliated columnar epithelium, as with the nasal  
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Figure 2.14: (a) Anterior view of the larynx (left) and lateral view (right) with anterior 
surface facing right. (b) The trachea spans roughly 11 cm from the cricoid cartilage to 
the carinal bifurcation, then divides to form the right and left main stem bronchi. The 
trachea and subsequent bronchi to the level of the terminal bronchioles contain carti-
lage within their walls and form conducting airways. Beginning with the respiratory 
bronchioles, which contain no cartilage, both gas transport and exchange can occur. The 
airway tree has 23 generations that divide into successive branches that are narrower, 
shorter, and more numerous; the levels of different areas are shown to the right.  

cavity. A band of connective tissue, the submucosa, resides under the mucosa and con-
tains mucous glands that communicate with the tracheal epithelium via secretory 
ducts. The trachea is comprised of 15-20 C-shaped tracheal cartilages separated by 
annular ligaments (Fig. 2.14b). The tracheal cartilages provide support for the trachea 
to prevent collapse or overexpansion during changes in respiratory pressures. The 
C-shaped tracheal cartilages form the anterior and lateral walls of the trachea. The 
posterior tracheal wall is intimate to the esophagus, contains no cartilage, and is 
formed by an elastic membrane and the trachealis muscle, a smooth muscle that con-
tracts in response to sympathetic stimulation. Absent a rigid cartilage, the posterior 
tracheal wall is deformable and can distort during swallowing to allow a food bolus to 
pass through the esophagus. Contraction of the trachealis muscle alters the diameter of 
the trachea; with sympathetic stimulation the tracheal diameter enlarges to accommodate 
greater airflow. The bifurcation of the trachea in the right and left main stem bronchi is 
called the carina.  

The Lungs and Airways 

The right and left lungs occupy the right and left pleural cavities, respectively, and are 
separated by the mediastinum within which lie the heart; aorta and great vessels; the 
esophagus; lymph nodes, the thoracic duct, and lymphatic vessels; and various nerves, 
including the vagus, phrenic, and recurrent laryngeal nerves. The right and left lungs 
subtend the right and left main stem bronchi, then further subdivide into lobes. The  
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Figure 2.15: (a) The lobes of the lung are discrete anatomic units surrounded by their 
own visceral pleura. The right lung has three lobes whereas the left lung has two lobes. 
(b) The secondary lobule is the smallest unit of lung surrounded by a fibrous partition. 
A terminal bronchiole and arteriole arise from the center of the lobule, surrounded by 
the bronchovascular interstitium that contains pulmonary lymphatics. The interlobular 
septa form the lobular margins and contain pulmonary venules and lymphatics. 

Within the lung parenchyma, the airways and pulmonary arteries run together in an 
interstitial envelope and generally have the same cross-sectional diameter, while the 
pulmonary veins run independently. The right and left main stem bronchi (the primary 
bronchi) and their corresponding main pulmonary arteries exit the mediastinum at the 
right and left hila, respectively. The primary bronchi further subdivide into lobar (second-
ary) bronchi along with their corresponding pulmonary arteries. The pulmonary veins, 
formed by the convergence of venules and veins of the lungs, converge at the left atrium.  

Segments of the lobes. Each lobe further subdivides into bronchopulmonary segments. 
The lung segments lack discrete connective tissue boundaries, but are defined by their 
cartilaginous segmental airway (tertiary bronchus) and artery, called bronchovascular 
bundles. Although there are frequent anatomic variations, the adult right lung typically 
has 10 segments and the left lung has 8 segments. The bronchovascular bundles 
repeatedly divide into smaller and smaller units: the pulmonary arteries divide into 
arterioles; the bronchi into bronchioles. In total, there are 23 generations of airways 
(Fig. 2.14b). The conducting zone consists of the trachea and the first 16 generations 

lobes of the lungs are anatomic units completely encased by visceral pleura. The right 
lung has three lobes: right upper, right middle, and right lower; the left lung has two 
lobes: left upper and left lower (Fig. 2.15a). The lingula of the left upper lobe occupies 
roughly the same anatomic region in the left chest as does the right middle lobe in the 
right chest; the lingula is anatomically a part of the left upper lobe because it lacks its 
own visceral pleural envelope. 
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of airways, ending in the terminal bronchioles. As the bronchi subdivide, their carti-
laginous walls become progressively thinner, being replaced by smooth muscle. The 
last 7 airway generations comprise the respiratory zone beginning with respiratory 
bronchioles, which measure 0.3-0.5 mm in cross-section (Fig. 2.16a). These are the 
first anatomic units in which gas exchange occurs. The walls of the respiratory 
bronchioles have smooth muscle but lack cartilage. Autonomic nervous stimulation of 
their smooth muscle walls regulates bronchiolar diameter and airway resistance: 
sympathetic stimulation produces bronchodilatation and parasympathetic stimulation 
produces bronchoconstriction. The final airway tree generation is made up of the 
alveolar sacs. 

Secondary pulmonary lobule. The smallest unit of lung structure surrounded by its 
own interstitial envelope (fibrous partition) is the secondary pulmonary lobule (Fig. 
2.15b). The secondary pulmonary lobule is an irregularly polyhedral structure measur-
ing 1-2.5 cm in diameter. The secondary pulmonary lobule is subtended by a central 
terminal bronchiole and arteriole surrounded by an interstitial envelop that also con-
tains pulmonary lymphatics. Within the lobule, the centrilobular bronchiole further 
branches into 2-3 terminal bronchioles, each subdividing into 2-3 respiratory bronchioles; 
the arteriole repeatedly subdivides to the level of the pulmonary capillaries. The walls 
of the pulmonary lobule, called interlobular septa, contain the pulmonary venules and 
lymphatics and are continuous with the visceral pleura. Although rarely visible under 
normal conditions, the secondary pulmonary lobule becomes visible on chest radiographs 

Figure 2.16: (a) Lower airway anatomy, including the alveoli. (b) The alveolus is
composed of Type I pneumocytes (alveolar epithelial lining cells). Small pores
connect adjacent alveoli. Type II pneumocytes are responsible for the production of
surfactant. Alveolar macrophages move freely within the alveoli and phagocytize
debris. The alveolar capillary membrane represents the fusion of the basal lamina of
the alveolar epithelium and capillary endothelium and contain gas on one side and
blood on the other.  

and on computed tomography in disease states in which the pulmonary interstitium  
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Figure 2.17: (a) Axial CT images of normal lung and (b) abnormal lung with peri-
bronchial cuffing (arrow) and marked prominence of interlobular septa (arrowheads) 
in a patient with tumor infiltration of the interstitium (lymphangitic carcinomatosis). 
Normally, secondary pulmonary lobules are rarely visible on CT, but become apparent 
when edema, tumor cells, or fibrosis thicken the lung interstitium.  

becomes thickened by fluid, fibrosis, or cells (Fig. 2.17). Radiographic signs of inter-
stitial disease include the presence of prominent septal lines that demarcate the 
polyhedral secondary lobules, prominence of the visceral pleura and fissures separat-
ing the lungs, and thickening of the airways, called cuffing, due to thickening of the 
bronchovascular interstitium.  

Alveolar ducts and alveoli. Alveolar ducts and alveoli branch directly off of the respi-
ratory bronchioles. Alveolar ducts are gas exchange units from which alveolar sacs 
and alveoli branch. The alveolar sacs are common chambers from which individual 
alveoli extend (Fig. 2.16a). There are ~150 million alveoli in each adult lung; the total 
surface area available for gas exchange is 75 m2, about the size of a tennis court. The 
alveolus is suspended within an extensive network of elastic tissue responsible for the 
elastic properties of the lung and the capacity of the alveoli to expand and contract 
during ventilation (Fig. 2.16b). The lining cells of the alveolar epithelium are called 
pneumocytes. Type I pneumocytes are the primary epithelial cells of the alveoli; Type 
II pneumocytes are present in equal numbers but occur at the corners between adjacent 
alveoli and are responsible for the production of surfactant, a substance that prevents 
complete collapse of the alveoli during expiration (Fig. 2.16b). Gas exchange occurs 
across the alveolar-capillary membrane. The total diffusion distance across the alveolar-
capillary membrane is roughly 0.5 μm. The transit time of a single red blood cell across 
the alveolar-capillary membrane is 0.3-0.75 sec., during which time O2 diffuses from the 
airspaces into the blood and carbon dioxide passes from the capillary into the alveolus. 

The lungs are supplied by two circulations. The pulmonary arteries supply the respiratory 
zone. One pulmonary arterial branch accompanies each airway and branches with it. 
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The lungs have the most extensive capillary network of any organ in the body. The 
pulmonary capillaries occupy 70% to 80% of the alveolar surface area. This capillary 
network receives the entire cardiac output and is the basis for gas exchange. The 
conductive zone is supplied separately by the bronchial circulation. These vessels 
originate from the descending aorta and provide nutrients to the conducting airways 
themselves. Both the systemic bronchial arterial and pulmonary arterial circulations 
ultimately drain into the pulmonary veins and left atrium. 

The Pleura, Chest Wall, and Respiratory Muscles 

The chest cavities within which lie the right and left lungs are the pleural cavities, so 
named for the serous pleural membrane that lines the cavities, the parietal pleura, and 
the membrane that lines the lung surfaces, the visceral pleura. The parietal pleura is 
adherent to the ribs and intercostal muscles of the inner chest wall as well as the dia-
phragm, the dome-shaped skeletal muscle separating the thoracic and abdominal cavities. 
The visceral pleura is adherent to the lung surface, continuous with the interlobular 
septa, and forms the fissures that separate the lobes of the lung. The parietal and vis-
ceral pleura are normally closely apposed, separated by a thin layer of pleural fluid 
produced by both pleural surfaces. The fluid provides a smooth coating and allows 
movement of the two pleural surfaces during breathing. The intrapleural fluid also 
creates surface tension between the two pleural surfaces such that they remain adherent. 
This fluid bond is responsible for a negative intrapleural pressure that, as will be dis-
cussed below, is important for pulmonary ventilation.  

A number of muscles contribute to quiet and forced breathing. The primary muscle of 
inspiration is the dome-shaped diaphragm, divided into right and left hemidiaphragms. 
Upon contraction, the hemidiaphragms descend to increase the volume of the chest. 
Diaphragmatic contraction accounts for ~75% of the movement of air in normal 
breathing. The right and left hemidiaphragms are innervated by the paired phrenic 
nerves, supplied by cervical nerve roots 3-5. The phrenic nerves descend from their 
cervical origins to the hemidiaphragms along the lateral aspects of the mediastinum. 
Injury to the phrenic nerve can result from spinal cord injury at or above the level of 
the cervical roots or when trauma or neoplasm compromises the phrenic nerve as it 
descends in the chest. Phrenic nerve injury results in paralysis and elevation of the 
hemidiaphragm and can severely compromise pulmonary ventilation. The external 
intercostal muscles, situated between the ribs, account for ~25% of the movement of 
air into the lungs. Their contraction causes the obliquely angled ribs to rise superiorly, 
expanding the width and depth of the chest cavity. Under normal conditions, inspiration 
(inhalation) is an involuntary, but active process that requires contraction of the dia-
phragm and external intercostal muscles. A number of accessory muscles of inspiration 
become active when the depth and frequency of ventilation must increase, as during 
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exercise or in individuals with various forms of lung disease. Expiration (exhalation) is 
normally involuntary and passive, results from relaxation of the muscles of inspiration, 
and depends on the natural elasticity of the lungs rather than muscular contraction. 
Active expiration involves the use of several accessory muscles that contract to 
depress the ribs or force the diaphragm up, as during exercise or with singing, when 
precise regulation of flow across the vocal cords is required.  

Pulmonary Ventilation: Inspiration and Expiration 

Pulmonary ventilation refers to the movement of air into and out of the respiratory 
tract. Pulmonary ventilation is necessary in order to maintain alveolar ventilation, the 
movement of air into and out of the alveoli. Two physical principles are the basis for 
pulmonary ventilation: 1) the pressure of a gas varies inversely with its volume in a 
closed environment (Boyle’s Law); and 2) if gas containers of different pressures are 
connected, gas will flow from the area of higher to lower pressure until the systems 
have equal pressure. During inspiration, the diaphragm and the external intercostal 
muscles contract, increasing the size of the thoracic cavity (Fig. 2.18a). When the glot-
tis is open, continuity is established between the atmosphere and chest cavity. As the 
chest cavity enlarges, intra-alveolar pressure drops and air flows from the atmosphere 
to the alveoli. When the lungs can no longer expand, inspiration stops and atmospheric 
and intra-alveolar pressures equalize. During expiration, passive relaxation of the dia-
phragm and external intercostal muscles causes the thoracic cavity to decrease in size, 
raising intra-alveolar pressure and forcing air out of the lungs into the atmosphere. 
Expiration ceases when atmospheric and intra-alveolar pressures equalize.  

Figure 2.18: (a) With inspiration, the diaphragm and external intercostal muscles con-
tract, causing the lungs to increase in both diameter and length. Intrapulmonary pres-
sure falls and air moves in. During expiration, the muscles relax and the chest volume
decreases, raising intrapulmonary pressure and causing air to move out. (b) Changes in
pulmonary pressures with inspiration and expiration.
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Pressure Relationships during Inspiration and Expiration 

The direction of airflow during breathing is determined by the relationships between 
atmospheric and respiratory pressures. Atmospheric pressure is normally 760 mm Hg. 
Respiratory pressures are so small they are normally measured in cm H2O. Respiratory 
pressures are typically described relative to atmosphere (e.g., a respiratory pressure of 
-4 cm H2O is 4 cm H2O below atmospheric). Intrapulmonary (intra-alveolar) pressure 
(PA) is the pressure in the alveoli. PA rises and falls with breathing, but always eventu-
ally equalizes with atmospheric pressure. Intrapleural pressure (Pip) is the pressure 
within the pleural space. Intrapleural pressure also fluctuates with breathing, but is 
normally an average of -4 cm H2O lower than atmospheric pressure and can reach -18 
cm H2O during a powerful expiration. A negative intrapleural pressure is normally 
maintained for several reasons: 1) the surface tension from the thin film of pleural 
fluid secures the pleural surfaces together; 2) lung elastic recoil tends to decrease the 
volume of the lungs; and 3) the elasticity of the chest wall tends to pull the thorax 
outward to increase the volume of the chest wall. The transpulmonary pressure (PL), 
also called distending pressure, is the pressure that maintains inflation of the lungs and 
prevents collapse. Transpulmonary pressure is PL = PA – Pip. The more positive the 
transpulmonary pressure, the greater the distension (inflation) of the lungs. For example, 
at end inspiration, Pip = -7 cm H2O and PA = 0 cm H2O, therefore transpulmonary 
pressure is 7 cm H2O. Respiratory pressure changes during ventilation are illustrated 
in Fig. 2.18b. With inspiration, the chest wall enlarges and intrapleural pressure 
decreases from -4 to -7 cm H2O. Transpulmonary pressure increases, the lungs  
increase in volume, and air enters the lung until intrapulmonary and atmospheric pres-
sures become equal. With expiration, the chest wall decreases in size; intrapleural 
pressure rises, transpulmonary pressure decreases, and the lungs deflate. Lung deflation 
reduces alveolar volume, raising intrapulmonary pressure. Air flows from the airspaces 
to the atmosphere until intrapulmonary and atmospheric pressures reach equilibrium.  

Factors Influencing Airflow 

The major determinants of airflow are airway resistance and the elastic properties of 
the lungs and chest wall.  

Airway resistance. For airflow to occur, a pressure difference must exist between the 
mouth and the alveoli. The pressure difference is determined by both the rate and 
pattern of flow. Airflow resistance is directly proportional to airway length and 
inversely proportional to the 4th root of airway radius: 
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where R is the resistance, L is the length of the tube, n is the gas viscosity, and r is the 
radius of the tube. As such, doubling airway length will double resistance, while 
decreasing airway radius by half will increase resistance by 16-fold. The major site of 
airflow resistance is in the large and medium sized bronchi up to the 7th generation. 
One might expect the greatest resistance to be at the level of the bronchioles because 
of their small radius; however, only 10-20% of total airway resistance normally occurs 
at the bronchiolar level. This seeming paradox is due to the fact that although airflow 
resistance at the individual bronchiolar level is relatively high, airflow in the small 
airways occurs in parallel. Beginning with the terminal bronchioles, collective cross-
sectional area increases substantially, resulting in a low total combined airflow resist-
ance. In the most peripheral airways, convective flow is so small that diffusion  
becomes the dominant mechanism of gas transport. 

Elastic properties of the lungs and chest wall. Lung compliance is a measure of the 
distensibility of the lungs, the ease with which the lungs can be inflated. Stiffness is the 
resistance to stretch, or inflation and is inversely related to lung compliance. Elastic 
recoil is defined as the ability of a stretched (inflated) lung to return to its resting 
volume. Elastic recoil is directly related to lung stiffness and is inversely related to 
compliance: the greater the stiffness, the greater the elastic recoil and the lower the 
compliance. Lung compliance, CL, is represented by the ratio: 

pressure
volumeCL Δ

Δ
=  

where the change in lung volume is compared to the change in Pip. However, compli-
ance is not the same across all lung volumes: it is high at low lung volumes and low at 
high lung volumes. The major determinates of lung compliance are the following:  

 Lung structure. Lung compliance results from the elastin and collagen fibers that 
enmesh the alveolar walls, airways, and pulmonary vasculature. Elastin fibers are 
highly distensible and can be stretched to nearly twice their resting length, while 
collagen fibers resist stretch and limit lung distensibility at high lung volumes.  

 Surfactant effects. Surface tension at the alveolar air-liquid interface also signific-
antly affects lung compliance. The surface forces in the alveolus tend to minimize 
surface area, promoting alveolar collapse, which creates positive pressure within 
the alveolus. The pressure (P) that develops within alveoli correlates directly with 
surface tension (T) and inversely with radius (r), as reflected by the Laplace equa-
tion, P = 2T/r. Alveoli are interconnected but vary in size. If surface tension were 
uniform throughout the lung, smaller alveoli (having a smaller radius) would tend 
to collapse and deflate into larger alveoli, causing atelectasis in the smaller air-
spaces and over-distension of larger alveoli. Fortunately, surface tension is not 
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Figure 2.19: The relationships between lung volumes and capacities. Definitions of
the lung volumes and capacities are provided. Amounts given assume an average-sized
young, healthy male. 

uniform between alveoli because of surfactant. Surfactant works by reducing 
surface tension at the gas-liquid interface. Moreover, surfactant lowers surface 
tension more at smaller surface volumes, which promotes alveolar stability by 
preventing the deflation of smaller alveoli into larger alveoli.  

 Chest wall compliance. The chest wall also has elastic properties. The elastic 
recoil of the chest wall is such that if the chest were unopposed by lung elastic 
recoil, the chest would enlarge to ~70% of total lung capacity. If the chest wall is 
expanded beyond 70%, it recoils inward. At volumes <70% of total lung capacity, 
chest wall recoil is directed outward. The outward elastic recoil of the chest wall 
is greatest at residual volume; the inward elastic recoil of the chest wall is greatest 
at total lung capacity. The volume at which the elastic recoil of lung and chest 
wall are in equilibrium, in opposing directions, is functional residual capacity.  

Measures of Lung Function 

Measures of lung volumes and expiratory flow rates provide diagnostic information 
about pulmonary function. Lung volumes are defined volumes of air inspired or 
expired during the respiratory cycle. Lung capacities are specific combinations of lung 
volumes (Fig. 2.19). Most volumes can be measured with spirometry, in which a 
subject breathes into a closed system. However, because the lungs do not empty 
completely following a forced expiration, both residual volume (RV) and functional 
residual capacity (FRC) are measured using other methods.  

A sudden or forceful blow to the chest can render an individual extremely breathless 
and with the sensation that he cannot inspire air for several seconds. What causes this 
effect? The condition results from the loss of RV. The airspaces collapse beyond what 
is physiologic and the alveoli must overcome high surface tension forces to re-expand. 
An analogy would be the force required to begin to inflate a balloon. 
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Minute and alveolar ventilation. Ventilation can be considered as the total volume of 
air brought into or out of the lungs. Minute ventilation is the product of tidal volume 
(VT) and breaths/minute (500 ml x 12 breaths/minute = 6 L/min). Not all inspired air 
contributes to gas exchange because it is distributed between gas exchange units and 
conducting airways. That portion of VT in the conducting airways that does not con-
tribute to gas exchange is called anatomic dead space, and is normally about 150 ml or 
30% of VT. Alveolar ventilation refers the total air available for gas exchange, and is 
the product of (VT – dead space) and breaths/minute ((500 - 150) x 12 = 4200 
ml/minute). Dead space volume increases when alveoli are not perfused; in that set-
ting, the airspaces not contributing to gas exchange represent alveolar dead space. The 
sum of alveolar and anatomic dead space is call physiologic dead space. The relation-
ships between dead space volume, alveolar ventilation, and minute ventilation are very 
important. For the same minute ventilation, different breathing patterns provide differ-
ent volumes of alveolar ventilation. Alveolar ventilation is greater when increasing the 
depth of breathing rather than the rate of breathing.  

Expiratory flow rates. Spirometry is also used to determine rates of airflow and flow 
volume relationships. During spirometry, the subject exhales maximally and as force-
fully as possible into the spirometer, while the volumes of air exhaled are measured 
over time. The most commonly measured expiratory flow rates are: 1) FVC, the forced 
vital capacity; 2) FEV1, the forced expiratory volume in one second; 3) the ratio of 
FEV1/FVC (normally greater than 0.70 to 1.00); and 4) the FEF25-75, the forced expira-
tory flow between 25% and 75% of the FVC, which provides a measure of airflow in 
the small airways. In the normal setting, at least 70% or more of the FVC is expired in 
the first second of a forced expiratory maneuver. Diseases of airflow obstruction 
represent conditions of inadequate expiration. In obstructive lung disease, expiratory 
flow rates are decreased, resulting in a decrease in the ratio of FEV1/FVC. Because of 
expiratory airflow obstruction, air is trapped in the lung at the end of a forced expira-
tion, resulting in increased residual volumes. In contrast, restrictive ventilatory defects 
result in limitations of inspiratory airflow and are characterized by stiff lungs with 
decreases in all lung volumes and capacities. Although FVC is reduced, expiratory 
flow rates and the FEV1/FVC ratio are preserved or may increase. These pathophysio-
logic changes in pulmonary function are summarized in Table 2.4.  

Basic Respiratory Imaging 

Several modalities are used to image the lung. The most commonly used medical 
imaging examination is projectional chest radiography (CXR), in which frontal (or 
frontal and lateral) projections are obtained with the patient at suspended maximal 
inspiration. A considerable amount of information can be gleaned from the CXR: the 
lung volumes and texture of the lung parenchyma; the presence of focal nodules, masses, 
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Table 2.4: Alterations in pulmonary function in restrictive and obstructive lung 
diseases. (*) FEV1 improves more than 15% in asthma. 

or lung consolidations; the status of the pulmonary circulation; abnormalities of the 
pleura; cardiac size and shape; alterations of the bony chest wall; and potential masses 
or other abnormalities in the mediastinum. The chest radiograph is often the first 
examination to suggest pulmonary pathology. More advanced imaging techniques 
such as CT, MR, and ultrasound are typically used to better characterize respiratory 
pathology because they provide a cross-sectional perspective and eliminate the super-
imposition of structures that is characteristic of projectional imaging. CT is the most 
commonly used advanced imaging technique to further characterize pulmonary paren-
chymal, pulmonary vascular, and pleural pathology, owing to its high spatial resolution 
and the high native contrast of aerated lung relative to soft tissue. For the assessment 
of the lung parenchyma, high spatial resolution is desirable, and helical CT sequences 
are used that allow for reconstructions of contiguous or overlapping sub-millimeter 
axial image series. High-resolution imaging is routinely performed to assess for focal 
and infiltrative lung diseases, emphysema, and abnormalities of the airways. Intravenous 
contrast is used during chest CT in order to optimally distinguish normal vascular 
structures from non-vascular soft tissues as well as to assess for abnormalities of the 
pulmonary arteries themselves, such as with pulmonary embolism, when blood clots 
migrate from systemic veins (typically the lower extremity) to occlude portions of the 
pulmonary circulation. Intravenous contrast can also help to characterize airless lung, 
such as atelectasis (collapse), pneumonic consolidation, or other processes in which 
the lung has become diseased and airless; different enhancement patterns of consoli-
dated lung may suggest specific conditions and better delimit lung parenchyma when 
there is concomitant pleural disease. There is increasing interest in CT techniques that 
use low radiation exposure (low dose) in order to minimize radiation during this 
commonly acquired procedure. Although CT is typically the modality of choice for 

Measure  Restrictive disease  Mild obstruction  Severe obstruction 

FVC    Normal   

FEV1       

FEV1/FVC  Normal     

FEF25‐75       

TLC    Normal   

RV    Normal   

FRC    Normal   

FEV1 post‐bronchodilator  No change  > 15%*  > 15%* 
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assessing the pleura, ultrasound is non-ionizing and is a common alternative used 
to detect and localize abnormal collections of fluid in the pleural spaces (effusions). 
Abnormalities of diaphragm motion are also commonly examined using ultrasound 
because this technology enables continuous imaging during respiration. The failure of 
the diaphragm to move properly on ultrasound during certain respiratory maneuvers 
can establish the existence of diaphragm paralysis. MR imaging is quite commonly 
used to characterize the pulmonary circulation and abnormalities related to the heart. 
Most normal lungs show little or no MR signal above background; however, con-

Imaging Analysis of Pulmonary Pathophysiology 

Expiratory airflow obstruction can result from either parenchymal lung disease or 
from intrinsic airway disease. The major parenchymal lung disease is emphysema. The 
primary airway causes of fixed airflow obstruction are chronic bronchitis and constrictive 
bronchiolitis. Asthma is also a disease of airflow obstruction, but differs from chronic 
bronchitis in that the airflow obstruction is not fixed and is reversible with bronchodi-
lators. The mechanisms of airflow obstruction can be distinguished with CT, but result 
in similar obstructive profiles on spirometry.  

Asthma. Asthma is characterized by chronic airway inflammation, bronchial wall 
thickening, airway remodeling, and reversible airflow obstruction due, in part, to airway 
smooth muscle contraction [21]. During an asthma attack, an inciting event causes the 
smooth muscles of the small airways to contract and eventually hypertrophy, causing 
bronchoconstriction and distal air-trapping. Airway inflammation is a primary feature 
of asthma, and can cause airway edema, hypersecretion of thick mucous that plugs the 
airways, inflammatory cell infiltration of airways, narrowing of the airway lumen, and 
expiratory air-trapping. Drugs that minimize bronchoconstriction (bronchodilators) 
and that inhibit the immune response (systemic or inhaled corticosteroids) are main-
stays in the treatment of asthma [24]. Pulmonary function tests (PFTs) demonstrate 
decreases in all measures of expiratory airflow, which normalize with administration 
of a bronchodilator.  

 

ditions resulting in consolidation or infiltration of the lung are observable, albeit without 
the level of spatial quality as is attainable with CT. In some patients, MR may afford 
optimal characterization of soft tissue abnormalities, such as in patients with cancers 
involving the chest or mediastinum. Finally, there are several experimental applications 
of MR using oxygen as a paramagnetic agent or hyperpolarized 3He ventilation, 
which provides a source of nuclear magnetic resonance (NMR) signals. Among potential 
clinical applications are the opportunity to image the air spaces of human lungs, to non- 
invasively investigate human lung ventilation, and to study the dynamics of inspiration/ 
expiration and functional imaging. 
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Figure 2.20: Axial CT images in a patient with mild asthma show (a) normal lung 
attenuation (density) at suspended inspiration, while (b) in suspended expiration, the 
lungs have characteristic features of airtrapping at the level of the bronchioles (small 
airways), visible as lobular and multi-lobular areas of low lung attenuation (arrows). 
Normally, expiration would appear as an increase in lung attenuation in a uniform 
gradient that is greatest in the dependent lungs.  

CT obtained during suspended maximal inspiration and suspended expiration can 
detect subtle changes in expiratory airflow obstruction that may not be detectable by 
global PFTs. On expiratory CT in an individual with normal lung function, the lung 
volumes decrease and show a smooth gradient of increased attenuation (density) that is 
greatest in the gravity-dependent bases. In the asthmatic patient, inspiratory images are 
typically normal and the lung parenchyma is uniform in attenuation (Fig. 2.20), 
although bronchial wall thickening, luminal narrowing, or mucous may be present 
with more advanced disease. However, expiratory imaging shows lobular and multi-
lobular regions of low lung attenuation. These regions correspond to airtrapping at the 
bronchiolar level, resulting from smooth muscle hyperreactivity, luminal narrowing, 
and premature airway closure. These imaging features may provide the first evidence 
of small airways disease. 

Chronic bronchitis. Chronic bronchitis is also characterized by chronic inflammation 
in the bronchial walls, hypertrophy of the mucous glands and mucous hypersecretion, 
typically from smoking-related injury. In contrast to asthma, airway smooth muscle 
hyperreactivity is not a major contributing factor and the airway changes may be 
irreversible. The result is increased airflow resistance and airflow obstruction from 
luminal narrowing and mucous hypersecretion [10, 35].  

Emphysema. Emphysema is characterized by enlargement of airspaces distal to the 
terminal bronchioles due to destruction of alveolar walls (Fig. 2.21a), typically from 
smoking-related inflammatory mediators and enzymatic degradation of lung elastin  
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Figure 2.21: (a) Axial CT through the upper lobes of a smoker shows emphysema 
resulting from destruction of alveolar walls and the development of large cyst-like 
holes (arrows). (b) The normal elasticity of lung created by its fibrous and collagen 
structure provide radial traction on small airways during expiration, maintaining the 
patency of the small airways (left). With loss of the normal lung architecture by 
emphysema, this radial traction is lost, resulting in premature airway closure on 
expiration (right).  

and collagen [73, 78, 87]. The lungs lose elasticity, become highly distensible (having 
increased compliance) and are easy to inflate. Importantly, expiratory narrowing of the 
airways results from a loss of the normal radial traction on the airways by elastic lung 
tissue, causing premature airway collapse and air trapping in large emphysematous 
holes (Fig. 2.21b). The increased alveolar dead space results in an increased RV and 
compromises inspiratory reserve volumes. Both chronic bronchitis and emphysema are 
visible on chest CT; in the case of emphysema, the extent of lung destruction can be 
quantified in vivo using advanced image analysis techniques [6, 27]. 

Idiopathic interstitial pneumonias. Idiopathic interstitial pneumonias are a hetero-
geneous group of diffuse, parenchymal lung disorders resulting from injury to the lung 
parenchyma and are associated with varying degrees of inflammation and fibrosis. 
One of these entities, idiopathic pulmonary fibrosis (IPF), has distinct clinical, radio-
graphic, and pathological features and is characterized by heterogeneous areas of normal 
lung, active fibrosis, and endstage honeycomb fibrosis [1]. The lungs become stiff, non-
compliant, and decrease in volume (Fig. 2.22). On spirometry, maximal expiratory 
airflow may be higher than normal at a given volume due to increased elastic recoil, as 
well as from the increased radial traction on the airways, increased airway diameters, 
and decreased airway resistance. On CT, interstitial fibrosis appears as replacement of 
the normal lung architecture by irregular fibrous bands, small fibrous cysts (called 
honeycombing because of their resemblance to a beehive), and enlarged airways (trac-
tion bronchiectasis) resulting from increased radial traction on the airway walls due to  
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the stiff lungs (Fig. 2.22) [56, 62]. The process begins in the subpleural lung, extend-
ing more centrally along the bronchovascular bundles, and is most severe in the lower 
lobes. Image processing techniques have been developed to quantify the degree of 
fibrosis as well as to estimate the amount of residual inflammation (alveolitis) that 
may be amenable to immunosuppressive therapy [89]. CT has become a defining 
feature in the characterization of interstitial fibrosis. 

The Brain 
The central nervous system consists of the brain and spinal cord. The peripheral nerv-
ous system is composed of the nerves that enter and exit these structures. We shall 
confine this discussion to the brain. The brain contains gray matter and white matter. 
The gray matter is made up of the cell bodies, or neurons, that reside in the cerebral 
cortex and within the deep nuclei. The white matter is made up of the axons that 
extend from these cell bodies to various target tissues; the axons are myelinated, 
meaning they are sheathed in a fat containing substance called myelin that speeds up 
the transmission of electrical impulses traveling along the axon. On gross pathology, 
gray matter and white matter appear gray and white, respectively. The CT and MR 
appearance of these tissues is also distinct on imaging. The density of the highly com-
pact gray matter full of cell bodies attenuates the CT x-ray beam, making the tissue 

Figure 2.22: (a) Typical appearance of end-stage pulmonary fibrosis in which the 
normal lung architecture is replaced by fibrous honeycomb cysts (right arrow). There 
is traction bronchiectasis on the subtending airways due to increased radial traction by 
the stiff lungs (left arrows). (b) The same patient following successful left single lung 
transplantation shows the dramatic difference in the volumes of the fibrotic (right) and 
normal transplant (left) lungs. The fibrotic lung is stiff, noncompliant and has increased 
elastic recoil, causing it to decrease in volume, whereas the normal transplant lung is 
compliant and distensible. The differences in compliance between the two lungs 
causes the mediastinum to shift rightward.  
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appear whiter. Alternatively, the white matter, consisting of myelinated axons, con-
tains fat thereby making its appearance on CT darker. In summary, on CT the gray 
matter appears whiter and the white matter appears blacker (Fig. 2.23a). Recall that 
MR depends on the differing relaxation times of water within various tissues. With 
white matter behaving more like fatty tissue, it is brighter on T1-weighted images and 
darker on T2-weighted images; and the gray matter, being densely cellular with rela-
tively little water content, is conversely darker on T1-weighted images and brighter on 
T2-weighted images (Fig. 2.23b-c). 

Cerebral Hemispheres 

On a gross anatomic scale the brain is divided into two hemispheres, the right and the 
left. Each hemisphere is then divided into four lobes: the frontal, parietal, temporal, 
and occipital lobes (Fig. 2.24a). Each lobe is comprised of cerebral cortex and the 
connected axons that project to form the white matter tracts. There is right/left govern-
ance, meaning that the right side of the brain is responsible for the left side of the 
body, and therefore the descending white matter tracts typically cross somewhere 
below the cerebral cortex to reach their contralateral body part.  

Along the surface of the brain are multiple convolutions that are known as the gyri, 
and multiple crevices in between, called sulci. Larger sulci are called fissures and 
several of these fissures divide the hemisphere into the different lobes. The lateral 
horizontally oriented fissure is also known as the Sylvian fissure and it separates the 
frontal and parietal lobes from the temporal lobe. The central sulcus or Rolandic fis-

Figure 2.23: (a) An example of a brain CT, where gray matter appears brighter than
white matter due to different in the x-ray attenuation of fat in the latter. The skull,
because of the bone, appears as a bright ring around the brain. (b) A typical T1-
weighted axial normal brain (cerebrospinal fluid (CSF) in the ventricles appears dark).
(c) A normal T2-weighted axial brain image (CSF appears bright).

sure is located superiorly and separates the frontal and parietal lobes. Posteriorly, the  
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Figure 2.25: (a) Axial T2-weighted image demonstrating a stroke in the patient’s left 
frontal lobe cortex. The lesion is located in the left primary motor strip (arrow) in a 
patient who presented to the emergency room with acute onset of right arm weakness. 
Note that the right side of the image represents the left side of the patient’s brain. 
(b) An MRI in a patient with right leg motor seizures. This image demonstrates an 
arteriovenous malformation (AVM, a congenital tangle of blood vessels) near the vertex 
along the portion of the homunculus expected to govern leg motor function. (c) Coronal 
schematic of the homunculus with motor function depicted on the right and sensor 
function on the left. Note that the amount of cortex devoted to the functions may not 
always be the same between the left/right sides. 

parieto-occipital fissure separates the occipital from the parietal lobe (Fig. 2.24a). The 
brain can also be broken down into the functional areas, known as Brodmann areas   

Figure 2.24: (a) Lateral schematic of the brain depicting the lobes in different colors. 
Anterior is on the left of the image, posterior is on the right. (b) Approximate  
Brodmann’s areas are shown. For instance, Area 44 is responsible for motor speech 
function on the left side, whereas Area 2 controls contralateral body motor function. 
Areas 39 and 40 are involved in speech comprehension. Area 1 is the primary sensor 
strip. Brain templates adapted from Patrick J. Lynch. 
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(Fig. 2.24b), which are responsible for discrete activities such as voluntary motor function 
and sensory function, along with their adjacent association areas that are responsible for 
integrating the information into useful and purposeful action, further discussed below. 
Table 2.5 summarizes the different lobes/regions and their primary functions.  

Cerebral cortex. The cerebral cortex contains the neuron cell bodies and is responsible 
for consciousness. The gray matter cortex is only 2-4 millimeters thick, but it constitutes 
40% of the brain mass. This portion of the cortex is highly convoluted, a configuration 
that triples the surface area of the brain without increasing the volume. These convolutions 
are easily appreciated on gross examination of the brain.  

Motor function. The primary motor cortex is located in the posterior frontal lobe 
immediately anterior to the central sulcus (Fig. 2.24a), and is also referred to as the 
precentral gyrus. This cortex contains specialized neurons called pyramidal cells that 
generate the impulses for voluntary movement that descend through the main motor 
tract (the corticospinal tract) to the contralateral body part. The gyrus anterior to this 
cortex is the premotor cortex. The premotor cortex is responsible for learned repetition 
such as typing or playing an instrument. As such, damage to the primary motor cortex 
results in paralysis of the contalateral side of the body, whereas injury to the premotor 
cortex will often result in loss of the learned skill while strength in the affected limb is 
preserved (Fig. 2.25a-b). The area referred to as Broca’s area (Brodmann’s area 44) is 
responsible for motor speech (Fig. 2.24b) and is located in the left hemisphere near the 
Sylvian fissure in most right-handed people and also in most left-handed people as 
well. Occasionally a left-handed person may have primary language function in the 
right hemisphere, referred to as right hemisphere dominance. 

The large portion of the frontal lobes known as the prefrontal cortex (Fig. 2.24a) is 
dedicated in humans to cognition, complex learning, mood and executive functions 
such as reasoning and judgment. This area develops slowly (it does not fully mature 
until the late teens/early 20s) and depends on positive and negative feedback. 
 

Lobe/Region Function 

Front lobe (primary motor cortex) Voluntary control of skeletal muscle 
Parietal lobe (primary sensory cortex) Responsible for the perception of touch, pressure,  

vibration, temperature, and taste 
Occipital lobe (visual cortex) Handles perception of visual stimuli 
Temporal lobe (auditory, olfactory  
cortex) 

Handles perception of sounds and smells 

All lobes (association areas) Integration and processing of sensory data; processing 
and initiation of motor activities 

Table 2.5: Summary of brain lobe/regions and primary functions. 
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The senses. The primary somatosensory cortex is located in the anterior parietal lobe 
just posterior to the central sulcus and is known as the post central gyrus or primary 
sensory strip. This region is responsible for conscious perception of sensation. The cell 
bodies in the gray matter of the sensory strip are specialized receptor neurons that 
receive input from skin and skeletal muscle via the white matter tract known as the 
spinothalamic tract. Damage to this portion of the cortex will result in a loss of sensation 
in the affected limb. The gyrus posterior to the post central gyrus is the somatosensory 
association cortex and is responsible for integrating and analyzing sensory input such 
as temperature, pressure, and size. For example, with this additional input, one not 
only feels the presence of loose change in the pocket but one can recognize a quarter 
or dime or nickel by feel alone [30]. Impairment of the association cortex would there-
fore affect one’s ability to recognize objects based on feel – but without affecting the 
ability to feel the object.  

The distribution of motor and sensory function along the cerebral cortex is quite 
orderly and regular between individuals. This distribution is referred to as the homun-
culus. As seen in Fig. 2.25c, motor/sensory function for the leg occurs near the vertex 
or top of the brain, and as one travels inferiorly functional zones for the arm and the 
face are encountered, with motor and sensory function for the face residing just 
superior to the Sylvian fissure.  

Within the occipital lobes are the primary visual cortex and the visual association 
cortex. The primary visual cortex is located at the occipital pole and represents the 
largest of the sensory areas, receiving information from the retina through the optic 
tracts and like the previously mentioned areas, there is left-right governance of the 
visual fields (i.e., the right occipital cortex is responsible for the left visual field of 
each eye and the left occipital cortex is responsible for the right visual field of each 
eye). Problems with one visual cortex results in blindness of the contralateral visual 
field; damage to both occipital cortices results in total cortical blindness. The visual 
association cortex is responsible for comprehension of vision. Damage to the association 

Along the lateral temporal cortex are the primary and association auditory areas. The 
primary auditory cortex receives information from the cochlea creating the sensation 
of sound while the association auditory cortex is responsible for the recognition of the 
sound as music, thunder, clapping, etc. [30]. Memories of sound are also stored here.  

Deep along the medial margin of the temporal lobe is the olfactory cortex that pro-
vides for conscious awareness of odors. This region has further evolved in vertebrates 
into storage for memories and emotions. Thus, for instance, seizures that originate in 
the medial temporal lobe are often preceded by an olfactory aura (Fig. 2.26b). 

cortex results in retained sight, but lacking the capacity to recognize objects (Fig. 2.26a). 
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Cerebral White Matter 

The white matter is well organized and divided into tracts. These tracts may run verti-
cally to and from the cerebral cortex to the spinal cord (projectional fibers), from one 
side of the cerebral cortex to the other side (commissural fibers), or they may project 
from one gyrus to the next (association fibers) (Fig. 2.26c). The largest intracranial 
white matter tract, the corpus callosum, is a commissure that connects the right and 
left hemispheres. As it travels from side to side, it is best seen in cross-section on 
sagittal and coronal images of the brain. The other tracts cannot be resolved individually 
on routine clinical imaging; however, tractography is now possible using diffusion 
tensor imaging (see earlier) (Fig. 2.27a-b). The axons in white matter deliver electrical 
impulses that may release chemical neurotransmitters at the terminus of the axon that, 
in turn, act on target tissue such as muscle, gut, or glandular tissue. These neurotrans-
mitters cannot be directly imaged by conventional MR or CT imaging.  

Basal Nuclei 

The basal nuclei, also called the basal ganglia or corpus striatum, consist of the 
caudate nucleus, the putamen, and the globus pallidus. These largely gray matter 
structures receive input from the entire cortex, and are important in starting and stop-
ping motor function, monitoring the rhythm of movement (like the swinging of arms 
while walking). Insult to these structures causes tremors, slowness, and Parkinsonism. 
The thalamus is another of the deep gray matter nuclei. It is comprised of two parts, on  

Figure 2.26: (a) MR image showing damage to the association cortex. (b) Contrast-
enhanced MR of a temporal lobe tumor in a patient presenting with seizures preceded
by the sense of smell of burning rubber. (c) Coronal schematic of the brain, showing
some of the fiber tracks, including the corpus callosum and projection fibers that cross
over in the decussation of pyramids. Brain template adapted from Patrick J. Lynch.  
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Figure 2.27: Examples of diffusion tensor imaging and tractography. (a) An axial 
image created under a DTI sequence. (b) Visualization of the fiber tracks in the vol-
ume, under a 3D perspective; note the fibers crossing between hemispheres (commis-
sural fibers). (c) The same fiber tracks, shown in conjunction with an axial slice. (d) a 
3D rendering of the fibers relative to the corpus callosum. Rendered using MedINRIA. 

either side of midline, with a central connection across the third ventricle known as the 
massa intermedia. The thalamus is responsible for mediating sensation, arousal, learn-
ing, and memory. Damage to the thalamus can cause contralateral sensory loss; and if 
both hemi thalami are damaged, coma may occur. 

Brainstem 

The brainstem serves as a conduit for the white matter tracts that pass from the cerebral 
cortex to the body and extremities; and also houses the cranial nerves and their nuclei. 
The brainstem is divided into the midbrain, the pons, and the medulla. The midbrain is the 
most cranial of the brainstem levels, with the nuclei for cranial nerves III and IV exiting 
the midbrain to reach the orbits where they innervate the extraocular muscles. The dorsal 
portion of the midbrain contains the superior and inferior colliculi. The superior colliculi 
function as a visual reflex center for head and eye movement and the inferior colliculi 
serve as the auditory relay for the startle reflex that results in head turning. The pons con-
tains the nuclei for cranial nerves V, VI and VII. Cranial nerve (CN) V is largely respons-
ible for facial sensation and motor innervation to the muscles of mastication. Cranial 
nerve VI innervates a solitary extraocular muscle, the lateral rectus muscle. Cranial nerve 
VII is responsible for motor function of the muscles of facial expression. Finally, the 
medulla is a tightly packed region and the smallest in cross-sectional diameter. The nuclei 
for CN VIII, IX, X, XI and XII are found in the medulla. CN VIII consists of the superior 
and inferior vestibular nerves (balance) and the cochlear nerve (hearing).Cranial nerve IX 
is the glossophayngeal nerve, partially responsible for the muscles that coordinate swal-
lowing. CN X, the vagus nerve, innervates the vocal cords. CN XI innervates the trapezius 
muscles allowing shrugging of the shoulders, and CN XII innervates the tongue.  
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The medulla is also largely responsible for homeostasis: the center for cardiovascular 
force and rate of ventricular contraction is located here. The medulla is also home to 
the respiratory center, regulating the rate and depth of breathing. The centers for 
vomiting, hiccupping, coughing, sneezing, and swallowing are also located here. 

Meninges 

The brain is covered by three protective layers known as the meninges. The toughest 
outermost layer is located along the inside of the skull and is called the dura mater. 
The second layer is called the arachnoid mater. The space deep to the arachnoid mem-
brane is the subarachnoid space. The cerebrospinal fluid (CSF; see below) travels 
throughout the subarachnoid space down around the spinal cord and up over the sur-
face convexities of the brain until it is reabsorbed by the arachnoid granulations and 
returned to the venous system (superior sagittal sinus). This fluid surrounds the brain 
and serves as a shock absorber. The deepest layer of the meninges that lies directly 
upon the brain surface is called the pia mater. Together, the meninges serve as a 
barrier to infection and trauma.  

Cerebrospinal fluid. The CSF is produced in the choroid plexus of the ventricular 
system. Choroid plexus exists in the lateral, third and fourth ventricles and within the 
outlet foramina of the fourth ventricle. The ventricular system is continuous with 
the central canal of the spinal cord. Fluid produced by the choroid plexus travels from 
the lateral to the third and then the fourth ventricles. The fluid then passes to the 
subarachnoid space. If there is a blockage along the pathway, then the affected ventricles 
will dilate and the patient will develop hydrocephalus. 

Cerebral Vascular Anatomy 

Blood-brain barrier. Unique to the brain is the blood-brain barrier (BBB). This is a 
filter formed by the specialized endothelial cells that line the walls of the capillaries of 
the brain. These capillary walls contain tight junctions that allow some substances to 
pass easily such as glucose, amino acids, and some electrolytes. Other substances that 
are easily passed include alcohol, nicotine, some anesthetics as well as gases such as 
oxygen and carbon monoxide.  

Cerebral arteries. The four main arteries that supply the brain are the two internal 
carotid arteries (ICAs) that ascend anteriorly in the neck and the two vertebral arteries 
that ascend posteriorly in the neck. The internal carotid arteries begin their course in 
the neck at approximately the level of the C3-4 disc where the common carotid artery 
(CCA) bifurcates into the ICA and the external carotid artery (ECA). The ICA enters 
the skull through its own carotid canal and then bifurcates into the anterior (ACA) and 
middle (MCA) cerebral arteries, supplying the majority of blood flow to one hemi-
sphere. The vertebral arteries enter the skull through foramen magnum and join to 
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form the basilar artery. The basilar artery then travels up the ventral surface of the 
brainstem supplying blood flow to the brainstem and the cerebellum and finally to the 
occipital lobes at the posterior aspect of the cerebrum. There are two small posterior 
communicating arteries that connect each posterior cerebral artery to its ipsilateral 
ICA, and there is a small anterior communicating artery that connects the two ACAs 
together. This arterial network is known as the Circle of Willis (Fig. 2.28a). Because of 
the “circular” configuration of this blood supply, there is collateral flow available in 
the event of occlusion of one of the major arteries. For instance, if the right ICA were 
to shut down, the blood could flow from the left-sided carotid system through the ante-
rior communicating artery to the right MCA. Similarly, the basilar artery can assist in 
the delivery of blood flow through the right posterior communicating artery to the 
right distal ICA (which is usually preserved in the setting of ICA occlusion in the 
neck) and then to the right MCA. 

Pathophysiology of a stroke. A cerebral infarction (i.e., stroke) occurs when there is 
a lack of blood flow to a portion of the brain and the brain tissue dies. This event is 
often secondary to a blood clot or piece of atheromatous plaque that breaks loose and 
travels with the blood flow into a major cerebral artery, preventing blood and oxygen 
from reaching the brain tissue. When the neurons are deprived of oxygen, the cell wall 
can no longer maintain the necessary ionic gradients across the membrane and sodium 
and water enter into the cells from the surrounding interstitium, causing cellular swell-
ing or cytotoxic edema. Diffusion-weighted MR can detect this shift of water and is an 
excellent tool in the diagnosis of early cerebral infarction (Fig. 2.28b). 

Figure 2.28: (a) Illustration of the Circle of Willis, showing the different arteries.
(b) Axial diffusion weighted image (DWI) demonstrating restricted diffusion in the
left basal ganglia and left parietal cortex within the distribution of the left MCA
(middle cerebral artery) that was occluded by embolus. 
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Breast Anatomy and Imaging 
In the adult woman, the breasts are milk-producing glands located over the pectoral 
muscles. Ligaments on both sides of the breast bone and sternum support and attach 
the breasts to the chest wall (Fig. 2.29a). Breasts contain no muscle tissue; a layer of 
fatty tissue (subcutaneous adipose tissue) surrounds the mammary glands and extends 
throughout the breast. 15-20 lobes, arranged in a circular fashion, comprise each 
gland; and each lobe in turn is made up of small bulb-like lobules that produce milk in 
response to hormones (i.e., estrogen, progesterone, prolactin). Ducts transport the milk 
from lobules to the nipple. The blood supply to the breast region is drawn from the 
axillary artery and the internal mammary artery. Also, lymphatic vessels run through-
out breast tissue; these vessels connect with a network of lymph nodes located around 
the breasts’ edges and in surrounding tissues in the armpit and collarbone. 

Breast Imaging 

Mammography continues to be the primary imaging modality for breast cancer screen-
ing and diagnosis, with digital mammography being the most important recent techno-
logic improvement in this area. Additionally, ultrasonography is commonly used in 
conjunction with mammography. Advances in imaging-guided breast biopsy tech-
niques have led to the widespread use of stereotactic- and ultrasound-guided breast 
core needle biopsy as the primary method for breast biopsy of abnormal imaging 
findings. Beyond these core modalities, other more advanced modalities are used 
including magnetic resonance imaging (breast MRI) and radiolonuclide imaging of the 
breast. 

Figure 2.29: (a) Anatomy of the adult female breast, sagittal view. Drawing adapted
from Patrick J. Lynch. Right breast mammograms, craniocaudal (CC) view (b) and
mediallateral oblique (MLO) view (c). Left breast mammograms, CC view (d) and
MLO (e). 
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Mammography. Improvements in the overall quality of mammography performance 
are related to the efforts of programs established both by professional societies and 
government agencies. The introduction of the American College of Radiology (ACR) 
Mammography Accreditation Program in 1987 and the Mammography Quality 
Standards Act in 1994 are among the most significant of these efforts [58]. Standard-
ized documentation of mammographic findings via the ACR Breast Imaging Report-
ing and Data System (BI-RADS) [5] has also played a major role in the evolution and 
adoption of mammography. 

Today, mammography exams can be divided twofold:  

1. Screening. Screening mammography is an examination of an asymptomatic 
woman to detect clinically occult breast cancer [8]. The standard screening  
examination includes two views of the breast: a mediolateral oblique (MLO) and 
a craniocaudal (CC) (Fig. 2.29b-e) [4]. The effectiveness of screening mammo-
graphy for mortality reduction from breast cancer is related to earlier cancer 
detection (Stage 1) and has been confirmed by evaluations of randomized clinical 
trials [77].  

2. Diagnostic. Diagnostic mammography is indicated when there are clinical find-
ings such as a palpable lump, localized pain, nipple discharge, or an abnormal 
screening mammogram that requires additional work up [3, 28, 32, 61]. To correlate 
the clinical and imaging findings, a marker (e.g., radiopaque BB or other) is often 
placed over the skin in the area of clinical concern prior to performing the mammo-
grams (Fig. 2.30a). The diagnostic workup may include MLO, CC, and mediolateral 
(ML) views and additional views using spot compression and magnification tech-
niques, correlative clinical breast examination, and ultrasonography (see below).  

Breast ultrasound. Breast ultrasound is an essential adjunct to mammography for the 
workup and diagnosis of palpable and mammographically-detected abnormalities. 
Historically breast ultrasound was used to differentiate solid and cystic masses. 
Advances in ultrasound technology have led to high-resolution ultrasound imaging 
helping differentiate benign and malignant solid masses [26, 76]. In addition to lesion 
characterization, breast ultrasound is used to guide interventional breast procedures, 
including cyst aspiration, core needle biopsy (see below), fine needle aspiration (FNA), 
and ultrasound-guided preoperative needle localization.  

Breast ultrasound reveals the breast anatomic structures from the skin surface to the 
chest wall (Fig. 2.32). Normal skin measures < 3 mm and is composed of two parallel 
echogenic (white) lines separated by a thin, hypoechoic (dark) band. Just under the skin 
lies the subcutaneous fat followed by the interwoven bands of fibroglandular tissue and 
breast fat. Both subcutaneous and breast fat are mildly hypoechoic (gray), whereas the 
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Figure 2.30: (a) Right breast MLO view shows a BB marker overlying a breast mass 
at the site of clinically palpable lump (arrow). (b) Left breast MLO shows an oval cir-
cumscribed mass (arrow). Ultrasound demonstrated a simple cyst. (c) Left breast CC 
view with a round mass with indistinct and microlobulated borders (arrow). Pathology 
results of the excised mass showed invasive ductal carcinoma. (d) Example of a 
benign, popcorn-like calcification typical of a calcified fibroadenoma. 

 

Figure 2.31: BI-RADS breast tissue composition categories. (a) Category 1, almost 
entirely fatty. (b) Category 2, scattered islands of fibroglandular tissue. (c) Category 3, 
heterogeneously dense. (d) Category 4, extremely dense. 
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Figure 2.32: Normal ultrasound anatomy of the breast. 

fibroglandular tissue is hyperechoic (light gray to white). Deep to the fibroglandular 
tissue is the retroglandular fat, which lies against the chest wall. The chest wall is 
composed of the more superficial band of the pectoralis muscle, the ribs laying deep to 
the pectoralis muscle, and the parietal pleura.  

A breast screening ultrasound is defined as bilateral whole breast ultrasound of an 
asymptomatic woman with normal mammograms. Several studies have shown that 
small, clinically and mammographically occult breast cancers may be detected with 
screening ultrasound in women with dense breast tissue [14, 18, 29, 44, 49]. Despite 
the encouraging results from these studies, many potential drawbacks are associated 
with ultrasound screening of the breast. Of particular concern is the high number of 
incidental benign masses encountered during screening ultrasound for which either 
biopsy, aspiration or short interval follow-up ultrasound is recommended. Additional 
problems include an extremely limited ability to detect ductal carcinoma in situ 
(DCIS), patient anxiety and morbidity associated with additional biopsy procedures, 
added cost, lengthy exam times, and highly variable inter-operator performance with 
ultrasound. A large study of screening breast ultrasound in high risk women with 
dense breast breasts conducted by the American College of Radiology Imaging Net-

sound compared to screening mammography. The study concluded that a single 
screening ultrasound will yield an additional 2.1-7.2 cancers per 1,000 high-risk 

women, but will also substantially increase the number of false positives [9]. 

Core needle biopsy. Introduced in 1990, core needle biopsy (CNB) has become a 
desirable alternative to excisional surgical biopsy as it is less costly, results in less 
morbidity, and minimizes scarring. Notably, CNB of the breast overcomes the limita-
tions of FNA cytology because insufficient samples are less frequent, the interpreta-
tion can be performed by a pathologist without special training in cytopathology, and 
CNB can differentiate invasive from in situ breast cancer [40, 64]. CNB are performed 

work (ACRIN) and the Avon Foundation independently evaluated screening ultra-
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with imaging guidance to sample a clinical or imaging identified abnormality. Imaging 
guidance can be provided by ultrasound or mammography (stereotactic). The choice of 
ultrasound vs. stereotactically-guided CNB is based on which modality best demon-
strates the abnormality and the location of the abnormality in the breast. However, 
ultrasound is usually preferred as it is faster and more comfortable for the patient.  

Breast MRI. MRI is used for the evaluation of breast implants for intra- and extra-
capsular rupture. Breast MRI using IV contrast agents show a high sensitivity for the 
detection of breast cancer as cancers show rapid contrast enhancement. However, 
specificity varies as numerous benign entities can also show rapid contrast enhancement. 
Contrast-enhanced breast MRI is used to determine the size and extent of invasive 
cancers; identifying multifocal and multi-centric lesions; evaluating the ipsilateral breast 
of a woman with unilateral axillary metastases; and identifying recurrent carcinoma in 
the conservatively treated breast. A multi-institutional study [52] concluded that 
women at high-risk for breast cancer would benefit from screening MRI. In that study, 
high-risk included women 25 years of age or older who were genetically at high risk 
(BRCA1/2 carriers or with at least a 20% probability of carrying such a mutation). The 
study found that screening MR imaging led to biopsies with higher positive predictive 
value and helped detect more cancers than either mammography or ultrasound. As 
such, the American Cancer Society recently recommended breast MRI screening for 
women at high risk for breast cancer [71]. 

Radionuclide imaging. Another area of active investigation involves scanning of the 
breast after the injection of the radionuclide-labeled substances that concentrate in 
breast tumors. Technetium-99m (Tc-99m) methoxyisobutyl isonitrile (MIBI) breast 
scintigraphy (scintimammography) has been under investigation for several years. 
Initial reports indicated high sensitivity (> 90%) and specificity (slightly < 90%) [47]. 

new technology using this radionuclide agent image specially designed for the breast, 
breast-specific gamma imaging, is undergoing clinical trials [12, 13] with early results 
showing utility in avoiding biopsies of palpable breast masses with indeterminate 
mammographic and ultrasonographic features. In addition, Tc-99m sulfur colloid has 
been proven useful and is now widely used for the identification of sentinel nodes 
[72]. Prior to surgery, the isotope is injected into the breast in the vicinity of a biopsy 
proven breast cancer. The injected isotope in theory drains through the same lymphatic 
chain as the tumor. At surgery, the sentinel nodes draining the site of the cancer are 
identified using a radioisotope probe. The sentinel nodes are removed and evaluated 
histologically. If the sentinel nodes are negative for tumor, axillary node dissection can 
be avoided. 

Later reports, however, indicated a relatively low sensitivity for small cancers, those 
found only by mammography (56%), and those 1cm or larger (39%) [82]. However, a 
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Tumor uptake also has been identified on PET after the injection of 18F 2-deoxy-2-
fluoro-D-glucose [2]. This agent also accumulates in axillary nodes, providing information 
about nodal status. These methods will require additional studies to determine sensitivity, 
specificity, and cost-effectiveness. 

Breast Cancer and other Findings 

Masses. A mass is any space-occupying lesion that is seen on at least two mammo-
graphic projections. If a density is seen on only one view, it is described as an asym-
metry. Masses are described by their shape and margins (Fig. 2.30b-c). The shape can 
be round, oval, lobular, or irregular. Oval and round masses are usually benign, 
whereas an irregular shape suggests a greater likelihood of malignancy. The margins 
of masses are the most reliable indicator of the likelihood of malignancy. The margins 
can be described as circumscribed, microlobulated, obscured (partially hidden by adja-
cent tissue), indistinct (ill-defined), or spiculated. Circumscribed margins favor a 
benign etiology with a likelihood of malignancy probably < 2% (10-12). Ultrasound is 
often necessary to determine whether a round or oval circumscribed mass is cystic or 
solid. Microlobulated margins increase the likelihood of malignancy. If the mass is 
directly adjacent to fibroglandular tissue of similar density, the margin may be obscured, 
and additional imaging should be done in an attempt to show the margins as com-
pletely as possible. A finding of indistinct margins is suspicious for malignancy.  
A mass with spiculated margins has lines radiating from its border, and this finding is 
highly suggestive of malignancy. An area of spiculation without any associated mass 
is called an architectural distortion. The density of a mass compared with normal 
fibroglandular tissue provides another clue as to its etiology. In general, benign masses 
tend to be lower in density than carcinomas; however, the density of a mass is not 
always a reliable sign as to whether it is benign or malignant. 

Cystic masses. Breast ultrasound can reliably identify cystic masses. BI-RADS 
describes three types of cystic masses:  
1. Simple cysts. A simple cyst is round or oval shaped, anechoic (black with no 

internal echoes) mass with smooth margins, an imperceptible wall, and increased 
posterior acoustic echoes (Fig. 2.33a). This last feature means it appears as though 
a flashlight is shining through the back of the cyst. Because cysts develop within 
the terminal duct lobular unit of the breast, it is not uncommon to see clusters of 
cysts or coalescing cysts.  

2. Complicated cysts. Sometimes cysts with echogenic interiors are seen, such as a 
debris-filled cyst. These cystic masses are called complicated cysts and further 
evaluation may be needed. Ultrasound-guided aspiration can be performed to 
verify its cystic nature, to exclude a solid mass, and to confirm complete resolution 
of the mass after aspiration.  
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3. Complex mass. A complex mass is defined as a mass with both cystic and solid 
components. The solid component is usually seen as a mural nodule or an intra-
cystic mass. A complex mass can also be composed of thick walls and anechoic 
center. A cyst with a solid component is suspicious for a malignancy, such as a 
papillary carcinoma or a necrotic infiltrating carcinoma. Benign papillomas can 
also present as a complex mass. The diagnostic evaluation of a complex mass is 
ultrasound-guided CNB of the solid component or surgical excision.  

Solid masses. Several studies have defined criteria to aid in the distinction of benign 
and malignant solid breast masses [26, 76]. Although no single or combination of 
sonographic features is 100% diagnostic for a benign mass, careful use of established 
criteria can help differentiate benign and malignant solid masses and avoid biopsy of 
certain solid masses.  

Mass shape, margins, orientation relative to the skin surface, echogenicity, and posterior 
echoes are the minimum preliminary characteristics that should be assessed in solid 
masses. Typically benign sonographic features of solid masses include an ellipsoid or 
oval shape, width greater than anteroposterior diameter (orientation parallel to the skin 
surface), three or fewer gentle lobulations, circumscribed margins, a pseudocapsule, 
echogenicity hyperechoic to fat (i.e., whiter than fat), and absence of any malignant 
features (Fig. 2.33b). In comparison, malignant sonographic features of solid masses 
include an irregular or angular shape; more than three lobulations; ill-defined, spiculated 
or microlobulated margins; width smaller than anteroposterior diameter; markedly 
hypoechoic (dark) echogenicity; a surrounding thick, echogenic (white) halo; posterior 
shadowing (black shadows posterior to the mass), duct extension; and associated cal-
cifications (Fig. 2.33c) [67]. There appears to be overlap in these features, and some 
malignant masses may have features suggesting they are benign, which could lead to 
false-negative interpretations of malignant solid masses.  

Figure 2.33: (a) Breast ultrasound, simple cyst. (b) Breast ultrasound, benign mass
(fibroadenoma). (c) Breast ultrasound, malignant mass (invasive carcinoma). 
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Calcifications. Calcifications are described on mammograms by their morphology and 
distribution. The calcifications can be placed into three general categories: 1) typically 
benign calcifications (Fig. 2.30d) can be usually identified by their mammographic 
features and include skin, vascular, coarse, large rod-like, round, egg-shell, and milk-
of-calcium types; 2) intermediate concern calcifications are described as amorphous 
or indistinct (these are tiny or flake-shaped calcifications that are small or hazy in 
appearance so that a more specific morphologic classification cannot be made; and 
3) higher probability of malignancy calcifications (Fig. 2.34) can be described as 
plemorphic, heterogeneous, or fine, linear, and branching. Calcifications are also char-
acterized in mammography reports by their distribution. Grouped or clustered calcifi-
cations include more than five in a small area (< 2cc) and can be benign or malignant. 
Linear calcifications are in a line and may have small branch points. When linear 
calcifications are in a line and branching their distribution is duct-like and suspicious 
for malignancy. Segmental calcifications are distributed in a duct and its branches with 
the possibility of multifocal carcinoma in a lobe (or segment) of the breast. A segmental 
distribution tends to be “triangular” with the apex towards the nipple. Regional 
calcifications are in a larger volume of breast tissue, and usually do not indicate sus-
picious calcifications. Finally, diffuse or scattered calcifications are distributed 
randomly through both breasts and are almost always benign.  

Musculoskeletal System 
The musculoskeletal system develops from mesenchyme (embryonic connective tissue) 
and includes bones and cartilage; muscles, ligaments, tendons; and other tissue types, 
collectively called “soft tissues.” The musculoskeletal system is primarily responsible 
for locomotion and upright gait. Musculoskeletal imaging deals with a wide variety of 
pathology affecting numerous individual parts of the system.  

Figure 2.34: (a) MLO view of the right breast shows an area of arquitectural distor-
tion of the breast tissue. Pathology demonstrated an invasive ductal carcinoma. (b-c) 
Magnification views demonstrating plemorphic microcalcifications (arrows). Patho-
logy reveled microcalcifications in association with ductal carcinoma in situ (DCIS). 
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Imaging of the Musculoskeletal System 

Each imaging modality, as described in the beginning of this chapter, provides specific 
information for certain tissue types of the musculoskeletal system. The following is a 
review of respective imaging information provided by each modality. 

modality for assessing musculoskeletal pathology. It is an inexpensive yet essential 
tool for diagnosis of fractures, arthritis, bone tumors, infections, and many other entities. 
In many situations, plain radiography provides sufficient information to determine the 
appropriateness of conservative vs. surgical management. Radiographs are usually 
obtained in two perpendicular plains for long bones, and commonly with a third 
oblique view for evaluating joints. Pathology seen on one view is typically confirmed 

Figure 2.35: (a) Coronal depiction of the typical knee. Example of the musculoskeletal
system in the knee, showing the muscles, ligaments, tendons, and bones. (b) Examples
of the knee on a sagittal view using MR. 

The base musculoskeletal unit is the bone-muscle-joint complex with its stabilizing 
ligaments, tendons and joint capsule (Fig. 2.35). The bones provide the solid central 
portion of an extremity. The bone is surrounded by complex compartmentalized groups 
of muscles, each with a specific task. Muscle fibers blend into tendon fibers at either end 
of each muscle, and the tendon ultimately attaches to the bone, usually spanning over one 
and occasionally two joints. The musculotendinous junction is the weakest link of this 
base unit. As such, the majority of tears and strains occur at this junction. Ligaments 
are composed of dense connective tissue that spans between bones, providing substan-
tial stabilization to the joint. Even though ligaments often blend in with the capsule of 
the adjacent joint, they can be anatomically (and often radiologically) distinguished 
from the capsule. 

Plain radiography. Plain radiography (Fig. 2.35-2.37) should usually be the initial 
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on a second view. The second view provides further information about localization 
and 3D orientation of pathology, rendering more detailed characterization (Fig. 2.38a-b; 
fracture displaced on one view).  

Plain radiography is routinely used to characterize fractures (Fig. 2.38c-d: femur 
fracture). The diagnostic information needed by the treating physician includes the 
location of the fracture along the bone, orientation of the fracture (transverse, oblique, 
spiral, complex, etc.), the direction of the distal fragment displacement (anterior, pos-
terior, etc.), the degree and orientation of angulation between the fragments, and the 
amount of diastasis (i.e., separation), impaction, or overriding of the fragments. 
Impaction or overriding may require traction for treatment. For bone tumors, radio-
graphs provide information on the location of the tumor along the bone. The appearance 
of the tumor margin reflects the aggressiveness of the lesion. Radiographs also display 
the mineralized matrix of a bone tumor (osteoid or cartilage) and the amount and 
nature of periosteal new bone formation, if present. The sum of this information often 
aids the radiologist in developing a differential diagnosis, and establishes if a lesion 
needs biopsy and/or treatment. In the setting of arthritis, plain radiography demon-
strates changes in the joint space, bone remodeling including formation or erosion, and 
often, joint effusions. By evaluating the character of bone and soft tissue changes and 
the joints involved, a specific diagnosis of the type of arthritis can often be made. 

Figure 2.36: Projectional imaging of the extremities, shown alongside schematic dia-
grams labeling the key bones. (a) The shoulder, arm, and major groups of bones in the 
hands (carpus, metacarpus, phalanges) are shown relative to the ribcage and portion of 
the spine. (b) The upper and lower leg are shown, with the rightmost x-ray showing 
the knee, femur, and femoral head. 
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Fluoroscopy. Fluoroscopy provides imaging in real time, and allows visualization of 
movement; as such, it is widely used in musculoskeletal imaging for joint injections. 
Joint injections may be performed to instill contrast material for conventional x-ray 
arthrography such as in wrist arthrography, which is used to evaluate the integrity of 

Figure 2.37: Plain film radiograph of the pelvic bone. The left diagram labels the 
major bones/regions of the region.  

Figure 2.38: (a) Frontal radiograph of the digit suggests only narrowing of the proximal 
interphalangeal (PIP) joint (arrow). (b) The lateral view reveals a posterior dislocation 
of the PIP joint (arrowhead). (c) Frontal and (d) lateral views of the knee demonstrate 
a predominantly transverse fracture of the distal femur with half-shaft lateral dis-
placement, apex posterior angulation and mild impaction. There is a large hemarthrosis 
(bloody joint effusion, arrow). (e) Frontal view of the wrist following injection of con-
trast (black material) into the wrist joint (*) demonstrates leak of the contrast through 
the lunotriquetral interval (rightmost arrows) into the midcarpal compartment (**) and 
through the central disk of the triangular cartilage complex (arrowhead) into the distal 
radioulnar joint (white arrows).  

ligaments and the triangular fibrocartilage, major stabilizers of the wrist (Fig. 2.38e;  
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wrist arthrogram with leak). Fluorscopy-guided injections may be used in conjunction 
with advanced imaging such as MR imaging (e.g., MR arthrography). A joint injection 
may also be performed to administer medication (corticosteroids or anesthetics) for 
therapeutic pain control or to diagnose if the joint is the source of a patient’s pain. 
Fluoroscopy can also be used to guide a joint aspiration to obtain a fluid sample for 
laboratory analysis in cases of suspected joint infection (e.g., septic arthritis). 

Computed tomography. CT is superior to other modalities for imaging bone detail, 
and is routinely used to evaluate the extent of fractures in complex bony structures 
such as the bony pelvis, cervical spine, ankle, and wrist. Information provided by CT 
over plain radiography in a patient with a complex fracture includes not only a far 
more detailed display of fracture anatomy, but also entrapment of bony fragments in 
joint spaces or intraarticular extension of a fracture. This knowledge aids the trauma 
surgeon in properly planning an appropriate action. For bone tumors, CT provides a 
detailed look at the tumor margins, matrix, and extent superior to plain radiography. 
The wide availability of multi-detector CT provides a seamless reformation from axial 
imaging into coronal and sagittal planes, which has facilitated CT’s surrogate role 
when an MRI is contraindicated in the patient. Occasionally CT may shed additional 
light on the nature of a bone or soft tissue lesion by demonstrating mineralization in or 
about soft tissues that may have not been evident on plain radiography or MR. This 
ability is helpful in cases of certain sarcomas (e.g., malignant mesenchymal neo-
plasms), tendon tug lesions (trauma), and calcific tendinosis (i.e., overuse). CT is also 
widely used for preoperative planning in joint and limb replacements, providing a suit-
able tool for accurate measurements and choosing the correct size for a replacement. 
Though lower in sensitivity than MR, CT arthrography can be also used to diagnose 
internal derangements of joints when MRI would be associated with unacceptable arti-
fact (Fig. 2.39a, CT arthrography knee with screws). 

Magnetic resonance imaging. Of all the modalities used for musculoskeletal imaging, 
MRI provides unparalleled soft tissue contrast. Its sensitivity and specificity for com-
mon intraarticular pathology has been repeatedly proven in several investigations. 
Tendons and ligaments are fibrous structures that are dark on all MR pulse sequences. 
A disruption of the tendon or degeneration (tendinosis) translates on MR to character-
istic architecture and/or signal changes. With muscle strains and tears, MRI readily 
demonstrates edema. With a complete tear of a musculotendineous junction, fibers 
will be diastatic. MRI provides a road map for the orthopedic surgeon should the 
patient require arthroscopy. Knee MRI aids in diagnosis of internal derangements such 
as tears of the mensiscus; cruciate and collateral ligaments; joint cartilage; and sur-
rounding tendons. Shoulder MRI is a valuable tool for diagnosis of pathology of the 
rotator cuff, including complete or partial tears, impingement, muscle atrophy, and 
joint degeneration. The addition of intraarticular contrast (via fluoroscopic guidance) 
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aids in diagnosis of labral tears. Similar in composition to the meniscus in the knee, 
the glenoid labrum is a fibrocartilageneous rim structure that enlarges the articulating 
bony surfaces of the glenohumeral joint. Labral tears are commonly seen in a younger 
patient engaged in throwing sports such as tennis, baseball or basketball. Hip MRI is 
commonly used to evaluate for bone marrow edema and fractures (both from overuse 
and direct trauma) that are suspected clinically but not seen on radiographs. In case of 
avascular necrosis of the femoral head (an ischemic process resulting in dead bone) 
MR demonstrates edema with adjacent reparative granulation tissue, providing a very 
specific picture to hone down the diagnosis. Like the shoulder, the hip is a ball-
and-socket joint. The socket in the shoulder is the glenoid portion of the scapula 
whereas in the hip it is the acetabular portion of the pelvic bone. As in the shoulder, 
there is a fibrocartilageneous rim around the rim of the acetabulum, also called the 
labrum. Acetabular labral tears are also best evaluated with fluoroscopic guided addi-
tion of intraarticular contrast to the hip joint. Ankle MRI is another commonly utilized 
diagnostic that aids in the evaluation of ligament and tendon injuries about the ankle 
joint, such as the Achilles tendon (Fig. 2.39b), or in the evaluation of fractures and 
cartilage defects of the bony structures about the ankle joint. 

Ultrasound. Musculoskeletal ultrasound is an important adjunct in diagnosis of various 
pathologies of the musculoskeletal system. Ultrasound is inexpensive and readily 
available. Musculoskeletal ultrasound is, however, operator dependent and has a rather 
flat learning curve. This modality is most commonly used for evaluation of periarticular 
superficial structures. Ultrasound requires a high frequency transducer to obtain 

Figure 2.39: (a) Coronal CT arthrogram of the knee demonstrates several cartilage
defects (arrowheads, white contrast material filling the gaps in dark gray cartilage
layer) and blunted lateral meniscus (arrow) consistent with a free-edge tear. (b) Sagittal
inversion recovery (fluid-sensitive) sequence of the ankle shows a large fluid filled
gap (*) in the Achilles tendon with retracted tendon ends (arrows). 
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adequate resolution of the fine architecture of the tendons and ligaments. This modality is 
valuable for evaluation of the rotator cuff tendons of the shoulder, which is conducted 
by a focused ultrasound examination of each tendon while the patient is instructed to 
perform various maneuvers to bring in the respective tendon into view (Fig. 2.40; with 
both patient and ultrasound picture). Chronic shoulder tendon abnormalities, acute 
tears, and periarticular fluid collections are readily visualized on ultrasound. The 
examination has to be focused as this modality often does not provide an overview of 
the entire joint. The possibility of dynamic imaging is a very special property of ultra-
sound. Documentation of tendon snapping (which occasionally occurs around the hip), 
or tendon impingement (which is common at the shoulder) is easily accomplished. 
A cine ultrasound sequence is obtained while the tendon of interest is imaged with the 
patient performing the maneuver that would cause the snapping sensation or pain. 
Ultrasound can also be used to guide many musculoskeletal interventions, such as bio-
psies in the hand and feet, and targeted aspiration and/or injections of periarticular fluid 
collections. Ultrasound has gained substantial popularity for diagnosis of rheumatologic 
diseases, as it provides an inexpensive tool to document synovitis (inflammation of the 
joint lining), joint effusion, and bony erosions. However, deep intraarticular structures 
are not amenable to ultrasound examination. Deeper penetrating transducers with 
lower frequencies provide images of lesser resolution, and ultrasound cannot penetrate 
bony cortex. At times when MRI is contraindicated or ferromagnetic material would 
obscure the area of interest due to susceptibility artifact, ultrasound can often provide a 
diagnostic alternative.  

Figure 2.40: To visualize the infraspinatus tendon the transducer is placed posterior to 
the shoulder and the patient is instructed to place the ipsilateral hand flat over the 
opposite chest wall (internal rotation and mild adduction of the shoulder). The figure 
on the right shows the intact infraspinatus tendon as an isoechoic (gray) stripe of tissue 
(*). The humeral head cortex (arrowhead) prevents any further penetration of the ultra-
sound beams. 
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Cardiac System 
The heart has four chambers: the left and right ventricles, and the left and right atria 
(Fig. 2.41). Formed of cardiac muscle (myocardium), the heart is responsible for 
pumping blood throughout the body: the right side of the heart collects de-oxygenated 
blood and moves it to the lungs’ alveoli, where O2/CO2 gas exchange occurs; the 
newly oxygenated blood then flows back to the left side of the heart via the pulmonary 
veins, from where it then circulates to the remainder of the body. 

Embryologically, the heart develops from a single solid tube, the primitive cardiac 
tube. This tube grows at a faster longitudinal rate than the rest of the embryo, causing 
it to fold/bend to the right. The cardiac tube is canalized, creating the heart’s chambers. 
The left ventricle forms before its right counterpart, explaining the asymmetric size of 
these chambers. Generally, the right ventricle is located more anterior. The atria are 
subsequently formed from a confluence of veins: a union of pulmonary veins forms 
the left atrium; and the superior and inferior vena cava veins join to create the right 
atrium. The middle of the heart, that is the lowest portion of intra-atrial septum (i.e., 
the partition between the atriums) and the highest portion of the intra-ventricular septum, 
are formed by the endocardial cushion. The endocardial cushion also helps create the 
tricuspid valve, which separates the right atrium from the right ventricle; and, the 
mitral valve, which separates the left atrium from the left ventricle.  

Figure 2.41: (a) Schematic diagram of the heart, illustrating the flow of blood through 
the chambers, arteries, and veins. (b) Example of axial cardiac CT image slice. 
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6  In premature infants, the most likely problem is instead patent (ductus) ateriosus, 

the failure of the ductus arteriosus to close. The ductus arteriosus is a shunt that 
connects the pulmonary artery to the aortic arch in the fetus, allowing blood from 
the right ventricle to bypass the fetal lungs. Normally, this shunt is closed at birth. 

Cardiac Medical Problems 

Congenital heart disease. Congenital heart defects are the most common birth defect, 
affecting about 1 in 125 babies in the United States [63]. Types of defects include: 

1. Septal defects. Problems with the development of the endocardial cushion can 
give rise to atrial septal defects (ASD) and/or ventricular septal defects (VSD). 
The most common form of congenital heart disease is VSD6, accounting for about 
⅓ of all defects. Left to right shunts (i.e., holes through which fluid can move), 
including VSD and ASD, cause an increase in pulmonary flow and cardiomegaly 
(an enlarged heart).  

2. Obstructions. Blockages in blood flow due to improper growth of the valves, 
arteries, or veins (including narrowing) can occur. For instance, aortic valve stenosis 
refers to the incomplete closure of the aortic valve, resulting in left ventricle 
hypertrophy. Similarly, pulmonary valve stenosis affects the pulmonary valve, 
resulting in right ventricle hypertrophy. Pulmonary stenosis is the narrowing of 
the pulmonary artery, reducing the flow of blood from the right ventricle to the lungs. 

3. Cynanotic defects. Abnormalities on the right side of the heart including pulmo-
nary atresia (the malformation of the pulmonary valve between the right ventricle 
and pulmonary artery), tricuspid atresia (an absence of the tricuspid valve), and 
tetralogy of Fallot cause hypertrophy of the right ventricle – but no radiographic 
cardiomegaly. Tetralogy of Fallot, in particular, is the most common form of cya-
notic congenital heart disease, and is defined by pulmonary stenosis, an overrid-
ing aorta (an aortic valve malpositioned such that the aorta is connected to both 
the right and left ventricles), and VSD that together cause the right ventricular hy-
pertrophy. Truncus arteriosus, a rare condition, occurs when a key structure fails 
to properly divide into the pulmonary artery and aorta, thereby forming only one 
large vessel leading out of the heart, rather than two separate vessels per ventricle. 
Transposition of the great arteries describes the reversed positioning of the aorta 
and the pulmonary artery. 

Another congenital condition is Ebstein’s anomaly, which involves the displacement 
of the tricuspid valve into the right ventricle, resulting in an enlarged right atrium and 
smaller right ventricle with pulmonary insufficiency. 
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Heart disease and other cardiac conditions. Heart disease is an umbrella term for 
medical conditions affecting the heart; collectively, these problems are the leading 
cause of death in the United States [51]. These interrelated conditions encompass 
coronary heart disease, with the buildup of plaques and inflammation in the arteries 
that supply the myocardium (atherosclerosis), leading to cardiac ischemia (a restriction 
in blood supply resulting in tissue damage) and ultimately myocardial infarction (heart 
attack); and cardiomyopathy (deterioration in the function of the myocardium). Hyper-
trophy of the cardiac chambers can also affect the efficacy of the valves, resulting in 
leaking: for example, dilation of the right ventricle often leads to tricuspid regurgita-
tion, a disorder where the tricuspid fails to close properly, allowing blood to flow 
backwards from the right ventricle to the right atrium; similarly, mitral regurgitation 
affects the left side of the heart. Cor pulmonale is a change in function of the right 
ventricle (usually from hypertrophy) due to a (chronic) respiratory disorder causing 
long-term high blood pressure in the pulmonary artery. 

Basic Cardiac and Vascular Imaging  

Several modalities are used to evaluate the heart and surrounding vessels. Projectional 
imaging includes the use of x-ray. Projectional x-ray imaging can be used to see the 
heart, great vessels, as well as vasculature in the lungs. As a heuristic, the normal 
cardiothoracic ratio (i.e., the width of the heart to the chest cavity) is about 50%. 
Examination of the vessels beneath the diaphragm on x-ray can help to determine if 
there is increased or decreased flow: for instance, large vascular channels below the 
diaphragm suggest that pulmonary vasculature is increased. Cross-sectional imaging 
of the heart includes the use of CT, MR, and ultrasound. Cardiac CT is useful in 
assessing the myocardium, pulmonary veins, aorta, and coronary arteries. Cardiac dis-
ease can be evaluated by CT: for instance, coronary calcium screening attempts to 
quantify the extent of calcification in the coronary arteries as a corollary to coronary 
artery disease. Magnetic resonance is also increasingly used in cardiac imaging. 
Specifically, MRI can help locate myocardial areas receiving insufficient blood from 
the coronary arteries. For example, coronary MR studies (with contrast) can identify 
damaged muscle due to an infarct. MR is also used to diagnosis pulmonary artery dis-
ease, ventricular problems, ischemic heart disease, and cardiac tumors (Fig. 2.42a-b). 
Perhaps the most common cardiac imaging mode, ultrasound-based echocardiography 
is used to evaluate the heart and the origin of the great vessels: cardiac motion and 
blood flow can be evaluated via Doppler with ischemic areas (being less mobile) read-
ily identified. Echocardiograms also permit evaluation of the cardiac walls for prolapse 
and other insufficiencies. Finally, coronary angiography is a noninvasive imaging 
technique that results in high resolution 3D visualization of the moving heart and great 
vessels. It can be performed via CT (i.e., computed tomography angiography, CTA) or 
MR imaging (i.e., MR angiography, MRA), although the former is presently the clinical 
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standard. The test presently takes about ten minutes, with newer generation scanners 
(multi-detector or multi-slice scanning) provide faster and finer resolution angiographic 
imaging. More recently, dual energy source CT has been developed for angiography, 
using two sources and two detectors simultaneously; this modality provides full 
cardiac detail with significantly lower radiation exposure (~½ the dosage). 

Vascular imaging. The carotid arteries in the neck are assessed using a combination 
of gray scale ultrasound, Doppler, and color Doppler techniques to detect atherosclerotic 
disease and stenosis (i.e., vessel narrowing) [60]. The internal carotid arteries are a 
low-resistance system and therefore are characterized by a broad systolic peak and 
gradual down slope into a diastolic portion of the cardiac cycle (Fig. 2.42c). The 
external carotid arteries have a higher resistance as they supply the muscles of the 
scalp and the face. The waveform is characterized by a narrow systolic peak and 
absent or decreased diastolic flow. Clinically, hemodynamically significant stenosis is 
present when there is vessel narrowing of 50% or more of the vessel lumen. To assess 
the degree of stenosis several criteria are available, the most common being an abnormal 
peak systolic velocity (> 125 cm/sec), end diastolic velocity (> 40 cm/sec), and the 
ratio of peak systolic velocity in the internal carotid artery (ICA) to the peak systolic 
velocity in the ipsilateral common carotid artery (> 2.5) [60].  

Gray scale and Doppler ultrasound techniques are also used for imaging the femoral 
and popliteal veins in patients with suspected deep vein thrombosis (DVT). Under 
normal circumstances these veins are easily compressible and color Doppler images 

Figure 2.42: (a) Example coronal slice from cardiac MR, allowing visualization of the
different chambers. (b) A sagittal view of the same patient’s heart on MR. (c) Color
duplex ultrasound image through the right femoral vein, shows a normal venous flow
with respiratory variance (see waveform in lower half). (d) Color Doppler ultrasound
images through the right femoral vein demonstrate a mixed echogenicity filling defect
within the vessel lumen compatible with acute deep vein thrombosis. Some flow is
demonstrated in the vessel periphery (blue signal). 
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show blood flow filling the entire lumen; waveform shape and amplitude vary with 
respiration. In DVT, the vessel lumen cannot be completely obliterated or compressed 
and contains a hypodense soft tissue mass (requisites) (Fig. 2.42d).  
Urinary System  
The kidneys are retroperitoneal solid organs of the abdomen responsible for maintain-
ing fluid and electrolyte homeostasis; creating urine; and excreting waste products. 
Located posteriorly in the abdominal cavity, the kidneys develop as a paired structure, 
one on the right and one on the left, as a result of union between the uretic bud (the 
origin of the urinary collecting system, including calyces, renal pelvis, and ureter) and 
the primitive kidney (metanephrogenic blastema). If the uretic bud and primitive kid-
ney are not united in the usual way, then one kidney will develop, with ensuing uni-
lateral renal agenesis. In adults, healthy kidneys vary in size with age and sex, averaging 
9-13cm in length. Blood enters the kidneys through the renal artery (Fig. 2.43a); 
filtered blood leaves through the renal vein. The renal cortex covers the innermost 
portion of the kidney, termed the medulla. The medulla contains a matrix of blood 

Figure 2.43: (a) Schematic diagram of a portion of the genitourinary system. The
right kidney, its relation to the bladder via the ureter, and the urethra are shown. The
kidney’s blood supply enters from the renal artery and exits through the renal vein.
(b) In the medulla, the glomerulus is a rounded mass of capillaries where blood filter-
ing occurs; a glomerulus is part of the nephron structure. 
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vessels, glomeruli, and urine tubules. As blood flows through the kidney, it progresses 
through capillaries bundled into ball-shaped structures known as glomeruli, where 
filtering primarily occurs (Fig. 2.43b). A glomerulus is considered a part of a nephron, 
the functional unit of the kidney, and is surrounded by a Bowman’s capsule. The urine 
tubules gather first into a minor calyx, and then into major calyces that subdivide the 
kidney. The calyces then empty into the renal pelvis, the kidney’s main conduit for 
collecting urine, directing it to the ureter. The ureter is a narrow tube (~4 mm) that 
transports urine from the kidney to the bladder via peristalsis. The ureters drain into 
the bladder, which in turn is emptied during urination via the urethra. Unlike the kid-
neys, the bladder has a different origin, the cloaca, which divides into the anterior of 
the bladder and the posterior of the rectum.  

Basic Imaging of the Urinary System 

An intravenous pyelogram (IVP) is an x-ray examination of the kidneys, ureters, and 
urinary bladder that uses contrast injected into the veins. 

Renal function and suspected obstructions to the collection system can be evaluated by 
injection of iodinated contrast material. An intravenous pyelogram (IVP) is an x-ray 
examination of the kidneys, ureters, and urinary bladder that uses contrast injected into 
the veins. Radiographic images taken soon after contrast uptake into the kidneys is 
called a nephrogram; and when obtained after some delay as the contrast is filtered 
into the bladder, a urogram. Specifically, these types of evaluation can occur using 

Figure 2.44: (a) A contrast-enhanced CT study of a normal adult kidney. The right 
and left kidneys are identified (boxes). High attenuation areas (arrowhead) inside the 
kidneys are the renal pelvis and ureter. (b) Longitudinal grayscale ultrasound image 
through the right upper quadrant show a normal kidney with dark renal cortex and an 
echogenic central sinus composed of fibrofatty tissue (arrowheads). 

CT (Fig. 2.44a): contrast is injected and an immediate CT scan of the renal area is  
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obtained, showing the nephrogram phase and function of the kidneys; a delayed CT 
cut of the abdomen through to the bladder is then acquired, showing the calyces, pelvis, 
and ureters. Rather than intravenous administration, contrast can also be directly 
injected into the kidney and collecting system in an antegrade fashion, puncturing the 
kidney to reach a dilated region (e.g., hydronephrosis): this procedures generates an 
antegrade urogram. Conversely, injection in a reverse manner from the urethra towards 
the bladder is termed a retrograde urethrogram. For suspected urethral obstructions, 
the CT urogram can be augmented with a delayed traditional projectional image to 
visualize the bladder. For direct injections into the bladder, the imaging study is called 
a cystogram; if the patients voids after the contrast study, the exam is known as a 
voiding cystourerthrogram. Lastly, the kidney can also be imaged via ultrasound, as 
showin in Fig. 2.44b.  

Urinary Medical Problems 

As the kidneys are responsible for maintaining proper levels of several substances 
within the bloodstream, including glucose and water, damage to the kidney or obstruc-
tions to the collection process can lead to a range of medical consequences ranging 
from the subtle (e.g., hypo- or hypertension) to the serious (e.g., renal failure). On 
imaging, four broad categories of issues exist with the GU system: congenital problems 
resulting in location or fusion abnormalities; cysts; obstructions; and cancer. 

Location and fusion abnormalities. In rare circumstances, during its developmental 
phase a kidney may ascend past the usual L2-L3 lumbar vertebrae levels and progress 
into the chest, creating a thoracic kidney. This condition is generally asymptomatic 
and can be easily diagnosed by ultrasound or a CT urogram. If the lower poles of the 
kidneys (right or left) are fused together then the appearance is similar to a U-shape 
and is called a horseshoe kidney. Ectopia, the displacement or malposition of an organ, 
can also occur with the kidneys. Abdominal crossed fused ectopia occurs when the 
upper pole of an ectopic kidney and the lower pole of its opposite normal kidney are 
joined: a kidney thus appears absent on one side of the body. In pelvic ectopia, the 
lower levels of the two kidneys are fused together in the pelvis. This phenomenon may 
be mistaken for an abdominal mass, though again CT urography or ultrasound can 
differentiate it from other masses readily.  

Cysts. Simple (renal) cysts are probably the most common form of a kidney cyst and 
can become quite large, leading to a distortion of the collecting system. Such cysts are 
diagnosed by a combination of CT urography and ultrasonography. Polycystic disease 
is a childhood malady (it can also occur in adults, but with much less frequency), and 
is a two-organ disease involving the liver and the kidneys in a reverse ratio of severity – 
that is to say, that if the liver is heavily affected, then the kidneys are less severely 
impacted, and vice versa. A rule of thumb for differentiating polycystic disease from 
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multiple simple cysts is that in the former, the cysts are too numerous to count. On 
ultrasound, cysts present as a basic fluid collection with sound enhancement passing 
through the object (i.e., the sound reflection becomes stronger, traveling much faster 
than through the surrounding medium): the region is empty, being absent of any echo-
genic material. The presence of echogenic material within the area is instead sugges-
tive of a neoplasm. 

Obstructions. Obstruction of the renal collecting system by stones or masses can pro-
duce dilation, also known as hydronephrosis (Fig. 2.45). Prolonged dilation can pro-
gressively result in atrophy of the kidney. Renal stones (nephrolithiasis) are easily 
detected both under ultrasound and CT. An acute urethral obstruction, such as by a 
stone, generally does not cause significant proximal dilatation7. Patients present with 
renal colic pain and the diagnosis of urethral stone can be made with an abdominal 
non-contrast CT. Urethropelvic junction (UPJ) obstruction, a common entity present-
ing as a neonatal mass, is the result of lack of peristalsis of the proximal ureter and the 
dilatation of the renal pelvis and calyces. Urethrovesical junction (UVJ) obstruction is 
similar: the adynamic segment (i.e., the non-peristalatic section) occurs in the distal 
ureter and is referred to as a primary megaureter. Diagnosis of primary megaureter 
can be made by fluoroscopy, observing the aperistaltic segment of the ureter. 
Megaureter can also occur as part of prune belly syndrome, wherein the anterior 
abdominal wall musculature is absent or hypoplastic. Severe obstruction at the level of 
the pelvis and infundibulum, pelvoinfundibular atresia results in multi-cystic disease 
(i.e., there are multiple cysts not communicating with each other) and no kidney func-
tion (Fig. 2.46). A milder form of obstruction with some kidney function and distor-
tion of normal architecture of the collecting system, pelvoinfundibular stenosis is more 
difficult to diagnosis.  

Obstructions can further occur due to blockage in the posterior or urethral valves (the 
latter also known as urethral diverticulum). Strictures of the urethra as a result of sec-
ondary infections, like gonorrhea, can result in obstruction of the urethra, abnormal 
drainage of the bladder, and ultimately proximal dilatation. 

Cancers. In children, cancers of the kidney are often Wilms’ tumors (nephroblas-
tomas). Although rare, Wilms’ tumors are the fifth most common pediatric cancer and 
are believed to arise from embryological cells that were destined to form the kidneys, 
but that instead fail to develop normally and instead multiply in their primitive state, 
becoming a tumor. On ultrasound, Wilms’ tumors typically appear as inhomogeneous 
mass within the kidney, with multiple areas of decreased echogenicity compatible with 

                                                           
7  In contrast, congenital obstructions cause a significantly larger amount of dilation in 

the area of the urinary tract proximal to the obstruction site. 
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Figure 2.45: (a) Hydronephrosis can occur when there is a bladder outlet obstruction, 
including tumors as in this case with the grape-like appearance (box). This image 
shows a childhood rhabdomyosarcoma of the bladder, which in turn causes obstruction 
and hence dilatation of the right ureter (arrow), renal pelvis, and calyses (arrowhead). 
(b) Enlarged hydronephrosis of the right kidney, one of the most common reasons in 
neonates being a mass. Here, the mass is seen displacing the stomach anteriorly. The 
mass itself is seen with not much contrast because of dilution of contrast material in 
the hydronephrotic kidney. The image also shows dilation of the renal pelvis and 
ureter on the right side (box) and a normal functioning left kidney. (c) Saggital view of 
previous image, with the mass shown inside the box The arrow indicates the stomach. 

Figure 2.46: (a) Mild hydronephrosis is seen in the right kidney (box). The left kidney 
and ureter show signs of pelvoinfundibular stenosis (arrowhead), and a mild beginning 
to multicystic disease. (b) A contrast study showing megaureter, with dilation of the 
ureter in the posterior urethral vessel. (c) Ultrasound of multicystic disease (arrow). 
The boxed region shows sound enhancement as a result of the fluid in the cysts. 
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necrosis on larger lesions. CT of Wilms’ tumors present with mixed, low attenuation 
areas with bands of enhancing tissue surrounding cystic and necrotic regions. Bladder 
cancer in children is also relatively uncommon, and usually impact connective tissues 
(i.e., sarcomas); rhabdomyosarcoma is the most common. Like Wilms’ tumors, both 
ultrasound and CT can detect these growths, which appear as heterogeneous masses. 

In adults, cancers involving the kidney parenchyma are hypernephromas. These lesions 
present as solid masses that disturb the renal contour; the margin being lobulated or 
irregular in appearance. On CT, these masses will appear as (large) heterogeneously 
attenuating entities. Dependent on the extent of the tumor, urograms may show 
involvement and/or destruction of the infundibulum and calyces. Approximately 85% 
of solid renal lesions are renal cell carcinomas (RCC), which can be further distin-
guished on CT from normal parenchyma post contrast administration. Unlike pediatric 
cases, tumors of the ureter, bladder, and renal pelvis are typically transitional cell car-
cinomas (TCC) and frequently present as obstructions with a hydronephrotic kidney.  

Upper Gastrointestinal (GI) System 
The liver is the largest abdominal organ and is located in the right upper quadrant of 
the abdomen (Fig. 2.47a). It is responsible for a number of major physiologic func-
tions, including the production of bile to aid in digestion, glycogen storage, lipid me-
tabolism, and detoxification of the blood. Physically, the liver is divided into the right 
and left hepatic lobes, which are separated by the interlobar fissure. The liver is char-
acterized by its dual blood supply, which comes from the hepatic artery and portal 
vein. The hepatic artery provides oxygenated blood, whereas the portal vein draws 
deoxygenated blood from the small intestine, allowing for nutrients and toxins to be 
extracted. On ultrasound examination, the liver parenchyma has an echogenicity 
greater or equal to the kidney, and lower than the pancreas and spleen (Fig. 2.47b). 
Pathological processes such as fatty infiltration generally cause a uniform or focal 
increase in the echogenicity of the liver [60, 69] (Fig. 2.48a). Other focal hepatic 
lesions such as simple cysts; and benign and malignant solid tumors are easily  
detected. Doppler is of great value for the evaluation of waveform analyses of the portal 
vein, hepatic vein, and hepatic artery in patients with liver cirrhosis or in assessing 
liver transplants. 

The gallbladder is a small pear-shaped structure located beneath the liver that stores 
and concentrates bile from the liver. Ultrasound plays an important role in imaging of 
the gallbladder in pathological processes such as cholelithiasis (gallstones), acute 
cholecystitis or gallbladder carcinoma [60] (Fig. 2.48b).  
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Figure 2.47: (a) Anatomical schematic of the liver and gallbladder, showing a cut-
away view of the former. (b) Longitudinal grayscale ultrasound image through the 
right upper quadrant demonstrates a normal liver parenchyma (arrowheads) with an 
echogenicity equal to the kidney (arrow). 

Figure 2.48: (a) Longitudinal grayscale ultrasound images through the liver shows 
diffuse increased liver echogenicity (arrow heads) consistent with fatty infiltration. 
Notice the marked difference with the hypoechoic kidney (arrow). (b) Longitudinal 
grayscale ultrasound image through the right upper quadrant demonstrates a distended 
gallbladder with diffusely thickened wall. Multiple echogenic gallstones (arrow) are 
seen within the gallbladder. Due to their calcium content the gallstones generate 
acoustic shadowing (arrowheads). 
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The pancreas (Fig. 2.49) is a retroperitoneal organ that generates and stores a variety 
of compounds: its endocrine functions include the production and release of several 
key hormones directly into the bloodstream including insulin and glucagon (made by 
β- and α-islet cells); and its exocrine functions encompass the release of a variety of 
digestive enzymes into the small intestine. Divided into the uncinate process, head, 
neck, body, and tail, the pancreas’ normal thickness for the head, body and tail is 
around 3.0, 2.5 and 2.0 cm respectively. The head of the pancreas is located to the 
right of the mesenteric vessels, and the neck and body are located anterior to these 
vessels. Due to its deep location the pancreas is often difficult to image by ultrasound 
techniques. Its echogenicity is usually variable and depends on the amount of fatty 
replacement within the pancreas. Normally the pancreas appears equal to or more echo-
genic than the liver. Ultrasound imaging is useful in assessing complications of pan-
creatitis, a diffuse inflammatory process of the pancreas. Solid tumors of the pancreas, 
such as pancreatic adenocarcinoma and islet cell tumors, are seen as focal pancreatic 
masses [60].  
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Wherein we consider how imaging and the electronic medical record continue to 
evolve and the methods for presenting this information to users. Issues are examined 
pertaining to the communication and retrieval of images; and also to the associated 
clinical information. The growing number of medical databases and the means to 
access this information are described. Simple access to this wealth of information 
is insufficient though, as physicians must be able to make sense of the data in order to 
reach diagnostic and therapeutic conclusions. Appropriate methods to visualize the 
data must be in place for users to search, analyze, and understand medical datasets. 
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Chapter 3 
Information Systems & Architectures 
ALEX A.T. BUI AND CRAIG MORIOKA 

ince the advent of computers in medicine, the objective of creating an electronic 
medical record (EMR) has been to transcend the traditional limitations of paper-
based charts through a digital repository capable of quickly organizing patient 

data, and ultimately, aiding physicians with medical decision-making tasks. This chapter 
introduces concepts related to the EMR, and covers the development of information 
systems seen in today’s clinical settings. The data and communication standards 
used by these systems are described (e.g., Digital Imaging and Communications in 
Medicine, DICOM; Health Level 7, HL7). But as healthcare progressively moves 
from a centralized practice to a more distributed environment involving multiple 
sites, providers, and an array of different tasks (both clinical and research), the 
underlying information architectures must also change. A new generation of informatics 
challenges has arisen, with different frameworks such as peer-to-peer (P2P) and grid 
computing being explored to create large scale infrastructures to link operations. We 
highlight several ongoing projects and solutions in creating medical information 
architectures, including teleradiology/telemedicine, the integrated healthcare enterprise, 
and collaborative clinical research involving imaging. 

The Electronic Medical Record 
The development of the electronic medical record1 has been a longstanding pursuit of 
the medical informatics community. At its core, the purpose of an EMR is to provide 
computerized access to patient information. A spectrum of data elements comprises 
the EMR, capturing an individual’s medical history and current status: demographics, 
vital signs, lab results, reports, medications, and imaging (e.g., radiology, endoscopy) 
are principal components of the record. From an operational viewpoint, a 2003 Institute 
of Medicine (IOM) report details the essential functions of an electronic health record 
[57], including: patient information and results management; computerized physician 
order entry (CPOE); decision support; electronic communication; administrative 
processes (e.g., billing, patient scheduling, utilization reviews); patient education, and 

                                                           
1  The term, electronic health record (EHR), is also commonly used in the literature. 

While some authors use EHR to refer to a more global construct, we use both terms 
interchangeably here. 

S 
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public health reporting. This IOM report and others document the potential benefits of 
the EMR, which can be categorized threefold:  

1. Improved quality of healthcare. EMR advocates point to better quality care through 
enactment of automated reminders, such as with childhood vaccinations and cancer 
screenings; implementation of evidence-based medicine and enhanced physician 
performance through decision support tools [32]; computer-aided diagnosis (CAD) 
to improve disease detection and standardize assessment; and continuity of care. 
In particular, the latter is important in the context of chronic disease management, 
allowing for closer monitoring of a patient’s condition and coordination of multi-
disciplinary clinical teams through the sharing of information. 

2. Improved efficiencies. In theory, the ready availability of computerized results 
and the ability to quickly find critical information in the record (relative to paper 
charts) can generate time savings for physicians [9, 62]. Further efficiencies are 
brought about through the reduction of lost data and redundant/unnecessary 
tests (e.g., re-ordering of labs) – effectively decreasing resource utilization [11]. 
Another area of improvement includes automating simple tasks (e.g., re-ordering 
medications). The caveat is that the EMR and its interface must be conducive to 
such workflow: showing too much (i.e., unnecessary) data is counterproductive; 
and the data organization must match the healthcare provider’s expectations. For 
instance, one meta-analysis of time efficiency studies found that while the use of 
EMRs may decrease review time, it can increase the time needed by physicians to 
document cases [91]. 

3. Reduction in errors. The seminal 1999 IOM report, To Err is Human, catalyzed 
interest in methods to reduce the number of accidental deaths brought about 
through medical mistakes [56] and to improve overall safety. Evaluations of 
CPOE and alert systems involving drug prescriptions have shown their utility in 
this regard, minimizing uncertainties (e.g., unclear handwriting) and detecting 
adverse events (e.g., drug interactions, allergies) [10]. 

An important consequence of the EMR is the longitudinal patient record, also referred 
to as the virtual health record [101], wherein the distributed electronic records of an 
individual’s healthcare episodes are effectively linked together, following a person 
over the course of his/her lifetime. Notably, each of the above areas results in possible 
cost savings [16, 44, 114]. 

Despite these advantages and the push towards EMR deployment in the United States 
(US) [105], studies between 2001-2006 show that EMRs have been adopted by only 

 

20-30% of all medical practices [60]. By some estimates, this statistic is optimistically  
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EMR Information Systems 
Much of the early development in EMRs started in niche areas, addressing data and 
workflow needs in specialized fields of medicine; current clinical information systems 
are a generalization and convergence of these efforts. We present two categories of 
systems: hospital information systems (HIS) and picture archive and communication 
systems (PACS). The former group includes databases containing demographics, 
clinical notes, labs, pharmacy, and administrative information (e.g., insurance, billing, 
and financial data). The latter group, PACS, deals with the storage and communication 
of medical images.  

Hospital Information Systems 

A discussion of EMRs is closely intertwined with hospital information systems, the 
actual infrastructure for storing, viewing, and communicating data. Initially used for 
financial services in the 1960s, HIS capabilities have grown into the EMR core 
functions laid out in [57] (Fig. 3.1): clinical care (e.g., medical chart review, CPOE, 
clinical protocol and guideline implementation, alerts and reminders); administrative 
management (e.g., scheduling, billing, admission/discharge/transfer tracking); and in 
the case of academic medical centers, teaching and research (e.g., discovery of trends 
in a population via data mining; creation of teaching files for instruction). [6, 7, 37, 67] 
provide some historical perspective on HIS and the efforts to define its structure and 
scope. Early HIS efforts for clinical usage involved the development and use of MUMPS 

 

(Massachusetts General Hospital Utility Multi-Programming System), a programming  

high as the survey definition of EMRs has been broadly encompassing of an assortment 
of computer-based solutions not necessarily concerned with clinical data (e.g., 
scheduling); some newer analyses shows that only about 12% of US physicians 
routinely use fully functional EMRs [46]. Adoption has been slow for a variety of 
reasons: monetary costs, privacy issues, lack of means to transfer existing (paper) 
records, lack of functionality (e.g., poor user interfaces, required workflow changes), 
and lack of (data) standards are often cited. In point of fact, the potential of the EMR 
has come under recent scrutiny given its failure to realize the expected benefits [18, 72, 
102, 115]. Critics note that the majority of positive evidence for the electronic 
medical record and its applications comes from a handful of institutions and/or are 
self-reported by the developer – it is unclear whether such benefits can be translated 
elsewhere. However, much of the problem may lie in managing immediate 
expectations and follow-through on implementation plans [23]. Nonetheless, because 
of the relative nascence of the area and the limited degree of adoption, many agree that 
long-term studies of the EMR are needed to truly evaluate its impact. 
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Figure 3.1: A high-level view of the data sources and functions addressed by the 
electronic medical record and hospital information systems (HIS). 

language geared toward (hierarchical) database applications. As HIS evolved, the  
architecture has changed from largely centralized databases to n-tier frameworks within 
an institution: to handle the number of users and emergent interrelated services; and 
to provide an abstraction layer to older (centralized) information systems. A simple 
example of this architectural change is in the deployment of web-based applications 
with today’s HIS serving as the medium for an integrated view of the patient record. 
But noticeably, many current commercial EMRs and HIS still support derivatives of 
MUMPS. 

Efforts have been made to establish reference models and frameworks for describing 
HIS. For example, 3LGM2 is a meta-model that divides a HIS into three inter-related 
layers of abstraction [119]: 1) the domain, detailing at a high-level the relationships 
between users and entities of interest in an enterprise; 2) the logical tool layer, wherein 
applications in concert with other resources (e.g., databases) act upon the entities 
defined in the domain; and 3) the physical layer, which describes the hardware (e.g., 
networks, servers) and constructs used operationally by the applications. 

Department-specific information systems. Although the boundary between different 
medical information systems is becoming blurred, applications have been developed 
for handling the particularities of a given clinical department. Two prime examples 
include radiology information systems (RIS) and laboratory information systems (LIS). 
Both RIS and LIS can be viewed as subsets of HIS with dedicated functionality: 

 Radiology information systems. Arguably, RIS are a microcosm of the HIS with 
the added requirement of interfacing with an institution’s PACS (see below) and 
the workflow seen in a radiology department. Specific functions attributed to RIS  
include scheduling (e.g., patient studies/scanner allocation), patient and imaging 
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study management (e.g., study tracking), and reporting (e.g., dictation support, 
review of previous study results). A distinguishing aspect of RIS vs. PACS is 
that the former is typically constrained to non-imaging data, whereas PACS is 
primarily concerned with the storage/manipulation of the imaging data. There is a 
tight coupling of the information in RIS with that of PACS. By way of illustration, 
RIS patient scheduling information is used to drive imaging study prefetching 
algorithms (from online archives) in anticipation of needed comparisons between 
studies for an individual; conversely, once the new study is acquired from the 
scanner and within a PACS, the radiologist’s PACS/RIS work list is updated 
and an interpretative report must be generated for the corresponding imaging 
series. As imaging has become an integral part of the healthcare process, integration 
between HIS and RIS has been a concern: 1) to provide radiologists with a 
comprehensive context of the patient’s history and presentation to reach a proper 
interpretation; and 2) to ensure that radiology results are quickly disseminated to 
referring physicians within a medical enterprise. 

 Laboratory information systems. Analogous to RIS for radiology, LIS deal with 
the requirements of laboratory and pathology departments, providing interfaces to 
the various instruments used to assess chemistry, hematology, immunology, 
microbiology, genetic, and other histopathologic markers. Fundamental to any 
LIS is specimen tracking, result validation, and the incorporation of assay results 
into electronic reports that are communicated to requesting clinicians. Simple 
automated alert mechanisms are often implemented as part of LIS applications to 
warn of unexpected or critical test values outside of reference ranges (e.g., a blood 
creatinine level of 2.0 mg/dl). For histopathology involving expert interpretation, 
LIS often support structured data entry and/or the dictation of reports, along with 
the integration of genomic/proteomic information and microscopy images. 

Picture Archive and Communication Systems 

Perhaps the most unique component of medical information systems, picture archive 
and communication systems originally started in radiology to provide electronic 
capture, storage, and retrieval of digital medical images. At a rudimentary level, PACS 
is the intermediary between imaging acquisition hardware (i.e., the scanners) and 
applications involving images. The difficulties inherent in designing and implementing 
a PACS stem from the size of medical image studies, which can range from 2-800 
MB, depending on the nature of a single exam; as such, the problems include: 1) long 
term storage of image data; 2) rapid retrieval and (network) dissemination of images 
for clinical review; and 3) indexing of image data. 
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Figure 3.2: Components of a picture archive and communication system (PACS). 
Arrows between the different parts illustrate data flow. 

Fig. 3.2 illustrates the different components comprising a PACS and the high-level 
flow of information; [51] provides a discussion of these constituent elements: 

 Imaging device and acquisition computer. With the introduction of PACS, medical 
imaging has gone from being an analog, film-based process to an ecosystem of 
digital acquisition devices. Digital modalities now include computed tomography 
(CT), magnetic resonance (MR), computed radiography (CR), positron emission 
tomography (PET), digital x-rays, mammography, and ultrasound. In many cases, 
and especially for the cross-sectional modalities (i.e., CT, MR), the acquisition 
devices provide raw signals that must be reconstructed into the image slices/ 
volumes; such processing is handled by a dedicated acquisition computer that is 
coupled with the scanner. The acquisition computer maintains a small amount of 
local storage for recently acquired datasets, but sends the studies to the PACS for 
long-term storage via the gateway. 

 Gateway computer/router. The gateway computer is responsible for two tasks: 
1) receiving the images from the acquisition computer, and 2) forwarding the 
images to an archive and/or secondary device (e.g., a viewing workstation). The 
logic for routing images in the network to and from the archive and viewing 
workstations can be embedded within the gateway; aspects of this functionality 
are often considered a part of the PACS controller. For example, based on study 
header data, a chest CT would be sent to the workstations in a thoracic reading 
room (vs. neuroradiology). More sophisticated management (e.g., load balancing) 
can also be a part of the gateway/router. 

 Online image storage (archive) and secondary storage. The archive itself consists 
of a database that maintains (meta) information about images stored in the PACS, 
immediate, online storage for recent images, and an “offline” secondary storage  

 
for older studies. The database is used to organize and index imaging studies  
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(e.g., by patient ID, date), and is updated as new images are sent from the gate-
way. Thus, this database is also capable of responding to queries about available 
studies, and initiating retrieval of studies (e.g., find and send available MR liver 
studies for a given patient to a given PACS station). The online storage is usually 
a fast network area storage (NAS) or storage area network (SAN) device, with 
petabytes (PB) of available disk space. Secondary storage employs slower devices, 
and for permanent storage and archive, may use arrays of optical disks (e.g., 
CD-RW). Rules indicating when images should be moved from online to offline 
storage (and its opposite) are a part of the archive. For instance, based on an 
institution’s online capacity and anticipated volume of imaging, only six months 
of guaranteed storage may be available, in which case studies outside of this 
period are automatically sent to secondary storage and marked for removal. 

 Imaging applications. The final component of PACS is the applications requesting 
images. In clinical radiology settings, these applications are the viewing workstations, 
equipped with high resolution, high brightness/contrast monitors for diagnostic 
review. Increasingly, web-based applications for enterprise-wide access to PACS 
are being supported: intermediate web servers between the browser and archive are 
deployed to handle these activities. Additional image processing services (e.g., 3D 
surface rendering, specialized simulations) also interact with the archive to retrieve 
data for analysis. Hanging protocols have also been designed to provide layout and 
presentation for common display patterns, and is discussed further in Chapter 4. 

Data Standards for Communication and Representation 
Given the nature of medical data and the functions of an EMR, its implementation is 
complex and multifaceted. The heterogeneity of information poses a problem in creating 
systems capable of accessing and integrating the diversity of databases maintaining 
patient information. Significant efforts have been made in the past two decades to 
provide standards upon which data between different components of the EMR can 
communicate. These endeavors entail definitions for the network protocols, the data 
structures (i.e., representation and format), and to some extent a shared set of definitions 
(e.g., data dictionaries). Three key standards at present are: 1) DICOM (Digital Imaging 
and Communications in Medicine), the de facto standard for representing and sharing 
medical imaging data, and now implemented as part of industry practice; 2) HL7 
(Health Level 7), a collection of standards addressing data exchange within hospital 
applications, data models, and document structures; and 3) LOINC (Logical Observation 
Identifiers Names and Codes), a codification for clinical laboratory values and common  
observations. Momentum to integrate the different EMR data sources, both within a 
single institution and across sites, continues to refine and address these standards; their 
current state is described below.  
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DICOM (Digital Imaging and Communication in Medicine) 
The DICOM 3.0 standard, established in 1993, grew out of earlier ACR-NEMA 
(American College of Radiology; National Electrical Manufacturers Association) efforts 
to provide data and communication interoperability between the components and 
vendors making up a PACS (e.g., scanners, computers, storage systems, printers, etc.). 
Specifically, the standard facilitates interoperability of medical imaging equipment 
by specifying: 1) a set of protocols for network communication followed by devices 
conformant to the DICOM standard; 2) a syntax and semantics for commands and 
associated information that can be exchanged using these protocols; and 3) a set of 
media storage services to be followed by standard compliant devices, as well as a file 
format and a directory structure to facilitate access to images, waveform data, and related 
information. The full DICOM standard is available online [84]: it does not specify any 
implementation details, but only provides guidance and structure to the communication 
and storage of digital medical images. DICOM has continually updated and adapted 
itself to keep pace with the changes in the imaging environment and the needs of 
users. For example, newer parts of DICOM handle grayscale (display) calibration, 
compression, security, and web-based services. As of 2008, there were 16 official 
parts to the DICOM standard, summarized in Table 3.1; and additional supplements 
extend the standard with additional functionality. 

The DICOM Model 

Constructs in the DICOM standard revolve around two ideas:  

 Object classes. In DICOM, all data is represented within an information object 
class. Thus, any entity such as a patient’s demographics, image acquisition 
variables, and the image data itself is specified by an object class. DICOM 
distinguishes between normalized object classes (which basically are atomic 
entities) versus composite objects that are constructed from two or more normalized 
classes (akin to a struct in a programming language like C). 

Table 3.1: Current parts of the DICOM standard, covering image representation and 
transmission. Parts 3.9 and 3.13 are retired. 

Part Description Part Description 

3.1 Introduction and Overview 3.10 Media Storage and File Format 
3.2 Conformance 3.11 Media Storage Application Profiles 
3.3 Information Object Definitions 3.12 Media Formats and Physical Media 
3.4 Service Class Specifications 3.14 Grayscale Standard Display 
3.5 Data Structures and Encoding 3.15 Security and System Management Profiles 
3.6 Data Dictionary 3.16 Content Mapping Resource 
3.7 Message Exchange 3.17 Explanatory Information 
3.8 Network Communication Support 3.18 Web Access to DICOM Persistent Objects  
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Data model. The core DICOM data model uses entity-relationship (ER) and object-
oriented concepts as the foundation for the object classes given in Parts 5 (Data 
Structure and Encoding) and 6 (Data Dictionary) of the standard. Fig. 3.3 illustrates 
the base hierarchy of patient and imaging data concepts, which is often referred to as 
DICOM’s “model of the real-world.” At the top of this hierarchy, the patient object is 
the main entity around which all other data is organized, with demographics and 
information on the individual relevant to conducting the imaging procedure (e.g., 
weight, contrast allergies, notable medical history/contraindications, etc.). A patient 
object is associated with one or more time-stamped imaging studies, with each study 
encoding data on its nature (e.g., institution, reason for exam, referring physician, etc.). 
In turn, each imaging study consists of one or more imaging series that describe the 
acquisition parameters for a given scan sequence (e.g., modality, scanner, CT- and 
MR-specific values, contrast agent, orientation, etc.). Each imaging series then consists 
of a set of individual image slices that make up the sequence, with descriptors for the 
image resolution, (physical) location, and a 2D array of pixel values constituting the 
image (or waveform values).  

Two more recent constructs seen in the DICOM data model are the structured report 
and the presentation state, which are aimed at linking ancillary data generated as a 
result of interpreting an imaging study. Acknowledging the potential of structured and 
form-based data entry to standardize reporting and improve compliance, such as seen 
with BI-RADS (ACR’s breast imaging-reporting and data system), DICOM structured 
reporting (DICOM SR, Supplement 23) defines object classes for the storage of both 
structured information and free-text reported as part of a study (e.g., the RIS report 
dictated by a radiologist) [54]. SR instances can also contain external references (such 
as to other images or reports), facilitating the integration of information to understand 

Figure 3.3: Basic DICOM hierarchical data model, which considers the relationship 
between a patient, an imaging study, and the parts of the study (series, images, reports, 
presentation states). 

the context of the imaging study. The SR instances are associated per imaging series. 

 Service classes. A service class refers to a process upon which data is generated, 
operated (transformed), or communicated. Examples of services are storage, query-
ing, retrieval, and printing of images. Like its object class counterpart, services 
classes are divided between normalized and composite services. 
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Table 3.2: Sampling of DICOM structured reporting (SR) templates. A variety of 
supplements have been published by modality/anatomy working groups. 

DICOM Supplement Structured Report Template Working Group (WG) 

Supplement 26 Ultrasound obstetrics and gynecology  DICOM WG 12 

Supplement 50 Mammography and thoracic CAD DICOM WG 15 

Supplement 66 Catheterization laboratory DICOM WG 1 

Supplement 71 Vascular ultrasound DICOM WG 12 

Supplement 72 Adult echocardiography DICOM WG 12 

Supplement 76 Quantitative ateriography and ventriculography DICOM WG 1 

Supplement 77 Intravascular ultrasound DICOM WG 1 

Supplement 78 Fetal and pediatric echocardiography DICOM WG 12 

Supplement 79 BI-RADS DICOM WG 8 

From this model, DICOM declares several normalized object classes for patient, study, 
results, storage resources, and annotations; these base definitions are then glued 
together in composite object classes to provide specificity. For instance, the CT image 
class definition aggregates attributes from the patient and study information objects. 
This precision in defining data objects necessitates the use of element tags to uniquely 
identify object properties. A tag consists of two parts represented as four-digit 
hexadecimal codes: a group number and a data element number. For instance, the tag 
(0008,0020) represents the study date; 0008 is the group number and 0020 is the 
element number. Those properties sanctioned by DICOM are referred to as standard 
data elements, and have even group numbers; these tags are laid out in the data 
dictionary. Information object definitions (IODs) state those elements that are required 
as a part of a conformant object definition. For example, a CT image slice has certain 
agreed upon properties that must be present to be considered DICOM compliant. 
IODs are detailed in Part 3 of the DICOM standard. To provide for extensions and 

The DICOM standard allows different patterns of an SR report, called SR templates; 
different DICOM working groups address different SR specialties to establish these 
templates. For instance, DICOM Working Group 15 helped create Supplement 50, 
which provides templates for mammography. Likewise, DICOM breast imaging 
templates (DICOM Supplement 79) allow capture of diagnostic breast imaging reports 
and link BI-RAD findings within the impression section of the structured report. 
Table 3.2 lists additional SR templates. DICOM presentation states (DICOM PS, 
Supplement 33) further contextualize the image interpretation process by allowing a 
user to capture a sentinel image along with its visual characteristics (e.g., window/ 
level, scale) and simple annotations (e.g., lines, boxes); one or more DICOM PS objects 
can be associated with a given image slice. 



3 Information Systems and Architectures  125 

vendor-specific information, private data elements are allowed and are specified with 
odd group numbers; however, this degree of flexibility is often problematic for 
developers using DICOM images, as there is no published reference list for these 
additional fields. 

Services. Part 4 of the DICOM standard describes service classes. Conceptually, there 
are two parts: DICOM message service elements (DIMSEs), which provide lower-
level processing; and more complex operations that combine DIMSEs. The DICOM 
service classes are further divided based on the type of object operated upon: normalized 
services operate on normalized object classes; and composite services handle composite 
object classes (Fig. 3.4). There are six normalized DIMSEs for atomic events and 
notifications involving normalized information objects, which support management of 
patient, study, and results objects along with printing functions. Additionally, there are 
five composite DIMSEs, comprising core operations: C-ECHO (for confirming network 
connections); C-STORE (transmission of data, i.e., information objects); C-FIND 
(responding to queries about finding information objects on a storage device); C-GET 
and C-MOVE (responsible for initiating requests for copying of information objects 
from one device to another). To illustrate the composition of higher-level services, 
consider a query/retrieve operation, which involves the use of a C-FIND (to find the 
imaging study on a given device), a C-MOVE (to move the study from the storage 
device), and a C-STORE (to save the study to the target device). An implemented 
subset of a service class’ methods is referred to as a DIMSE service group. 

Figure 3.4: Interplay of the DICOM information object classes and service classes. 
Functionality is divided into normalized and composite operations and data. The 
relationship between the constructs is shown by connecting arrows. 
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Service classes consider the role of a device in a requested operation: for example, is 
the device invoking the service, or is the device performing the operation? The former 
is referred to as a service class user (SCU), the latter a service class provider (SCP). 
For a given service class, a device may be capable of acting as the SCU, the SCP, or 
both dependent on its function in an overall PACS.  

Communication. The interchange of data in DICOM is governed by the concept of 
service-object pair (SOP) classes, which aggregate an information object definition 
and service class together – this completes the object-oriented perspective in that 
data and methods coalesce into one entity. To demonstrate, an MR scanner would 
implement the SCP for the MR image storage SOP class, meaning that it is capable of 
sending MR images to a given destination. A device wanting to receive the MR images 
would need to implement the corresponding SCU for this SOP class. Collectively, the 
implemented information object definitions and service classes for a device compose a 
DICOM application entity (AE), which expresses the capabilities of a device within a 
PACS network. The communication process can be encapsulated in three steps, and 
[12, 51] provide further discussion: 

1. Association. To start the process, an initiating AE first creates an association 
between itself and a target device (another DICOM AE), sending information on 
its capabilities (i.e., the SOPs it implements) and the requested service. In return, 
the target AE also declares its SOP classes. If compatible SCUs/SCPs for the 
service are found, then both the user and the provider are notified and the service 
request is accepted; a valid association is formed.  

2. Provider processing. The AE implementing the SCP constructs the requested SOP 
instance. A DICOM message object message (specified in Part 7 of the standard) 
is constructed with command and data set elements wrapping the SOP instance. 
The DIMSEs needed to execute the requested service are invoked, and the message 
object and its contents are thus sent over the network to the associated AE. 

3. User processing. The associated AE receives the DICOM message, reconstructing 

additional actions on the data. 

DICOM Extensions  

DICOM continues to evolve to meet the growing and changing role of imaging in 
clinical and research environments, as typified by the many technical working groups 
(WGs) and supplements that have been established over the years: as of late 2008, 
well over 100 supplements have been specified, many of which have been formally 
accepted into the standard. Several efforts currently exemplify DICOM’s extension: 

 

the SOP instance (through a reverse set of DIMSEs), and the SCU completes any 
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 Inclusion of new medical disciplines using imaging. DICOM was conceived of 
to manage clinical radiological imaging. However, the expansion of such imaging 
to other areas, along with the use of other imaging modalities (e.g., optical, 
microscopy) has led to the adaptation of DICOM models to other areas, including 
dentistry (Supplement 92), ophthalmology (Supplements 91, 110), and pathology. 
For instance, DICOM WG 26 is working on an improved image standard for 
pathology microscopy images, specimen images, and tissue microarray images. 

 Integration with other data standards. The intersection of imaging with other 
aspects of clinical workflow and data has established synergies between DICOM 
and other efforts to formalize medical data representation. For example, DICOM 
WGs 8 & 20 have worked on allowing for the creation of DICOM structured 
documents that reference or access persistent data objects available outside the 
DICOM environment. In particular, data objects created under HL7 Clinical 
Document Architecture (see below) are supported under DICOM supplement 101. 

 Extending functionality. Beyond the original need to store and present medical 
images, DICOM has started to address the need to share data and algorithms 
associated with imaging. For instance, results from computer aided diagnosis 
(CAD) are given in Supplements 50 and 65 with respect to mammography and chest 
imaging. DICOM WG 23 is exploring a “plug-in” architecture and standardized 
application programmer interface (API) for interactive application services and 
hosted software; in such a framework, algorithms (e.g., for image processing) can 
be shared between DICOM systems. 

Health Level 7 (HL7) 
Started in 1987, Health Level Seven (HL7) is a standard for the exchange of data 
between healthcare information systems [38]. The standard’s somewhat enigmatic 
name is a reference to the top layer of the Open Systems Interconnection (OSI) 
Reference Model, a tiered abstract description for communications and computer 
network protocol design; the seventh level of the OSI Model is the application layer, 
in which HL7 exists. Like DICOM, the primary purpose of the HL7 standard is to 
specify the formatting and structure of information exchange: it does not describe the 
actual technical details of how the information is to be passed from one system to 
another. HL7 does not try to assume a particular architecture with respect to the 
placement of data within applications but is designed to support a central patient care 
system as well as a more distributed environment where data resides in departmental 
systems. Given its evolution, there are now several components to HL7. 
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Messaging Protocol 

The HL7 messaging protocol, referred to as HL7 v2.x, was first developed to provide 
a common format to exchange textual healthcare data between information systems. 
HL7 messages are created in response to some real-world healthcare event that 
initiates the need for data flow among systems. This real-world event is called a 
trigger event. For example, a trigger event may be for the completion of a patient’s 
hospital admission, or the completion of a lab assay; such occurrences may subsequently 
need data about that patient to be sent to a number of systems (e.g., updating an 
occupied bed census; paging a doctor with an irregular lab warning). Trigger events 
can exist at various levels of granularity and involve one or more entities. 

When a message is sent from one system to another, the original message is 
acknowledged by the receiver (i.e., an acknowledgment message is sent), ensuring the 
receipt and the successful processing of the message. This return message may include 
data of interest to the originating source (e.g., a response to a lab order may provide a 
generated lab requisition ID and information about the type of test requested). 

HL7 messages may also represent queries from one system to another in order to 
retrieve needed information. By way of illustration, the arrival of a patient for an 
imaging exam may trigger an HL7 message from an RIS to the PACS; a PACS 
prefetching application may require additional information on the type of imaging 
study in order to retrieve relevant past examinations for comparison. As such, the 
PACS may issue a request back to RIS for more information. This transaction is a 
query, in contrast to an unsolicited information update; the response (acknowledgement) 
contains the results of the query. In this manner, HL7 queries are analogous to a 
server-client paradigm. 

Data encoding. HL7 messages are made up of segments, a logical grouping of data 
fields. Each segment is identified by a unique three character name known as a 
segment ID. A data field is simply a string of characters. Within a segment, the fields 
comprising the segment are separated by a delimiter (e.g., the pipe character “|”). 
Individual fields can be further sub-divided into smaller components using another 
delimiting character (e.g., a carat, “^”). As an example, consider an HL7 admission/ 
discharge/transfer (ADT) message to transmit portions of a patient’s administrative 
data from one system to another as a continuous character string: 

MSH|^~\&|HIS|UCLAMedCtr|RIS|UCLAMedCtr|20080518193924||ADT^A01^ADT_A01|0000000101|P|2

.6|EVN|A01|20080518193924|||a021|PID|||123456^^^PH||BRUIN^JO^^^Ms||19880819|F|||100 

Westwood Blvd^^VENICE^CA^90066|PV1||I|5W^17^2^^^^^^WardSouth||||TESTDR^DEERE^JOHN^^^ 

DR|||ORT|||||||||15521|COM| 
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The above ADT message contains the following segments: 

 Message header (MSH). The MSH segment provides details about the message 
itself, such as the sending and receiving systems, timestamps, and message type. 

 Event type (EVN). The EVN segment of the message provides information about 
the triggering event, including the event type, the (real-world) event timestamp, 
and the originating source of the event (e.g., the patient or some other system). 

 Patient ID (PID). The PID segment provides the information specific to the 
individual patient, with demographics fields. 

 Patient visit (PV1). Finally, the PV1 segment specifies fields pertinent to the 
patient’s visit to the hospital, such as the visit number, ward/bed, attending doctor, 
and financial classification. 

As HL7 v2.x is meant to standardize data interchange and not applications, it only 
requires certain data fields so that different institutions may provide optional information: 
the standard contains methods to tailor messages for local usage. The only data 
fields required in a message are those needed to support the logical structure and 
relationships between messages: many fields are defined but are optional. As EMR 
system capabilities have matured, the HL7 v2.x protocol has been updated to include 
new functionality, such as embedding logical rules and statements as part of a message 
to incorporate clinical guidelines and decision support. Arden syntax, a logical rule 
grammar for the expression of medical conditions and recommendations, was adopted 
to encode medical logical modules (MLMs) [92]. An MLM represents a standalone 
knowledgebase that can be used to aid in basic decision processes. An example of the 
invocation of an MLM through HL7 might be the monitoring of queried labs results 
for abnormal values, from which guidelines to correct the value may be supplied to a 
receiving application (and hence passed on to the clinician). 

Reference Implementation Model (RIM) 

While HL7 v2.x provides the groundwork for communication between systems, it 
does not actually direct how data should be organized within an information system, 
or how the messages should be instantiated. As the databases containing patient 
information grew more complex, models showing how the data should be put together 
to formulate HL7 messages were needed. In April 1996, HL7 started development 
of the reference implementation model (RIM), with the aim of creating detailed data 

specific information models. In doing so, the intent was to enable the definition of the 
data needed in different healthcare contexts, the source of the HL7 message fields, and 

 

the semantic and lexical relationships between the sources of the field values. Over  

types, classes, state diagrams, use case models, and terminology to derive domain-
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several subsequent meetings and interim draft releases that progressively harmonized 
the data model, HL7 released version 1.0 of the RIM in 2001. HL7 RIM is a critical 
aspect of HL7 v3, being the underlying backbone of all information models and 
structures that aspires to solve semantic interoperability problems. There are six 
fundamental classes of the RIM, shown in Table 3.3. Briefly, every healthcare 
process/event is described by an act (which notably dovetails with the HL7 messaging 
paradigm of event triggers). Each act may have any number of participants, described 
by an entity assuming a given role. How such an entity is involved in the act is described 

an act-relationship. Likewise, roles can be inter-related through role-links. The base 
data model provides for subclassing of the act, role, and entity objects to specialize 
definition and properties; this ability creates an inheritance network. For instance, Living 
Subject is a subclass of entity; and Person is a subclass of Living Subject. Numerous 
data models based on HL7 RIM have been developed and archived online as part of 
HL7’s efforts. Although criticism of the HL7 RIM has been raised (e.g., [104]), its 
proponents note that the inherent richness (and complexity) of HL7 RIM has led to 
differing viewpoints and semantics [100]. 

 
Class name Definition Example Subclass 

Entity Physical thing or organization 
and grouping of physical 
things 

Person, organization, material, place, 
medical chart 

Yes 

Role The competency of the Entity 
that participates in the Act  

Doctor, patient, nurse, specimen Yes 

Act The intentional action(s) that 
are performed. The Entity 
with a certain Role performs 
an act. 

referral, transportation procedure, 
observation 

Yes 

Participation How an entity, in a particular 
Role, functions during the 
scope of an Act. Participation 
signifies performance 

Entity:Doctor-A, Role: Physician, Act: 
admit a patient, Participation: 
participation of a physician 

No 

Act-
Relationship 

Ability to relate two acts. The relationship between an order for 
an event and occurrence of the event 

No 

Role-Link The relationships between 
any two entity roles. 

Indicates the physician’s relationship 
with an institution, and the patient’s 
relationship with the institution to 
express the patient/physician 
relationship 

No 

Table 3.3: The six major classes of the HL7 reference implementation model. 

through a participation relationship. Acts can be related to other acts, as delineated by 



3 Information Systems and Architectures  131 

Clinical Document Architecture (CDA) 

Initiated in 1998, a “next generation” representation for clinical data interchange 
was being explored by HL7. Initially referred to as the patient reference architecture 
(PRA), the HL7 clinical document architecture (CDA) is a document markup standard 
that specifies the structure and semantics of documents [24, 25]. The HL7 CDA is 
another key component of the HL7 v3 effort, providing a standard for structuring free-
text reports generated as part of clinical processes. The need for the CDA can be seen 
twofold: 1) HL7 messages can only contain a certain type of rudimentary information 
(e.g., header information, as opposed to deeper semantics, and only text data); and 
2) the primary focus up till the late 1990s was on administrative usage of HL7 for 
process/workflow and simpler content, not clinical information. In 2000, HL7 CDA 
v1.0 became an approved ANSI (American National Standards Institute) standard.  

Key aspects of the CDA standard include: documents are encoded in eXtensible 
Markup Language (XML); document parts derive their meaning from HL7 RIM and 
use HL7 v3 data types; and the CDA specification is expressive and flexible. A CDA 
document can be included in an HL7 message or can exist independently as an XML 
file. The six characteristics of a CDA document include the following:  

1. Persistence. A clinical document continues to exist in an unaltered state, for a time 
period defined by local and regulatory requirements.  

2. Stewardship. A document is maintained by an organization entrusted with its care.  
3. Potential for authentication. A clinical document is an assemblage of information 

that is intended to be legally authenticated.  
4. Context. A clinical document establishes the default context for its contents.  
5. Wholeness. Authentication of a clinical document applies to the whole and does 

not apply to portions of the document without the full context of the document.  
6. Human readability. A clinical document is human readable. 

Fig. 3.5 demonstrates the XML structure for a CDA-based report. A CDA document 
contains both a header and a body. The header provides the context for the document’s 
creation, while the body contains the actual content of the document. The header has 
three main purposes: 1) to facilitate clinical document exchange across and within 
institutions; 2) to support document management and indexing; and 3) to compile an 
individual’s clinical documents into a longitudinal EMR. The header contains document 
metadata and encounter data that help provide context to the origin and purpose of the 
document. The document body is comprised of sections, paragraphs, lists, and tables. 
Each of these structural components can contain captions, text, multimedia components 

 
 

(via external references), and standardized codes. Importantly, each component can be 
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Figure 3.5: Example of the base HL7 clinical document architecture XML structure. 

nested (e.g., a sub-section within a section). Additionally, each section can be associated 
with codifications (e.g., an observation may be linked to a SNOMED (Systematized 
Nomenclature for Medicine) code) helping enable more useful indexing and searching 
of medical document corpora. 

Three levels of increasing compliance are defined by the CDA standard. Level 1 is the 
least constrained, only requiring that the CDA document contain a properly structured 
CDA header. The body section for the CDA document is placed after the section 
element <structuredBody> as free-text narrative. Level 2 compliance requires section 
level templates applied to form CDA documents that contain mandatory and optional 
document sections. For instance, an inpatient report may require a historyAndPhysical 
section as well as a section on vitalSigns, but a cardiovascularExamination block may 
be optional. Lastly, Level 3 CDA documents contain entry-level templates that allow 
more complete structuring of the clinical information.  

Logical Observation Identifier Names and Codes (LOINC) 
In 1994, researchers at the Regenstrief Institute set out to develop a universal,  

<clinicalDocument>
 CDA Header  
 <structuredBody> 
 <section> 
  <text>...</text> 
  <observation> 
   <reference> 
   
 <externalObservation/> 
   </reference> 
  </observation> 
  <observation> 
  … 
  </observation> 
 </section> 
 <section> 
  <section> 
  ... 
  </section> 
 </section> 
 </structuredBody> 
</clinicalDocument> 

pre-coordinated coding system for laboratory tests. Today, version 2.22 of the Logical  
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Axes Description 

1 Component (analyte) (e.g., creatinine, glucose, hemoglobin) 

2 Property measured (e.g., catalytic concentration, entitic length, mass concentration) 

3 Timing (e.g., an observation may be a moment in time, an average, or over an interval of time) 

4 System (e.g., type of sample or organ examined, blood arterial, urine, liver) 

5 Scale (i.e., whether the measurement is quantitative, ordinal, nominal, or narrative) 

6 Method used to produce the observation (optional) 

Table 3.4: The LOINC standard uses six major axes to define name entries. 

LOINC Code LOINC Names 

11125-2 Platelets:Morph:Pt:Bld:Nom 

11157-5 Leukocytes:Morph:Pt:Bone Mar:Nom 

11218-5 Albumin:MCnc:Pt:Urine:Qn 

11882-8 Gender:Type:Pt:^Fetus:Nom:US 

21612-7 Age:Time:Pt:^Patient:Qn:Reported 

29471-0 Blood Flow.systole.max:Vel:Pt:Hepatic Vein:Qn:US.doppler 

Table 3.5: Example laboratory and clinical LOINC codes with the formal LOINC 
names based on five major axes (component:property:timing:system:scale). 

Observation Identifier Names and Codes (LOINC) database contains in excess of 
50,000 codes for laboratory results, clinical measurements, and findings from other 
diagnostic tests. LOINC has become the standard coding system for LIS [52, 95]. The 
primary purpose of LOINC is to codify the range of observations seen in clinical 
practice. With HL7 the prevailing method for electronic communication amongst health-
care institutions, a particular objective of LOINC is to help standardize communication 
of results and observations within HL7 messages.  

Formal name entries in LOINC are derived using six major axes (Table 3.4), with up 
to four additional minor axes providing further specificity. Table 3.5 depicts examples 
of LOINC codes and formal LOINC names for laboratory and clinical observations. 
Notably, LOINC is continually being updated and expanded. Presently, efforts are 
split along three divisions: 

1. Laboratory. The first and most mature aspect of the database covers lab observations. 
As such, the largest number of entries in LOINC is from this division. More 
recently, LOINC included supports molecular pathology observations used to 
identify genetic mutations including substitutions, deletions/insertions, tumor 
associated genes, and gene deletions. 
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2. Clinical observations. The clinical LOINC division is concerned with non-
laboratory diagnostic studies, critical care, nursing measures, patient history and 
physical (H&P), and medical instrument surveys. For instance, included this 
division are LOINC codes for naming radiology reports; over 2,000 radiology 
codes exist in LOINC version 2.22. Notably, LOINC codes are in turn used in 
other standards: LOINC identifiers are being used in DICOM ultrasound reporting. 
In addition to radiology, LOINC has developed over 400 codes that can be used in 
tumor registries, capturing information on initial diagnosis, anatomical sites, and 
tumor features (e.g., size, histopathology).  

3. Claims attachments. The third division of LOINC development handles the 
definition of new LOINC terms and codes to handle claims-related data. In the 
United States, the HIPAA (Health Insurance Portability Assurance Act) draft 
rule for claims attachments proposes using HL7 messages with LOINC codes to 
identify individual observations within attachments. In addition, HIPAA defines 
six specific types of claims attachments: laboratory results; non-laboratory clinical 
reports; ambulance transport; emergency room visits; medications; and rehabilitation. 
This third division of LOINC efforts has managed the creation of the codes 
needed for these new attachment types. 

Distributed Information Systems 
Data standards are the vehicle for creating communication interoperability between 
systems, but do not really specify how an information system and its components 
should be organized. Client-server and n-tier architectures have been used to design 
many healthcare information systems within a single enterprise; extending beyond this 
boundary, previous efforts in creating distributed frameworks have often relied on 
mediated architectures to provide data integration across databases. In such frameworks, 
a software agent (i.e., the mediator) is constructed to provide data mapping/translation 
and other network-aware services; communication between different systems thus 
occurs between the agents, enabling a single (disambiguated) syntax for finding and 
passing information. CORBAMed, the application of the CORBA (Common Object 
Request Broker Architecture) standard to the healthcare environment, is an example of 
a mediated framework. Unfortunately, the complexity of such systems impairs the 
ability of the architecture to support a large number of users and/or sites, often leading 
to poor performance [40]. As a result, new methods of distributed data access are 
being examined, taking into consideration scalability, resource utilization (network, 
hardware), and modularity (i.e., abstraction, extensibility). And like many mission 
critical operations, clinical information systems must have uninterrupted uptime 

 

(i.e., 24 hours/7 days a week) to ensure timely access to patient data. These concerns  
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permeate the design and construction of a newer generation of distributed information 
architectures in the healthcare environment. 

Peer-to-peer Architectures 
In the past decade, attention has turned to peer-to-peer (P2P) architectures. Made 
infamous by MP3 music sharing services, P2P concepts have actually been in 
existence much longer (a literature search finds that IBM actually used the phrase 
“peer-to-peer” in a 1984 architecture paper). Although frequently associated with file 
sharing applications, P2P actually has broader applications and in fact its concepts 
can be found in a variety of older networking protocols, including the once common 
Usenet news system and the ubiquitous simple mail transfer protocol (SMTP) used by 
e-mail servers. Generally speaking, a peer-to-peer topology is any network that does 
not have fixed clients and servers, but a number of peer nodes that function as both 
clients and servers to the other nodes on the network. As such, nodes in a P2P network 
have been termed servents as they act (simultaneously) as clients and servers. This 
network arrangement is in sharp contrast with the client-server model: any node is 
equally able to initiate or complete any supported transaction. Peer nodes may differ in 
local configuration, processing speed, network bandwidth, and storage quantity.  

P2P networks establish a mesh topology that can grow quite large. Analyses of these 
networks show a curious result: that the distribution of connections for a given node 
tends to follow a power law [96], and that most networks tend to naturally develop 
certain nodes that are “critical” to the overall system (e.g., taking out one of these 
nodes would break off a large part of the topology). These special nodes are often 
referred to as super-peers, ultra-peers, or super-nodes – such nodes are often 
characterized by a high degree of connectedness with other nodes. Theoretically, the 
urban myth of “six degrees of separation” appears to hold true in most P2P networks 
(and in fact, in communications on the Internet) – that there is a finite number of 
“hops” that one must make from node-to-node to find targeted data (on average): this 
phenomenon in P2P is due to the evolution of these highly connected nodes such that 
most “edge” nodes are only a few hops from these super-nodes. 

One way to understand peer-to-peer networks is through their historic development in 
light of the generations of technology: 

 First generation. The first generation of P2P networks involved the use of a 
centralized resource, such as a database, to maintain information about the content 
of the network and the specific location of data (i.e., which nodes share which 
files).  
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 Second generation. The next generation of peer-to-peer networks were aimed 
at removing the dependency on a centralized resource, and thus focused on 
completely new data structures (e.g., distributed hash tables, DHTs) and optimizing 
decentralized search mechanisms in growing networks. 

 Third generation. The third generation of peer-to-peer networks contains 
improvements upon the first two generations, but tackles questions of quality of 
service, security, and anonymity in regard to content sharing. 

These three levels of P2P are not definitive; many hybrid architectures exist between 
these layers. Nonetheless, we use this perspective to further illustrate key constructs 
and issues in regard to P2P systems and their applications to the healthcare 
environment. To confine the scope of the discussion, we limit our description to the 
data sharing aspects of peer-to-peer architectures. 

First Generation P2P: Centralized Searching 

The most straightforward P2P framework to understand and implement, the centralized 
P2P framework is a hybrid of client-server and basic P2P concepts, where certain 
services are provided through the client-server mechanism, but the basic data transfer 
is performed from node to node (i.e., peer-to-peer). In the context of data sharing, this 
service is a centralized index (such as a database) used to store information on the 
location of queryable content: a client accesses this server to find the information and 
then communicates directly with the node containing the data file (Fig. 3.6). When 
nodes connect to the P2P network, it is responsible for indicating what data it shares 
so that the index can be updated. The original Napster model is indicative of this 
architecture. The attractiveness of such systems may be considered fourfold: 

1. In theory, the majority of network traffic is spent between each node within the 
network. Assuming that the amount of data to be transferred is moderately large, 
the network traffic incurred by a query to the server is minimal in comparison to 
the amount of data passed in a query. 

2. The centralized index allows for access control: users must go through this system 
in order to find information in the network. If information needs to be removed 
from the network, its entries in the database can be readily deleted, thus quickly 
revoking it shared status (i.e., because it is no longer discoverable). 

3. As new information is added to the P2P network, all servents will automatically 
see changes, as the central index is the authority for all information. 

4. Querying time is constant and consistent in that a query to the network will 
always provide the same result from the central index; moreover, the system can 
assure completeness of results, being aware of all content in the network. 
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Figure 3.6: Basic data flow for first generation peer-to-peer computing. A centralized 
index is used to facilitate discovery. 

However, the strengths of a centralized approach are also its potential problems: 

1. The central server is the bottleneck because all queries must be processed by a 
single master node. Also, the service’s capacity must be scaled up as the number 
of users increases. A potential solution lies in mirroring the database, but results 
in propagation update issues (i.e., the replicated indices must be synchronized).  

2. The centralized service is also a lynchpin for the entire network: if it fails or goes 
down, then the entire network will collapse.  

3. In order for any information to be seen in the network, nodes sharing data must 
actively update the central index. Ultimately, the central index is not necessarily 
aware of whether a given sharing node/client is actually online, or if the shared 
content is still available. Because of the fluid behavior of P2P networks, a node 
can enter or leave the network at any time. Thus, if a node goes offline suddenly 
(purposefully or not) or a node deletes its local copy of a shared data file, querying 
the index may result in passing references to systems where the data is no longer 
accessible. 

Second Generation P2P: Simple Decentralized Searching (Query Flooding) 

The fact that a centralized P2P network can be easily disrupted spawned a new wave 
of research to overcome the problems of scalability and reliability. Thus, the concept 
of completely decentralized services epitomizes the second generation of peer-to-peer 
systems. Specifically, these architectures removed the central search index; however, 
new methods were then needed to enable nodes to find content within the network.  

To replace the central index, preliminary efforts used a simple search paradigm: if a 
given node needed to query the network to find data, it would query a finite number of 
other nodes to which it is connected; if these neighboring nodes do not have the data,  
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Figure 3.7: Second generation P2P using query flooding. To find a given data file, a 
node initiates a query sequence that passes a request from node to node. Eventually, 
the query will be seen by all nodes in the network, discovering the targeted data. 

they in turn pass the query on to their neighbors, etc.2. Once found, the node containing 
the desired data communicates back to the original requesting node (Fig. 3.7). While 
uncomplicated, this approach incurs several technical and practical difficulties: 1) the 
new nodes joining a P2P network need a mechanism to find other nodes already in 
the network; 2) the “loopback” query propagation problem (i.e., cycles in a network 
topology resulting in the original servent initiating a series of queries that comes back 
to itself or an already queried node in a recursive manner); and 3) the inability to assure 
timely discovery of targeted content within the network (unlike centralized P2P, 
where query time is constant, queries can be propagated indefinitely without finding 
the desired data). Partly being based on the idea of data locality in that the information 
one needs is typically close by (in terms of the network), naïve implementations of this 
strategy often fail to scale, as servents can overwhelm a network with queries (i.e., 
query flooding); in point of fact, some analyses show that the number of queries and 
the traffic amounts to more than the actual targeted data [97]. 

Gnutella. Gnutella, the first popular decentralized approach to P2P, exemplifies the 
simple search method. The original open protocol (version 0.4) defined only five types 
of messages: ping, to discover hosts on a network; pong, a reply to a ping; query, to 
search for a file; query hit, a reply to a query; and push, to initiate a download request. 
To connect to a working node in the P2P network, a range of bootstrapping techniques 

                                                           
2  Some readers may remember a 1970s American television commercial for shampoo 

that featured the line, “And she told two friends, and they told two friends, and so 
on, and so on…” The simple search mechanism works in a similar fashion to quickly 
spread the query. 
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have been used by Gnutella clients (e.g., permanent IP addresses, web caches of online 
servents, UDP (user datagram protocol) host caches). On successful connection, the 
new node updates its working list of online nodes in the P2P network and establishes 
connections (via pings) to some predetermined number of active nodes (determined by 
a response pong). To search, a node sends a query message to its list of active nodes; if 
a receiving node does not have the requested data it forwards the request on to its list 
of known active nodes. In theory, the request will eventually find its way to every 
node on the Gnutella network through this propagation technique. On successfully 
finding the data, the node contacts the original requester to negotiate the file transfer.  

To speed download rates, extensions to Gnutella introduced the idea of swarm 
downloading (also referred to as segmented downloading). Noting that many users’ 
Internet connections have asymmetric upload/download rates, a receiving node’s 
capacity to download data is typically larger than the sending node’s ability to upload 
information. Swarm downloading hence exploits this fact: when a given file is found 
on more than one node in the network, the system segments the file so that each node 
uploads in parallel a different part of the file to the requester, thereby maximizing 
the requester’s download capacity (the data is reconstructed on the requester’s node). 
Other extensions to the base protocol have added a maximal number of node “hops” 
(e.g., search up to five neighbors away from the requesting node) to the search space 
and timeouts for query propagation (e.g., if a query is not responded to within 20 
minutes, terminate the search) to limit the impact of queries on the network. 

Critics of this approach argue that searching on Gnutella networks is often slow and 
unreliable [97]: nodes are constantly connecting and disconnecting, so the network is 
never completely stable. Moreover, given the large size of the network (some analyses 
show the network averages around 100,000 nodes at any given time), search requests 
take a long time to search and generally do not guarantee discovery. However, given 
its completely decentralized quality, Gnutella-based networks are highly robust. 

Second Generation P2P: Distributed Hash Tables 

The problem of finding information in a decentralized P2P topology resulted in two 
independent research groups coming up simultaneously with variants on the same 
solution (one at MIT, the other at the University of California at Berkeley), a concept now 
called a distributed hash table (DHT) [93, 106]. Hash tables are a common programming 
data structure that associate a key with a value, with the primary aim of providing rapid 
lookup (i.e., given the key, the value can be retrieved in O(1) or constant time). Rather 
than storing the hash table on a single computer, a DHT spreads the mapping over all the 
nodes in the network, thereby removing any centralized resource. The DHTs are used to 
store the locations of shared data files – in essence, a key is generated representing the 
file, and the value is the file itself; the DHT points to the location of a file in the network.  
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A DHT starts by choosing a hash function3 to represent an n-dimensional coordinate 
space (typically an n-dimensional torus or algebraic ring) that is mapped across the m 
nodes in a P2P network. From this hash function, the key and value pairs are mapped 
to this coordinate space. Each node in a network stores a part of the DHT; [93] refers 
to this part of the table as a zone. In addition, each node stores additional information 
on adjacent zones within the table. Within its mapped space, a node is held responsible 
for the corresponding set of possible key-value pairs. Requests for an insertion, 
deletion, or lookup is routed along the different zones (and hence, nodes) until the 
node responsible for the information is uncovered (Fig. 3.8). For example, to locate a 
record, a node applies the hash function to get the key. The key is then mapped to 
the coordinate space to discover which node contains the target entry of interest. In 
knowing its adjacent neighbors’ spaces, a node can forward the request progressively 
closer to the node responsible for the key. Once the query is received by the 
responsible node, a lookup occurs to discover if the data is available, and which node 
holds the actual file. As nodes are not fixed in a P2P network, the DHT technique must 
handle the continual changes in the network topology to keep the index consistent. 
As nodes join the network, they split the zone of the node they connect with, 
becoming a new neighbor. Conversely, as a node leaves the network, its neighbor 
merges its zone’s contents with the node’s to take over the mapping space. To provide 
additional robustness, a DHT-based network may utilize several hash functions (hence 
overlaying multiple mappings) on the nodes to ensure that if mapping information is 
lost (e.g., a node does not cleanly leave the network before its zone is consolidated) 
that another route can be used to find a given piece of data. 

DHTs thus provide a decentralized search mechanism, as each node is only locally 
aware and routes actions based by “pointing” in the right direction; but, unlike simple 
search, this method guarantees a definitive answer as to whether a given file exists 
within the network, and within a finite amount of time. The first implementations of 
DHTs brought about several questions about how to improve P2P search performance 
[94]. First, because the assignment of adjacent zones has no correspondence to the 
real-world physical network, a zone’s neighbor may actually be located thousands of 
miles away, resulting in increased network traffic and delays; if geographic proximity 
could be taken advantage of in the assignment process, faster routing could occur. 

                                                           
3  For those readers unfamiliar with this term, a hash function can be thought of as a 

(mathematical) operation that for a given object generates a (unique) signature 
(called a hash code or key) based on the object’s content. Typically the hash 
function space is much smaller than the object itself, allowing for a compact 
representation. A basic example of a hash function is the modulo operator. 

Second, the framework considers all nodes as equivalent in the DHT; yet it is clear  
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Figure 3.8: Distributed hash tables break up an n-dimensional key space across 
multiple nodes in a P2P network. Dotted white lines show the mesh topology of the 
network. In this simplified example, a 2D space is used over six nodes, with values 
ranging from 0-1. Each node maintains information on adjacent zones, allowing it to 
propagate a query towards the node responsible for maintaining a requested key. Here, 
a query from the node in Zone A for they key <0.8, 0.9> is progressively forwarded 
(dashed arrows) to Zone D, which is responsible for the range <0.75-1, 0.75-1>. 

that ultra-peers and nodes with more resources can handle a larger part of the DHT, 
protocols could distribute the zones in a more optimal manner. 

Third Generation P2P 

Although the second generation of peer-to-peer overcame centralized search to create 
robust networks, overall performance and security in these open systems still proved 
challenging. Efforts in the latest generation improve upon these efforts based on 
inspection of real-world network behavior, often resulting in hybrid frameworks. For 
example, research has suggested that superimposing a small random set of connections, 
akin to the unstructured nature of Gnutella networks, into a DHT map (i.e., having 
some nodes maintain information on a randomly chosen non-adjacent node), can 
improve search performance [99]. Two protocols, BitTorrent and Freenet, help to 
underscore some of the ongoing issues. 

BitTorrent. Observation of P2P networks noticed that data that was in widespread 
demand but available from only a small number of nodes on the network often resulted 
in substantial slow down of download speeds, as these nodes were forced to split 
their upload bandwidth across multiple requests. Contributing to this problem was 
the fact that nodes successfully downloading this data in turn did not share it with 
other requesters, which would help alleviate the overall demand by spreading the 
requests over a larger pool of resources. The BitTorrent P2P protocol [20] was 
developed in response to this issue, leveraging swarm downloading concepts to enable 
fast dissemination of a given data file to a wide audience of users. The basic idea is 
that BitTorrent nodes are forced to share the data that is downloaded from the network, 
thus adding their upload capacity to the distribution effort: each user becomes a member 
of a swarm, contributing to the spread of a given file’s contents. 
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A file that is to be shared is initially segmented into several blocks, and a hash code is 
generated for each block using SHA-1 (secure hash algorithm). The hash code is used 
as a checksum value and to uniquely identify the block. The address of a tracker, a 
server that is responsible for maintaining a running list of nodes that have downloaded 
a given block, is combined with the hash codes into a single file, called a torrent. To 
download a shared file, a node must obtain the appropriate torrent and contact the 
designated tracker. The tracker orchestrates the download process, directing requesters 
to a given node to acquire a block; the tracker thus distributes the requests over the set 
of nodes within the swarm. Note that a given node, in the process of still downloading 
the entire data file, may at the same time be uploading a given block to another 
node, optimizing its participation in the dissemination process. In point of fact, the 
BitTorrent protocol gives preference to those nodes with higher upload bandwidths by 
automatically connecting such nodes to more download connections in order to speed 
sharing. Overall, BitTorrent has the effect of increasing average download speeds 
when more users connect to download/upload a given file. Markedly, unlike other P2P 
frameworks, the BitTorrent protocol does not handle searching within the network; a 
given node must discover the torrent through some other means (e.g., a web search). 
Because the tracker serves as a centralized resource, successive changes to the original 
BitTorrent architecture have introduced several trackers and “trackerless” torrents 
based on distributed hash tables to improve overall reliability. 

Freenet. The premise of Freenet is to provide a completely anonymous and secure 
means of P2P data sharing [19, 109], ensuring the integrity of content and the privacy 
of its users. The system is designed so that documents stored by Freenet are completely 
encrypted and replicated across a large number of continuously changing, anonymized 
computers in the network. Communications between nodes are also encrypted. The 
discovery of which nodes host a given file is further complicated by the fact that a 
given file may be broken up into sections spread out over multiple nodes. To support 
this construct, Freenet participants must allocate a portion of their computer’s storage 
space to hold shared content – however, the user has no control (or direct access) over 
what data is stored locally, a somewhat controversial feature of the system. 

Freenet uses a concept called key based routing (KBR), which is similar in nature to 
distributed hash tables. Each document inserted into a Freenet network has a key that 
uniquely identifies the object. Two types of keys are supported: content hash keys that 
use SHA-1 as a checksum; or signed subspace keys (SSK) based on public key 
infrastructure to sign a document and validate its contents. Each Freenet node stores in 
its local cache information not only about its documents and their keys, but also a 
routing table that associates other Freenet nodes with their performance in responding 
to a given key. These performance statistics are used by a node to decide how best to 
route requests. Thus, for example, to find a given document, a node first looks in its 
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local cache for the key; if it does not find this key, it uses the routing table to 
determine the node that will most quickly be able to locate the key and passes along 
the request. This search process propagates accordingly from node to node. The search 
algorithm incorporates logic to stop recursive/redundant search paths, allowing a 
node to retract repeated requests by trying the “next best” entry in its routing table. 
Searching terminates when either the data is located, or the query passes through a 
maximal number of nodes; at which point the search path is traversed in reverse, 
passing back the requested data if found and updating each node’s routing table with 
performance statistics. Data is checked by each node against the key to ensure that 
the document’s content is unchanged. A novel feature of Freenet occurs in the 
response step, as intermediate nodes (i.e., between the requester and source nodes) 
may decide to create a local copy of the data based on previous search patterns. This 
copying step is based on the idea of moving data “closer” to the requester on the 
assumption that other nodes in the requester’s neighborhood may similarly ask for the 
same data. The results of this intermediate caching are twofold: 1) data replication 
occurs naturally; and 2) subsequent retrievals of the data may be faster (requiring 
less node hops to find the data). Freenet document insertion follows the same node 
traversal pattern described for searching, automatically deciding where to route the 
document for storage in the network and potentially partitioning the file in the process; 
in doing so, documents should be found where expected. But as with Gnutella, Freenet’s 
protocol cannot promise that a given document will be found in a timely manner, even 
if it is stored in the network. 

Freenet’s design ensures that no tracking information is maintained so that a given 
node only knows about its neighbors and their requests; the ultimate source of a given 
document (and conversely, a requester) is hidden. As a node passes a document to its 
neighbor, it does not know if the neighbor will subsequently forward the document to 
another node or if the neighbor is the original requester: this policy is intentional, so 
that anonymity is maintained.  

P2P Healthcare Applications 

Several systems have adopted P2P concepts in application frameworks for healthcare, 
focusing on the need to share patient data for clinical and research purposes.  

Santa Barbara County Care Data Exchange (SBCCDE). Initiated in 1998, the 
Santa Barbara County Care Data Exchanged aimed to make a patient’s medical record 
electronically available to any authorized individual, including the patient himself [14]. 
The intention was to provide access to demographics, imaging, pharmacy, laboratory, 
insurance (e.g., authorization) and other clinical records through web-based portals. 
Building a county-wide, public healthcare infrastructure, SBCCDE was also meant to 
assess if information sharing between healthcare participants was feasible; if such a 
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framework would be sustainable; and whether improved outcomes would ensue (e.g., 
better patient care, lowered costs, etc.). Acknowledging the fragmented nature of 
existing technology across the numerous information holders (due to a lack of standards 
implementation), a “brokered” peer-to-peer system was originally chosen to realize 
data sharing. P2P agents at each site provided data translation and integration in a 
mediated manner. Centralized services included a master patient index (MPI)4, record 
location, and access controls (i.e., determining authorized system users, and which 
users would have rights to a given piece of data). A similar mediated P2P architecture 
is described in [33], which puts forth the idea of a trusted physician (or caregiver) to 
authorize data access. Unfortunately, although early reports lauded the project and 
results were encouraging (e.g., a reduction in redundant lab and imaging exams), the 
SBCCDE experiment was ended in late 2006 for a number of reasons. [78] cites the 
continual delays in technical deployment and the failure to establish access to key data 
sources; partly because of these issues, SBCCDE was unable to provide compelling 
functionality above and beyond existing web portals provided independently by 
participating major institutions. [48] further argues that in the long run, it was also 
unclear who should pay to support such an infrastructure. 

Shared Pathology Informatics Network (SPIN). In 2000, the National Institutes of 
Health (NIH) funded research to develop a “virtual database” for locating human 
tissue specimens across research collections distributed throughout the United States 
[27, 76]. The idea was to create a single system wherein biospecimens matching 
certain query criteria could be easily found and then shared. A P2P framework was 
proposed within the CHIRPS (Consented High-performance Index and Retrieval of 
Pathology Specimens) project, using the idea of super-nodes to establish a routing 
meta-layer to pass queries between participating sites. A shared XML syntax for 
the query and results was developed for this system. Each institution or group of 
institutions identifies a super-node, responsible for authentication and distributing 
queries to secondary databases; the super-node also knows how to translate a query to 
its specific databases and conversely, how to transform the results to the given XML 
format. A mesh network is created between the super-nodes. Thus, a query from a user 
of this system would pass from the client to its super-node, who would in turn pass it 
to other super-nodes, propagating the query to the underlying layer of databases. 
Results are sent in reverse through the super-nodes, aggregated per site. This approach 
minimizes the information needed to establish network connections to local systems, 

                                                           
4  A master patient index is a mechanism to consolidate differing patient identifiers 

(IDs) between systems. In a simple sense, the MPI is a large table that has columns 
representing the different information systems, with rows being an individual: a 
given row entry thus provides a map between systems. 
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instead making authorized super-nodes responsible for connectivity. The strength of 
this architecture lies in its degree of institutional autonomy to implement specific 
policies at the super-node level; however, if a super-node fails, this removes all of its 
underlying databases from a search and can potentially partition the network. 

Grid Computing 
The prior section viewed P2P as a means to share data; we now turn to the bigger 
picture of distributed computing and the sharing of resources in general. The phrase, 
grid computing, was termed in the 1990s to describe an environment where a 
multitude of networked computers are available to handle computationally expensive 
processes5. Well-known applications of grid computing encompass a range of areas, 
from astronomical data analysis (e.g., SETI@home) to bioinformatics (e.g., protein 
folding and modeling). P2P file sharing has been perceived as a subset of grid 
computing [30]; however, the former now concentrates on the problems of distributed 
search and routing, while the latter focuses on application infrastructure. Note that 
grid computing differs from parallel computing – while some concepts overlap, 
parallel computing typically entails the use of multiple CPUs in a single machine with 
little dependence on networking for shared memory and resources, whereas grid 
computing is dependent on network connectivity and further handles issues of multiple 
users and security. 

Grid computing aims to solve large computational problems by establishing clusters of 
computers connected through an existing network layer (e.g., the Internet). Using as a 
springboard past work in distributed computing, today’s grid computing thus seeks to 
combine resources into a single “umbrella” and to hide the complexities of the system 
from the average user. The coming together of different groups and resources into one 
entity for a mutual, computational purpose is often referred to as a virtual organization. 
The fundamental difficulty lies in how to transparently share a heterogeneous pool 
of resources (e.g., varying hardware, computing platforms, programming languages, 
etc.) across different users and environments that may span geographically significant 
distances. As such, some issues in grid computing include: 

 Providing an open and generic application-level framework so that current 
applications can be readily (if not automatically) transformed to take advantage of 
a grid. Such a framework would necessitate a system capable of analyzing a 
program and intelligently splitting data and processes across grid participants. 

                                                           
5  Arguably, the concepts inherent to grid computing have their origins in older areas 

of computer science, including cooperative computing (1970s) and distributed 
computing and processing (1980s). 



146 A.A.T. Bui and C. Morioka 

 A description language for facilitating resource discovery on a given node 
participating in the grid. With such knowledge, the grid should attempt to mitigate 
the effects of any slower resources on an overall computation by optimizing 
execution plans (the so-called “least common denominator” problem, in which the 
speed of a given computation is limited by the slowest computer). 

 Quality of service (QoS) requirements of a given program and/or user for a job 
submitted to the grid should be guaranteed, along with reliability and consistency. 

 The performance threshold for a given application needs to be carefully considered. 
The use of additional distributed computational power to execute an algorithm 
does not assure speedup: there is an inherent overhead with the use of a grid (e.g., 
with management of sub-processes, network traffic, etc.), which can be negligible 
for “large” problems but may actually penalize simpler programs. 

 Given the shared environment of the grid, data and programs should be accessible 
only to authorized individuals, ensuring security. 

A dichotomy has been suggested for describing grids based on their intended 
functionality: 1) computational grids, which tackle the sharing of CPU cycles; and 
2) data grids, where data is the primary resource distributed amongst nodes and proessed 
accordingly. However, both grid types share a set of supporting services, including: 
responding to queries about the status of a grid and its contents; data and session 
management to distribute files and handle submitted jobs (e.g., scheduling, resource 
allocation); and load balancing. Several middleware layers have been developed to 
support grid functionality and the division of labor over a large number of CPUs. 
For example, BOINC (Berkeley Open Infrastructure for Network Computing) is a 
generalized client-server architecture for distributing processing tasks in a “volunteer 
computing” model [4]. We further describe two systems that presently typify general 
architectures for distributed grid computing: the Globus Toolkit, and Condor. 

Globus Toolkit 

The Globus Toolkit (GT) [29, 110] is an open source implementation of several 
standards set out by the Open Grid Forum, an international community of grid 
developers and users. Because of its ongoing standards support and its ability to work 
with several other high performance computing packages, including MPI (message 
passing interface, commonly used in parallel computing) and Condor (see below), 
Globus is frequently used as middleware to allow applications to take advantage of an 
underlying grid infrastructure. In particular, the Globus Toolkit follows the Open Grid 
Services Architecture (OGSA), a service-oriented model for ensuring interoperability 
of communication and data between grid participants [87]. First released in 2003, 
OGSA uses XML and web services as building blocks for grids.  
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GT has implemented protocols and tools in four areas, which collectively can be used 
to support a grid and its applications:  

1. Resource management. The grid resource allocation manager (GRAM) protocol 
is responsible for remote job execution, allowing communication between job 
schedulers and other aspects of the grid infrastructure. GRAM itself is not a job 
scheduler, but rather handles the authorization, submission, monitoring, location, 
and termination of jobs submitted to grid resources. As of GT v4.0, GRAM 
supports JSDL (Job Submission Description Language), an XML specification for 
describing non-interactive tasks for execution on remote systems. 

2. Grid information services. The monitoring and discovery service (MDS) provides 
information about resources available through the grid and their respective status.  

3. Data management. Several methods have been established by grid developers for 
quickly moving/replicating data between nodes as part of computational tasks, 
including GridFTP (a grid-based version of the conventional file transfer protocol), 
and data replication services (DRS) to facilitate local access. 

4. Security. A concern of early developers was the lack of a single method to 
authenticate grid user across resources: a single sign-on mechanism was needed. 
The grid security infrastructure (GSI), a public key cryptography system for 
authenticating users and encrypting communications, was conceived partly in 
response to this issue. GT implements the GSI as part of its security framework. 

As alluded to prior in the discussion of data standards, a continual impediment to large 
scale data analysis is the multitude of data formats that exist, and the subsequent data 
management that must occur across the collections. To surmount this problem in the 
grid, OGSA data access and integration (OGSA-DAI) is a web service that facilitates 
the querying, retrieval, updating, transformation, and delivery of data distributed 
across the grid (i.e., to grid clients). The objective of OGSA-DAI is hence to enable 
federation of disparate, heterogeneous data sources into a single logical resource: data 
in the form of (relational) databases, XML, and other file formats are made accessible 
on the grid through a uniform set of operations. Access to metadata about grid data 
sources is supported. In essence, OGSA-DAI attempts to minimize the need for 
technical knowledge of underlying data sources (i.e., location, formatting) in accessing 
grid-based data collections, allowing the user to focus on the task of analysis. Closely 
aligned with OGSA-DAI are web services supporting queries across the grid. OGSA 
distributed query processing (OGSA-DQP) consists of two parts: 1) the grid distributed 
query service (GDQS) that coordinates and optimizes a query across different data 
sources on the grid, acting much like a “globalized” database query compiler; and 

 

2) the query evaluation service (QES), which executes the determined query plan on a  



148 A.A.T. Bui and C. Morioka 

given data source. The implementation of OGSA-DQP intertwines with OGSA-DAI at 
several points: GDQS uses metadata about a source (e.g., the database schema) to plan 
the query; and QES employs OGSA-DAI to abstract configuration issues for data 
access. 

Notably, the latest version of the GT supports several programming languages (e.g., 
Java, C, Python) and is based heavily on the web services resource framework (WSRF). 
Classic web services are stateless operations: between different sessions, there is no 
idea of data persistence. WSRF allows web services to maintain a state across different 
sessions, creating distributed entities that encapsulate both properties and methods. In 
many ways, this concept can be likened to a CORBA orb. 

Condor 

Condor is a batch job submission and management system supporting high throughput 
computing [21, 108]. Although not considered a grid in the same sense as an OGSA-
based system, Condor allows for the formation of computer clusters from standard 
desktop workstations and servers (like a Beowulf cluster) using spare CPU cycles (i.e., 
when the computer is idle). Indeed, Condor’s strength lies in its full framework for job 
scheduling, queuing, and execution. A high-level description of a Condor network and 
a job submission is as follows: 

1. Each computer participating in the network installs a background daemon process 
that informs the Condor system of its available resources (e.g., amount of physical 
memory, disk space allocated for runs, operating system, available program 
environments, etc.). The system’s description is called a machine ClassAd. This 
cluster of contributing computers is termed a pool. The daemon also monitors for 
idling activity, alerting the pool as to when the computer is available for use.  

2. A user submits a job description to the pool. This description, known as a job 
ClassAd, specifies execution requirements and desired performance (e.g., the 
location of the program executable and data files, amount of memory needed, 
etc.).  

3. One computer designated in the pool, the matchmaker, is responsible for planning 
and scheduling the job. Planning entails the identification of resources needed to 
properly execute the job, matching machine and job ClassAds so that adequate 
resources are available. On finding these resources, scheduling determines which 
specific computers will be used, and when the procedures will be executed. The 
job goes into a queue and awaits execution across the different computers; Condor 
monitors this process, constantly updating its knowledge about the status of each 
computer in the pool and outstanding jobs. 
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4. When a resource is ready, the program is run on the machine. Execution of a 
program via Condor occurs in a sandbox, a secured area in which the program 
runs. This partitioning protects the resource from unintended (or malicious) 
runtime issues, while supporting a virtual machine and custom environment for 
the program to execute. Condor supports a variety of universes to facilitate 
different programming environments within the sandbox; for instance, the Java 
universe supports class execution in the Java virtual machine. 

5. Finally, when all parts of a job are completed, the final run result is returned. 

Flexibility exists in supporting data access within a Condor network: a shared file 
system can be used; Condor can be instructed to copy required resources (program and 
data) to a sandbox as needed; or Condor can redirect input/output (I/O) requests from 
the program back to the original (submitting) machine.  

Condor is well-suited to computational procedures that can be broken into smaller, 
independent parallel tasks (i.e., no inter-process communication), running one program 
concurrently on many machines. However, Condor also enables a richer execution 
pattern by allowing multiple steps to be composited: a directed acyclic graph (DAG) 
of serially executed programs can be given to a pool. 

Ultimately, Condor and the Globus Toolkit can be seen as complementary technologies. 
Markedly, the Globus Toolkit does not contain a job scheduler – a function for which 
Condor is ideal. Conversely, Condor is geared towards clusters of computers within a 
single institution or enterprise whereas Globus was designed to bridge such boundaries. 
The synergy between Condor and Globus is demonstrated by Condor-G, a Globus-
enabled version of Condor that primarily uses an OGSA framework for connecting 
pools between organizations and handling security and resource management, and the 
Condor system for job submission and scheduling into Globus. 

Grid Computing Healthcare Applications 

Grid computing has found its way into the healthcare arena, with numerous projects in 
the United States and the European Union (EU) using this technology to support 
biomedical research. Below, several areas of development are highlighted as they 
pertain to imaging informatics endeavors. 

Medical image analysis and dissemination. To deal with both the large amount of 
data inherent to imaging studies and the complex computations that are employed in 
analysis, many research groups have exploited grid-based infrastructure to facilitate 
biomedical image distribution and processing. For example, [113] details methods to 
bridge secure DICOM protocols to the Globus Toolkit, allowing DICOM compliant 
devices to become grid resources. The Biomedical Informatics Research Network 
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(BIRN) [64] also employs aspects of the Globus and OGSA frameworks, focusing on 
shared access to neuroimaging studies and to services for analysis and visualization. 
Other works have created non-Globus based frameworks. [69] describes the use of a 
grid to handle images acquired for digital confocal microscopy, wherein a single high 
resolution image is split into tiles that are distributed across grid nodes for image 
processing. GridPACS [36, 89] provides a basis for managing online imaging datasets 
stored on a grid, virtualizing and federating data access across participants to enable 
rapid data discovery, distribution, and processing. Domain-specific applications using 
a grid to standardize image assessment (e.g., via CAD) have been prototyped: the 
eDiaMoND [61] and MammoGrid [3] efforts are demonstrative, for instance, in the 
area of mammography. 

Enabling Grids for E-SciencE (EGEE) II. EGEE II is an EU-funded computational 
and data grid, which as of early 2008 spanned over 200 sites, boasting 41,000 CPUs 
and 5 PB of storage for collaborative online processing [1, 31]. A full infrastructure 
is provided to quickly establish virtual organizations and to take advantage of this 
collective computing power. Building from past grid efforts, including Globus and 
Condor, EGEE developers have created gLite, a lightweight middleware package 
designed to further simplify grid application deployment [70]. Used in a broad range 
of scientific areas, biomedical applications are predominant in EGEE II, and specifically, 
computationally intensive tools involving medical imaging analyses. Representative 
programs in this area include: GATE, a Monte Carlo simulator for planning radiotherapy 
treatments using an individual’s imaging studies; SiMRI3D, which simulates 3D MR 
sequences; gPTM3D, for volumetric 3D reconstructions; and Medical Data Manager 
(MDM), for secure DICOM management [80]. Components of these imaging-oriented 
grid applications were explored as part of the overall MEDIGRID project. 

Cancer Biomedical Informatics Grid (caBIG). Launched in 2004 by the NIH’s 
National Cancer Institute (NCI), caBIG is an ongoing effort to unify cancer investigations 
by creating a complete infrastructure connecting teams of researchers, clinicians, and 
other individuals involved in oncology [82]. The impetus behind caBIG is to allow 
scientists to answer research questions more rapidly and efficiently, accelerating 
progress in all aspects of cancer research. A founding principle of caBIG is an 
open, extensible architecture supporting interoperability between users and systems; 
for example, an objective early on was to link NCI-designated cancer centers 
throughout the US. A differentiating point was made between syntactic versus semantic 
interoperability [118]: the first reflecting data format, the second data content. caBIG 
aimed to facilitate both types of interoperability. Thus, standards development for data 
representation and communication, as represented by caCORE [65] and caGRID [88], 
have been two important activities of this NIH undertaking. caCORE’s design is an 
n-tier architecture, providing a layer for web services for several interacting parts: 
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enterprise vocabulary services (EVS), a controlled terminology system; cancer 
bioinformatics infrastructure objects (caBIO), an object-oriented data model defining 
attributes for common entities; and cancer data standards repositories (caDSR), a 
formal means to relate semantic metadata between a controlled terminology and 
caBIO classes. caGRID is a Globus-based infrastructure whose functionality is 
threefold: 1) information and services discovery over heterogeneous resources; 2) data 
integration and large-scale analysis; and 3) distributed data management, sharing, 
and coordination (e.g., for multi-site clinical trials). Each resource within caGRID is 
wrapped as a web service, leveraging WSRF. caGRID provides support for grid 
workflow management using the web service’s business process execution language 
(BPEL) standard; aggregate/join queries involving different grid data sources; and 
large dataset retrieval using the concepts of enumeration and database cursors. Inherent 
to caGRID is an authentication/security framework, and like many computational 
grids, it has the ability to replicate and distribute services to improve computational 
throughput. caCORE is the mainstay for a semantic service-oriented architecture 
promoted as part of caGRID. By way of illustration, semantic resource discovery in 
caGRID is enabled through a service’s metadata description, defining its provider and 
the expected inputs/outputs in terms of caBIO classes. This metadata is stored in a 
Globus index service that provides lookup (similar to the yellow and white pages in 
web service’s universal description, discovery, and integration (UDDI) framework6). 
Like EGEE II, caGRID has developed an intermediary toolkit, Introduce, to ease the 
authoring of grid services and the general use of the system. 

Cloud Computing: Beyond the Grid 

Grid-based computing establishes a highly structured environment for computing 
tasks. Developing from this framework, a more general structure, referred to as 
cloud computing, has been popularized. Though consensus on a definition of cloud 
computing has yet to form, the core idea is that data is permanently stored on servers 
connected to the Internet (i.e., at data centers) and that a network of software services 
is available to act on this data; as needed, data is cached temporarily on clients (e.g., 
desktop computers, handheld devices, etc.), which utilize the online software to 
facilitate access and processing [43]. Distributed file systems, databases, and job 
allocation are integral to cloud computing; as such, existing architectures (grids, P2P, 

                                                           
6  UDDI’s terminology of yellow and white pages refers to phone books: yellow pages 

are used to find a given service based on some higher-level grouping or abstraction. 
(e.g., finding a restaurant); whereas white pages are typically used to find a specific 
address or phone number, given a piece of information (e.g., the phone number for 
Vincenti Restaurant in Los Angeles). Likewise, a web service search can be based 
on its metadata description (yellow pages) or to find its provider (white pages). 
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mediators) and newer platforms like Apache’s Hadoop are absorbed as part of the cloud 
infrastructure. By taking advantage of the ubiquity of the Web and shared processing 
power, cloud-based applications aim to enable widespread accessibility (so-called 
device/location independence, with access to data and applications “anywhere”), to 
increase system reliability, and to provide scalability in terms of the number of users 
and the dynamic availability of computational power (i.e., as needed resources). Several 
frameworks for cloud computing have been released, including Nimbus, a set of tools 
based on Globus’ GT v4.0’s grid services to support scientific applications [35]. Thus 
far, the healthcare environment has yet to exploit cloud computing; however, natural 
applications include EMR storage/access and more sophisticated processing frameworks 
for biomedical data and informatics algorithms. 

Discussion and Applications 
Now more than ever there is an emphasis on sharing clinical and research data. 
Beyond the obvious reasons of facilitating patient care outside of the conventional 
single provider/institution model, it is believed that new knowledge about diseases and 
their treatment will only come about through team science and the pooling of data, 
computational resources, and domain expertise [123]. Imaging, with its emergent role 
in all areas of healthcare, has been a particular focus so as to establish normalized 
datasets for research and validation studies [112]. In response, new information 
architectures and systems must evolve to address this shift in healthcare delivery and 
the “collaboratory” paradigm. The feasibility of these approaches must be evaluated, 
making certain that the infrastructures balance scale with performance, if not being 
widely deployable to bring together the diverse mix of existing EMR databases, tech-
nologies, and standards. And as seen with prior attempts, there must be demonstrated 
value-added to all the individuals vested in the healthcare process: physicians, payors, 
and patients are all stakeholders that drive acceptance and uptake of changes, if not 
dictating how such systems will be paid for and maintained in the future. Moreover, 
with such change come new considerations. Questions of security and ethics are now 
commingled with our increased ability to access and analyze an ever growing body of 
patient data [8, 50, 55]. As such, there is a move towards empowering the patient as a 
gatekeeper to his medical data [75]. For instance, the Personal Internetworked Notary 
and Guardian (PING) project allows an individual to control access to the contents of 
his medical record, storing copies of information into a trusted data store [103]. New 
models of data custody (i.e., who owns the data, who has rights to see the data) should 
be explored as the usage of clinical data expands. In this light, the issue of personal 
health and medical records (PHRs, PMRs) versus the EMR must now be considered: 
as commercial interests have entered the arena (e.g., Microsoft’s HealthVault, Google 
Health Initiative), the boundary between patient, physician, and institutional stewardship 
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and access are progressively blurred. It remains unclear as to whether a PHR separate 
from the EMR is advantageous: although the end users are different (i.e., patient vs. 
physician), both ultimately draw upon the same data to improve healthcare. 

Teleradiology, Telemedicine, and Telehealth 
One early area of research and development in distributed EMRs was telemedicine; 
and in the specific context of imaging, teleradiology. Broadly, the aim of telemedicine 
is to connect patient data acquisition at a local site (e.g., a rural clinic) with expertise 
at a remote site (e.g., an academic medical center). By transferring information 
pertinent to the patient’s presentation (e.g., history, signs and symptoms, images, 
etc.), a medical specialist can render an opinion and answer questions, helping guide a 
local physician’s diagnosis and therapeutic decisions. [86] defines telemedicine as, 
“the use of electronic communication and information technologies to provide or 
support clinical care at a distance,” whereas the newer area of telehealth is wider in 
scope being, “the use of electronic information and telecommunication technologies to 
support long-distance clinical health care, patient and professional health-related 
education, public health and health administration.” Both federal and private health 
insurers have covered some telemedicine services, despite the fact that the costs and 
benefits of providing many of these services have not been well studied. Indeed, while 
some debate lingers as to the efficacy of telemedicine (in terms of clinical outcomes 
and costs) [41], the majority of studies are supportive of both diagnostic accuracy and 
patient satisfaction [39]. Additionally, the small number of telemedicine studies that 
do include quality of life (QoL) metrics find a positive impact on patients [59]. 

Early efforts. Initial works in telemedicine can be categorized threefold, focusing on the 
use of telecommunications technology for medical diagnosis, monitoring, and therapeutic 
purposes whenever distance and/or time separates the patient and healthcare provider: 

1. In store-and-forward telemedicine, clinical data are collected, stored, and then 
forwarded to be interpreted later. A store-and-forward system eliminates the need 
for the patient and the clinician to be available at either the same time or place. 

2. Home-based telemedicine services enable physicians and other healthcare providers 
to monitor physiologic measurements, test results, images, and sounds, usually 
collected in a patient’s residence or a care facility. 

3. Office/hospital-based telemedicine services are real-time clinician-patient inter-
actions that substitute for face-to-face encounters between a patient and a 
physician or other healthcare provider. 

Perhaps because of the innate nature of medical imaging in producing a visual 
representation that requires specialist interpretation (thus making the data amenable to 
transmission), teleradiology was one of the initial telemedicine efforts. Teleradiology 
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is now the leading application in this area, and was the first to receive full 
reimbursement under US Medicare provisions. Teleradiology involves the transmission 
of medical images to a radiologist for final interpretation. The first documented use of 
teleradiology occurred in 1950 in Philadelphia, PA: [34] developed a system using 
telephone lines and a facsimile machine to transmit images between two hospitals 
over 27 miles apart (45 kilometers). In a 2003 survey, of 1,924 professionally active 
post-training radiologist, results show that 67% of active radiology practices use 
teleradiology [28]. The use of teleradiology or (distributed) PACS in multi-specialty 
private practice was significant, with 81% of survey respondents responding positively. 
For those practices that reported using teleradiology, 82% reported transmitting 
images to a radiologist’s home as the most common destination. Fifteen percent of all 
practices use teleradiology to send images outside of their own practice facilities.  

Current trends. Beyond teleradiology, psychiatry and neurology are two subspecialties 
that now provide evidence for the effectiveness of telemedicine. Namely, because 
of the primary dependence on verbal interactions for patient assessment in both of 
these fields, current technologies are ideal for supporting this mode of communication. 
Analyses have shown that various psychiatric and neurological diagnostic assessments 
can be effectively administered through an interactive videoconference system [42]. 
Likewise, treatments administered in these subspecialties via telemedicine frameworks 
appear to achieve comparable results with traditional patient-clinician office visits. 
Several other recent research studies have shown the benefits of home-based tele-
medicine interventions in chronic diseases (e.g., heart disease, diabetes) and rehabilitation. 
Two key benefits uncovered in these systems are the enhanced communication 
between the patient and the healthcare provider; and the closer monitoring of the 
patient’s general health. The one caveat of these studies was the requirement for 
additional resources and dedicated staff to service these home-based patients: because 
of the additional “overhead” of interpretation and management of these individuals, it 
is difficult to assess whether improved outcomes are due to the increased level of care 
provided by dedicated clinical staff versus the technology intervention itself. 

Growing out of the ability to capture and send images over broadband connections, 
telemedicine applications in dermatology and ophthalmology have grown recently 
[66], highlighting some issues in telemedicine. For instance, most studies of tele-
dermatology have evaluated store-and-forward techniques; but there continues to be 
highly variable rates in diagnoses [42]. For tele-ophthalmology, high rates of diagnostic 
concordance and accuracy are seen, but only for some eye conditions such as diabetic 
retinopathy: tele-ophthalmology has been less successful at diagnosing cataracts 
and other lens abnormalities. Other applications have shown viability (e.g., wound 
care), but limited studies (e.g., small sample sizes, few reviewing clinicians, lack of 
comparisons to conventional in-person office examinations) have hindered adoption. 
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A burgeoning area of development, several researchers have also proposed the use 
of telemedicine for oncology – that is, tele-oncology [90, 122]. Early works focused 
primarily on the use of videoconferencing to support multidisciplinary tumor boards 
[13, 53, 79]. Increasingly, efforts are turning to telemedicine to support oncology 
consults [116]; symptom and pain management in cancer survivors [26, 98]; and long-
term palliative care [22]. In these and other clinical areas, rigorous evaluations are still 
needed to compare intra- and inter-observer levels of agreement with conventional 
patient-clinician office visits. Moreover, a careful study of patient outcomes is needed: 
did the telemedicine encounter provide comparable care for the patient, as compared 
to a similar live encounter with a clinician? In general, advocacy for an expanded role 
for telemedicine in specific applications necessitates an examination of the rates of 
missed diagnoses, incorrect treatments, and under what clinical conditions should a 
patient schedule an in-person office visit and decline a telemedicine consult. 

Toward the future: Wireless health. Traditionally, telemedicine has focused on the 
transmission of patient data through landlines and fixed networks (e.g., the Internet). 
But the proliferation of broadband wireless services, along with more powerful and 
convenient handheld devices, is helping introduce real-time monitoring and guidance 
for a wide array of patients: low-cost sensors and wireless systems can now create a 
constantly vigilant and pervasive monitoring capability at home, work, and non-
clinical settings, providing continuous data collection via personal/body area networks 
(PAN/BAN) [73] (Fig. 3.9). Building from earlier works in telemedicine, a nascent 
research community is connecting medical care with technology developers, wireless 
and sensing hardware systems, network service providers, and enterprise data 
management communities. Wireless health prototypes have been demonstrated in a 
multitude of areas, such as: monitoring of the elderly and the disabled [2, 68, 71, 117]; 
physiologic monitoring [81, 111]; emergency triage [74]; and rehabilitation [63, 120, 
121]. New applications driven by ubiquitous sensing can be imagined. For example, 
the selection of a medical imaging protocol or other diagnostic test could be driven by 
an individual’s data collection over the past day, optimizing the acquisition; or follow-
up therapy could be tailored based on a patient’s quality of life and quantified 
performance in real-world daily activities. Yet while there is potential benefit to 
patients and healthcare providers, this frontier of technical innovation posits social 
implications as to how such data should be used, interpreted, and secured. And as seen 
with DICOM, success for this new area will depend critically on the development of 
standards in practice, technology, and information processing that ensures every 
required degree of interoperability, integrity, and compliance. To this end, several 
industrial consortia, such as the Continua Health Alliance and the Wireless Health 
Alliance, have been formed to initiate the standardization process. 
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Figure 3.9: A future perspective on telemedicine. With the growth of wireless sensing 
technologies and networks, a new level of monitoring is made possible in different 
environments. 

Integrating Medical Data Access 
Several strategies have been put forth to integrate the diverse set of information and 
standards seen in healthcare. Comprehensive clinical data models have been created 
and continually refined to provide a semantic view of data elements and their 
interaction; HL7 RIM and DICOM are working examples. However, each of these 
models addresses a finite area within healthcare: the interplay between entities within 
different domain models is only beginning to be addressed through integrative 
endeavors. Here, we highlight a few of these efforts; a higher-level perspective, a 
phenomenon-centric data model, is presented in Chapter 7 as a comprehensive 
abstraction for coalescing a patient record into a logical observational framework.  
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 Name Description 

Scheduled workflow Complete data flow for an imaging encounter  

Patient information reconciliation Resolution of (incorrect) patient image data association 

Consistent presentation of images Ensuring correct image and annotation visualization 

Presentation of grouped 
procedures 

Management of multiple procedures in one study acquisition 

Post-processing workflow Scheduling of image reconstruction, image processing, CAD 

Reporting workflow Tracking of reporting events (e.g., interpretation, 
transcription) 

Evidence documents Linking non-imaging data (e.g., CAD results) w/reports 

Key image note Addition of textual notes, pointers to sentinel images 

Simple image and numeric reports Standard way for generating alphanumeric reports w/images 

Charge posting Provides procedural information to billing systems 

Basic security Basic security/HIPAA, consolidation of audit trails 

Ra
di

ol
og

y 

Access to radiology information Methods for sharing radiological data across departments 

Patient-identifier cross referencing Master patient index mechanism for a given institution 

Retrieve information for display Obtaining/display documents and patient-centric 
information 

Enterprise user authentication Single-user sign-on for multiple information systems 

G
en

er
al

 IT
 

Patient synchronized applications Maintaining patient context across applications (e.g., CCOW) 

Table 3.6: Integration profiles supported by IHE. 

Integrating the Healthcare Enterprise (IHE). Started in 1998 through HIMSS and 
RSNA (Healthcare Information and Management Systems Society, Radiological 
Society of North America), IHE is an initiative designed to integrate healthcare 
information systems through the use of recognized standards, such as HL7 and DICOM. 
Fostered through an ongoing collaboration of healthcare providers and industry 
developers, the fundamental tenet of IHE is to ensure that all required information 
needed for medical decisions and patient care are available (and correct) when needed. 
Central to IHE is in the design of a framework that defines an integration profile 
that addresses some identified problem in terms of data access, clinical workflow, 
infrastructure, and/or overall management challenge within an enterprise. An integration 
profile represents real-world medical scenarios involving actors and transactions 
(somewhat akin to the idea of use case scenarios in software engineering). Here, an 
actor is defined as any entity (e.g., information system, application) that produces, 
manages, or acts on information. Transactions are exchanges of information between 
actors using messages, defined by the use of a specifically established data standard. 
Notably, integration profiles can be interdependent. Vendors are then able to take the 
integration profile and create potential software solutions, leading to implementation 
and live testing to assess interoperability between different systems; once vetted, 
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commercial products can then document meeting a given integration profile. To date, 
twelve integration profiles have been generated specifically for radiology; additionally, 
four profiles have been created for general information technology (IT) domains 
within healthcare (Table 3.6) and work is concurrent to expand to other clinical 
domains (e.g., pathology, cardiology). 

To illustrate, we consider the Scheduled Workflow (SWF) integration profile [58], a 
fundamental module in the overall IHE model for radiology. The SWF details the 
interaction between admission, ordering, and scheduling of a patient for an imaging 
study; through to the management of worklists, procedural status tracking and 
notifications; the storage and retrieval of the images; and finally the generation and 
storage of a report. This profile precisely defines the terminology and transactions 
necessary to accomplish this operation. Fundamentally, SWF describes communication 
of information between the HIS, RIS, PACS, and imaging modalities, with eight 
different actors: ADT patient registration, order placer, department scheduler (order 
filler), acquisition modality, image manager/archive, performed procedure manager, 
image display, and evidence creator. The SWF integration profile begins with the 
registration of a patient by an ADT Patient Registration actor. The patient registration 
information is passed to the Order Placer and the Order Filler. Additionally, the order 
for an imaging service is passed from the Order Placer to the Order Filler. The Order 
Filler assigns an accession number to the image order, which is subsequently used 
to link associated data together (e.g., connecting the image study to the radiology 
report). As an image order can result in more than one procedure, the Order Filler is 
responsible for creating a mapping between one or more scheduled procedure steps. In 
the IHE model, each scheduled procedure step represents a basic unit of work (e.g., by 
the technologist or radiologist) and a billable set of acts that can be coded. The 
scheduled procedure steps are provided by the modalities as part of the DICOM 
Modality Work List standard. The modalities then send Performed Procedure Step 
messages back to the Image Manager and the Order Filler so that these actors know the 
state of the patient during the imaging exam. The Order Filler can query the Image 
Manager to determine image availability, and the Order Filler can notify the Order 
Placer when the order has been completed. The modality transfers the patient’s image 
study to the Image Archive actor and then the modalities execute a storage commitment 
transaction with the Image Manager to insure that the study was stored properly into 
the PACS archive before removal from the modalities local storage device. Finally, 
after reviewing the image study, the radiologist generates a report on the patient 
diagnosis, completing the SWF integration profile data flow. 

DataServer. Although convergence is beginning, the healthcare information industry 
has resulted in a plethora of medical standards and databases for storing, representing, 
and accessing patient information. In addition to legacy and proprietary systems, 
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the goal of creating a distributed EMR becomes increasingly complicated in this 
mixed milieu. Thus, the reality is that there exist many incompatibilities between 
implementations for a variety of reasons: different versions of a given standard; 
semantic incongruities; and the development of proprietary formats are common 
confounders [118]. Rather than advocate a single standard, the open source UCLA 
DataServer project takes the approach of building atop existing and future clinical 
systems, while further providing an infrastructure to support large-scale medical research 
(e.g., population-based studies) [15, 17]. A hybrid P2P architecture is used with data 
gateways to consolidate access to all patient information (i.e., HIS/RIS/PACS, research 
databases, etc.) across multiple systems. The system consists of three parts (Fig. 3.10):  

1. Local agents. Mediators are responsible for handling local transforms to queryable 
data sources. DataServer clients use a flexible XML query-by-example syntax to 
specify the data to retrieve. On receipt, the gateway parses the query elements and 
constraints, mapping them to an underlying data source and transforming the 
query into a target source’s native format. Information may be contained in a 
database, a file system, a message protocol, or any other framework that has a 
queryable interface. The query is then executed, and the results reformatted back 
into an XML format. 

2. Patient record index (PRI). To link patient information from different institutions/ 
EMRs, a centralized index (akin to that seen in 1st generation P2P) called the 
patient record index, is used per patient to establish a queryable table of available 
information. As information is discovered/added into a patient’s record, the local 
mediator is responsible for updating the PRI; in this respect, the mediator acts as a 
servent. The PRI provides time-stamped meta-information on EMR contents, 
including a brief description and uniform resource locator (URL) to the servent 
that can provide the information. An UDDI component was built so that the 
modular capabilities of a given DataServer implementation could be published 
and a network of DataServers established. Users looking to find information 
search the PRI and use the URL to directly access patient information. 

3. Automated de-identification. An original objective of DataServer was not only to 
enable clinical access to information, but also to support medical researchers making 
use of clinical data. Such usage is tempered by various confidentiality policies set 
out by institutional review boards (IRBs) and in the United States, the Health 
Insurance Portability Assurance Act (HIPAA). DataServer includes methods to 
handle authentication and patient record de-identification. For the latter, a real-time 
de-identification engine using natural language processing (NLP) was constructed 
to identify HIPAA-specified fields within all free-text reports [107]; and an n-
blind masking algorithm was used to replace patient-sensitive information. 
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Figure 3.10: Basic DataServer architecture. A group of queryable data sources (within 
an institution) are made accessible via an agent (i.e., DataServer) that is responsible 
for mapping queries and results to the correct formats. Automated de-identification 
and caching techniques are incorporated to offset workflow impact on clinical systems. 
To find information across multiple sites, the patient record index (PRI) construct is 
used as a centralized database that containers to pointers to specific EMR elements. 
The PRI is updated by participant DataServers on discovery of new data. 

In contrast to the more common data warehousing approach, DataServer supports real-
time access to underlying clinical data sources; as such, result caching and methods to 
minimize query impact on clinical information systems were developed. 

Visual integration: HL7 Clinical Context Object Workgroup (CCOW). A different 
viewpoint worth noting, CCOW is a framework for applications to be visually linked 
[47]. The underlying premise of CCOW is context management, wherein a single 
“information system” (comprised of multiple applications) is presented to the user 
through a shared, synchronized data environment that supports the user’s workflow. 
For example, the selection of a patient object in one application (e.g., scheduling) will 
inform other currently running programs that Patient X has been selected and their 
respective graphical interfaces can then be updated (e.g., Patient X’s last visit record 
may be shown in an EMR window; his current insurance information presented in 
another part of the display, etc.). Another rudimentary demonstration of CCOW is a 
single user login across multiple applications. Thus, central to CCOW is the idea that 
there exist sharable definitions of common objects between applications (i.e., the patient 
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entity, a user object, etc.). The base architecture consists of three parts: CCOW-
compliant applications; a context manager that coordinates information and event 
exchange between the applications; and mapping agents that handle data synonymy/ 
translation between the applications. Because of the nature of the communication 
between applications, secure and authenticated communications are a key concern in 
CCOW; revitalized efforts are thus focused on updating this framework to use XML-
based SAML (security assertion markup language) and a service-oriented architecture.  

Collaborative Clinical Research: Example Image Repositories 
Lastly, in step with the efforts to make clinical data uniformly accessible across 
distributed systems, many projects are capitalizing upon emergent infrastructure to 
realize collaborative research at multiple sites. While the idea of multi-site clinical 
trials is not new, the capacity to electronically collate, validate, and analyze results is 
achieving new scales of participation and powering larger studies. Demonstrative of 
this move are efforts under NIH’s Roadmap initiatives to “re-engineer” the clinical 
research enterprise (e.g., National Electronics Clinical Trials and Research (NECTAR) 
network) [85, 123]. The development of informatics infrastructure permits specialized 
projects to be launched, bring together multidisciplinary expertise from different 
sites. For instance, the EU @neurist connects clinicians and a gamut of researchers 
in different fields working on understanding and treating intracranial aneurysms: 
separately, each site/investigator would be unable to attain sufficient numbers to 
generate insight into the disease, but together this cooperative will have a sizeable 
patient population from which new knowledge can be gleaned. Several groups have 
examined the issues surrounding the creation of imaging-based clinical research 
networks and repositories: 

 American College of Radiology Imaging Network (ACRIN). With the now 
crucial role of imaging in cancer screening, diagnosis, and treatment, the NCI-
funded imaging-based clinical trials cooperative provides the foundation for multi-
institutional studies involving the evaluation of imaging protocols and treatment 
[45]. ACRIN has developed a data center capable of receiving and archiving 
DICOM imaging studies alongside associated electronic case report forms and 
clinical data needed to conduct clinical trial across the United States. The ACRIN 
data collection process enables normalization and structuring of study variables 
(e.g., using controlled vocabularies, carefully defined data dictionaries, etc.), along 
with quality control methods mandatory to rigorous scientific investigations. 
Expertise in imaging and statistical analysis is also provided by ACRIN.  

 Lung Imaging Database Consortium (LIDC). Considerable research has been 
performed with respect to medical image processing and its application for CAD. 
Unfortunately, a present barrier to the widespread adoption of these technologies 
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lies in the absence of standardized datasets upon which comparisons of competing 
algorithms can be objectively evaluated (let alone the need for a “truth” value for 
gold standard assessment). Another NCI-funded program, LIDC was founded as 
a group of five academic institutions focused on CAD methods for lung CT, 
including the creation of an imaging database of standardized thoracic images and 
quantitative results [5, 77]. Challenges tackled by LIDC include: the creation of 
methods to ensure unbiased establishment of gold standard findings (e.g., blinded 
readings, consensus procedures); the development of an extensible database to 
handle CT images and (future) derived quantitative measures; and the infrastructure 
to support web-based dissemination of the images. 

 National Cancer Image Archive (NCIA). Building from the experiences of ACRIN, 
LIDC, BIRN, and other imaging-based efforts like caIMAGE, caBIG’s in vivo 
imaging workspace has developed several tools for the management and sharing 
of images. NCIA was released as a web-based image repository linking DICOM 
imaging, annotations, genomic, and other biomarker (meta)data associated with 
cancer research [83]. NCIA provides a form-driven search interface to find imaging 
series matching various criteria (e.g., source clinical trial, anatomy, acquisition 
parameters) across its centralized database and/or remotely linked collections, 
thereby federating different image datasets. Image archive resources available 
include virtual colonoscopy, mammography, and neuroimaging. As with other 
caBIG initiatives, NCIA is driven by standards and uses controlled vocabularies to 
describe anatomical/disease categories. The NCIA software suite is a freely 
downloadable open source package that can be used to create customized 
standalone systems. 

Though the above predominantly draw from the oncology domain, image repositories 
have been established for other disease areas, including neuro- and musculoskeletal 
imaging [49, 64]. Markedly, while these major endeavors are opening new venues 
for image data sharing, the systems are still largely confined to lower-level search 
parameters (e.g., those found within a DICOM header). Ultimately, as image processing 
and search algorithms improve, content-based image retrieval (CBIR) methods must 
be integrated. 
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Chapter 4 
Medical Data Visualization: Toward Integrated 
Clinical Workstations 
ALEX A.T. BUI AND WILLIAM HSU 

s our ability to access the abundance of clinical data grows, it is imperative  
that methods to organize and to visualize this information be in place so as not  
to overwhelm users: increasingly, users are faced with information overload.  

Moreover, the manner of presentation is fundamental to how such information is 
interpreted, and can be the turning point in uncovering new insights and knowledge 
about a patient or a disease. And of course, medical imaging is itself an inherently 
visual medium. This chapter presents work related to the visualization of medical data, 
focusing on issues related to navigation and presentation by drawing upon imaging 
and other disciplines for examples of display and integration methods. We first cover 
different visual paradigms that have been developed (e.g., icons, graphs), grouped 
along dimensions that emphasize the different types of data relationships and workflow. 
Subsequently, issues related to combining these visualizations are given1. As no single 
graphical user interface (GUI) can accommodate all users and the spectrum of tasks 
seen in the healthcare environment, the ultimate goal is to create an adaptive graphical 
interface that integrates clinical information so as to be conducive to a given user’s 
objectives: efforts in this direction are discussed. Throughout, we describe applications 
that illustrate the many open issues revolving around medical data visualization.  

Navigating Clinical Data 
Many of the visual components seen in today’s electronic medical records (EMRs) are 
a direct translation of the data’s appearance in paper-based charts, albeit adapted to 
handle user interaction in a computer environment. As the medical record spans a 
growing plethora of different types of data – nominal, numerical, textual, imaging, and 
diagrammatic – a mix of these visual elements is often used within a single patient 
record. Arguably, the result has been a lack of new, persuasive interfaces that support, if 

 

                                                           
1  In the model-view-controller (MVC) framework, although the organization of data 

(i.e., the model) helps drive how information is presented (i.e., the view), we leave 
that discussion to Chapter 7.  

A 

not augment, the process of viewing clinical information. Applying ideas in information  
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visualization, creative presentation techniques will help enable users to go beyond 
traditional patterns of thinking with medical information and the EMR. 

Elements of the Display 
Many taxonomies have been proposed to group visual methods based on data type, 
structure, data dimensionality, and user task. Notably, [160] describes an object-oriented 
(OO) categorization of medical data visualization, which we adapt in this section to 
illustrate increasing levels of graphical abstraction. The lowest level of sophistication 
involves the sentential presentation of textual and numerical data in a relatively non-
interpreted fashion: lists and tables represent this category of presentation. Next, for 
quantitative and statistical information, understanding the data involves comparisons 
and trending: visually, different types of plots and charts are used to emphasize 
relative values, with the manner of such displays largely influencing interpretation. 
Expounding more conceptual relations, graphs and trees provide a further degree of 
abstraction. Finally, the top echelon of this hierarchy comprises the visual abstractions 
brought about through pictograms, which collectively aim to be graphical surrogates 
for real-world entities and concepts seen in the clinical environment.  

Lists and tables. Text and numerical data are the predominant component of the patient 
record. The most familiar method of displaying sequences of related information, lists 
are enumerated or delineated sets of textual and/or numerical items (Fig. 4.1). Typically, 
the entries in a list are short and concise, presenting a key point or summary that can 
be quickly read by the user. Examples from clinical practice include an individual’s 
medical problem list; physician worklists (e.g., imaging studies awaiting interpretation); 
and a patient’s set of current medications. Aside from a straightforward display of list 
items, today’s GUIs show lists in a number of different ways, imposing different 
modes of interaction and selection. For example, combination boxes (combo boxes) 
enforce selection of a single item, while checkboxes allow for multiple items from a  

The science of information visualization encompasses a broad range of topics, from 
issues of perception, cognition, human-computer interaction (HCI), and the visual 
communication of ideas; through to graphical methods for explaining data and 
promoting knowledge discovery. The general theory and principles of information 
visualization are well-described in seminal texts by Tufte [169-171], Shneiderman 
[156], and others. [32] provides some early perspective on information visualization in 
relation to medicine. Here, we concentrate on graphical representations as they relate 
to medical information. This section starts with a classification of the basic graphical 
widgets used to present singular, structured elements of clinical data; these visual 
representations are the mainstay of today’s displays. Building from these basic 
elements, approaches are covered that support the graphical comparison and discovery 
of relationships between (heterogeneous) data elements. 
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Figure 4.1: Lists and tables are a common graphical component used to present 
clinical data. From left to right: a patient’s medical problem list is shown using a 
searchable and scrollable list, with tooltips presenting more specific information; radio 
buttons, checkboxes, and combo boxes are used to provide selection capability from 
a fixed set of options; and table are often used to present multivariate data for 
comparison, such as with lab panels. 

group of related entries. List entries can serve as hyperlinks, allowing a user to access 
further information. Lists are generally univariate in that a single concept is being 
communicated per item. Tables (also referred to as grids) can be seen as extension 
of lists to present multivariate information, where each row in a table in a single entity, 
and each column is an attribute of the entity. An archetypal use of tabular views in 
medicine is the comparison of different lab panel values over a set of dates (Fig. 4.1, 
right) in flowsheets. Adaptations on tables include colorization and re-orderable matrices. 
In the first variant, the range of values for a variable is mapped to a color spectrum so 
that cells are filled with a color rather than a number. The second variant enables the 
rows and columns to be sorted or arbitrarily arranged to facilitate pattern discovery. 
Heatmaps use both colorization and re-ordering [50], and are widely used to visualize 
large quantities of data such as in the analysis of expression data from DNA microarray 
hybridization experiments.  

Plots and charts. Information presented within tables, although precise, fail to foster 
rapid interpretation of subtle trends, especially over a large number of data points. 
Thus, the next level of graphical abstraction seen with medical data involves plots and 
charts (the terms being used interchangeably), wherein the relative nature of numerical 
data is contrasted to illustrate changes in values or comparative differences. Data 
presented in tables can be transformed into a suitable chart to visually accentuate 
patterns. Elementary graphical charts include:  

 Line and scatter plots. A common graphical representation is the 2D line plot, 
wherein one axis (e.g., the y-axis) represents the quantitative value of interest 
(the dependent variable), and the second axis (e.g., the x-axis) is the space over 
which the value is sampled (the independent variable, e.g., time). For instance, an 
electrocardiogram (ECG) is representative of a line plot, where the amplitude of 
an electrical signal is charted over time. Likewise, a given laboratory value (e.g., 
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blood glucose) may be plotted to visualize increasing/decreasing trends (Fig. 4.2a). 
Pediatric growth charts are also indicative of line plots. Care must be given as to 
how line plots are used to convey information. For instance, dependent on the 
time scale, interpolating values between subsequent points may be misleading. 
Consider two blood glucose values taken on 1/1/2007 and 1/31/2008 of 140 and 
102 mg/dL, respectively: drawing a line between these two points would suggest 
that the blood glucose values have decreased over time – but in fact, between 
these dates the blood glucose may have fluctuated greatly. Scatter plots are a 
generalization of the line plot, often used in research studies to find potential 
associations/correlations between two variables over a population (e.g., linear 
relationships, clusters; Fig. 4.2b); again, one variable is explanatory or controlled, 
and the second variable is the response or observation. Dimensional scaling 
techniques (e.g., principal component analysis, PCA) can be used to reduce the 
number of attributes involved, thereby mapping a multivariate visualization problem 
to 2D where patterns may be more evident. If no association exists between the 
variables, no discernible visual pattern or trend is seen in the scatter plot. 

 Bar charts and histograms. Another well-recognized type of plot is the 2D bar 
chart, where the length of a rectangle is used to proportionally depict the value of 
a given category (Fig. 4.2c); multiple categories are then compared. Additionally, 
parallel comparisons between datasets can be visualized in a bar chart, facilitating 
intra-category comparison. To demonstrate, in a clinical trial for a drug a bar chart 
may be used to show side effects (i.e., categories) with the percent of individuals 
affected. Parallel bars may then be placed adjacent to compare these individuals 
versus a control group (e.g., placebo). Histograms are a specific type of statistical 
bar chart, wherein the categories represent tabulated frequencies of a given value 
(or values over uniformly divided ranges). An image histogram, which plots the 
number of pixels with a given intensity value, is representative of this information 
graphic. For histograms, the choice of discretization can greatly change the 
understanding of the data. While variations of bar charts exist employing different 
graphical techniques (e.g., 3D bar charts, stacked bar charts), the overall complexity 
of these presentations and a user’s ability to correctly interpret the data can 
outweigh their utility.  

 Pie charts. A pie chart aims to provide a sense of proportion by dividing a circle 
into wedges, representing an object and its constituent breakdown. While used 
frequently, many studies show that pie charts can be harder to correctly interpret 
[54, 158] and their use is discouraged [171]. One exception to the pie chart 
paradigm is a variant, the polar area diagram [37]: rather than use the angle of a 
wedge to convey percentage, wedge angles are equal and the radius varies in 
proportion to the amount. The end effect of a polar area diagram is that the pieces 
project outwards, making similar quantities easier to compare (Fig. 4.3). 
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 Radar charts. Less widespread are radar charts (also called circular or spider 
charts), which compare three or more quantitative variables along multiple axes 
(Fig. 4.2d). The axes radiate outwards from the center of the plot, along which the 
data values for each variable are drawn on a shared scale. However, variants of 
radar charts have been defined to take advantage of shape and area by connecting 
the plotted points. [75] introduced this concept for clinical labs, with normalized 
values for laboratory data charted as a shape. Ideally, if the lab values are balanced, 
the shape will conform to the overall geometry of the radar plot (e.g., for a lab 

 

Figure 4.2: Variations of graphical plots and charts, used to present quantitative data. 
Tooltips can be used to provide specific information on a visualized data point. (a) A 
typical line plot showing a potassium lab over five sequential days. The horizontal axis 
of a line plot is often a controlled variable, whereas the vertical axis is the observation. 
(b) Scatter plots are a generalization of line plots, comparing two variables to visually 
ascertain associations. (c) Bar charts and histograms are used to compare categorical 
values. (d) Radial charts compare groups of related values for relative proportion.  

panel with six tests, the overall shape should resemble an equisided hexagon);  



176 A.A.T. Bui and W. Hsu 

in contrast, skewed labs distort the overall shape, allowing the viewer to quickly 
identify which axis (i.e., lab) is discrepant and the direction of imbalance (low 
values gravitating towards the center of the plot, high values being on the edge). 
Adaptations of the radar graph also use area to compare different observational 
sets (e.g., two time points): the overlap of an area and trends can be seen. 

Unlike lists and tables, where different GUI representations and interactions have been 
developed, plots are typically displayed as is given users’ learned behaviors in their 
interpretation. Interaction with these graphical elements regularly involves tooltips, 
filtering, and hyperlinks to the data used to construct the chart. 

Graphs and trees. Plots are intended to express numerical data; in contrast, graphs 
and trees are designed to demonstrate relations between concepts. In this section, 
the terms graph and tree refer to the formal constructs defined in computer science, 
as opposed to more generic pictorial constructs. A graph is a network of objects, 
comprised of vertices (nodes) and edges, and is said to be directed if the edges are 
arrows defining a path between nodes. A tree is a directed acyclic graph (DAG) in 
which each node only has one parent. 

Apart from their use in evidence-based medical guidelines as flowcharts illustrating 
decision pathways (e.g., eligibility criteria for a clinical trial, study design; Fig. 4.4), 
graphs are generally not seen in clinical practice. Originally intended for document-
ing process flow, a well-defined symbol set and visual syntax has evolved for  

Figure 4.3: Percentage of labs testing positive for influenza as compiled by the US 
Centers for Disease Control (CDC), from October 2007 through May 2008 [173]. 
(a) A pie chart of the total number of positive tests per month. (b) The same data, 
represented in a polar area diagram, where each wedge is an eighth of the circle. 
Although the pie chart allows the reader to establish overall proportions, the polar area 
diagram provides a better sense for comparison. For instance, it is easier to distinguish 
subtle differences between February and March based on the small change in radius. 
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Figure 4.4: An example flowchart for diagnosis of a pediatric patient presenting with 
cyanosis. Flowcharts are used to illustrate clinical guidelines and decision-support. 

communicating states, actions, and conditional/decision points using flowcharts. The 
Guideline Interchange Format (GLIF) [19] and other guideline models [130] use 
flowcharts for the graphical expression of clinical algorithms. Flowcharts have also 
been used to educate and guide patients [36]. Outside of the clinical arena, conceptual 
graphs and (probabilistic) graphical models have a longstanding history within 
medical informatics, being used to represent ontologies and as a part of decision-
support frameworks (e.g., Bayesian belief networks (BBNs), hidden Markov Models, 
Petri nets, etc.). The visualization of these knowledge representations is tackled in 
Chapter 9. 

Trees are used to illustrate connections between entities where the entire structure of 
a hierarchy and its encompassing relations are relevant: parent-child relationships 
(e.g., is-a inheritance); siblings (objects at the same level in the hierarchy); and clusters 
are visually portrayed, usually with the root of the tree being the most general concept 
and levels further out (i.e., toward the leaves) becoming more specialized. Information 
arranged as nested lists are amenable to tree presentations; hence, controlled 
vocabularies and clinical coding schemes are often shown as trees [17, 152]. A case in 
point, the ICD-9 (International Classification of Diseases, 9th revision) classification 
system is organized by increasing specificity of disease (Fig. 4.5a): acute pulmonary 
heart disease is a broad category (ICD-9 415); while acute cor pulmonale (ICD-9 
415.0) and pulmonary embolus and infarction (ICD-9 415.1) are more detailed causes. 
Other clinical examples of trees include: grouped medical problem lists (e.g., symptoms 
and diseases by anatomical region); composite lab tests (e.g., a metabolic panel); an 

 

imaging study and its constituent series; and structured reports, wherein a document  
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section may consist of multiple sub-parts. Dendrograms are a specific type of graphical 
tree used to envisage related groups; taxonomies and genomic analyses involving 
hierarchical clustering algorithms are indicative of this graphical element (Fig. 4.5b). 
Though not seen with clinical data, phylogenetic and ultrametric trees are noteworthy 
dendrogram specializations (Fig. 4.5c) used in evolutionary biology to demonstrate 
speciation, the latter expressing evolutionary time as a function of a branch’s length.  

The visual elements making up graphs and trees in a GUI are straightforward: textual 
labels, sometimes coupled with a geometric shape (e.g., a box, ellipse, etc.) or an 
intersection (e.g., a corner formed by two lines), are used to represent a node and the 
concept; and lines, arcs, and arrows link the nodes. Trees widgets normally show 
vertically nested lists with collapsible branches that enable the user to interactively 
select and view portions of a hierarchy. But a significant challenge comes about in the 
display of graphs and trees when there are an extensive number of nodes or edges. 
Visualizing and navigating large and/or highly inter-related datasets is problematic 
for several reasons: limited (screen) space; difficulty in identify and traversing paths 
between nodes; and overall readability are recognized issues with graphs. As such, 
numerous approaches to graph and tree layout have been proposed over the years [43]; 
[63, 73] provide a thorough overview and a discussion of layout issues. Key concepts 
for graph and tree presentation are summarized below:  

 Graph layout. Several heuristic features have been put forth to capture the visual 
aesthetics of a graph, including: minimizing the number of edge crossings and 

Figure 4.5: Different graphical representations of trees. (a) A standard GUI widget 
shows a tree as a collapsible/expandable, vertical nested list. (b) A dendogram is 
shown along with a heatmap from a gene microarray analysis. The dendrograms on the 
top and left of the figure show how different genes and test subjects are clustered 
together. (c) A circular phylogenetic tree based on [35], illustrating evolutionary paths. 

the number of bends on a given edge; minimizing edge length and its variance;  
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Figure 4.6: Graphs of the is-a inheritance hierarchy for the concept diabetes mellitus 
in the SNOMED-CT (Systematized Nomenclature of Medicine, Clinical Terminology) 
vocabulary. (a) A force-directed graph for the concepts, using the number of children 
terms as the edge weight. Layout in this format does not consider edge crossings, but 
helps illustrate the relative strength/closeness of relations. (b) A top-down layout of 
the same concepts, better showing the inheritance paths. (c) A grid-based layout. 

maximizing the angle between edges sharing a node; and symmetry (e.g., reflective, 
rotational). Several formal studies have found varying degrees of importance to  
these features, being largely dependent on the intended usage of the graph and the 
application domain. Different algorithms for computing graph layout have been 
suggested, with four broad categories: force-directed (spring-embedder) methods; 
spectral layouts; hierarchical and geometric layouts; and planarity methods (Fig. 
4.6). Force-directed methods [46] use the strength of a relation between two nodes 
to compute edge length, with hypothetical “springs” linking each pair. The relative 
position between all nodes in the graph is thus a function of the overall “tension” 
in the spring network, attempting to minimize this value. Spectral layout methods 
[67] use eigenvectors derived from the matrix representation of a graph to compute 
x-y coordinates (e.g., an adjacency or Laplacian matrix). For directed graphs, 
hierarchical (top-down) layouts can be used, where each node is assigned to some 
layer (e.g., via a topological sort) and then rendered such that nodes in the same 
layer are drawn at the same vertical level [161]. Prefuse provides a library of 
graph layout techniques [72]. Geometry has been exploited to arrange graphs: 
orthogonal layouts employ a grid to align nodes and edges; and radial layouts 
have been applied to place nodes in concentric circles. For instance, DocuBurst 
[38] uses a radial space-filling layout to delineate relationships among report 
words using an ontology like WordNet. Finally, for the special case of planar 
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Figure 4.7: A treemap of the April 2008 NCI Thesaurus, constructed of 65,986 terms 
and parent-child relationships [123], rendered using prefuse [72]. Search tools  
are often provided with treemaps; in this example, nodes with the word lung are 
highlighted. 

                                                           
2  A planar graph is a graph that can be drawn on a (2D) plane such that no edges 

cross. This problem has been well-studied in computer science and graph theory, 
with many linear-time algorithms for testing if a given graph is planar. 

graphs2, methods for embedding the graph in a plane are used to place nodes 
[31, 55]. In point of fact, some graph layout algorithms attempt to reduce the 
node/edge set to a planar graph for a base layout and then successively re-add 
nodes/edges to complete the rendering.  

 Tree layout. In addition to using the techniques for graph layout, specialized 
methods for trees have been created to address the need for visualizing large 
numbers of data points. A treemap (Fig. 4.7) and its derivatives take a rectangular 
space and progressively partition the area into smaller (nested) rectangular regions 
based on the structure of the hierarchy (e.g., number of children) or a value 
associated with the node: child nodes are thus contained within the parent rect-
angle [154]. Principal to treemap algorithms are the competing criteria of aspect 
ratios (to facilitate visual comparison) and predictable locations (to enable 
discovery). The proportionate sizes of treemap regions can be compared visually. 
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Figure 4.8: 3D hyperbolic tree visualization for the same NCI Thesaurus dataset. As 
can be seen, distribution patterns are apparent, as there are clear clusters of terms. The 
right side of the figure shows a zoom-in of the highlighted region on the left. The 
visualizations were made using the Walrus software package [41]. 

As an example, DBMap [118] uses a treemap to navigate a large collection of 
biomedical data on neurological diseases such as epilepsy and brain neoplasms. 
The treemap algorithm is capable of displaying over 4,000 nodes in an average 
of 200 pixels, allowing for a lot of information to be displayed in a small area. 
Alternatively, cone trees [62] and disc trees bring into play a 3D rendering 
perspective, arranging nodes along a given geometry: a parent node is at the 
apex or center of the shape, and the children are organized around the base/ 
circumference. Hyperbolic trees [122] take advantage of a non-Euclidean geometry 
(i.e., hyperbolic geometry) to position nodes, and have been applied to phylogenetic 
trees and other bioinformatics data [78, 109]; Fig. 4.8 shows a spanning tree 
created from the National Cancer Institute (NCI) Thesaurus using this visualization 
method. 

Pictograms. A higher level of visual conceptualization comes about in considering the 
use of pictograms to represent clinical concepts. A pictogram is defined as a graphical 
symbol that represents a concept or entity. The use of pictograms with medical data 
can be seen fourfold: 
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Figure 4.9: A pain assessment tool using a face scale and verbal descriptors. The 
facial expressions help to provide a visual context for a Likert scale. In this example, 
color is also used to provide a sense of continuum.  

1. Icons. Icons are small pictograms, and are a familiar component of modern GUIs 
representing an action or data object. A classic case of the use of icons in routine 
clinic review is pain assessment tool using a face scale, a variant of the visual 
analogue scale (VAS) that uses a spectrum of facial expressions on a Likert-type 
scale to indicate levels of discomfort and/or pain; the pictograms can be linked to 
descriptive phrases and the numerical scale (Fig. 4.9). It has been observed that 
the interpretation of icons can be subject to personal and cultural biases [34, 129], 
thus making the use of icons across populations complex. In certain cases, the 
graphic is universally understood [141]; but in domain-specific scenarios, individuals 
may initially need assistance in understanding the suggested visual cue [92]. Icons 
can also be derived from an object’s content. For instance, TileBar [71] takes in a 
set of documents and user-specified terms to generate multiple rectangular bars 
that are divided into smaller, color-coded squares. Each square represents individual 
terms; properties such as relative document length, query term frequency, and 

thus provides a quick pictorial representation of document content and relevance 
to keywords (e.g., disease name). 

2. Maps. Maps are larger pictograms, being mainly concerned with a spatial 
framework (e.g., an anatomical atlas, such as the human body; Fig. 4.10a-b). For 
instance, maps are used as surgical drawings to document the planned approach, 
and the pre- and post-operative state of the region of interest. Whole-body 
anatomical drawings are also used to quickly demonstrate affected or symptomatic 
areas. A further discussion of anatomic maps is given subsequently from the 
perspective of emphasizing spatial relationships. Maps can also used to represent 
high dimensional data, such as the contents of a clinical report. [104] abstracts a 
text document into a Kohonen’s feature map using visual cues such as dots, 
clusters, and spatially-related areas to represent the unique concepts (e.g., disease, 
drugs, chemotherapy), the frequencies of word occurrence in titles and frequency 
of word co-occurrence respectively. 

query term distribution are encoded through the bar’s visual appearance. TileBar 
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Figure 4.10: (a) Example map using a human body as a visual index for medical 
problems. (b) A surgical illustration using an anatomical map to demonstrate post-
operative patient state following gallbladder removal. (c) Although showing anatomy, 
the primary goal of this diagram is to show the velocity of blood around an aneurysm 
region in a 3D surface rendering. 

3. Diagrams. Diagrams are illustrated figures that present an abstraction or conceptual 
metaphor (e.g., a timeline for a therapeutic regimen; a structural depiction of a 
medical device; a velocity field diagram showing hemodynamic analysis in a 
blood vessel; Fig. 4.10c). Although a clinical diagram may be anatomically based, 
the primary difference between a map and a diagram is the intended communication 
of a spatial vs. non-spatial relationship, respectively.  

4. Images. Lastly, medical images are the final category, being a physical representation 
of the real-world based on either light (e.g., optical photography, such as seen 
with dermatology and post-operative surgical procedures); radiation (e.g., computed 
tomography, nuclear medicine); or other physical value (e.g., hydrogen nuclei 
interaction/relaxation, such as under magnetic resonance). The rendering can be a 
2D projectional or cross-sectional image, showing spatial relationships (e.g., 
between a tumor and normal tissue); a 3D reconstruction; or a 4D representation 
(e.g., an animated 3D visualization showing changes over time).  

The above categorization of clinical visualizations is only intended to provide insight 
into some widespread graphical elements used to communicate clinical concepts and 
data: it is by no means comprehensive. The reader is referred to [63, 70] for a more 
thorough discussion and examples of general information graphics and visualization. 

Visual Metaphors: Emphasizing Different Relationships 
The representations described thus far illustrate individual data elements from a 
medical record. However, clinicians need more sophisticated visualizations that build 
from these elementary abstractions to uncover insights into disease processes and 
patient treatments. Indeed, visualization transforms abstract data into a form that 
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amplifies cognition and discovery [27]. As clinical data repositories grow, different 
visualizations are needed to help identify important trends (e.g., increasing blood 
pressure) and relationships (e.g., an adverse drug interaction that is causing the increase 
in blood pressure). This section addresses how various information visualizations have 
been applied to accentuate associations amongst medical data. Recent innovations 
have led to novel visual metaphors, tailored to different types of data and tasks. 
Collectively, these approaches aim: 1) to make explicit the relationships present within 
the medical record; 2) to present clinical data in more intuitive, easy to understand 
formats; 3) to magnify any subtle diagnostic, therapeutic, or other management aspects 
in a patient record that would otherwise be difficult to notice; and 4) to prevent 
information overload, by simplifying displays and/or facilitating navigation and search. 
In addition to considering multidimensional visualizations, the remainder of this section 
loosely adopts a widely cited visual taxonomy [155], further categorized by the three 
relationships important to understanding medical data: temporal, spatial, and causal. 

Temporal Representations  

Change is an innate part of a disease process. The capacity to diagnose patients, and 
to reach conclusions about interventions, comes from an ability to compare two or 
more time points, noting changes between observed states. Thus, it is natural that 
temporal relationships are a heavily investigated component of the patient record – and 
consequently, the visualization of an individual’s clinical history. [6] provides a current 
review of general temporal visualization, with a time-specific taxonomy suggested in 
[5]. The predominant metaphor with clinical data is the timeline. Abstractly, timelines 
use one axis (usually the horizontal) to express the passage of time; and an orthogonal 
axis represents the variable of interest and its range. Data elements are plotted on this 
2D space to visualize the chronological sequence of events: quantitative values are 
shown as geometric objects, while more abstract entities (e.g., a document) are depicted 
as icons. Timelines can be used to represent a mix of both point events (i.e., occurring 
at a single time point) and interval events (i.e., occurring with distinct start and end 
points). 

As mentioned earlier, lab plots and trending displays are customarily time-based 
illustrations. [42] first introduced the concept of clinical timelines for non-laboratory 
data, presenting a framework that allows a user to perform four types of manipulations 
on a chronology: slice (removing events from the start/end of a timeline), filter 
(removing events that do not satisfy some condition), add (creating a new event within 
a timeline), and overlay (combining two timelines’ events into a single timeline). Two 
rudimentary operations were defined for visual processing of timelines: align, to 
match up timelines around events; and scale, to adjust rendered temporal scales. This 
initial work is expanded upon in the well-known project, LifeLines [134]: for each 
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medical condition, LifeLines uses a combination of icons, colors, and interactivity to 
delineate relationships among events. LifeLines2 [177], the successor to the original 
project, adds a set of operators that allow users to dynamically reorganize the 
presentation of data based on a certain feature. For instance, all of a patient’s events 
(e.g., physician encounters, high blood pressure) may be aligned based on the proximity 
to an event of interest (e.g., heart attack). [12] presents other approaches that extend 
the timeline concept to encode information in visual features: in this work, the blood 
oxygen saturation is encoded in the height of the timeline while colors indicate values 
outside normal levels. In general, the issues encountered with timeline visualizations 
include: 1) how to (visually) identify trends within the data, automatically highlighting 
patterns, cycles, or progressive changes in values; and 2) how to optimize temporal 
granularity given a limited amount of display space. [33] also explores the impact of 
different visualizations (springs, elastic bands, and paint strips) to emphasize the 
strength of interval-based temporal relationships. 

Trending and temporal abstraction. Time series analysis is a well-established area 
of research, applicable to a wide array of clinical observations to reveal potential 
patterns of interest. These methods, in addition to temporal abstraction techniques, 

 

Figure 4.11: (a) Example of a spiral graph. The time axis is drawn as a spiral so that 
periodicity is made visible. In this example, the green and yellow events align and are 
thus periodic, but no discernible pattern is seen with the event seen in blue. (b) An 
example of the TimeWheel representation. The time axis is shown in the middle; 
events are then plotted to the edges of the polygon (variable axes). (c) Dependent on 
how values are represented over different scales, trends may be removed. In this case, 
a dip in the value towards zero (denoted by an arrow in the top plot) is not visible on a 
wider timescale because of averaging effects (as seen in the bottom plot). 

have been coupled with visualizations to identify abnormal trends in laboratory values  
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[11, 39, 65]. KNAVE II [91, 111, 151] is a well-cited example for pairing temporal 
analysis with an interactive, exploratory visualization for discerning trends. Graphical 
queries posed by the user are automatically characterized to extract time span, 
parameters, values, and context. Results are presented using a series of timelines 
representing different concepts (e.g., white blood-cell counts). To call attention to such 
temporal trends and identified temporal abstractions, color schemes have been used: 
[74] evaluated this method for signifying lab trends, finding that novel color-coded 
visualization results in faster interpretation relative to traditional tabular views. For 
period occurrences within serial data (e.g., monthly episodes), spiral graphs [179] 
have been proposed (Fig. 4.11a): timestamps are mapped on a spiral path, with 
graphical line features (color, texture, thickness) and icons denoting events. The visual 
co-occurrence of these features then allows one to quickly identify patterns. An 
interactive, radial layout of axes for multivariate timestamped data is described in 
TimeWheel (Fig. 4.11b): the time axis is placed in the center of polygon; and the 
sides of the polygon represent a variable’s axis, with colored lines connecting the time 
axis to the edge of the polygon. Judging two sequences of events in TimeWheel is 
performed by arranging two axes horizontal to the time axis but opposite to each other 
(i.e., above and below the time axis) [166]. VIE-VENT takes a non-graphical approach 
to highlight trends, applying domain knowledge to classify patterns and determine 
qualitative descriptors [117]. Time series data can also be transformed into other 
spaces (e.g., wavelet) to aid pattern discovery [181]. Markedly, the problem of trend 
visualization and recognizing changes over time is not limited to clinical data; 
significant work has also been done in other areas, including detecting changes within 
documents [174], stock markets, and meteorology datasets (e.g., climate and weather 
patterns). 

Temporal granularity. A perennial challenge in timeline visualization is the limited 
amount of display space along the time axis. Moreover, many time series visualizations 
are based on a regularly occurring (and thus evenly spaced) data value. Unfortunately, 
data within the clinical record is unevenly spaced, being recorded at different scales of 
temporal granularity and frequency (Fig. 4.11c). For instance, an intensive care unit 
(ICU) may capture information every hour, whereas an outpatient physical exam may 
only occur annually: selecting too small a time unit will generate overly wide displays 
and/or significant empty gaps for which no data is present; conversely, choosing too 
large a time unit may result in lack of (visual) discriminatory space between events 
and trends diminished. As the longitudinal EMR becomes a reality, users will be faced 
with longer histories and data, spanning not just a few months or years, but potentially 
decades of patient information. Several methods can be applied to the granularity 
problem [9]:  
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Figure 4.12: Example imaging timeline. Sequential CT studies for a lung cancer 
patient are illustrated, allowing the viewer to determine how measurements were taken 
previously, and assess the overall change in tumor size in response to treatment. 

1. Linear scales. The simplest approach, the timeline is presented as a linear scale 
with all elements shown at a given temporal granularity that enables the entire 
time series to be displayed. The user can then interact with the timeline, zooming 
in/out on specific sections, and the temporal resolution is changed on demand to 
provide more/less information accordingly. Linear time scales can also be coupled 
with deformation techniques: a user interaction (e.g., mouse over, selection) triggers 
zoom-in behavior on a portion of the timeline (e.g., 1D fisheye distortion, accordion 
panels). Linear scales try to preserve a total sense of timeline duration. 

2. Non-linear scales. These methods space the time units dependent on an analysis of 
the data’s distribution, thus attempting to optimize the use of space. For example, 
some algorithms give time spans with more data points wider regions, while 
shrinking the width of regions with less data. In other situations, where the data 
sampling follows a known curve (e.g., logarithmic), the time axis can follow a 
similar scaling. The extreme case of non-linear scaling is the use of event-based 
indices, where each sequential element is uniformly spaced across the time axis 
(regardless of the interval between events). A consequence of these non-linear 
approaches is that the time axis length/scale is no longer representative of the 
overall duration of the timeline. 

3. Re-sampling. Finally, it is possible to resample the dataset to create an evenly 
spaced distribution, thus taking advantage of linear scaling and existing time series 
rendering algorithms.  

In the case of visual scaling and re-sampling, it is important to note that the scheme by 
which data values are interpolated and/or aggregated into new values may not preserve 
underlying trends.  

Imaging timelines. In addition to the above works, researchers have examined the use 
of imaging to produce a visual history. Given the central role of imaging in cancer to 
diagnose and assess response to treatment, a focus of these efforts has been to document  
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the variation in tumor size over time (Fig. 4.12). The Oncology Imaging Timeline 
(OITL) allows the user to capture sentinel images and bidirectional measurements 
used in computing changes in tumor burden (e.g., made by a radiologist) in the context 
of a given chemotherapeutic treatment for lung cancer [2, 23]. Primary tumors and 
other regions of interest followed by the clinician are aligned in a grid; visual 
comparison across a row easily details how a given tumor was previously evaluated, 
and the change in a given tumor. [184] provides a similar framework for lung nodules. 
Fundamentally, a similar approach can be applied to any disease reliant on imaging-
based assessment over time. The TimeLine project, an outgrowth of OITL, provides a 
problem-centric, chronologic view of medical data; this effort is described in more 
detail in an ensuing section.  

Animation methods. Timelines are typically static in that the graphics do not alter to 
explicitly illustrate time: each time point is represented simultaneously. Alternatively, 
animation can be used to expressly demonstrate the changes between states. A clear 
use of animation is in the rendering of time-based imaging studies, such as with 
angiography, echocardiograms, dynamic SPECT (single positron emission computed 
tomography), and other real-time imaging: the progressive change in anatomy or 
physiology (e.g., a contrast injection) can be visualized in a cine format. Techniques 
such as using semi-transparent isosurfaces to overlay images from different time 
points [168] and flow visualization to depict changes over time with a combination 
of directed arrows and geometric objects [137] are being explored to characterize 
temporal and spatial changes in a single image. 

Spatial Representations 

Visualization of real-world spatial features (e.g., size, shape) concerning human 
anatomy, in both two- and three-dimensions (2D, 3D), are critical to disease under-
standing. Intrinsically, human anatomy is intertwined with the notion of location and 
other spatial properties. Imaging, of course, reinforces this view, as descriptions of 
findings are anatomically based. Terminologies such as SNOMED (Systematized 
Nomenclature of Medicine) explicitly represent spatial relationships. As a result, the 
visualization of these spatial relationships is an important aspect of dealing with 
clinical data.  

2D representations of anatomy. Direction, location, size, and distance are finding 
features that can be effectively shown in a 2D visualization environment. The principal 
example of the use of 2D is traditional radiographic imaging: projectional (e.g., x-ray) 
and cross-sectional (e.g., magnetic resonance (MR), computed tomography (CT), 
ultrasound) are all shown in a two dimensional plane. The Visible Human Project 
(VHP), run by the National Library of Medicine (NLM), is perhaps the best known 2D 
imaging dataset, consisting of complete MR, CT, and cryosection images of male and 
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female cadavers [124]. VHP is responsible for several major discoveries, and has 
spawned several projects, including 3D volume renderings (see below), body atlases, 
and educational tools. But medical images only show spatial properties – they do not 
explicitly communicate specific relationships without interpretation or annotation. Rather, 
initial works in query interfaces for content-based medical image retrieval and spatial 
databases (e.g., geographic information systems, GIS) are instructive in seeing different 
approaches to visually express 2D spatial relationships (Fig. 4.13): query-by-sketch 
and iconic positioning, where users draw objects of interest (or manipulate iconic 
shapes) into the desired relative positions [44]; and iconic spatial primitives, where 
different binary spatial relationships (e.g., inside, overlapping, above/below, left/right, 
etc.) are enumerated for use in a query.  

Anatomical maps (Fig. 4.10a) are also common 2D representations for expressing 
spatial relationships, albeit with less precision than imaging. Michelangelo’s Vitruvian 
Man is a classic example, being an early study of body proportions and symmetry. 
Today, anatomical illustrations ranging from basic caricatures to precise depictions 
are used in clinical medicine. Specific domains of medicine use maps (Fig. 4.14): in 
neurology, Brodmann maps [20] assign regions of the brain to specific functions; 
pain drawings are used in nursing and other fields to solicit a patient’s perception 
of problem areas; and illustrated atlases of surgical procedures are commonplace.  

Figure 4.13: Examples of representing 2D spatial relationships. (a) Query-by-sketch 
and iconic positioning permit users to draw and/or directly place and manipulate 
templates relative to each other, compositing a picture with the desired spatial 
relations in terms of size, proximity, and shape. (b) Iconic spatial primitives are 
explicit (binary) relationships that can be used to logically describe 2D relationships. 



190 A.A.T. Bui and W. Hsu 

Figure 4.14: 2D anatomical maps demonstrating spatial relationships. (a) Brodmann 
map (sagittal view of brain adapted from Patrick J. Lynch). Each numbered region is 
associated with a brain function. Color overlays are used to further identify the frontal, 
parietal, occipital, and temporal lobes. (b) A pain diagram, asking a patient to draw the 
location and severity of discomfort (human figures adapted from Bernhard Ungerer). 

Anatomical maps are used also as general guides: [88] uses drawings of the human 
body, termed a hypermap, as a visual table of contents to ICD-9 mapped resources 
available on the Internet; [1] suggests 2D anatomic templates and icons to assist in 
radiographic reporting whereas [85] maps radiographic findings extracted from a 
report to a standardized atlas illustration. 

3D representations of anatomy. Advances in computing hardware and data acquisition 
allow the creation of 3D models of morphology and physical processes: surface and 
volume renderings are now widespread, and can be created from routine 2D imaging 
datasets (e.g., via texture-based volume rendering, wire mesh models, surface 
reconstruction algorithms, etc.). Such visualizations are more intuitive (particularly for 
non-radiologists) as they match the experience of viewing objects in the real world, 
and can be made interactive to enable multiple viewpoints. Moreover, non-traditional 
2D cross-sectional images can be interpolated from a 3D model (e.g., slices at an 
angle, rather than the conventional axial/coronal/sagittal views). Three dimensional 
representations of human anatomy can be divided twofold: 

1. Simulation. Numerous works have used 3D graphics to provide virtual experiences 
that mimic real-world diagnostic and therapeutic procedures. For example, virtual 
colonoscopy uses a high-resolution CT scan of the abdominal region as the basis 
for a 3D surface reconstruction of the colon’s surface, which can then be 
examined by a physician for polyps [132]. Similar reconstructions are used for 
lung volume assessment and bronchial pathways [90]. [128] uses a 3D model to 
picture entrance/exit wounds and likely damage incurred from stab and bullet 
wounds. 3D simulation is also popular for surgical planning and training: [148] 
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emulates the reaction of tissue and organs in a virtual dissection; [56] uses a 
deformable 3D models of the brain to assist image-guided neurosurgery systems 
with adapting to changes in tissue structure as a result of the surgical procedure; 
and 3D volume models of intracranial aneurysms are coupled with hemodynamics 
to understand optimal placement of materials (e.g., coils, clips) and approach [175]. 

2. Maps and indexing. Like their 2D counterparts, 3D representations are also 
used as maps. A navigational metaphor similar to hypermaps is used by IBM’s 
Anatomic and Symbolic Mapper Engine to demarcate a patient’s past and current 
medical issues from his patient record using SNOMED codes, showing findings 
on rotatable 3D human body [80]. Applications in neuroimaging are also 
demonstrative of 3D spatial representations, with coordinate systems (e.g., Talairach 
atlas [99, 164]) and probabilistic atlases used to identify structural changes between 
normal and diseased populations (e.g., depression, Alzheimer’s disease) [112]. 

Although many of the above are 3D spatial representations of anatomy derived from 
imaging studies, a key drawback is the computational time needed to process these 
datasets for display. Real-time applications of 3D renderings (e.g., for intra-operative 
assessment) are rare given this bottleneck. Present research to overcome this issue 
includes the use of multiple processors and specialized hardware (e.g., graphical 
processing units, GPUs; field programmable gate arrays, FPGAs) to distribute and to 
speed up numerical operations involved in (medical) image processing and rendering. 

Multidimensional Relationships 

From the perspective of dimensionality, temporal relationships can be said to encompass 
primarily 2D and 3D representations. But as evidenced prior, there are clinical datasets 
that incorporate more than three or four variables of interest. With the diverse 
information stemming from multiple (clinical) domains, a need for visualizations to help 
extract meaningful information from large dimensional datasets has become necessary 
[57]. [89] groups visual data exploration techniques for multivariate, multidimensional 
data into three classes: geometric projection, icon-based, and graph-based techniques. 

1. Geometric projection. This first group supports users in the task of reducing the 
dimensionality of a dataset to find meaningful trends. Established linear (e.g., 
PCA) and non-linear (e.g., Isomap, kernel PCA) dimensional reduction methods, 
along with factor analysis, can transform a high dimensional feature space into 
a more tenable number of (combined) variables. These results are traditionally 
then visualized using scatter plots; but for complex data, such as comparing gene 
expressions across multiple patients, a matrix of scatter plots [7] can be displayed 
in an array so that features between scatter plots can be visually correlated. 
Another technique is parallel coordinates, where each dimension is represented 
by a vertical axis and values for a particular case are linked by lines [81]. [167] 



192 A.A.T. Bui and W. Hsu 

applies parallel coordinates to facilitate searching for optimal visualization 
parameters (e.g., view position, shading coefficients, transfer function) to render a 
volume. Parameter sets are represented as lines in a parallel coordinate display 
that connects parameters and the resultant image together, visually linking a 
unique combination of parameters with its resulting output. 

2. Icon-based methods. The second group of methods maps data points to a glyph 
representation, where values determine the glyph’s appearance. For instance, stick 
figure [131] maps numerical data to be analyzed onto an iconic representation; 
each data element controls the angles and limb lengths of the stick figure icon. In 
addition, data points are represented as shapes where each dimension is mapped to 
a small array of pixels and is given a particular shape and color based on the data 
values. 

3. Hierarchical and graph-based techniques. Lastly, this third category involves 
subdividing and structuring the underlying data to identify hierarchies and 
relationships; trees, treemaps, and other graphs are representative of this group.  

One example of a visualization tool that utilizes a combination of multidimensional 
techniques is an exploratory tool, called The Cube [53]. It aims to answer the question, 
how does a set of attributes relate to each other from the available data? The display 
consists of several planes, one for each attribute that is selected, and allows a clinician 
to manipulate multivariate data from across a patient population for the purpose of 
identifying patterns. Each encounter with a patient is represented by a line connecting 
individual values in the different attribute planes. Several parallel lines, for example, 
may be interpreted as a group of patients with a similar information profile and 
potentially identical diagnosis. The researchers demonstrated their system on a dataset 
of 1,500 examinations, finding that clinical practitioner test subjects preferred the 3D 
parallel coordinates visualization to other available 2D visualizations. 

Causal Relationships  

A driving objective of clinical medicine is the determination of underlying etiology: 
why is a patient presenting with a given set of symptoms? In this light, ascertaining the 
extent of associative and causal relationships between clinical data is essential, as is 
the visualization of these relations. And because the cause is frequently unclear (for 
any number of reasons), uncertainty enters into the picture: the degree of belief in a 
relationship must also be conveyed. A useful set of semantics for visualizing causal 
relationships is given in [87]: causal amplification (x increases the effect of y), causal 
dampening (x negatively impacts the effect of y), causal multiplicity (y is the effect of 
more than one cause); and causal strength (z contributes more than x to effect y). 
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Figure 4.15: Example causal diagrams. (a) Hasse diagram for diabetes, showing the 
disease as the cause, and its symptoms as effects. (b) Fishbone diagram, providing a 
causal breakdown for delays in commencing a patient’s procedure (adapted from 
[18]). (c) A causal loop diagram showing the positive/negative feedback on kidney 
function. 

 

Curiously, few graphical examples of expressing causal relationships and uncertainty 
exist within the medical domain. Instead, many GUIs depend on the use of directed 
graphs (i.e., with arrows) to express causation between entities, such as with Hasse 
diagrams (time-space), fishbone diagrams, and causal loops (Fig. 4.15). In part, these 
visualizations are based on a linear time representation (e.g., a timeline) to suggest 
cause-and-effect mechanisms. However, these static, graph-based representations of 
causality can become cluttered and difficult to understand as additional factors are intro-
duced and/or the number of entities and relationships increases. Hence, several visualiz-
ations utilizing animation as a method of specifying causality have been developed. For 
instance, growing-squares [51] assign each process a unique color; when processes 
interact with one another, their colors mix. Importantly, in a perceptual study of the 
movement of objects on a screen, Michotte [115] showed how subtle changes in their 
movement produced large variations in the way test subjects described what they saw. 
He identified multiple factors (e.g., timing, relative ratio of velocities) that affect a 
person’s ability to perceive causality. [178] uses three metaphors taken from physics 
(pin-ball, prod, and waves) to establish visual causality vectors that express different 
types of change; evaluation confirmed that the perception of causality is highly 
dependent on the temporal synchrony between the cause and the effect. 
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Uncertainty. In non-medical applications, uncertainty has been visualized in various 
ways, employing dashed lines, arrows, color, overlays, and blurring effects to 
articulate the degree of belief associated with a value or relationship. For example, 
uncertainty maps have been used to simulate how the introduction of three new ferry 
routes in San Francisco Bay would affect other vessels in the region [114]. [58] presents 
studies that measure whether participants are able to visually assess the uncertainty 
expressed through degraded and blended icons, determining: 1) that participants are 
able to interpret the meaning associated with such icons’ appearances; and 2) that 
surprisingly, the presence of numeric probabilities expressing uncertainty (in comparison 
to purely iconic representation) does not provide a statistically significant advantage. 
Various static (e.g., glyphs) and animation techniques have also been used to specify 
uncertainty in particle/fluid flow and spatially-related data [48, 106]. 

The importance of showing uncertainty in medical imaging data is remarked upon 
in [84], observing the implications of radiographically-guided surgeries and the need 
for accuracy. One approach to showing errors margins is to combine isosurface and 
volume rendering methods. Probabilistic animation has been explored as a method 
to increase diagnostic accuracy in MR angiography [108], finding that uncertainty 
animation using a probabilistic formulation of the transfer function captures important 
alternative presentations that would not have been perceived using static, manually 
tuned renderings. Positional uncertainty can be visually represented using a likelihood 
volume representation, which assigns visual weight based on certainty: [142] uses 
this technique for rendering a drug molecule’s side chain, generating a 3D volume by 
overlaying all copies of a drug molecule’s possible positions and using increased 
opacity to denote positions where atoms are more stable.  

Navigating Images 

The use of visual metaphors expressing spatial and temporal relationships is demonstrable 
in the context of browsing large image collections and high resolution images. In 
many CT and MR imaging studies, multiple series and thus potentially hundreds of 
images are acquired. And in pathology and mammography, the full image resolution 
often exceeds the viewable screen area. While some of the images/regions contain the 
pathology of interest, most are not relevant to the patient’s diagnosis and treatment. 
Progressively, the navigation of medical images is time consuming: new ways to 
overview and to quickly isolating key regions are of rising importance.  

Optimizing space. The challenge of reviewing images has been widely looked at in 
the realm of organizing personal photography. For a small number of images, the 
traditional approach is to create scaled representations (i.e., thumbnail icons), which 
can be easily arranged in a grid. However, the popularity of digital cameras has 
created a proliferation of images such that for many collections it is infeasible to place 
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all images on the screen while still having visually discernible thumbnails (i.e., the 
scaled images are no longer recognizable). Techniques have therefore been proposed 
to maximize the use of screen real estate while facilitating image exploration, namely 
using zoomable interfaces in conjunction with optimized layout schemes. PhotoMesa 
[15] incorporates a zoomable user interface atop a treemap to help users navigate 
through large numbers of image previews. The Semantic Image Browser [83] (SIB) 
characterizes unique features within each image of a collection; related images are then 
displayed together using a multi-dimensional scaling technique. SIB also generates 
an image overview of a large collection of images that is interactive, allowing users 
to learn the contents of a collection, distributions, and relationships at a glance. A 
comparison of navigating a large image repository using a zoomable interface for 
browsing large image collections performed versus a traditional 2D grid of thumbnails 
finds that while user satisfaction is matched for both approaches, the zoomable 
interface excels in terms of the time required to find an image and overall accuracy in 
selecting the correct image [40].  

Novel 3D metaphors have also been suggested to support navigation of large image 
collections of natural scenes: [159] applies registration and morphing techniques to an 
unordered set of photos, providing the ability to explore reconstructed scenes in 3D 
and to retrieve other images that contain the same object or part of the scene. [125] 
extends this approach by proposing new techniques for automatically selecting and 
warping images for display as the user interacts with the scene. 

Temporal layout. In maximizing screen space coverage, the process of laying out 
images may not necessarily take into account additional image features that may serve 
to index or identify image content. The foremost attribute of a photo compilation is 
time: many users prefer to see their images organized chronologically [145]. Algorithms 
for clustering and selecting similar photos by date and other attributes have been 
proposed by researchers. PhotoTOC [135] introduced the use of representative photos 
to create an overview, table-of-content summary of photos clustered by data and time. 
Time Quilt [79] uses a layout that not only conveys temporal order by ordering images 
along a timeline but also minimizes the white space between photos. The photos are 
first clustered temporally (e.g., by creation date), laid out into a grid, and wrapped into 
vertical columns with a predefined maximum height. As the number of thumbnails 
increase, they become too small to be recognizable; thus instead, a representative 
photo (chosen as the middle photo of each cluster) is displayed. Alternatively, cover 
flow layouts (Fig. 4.16) and immersive 3D walls (e.g., PicLens) have been used to 

been used to provide immediate assessment of selected regions of interest (ROIs). 
provide ordered, animated views of images. And as stated before, timeline views have 
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Fig. 4.16: A cover flow example using an imaging series’ slices. By navigating left or 
right, the display shifts the images accordingly to maintain the center focal point. 

Viewing large images. As opposed to the problem of viewing many images, others 
have examined how to deal with a single image of dimensions extending beyond the 
available space. Besides using scrollbars to pan the field of view, [133] provides an 
early survey of single image browsing, identifying several strategies (Fig. 4.17):  

 Zoom and replace. The GUI provides a scaled view of the entire image, and an 
interactive tool that where the user can select a region for zooming in at a higher 
resolution. On choosing a region, the entire display is replaced with this new 
view; the reverse operation allows the user to zoom out to a previous view. 
Variations of this approach include having fixed magnification levels and selectable 
regions vs. variable magnification and user-drawn selectable regions. 

 Overview-detail. Unlike the zoom and replace paradigm, overview-detail uses a 
small portion of the screen area as a fixed thumbnail view of the entire image; the 
remainder of the screen is then used to display a selected region. The thumbnail is 
overlaid with annotations to indicate the current region zoomed region, thereby 
maintaining a sense of spatial location overall. 

 Magnifying glass metaphors. This category is the reverse of the overview-detail 
method: the entire image is displayed on the screen (scaled, as necessary), and the 
user is given an interactive tool that allows for a small portion of the image to be 
magnified, much like a magnifying glass. The magnified region is overlaid atop 
the full view, creating a small thumbnail region that moves with mouse (some 
implementations also fix the location of the thumbnail). In many medical imaging 
workstations, this tool is referred to as a magic lens.  

 Fisheye views. Lastly, building from the idea of using a magnifying lens, 
graphical distortion methods such as fisheye views can be employed: the focal 
point is magnified at the highest level of resolution, while the immediate region is 
progressively reduced. 

Combinations of these approaches are frequently supported in modern GUIs (e.g., 
the well-known Adobe Photoshop program provides both zoom and replace with 
overview-detail for editing graphics). Hierarchical strategies have also been explored:  
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Fig. 4.17: Different methods for dealing with magnification of a single part of an 
image (or image layout).  

[176] divides larger images of a pathology slide (e.g., 2400 x 3600 pixels) preparations 
into smaller regions, which are hyperlinked back to a compressed version of the entire 
high resolution image. Such an approach reduces the time and bandwidth required to 
view a particular section of the image. 

Applications to medical images. Medical image viewers commonly use three modes 
of image presentation: tile mode displays images in a side by side grid, imitating 
the traditional light box presentation of films; stack mode allows users to navigate 
through images sequentially while only viewing a single image at a given moment; 
and cine mode animates through the entire stack automatically to reproduce real time 
physiological phenomenon (e.g., cardiac muscle contractions). Tile mode is geared 
towards optimizing the use of display space, while the stack and cine modes emphasize 
spatial and temporal relationships. As ongoing improvements in scanner technology 
enable higher resolution image acquisition, the volume and the degree of detail within 
routine imaging studies will certainly escalate and it is unclear that the traditional 
modes of review will remain sufficient. 

The solutions for natural images can also be adapted toward the medical domain, with 
several considerations: 1) the spatial ordering of image series must be preserved; 2) 
the use of graphical distortion should be limited, as it can unduly deform image 
proportions and make visual comparisons difficult; 3) thumbnails keeps pertinent 
details and are of sufficient size to be useful to the clinician; and 4) methods that 
work for diverse, contrasted image sets are avoided, given the grayscale nature of 
radiographic images and the high degree of similarity between slices. As a case in 
point, one can borrow from the idea of contact sheets used in photography, allowing a 
user to see a grid of appropriately sized thumbnails (Fig. 4.18). Mousing over a given 
row in the grid has a “loupe” effect, providing a fully magnified view of those images, 
and helps to maintain perspective for comparisons. On identifying slices of interest, 
temporal views can then be generated with other studies automatically aligned to the 
specified anatomic levels. 
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Figure 4.18: (a) A thoracic CT series is shown using thumbnails and row zooming. 
Spatial ordering is preserved while allowing a large number of images to be shown 
in a limited amount of space. The user can click to identify key images (shaded in 
blue). (b) Based on key images, past studies are co-registered and slices at the same 
anatomical level are shown, facilitating temporal comparison. Each column is a series, 
chronologically ordered to show change. To explore surrounding slices, the GUI 
permits the user to scroll up/down and to display additional images for further spatial 
context. 

                                                           
3  Also referred to in the literature as subtraction images and difference images. 

New methods of interaction can improve how users view medical images and how 
they identify spatial and temporal relationships. For example, OsiriX [146] provides a 
customizable interface for using tailored input devices that simplify how users navigate 
through large image stacks. [94] describes a way of aligning 2D image views with 3D 
volume renderings, enabling better navigation in the latter via anatomical ROI selection 
and automated viewpoint selection. A variety of visual techniques can be employed to 
help navigate a large dataset of medical images, emphasizing spatial or temporal 
relationships: 

 [126] demonstrates the use of multidimensional visualizations and textual input as 
a method for selecting and retrieving images from the Visible Human as related to 
a particular anatomical location.  

 Difference maps3 can also be used to highlight (spatial) changes over time: two 
co-registered and normalized images from different points in time can be subtracted  
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Figure 4.19: Difference maps for a neuro-oncology patient. Adjusting for intensity 
and geometry, slices at the same anatomical level are compared. (a) Two T1 MRIs 
four months apart are compared, with pixel values “subtracted” and mapped to a color 
spectrum. The difference map is overlaid on the baseline image. (b) Difference maps 
are useful when subtle changes may not be obvious. Here, two images taken a month 
apart appear similar, but small alterations on the rim become apparent once mapped. 

to find significant alterations; the degree of change is then correlated to a color 
spectrum and superimposed on the original (shared) image (Fig. 4.19). [139] covers 
additional techniques for visualizing dynamic behavior within image sets, focusing 
on perfusion studies.  

 Visual highlights of 3D volumetric datasets are also possible, such as through the 
use of medical illustration techniques (outlining, depth perception, shading) to 
automatically emphasize anatomical features via perceptual cues [163]. 

Notably, fundamental work has been done in the perception of radiologic images [95, 
98, 113], including distinctions in how radiologists search images in comparison to a 
lay person and other factors impacting interpretation. Such efforts can provide further 
insight into methods to improve layout and navigation within medical image data. 

Combining Information: Integrating the Medical Data 
The first part of this chapter covered different graphical metaphors handling one type 
of data (e.g., textual documents, images, labs, etc.), but potentially with many features 
(i.e., multivariate). As any clinician will point out, however, today’s process of diagnosis 
and disease management is multifaceted, drawing upon several types of information 
to reach a conclusion: the understanding of a disease (and a patient) is usually not 
predicated upon a single piece of evidence, but rather several observations. We thus  
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address the question of how to coalesce the different graphical metaphors – and their 
data – into a single, comprehensive display supporting a user’s tasks.  

Defining Context 
Combining information is largely dependent on the end reason for why the data is 
combined; that is to say, how will the integrated information be used? [10] argues that 
too often, there is a cognitive leap between the display of information and its use, 
advocating methods supporting “visual thinking.” To bridge this gulf, one strategy is to 
build applications that are aware of (and hence adapt to) the environment, the user, and 
his/her goals. The idea of context-aware systems (sometimes called context-sensitive) 
was conceived of in ubiquitous computing research in the early 1990s, and has since 

an application is better able to tailor the display’s contents and GUI experience to meet 
the need(s) of a user. [8] formally defines context: “Context is any information that 
can be used to characterize the situation of an entity. An entity is a person, place, or 
object that is considered relevant to the interaction between a user and an application, 
including the user an applications themselves.” In this case, the definition of relevance 
is dependent on the user’s task. The idea of “focus + context” is to enable a viewer to 
locate an object of interest and to view the item in detail, while still maintaining an 
overview of surrounding information [27]. 

In healthcare, context-aware approaches are gaining attention not only in the mobile 
computing arena (e.g., for real-world device interactions with hospital patients given 
physical proximity, such as based on radio frequency identifier tags, RFID), but also in 
the design of EMR interfaces [13, 82]. Context-aware GUIs regularly involve user and 
task models [150]; for the medical environment and the display of patient data, a 
disease model is also needed to provide a knowledge-base that can further customize 
content. Below, we briefly focus on user and task modeling in relation to clinical 
information; a discussion of the disease model is left to Chapter 7.  

Defining the User 

User modeling is an active area of research in human-computer interaction; [59, 93] 
provide historic perspectives. The aim of user models is to provide a set of 
characteristics describing an individual or group of similar users such that a system 
can query these features to adjust the interface or presented content in support of the 
user’s tasks. The choice of user features varies greatly based on the target application, 
but can encompass: the demographics of the individual (e.g., geriatric vs. young adult 
patient; male or female); the types and degree of domain knowledge (e.g., patient vs. 
physician; urologist vs. pulmonologist); the degree of GUI familiarity (e.g., novice vs. 
expert); and user preferences. A helpful formulation in categorizing user models 

been adapted in a gamut of fields, including HCI. In theory, by using contextual cues, 
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considers three questions [143]: 1) is the user model canonical or representative of 
only one person; 2) does the user explicitly select the values to instantiate his model, 
or does the system attempt to observe, learn, and abstract the user’s features over time; 
and 3) is the model intended to support short- or long-term usage of the system (e.g., a 
single session or multiple sessions with the GUI)? Each aspect is elaborated upon 
further. 

 Canonical vs. individual. The question of whether an interface is built for entire 
populations of users (i.e., canonical) or individual users dictates its design: 
canonical models are generated as part of the implementation of the system and 
do not change over time while individual models are built and maintained for each 
new user. In one popular approach, canonical models categorize users into basic 
groups (e.g., novice, intermediate, expert) called stereotypes [143]. Each group 
has its own unique set of assumptions that guide what interface elements are 
presented. For instance, novice users may need additional guidance and tooltips 
that help with familiarization of the interface while expert users may be presented 
with more functionality to provide quicker access (e.g., keyboard shortcuts). 
Individual models adapt to the user’s preferences over time by learning how the 
user interacts with the interface. For example, if the user frequently accesses a 
particular function or needs a particular piece of information, the interface 
identifies and changes to make the function easier to perform or to automatically 
display the information. Many adaptive systems take a combined approach where 
the default settings are based on a canonical model but as the user interacts with 
the interface, an individual model is generated. 

 Explicit vs. implicit. Models may also be classified as explicit or implicit. In 
explicit models, information about the user and task is provided manually by the 
system designer or user. In implicit models, information about the user is collected 
by the system through the course of normal interaction. Explicit models allow 
users to customize aspects of the user interface such as changing the layout of the 
display by dragging and dropping elements on the screen or selecting specific 
preferences or stereotypes from a list of options. Implicit models try to learn the 
user’s preferences by observing and recording the user’s system interactions. 
Straightforward approaches include counting the frequency by which a user 
accesses a function or restoring the user’s last used workspace. More sophisticated 
machine learning methods can also be used to compute implicit models. 

 Short-term vs. long-term. Short-term characteristics are often associated with 
preferences or assumptions about a user that are valid over a single session. For 
example, a short-term factor would be to use the hospital information system to 

 
query for the patient’s current list of prescribed medications; meanwhile, another  
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user may query the system for other information such as patient admissions, 
discharge, and transfer data. Long-term characteristics tend to describe user 
preferences that do not change across multiple sessions of using the application. 
The color schemes for an application or the default printer to which documents 
are outputted are examples of long-term factors. 

For the most part, processes for generating user models have centered on explicit (e.g., 
building stereotypes, measuring user satisfaction [144]) and implicit methods (e.g., 
collecting data on the user and invoking machine learning techniques to generate 
structural descriptions about user behavior and interests [61]).  

Though user modeling has been incorporated into many applications, two areas are of 
interest here: customizing GUIs to better suit the user (adaptive interfaces) and tailoring 
presented information to be relevant to the user’s interests (adaptive hypermedia).  

1. Adaptive interfaces. Adaptive interfaces build a user model based on preferences 
and goals collected through normal interaction with the user [100]. A general 
architecture for adaptive systems is presented in [16]. The most basic systems 
consist of three parts: a model that specifies the components of the system that 
may be altered; a user model; and a connecting model that defines how the system 
changes and what it can adapt to. [105] describes an episodic approach to building 
user models by first observing the interaction between the user and the software 
application, identifying different episodes from the actions, recognizing user 
behavior patterns, adaptively helping users according to recognized user plans, 
and storing this information into a user profile. Lumière [77] uses a Bayesian 
belief network computed based on the user’s past interaction with the system to 
predict the most likely task that the user is trying to accomplish. The system then 
presents relevant GUI components to help the user with the identified task. The 
modeling of interactions and tasks can also be used to inform underlying data 
models and database views, leading to user-oriented displays [136]. 

2. Adaptive hypermedia. Hypermedia is the integration of graphics, audio, video, 
plain text, and hyperlinks. Adaptive hypermedia builds upon traditional hypermedia 
but incorporates a user model to highlight relevant information, tailoring the 
presentation of this data based on what is known about the user and task [21]. 
[107] utilizes stereotypes to customize the type of information, ranked by relevance 
for a particular user, based on a given diagnosis. The system’s user model captures 
details on the user’s familiarity about each medical topic, the system’s interface, 
and unique preferences. For example, ANATOM-TUTOR [14] is a tutoring system 
to assist medical students with learning about human anatomy; it utilizes a user 
model to structure the presentation of anatomical knowledge in a method best 
suited for the users’ level of knowledge. Users instantiate the model by completing a 
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questionnaire prior to using the system; this information adjusts the level of 
difficulty of questions and the depth of explanations provided by the system. 

Defining the Task: Incorporating Workflow  

Distinct from the user’s characteristics and preferences in using a system is a description 
of the task that the user wants to complete via the system. A task model informs the 
system of the user’s intentions. For example, is a physician user reviewing a patient’s 
history through the EMR for the first time, performing a follow-up examination, or 
documenting an encounter? In each situation, different intellectual and procedural 
goals are accomplished. A number of task model methodologies have been proposed 
over the years [103] to structure task requirements from users. Such models can be used 
to identify possible usability problems with a system; to assess human performance 
(e.g., time, efficiency); and to design a GUI [102]. Task modeling and its use in GUI 
development has its provenance in HCI. A survey of task models and methods to elicit 
such information is beyond the scope of this section; however, the different models 
share several commonalities (under different semantics): 

 Task hierarchies. At the core of these models is a way to describe the end 
objective of the interaction with the system. Rarely are the specifications of tasks 
atomic: usually several sub-tasks or steps comprise a single task. Thus hierarchical 
and object-oriented approaches are taken to organize this information, with 
higher-level abstractions being aggregates of more elementary goals. An implicit 
constraint in these frameworks is that a given task cannot be completed without 
all of its sub-tasks being performed.  

 Objects and actions. Objects are the entities that participate in the task, and 
encompass the user through to the resources required to complete the task (e.g., a 
database, another individual, the system GUI, etc.). Actions are the basic methods 
that an object is capable of performing; this concept borrows from the OO 
paradigm, encapsulating entities with behaviors. 

 Roles. A user may change behaviors given different tasks. For instance, a doctor 
reading a patient medical history may be acting as a physician diagnosing a 
patient, or may instead be looking at the record as a clinical researcher extracting 
information. The concept of a role is correlated with that of a user model. 

 Operators and events. Although task hierarchies provide compositional rules, 
they do not impose any temporal ordering on (sub-)tasks. Hence, a task model 
incorporates some mechanism (i.e., operators) that provides relative sequencing 
between tasks. To describe these constraints, event descriptions are embedded 
within the model, specifying milestones and/or conditional dependencies. 
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Figure 4.20: A use case scenario. The interaction between different actors (patient, 
doctor, EMR portal, lab; left side) is illustrated in this high-level perspective of a 
physician reviewing a lab test. Actions are depicted in labeled ovals, with arrows 
between the elements denoting dependency. 

Another means of stipulating a task and its steps is seen in use case modeling, a 
technique chiefly seen in software engineering. Use cases help define the scope of a 
system, specifying the components that interact with the system (called actors); the 
expected relationships between components and their functionality; and inherent 
assumptions by users and/or the system. Each use case provides one or more scenarios 
that convey how the system should interact with users to achieve a specific goal or 
task. A scenario depicts (Fig. 4.20): the involved actors; the goals of the actors (i.e., 
why actors interact with the system); the triggering event and pre-conditions for the 
process (i.e., when the task starts); the main flow of events and possible alternatives 
(i.e., how the task occurs, with actors and the system’s actions stated); and the end 
state of the system in terms of post-conditions. A UML (Unified Modeling Language) 
standard exists for use case models, characteristically drawn with users on one side of 
the diagram and annotated ovals representing actions, moving from left to right; 
arrows between users and actions show (temporal) dependency. From these different 
scenarios, an application (and its GUI) can be designed. 

Both task and use case models are intimately tied to workflow: if workflow defines a 
sequence of operations performed by a person or group of individuals, then task 
models and scenarios are the operations at a finer level of specificity. By observing 
workflow and tasks, the integration of data components and functions in an interface 
can be anticipated as part of the users’ needs. The ribbon task interface introduced in 
Microsoft Office 2007 is illustrative: based on usability analysis, tasks are now 
grouped together into ribbon strips; the ribbon dynamically adapts based on prediction 
of the user’s current activities, adding/removing functions as appropriate. Similar 
widgets can be used in EMR interfaces and clinical workstations (Fig. 4.21). 
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Figure 4.21: Example ribbon interface for an imaging workstation, replacing the 
standard menus and toolbars. The most common functions for image manipulation, 
layout, and annotation are grouped together as on the first (home) ribbon strip; other 
ribbons are made available based on the workflow of the user and his current actions. 

Applying task models to the healthcare environment. Much of the effort in defining 
tasks within medical informatics is relegated to clinical guidelines and treatment 
planning. Several approaches have been taken in establishing “task networks” that 
impose conditional and temporal constraints on directed cyclic graphs (e.g., flowcharts), 
which in turn can be transformed into a logical syntax and reasoned upon [130]. 
Broadly, tasks in guideline languages can be broken down into three core types, as 
suggested by the PROforma project [162]: actions, which entail a procedure that acts 
upon the real-world; enquiries, which are points in the workflow where input is 
needed from some resource (e.g., another user, a database); and decisions, wherein a 
choice is made (by the user or the system) based on the available knowledge. Although 
detailed workflows and tasks have been identified in specific domains (e.g., breast 
cancer [60]), there is an absence of an ontology (or terminology) for describing generic 
clinical tasks or research-oriented tasks involving clinical data (e.g., retrospective 
analysis). Rather, ontological endeavors have focused on guideline structure, depending 
on existing vocabularies that describe diagnostic/therapeutic procedures for enumerating 
tasks. Unfortunately, this level of granularity can hinder translation to specific GUI-
related activities, which may involve higher levels of abstraction and/or other implied 
tasks; [97] touches upon this issue of granularity. For example, while searching for a 
patient’s latest lab test is a common activity, most guidelines would specify a specific 
exam and criteria (e.g., is creatinine abnormal?) – there is a disconnect between the 
GUI search task, which may be contingent on several other factors (e.g., opening the 
correct patient’s record, accessing the lab values, determining if the assay was performed, 
etc.), versus the purely cognitive process of assessing the lab value. Moreover, is 
searching for one type of laboratory value (i.e., creatinine) different than another (e.g., 
potassium)? The reason for performing a given task influences its interpretation [96]. 
Arguably, while knowing with specificity which lab a user may need in a given 
domain can certainly help guide a GUI in a given application, there remains a need 
to understand the commonality between tasks in order to improve user interface 
consistency within the EMR and the integration of patient data elements.  
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Combining Graphical Metaphors 
With context driven by the user and task models, it becomes possible to consider how 
to put clinical data together into a graphical display that suits a given need for an 
individual. Knowing the user, his intentions, and the sequence of actions to be 
completed, a program can supply what data is needed to finish a task, choose how best 
to present this information to communicate ideas, select the layout of this data in an 
interface beneficial to the user’s workflow, and determine the toolset to work with 
the data.  

Creating Integrated Displays  

The process of combining data elements into a problem-centric visualization can be 
decomposed into several steps: identifying the data that needs to go into the display; 
prioritizing the selected data; relating the data elements; selecting the appropriate 
visual metaphor for the data; and finally laying out the visual metaphors. Each stage is 
shapeable by context, as we illustrate below (Table 4.1). To ground our discussion of 
visual integration, consider the following data for a patient at high risk for coronary 
artery disease (CAD): 1) blood tests assessing cholesterol and blood glucose; 2) 
imaging including ECG, echocardiograms, and cardiac CTs; 3) free-text and structured 
reports from physicians, including radiologists, cardiologists, and the patient’s primary 
care physician; and 4) the course of treatment during this period, encompassing 
medications and interventions. Each piece of data can be presented in its own visual 
metaphor (plots, images, text, treatment descriptions) to provide a viewer with some 
information, but not the full “story” of the patient’s history or current state. 

Identifying data. In a medical display, the selection of data, as alluded to earlier,  
is decided by a disease model that outlines the (clinical) information relevant to  
the condition’s diagnosis and treatment. But by nature such models are usually 
comprehensive and the scope of information needs to be honed by the user and task 
models. For instance, in our example of the CAD-risk patient, all of the identified data 
may be needed by a physician reviewing the history, but the patient himself or his 
primary care physician (PCP) may only require certain pieces of information. Different 

based medical guidelines can be used for physician users, while educational sources 
can isolate data useful to a patient. Similarly, task models pinpoint elements of 
information needed to complete a task; of course, such data are included as requisite 
components of the display. 

 

 

knowledge-bases can be used to steer the selection and filtering process: evidence-
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Table 4.1: Example of creating an integrated display for a given medical problem 
(high risk coronary artery disease patient). The sequence of steps helps to identify the 
required data, the relative importance of each element, potential relationships between 
the data, and a means of viewing the information collectively. Each stage is conditioned 
by the user and task models, providing context to tailor the display. 

Prioritizing the data. Simply put, not all data elements are of equal importance in a 
diagnostic or treatment task. This second step has a practical purpose: by ascertaining 
what is important, the amount of visual space allocated and prominence given to a 
graphical component can be gauged. The relative priorities do not necessarily correlate 

 

with the order in which data is accessed, but with where users’ focus will linger most  

 
 PCP/Internist Radiologist Patient 

Task description Follow-up assessment Image interpretation Self-management 

   
• •  
• •  
•   
•  • 
•  • 
•  • 
•   
• •  
• • • 
• • • 
• •  

Clinical data 
Demographics 

Medical history 
Vitals (BP, BMI) 

LDL, HDL cholesterol  
Triglyceride lab 

Blood glucose lab 
Electrocardiogram  

Imaging (ECG, 
thoracic) 

PCP reports 
Cardiology reports 
Radiology reports 

Medication history 
• • • 

Prioritization 1. Labs 
2. Medical history 
3. Medication history 
4. Demographics  
5. Vitals 
6. PCP reports 
7. Cardiology reports 
8. Radiology reports 
9. EKG & imaging 

1. Imaging 
2. Radiology reports 
3. Cardiology reports 
4. Demographics 
5. Medical history 
6. Medication history 
7. Labs 

1. Labs 
2. Medication history 
3. PCP reports 
4. Cardiology reports 

Relationships Medications → Labs 
EKG → Cardiology report 
Imaging → Radiology report 

Imaging → Radiology report 
Medications → Labs 

Medications → Labs 

Visual 
metaphors 

Labs Line plot 
Medical history List 
Medication history Timeline 
Demographics List 
Vitals Timeline 
Reports (all) Icon  
EKG & imaging Icon 

Imaging Presentation states 
Radiology reports Full text 
Cardiology reports Full text 
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in the display. Once more, context can help reveal clues as to what a given user or task 
may deem important. Clinical users of a given category will likely find information 
from their own specialty of central concern: continuing with the CAD patient, a 
cardiologist would likely emphasize EKG and cardiac consults, whereas a radiologist 
may stress the CT images. From task models, processes that are conditional (i.e., 
decision points) are likely to expose important data points that should be accentuated 
in the overall display.  

Relating the data. The display of clinical information must express a range of spatio-
temporal and causal interactions; for instance, is the statin that was prescribed to 
the CAD patient decreasing his low density lipoprotein (LDL) cholesterol level? 
Being aware of the interplay between data elements, an interface can better highlight 
potential relationships. Semantic relations available expressly (e.g., rules encoded for a 
given medical problem) and indirectly (e.g., structural information derived from a 

From these connections, shared visual cues can then be used to demonstrate associations. 
Conventional cueing approaches include color coding of related data elements; spatial 
proximity (e.g., overlapping, tooltips); similar line styles, etc.  

Selecting the appropriate visual metaphor. For each selected data element, a 
graphical representation must be chosen, optimizing a user’s understanding based on 
the raison d’être for the data in the display and the viewer’s ability to comprehend and 
make use of the visualization. Choosing the appropriate visual metaphor for a given 
set of data can be thought of as generating a sentence from a graphical language [110]: 
how do we best communicate the information to a given user? A case in point, lab 
values in our example are used to ensure that the patient’s cholesterol is controlled: 
a trended lab plot would provide a temporal view, and may be an easier means of 
educating the novice patient about the need to maintain diet and treatment; whereas a 
tabular or presentation of only the last lab value may be better for an internist who 
reviews daily in an in-patient setting. Similarly, a PCP may only be interested in 
knowing that imaging exams were conducted so that thumbnail icons of the studies 
may be suitable; but a subspecialty radiologist or cardiologist may need a more 
detailed graphic. Clearly, the task model also affects the selection of the visual metaphor: 
if the internist was seeing the patient for the first time, a historic perspective (such as 
with a trended plot) would be more appropriate than the last lab value. Finally, the 
anticipated communication medium (e.g., is the display an interactive client, a web 
page, or a printed report?) will further impact the choice of visual metaphors. For 
instance, a printed summary sheet affords a higher degree of resolution (relative to a 
computer screen), but at the expense of interaction [138]. 

 

knowledge-base, an underlying data model) can be used to establish these linkages. 
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Figure 4.22: The process of layering data elements in the display. Based on the 
prioritization of the information, layers can be assigned. Opacity and interactive behavior 
between the layers can then be used to highlight relationships between the data.  

Laying out the data. The last step in integrating the data elements together is to 
spatially organize the information in the display. Here, workflow from a task model 
and the relationships between data are helpful in guiding layout, with the intent of 
creating a visual/focal flow to the presentation and interaction with the data. The 
layout of the data should take into account possible visual interactions to exploit user 
search behaviors. Shneiderman’s framework of overview, zoom/filter, and details on 
demand [155] is germane: primary data in the display can be visible in a synopsis 
state, allowing for selection and augmentation with additional data (e.g., but of lesser 
priority). Importantly, the ultimate source of information should accessible to the user. 

Dependent on the complexity and degree of graphical integration in the display, layout 
not only comprises arrangement in the x-y plane, but also layering of the visual metaphors 
(i.e., z-order), allowing for juxtaposition of graphical elements. The extent to which layer-
ing of graphical metaphors should occur is debatable. As current EMR interfaces tend 
to keep data elements separate (i.e., each type of data in its own panel), users may not 
be familiar with composited graphical displays – however, the design of new displays 
can encourage exploration and new insights. Expounding upon this idea, consider the 
visualization of the four data elements for the CAD patient: collating the selected 
visual metaphors so that a user can view the data together provides integration, but 
the separate depictions still force the viewer to implicitly relate data elements. The 
scenario can be improved by creating a single, layered graphical metaphor (based on the 
original four metaphors), enabling the viewer to overtly see relationships (Fig. 4.22)4: 

                                                           
4  Of course, too much layering of information can also be counterproductive and lead 

to overly complicated displays and/or data being obscured in the view. The KISS 
principle (keep it simple, stupid) should be followed in any design. 

the different data elements can be overlaid using a combination of transparency and  
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Figure 4.23: Two different integrated displays for a CAD patient, focusing on cholesterol 
labs, medications, consult reports, and associated imaging. (a) A classic GUI assigning 
each data element to its own panel. The separation of components can make visual 
correlations harder to appreciate. (b) A layered display with the same data elements. 
The row of document and image icons shifts vertically with the mouse position; and a 
cover flow technique is used to identify active icons. In this case, it becomes easier to 
see the correlation between drugs and the patient’s decreasing cholesterol. 

interaction to spatially relate information and support details-on-demand behavior. 
Based on these principles, Fig. 4.23 demonstrates two different interfaces for the CAD 
patient: Fig. 4.23a lays out separate panels for each data source/type, with visual cues 
to illustrate temporal correlation; Fig. 4.23b uses layers to aggregate the information 
with more explicit visual linkage. 

Interacting with Data 

Thus far, we have described representing medical data: first by using basic display 
elements and then by combining elements into integrated displays. However, 
representations are intrinsically passive – while they transform the underlying data into 
a graphical representation, they are typically static and do not provide mechanisms 
for manipulating the data. This section describes methods that focus on interaction, 
providing users with active methods to uncover new insights by posing queries to 
the data and identifying patterns in the results. The variety of interactive methods 

interactive techniques [172]); in line with the user and task models, the categories in 
[164] are followed, which categorizes based on a combination of user objectives and 
the interaction techniques that accomplish them (Fig. 4.24): 

1. Selecting. The act of selection uniquely identifies a single data point by highlighting 
it (e.g., using a different color) so that users may visually track the location of 
items of interest. Typically, selection occurs as the first step of a series of interaction 
techniques as a method to identify a subset of data elements that the user is 
interested in exploring further. 

have been organized into taxonomies (e.g., organized by low-level techniques [45], 
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Figure 4.24: Examples of data interaction methods. (a) An initial scatter plot, 
identical to the one shown earlier in Figure 4.2b. Selection is demonstrated by the 
highlighting of the current point in a different color. (b) Exploring is shown via zoom-
ing on a portion of the same dataset. (c) Reconfiguring entails the use of a different 
visual metaphor on the same data; here, the pie chart is transformed into a bar chart. 
(d) Encoding allows for data reorganization along different features; in this case, by 
plotting data by histological grade rather than age, clusters become evident. (e) Filtering 
allows for the selection/highlighting of data meeting some criteria, such as those 
patients with a given range of time to survival and Karnofsky score. (f) Connecting 
allows for simultaneous views on the same entity to be (visually) linked together. 
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2. Exploring. The amount of information displayed is limited by the screen size and 
the user’s ability to perceive an array of presented information simultaneously. 
If the amount of data is too much to fit into a single screen, tools are needed  
to explore the data. Actions such as panning and scrolling allow users to 
intuitively move data across the screen and configure the display to show data of 
interest.  

3. Reconfiguring. Sometimes a single perspective of the data is insufficient to fully 
understand any patterns or trends. Reconfiguring the dataset allows users to change 
how the data is presented by viewing the same data in different arrangements. For 
instance, in multidimensional scatter plots, new views of the data are generated by 
changing the attributes presented on the axes.  

4. Encoding. While reconfiguring the display allows users to view data using the 
same visualization but in different arrangements, encoding allows users to transform 
the representation of a data element from one form to another. For example, a pie 
chart may be a more effective display for a particular dataset than a histogram. 
Encoding may also involve reassigning visual attributes (e.g., color, size, shape) 
to better differentiate clusters of data. 

5. Abstracting. Data may be viewed at varying levels of abstraction. A common 
technique for abstracting data is to allow users to zoom between broader and more 
detailed views. An overview may be used to obtain a general idea of the data; 
however, users will want to magnify specific regions in the data that is of interest 
to them to view additional information. 

6. Filtering. When displaying large amounts of data simultaneously, users need tools 
to help identify and focus on the data relevant to their task. Filtering is a technique 
that allows users to conditionally hide or change the appearance of certain data 
points that do not fall within specified criteria. If a physician is examining a 
patient who has hypercholesterolemia, unrelated documents should be filtered 
(e.g., reports on a broken leg), leaving only a subset of documents pertinent to the 
treatment of high cholesterol. 

7. Connecting. When multiple different visualizations are used to represent the same 
data, the correspondence between each view may be highlighted by linking them 
together. For instance, if a user selects a set of data points in one view, all of the 
views reflect the same selection in their own way. This process is called brushing.  

Querying frameworks. The aforementioned seven types of interaction are commonly 
used in combination to provide users with graphical tools for manipulating data and 
posing queries. Traditionally, users interact with a database by formulating textual 
queries using machine-understandable languages such as structured query language 

 

(SQL), which features a non-intuitive and difficult syntax for non-programmers to  
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learn. To address these issues, querying frameworks have come to support dynamic 
queries and direct manipulation as more intuitive interfaces for working with data 
[127]. These frameworks share several characteristics: 1) they provide graphical 
representations of real-world objects and actions; 2) they use a pointer to select or 
identify an element; 3) they allow rapid, incremental, and reversible actions to be 
performed on the data; and 4) they provide immediate and continuous display of 
results. In particular, direct manipulation principles have been shown to assist users with 
navigating large information spaces [4]. Here, we explore two categories of querying 
frameworks that are used in medicine: direct manipulation and query-by-example; [28] 
provides a survey of querying frameworks in other domains.  
 Direct manipulation. Direct manipulation interfaces model how people interact 

with objects in the real-world by providing users with tools to interact with visual 
objects that represent the data elements [153]. Several benefits exist for applying 
direct manipulation to data querying: 1) the user does not need to learn a complex 
query language to pose a valid query to the system; 2) the user does not need to 
worry about making syntax errors; and 3) the user obtains immediate feedback 
about the query and the results [68]. Many applications have been developed using 
diagrammatic visual querying [68, 69]; a few are mentioned here. ADVIZOR [49] 
is a commercial system that works with relational data cubes to query aggregated 
information. Users select data by using either dragging; or a tool that makes 
predefined (e.g., rectangle, circle) or freeform shapes. The interface allows new 
selection sets to be related with existing sets by using expressions such as 
replace, add, and subtract. Changes in a data view automatically propagate across 
visualizations tied to selection sets. Another system is IVEE/Spotfire [3], which 
automatically creates a dynamic query application from a given database schema. 
A collection of common visualizations (e.g., histograms, bar charts, pie charts) is 
selected based on the attribute data types within the application’s data schema. In 
medicine, systems such as LifeLines and KNAVE-II utilize a combination of 
interaction techniques to manipulate time series data. Users are able to select 
events (e.g., procedures, medications, laboratory values) of interest at specific 
time points, filter events to show only those occurring within a defined time 
period, explore more recent or older events by dragging a scrollbar, and abstract 
time points by grouping them into semantically related clusters (e.g., events related 
to a disease). Direct manipulation techniques have also been employed towards 
studying patient populations: SOVAT [149] facilitates the exploration of large 
data warehouses to identify common health factors within a community. The system 
links different information displays together; variables in a table can be dragged 
into the charting area and plotted. Selecting regions on a geographical map 
display additional quantitative data specific to those areas.  
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 Query-by-sketch. This interaction paradigm asks a user to sketch or provide an 
example object as the basis of a query, finding all objects in the database with 
similar visual attributes (Fig. 4.25). Sketching provides an intuitive way for users 
to express the image-like representation of spatial configurations that are in their 
minds. Early seminal work in this area include [29, 86]. The former presents a 
relational query language introduced to simplify the usage and management of 
image data while the latter defines a set of operations as part of a high-level query 
language that provides basic methods for querying pictorial databases. MQuery is 
a visual query language that uses a single set of related query constructs to 
interact with data stored as time-based streams [44]. These works have laid the 
foundation allowing future applications to support pictorial querying. One such 
application that has benefited from their work is GIS, namely because geographic 
concepts are often vague, imprecise, little understood, and not standardized. [47] 
presents a spatial query-by-sketch system that automatically translates the spatial 

 

Figure 4.25: Query-by-sketch interface for matching vertebral shapes from a database 
of spine x-rays. The user draws the desired shape (top left corner) and specifies 
additional (nominal, numerical) query constraints. The system then matches the drawn 
shape against its collection and returns the highest ranked images. 

layout of query objects into a database-understandable query. In medical images,  
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the visual attributes of abnormalities (e.g., size, shape, location) may be correlated 
with patient outcome. Query-by-example systems help users search through image 
databases by these features rather than using a limited set of text keywords such as 
the header information. Two primary examples of such systems in medicine 
include ASSERT [157], which indexes high resolution computed tomography 
lung images based on features calculated in a physician-defined region of interest, 
and IRMA [101], which is a multilevel, distributed system that supports visual 
queries on both local (e.g., tumor shape/texture) and global (e.g., overall image 
intensity, anatomical area) attributes. [147] presents a system that provides a user 
with tools to query a thoracic imaging database using a combination of template 
and user-drawn features; an evaluation of this system by radiologists resulted in 
98% and 91% recall and precision rates, respectively. Each system provides users 
with tools to select example images or shapes from a collection to form the basis 
of a query and to manipulate the appearance of the query to match the user’s 
interests. The returned results are then presented using techniques such as 
zoomable interfaces described earlier in navigating large imaging collections. 

Imaging Workflow & Workstations 
From an imaging informatics viewpoint, the question arises: how can context and 
integrated visualization assist the imager? Our observation of imaging workstations 
over the years is that most use standard, static user interface paradigms for layout (e.g., 
tile displays) and interaction (e.g., menu bars, tool palettes). Efficiency and functionality, 
however, are sometimes contradictory goals for a well-designed image workstation. 
Inspecting the course over which images are ordered, reviewed, and reported upon is 
informative, as each stage provides hints as to the context for display and interpretation. 
Taking into account context, tailored presentations for a user and task can be created, 
proffering new modes of operation and opportunities for efficiencies. 

Figure 4.26: Context in image interpretation is critical, as inadequate information can 
impact patient care. In this example, comparison of the baseline image to the current 
follow-up may lead a conclusion of tumor regression; however, in knowing that the 
patient’s tumor was removed, the interpretation changes to one of progression. 
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Defining imaging context. Notwithstanding the user and task, imaging context is 
surely predicated on knowing the reason for the imaging study and the history of the 
patient: without this information, proper interpretation of the images is unfeasible. 
Consider the case of a cancer patient with three sequential imaging studies (Fig. 4.26): 
baseline (pre-treatment), initial post-treatment scan, and a current follow-up study. If 
interpretation is performed by comparing the current and baseline studies, a conclusion 
may be reached that a tumor is getting smaller. However, if treatment involved 
complete resection of the tumor, the interpretation of the current study would change 
towards progression of the disease. A more subtle example is that of an individual 
with chronic kidney disease: a finding of osteoporosis and its cause is dependent on 
whether the patient is on corticosteroids (i.e., metabolic bone disease vs. long-term 
steroid-induced bone loss). In both cases, without the correct information, the radiologist 
will reach the wrong conclusion and improper treatment may result. Two commingled 
aspects of the workflow can be used to improve context: 

                                                           
5  The reader is referred to Chapter 3 for a more in-depth discussion of DICOM. 

1. Reason for exam. As intimated in the earlier chapters, the imaging study requisition 
typically contains the reason for exam (RFE). For issues of unknown etiology, the 
RFE provides the initial set of symptoms and/or the medical problem that is being 
considered as part of a differential diagnosis. For screening and follow-up imaging 
studies, the specific medical problem of interest is cited. Thus from the RFE, a 
target disease can be used to inform the context. 

2. Prefetching. In (older) PACS (picture archive and communication system), 
prefetching involves retrieving past imaging studies to a local workstation in 
anticipation of their use (e.g., based on a schedule of patients). The idea was to 
mitigate delays in data access, providing radiologists with “on-demand” comparison 
of a current imaging study to previous images. Although the importance of image 
prefetching has declined given faster networks and increased storage capacity, the 
idea of prefetching has evolved in step with PACS integration to other clinical 
systems, allowing for retrieval of previous reports and labs. So-called problem-
oriented prefetching aims to retrieve any clinical data relevant to a given medical 
problem [24, 121], establishing historic context for interpretation. 

Aspects of DICOM5 Supplements 10 and 52 (Modality Worklist Management; General 
Purpose Worklists) can be used to aid in context definition. For instance, both 
supplements make use of free-text fields for the reason for the requested procedure 
(0040,1002) and requested procedure comments (0040,1400). However, the contents 
of these fields are not standardized (unless an enterprise has established operational 
policies) and may therefore need processing to extract pertinent medical problem 
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references. Additional information on the targeted disease may be gleaned from the 
study protocol itself, and may be considered the reverse mapping of the protocol 
selection algorithms described earlier in this book: often, the image acquisition 
parameters of the study (e.g., modality, pulse sequences, reconstructions) can be used 
to help distinguish the condition under investigation.  

Viewing the data. Once the current imaging study is acquired and the data needed for 
interpretation is available, the next step is to present the data. We divide the process 
into three sub-steps: data classification and filtering, in which the retrieved contents of 
the patient’s EMR are categorized and sorted based on priority; image layout, where 
the current imaging study is spatially organized based on the disease and task; and 
information integration, providing non-imaging data alongside the studies. The primary 
purpose of an integrated imaging display is to not only to facilitate image interpretation, 
but to enable the radiologist’s role as a problem solver within the healthcare process. 
More detail on each sub-step follows: 

1. Data classification and filtering. The first sub-step entails prioritization of the 
new images and the different data elements identified as part of prefetching [119]. 
As prefetching generally returns more clinical information than is immediately 
needed for image interpretation, non-relevant documentation from the EMR are 
removed from consideration in the integrated display. For instance, images of a 
patient’s herniated disc have no bearing on a fractured distal radius: MR scans of 
the former can be ignored relative to an x-ray of the latter. Key events in the 
patient history are uncovered (e.g., interventions, drug history) and image studies 
are temporally organized around these points in time (e.g., pre-treatment vs. post-
treatment). Clusters of data around these events are also created (e.g., admission/ 
discharge reports for an inpatient exam; recent lab work). Many methods can be 
used to classify and filter the patient data; a discussion is given in Chapter 7.  

2. Image layout. From the context, both the disease and patient history (including 
past imaging exams) are known. The second stage determines how to layout the 
current set of images given the milieu of previous studies and the user’s task. 
In the analog environment using alternators, a film librarian would manually 
organize this information for review following (heuristic) rules. With PACS, the 
equivalent is the hanging protocol. At a high level, a hanging protocol is meant to 
capture a user’s preferences in viewing a given imaging study: the availability of 
prior studies for comparison; the layout and orientation of each imaging series; and 
the visual characteristics of each image panel (e.g., window/level, magnification) are 
all defined. Additionally, information taking into account the underlying capabilities 
of the imaging workstation can be used to best accommodate the user’s preferences. 

 
Supplement 60 of the DICOM (Digital Imaging and Communications in Medicine)  
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Figure 4.27: Demonstration of text and image integration. Thumbnail icons of past 
DICOM presentation states are shown in a cover flow widget. Mouseover of a given 
image presents key text used in establishing the diagnosis of the patient; NLP 
extracted, color-coded phrases documenting patient history are provided as semi-
opaque popup tooltips. Each tooltip allows access to the source report. 

standard provides a formal method for the storage and retrieval of hanging 
protocols. The definition of a DICOM hanging protocol consists of two parts: the 
definition module, which entails a description of the protocol and its intended 
modality, anatomical region, laterality, procedure type, reason for procedure, and 
the priors needed for review; and the environment module, defining the number of 
screens and workstation capabilities (screen resolution, color/grayscale bit depth). 
Thus, a PACS implementing hanging protocols first attempts to match a given 
current imaging study to one or more hanging protocols, using the definition 
module for selection and then filtering using the environment module for the current 
imaging workstation. Based on the selected hanging protocol, the appropriate 
prior imaging exams are also retrieved. While Supplement 60 supplies the overall 
structure for hanging protocols, it does not detail how matches should be made, 
how additional information from other information systems may be used to inform 
the hanging protocol selection, or how to select amongst priors. Combining patient 
history, the RFE, and current study, new algorithms for selecting hanging protocols 
can be developed. Such rules can automatically arrange series for side-by-side 
study comparison [121] and overlays (e.g., combined PET/CT) as part of the 
workflow. Notably, layout can also be guided based on past DICOM presentation 
states (Supplement 33) associated with the patient, identifying past series that 
were marked as “important” in prior readings. Taking layout design further, the 
displayed toolset can be tailored (e.g., an adaptive ribbon, see Fig. 4.21) to the 
hanging protocol and task, and alternatives to standard tile layouts can be used to 
add visual information generated from image processing (e.g., difference maps). 

3. Information integration. Though images are the predominant data element of an 
imaging workstation, the secondary data obtained from the EMR needs to be made 
available through the same interface [120]. Even today, imaging workstations fail  
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to integrate data from different clinical sources, and the user is faced with different 
screens/windows to access radiology and hospital information systems (RIS, HIS: 
debatably, this separation is counter to workflow. Contemporary methods for data 
integration can exploit advances in information extraction (e.g., natural language 
processing, NLP; see Chapter 6) to identify crucial document subsections and 
values. Techniques for layering information, as described earlier, can be used to 
link this data with the images directly. By way of illustration, sentinel images can 
be (automatically) annotated with extracted text (Fig. 4.27), removing the user’s 
need to search for the corresponding report. 

Facilitating reporting/feedback. Finally, context and the integrated display provide 
the means to improve the eventual generation of a report containing the interpretation. 
Increasingly, structured reports and reporting templates are used in radiology practices, 
and are usually linked to the study acquisition protocol. Having identified key 
information in the EMR, fields within these reports can potentially be automatically 
completed and linked with new sentinel images documenting findings. In effect, a 
succinct summary can be created to answer the questions set out by the RFE. 

Discussion and Applications 
As noted by many, a complete review of biomedical information visualization 
techniques over the decades is well beyond the reach of a single paper or chapter – we 
have thus attempted to touch upon a few key examples and issues in the area. Indeed, 
the pursuit of integrated medical displays has been continual since the introduction of 
computers into healthcare, accelerating first with the uptake of WIMP (windows, icons, 
menus, and pointing devices) GUIs; and again with HTML-based (hypertext markup 
language) interfaces. Faced not only with increases in the quantity of information 
available, but new types of clinical and research data, informaticians are challenged to 
find systematic means to design and present this data in a usable display. The EMR 
interface has hence progressed and today can be perceived as a study in collecting the 
“correct” data elements to tell an evolving story: the patient’s medical history. The 
reader’s familiarity with the story and his interest can vary: if the reader is familiar 
with the narrative, he may only wish to see the latest installment; in some situations, a 
gestalt sense of key events is sufficient; and in other cases, the reader is intent on 
examining the nuances of each scene. Moving forward, developments in integrated 
medical displays will occur on multiple fronts, including: 

 Improved understanding of user requirements. The design of medical information 
displays will surely benefit from a clearer understanding of what drives clinicians’ 
actions. Early efforts investigating the questions primary care physicians ask 
during routine care have helped establish common patterns of inquiry [52]. In a 
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similar vein, NLM’s Clinical Questions collection continues this endeavor to 
better understand the information needs of clinical users. By taking into account 
these questions as possible task categories, displays better suited to physicians’ 
intentions and cognitive processes can be constructed.  

 Common platforms. As in other informatics endeavors, there is now a push to 
standardize the components comprising integrated clinical GUIs. For instance, 
Microsoft’s Common User Interface (CUI) [116] is a preliminary compilation of 
prototype graphical widgets for presenting information related to a range of 
healthcare processes (e.g., laboratory data, medications, scheduling, imaging). 
While consensus on the presentation of such data may not be possible given the 
breadth of the information and user preferences, shared and iterative design 
will be a valuable tool to reveal potential design issues (e.g., see IBM’s Many 
Eyes website). Alternatively, approaches that sufficiently abstract clinical data 
visualization to the level of an application programmer interface (API) may 
provide a basis for open source development, analogous to that seen with the 
Insight Toolkit (ITK) and Visualization Toolkit for 3D graphics (VTK). 

 New designs. Ultimately, new integrated clinical displays must advance past 
the “one-interface-fits-all” model of source-oriented organization, to views that 
catalyze exploration and the users’ thinking. Any relationships between elements 
should be made graphically apparent; and as databases of medical knowledge grow, 
known causal connections can be applied to avail visual design [30]. Moreover, 
how can we improve what users do today through EMR and clinical workstation 
interfaces? The evaluation of new designs must also be carefully considered: what 
is an appropriate baseline for comparison, and what metrics should be considered 
in terms of usability, efficiency, and (knowledge) discovery? 

We conclude with two sample applications that bring together the ideas presented in 
this chapter. First, the TimeLine project has been an ongoing effort to realize problem-
centric visualizations of medical records. Core structures within this project and our 
experience in creating this integrated display are briefly described. Second, as personal 
health records become adjunct to the EMR, we describe the development of patient-
centric visualizations – a largely different user base from the traditional physician-
oriented view. 

TimeLine: Problem-centric Visualization 
The majority of clinical portals and EMR interfaces presently mirror the underlying 
modular organization of information around departments and originating data sources. 
For example, a patient record view often comprises (tabbed) panels that allow the user 

 

to peruse documents from laboratory, radiology/PACS, cardiology, etc. But observations  
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and treatment plans for a given disease span these different databases; hence, finding 
data can require multiple searches. Largely, this source-oriented information organization 
does not fit with the mental paradigms of physicians, or how users think about a 
disease. In contrast, an abundant number of interfaces have been presented in the 
literature, designed to display information for a single disease entity (e.g., diabetes, 
cancer, etc.). Although such systems excel at the presentation of the medical problem, 
the relationship between multiple symptoms and diseases can be lost. A balance between 
the two extremes of complete EMR access and disease-specific views is needed. 
 

Figure 4.28: The TimeLine interface, organizing information around a patient’s 
medical problem list. The top left of the display contains a chronology of the 
individual’s medical problems. By selecting items from the list, the user adds timelines 
to the bottom half of the display, presenting icons and summary data for the particular 
problem. Mousing over the icons, additional information is simultaneously presented 
for connected data elements. For instance, in this lung cancer example, concurrent 
chemotherapy, tumor burden, and tumor measurements are displayed when the mouse 
is over a sentinel image of the tumor. Temporal granularity is controllable by stretching 
the time bar in the middle of the interface. Newer developments in TimeLine permit 
the user to merge timelines for visual presentation, and the use of sentinel events to 
“stretch” horizontal spacing between data. 
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The TimeLine project has been a continuing endeavor to create a problem-centric 
visualization framework that addresses this need [22, 23]. TimeLine consists of two 
interlinked parts: data reorganization, wherein the EMR is retrieved and automatically 
sorted around a medical problem list; and a time-based visualization, which draws 
upon a visualization dictionary to composite a layered chronology (i.e., timeline) of 
visual metaphors per medical problem and based on context. The result is a display 
that permits a user to access the full patient record while simultaneously viewing 
multiple medical problems in a tailored fashion, all sharing the same time axis (Fig. 
4.28). The interface provides an overview to the patient’s medical history, allowing 
drill-down to access specific data elements in detail (i.e., reports, images, etc.).  

Data Reorganization 

Given access to the clinical patient record, two difficulties became apparent in working 
toward an implementation of TimeLine. First, as the EMR is adopted, movement 
toward standards for data representation and content are progressing. Yet the use of 
standards is often wrought with site- and/or vendor-specific adaptations; and mismatches 
can occur even between different versions of the same standard. Second, access to this 
information is still source-oriented: a means of reordering data around different medical 
problems is necessary. But the concept of a medical “problem” is often mutable based 
on the clinician’s perspective; and a complete dependence on codification schemes 
(e.g., ICD-9, SNOMED) to provide disease categories is contingent on the proper and 
consistent use of codes for all data. TimeLine’s solutions are twofold: 1) data mapping 
from XML (eXtensible Markup Language) data representations to an object-oriented 
representation of clinical data elements; and 2) data classification of the elements into 
temporal views that correspond to user-defined categories of medical problems. We 
summarize both processes here; further details are given in [22]. 

Data mapping. The data mapping process starts with the definition of “core” elements 
that represent a minimal set of information for a clinical data entity. In essence, for a 
given data entity, a set of attributes are defined that must be present in order for 
instantiation. For example, a clinical document usually involves a title, a report body, 
and an author. In some cases, standards provide a starting point for determining these 
attributes (e.g., DICOM for medical images; HL7 clinical document architecture 
(CDA) for reports). However, these standards are comprehensive in their definition, 
rather than strictly minimal: to manage different sources and representations of the same 
types of information, TimeLine’s tactic is to use the “lowest common denominator” 
in data representation. For each clinical data entity, TimeLine defines an element 
property file (EPF) that declares an attribute name and data type for the attribute value. 
The EPF for a clinical data entity is thus the minimal class definition for an object.  
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Given the EPF, TimeLine uses a separate set of transformation rules to parse XML 
clinical documents into instances of these object classes. 

Data classification. Upon instantiation of a clinical data element from its XML, 
TimeLine attempts to associate the instance with one or more medical problems. This 
data classification process uses a pipeline of rule-based and classifier methods: 

1. Data model. TimeLine uses a data model that integrates clinical information from 
the underlying EMR data sources. The data model uses an extended entity-relation 
framework to represent each clinical data source as a time-stamped stream of 
elements (see Chapter 7). These temporal sequences are then used to construct 
logical partitions of the data: subsets of information defined by conditional 
constraints (e.g., on the elements’ attributes) can be specified to create disease-
specific views. Consequently, the definition of these views provides a knowledge-
base upon which classification of a given object can transpire (i.e., a given data 
element will appear in all views whose criteria it matches).  

2. Classification codes. When available, ICD-9 and SNOMED codes are used as 
clues to further aid the classification process. For example, rather than use the 
specific ICD-9 hierarchy, we have developed an anatomic categorization based on 
ICD-9 codes to assist in medical problem list generation [26]. Notably, TimeLine 
ignores commonly occurring symptomatic codes (e.g., fever, headache) as they 
are too non-specific in nature to help in classification. 

3. Content-based features. Additional clues are obtained by invoking different 
techniques, such as NLP, to suggest the primary topic of discussion or concern; or 
by determining the original reason for a study (e.g., the RFE).  

The end result of this classifier pipeline is a tree structure with the following 
categorical pattern: anatomy → medical problem → data source → clinical data. We 
begin with broad groupings of the data based on anatomy and systems (e.g., brain, 
pulmonary, musculoskeletal) given that many (sub-specialty) clinicians concentrate on 
a given region (e.g., neurologist, pulmonologist, orthopedic surgeon). Subsequently, 
the hierarchy progresses to a disease entity (e.g., stroke, asthma, osteoarthritis) and 
then group the data therein based on source (e.g., imaging, reports, labs). This 
organization of the data serves as the foundation from which visualizations can then be 
fashioned. 

Visualization Dictionary  

Given the large number of visualizations that are available to developers when 
building interfaces for viewing medical records, a challenge lies in determining which 
representation to use for a given data type and in a particular context. To address this 
issue, [25] presents a visualization dictionary, which guides the choice of visualization 
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based on context, type of medical data, and available visualizations. The dictionary 
may be thought of conceptually as a three-dimensional space, illustrated in Fig. 4.29a. 
A point in this space thus determines for a given context (i.e., medical problem, user, 
task) and data type how to display the information such that it highlights important 
features in a way relevant to the user and task. Each axis in described in detail. 

Data types. In order to match data types to visualizations, each data type needs to be 
characterized. One method is to re-organize the data into semantically related clusters 
that are structured hierarchically in a process called hierarchical data clustering. For 
instance, at the highest level of abstraction, a patient record contains a heterogeneous 
collection of data: clinical documents, lab results, imaging studies, genetic profiles, 
and others. Further subclasses are derived by enumerating attributes within each type. 
For instance, clinical documents come in different forms (e.g., letter, consult, pre-op/ 
post-op), are generated by different departments (e.g., radiology, pathology), and are 
written by various physicians (e.g., radiologist, oncologist). Knowledge of related 
clusters may be obtained using a controlled vocabulary such as UMLS. By grouping 
data elements across multiple hierarchical levels, the dictionary captures the depth 
and variety of information captured in clinical data. Organizing data elements by 
clusters allow a visualization to answer questions such as: given a particular variable 
and level of abstraction, what are all the related variables that match the defined 

Figure 4.29: TimeLine visualization dictionary. (a) The dictionary is conceptualized 
as three separate axes, defining for a given context and data type an appropriate visual 
metaphor for rendering in the display. (b) The plane defined by the data type and 
context is a table with inclusion rules. A hierarchy of related diseases and data types 
are organized in successively more specific physician-defined categorizations; different 
logical rules for including a given data type are specified as entries in the table. 

level? Higher-level abstractions are used to summarize the patient’s data, while lower-
level abstractions provide the details. The data type axis is correlated with TimeLine’s 
data classification scheme, and in particular, its temporal data model.  
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Visualizations. Available visual techniques are also characterized in the dictionary. 
The process of characterization occurs twofold: first, visualizations are assigned to a 
classification based on the type of data they are designed to present; and second, 
attributes and requirements are enumerated. Each visualization type has a set of 
considerations that determine how effective the visualization is under certain situations. 
For example, a line plot may not be suited for rendering data streams with low 
sampling frequency (e.g., lab values with few measurements or large gaps in time 
between measurements). The properties are stored in the visualization dictionary and 
recalled in queries that search for the “best” visualization given a set of attributes. For 
instance, while a bar chart may suffice to represent elementary relationships, for more 
complex data a configural chart may be better in order to convey multiple relationships 
at once. In addition, attributes may be used to determine the “next best” visualization 
if the primary choice is not available (or preferred by the user). By way of illustration, 

executed against the visualization dictionary, and the visualization with the closest 
matching parameters would be returned (e.g., scatter plot, 3D line plot).  

Context. Our earlier discussion of context in this chapter is applicable here: a context 
is driven by a particular requirement to focus on one type of information; all other 
data is secondary to this principal information. Notably, TimeLine’s visualization 
dictionary uses context in a problem-centric manner (i.e., being disease driven). 
Though many ontologies exist for disease classification, such works are not focused 
on the relationship of data for the purposes of visualization, so much as anatomic and 
etiologic concepts. In fact, too much granularity is in fact counterproductive in 
organizing clinical information [165]. Thus, the context axis in TimeLine attempts to 
align multiple disease visualizations with users’ perception of medical problems, as 
defined by the system’s underlying data model. 

The plane defined by the data type vs. context axes comprises a grid. In conjunction 
with the data classification methods given above, entries in this grid state a type of 
data inclusion rule for a given context, refining the potential view: always include, 
where values for the given data type are always presented; include based on recent 
activity temporally filters information (e.g., within the past six months); include based 
on data value triggers inclusion of a given type of data based on a value (e.g., 
abnormal laboratory); and include based on trend handles the case when the user is 
interested in sudden value changes (e.g., blood glucose levels are slowly increasing, 
even if considered normal). These rules may be combined using Boolean logic to 
create more complex data inclusion behavior (e.g., only include a data element if it is 
abnormal and within the past three months). 

 

if 2D line plots were not available, a query with the desired properties would then be 
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Dictionary representation. The visual dictionary performs three tasks: 1) it indexes 
the metadata generated about data elements and available visualizations; 2) it matches 
data elements with the appropriate visualization given contextual information; and 3) 
it generates a set of instructions that determines the how the information is formatted 
and rendered in the application. Initially, the application provides a list of data 
elements to be rendered (e.g., laboratory values) and the context (e.g., patient complains 
of being constantly tired). Each data element is characterized and hierarchically 
clustered based on their relationship with the given context (e.g., related laboratory 
tests are paired together). A query is executed to search for visualizations that are 
capable of displaying each data element (e.g., time series plot) and are the closest 
matches to the data’s attributes (e.g., able to display the frequency and range of the 
data). The results are filtered and formatted by the data inclusion rules. For instance, 
plots with abnormal values are highlighted and displayed prominently while other 
plots are rendered such that they appear in the background. In addition, if the 
physician knows that the patient is diabetic, specific lab tests that are relevant to this 
group of patients (e.g., glucose, insulin, c-peptide) are displayed first. 

Patient-centric Visualization 
A growing trend in healthcare is the availability and adoption of personal health 
records (PHRs). A major hurdle towards implementing PHRs has been dealing with 
data standards and interoperability between systems. But developments addressing 
these issues, such as the HL7’s Continuity of Care Document (CCD), have helped 
establish interfaces that access federated clinical records (see Chapter 3). Many 
employers, managed care organizations, and third party vendors are starting to provide 
patients with online portals that allow them to view and store their medical data. 
Google Health and Microsoft HealthVault are examples of recent efforts to develop 
patient-centric web mashups of clinical data by combining information from multiple 
sources (e.g., providers, drug stores, personal monitoring devices). 

PHRs provide new opportunities for communicating information over the web: either 
through a community of peers who share similar goals and experiences, or with a 
primary care provider using secure messaging. Peer support communities and forums 
have been shown to offer individuals emotional as well as informational support in 
dealing with chronic illnesses. These communities often provide experiential empathy, 
which is typically beyond the scope of practitioners [76]. [64] studied 780 patients 
with hypertension and found that individuals actively engaged in their own care, such 
as communicating regularly with their healthcare provider and viewing/updating their 
medical records through an online portal, had better outcomes. 

Unlike electronic medical records, which are often created and maintained by individual 
institutions (e.g., hospitals, PCPs), the PHR is initiated and maintained by the patient. 
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The patient has sole control over the people who have the credentials to view this 
information. As such, the presentation and nature of PHRs is markedly different from 
that of the EMR: 

 User audience. Patients typically do not have the same depth of knowledge as 
physicians; therefore, patients need to be provided with context when reviewing 
laboratory results and documents generated during clinical care. In the past, 
practitioners have expressed concern about giving patients access to documents 
that are not intended for a lay audience (e.g., are patients interested in reading and 
contributing to the medical record? Does the record cause confusion, and/or 
promote/relieve anxiety?) [66]. However, studies that have interviewed patients 
with access to their own records have shown the potential of improving outcomes 
and patient experience by actively engaging them in their own care [140, 180]. 
Indeed, PHRs are in a unique position to educate patients about their conditions if 
an appropriate interface is developed to allow patients to learn about and explore 
their data in a guided and understandable way. Unlike physicians who are used to 
dealing with large quantities of medical data on a regular basis, consideration is 
needed in designing patient-centric visualizations to prevent information overload 
by tailoring the type and amount of information presented to a patient.  

 Tasks and expectations. Patients store health information in a PHR with a 
different intent than a practitioner-driven EMR. EMRs are legally binding, thus 
creating implications for how information is captured. While the PHR may 
include many of the same types of information – labs, clinical notes, and health 
histories – people use this information to obtain a greater understanding of their 
illnesses, manage chronic illnesses, and promote healthy habits such as exercise 
and dieting. 

 Access. While most PHRs are envisioned as part of a website, an emergent class 
of mobile devices and wearable sensors are now able to provide immediate access 
to health data and resources while collecting real-time information about patients, 
such as vitals (see Chapter 3). Visualizations adapted to such devices are needed 
to provide patients with the ability to explore their own data, integrating it with 
information from the medical enterprise to provide the lay person with context for 
interpreting the results. 

Presently, patient-centric displays utilize a combination of visualizations that have been 
described earlier in this chapter. Such GUIs often feature colorful, intuitive interfaces 
with simple, clear explanations and guided wizards that assist users with the inputting 
and viewing of data; but largely, the visual design of PHRs is a nascent area. However, 
it is clear that new strategies must be taken in tailoring the display and methods of 
interaction with patients. For instance, previous studies have shown that a patient’s  
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ability to search for relevant medical information is severely impaired by his lack of 
domain knowledge. [182] tested an individual’s ability to find doctors with certain 
clinical interests using terms with which the individual is familiar (e.g., cancer 
specialist versus oncologist). The study concludes that a lay understanding of medical 
terminology leads to the inability to retrieve desired information because clinical 
documents are typically encoded using professional terms. One approach has been to 
develop an automated translation system that supplements documents using medical 
jargon with consumer-friendly display names that help patients understand the terms 
[183]. Also, when searching for information, systems can analyze the terms inputted 
by the patient and automatically suggest synonymous technical terms. 

Individuals are becoming increasingly empowered in their own care, and new paradigms 
for presenting medical information are needed to help patients and physicians alike 
interpret and act upon the collected information. Unlike physicians, however, patient-
centered visualizations need to focus on the goals and expectations of the patient: 
patient health portals need to tailor their content so that patients can be best informed 
of their condition to encourage interaction with their practitioner and to enact lifestyle 
modifications as necessary.  
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PART III 
Documenting Imaging Findings 
 

Wherein methods to analyze information related to medical imaging are described. 
Daily, we are faced with a growing amount of medical information. Largely, our ability to 
deal with this abundance of data is quickly being overwhelmed. New computational 
methods are needed to help understand medical images and text to assist physicians 
and biomedical researchers with their tasks. The chapters in this section consider the 
growing libraries of algorithms that comprise standardization and analysis of this 
data. The first chapter considers image standardization and characterization tech-
niques, leading to the quantitative extraction of image features. Subsequently, we 
consider the problem of understanding the free-text language often used to describe 
medical findings (such as in a radiology report or other physician consult): developments 
in medical natural language processing are covered. Lastly, this section examines 
data models aimed at organizing this information in order to provide logical access to 
(clinical) data. 

 Chapter 5 – Characterizing Imaging Data 
 Chapter 6 – Natural Language Processing of Medical Reports 
 Chapter 7 – Organizing Observations: Data Models 
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Chapter 5 
Characterizing Imaging Data 
RICKY K. TAIRA, JUAN EUGENIO IGLESIAS, AND NEDA JAHANSHAD 

maging represents a frequent, non-invasive, longitudinal, in vivo sampling technique 
for acquiring objective insight into normal and disease phenomenon. Imaging is 
increasingly used to document complex patient conditions, for diagnostic purposes 

as well as for assessment of therapeutic interventions (e.g., drug, surgery, radiation 
therapy) [81]. Imaging can capture structural, compositional, and functional information 
across multiple scales of evidence, including manifestations of disease processes at 
the molecular, genetic, cellular, tissue, and organ level [47]. Imaging allows both 
global assessment of disease extent as well as the characterization of disease micro-
environments. Advances in imaging during the past decade have provided an unparalleled 
view into the human body; and in all likelihood these advances will continue in the 
foreseeable future. There has been considerable research directed to developing imaging 
biomarkers, defined as, “…anatomic, physiologic, biochemical, or molecular parameters 
detectable with imaging methods used to establish the presence or severity of disease 
which offers the prospect of improved early medical product development and pre-
clinical testing” [188]. Yet the full utility of image data is not realized, with prevailing 
interpretation methods that almost entirely rely on conventional subjective interpretation 
of images. Quantitative methods to extract the underlying tissue specific parameters 
that change with pathology will provide a better understanding of pathological processes. 
The interdisciplinary field of imaging informatics addresses many issues that have 
prevented the systematic, scientific understanding of radiological evidence and the 
creation of comprehensive diagnostic models from which the most plausible explanation 
can be considered for decision making tasks.  

In this chapter, we explore issues and approaches directed to understanding the process 
of extracting information from imaging data. We will cover methods for improving 
procedural information, improving patient assessment, and creating statistical models 
of normality and disease. Specifically, we want to ascertain what type of knowledge a 
medical image represents, and what its constituent elements mean. What do contrast and 
brightness represent in an image? Why are there different presentations of images even 
when the patient state has not changed? How do we ground a particular pixel measure-
ment to an originating (biological) process? Understanding of the data generation process 
will permit more effective top-down and bottom-up processing approaches to image 
analysis. 

I 
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What is a Pixel? 
We start our discussion of imaging informatics by describing the features of a pixel, 
short for “picture element.” As the name suggests, a pixel exists only within the 
specialized (artificial) world of an image and is a conceptual representation of reality. 
But what is a pixel? A pixel can be viewed as the lowest level of abstraction of 
information in a digital image: it serves as the fundamental processing representation for 
computations involving image understanding and analyses. In computer vision, a pixel 
is the smallest addressable information unit in an image lattice. In image grammars, a 
pixel is the minimum unit of image syntax (i.e., the basic building blocks for how an 
image is stitched together from a hierarchical organization of scene parts). Understanding 
the underlying semantics of what a pixel represents is important if we are to develop 
richer representations that can be used to improve medical image processing and 
analysis algorithms (e.g., denoising, segmentation, tissue characterization, etc.). 

Representing Space, Time, and Energy 
First, a pixel value is some function of 2D space: pixel value = f(x,y). In 3D, the basic 
element of the image is a voxel, short for “volume element.” The quantity f may be 
regarded as some physical variable containing information about the object under 
study (e.g., how the object interacted with x-rays). Pixels (and voxels) are digital 
representations, being discretized in both its intensity value, f, and its location (x,y,z). 
As such, a more realistic description of a pixel is that the intensity value is an average 
over a small neighborhood of points centered about the real point (x,y,z). Because 
images are composed of values that vary in space, they are often thought of as fields – 
a function that varies with position. In digital systems, the field is partitioned into 
discretized connected chunks (i.e., pixels/voxels). These chunks typically are square 
or rectangular, but other types of lattice elements are possible. For example, in 
crystallography theory, there are five basic types of 2D lattice types (hexagonal, 
rhombic, square, rectangular, parallelogram shaped pixels) and fourteen types of 3D 
lattices. Examples of non-orthogonal lattices (e.g., hexagonal) in relation to efficient 
sampling schemes during image acquisition can be found in [32, 53]. 

A pixel/voxel value can also be further described as a function of space and time: 
voxel value = f(x,y,z,t). Examples of how a voxel value can change with time include: 
things flowing into and out of the voxel (e.g., flow studies) arising from physiological 
changes (e.g., functional magnetic resonance imaging, fMRI); and imaging systems 
that accumulate counts over time (e.g., nuclear medicine studies, intravenous contrast) 
(Fig. 5.1). 

A pixel/voxel value can be characterized as some function of space-time-energy as 
well: voxel value = f(x,y,z,t,E). We can include “spectral” dependencies for what a  
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Figure 5.1: Example of a 2D cerebral angiogram. A contrast bolus is injected and 
images are taken in rapid succession to visualize the vasculature; this process 
illustrates how a pixel can also be seen as a function of time. 

particular value of a pixel is for a given image, at a specified location and time. For 
instance, we often talk about multispectral acquisitions in magnetic resonance (MR), 
obtaining T1-weighted pre- and post-contrast, T2-weighted, and FLAIR (fluid-attenuated 
inverse recovery) sequences for a given patient at a given time. In x-ray imaging, 
energy dependency is something we try to eliminate: for example, if we use an x-ray 
spectrum from a 150 kVp technique, why should the resulting image appear different 
from the exact same patient if the technique is changed to 80 kVp? In this case, we 
try to remove this dependency as the energy source is not directly (intrinsically) related 
to any physical or biological parameters of interest (e.g., electron density, atomic 
number) – we would ideally like to have a pixel value that reflects only patient 
characteristics, not technique parameters.  

Mathematical Representations of Pixel Values 

                                                           
1  Note that here we use the physics definition of a vector and not the one common to 

computer science.  

 Zero-order tensor-scalar fields. At its simplest, a pixel value can be a scalar 
value, in which case the image is described as a scalar field. A scalar value is 
mathematically a zero-order tensor. A scalar value for a pixel, for example, can be 
related to some scalar physical property such as electron density, atomic number, 
or spin-lattice relaxation (Fig. 5.2a). In these cases, the field varies in the intensity 
of some imaging signal from point to point. The intensity value of a digital image 
f(x,y) may represent k-tuples of scalar intensity values across several spectral bands 
(i.e., it can span over an “energy” space). By way of illustration, one can have an 
imaging study with T1, T2-weighted, and proton density information all spatially 
registered to a common coordinate system. Scalar images can be shown in grayscale; 
and color images can be represented visually using a three channel red-green-blue 
(RGB) representation. 

 First-order tensor-vector fields. The next most complicated tensor is an order 
one tensor, otherwise known as a vector (magnitude and direction)1. These often 
represent some “continuous” magnitude and direction change from point to point  
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Figure 5.2: (a) An image as a scalar field. The image on the left shows a slice from a 
brain MR. The right image depicts the gray values in a 3D relief plot, where color and 
height of pixels in the z-axis are based on the intensity. (b) An image vector field. Per 
pixel, a direction is associated dependent on the magnitude and direction of change. 
For example, this type of representation is common for deformation fields. 

Figure 5.3: Image tensor field. A color-coded diffusion tensor field is overlaid atop a 
T2-weighted MR image slice. 

(e.g., velocity represents the change in position over time within a field). For 
example, a vector field may represent a dynamic contrast flow study [106], 
deformation fields [83], or lung motion during the respiratory cycle [72]. In a 
3D spatial representation, a vector field will have three components (magnitude 
component in each of the axial directions). As a representation, we often use an 
arrow at a point in space (Fig. 5.2b), with the arrowhead pointing in the direction 
of the vector and the size of the arrow representing the magnitude of the vector. 

 Second-order tensor-tensor fields. A tensor of order 2 is the so-called inertial 
matrix or tensor itself. For tensors defined in a 3D space, a 2nd-order tensor has 
nine components. Tensor fields are associated with images derived from some 
property of the imaged media that are anisotropic (i.e., directionally dependent, 
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It is common to represent the diffusion pattern at each image location by an 
ellipsoid (Fig 5.3) whose principal axes lengths are defined by the eigenvalues of 
the diagonalized matrix. 

Some subtleties about pixel specifications. As previously stated, a pixel is the 
smallest unit of a digital image. Its precise definition, however, is often left ambiguous 
in scientific papers due to the fact that it depends upon both the sampling distance and 
the aperture size employed during image acquisition [65]. It is often assumed in many 
papers that a pixel refers to equal sampling distance and aperture size. A pixel is 
characterized by its size, shape, and intensity value. Its size (and shape) should be 
carefully chosen to retain as much detail as possible from the original analog image 
signal. Artificial operations on image data can complicate the definition of a pixel. 
A digital zoom operation (like those on digital cameras) is typically an operation 
involving pixel replication, doubling the pixel size calibration of the system. A key 
point concerning image specifications should be made here. The spatial resolution of a 
grayscale digital image is frequently given in terms of the size of its pixel matrix – 
quite often, the number of addressable pixels is quoted (e.g., the resolution is 2048 x 
2048 for a 14” x 14” image). More important, however, is the number of resolvable 
pixels, which is typically much less (i.e., modulation transfer characteristics). 

associated with inhomogeneous spatially dependent properties related to a material 
that is directionally dependent). An example tensor field is the information obtained 
via diffusion tensor MRI (DTI) (see Chapter 2). The image intensities at each 
position are attenuated depending on the strength and direction of the magnetic 
diffusion gradient as well as the microstructure in which the water molecules 
diffuse: the more attenuated an image is at a given location, the greater the diffusion 
in the direction of the gradient. This orientation-dependent contrast is generated 
by diffusion anisotropy, meaning that the diffusion has directionality. This pheno-
menon, for example, is useful in determining structures in the brain that can 
influence the flow of water (e.g., myelinated axons of nerve cells, which are affected 
by multiple sclerosis). Thus, in DTI, a tensor is used to fully characterize the motion 
of water in all directions. This tensor is called a diffusion tensor (Fig. 5.3), and 
represents the “normal” and “sheer stresses” to the three faces of a theoretically 
infinitesimally small cube, relative to an x/y/z reference frame, and is depicted as 
a 3 x 3 symmetric positive definite matrix: 
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Figure 5.4: On the left, an illustration of a single point in real space generating signals 
to multiple pixel detectors. The right side shows how multiple points in real space 
contributing to the intensity of a single pixel value. In general, signals emanating 
from a point are difficult to localize. In projectional x-ray imaging, a radiographic grid 
(a type of directional filter) is employed to correct this issue (see Chapter 2). 

Physical Correspondence to the Real World 

A pixel exists in the imaging world as an addressable value in a mathematical lattice 
(e.g., a 2D array). To extract meaning, we need to understand which property (or 
properties) is being sampled from the real-world. What is the correspondence between 
a location in physical space and the coordinates of pixels in an image matrix? 
Moreover, what does one dot on an x-ray image mean (i.e., what is the effect that is 
being observed)? Although these represent seemingly elementary questions, rigorous 
answers are actually complex: even a radiologist, who looks at thousands of medical 
images daily, rarely provides adequate answers to these questions. We consider four 
issues: 

1. Signal localization. Signal localization refers to how well we can detect an event 
in real physical space and accurately represent its location in the lattice that 
constitutes an image. Acquisition methods are imperfect, creating problems in 
interpreting a pixel value. In imaging, there is never a one-to-one correspondence 
between a “real-world” point and an imaging pixel. For example, in x-ray imaging, 
the left side of Fig. 5.4 shows the situation where the signal from a point in the 
patient’s body is spread across many pixels. In contrast, the right side of Fig. 5.4 
shows the contribution of two distant real world points toward the value of a 
single pixel. 

2. Sample complexity. The value of a pixel is dependent both on the technique 
used (e.g., kVp, mA, TE/TR, scan time, etc.) as well as the physical, biological, 
and pathological state of material within the pixel sample. Models for image 
signal generation can be quite complex, especially given the number of external 
and internal factors (physical and biological) involved in signal generation. 

3. Sample homogeneity. Pixels are not infinitesimal elements. A pixel ideally is a 
representation of a relatively homogeneous environment, and we assume that the 
property we wish to extract from a pixel is also homogenous in the region – but this 
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Figure 5.5: The value represented within a single MR image voxel is typically the 
result of a number of different multi-scale factors. 

notion is often incorrect. There can be both physical inhomogeneities (e.g., chemical) 
and biological inhomogeneities (e.g., different cells, physiological dynamics), so 
that often a pixel is generated via a mixture of structures and processes (Fig. 5.5). 
What happens when the calibrated size of a pixel/voxel is larger than the effect 
one is trying to image? Consider, for instance, the characterization of fiber tracks 
and the micro-architecture of the brain using relatively large voxels; or trying to 
detect small micro-calcifications much smaller that a voxel dimension. There can 
also be pathological non-uniformities (e.g., tumor cells). These inhomogeneities 
are often called partial volume effects; these types of partial volume artifacts are 
common at tissue boundaries (e.g., bone and soft tissue) and are related to the 
effects mentioned in Chapter 2. 

4. Sample artifacts. Spatial quantization artifacts in the form of aliasing artifacts can 
result when the spatial sampling frequency of an imaging system is below the 
Nyquist frequency (2fmax) criteria, where fmax is the maximum spatial frequency of 
the continuous image signal being digitized [169]. The results of this undersampling 
during the digitization process are visually disturbing global distortions such as 
banding, Gibbs ringing, Moiré patterns, streaks, and phase reversals [12]. 

In summary, pixels are the central level of abstraction in medical imaging. It is critical 
to understand what information they convey and how various patient factors, technique, 
and image processing operations impact their state. In the remainder of this chapter, 
we discuss methods for extracting useful information and knowledge from imaging 
data – a central objective of medical imaging informatics in order to create clinical 
applications enhancing the characterization of imaging data and thus aid in diagnostic 
and prognostic tasks. This goal is divided into issues related to the following four 
subtasks: 1) the compilation of a scientific-quality database of observations related to 
normal and disease specific patient phenomena; 2) the identification and instantiation 
of imaging features important to characterizing and/or discriminating aspects of disease 
and normal anatomy/physiology; 3) the building of statistical models for integrating 
diverse evidence; and 4) the application of imaging-based models to assist clinical 
decision making. 
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Compiling Scientific-quality Imaging Databases 
A significant aspect in understanding both the normal functioning of the human body 
and a disease is the documentation of observations related to the state and behavior 
of a phenomenon under investigation (see Chapter 7). The compilation of imaging 
databases are important given that, thus far, the full potential of imaging data has not 
been adequately connected to clinical data and outcomes [91]. All efforts should 
therefore be made to take a disciplined, meticulous approach to image data collection 
to ensure its availability and quality for patient management and evaluation. Proper 
data collection entails data that are fully characterized (so results are reproducible) and 
that the data are amenable to retrieval, processing, distribution, and visualization. 
In general, there are two fundamentally different approaches to the compilation of 
imaging databases:  

1. Controlled data collection. Preferably, the methods of experimental science (e.g., 
randomized clinical trials) should be practiced when prospectively gathering 
image data, detailing and enforcing a study design (e.g., image protocol), patient 
criteria, documentation requirements (e.g., image quality, language, context), and the 
resultant analysis of data (e.g., means of interpretation). The experimental approach 
is investigational from the start in that it is driven by an underlying hypothesis. 
Data collection is centered on carefully collecting observations driven by the 
hypothesis describing the effect of interest. The observations are “controlled,” 
striving for the reproducibility of results by accounting for as many variables that 
may influence the end outcome and described in a controlled manner (e.g., using 
ontological references and well-defined concepts and their representations). This 
high degree of control in the data collection process guarantees that the results are 
repeatable, and provides the best quality and most conclusive knowledge.  

2. Natural data collection. Natural data collection refers to the gathering of imaging 
studies from a routine (i.e., natural) setting, such as seen in daily clinical practice. 
This observational approach does not involve intervening or controlling how the 
data is generated. The advantage of natural data collection is the potentially large 
number and diversity of cases that can be collected. For example, it is estimated 
that only 2% of all cancer patients are enrolled in any form of clinical trial [91]. 
As such, clinical trials are often underpowered and/or make unrealistic assumptions/ 
generalizations [90]. Instead, natural data collection permits observations to 
potentially be conducted across a broader range of data. The down side of natural 
data collection is that such data are messy: in routine practice, images along with 
the associated metadata and documentation are often highly variable, incomplete, 
imprecise, and inaccurate. Clinical data is subject to various sampling concerns 
(precision, randomness, missing data, selection biases) and representational problems 
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(heterogeneous representations, missing context, accuracy of summarizations, 
source documentation errors, etc.).  

An important aspect of medical imaging informatics is thus the development of 
methods and tools to assist in the standardization of data associated with clinical 
studies. Standardization is important for data to be meaningful, and is vital in the 
comparison of results (e.g., between subjects from studies conducted at different 
institutions; over time for the same individual to assess response to treatment). From 
the perspective of research, the pooling of standardized data from multiple institutions 
is critical to increasing the statistical power needed for uncovering significant 
correlations between imaging findings and other clinical variables (see Chapter 3 for 
a discussion of image sharing efforts). Below, we consider three image conditioning 
tasks as fundamental to image standardization: 1) improving signal characterization, 
encompassing the semantic characterization of pixel/voxel values and their calibration; 
2) noise reduction and artifact correction; and 3) improving positional characterization, 
addressing issues of spatial location within an image volume. 

Improving Pixel Characterization 
The normalization of an imaging signal is a crucial conditioning step for improving 
the use of pixel values in characterizing normal and disease states. To illustrate this 
point, Fig. 5.6 shows different histogram profiles derived from ten different MR brain 
studies. If one were to try to create a univariate pixel intensity model to classify brain 
tissue based on a large sample of patients, the result would be a distribution with large 
variance for each tissue type. Individual study histograms can vary even for the 

Figure 5.6: Signal normalization via histogram matching approach. The leftmost plot 
shows the result of acquiring several different normal subjects brain studies using the 
same MR pulse sequence; as evidenced, there is a large amount of inter-subject 
variation. Histogram matching techniques can be used to establish a mapping that 
better standardizes the voxel intensities. The result is shown in the rightmost plot. 

same patient and sequence type. The intensity of MR images varies dependent on  
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acquisition parameters (e.g., echo time, repetition time), making it difficult to compare 
MR studies. Ideally, methods are needed to standardize images – removing technique-
dependent variables affecting pixel values – to enable accurate measurements and 
evaluations between studies. And though the above example is based on MR, similar 
situations apply to other imaging modalities. Dependent on the modality, a variety of 
approaches can be applied to improve signal characterization and hence its normalization, 
including methods pre- and post-acquisition to calibrate and correct pixel values. 

Pre-acquisition: Standardizing Imaging Protocols  

Perhaps the most straightforward approach to standardize the image acquisition process, 
the standardization of imaging protocols is an important part of image data collection 
for clinical trials research and routine longitudinal patient assessment (e.g., for chronic 
disease, such as cancer). The benefit of protocol standardization is that it allows 
physicians to develop a subjective mental calibration of brightness and contrast levels 
seen on images; clinicians establish mental models of the limitations of what they are 
seeing on images (e.g., resolution, inherent noise, etc.) and minimize interpretation 
errors. The use of standardized imaging protocols is important to the performance of 
image analysis algorithms, such as for object segmentation [161]. The disadvantage of 
standardizing imaging protocols lies in the difficulty of enforcing the acquisition 
method across time and different institutions. While a group of individuals may agree 
to acquire images using the same protocol, such an approach requires consensus, is 
static (i.e., it does not incorporate new machine capabilities or techniques), and often 
employs protocols that are clinically impractical (e.g., lengthy acquisition times). 

Post-acquisition: Pixel Value Calibration and Mapping 

Several approaches have been developed over the years to handle image standardization 
once the study is obtained, including: normalization with respect to reference materials; 
physics-based models that provide quantitative metrics per pixel independent of 
acquisition parameters; and data-driven corrections within an image. 

Histogram matching. A simplistic approach to signal normalization is to force the 
histogram of images derived from a certain study class or mode (e.g., T1-weighted 
brain MR studies) to conform to a standard parameterized shape. This process is 
known as histogram matching [63, 92, 150]. For example, [50] addresses issues related 
to pathology within brain MR images by first aligning imaging studies to a normal 
atlas, automatically detecting the hemisphere with pathology, and then using the 
contralateral side to derive an intensity histogram to remap values to standard image 
intensity distributions. Histogram matching can be performed easily on any class of 
images whose members demonstrate similar shaped histograms, and the results are 
generally acceptable to physicians. But while histogram matching in post-acquisition 
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provides for intensity standardization, it does not provide contrast standardization as a 
custom lookup table is calculated for each imaging study. 

Partial calibration: Hounsfield units in CT. The Hounsfield scale used in computed 
tomography (CT) is a quantitative scale of radiodensity. Radiodensity is a property 
related to the relative transparency of a material to x-ray radiation, and is an attempt to 
normalize the brightness and contrast of a CT image relative to that of water. 
Specifically, the Hounsfield scale is a measure of the attenuating properties relative to 
distilled water at standard pressure and temperature: 
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The Hounsfield scale is linear and is defined using two points: 1000 Hounsfield units 
(HU) for the attenuation of dry air and 0 HU for pure water at 25°C. The polyenergetic 
output spectrum of CT scanners can vary widely from scanner to scanner. As such, the 
same tissue will not produce in general the same CT number (i.e., Hounsfield units) if 
scanned with different machines because of differences in the x-ray beam spectrum 
(kVp and filtration) and system calibration procedures (equalizing detector responses). 
Therefore the Hounsfield scale will differ between scanners and even with different 
energies on the same scanner; thus CT numbers cannot be directly compared amongst 
machines [18, 132, 133]. The ability of a material to attenuate x-rays is related in a 
complex way to the electron density and atomic number of the material as well as 
extrinsically to the energy spectrum of the incident x-ray photons. The Hounsfield 
value of a homogeneous material can vary from 1-2% [33]. Beam hardening can cause 
the Hounsfield value of a given material to be location dependent. Scanner specific 
parameters such as photon energy, the scan diameter, and the matrix size may affect 
the CT number [177]. 

Physics-based models. Physics-based models of medical imaging signal generation 
can be used to map pixel values generated from technique-dependent factors (e.g., 
echo time, flip angle, transducer frequency, etc.) to calibrated quantitative physical 
values independent of the acquisition technique. This calibration of imaging signals 
can effectively transition current imaging studies from simply being “contrast” maps 
of a patient to maps related to the intrinsic physical properties of tissue. For example, 
MR images can have a wide range of intensities depending on a number of factors, 
such as magnetic field strength/quality, pulse sequence, and coil design. Even comparison 
of images acquired with the same contrast (e.g., T1) is limited, as pixel intensities 
will depend on the specifics of the acquisition method. In multiple sclerosis, for 
instance, hypointense regions in T1-weighted images have been correlated with clinical 
symptoms [30]. But hypointensity is a subjective criterion of the image interpreter and 
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the degree of hypointensity is dependent on the amount of T1-weighting in the image 
itself. Hence, methods providing more objective quantitative metrics can serve to 
provide a better foundation upon which image interpretation can occur. 

For many imaging modalities (e.g., MR [184], ultrasound [97]), precise physics-based 
models are theoretically known regarding signal generation with respect to technique 
parameters. By way of illustration, for MR, equations relating the technique factors of 
echo time (TE) and repetition time (TR) to generated signals are well characterized:  

T2/TET1/TR )1)(( −−−⋅∝ eevfsignal Hρ  

By acquiring multiple sequences with different values of TR and TE, approximate 
solutions for true ρH (proton density), T1, and T2 at each voxel location can be 
computed using an array of computational methods including non-linear least square 
fitting (for T1 and T2-weighted sequences); multivariate linear regression (for DTI); 
non-negative least squares; and other statistical methods [184, 186, 187]. Pixel-level 
calculations of T1 values for MR sequences can be performed on the magnitude images 
as described by [145] using Powell’s method (a direction set method for searching for 
a minimum of a function; for example, see [59]); and T1 derivations from echo planar 
images have been demonstrated [30]. Several sequences have been proposed to 
estimate MR parameters from imaging sequences, including work using fast and 
ultra-fast techniques [30, 135, 176, 219]. The advantage of physics-based models to 
transform acquired clinical signals to meaningful physical properties is that lengthy 
calibration procedures are not needed: technique dependencies in the imaging signal 
can be eliminated. Moreover, compared to non-calibrated pixel intensities, calibrated 
MR signals of true T1 and T2 values reduce the variability of MR signal correlation 
to different types of tissue structures, making possible more accurate statistical 
characterization. The disadvantage of physics-based models lies in the difficulty of 
actually estimating analytic solutions from routine protocols that operate under real-
world clinical constraints (e.g., short scan times, reasonable signal-to-noise ratios 
(SNR), sufficient spatial resolution and anatomic coverage). Additionally, the models 
are often simplified and ignore secondary signal generating sub-phenomena (e.g., eddy 
currents, effect of non-uniformities). From routine studies, the precision with which the 
physical parameters can be estimated is quite variable. Protocols designed to improve 
the estimation within a tolerable level of certainty and with clinically realizable pulse 
sequences have been designed [45, 84, 130, 176, 219], usually involving adjustments 
to the scan time, slice thickness, number of volume acquisitions, and/or sampling 
methods [153]. However, still these quantitative imaging protocols can affect patient 
scan time, making them untenable for routine clinical application.  

Signal calibration using basis materials. Calibration of imaging signals can also be 
performed via methods that rely on expressing imaging signals in terms of equivalent 
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thicknesses of materials with known physical properties. For example, quantitative 
results in x-ray imaging (i.e., projectional radiography or CT) can be obtained using 
this approach. Quantitative CT is commonly used, for example, to assess bone mineral 
density for evaluation of osteoporosis [139]. 

Dual energy radiography is a method developed to remove the energy dependence in 
the final displayed image. This approach requires spatially aligned image acquisitions 
taken at two different effective x-ray energies: a high energy acquisition and a low 
energy acquisition. The high and low energy acquisitions allow the computation of 
atomic number equivalent and electron density equivalent images. We briefly summarize 
the theory and implementation here. In conventional radiography, the primary signal 
image is a representation of (x,y,μ) space, where (x,y) is the location of a pixel and μ is 
the measure x-ray attenuation. The linear attenuation coefficient μ is itself a function 
of several variables: 
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where ρ is the mass density, Na is Avogadro’s number, and Z is the atomic number. In 
the diagnostic energy range, the attenuation coefficient is the sum of the individual 
attenuation coefficients due to the Compton interactions and the photoelectric 
effect: μtotal = μp.e.+ μCompton. Mathematically, one can decompose the total attenuation 
coefficient into a linear combination of energy basis functions: μtotal(x,y,z,E) = 
a1(x,y,z)f1(E) + a2(x,y,z)f2(E). Here, the energy basis functions, f1(E) and f2(E), 
represent the two major energy dependent processes, namely the photoelectric effect 
and the Compton effect. The energy dependencies of the interaction cross-sections 
for both photoelectric and Compton interactions have been well-studied [6]. For a 
polyenergetic x-ray source, we can calculate the percent of primary beam with spectrum, 
P(E), that passes through a heterogeneous absorber of thickness, t, as follows: 
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Representing the results of the line integrals (i.e., 3D to 2D projection collapse) as A1 
and A2 results in: 
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Replacing the linear attenuation coefficient with its energy basis form we have: 
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When integration is performed on the above equation, the result is purely a function of 
A1(x,y) and A2(x,y). The integral can therefore be approximated by a 2nd-order power 
series in A1(x,y) and A2(x,y), where the coefficients are energy dependent: 

),(),(),(),(),(),(
),(

),( 2
25

2
1421322110

0
yxAbyxAbyxAyxAbyxAbyxAbb

yxI
yxI

+++++=
 

In dual energy radiographic imaging, two registered exposures of the patient, a high-
energy exposure (IH) and a low-energy exposure (IL) are obtained: 
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To determine the value of the constants b’s and c’s, we perform what is known as a 
calibration procedure of some basis materials. The procedure is referred to as a 
calibration as we determine the coefficients for two known materials and describe all 
other materials as a linear combination of these chosen substances. For the dual energy 
problem, we would like to express the material properties of an unknown tissue as a 
linear combination of basis (i.e., pure) materials that have a well-known response to 
x-rays. Two basis materials that are easy to create, of high purity, and that straddle the 
range of almost all effective atomic numbers seen in the human body are methyl 
methacrylate plastic (Pl, Zavg = 6.56) and aluminum (Al, Zavg = 13.0). The material 
calibration procedure is performed as summarized: 

 Obtain several steps (e.g., 20) of the two basis materials (i.e., plastic and aluminum). 
Each step is a few millimeters thick. 

 Take both a high energy and a low energy radiograph of all possible combinations 
of Al and Pl steps. Compile 2D tables showing the optical intensity values as a 
function of the combination of the number of Al and Pl steps imaged. A high 
energy and a low energy calibration table (optical intensity vs. thickness of Al and 
thickness of Pl) are hence determined. 

From the calibration tables, one can identify iso-transmission curves, which give the 
locus of points (i.e., combinations of plastic steps and aluminum steps) that result in the
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Figure 5.7: Iso-transmission lines for high and low energy material calibration data. 
The lower line corresponds to the possible combinations of aluminum and plastic 
thicknesses that would result in a particular optical density seen on a low energy scan. 
The higher line corresponds to possible combinations of aluminum and plastic thick-
nesses that would result in a particular optical density seen on a high energy scan. The 
intersection of these lines gives the estimated Al and Pl equivalent thicknesses for an 
observed high and low energy optical density value pair. Figure adapted from [28]. 

same intensity transmission value (Fig. 5.7). One can draw a family of iso-transmission 
curves from the calibration data. Once the calibration procedure is completed, the tables 
can be used to generate aluminum equivalent (which is approximately equivalent to 
bone) and plastic equivalent (which is approximately equivalent to soft tissue) images 
for a given patient study. The steps are outlined below: 

1. Take a low energy and high energy image of the patient. The imaging geometry 
(focus to film distance, focus to patient distance, field of view, etc.) must be 
exactly the same for the two exposures. Given this assumption and ignoring scatter, 
the differences seen in the optical densities between the high- and low-energy 
radiographs of the object are strictly a function of the characteristics of the x-rays 
(i.e., energy spectrum). Differences will be manifested in the percent of Compton 
versus photoelectric interactions.  

2. For each pixel in the high and low energy images, obtain the intensity value. 
3. To determine the equivalent plastic and aluminum thicknesses corresponding to a 

pixel location (x,y), perform the following sequence of operations. First, find the 
iso-transmission line on the high energy calibration table corresponding to the 
pixel intensity on the high energy patient image. Second, find the iso-transmission 
line for the low energy pixel intensity. The intersection of the two iso-transmission 
lines gives the equivalent thickness of Al and Pl for the combination of the low 
and high energy pixel value at a given coordinate (x,y).  
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Once an equivalent plastic and aluminum thickness for each pixel value is determined, 
a variety of synthesized images can be visualized. For example, one can visualize only 
the aluminum (bone) or plastic (soft tissue) component of the image. It is also possible 
to estimate an effective Z and electron density for each pixel, as these are known for 
the aluminum and plastic steps used to construct the calibration table. One can then 
synthesize bone subtracted or soft tissue subtracted images. 

Dealing with Image Noise 
Noise is a basic part of any imaging system. The numeric intensity of an imaging pixel 
reflects components of the desirable signal (e.g., transmission of primary photons, true 
T1, etc.) and an undesirable noise component. Noisy images are particularly problematic 
when the primary signal effect is small and there are practical limitations related to 
pixel size, patient radiation exposure, and/or scan time. For example, diffusion tensor 
images suffer from poor SNR due to some of these factors, and must balance the 
practicality of repeated scans versus the quality of the image and noise. Thus, in 
addition to standardization/calibration of an image signal, noise reduction should be 
considered. A reduction of image noise in the raw data can translate into two benefits: 
1) better accuracy and reproducibility of the imaging data; and 2) faster scanning times 
due to reduced averaging requirements (e.g., in DTI MR studies).  

In imaging, a variety of noise sources exist that are random stochastic processes. 
Examples of such noise include: x-ray quantum mottle noise due to statistical fluc-
tuations in the number of photons emitted from a source per unit time/area and due to 
the random nature of x-ray attenuation and detection processes; film and screen grain 
noise due to non-uniform distribution and density of grains; light conversion noise 
in radiographic screens; speckle noise in ultrasound; amplification noise in analog 
electronics; and thermal noise due to atomic collisions. Additionally, there is noise 
associated with quantization effects in converting real-world imaging signals to discrete 
pixel values, which is referred to as bit noise or quantization noise [165]. Dealing 
specifically with x-ray and light photons, which are quantum mechanical entities, 
there is inherent uncertainty in position, as well as time, energy, and momentum. 
Indeed, radiographs are often noise-limited as low noise often translates into a high 
radiation dose to the patient. At the contrast levels obtained in radiographs, our ability 
to discern objects of interest is more often limited by the presence of noise rather 
than, for example, limitations in spatial resolution. In many cases, the quality of 
imaging data, especially if quantitative analysis is desired, can often be more easily 
improved through the reduction of noise (i.e., denoising), rather than by increasing the 
signal. 

 



5 Characterizing Imaging Data  259 

Figure 5.8: The ergodic hypothesis states that the statistics associated with fluctuations 
in time match the statistics for fluctuations over space. 

Characterizing Noise 

The characteristics of noise are different depending upon the underlying generating 
process. The first step in designing a denoising algorithm, then, is to characterize 
the imaging characteristics of the noise generating process for the particular imaging 
modality of interest. Once the noise is characterized, we can design a filter to eliminate 
it. Often, noise is characterized in terms of an additive model, v(x,y) = u(x,y) + n(x,y) 
where v is the observed image, u is the true noiseless image, and n is the pure noise 
image. Alternatively, noise can be modeled as a multiplicative factor when there is 
coherent interference, as in the modeling of speckle noise in ultrasound imaging [233]. 
Notably, noise in magnetic resonance imaging is not additive as the noise is signal 
dependent, making separation of signal and noise components a difficult task [149]. 

Noise is modeled as the result of a random fluctuation of a stochastic signal generating 
process. Generally, we work with random signals that obey a simplifying constraint, 
known as statistical stationarity. The underlying physical process that gives rise to 
stationary random signals is described by statistics that are not time dependent. For a 
spatially statistical stationary process, the statistics are the same over all areas and are 
not influenced by a shift of origin. Yet in practice, this stationarity assumption for 
noise is unwarranted. For example, speckle noise in ultrasound is non-stationary and 
changes according to ultrasound attenuation. 

Noise is the result of an unpredictable event, most often due to natural laws. But even 
though quantum fluctuations produce random signals that are responsible for noise, 
they also have a great deal of associated regularity and future values can be estimated 
in a statistical probability sense. In principle, we have two ways of studying the 
statistical fluctuation of a system: 
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1. We can assume that we know the function over a large area from which we can 
then determine probability distribution functions of density fluctuations from a 
single realization.  

2. We can assume that we have an ensemble of similar functions from which we can 
determine probability distribution functions by an examination of all members of 
the ensemble. 

An ensemble of density distributions can be obtained as follows. Suppose that the 
density distribution of a uniform exposed and developed area of radiographic film is 
denoted by D(x,y; sample1), and that a second sample that has been exposed and 
developed in an identical way, represented as D(x,y; sample2). By repeating this 
procedure many times we can generate an ensemble of density distributions D(x,y; 
samplei). This ensemble defines a random process, and each member of the ensemble 
is called a realization of the process. The random process is said to be ergodic if the 
coordinate and ensemble statistical averages are the same (Fig. 5.8). Radiographic images 
are often assumed to have this property. 

First order statistics. If the film density D(x,y) at a point (x,y) on a uniformly exposed 
film is measured by means of a high-resolution scanning device (e.g., a micro-
densitometer or laser film scanner) as a function of x and y over a large area of the film 
(defined by the limits -X ≤ x ≤ X and -Y ≤ y ≤ Y), we can crudely summarize the 
information content within this uniformly exposed film using first order (descriptive) 
statistics (i.e., via its mean and standard deviation, σ). The variance of the noise can be 
obtained as an empirical measurement or formally computed when the noise model 
and parameters are known: 
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Measuring the signal-to-noise ratio usually requires that the noise be measured 
separately, in the absence of signal. The magnitude of the noise often depends on the 
level of the signal as in photon quantum noise. Classic examples of formal noise 
models in imaging due to various physical processes include: 

 Poisson probability distribution. X-ray photon absorption is a random process that 
obeys Poisson statistics. In nuclear medicine, detected photon counting also 
follows Poisson statistics. 
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 Rayleigh distribution. The speckle noise seen in ultrasound images follows this 
distribution. 

 Flat spectral distribution. White noise is described by a flat power spectral 
density. Speckle patterns from film scanning systems can result in this form of 
noise [40]. Film grain noise is also often modeled as white noise. 

 Rice distribution. Rician noise seen is demonstrated in complex value images 
(e.g., DTI data, MR sequences) that are characterized by real and imaginary 
components. Unlike the normal distribution, the probability density function is not 
symmetric about the true signal value, especially at low signal values where it 
tends to a Rayleigh distribution [71, 183]. At high signal intensities, the Rician 
distribution tends toward a Gaussian distribution. 

 Gaussian/normal distribution. Noise is often characterized by a Gaussian probability 
distribution as it is often generated by the combined action of many microscopic 
processes. Whenever noise is generated out of a large sum of very small contributions, 
the central limit theorem tells us that the probability distribution P(N), which quanti-
fies the probability to find a certain noise amplitude N, indeed has a Gaussian shape. 
Additionally, the sum of different noises tends to approach a Gaussian distribution. 

Here, we consider noise in the context of x-ray imaging systems, though similar 
principles apply to other modalities. Empirical measurements of noise should proceed 
with caution. Note that in general the degree of variability of a line profile trace across 
a uniformly exposed imaging field will depend upon the exposure technique used 
(i.e., exposure fluence, the amount of x-ray quanta per unit area) and the size of the 
aperture A, used for sampling the raw imaging signal. Intuitively, the standard deviation 
of a noise distribution decrease as the area of the measuring aperture increases. For 
film noise, the following relation holds approximately true [178]: 

A
A

1
∝σ  

In general, the noise level in imaging systems is connected to the modulation transfer 
function (MTF) characteristics of the image acquisition chain [31, 170]. For a linear 
system, the MTF describes the degradation of the imaging signal with respect to 
spatial frequency [38].  

In [70], an approach for creating a noise model is described that relies on the 
measurement of the relationship between the image intensity, I, and the noise variance: 
σ2

N = f(I, α1, α2, α3, …) where αi are determined by the image acquisition protocol. This 
relationship is applied to every pixel in the image. The relationship between the 
intensity and noise variance is determined by first creating a noise image generated as 
the difference between the original image and a smoothed version. A mask is used to 
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Figure 5.9: Shortcomings of first-order statistics to describe random noise. Both noise 
profiles in (a) and (b), though widely different in nature, result in exactly the same 
first-order statistics. 

avoid edge pixels in the analysis. A histogram of the local mean intensity, I, is 
generated from the unmasked pixels. For each histogram bin, the mean intensity, the 
noise standard deviation, and the associated error are then estimated. 

Second order statistics. In systems with multiple noise sources, where the noise 
amplitude can be written as N(t) = N1(t) + N2(t) + … + Nk(t), the key question is 
whether the noise sources are independent. If yes, the variance of the total noise is just 
the sum of the individual noise variances. For example, as film granulation, screen 
mottle, and quantum mottle are independent random phenomena, the total density 
standard deviation of the density fluctuation from one area to another can be expressed 
as the square root of the sum of the squares of the components: 

)()()()( 222 DDDD quantumscreengraintotal σσσσ ++=  

In many cases, noise values at different pixels are modeled as being independent and 
identically distributed, and hence uncorrelated. However, this assumption is not 
always justified. The problem with first order noise measures is that they are global 
measures that contain no spatial information. For example, in Fig. 5.9, the noise traces 
for the two samples have the exact same first order statistics (i.e., the histograms result 
in the same mean and standard deviation) – but the noise profiles are vastly different. 
First order statistics do not tell us whether there are correlations between the 
densities measured at different points. For instance, in the case of an x-ray screen-film 
combination, even though the absorption of x-ray and light photons is a random 
process, there does exist some spatial correlation between the energy absorbed due to 
the spread of the light from the phosphor screen material. In other words, the density 
fluctuations are dependent upon the system MTF. 

The second order (or joint) probability density function of a stationary ergodic process 
gives the probability that at (x,y) the process lies in the range D1 to D1 + dD1, and at 
(x + α, y + β) the process lies in the range D2 to D2 + dD2. To understand how one pixel 
in an image is “correlated” to another pixel in the image, we use second order statistics  
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because there is a need to understand how noise (a random process) is correlated over 
different distances. The extent of such correlation can be specified by means of the 
autocorrelation function (ACF). The ACF is defined by the first joint moment of D 
and its shifted version, which for a stationary ergodic process may be written in terms 
of film density fluctuations as follows: 
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In many applications, it is more useful to specify the spatial frequency content of the 
noise, which can be done by calculating what is known as the noise power spectrum 
(NPS) or Wiener spectrum (WS) of the measured density fluctuations. The Wiener 
spectrum of the fluctuations of a stationary ergodic process is defined by: 
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In other words, the Wiener spectrum is the ensemble average of the Fourier transform 
squared of the density fluctuations. The WS is measured by finding the variance at 
each frequency of an ensemble of images containing no signal (other than perhaps a 
constant DC component). As the ensemble of signal-less images has Fourier transform 
(FT) components with zero mean at all frequencies (except perhaps at the DC value), 
the variance in amplitude is just <|FT(u,v)|2> and hence the formula for the Wiener 
spectrum. WS represents the energy spectral density of the noise. That is, it describes 
the variance in amplitude of each frequency component of the noise generated by a 
system. The Wiener spectrum is two-dimensional, and when integrated over a frequency 
space gives a value equal to the root mean square (RMS) variance of image values.  

where ΔD(x + α, y + β) is the density fluctuation (i.e., noise) measured at a point 
displaced from the point (x,y) by a distance α along the x-axis and a distance β along 
the y-axis (Fig. 5.10). Over long distances, the autocorrelation function tends to zero 
as two pixels that are far apart are typically uncorrelated. One point of note is that the 
scale value of the autocorrelation function is simply equal to the measured variance: 
ACF(0,0) = σ2. As the autocorrelation function includes the variance, it completely 
specifies the first and second order statistics of the measured density fluctuations, 
provided the process is Gaussian. Furthermore, it can be shown that for a Gaussian 
process all the higher order probability density functions and their moments can be 
specified in terms of the autocorrelation function, and so this function defines the 
whole random process. The autocorrelation function provides a more complete des-
cription of the noise character in a radiographic film than σ alone.  
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Figure 5.10: Autocorrelation function (ACF) of a typical radiographic flood field. The 
function tends to zero for large pixel distances (i.e., two pixels far apart tend to be 
uncorrelated). The two areas of high correlated verse relative uncorrelated are shown. 

The Wiener spectrum has the units of variance per frequency bin (typically mm2 for 
2D images as (1/mm-1)2 = mm2). Note that the Wiener spectrum is an absolute noise 
measurement as opposed to an MTF which is dimensionless. 

An important theorem relating the WS and the autocorrelation function is found from 
the digital signal processing world and is known as the Wiener-Khintchine Theorem. 
This theorem states that the Wiener spectrum and the autocorrelation function are 
Fourier transform pairs. In other words: 
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The energy spectral density of the noise (WS) is the Fourier transform of its 
autocorrelation sequence. This observation is a very important result: it means that 
the autocorrelation sequence of a signal and its energy spectral density contain the 
same information about the signal. As neither of these functions contains any phase 
information, it is impossible to reconstruct the signal uniquely from the autocorrelation 
function or the energy density spectrum. 

Noise Reduction 

Statistical models that characterize the noise generation process within an imaging 
system can assist noise reduction algorithms. A variety of approaches can be applied 
to reduce noise in a medical image, and include: 1) improving image acquisition 
and reconstruction protocols; 2) purely data-driven denoising algorithms; and 3) 
knowledge-based methods based on a priori (e.g., physics or statistical) noise models.  

Effective noise reduction methods can be performed during acquisition of the imaging 
study. For example, noise reduction filters can be used in CT [102]. Tube current 
modulation in CT can lead to noise reduction, which in turn can be used to achieve 
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patient dose reduction without any loss of image quality. Time averaging of image 
acquisitions is a common approach in MR studies and angiography to reduce the effects 
of noise on image quality. Increase in measurement time generally leads to improved 
SNR because signals are coherent (i.e., they have a stable amplitude, frequency, and 
phase) while noise is incoherent (fluctuating amplitude and phase) and tends to average 
out over time. Ensemble averaging exploits the distinction that noise is not the same 
from one measurement of the signal to the next, whereas the genuine signal is at least 
partially reproducible between time points. When the signal can be measured more 
than once, by measuring the signal repeatedly and as fast as practical, then adding 
up all the measurements point-by-point will produce an ensemble average that can 
improve the signal-to-noise ratio of the image by a factor proportional to the square 
root of the number of averages. Ensemble averaging is one of the most powerful 
methods for improving signals when it can be practically applied.  

Post-processing noise reduction algorithms input the acquired noisy image data, v, and 
attempt to recover a noise free image, u. Generally, post-processing methods lead to 
image signal distortions as well. A trade-off between the amount of denoising and the 
amount of artifact generation needs to be considered for different imaging studies 
(e.g., artifacts in mammography may not be as tolerant as a fluoroscopy study). 
Denoising algorithms often see no difference between small details and noise, and 
therefore they remove both. Artifacts from denoising algorithms include ringing, 
blurring, staircase effects, and checkerboard effects. 

Gaussian smoothing. Noise reduction through spatial smoothing depends on the 
assumption that true signal amplitudes change smoothly across the image while noise 
is seen as rapid random changes in amplitude from point to point within the image. In 
smoothing, the data points of a signal are modified so that individual points that are 
higher than the immediately adjacent points (presumably because of noise) are reduced, 
and points that are lower than the adjacent points are increased. This procedure 
naturally leads to a smoother signal. As long as the true underlying signal is actually 
smooth, then the true signal will not be distorted much by the smoothing process and 
the noise will be reduced. In Gaussian smoothing, a Gaussian kernel with standard 
deviation σg is convolved with the image, relying on the fact that the neighborhood 
involved is large enough so that noise is reduced by averaging. The standard deviation 
of the noise in this case is reduced proportional to the inverse of the Gaussian kernel 
size. However, the trade-off in this simple approach is a loss of resolution (i.e., image 
blurring). The Gaussian convolution works well in areas of constant regions, but 
performs poorly in areas near edges or areas that contain texture. Gaussian smoothing 
is often effective in reducing noise that is problematic for subsequent image analysis 
algorithms, such as segmentation, which are adversely effected by the presence of too 
many local minima/maxima and inflection points in the data. 
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Neighborhood filters. Gaussian filters perform denoising by local averaging of pixels. 

pixel depends on the distance to the restored pixel. In effect, the approach applies a 
low pass filter to the image, creating an image that is blurred. Neighborhood noise 
filters explore the idea of denoising by averaging groups of “similar” nearby pixels: 
only those neighboring pixels within a certain threshold to the center pixel are used to 
compute the average. It is assumed that inside a homogeneous region, the gray level 
values fluctuate because of noise. Strategies include computing an arithmetic mean or 
Gaussian mean for a target pixel based on qualified neighboring homogeneous pixels. 
The Yarosloavsky neighborhood filter is an example [224]. Many variants of the filters 
exist. The Nagao-Matsuyama filter calculates the variance of nine sub-windows centered 
around the pixel to be restored. The window with the lowest variance is used for 
computing the average value to be assigned to the restored pixel. Thus, the filter finds 
the most homogeneous local region centered around the central pixel and uses this 
local region to assign the average value. The idea is extended in non-local (NL) means 
algorithms that redefine the “neighborhood” of a pixel to include any set of pixels 
anywhere in the image such that a window around that pixel looks like the window around 
the central pixel to be modified [52]. This method has been used and experimentally 
tuned specifically for modeling Rician noise in MR images [124]. 

Anisotropic filtering. To avoid blurring near edges, Gaussian convolution can be 
restricted to parts of the image for which the gradient of the image is near zero [49, 64]. 
Anisotropic filtering algorithms time evolve the image under a smoothing partial 
differential equation, with the diffusion coefficient designed to detect edges [156, 183]. 
In this manner, noise can be removed without significantly blurring the edges of the 
image.  

Total variation minimization. The total variation (TV) method for noise reduction 
was invented by [172]. The original image, u, is assumed to have a simple geometric 
description: the image is smooth (has regularity) within the objects of the image and 
has jumps across object boundaries. The total variation semi-norm for scalar valued 
data u is defined as: 
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where ∇u is the gradient of the image, u. Given a noisy image v(x), the TV algorithm 
recovers the original image u(x) as the solution of the constrained minimization problem. 
In [172], the TV semi-norm with an added L2 fidelity norm constraint is minimized: 

The restored pixel value is obtained as a weighted average where the weight of each 
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Note that we can write the functional G more abstractly as G = R + λ⁄2F, where R is a 
TV regularization functional and F is a fidelity functional. The regularization term is a 
geometric functional measuring the smoothness of the estimated solution. The fidelity 
term is a least squares measure of fitness of the estimated solution compared to the 
observed data. The solution to the minimization problem provides a resulting image 
that offers a good combination of noise removal and feature preservation. This frame-
work leads to the Euler-Lagrange equation: 
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We can find a minimum by searching for a steady state of: 
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or by directly attacking the zero of the Euler-Lagrange equation (i.e., -∂uG = 0) with a 
fixed-point iteration [9]. The Lagrange multiplier, λ, controls the tradeoff between the 
regularity and fidelity terms. Edges tend to be preserved with this method, but some 
details and texture can be over-smoothed if λ is too small. Examples of various 
implementations of TV noise reduction algorithms for medical images can be found in 
[27, 119, 129, 136]. 

Frequency domain noise filters. Frequency domain filters exploit the assumption that 
noise can be isolated or predominate within certain spectral bands. Noise in an image 
generally has a higher spatial frequency spectrum than the signal image component 
because of its spatial de-correlatedness. Noise thus tends to have a broader frequency 
spectrum. Hence basic low-pass spatial filtering can be effective for noise smoothing.  

In general, frequency domain filters are applied independently to every transform 
coefficient and the solution is estimated by the inverse transform of the new coefficients. 
If the noise characteristics for an imaging chain can be estimated a priori in the frequency 
domain, then a Wiener deconvolution process can be applied to filter out the noise 
spectrum. The Wiener formulation filters the frequency components of the image 
spectrum in a manner that reflects the amount of noise at that frequency: the higher 
the noise level at a particular frequency, the more the frequency component is attenuated 
[218]. The general Wiener filter assumes that the noise is spatially stationary and is an 
optimal filter in that it minimizes the difference between the desired output image 
signal and actual noisy signal in the least squares sense. Adaptive Wiener filters 
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[108, 157] use a spatially varying model of the noise parameters, allowing the filter to 
adapt to areas of the image that may contain objects of rich frequency content for 
which less blurring is appropriate. Local adaptive filters in the transform domain 
compute a local spectrum centered on a region of a central point that is modified and 
an inverse transform is used to compute the new value for the central pixel.  

Frequency domain filters that use a Fourier basis set suffer from the fact that local 
frequency filtering can cause global spurious periodic patterns that can be visually 
disturbing. To avoid this effect, a basis function that takes into account more local 
features is often preferred, such as wavelet basis functions. Wavelet coefficient 
thresholding [104] assumes that the small coefficients in a wavelet transform are more 
likely to be due to noise and that the large coefficients are more important signal 
features. These thresholding methods have two main concerns: 1) the choice of the 
threshold is often done in an ad hoc manner; and 2) the specific distributions of the 
signal and noise may not be well matched at different scales. As such, noise reduction 

Figure 5.11: (a) Original image and (b) denoised fractional anisotropy MR image 
using TV and wavelet methods with BayesShrink (courtesy of TinMan Lee). 

can be based on various criteria:  

 Wavelet coefficient shrinkage based on scale and space consistency. This approach 
is motivated by edge localization and distinguishes noise from meaningful data 
using the correlation of wavelet coefficients between consecutive scales [48, 175]. 
A spatially selective noise filter based on the spatial correlation of the wavelet 
transform at several adjacent scales can be developed. A high correlation between 
scales is used to infer that there is a significant feature at the position that should 
pass through the filter. 

 Probabilistic methods. [122, 168] demonstrate estimation of the original signal 
from wavelet coefficients using probabilistic approaches.  
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Examples of various wavelet-based denoising approaches can also be found in [113, 
122, 174]. Wavelet-based methods have the advantage of being fast and introduce no 
ringing artifacts. However, these techniques may not preserve edges well. On the other 
hand, TV methods are extremely efficient in preserving edges, but sometimes lead to a 
loss of texture and staircase artifacts. Hybrid approaches that combine both approaches 
to obtain denoising without the artifacts introduced by either algorithm have thus been 
developed [109]. Fig. 5.11 shows the original and denoised images using a combined 
TV and wavelet approach (Daubechies 4 basis functions with BayesShrink wavelet 
coefficient attenuation thresholding) for fractional anisotropy MR images. The reduction 
in noise in the raw and calculated images is visually apparent and standard deviation 
of image signal measured in homogenous tissue (average of four regions of interest) 
decreased from 11.9 to 8.3 after denoising. Furthermore, no significant blurring or loss 
of texture is seen in the denoised images.  

Registration: Improving Pixel Positional Characterization 
Associated with each pixel (or voxel) of an image is a spatial coordinate (x,y). In this 
section, we discuss methods for improving the meaning of positional information within 
a clinical imaging study. In particular, methods of image registration are discussed 
here, while the important application of atlas creation is discussed later in the chapter. 
The problem of image registration can be stated as follows: given a reference image 
set of a certain view from a patient, co-align a different image set of the same view to 
the given reference images. Registration of imaging datasets is useful in analyzing 
various combinations of datasets:  

 Same patient, different study type, same time. Applications in this category 
involve a single patient who, within a short timeframe, has acquired imaging 
data from a given anatomic region using multiple modalities. Registration of the 
imaging datasets can help to provide multiple independent pieces of evidence 
for a single spatial location. For example, PET (positron emission tomography) 
and MRI information can provide a view of the patient that combines functional 
and anatomical information. 

 Same patient, same study type, different time. A fundamental task of radiologists 
is to monitor changes in image appearance and to compare these finding to some 
baseline (e.g., a prior study). For instance, in therapeutic assessment, physicians 
will analyze a pre- versus post-interventional scan. Registration of the involved 
datasets can allow physicians to visualize difference or distortion maps of two 
registered datasets for the patient (see Chapter 4), highlighting anatomical and/or 
physiologic changes on follow-up.  
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 Different patients, same disease. Probabilistic atlases compiled from patients 
belonging to healthy and/or diseased states are being developed to investigate 
statistical trends related to anatomic morphology and imaging signal levels. 

Image registration is often described formally as an optimization problem: 
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where r is the position vector. This problem statement involves finding the trans-
formation that when applied to image2 results in an image that is maximally similar to 
some specified reference image1. Thus, there are three essential elements of a 
registration algorithm: 1) what transformations to apply; 2) how to represent similarity 
between images; and 3) how to efficiently search for the optimum transformation that 
maximizes similarity. 

Transformations 

The transformation algorithm in the registration process defines a mapping function to 
between the source and destination image data sets. The transformation functions can 
be roughly classified as follows: 

 Parametric vs. non-parametric. Parametric methods have a mapping function 
characterized by a low number of parameters, usually much less than the number 
of pixels in the target image. Examples of parametric transformations include: 
scaling (parameters correspond to scaling factors in each spatial dimension); 
transforms based on basis function coefficients [4]; thin-plate splines [10]; and the 
use of a linear combination of polynomial terms [220]. 

 Global vs. local transformation models. Global models apply one set of mapping 
parameters to the entire source image dataset. Transformation parameters for local 
methods can depend on the location of the pixel in the source image dataset. 

 Linear vs. nonlinear methods. Linear methods are represented by transforms that 
preserve the operations of vector addition and scalar multiplication (i.e., f(x + y) = 
f(x) + f(y); f(cx) = cf(x)). An example of a linear transformation is an affine 
transform. 

Registration of two imaging datasets into spatial alignment typically follows a two-step 
process: first, global linear registration for coarse alignment; and second, non-linear 
registration to account for local variations in the morphology represented within the 
datasets. Note that registration algorithms can be facilitated by using extrinsic markers 
(e.g., foreign objects) in a defined configuration (fiducial) placed in the imaging field 
(e.g., the use of a stereotactic frame within neuroimaging procedures). 
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Global linear registration. Spatial normalization through linear alignment of images 
is typically the initial step in registering a given scan to a target dataset. Linear 
registration is a rigid body transformation that attempts to translate, rotate, scale, and 

the source and target datasets (i.e., affine transforms are determined in this step). 
Linear registration results in the imaging volumes being in the same general stereotaxic 
space, and groups of voxels roughly represent similar anatomy.  

Linear registration is relatively fast and computationally straightforward to implement, 
and can be performed in 2D or 3D space. In 3D, up to twelve parameters can be 
applied to control each voxel level transformation: three translations, three rotations, 
three scaling, and three shearing variables handle transforms in each of the three axes. 
Recall from basic linear algebra the following transforms: 

 Translations. Translations move every pixel in the image a constant distance in a 
given direction. This involves sliding the image in any direction along a vector in 
space. The following describes the 2D formulation of a translation of tx and ty in 
the horizontal and vertical directions, respectively: 

⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

y

x

t
t

y
x

y
x

10
01

ˆ
ˆ

 

 Scaling. Scaling defines the resizing (i.e., expansion/compression) of an image, 
and is expressed as follows, where s is the scaling factor: 
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 Rotations. Rotations describe the motion of an image about a fixed point. The 
following describes the 2D formulation of a rotation of angle θ counterclockwise 
about the origin: 
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 Shearing. Shearing fixes all points on one axis and shifts all points along the other 
axes by a given distance or slope, 1⁄k. Although shearing may appear to distort the 
original image more than other transforms, it does not change the grid on which 
the image lies, as areas are still carried onto equal areas. The following describes 
the 2D formulation of a horizontal shearing by a factor of k: 

shear the images in an attempt to maximize the correspondence of voxel values between 
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Any combination of these parameters can be applied to perform a single linear 
registration. The general form of an affine transform in 2D is: 
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where the matrix can be seen as a product of the matrices involving rotation, scaling, 
and shearing. Linear registration methods can be sufficient for aligning imaging datasets, 
especially when both sets belong to the same patient and are at similar points in time 
(i.e., consecutive image acquisitions, when there is little change in patient disease state). 
However, researchers and physicians often desire to delve further into images and 
observe group-wise similarities/differences in detail. For this task, nonlinear registration 
methods are required. 

Nonlinear registration. While linear image registration permits comparison of images 
in studies related to the same patient, more often than not, further processing is required 
to ensure a more precise 1-to-1 anatomic correspondence of voxels. Nonlinear methods 
are required due to the fact that biological variability among patient anatomy is 
relatively unconstrained. In particular, this degree of precise registration is required 
for aligning each study to a common coordinate system, which can then provide a 
framework for statistical comparison of data in an automated fashion. In such situations, 
quantifications of exact size differences, volume change, or shape alterations of 
structures are often of interest. For instance, a neuroscientist examining differences in 
the hippocampus of Alzheimer’s patients would like to calculate the exact changes 
in the hippocampal shape of patients (vs. normal subjects). Nonlinear methods are 
thus frequently used to compute deformations: to register data volumes from different 
subjects; to describe changes that occur because of a patient’s conditions, such as due 
to natural growth, surgery, or disease progression; and to correct for geometric 
distortions during acquisitions from various imaging systems.  

Nonlinear registration involves distorting the 2D or 3D grid on which the image lies. 
Through these registration methods, pixels or voxels of the subject image are expanded 
or contracted in various directions along the coordinate system to match the desired 
region of the target image volume. This deformation from one image to the other is 
visualized through vector fields created at each voxel to denote the direction and 
magnitude of change for that particular voxel. A deformation grid is also able to 
capture the degree to which the size and shape of each voxel was altered so that  
the subject and target images are well matched. For example, in the case of finding  
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Figure 5.12: Example of the registration process. (a) Subject image. (b) Target image. 
(c) The result of mapping the subject to target. (d) The deformation vector fields 
obtained from the mapping from the subject to target is shown. (e) The greater focus 
on vector fields around the ventricles shows enlargement. It is evident that the target 
ventricles are larger, hence the deformation fields show vectors moving outwards with 
respect to the ventricles to enlarge this region in the mapping. 

cancerous nodules in the lung, one can set limits, or thresholds, on the extent of 
deformation allowed by the registration algorithm. If the registration algorithm detects 
a possible nodule in a location where the voxels in the original image had to be greatly 
expanded to match the template, the actual nodule found may be too small to be 
deemed cancerous or to be of immediate concern.  

Mathematical formulations for nonlinear registration methods are largely beyond the 
scope of this chapter; however, references such as [11, 25, 26, 54] provide examples 
of some techniques and the practicality of their applications in the medical arena. 
Common approaches to nonlinear registration include polynomial warping algorithms 
[221], Bayesian formulations [5], and physical models such as optical flow [44]. The 
product of these algorithms is a deformation field that encodes the correspondence 
between all points in the source and target data volumes. An example of an optical 
flow-based algorithm [73, 185, 201, 215] in which a deformation field is computed 
iteratively is shown below: 
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where vn+1(x) is the correction vector field at iteration n + 1, Gσ is a Gaussian filter 
with variance σ2, ⊗ denotes a convolution, α is a parameter controlling the magnitude 
of deformation allowed, and T and S are the target and source images, respectively. 
The Gaussian filter regularizes the deformation field, using the fact that adjacent 
pixels will deform to the same extent. Based on the level of image noise, the Gaussian  



274 R.K. Taira et al. 

filter size is chosen (e.g., a 7 x 7 or 9 x 9 kernel with standard deviations of 3 and 4 
respectively). An example of a result of a nonlinear registration with resulting defor-
mation field map is shown in Fig. 5.12. 

Similarity Metrics 

Images are aligned to the desired template by systematically altering the transformation 
matrix, using a cost function to compute a surrogate metric that represents a minimized 
difference between the source and target reference volumes [220, 221]. Various cost 
functions or similarity measures exist such as mutual information, correlation ratio, 
cross correlations, sum of squares intensity differences, and ratio image uniformity 
[77, 86]. The cost function used depends on the task at hand. Cost functions such as 
mutual information and correlation ratio are often used to align images obtained from 
mixed modalities such as CT and PET, or CT and MRI; while cross correlation, sum 
of squares intensity, and ratio image uniformity are mostly used with image sets of 
the same modality. Minimizing cost functions are typically sensitive to contributions 
by voxels that do not have matching voxels in the second dataset (i.e., outliers; for 
instance, a resected mass). As a result, non-overlapping volumes result in a large value 
for the cost function. Because of this problem, automatic registration methods often 
fail in the presence of gross pathology that significantly alters the appearance of medical 
images. An automated method for outlier identification is thus necessary to remove 
this problem; for instance, least trimmed squares optimization can be implemented to 
reject such outliers as described in [95, 171, 195]. 

Nonlinear registration methods attempt to minimize the difference between the details 
present in the subject and target datasets using image warping strategies. As with 
linear registration, nonlinear methods are based on a global cost function and a 
minimization strategy that searches for the optimal parameters for the transformation 
model in a rapid and reproducible manner. There have been many proposed cost 
functions associated with nonlinear registration. In general, these cost functions depend 
upon the features that best characterize the structures within the imaging data. By 
way of illustration, consider a researcher interested in examining structures that are 
identifiable through intensity patterns, region curvature, shape/surface features, or 
specific landmarks prevalent in a class of images of interest. These features can be 
detected in the source and target datasets (see below) and can be used as the driving 
force for the nonlinear registration algorithm to obtain maximal similarity between 
these specific features. 

Optimal search strategies. Various search strategies must be applied to registration 
algorithms to identify the transformation that maximizes the similarity between the 
source and target image datasets. If the transform operations can be performed quickly 
and new proposals are systematic, then sometimes an exhaustive search can be 
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performed – for example, if only translations are needed. As the transformations become 
more complex and/or similarity metrics computationally taxing, efficient non-exhaustive 
search methods must be used. Most optimization methods apply a multi-resolution 
search scheme in which registration is first run at a coarse resolution, then progressively 
refined at higher resolution. The application of Gauss-Newton numerical methods for 
minimizing the sum of squared differences and Levenberg-Marquardt optimization 
methods are described in [76, 137]. Gradient descent and conjugate gradient descent 
methods and deterministic annealing approaches are described in [14, 126]. Partial 
differential equation methods that include optical flow models and level sets are described 
in [210]. Finally, a particle swarm search strategy approach for optimization of medical 
registration is presented in [213]. 

Preprocessing  

If intensity measures are to be compared, then it is important to ensure that all the 
images being mapped have approximately the same intensity range as the structures 
within the image. To account for variations in imaging parameters and image acquisition 
methods, intensity normalization should be performed before proceeding to intensity-
based registration methods (see above). As discussed earlier, one general approach 
to intensity normalization is histogram normalization and equalization: obtaining a 
histogram of all the intensity values within each image and optimizing the spread such 
that all images have approximately the same intensity distribution for distinguishable 
structures. For example, in T1-weighted MR images of the brain, the gray matter, 
white matter, and the cerebral spinal fluid (CSF) have clearly distinguishable intensity 
ranges; the CSF is generally more distinguishable on a histogram plot from the gray 
and white matter than gray and white matter are from each other. If this image were to 
be mapped to a template before normalization, the nonlinear registration method 
would focus on the boundaries separating CSF from the gray matter and the brain from 
the background. Less emphasis would be placed on mappings of the gray and white 
matter regions. Through histogram normalization of intensity values, one can increase 

Figure 5.13: (a) The original image with its corresponding histogram. (b) The same 
image and new histogram after an equalization algorithm is applied. 

the intensity range of the white matter so that the three tissue types are equally spaced  
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and distributed along the entire intensity range. Not only does this allow a more accurate 
mapping of an image to a template, but when performed for all images within the set, 
reduces bias in the registration due to differences in intensity ranges for tissue types as 
well as ensures similar mappings of all images. Fig. 5.13 demonstrates the effect of 
histogram equalization. 

User Interaction  

Most nonlinear registration methods require user input to specify parameters, such as 
the degree of stretching and elasticity, to be allowed during the registration process. 
For example, high elasticity may be required to obtain the optimal mapping between 
corresponding anatomical structures (e.g., hippocampus) in two image sets; however, 
if the elasticity is too high, other portions of the image may be distorted when mapped 
to the target. Some nonlinear registration methods are automated so that they rely 
only on global properties of the images for comparisons, such as intensity values 
across the images. Other algorithms require some user input to define landmarks or 
features to be matched across images. In these landmark-based registration methods, 
multiple single-voxel landmarks are placed on both the target and the image to be 
mapped. The registration algorithm’s primary focus then is to match the landmarked 
regions between the images, and subsequently match surrounding voxels according to 
a nonlinear optimization procedure. This method of landmarking, relying on expert 
input to delineate the structures, can be particularly useful when attempting to map exact 
shapes or regions that may not be well-defined through intensity differences alone. In 
this case, placing a few landmarks or points around the region of interest helps to guide 
the registration process and prevents shape distortion due to surrounding structures of 
similar intensity. An example of such landmark-based registration is presented in [100]. 

Comparison of Methods  

There have been several studies comparing registration methods for various tasks. [37] 
looked at four spatial normalization techniques and found that the ideal choice of 
registration is of greater importance when examining higher resolution images. More 
recently, [107] compared 14 nonlinear deformation algorithms after linear alignment and 
ranked the algorithms based on various measures. Although much of today’s medical 
image processing research focuses on finding optimal methods for mapping one image 
to another, accurately and consistently extracting information and knowledge from images 
is still an important task. Once images are aligned in the same space and anatomical 
structures of interest are found, comparative statistical analysis can be performed.  

Imaging Features 
After signal calibration, noise reduction, and registration, the next step is to summarize 
the relevant information in the images, which typically contain highly redundant data. 
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Appearance-based Image Features 

Some features are computed directly from the image pixels (voxels, if the data is 3D). 
The simplest possible feature uses only the intensity/value of the pixel under study; in 
medical imaging, the efficacy of this approach is limited, working only for rudimentary 
problems. More sophisticated features take into account not only the pixel under 
consideration but its neighbors as well. For example, one set of features results from  

The information to be drawn out depends on the subsequent task to be performed, such 
as segmentation, indexing or classification. This overarching step is known as feature 
extraction. In certain situations, it is possible for an expert to define appropriate 
features based on his/her knowledge of the image modality, the anatomical structures 
to be analyzed, and a disease. For example, if the goal were to classify a patch of a 
CT volume as liver or non-liver, one could think of calculating the difference between 
the average pixel value in the patch and 50, which is the typical Hounsfield value for 
the liver. However, when the problem becomes more complicated (e.g., detecting  
a nodule in the breast from an ultrasound image), assigning efficient feature also 
becomes harder. In this case, the classical approach is to extract a high number of 
apparently valid features, and then to uncover a subset that provides better results in 
subsequent processing. This approach is the well-known problem of feature selection. 
The problem with this approach is that the dimensionality of the data grows very quickly, 
requiring impractically large amounts of training data for parameter estimation (i.e., the 
curse of dimensionality [93]), which results from the fact that the dependence of the 
number of parameters in a model with respect to the number of dimensions is typically 
exponential. The purpose of dimensionality reduction techniques is to overcome this 
problem. In this section, we will first explore some of the more popular choices for 
features in medical imaging; a detailed discussion of general image feature extraction 
can be found in [148]. Then, feature selection and dimensionality reduction strategies 
will be discussed. 

Figure 5.14: (a) Linear filtering in two dimensions. The middle, lighter squares mark 
pixels of interest. (b) 2D Prewitt operator in horizontal direction; (c) 2D Sobel 
operator in the horizontal direction; and (d) 2D Laplacian operator. The Prewith and 
Sobel filters for the vertical direction can easily be obtained by transposing the mask. 
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Figure 5.15: (a) An interpolated sagittal slice of a normal brain MR image is shown 
(3T, T2-weighted). (b) The result of applying a 2D horizontal Sobel edge operator is 
illustrated. (c) The output of a Canny edge detector is depicted.  

applying linear filters, which generate a linear combination of the pixels in the 
neighborhood of each pixel (Fig. 5.14a). This calculation is relatively fast, provided 
that the size of the neighborhood is not too large. Largely, appearance-based image 
features can be categorized as follows:  

 Color. An obvious method of describing an image region is to use its color 
distribution; in medical images, this translates into the grayscale distribution of 
the pixels. In addition to being used to normalize signal intensity (as described 
earlier), histograms are also used to describe objects when associated with an 
area/volume of an imaging study. Notably, color features are largely invariant to 
spatial transforms, but are still affected by acquisition even given normalization 
techniques.  

 Edge detection. Edge detectors aim to find discontinuities in images, which 
usually correspond to salient points. An object boundary is defined as one or more 
contiguous paths between pixels/voxels, defining the spatial extent of the object. 
Identified edges are predicated upon a change in the gradient (contrast) between 
pixels, corresponding in the image to a change in material, depth, illumination (e.g., 
lighting in natural images), or surface orientation. Such change is therefore 
computed based on identifying differences between adjacent pixels. Edges are 
frequently classified into three types: 1) a step edge (akin to a step function); 2) a 
ramp edge (where the change is gradual); and 3) a peak edge (where the change 
occurs quickly like a step function and reverts). The basic variants of edge detectors, 
such as the Sobel [190], Prewitt [166], and Laplacian [169] filters rely on different 
discretizations of the derivative and Laplacian operators (Fig. 5.14b-d). Sobel and 
Prewitt detectors are based on first-order derivatives, whereas the Laplacian is 
based on a second-order differentiation. A more complicated and very often used 
approach is the Canny edge detector [19] (Fig. 5.15c), a multistage algorithm 
that includes linear filtering, but also non-maximum suppression and intensity 
thresholding. An overview of edge detection methods is given in [231]. Unto 

 
themselves, edge detectors only provide low-level information on boundaries;  
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additional insight can be found in examining corners and curvature. For instance, 
corners are found when there is a sharp change in the direction of an edge; whereas 
curvature examines the rate of directional change within an edge. Masks can be 
specifically constructed to detect corners and ridges. Applying edge detection 
methods directly to medical images is problematic in the presence of noise and 
blurring artifacts (e.g., patient motion, physiologic movement); moreover, many 
diseases do not necessarily appear with clear boundaries (e.g., edematous regions, 
stroke, tumor infiltration).  

 Template matching and filtering. Edges are often considered low-level features. 
A higher-level feature extraction process, shape or template matching [67], is 
another technique based on filtering, using a mask that mimics the appearance of 
an object being searched for. For example, prototypical examples of a liver-like 
shape can be applied to an abdominal CT to approximate the anatomical region 
of the organ (with the assumption that its gross shape is relatively normal). Note 
that template matching therefore entails: 1) a means of representing candidate 
shapes/regions within an image; and 2) a similarity metric to compare the candidate 
shapes against the template. Hough transforms (HT) can be used to find regular 
geometric shapes (lines, circles, ellipses); and generalized Hough transforms (GHT) 
has been developed to locate arbitrary shapes with unknown location, scale, and 
rotation/orientation. But apart from GHT (which is relatively computationally 
taxing), most template matching algorithms are not robust against rotation or 
scaling, making it very difficult to directly use for medical images acquired in 
routine clinical environments. This issue is one of the reasons that have made 
Gabor filters [56] popular: the input image is fed to a bank of filters that pick up 
the energy contents in different directions and frequency bands. The (continuous) 
expression for a Gabor kernel is: 
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where x’ = xcosθ + ysinθ and y’ = -xsinθ + ycosθ. The parameter θ is the orientation 
of the filter; λ is the wavelength at which the filter is tuned; ψ is the phase shift; 
σ-1 is the spatial frequency bandwidth; and γ is the aspect ratio, which determines 
the width of the covered angle. The filter bank is constructed by assigning different 
values to the parameters (Fig. 5.16a). Applications in the medical imaging literature 
include [57, 58, 110].  

 Multi-scale and scale invariant methods. Multi-scale techniques apply operations 
across several different scaled versions of an image, looking to extract visual 
features globally and locally. One increasingly common strategy is to compute  
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Figure 5.16: (a) Example of Gabor filter bank. The first row corresponds to λ = 8 pix, 
γ = 1.0, ψ = 0, σ = 5 pix. and different values for θ, uniformly sweeping the interval 
[0, π]. The second row corresponds to λ = 6 pix, γ = 2.0, ψ = 0, σ = 2.5 pix. and the 
same values for θ. (b) Example of scale space filter bank. The first row corresponds 
to horizontal derivatives of orders one through four at two different scales (σ = 2, σ = 4 
pix.). The second row displays the corresponding vertical derivatives. (c) Four different 
textures of decreasing complexity are shown, along with their six-neighborhood co-
occurrence matrices, power spectrum, and computed fractal dimension.  

Gaussian derivatives at different scales [114, 192, 209, 222]. The image is first 
smoothed with a Gaussian kernel, which selects the scale of interest by blurring 
details whose size is below the scale under consideration. Then, derivatives of 
different orders are extracted using the corresponding discretized operators. The idea 
behind this type of feature extraction is that a function can be locally approximated 
around a given point by its Taylor expansion, which is given by the value of the 
function and its derivatives at that point. As both blurring and differentiating are 
linear operators, they can be combined into a single filter. A typical filter bank is 
shown in Fig 5.16b. The main complication that multi-scale approaches introduce 
is that of scale selection (i.e., what is the appropriate scale to enhance a certain 
structure in the image for further analysis?) The scale-invariant feature transform 
(SIFT) [118, 146, 181] attempts to addresses this issue by finding local extrema in 
the extended image-scale space. This operation cannot be represented by a linear 
filter. The result is a set of candidates, called keypoints, which is refined by 
discarding points with low-contrast and points on edges. The core SIFT algorithm 
comprises four stages: 1) scale-space extrema detection, in which the image is 
convolved with Gaussian filters at different scales, computing the difference of 
Gaussians (DoG) from across these images, thereby defining keypoints at the 
maxima/minima of the DoG; 2) keypoint localization, which positions the key-
points within the image space and removes low-contrast keypoints; 3) orientation 
assignment of the keypoints to provide rotation invariance; and 4) generation of 
a keypoint descriptor that consists of ~128 features in 2D. SIFT has been found 
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to be moderately robust in terms of illumination, noise, and minor shifts in 
viewpoint/angle and has been used for object recognition within (natural) 
images [117]. 

 Texture methods. Finally, features based on texture analysis are sometimes used 
in medical imaging. Texture can be defined as a function of the spatial variation 
in pixel intensities. Statistical texture analysis often involves calculating 
statistics on the co-occurrence matrices Cd̅  [79, 158, 207], which are defined as 
follows: Cd̅(i,j) stores the number of occurrences of the image values i and j at 

1 , 2 1 – 2  

compute a matrix based on a given displacement,  = (Δx, Δy). Measures on the 
matrix include energy, entropy, contrast, homogeneity, and correlation measures. 
Another statistical approach is to use spectral features computed from the Fourier 
power spectrum of the image, for instance, the fractal dimension [15, 23, 123] 
(Fig. 5.16b). The power spectrum is closely related to the autocorrelation function 
of the image, which captures the repetitive patterns in the data. Geometric texture 
analysis aims for decomposing the texture of the image into a set of simple texture 
elements, for example salient points and edges. The primitive texture elements are 
composited together to create more sophisticated textures. For example, Law’s 
micro-textures are based on convolution kernels. The distribution of these elements 
can then be studied with statistical methods [159, 206]. Finally, model-based 
texture analysis is based on fitting the observed image patch to a predefined 
model. Once the model parameters have been adjusted, they can not only be used 
as features, but also utilized to synthesize texture [163, 194]. 

Shape-based Image Features  

Some commonly employed image features are derived from the shape of a previously 
segmented object. The output of an image segmentation algorithm typically is a binary 
mask or a list of boundary pixels; this demarcated region can serve as the basis for 
computing further information about the shape. Several types of shape descriptors 
have been proposed in the literature; below, we focus on descriptors for 2D images, 
but most of them can be easily generalized to 3D (see also Chapter 7 for a discussion 
of spatial representations; and [225] also provides a review of shape-based metrics):  

 Geometry. The most elementary quantitative shape descriptors are based on the geo-
metry or statistics of the shape. Simple geometric details include area and perimeter. 
Other features include derivative metrics, such as compactness (C = P2/A, where P 
is the perimeter and A is the area); and topological descriptors, such as the number 
of holes or the number of connected components (Fig. 5.17a). Geometry-based  

 p̄  p̄  p̄  p̄ d ¯=  
d ¯

.  In essence, co-occurrence matrices such that positions 
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Figure 5.17: An axial CT slice of the kidney is shown, with the left and right kidneys 
segmented. A stone in the left kidney creates a hole in the topology. (a) Elementary 
geometric shape descriptors are computed. (b) The right kidney contour is approximated 
with straight line segments, generating a 8-direction chain code in a clockwise direction. 
The circle marks the start point. (c) The signature for the right kidney boundary is 
given, plotting the edge in terms of polar coordinates. (d-e) The Fourier descriptors for 
the same boundary are plotted in terms of magnitude and phase. 

features can be divided twofold: 1) contour-based, in which the calculation only 
depends on knowing the shape boundary; and 2) region-based, wherein the 
boundary and the internal pixels must be known. Examples of the former include 
perimeter, compactness, eccentricity, and the minimum bounding box. Examples 
of the latter include area, shape moments (e.g., centroid), and convex hull.  

 Alternate shape representations. The shape boundary can be recast into a different 
representation, mapping it to a new domain from which features can be calculated. 
Chain codes [39, 147] (Fig. 5.17b) approximate the boundary by a set of straight-
line segments, which usually have a fixed length and a discrete set of orientations, 
and then code the direction of each segment with a numbering system. The signature 
and the Fourier descriptors [55, 179] (Fig. 5.17c-e) are 1D representations of the 
boundary. The signature is a description in polar coordinates. The Fourier descriptors 
of a contour are the discrete Fourier transform of the sequence, sk = xk + iyk, where 
(xk,yk) are the coordinates of the points along the boundary. Fourier descriptors 
have the advantage of well-known, simple equivalents for affine transforms 
(rotation, scaling, translation, shearing) in the frequency domain, allowing for direct 
comparisons of image data in the frequency domain (and providing a measure of 
positional invariance, as a change in the position of an object only results in a 
phase change) [67]. 
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Figure 5.18: (a) Example of cardiac angiography. (b) The blood vessel is identified 
and segmented based on the flow of contrast. (c) A binarized version of the segmented 
blood vessel is created. (d) The skeletonized version of the segmented region represents 
the area as a single line. 

                                                           
2  We follow the standard notation of using bold characters to symbolize sets or 

vectors of variables. 

 Skeletonization. Another common representation of a shape is its skeleton. The 
skeleton can be defined as the set of points in the object for which the closest 
point in the boundary is ambiguous (Fig. 5.18). Intuitively, it is a thin version of 
the shape that summarizes its geometry and topology. Skeletons are very popular 
in medical imaging for representing linear and branching structures, such as 
bronchi, blood vessels, or the colon [80, 182, 214]. 

 Point distribution models. Lastly, point distribution models [35] have become 
widespread in medical imaging to represent shapes given the (comparatively) low 
variance in the shape of organs across individuals. A point distribution model 
can be seen as a geometric average across several different representative shapes, 
providing (statistical) information on the degree of spatial and regional appearance 
variations within a sampled population. Central to a point distribution model is the 
identification of landmark points that are used to identify the shape boundary 
[202]. The generation of a point distribution model follows three basic steps: 
1) a data vector is built for each shape by stacking the x and y coordinates of  
Ni landmarks into a single column vector.; 2) the training shapes are aligned using 
the Procrustes method [69], and the mean shape calculated; and 3) principal 
component analysis (PCA) is applied to reduce the dimensionality from Ni to Nc. 
Each shape can now be approximated by a low-dimensional vector b2 of Nc 
principal components that are uncorrelated: PCA results in the determination of 
eigenvectors that form an orthogonal basis set from which the original vector can be 
reconstructed as a linear combination. If the variability of the landmark position is 
low in the training data, then it is possible to make Nc << Ni without losing too  
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much information in the process. Hence, it is possible to sum up a shape in Nc 
features. Point distribution models are also utilized very frequently in image 
segmentation by iteratively deforming the base model to fit a shape detected in an 
image. This technique is commonly referred to as an active shape model (ASMs) 
[34, 51, 209]. Active appearance models (AAMs) extend the ASM framework to 
provide pixel value (intensity) information within the region. 

Feature Selection  

As already mentioned, in many applications it is difficult to design an efficient set 
of features. In such cases, it is common to calculate a very high number of plausible 
features, such as the output from Gabor filters or Gaussian derivatives at different 
scales, and then find the subset that provides better results in the subsequent processing. 
As an example, we will henceforth assume that the features will be fed to a classifier. 
To select the optimal set of features, the available data is divided into at least two 
groups: one for training and one for testing. To evaluate the performance of a set of 
features, the classifier is trained using the values of features from the training data, and 
then the classification error on the test data is recorded. The optimal set of features is 
the one that leads to the minimal error rate. Other performance criteria can also be 
used. For example, the minimax principle approach to feature selection involves the 
use of entropy measures to search for an optimal combination of features [230]. First, 
given the set of all features and statistics about these features, a distribution fusing 
these features is constructed by maximizing the entropy over all distributions that 
result in the observed statistics. Next, feature selection occurs by greedily searching 
among all plausible sets of feature statistics generated in the first step that set whose 
maximum entropy distribution has the minimum entropy.  

Evaluating all possible combinations of features is often impractical. Thus, feature 
selection techniques [41] aim to speed up the process by choosing a subset of sub-
optimal features. A number of approaches have been proposed over the years for feature 
selection; one way of categorizing these methods differentiates between feature ranking 
techniques, where each considered feature is evaluated independently by some metric 
and the top n features are chosen; and subset selection, where a search is performed 
for across different subsets of features that are considered simultaneously and scored 
relative to some metric. An example of the former includes the well-known stepwise 
regression method (popular in statistics; see Chapter 10). Examples of the latter include 
greedy algorithms to grow/shrink the feature set and/or evaluate candidate subsets: 

 Forward and backward selection. Basic forward/backward selection add/remove 
features based on minimization of an error criterion. In forward feature selection, 
the pool of selected features is initially empty and, at each step, the feature that  
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leads to the lowest error rate is added. The algorithm terminates when the error 
rate increases instead of decreasing after adding a new feature, or when the pre-
established number of features is reached. In backward feature selection, the pool 
is initially populated with all the features, which are subsequently dropped in a 
similar manner until termination conditions are met.  

 Hybrid forward/backward methods. Better results can be achieved with slightly 
less greedy approaches, in which steps in both directions (add/drop) are permitted. 
In plus l – take away r (l > r) [193], l steps forward are followed by r steps 
backwards iteratively. Starting with an empty selected set, the algorithm terminates 
when a predefined number of features is reached. Conversely, take away l – plus r 
works the same way but in the other direction, starting with a pool containing all 
the defined features. Floating strategies [167] allow for steps in both directions 
(forward/backwards), choosing based on whatever action leads to the smallest error 
rate per iteration. These heuristics provide results almost as good as an exhaustive 
search, but can also be rather slow, because the number of selected features 
tends to oscillate before reaching the terminating limit. In [167], a discussion and 
quantitative comparison of performance for feature selection strategies is provided. 

Feature selection algorithms often employ some information criterion to evaluate the 
utility of including the feature in the final selection (i.e., does the feature provide any 
new information?). Popular choices include the Akaike information criterion (AIC) 
and the Bayesian information criterion (BIC). [75, 115] provides a full handling of the 
issues surrounding feature selection. 

Aggregating Features: Dimensionality Reduction 

Another means of dealing with a large number of features is to combine the features 
together; in some cases, individual feature spaces overlap or are related, so that a 
smaller number of features can be used to represent the entirety of the feature space 
with minimal information loss (if any). In effect, an (almost) invertible mapping is 
created between a small subset of the features to the larger group of features. This 
strategy underlies the use of dimensionality reduction techniques, which aim to find 
the subspace that contains most of the information present in an initial feature space. 
Feature selection can be seen as a particular case in which the subspace is built by 
extracting some of the components of the feature vectors in the original space. Largely, 
dimensionality reduction techniques can be divided into two groups: linear and nonlinear. 
There are many variants of these strategies, which are an ongoing topic of research; 
the reader is referred to [20, 60, 208] for additional details and reviews. 

Linear dimensionality reduction. Examples of linear dimensional reduction methods 
are the well-known principal component analysis (PCA) [99] and linear discriminant 
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analysis (LDA) [131]. To demonstrate, we consider the former. In PCA, the aim is to 
approximate d-dimensional data points as x ≈ x̄ + Pb, where x̄ is the average of the 
data, b is the vector of n principal components (of lower dimensionality than x), and P 
is an orthogonal matrix (by approximate, the new coordinates are a linear function of 
the old coordinates). If the matrix P is known, the vector b that best describes (in a 
least-squares sense) a data point, x, can be calculated by the projection, b ≈ Pt(x – x̄). 
It can be shown that, if the columns of the matrix P are the n eigenvectors corresponding 
to the n largest eigenvalues of the sample covariance matrix of the dataset, P is optimal 
among all d x n matrices in that it minimizes the approximation error: 
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Moreover, it can be shown that, under Gaussian assumptions, the principal components 
are independent from one another and follow a Gaussian distribution, bi ~ N(0,(λi)½), 
where λi is the ith largest eigenvalue. The number of components to keep is defined 
by the user, depending on the required precision for the approximation. The typical 
strategy is to plot the function: e(n) = ∑n

j=1λj/∑d
k=1λk, which represents the proportion 

of the total variance preserved by the principal components, finding the smallest n 
such that e(n) > 0.95. The meaning of the principal components can be illustrated by 
plotting the modes of variation, which are calculated as mi(t) = x̄ + t((λi)½vi, where vi is 
the eigenvector corresponding to the ith largest eigenvalue, λi. By letting t vary across 
an interval of plausible values for the normalized Gaussian distribution (such as on the 
intervals [-3, 3] or [-2, 2]) and plotting the resulting shape, the effect of each principal 
component on the shape is shown. 

PCA is widely used for dimensionality reduction because it is the optimal approximation 
in the least-squares sense. But if the goal is not to approximate the data as well as 
possible, but to separate it into classes, there are better approaches. Linear discriminant 
analysis (LDA) [131] is one such method. For two classes, and under Gaussian 
assumptions, it can be shown that the direction, w, which yields optimal separation 
between the two classes when the data points are projected is w = (∑1 + ∑2)-1(μ1 – μ2), 
where μI and ∑I are the means and covariance matrix of the two groups. The algorithm 
can be easily generalized for multiple classes. PCA and LDA are compared with a 
simple example in Fig. 5.19. 

Nonlinear dimensionality reduction. PCA effectively computes a set of orthogonal 
bases such that a linear weighting of the bases can be used to represent the feature 
space. PCA assumes that the data follow a multivariate Gaussian distribution. In  
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Figure 5.19: (a) Data points are shown corresponding to two different classes of 
features. (b) PCA of the data points are projected onto the first principal component 
(solid black line). The mean is represented by the large dot in the center. (c) LDA of 
the data points are projected onto the direction that yields the biggest separation. 
(d) Projections for both PCA and LDA algorithms are shown; in this case, LDA does a 
better job of class discrimination. 

contrast, nonlinear dimensional reduction techniques are capable of modeling data in 
low-dimensional manifolds of different geometries (e.g., spirals) and use nonlinear 
techniques to best approximate the data. One way of achieving this mapping is a kernel 
trick, wherein the observations are mapped into an augmented, higher-dimensionality 
space prior to performing a linear dimensionality reduction. Representative methods in 
this class of techniques include kernel PCA, multidimensional scaling, and Isomap 
[200]. For example, kernel PCA extends the original PCA framework by performing 
the mapping in a Hilbert space. Isomap uses the concept of geodesic distances in a 
weighted graph; for instance, the sum of edge weights along the shortest path between 
two points is regularly used (e.g., as opposed to a linear Euclidean distance). 

Considerations when using dimensional reduction. As it is frequently not possible 
to know a priori which technique is optimal for performing dimensional reduction, 
one method to choose between the different algorithms is to select based on the 
minimization of generalization errors in representing the dataset. Lastly, it is important 
to note that dimensional reduction techniques allow one to choose how many dimensions 
will be used to approximate the original feature space (with the tradeoff being the 
degree of approximation error in the representation). A given feature space and dataset 
has an intrinsic dimensionality (ID), which is the minimum number of variables 
(features) that are needed to represent the data. Ideally, the chosen number of dimensions 
should not be below the ID value. [212, 223] cite well-known procedures for estimating 
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ID (e.g., [62]) while [16, 17] describes newer ID estimation techniques. Arguably, 
reliably estimating ID is an open challenge, as many such methods are heuristic. [125] 
suggests error analysis over different iterations of increasing dimension to arrive at an 
appropriate estimate of intrinsic dimensionality. 

Imaging Atlases and Group-wise Image Analysis 
The range of steps described thus far – pixel value standardization, denoising, registration, 
and feature extraction – are all important steps that that permit imaging studies from 
a population of patients to be analyzed and compared within a common anatomic 
coordinate system. Anatomic imaging atlases provide an important representational 
framework for characterizing the spatial variability of physical features associated 
with a group of individuals aggregated from across imaging studies. In this section, we 
describe the need for standardized anatomical atlases and templates, including a brief 
discussion of how atlases are created; and how atlases can be used to extract both 
individual and group-wise features via image normalization and registration.  

The Need for Atlases 

Radiologists analyze countless imaging studies on a daily basis, yet no two images 
will ever be the same. This fact is due not only to the differences among individuals, 
but a number of factors including the details of the image acquisition, the patient’s 
orientation and position within the scanner, physiologic changes, etc. How then are 
radiologists able to accurately diagnose patients solely on the basis of the images they 
encounter? Moreover, how can radiologists assess the extent of a disease by visual 
inspection? While skill, perfected through years of practice and familiarity with medical 
images, helps answer such questions, it is not a complete answer. Rather, a radiologist’s 
abilities are not only based upon experience, but more fundamentally upon norms that 
have been established for populations. Norms are extracted from the analysis and 
comparison of imaging data compiled for various populations. Thus, norms define an 
approximate expectation for a feature for a particular group and provide a baseline for 
determining the relative normality of a patient’s presentation. From this perspective, a 
standardized way of determining and representing norms is needed – a function that is 
fulfilled by medical imaging atlases. 

Philosophers and scientists have been fascinated for centuries by the human body, 
seeking to illuminate its many complexities and mysteries. General anatomical atlases, 
in a sense, have always been a part of civilization, with early atlases appearing among 
the ancient Egyptians, Persians, Chinese, and Europeans [143]. Such atlases have been 
a critical tool for learning about the human body, providing approximate locations and 
the relative size of anatomical components. With today’s advances in medicine, a new 
generation of imaging-based atlases is being generated, which provide an unparalleled 
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degree of detail and incorporate a wider range of information (e.g., histologic, radiologic, 
disease-specific, micro- and macro-scale features, etc.). 

Creating Atlases 

In a way, anatomical atlases can be likened to the more familiar geographical atlases 
in that a standard for visualization is set; furthermore, details on relative locations are 
provided through a given coordinate system, and labels are specified for each set of 
coordinates. But unlike geographical atlases, anatomical atlases are not necessarily 
definitive in nature [128]. While atlases of the Earth can be created through satellite 
images and precise measurements taken of a single object or area of interest, medical 
imaging atlases are designed primarily based on the perception of what entails a study 
population. Whether this population is the entire human race, the disease-free portion 
of a population of a certain age group, or patients with a certain type of cancer, it is 
often infeasible to obtain information on the makeup of every member of the target 
group. Atlases are thus created from images of a particular subset of the desired 
population. Frequently, this “subset” involves taking one or multiple high resolution 
images of only one person – a designated prototype of the cohort of interest – to act as 
a standard for the group. This subject’s image set is then considered to be the template 
to which all other members of the population are referenced and compared. For example, 
the atlases from the National Library of Medicine (NLM) Visible Human Project are 
each derived from a single individual and are regularly used to teach human anatomy 
[144]. However, it has been demonstrated that using a single subject as a template is 
not an ideal way to represent a population [46, 205]. Depending on the task at hand, an 
atlas based upon a single subject may be able to provide sufficient information, for 
instance describing the relative location of anatomical regions of interest with great 
detail. Yet this level of detail cannot take into account the variability of the location, 
shape, size, or even its existence within the broader population. 

As such, if a single subject atlas is inadequate, then the atlas requires input from a 
larger subset of the population. If a sufficiently large group exists, it may be assumed 
to represent a wide range of the population pool and generalizations may be made with 
respect to the entire population’s (anatomical) properties. Atlases created from larger 
populations are often statistically determined (e.g., through averaging). The variability 
in anatomy within populations results in fewer fine details present in the atlas, as size 
and shape may be lost or distorted. Such distortion is compounded by the fact that 
individual images are subject to acquisition bias and general error, even if taken from 
the same person. 

Methods of combining group information to obtain a precise and efficient atlas, which 
aim to optimize the desired contribution from the images of each group member, 
involve image registration and normalization (see above). For example, if one wanted 
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to create an atlas of the brain from a group of 20 subjects to delineate particular 
structures of interest, the following rudimentary steps can be taken: 

1. First, intensity normalization of all subject images is conducted so that the 
intensity ranges are all similar. 

2. Next, linearly align all images (i.e., perform affine registration) so that each study 
is in the same general, global space. 

3. Average all the images to create an average template, referred to as Template 1. 
4. Perform an optimized form of nonlinear registration, mapping all linearly aligned 

subjects to Template 1. This process will ensure that the anatomical information 
of each subject will be mapped to a space shared by all of the subjects. 

5. Average the resulting images from the nonlinear registration to create a new 
template, referred to as Template 2. Template 2 will better preserve the finer details 
of anatomy rather than merely averaging the linearly aligned images. 

6. Label the desired structures of interest in Template 2; this step should be done 
using expert guidance (e.g., with an individual with knowledge of the field; or an 
accepted anatomical text). In point of fact, application requirements should drive 
the level of anatomic granularity expected from the labeled atlas. The level of detail 
that can be described by an imaging-based atlas, however, also depends on the 
resolution and tissue discrimination abilities of the imaging modality used to 
create the atlas (e.g., MR, CT, PET, etc). 

7. The labeled Template 2 now serves as an atlas with segmented, labeled regions of 
interest (ROIs).  

Notably, this method results in the ROIs being outlined in all of the subjects without 
the labor intensive task of manually labeling each set of images individually. Instead, 
one image is labeled, and the labels are then applied to all images: each subject’s 
deformation field determined as part of the nonlinear registration can be inverted and 
applied to the atlas, resulting in the labeling of each subject’s images, delineating the 
regions of interest per subject study. Another advantage of this approach is the relative 
ease of adding new subjects to the sample: new individuals do not need to be 
individually labeled, but instead one can merely apply the labeled regions of the atlas 
to each new image, assuming perfect registration. 

Using Atlases 

Virtually all fields of medicine can benefit from the use of imaging-based atlases. As 
remarked upon earlier, The Visible Human project [144] is an effort put forth by the 
National Institutes of Health (NIH) to develop complete, extremely detailed full body 

 

atlases using information from cryosection, CT, and MR images from one male and  
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one female normal cadaver. When a specific organ is of interest, atlases of that 
particular anatomy are instead used. For example, atlases of the heart have been 
created [116] to assist in segmenting out ROIs such as the left ventricle of the heart (a 
common location for myocardial diseases). Finer structures, such as coronary arteries, 
can be segmented to aid in the diagnosis and treatment of arteriosclerosis. Atlases of 
the lung are also of vital importance for establishing the range of normal values in 
quantitative measures of lung structure and function. This requirement is particularly 
acute for 3D images of the lungs taken with CT, as finer pulmonary structures may be 
difficult to match across imaging volumes of populations [111]. Due to the relatively 
static nature of the brain, the most extensive work to date on atlases have been applied 
to the field of neurology (Fig. 5.20). One of the first standardized atlases was developed 
by Talairach and Tournoux [198], where the entire brain anatomy is addressed using 
Cartesian coordinates. This coordinate system has been used extensively in functional 
neuroimaging applications where entire images are mapped onto the Talairach 
coordinate system [61]. [204] outlines several atlases used for structural and functional 
neuroanatomy studies, describing advantages and possible limitations of each; they 
suggest possible advantages to combining the many available atlases for maximizing 
the anatomical information extractable at given locations. 

In general, atlases obtained through imaging have a variety of uses for students, physicians, 
and researchers alike. Important applications of imaging-based atlases include: 

 Teaching. Atlases created from imaging information can be critical tools in teaching 
normal and abnormal anatomy – when used as references, they allow students to 
learn the relative size, shape, and position of a desired part or region of the body. 
Probabilistic atlases can detail patterns of variability in both anatomic structure 
and function [128]. 

Figure 5.20: A 3D labeled atlas of the human brain. This atlas segments the brain into 
various color coded regions of interest, each with a corresponding anatomical label. 
Image courtesy of Dr. P. Thompson at the Laboratory of NeuroImaging at UCLA. 
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 Clinical decision-making. Atlases can be used to guide the decision-making process 
of physicians in determining the relative (ab)normality of a particular anatomical 
structure. Atlases are useful diagnostic tools, offering physicians a method of 
confirming a diagnosis when general symptoms are an inadequate basis. Thus, 
atlases may improve diagnosis and reduce medical complications. Consider, for 
example, a person admitted for evaluation who exhibits symptoms including 
involuntary movements – a characteristic of both Parkinson’s and Huntington’s 
disease. To differentiate between these two degenerative diseases, a physician can 
compare brain scans taken from the patient to various imaging atlases, including 
ones representative of Parkinson’s and Huntington’s disease. As anatomical 
variations within the brains of these two disorders are not identical, the clinician is 
able to confirm the presence of one disease over the other, if there are substantial 
similarities between the patient’s image set and one of the comparative atlases. An 
accurate diagnosis may then be made and treatment begun.  

 Assessment of change. Atlases can also be used to track changes associated with 
the progression of a disease. In such cases, a physician will compare images of a 
single person at various points in time. The physician may compare present images 
with those taken in the past, in which case the previous image will serve as a 
template from which differences can be measured. It is also possible to map the 
entire set of images to a normal, disease-free atlas of the same region, or conversely, 
one of a fully progressed disease state. These comparisons can help to determine 
the rates of change in the anatomy or the degree of normality/disease within a 
patient. 

 Disease characterization and segmentation. Biomedical research makes extensive 
use of atlases, especially to quantitatively compare multiple images from groups 
of individuals. This process is important in the study of disease and disease 
progression. What differentiates a certain disease group from the normal population? 
What other diseases follow similar patterns or involve correlated anatomical 
abnormalities? What biomarkers should clinicians look for in diagnostic imaging 
tests to confirm a diagnosis? Do certain medications or treatments alter, slow the 
rate of change, or perhaps entirely reverse the abnormalities shown in images? 
Questions like these can be answered and explored by using labeled atlases to 
help segment imaging studies into various regions of interest that are known to be 
affected by a disease (or are yet to be discovered as potential biomarkers). Studies 
that purport to link anatomical abnormalities to a disease, however, require the 
evaluation of large populations of both affected and unaffected groups. Manually 
delineating the ROIs in each subjects can be an extremely time consuming task; 
for example, it can take several hours to accurately segment the hippocampus in 
one person alone. Furthermore, this task can have high intra- and inter-labeler 
variability, which can lead to study inconsistencies, so that manually segmented 
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regions must then be further confirmed as accurate by an expert before further 
analysis. In the presence of a single, already delineated atlas, the ROI delineation 
task can be made far simpler if the labels from the atlas are (automatically) 
mapped onto each individual’s images. Note that in some situations, it may be 
useful to use multiple atlases (e.g., one for each group under study), to reduce bias 
and errors in mapping several groups to the same atlas. This tactic is particularly 
prudent when there are well-known and well-defined anatomical variations within 
the populations under study. 

 Pathology detection. A probabilistic atlas characterizing a diseased population can 
be utilized to automatically detect pathology in new patient scans [203]. The next 
section discusses issues of disease characterization and pathology detection further. 

Morphometry 

In medical research, it is desirable to identify differences in anatomy that occur due to 
particular diseases. To effectively study these variations and make sound conclusions, 
researchers should use large groups of patients and controls to determine statistically 
significant differences in anatomy, whether it is variations in volume, position, or shape. 
When mapping an anatomical region to a template (i.e., atlas), one can measure the 
amount of change required to map a given subsection/landmark of the patient group to 
the atlas and compare it to the control group without disease. In some sense, one can 
imagine warping one atlas, representing a disease population, to another normative 
atlas, in order to determine the degree of change either globally or within a given 
anatomical ROI. For example, consider mapping an MR brain scan to an atlas, and 
assessing changes in the hippocampus relative to a normal population. Differences in 
mapping can, for example, be associated with the hippocampal curvature at a 
particular axis of the hippocampus: the degree of curvature may signify changes that 
can possibly be used for early detection of disease or the efficacy of a treatment. 
Current research focuses on three main methods of group-wise statistical comparisons, 
all of which are extremely prevalent in the field of neuroscience; we briefly describe 
these three approaches below.  

Voxel-based morphometry. Voxel-based methods of analysis compare scalar values at 
each corresponding voxel (or pixel in 2D) in groups of images. Voxel-based morphometry 
(VBM) is a method of obtaining statistical parametric maps of volumetric differences. 
Once images have been standardized (intensity normalization, linear registration), this 
type of analysis can be applied by summing up voxel counts of the intensity range of 
interest in a particular location, corresponding to the approximate volume in that 
region. Volumetric comparisons may then be made between populations. For this type 
of volumetric analysis, it would be counterproductive to perform nonlinear registration 
to deform the grid on which the image lies because the voxels will not be of uniform 
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size (thereby making the summing operation invalid). VBM is a very popular approach 
and has been used in numerous neuroimaging studies of gray matter volume to quantify 
differences between populations [7, 68, 127].  

Markedly, voxel-based statistical analysis is not limited to solely accounting for 
volumetric differences between regions or to linearly-aligned images. For example, in 
DTI, images are collected using multiple directional gradients to determine the relative 
diffusion rate of water in each direction. The directional diffusion information collected 
is often combined and represented as a scalar quantity depicting the degree of diffusion 
anisotropy at each voxel, as seen in common fractional anisotropy (FA) images (see 
Chapter 2). When acquiring these diffusion images, at least one set of images are 
taken with no diffusion gradients applied; this image set is identical to obtaining a 
T2-weighted MR scan. As atlases of T2-weighted MR scans are available and can also 
be constructed easily, linear and nonlinear registration can be performed on these T2-
weighted images for each subject. The resulting transformation matrices from the linear 
registration along with the deformation fields obtained from the nonlinear registration 
can then be applied to the FA maps created from diffusion imaging. Once complete, 
the scalar anisotropy maps are then in the same stereotaxic space as the registered 
T2 images, and each voxel is representative of approximately the same anatomical 
region throughout all subject images. Voxel-based statistical analysis can then be 
performed to determine relative differences in anisotropy across populations. 

When performing statistical tests on the numerous voxels making up images, one must 
account for the error rate in multiple comparisons: performing tests at every voxel 
results in a vast amount of independent statistical tests; and the number of tests is 
proportional to the number of false positives found. False positives, in this case, are 
voxels that are deemed significantly different between the two groups. In other words, 
the more independent tests that are run between large imaging volumes, the more 
voxels are labeled as significantly different when in fact this might not be the case. 
Several methods have been proposed to account for multiple comparisons, all of 
which aim to reduce the effect of statistical errors on significance. The use of 
methods such as Bonferroni correction, Gaussian random field theory [5], non-
parametric permutation tests, and false discovery rate [8] are thus commonplace. 

Deformation-based morphometry. As mentioned previously, nonlinear registration 
results in vector fields describing the deformation encountered at each voxel in the 
image. These deformation fields describe the spatial transformations of voxels required 
to map different images to the same template. Using the deformation fields obtained 
from a nonlinear transformation, one can assess the degree to which certain regions 
differ in one image with respect to a set of comparison images. This form of analysis 
can also be used to statistically compare differences in volume for certain ROIs. 
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Deformation-based morphometry (DBM) can also use the deformation fields to identify 
differences in the relative position of structures within an image volume.  

Generally, a single multivariate test is performed on the deformations using a few 
descriptive parameters extracted from the deformation fields using, for instance, single 
value decomposition (SVD). The deformation field may be decomposed into components 
that describe global position, orientation, size, and shape, of which only shape may be 
of interest to a researcher. Hotelling’s T2  statistic can be used for simple comparisons 
between two groups of subjects: t2 = n(x – μ)S-1(x – μ), where n is the number of 
points, x is the vector of elements, μ is the mean, and S is the sample covariance 
matrix. Equivalently, a multivariate analysis of the covariance can be performed using 
Wilk’s λ statistic on more complicated group experimental designs (see Chapter 10). 
In fact, atlases that are created from the imaging data of many subjects need to be 
created after all images are registered to the same stereotaxic space – only then can 
their anatomical information be combined to create the desired atlas. Atlases containing 
data from many sources can be created by simply averaging all images once in the 
same space, or through other methods such as a minimal deformation template (MDT). 
MDT creation involves nonlinearly mapping several subjects to a single subject, 
designated to be the template. The deformation fields obtained from these mappings 
are then combined and used to deform the template to better represent the entire group 
of subjects under study.  

Tensor-based morphometry. As with DBM, tensor-based morphometry (TBM) also 
takes advantage of the deformation fields obtained from nonlinear registration. Though 
DBM is able to access changes in the global shape of the anatomical structure being 
imaged, TBM is further able to identify differences in the local shape of structures 
within each imaging voxel. In fact, the objective of TBM is to localize regions of 
shape differences among groups of images using the deformation fields to quantify the 
mappings of a point in a template, T(x1, x2, x3), to the same point in a subject’s image, 
S(y1, y2, y3). The Jacobian matrix of the deformations is calculated by partial 
derivatives to depict information regarding the local stretching, shearing, and rotation 
of the deformation necessary to map the subject image to the template. The calculation 
of the Jacobian at each point is based on the following:  
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Often, the determinant of this Jacobian matrix is taken to obtain a scalar quantity 
reflecting volumetric differences in the size of each voxel. This quantity is often referred 
to as simply the Jacobian. Assuming the deformation field mapped the subject to the 
template, and not vice versa (template to subject) the following data can be inferred at 
the voxel level: J > 1 represents growth of the region; J < 1 represents shrinkage of the 
region; and J = 1 represents no change in the volume of the voxel. When calculating 
the determinant of the Jacobian, it is possible to obtain a value of 1; therefore, one 
would assume that there is no change in the volume or position of a particular voxel. 
However, this result does not necessarily indicate that the shape of the voxel remained 
the same. More powerful forms of TBM take this change in length into account, along 
with changes in area and amount of shear in each voxel, using multivariate statistics 
on measures derived from the Jacobian matrix [13]. 

Discussion 
In this chapter, we have discussed the importance of characterizing imaging data from 
the standpoint of improving its interpretation and for standardizing its representation 
to facilitate the comparison and sharing of both clinical and research study results. 
The standardization process includes both signal and positional level calibrations. An 
overview of the importance of anatomical atlases along with some of their potential 
uses in medicine was then presented. Methods for conducting group-wise comparisons 
pertaining to groups of images that have been registered have also been described.  

The information presented in this chapter is but a brief survey of a field that has a 
long history and an enormous body of work in developing practical medical image 
understanding systems. However, important issues remain: how to model the interaction 
of features associated with images; how to compile data and training sets; how to learn 
the parameters for a given model; and how to utilize the model for inferring targeted 
user interpretations from the imaging data are all still unanswered questions. These 
issues motivate efforts to develop robust systems that can automatically extract 
quantitative observations (e.g., size, shape, texture, intensity distributions) from both 
anatomical structures and pathological processes that manifest as imaging findings 
(e.g., a tumor or mass). These quantitative observations can then be used to develop 
practical phenotypic models to better characterize the human condition (i.e., normal or 
diseased states). Additionally, the characterization of imaging data must prospectively 
be made in the context of the entire clinical context of the patient. Spatial-temporal 
imaging patterns are likely degenerate with respect to many diseases, thus higher-level 
characterization of imaging data should be made in the context of other patient 
information (e.g., demographic, social, laboratory, histopathology, surgical, and other 
observational and assessment data).  
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Figure 5.21: Axial T1-post contrast images of the brain showing the highly diverse 
imaging presentation of tumors in glioblastoma patients.  

The implementation of systems that attempt to characterize patient data for decision 
support must be integrated into a larger development system that includes automated 
clinical data collection, structuring, modeling, and individualized patient model instan-
tiation. This end-to-end development plan requires the consorted efforts of clinical staff, 
clinicians, informaticians, statisticians/mathematicians, and computer scientists.  

The realization of clinical image analysis systems, however, includes a number of 
well-documented challenges associated with imaging data that make practical imple-
mentation difficult [164]. For example, Fig. 5.21 shows a sample collection of brain 
tumor images, as seen on T1-weighted, contrast-enhanced MR, demonstrating the high 
degree of variability in presentation. Brain tumors may be of any size, may have a 
variety of shapes, may appear at any location, and may appear with different image 
intensities [43]. Some tumors also deform neighboring structures and appear together 
with edema, which changes the intensity properties of nearby regions. Edema is 
especially hard to identify, with some knowledge of tissue flow resistance needed for 
accurate characterization. Given this difficulty, medical image analysis is a major area 
of focus within several disciplines, including applied mathematics, statistics, computer 
science, electrical engineering, cognitive science, neuroscience, medical informatics, 
and biomedical physics. Comprehensive toolkits are available to promote the application 
and development of medical image analysis methods (e.g, the Insight Segmentation 
and Registration Toolkit, ITK). 

Towards Medical Image Analysis 
While a complete discussion of medical image analysis methods is ultimately beyond 
the scope of this text, some major points of note are summarized below. 
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Mathematical Foundations 

Various mathematical formalisms are used in imaging analysis systems to integrate 
variables, rules, constraints, transformations, and search strategies into a single unified 
representation. Energy models that can address both local and global characteristics of 
image states are among the most powerful. There are two important mathematical 
foundations that are common in medical image analysis: 1) Bayesian statistical 
formulations; and 2) partial differential equation (PDE) methods.  

Bayesian statistical methods. The Bayesian framework leverages the fact that medical 
image data have a number of statistical regularities that can be exploited in certain image 
processing operations (i.e., medical images are statistically redundant). Examples of 
statistical regularities include: the statistics related to the correlation of intensity values 
of neighboring pixels; the regularities associated with the strength and smoothness of 
anatomic boundaries; and the regularity of textures associated with homogeneous tissue 
regions. Additionally, one can employ the regularity of views in medical images in 
which anatomical sites and regions appear with preferred orientations. These regularities 
can be modeled statistically within a Bayesian model in which prior expectations of 
these regularities can be formally represented by a probability distribution. Probabilistic 
distributions over structured representations, such as graphs, grammars, predicate logic 
statements, and schemas, are being used to model medical imaging data. The Bayesian 
inferencing approach is applied by searching for a maximum a posteriori (MAP) estimate 
of the most likely interpretation of the imaging data for a given set of observed imaging 
features (see Chapter 9). The MAP estimate is found by methods such as expectation-
maximization and Markov Chain Monte Carlo (MCMC) algorithms.  

Partial differential equation methods. PDE-based frameworks are the second approach 
for building applications of medical imaging processing systems. The increasing 
amount of available computational power has made it possible to numerically solve 
PDEs of relatively large size with high precision. Finite element analysis, a numerical 
technique for finding PDE solutions, was first proposed in the 1940s and, along with 
its variants, has become a standard tool in science and engineering. Image processing 
and analysis algorithms involve solving an initial value problem for some PDE. The 
PDE solution can be either the image itself at different stages of modification (e.g., 
de-noising or deblurring) or a “filtered” view of the image such as a closed curve 
delineating object boundaries. The medical image community has applied PDEs to 
imaging problems including restoration, segmentation, and registration:  

 Image restoration (denoising). PDE-based image restoration focuses on optimizing a 
functional of the corrupted image. This functional typically consists of a data 
fidelity term and a regularization term. For instance, in the popular Rudin-Osher-
Fatemi (ROF) model [172], the goal is to minimize: 
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where i(x) is the original, noisy image; and r(x) is the restored version. The 
stationary point of a functional can be calculated by solving the associated Euler-
Lagrange equations, which are a system of PDEs. Other approaches involving 
PDEs are based on nonlinear diffusion [21, 156]; and [173, 217] summarize the 
most usual methods in the literature. 

 Image segmentation. In image segmentation problems, PDEs typically arise from 
the Euler-Lagrange equations of a functional to optimize. This functional no longer 
depends on a restored image, i(x), but on a discrete labeling, l(x), instead. Three of 
the most prominent methods are active contours [103], and the Mumford-Shah 
[140] and Chan-Vese [22] techniques. Another popular approach that requires 
solving PDEs are level set methods [152], which have the advantage of handling 
changes of topology within a region in a seamless manner. A good (though 
slightly outdated) survey of these and other methods can be found in [138].  

 Image registration. PDE-based methods have been proposed for registration using 
level sets [154, 211] and viscous fluid models. Surveys of image registration 
methods, including PDE-based algorithms, can be found in [120, 232]. 

Image Modeling 

Building atop these mathematical formalisms, image modeling for medical image 
analysis continues to be driven by the investigation of new types of image features. 
The current trend in the field has been to use a larger number of semantically richer, 
higher-order features specific to targeted entities, including: signal-level features; 
multi-spectral features; edge primitives (edgelets); curve primitives (curvelets); local 
texture features (textons); kernel basis dictionaries (e.g., Gabor filters, wavelet); responses 
to parameterized object templates (bones, heart, ventricles, tumors); and summarization 
features related to regional statistics (e.g., variance). Apart from the relatively low-
level nature of image features, researchers are also investigating how to aggregate 
image features together into meaningful models, capturing contextual interactions and 
hierarchical relationships.  

Modeling the contextual interaction of imaging features. Graphical models (see 
Chapter 8) are commonly used in statistical-based methods to model a joint distribution 
by decomposing the distribution into a smaller number of factors, thus simulating the 
interaction of feature variables. For images, these models can be either descriptive or 
generative [74, 228], and can be used to capture: localized correlations between pixel 
features (e.g., texture fields using Markov random fields); intermediate-level correlations 
(e.g., sparse coding methods [151]); and/or higher-order topological correlations 



300 R.K. Taira et al. 

(e.g., context-free grammars). Generative models can be formulated using a stochastic 
grammar, enabling one to model the medical image in terms of a basic vocabulary 
of patterns corresponding to normal or abnormal structures (e.g., anatomy, tumor, 
edema) [229]. 

Hierarchical compositionality and graphical models. Related to graphical models is 
the concept of hierarchical composition. Work on compositional hierarchies in which 
imaging objects/scenes are represented as a hierarchy of connected parts is an emerging 
trend [98, 226, 227]. These hierarchies allow for improved probabilistic expectation 
models for compositional regularities and can hence be used for better identification of 
objects and their constituents. Medical image descriptions are seen as the result of a 
complex hierarchy of features, some directly referring to the physical world (e.g., T1 
spin-spin relaxation), some referring to patterns within the imaging world (e.g., high 
signal intensity region), and others referring to abstract objects summarizing lower-
level regularities (e.g., “mass”). Description of increasingly complex patterns can be 
represented via this mode of hierarchical feature composition using probabilistic 
graphs and grammars [24, 191]. 

Linking Images to Additional Knowledge 

In many applications, better results are often achieved by applying domain-specific 
knowledge. In medicine, this knowledge comes from a bevy of sources; and several 
efforts in medical image analysis are looking to link image features and findings with 
this knowledge to enable a range of quantification tasks and to answer prognostic 
questions. For example, an important area of basic research is investigating how 
features and patterns seen in medical images are linked to biophysical parameters in 
order to establish in vivo disease biomarkers. As a point in case, several studies have 
investigated the correlation of imaging features to biological parameters associated 
with brain tumor microenvironments and patient survival times [3, 42, 66, 87, 101, 
112, 121, 134, 141]; Table 5.1 summarizes a few of these studies. It has been observed 
that histologically similar tumors often demonstrate highly distinct imaging profiles 
on MRI. Recently, several studies have attempted to correlate imaging findings with 
molecular markers, but no consistent associations have emerged, and many of the 
imaging features that characterize tumors currently lack biological or molecular 
correlates [47]. Image appearance models of MRI data conditioned on gene-expression 
states are being researched to improve discrimination and characterization of disease 
based on imaging patterns [82]. In a slightly different light, a number of spatio-temporal 
growth models have been developed to describe tumor cell density [94, 196, 197]. [196] 
considered the effect of chemotherapeutic agents in heterogeneous tissue where drug 
delivery may vary with vascular density; [94] extended this model by incorporating T1 
and DTI MR atlases derived from normal subjects to estimate the anisotropic diffusion 
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MR imaging features Classification task 

Mass effect, cyst formation, necrosis on MR Grading of supratentorial gliomas [42] 

Heterogeneity of contrast enhancement, edema, 
mass effect, cyst formation, necrosis, flow void 

Grading of gliomas [3, 160] 

Contrast enhancement, volume of peritumoral 
edema 

Grading of gliomas [87, 141] 

Tumor capsule, vascular supply, calcification Degree of malignancy [112, 216] 

Degree of necrosis, edema, presence of tumor cysts Patient survival times [105, 121] 

Intensity of tumoral mass Patient survival times [78] 

Non-contrast enhancing tumor, edema, satellites 
and multi-focality 

Patient survival times [162] 

Indistinct border on T1 images and mixed signal 
intensity on T1 and T2 

Genetic allelic loss of 1p and 19q, evidence of 
incomplete surgical resection [96, 134, 199] 

T2/T1 volume ratio, border sharpness on T2 Molecular GBM subtypes [1] 

ADC value Ki-67 labeling index (negative correlation) [85] 

Table 5.1: Features relating various MR imaging findings to aspects of glioblastoma 
multiforme nature and outcomes. 

for glial cells throughout the brain. Although these examples draw upon only brain 
tumors, similar efforts to link imaging with additional knowledge and models are seen 
for other cancers and diseases. 

Biomechanical models. Biomechanical models that simulate the complex shape and 
motion of the heart have been developed using a variety of approaches including 
spectral-based methods [142], physics-based elastic models [88], and bending/stretching 
thin-plate models [2, 180]. These models, when registered and fitted to image data 
(e.g., tagged MRIs) can be used to characterize cardiac function, identifying useful 
clinical parameters that give insight into disease processes [155]. The idea is that 
medical imaging data from a specific patient can provide shape, landmark, and 
orientation information for various anatomic structures. This information can then be 
incorporated into a dynamic model via the specification of initial conditions and 
constraints on which the model should adhere to (e.g., shape, size, location and 
orientation constraints). The model can then simulate biomechanical behavior based 
on the individual’s presentation. 

Physiologic models. Likewise, the joining of theoretical in silico models of physiologic 
processes with imaging data derived from patient studies can potentially provide a 
power approach to garner insight into an individual’s disease, allowing a physician to 
simulate the course of a disease and/or predict response to a given intervention. The 
Physiome and Virtual Physiological Human Projects are substantial efforts related to 
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building multi-scale models of human physiology [29, 89]. Spatial-temporal information 
(e.g., geometry, motion, perfusion) derived from imaging studies (e.g., MR, CT, PET) 
for a given patient can be used to estimate a few parameters of a theoretic model, 
which can then drive estimations of parameters associated with lower level phenomena 
(e.g., molecular, cellular, electrical) that can be used to provide mechanistic insights 
into a patient’s disease. For instance, detailed multi-scale physiological models of the 
heart are available that include membrane-bound channels, myocytes, and protein 
interactions [36, 189]. Information derived from MR patient studies are used to 
generate information related to fibroblast and collagen microstructure, which are then 
used to compute tensors related to electrical conductivity and mechanical stiffness. 
Simulations can then be conducted to assess the overall normality or deficiencies of 
the heart. 
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Chapter 6 
Natural Language Processing of Medical Reports 
RICKY K. TAIRA 

significant amount of information regarding the observations, assessments, and  
recommendations related to a patient’s case is documented within free-text  
medical reports. The ability to structure and standardize clinical patient data  

has been a grand goal of medical informatics since the inception of the field – 
especially if this structuring can be (automatically) achieved at the patient bedside and 
within the modus operandi of current medical practice. A computational infrastructure 
that transforms the process of clinical data collection from an uncontrolled to highly 
controlled operation (i.e., precise, completely specified, standard representation) can 
facilitate medical knowledge acquisition and its application to improve healthcare. 
Medical natural language processing (NLP) systems attempt to interpret free-text 

An Introduction to Medical NLP 
NLP systems for diagnostic reports (e.g., radiology and pathology) are popular due 
to the large volume of procedures performed, the high information content, and  
the grammatical style (a large portion of the text is written in a very direct, declarative 

A 

manner). Medical NLP systems for clinical documents have the following desirable  

to facilitate a clinical, research, or teaching task. An NLP system translates a source 
language (e.g., free-text) to a target surrogate, computer-understandable representation 
(e.g., first-order logic), which in turn can support the operations of a driving application. 
NLP is really then a transformation from a representational form that is not very useful 
from the perspective of a computer (a sequence of characters) to a form that is useful 
(a logic-based representation of the text meaning). In general, the accuracy and speed 
of translation is heavily dependent on the end application. This chapter presents work 
related to natural language processing of clinical reports, covering issues related to 
representation, computation, and evaluation. We first summarize a number of typical 
clinical applications. We then present a high-level formalization of the medical 
NLP problem in order to provide structure as to how various aspects of NLP fit  
and complement one another. Examples of approaches that target various forms of 
representations and degrees of potential accuracy are discussed. Individual NLP subtasks 
are subsequently discussed. We conclude this chapter with evaluation methods and a 
discussion of the directions expected in the processing of clinical medical reports. 
Throughout, we describe applications illustrating the many open issues revolving 
around medical natural language processing. 
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Figure 6.1: A typical goal of a medical natural language processing system is the 
transformation of free-text documentation to a structured computer representation that 
includes both concept and grammatical normalization. 

features: 1) they do not require alteration in the reporting methods by physicians;  
2) the final representation of the targeted information is in a form that a computer can 
operate upon; and 3) the process can be automated within a clinical environment. 
Fig. 6.1 shows a schematic of a typical approach toward the analysis of an imaging 
study report. The procedure is summarized as follows: 

 A radiologist reviews current and comparison images for a given procedure. 
 The radiologist dictates the findings, which are stored as audio signals. 
 A transcription service (either manual or automated, such as speech-to-text dictation 

systems) transforms the audio dictations into a text report. The report may (or 
may not) have additional markups or meta-information (e.g., hypertext markup 
language (HTML) or eXtensible Markup Language (XML) syntax to structure 
and/or format the content). 

 The input to the NLP system is the free-text report describing the results of a 
medical procedure or observation. 

 The output of the NLP system is a set of structured semantic frames containing a 
formal representation of relevant information stated within the report. 

For example, if the text report included the sentence, “There is a large well-
circumscribed 5cm mass in the left upper lobe consistent with adenocarcinoma,” then 
the desired output of the system is a structured medical finding frame. The head of this 
frame would contain the name of the finding, mass. The slots corresponding to this 
frame would encompass the certainty, quantity, size, external architecture, location, and 
interpretation. For the most part, applications for medical NLP systems are seen to 
operate at the level of the report, at the level of the patient record, and at the level of 
an entire collection of medical documents (Tables 6.1, 6.2):  

1. Report-level applications. Medical NLP applications at this level operate within 
the context of a single report, often to identify targeted concepts and codify to 
a given representation (e.g., a controlled vocabulary, another language). For 
example, the National Library of Medicine’s (NLM) MetaMap system [3, 71, 156] 



6 Natural Language Processing of Medical Reports  319 

 Application Description 

Prediction of next word to facilitate manual transcription. [54] developed a radiology report 
entry system with automatic phrase completion driven by a trigram language model.  

Transcription spelling correction. Transcriptions of medical reports can contain typing errors that 
may compromise quality of patient care. NLP systems based on both semantic and syntactic local 
context have been used to improve on generic spell checker algorithms [134] 

Language models for automated transcription by speech recognition. Language models can 
improve the transformation of speech signals to intended words [19]. 

Procedure/disease coding. Billing systems code medical procedures and reason for procedure 
using typically, CPT-4 and ICD-9 codes respectively. Accurate coding is important for insurance 
billing purposes and for estimating costs on a disease basis. Accurate coding can also be used for 
literature retrieval and information mining. Examples of NLP-based coding systems can be found in 
[9, 37, 72]. 

Language translation. Teleradiology services are now being conducted internationally. There is 
thus a need for translating medical reports between languages (e.g., English to Spanish). A number 
of companies offer these services on a word-charge basis. Translation services using NLP methods 
are currently being explored [52]. 

De-identification. De-identification of a patient’s personal data from medical records is a 
protective legal requirement imposed before medical documents can be used for research 
purposes or transferred to other healthcare providers (e.g., teachers, students, teleconsultation). 
This de-identification process is tedious if performed manually, and is known to be quite faulty in 
direct search and replace strategies [4, 132, 135, 147]. 

Report summarization for patients (translation to layman’s language). Reports often contain 
obscure terminology and abbreviations. A patient who understands more clearly the information 
within their own report will be better able to communicate with their physician [26]. 

Outcome assessment and flagging of alarm conditions. NLP systems can be used to identify 
various alarm conditions in medical reports; for example, identification of alarm conditions (e.g., 
pneumothorax) at time of emergency room discharge [98, 137]. [8] reviews systems that detect 
adverse clinical events using a variety of information technologies. [122] applies NLP methods to 
identify adverse events related to central venous catheters. [46] uses NLP methods to search for 
correlations between language used in prostate cancer surgery reports and poor clinical outcomes.  
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Document indexing. Indexing of studies to UMLS terms also allows characterization of the 
document by way of MeSH (Medical Subject Headings) terms. When this linkage is done, one can 
associate relevant literature to a given patient study [14]. 

Table 6.1: Examples of medical NLP applications operating at the report/procedural 
level of the healthcare process. Efforts include applications that identify key concepts 
and/or map to a specified target representation/language. 

automatically identifies UMLS phrases (Unified Medical Language System) 
phrases within free-text reports. MetaMap is often used in information retrieval (IR) 
applications to aid in processing queries such as, “Find example cases in which 
the patient histology is X and the radiological finding is Y.” The representation of 
this text is transformed from free-text to a vector of UMLS concepts. 

 

 

 

 

 
 

 
 

 

 

 



320 R.K. Taira 

 Application Description 

Medical problem list generation. What are the current and historical problems (e.g., episodes) for 
a given patient as documented within their medical record? [29] developed a system for 
identifying non-negated findings in medical text. Automatic problem list generators have been 
developed by several academic medical informatics research groups [108, 109]. 

Clinical trials recruitment. NLP systems have been used to analyze clinical reports for conditions 
and eligibility criteria for potential recruitment of patients in targeted clinical trials [67, 94]. 

Patient state timeline generation. [148] developed an application that used NLP methods to assist 
in the identification of findings, and descriptions related to time, location, existence, and causal 
connections to other findings/pathologic processes. 

Teaching files. NLP systems can be used to automatically identify important concepts related to a 
specialty or disease for the purpose of creating teaching files [84]. 
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Identification of patients with targeted disease. NLP systems can provide indexing services that 
improve information retrieval for the purpose of epidemiology studies, outcomes assessment 
studies, patient trials recruitment, teaching files, etc. The MedLEE system at Columbia University 
has been used for these purposes. 

Disease characterization: Mining relational knowledge from the literature. This task often 
involves extraction of cause and effect relations described in journal articles, such as with genetic 
pathways or drug interactions. For instance, this ability is important for drug companies looking to 
identify likely gene-protein-molecular pathway mappings associated with a disease process. 
Statistical analysis of co-occurrence relationship among radiological findings has been studied in 
[24, 75].  

Bio-surveillance. Early detection of epidemic conditions can be realized by monitoring conditions 
described in emergency department reports [31, 64, 71]. 
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Ontology development. What are the terms, concepts, and relations described within documents 
from a given domain? NLP systems can assist in identifying the proper granularity and diversity of 
terms mentioned within a target corpus of reports [68, 92]. 

Table 6.2: Continuation of examples of medical NLP applications, grouped around 
the patient and population levels. 

2. Patient-level applications. Reconstruction of a patient’s medical state from 
clinical reports is a key objective of many medical NLP systems. If this task can 
be accomplished, then context-dependent decision support modules can help 
physicians interpret patient findings and assist in interpretation, prognostic pre-
dictions, and procedural recommendations. Importantly, the task involves a com-
prehensive representation of findings, problems, and interventions grounded along 
the dimensions of time, space, existence, and causality (genesis). 

3. Population-level applications. Lastly, a growing set of applications look to uncover 
potential causal chains/associations or large-scale trends across a large corpora 
of documents, facilitating knowledge discovery. For instance, efforts to extract 
reported side effects from published literature in order to suggest drug interactions 
or complications typify this group of applications. 
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Assessment of Application Requirements 
The start of any medical NLP effort must begin with an understanding of the intended 
use of the system. The requirements to be specified by a medical natural language 
understanding task can be summarized fourfold: 1) the definition of the domain of 
clinical documents to be processed; 2) the identification of descriptions of clinical 
information to be extracted; 3) the definition of a final target format representation; 
and 4) the estimation of the expected recall and precision performance needed. Notably, 
performance expectations describe how tolerant the NLP analysis can be with respect 
to false positive/negative errors; for some clinical applications, there may be little 
tolerance for errors. Moreover, such expectations will drive the number of training 
samples, degree of feature richness, and required domain knowledge. 

The specification of the domain and task conditions governs a number of subsequent 
design decisions. For example, once a final surrogate representation for the free-text is 
defined, then the types of computations that can be performed on this representation 
become evident. The final representation also guides how we may define relevant 
subtasks to the NLP process. By way of illustration, language includes a hierarchy of 
structures (e.g., words, phrases, sentences, concepts, propositions, objects, phenomenon, 
events, topics, etc.). Once the representation and relationships between these entities 
are settled on, generative/descriptive/discriminative models for each of these elements 
can then be addressed. 

Depending on its comprehensiveness, a target representation may or may not be able 
to express the essential information intended by the communicator of the sentence. So 
an important aspect of medical NLP is the development of a sufficiently rich target 
representation model. Circumscribing the scope of sanctioned interpretations is part 
of the domain modeling problem; and of creating application-specific ontologies and 
semantic models [62]. Specific to radiology, early work in this area was performed by 
the Canon Group to develop a canonical logic-based representation based on the NLP 
analysis of radiology reports [60]. More recently, the American College of Radiology 
Imaging Network (ACRIN) has been developing specifications for reporting radiographic 
findings within clinical trial studies [10]. HL7 established the Templates Special Interest 
Group Workgroup with the mission of creating and promoting the development and 
management of document templates based on the Reference Information Model (RIM) 
[50]. And the RadLex Project is a working group of the RSNA (Radiological Society 
of North America) working to complement knowledge sources such as UMLS with 
concepts from the medical imaging domain [129]. See Chapter 7 for a discussion of 
various types of data models that are applicable to NLP systems (e.g., phenomenon-
centric data model).  
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Overview of the Medical NLP Problem 
Medical NLP systems are typically driven by specific application goals, which as 
demonstrated, can be quite diverse. Although there are currently no agreed-upon 
“integrated” models for performing medical language processing, we attempt to provide 
some perspective on problem representation and the array of computational approaches 
that have been developed in this field. We hope to motivate insights as to how 
components and knowledge sources can be shared and integrated toward the goal of 
large-scale, sophisticated and accurate NLP systems that can be widely deployed. 

At its core, language is a means of communication. The free-text within a medical 
report attempts to communicate findings, assumptions, uncertainties, conclusions, and 
recommendations made by a reporting physician to other clinicians involved in a 
patient case. The ideal NLP system takes as input a free-text report and outputs the 
most probable computer-understandable semantic interpretation of the text. Thus, an 
NLP engine attempts to maximize the following probability: P(semantic ontologic 
interpretation | input text). Within this formalization, we view medical NLP as a huge 
classification problem: given any text that can be generated by a medical reporting 
system, we wish to map this text to one of any possible sanctioned interpretations for 
the text. From this perspective, medical language processing implies the development 
of mathematical models to represent language phenomena (e.g., words, meaning, 
syntactic constructions) and the study of transformations that map (well-formed) texts 
from a medical domain into computer understandable representations that preserve 
meaning. We remark here that for any medical NLP system, it is recommended that 
a well-designed tagging interface be created for each major classification task as an 
aid to creating training data. Such a tool is independent of the design of the classifier 
used and is needed for both development and evaluation. Furthermore, the quality and 
quantity of training data are of utmost importance. If examples are erroneous, noise 
is introduced into the NLP classifiers; and a sufficient number of training examples is 
needed to fully represent the spectrum of patterns (feature space) seen for a particular 
domain. Ensuing discussion in this chapter will illustrate these considerations. 

Figure 6.2: The overall NLP problem maps a string of characters to a conceptual 
representation of the meaning of the text. 
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Fig. 6.2 illustrates this high-level description of the medical NLP problem. The lowest 
level of the hierarchy in the diagram shows the observables of the system, which are 
the sequence of characters that comprise the inputted free-text. Toward the top of 
Fig. 6.2 is the final representation stored by the computer, which acts as a surrogate 
for the text report and from which target applications operate upon. For instance, 
the surrogate representation could be a vector space model of the document, a list of 
keywords, a list of UMLS concepts, a set of semantic frames, or a number of conceptual 
graphs. Often, medical NLP systems generate hidden intermediates that assist in the 
generation of the final representation (e.g., part-of-speech tag sequences, syntactic parse 
trees). These hidden layers of representation used in medical NLP systems can be 
chosen in several ways depending upon system requirements and design choices. We 
now review various sub-problems and design issues related to medical NLP below. 
Medical NLP System Components & Tasks 
Identifying Document Structure: Structural Analysis 
A common first step for a medical natural language processor is the identification of 
all topical and grammatical structural boundaries explicit within a medical report. In 
this step, we seek a representation for the larger structural abstractions that compose a 
medical document. The problem definition includes isolating all sections/subsections 
within the document; all paragraphs within sections; and all sentences within paragraphs 
(Fig. 6.3). We define the task of identifying the boundaries of all of these units as the 
structural analysis of a medical report. The identification of the structural boundaries 
of a medical document is useful for the following reasons:  

Figure 6.3: Structural analysis involves demarcation of section, sentence, and word 
boundaries, as shown here. 
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 All natural language processing systems utilize sentences as the basic input unit. 
 Different sections of a document can have different language models. Hence, we 

can improve the understanding of a document using NLP if we include the section 
type as part of the context for expectation models of the information content. 
Markedly, we want to identify the section boundaries of a report that correspond 
to various standard ways of presenting topically coherent text.  

 Indexing in medical document retrieval systems can be improved by knowing 
which parts of the report are relevant for specific types of queries (e.g., findings, 
conclusions, procedure).  

 Report visualization and formatting can be enhanced if section breaks are known 
(especially for long documents or large corpora). Often, specific users are interested 
only in a subset of a report. Consider for example a clinician, who may wish only 
to see the diagnostic conclusion of a radiology report, whereas an administrator 
may only be interested in the study description and reason for request. Accordingly, 
an interface can be designed to accommodate rapid review of reports by separating 
these sections clearly. 

 An automated coding system can benefit by knowing which sections of a report 
contain subjective versus objective patient descriptions (e.g., chief complaint vs. 
image findings). 

Section Boundary Detection and Classification 

Presently, there is no standardized structure for medical reports, although HL7 is 
attempting to address this problem with the specification of the XML-based Clinical 
Document Architecture (CDA; see Chapter 3). However, if the input document has been 
formatted using a form-based or hierarchical model (e.g., an XML document template 
definition, DTD), these can also be specified as input to a section boundary detector. 
The output of structural analysis is a data structure that encodes the hierarchical 
decomposition of the document into sections, paragraphs, and sentences. For instance, 
the output structure of a report can be represented using XML tags for report, section, 
sectionLabel, sectionType, subsection, subsection label, and paragraph.  

While seemingly a trivial task for human readers, in many medical record systems 
section boundaries are still problematic for NLP systems [36, 69], especially when 
formatting has not yet been applied. Like many NLP problems, formalization of the 
section boundary detection task entails defining a classification problem. In this case, we 
treat the problem as a discriminative task, in which we simply represent a document as 
a linear sequence of symbols (e.g., characters, words) and attempt to discriminate at each 
character position the state of some hidden variable, y, which can take on one of the 
following six states: y ∈{y0,…,y5}: y0 = start of section; y1 = end of section label; y2 = 
inside section body; y3 = inside section label; y4 = end of section; y5 = in between sections. 
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Figure 6.4: Example tagging interface for section boundary detection. 

The design of a section boundary classifier can be highly variable. The observable 
features used to provide evidence/context to discriminate between the possible states 
for each character need to be determined. These can include both features to rule in a 
classification state, or conversely, to rule out. Integration and weighting of the rules 
can assume many forms, as discussed extensively in the pattern recognition literature 
[51, 81, 149, 159]. Posited as a classifier problem, training data is needed to reflect 
how an ideal section boundary detector would behave under various input conditions. 
Fig. 6.4 shows an implementation of a section boundary tagging interface. Users 
manually specify the locations of the start of each section, start of the section header 
label (if present); end of the label; and the end of section positions within a text. Each 
section is also manually assigned to a section class (e.g., Patient History, Findings, 
Conclusions, Reason for Study, etc.). Each type of medical document (e.g., radiology, 
pathology, discharge summary) will likely have a domain-dependent set of section 
types. 

As an example of section boundary detection in medical reports, [36] describes a two-
pass algorithm that employs a mixture of classification approaches (rule-based and 
statistical methods) and a search for both labeled sections and sections without header 
labels. First, a high-precision rule-based algorithm (i.e., rules that are ~100% always 
true) is employed to detect obvious starts to new sections using a knowledge-base of 
commonly employed heading labels (e.g., Findings, History, Impressions) and linguistic 
cues (e.g., colons, all capitals). For example, a specific colon analyzer classifies 
phrases that use a colon into categories of time (e.g., 7:45 PM), a numeric ratio 
(e.g., 1:2 mixture), a list, or title to eliminate some false positive boundary instances. 
Second, the algorithm handles the detection of section boundaries that do not have 
predictable markers (i.e., no heading labels) using a probabilistic classifier based on an 
expectation model for the document structure. To this end, the classifier maintains 
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knowledge of: 1) the distribution of the number of words associated with targeted 
section heading (e.g., Procedure, Findings, History); 2) the statistics on the order of 
appearance of each section type within various classes of medical reports (e.g., 
radiology, discharge, surgical); and 3) the types of communications expressed within 
these sections (e.g., a Conclusion will describe medical findings and their possible 
etiologies). Descriptive statistics (mean and standard deviation) and t-tests are then 
used to make decisions about section boundary locations. 

Sentence Boundary Detection 

Once sections have been identified and classified for a medical document, the next step 
is to identify sentence boundaries. The definition of a sentence is actually not simple: 
[78, 126] defines a sentence as the largest stretch of language forming a syntactic 
construction. Usually, sentence boundaries are demarcated by a period, exclamation, 
or question mark. But in medical text, one often encounters telegraphic writing 
styles in which sentence punctuation is ignored. For example, consider the following 
statement for which sentence boundaries are unclear: 

The two largest of these are: (1). In the caudate, a confluent mass measuring 4 cm 
and (2) In the medial segment of the left lobe of the liver, a large mass measuring 
7.5 cm. 

As with section boundary detection, a common strategy applied to sentence boundary 
detection is to frame this task in terms of a discriminative model for a sentence. This 
approach translates into classifying potential end-of-sentence (EOS) markers (periods, 
colons, question marks, carriage returns) as being true or false. Fig. 6.5 shows this 
tagging procedure for creating training data in which the position of EOS markers are 
manually indicated from text randomly sampled from a target document pool. [110, 
167] discusses some issues with tagging sentence boundaries. Once a training set is 
developed, then various classifier designs and features can be defined for model 

Figure 6.5: Tagging procedure for creating training examples for sentence boundary 
detection classifier. 

development. For example, [131] discusses the use of a maximum entropy classifier  
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for general text. [35] demonstrates the need to train sentence boundary classifiers on a 
target domain by comparing the performance using a system trained on medical 
reports versus a generic classifier found in a common Java library. [77, 106] reports on 
a similar maximum entropy classifier for radiology reports. 

Tokenization  

The most elementary structural analysis of text involves transforming the text from 
a character sequence to a sequence of basic units, typically what we think of as 
words. This initial phase of medical NLP is called character stream tokenization. 
Tokenization performs an initial surface level grouping of characters to words. In 
English, this is typically a straightforward task; yet in other languages such as 
Chinese, there is an absence of recognizable delimiters. Most NLP systems use a word 
tokenization algorithm that simply searches for whitespace (or sometimes dashes and 
slashes) within a sequence of characters to define word boundaries – there are no 
whitespaces within a word. This designation is the orthographic definition of a word. 
The orthographic definition of a word is unambiguous. However, what we really need 
in language processing is to isolate the “functional” boundaries of the words in a text. 
The functional definition of a word reflects how an NLP system will strategize making 
semantic sense for a given segment of text. Different strategies for word-level token-
ization will in point of fact lead an NLP system to process a given input text in different 
ways due to the functional “atomic units” of the text being different [158]. As such, 
some NLP implementations expect a specific type of tokenization, and there are no 
agreed upon definitions for this task. Below we present some issues regarding this matter: 

 Multi-word words. There are some multi-word phrases that act as if they are 
single words from the perspective of syntax and/or semantics. The most obvious 
English examples are phrasal verbs that consist of a simple verb plus a participle 
(e.g., put up with, take off). These are examples of collocations (e.g., by means of, 
computed tomography, vena cava, flare up, blood pressure, in terms of), which 
also include idiomatic phrases (e.g., throw up, follow up, break out, to stand on one’s 
own feet). A collocation is defined as a sequence of two or more consecutive 
words that has characteristics of a syntactic and semantic unit, and whose exact 
and unambiguous meaning or connotation cannot be derived directly from the 
meaning or connotation of its components. A collocation has two characteristics: 
1) non-compositionality, in that the meaning of a collocation is not a straight-
forward composition of the meanings of its parts. (e.g., coming around); and  
2) non-substitutability, in that we cannot substitute near-synonyms for the components 
of a collocation (e.g., flared up ≠ fired up). Collocations, including idiomatic phrases, 
are typically recognized using some dictionary compilations of these expressions. 
[125] further reports on collocation examples found in medical and nursing text 
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reports; but currently, there are no publically available collocation resources for the 
medical NLP community. Automated discovery methods to assist in the compilation 
of such a dictionary of common collocations in a given domain are discussed in [99].  

 Single word multi-words. Some orthographically defined words can also be 
characterized as functionally multiple words, including contractions and compound 
words that consist of two or more stems joined together (e.g., cardiothoracic). 
The study of word decomposition is typically discussed under the heading of 
morphological analysis (see below). 

 Abbreviations and acronyms. Abbreviations and acronyms are identified by most 
NLP systems as a word token. These abbreviations need to be properly expanded 
and interpreted. Many times, collocations and idiomatic phrases have common 
abbreviations that are dependent upon the domain (e.g., CT, CABG, AP, F/U). [13] 
discusses the various types of abbreviations in pathology reports and [18] elucidates 
the possible dangers when abbreviations are misinterpreted in medical pathology 
notes (e.g., IBD as inflammatory bowel disease or irritable bowel disease; DOA as 
date of admission or dead on arrival; LLL meaning left lower lid, left lower lip, left 
lower lobe or left lower lung; NC as no change or noncontributory; PE being 
pulmonary effusion, pulmonary edema, pulmonary embolectomy, or pulmonary 
embolism). [166] describes a method of resolving abbreviations to their full forms 
using a bank of pattern-matching rules. Drug dosage expressions can be especially 
difficult for NLP processors given the combined problems of dealing with periods, 
spaces, abbreviations, and mixed expressions (e.g., p.o./p.r. q.2h. p.r.n., p.o. q.a.m, 
q.Saturday; p.o. q.6h (RTC); p.o. b.i.d).  

 Symbol expressions. There is a wide range of special symbol expressions present 
in medical text whose functions can be classified as tokens in regard to the 
meaning of a given text. Table 6.3 shows some common types of special symbol 
word units found in medical text. Identifying common types of special symbols 
that have well formed localized syntax (e.g., dates, patient identification numbers, 
telephone numbers, and zip codes) is often done using regular expression operators 
or finite state machines [88]. These methods have the advantage of being fast and 
easy to implement.  

Semantic Type Example Semantic Type Example 

Therapeutic protocols Tarceva OS1774 Date 2006.07.02 

Measurement: Volume 3 cm x 4 cm x 2.0 mm Chemical symbols PO2 

Measurement: Blood pressure 125/70 Genetic descriptions P53 

Medical code: TNM cancer staging T1N2M0   

Table 6.3: Common special symbol tokens in medical natural language processing. 
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What is a word? The question of what constitutes a “word” is often discussed. But 
what is a word in regards to a medical NLP system that has some very specific target 
tasks? Morphological analysis provides one method for analyzing a word, being the 
study of the way words are built up from smaller meaning units. In this linguistic 
view, a word is composed of morphemes, which are the smallest meaningful unit in 
the grammar of a language. There are two types of morphemes, stems and affixes. 
For instance, the word arms is actually a composite of two morphemes: arm + s. 
Affixes can be prefixes or suffixes. A word with two (or more) stems is called a 
compound word. Analyzing words into their linguistic components is a comparatively 
uncomplicated task. Common analysis tools include rule-based transformations and 
finite-state transducers. There are two classes of morphological rules: 1) inflectional 
rules, which relate different word forms of the same lexeme (e.g., lung and lungs); 
and 2) word formation rules, which relate two different lexemes and include derivations 
in which a word’s final lexeme categorization is different than its constituent (e.g., 
the word independent is a new lexeme item derived from the word dependent that 
is a member of the lexeme depend) and compounding, in which words are formed 
by combining complete word forms (e.g., musculoskeletal). Morphological analysis 
is a common operation in medical IR systems [142], as with vector space models, 
stemming operations can significantly reduce the dimensionality of the search space. 
Morphological composition rules can be used for analyzing unknown words [15], and 
therefore effectively extend the lexical coverage of medical dictionaries [97, 141].  

Word features. Different NLP tasks will create different surrogate representations for 
words. For example, an IR system may represent a word by either its entire surface 
form or its root stem form. In syntactic parsing, it is common to map a word to its part-
of-speech (POS) tag (called pre-terminals). All subsequent parsing operations make 
decisions based on these POS tags, and typically not the word itself. Word features 
are often used by NLP tasks in place of the surface form of the word itself. Thus, the 
design of NLP-specific lexicons is common, with the advantage of greatly reducing 
the number of “symbols” that a computational NLP system needs to deal with. For 
instance, in the domain of thoracic radiology, it is estimated that there are approximately 
6,000 unique words (99% coverage) [7]. By contrast, MedPost, a biomedical text POS 
tagger, contains a tagset size of approximately 60 symbols [145]; and there are about 
36 labels defined within the Penn Treebank POS tag set [100]. The features for a word 
can span many aspects. Not all aspects apply to all words, so subclassing of words is 
performed – which is one reason why different systems use different subclasses of 
symbols. Some examples of features are shown in Table 6.4. Features for the surface 
form of words are maintained in lexicons. Care must be taken in understanding the 
features used within each lexicon. 
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Feature Description Comments Task  

Character 
string 

The character string 
that constitutes the 
word.  

Character level n-gram models can 
help model the surface 
appearance of words. 
Capitalization can be an important 
sub-feature. 

Is this a proper noun? 
Is this the start of a 
new sentence? 

Tense Refers to a time in 
relation to the moment 
of utterance. 

Future, past, present. Temporal modeling of 
observational/event-
related information 

Gender Gender constraints. Male, female, unspecified. Co-reference 
resolution of his/her 
pronouns 

Plurality/ 
number 

Number of entities 
described or involved. 

Single, pleural, unspecified  
(e.g., lesion, lesions). 

Subject verb 
agreement 

Part-of-
speech tag 

Assigned at the word-
level within context of 
a sentence. 

Elementary word classes from a 
structural point of view.  
(e.g., kidney: anatomy.organ). 

Parsing 

Semantic 
label 

Assigned at the lexeme 
level within the context 
of a sentence. 

Elementary word classes from a 
semantic modeling point of view.  

Frame building 

Aspect 
(verbs) 

Expresses a temporal 
view of the event . 

Example values include 
progressive (now) and cessative 
(terminating). He is taking 
expresses progressive aspect (now). 

Temporal analysis 

Transitivity/
valency 

The number of objects 
a verb requires in a 
given instance. Valency 
refers to the capacity 
of a verb to take a 
specific number and 
type of arguments. 

Univalent: (X coughs); (X die). 
Divalent: (X observes Y); (X eat Y) 
Trivalent: (X gives Y, Z); (X put Y, Z) 
Admitted (who, where, when, 
why, under care of) 

Link disambiguation, 
semantic analysis 

Table 6.4: Typical types of word features. Categories for individual word class features 
are highly variable and task dependent. 

Defining Word Sequences 

Thus far, we have discussed a medical report as having a basic structural organization 
that includes sections, paragraphs, sentences and words. Indeed, models of medical 
documents are commonly created based solely on this level of modeling. As an example, 
medical IR systems commonly create document models based solely on the frequency 
of individual words. These are known as bag-of-word representations. 

In NLP analysis, we often think of starting with the observables of the problem, which 
is a sequence of the surface form of the M words of the sentence: (w1, w2, w3,…, wM). 
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At the sentence level, the simplest model we can create uses the surface appearance of 
the sequence of words: the text is just a spatially-ordered sequential set of words. 
This model ignores any relational associations between words other than their spatial 
relations (i.e., word distance within the sentence). As this type of model attempts only 
to describe the sequence of words, it can help to answer the question: how can we 
predict the occurrence of a word given that we have some knowledge of prior words in 
a sentence/document?  

Such sequence models in medicine have been developed for applications such as:  
1) automatic spell correction, using bigrams to rank possible alternatives for a misspelled 
word; 2) medical speech recognition, using language models in conjunction with 
acoustic models to improve performance [169]; and 3) automatic phrase completion to 
increase the accuracy and efficiency of medical transcription (e.g., when typing long 
words that are often misspelled, like coccidioidiomycosis) [54]. In each of these 
applications, the goal was to identify the most likely occurrence of words given the 
presence of other words. In effect, a language model is maintained for the probability 
of all possible sequences within a domain, P(W) = P(w1, w2, w3,…, wM). This sequence 
can be modeled using a Markov chain that estimates the a priori likelihood of seeing a 
given word sequence [33, 88]. Briefly, in a Markov chain, the sequence probability is 
first expanded using the chain rule for probabilities: 

∏
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So the probability of the next word in a sequence depends on the history of words 
that have come before it. With this factorization, the complexity of the model grows 
exponentially with the length of the history.  

For a more practical and parsimonious model, only some aspects of the history are 
used to affect the probability of the next word. One way to achieve this is to apply 
a mapping, H, that divides the space of histories into a manageable number of 
equivalence classes; we can then estimate the history as follows: P(wi | w1,…, wi-1) ≈ 
P(wi | H(w1,…, wi-1)). Markov chain models, also called n-gram models, establish 
the following mapping: H(w1,…, wi-1)  ≜ wi-n+1,…,wi-1, where all histories up to the 
n-1 preceding words are assumed to be equivalent. For example, a bigram model of the  
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sentence conditions the probability of a word based on the preceding word within a 
sentence:  

∏
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To improve the estimation, we can use a trigram model that uses the previous two 
words for context: 
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In practice, n-gram models (trigrams and higher) are common and fairly straightforward 
to implement given a large collection of representative text. Estimates of n-gram 
probabilities are made from both empirical count frequencies and various smoothing 
and interpolation algorithms to improve low-count estimates from the training corpus 
and for assignment of finite probabilities to words not seen within a training corpus. 
Design decisions include the order of the Markov chain model, the expected reliability 
of an estimate, and the generality of the model to related medical domains. An 
example of a medical application that utilizes a word sequence language model is 
ForeWord [54]. This system employs a hidden Markov model (HMM) to predict the 
full word or phrase being typed during medical transcription. A trigram model was 
trained on over 36,000 radiology reports. A Katz backoff procedure with Witten-Bell 
discounting [88] was used to obtain an improved estimate of the sequence distribution 
(accounting for unseen words in training, smoothing the distribution) over the empirical 
frequency estimation. Overall, ForeWord reduced the number of keystrokes required 
for an average report by a factor of 3.3x. 

Figure 6.6: Mapping words to (a) part-of-speech tags and (b) semantic concepts. POS 
tagging involves the input of an observable sequence of words. The task is to 
determine what the corresponding (hidden) sequence of POS tags is. 
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Pre-terminals: Mapping word sequences to word feature sequences. The Markov 
chain model described above provides a description of the surface appearance of 
the sequence of words in a sentence. But in many NLP subtasks, we represent a word 
sequence instead as a sequence of word features (or a vector sequence of word features) 
to reduce the overall dimensionality of the NLP problem. For example, if the vocabulary 
of a typical medical domain consists of 10,000 words and an average sentence length 
is 20 words, then the maximum number of possible 20-word sequences from this 
vocabulary is 10,00020. Replacing the word space with a surrogate can reduce the scale 
of the problem: for instance, using part-of-speech tags, the 10,000 word space can be 
transformed into a smaller number of POS tags (e.g., 50), thereby reducing the overall 
complexity (i.e., 5020 << 10,00020). POS tags are often used when purely phrasal 
structural analysis is the goal (Fig. 6.6). Semantic word-level tags are also common in 
medical NLP, though they can number in the hundreds [17].  

An important step in many NLP applications is the tagging of individual words with 
semantic and part-of-speech tags. We can pose the assignment of such word features 
as a classification task: given a word in the context of a sentence, what is its most 
likely word feature (e.g., POS tag)? This task is often referred to as the hidden label 
problem in NLP. Note that there are two types of sequence labeling problems: 1) raw 
labeling, where each element is given a single tag (e.g., POS); and 2) joint segmentation 
and labeling, in which words are aggregated and assigned a single tag (e.g., identify-
cation of noun phrases, or property nouns). For now, we deal with the former and 
one-to-one mappings, in which the hidden labels can be referred to as a type of  
pre-terminal. The general approach for raw sequence labeling in language is shown in 
Fig. 6.7. The task definition is shown on the right side of Fig.6. 7, where an input word 
sequence (A, mass, is, seen) is mapped to its appropriate POS label sequence (determiner, 
noun, auxiliary verb, verb). This task is facilitated by a number of knowledge sources, 
and this knowledge is operationalized in some optimization algorithm. 

Figure 6.7: Typical approach for assigning features to individual words from a given 
input sentence. 
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Apart from POS tagging [41] and the assignment of semantic classes, two other 
important medical NLP subtasks that require this type of classification include word 
sense disambiguation [140] and the general problem of feature assignment to unknown 
words. Each of these subtasks can be formalized as a general sequence labeling problem, 
which has been widely discussed in the literature on machine learning and natural 
language processing [119].  

The classic approach to the hidden labeling problem is to implement an HMM [48, 53, 
66, 82, 128]. The HMM requires estimation of two types of distributions. First, the 
transition probability distribution is defined by P(tag | previous n tags), which formulates 
a Markov chain (typically 1st order) over the hidden variable. This Markov chain 
provides the probability of seeing some hidden state for a word i in a sentence (e.g., 
noun) given the previous hidden state for word i-1 (e.g., determiner). Second, the 
emission probability distribution is defined as P(word | tag). This subsequent distribution 
estimates, given a hidden state (e.g., determiner), the probability of seeing a given 
word (e.g., “the”). The probabilities can be learned empirically from a set of training 
examples and the use of statistical smoothing algorithms [88]. Once these probabilities 
are estimated, then a sequence optimization method such as the Viterbi algorithm 
[59] can be applied to identify the best possible tag sequence, given an input word 
sequence. The Viterbi algorithm uses a greedy approach that relies on local evidence 
and assumes that the maximum probability of a path is composed of maximum 
probability segments. Thus, the Viterbi algorithm does not take into account some long 
range evidence and can lead to results that visit unlikely/forbidden states.  

Some considerations for implementing a medical pre-terminal tagger include: 

 What are the possible labels for a word? At the word level, there is no consensus 
in medical NLP regarding what features should be used or their corresponding 
values. The set of pre-terminal labels chosen is critical in an NLP application as it 
must capture the necessary information contained by the words in order to perform 
higher-level NLP tasks (e.g., parsing). For example, context-free rules relating 
how sentences are generated are predicated on the chosen pre-terminal labels. 
Markedly, POS tags are known to have limitations in providing enough information 
to solve problems associated with prepositional phrase attachment. [144] points 
out the importance of the tagset in tagging biomedical text. In general, both semantic 
and part-of-speech features are necessary. Example POS tagsets include those from 
the Penn Treebank (~36 labels), MedPost (~60 labels), UCREL CLAWS7 (~135 
labels), and the minimalist tagset used in the UMLS SPECIALIST lexicon. Given 
the wide range of granularity definable for the semantics of a word, lexical semantic 
class tagsets are often application-specific. Arguably, the specification of the lexical 
semantics requisite for medical NLP is still an open issue [86]. A high-level 
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specification of semantic types in medical language is described in the UMLS 
Semantic Network [95]; however, qualifiers and relations are not well developed.  

 What order Markov chain model should be used? Most implementations use 1st-
order models for the transition probabilities. 2nd-order HMMs integrate a longer 
range of evidence at the cost of requiring a greater number of training examples 
and better smoothing algorithms. An example of a 2nd-order POS tagger can be 
found in [153]. 

 Are there any available training sets? The medical informatics community has 
begun efforts to compile POS training examples for clinical text. Anonymization 
is a concern for these public resources. The Mayo Clinic has produced a manually-
tagged POS corpus comprising clinical notes [120], while [123] describes the 
efforts in creating a tagged POS corpus of pediatric clinical notes.  

 Can a POS tagger trained in a different domain work in a medical domain? 
Typically, general POS taggers do not perform well largely due to the number of 
unknown words (symbols, abbreviations, etc.) seen in medical text. [112] describes 
an approach using morphological knowledge of medical terms to build a domain-
specific lexicon containing POS tags and probabilities for each word. [96] used 
heuristic sample selection methods to greatly reduce (by 84%) the number of 
manually tagged sentences required to satisfactorily retrain a maximum entropy 
POS tagger. 

Although HMMs are traditionally used for pre-terminal tagging, other models have 
been implemented in response to some of the deficiencies of HMMs. One weakness of 
using HMMs is that the emission probabilities are of the form P(word | tag), whereas 
it is actually more informative to model the reverse conditional probability, P(tag | 
word). This probability is potentially more powerful as one can include features related 
to the specific morphology of a word, which often provides strong evidence regarding 
its POS and/or semantic class (e.g., Latin root stems, capitalizations, suffixes such 
as -ology -ectomy, -itis). Additionally, surrounding words can be used to predict the tag 
corresponding to the word of focus. POS taggers that directly compute P(tag | word) 
are commonly implemented using maximum entropy (MaxEnt) classifiers [12, 96, 130]. 
Adaptation of maximum entropy models to include linear sequence optimization of 
the tagged labels can be implemented using MaxEnt Markov models (MEMMs) [101, 
164], which tend to perform better than HMMs due to a richer feature set. In addition 
to concerns about the emission probabilities in HMMs, there is also the label bias 
problem that affects the training of the transition probability P(tag | previous tags). 
The label bias problem arises as we train our model on correct previous tags. The 
conditional probability of a tag at position t uses the feature of the previous tag at 
position t-1: during training we always have the correct tag at t-1; but during actual 
execution on unseen data, these tags are exactly what we are trying to predict. To 
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account for this concern, models based on conditional random field formulations 
are used [56, 91, 157]. Finally, a common variation in classifier design is to replace 
MaxEnt models with maximum margin models (e.g., a support vector machine, SVM), 
giving rise to max-margin Markov networks [151]. 

Word sense disambiguation. An important task related to pre-terminal feature mapping 
is the disambiguation (resolution of ambiguities) of homographic words – that is, a 
word with more than one sublanguage meaning – within the context of a sentence in a 
report. These ambiguities are also known as word sense ambiguities. Word sense 
disambiguation (WSD) is an NLP task that identifies the intended meaning of word 
that can have many definitions [116]. Consider the following statements: 

“The patient had a round of chemotherapy,” vs. “The mass is round.” 

“There is an oozing discharge,” vs. “The patient’s discharge papers from the ICU were 
lost yesterday.” 

“The patient experienced pain at the level of the T1 spine,” vs. “A T1 MR scan was 
performed yesterday.” 

“The patient’s back was in pain,” vs. “The pain was in the back of the neck.” 

“There is a density in the left lower lobe,” vs. “There has been an increase in the size 
and density of the left lower lobe mass,” and, “The film density was poor in the 
region of the mediastinum.” 

The main hindrance to improving word sense disambiguation algorithms in clinical 
NLP is a lack of training data. Presently, the Mayo Clinic corpus is one of the few 
available resources for manually tagged word senses for medical NLP developers 
[140, 163]. [140] uses UMLS semantic classes as the target set of categories for 
representing the different senses for a word. One challenge to creating such training 
data is that taggers struggle to identify which words are ambiguous; even after being 
found, there remain difficulties in stating all possible meanings for a word. Furthermore, 
for each ambiguous word, one would like to collect a number of examples in different 
use contexts. WSD training sets are often created for specific sub-domains (e.g., 
thoracic radiology) in which the number of senses of a word may be much lower than 
as seen in larger, more general domains. Many word sense disambiguation algorithms 
thus rely on semi-supervised learning methods that utilize both labeled and unlabeled 
data [1, 16, 165].  

A cornerstone concept for the features used to classify the sense of an ambiguous word 
comes from the British linguist, J.R. Firth, who coined the phrase, you shall know a 
word by the company it keeps [57]. The principle behind this idea is that a set of words 
occurring together in context will determine the appropriate senses for one another 
even though each individual word may be ambiguous. Compared to POS taggers, 
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WSD often requires longer range context to resolve ambiguities. This word association 
construct can also be applied to include not only how words are used within free-text 
reports, but how words are related within external lexical knowledge sources such as 
MeSH and UMLS (i.e., defining conceptual company). [79] show how utilizing such 
associations in external knowledge sources can be extended to include Journal 
Descriptor Indexing assignments with words in a training set of PubMed citations. 
[121] explored the use of similarity measures and relatedness in neighboring words 
based on paths in a conceptual network. A general discussion of WSD features and 
algorithms can be found in [116]; and a discussion of medical specific features is 
given in [140].  

Related to WSD is the task of acronym expansion where an ambiguous acronym is 
to be assigned the correct expansion. Supervised machine learning approaches are 
common but require a substantial number of manually labeled samples to generate a 
robust model. [87] described a system that combines limited training data, context 
from unlabeled text, and ontological knowledge from sources such as WordNet to 
construct a classifier for identifying the correct expansions of an abbreviation, as well 
as resolving word sense ambiguities. [120] describes the use of surrounding word 
context as harvested from the Internet via a Google API to develop expansion models 
for clinical acronyms. 

Spell checking. Spelling errors are common in clinical text reports. [73] identified that 
4.9% of unique word tokens mined from a collection of over 200,000 reports had 
spelling errors. A separate analysis conducted by the Veteran’s Administration (VA) 
reported an estimated spelling error rate of 4% as seen in a large collection of clinical 
documents [58]. The subtasks for spelling correction include: 1) the detection of the 
misspelled word; 2) the generation of a list of candidate correct spellings; and 3) the 
ranking of candidates. The NLM Specialist software tools include spelling correction 
tools (e.g., GSpell) that generate a list of suggested spelling corrections facilitated by 
a list of commonly misspelled words in medicine and an n-gram model to search for 
words that have common beginning and ending character sequences. Candidate 
ranking of alternate words is done by computing an edit distance from the candidate 
word to the unknown word. [156] built a spell checker that used UMLS Specialist 
Lexicon as a primary source for candidate generation and WordNet [55, 111] as a 
secondary source. Various character-level operations are commonly applied to generate 
possible candidate words from the source word (e.g., transposition, deletion, insertion, 
and substitution); lexical sources (UMLS and WordNet) are then used to sanction 
those that are deemed appropriate candidates. Matching to lexical sources can include 
exact matches, and those that sound similar. 
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Named Entity Recognition and De-identification 
De-identification of a patient’s personal data from medical records is a protective legal 
requirement imposed before medical documents can be used for research purposes or 
transferred to other healthcare providers not directly involved in a patient’s care (e.g., 
teachers, students, tele-consultations). Unfortunately, this de-identification process is 
time-consuming and tedious if performed manually and is impractical for large-scale 
research (e.g., population-based studies). A review of various methods for name matching 
can be found in [11]. Unfortunately, the process is also known to be quite faulty in 
direct search and replace strategies [147]; Table 6.5 shows examples of reasons for the 
failure of direct matches. Researchers (and other authorized personnel) who require 
access to large corpora of confidential medical documents need methods to de-identify 
these records, as specified by various organizations and regulatory standards set up to 
protect patient privacy (e.g., Health Insurance Portability and Accountability Act, 
HIPAA; institutional review boards (IRBs), Federal Policy for the Protection of 
Human Subjects). HIPAA guidelines define “de-identified” patient data, specifying 18 
distinct types of references that should be removed to ensure patient confidentiality. 
These data items include: patient name, medical record number, age, gender, ethnicity, 
healthcare provider names, relative names, institution names, address, telephone 
numbers, fax numbers, e-mail addresses, social security number, license number, 
vehicle identifiers, URL/IP addresses, full face photos, and service dates. A complete 
specification can be found in [27]. Until methods to automatically – and accurately – 
replace and/or mask these patient identifiers are developed, healthcare researchers 
wanting to use the wealth of data now contained in the electronic medical record 
(EMR) will continue to be burdened with the responsibility of de-identifying data. The 
problem of locating proper names in free-text has been a long-standing challenge of 
the DARPA-sponsored Message Understanding Conferences (MUC) [34] and a topic 
of interest at various conferences sponsored by the Association for Computational 
Linguistics (ACL). The topic has also been part of a competition run at the first 
Workshop on Challenges in Natural Language Processing for Clinical Data [159].  

 
Category Example Category Example 

Apostrophes  John vs. John’s Missed double Michele vs. Michelle 

Substrings John vs. Johnny Missed hyphen Worthy-Smith vs. Worthy Smith 

Abbreviations John Q. vs. John Quincy Repeated sequences Jeremias vs. Jerimimias 

Modifications Bob vs. Robert Sequencing errors Ricky vs. Rikcy 

Acoustical Gayle vs. Gail Typing errors Kenneth vs. Kenhneth 

Table 6.5: Different categories of common reasons for name mismatches. 
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Specific implementations related to medicine can be found in [69, 117, 135, 147, 149]. 
A publicly available gold standard de-identified corpus of medical records is available 
and described in [117]. 

Foundational works in this area of named entity recognition include [40, 103]. [40] 
approached the problem in the context of formal linguistics theory, looking at the 
natural language sub-grammar of named entities, including discussion of: the morpho-
logical analysis of name components; the analysis of internal syntactic structure of 
names; and the semantics associated with words that preserve their meaning when 
associated with a named entity and words that are collocations of an atomic phrase. 
[103] enumerates various practical issues, emphasizing the importance of internal 
evidence (i.e., local contexts, such as Mrs., PhD), and external evidence (i.e., longer-
range contexts, like verbal attachments) for accurate name recognition. The evidence 
for supporting a given candidate can be obtained at four different levels: 

1. Knowledge sources. Compilations of names, drugs, institutions, and geographic 
locations (e.g., gazetteers) can be use to determine whether a given candidate 
matches any listings within these knowledge sources. 

2. Local level. Words immediately surrounding the candidate (e.g., Baby Boy Jones, 
John Jones, MD) can suggest a given classification; [104] refers to this as 
“internal evidence.” Features of this type are encoded as n-gram token sequences, 
where the token can be the word, the word’s syntactic class, the word’s semantic 
class, or a mixture of the three. Important types of local word features include 
capitalization, presence of non-alphabetic characters (except hyphens and/or 
apostrophes), non-presence of a vowel (or letter y), unusual internal capitalization 
for class type (e.g., Di, Le, and Mc are common in people names but not HBsAG). 
Additionally, statistical evidence can be used to determine what list of words 
occurs more frequently as lowercase rather than uppercase [44]. For example, 
although the token “The” frequently starts a sentence, over a corpus of reports, the 
word “the” is most often lower case.  

3. Sentence-level features. It may help to look at associated verbs, adjectives, and/ 
or complements to disambiguate the classification of a named entity. [149] used 
semantic selectional restrictions to hypothesize strong associations between some 
classes of words (e.g., admitted) and the semantic constraints on concepts that 
can fill their thematic roles (e.g., patient names). [104] called these types of 
constraints as “external evidence” about a named entity. Semantic selectional 
restriction rules have previously been used mostly with verbs and the types of 
words that can fulfill their argument slots. By way of illustration, the verb 
underwent strongly suggests that the head slot is filled by a patient reference. 

 
Other example verb forms with strong associations to patients include: vomited,  
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Logical Relation Example Logical Relation Example 

Patient gender John is a 5yo male Patient relative John’s mother 

Patient age John is a 3 year old Patient care provider John followed by Dr. Smith 

Patient ethnicity John is Caucasian Patient birth John born by C-section 

Patient procedure John received therapy Patient knowness John is well-known to this service 

Patient health John developed a fever Patient activity John went to school today 

Patient status John responded well   

Table 6.6: Logical relations used in patient name identification algorithm. 

administered, discharged, and returned. But as noted by [88], verbs are not the 
only types of words that can impose selectional restrictions: within medical 
documents, certain adjectives (e.g., 3 year old, male, Asian) can also impose these 
strong associations. Linking these words grammatically to their corresponding 
related heads can provide strong contextual evidence for patient name identification. 
The semantic selectional restrictions are also used to disambiguate candidates 
that are actual names vs. candidates that represent a medical procedure, condition, 
device, or location. Table 6.6 shows twelve common logical relations that can be 
parsed at the sentence level.  

4. Document and patient record level features. Co-reference resolution involves 
finding words that seem to refer to the same entity. [32] reported an improvement 
in performance of a named entity recognizer from 92.6% to 97.0% using a co-
reference model. Thus, if the phrase, “Johnny Smith” is classified as a patient 
identifier, then other references within the same document are likely also to be 
tagged with the same class. Co-reference uses the initial set of guesses made by 
a semantic interpreter to make decisions about candidate instances, the idea 
being that if one or more patient name instances within a report can be reliably 
identified then the identified entity can be used as evidence to co-reference more 
difficult cases. As such, co-reference information can provide mutual constraints 
for classifying patient name instances. The identification of logical relations can 
then be thought of as a way to build a set of reliable guesses for patient name 
references. Such guesses can then be used to identify all instances of these guesses 
within the document: if one phrase is tagged with a particular class, then it is 
likely that all such phrases should also be tagged with the same class. However, 
there are rare but real cases in which this is clearly not the case (e.g., Dr. Martin 
examined Martin today); and care must be taken in case of partial name matches 
between, for example, the patient and a relative. Co-reference evidence is especially 
important in identifying instances where a patient name candidate has no logical 
relation context modeled at the sentence level (e.g., We can’t wait to see Johnny 
start to have a fun time with his toys again). Possible co-reference features for a 
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candidate word include the number of string-level matches with instances marked 
positive/negative at the sentence level and sentence-level classification (addressing 
the problem of Dr. Martin examined Martin). In addition to performing co-reference 
resolution on the patient, it is helpful to know who are the other named characters 
within the report, including relatives, healthcare workers (e.g., nurses, dieticians, 
physicians, physical therapists), and others (e.g., teachers, lawyers). Knowledge of 
these non-patient names can be used as negative evidence in discriminating 
patient name references from non-references. 

Concept Coding: Ontological Mapping 
The identification of phrases that map to concepts within a target ontology has been a 
challenge for medical NLP systems [3, 64, 115, 134, 170]. This mapping is important 
because the representation changes from character strings to an ontological concept 
with specific meaning. Concept coding has many uses. At an elementary level, we 
attempt to identify phrases found in free-text reports to concepts found in ontologies 
such as UMLS or SNOMED-CT (Systematized Nomenclature of Medicine, Clinical 
Terms). These concepts can then be used as index items for IR systems. From a 
clinical perspective, concept coding can be used to summarize a patient’s clinical 
status, where ICD (International Classification of Diseases) codes are assigned based 
on guidelines. The difficulty of this particular task is exemplified by the fact that 
clinical document coding was the 2007 Medical NLP Challenge for the Computational 
Medicine Center [45]. 

The general problem of coding a real-world textual expression to a controlled 
vocabulary is that corresponding exact string matches occur rarely. [102] studied this 
problem in attempting to index a set of Medline documents to UMLS terms, finding 
that only 17% of document terms could be identified. Even after applying operations 
such as stemming, synonym analysis, and some grammar normalization, published 
performance metrics are only on the order of 70-80% [3]. Arguably, current efforts in 
building controlled vocabularies (e.g., UMLS, SNOMED, etc.) are designed for humans 

Figure 6.8: Example of semantic phrase chunking and subsequent coding. 

as the intended users rather than machines. Fundamentally, the difficulties lie in the  
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unavailability of a canonical representation for medical concepts, both at the target 
representation level (e.g., UMLS) and at the source document level (free-text report 
phrase). Marvin Minsky, a pioneer in artificial intelligence, aptly stated the problem: 
no machine can learn to recognize X unless it possesses, at least potentially, some 
scheme for representing X [113]. This observation emphasizes the idea that knowledge 
representation is an important part of any NLP system. 

The MetaMap Approach  

MetaMap is a tool developed by the US National Library of Medicine that codes noun 
phrases uncovered in free-text to UMLS concepts [3]. The processing steps include 
parsing, variant generation, candidate retrieval, candidate evaluation, and mapping 
construction. We use these steps to outline various mapping strategies below:  

 Parsing. This step refers to identification of phrases within the free-text that have 
a mapping to UMLS. The simplest approach is to use a left-to-right marching 
algorithm, such as the Aho-Corasic algorithm that starts at the beginning of the text 
string [2] and searches for the longest string match in a given target vocabulary. 
Most medical applications, however, map only noun phrases so that a more efficient 
approach is to identify noun phrases within a shallow syntactic parser. [6] describes 
a system that specifically parses complex anatomy phrasal chunks.  

 Variant generation. This step inputs a parsed text phrase and outputs a list of 
alternative expressions based on synonyms, acronyms, abbreviations, inflection, 
and derivational variants [49]. A derivational score based on the types of transfor-
mations applied by the generator is computed. Filters can be applied to eliminate 
variants with a given part-of-speech tag (e.g., determiners, conjunctions, prepositions, 
etc.) from this list and/or to ignore capitalizations. Note that some systems 
normalize the words in a phrase to their root stems using a lemmatiser.  

 Candidate retrieval. This third step retrieves all UMLS Metathesaurus strings 
containing at least one of the variants determined in the prior step. Various indexing 
schemes can be applied to speed up this retrieval step. For example, the IndexFinder 
system maps UMLS concepts to four indexing data structures: 1) a hash table 
mapping a word to a unique word ID (in UMLS there are more than 431,000 
distinct words); 2) an inverted index that maps word IDs to a list of phrase 
identifiers; 3) an array that maps phrase IDs to UMLS concept IDs; and 4) an array 
indicating the upper bound for a given phrase. This information is used in the 
mapping algorithm to determine if input words contain the complete phrase [170]. 

 Candidate evaluation. The evaluation step provides a score to each candidate, 
indicating how well the input phrase maps to the candidate ontological concept. 

 
IR techniques that use a vector space model over individual word tokens are a  
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common approach to candidate evaluation [134, 170]. The candidate and source 
phrase can be compared by using similarity measures such as the cosine coefficient, 
Dice coefficient, or Jaccard coefficient [93, 138]. [5] extends this concept to 
include parser dependency links (i.e., head-modifier pairs) into a vector space 
model for candidate evaluation [146]. The dependency link model is intended to 
capture semantic uniformity across a variety of surface forms and attempts to 
overcome errors seen in long phrases and/or phrases with conjunctions made 
by bag-of-word approaches. The core MetaMap algorithm also uses syntactic 
information related to centrality (the involvement of the syntactic head) in 
evaluation, as well as measures of lexical variation, coverage, and cohesiveness.  

 Mapping construction. This final step considers all possible final configurations 
of mappings for a given input text. At the phrasal level, difficulties can arise for 
various reasons. For instance, conjunctions are often difficult to analyze. [115] 
mentions the mapping of the phrase spleen rupture and normal stomach to the 
concept stomach rupture as a possible spurious mapping. The distribution of 
modifiers to coordinating constituents should also be handled in this last step (e.g., 
the posterior right third and fourth ribs). Clinical text also often contains shortened 
descriptions that are underspecified if seen at the phrasal level, but clear from 
the report context. For example, left apex within a chest x-ray report should be 
interpreted by the system as the apical aspect of the left upper lobe of the lung. 
Additionally, in clinical free-text, we often see extraneous terms not related to 
a given concept (e.g., loop of unopacified bowel; on the right side, the femur is; 
lower pole of the transplant kidney); as such, some specification as to whether to 
treat these types of phrases as a single chunk needs to be agreed upon by users. 

Data Mining and Lookup-Table Caches  

The coding problem can also be tackled using corpus-based approaches in which 
targeted mapping tables are manually created based on mined phrases from a large set 
of reports from a given target domain [64]. The collection of words and phrases for a 
given phrasal type from actual reports ensures that a coding system works well at a 
practical level and that most of the string representations for multi-word concepts 
(e.g., anatomy phrases, findings, etc.) are included within the knowledge-base. The 
result will be a knowledge source that provides reliable results, matches the expected 
granularity of detail, and will provide direct hits for a very high percentage of coding 
query inputs.  

Phrasal Chunking 
Many applications require the identification of key semantic phrases within the text, 
which are then used to index a given medical document. Phrasal chunking is the  
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Phrase Type Example Phrase Type Example 

Anatomy 
phrase 

right upper lobe of lung Finding 
phrase 

Wedge compression fracture, 
focus of increased density 

Spatial relation is located just posterior to Image slice  Cuts 5 to 10 

Anatomy-
perturbation 

fullness of the right upper pole 
collecting system 

Causal  
relation 

(mass) is consistent with that 
of (a tumor) 

Existential 
relation 

There is no sign of Physical  
object 

size of the tumor 

Drug and dose 
phrase 

Zosyn 4.5 g IV x 14 days; 
Bactrim DS one tab p.o. twice a 
week 

Measurement 
observation 

Increased to 5 cm in size since 
last exam 

Physical object 
handle 

(small) amount of debris (seen) Temporal 
event relation  

(improved) in comparison to 
(10/25/02) 

Table 6.7: Examples of semantic phrasal chunks in medical reports. 

process of identifying logically coherent non-overlapping sequences of words within a 
sentence. Generally, a mapping from word tokens and/or their pre-terminal tags is 
made for a phrasal group. This grouping can be either structurally defined (e.g., noun 
phrase) [77] or semantically defined (e.g., anatomic phrase) [6]. This task is also closely 
related to the problem of named entity recognition. Examples of semantic phrasal 
types seen in medical reports and an example of each type are listed in Table 6.7. The 
semantic phrasal chunking problem in medicine extends to complex expressions such 
as, the superior aspect of the mid pole of the right kidney, as well as compounds (e.g., 
the left upper lobe and the right upper lobe). Note that semantic phrasal chunking is a 
slight variation of the definition of syntactic phrase chunks (semantic vs. syntactic) 
defined as part of a shared task in the Conference on Natural Language Learning [155]. 
The phrasal chunking task is limited to determining only the external boundaries of 
targeted semantic phrases and not the internal syntactic structure. 

One straightforward method of phrasal chunking is to compile a comprehensive listing 
of phrases related to the target semantic phrasal type. This approach is an effective 
means of pattern recognition within clinical text for phrasal types that have a limited 
number of instances and/or are of limited word length. For example, the ConText 
application [30] uses a phrasal micro-glossary describing existence status. Coding the 
grammar of targeted phrases using regular expression matchers and/or finite state 
machines complements the use of a phrasal glossary. For phrasal types that have a large 
number of instances (e.g., anatomy phrases, patient names, institution names, etc.) with 
high-order complexity, there are various approaches. The abstraction of the phrasal 
chunking problem into a classification/hidden sequence optimization problem is typical 
given the computational machinery and software availability for this general class of  
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Outcome Definition 

B Token is the beginning of a phrase consisting of more than one token 

E Token is the end of a phrase consisting of more than one token 

I Token is between the beginning and end of a phrase consisting of more than two tokens 

S Token is the lone token of a phrase consisting of only one token 

O Token is outside of the phrase 

Table 6.8: Definition of chunk labels (i.e., classifier outcomes). 

problems. The task is abstracted as follows: given a phrase type (e.g., anatomy phrase), 
the goal of the classifier is to tag each word in the sentence with one of the following 
five outcomes: begin (B), end (E), inside (I), single (S), or outside (O) (BEISO) [90]. 
The definition for each outcome is given in Table 6.8. Other tagging schemes variants 
have also been used (e.g., begin, in, out, whole; yes, no; begin, in, out; etc.), not 
surprisingly affecting classifier performance. For example, in the phrase, “A chest mass 
in the right upper lobe is seen,” the markup for the anatomy description phrase is as 
follows: 
 

A chest mass in the right upper lobe is seen 

O S O O O B I E O O 

The phrasal chunking task can be seen as a sequential prediction problem, where we 
predict the chunk tag ti associated with every token wi in a sequence of tokens. The 
problem is decomposed into two steps: the estimation of the probability of a given 
token belonging to a chunk tag class; and the maximization of the token sequence 
probabilities for the entire sentence. Classifier models are frequently learned using 
supervised methods (i.e., training examples). A brief overview of the methodology as 
applied to anatomy phrase chunking is described below, with advancements in phrase 
chunking occurring naturally along four somewhat dependent lines: 1) context modeling; 
2) classifier design; 3) training sample generation; and 4) linear sequence optimization.  

Context Modeling 

Context modeling involves defining the pieces of evidence for which a classification 
task is executed. The context may involve rich features from linguistic theory (e.g., 
grammatical function of words, lexical dependency information, semantics, and 
common-knowledge pragmatics). Modeling the complete context for a linguistic classi-
fication task is difficult given the complexity and variability of human language. As 
such, many NLP researchers have retreated from formal linguistic language models, 
relying instead on less complicated (more naïve) models based on surrounding word 

  

 

evidence. N-grams are rudimentary models that attempt to capture the constraints of a
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Class/word Position i-2 i-1 i i+1 i+2 

B si-2, pi-2 si-1, pi-1, ti-1 wi wi+1 s2+1, p2+1 

E si-2, pi-2 wi-1, ti-1 wi si+1, pi+1 s2+1, p2+1 

I si-2, pi-2 wi-1, ti-1 wi wi+1 s2+1, p2+1 

S si-2, pi-2 si-1, pi-1, ti-1 wi si+1, pi+1, ti+1 s2+1, p2+1 

O si-2, pi-2 si-1, pi-1, ti-1 si, p1 si+1, pi+1 s2+1, p2+1 

Table 6.9: Example of five-gram features utilized for anatomy phrase chunking. Here, 
wi is the word string appearing in the ith position, si is the semantic tag of wi, pi is the 
part-of-speech tag of wi, and ti is the chunk tag label for the ith word. 

language by simply conditioning the probability of a tag (i.e., BEISO) on a small, 
fixed number of surrounding words or word features. Table 6.9 shows an example 
of feature patterns used to capture this context. The window of lexical information 
in Table 6.9 cannot capture all necessary contexts to disambiguate the chunk tag 
assignment for all words. This specialized 5-gram model requires a large amount of 
training data to acquire sufficient statistics. Estimates of 5-gram probabilities are 
difficult given the relative sparseness of the majority of 5-grams. A basic feature 
selection strategy assumes that any feature that occurs fewer than five times within a 
training set is noisy and hence discarded (i.e., less than five samples leads to poor 
estimates).  

N-gram models are attractive to developers, as the developer needs little formal 
linguistic knowledge and relatively good results can be obtained given sufficient 
training sample sizes. Despite the utility of this approach, two core issues remain: 
1) the determination of a reasonable number of training samples for a given subject 
domain and target phrase type; and 2) the inability to capture long-range word-word 
evidence. An example of this latter problem is shown where the phrase right hemithorax 
is the object of the preposition, overlie, and the phrase right lung is a modifier to the 
word mass: 

Staples overlie the right hemithorax and the right lung mass is again seen.  Correct 

Staples overlie the right hemithorax and the right lung mass is again seen.  Incorrect 

Variable length semantic constraints. To achieve higher precision, one needs to 
incorporate longer-range word context, which is often done using a set of high-context, 
hand-crafted rules based on constraint-based formalisms [89]. In this methodology, 
phrasal chunk constructions are viewed as objects that can have associated complex 
sets of properties. We need these constraints because naïve n-gram models of 
grammatical phenomena such as agreement and sub-categorization may not provide 
sufficient context and can lead to over-generalization. Some of the errors made by 
n-gram classifiers can be avoided in a specialized knowledge-based system as rules  
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can refer to words and tags across the scope of an entire sentence rather than a limited 
window. For example: 

Posterior-most aspect of the lesion.  “aspect” is not part of anatomy phrase 
Posterior-most aspect of the liver.  “aspect” is part of anatomy phrase 
Posterior-most aspect of the liver lesion.  “aspect” is not part of anatomy phrase 

A rule-based system may identify particular situations when exact word-level surrounding 
context is important. An example rule using a constraint grammar is shown: 

Given input: “small”  Word under investigation 
 if (+1, “word”, “bowel/intestine”) Next word  
 then eliminate(‘O’)  Eliminate ‘O’ as possible state 

Constraints are used both to eliminate false positive results (i.e., to eliminate tag candi-
dates that are inconsistent with the context) and to avoid false negative classifications. 
These rules are very specific and often only apply to a small percentage of training 
case instances. For complex checks such as anatomy phrase identification, several 
hundreds of rules may be needed to ensure high recall and precision.  

[20, 162] describe a transformation-based learning system that automatically identifies 
contextual rules required to map a sequence of POS tags to phrase chunk labels. 
Transformation-based learning is a non-probabilistic technique for incrementally learning 
contextual rules to maximize prediction accuracy. Again, the context for word tagging 
is centered on variable length runs of surrounding parts-of-speech. An iterative scheme 
that clusters parse islands to grow the boundaries of target phrases is used. Here, the 
context is estimated by any tags in previous iterations that have been confidently 
classified.  

[83] describes a variable length adaptive phrase chunking system that automatically 
generates language rules by accumulating a histogram of each unique 1-context, 3-
context, 5-context, and 7-context for a given chunk tag as seen over a training corpus. 
The knowledge is then applied as follows. Start with the 7-context associated with a 
given target word. If the 7-context is found in the knowledge-base, assign the most 
common chunk tag for that context as seen in the training data. If the 7-context is not 
in the knowledge-base, repeat the search using the 5-context and continue to more 
local contexts until a match is found.  

The barrier word method used in the NLM’s MetaMap program for noun phrase 
identification is an efficient algorithm that utilizes the semantic information of words 
that are outside the boundaries of word phrases [74, 118, 152]. This approach exploits 
the fact that barrier words (low-information words) serve as separators (“barriers”) 
between words in a multiple-word medical term. Thus, the approach focuses on 
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locating as many words within a sentence that belong to an “outside” tag class. Noun 
phrases are delimited using a long list of stop words (~24,000), including articles, 
prepositions, and verbs. A potential nominal phrase is computed as a sequence of 
words occurring between barrier words. Barrier words are associated with phrasal 
types (e.g., noun phrases, etc.) and are words in which a target phrase cannot “spill” 
across. 

Parser link information. Syntactic parser information can be used as an additional 
source of knowledge to constrain the classification of word tokens. Partial parsing 
methods can be used. [77] use a general purpose dependency parser to generate link 
features for noun phrase identification in radiology reports. A specialized link grammar 
parse and a semantic interpretation step between linked word pairs was used in [6] 
to identify common semantic relations between word features in anatomy phrases in 
clinical text. These constraints are expressed as feature functions within a MaxEnt 
classifier that integrates all word tag features. 

Classifier Design 

Classifier design involves constructing a model that utilizes the features deemed 
relevant to assign a chunk classification for a particular word. The choice of classifier 
design affects the weighting, and in some cases, the ordering of applied features. 
Selection criteria for a classifier hence include [81]: the computational complexity 
(i.e., estimation of model parameters); the ability to understand decision-making 
mechanisms; the handling of noisy data; the ability to deal with sparse training data 
(methods for statistical smoothing); the means to deal with overlapping and/or conflicting 
evidence; the degree of scalability; and the ease in adapting to new training examples. 
Classifier designs can be roughly divided into four groups: 1) rule-based systems [47, 
83, 162]; 2) memory-based systems [160]; 3) statistical methods [143]; and 4) hybrid 
systems [90, 139, 168].  

Rule-based systems. Rule-based systems utilize deterministic symbolic methods 
implemented as sequence processors. Rules are often expressed in terms of classic 
first-order logic with sequencing performed using linear cascades and finite state 
automata. Transition rules are expressed in terms of some formal language, such as a 
context-free grammar. The context for a given word is extracted, and this context 
proceeds in sequence through a catalog of rules, applying each rule that matches. The 
sequence ends when a rule is fired or no further rules are available. Cascading rule 
systems can be implemented as a hash table keyed on the feature context. In general, 
symbolic rule-based systems are best applied to language models that provide compre-
hensive contexts for decision-making. Rule-based systems can be very effective in 
applications where there is a consistent usage of style and in resolving low frequency 
context configurations.  
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Memory-based systems. A disadvantage of rule-based systems is their inability to 
handle unseen contexts. Memory-based learning techniques are supervised learning 
methods that compile the contexts associated with a list of training examples into a 
memory database. Predictions for a word’s classification are based on computing a 
similarity metric between the context of the word in question, to the contexts in the 
memory database, returning the k-nearest neighbors [133]. Of particular importance 
is the method of weighting features for estimating the similarity distance. The easiest 
way is to treat each feature with equal relevance. [161] demonstrated a memory-based 
system that used five tokens to the left, the word itself, and three tokens to the right 
for context, and a neighborhood of k = 3. Feature relevance was determined by an 
information gain metric, which assigns weights by observing each feature in isolation 
and estimating how much information it contributes to the correct class label [127]. 
One advantage of these systems is that it allows learning to proceed incrementally – each 
new example in the case base is immediately available for decision-making [25].  

Statistical models. Statistical models are data-driven frameworks that utilize training 
examples to estimate the probability of an outcome variable (i.e., chunk tag). These 
models can be designed to provide good language modeling coverage due to their 
ability to make decisions based on partial evidence. Bayesian classifiers are the most 
prevalent in language modeling, but also include naïve Bayes, HMM, MaxEnt, and 
maximum margin (e.g., SVM) models. The differences in models lies in their assump-
tions regarding feature independence (e.g., naïve Bayes assumes independence of 
word level features within a sentence), types of features (e.g., HMMs assume an  
n-gram model), the functional form of the underlying probability density function (e.g., 
MaxEnt assumes no bias and no inherent conditional independence assumptions), and 
the underlying constraints placed on the model (e.g., maximize entropy, maximize 
classification boundary). The differences in model performance can be seen especially 
in cases where a limited amount of training data is present.  

Hybrid (combined) systems. [139] report a phrase chunking system that achieved 
higher accuracy by applying a weighted voting algorithm to the output of systems 
that were trained using distinct chunk representations and different machine learning 
algorithms. [90] achieved similar results by applying a weighted voting algorithm 
based on the output of eight SVM classifiers, each also trained using distinct chunk 
representations.  

Generation of Training Samples 

The performance of a classifier depends on the interrelationship between sample 
sizes, number of features, and classifier complexity. That is, for a fixed sample size, as 
the number of features is increased (with a corresponding increase in the number of 
unknown parameters), the reliability of the parameter estimates decrease. Consequently, 
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the performance of the resulting classifiers, for a fixed sample size, may degrade with 
an increase in the number of features [81]. Additionally, the relative importance of 
features can change as the number of training examples changes [160]. The more 
complex the classifier, the larger the ratio of sample size to feature dimensions should 
be used to avoid the “dimensionality curse.” Thus, an important area of research has 
been directed towards methods of efficiently collecting training examples. The quality 
and number of training examples are by far the most important factors in building a 
classifier.  

Sampling procedure. The number of training samples and the means by which these 
samples are selected can greatly affect the performance of a phrase chunker classifier. 

We start by compiling a large a pool of documents (or sentences) that potentially 
contain instances of the target phrase type. This collection can be generated by creating a 
very conservative high-recall classifier that looks at the words of each sentence within 
a document collection and outputs whether it contains a target semantic phrase. For 
instance, one could create a high recall anatomy classifier by compiling a list of all 
words contained in UMLS anatomy expressions, filter out stop words, and compare 
this list of words to the words within a candidate sentence. Once the sentence pool is 
formed, we likely need to select from this pool those sentences that will be manually 
tagged to train the classifier; two issues are considered:  

1. Representativeness of a sample. Ideally, selected samples should reflect the 
underlying distribution of the training corpus, which in turn should reflect the 
underlying distribution of the future application corpus. In essence, one should 
sample according to the likelihood of seeing a particular instance within a particular 
context in the targeted document space. For probabilistic models, this policy is 
especially important in order to correctly learn the distribution. For symbolic- and 
memory-based classification schemes, it is important to locate samples from the 
complete spectrum of patterns (feature space).  

2. Uncertainty of a training sample relative to an existing model. Normally in NLP, the 
possibility space for chunking and parsing is substantial and even a large number 
of representative samples will still result in poor modeling of the distribution tails. 
As such, one strategy is to annotate those portions of training data for which an 
existing classifier is not performing well, and then to actively seek further examples 
to improve the training process. Active learning methods have been explored for 
selectively sampling (vs. randomly sampling) a test corpus for tagging phrasal 
boundaries. Selective sampling uses automated methods for choosing which samples 
to annotate using various entropy-based scoring criteria derived from an existing 
(probability) model, searching for the most informative samples (e.g., ones close 
to a classifier boundary) [150]. Thus, instead of blindly annotating the whole 
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training corpus, only those samples that are most uncertain are selected for 
tagging [43, 70, 154]. Once tagged, these supplementary training data are added to 
the initial randomly chosen training set and the classifier parameters are re-
estimated. [96] uses a heuristic sample selection approach to retrain a generic 
part-of-speech tagger for medical reports.  

Tagging tools. An example of a phrase chunking interface is shown in Fig. 6.9, which 
provides the user with the next sentence drawn from a sample pool, and a means of 
tagging the start and end word boundaries for a targeted semantic phrasal chunk 
(anatomy). Negative examples are automatically generated based on false hypotheses 
proposed by the system. For example, in the sentence, “There is a mass in the lung 
and the liver is clear,” the phrasal chunk proposition the lung and the liver is false as 
the lung and liver are not used as a compound phrase.  

Ultimately, a user must be involved in the tagging process to identify and correct 
examples. For instance, there are many instances within medical text of partial 
descriptions (ellipsis) that require some prior knowledge either expressed within a 
previous portion of the text or simply understood within the domain. For example, the 
words tip, end, and apex may (or may not) refer to some landmark on an anatomic 
organ. Inconsistencies or errors in tagging can cause significant performance degra-
dation in the end classifier; and some classifier models are more susceptible to such 

Figure 6.9: Preliminary design of phrase chunker tagging interface. 

 

training noise. Thus, decisions have to be made on how to handle ambiguous tagging  
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Example Example 

Loop of unopacified bowel Lower pole of the transplant kidney 

Loop of fluid-filled small bowel Loops of presumed colon 

Right true pelvis Left lower quadrant renal transplant 

…the descending colon and filled multiple loops of presumed 
colon 

Loops of nondistended bowel 

Right renal pelvocaliceal and partial upper ureteric (duplication) On the right side, the femur… 

Table 6.10: Examples of phrases for which ambiguous tagging may occur (the word 
or phrase in question is italicized). A tagging tool should aid the user by suggesting 
possible choices, ultimately allowing the individual to edit any errors. 

assignments. For example, consider the examples in Table 6.10. The interface can 
include modes where tags are manually specified de novo, or the system may suggest 
the most likely tags, which can then be edited by a user as necessary.  

Semi-supervised methods. A popular method, called co-training, involves building 
separate models for the same problem using limited training data [16]. One can then 
apply these separate models on unlabeled datasets to find examples that each model 
independently labels with high confidence. New training examples found confidently 
by one classifier can be added for remodeling to other classifiers. The process is 
iterated until the unlabeled data is exhausted of any new examples [65]. [124] introduces 
a moderately supervised variant of co-training in which a human manually corrects the 
mistakes made during automatic labeling; this approach improves the quality of training 
examples without unduly increasing the burden of a human annotator.  

Linear Sequence Optimization 

The above classifiers work by assigning a class probability to a single word. But due 
to imperfect context modeling, the highest probability chunk tag classification for a 
word may not maximize the probability of the sequence of chunk tags for a given 
sentence. Linear sequence optimization, a probabilistic maximization problem, can be 
performed efficiently using various forms of dynamic programming techniques [82, 
114]. [44] uses a two-pass approach that first locates the top 20 hypotheses for named-
entity boundaries within a sentence, and then re-ranks these hypotheses using various 
global features. The re-ranking methods include boosting and voted perceptron 
algorithms. Improvements over the baseline of simply selecting the best maximum 
entropy classifier hypothesis were on the order of 15-17% for relative reduction in 
error rate. [28] demonstrates the effectiveness of a system that recurrently feeds back 
results in successive passes to upstream processes, improving disambiguation accuracy 
across a sequence of tags for a sentence. 
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Parsing: Relation Extraction and Constituency Parsing 
Many medical NLP applications require extracting targeted relations from medical text 
[75]. Examples of common types of relations include existence, location, interpretation, 
and appearance of a clinical finding. For instance, the sentence below includes a 
number of propositions that can be identified and aggregated collectively to form a 
network of propositions. 

There has been a significant increase in the size of the enhancing 34mm tumor 
centered in the left thalamus and midbrain. 

The goal of sentence level processing is to construct a conceptual representation of 
the meaning (i.e., information or interpretation) of a sentence within the context of a 
report and/or patient case. Propositional logic type representations are commonly used 
and implemented in the form of conceptual graphs, linked frames, or other types of 
relational models [62, 80, 85]. Generally, an NLP system attempts to create a model of 
language comprehension by maximizing the likelihood of interpretation given some 
input text: 
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From this interpretation of the problem, high-level processing issues include: 

 Interpretation. First, what is meant by an interpretation? How does a computer 
map language to meaning? Are we talking only about a “surface” interpretation 
related to sentence construction, or a “deep” interpretation in which everything 
that is generally implied is inferred given our understanding of events, causality, 
and intentionality?  

 Large state space. Secondly, how do we deal with the large state space? The 
number of possible sentences and corresponding interpretations is huge, even for 
the limited domains seen in medicine. Methods for how to factor and reduce the 
dimensionality of the NLP problem are required. 

 Domain. How domain dependent is an NLP system? A practical system needs to 
know what the bounds of its capabilities. All of medicine? All of radiology? Only 
sentences with the word “discharge” in it? Only certain types of propositions?  

Compositionality in Language 

Mathematically, we can reduce the dimensionality of the NLP problem by factoring the 
joint probability into smaller compositional elements. Frequently, statistical regularities 
can be seen by layering of patterns onto each other. Based on this observation, a more 
advanced and efficient way of encoding language is to organize the information in a 
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hierarchy as a generative model, exploiting such regularities. The ordering of words 
and the structuring of phrases provide important clues to the meaning and purpose of 
the text, over and above the meaning one can infer from viewing the sentence as an 
unstructured bag-of-words. In between our observable input and our desired output, 
we can conceive of a hierarchical model with many hidden states: we call these sub-
interpretations. The hidden states can correspond to the layers within a generative 
theory of language. For example, within formal linguistics, there are various kinds of 
structuring principles operating over different kinds of primitives relating to phonology, 
morphology, semantics, and syntax. The exact nature of what these hidden layers are 
and whether they are an essential part of helping us to make a transformation from text 
to interpretation is what makes linguistics and cognitive science such an active area of 
research. But generally, we believe that these intermediate layers of presentation are 
important in determining the meaning of a text. 

In linguistics, we deal with part-of hierarchies (combinatorial hierarchies) that have some 
spatial adjacency order. Grammars describe the constituents of a sentence and rules 
that describe how these constituents can be constructed. Construction can be seen from 
various perspectives (e.g., structural, semantics, cognitive). Structural grammars deal 
with generic constituents such as noun phrases, verb phrases, and clauses. These nodes 
are intended to be general and apply to the primitive constructions of a language (e.g., 
English). A sentence is represented as a sort of hierarchically nested set of these 
syntactic structural parts. Fig. 6.10 shows an example phrase structure syntactic parse 
for an input sentence that generates a syntactic parse tree. The nodes represent 
phrases that can be composed of other phrases in a recursive manner. Structural parses 
based on phrase constituency or dependency grammars have been applied to various 
applications in clinical text processing [23, 76]. Syntactic features provide important 

Figure 6.10: A sentence with generic syntactic linguistic structure. 

evidence for the identification of various relational propositions. In general, there is a  
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strong connection between the structure of a sentence and its meaning: if we know its 
structure, this gives us strong clues to how we can map this structure to its functional 
meaning (structure-function mapping; Fig. 6.11 ). 

Figure 6.11: A sentence with hidden semantic interpretation, using a phenomenon-
centric data model (PCDM) as a foundation (see Chapter 7). 

Figure 6.12: An information model for discharge summaries. 
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Note that in syntactic parsing, the main verb of the sentence plays the crucial role in 
the meaning of the sentence. The verb becomes the head of the sentence. Syntactic 
parsing performance can be improved by modeling the expected possible arguments 
for specific verbs (i.e., verbal selectional preferences). We constrain syntactic links 
based on our knowledge of semantics. For example, [42] have studied the argument 
structures for verbs that appear in the biomedical literature. Structurally, this approach 
allows a more “event-centric” modeling approach. For instance, the event could be the 
act of observing (e.g., “X was seen”) or the act of discharging a patient from the 
hospital with arguments describing the specifics of the event (e.g., why, who, where, 
when, etc.) (Fig. 6.12). 

Many medical NLP systems use a grammar based upon a combination of syntactic 
and semantic components. These grammars improve task performance for which the 
particular sublanguage type is designed to operate on (e.g., the universe of all discourse 
related to reporting imaging findings from radiology studies). By way of illustration, 
MedLee consists of a specification of semantic (and sometimes syntactic) components 
and is used to interpret the semantic properties of individual terms and their relations 
with other terms, which generates a target output form. Thus, one grammar rule can 
contain both syntactic and semantic components. For example, a rule could specify 
that a sentence containing sign/symptom information consists of a phrase associated 
with a patient (i.e., patient), with a subsequent evidential verb (e.g., experienced), and 
followed by a phrase that contains a sign/symptom (e.g., pain in arm). The semantic 
grammar rules were developed based on co-occurrence patterns observed in clinical 
text. The reader is referred to [60] a further discussion of semantic categories and 
semantic syntactic grammar rules used in MedLee. 

Interpretation-based sentence processing [21] uses cognitive science principles to 
build a syntactic and a semantic representation for a sentence. The model relies on 
background knowledge of the world (e.g., propositional model of the domain or 
preceding discourse within document). The sentence interpretation is the proposition 
in the background knowledge that best matches the input sentence. That interpretation 
can further participate in comprehension and in lexical processing and is vital for 
relating the sentence to the prior discourse.  

Various dialogue systems have incorporated these higher level expectation models of 
the communicative goals within focused domains [107]. Bayesian belief networks, 
domain ontologies (UMLS, WordNet, PropNet [136]), and general semantic networks 
have been used to represent models of domain knowledge and to instantiate the most 
likely interpretation for an input sentence, even in the light of semantic ambiguity (i.e., 
lexical ambiguity, scopal ambiguity, and referential ambiguity) [38, 123]. For example, 
the medical NLP system, MPLUS, encodes semantic and world knowledge of specific 
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phenomena into modular and independent Bayesian belief networks (BBNs) [37]. This 
BBN is then used for sentence level semantic interpretation. Belief networks have also 
been used as discourse models to deal with missing information (e.g., ellipsis) and/or 
spurious concepts (misclassifications) [105].  

Notably, the differences in the constituents and parse output representation makes 
comparison and sharing of training results difficult. The types of constituents within a 
grammar have ramifications as to the usability of training sets. In some cases there can 
be possible transformational rules to normalize a given syntactic parse representation 
(e.g., phrase structure grammars to dependency grammars). For instance, different 
parsers with heterogeneous representations have been compared for task performance 
by transforming their results to dependency graphs [39]. 

Discussion 
There remain numerous challenges in developing accurate medical NLP systems that 
provide deep understanding of clinical text. The requirement for high accuracy means 
that researchers must develop comprehensive language models that cover the gamut of 
grammatical (e.g., words, word-word linkages, sentences) and cognitive entities (world 
objects, medical processes). This intense knowledge requirement necessarily means 
that practical medical NLP systems will be focused on either specialized domains 
(e.g., radiology) or types of communications. 

Although medical NLP systems borrow heavily from the theories and approaches of 
general NLP systems, there are a few notable differences, which we summarize here: 

 Expectations. In a sublanguage, the target information space is less dense compared 
to a general language understanding system. What approaches to sublanguage 
processing should be considered? What are the peculiarities of medicine as a 
sublanguage that we should take advantage of in order to develop robust systems 
for the domains in which they are intended to operate? [22] showed that medical 
text has significant grammatical variation when compared to general text. In general, 
medical report text includes fewer word types, concepts, and propositions. 
Expectation models for what information is to be communicated within a given 
type of report or medical domain are possible [63]. These observations lead to the 
question of what tasks would be most beneficial for the medical NLP community 
to tackle beyond the efforts of general NLP researchers that would advance NLP 
technology to a higher level? 

 Framework. Is there a theoretical framework from which we can build as a 
community? Is there some development or emergent processing architecture 
that would allow progress to be made steadily and allow for a wide spectrum  
of applications with greater functionality to be more efficiently developed? 
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Currently, there are no agreed upon “integrated” models for medical NLP, and 
there is no consensus platform for bringing components together and making them 
interoperable. It is not clear how to separate general language features from 
domain specific knowledge such that either is readily integrated and updatable. 
A framework that allows global optimization of low-level lexical and syntactic 
evidence as well as high-level patient and phenomenological knowledge would 
be ideal. 

 Sharing of resources. Related to the issue of a shared framework, how should we 
manage resources such that the collective efforts of research teams can bring NLP 
closer to fruition in terms of providing a useful service to medical practice, research, 
and/or education? Interoperability between representational formats, annotations, 
software, etc. are needed to achieve wide-scale community growth. Eventually, issues 
of standardization are important, especially in areas of representation. The 
development of widespread tools can assist in resource sharing.  

 Evaluation. The value of a medical NLP system rests in its ultimate “black box” 
performance with respect to its end application [61]. The most important aspect of 
an NLP system is utility and not necessarily the technical accuracy of computing 
an intermediate text representation.  
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Chapter 7 
Organizing Observations: Data Models 
ALEX A. T. BUI AND RICKY K. TAIRA 

hus far, discussion has focused on issues related to collecting and analyzing  
clinical data. Yet central to the challenge of informatics is the organization of all  
of this information to enable a continuum of healthcare and research applications:  

the type of attributes supported in characterizing an entity within a data model and the 
scope of relationships defined between these objects determine the ease with which we 
can retrieve information and ultimately drive how we come to perceive and work with 
the data. This chapter overviews several data models that have been proposed over the 
years to address representational issues inherent to medical information. Three catego-
ries of data models are covered: spatial models, which are concerned with representing 
physical and anatomical relations between objects; temporal models that embody a 
chronology and/or other time-based sequences/patterns; and clinically-oriented models, 
which systematically arrange information around a healthcare abstraction or process. 
Notably, these models no longer serve the sole purpose of being data structures, but 
are also foundations upon which rudimentary logical reasoning and inference can 
occur. Finally, as translational informatics begins to move toward the use of large 
clinical datasets, the context under which such data are captured is important to con-

Data Models for Representing Medical Data 
A data model provides a formal abstraction for the storage, organization, and access 
(querying) of data. Though used for a number of purposes, data models are best known 
for their roles: 1) in logical- and physical-level database schemas; and 2) in specifying 
conceptual schemas. A diversity of logical data models have become common over 
the years: hierarchical, which organizes records in a tree-like structure to describe the 
nesting of elements; network, where records are grouped together into sets, and the 
relationship between sets are specified; relational, a framework rooted in first order 
predicate logic to describe variables and constraints; object-oriented and object-
relational, based on the idea of classes, inheritance, and method encapsulation and its 
mapping to a relational scheme. In contrast, a conceptual data model aims to describe an 
information space, separate from how the data is arranged in a database: the well-known 
entity-relational (ER) model is a prime example [24]. It is these latter conceptual-level 

T 

sider; this chapter thus concludes by introducing the idea of a phenomenon-centric 
data model (PCDM) that explicitly embeds the principles of scientific investigation 
and hypotheses with clinical observations. 
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data models with which we concern ourselves here. As seen in prior chapters, the 
nuances of patient data and medical knowledge precipitate representational challenges: 
there are often unique semantics that must be handled to accommodate spatial, temporal, 
and clinically-oriented constructs. Conceptual-level data models in these three areas 
are covered below, addressing: the representation of individual entities; the description 
of the relationships between entities; and the methods provided to ask questions about 
the model and its instances (i.e., querying). 

Spatial Data Models 
Observations of the world are intermingled with physical characterizations of the 
objects around us: the shape and size of an object (geometry), the arrangement (orient-
ation, topology); and the proximity of one object to another (distance, direction) are all 
spatial properties that color our descriptions. This fact has led to multiple disciplines’ 
investigation of spatial representations and techniques for reasoning with spatial des-
criptions: a spectrum of applications, including computer vision; geographic information 
systems (GIS); imaging databases; and natural language processing (for dealing with 
spatial prepositions) have all dealt with spatial data models. These ideas have been 
adapted to medicine – and in particular, radiology – to represent structural concepts 
and coordinate systems, especially when dealing with imaging data: anatomical des-
criptions and the appearance of findings, for instance, are often given in terms of shape 
and relative location. GIS are also beginning to be applied to public health questions, 
for monitoring disease outbreak and surveillance. We start with an overview of 
general work in spatial modeling, progressing toward more refined anatomical and 
imaging-based paradigms. 

Spatial Representations 

Foundational work in spatial and image databases throughout the 1980s and early 
1990s provides much of the basis for today’s GIS and the implementation of spatial 
operators in many relational database systems. Central to these efforts was the ques-
tion of what spatial information needs to be recorded about a given domain (and 
hence, the data types used to store information). Apart from the issue of dealing with 
dimensionality (i.e., 2D vs. 3D), [60] defined two key perspectives: the representation 
of objects in space, where each entity is arranged in space and we are interested in the 
object’s own geometric description; and the representation of space itself, where each 
point in space is of interest and thus described. By analogy, consider Fig. 7.1a, where 
the intent is to describe the shape of the bladder, while in Fig. 7.1b the aim is to dis-
tinguish normal tissue vs. tumor. The former can be captured through the use of 
points, lines, curves, and areas; the latter typically involves the partitioning of a space 
into disjoint segments. Detailed reviews of spatial data types and operators are given 
in [27, 96]; however, we mention two representational issues: 
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 Spatial data type and location. Related to the question of object vs. space represent-
ations is how spatial information is represented, being either raster- or vector-
based. Rasters impose a discrete grid over the space, thereby setting a fixed 
spatial resolution to the information. With rasterized data, the grid’s cells are the 
smallest describable element and regions are formed from sets of cells; as such, 
raster-based systems are well-suited for describing spatial regions. In comparison, 
vectors describe shapes in terms of geometric functions, providing for interpolation 
across multiple spatial resolutions. The choice of raster vs. vector establishes the 
underlying spatial data types and a coordinate system. For instance, rasters can be 
represented using run length encoding schemes, where contiguous spans of a 
given row are represented by start/end columns. Vector representations are based 
on ordered sets of connected points, lines (polylines), curves (e.g., b-splines), and 
basic geometric shapes (e.g., boxes, circles/ovals). Vectors provide compact rep-
resentations of solid objects, but are less convenient for complex geometries (e.g., 
regions with holes). Noting that spatial data is sometimes subject to incomplete or 
vague definitions, fuzzy spatial data types have also been proposed, such that 
points, lines, and area boundaries are represented with indeterminacy over a range 
[97]. In 3D, spatial representations also include polygonal meshes, which specify 

Figure 7.1: (a) Computed tomography (CT) image of the abdomen, with the bladder
outlined in yellow. Here, the shape over the anatomy is of importance, as opposed to
other geometric properties. (b) Lung CT showing a tumor. Color overlays separate the
chest wall, tumor, and normal lung space. In this case, the entire image is split into
three categories, and the relative location and spatial relationships between the entities
is of interest. (c) Vectors can be used to represent an object’s boundaries and its internal
region, such as shown with the bladder: a counterclockwise set of points defines
a polyline. Geometric properties (e.g., height, width) can also be included in the
description. In 3D, a polygonal mesh can be used to represent the shape. Rasters can
also be used to represent regions, such as with the tumor. 
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Figure 7.2: The eight basic topological spatial relationships [51]. Similar relationships 
also form the basis for the region connected calculus (RCC8) [89]: the equivalent rela-
tions and names are given in italics. 

the surface boundary of an object through a collection of vertices and edges 
defining convex polygons (faces) of a polyhedral shape.  

 Extra shape and spatial features. Raster and vector-based data types are low-level 
primitives that are used to construct shapes, and often form the basis for database 
representations. Spatial modeling applications also use global shape features to 
present higher-level characterization of geometry, with common descriptors 
being: area and perimeter (or surface area and volume in 3D), representing the 
number of pixels enclosed within the shape and its boundary; circularity, or how 
“compact” the shape appears; minimum bounding box, the extents of the smallest 
rectangle that can fully enclose the shape; eccentricity, the ratio of the shape’s 
major and minor axes (i.e., the ratio of the height and width of the minimum 
bounding box); and shape moments. The occurrence of these shape descriptors is 
exemplified in part by their inclusion within the MPEG-7 (Moving Picture  
Experts Group) multimedia standard [11]. Also, metrics based on the transforma-
tions of an area or boundary to another space (e.g., Fourier, wavelet), have been 
detailed. Surveys of methods of shape features and analyses are given in [13, 69, 71].  

Spatial Relationships and Reasoning 

How we represent spatial relationships has been a longstanding inquiry in language, 
philosophy, and applications involving scene descriptions; [57] provides an early per-
spective. Spatial relationships can be split into three groups: topological operators; 
directional; and quantitative relationships. Topological operators pertain to spatial 
relationships between two objects and return a Boolean value. [51] enumerates all 
possible topological situations for solid shapes in 2D, resulting in eight named operators 
(Fig. 7.2): disjoint, where two objects are completely separate spatially; meets, in which 
two objects boundaries touch; contains and inside, wherein one object’s boundaries 
completely encompass a second object’s edges (and its converse description); over-
laps, where the boundaries of two objects intersect, but there exists regions outside the 
intersection; covers and covered by, which is similar to contains/inside, but the objects  
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share some edge; and equals, where the two shapes are equal. Analysis of the more 
general situation of objects with holes resulted in 52 possible binary relationships 
involving points, lines, and areas. Directional relationships describe locations in terms 
of cardinal directions (e.g., north/south, east/west) or other semantic relations (e.g., 
above/below; right/left). Lastly, quantitative (metric) relationships involve the derivation 
of some value, such as the distance between two objects.  

The above spatial relationships are computable based on the definition of objects’ 
boundaries. A different perspective based on directional relationships is used in 2D 
string representations and the use of “symbolic” images [23]. 2D strings encode spa-
tial knowledge about the contents of images through the use of two one-dimensional 
strings that represent the order of occurrence of codified objects based on projections 
in the horizontal and vertical axes. Fig. 7.3 demonstrates 2D string encodings for 
anatomical landmarks. 2D strings have been generalized and extended to 3D, and to 
different coordinate systems (polar coordinates, variably spaced grids) [22]. Another 
method for representing spatial relationships can be seen with scene graphs, which 
define a hierarchically organized set of parent/child nodes that decompose an image 
(i.e., scene) into constituent objects/shapes: each child inherits its parent’s coordinate 
system and specifies its location and boundaries within this scope. Scene graphs  
are found in 3D computer graphics, VRML (virtual reality modeling language), and 
are used as the basis for scene descriptions in the MPEG-4 standard [102]. 

Spatial queries. In medicine, one might ponder questions such as, “What brain struc-
tures are being impacted because of cerebral edema?” or, “From what direction 
should radiation therapy occur to minimize healthy tissue exposure?” A significant 
amount of study has gone into understanding the operators commonly used in spatial 

Figure 7.3: Spatial relationships represented using 2D strings. The left shows a mid-
sagittal T2 magnetic resonance (MR) pelvic region image obtained in a female patient; 
the right shows a slice from a coronal T1 cardiac MR series. Two 1D vectors are used 
to capture information about the relative spatial layout of objects as encountered, in 
order, along the horizontal and vertical axes.  
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queries. For instance, geometric operators involve computational geometry, functioning 
on two (or more) shapes to obtain a new object. Simple geometric operators include 
calculating the union, intersection, and difference of the space occupied by two entities. 
Examples of more complicated geometric operators are calculating the convex hull 
(the boundary of the smallest convex shape in a plane that encompasses a set of 
points), a Voronoi diagram, or the shortest distance between two shapes’ boundaries. 
These operators are embedded within query languages, with two approaches seen:  

1. Augmenting SQL. Many works have enhanced SQL (structured query language) 
with spatial data types (points, lines, regions/surfaces) and query syntax [20, 52, 
94, 110]. Markedly, many relational databases presently implement the Open 
Geodata Interchange Standard (OGIS) [62], an extension to SQL3 that adds a base 
geometry spatial data type with methods for determining topological relationships 
and spatial analysis. As a case in point, consider the following hypothetical query 

comparing the distance between segmented image regions: 

SELECT T.name, A1.name 
FROM Tumor T, Anatomy A1 
WHERE DISTANCE(T.shape, A1.shape) ≤ ALL(SELECT DISTANCE(A2.shape)  
 FROM Anatomy A2 WHERE A1.name ≠ A2.name) 

2. Alternative query languages. Another means of spatial query expression includes 
the adaptation of the form-based query-by-example (QBE) paradigm to manage 
spatial information in pictures [18, 21]. Moreover, given the nature of spatial 
relationships, it is often easier to draw a representation of the query rather than 
expressing it declaratively. Several systems implement visual query languages, 
which parse spatial relationships from examples drawn by users. Query-by-sketch 
is one model, where users are able to draw the target objects and the application 
infers a set of relationships as part of the query constraints [53, 56]. Similarly, 
iconic representations of objects have been used to enable the sizing and layout of 
queryable objects [47] (see Chapter 4). 

Spatial reasoning. The capacity to automatically reason about objects in space has 
been delved into via formal spatial algebras and calculi, put forth as logical frame-
works for deducing spatial relationships. Methods based in computational geometry 
are, of course, well-grounded in mathematics and derive their power through quantitative 
analysis of spatial information. A universal coordinate system is employed to facilitate 
global comparisons between shapes; and the exact position and extent of objects are 
known, so distances and other geometric measures can be made. The relativity of 
spatial references, however, has given rise to the field of qualitative spatial reasoning 
[30, 91] wherein there is qualified and potentially incomplete knowledge about the 

in SQL3/OGIS syntax to find the anatomical location closest to a tumor based on 
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layout of objects – the full set of spatial relationships must be deduced (e.g., for 
instance, as with 2D strings). For example, in Fig. 7.4, knowing that b is inside of a, 
and c is inside of b, one can infer that c is also inside of a. Likewise, conclusions about 
directions can be drawn in a transitive manner without knowing the precise boundaries 
of an object. Qualitative spatial reasoning is typified by the region connection calculus 
(RCC) [89], a topological approach to spatial representation. RCC defines seven 
binary relationships on spatial regions (Fig. 7.2), along with the inverses and equality 
operator. RCC additionally defines Boolean functions for working with regions 
(sum(x,y), the union of two spaces, x and y; compl(x), the complement of a region; 
prod(x,y), the intersection of two regions; and diff(x,y), the difference between two 
regions). A complete listing of inferable relationships (termed the composition table) 
from a given RCC spatial proposition is defined. Similar work has been proposed with 
directional relationships, broadened to deal with 3D projections in 2D with in front 
of/behind semantics: a set of rules dealing with transitivity, symmetry, and other infer-
ences enables deduction of all potential relations [103].  

Anatomical and Imaging-based Models  

Though the prior discussion illuminates spatial modeling in the context of medicine, 
the concepts were largely generalized. A considerable body of work exists in terms of 
providing common frames of spatial reference for human anatomy. The motivation 
behind these models is to standardize representation such that references to an ana-
tomical entity’s geometry and location can be shared. We split our discussion of these 
works into three parts: 1) coordinate systems, which are based on physical landmarks 
to impose a (conceptual) grid on an anatomical region; 2) ontological approaches, 
which abstract spatial relationships, both in terms of physical and linguistic references; 
and 3) shape models, which draw from geometric and imaging concepts to specify 
anatomical shapes. 

Figure 7.4: Region connection calculus (RCC) theory. Let P(x,y) represent the fact 
that region x is a part of region y; and C(x,y) signify that x is connected to y. The topo-
logical relations of Fig. 7.2 can be described using logical statements: for instance, 
overlap and externally connected are defined here. Using RCC, spatial inferences can 
be made based on the transitivity of relationships and implied meaning. In this basic 
example, the statement that b is inside a, and c is inside b, implies that c is inside a. 
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Coordinate systems. The chief impediment in mapping human anatomy lies in the 
simple fact that the size and shape of every physical body and anatomical region varies 
from person to person. Furthermore, although we may be able to identify physical 
landmarks, we are often attempting to assign higher-level physiologic (i.e., functional) 
concepts to structural areas that may be imprecisely defined. To overcome this issue, a 
recurrent idea is to define an axis/plane (e.g., given by relatively invariant anatomical 
points), which serves as a referent origin from which distance can be measured. A 
well-known example of this approach is the Talairach (stereotaxic) coordinate system 
for neuroanatomy. The Talairach coordinate system is based on two points, the ante-
rior and posterior commissures, to define an axis line in the mid-sagittal plane (Fig. 
7.5a). The anterior commissure serves as the origin, and 3D coordinates comprise the 
distance in the x/y/z planes from this point. Comparable landmark-based methods are 
used for other anatomy (e.g., breast, upper and lower extremities, pelvis), primarily in 
imaging assessment or biomechanics/kinematic studies [29, 43, 58]. [6] remarks that 
most spatial references in biology are not in terms of numerical coordinates, but are 
directional and suggests instead the idea of domain-specific natural coordinate 
systems based on the orientation and layout of anatomy within an entity. 

imaging atlases that map physical regions to anatomical labels. In theory, if a coordinate 

Figure 7.5: (a) Talairach coordinate system. The spatial framework is defined by the
mid-sagittal plane containing the anterior and posterior commissures. Similar
approaches have been used in other anatomical regions. Brain drawing adapted from
Patrick J. Lynch (b) By establishing a shared coordinate system, it is possible to
transfer locations from one reference image (e.g., from an atlas) to another image. In
this example, the T2 axial MR images are chosen at approximately the same level,
and a point on the left lateral ventricle is transferred after applying affine transforms. 

Introducing a coordinate system opens the door to the development of morphological 
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system can be established on a representative anatomical region, then labels from 
sub-regions may be transferred from one image set to another via the shared coordinate 
system (Fig. 7.5b). In practice, however, complications occur: the transformation needed 
to map between two anatomical regions is frequently non-linear, so 3D warping tech-
niques are needed to accurately match volumetric regions; and mapping methods can 
fail in the presence of gross pathologies (e.g., a tumor that introduces anatomical 
shift). More sophisticated approaches thus move from the concept of static atlases to 
probabilistic atlases that better represent both the normal variation occurring in a 
population, and allow flexibility in correlating spatial boundaries (see Chapter 5).  

Anatomical shape models. Interrelated with imaging atlases, shape models provide 
anatomical spatial descriptions based on geometry. Also described in depth in Chapter 
5, we only briefly mention these techniques here to show how spatial information is 
represented. Deformable models cover a broad set of well-known methods that start 
with a template geometry and iteratively refine (i.e., deform) in response to some force 
or constraint (e.g., minimizing some energy function) [73] (Fig. 7.6a). Deformable 
geometries include curves/contours in 2D (e.g., snakes [67]), and surface and solid 
models in 3D. An important variant to using standard 3D meshes to represent the 
boundary of deformable surfaces, m-reps align medial atoms along a surface [84], 
providing a compact data structure for demarcating a (solid) shape (Fig. 7.6b). Active 
shape and appearance models (ASMs, AAMs) can be seen as an extension of atlases, 
wherein a composite representation generated from multiple samples is used to  
statistically represent the degree of variation across a population (e.g., a representative 

Figure 7.6: Different anatomical shape models. (a) Deformable models, such as
snakes, provide explicit geometric information about shapes and locations. In this ex-
ample, a portion of a template (green) is iteratively refined (yellow) to identify the
boundary of the head in an MR image (purple). (b) An example m-rep, consisting of a
3 x 5 array of medial atoms that specify the surface of the object. (c) An active shape
model from knee x-rays. 16 x-rays were contoured for the right/left inferior femur and
right tibia and fibula (four examples shown on top). The top three eigenshapes are
shown below, accounting for the variation seen across the different contours. 
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set of images from a group of normal subjects can be co-registered to establish normative 
spatial distributions) [36] (Fig. 7.6c). Spatial relationships can hence be inferred with 
ASMs/AAMs by comparing a given subject to the statistical model. 

Ontological approaches. Coordinate systems and shape models are geared toward 
imaging and physical models of anatomy. Yet a large portion of our communication of 
anatomical concepts includes spatial constructs. In addition to standardizing anatomical 
nomenclature, ontological approaches may be seen as characterizing our conceptual 
models of anatomy and the language we use to describe spatial relationships. Current 
ontologies and controlled vocabularies such as UMLS (Unified Medical Language 
System), SNOMED (Systematized Nomenclature of Medicine), and RadLex codify 
spatial relations (Table 7.1). Although improving, the coverage proffered by these 
vocabularies is often incomplete relative to natural language: for example, [7] 
evaluated spatial references from an anatomical textbook, finding that only a portion of 
expressed concepts could be mapped to UMLS. Hence, research to improve ontologies 
falls into two areas of spatial representation, along with methods for reasoning [10]: 

1. Topological spatial relationships. Anatomical descriptions can entail a range of spa-
tial relationships, including relative location (e.g., right of the heart), containment 
(e.g., in the liver), and connectivity/paths (e.g., bronchi branch into bronchioles). 
For example, based on radiographic findings, an ontology of semantic spatial 

specialization of concepts in queries [25].  
2. Mereological relationships. Anatomical models follow an increasingly hierarchi-

cal organization (e.g., body → organ systems → organs → constituent tissues and 
components → cells). Described by is-a and part-of relationships, these associa-
tions imply knowledge about the relative spatial properties of anatomical parts 
[77]. The formal theory of parthood relationships, mereology, has been applied to 
anatomical models. Mereology uses predicate logic to describe parts and their re-
spective wholes; and from this underpinning, spatial reasoning can be performed. 
The Foundational Model of Anatomy (FMA) [92, 93] best illustrates the 
mereological approach based on is-a and part-of relations, with the formalization 
of anatomical spatial entities [74]. UMLS and RadLex provide basic support for 
mereological relationships as part of their hierarchical structuring. [107] provides 
a discussion of the semantics of part-of relationships in SNOMED (e.g., the 
mitral valve is part of the heart, which in turn is part of the pulmonary-cardiac 
system). We note the dual meanings of part-of relationships here: part-of can refer 
to spatial components (e.g., the left aorta is part of the heart); or it can refer to 
functionality as part of a system (e.g., the lung is part of the pulmonary system). 
As a result, the GALEN project defined part-of relationships from several different 
viewpoints (Fig. 7.8). 

relationship operators has been created (Fig. 7.7) to provide relaxation/ 
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Figure 7.7: Visualization of binary semantic spatial relationships based on the  
description of radiological findings, organized as an ontology [25]. 

Figure 7.8: The meaning of part-of relationships is expanded in the GALEN project to 
reflect the complexity of its semantics and usage. 

Ontology/Vocabulary Spatial descriptors Examples 

Unified Medical  
Language System 
(UMLS) 

Hierarchical specification of mereological 
relationships in UMLS semantic network. 
UMLS Spatial Concept (T082). 

physicallyRelatedTo 
partOf, consistsOf, contains, 
connectedTo, interconnects 

Systematized Nomen-
clature of Medicine, 
Clinical Terminology 
(SNOMED-CT) 

Handled by QUALIFIER values for spatial 
and relational concepts (309825002) 
and RELATIVE SITES (272424004).  
Anatomic-specific descriptors are given 
under anatomical parts/relationships, 
and general site descriptors. 

apical (43674008) 
left lower segment 
(264068005) 
panlobular (263831002) 
endobronchial (260544000) 

RadLex Mereological relationships for contain-
ment, part-of  

contains, continuousWith 
(branch, tributary),  
memberOf, partOf (segment) 

National Cancer  
Institute Common Data 
Elements (NCI CDE) 

Anatomic site location descriptions 
(2019174), directional and anatomical 
descriptors, proximity 

 

Table 7.1: Examples of how spatial descriptions and relationships are handled  
in several common ontologies/controlled vocabularies. UMLS and RadLex provide 
mereological relationships, whereas SNOMED-CT and NCI CDE are principally 
based on combinations of anatomic-specific descriptors. 
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Ongoing efforts to unify anatomical ontologies and relationships include the Common 
Anatomy Reference Ontology (CARO) [61], the Relations Ontology for mereological 
relationships [104], and the related Spatial Ontology – all hosted as part of the Open 
Biological Ontologies (OBO) project. Adopting the top-level classes of the FMA, 
CARO endeavors to provide a single abstraction for spatial references to anatomy (and 
temporal changes) across differing levels of spatial granularity (e.g., cellular vs. tissue 
vs. organism) and species. The Spatial Ontology defines anatomical locations (axes, 
sides, regions) and relative spatial relationships (e.g., oppositeTo, orthogonalTo). 

Temporal Data Models 
The world is continuously changing, and as such time is an intrinsic part of the obser-
vational process when we record data: knowing when events occurred helps to impose 
order on a sequence of events and to elucidate trends. Furthermore, modeling time 
allows us to deduce causal relationships: how things happen (i.e., behavior) is just as 
important as the end state. This constant flux is particularly true in considering any 
biological process, be it a normal condition (e.g., human growth from childhood to 
adulthood) or a medical problem (e.g., the genesis of disease, its subsequent course, 
and its resolution in a patient). Indeed, the longitudinal (electronic) medical record 
reflects this view, aggregating information that documents the evolution of an individual 
over his lifetime. One of the earliest incarnations of clinical databases, the Time-
oriented Database (TOD) System supported basic querying of timestamped data [113]. 
Today, research across several different fields including temporal databases, multime-
dia formats, and artificial intelligence has resulted in formalized time-based constructs 
that have been adapted to clinical data and medical knowledge representation. Tempo-
ral modeling is central to a spectrum of topics, including the organization of data 
within medical information systems; prediction and therapy planning; and automated 
reasoning with clinical guidelines to name a few [99]. A discussion of these temporal 
models consists of two distinct issues: the model abstractions that impose a chrono-
logy (or other temporal pattern) on the data; and the methods that are used to query 
and to reason with temporal data.  

Representing Time 

Temporal representations are made up of two parts: a theory of time that defines the 
structure of the primitives; and a theory of incidence, which pertains to the properties 
and assumptions about an assertion and thus what can be inferred [109]. Differences in 
these theories drive the capabilities of models in representing time-based information: 

 Point- vs. interval-based representations. Events can be seen as happening within 
an instance (i.e., a single point in time), capturing a snapshot of state; or as occur-
ring over a period of time (i.e., an interval with start and end times). To illustrate, 
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1  Ultimately, one can argue that all computerized temporal models are discrete, even 

with hierarchical time models, as they reach a unit of time that can no longer be 
subdivided or interpolated given the limitations of precision and representation. 

a lab assay may be seen as occurring instantaneously, while a medication  
prescription may occur over an interval of weeks. For point-based representations, a 
single value is associated with that instance in time. In comparison, interval-based 
models can assign a single value for the entire duration, or a range of values (e.g., 
either explicitly stated or through a function). Both models require quantization of 
temporal scale, the former using the smallest quanta as the basis for all time-
stamps, and the latter coalescing one or more quanta into a set. The well-known 
Arden syntax [64], for instance, employs a point-based representation: intervals 
are not supported as primitives. Notably, interval representations are a superset of 
point-based models (by making the start and end times equal). Generally, point-
based time models are easier to manage, providing straightforward techniques for 
sorting and indexing of temporal data – but at the cost of representational power.  

 Continuous vs. discrete time models. A dichotomy exists with regard to the 
quantization of time: a model can represent temporal information either in terms 
of discrete values, in which the associated state for an event is only known for 
a given point in time with no assumptions about an object’s state outside of the 
explicit time points; or continuous, wherein the assertion is that an event and its 
state occur over a period of time without interruption1. For example, consider data 
from an intensive care unit (ICU) with information collected every 15 minutes: 
a discrete time model emphasizes that our knowledge between the 15 minute 
intervals is not truly known, whereas a continuous model provides a method to 
assume or to compute values between the intervals. Typically, continuous models 
provide a means of interpolation so that values are estimable (although such 
methods must clearly be domain dependent).  

 Supporting temporal abstractions and imprecision. As with spatial representations, 
time is often referred to in abstract or relative terms that are not directly amenable 
to point- or interval-based timestamp primitives. For instance, a patient’s state-
ment that his symptoms, “started sometime today,” or, “recently” are imprecise 
references that can only be framed loosely within a certain period of time or in a 
qualified manner. In some cases, such temporal abstractions can be defined easily 
within the scope of a query [88]. More sophisticated scenarios involve a multi-
step approach to ascertain the contextual task for a temporal concept and its link-
age to lower-level and similar temporal constructs: the RÉSUMÉ project develops 
this idea in terms of knowledge-based temporal abstraction [98, 101]. Other models 

 
instead relax absolute time constraints so that relativity between events is allowed  
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 Valid and logical time. There are several dimensions of time that characterize 
what is known about an event. Valid time symbolizes the period of time for which 
a given event exists in the real-world (i.e., a specific date of timestamp). Valid 
time marks the behavior of the real world object with respect to time (e.g., 
Medication A was taken by the patient between January and March of 1998), and 
is often used to model the semantics of time series data sets. Logical time denotes 
when information about an event is actually recorded. For instance, logical time 
only deals with the time at which data is committed to the database (e.g., the fact 
that Medication A was taken was recorded in a database on August 12, 1998). 
Logical time is hence also often referred to as transaction time. Temporal data-
bases that model both valid and logical time are said to be bitemporal.  

The reader is referred to [106] for further discussion of these and additional temporal 
representational issues, including historic perspective. The basis for most temporal 
models is a linear representation of time – that is, an imposed partial ordering of a set 
of events. Time series are a well-known linear representation, where a sequence of 
observations is made over a finite series of time points. In linear time models, each 
moment takes on only one possible value. In contrast, branching time models repre-
sent multiple hypothetical timelines where events may (or may not) occur based on 
transition probabilities: a time point may thus be split across many possible states 
(e.g., such as in a finite state automata, Petri nets, or Markov model). The result of 
generalized branching models is a directed graph of possible event sequences [42]. 
Notably, in both linear and branching time models, temporal ordering entails causes 
preceding effect. Many refinements to the basic linear temporal model have been 
developed to enable richer representations; we mention two examples pertinent to 
medicine: temporal evolutionary models; and cyclic models.  

Temporal evolutionary models. Most temporal models represent an object’s initial 
state and its changes over a given temporal interval: the values may change, but the 
properties attributed to an object are constant. Yet clear examples exist within medi-
cine wherein the nature of an object evolves, potentially into one or more new entities 
with fundamentally different properties. For example, normal human skeletal maturation 

(as opposed to fixing events to an absolute time scale, only the ordering of events 
is represented or a relative event is anchored to another even for which a specific 
timestamp is given). Clinical protocols and guidelines that are action- or procedure-
based represent chronologies that can be perceived as sets of relative events 
(e.g., do X before Y). Similarly, fuzzy sets and fuzzy logic have been proposed to 
represent an interval during which a given event definitively occurs, but the exact 
start and/or end points are unclear [2, 50]. A fuzzy theory approach, for example, 
has been used to model the evolution of diseases given imprecise temporal  
information [82]; and has also been used to extend Arden syntax [108].  
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Figure 7.9: Examples of the temporal evolutionary data model. Three temporal con-
structs are supported: fusion, the joining of two entities into a new object; fission, the 
splitting of an object into two new entities; and evolution, as an object’s properties 
change over time. (a) Evolution and fusion with bone growth. The pediatric epiphysis 
(e) and metacarpal (m) slowly change size and shape (e1 → e2, m1 → m2) and fuse 
together at time t2 to create the adult bone (b1). (b) In embryology, the prosencephalon 
in the neural tube divides into the telencephalon and diencephalon (p → d + t). (c) A more 
complex scenario of fusion, fission, and evolution in the growth of a kidney (k) from 
the ureteric bud (b) and mesoderm (m). 

                                                           
2  Many ontologies, such as based on OBO, instead use the singular concept of  

developsFrom to model entity changes/evolution.  
3  Fusion should not be confused with the modeling concept of aggregation. This latter 

concept reflects a larger object composed of a group of smaller objects – however, 
each constituent element maintains its own identity. In fusion, the participant fused 
objects cease to exist once joined, with the entity taking their place. 

involves the joining of bones (e.g., the epiphysis and phalange merge together): two 
previously distinct objects come together to create a new entity. Embryologic develop-
ment illustrates the process of objects splitting with differentiation of tissues: for 
instance, the cephalad region of the urogential sinus forms the bladder, and the caudal 
portion the urethra; and growing from the three- to five-vesicle stage, the prosencephalon 
gives rise to the telecephalon and diencephalon in the neural tube. A temporal evolution-
ary data model (TEDM) is a spatiotemporal framework that explicitly models the 
fusion, fission, and evolution of entities in an object-oriented model (Fig. 7.9) [26]2. 
Fusion represents the aggregation of two (or more) previously distinct objects fusing 
together to create a completely new object3. Fission is the converse operation, where 
a single object divides into two or more objects. Evolution accounts for transformation  



384 A.A T. Bui and R.K. Taira 

of an object’s properties across conceptual stages. TEDM formalizes the lifespan of an 
entity, from genesis through to the end of its existence. Although the original TEDM is 
predicated upon spatial proximity for interaction between entities, it is possible to 
abstract these concepts further in representing medical phenomena: by way of illustra-
tion, the etiology of a cancer, the development of highly differentiated tumor cells, and 
the progression to necrosis can all be modeled in light of a TEDM. A similar set of 
evolutionary operators to TEDM are also suggested in [40]. 

Cyclic models. Biological processes and clinical practice often make reference to 
repeating patterns of behavior. A cell reproduces according to a cycle defined by 
stages including mitosis; a dosing schedule for a drug may be specified as twice daily; 
and a clinical guideline may advise periodic investigations – these examples exemplify 
repetitious actions. Cyclic or circular models encapsulate these repeating patterns, 
providing a succinct representation of a set of events. Various schemes have been pro-
posed to describe cycles, including active rule languages that permit the descriptive 
composition of complex patterns evolving over time [75]; temporal constraints [4, 19]; 
and graphical models. Largely, cyclic models focus on characterizing intervals of 
activity punctuated by periods of inactivity that are qualitatively defined through 
temporal relationships or quantitatively given by constraints. Different systems have 
explored the use of cycles and patterns within clinical data [81, 86]. 

Applying multimedia models to clinical data. Early effort investigating temporal 
representations form the basis for today’s multimedia file formats. Popular standards 
such as QuickTime, MPEG-4, and Windows Media are based on the chronological 
ordering of data elements to present a synchronized presentation of auditory and visual 

an eXtensible Markup Language (XML) syntax for interactive multimedia presenta-
tions that also embeds temporal sequences and synchronization [116]. Although dif-
ferent terminology is used, these formats are largely based on the idea of streams. 
A stream models data based on the sequential nature of constituent elements ordered 
on the basis of time, providing a structure for expressing the temporal relationships 
between objects [59]. Stream-based data models abstract the physical organization 
of raw data while still allowing flexibility in accessing and presenting multimedia 
information; as such, a stream is itself a chronological entity with its own attributes 
and relationships. [37] provided the first adaptation of streams to model clinical data; 

streams that are demonstrated in medical applications [1, 46]. [15, 16] extends this 
work with further constructs for manipulating generalized streams (Fig. 7.10), and [33] 
provides similar means via an XML syntax for streams:  

 

and [45] presents an extended entity-relationship (ER) model and visual notation for 

information. Likewise, the Synchronized Multimedia Integration Language (SMIL) is 
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 Substreams. Often, a stream can be divided into smaller components based on 
temporal or logical constraints, much as a view is defined in a database. For 
example, a video stream represents a set of images (the elements) shown at a given 
frequency (e.g., 30 images/second), and different video segments can be identified 
(e.g., based on time indices, content, etc.). Similarly, a stream representing a 
patient’s clinical documents can be decomposed based on the report’s originating 
department (e.g., radiology, pathology, surgery, etc.). A substream is based on the 
use of a query condition on the stream’s elements to filter a temporal sequence: 
this constraint is termed a filter attribute. A filter attribute falls into one of four 
categories: temporal, which operates on the stream element’s temporal attributes; 
element attribute, where the constraint is declared on a defined attribute of the 
stream element class type; derived, which represents a qualification upon a  
derived attribute of the stream element; and complex, in which two or more of the 
prior three constraint types are combined using Boolean operations. Substreams 
are considered proper streams and can thus be further subdivided, resulting in a 
directed acyclic graph of filtered and combined streams. 

Figure 7.10: The M2 visual notation for multimedia streams. An object-oriented para-
digm is used in an extended ER model to represent temporal information. (a) Iconic 
representation for entities (a yellow box). Entities can have attributes that describe the 
object, and can participate in named relationships with other entities. (b) Being object-
oriented, the M2 model supports inheritance (is-a) relationships, denoted by a thick 
purple arrow. (c) Informally, a stream is defined as a temporally ordered, finite 
sequence of entities; these entities are called elements of the stream. Streams are enti-
ties, and can thus have their own attributes and relationships. (d) Derived streams 
apply a method to the stream’s elements to generate new data. (e) Aggregated streams 
are the result of amalgamating two or more temporal sequences together. (f) Sub-
streams provide a logical partitioning of a stream based on filter attribute constraints. 
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 Aggregated streams. An aggregated stream combines the contents of two or more 
streams into a single temporal entity. Different types of merging are supported by 
the definition of aggregating stream functions, which provide a mapping between 
the input streams and the joined representation. For example, a union-aggregating 
stream function combines all stream elements irrespective of timestamps; whereas 
an intersection-aggregating stream function would represent the aggregation of 
streams for which timestamps are shared. 

 Derived streams. Derived streams associate a function with one or more streams 
to generate a new data stream. An example derived stream is the application of an 
image processing algorithm to an image/video series to segment key regions. 

Temporal Relationships and Reasoning 

Implicit to the above discussion of temporal representations is the set of relationships 
between two or more events. Allen’s thirteen temporal interval relationships are per-
haps the most cited (Fig. 7.11), defining a seminal set of six invertible binary opera-
tions (before, during, meets, overlaps, starts, finishes) and a comparator for equality 
[3]. In establishing relativity between intervals, logical constraints can automatically 
be deduced (e.g., transitivity of event relationships). [17] extends these relations to 
enable comparison and reasoning on temporal cycles.  

These basic relations are adopted in different medical representations. The Arden syn-
tax, along with the concept of now to model current time, supports several of these 
temporal relationships (after; before; ago, which subtracts a period of time from now; 
from, which adds a period of time from a given time point). GLIF3 (Guideline Lan-
guage Interchange Format) [12] supports further capabilities as part of the GLIF Ex-
pression Language (GEL), such as within (equivalent to Allen’s during operation) and 
interval comparators. [70] describes additional ways of characterizing causal-temporal 
relationships in support of clinical reasoning: immediacy, when Event Y immediately 
follows Event X (A meets B in Allen’s interval relationships) and implying X causes Y; 
delayed, similar to immediacy but with a determinable period of time between two 
events (i.e., X causes Y but after a defined passage of time); progressive, such that 

Figure 7.11: Graphical representation of Allen’s interval temporal relationships [3].
Gray regions specify the duration of a given temporal interval; darker regions occur
when the compared temporal regions overlap. The left and middle columns define
binary operations that are invertible.
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once a phenomena starts, the trend continues (e.g., a worsening condition); accumulative, 
where an event only occurs if a given phenomena takes place over an extended period 
of time (e.g., accrual of urine in the renal pelvis due to an adynamic segment, ulti-
mately causing hydronephrosis); intermittent, when a causal relationship is known, but 
with irregular frequency; and corrective, where Event X creates a given normal state. 
Work has also been done to uncover temporal relationships semantically expressed in 
the text of clinical reports [34, 65]. Based on a review of discharge summaries, [118] 
describes medical natural language processing to derive time-based relations in terms 
of a temporal constraint structure, comprising: an event description; event points (e.g., 
start, end) and anchor points (i.e., a fixed point in time); relations between event points 
(e.g., within, before); interval operators; and fuzziness. 

Temporal querying. Research in the 1990s on relational temporal databases led to the 
consensus creation of the TSQL2 (Temporal Structured Query Language) specifica-
tion [105], an adaptation of the well-known SQL standard to handle temporal query-
ing. TSQL2 supported queries involving valid and transaction time with methods for 
casting between timestamps represented at different temporal granularities and period 
representations. To illustrate, consider a simple table in a patient’s medical record that 
captures the prescription drugs the individual has been taking. The query, “What drugs 
has the patient taken for more than three months,” might be specified in TSQL2 as: 

SELECT Drug, Dosage 
FROM Prescription(Drug, Dosage) AS P 
WHERE CAST(VALID(P) AS INTERVAL MONTH) > INTERVAL ‘3’ MONTH 

Those familiar with SQL will note the additional syntax added by TSQL2 to handle 
temporal information. Unfortunately, although TSQL2 was the basis for a formal 
extension to the core SQL3 effort, it was not fully ratified and to date has not been 
implemented in a widespread fashion4. Despite this issue, the principles set out by 
TSQL2 are useful and it is considered by many the de facto querying model: many of 
the attributes and temporal relationships described prior can be expressed using 
TSQL2 queries. Building from the TSQL2/SQL3 undertaking, [32] recently proposed 
a new temporal query language, T4SQL, to handle additional (user-defined) temporal 
dimensions and temporal grouping semantics. 

For the most part, clinically-oriented databases providing valid-time temporal query-
ing either implement a subset of TSQL2 or have support for Allen’s interval operators. 
Several projects have explored temporal querying of patient data: Chronus is a temporal 
                                                           
4  Most of today’s relational database management systems offer some support for 

temporal variables, having proprietary calendar and timestamp operators. However, 
the power of TSQL2 is arguably missing in the majority of these implementations. 



388 A.A T. Bui and R.K. Taira 

database mediator that supports the transformation of time-based queries, helping 
solve issues of temporal granularity and ambiguity [38, 81]; point-based timestamps in 
medical records are extended to queries with interval operators [78] and temporal 
comparators [49]; and an entity-attribute-value model for clinical trials is supple-
mented with interval operators [44]. KNAVE II also provides a rich environment for 
the expression and exploration of temporal information [72, 100]. 

Reasoning with time. The formalization of temporal representations and relationships 
allows one to reason with the information. [117] provides a thorough review of temporal 
reasoning issues in medicine, suggesting three categories for classifying works in the area. 
First are the base applications of models stemming from the field of artificial intelli-
gence, including logic-based representations of temporal events (e.g., Allen’s interval 
operators); probabilistic models; and graphical- and constraint-based representations of 
temporal events. Many of these representations are coupled with formal algebras or 
mechanisms for automated reasoning: by bridging clinical data with these systems, the 
intent is to provide a formal environment for analysis. For example, situation calculus 
is a logical formalism for representing and reasoning about dynamic situations described 
in terms of actions, fluents (a condition whose truth state may change), and situations. 
In reasoning about actions, fluents can be represented in terms of first-order logic by 
predicates that are dependent on a time argument. Event calculus is another logical 
paradigm based on actions and fluents, defining several axioms to assert the validity of 
a statement at a point in time. [106] also demonstrates how a Petri net representation 
can be transformed into predicate logic. The second category of medically-oriented 
temporal reasoning comprises those frameworks that are driven by the needs of clinical 
applications, and include clinical temporal databases, temporal abstraction tasks, and 
data visualization. Lastly, the third group of medical reasoning endeavors aims to 
resolve issues of temporal uncertainty and granularity innate to clinical data. Notably, 
[35] defines four common types of temporal reasoning tasks that fall in the second and 
third categories, and that are useful for thinking about decision-making in medicine: 

1. Projection. Projection involves computing the likely future consequence of some 
set of current conditions and an action. In this situation, the prediction is general 
in nature. For instance, the statement, “Giving medication X will decrease the 
patient’s blood pressure over the course of a week,” illustrates a projection. 

2. Forecasting. More specific than a projection, forecasting attempts to provide an 
exact calculation of some property in the future, given current information and an 
intended action. Thus, “Giving 50 mg metoprolol b.i.d. will decrease the patient’s 
blood pressure from 130/90 to 110/70 mmHg in two weeks,” involves the fore-

after receiving the beta-blocker. 
casted assertion that the individual’s blood pressure will be an explicit value
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3. Planning. Rather than the singular cause-effect prediction seen with projection 
and forecasting, planning involves producing a chain of events that will realize a 
desired objective. For instance, recognizing that for the goal of Event Z to occur, 
Event Y must happen, and for Event Y to take place, Event X must also occur,  
a planning task infers that Event X → Event Y → Event Z. Simple planning may 
entail a serial sequence of projections, but more complex scenarios can include 
concurrent events to achieve a goal. 

4. Interpretation. Finally, the task of interpretation concerns the abstraction of 
temporal data into trends and the discovery of patterns comprising higher-level 
concepts. As an example, a sudden and rapidly increasing creatinine level may 
indicate acute renal failure. This reasoning task includes finding temporal associa-
tions between events that may further signify causality. 

Some Open Issues in Temporal Modeling  

Temporal representations and reasoning are still active areas of research with many 
unresolved and open questions [2, 5, 83]. Eluded to in prior sections and chapters, we 
summarize three outstanding issues here. 

Temporal mismatches and granularity. A recurrent theme that arises in dealing with 
clinical data is semantic heterogeneity. In this case, temporal information from different 
data sources may be recorded at varying levels of granularity (e.g., a lab with a minute-
level accurate timestamp vs. a drug prescription with a date reference). One solution is 
to create a “universal” timeframe and to map the multitude of encountered temporal 
models to this one representation, thereby allowing comparisons to take place [39]. 
TSQL2’s casting mechanism also aids in this process. The problem becomes more 
complicated when considering the gap between semantic-level abstractions and 
implicit domain knowledge a user may have and the timestamp representations used 
within databases. Present approaches draw on temporal ontologies to establish the 
appropriate mappings: [80] exploits semantic web constructs (e.g., web ontology 
language, OWL) in an application with temporal constraints defined by clinical trials, 
noting the disconnect between high-level trial guidelines that can be ambiguous when 
attempting to validate low-level temporal constraints; [112] propose a generalized 
temporal ontology for tasks, also in the context of clinical trial protocols. 

Temporal synchronization. Differing temporal granularities present a secondary 
issue with respect to the synchronization of data sources and the potential loss of pre-
cision when combining information. For instance, consider two streams of ICU data: a 
patient’s blood pressure, sampled every ten minutes; and the same patient’s blood 
oxygen saturation levels (SpO2), captured every minute. If the streams are combined to 
show information at the lower frequency (i.e., ten minutes), then how should SpO2 be 
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statistically (and meaningfully) collapsed for the given interval (e.g., average, median, 
min/max)? [76] outlines a basic algorithm for joining two streams together via temporal 
scaling (a projection of the desired time span), concatenation (linking stream data with 
a set of unique timestamps for the target duration), and alignment (selecting the 
desired temporal granularity) followed by the application of statistical aggregates. 
Ultimately, the semantics of coalescing temporal sequences together must be context-
sensitive. 

Temporal similarity. There remains significant challenge in defining metrics to com-
pare the degree of similarity between two temporal sequences. Consider matching one 
pattern (c-d-e-f) to other sequences (e.g., c-c-d-e-e-f, c-d-d-e, c-c-c-d-f, d-d-e-f-f, c-d-g-
e-f, etc.), which may differ because of non-linear scaling along the time axis, or the 
insertion/deletion of an element: how does one quantify the amount of overlap between 
patterns? Two classes of methods are presently used [87]: dynamic time warping (DTW) 
algorithms [9] and transformation-based methods. DTW finds the optimal alignment 
between two time series by finding the minimal set of stretches/shrinkages of event 
subsequences (i.e., warps) to convert one sequence into the other. Transformation-
based methods entail the computation of a function on the time series to approximate 
the temporal pattern (e.g., a Fourier transform); comparisons are then made in this 
space. Debatably, these approaches work for smaller temporal sequences (e.g., com-
paring electrocardiograms); it is unclear how they will perform over larger clinical 
datasets and can be adapted to account for clinical temporal abstractions. In comparison, 
[66] puts forward a technique that uses a temporal constraint network such that the 
relationships between nodes represent uncertainty in sequence similarity (similarity is 
thus a measure over the overall graph): [31] demonstrates this method to compare 
clinical guideline tasks. 

Clinically-oriented Views 
The impetus behind clinically-oriented data models is to support physician cognition 
and workflow, facilitating information retrieval tasks. The organization of patient 
medical records – both traditional paper chart and electronic medical record (EMR) – 
is surely a reflection of these models. We often see the record as just being a reposi-
tory of information on a patient. An alternate view suggests that rather than being a 
passive reflection of work performed, the medical record is an active tool that aids in 
memory and communication [8]. The difference is perhaps subtle but significant: in 
the latter, the medical record and its formulation influence the healthcare process, 
structuring thinking, interaction, and decision-making. Two methodologies shape cur-
rent thinking about the medical record:  
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1. Source-oriented views. Historically, patient paper charts were organized by the 
origin or type of data (e.g., laboratory, imaging, physician notes, physical exams, 
etc.), with each section chronologically ordered. Under ideal circumstances, a single 
physician is responsible for the management of a given individual, and is thus 
aware of the diverse problems faced by the individual, integrating and distilling 
the information gathered from each source into appropriate, documented actions. 
This source-oriented perspective provides a logical indexing scheme for adding 
and finding recent information. Many of today’s EMR implementations follow the 
source-oriented model, especially to handle the assemblage of data from distributed 
databases (e.g., hospital and lab information systems, HL7; see Chapter 3).  

2. Problem-oriented medical record. Commenting on the lack of scientific rigor in 
performing clinical diagnosis and treatment, Weed introduced the idea of a problem-
oriented medical record (POMR) [111]. With increasing sub-specialization of 
medical care and sophistication in disease management, the “single physician” 
caring for a patient is arguably less common. The context for clinical observations 
is often lost (e.g., the reason why a given test was ordered; the interpretation of a 
test result in light of other evidence); and today’s increase in chronic disease often 
results in individuals with a range of medical issues. Moreover, source-oriented 
medical records rely upon the clinician to maintain a mental picture of the patient’s 
health status and history; and also to correctly remember what information must 
be referenced with respect to a given medical condition. Thus, the POMR  
advocates that all collected patient information be organized around a running list 
of ongoing and resolved patient issues (i.e., the medical problem list). Often asso-
ciated with the POMR is the use of the structured SOAP note (subjective, objective, 
assessment, and plan) used today for clinical documentation. The subjective 

symptoms, medical, family, and social history). The objective section reviews 
labs, imaging, vital signs, and physical exam findings. Assessment summarizes the 
subjective/objective portions, resulting in a differential diagnosis (or definitive 
diagnosis): notably, the assessment is meant to be referent to the entries of the 
medical problem list. Finally, the plan covers the physician’s actions with respect 
to the (differential) diagnosis and the patient. Purported advantages of the POMR 
include better continuity of care (as it becomes easier for a given physician to 
understand the state of the patient by reconstructing the history of a given problem); 
and improved context for understanding why a given observation was made.  

Early criticisms of the POMR included [54, 55]: 1) the perceived increase in physician 
work to appropriately classify patient data; 2) the inability for data to be readily 
included in multiple problems (and hence the redundancy of recorded data); 3) the 
absence of standardized vocabulary for describing medical problems; 4) the lack of 

component describes the patient’s presentation (e.g., pertinent positive/negative 
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critical thinking and clinical judgment about clinical observations (as fostered by 
source-oriented views); and 5) the resultant lack of integration of views across medical 
problems. However, many of these issues have been at the heart of medical informat-
ics research for the past three decades, with strides made in ontologies (e.g., UMLS) 
and automated methods to help with the maintenance of the medical problem list and 
organization of data within the EMR across medical problems. Although debate 
continues as to the merits of the POMR, especially given that clinicians are largely 
indoctrinated to source-oriented views [85, 95], there remains positive proof that 
problem-based data organization expedites the information search patterns of the phy-
sician and can reduce the time and effort necessary to grasp complicated, detail-
intensive abstractions [41, 79]. 

Somewhat in contrast to the definitive nature of the presentation in both source and 
problem-oriented medical records, [68] submits that the medical record is best per-
ceived as a clinical narrative constructed by a physician (i.e., a story told by the clini-
cian). The medical record is seen as a book, and they compare the diagnostic action of 
the physician to the interpretive action of the literary critic who approaches text from a 
particular perspective and with a particular critical or interpretive purpose. They 
emphasize that the medical record, as written by a physician, is like a critical view of a 
literary piece: it is always from a particular perspective, conditioned by the conceptual 
framework of the clinician and therefore, not truly objective in any absolute sense. 

Alternative Views and Application Domains 

Both the source-oriented and POMR organization of the medical record are geared 
toward the physician in clinical practice. Yet the role of patient records now has 
expanded secondary uses, each with different organizational requirements: 

 Personal medical records. There is a progressive empowerment of individuals to 
access their own medical records (see Chapter 3). While the patient is increasingly 
savvy and informed with respect to his own healthcare, it is evident that the 
physician-centric organization of information in the EMR is ill-matched to the 
needs of the layperson. [115] cites some dissimilarities between patients and phy-
sicians, including the former’s absence of objectivity in interpreting the record; 
the need for additional learning sources to contextualize and/or simplify results; 
and the potential for distinctive access patterns originating from a differing task 
model (see Chapter 4). The non-physician will fundamentally perceive medical 
problems differently from a clinician (e.g., as a constellation of symptoms, more 
holistically). Inclusion of the patient’s perspective is thus encouraged in a patient-
centered medical record (PCMR) [48], which replaces POMR’s SOAP with 
HOAP (history, observations, assessment, and plan) to better capture the individual’s 
presentation of concerns and understanding of the medical problem.  
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 Clinical trials. EMRs provide an opportunity to capitalize on the organization and 
structured representation of clinically-derived data, repurposed for research. 
Leading several aspects of the data standards and models for clinical trials and its 
integration with the EMR is the Clinical Data Interchange Standards Consortium 
(CDISC) [28]. The core data model is the study data tabulation model (SDTM), 
which defines a table of timestamped observations. Here, an observation is given 
by discrete pieces of information collected over the course of the trial study. 
Observations are defined by sets of variables, being one of five types: identifiers 
(e.g., Subject X), topics (e.g., nausea), qualifiers (e.g., mild), timing (e.g., Day 5), 
and rule-based variables (used for looping conditions, such as the number of times 
to repeat a step in the study design). Collections of observations can be associated 
with a given domain, broadly categorized as belonging to interventions, events, or 
findings. For instance, the observation that, “Subject X experienced syncope on 
the tenth day of the study,” can be connected to the adverse events domain. A 
consensus-based common set of variables and definitions across different domains is 
given by the clinical data acquisition standards harmonization (CDASH) standard. 
SDTM is used to submit clinical trials datasets to the United States’ Federal Drug 
Administration (FDA) as part of the approval process. Associated with SDTM is 
the operational data model (ODM) framework that defines a standard XML schema 
for the interchange and archiving of clinical trials data. ODM includes clinical data 
from case report forms as well as associated metadata, administrative, reference and 
audit data. Working with the FDA, HL7, and the National Institutes of Health 
(NIH) National Cancer Institute (NCI), CDISC is collaborating on the Biomedical 
Integrated Research Domain Group model, which aims to establish a shared rep-
resentation of the semantics of clinical and pre-clinical protocol-driven research. 

Discussion and Applications 
Ultimately, a data model represents an information system’s conceptual view of the 
relationships between data. The primary question that drives the design and construc-
tion rules of a data model is: how will it be used? Clearly, a clinically-oriented data 
model should assist physicians in medical problem-solving tasks such as: 

 What is the underlying medical problem for a given patient? 
 What are the best explanations and the evidence for the cause of the problem? 
 What are the manifestations (i.e., effects) of this underlying problem? 
 What is the extent and seriousness of the problem? 
 What are the behaviors of the findings associated with the problem? 
 What is the effect of various interventions? 
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These are core questions any clinician asks on a regular basis. The investigative quality of 
the questions above is mirrored in the fact that the practice of medicine has long 
sought to follow scientific methods. As a result, today’s diagnostic process can be seen 
to parallel aspects of a scientific study. Likewise, treatment is akin to a titration 
experiment, where some intervention (drugs, surgery, etc.) is iteratively applied and 
assessed to reach some measurable (therapeutic) goal. Indeed, the push for evidence-
based medicine (EBM) promotes the scientific method in medicine, emphasizing the 
need for objective measures and the use of validated techniques (e.g., randomized 
clinical trials) to support decisions. Partly because of this conceit, data models for 
organizing clinical observations have focused on a declarative framework for collecting 
assertions: findings, diagnoses, and treatments are provided as sets of facts. What is 
absent in these models is the context for understanding the interpretation of the findings 
and the trail of reasoning behind decisions. Current data models are explanative, 
capturing what has been discovered, without provisions for the investigative aspects of 
the healthcare process. Science is exploratory, going from the unknown to the known; 
to follow its principles, the medical record – and its organization – should act as a 
scientific notebook documenting the paths of investigation, allowing the reader to 
fully reconstruct the diagnostic/therapeutic course [111]. To this end, we conclude this 
chapter by introducing the idea of a phenomenon-centric data model (PCDM). 

A Phenomenon-centric View: Supporting Investigation 
To devise the PCDM we first consider (from albeit a high level) what constitutes a 
scientific experiment. At the beginning of any scientific inquiry is some phenomenon 
that we wish to explicate. We may have some initial observations about this unknown 
phenomenon – call it P – and several questions naturally surface. What is P? Why is P 
happening? Will P change, and if so, when and how? P is thus the center of investigation, 
and experiments are designed to describe P in richer detail. Based on the observations 
from the experiment, theories are formulated to explain the occurrence of P, elevating 
our level of understanding by formally linking together the different observations 
through a possible (root) cause. Such theories may additionally make use of other ex-
periments/theories in order to provide support for reasoning. Past theories related to 
the phenomenon may conflict with the new information, in which case they are refuted 
and replaced with a new theory that better explains the observations. Finally, based on 
extrapolation of the observations and/or past experience with similar phenomenon, the 
course of P is predicted. 

Applying the systematic process of an experiment to medicine (Fig. 7.12), we construe 
the phenomenon as the initial presentation of a patient: his set of symptoms and 
complaints are what we try to explain. In some cases, the phenomenon is immediately 
recognizable with a high degree of certainty (e.g., a common cold) and so testing is not 
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required. In other situations, the symptoms may derive from a number of equally 
viable etiologies: a physician treating the patient thus formulates a differential diagnosis 
and selects tests (labs, imaging, pathology, etc.) to rule out each possible cause. Here, 
the differential diagnosis is analogous to a hypothesis. Each test gives physical obser-
vations that measure properties of the phenomenon; and each type of observation is 
then interpreted as a finding. Collectively, the findings are then considered as evidence 
and the differential diagnosis is updated: the certainty of some etiologies decrease, 
while others increase. Additional tests are performed until there is one high probability 
cause to explain all the symptoms; this transitions the phenomenon to a (known) 
medical problem.  

What is a Mass? An Exercise in Separating Observations from Inferences 

For the knowledge derived from experiments to be vetted, the scientific method 
stresses that the observations must be detailed enough so that results are reproducible. 
In this light, the astute reader may discern that in order for the PCDM to meet this 
criterion of reproducibility, sufficient context and granularity must be modeled. To 
motivate these aspects of the PCDM, we use as a working example the task of capturing 
information about a “mass” object in thoracic radiology. 

Identifying attributes. A conventional, if not logical strategy to uncover the termino-
logy and concepts used to describe a mass is to examine: 1) how a mass is mentioned 
within textual clinical reports and textbooks; and 2) what questions experts (radio-
logists, pathologists, oncologists) ask about a mass (i.e., what do they need to know?). 

Figure 7.12: The medical exploratory process (bottom arrow) following the scientific
method (top arrow). A patient’s presentation results in an initial differential diagnosis
to explain the symptoms. Testing is performed to rule in/out a given diagnosis until a
degree of confidence is reached based on the observations and findings. Note that the
transition from left to right moves from the physical world to progressively more
abstract concepts. 
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Based on a corpus of thoracic radiology reports containing linguistic references to a 
“mass” object and discussion with physicians, Tables 7.2 & 7.3 summarize the review’s 
results. The thirteen identified attributes and “mass” description are not surprising. But 
what can be said about the relationship between the attributes? Can the values be taken 
 

Mass attribute Description Typical values 

Existence  
certainty 

How certain we are of its existence 
based on observation 

Definite yes, possibly, unlikely, 
definitely no 

Location Spatial description of mass location Posterior aspect of RUL 

Structural size The reported/measured size 5.0 x 7.0 cm 

Structural shape The prototypical shape of the object Round, nodular, triangular, etc. 

Lobularity Does the mass appear similar to an 
aggregation of bubbles? 

Lobulated, not lobulated 

Extensions Does the mass have any tentacle-like 
extensions?  

Linear strands, "rabbit ear,”  
“tail sign" 

Homogeneity How homogenous in appearance does 
the mass look? 

Homogeneous, non-homogeneous 

Margination How distinct is the margin of the mass 
from its surrounding environment.  

Well-circumscribed, poorly  
demarcated 

Margin shape How smooth is the margin of the mass?  Smooth, spiculated 

Radiological 
density 

Density calibrated vs. different tissue 
types  

Soft tissue, fluid/fluid-like, fat, air 

Calcification Description of any calcifications con-
tained within the mass.  

Yes, no, scattered small foci of 
calcification, calcific deposits 

Trend What is its behavior? Increasing, decreasing, no change 

Malignancy Is the mass malignant? Malignant, benign, unknown 

Table 7.2: Compilation of attributes associated with a mass, as given by analysis of a 
corpus of textual statements from thoracic radiology reports and reference texts. 

Common questions about a “mass”  

What is the histology of the lesion? What are the consequences of the lesion? 

Where is it located? What is the cause of the lesion? 

Which image slice is the lesion best seen? What is the size/extent of the lesion? 

What is the appearance of the lesion (size, bor-
der, calcification pattern, density, etc.)? 

What are the co-occurring findings associated 
with the lesion (e.g., lymph node involvement)? 

How many lesions are seen? When was the lesion first observed? 

How is it changing (or not changing) with respect 
to size and distribution? 

 

Table 7.3: Summary of questions from an array of clinical experts from radiology, 
pathology, and oncology when asked to pose question about a mass object. 
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as a 13-tuple to describe the state of the mass, or do the values only apply within some 
context (e.g., time period)? How do we know the certainty of each value? What do we 
mean by trend? Do we know how each value was obtained? Can we trust these values? 
And what is meant when we say the mass is of size 5 x 7 cm?  

The radiological experiment. The straightforward ontological approach leaves us 
with several questions; hence, we instead look to the source process of performing a 
radiological experiment and the tools we use to characterize a mass. Fig. 7.12 shows 
the physical reality of a typical radiology study, wherein we have a patient with a 
mass. An imaging study such as CT generates a series of sequential 2D axial images 
through the mass. It is common in radiology to assume that these images are faithful 
representations of reality: but the image representation of the mass appears as a round-
shaped region of unusual optical density on film or screen – an arguably “warped” 
representation of the physical truth. A radiologist observes this unusual round density 
and infers that this density is consistent with a mass. Of course, many abstractions 
from the image to physical world are routinely precise (e.g., “this area of the radio-
graph represents the heart”). But what evidence is there that allows the radiologist to 
make the jump from opacity to mass? Are all opacities with this shape and density, as 
seen on CT, masses? Has a surgeon seen the mass directly or a biopsy conducted? 
Whether his (indirect) interpretation of the density is true or not may need further con-
firmation from other (direct) experiments. Direct and indirect observations are often not 
well differentiated. Within the medical record, it is important to differentiate objective 
facts from observed perceived facts and assumptions [90]. Moreover, [68] points out 
the fact that everyone sees the world through the glasses of their own conceptual 
framework. So the definition of an observed fact is hard to describe in medicine as most 
so-called “facts” can be biased by the perspective of the observer. This realization 
emphasizes the need for a “certainty” property for each fact and/or inference. Indeed, 
as we move progressively away from the physical world to a conceptual representation 
of a phenomenon (physical world/phenomena → imaging → linguistic → conceptual), 
some degree of confidence is needed when mapping between object representations.  

Separate from the interpretative process, the nature of a particular imaging procedure 
(e.g., the physics associated with x-ray, MR, ultrasound imaging, etc.) and the con-
stancy of the imaged object determine the sensitivity (contrast, spatial resolution, etc.) 
by which various objects can be detected and detailed. The inherent ability of our tests 
to provide information must also be documented, as it further affects the degree of 
confidence in characterizing the “mass” phenomenon.  

Defining and representing context. Whatever context is necessary to improve the 
reproducibility of the radiological measurements should be documented. An experi-
ment by definition means we have control and therefore the support context for a 
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physical measurement or observation should be known. As an example, let us examine 
the property of “size” for our “mass.” How should we represent the phrase, “the mass 
is 5.0 x 7.2 cm in size?” Using an elementary semantic network, the statement might 
be represented as: mass → hasSize → 5.0 x 7.2 cm. In isolation, this representation of 
“size” is of limited use, having problems with both context and precision. First, in 
addressing context, we are trying to describe the size of an inherently 3D object – but 
are only given two measurements (5.0 cm and 7.2 cm). Thus, what do these dimensions 
refer to? In radiology, dimensions are understood implicitly from the type of study 
and/or reconstruction view (i.e., from the experiment context). For example, “the mass 
is 5.0 x 7.2 cm” from an axial CT typically refer to 5 cm in the lateral dimension and  
7 cm in the anterio-posterior (AP) dimension. But on projectional x-ray, the same size 
description might instead refer to the AP and craniocaudal dimensions, respectively. A 
test’s context must be fully given; this tenet is already seen in clinical trials and other 
biomedical assays (e.g., microarray experiments [14]), and should be brought forth in 
documenting medical practice. Second, in addressing precision, each linear measure 
provides only a partial constraint toward the total description of size: just like an 
image is a gross representation of the object imaged, “5.0 x 7.2 cm” is a gross repre-
sentation of the property of size. These linear measurements are highly dependent 
upon the mass’ shape. In this instance, the fundamental problem is that given a 3D 
object, there are an infinite number of 1D/2D projections though the object’s center of 
mass. The lesson here is that we should be careful not to operate in an under-specified 
ontology. In any science, precision and completeness is foremost if phenomena are to 
be understood. 

PCDM Core Entities 

From the insights gained relative to the modeling of a “mass” we now describe the 
PCDM. The phenomenon-centric data model revolves around the entities and relation-
ships that are needed to support the diagnostic and therapeutic processes as viewed in 
terms of scientific conduct. Though a semantic network could be used to represent 
information, a frame-based approach is used in the PCDM to simplify handling of 
n-ary relationships and to mimic structured data collection (e.g., such as case report 
forms in clinical trials). Fig. 7.13 shows the mainstay of the PCDM using M2 con-
structs. Several core abstract classes are defined. 

Phenomenon. Looking at the POMR, a central premise is that a medical “problem” 
can be defined, and that such a definition is agreed upon by the different users of the 
medical record. However, such agreement is not always clear. For example, episodes 
of care define problems in terms of symptoms (episode of care), etiology (episode of 
disease), and seriousness (episode of illness) [63, 114] – all dependent on the context 
(inpatients vs. outpatients; systemic vs. localized disease; and chronic vs. acute illnesses, 
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5  The idea behind a phenomenon is not new to medicine, being found in several 

different medical ontologies. For instance, UMLS defines a phenomenon as a child 
of the event class; and its subclasses encompass biologic and pathologic functions. 
However, here we employ a broader, more classical sense of the term. 

Figure 7.13: Core entities of the phenomenon-centric data model. The PCDM is based
on the M2 stream constructs described earlier. For clarity, some attributes and relations
have been omitted in order to accentuate the main aspects of the paradigm. 

respectively). These arbitrary definitions stem mainly from contextual differences 
regarding inpatients vs. outpatients, systemic vs. localized disease, and chronic vs. acute 
illnesses, respectively. Moreover, as suggested above, symptoms and abnormalities 
may not yet be identified as a given medical problem. Therefore, we use the pheno-
menon class to represent an entity under investigation5. The descriptors of a phenomenon 
change as more knowledge is gained so that it progresses into a medical problem. 
Importantly, a phenomenon is a hierarchical entity, being recursively associated with 
lower-level phenomena (via the is part of relationship); through this mechanism, 
symptoms can be grouped together into singular phenomena. (e.g., sneezing ∧ sinus 
congestion ∧ cough → common cold). Phenomenon instances are grouped together in 
a stream, comprising a patient’s medical problem list. A substream is demonstrated in 
Figure 7.12 to provide a view for active problems; other substreams can be defined, 
tailored to a given user’s perspective on what constitutes a “medical problem.” The 
combination of the stream and hierarchical definition of a phenomenon enable us to 
preserve information on when and how a given medical problem first presents.  
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Properties and observations. As tests and exams are performed, features of the 
phenomenon are collected through controlled observations. The PCDM defines the 
property class to represent a given feature; and the observation entity to document 
the context of the feature measurement. Here, we make an important distinction: an 
observation is typically a physical metric that is objective; a property names this 
measure and based on observations, provides an inference or judgment on the value. 
For example, in the statement, “The patient has a moderate fever of 38.7° C,” the 
measurement is an observation, for which the circumstances of how the feature is 
quantified must be captured (e.g., the means of measurement); the dimension may be 
named body temperature; and the adjective moderate is seen as an assessment of the 
property. The observation entity defines several attributes to record a value in an exacting 
manner to fully qualify the feature: the type of observation (qualitative, quantitative); 
the relation operator (e.g., equals, greater/less than, etc.); the units (e.g., Celsius); the 
accuracy (e.g., ± 0.2 degrees); the precision (e.g., 0.1 degrees); and the certainty of the 
measure (e.g., exact, approximate) are all requisite. Being abstract, subclasses are used 
to implement additional attributes to the core observation entity to add fields needed 
for contextualizing specific types of measures. The origin of the observation is  
recorded through a relationship with a data source, which provides the raw data (e.g., 
an image) or source documentation (e.g., a report) for the observation’s derivation. 

States. Although observations are ultimately timestamped when linked to a finding 
(see below), the state entity provides an additional semantic level of categorization for 
temporal stages commonly referred to in clinical practice. Properties are grouped to-
gether by a state to provide a snapshot view of a given phenomenon. As a case in 
point, during the course of oncological treatment, “baseline” refers to the initial staging 
of the cancer from which comparisons are then made to gauge treatment response – 
the size, histologic grade, and appearance of the tumor are evaluated together within a 
state. Subsequent chemotherapy sessions and re-evaluation may result in new states 
(e.g., as numbered by the treatment cycles).  

Evidence. Evidence is a broadly defined entity that serves the purpose of identifying 
any source of observation or information in support of explaining the phenomenon. 
Evidence is a notion used to rationalize our findings, assessments, and theories, and is 
therefore used within the PCDM to connect objective data to conclusions. In EBM, for 
instance, external literature is a valid source of knowledge to back a clinical decision. 
Two subclasses are of particular importance in supporting theories: 

 Findings. Findings are the physical manifestations of a phenomenon, documented 
by tests and the generation of observations. Findings attempt to classify properties 
into a medical entity. For instance, a single, small region with high attenuation 
seen on a CT study (an observation) of the mediastinum may be declared a solitary 
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pulmonary nodule (a finding). In the PCDM, findings are tracked in a stream  
(a finding history), allowing the changes in a finding to be tracked over time. 

 Behavior. A behavior is related to the concept of change. Change is a relation 
between situations and indicates differences in state over time. For example, the 
response criterion of a mass (tumor) to therapy is often measured as the size of the 
baseline state with respect to the post-treatment state. Behaviors are often  
expressed in terms of a single property component of the state (e.g., size behavior), 
and can be summarized by the magnitude of change and the direction (i.e.,  
increase, decrease). Assessment of a behavior can be either direct (e.g., 10% 
increase in size) or clinical (e.g., significant increase in size). In addition, the 
behavior of a property and the associated finding may be given in terms of a func-
tion. For instance, a tumor is often described in terms of a doubling time.  

Theory. A working conjecture is postulated to explain a patient’s symptoms using a 
range of evidence. In the PCDM, the theory entity represents this idea, with its sub-
class hypothesis, providing for an interpretation and degree of certainty for belief in 
the theory (i.e., what is one’s confidence in a given diagnosis). Theories explain the 
facts, but are not the facts themselves, instead representing how facts are related.  
A final diagnosis (and hence, classification of the related phenomenon as a medical 
problem) is reached when a theory has a probability nearing 100%. The beliefs we 
predicate our knowledge upon are continually evolving. As such, the changes in 
theories are captured over time via another stream, representing the differential diagnoses 
as it changes in response to new evidence. This stream characterizes how our under-
standing about the patient and the phenomenon evolves over time.  

Interventions. Lastly, intervention is an abstract class that encapsulates information on 
entities that affect a phenomenon, such as drugs, surgery, or other means of addressing 
a medical problem. An intervention explicitly causes a behavior. Though not indicated 
in Fig. 7.13, interventions are also related to evidence, as per EBM, the choice of 
(optimal) therapy is based on scientific studies verifying efficacy. The temporal 
sequence of interventions, given by a stream, comprises the patient’s treatment history. 

Implementing the PCDM 

The core entities in the PCDM provide a meta-model for organizing and indexing the 
information within the medical record. In doing so, it becomes plausible to implement 
the problem-oriented medical record as originally envisioned by Weed, but with suffi-
cient flexibility to support an array of different organizational viewpoints. However, a 
gap exists between the PCDM and the ultimate sources of information contained 
within the EMR. Fig. 7.14 illustrates this mapping process using the finding of an 
intracranial aneurysm (ICA): as can be seen, the abstract classes defined in the core PCDM 
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Figure 7.14: A demonstration of linking data sources to the PCDM. A finding of an 
intracranial aneurysm (ICA) is shown in terms of an imaging study and associated 
textual reports, showing how clinical information sources are used to derive observa-
tions and properties. For convenience, abstract PCDM classes are highlighted in green. 

are extended into specific entities that enable traversal starting from the finding level, 
progressively through to the data source of a given observation. In this example, the 
aneurysm size is a property that is based on the observation, aneurysm measure (rep-
resenting a linear measurement along some axis). Being a subclass of observation, 
aneurysm measure inherits all the attributes of its parent (i.e., value, precision, accuracy, 
etc.). Each aneurysm measure is taken from source; in this case, a CT angiography 
study in the form of a DICOM image series. A behavior, aneurysm growth, is based on 
the aneurysm size, tracking the rate of change. 

Though a detailed PCDM-based data model can be generated for a given domain, the 
barrier in implementation presently lies in automatically populating the data model 
with instances: techniques such as natural language processing (Chapter 6) and con-
tent-driven image analysis (Chapter 5) are needed to transform patient data and its 
current representation into this structure.  
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PART IV 
Toward Medical Decision Making 
 

Wherein we consider methods to reach conclusions with our medical data. The 
escalating amount of electronic medical information provides a unique opportunity to 
structure and to mine this data for new insights into disease management, drawing 
upon a large observational dataset. Techniques once seen as computationally intract-
able are now providing us the tools to handle these datasets and to inform the medical 
decision making process. We describe one particular method of growing popularity – 
graphical models – as a means of modeling a disease and for answering prognostic 
questions. The first chapter in this last section provides an introduction to graphical 
models, with a particular emphasis on Bayesian belief networks and issues related to 
causality. Subsequently, the next chapter overviews methods to answer queries posed 
to belief networks, and the applications that can be realized given the power of these 
models. Finally, we conclude with an introduction to evaluation, covering core concepts 
in biostatistics, study design, and decision making; we demonstrate these principles in 
the context of two common informatics areas: information retrieval and usability 
studies. 
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Chapter 8 
Disease Models, Part I: Graphical Models 
ILYA SHPITSER 

cientists building models of the world by necessity abstract away features not  
directly relevant to their line of inquiry. Furthermore, complete knowledge of  
relevant features is not generally possible. The mathematical formalism that has  

proven to be the most successful at simultaneously abstracting the irrelevant, while 
effectively summarizing incomplete knowledge, is probability theory. First studied in 
the context of analyzing games of chance, probability theory has flowered into a 
mature mathematical discipline today whose tools, methods, and concepts permeate 
statistics, engineering, and social and empirical sciences. A key insight, discovered 
multiple times independently during the 20th century, but refined, generalized, and 
popularized by computer scientists, is that there is a close link between probabilities 
and graphs. This link allows numerical, quantitative relationships such as conditional 
independence found in the study of probability to be expressed in a visual, qualitative 
way using the language of graphs. As human intuitions are more readily brought to 
bear in visual rather than algebraic and computational settings, graphs aid human com-
prehension in complex probabilistic domains. This connection between probabilities 
and graphs has other advantages as well – for instance the magnitude of computational 
resources needed to reason about a particular probabilistic domain can be read from a 
graph representing this domain. Finally, graphs provide a concise and intuitive language 
for reasoning about causes and effects. In this chapter, we explore the basic laws of 
probability, the relationship between probability and causation, the way in which 
graphs can be used to reason about probabilistic and causal models, and finally how 
such graphical models can be learned from data. The application of these graphs to 
formalize observations and knowledge about disease are provided. 

Uncertainty and Probability 
The creation of disease models in medicine poses certain challenges: 1) the uncertainties 
inherent to medical knowledge must be captured; 2) the models must be sufficiently 
intuitive so that domain experts (e.g., physicians) can understand the explanations pro-
posed by the system; and 3) the models must be practically analyzable by algorithms 
to support queries. One approach, probabilistic modeling, comes from a long tradition 
in medicine [36, 44, 63, 76, 84]. In this section, we give the case for using probability 
theory for abstraction, and introduce its basic laws, consider what probabilities mean, 
and discuss the relationship between probability and change.  

S 
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Why Probabilities? 
Building models of the world and using them to reach useful conclusions involves 

various kinds of logical languages. For instance, in propositional logic facts are built 
up of simple assertions joined together by connectives such as and, or, if, and so on. 
We can use propositional logic to build a “diagnostic database” listing in which symp-
toms imply a given disease. For example, as we know that a cough is a symptom of a 
cold, pneumonia and tuberculosis, we may have the following three rules in our data-
base: if Cold then Cough; if Pneumonia then Cough; if Tuberculosis then Cough. 

One problem with such a database is that it does not handle exceptions well. A cough 
is not always a result of the above diseases, or indeed of any disease. Further, unknown 
symptoms or diseases will simply be absent from the database. Exceptions and gaps in 
our knowledge will cause misdiagnosis. Early expert systems that were typically rule-
based were augmented to deal with these problems [11, 27]. There were three main 
approaches. One way to deal with exceptions is to augment the logic itself to handle 
them, resulting in non-monotonic logic where facts are not absolute but could be 
retracted when additional evidence becomes available [73, 74]. Though a number of 
useful kinds of reasoning with exceptions is possible in non-monotonic logics, in 
general this approach runs into difficulties [66]. Another approach to exceptions is to 
replace the hard truth value associated with each sentence in our diagnostic database 
by a kind of generalized numeric truth value that captures our confidence in the veracity 
of the rule (the well-known MYCIN project termed this certainty factors). The process 
of logical reasoning, which ordinarily would combine truth values of sentences to infer 
new truth values, would in this case combine “confidence scores.” By way of illustra-
tion, if we had a rule if Cough and not Fever then Allergy in our database, and we 
attached a confidence value of 0.8 to Cough and confidence value of 0.7 to Fever, we 
could combine these numbers using some function associated with the rule into a new 
confidence for the conclusion Allergy. This approach is attractive as such computations 
are not any more expensive than dealing with truth values themselves, while allowing 
more refined distinctions to be made. Nevertheless, this approach, too, suffers from 
several problems. The first problem is that local update rules for confidence scores are 
incapable of capturing a common pattern of reasoning known as “explaining away,” 
where increased plausibility of one explanation for an observed symptom should result 
in the decreased plausibility of another. The second problem is that exceptions are not 
handled very well in this approach. Colds result in a cough unless a cough suppressant 
is taken (or in general if some set of exceptions holds) – but the above approach, being 
based on classical, rather than non-monotonic logic, does not have a good way of rep-
resenting this even though truth values are no longer absolute. Finally, a single piece 
of erroneous evidence in our database can be amplified via multiple local updates of 

constructing a knowledge-base of relevant facts. Facts are typically represented by 
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our confidence based on this evidence. For instance, if a blood test concluded (falsely) 
that the patient is HIV (human immunodeficiency virus) positive, this observation 
would increase our confidence in the presence of a number of respiratory ailments 
due to the compromised immune system associated with AIDS (acquired immune 
deficiency syndrome). Further, the likely presence of these respiratory ailments would 
push our confidence of seeing respiratory symptoms like a cough to a near certainty. 
The problem here is that our rules for changing our confidence in any given fact do not 

The only general way of handling the above problems is to abandon the logical proper-
ties of locality (i.e., the truth value of a fact can be determined using small parts of our 
database that involve the fact directly) and monotonicity (i.e., once the truth of a fact is 
established, it cannot be revoked). Out of reasoning approaches that abandon these 
properties, probability theory is the most popular, partly due to its clear semantics in 
terms of beliefs or frequencies, and partly because probability-based approaches allow 
us to take advantage of a problem’s structure to reduce the computational burden of 
reasoning without giving up clarity and correctness. 

Laws of Probability: A Brief Review 

Probability theory formalizes how to reason about events with random outcomes, like 
dice throws or coin flips. Such events are called random variables. Here, we will con-
sider random variables with a finite set of outcomes, although it is also possible to 
reason about infinite outcomes using the tools of measure theory [6, 16]. For a finite 
random variable X1 with outcomes {x1,…, xk}, associated with each outcome xi is a 
real number P(X = xi) (sometimes shortened as P(xi)) called a probability. A valid 
assignment of probabilities to a random variable with n outcomes has two properties: 
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Assignments that obey the above two properties are called probability distributions.  
                                                           

depend on the history of obtaining said fact. As such, we are unable to notice that we 
should discount our confidence based on the fact that our multiple sources of evidence 
ultimately come from the same source. This problem is sometimes called rumor 
propagation because seeing two different people repeat the same rumor should not 
necessarily cause us to increase our confidence in its truth – both these people may 
have gotten the rumor from the same (faulty) source. 

1  We follow the standard notation of capitalizing random variables and of using 
lowercase letters for outcomes. Bold characters symbolize sets or vectors of variables. 
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Typically, we are interested in a set of random variables. For instance in the game of 
backgammon, moves are governed by the outcomes of two dice throws (call them D1 
and D2). In such cases, we define an assignment from a set of outcomes, one outcome 
for each random variable in our set of interest, to a probability. We comma-separate 
the set of outcomes in a probability expression, for instance P(D1 = 1, D2 = 1) = 1⁄36 
states that the probability of getting two ones in a throw of two dice is 1⁄36. Joint dis-
tributions over a set of random variables X1, …,Xk where variable Xi has ni outcomes, 
obey a generalization of equations (1) and (2): 

]1,0[),...,(),...,( 11 ∈∀ nn xxPxx  

∑ ∑
= =

=
1

1

1
1 1

1),...,(...
n

i

n

i
ii

k

k

k
xxP  

A joint probability distribution expresses how likely we are to observe a particular 
combination of outcomes. A marginal distribution is obtained from a joint distribution 
by summing over some random variables we no longer care about. For example, if we 

1
∑6

D2=1 P(D1, D2). This operation of “summing out” D2 is called marginalization, and it 
can be justified as collapsing together all the possible worlds that only differ by out-
comes we do not care about. In other words, if the first die comes up a 6, then we 
aren’t interested in distinguishing the possible worlds where the second die comes up a 
6 or a 5, as we only care about the first die. Thus, we just “lump together” all these 
possible situations. By analogy, in clinical medicine, marginal distributions can be 
used to express how frequently we would expect to see a given disease together with a 
given symptom. Potentially more diagnostically useful is ascertaining the likelihood of 
a particular disease given that we observe a particular symptom. The concept that cap-
tures this inquiry is a conditional probability distribution. A conditional probability 
distribution has a set of outcomes we are interested in, and a set of outcomes that are 
given. These sets are separated by a conditioning bar, so our question can be written as 
P(disease | symptom), and is read as, “the probability of disease given a symptom.” 
This quantity is derived from joint and marginal distributions as follows:  

)(
),(

)|(
symptom

symptomdisease
symptomdisease

P
P

P =  

We can justify this definition by rearranging it slightly: P(disease | symptom)P(symptom) 
= P(disease, symptom). This equation states that we should expect to see the disease 
and symptom occurring together as often as the disease occurs given that we observe 
the symptom, weighted by the probability of making that observation. In general, a 
conditional probability is defined as follows: 

are interested in the outcome of only one of two dice, we would consider P(D ) = 
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From this definition stem two useful properties. The first is known as the chain rule of 
probabilities, the second as Bayes’ rule: 

 ),...,|(),...,( 1
1

1 ki

k

i
ik xxxPxxP +

=
∏=  

 
)(

)()|(
)|(

2

112
21 xP

xPxxP
xxP =  

Bayes’ rule in particular, though it follows straightforwardly from the definition of 
conditional probability, is quite useful in practical probabilistic reasoning from effects 
to causes. Consider the standard problem of diagnosis in medicine. We have a list of 
symptoms and diseases, such that we know how likely these symptoms and diseases 
are to occur (e.g., we know the marginal probability P(disease) and P(symptom) for 
each disease and symptom), and we know how likely a given symptom is to occur 
if a given disease is taking place, in other words P(symptom | disease). What we are 
interested in is the probability of a disease given an observed symptom. Bayes’ rule is 
what lets us compute the answer. 

In general, if we can estimate the joint probability distribution for a set of variables of 
interest, we can use the above properties to compute any probabilistic query of interest. 
However, the problem with this approach in practice is that as the number of variables 
increases, the amount of space and computational effort needed to handle a joint dis-
tribution grows exponentially. This growth occurs because a joint distribution is a 
table that assigns a probability to any possible combination of values of the variables 
we care about: as the number of variables grows, the number of possible value combi-
nations grows very quickly. Luckily, it is possible to take advantage of redundancy in 
some joint distributions to reduce the computational overhead of probabilistic reason-
ing. A crucial notion for capturing this redundancy is conditional independence. Two 
random variables X, Y are conditionally independent given Z if P(x, y | z) = P(x | z)P(y | z). 
The definition generalizes in a straightforward way to sets, so {X1,…, Xk} is con-
ditionally independent of {Y1,…, Ym} given {Z1,…, Zn} if: 

),...,|,...(),...,|,,...,(),...,,,...,,...,( 1111111 nmnknmk zzyyPzzxxPzzyyxxP =  

If X is conditionally independent of Y given Z, we will denote this by an abbreviation 
(X ╨Y | Z), invented in [22]. If the set of Z variables is empty, the X and Y variables are 
marginally independent, written (X ╨ Y). Taking systematic advantage of conditional 
independence is crucial: a joint probability distribution P(x1,…, xn) over n binary 

(3) 

(4) 

(5) 
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variables is a table with 2n entries, while if these variables are independent, the table 
will only have n distinct entries (as P(x1,…, xn) = ∏i P(xi)). 

Interpreting probabilities. Probabilities are real numbers, and for the purposes of 
developing the theory of their behavior it is sufficient to treat them as such. However, 
in order to assign probabilities to actual events, and to judge whether the theory 
developed adequately captures reasoning about such events, we need to interpret what 
probabilities mean. There are two major interpretations, broadly termed objectivist and 
subjectivist. The objectivist interpretation states that probabilities are propensities of 
occurrence of certain outcomes in the world – for instance, a fair coin’s propensity is 
to land heads about half the time it is thrown. According to this interpretation, pro-
babilities are properties of objects and events themselves. The objectivist interpretation 
gives rise to frequentism, namely the enterprise of attempting to approximate objective 
probabilities of events by repeated trials. In contrast, the subjectivist interpretation 
states that probabilities describe degrees of beliefs of agents with minds, and that 
probability theory describes precisely (via Bayes’ rule) how beliefs of rational agents 
should be modified as new evidence comes to light. According to subjectivism, pro-
babilities are properties of our minds and are only indirectly related to the external 
world. The application of subjectivist interpretation in statistics resulted in the birth of 
Bayesian inference [70]. These differing interpretations do have certain subtle implica-
tions for the practical use of probabilities; however, reasonable conclusions can be 
obtained under either interpretation, as we expect rational beliefs to mirror the fre-
quencies observed in nature. In fact, given enough trials or experiments (such as coin 
tosses), the conclusions reached under either interpretation will be the same. 

Probability and Change 

Probability theory is a very flexible way of handling evidence that requires a drastic 
reevaluation of existing beliefs – a conditional probability P(y | x) after we observe x 
can be very different from the original belief P(y). In some sense, probabilities give us 
a principled way of changing our minds as uncertainty is removed. 

However, aside from having to contend with the world changing our minds, we must 
also contend with the world itself changing. If a patient is admitted to a hospital with a 
set of symptoms we can, given a joint distribution expressing the way symptoms and 
diseases occur typically, diagnose this patient. However, a myriad of things could 
happen that would make this new patient atypical. What if he fails to respond to treat-
ment? What if he is accidentally given the wrong medicine? Further, it may be that the 
doctors themselves may want to impose changes on the patient, for instance novel 
surgical techniques or experimental drugs, which are sufficiently different from “typical” 
that the standard probabilistic model for diagnosis/prognosis will be insufficient to 
represent the results of these changes. 
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Going beyond medicine, modeling responses of systems to experiments is crucial to 
empirical science, because the goal of empirical science is constructing causal theories 
of the world. The very notions of cause and effect refer implicitly to a hypothetical 
change and results of this change. Systematically inducing changes and recording 
the results is a large part of what many scientific disciplines are about (as per the 
phenomenon-centric data model, see Chapter 7). 

Perhaps surprisingly, despite the importance of the notions of change, cause, and  
effect; and despite the intuitive consensus people seem to form about these notions, the 
efforts to formalize these notions have began only relatively recently [47, 58, 77, 78, 
92, 100]. In this chapter, we will represent changes using the formalism developed by 
Pearl [67]. Pearl introduces a new piece of notation, do(x), which stands for a hypo-
thetical experiment or intervention where a random variable of interest X is fixed to a 
specific value x, regardless of what its ordinary behavior might be. The notion of 
interventions is surprisingly general and can be used to model changes in many pro-
babilistic settings. For instance, an intervention can be used to represent a controlled 
trial, where half of the patients are given a new drug and half are given a placebo. The 
patients’ response Y to the drug is modeled as an interventional distribution, written 
P(y | do(x)). It is important to note that this distribution is not, in general, equal to 
P(y | x). Consider a very simple study where X is a cough and Y is the common cold. 
We expect the probability of having a common cold given an observed cough, in other 
words P(y | x), to be relatively high. At the same time, if we make sure our patients do 
not exhibit a cough by giving them a cough suppressant – in other words if we perform 
do(x) – our belief in the likelihood of the cold should not be affected, as we have not 
treated the disease, only the symptom. Although it is clear in this example that P(y | 
do(x)) is not equal to P(y | x), it is less clear that P(y | do(x)) is equal to P(y). In some 
sense this distinction is not surprising: conditional distributions model the way our 
beliefs change as our uncertainty about a static probabilistic system is removed (e.g., 
as we obtain more evidence about it). On the other hand, interventional distributions 
model what happens when we “tweak” the system itself. However, the notions of 
change in the mind versus change in the world are often confused, especially when 
probabilistic and causal notions are used together. The above example shows how 
such confusion can result in trivially wrong conclusions; in more complex cases the 
difference can be subtle and easily obscured. The study of the interplay between these 
two notions of change, and of interventions and interventional distributions is known 
as causal inference. 

Graphical Models 
Probabilistic and causal inference may not have achieved their popularity were it not 
for a surprising but deep and powerful connection between probabilistic notions and 
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graph theory. In this section, we describe how to take advantage of graphs to represent 
conditional independencies and causal assumptions systematically, provide a qualita-
tive language for probabilistic and causal notions, and in general replace quantitative, 
algebraic manipulations of probability distributions with more qualitative, visual ones 
based on graphs. We further introduce a specific type of graphical framework, the 
Bayesian network, and demonstrate its application as the basis for disease models. 

Graph Theory 

Figure 8.1: Various kinds of graphs. (a) A directed cyclic graph. (b) A directed 
acyclic graph (DAG). (c) An undirected graph. (d) A “mixed” graph. 

Graphs are mathematical structures which are used for visually representing relation-
ships between objects. Graphs consist of nodes or vertices, which represent objects we 
want to model, and edges that represent a relationship between two nodes by connecting 
them. Graphs are typically classified by the kind of edges they contain (Fig. 8.1). 
Directed graphs contain exclusively directed edges, undirected graphs contain  
undirected edges, and mixed graphs contain multiple kinds of edges, possibly with 
more than one edge connecting distinct nodes. 

A path in a graph connecting nodes x and y is a sequence of nodes x, v1,…, vk, y such 
that there is an edge connecting x to v1, vk to y , and vi to vi+1 for every i = 1,…, k. For 
instance, x → w → z → y is a path from x to y in the graph shown in Fig. 8.1a, while 
a−b−c is a path from a to c in the graph shown in Fig. 8.1c. In directed graphs, a node 
x is called an ancestor of y if there is a path from x to y such that all edges on this path 
point towards y. So the path x → w → z → y in the graph in Fig. 8.1a implies that x is 
an ancestor of y in that graph. A directed graph is said to contain a directed cycle if 
there is a node x that is an ancestor of y, and there is an arrow from y to x. Directed 
graphs containing cycles are called cyclic, while those that do not are called acyclic. 
It is simple to see that the graph in Fig. 8.1a is cyclic, while Fig. 8.1b is acyclic. In any 
graph if two nodes are connected by an edge, they are called adjacent. Further, if a set 
of n nodes are all pairwise adjacent in a graph, this set is called a clique. In keeping 
with the “family” theme of interpreting edges in directed graphs, if there is an edge 

 
x → y in a directed graph, then x is called the parent of y, and y a child of x. Finally, if 
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Figure 8.2: A BBN representing a simplified view of the common cold (X) and resul-
tant symptoms (W, Y, and Z). 

two parents x1, x2 of a single node y are not themselves adjacent, these three nodes 
form what is called an immorality (i.e., the parents aren’t “married”), or a collider (as 
the arrows “collide” at y). For example, in the graph shown in Fig. 8.1b, x′, z′, and y′ 
form an immorality. 

Mathematicians study graphs because human beings tend to be better at comprehend-
ing and making use of information arranged in visual form, and graphs provide such a 
visual representation in a wide variety of settings (see Chapter 4 for a discussion of 
graph visualization methods). A good example is the one that inspired graph theoretic 
notions we described above, genealogic trees. Other examples of the use of graphs 
include phylogenetic trees in evolutionary biology, org charts in business, wiring dia-
grams in electrical engineering, network connectivity diagrams in computer science, 
and so on. It turns out there is also a deep connection between graphs and probability 
theory, allowing us to use graphs to reason about stochastic and causal domains. 

Graphs and Probabilities 

Consider a joint probability distribution P(v) with an ordering V1, V2, …,Vk established 
over variables in V. This ordering may be temporal, causal, or even arbitrary. By the 
chain rule of probabilities, ∏i P(v) = P(vi | vi-1,…, v1). A number of conditional inde-
pendence statements may hold in P(v). In particular, for every Vi, there may be a sub-
set of {V1,…, Vi-1}, call it pa(Vi) such that P(vi | vi-1,…, v1) = P(vi | pa(vi)). If we find 
such a set for every Vi, we can express P(v) as ∏i P(vi | pa(vi)). So far, we just have a 
product expression for P(v) derived from the chain rule using independence informa-
tion. This expression is called the Markov factorization of P(v). It is possible to repre-
sent the Markov factorization by means of a directed acyclic graph in the following 
way: we create a node for each variable Vi in V, and add a directed edge from every 
element of pa(Vi) to Vi, for all i. As an example, if the joint distribution P(x, w, y, z) 
can be expressed as a product of four factors, P(z | y, w)P(w | x)P(y | x)P(x), then it can 
be represented by the graph in Fig. 8.2. 
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An intuitive interpretation of this graph is that nodes are variables of interest, and di-
rected arrows represent direct causal relationships. The relationships between disease 
and symptoms in the graph in Fig. 8.2 can be interpreted in this way. However, this 
interpretation only works in some domains, and only if the ordering V1, …,Vk we 
picked has effect variables following cause variables in the ordering. Regardless of 
interpretation, directed graphs of this sort, which are called Bayesian networks2, form 
a graphical representation of conditional independence of the distribution from which 
they are constructed. The first set of conditional independence statements represented 
by Bayesian networks follows by construction: in a Bayesian network, every variable 
is independent of its non-descendants given its parents (this is known as the local 
Markov property). In fact, Bayesian networks provide a graphical representation for 
conditional independence in a more general way. The way to think about this represen-
tation is to view paths in the graph as “pipes,” conditional dependence as “water” 
flowing along these pipes, and conditional independence as a “blocked” flow. To 
check if two variables X, Y are independent given a set of variables Z in a Bayesian 
network, one checks if all paths from X to Y block the flow of influence. Path blocking 
is defined in terms of a notion called d-separation. Formally, a path from X to Y is 
blocked or d-separated given Z if it contains one of the node triples in Fig. 8.3. A path 
which is not d-separated is called d-connected. For instance, in Fig. 8.2, Y is independ-
ent of W given X, but not given X and Z.  

To determine if X is d-separated from Y given Z, we simply check if all paths from X 
to Y are blocked by Z using the previous definition. A set X is d-separated from a set Y 
given Z, if every pair of nodes X, Y in X, Y is d-separated by Z. The power of Bayes-
ian networks comes from the fact that d-separation in the graph always implies condi-
tional independence in the corresponding distribution. 

 

 

Figure 8.3: Patterns used to determine d-separation between two variables, X and Y. 
Darkly shaded nodes are elements of Z. A node triple with converging arrows (a collider) 
cannot have any descendants in Z. 

 
                                                           
2  Bayesian networks are also referred to as Bayesian belief networks (BBNs), or belief 
 networks. We use all three terms interchangeably throughout this book. 
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As an example, consider the Bayesian network shown in Fig. 8.4. This network 
describes the relationship between osteoporosis, its risk factors, and its consequences. 
Assuming this network is the correct representation of the domain (i.e., assuming it 
was constructed using the Markov factorization of the domain joint distribution by the 
procedure described on the previous page) we can use d-separation on its structure to 
determine whether a conditional independence statement holds in this distribution. For 
example, according to d-separation, kidney function and hormone usage are marginally 
independent as there are only two paths between these nodes: kidney function → 
osteoporosis ← activity level ← age → hormone usage (Path 1), and kidney function 
→ osteoporosis → fracture ← hormone usage (Path 2). Both of these paths contain a 
collider such that no descendant node of this collider is observed. In the first path, the 
arrows of the collider converge on osteoporosis; in the second path on fracture. On the 
other hand, kidney function and hormone usage are dependent once we observe 
fracture and osteoporosis. Again, we consider the two paths. The first path, Path 1, is 
d-separated as activity level is observed and lies on the chain age → activity level → 
osteoporosis. Path 2 is d-connected as fracture is at the center of a collider triple and 
observed; thus, this path is d-connected as are kidney function and hormone usage 
given the observation of fracture. 

Independence in probability distributions can also be represented using undirected 
graphs, where each vertex is a variable, and neighboring nodes are dependent. In this 
case, the distribution P(v) is also decomposed into small pieces. However, while in the 
case of directed graphs these pieces represent conditional distributions of a node given 
its parents, in the case of undirected graphs these pieces are not even proper probability 
distributions. Rather, they are functions fi(ci) from value assignments of nodes Ci to 
real numbers, where Ci is a maximal clique in the undirected graph. The entire distribu-
tion is represented as P(v) = 1⁄Z∏i fi(ci), where Z is a normalizing factor such that P(v) 

Figure 8.4: A typical Bayesian network. In this example, each node represents a vari-
able related to osteoporosis.  
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is a true probability distribution. An undirected graph which corresponds to a probability 
distribution in this way is called a Markov network [40]. Markov networks also have a 
graphical representation of conditional independence, and though their definition is a 
little less straightforward, this graphical representation is much simpler. In fact, a node 
in a Markov network is independent of its non-neighbors given its neighbors.  

Representing Time 

Graphical models can be used to represent domains that extend through time. Typically, 
the flow of time is modeled as a series of discrete steps, with variable interactions in 
any given step represented by the same graph, while interactions among variables in 
subsequent time steps encoded by another graph. As an example, consider the problem 
of a time-varying treatment: a patient with particular diseases (with some observable 
symptoms) is prescribed a regimen of medication to be taken each day, with each 
day’s dose dependent on the measured symptoms of the previous day. The effect of 
the regimen is measured by considering the change of the symptoms on the last day 
compared to the first. A graphical model for this problem is shown in Fig. 8.5. 

In this scenario, there are two unobserved diseases, D1, and D2, which result in three 
observable symptoms, S1, S2, and S3 that are observed once daily with a single treat-
ment, M, also administered daily based on the symptom measurements of the prior 
day. The Bayesian network representing variable interactions within a single day are 
shown in Fig. 8.5a, while the network representing interactions from the previous day 
to the next are shown in Fig. 8.5b. Using these two networks, it is possible to represent 
the course of a time-varying treatment for an arbitrary number of days, by simply 
“unrolling” the model. That is, we construct a copy of the network in Fig. 8.5a for every 
day the treatment is given and we connect nodes in a day t to nodes in a day t + 1 in a 

1 2 1 2 3

two time slices. 

Figure 8.5: A graphical model for the time-varying treatment domain. M is a treat-
ment; D  and D  are unobserved diseases; and S , S , and S  are observed symptoms.
(a) The graph showing variable interactions in a single time slice. (b) The graph show-
ing variable interactions between two time slices. (c) A complete model “unrolled” for



8 Disease Models, Part I: Graphical Models 425 

way given by the network in Fig. 8.5b. An example of the kind of “unrolled” model 
that results for a two day treatment is given in Fig. 8.5c. These temporal models are 
known as dynamic Bayesian networks (DBNs) [55]. 

A well-known special case of models of this type contains two nodes in each time 
slice, an unobserved parent, sometimes called the state, and an observed child, some-
times called the sensor (Fig. 8.6). The state at time step t affects the state at the next 
time step, t + 1, while the sensors affect nothing. A model of this type where sensor 
and state variables have a finite number of values is called a hidden Markov model 
(HMM). HMMs capture time-varying systems with changes governed by some hidden 
state. Testing variable independence via d-separation, as well as a variety of probabil-
istic inference and learning tasks is particularly simple in HMMs due to their special 
structure [72]. Nevertheless, as the dynamics of the modeled system become more 
complicated, the size of the hidden state necessary to provide a good model can 
quickly become intractable. In such cases, it is often possible to decompose the state 
and sensor variables into a larger set of variables such that additional independencies 
hold in this set. The resulting model would then become a dynamic Bayesian network. 
Note that as DBNs have no topology restrictions (other than graph replication across 
time slices), they can efficiently represent domains that HMMs cannot. 

Graphs and Causation 

In the course of looking over the graphical models shown in the previous section, it 
may not have escaped your attention that very frequently the parents of a node can be 
interpreted as its direct causes. This observation is not an accident: a causal interpreta-
tion of the local Markov property – that every variable is independent of its non-
effects given its direct causes – is true! Moreover, human beings naturally organize 
their knowledge of the world in terms of cause-effect relationships, and it is very easy 
for them to provide the set of independences needed by the local Markov property by 
appealing to their causal knowledge. 

time slices. 

Figure 8.6: A hidden Markov model (HMM). (a) Interactions within a single time slice.
(b) Interactions between consecutive time slices. (c) A full model “unrolled” across five



426 I. Shpitser 

Even if our causal knowledge is restricted to just a topological ordering of variables 
consistent with causal directionality, it is possible to obtain a valid Bayesian network 
from this ordering alone. The algorithm for doing so is simple, and relies on the defini-
tion of Bayesian networks. For every variable Vi in the ordering, we look for a subset 
of variables Pa(Vi) among those variables preceding Vi, or V1, …,Vi-1, such that P(vi | 
pa(vi)) = P(vi | vi-1,…, v1), and no proper subset of Pa(Vi) will have the same property. 
We make those variables the parents of Vi. In fact, this algorithm will work for any 
ordering of variables, although in reality causal orderings end up with graphs with 
fewer edges. 

Consider a domain of four variables, X, W, Y, Z where the following independence 
statements hold: X ╨ Z | Y, W; Y ╨ W | X. We are going to construct Bayesian network 
for this domain using two variable orderings. First, we will use the ordering X, Y, W, Z. 
In the first step we add the node for X and no edges as X is the only node in the graph. 
Then we add Y and make X its parent, as P(y) ≠ P(y | x). Then we add W and make X 
its parent, as P(w) ≠ P(w | x) = P(w | x, y) ≠ P(w | y). Finally, we add Z and make Y, W 
its parents because P(z | y, w) = P(z | y, w, x) and for no proper subset of {Y, W} is the 
above equality true. The result is shown in Fig. 8.7a. Now, we use the ordering Z, Y, 
W, X. In the first step, we add Z and no edges. Then, we add Y and make Z its parent, 
as P(y | z) ≠ P(y). Then we add W and make Y, Z its parents, as P(w | y) ≠ P(w | y, z) ≠ 
P(w | z) ≠ P(w). Finally, we add the node X and make W, Y its parents, given P(x | w, y, 
z) = P(x | w, y), and for no proper subset of {W, Y} is the above true. The resulting 
graph is shown in Fig. 8.7b. 

Figure 8.7: Two Bayesian networks for a four variable domain where X ╨ Z | Y, W 
and Y ╨ W | X. (a) A Bayesian network constructed using the ordering X, W, Y, Z. 
(b) A Bayesian network constructed using the ordering Z, Y, W, X. 

In practice, Bayesian networks constructed by interpreting the parents of a variable as 
its direct causes are not only easier to understand, but tend to have less edges as well. 
In our example, the ordering X, Y, W, Z was causal for the common cold domain shown 
in Fig. 8.2. Interpreting edges causally not only results in more concise and under-
standable probabilistic models, but also allows us to treat the model itself as causal, 
and use it to answer causal questions such as, “What is the direct effect of one variable 
on another,” or, “Would the patient survive had we not given him the treatment?” 
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To deal with these types of questions, we must formalize what it means for the model 
itself (rather than our belief about the model) to change. This formalization and the 
variety of causal inference tasks it allows us to perform are the subjects of a subse-
quent section. 

Bayesian Belief Networks in Medicine 
Although a spectrum of approaches exists, Bayesian belief networks are an increasingly 
popular formalism for representing models of disease. The strength of a BBN-based 
approach lies in its ability to answer different types of queries, including: the computation 
of a posterior probability (an updated conditional probability given further knowledge 
about an event) for a specified hypothesis, given only partial evidence; and the support 
for “most likely” scenario queries, such as maximum a posteriori (MAP) hypotheses 
and most probable explanations (MPEs)3. Notably, the fact that a BBN can provide 
answers even in light of missing data is in contrast to conventional clinical decision-
making paradigms (e.g., rule-based systems, decision trees, regression analysis) where 
all variables must be known to reach a conclusion. As a rudimentary example, con-
sider an individual for whom we have limited knowledge, such as his demographics, 
and whether he has high cholesterol and/or diabetes. A BBN constructed of these and 
other risk factors for stroke (e.g., social and family history, hypertension, level of 
physical activity, etc.) is capable of estimating how likely a stroke is to occur, even if 
some of the variables are unknown for this specific person. Moreover, it is possible to 
update the estimate as new evidence becomes available. If the BBN models treatment 
information and outcomes, it is further feasible to posit questions regarding which 
treatment will optimally attain a desired result. [50] overviews applications of BBNs 
in biomedicine along the following categories: 

 Diagnostic and prognostic reasoning. Multiple projects have used BBNs to 
classify symptoms and clinical findings; work on HEPAR, MUNIN, and Pathfinder 
exemplify early efforts [3, 4, 36, 49]. Applications have been as broad as internal 
medicine, to more specific areas such as tumor classification, liver disease, 
pulmonology, and mammography, among others [5, 12, 39, 41, 51, 59, 61, 62, 71, 
84, 102]. A subset of this work supports outcome prediction based on the patient’s 
presentation, providing prognostic capabilities. 

 Treatment selection. BBNs have been used to guide treatment selection, allowing 
a user to view different scenarios to optimize some criteria and select a plan of 
action [46]. This group of applications encompasses influence diagrams, exten-
sions of the traditional BBN to include cost functions, and can be seen as a global 
optimization problem across the network [52].  

                                                           
3  These and other types of Bayesian queries are covered in further detail in Chapter 9. 
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 Functional linkage. BBNs are used in bioinformatics to model gene regulatory 
networks [30], analyze gene expression data [31], and compute genetic linkages 
[29]. Genetic linkage analysis is a statistical method for determining the distance 
between genes on a chromosome; knowing a gene’s location and proximity on 
a chromosome can help identify individuals with a high probability of disease 
occurrence. One example of using a BBN to perform genetic linkage analysis is 
SUPERLINK [28], wherein the BBN is used to model the pedigree and recombi-
nation frequencies. [37] demonstrates the ability of Bayesian networks to classify 
high-dimensional gene expression data. 

Belief Network Construction: Building a Disease Model 

The process of constructing a Bayesian belief network for modeling a disease can be 
thought of in three stages: 1) the identification of variables of interest that describe the 
disease in terms of observable causes and effects; 2) the formalization of the relation-
ships between these variables; and 3) the computation of the conditional probabilities 
dictated by the relationships. Each step and its challenges are briefly described below. 
To ground this discussion we first define common terminology with regard to belief 
networks (Fig. 8.8). The nodes in a BBN are often referred to as evidence variables. 
Although the real-world variable may be a continuous value, the evidence variable is a 
discretized version (i.e., values are binned), with each discretized value being referred 
to as a state. The edges connecting these nodes are relationships, and the set of 
nodes and edges together make up the network topology or structure of the graph. A 
conditional probability table (CPT) is calculated for each node in the graph, specify-
ing the probability of a given state of the evidence variable given its parents’ states. 

Figure 8.8: A hypothetical Bayesian belief network, showing conditional probability
tables (CPTs). Nodes in the graph are referred to as evidence variables. The CPT for a
given node is computed based on an enumeration of the possible states that its parents
can take on. In this example, the Boolean value for hip fracture is determined by the
combination of the age (0-20 years, 20-40 years, 40-60 years, and > 60 years) and
gender (male, female). For nodes with no parents, the CPTs are equivalent to the vari-
able’s prior probability. 
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Variable selection. The first step in the development of a disease model is to identify 
those variables that can be directly observed as part of the disease process, and those 
intermediate and output variables that need to be inferred. This collective set of variables 
is then mapped to nodes within the proposed Bayesian belief network. Implicit to the 
variable selection task is the question of, what is the intended use for the disease 
model? For research, BBNs and the chosen variables can be used to explore relation-
ships, often in a limited (controlled) setting; whereas for clinical usage, a BBN can be 
used as a diagnostic or prognostic tool in a broader environment. Here, we take the 
latter view. Thus, the selection of variables should be comprehensive, allowing 
construction of a model, which can be used to make accurate scientific conclusions 
from the array of evidence available in a real-world patient medical record. Consider-
ations for variable selection include:  

 Can the variable be practically measured as part of the routine management of a 
patient? Some types of data may not be widely accessible to the scientific and/or 
medical community at large, or may simply be difficult to obtain for any number 
of reasons (e.g., cost). For instance, new advances in imaging and other areas of 
clinical medicine are making possible new diagnostic insights into disease pro-
cesses; yet the availability of such methods may be limited to specialized centers. 
If a variable cannot be collected as part of (routine) testing then its utility within a 
disease model is debatable: the inclusion of the node will result in a more precise 
representation, but may confuse the user and make the model more difficult to 
use. The issue of practicality also entails how consistently the measure can be 
taken and compared (i.e., is it standardized?). Preferably, variables should  
be “technology independent” (i.e., not dependent on how it was observed and/or 
measured). For imaging, for example, the acquisition of image series should be 
standardized either by the study protocol and/or post-processing (see Chapter 5). 

 What are the possible values that the variable can take on (e.g., is it continuous, 
discrete, or categorical)? As part of the identification process, the variable’s 
representation must also be chosen. Rigorous definitions for a variable and its 
measurements can be taken from existing ontologies and controlled vocabularies 
(e.g., Unified Medical Language System, UMLS; Systematized Nomenclature of 
Medicine, SNOMED). Continuous variables can be discretized first by determin-
ing if an accepted categorical scale exists for mapping the values to a given class; 
and if no such scale exists, its data distribution should be examined and discretization 
techniques investigated. While a BBN can mix continuous and discrete variables 
(e.g., hybrid BBNs), discretizing variables simplifies modeling and inference 
tasks. A naïve discretization method is to merely divide the quantitative space into 
n equal bins (i.e., equal-width binning). However, given that the performance 
of a BBN is sensitive to the method and degree of discretization, an objective of 
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discretization should be to minimize information loss, including the underlying 
data distribution. Several different discretization methods can be used; [54, 103] re-
view univariate (e.g., quantiles) and class-based methods (e.g., minimum description 
length processing, attribute grouping). [48] also gives a comparison of discretization 
techniques.  

Network topology. Once model variables are identified, the next step is to specify the 
association between variables – that is, the presumed relationships between the vari-
ables. Such links correspond closely to a scientific hypothesis relating a cause to an 
effect. There are two approaches:  

1. Expert specification. This first approach is based on an expert specifying the 
relationships between variables (i.e., X causes Y), and echoes the experiential 
knowledge and insights from clinicians and researchers based on past observa-
tions and experiments. Connections from variables can also be extracted from a 
meta-analysis of hypotheses from published literature. Though an expert-derived 
topology reflects the best working knowledge of a disease, the models may not 
account for hidden variables (i.e., variables that are not considered in the model) 
that may be involved in additional d-connected paths not considered by the expert – 
resulting in a model that makes incorrect statements about conditional independence. 
This problem can be addressed by algorithms that attempt to learn the network 
topology from the data (see below); and also as part of the evaluation of the network 
topology with pairwise tests for conditional independence. Pairs of d-separated 
variables can be tested for conditional independence and compared with the real-
world dataset for consistency (e.g., a χ2 test); failure of the independence test will 
indicate the potential presence of a hidden variable that will require (re)modeling. 

2. Automatically learning the structure. In many domains, only general features of 
the graph are known. With exemplar data, the network topology can also be  
inferred through algorithms that attempt to deduce the graph structure based on the 
strength of probabilities [35]4. The appeal of learning a BBN structure is apparent 
in experimental efforts, where the relationship between observed variables may 
not yet be known. Demonstrations of learning BBN structure from clinical data 
sets can be found in [2, 5, 9, 101]. Apart from an exhaustive search across all pos-
sible DAGs for the model (which is generally intractable), several algorithms 
exist for the purpose of suggesting structures. Two categories of algorithms exist: 
scoring-based learning algorithms [19] that traverse a model search space to 
optimize some function that measures both how well a proposed BBN fits the 

                                                           
4  For causal models, described later in this chapter, this process is called inductive 

causal inference (also known as causal discovery), which is learning the causal 
graph from data. 
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data, and how “concise” (in terms of the number of parameters) the BBN is; and 
constraint-based algorithms, which infer structure by ruling out graphs inconsis-
tent with the pattern of constraints observed in the data. Examples of structural 
learning methods include BENEDICT [1], greedy equivalence search [15], max-min 
hill climbing [93], fast causal inference (FCI) [85], and structural expectation 
maximization. The choice of algorithm to learn the BBN is dependent on whether 
full or partial observability of the data is considered (i.e., are there hidden vari-
ables, or variables for which data is unavailable?). A full description of the theory 
behind these algorithms is beyond the scope of this chapter; and the reader is 
referred to [56] for a more in-depth discussion. The use of these automated learn-
ing techniques is often limited by the lack of availability of sufficient samples for 
performing either conditional independence tests on which constrained-based 
algorithms rely, or model selection for search-based approaches. Furthermore, 
even if sufficient samples are available, the algorithms are often intractable. 

Conditional probability calculation. The last stage in creating the BBN is to com-
pute the CPTs as indicated by the network topology; this step is referred to as para-
meter estimation or parameter learning. For disease models, the ideal situation is to 
compute these values using clinical data gleaned from a representative population. The 
probabilities can then be calculated via the well-known expectation maximization 
(EM) algorithm5 [24]. In theory, this strategy provides an accurate portrayal of the 
observations related to a disease (i.e., its presentation within the cohort, its treat-
ment/resolution, etc.). But in some situations, there are not enough samples for reliable 
estimation of conditional probability parameters. Instead, we can turn to two other 
techniques to provide the probabilities. First, reputable resources such as a published 
randomized controlled trial can potentially be substituted to provide the needed 
value(s). Notably, the incorporation of experimental results (e.g., from an RCT) along-
side the observational data to compute the CPTs must be tempered by issues of selec-
tion bias and whether the context of the experiment is compatible with the cohort [26]. 
Second, if no suitable reported results are found in the literature, a medical expert can 
also be asked to provide a “best-guess” estimate; while such approximations may be 
biased and inaccurate, prior studies have demonstrated their general utility [20, 53]. 
Various methods have been developed to address these issues by: 1) eliciting well-

                                                           
5  Briefly, the EM algorithm consists of two parts: the E-step, wherein the missing data 

are estimated using the conditional expectation, based on the observed data and the 
current estimate of the model parameters; and the M-step, where the likelihood func-
tion is maximized assuming the missing data are known (the estimated data from the 
E-step being used in lieu of the actual missing data). 

calibrated probabilities from experts [60], such as by using probability assessment  
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scales [99]; 2) validating the accuracy of the elicited probabilities; and 3) reducing the 
number of probabilities needed to be elicited. 

Calculation of the CPTs is usually predicated on the idea that the patient cases are 
“complete” for each variable. Realistically, however, datasets often contain missing 
data elements. Missing data within a patient record can arise for a variety of reasons, 
including incomplete documentation, lost data, or even an outright failure to acquire 
the information. The missing data problem is also common in controlled experiments, 
such as RCTs. Assuming that data is missing at random (noting that the issue of 
observations missing due to specific biases is more problematic), data and the learning 
of CPTs can be addressed through the use of parameter fitting algorithms. Parametric 
models can also be used to impose a probability distribution on incomplete data for 
inferring missing values (e.g., multivariable normal distributions, log-linear models, 
general location models, and 2-level linear regressions models) [10, 80]. Non-
parametric algorithms can also be used to impute missing values [14], with the advantage 
of being more efficient for moderate sized data sets and less susceptible to fitting errors. 
Non-trivial joint distributions can be approximated by Monte Carlo sampling methods 
(see Chapter 9). 

Modeling time. Disease processes and the documentation of a patient’s state in the 
medical record are inherently temporal, as are the questions we ask about a patient 
(see Chapter 7); thus, it makes sense to consider the sequential nature of the informa-
tion and changes within a disease model and BBN. Indeed, DBNs have been used to 
model time-variant states such as with fMRI (functional magnetic resonance imaging), 
gene expression networks, and other domains of interest in bioinformatics [25, 104, 
106, 107]. A key issue arises, however, in using such techniques on clinical data: how 
does one define the temporal granularity and the time slice transition model in the 
clinical setting? While in other areas the time interval may be naturally given by 
sampling frequency and/or specific events, the temporal span over which the collec-
tion of patient data occurs in a real-world clinical environment is highly variable. We 
approach this problem from two directions: 

1. Semantically-defined temporal clusters. Often, the diagnostic and therapeutic phases 
of disease management are defined by sentinel events that are recognized clinically. 
For example, in treating a cancer, there are distinct phases between the diagnosis, 
subsequent treatments (e.g., surgical resection, radiation therapy, chemotherapy), and 
cancer remission and survivorship. One strategy therefore is to cluster clinical data 
around these time points, or to examine the temporal patterns suggested by encoun-
ters. This approach further limits the potential problems related to inference across 
the DBN by constraining the number of time slices that need to be considered.  
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2. Conditional temporal clusters. The above temporal clustering approach refines the 
disease model to provide a specific BBN for each “natural” stage of the underly-
ing phenomenon and its progression: while surely better than only considering a 
static BBN across the entire disease chronology, this strategy may not provide 
sufficient temporal granularity as sequences of data within a single “cluster” are 
still considered together. For instance, consider a neuro-oncology patient that 
initially starts chemotherapy on drug X, but switches to drug Y due to side effects – 
but the tumor has not yet progressed. In a DBN that temporally clusters around 
tumor progression, this fact would be represented as the patient having been on 
drug X and drug Y concurrently, or drug Y before drug X: in effect, the precise 
temporal relationship of the events is lost. One possible approach to handle this 
problem is to define “conditional” temporal clusters whereby the DBN transition 
model is defined on changes of a given variable (or set of variables) deemed 
significant by an expert (e.g., such as a change in chemotherapy regimen).  

Causal Inference 
In the previous sections, we have seen how the language of probability theory can help 
us cope with exceptions, unknowns, and uncertainty in a principled way; how con-
ditional independence can make probability reasoning tractable; and how a combination 
of probability theory with graphs gives a qualitative, visual representation of conditional 
independence. Below, we show how directed graphs can be extended to represent 
models that are not only probabilistic but causal; how complex questions about causal 
effects and counterfactuals can be effectively formalized and answered in such models; 
and how such causal inference can be performed in practice. 

Causal Models, Interventions, and Counterfactuals 

The objects that we will study in this section are called graphical causal models. Like 
Bayesian networks, such models contain a set of variables of interest. However, the 
values of some variables in such models are determined by means of a function from 
values of other variables, while variables that are not so determined are random. Such 
models are represented by directed graphs called causal diagrams where variables are 
nodes, and an arrow leads from node X to node Y if the value assumed by X is used in 
the function that determines the value of Y. See Fig. 8.9a for a typical causal diagram. 

In this diagram, there are three observable variables of interest: 1) environmental 
exposure, represented by smoking; 2) a disease mechanism, represented by tar; and finally 
3) the disease itself, represented by cancer. These variables are fully deterministic – their 
values are determined exactly by the values of their parents in the graph. There are 
also two unobservable variables, U1 and U2, where U2 represents a common genetic 
cause of both disease propensity and the likelihood of exposure, whereas U1 influences  
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Figure 8.9: (a) A simple causal diagram, illustrating three hypothetical variables 
(smoking, tar, and cancer) alongside two unknown variables (u1, u2). (b) The mutilated 
graph corresponding to the intervention, do(tar). 

the disease mechanism. U1 and U2 are ordinary random variables, representing what-
ever factors we need to take into account to render their observable children in the 
graph deterministic given those factors. 

It turns out this kind of representation, where some variables are random, and others 
are determined, is equivalent to the Bayesian network representation discussed earlier 
where every variable is random, and variable relationships are encoded by means of a 
CPT of variables given their parents. What this means is that all variables in a causal 
diagram, even those determined by functions, are random variables and that conditional 
independence statements between these variables are encoded, just as in Bayesian 
networks, via d-separation. For instance, the unobserved variables U1 and U2 are 
independent as all paths connecting them are d-separating. However, in addition, the 
arrows in a causal diagram were defined in terms of a direct functional relationship. As 
functions in causal models represent causal mechanisms, arrows represent not only 
probabilistic dependence, but also direct causation. 

It is important to keep in mind that the notion of direct cause is relative and dependent 
on model granularity rather than absolute. In our cancer model, tar serves as a “direct” 
cause of cancer. Yet this is clearly not true – cancer is a complex progressive disease 
with many intermediate events between any particular carcinogen such as tar, and 
eventual growth of tumors. Indeed even a detailed biological description of cancer will 
still be a model missing certain relevant mechanisms as it abstracts details of genetics, 
organic chemistry, and ultimately physics. As absolute notions of direct cause are very 
difficult indeed, we settle for a much simpler model-specific notion of direct cause: an 
arrow from X to Y in a causal diagram simply means that given the granularity of 
causal mechanisms we have chosen, X influences the mechanism that determines Y 
without mediation of any other observable variable at the chosen level of granularity. 

The additional meaning carried by directed arrows in causal diagrams allows us to 
interpret the notion of interventions or experiments graphically. An intervention on a 
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variable X, denoted by do(x) in [67], corresponds to an abstract operation where the 
value of X in a causal model is set to x, regardless of the normal behavior of X as 
dictated by the model. In other words, though ordinarily X is a function of its parents 
in the graph, the intervention replaces this function by one that sets X to a constant x. 
The distribution of the remaining variables V \ {X} is termed an interventional dis-
tribution, and denoted either as P(v \ {x} | do(x)) or Px(v \ {x}). There is a very simple 
way to graphically represent both conditional independences and direct causal claims 
encoded by Px(v \ {x}). The key observation is that do(x) ignores parents of X, but 
leaves all other causal mechanisms and random variables as is. Intuitively, the way to 
represent do(x) graphically would be to remove all arrows pointing to X, while leaving 
the rest of the causal diagram intact. In fact, it can be shown that the resulting graph, 
called the mutilated graph, is the correct representation of both conditional independ-
ences and direct cause claims in the causal model after the intervention. 

An interventional distribution PX(y) represents the intuitive notion of “causal effect,” 
where do(x) is an action, and PX(y) is the effect of this action on Y. Because causal 
models are probabilistic, the effects are themselves probabilistic. An alternative notation 
for causal effect of do(x) on a single variable Y is the so called counterfactual vari-
able, denoted by YX. YX can be interpreted to mean, “the value Y attains in a hypo-
thetical situation where variables X are set to the values x.” 

What is interesting about counterfactual variables is that it is possible to define pro-
bability distributions over a set of them, even if two individual (counterfactual) 
variables in the set disagree on the values of some variables (in the original model). 
For instance, we may ask what the effect is of smoking on cancer among the sub-
population of non-smokers. Intuitively, this effect may be different from that in the 
general population, as non-smokers may differ in important ways from smokers that 
would influence their susceptibility to cancer. If X is the variable representing smoking 
(with values x meaning smoker and x′ meaning non-smoker), and Y is the variable 
representing the presence of cancer (value y), then the above effect can be represented 
by the counterfactual probability P(Yx′ = y | X = x), in other words the probability of 
the counterfactual variable “the effect of smoking on cancer” assuming value cancer 
conditioned on observing non-smoker. Note that the two variables involved in this 
distribution, X and Yx′ disagree on the value of X. Yet despite this conflict, this 
probability is well-defined from the causal model, and generally is not equal to 0. In 
general, if you have a set of counterfactual variables Y kXk,…, Y kXk, the joint probability 
P(Y 1X1 = y1,…, Y kXk = yk) is defined as: 
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In a causal model there are two kinds of variables: the observed variables, V, whose 
values are determined by means of a function of other variables; and the unobserved 
variables, U, whose values are determined by a probability distribution P(u). What this 
means is that if we fix the values of U, the model becomes deterministic. Thus, to figure 
out the probability of P(Y kXk = y1,…, Y kXk = yk), which is just a set of value assignments 
to counterfactual variables, all we have to do is add up the probabilities of all value 
assignments of U that give rise deterministically to the value assignments we want. 
This summation is precisely the above definition. 

Counterfactual probabilities have an intuitive graphical representation in terms of pos-
sible “worlds.” In our smoking/cancer example from before, there are two possible 
worlds: one in which a person does not smoke, and another in which a hypothetical 
intervention making that same person smoke is made. Each such world can be  
represented by a causal diagram. The first world is represented by the original causal 
diagram, as shown in Fig. 8.9, while the second is represented by a mutilated graph 
where arrows incoming to smoker are cut, signifying an intervention at that variable. 
These two worlds are not completely disjoint: the intuition is they share their histories 
up until the point where the intervention is performed in one but not the other world. 
We represent these shared histories by making sure these two causal diagrams share 
their unobservable U variables. The result in our example, which consists of only two 
worlds, is known as the twin network graph [8], and is shown in Fig. 8.10: the world 
on the left is the original causal diagram, while the world on the right is the mutilated 
graph, where the arrow from U2 to smoker is absent. The distribution we are interested 
in corresponds to the distribution over the variable cancer* given that we fix smoker 
on the right, and observe non-smoker on the left. The twin network graph can be 
generalized to other queries, including those involving more than two worlds,  
although there are additional subtleties in such cases [82, 83]. 

Figure 8.10: A twin network graph for the query, “The effect of smoking on cancer
among non-smokers.” The (green) italicized variable, non-smoker, is conditioned upon
while smoker is fixed.  
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Causal inference in graphical models deals with three major problems: representation, 
deduction, and induction. The representation problem consists of translating informal 
causal questions of interest to doctors and scientists, such as, “What is the effect of 
smoking on cancer,” or, “Does vitamin C help fight the common cold?” into a formal 
statement in the language of interventions and probability. Typically this formal 
statement will be an interventional or counterfactual probability distribution. The 
deduction problem, also known as the identification problem, consists of finding 
estimates for these distributions given certain causal assumptions represented by a 
causal diagram, and partial knowledge of the causal model itself, typically represented 
by a probability distribution over observable variables. Lastly, the induction problem 
consists of learning aspects of the causal diagram from observations, and certain 
assumptions about the causal model that allow conclusions about the graph to be 
drawn from the pattern of conditional independences observed in the data.  

Latent Projections and their Causal Interpretation 

The meaning of arrows in Bayesian networks is closely tied to conditional independ-
ence, as a variable in a Bayesian network is independent of its non-descendants given 
its parents. This probabilistic interpretation of arrows also holds in graphical causal 
models, because the d-separation criterion is valid in causal diagrams just as it is in 
Bayesian networks. However causal models entail an additional, causal interpretation 
of arrows. Informally, this interpretation asserts that an arrow from X to Y means that 
X is a direct cause of Y. It is possible to translate this statement into the language of 
interventions. Before doing so, it would be beneficial to introduce a certain canonical 
form for causal diagrams, known as a latent projection. 

Causal diagrams, as described thus far, are merely DAGs with certain nodes marked as 
being latent (i.e., unobserved). This representation, though it closely mirrors Bayesian 
networks, can be inconvenient as sections of d-connected paths containing only latent 
variables really act like a single edge between observable nodes, but are cluttered with 
multiple intermediate latent nodes. The latent projection representation is meant to 
remedy this problem. In this representation, a d-connected section from an observable 
node X to an observable node Y consisting entirely of latent variables is replaced by 
one of two kinds of edges: 1) if the path starts with an arrow away from X and ends in 
an arrow into Y, the edge is directed; or 2) if the path starts with an arrow into X and 
ends in an arrow into Y, the edge is bidirected. Properties of d-separation guarantee 
that if the path starts with an arrow away from X and ends with an arrow away from Y, 
then the path cannot be d-connected (as we cannot condition on latent variables). Fig. 
8.11a shows the latent projection for the causal diagram in Fig. 8.9a. The intuitive 

 

interpretation of edges in a latent projection is that a directed edge represents “direct  
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causal influence” given the granularity of the model and a bidirected edge represents 
“confounding” or “unobserved causes.” 

Recall that edges in a causal diagram are drawn based on the functional relationships 
between variables in a causal model. Given that these functional relationships are 
modified by interventions, we would expect the assumptions encoded by arrows in 
causal diagrams (and latent projections) to have something to do with interventions. 
It turns out that the absence of a directed arrow from X to Y in a latent projection 
implies that Px,Z (y) = PZ (y), where Z is the set of parents of Y, while the absence of 
a bidirected arrow between X and a set Y = {Y1,…, Yk} implies that XZ ╨ Y1

Z1,…, Yk
Zk, 

where Z is the set of parents of X, and Zi is the set of parents of Yi. Given the inter-
pretation of edges in a latent projection, these implications make sense. If X is not a 
direct cause of Y, we expect that fixing X will not affect Y once all direct causes of Y 
are fixed. Similarly, the absence of hidden causes between X and Y implies that 
fixing their respective observable direct causes should render them independent. 
Independence in latent projections can be checked by a generalization of d-separation 
to graphs containing bidirected arcs [75]. Next, we will show that knowledge of the latent 
projection along with a probability distribution over observable variables can be suffi-
cient for answering a wide range of causal queries of interest. 

Identification 

Interventional distributions P(y | do(x)) capture the notion of causal effect of an action. 
Many clinical questions can be phrased in terms of causal effects (e.g., Did exposure 
to substance X cause this patient’s bout of asthma?). These questions can be formal-
ized with results of a particular intervention in a particular (although possibly very 
complicated) model. Certain other questions, like ascertaining the effect of smoking 
on non-smokers, can be phrased in terms of distributions of counterfactual variables 
(which can be more complicated than interventional distributions). It is thus very 
important to obtain estimates of these distributions. How can this be done? 

If we have access to the entire causal model – that is, we know exactly the distribution 
of every parentless variable and the functions that determine variables from their 
parents – we can calculate any quantity derived from the model, including both causal 

Figure 8.11: (a) A latent projection of the smoking/cancer causal diagram. (b) A simple
causal diagram. 
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effects and counterfactuals. However, this degree of knowledge is often not realistic. 
Even if we knew all the correct parent-child relationships in the causal model for 
cancer, for example, we would not know the functional relationships to the level of 
determinism, and we certainly would not know the exact distributions of all back-
ground factors that may contribute to cancer. 

An alternative method is to actually intervene in the domain and observe the results, 
such as in performing a randomized (clinical) control trial (e.g., where a test group is 
made to smoke and the control group is made not to). Naturally, there are problems 
with this approach as well – some interventions are very expensive and possibly 
irreversible, and some are illegal or immoral. Finally, the effects of some interventions 
may be disastrous. It would be very valuable, therefore, to predict the effects of inter-
ventions before actually performing them. The problem of predicting causal quantities 
of interest from available information is known as the identification problem. 

What information is typically available? We are certainly free to collect data on 
observable variables in the system – with enough of such data we will be able to have 
an estimate of the joint distribution over these variables, which we have denoted as 
P(v). It is also typically assumed that we know the correct causal diagram. In many 
domains such causal knowledge may be elicited from experts, or learned by automated 
causal discovery algorithms [43, 85, 88, 97]. Even if only aspects of the graph can be 
learned, it is possible to identify many causal effects of interest, although for simplicity 
we assume that the entire causal diagram is known. 

It might seem counterintuitive that the effects of an action can be predicted from pas-
sive observations. Fig. 8.11b illustrates a simple example where this kind of prediction 
is plausible. In this diagram, we assume smoking causes cancer, and there are no hidden 
common causes. The claim is that in this diagram, P(cancer | do(smoking)) = P(cancer 
| smoking). To see why this statement might be true, consider the visual interpretation 
of conditional dependence and causal effect. If we observe the value of a particular 
variable, say X, in a causal model, this observation influences other variables in the 
model that are dependent on X. As d-separation captures independence, we can view 
the changes introduced by the observation as flowing along d-connected paths away 
from X. This analogy with flow is, in fact, the basis for message passing algorithms 
that efficiently implement inference in Bayesian networks [66]. Some d-connected 
paths that lead away from X start with arrows pointing towards X, and some start with 
arrows pointing away from X. The former paths are called backdoor paths, while the 
latter are called frontdoor paths. 

We can view an effect an intervention do(x) has on other variables in a similar way. 
The only difference between observing X and fixing X is that the latter ignores the 
values of parents when setting X, which means the resulting graph does not contain 
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arrows pointing towards X. Thus, the only d-connected paths along which the effect 
of the intervention flows are frontdoor paths. But in the graph in Fig. 8.11b, all  
d-connected paths from smoking are frontdoor paths. Thus the effect of observing 
smoking and fixing smoking is the same. 

Consider the more complicated graph in Fig. 8.11a, and assume we are interested in 
the effect of physical changes in the body due to environmental exposure on cancer. 
The physical changes here are represented by tar and environmental exposure by 
smoking. In this graph, P(cancer | do(tar)) is not equal to P(cancer | tar), as there is a 
backdoor d-connecting path (through smoking) from tar to cancer, so the previous 
reasoning does not apply. However, we know from d-separation that paths can be 
blocked by conditioning. In fact the above backdoor path can be blocked by condition-
ing on smoking. Thus, if we were interested in the conditional effect P(cancer | smoking, 
do(tar)), that is the effect of tar on cancer among either smokers or non-smokers, then 
we could equate this effect with P(cancer | smoking, tar), as the only backdoor path is 
d-separated because we conditioned on smoking. However, we are not interested in the 
effect in a particular subpopulation with certain smoking habits – we are interested in 
the effect in the overall population. What we can do is average above conditional 
effects, weighted by the prior probability of smoking. In other words, we can estimate 
P(cancer | do(tar)) to be equal to ∏s P(cancer | smoking = s, tar)P(smoking = s), where 
s ranges over all possible smoking levels from non-smoker to multiple packs a day. 

It turns out that this method generalizes, and whenever we can find a set Z such that Z 
does not contain descendants of X and after Z is conditioned on, there are no d-
connected backdoor paths from X to Y, then P(y | do(x)) is equal to ∑ZP(y | z, x)P(z). 
This is known as the backdoor criterion [67]. The set Z must obey the above restrictions 
so it can block precisely all backdoor paths from X but no frontdoor paths. 

In some cases we may be interested in a causal effect such that no such set Z can be 
found. For instance, in the same graph, we may be interested in the effect of smoking 
on cancer. Smoking and cancer share a bidirected arc which forms a backdoor  
d-connecting path which is impossible to block by d-separation, since bidirected arcs 
represented hidden common causes, and hidden variables by definition may not be 
conditioned on. Surprisingly, even in this case this effect can be identified. The intuition 
here is that the effect P(cancer | do(smoking)) can be decomposed in this graph into 
two effects: the effect of smoking on tar, that is P(tar | do(smoking)); and the effect of 
tar on cancer, that is P(cancer | do(tar)). Specifically, P(cancer | do(smoking)) = 
∑tP(cancer | do(tar = t))P(tar = t | do(smoking)), where t is possible levels of tar we can 
find built up in the lungs. We will justify this decomposition based on the assumptions 
encoded by the given causal graph a little later, but given that this decomposition is 
valid, it becomes a simple matter to estimate each of the two new effects. P(tar | 
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do(smoking)) is equal to P(tar | smoking) as the only backdoor path from smoking to 
tar is d-separated (because we do not observe cancer). On the other hand, we can ap-
ply the backdoor criterion to identify P(cancer | do(tar)). Putting everything together, 
we obtain: 

∑ ∑=
t s

sPstPtPdoP )(),|()|())(|( cancersmokingsmokingcancer  

In fact, whenever we can find a set Z such that Z intercepts all directed paths from X 
to Y, there is no backdoor path from X to Z, and all backdoor paths from Z to Y are 
blocked by X, we can estimate P(y | do(x)) as ∑ZP(z | x)∑x′P(y | x′, z)P(x′). This result 
is known as the frontdoor criterion [67]. Naturally, there are some cases where an 
effect is identifiable, but neither the frontdoor nor backdoor criteria apply. Consider 
Fig. 8.12, where we have added a new node representing socioeconomic background, 
which may have a causal influence on smoking, tar buildup by other means, and cancer 
by means other than smoking. We are interested in the joint effect of a particular 
background and tar on cancer in this graph. In fact, there is a general method of com-
puting causal effects from assumptions embedded in the graph, known as do-calculus 
[67]. The do-calculus consists of three rules: 

Rule 1. PX(y | z, w) = PX(y | w) if (Y ╨ Z | X, W)GX̄ 
Rule 2. PX,Z(y | w) = PX(y | z, w) if (Y ╨ Z | X, W)GX̄,Z 
Rule 3. PX,Z(y | w) = PX(y | w) if (Y ╨ Z | X , W) GX̄,Z(W)¯  

where Z(W) = Z \ An(W)GX̄. Here GX̄ denotes the graph obtained from G by removing 
all arrows pointing towards X, and GX̄,Z is obtained from G by removing all arrows 
pointing towards X and all arrows pointing away from Z. The statement (Y ╨ Z | X) 
denotes d-separation of Y and Z given X in the appropriate graph. 

Though the notation may be daunting, what the rules assert is fairly straightforward. 
Recall that the graph GX̄ is precisely the causal diagram that represents conditional 
independence statements in the model after an intervention do(x) is performed. If Y is 
d-separated from Z given X and W in this graph, this implies that Y is independent of 

by either the backdoor or frontdoor criteria. 
Figure 8.12: A causal graph where P(cancer | do(tar, background)) is not identifiable
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Z given X and W in the post-interventional distribution PX(v \ x). But by definition of 
conditional independence this can be rewritten as PX(y | z, w) = PX(y | w). Rule 1 thus 
asserts that d-separation in the post-intervention graph captures post-intervention 
independence. Rule 2 states that if all backdoor paths from Z to Y are blocked by con-
ditioning on W and fixing X, then it makes no difference for the purpose of PX(y | z, w) if 
we fix or condition on Z. We used this observation in discussing the backdoor  
criterion; Rule 2 merely codifies it in a more general way. Finally, Rule 3 governs when 
interventions are irrelevant, though unfortunately the precise conditions are somewhat 
complex. We illustrate the usage of these rules by identifying P(cancer | do(tar, back-
ground)) in Fig. 8.12. To make the derivation easier to read we shorten variable names 
in this query as P(c | do(t, b)), and show the rule used in each derivation above the 
equality symbol (P above equality means the identity follows by rules of probability): 
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As another application of do-calculus, we can justify the use of the frontdoor criterion 
in the graph shown in Fig. 8.11a by showing that P(cancer | do(smoking)) = ∑t (cancer 
| do(tar = t))P(tar = t | do(smoking)): 
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Rules of do-calculus are more general than specific graphical criteria such as the back-
door and frontdoor criteria. One may reasonably wonder whether do-calculus can be 
used to identify every identifiable causal effect (i.e., is it complete) – and in fact, the 
answer is yes [38, 81, 82]. Moreover, there exist graphical criteria that precisely char-
acterize identifiable effects, and polynomial algorithms that directly construct expressions 
for such effects in terms of P(v), without having to search for a valid do-calculus 
derivation. Similar algorithms exist for identifying counterfactual queries like, “the 
effect of smoking on cancer among non-smokers.” Further details can be found in the 
literature [81, 82, 83]. 
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Discussion and Applications 
The notion of causality and clinical medicine are inherently intertwined. Physicians 
are trained to think in terms of causal relationships when examining a patient: the 
standard diagnostic methodology taught in medical school (i.e., differential diagnosis) 
asks the physician to mentally develop a list of possible causes (i.e., diseases) and then 
to narrow the list given observed effects (i.e., a patient’s symptoms). But a physician’s 
understanding of causality is primarily based on intuition or so-called “implicit” case-
based knowledge from past experiences, rather than on a formal and complete under-
standing of the underlying disease process, or “explicit” knowledge. Physicians 
equipped with the knowledge and the tools to communicate using a formal representation 
for expressing causal assumptions can potentially better organize and explain their 
thought processes, resulting in improved models of disease and enhancing methods for 
diagnosis and treating patients. 

[45] first proposed the systematization of diagnostic reasoning processes using a com-
bination of set theory and Bayesian reasoning to clearly define factors involved in a 
disease; and starting in the late 1970s, several attempts were made to computerize this 
process [64]. One such system, CASNET, used a network of pathophysiological states 
to describe a disease as a pattern of causally-related states [98]. Diagnosis was per-
formed by first determining which states were valid given certain observations, then 
matching the pattern of (in)valid states against a disease database. While able to 
hypothesize the presence of many states concurrently, CASNET could not determine 
whether a causal relation existed among these states. Later efforts used scoring systems 
to compute a likelihood value based on clinical observations and matching observed 
vs. expected findings [65, 68]. And finally, CADUCEUS encoded causal knowledge 
using four specific types of relationships between diseases and clinical states (cause-
of, caused-by, develops-into, complications-of) [69]. During the late-1980s, systems 
started utilizing a more complex representation that combined symbolic reasoning 
approaches with the Bayesian approaches explored in earlier works. Although Bayesian 
belief networks continue to be a commonly used framework for describing dependencies 
and causal relationships in medical data, care must be taken in using them for drawing 
causal conclusions: as we saw, their construction does not necessarily lead to directed 
arrows representing direct causation, as is the case in graphical causal models. A non-
causal Bayesian network is only capable of correctly answering questions that can be 
derived from the joint distribution, such as diagnostic questions phrased as a conditional 
distribution, association questions between variables of interest, and so on. Causal 
graphs, on the other hand, permit a wide variety of truly causal questions to be placed 
on a firm mathematical footing, and estimated given available information. 
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Presently, one key challenge within the informatics community is in the construction 
of comprehensive disease models from clinical datasets. The expanding contents of 
electronic medical records (EMRs) provide a rich opportunity to create robust population-
based models that can elucidate disease processes and inform evidence-based medical 
practice. However, apart from the problems of standardizing patient data access and its 
contents, using this information to create disease models faces several technical barriers. 
First, model development must address the issue of completeness. Many models thus 
far have only addressed a well-circumscribed set of variables within a single domain; 
but physicians rarely make decisions based on a single source of information. Disease 
models must come to employ the full range of clinical observations that are made daily 
by physicians, blending multiple perspectives (radiology, pathology, genetics, etc.) 
into a single, comprehensive decision-making tool. Likewise, a temporal perspective 
can enrich the models: constructs such as DBNs can better denote change as it pertains 
to the course of disease, and assist in the selection of treatments to obtain desired out-
comes. In doing so, an explanative framework for observations over time that spans 
multiple spatial scales – from molecular to organism – can perhaps be realized, wherein 
phenomena at the micro-level can be used to explain effects at the macro-level. Second, 
disease models must be made “portable.” A common complaint about Bayesian net-
works, for example, is that the probabilities derived for one site may not be representative 
of another (e.g., the validity of the BBNs joint probability distribution may be question-
able). Thus, the representations used to characterize a domain must either be sufficiently 
widely used/accepted, or a ready means to recompute CPTs from site-specific data 
must be supported. In a related vein, methods are needed to validate a given disease 
model against a given site’s population.  

We conclude by touching upon several practical issues in creating BBNs and in per-
forming causal inference when dealing with the particulars of clinical patient data. 

Building Belief and Causal Networks: Practical Considerations 
The procurement of patient case data to be used for creating a disease model must pro-
ceed with caution such that measurements are as accurate as possible and specification 
of findings and their content is formalized and precise. To this end, work has looked at 
linking a formal data model with a BBN; specifically, the phenomenon-centric data 
model (PCDM, see Chapter 7) to a graphical model. The relationships delineated in a 
BBN can be seen as a subset of the overall PCDM. Fig. 8.13 illustrates a bi-level 
stratification used to connect the two models: the PCDM subsumes the probabilistic 
graphical model, with specific mappings between findings, theories, and phenomena to 
evidence variables within the disease model BBN. The concept of evidence and 
hypotheses within the PCDM are then bound to a directed path within the BBN, 
establishing the rationale for the observations and clinical findings. In creating the  
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Figure 8.13: Stratification of a Bayesian belief network with the phenomenon-centric 
data model. Data from the PCDM is used to compute the CPTs defined in the BBN. 

PCDM-BBN connection, the source of information for a given evidence variable is 
linked to an underlying clinical data source through the PCDM database.  

While this strategy helps facilitate computation of probabilities from structured patient 
data, certain issues remain, including: ensuring that sufficient data is available; taking 
into account intrinsic uncertainty or error with clinically-derived observations; and 
handling any potential bias that may arise in the data collection process. Additional 
discussion regarding the construction of BBNs can be found in [23, 89, 94]. 

Accruing Sufficient Patient Data 

As we have shown, there exist sophisticated methods for solving deductive causal 
inference problems in the presence of uncertainty, given the knowledge of the joint 
distribution over observable variables, and the causal assumptions represented by the 
graph. Unfortunately, in practical settings both of these givens are problematic. In 
many domains where estimating causal effects is important, such as epidemiology or 
biomedical informatics, the amount of samples available for estimating the observable 
joint distribution may be quite small. When few outcomes are available relative to the 
number of covariates, reliable estimation of many parameters is not possible using 
maximum likelihood estimates [34], thereby complicating the construction of the 
CPTs. What this means in practice is that the methods we discussed for estimating 
causal effects, such as the backdoor criterion, must be replaced by small sample 
versions using a number of statistical techniques. 
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Propensity scores. One common way of dealing with a small amount of data is to use 
propensity scores [79]. Assume we are interested in estimating the effect P(y | do(x)), 
and the backdoor criterion happens to hold with set Z (i.e., P(y | do(x)) = ∑ZP(y | x, 
z)P(z)). If the number of samples for estimating P(v), and thus the two probabilities 
P(z), and P(y | x, z) is small, the resulting effect estimate will not be very good. In par-
ticular, if the cardinality of the Cartesian product of the value sets of variables in Z is 
much larger than the number of samples, it does not make sense to use P(z) or P(y | x, 
z) directly. A statistical trick that has been developed to handle this situation is to 
make use of the propensity score L(z), which is defined as the conditional distribution, 
P(x | z). Note that if X and Z are discrete, L(z) is a table mapping values of Z into a 
real number between 0 and 1, namely the probability of X assuming value x given that 
we observe values z. As L(z) is a function of Z, a set of random variables, it is itself a 
random variable. Knowing the value of this random variable makes X and Z independent, 
that is X ╨ Z | L(z). If plotted, L(z) will look like a set of points between 0 and 1, 
with the number of points equal to ∏k

i=1|Zi|, where {Z1,…, Zk} = Z. If the function  
is “nice enough,” these points will cluster into a few large groups, which can be 
well-approximated by a small set of real numbers, l1,…, lm, which can be estimated 
from limited samples. It can be shown using the above independence that ∑ZP(y | x, 
z)P(z) = ∑m

i=1P(y | x, li)P(li). 

Structural equations models. Another strategy that can have implications even in the 
large sample case is to make parametric assumptions about the graphical causal 
model – that is, rather than assume the functions relating variables and distributions 
over unobserved variables are arbitrary, we can restrict functions and distributions to 
certain parametric families. Typically, linear functions and normal distributions are 
assumed, which results in a class of graphical causal models known as structural 
equation models (SEMs) [33, 42, 100]. The observable distribution P(v) in SEMs is 
always a multivariate normal distribution and can always be renormalized to have a 0 
mean. Thus, this distribution can be fully characterized by the covariance matrix, Σ, 
which is determined by the number of parameters which grows quadratically with the 
number of observable variables, rather than exponentially as is the case in general. To 
be more precise, each function in an SEM is of the form Yj = ∑i cjiYi + εj , where εj is a 
noise term, and Cov(εi, εj) is the i, j entry in a matrix that, together with the matrix of 
coefficients cji, result in the covariance matrix Σ over observable variables. The coeffi-
cient cji itself can be thought of as representing the direct effect of Yi on Yj. As all 
functions are linear, this direct effect is a single number, not dependent on the assign-
ments of values to other parents of Yj. An SEM is said to be identified if every direct 
effect coefficient cji can be computed in terms of the covariance matrix Σ. SEMs are 
convenient not only because it takes less samples to obtain reliable estimates of causal 
effects, but it is also possible to identify certain causal effects that cannot be identified 
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in general. Consider for instance Fig. 8.14, where we are interested in computing the 
direct effect of smoking on cancer. In an arbitrary non-parametric causal model, this 
corresponds to identifying P(cancer | do(smoking)). It is not difficult to show that 
this effect is not identifiable in this graph. All we have to do is find two causal models 
that agree on the observable distribution P(v), but disagree on the effect in question. 
There are many counterexamples with these properties; here we give an uncomplicated 
one where every variable is binary. The way in which background and smoking are 
related is not important for this example, so we omit discussion of the background 
variable. Let the hidden parent of smoking and cancer be a fair coin, and assume the 
function relating that parent and smoking is identity (i.e., smoking is just equal to its 
parent), and let the value of cancer be determined to be the exclusive or (bit parity) of 
its parents in one model, and equal 0 in the other. It is easy to see that the observa-
tional behavior of the two models is identical, as the bit parity of equal values is 0. 
However, intervening on smoking cuts the link from the hidden parent, and reveals the 
different functional relationship between cancer and its parents in the two models. 

In SEMs, by contract, it can be shown that the direct effect coefficient relating smok-
ing to cancer is identifiable from Σ. The intuition is that the correlation between two 
variables in an SEM can be decomposed, due to the linearity of the model, into a sum 
of terms where each term corresponds to the portion of this correlation that “flows” 
along a particular d-connected path between these variables. Each term consists of a 
product of coefficients corresponding to edges on this path. This method is known as 
Wright’s rule of path analysis [100]. In our example, if we let the direct effect coeffi-
cient of background on smoking equal α, and the direct effect coefficient of smoking 
on cancer equal β, then the correlation of background and cancer, that is σB,C is equal 
to α ∗ β, by Wright’s rule, while the correlation of background and smoking, that is 
σB,S is equal to α. Hence, β = σB,C/σB,S. In general, we can always identify the direct 
effect coefficient of X on Y if we can find a variable Z that is dependent on X, but 
independent of all error terms that have an influence on Y not mediated by X. Such a Z 
is called an instrumental variable (it is an instrument by which the causal effect may 
be identified) and the method is called the method of instrumental variables. Instrumental 
variables can be used in non-linear models as well, though appropriate use then 
becomes a rather technical matter. Another strategy for dealing with non-identifiable 
effects, if making parametric assumptions is not faithful to the domain, is to try to find 

Figure 8.14: A causal graph where P(cancer | do(smoking)) is not identifiable in
general, but is identifiable using linear Gaussian models. 
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bounds for the effect, and hope that these bounds either restrict the effect sufficiently 
to permit causal conclusions, or collapse to a point estimate entirely [7, 91]. 

Dimension reduction techniques. There are many more methods for estimating causal 
effects from limited samples. Statistical learning theory indicates that learning pro-
babilities in a lower-dimensional (feature) space can improve results while using less 
data [96]. To this end, dimensional reduction techniques can be used, in effect joining 
several variables together to provide a more compact representation for which  
the CPTs can be computed. Notably, the use of dimensionality reduction comes at the 
potential expense of some obfuscation as the combination of variables can remove the 
intuitiveness of key variables within a graphical model. Examples of linear dimen-
sional reduction methods are the well-known principal component analysis and linear 
discriminant analysis (PCA, LDA). Non-linear dimensional reduction methods include 
kernel PCA, Isomap [90], and multidimensional scaling (MDS). Comprehensive 
reviews of these and other techniques can be found in [13, 95].  

Handling Uncertainty in Data  

Clinical data serves as a proxy for underlying phenomena and thus is subject to both 
uncertainty and error. Qualitative uncertainty results from a lack of definitive knowledge 
(e.g., a patient is unsure if he had a fever). In such cases, which are frequently 
documented in medical reports, the degree of certainty expressed in the statement 
should be maintained as part of the feature extraction process (see Chapters 6 & 7 with 
regards to natural language processing and the use of the PCDM to record uncertainty). 
The use of “uncertain” evidence and the issues in interpreting evidential statements 
can then be taken into account within a disease model. For instance, BBN variables 
with qualitative uncertainty can model an unknown state that represents this uncer-
tainty or use a parent binary variable representing a certain/uncertain state to condition 
the variable. Quantitative measurement error arises from inherent limitations of the 
precision of an instrumentation. [86] provides an example of this problem using 
microarray data in gene expression networks, wherein conditional independence may 
not hold because of instrumental error bounds; however, it is noted that if the 
noise/error is sufficiently small relative to the observations, then conditional inde-
pendence may hold approximately. In cases where measurement error is known or can 
be modeled, it is also possible to adopt the use of a “measurement idiom” that com-
bines an observed value with estimation accuracy [57]; this paradigm is commonly 
encountered in sensor networks using a noisy sensor model [21]. For example, if a 
discrete measured variable, X, is modeled by a noisy observation, X', which in turn 
is given by a continuous distribution (e.g., Gaussian), we can interpret X' as “soft 
evidence” for X with a Bayes factor.  
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Noisy-OR. One method for handling error within belief networks is to model it explicitly 
as noise. The noisy-OR construct is frequently used for this purpose, representing a 
single observed effect being the result of one or more possible causes with an adjunctive 
noise factor (called a leak variable) added to represent non-modeled (perhaps  
unknown) causes (Fig. 8.15). A logical operation table is used to dictate the underly-
ing behavior of the node, similar to the classical logical-OR operator used in digital 
circuits. Three assumptions are made: 1) that conditional independence exists between 
each cause; 2) that all possible causes are modeled, with a leak variable used to represent 
the non-explicitly modeled component (such as noise/error); and 3) that any element 
that is inhibitory to one cause does not inhibit any other cause (e.g., if X causes Y, and 
Z causes Y, but A inhibits X, then A does not also inhibit Z) and that these “inhibitors” 
are not modeled as nodes but rather as “noise parameters” within the probabilities. 
Hence, in a noisy-OR component, if none of the parents is true, then the effect is not 
true with 100% certainty unless the leak variable is true. If one of the parents is true, 
then the probability that the event is true is equal to the probability associated with that 
parent’s noise parameter. Consider Fig. 8.15: to implement this noisy-OR model, four 
probabilities are needed (the number of causes, three; plus one for the leak variable). 
Let P(c1) = 0.75, P(c2) = 0.67, P(c3) = 0.9, and P(l) = 0.05. The CPT for the noisy-OR 
effect node can be compactly represented by P(e | α) = (1 - P(l))∏θqi, where e is the 
effect, α are causes (c1, c2, c3), and θqi is the probability that the suppressor parameter 
for a given cause is active (i.e., θqi= 1 - P(ci)) (Fig. 8.15c).  

Handling Selection Bias  

Non-experimental data such as from clinical observations can be subject to selection 
bias, resulting in a dependency between variables due to some selection criteria [32]. 
From a statistical viewpoint, tests can be performed to assess the population dataset: 

Figure 8.15: (a) The noisy-OR can be used to model parent nodes all contributing to a
given child, such as this BBN, with some associated noise or error. (b) The idea is to
model the child node’s CPT like a logical-OR gate with added noise, represented as
the leak variable, l. (c) The calculation of the resultant CPT for the child node is
shown based on the prior probabilities of the parent and the leak variable’s probability. 



450 I. Shpitser 

for example, a Mantel-Haenszel test can be used to compare covariate distributions; or 
a Kolmorgorov-Smirnov test to compare marginal distributions. From the perspective 
of constructing a BBN or causal model, several approaches have been proposed to iden-
tify selection bias in causal frameworks. [17] describes conditions under which structure 
and parameters can be learned from conditional independence tests given selection 
bias; [18] extends the use of a selection variable along with the number of (un)sampled 
cases, combined with prior beliefs, to compute a posterior probability. [87] outlines 
the fast causal inference (FCI) algorithm to detect selection bias in the presence of 
latent variables. We note, however, that selection bias is still an ongoing challenge – 
for instance, the majority of results on identification of causal effects assume no selec-
tion bias. Though recent work provided some identification results in graph structures 
inferred under possible selection bias [105], the problem in general remains open. 
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Chapter 9 
Disease Models, Part II: Querying & Applications 
WILLIAM HSU AND ALEX A.T. BUI 

n the previous chapter, the mathematical formalisms that allow us to encode 
medical knowledge into graphical models were described. Here, we focus on how 
users can interact with these models (specifically, belief networks) to pose a wide 

range of questions and understand inferred results – an essential part of the healthcare 
process as patients and healthcare providers make decisions. Two general classes of 
queries are explored: belief updating, which computes the posterior probability of 
the network variables in the presence of evidence; and abductive reasoning, which 
identifies the most probable instantiation of network variables given some evidence. 
Many diagnostic, prognostic, and therapeutic questions can be represented in terms 
of these query types. For models that are complex, exact inference techniques are 
computationally intractable; instead, approximate inference methods can be leveraged. 
We also briefly cover special classes of belief networks that are relevant in medicine: 

of propositional variables through the use of first-order logic; influence diagrams, which 
provide a means of selecting optimal plans given cost/preference constraints; and 
naïve Bayes classifiers. Importantly, the question of how to validate the accuracy of 
belief networks is explored through cross validation and sensitivity analysis. Finally, 
we explore how the intrinsic properties of a graphical model (e.g., variable selection, 
structure, parameters) can assist users with interacting with and understanding the 
results of a model through feedback. Applications of Bayesian belief networks in 
image processing, querying, and case-based retrieval from large imaging repositories 
are demonstrated. 

Exploring the Network: Queries and Evaluation 
Inference: Answering Queries 
The usefulness of a belief network (and other graphical models) lies in the ability to 
ask questions of the model. The output of such queries is a probability that assesses 
some likelihood of the states across the variables and modeled joint probability 
distribution, and can provide diagnostic/prognostic guidance and/or classification. 
Inference is the process of computing the probabilities of each variable based on 
evidence that has been specified. The inference process begins when the user instantiates 

I 

the model by assigning one or more variables to a specific state. Dependent on the  

probabilistic relational models, which provide a compact representation of large numbers 
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Figure 9.1: Hypothetical Bayesian belief network relating causes of stroke and hip 
fracture. The boxes shown per variable are called node monitors, and graphically 
indicate the potential values taken on by the variable, along with the current probability. 
In this case, the BBN shows the calculation for a posterior marginal for age, gender, 
and stroke given the evidence that the patient has a hip fracture; grayed-out node 
monitors are inactive. 

provided evidence and the nature of the query, a model can invoke methods for belief 
updating or abductive inference to compute the probabilities needed to provide an 
answer. This section describes algorithms involved in both types of queries, and 
several of the issues surrounding the efficient computation of query probabilities. 

Belief Updating 

Belief updating involves the computation of a posterior probability for one or more 
variables in the network, given the instantiation of other nodes in the model (i.e., 
evidence). Several types of queries are associated with belief updating, described 
below. 

Probability of evidence. The simplest query that can be posed to a BBN is to ask for 
the probability of some variable, X1, being instantiated to a specific value x, as 
represented mathematically by the statement, P(X = x). By way of illustration, using 
the model in Fig. 9.1, we may be interested in knowing the probability of an individual 
having a hip fracture, H (P(H = true)), given without having a stroke, S (P(S = false)). 
Here, the set of variables E = {H, S} are considered evidence variables, and the query, 
                                                           
1  As in Chapter 8, we follow standard notation with uppercase letters representing a 

random variable; lowercase letters indicating instantiations/specific values of the 
random variable; and bold characters symbolizing sets or vectors of variables. 
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P(e), is known as a probability of evidence query. Though computing the probability 
of a single variable instantiated in the model is useful, most queries involve instantiating 
multiple variables: often, we want to examine a logical combination of variables (e.g., 
the probability of a propositional sentence). For example, if we are interested in 
finding the probability of stroke or hip fracture occurring, the statement may be written 
as P(S = true H = true). The answer can be computed indirectly using one of two 
techniques. First, the case analysis method can be used to rewrite the original statement 
as a combination of instantiations of the evidence variables, P(S = true H = true) = 
P(S = true, H = true) + P(S = true, H = false) + P(S = false, H= true). By summing 
these terms, the original probability can be calculated accordingly. Alternatively, the 
auxiliary-node method adds an additional node, E, to the network with S and H as its 
parents and a conditional probability table (CPT) as follows: 
 

 

 

 
 

With this CPT, the event, E = true, is equivalent to the statement S = true or H = true.  

Posterior marginals. To see how the addition of evidence by instantiating certain 
variables in the model affects all of the other variables, the posterior marginal may be 
calculated. Given a joint probability distribution, P(X1,…,Xn), the marginal distribution 
is the probability over a subset of the variables, P(X1,…,Xm) where m < n. The marginal 
distribution can thus be viewed as a projection of the joint distributions onto a potentially 
smaller set of variables. Marginal distributions are also called prior distributions, as no 
evidence is given to affect their values. From the marginal distribution, the posterior 
marginal is computed by summing the entire joint probability distribution over the 
instantiated variables given the evidence, e: 

∑
+
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Continuing with the previous BBN, an example of such a computation would be to 
answer a query such as, what are the probable states of age, gender, and stroke given 
that the patient experienced a hip fracture? This query is depicted in Fig. 9.1; the 
boxes that visualize the probabilities for each state are called node monitors and are 
updated to reflect updated probabilities as the user inputs a new piece of evidence. For 
this query, the hip fracture variable is set to true (100%) and the remaining variables 
are accordingly computed. In general, the computation of posterior marginals in a 
belief network is considered to be NP-hard [11]. 

S H E P(E | s, h) 

true true true 1 

true false true 1 

false true true 1 

false false true 0 

˅

˅
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Figure 9.2: Example belief network with conditional probability tables shown. In 
some queries, the need for certain probabilities can be ignored if two variables are 
being compared, such as in computing the relative likelihood of two causes. 

Relative likelihood queries. In some cases, we only wish to know the comparative 
difference between two variables given some evidence. To illustrate, consider the 
basic network shown in Fig. 9.2, consisting of Boolean variables: if we observe that an 
individual is coughing and wish to know whether the cough (C) is more likely due to 
emphysema (E) or asthma (A), Bayes’ rule can be applied to compute the conditional 
probability of each explanation from the conditional probability tables: 
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Computing the likelihood ratio of the two conditional probabilities (i.e., 0.575⁄0.200), the 
cough is much more likely due to emphysema rather than asthma by a factor of 2.8. 
Note that the calculation of P(C = true) is not required if only the ratio is desired.  

Computing the probabilities. The most direct way to perform inference is to 
calculate the marginalization over non-instantiated variables. However, the number of 
terms involved in the marginalization exponentially grows with the number of variables. 
A range of efficient algorithms thus exist for answering queries involving marginals, 
including summing out, cutset conditioning, and variable/bucket elimination [18]. 
Still, in larger, more complex networks with limited resources, exact computations to 
answer queries may be taxing, if not computationally intractable; therefore a variety of 

= 0.200

= 0.575
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techniques may be used to instead approximate the desired probability. This difference 
gives rise to exact inference vs. approximate inference algorithms. We briefly describe 
some key techniques in both areas; for a more detailed discussion, the reader is 
referred to [4, 15]. 

Belief propagation (BP)2 is an iterative algorithm that was originally intended for the 
exact computation of marginals on graphical models and polytrees [57]. The core idea 
is as follows: each node, X, computes a belief, BEL(x) = P(x | E) = P(x | e+, e-), where 
E is the observed evidence contributed by evidence from the node’s parents (e+) and 
children (e-). Expanding the last term, BEL(x) can be determined in terms of a 
combination of messages from its children, λ(x) = P(e- | x), and messages from its 
parents, π(x) = P(x | e+), so that BEL(x) = αλ(x)π(x) where α is a normalization constant 
equal to (∑Xλ(X)π(X))-1. To start, the graph is first initialized such that: ∀xi ϵ E, λ(xi) = 
π(xi) = 1 if xi = ei and 0 otherwise; for nodes without parents, π(xi) = P(xi); and for 
nodes without children, λ(xi) = 1. Next, the algorithm iterates until convergence such 
that for each node, X:  

                                                           
2  Belief propagation is sometimes also referred to as the sum-product algorithm. 

 If X has received all π messages from its parents, compute π(x).  
 If X has received all λ messages from its children, compute λ(x).  
 If π(x) is calculated and all λ messages are received from all children except 

parent node Y, compute πXY(x) and send it to Y. 
 If λ(x) is calculated and all π messages are received from all children except child 

node U, compute λXU(x) and send it to U.  

Finally, compute BEL(x) on the final configuration of the nodes. BP can be implemented 
using dynamic programming methods. For the specific case of polytrees, BP provides 
exact inference in at most linear time relative to the diameter of the tree. The amount 
of computation performed per node is proportional to the size of the node’s CPT. [57] 
modifies this approach to provide approximate inference for general networks that 
may contain cycles; in this situation, the algorithm is often referred to as loopy belief 
propagation. It remains unclear as to under what situations loopy BP will converge 
(though empirical evidence supports its utility). Several variants of BP have been 
developed, including generalized BP and Gaussian belief propagation [76]. These newer 
approaches focus on restricting the set of messages being passed (e.g., only passing 
messages that are likely to convey useful information), and can be seen in terms of 
approximating the graph structure via a simpler graph on which computation is more 
feasible. 
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Figure 9.3: Transformation of a directed graph into a junction tree. (a) The original 
belief network. (b) Edge directions are removed and edges between nodes sharing 
children are created, establishing the moral graph (bold line); the graph is then 
triangulated as needed. In this case, the moral graph is already triangulated. (c) An 
elimination ordering of the variables is determined, and each node is considered 
sequentially to create cliques. In the first step, node f is examined, resulting in a node 
bef (d) The cliques are arranged in a graph, and a minimum spanning tree is determined 
using edge weights based on common variables. The final junction tree and labeled 
edges are shown with bold lines. 

Although a BBN permits one to compactly represent a distribution, its direct formulation 
is not suited for obtaining answers to arbitrary probabilistic queries. Instead, many 
(exact) inference algorithms compile an intermediate representation that can be used to 
more efficiently answer queries. A widespread construct for this purpose is the 
junction tree or join tree [33, 43], which also handles the problems associated with 
using BP on general graphs. The construction of a junction tree from a belief network 
can be abstracted in four steps:  

1. An undirected graph is constructed from the BBN, termed the moral graph, 
wherein edges become undirected and nodes with a common child are connected.  

2. Edges are added to the moral graph to triangulate the graph such that any two 
non-adjacent nodes on a cycle have an edge connecting them. Note that a graph 
can be triangulated in several ways (i.e., the solution is not necessarily unique). 
The choice of triangulation greatly affects the end result such that inferences on 
the junction tree may go from being polynomial to exponential time in some 
cases; and the challenge of determining the optimal triangulation for a BBN is 
known to be NP-hard [62]. 

3. The cliques are identified in the triangulated graph, along with a potential function 
obtained by multiplying P(X | Pa(X)) for each node X in the clique and where 
Pa(X) represents the parents of X. 

4. From the graph constructed by the clique identification step, a minimum spanning 
tree can be constructed, resulting in the final junction tree. 
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Central to Steps 3 & 4 is an elimination ordering that considers each node in sequence 
and determines a set of immediate nodes not yet seen in order to form cliques; the choice 
of variable order affects the final tree. Fig. 9.3 shows an example of this process. 
Given this tree, BP can then be applied to compute a probability using the calculated 
potential functions. The standard junction tree process is structure-based, and the size 
of the final structure is dependent only on the network topology. In practice, if the 
network topology is loosely connected, then junction tree algorithms work well; but 
when a network is densely connected, then this framework is less optimal. This 
observation has triggered research for alternative methods that can exploit local 
structure as well as network topology; for instance, exact inference using arithmetic 
circuits has been developed, taking advantage of local regularities within a BBN [14]. 

In addition to loopy BP, two other methods exist that perform approximate inference: 
sampling methods and variational methods; the former set of approaches is described 
here. In general, sampling methods operate on the premise that samples can be taken 
of a probability of a variable being assigned a specific state. The basic operation 
involves sampling each variable in topological order according to the conditional 
probability over its parents. If we represent P(X1,…,Xn) as a BBN, the model can be 
sampled according to its structure by writing the distribution using the chain rule and 
sampling each variable given its parents. This process is called forward sampling (also 
known as direct Monte Carlo sampling). For each root node X, with probabilities 
P(X = xi), a random number r is drawn uniformly from the interval [0, 1]. To illustrate 
how forward sampling works, we refer to the example BBN in Fig. 9.2. We first 
sample the value of the variable smoking where P(smoking) = <0.2, 0.8> and assume 
that we obtained the result smoking = true. We then sample the value of the variable 
emphysema. As smoking = true, we are limited to using the corresponding conditional 
probability: P(emphysema | smoking = true) = <0.8, 0.2>. Let us next assume that 
the sample returns emphysema = false. We then proceed to sample the variable 
asthma using P(asthma | smoking = true) = <0.8, 0.2>. Again, let us assume that 
the sample returns asthma = true. We finally sample the value of the variable cough 
using the conditional probability P(cough | emphysema = false, asthma = true) and 
obtain cough = true. Through this first iteration, we thus obtain the event <smoking, 
emphysema, asthma, cough> = <true, false, true, true>. If we perform this process 
over multiple iterations while keeping track of how many times a specific combination 
of states occur, then the sampled population approaches the true joint probability 
distribution. Sampling a complete joint probability distribution from a BBN is linear in 
the number of variables regardless of the structure of the network. In this example, 
however, the marginals are not computed; two approaches address this requirement: 
rejection sampling and likelihood weighting. In rejection sampling, samples that are 
randomly drawn but do not agree with the specified evidence (i.e., ei ≠ xi) are thrown 
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out. The problem with this approach is that many samples are potentially rejected, 
resulting in a largely inefficient process. Likelihood weighting addresses this pitfall by 
fixing the evidence variables and sampling only the remaining variables. To avoid 
biasing the sampling process, each sample is associated with a weight that expresses 
the probability that the sample could have been produced if the evidence variables are 
not fixed. Weights initially have the value of 1, but with each iteration in which the 
evidence variable is assigned a state, this probability of assignment is multiplied with 
the existing weight of the sample. 

Rather than independently creating each sample as done in forward sampling, suppose 
we generate new samples by altering the previous one. To achieve this, we use a 
general class of methods called Markov Chain Monte Carlo (MCMC) sampling [50]. 
MCMC sampling is based on the premise that if all neighbors in the Bayesian network 
of Xi have assignments, their values must be accounted for before sampling Xi. The 
idea is based on the property of Markov chains, which are sequences of discrete 
random variables such that knowing the present state makes past and future states 
independent of one another: subsequent states are generated by sampling a value from 
one of the non-evidence variables after instantiating the variables in its Markov blanket 
using their current states. In order for a Markov chain to be useful for sampling from 
P(x), we require for any starting state X0, that limt→∞Pt(x) = P(x), and the stationary 
distribution of the Markov chain must be P(x). Given these constraints, we can start at 
an arbitrary state and use the Markov chain to do a random walk over a specified 
number of iterations, and the resulting state will be sampled from P(x). One popular 
sampler implementing this process is Gibbs sampling [22]. The process of Gibbs 
sampling can be understood as a random walk in the space of all instantiations, e, and 
can be used when the joint distribution is not known explicitly, but the conditional 
distribution of each variable is known – a situation well-suited for BBNs. To illustrate 
using Fig. 9.2, Gibbs sampling may be used to estimate the posterior probability, 
P(asthma | emphysema = true, cough = true). Given that emphysema and cough are 
set to true, the Gibbs sampler draws samples from P(asthma, smoking | emphysema = 
true, cough = true) and proceeds as follows. In the initialization stage, say we arbitrarily 
instantiate asthma = true, smoking = true as our X0. Then, for each iteration (t = 1, 
2,…) we pick a variable to update from {asthma, smoking} uniformly at random. If 
asthma is picked, sample asthma from P(asthma | smoking = st-1, emphysema = true, 
cough = true) and set Xt = (asthma = at, smoking = st-1), where st-1 represents the value 
for smoking from the previous iteration, and at is the value of asthma for the current 
iteration. If smoking is picked, then perform a similar computation as in the case of 
asthma, but instead, sample smoking from P(smoking | asthma = at-1, emphysema = true, 
cough = true), where at-1 is the value for asthma from the previous iteration. The 
sequence of samples being drawn by relying on the immediate prior is a Markov 
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chain. This process can be further simplified by computing the distribution on Xi that 
is only part of the Markov blanket of Xi. Gibbs sampling is a one instance of a broader 
class of methods known as Metropolis-Hastings algorithms. The reader is referred to 
[50] for additional discussion. 

networks (DBNs). For DBNs with a minimal number of time slices, the DBN can be 
recast as a hidden Markov model and exact inference methods applied via unrolling. 
For larger DBNs, where such techniques are computationally intractable, approximate 
inference is applied as described above. Key work in this area includes the Boyen-
Koller algorithm and its variants [5, 6, 49]; particle filtering, which use sampling 
methods [38]; and more recently, a hybrid approach called factored sampling [52]. 

Abductive Reasoning 

Unlike the previous class of queries that computes the probabilities of variables in 
the presence of given evidence, abductive inference identifies the most probable 
instantiation of network variables given some evidence. Abductive inference, also 
sometimes referred to as inference to the best explanation, is a common type of query 
asked by physicians in clinical practice: for instance, given the symptoms presented, 
what is the most likely diagnosis; or given the diagnosis, what is the most likely state 
of the patient? There are two types of abductive inference: most probable explanation 
and maximum a posteriori. 

Most probable explanation queries. The objective of a most probable explanation 
(MPE) query is to identify the most likely instantiation of the entire network (i.e., the 
state of all evidence variables) given some evidence [57]. If {X1,…,Xn} are network 
variables, and e represents the set of available evidence, the goal of MPE is to find the 
specific network instantiation, x = {x1,…,xn}, for which the probability of P(x1,…,xn | e) 
is maximized. More concisely, MPE queries solve: argmaxxP(x | e) = argmaxxP(x, e). 
Consider the following query, again based on Fig. 9.1: given that the patient is a 65-year 
old male and has had a stroke, but has a normal x-ray, what is the most likely state 
of the other variables in the network (gait analysis, DXA scan, hemiosteoporotic, hip 
fracture, and fall)? There lies a certain subtlety to an MPE calculation, as it cannot be 
obtained directly from individual conditional probabilities: if {x1,…,xn} are chosen to 
maximize each P(xi | e) rather than the global problem, then the choice of xi is not 
necessarily the most probable explanation. Also, given the nature of an MPE query, 
the result may not be unique: there may in fact by several configurations of the 
network’s variables that result in the same maximal probability. For the special case 
of a hidden Markov model (HMM; see Chapter 8), the MPE problem is solved by 
Viterbi decoding, where the most likely sequence of states is determined. However, in 
general, one can see that the search space for MPE is potentially enormous. As such, 

Lastly, we briefly mention here the inference issues with respect to dynamic Bayesian 
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while an exhaustive set of permutations can be examined for smaller networks, most 
MPE algorithms employ approximate inference methods and can be divided between 
stochastic sampling methods and search techniques. In particular, the latter category 
include best-first search, AND/OR search [19], and genetic algorithms [46]. The 
efficiency of MPE algorithms is considered in terms of a treewidth metric that measures 
the number of graph nodes mapped onto a tree node in the decomposition. 

Maximum a posteriori queries. Unlike MPE queries, a more general type of query 
that attempts to find the most probable instantiation for a subset of network variables 
is called a maximum a posteriori (MAP) query. MPE is hence a specific instance of a 
MAP query where the subset is defined as the entire set of evidence variables in the 
network. Let M represent some subset of variables in the belief network, and e some 
given evidence; the objective of a MAP query is to find an instantiation of m such that 
P(m | e) is maximized. MAP queries are an optimization problem, with the resulting 
probability as the objective function that one tries to maximize. As such, the MAP 
problem can be stated as: argmaxmP(m | e) = argmaxm∑ZP(m, z | e) where Z is equal 
to the set of variables remaining once evidence and the query variables in M are 
removed from X (i.e., Z = X - E - M). From Fig. 9.1, one may ask the following: what 
is the most likely state for hip fracture and stroke given that the patient is female and 
that she fell? Note that this query does not attempt to provide information on gait 
analysis, x-ray, DXA scan, age, or the hemiosteoporotic states.  

Variable elimination can be used to solve a MAP query by marginalizing non-MAP 
variables, thereby simplifying the problem to a MPE query. The key is to decide on an 
elimination order of the variables such that the MAP variables, M, are marginalized 
last. The process is summarized by the following equation: ∑X1∑X2…∑Xm∏jθXj|Pa(Xj). 
Intuitively, this equation states that the probability of the query variables M is computed 
by implicitly constructing the joint probability distribution induced by the Bayesian 
network and summing over each non-query variable. Variable elimination utilizes the 
notion of factors, which enable variables to be summed out while keeping the original 
distribution. The use of factors helps to overcome the exponential complexity seen 
with the brute-force method of simply summing out variables. Factors are tables that 
contain two components: an instantiation and a number. The instantiation is an assign-
ment of values to variables; the number represents the probability of the corresponding 
instantiation. Two operations can be performed on factors: multiplication and summing 
out. Multiplication can be likened to a natural join (Cartesian product) on two database 
tables: the set of variables in the product of two factors is the union of the sets of 
variables in the operands. Summing out is the same as the process of marginalization 
(see Chapter 8). Variable elimination commences with each factor represented as a 
CPT in the model. To compute the marginal over M, the algorithm iterates over each  
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variable Xi in the given elimination order. Next, every factor fi that mentions variable 
Xi is multiplied together to generate a new factor, f. We then proceed to sum out 
variable Xi from f and replace factors fi by factor ∑Xif. After going through each 
variable in the elimination order, only the set of factors over variables M will remain. 
Multiplying these factors produces the answer to the desired query, P(M). 

To ground this discussion, we refer back to the example of the osteoporosis BBN 
illustrated in Fig. 8.4. Assume that we are interested in finding the probability that a 
patient is at risk of getting a fracture and are given a predefined elimination order of 
{renal disease (R), DXA finding (D), age (A), kidney function (K), activity level (L), 
hormone usage (H), osteoporosis (O)}. While determining the optimal elimination 
order is outside the scope of this chapter, the reader may refer to [15] for additional 
discussion on the topic. The MAP query is written mathematically as:  
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The process starts by eliminating the first variable in our elimination order, R. Writing 
out the operation, ∑RθK | RθR, we see that two terms mention R and involve variable K. 
We then compute the product of each value of K and summarize the result as factor, f1, 
which can in turn be substituted into the summation to remove R from the network: 
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The next variable for elimination is D. From the equation, we find that only one term 
involves D, and it also involves O. So for each value of O, we compute the sum over 
D of P(D | O). However, if we fix O and sum over D, the probabilities need to add up 
to 1, and therefore D can be removed from the network without adding a new factor to 
the expression. The process of identifying the next elimination variable, multiplying 
factors, and summing over variables continues for all variables in the elimination 
order. We then multiply the remaining factors together, resulting in the exact answer 
for P(F). The prior marginal is a special case of the posterior marginal query where 
the evidence set is empty. To compute the posterior marginal, a similar process is 
followed but prior to eliminating variables, rows in the joint probability distribution 
that are inconsistent with the evidence are zeroed out. 

In examining the complexity of variable elimination, the algorithm runs in time 
exponential in the number of variables involved in the largest factor. The elimination 
order is critical because a bad order potentially can generate large factors; finding the 
best elimination order is itself an NP-hard problem. Computationally, MPE queries are 
easier to compute than MAP: the decision problem for MPE is NP-complete, whereas  
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the corresponding MAP problem is considered NPPP-complete [54]. Because of this 
intractability, most software implementations answering MAP queries provide only an 
approximate answer. A variety of approaches have been explored for approximate 
MAP inference, including genetic algorithms [16], MCMC with simulated annealing 
[77], and hill climbing [55] to name a few. More recently, exact methods employing 
search have been developed [30, 56]. 

Inference on Relational Models 

Standard probabilistic models are said to be propositional, not permitting quantification 
over an object. In some domains, this limitation results in an unwieldy number of 
statements that must be explicitly made to represent an instantiated dataset, especially 
when dealing with similar entities that may arise in slightly different configurations. 
For example, consider the problem of trying to correlate radiographic imaging 
features, gene expression, and end outcomes in brain tumor patients. Fig. 9.4 presents 
a portion of a hypothetical relational schema that links these elements of data together. 
Though each type/grade of tumor (e.g., astrocytoma, glioblastoma multiforme, etc.) 
presents different gene expressions, appearances on imaging, and responds to different 
chemotherapies, there is some commonality. Capturing such variation is relatively 
straightforward in a relational model and can be expressed as tables within a database. 
Imagine, however, that a BBN is to be created from the same entities and attributes: the 
number of variables needed to express all of the variations will increase dramatically, 
thereby creating an overly complex network.  

Figure 9.4: Translation of a relational schema into a BBN via a probabilistic relational 
model. (a) An entity-relational (ER) model showing a part of a relational schema in 
M2 notation (see Chapter 7). Standard ER relationships are shown with solid arrows; 
connectors shown with dashed arrows between the attributes represent BBN linkages. 
(b) A database instantiation of the schema. (c) The resultant generated BBN. 
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Thus, efforts to augment probabilistic models with quantifiable operators have led 
to the development of frameworks that take advantage of relational and/or first-order 
probabilistic constructs to extend graphical models. [17] provides a recent survey of 
the efforts to link BBNs with first-order logic, including a discussion of relational 
Bayesian networks [32] and probabilistic relational models (PRMs) [23]; we use the 
latter here as an example. A PRM consists of two parts: a relational component that 
describes the domain schema; and a probabilistic component modeling the distribution 
of the attributes of the entities in the domain. From the PRM specification, a Bayesian 
belief network can be compiled. One of the simplest advantages of PRMs over 
propositional models is that of compactness: a large number of propositional variables 
and models can result from instantiating the same piece of “generic knowledge” 
over a large domain of objects. The succinctness of relational models can provide a 
more intuitive representation. Furthermore, statistical techniques have been developed 
to learn PRMs directly from a database. Building from plate models and PRMs, a 
probabilistic entity-relation (PER) model has been described [26]. 

Inference in PRMs and other relational models can be categorized twofold: 1) 
approaches that transform the relational model into a propositional graphical model, 
permitting the inference algorithms discussed previously to be used; and 2) approaches 
developing a new set of algorithms that operate directly on the relational representation. 
The former in effect constructs the BBN associated with the PRM. [37] remarks 
that in some cases, the use of PRMs can actually aid in the inference process, given: 
that unlike standard BBNs, the relational model encapsulates influence by grouping 
influencing attributes together within the same object; and that the relational model 
lends itself to reuse in terms of multiple objects being of the same entity (and thus 
the same inference methods can be used). Both factors can be exploited within an 
inference algorithm to speed computations. Still, efficient reasoning and inference is a 
major challenge for PRMs. Systems have been demonstrated for exact inference across 
relational models, PRIMULA being a prime example [9]. Lifted inference methods also 
provide another approach to computations on PRMs [58]. 

Diagnostic, Prognostic, and Therapeutic Questions 

As demonstrated by the various queries described thus far, many types of questions 
familiar to clinical care can be answered via a disease model represented by a BBN. 
Four categories of BBN querying have been suggested and are useful to bear in mind 
in the context of medicine and decision-making:  

1. Diagnostic/evidential. The first category employs bottom-up reasoning to deduce 
a cause when an effect is observed. For instance, a patient presents with a symptom 
(e.g., cough) and the physician is trying to find the most likely cause (e.g., 
bronchitis, asthma). Abductive inference can be seen to fall into this category. 
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2. Causal. In contrast to diagnostic queries, this second category involves top-down 
reasoning to determine, given a known cause, the probabilities of different effects. 
In essence, a prognostic query is posited. For example, given the flu, what is the 
chance of experiencing a headache? Or given an intervention or drug, what is 
the likely outcome for a given patient? (e.g., if we give the patient a bronchodilator, 
will the coughing go away?). Belief updating and causal inference with counter-
factuals (see Chapter 8) comprise this group of queries. 

3. Explaining away. Sometimes referred to as intercausal queries, explaining away is 
a common reasoning pattern that looks to contrast causes with a common effect, 
often deducing one cause as being the reason for an event (as opposed to another 
cause) given some evidence. For example, two diseases may be suspected; however, 
given evidence of some symptom, the probability of one cause increases while the 
other is lowered. 

4. Mixed. Lastly, one can consider queries that combine any of the above three 
techniques into a single inquiry. 

Influence diagrams. A subset of clinical decisions often involves the selection of a 
treatment plan for an individual or course of action to optimize some criteria. Unto 
themselves, BBNs do not provide these answers directly, providing only tools for 
reasoning under uncertainty; instead, an important class of models known as influence 
diagrams aids in decision making in uncertain situations. Rudimentarily, a decision 
is aimed at selecting a strategy that maximizes the chance of a desired outcome 
occurring given our knowledge of the domain (as represented by a model). Originally 
framed as a compact alternative to decision trees, influence diagrams permit different 
configurations of this model and potential choices to be considered in terms of 
quantifiable values supplied via a utility function, U(a), where a represents an action. 
The aim, therefore, is to identify the configuration and actions that maximize the 
utility functions that solve argmaxA∑U(x,a)P(x | e). Influence diagrams consist of 
nodes and edges like their graphical model counterparts, but reclassify the nodes into 
three types: 

1. Chance nodes. Chance nodes are random variables, similar to the evidence variables 
in a BBN. Like evidence variable nodes, CPTs are associated with chance nodes. 
Chance nodes can have both decision and other chance nodes as parents. 

2. Decision nodes. Decision nodes represent those points in the state/process where a 
choice of actions can be made; the result of a decision is to influence the state of 
some other variable (e.g., a chance node). An influence diagram will have one or 
more decision nodes. 
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3. Utility nodes. Utility nodes are a measure of the overall “outcome” state, with the 
goal of optimizing the utility (i.e., maximizing) based on the contributing chance, 
decision, and causal factors. Utility nodes may not have children in the graph. 

Additionally, some types of influence diagrams include deterministic nodes, defined as 
nodes with constant values or algebraically calculated from parent nodes’ states – once 
the parent nodes are known, the child node’s state is definitively assigned. Fig. 9.5 
shows an example of a simple influence diagram, where the decision points involve 
the use of COX-2 inhibitors to relieve knee pain due to inflammation, or the use of 
MR imaging to further diagnose a problem before doing endoscopic surgery. It is 
important to note the implications of influence diagrams with respect to evidence-
based medicine (EBM). An underlying principle of EBM is that decisions take into 
consideration an individual’s preferences (e.g., with respect to diagnostic and treatment 
options): by fixing the selection within a decision node, an influence diagram can view 
a patient’s preferences as an explicit constraint within the optimization problem. The 
utility node can be seen as being related to a patient’s quality of life (e.g., for decisions 
involving substantial risk, quality-adjusted life years, QALY) in addition to considering 
cost and other factors. [51] gives additional examples on the use of influence diagrams 
in medicine. 

A basic algorithm for querying the influence diagram instantiates the entire network 
based on the given constraints/evidence; each possible decision is analyzed, examining 
the output of the utility nodes. The decision that maximizes the utility node is deemed 
the best decision and returned. For influence diagrams with only a single decision 
node, selection of the decision that maximizes the utility node is straightforward; 
however, the challenge is more profound when multiple decision nodes exist and/or 
require explicit sequential modeling of actions (i.e., action X before action Y) – resulting 
in large search spaces. [10] thus shows how influence diagrams can be transformed 

 

Figure 9.5: Example of an influence diagram. Chance nodes are drawn as ovals, 
decision nodes are rectangles, and utility nodes are illustrated as diamonds. 
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into a belief network, incorporating decision theory. The method effectively translates 
all of the nodes in an influence diagram into chance nodes, making the structure 
equivalent to a BBN: CPTs are assigned to decision nodes with an equal chance 
distribution; and utility nodes are changed into binary variables with probabilities 
proportional to the node’s parents’ utility functions. From this transformed BBN, the 
inference algorithms described prior can be applied to select decision nodes’ states 
based on the desired utility (e.g., as MPE/MAP queries). For further discussion of 
decision making theory and influence diagrams, the reader is referred to [63]. 

Evaluating BBNs 
Inference results are only useful if the underlying BBN is capable of representing 
the real world. The question then naturally occurs as to how to assess the ability of a 
belief network to provide true answers; this issue is perhaps particularly significant 
given the use of approximate inference techniques. BBN verification can be performed 
with respect to different criteria. We touch upon two strategies: examining predictive 
power, where the BBN’s diagnostic/prognostic capabilities are compared against known 
outcomes; and sensitivity analysis, which aims to determine what aspects of the model 
have the greatest impact on the probabilities of query variables (and therefore must be 
accurate). 

Predictive Power 

In healthcare applications, classic BBN evaluation compares the predictions of the 
model vs. known outcomes (or expert judgment). A test set of cases is compiled and 
used as a benchmark for ground truth; precision and accuracy metrics are often 
reported. For instance, as an aid to classification or as a diagnostic tool, a BBN can be 
given partial evidence per test case and asked to infer the remaining values (or a subset 
of values, as per a MAP query); the BBN result is then compared to the true value 
stated in the case. A confusion matrix can then be composed to identify the rate of 
(in)correct classifications (see Chapter 10). [68] also details a method for estimating 
the variance associated with each query result, in effect determining “error bars” for 
each point estimate. Though a BBN is capable of answering a gamut of queries, given 
the size of some belief networks it is untenable to test all variables against all 
combinations of partial evidence in a test set. Rather, there is usually a specific 
purpose in its construction, and the queries that the BBN is designed primarily to 
answer are evaluated.  

An automated Monte Carlo-based technique is described in [59] to discover those 
portions of the model responsible for the majority of predictive errors; and to identify 
changes that will improve model performance. Briefly, the algorithm consist of three 
steps: 1) labeling each node as one of three categories (observations, such as labs 
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or image findings; phenomenon, such as the underlying etiology of a tumor; and 
ancillary, providing additional clarity or convenience in the model); 2) selecting a 
subset of phenomenon nodes and explicitly setting the state, and using a Monte Carlo 
simulation to determine the state of observation nodes; and 3) computing the posterior 
probability for all phenomenon nodes, given the states of the observation nodes. The 
second step in this algorithm uses normal Bayesian inference techniques to calculate 
the posterior distribution of a node, with Monte Carlo sampling of the posterior 
distribution to assign the node’s state.  

Depending on how a BBN is constructed, the test set must be carefully specified to 
avoid bias and overfitting. For example, if the network topology and the CPTs are 
both derived from experts (i.e., the structure and its parameters are not learned), then 
any reasonably derived test data can be used (assuming it is representative of the 
population against which the BBN is targeted). If either (or both) the structure and 
probabilities are learned, then the training data and test set must be separated. For 
instance, an n-fold cross-validation study is reasonable if sufficient data is available: 
the dataset is randomly partitioned into n groups; training is performed using n-1 
groups, with the resultant model tested on the remaining group; and this train-test 
process is then repeated a total of n times until each group has been used once for 
evaluation. Unfortunately, as with any framework using training data, overfitting of 
the model can still be a concern when the amount of training data set is small or when 
the number of parameters in the model is large. As such, a 10-90 test can be used to 
examine model stability: reversing a 10-fold cross validation pattern, 10% of the test 
set is instead used to train and 90% of the data is used to test in each iteration. In 
theory, a well-formulated model will provide consistent results per iteration of a 10-90 
test; the results can also be compared to the tenfold cross-validation to ascertain if 
overfitting has occurred in the latter. Ultimately, the most convincing evaluation is one 
that uses a holdout set, wherein a portion of the dataset is withheld from training 
(and testing, in a cross-validation study) so that unbiased performance metrics are 
computed on a “clean” set of data. Markedly, a common complaint about BBNs is that 
the trained probabilities (and to a lesser extent, structure) are developed and assessed 
relative to a single environment, and thus subject to local operational bias: simply 
exporting a BBN from one locale to another often fails to achieve the same degree of 
performance. Hence, if the holdout set is instead obtained from an outside source (e.g., 
a published national database or public data repository), then evaluation bias can 
potentially be overcome. 

Comparison to other models. Belief networks are only one means of providing 
classification and/or diagnostic/prognostic insights – a range of statistical and prob-
abilistic methods also exist. As such, it is worthwhile to evaluate a BBN’s performance 
relative to these other techniques. For example, if the primary application of the BBN 
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is to answer causal or predictive queries, then a comparison against a decision tree or a 
logistic regression model may be appropriate (see Chapter 10); a discussion of current 
methods for predictive modeling is given in [3]. 

Sensitivity Analysis 

In broad terms, sensitivity analysis is concerned with how variations in the model or 
inputs to a BBN impacts the quality of decision making [2, 13, 42]. [35] discerns 
between evidence sensitivity analysis, in which the sensitivity of results is examined 
in light of variations in evidence; and parametric sensitivity analysis, which looks at 
how changes in model parameters (i.e., the CPTs) affect query results. Both 
capabilities are instrumental in giving users a handle on the models they build, and can 
be critical in model validation and debugging. For example, through sensitivity 
analysis, we can evaluate false positive/negative rates of a diagnostic test on the 
quality of decision making; as a corollary, it is possible to search for the appropriate 
false positive and negative rates that would be necessary to confirm a hypothesis at a 
certain level of confidence. We can assess the utility of information through sensitivity 
analysis, allowing a user to decide what additional evidence is needed in order to gain 
useful insights. Given the scope of this text, we limit our discussion to a description of 
parametric sensitivity analysis. Formally, parametric sensitivity analysis is concerned 
with three types of questions:  

1. What guarantees can be made on the sensitivity/robustness of a query, q, to changes 
in parameter values, θ1,…,θn?  

2. What are the necessary and sufficient changes to parameters θ1,…,θn that would 
enforce some integrity constraints, q1,…,qm, assuming that these integrity constraints 
are violated by the current model?  

3. What guarantees can be offered on the sensitivity/robustness of some decision, d, 
to changes in parameter values θ1,…,θn, where the decision is computed as a 
function of some probabilities?  

As shown by these questions, sensitivity analysis can elucidate the stability of a BBN 
relative to specific inquiries. In single parameter sensitivity analysis, the influence 
of one parameter within a query is examined by fixing all other parameters and 
“perturbing” the selected parameter in the network. Sensitivity analysis tools permit 
inspection of how secondary evidence variables change in response to alterations in 
the parameter. Single parameter sensitivity analysis can be used as a type of query to 
BBNs: by specifying a single constraint or condition on a conditional probability, it is 
possible to derive what other network variables must be changed to satisfy this constraint 
(e.g., given that we want to diagnose with 99.5% certainty, what other tests would 
need to be performed, and/or what probabilities must be changed?). Additionally, this 
type of sensitivity analysis can be used in conjunction with model building tasks to 
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identify those variables that have a high degree of influence over results (and 
therefore, the CPTs must be as accurate as possible) [12]. Multi-parameter sensitivity 
analysis perturbs n-pair combinations of variables simultaneously, either within the 
same CPT, or across different CPTs. This technique is much more computationally 
expensive – but it is able to estimate the training error for the associated statistics 
and calculate a generalization error for the entire network [8]. Software packages such 
as HUGIN, NETICA, and SAMIAM provide graphical tools for conducting sensitivity 
analysis. 

Using the model depicted in Fig. 9.1, let us consider an example of how sensitivity 
analysis helps us determine what improvements are needed to existing tests. In the 
model, we are interested in determining whether the combination of x-ray and DXA 
scan is capable of accurately diagnosing whether the patient is hemiosteoporotic. 
When performing sensitivity analysis, the question to be posed to the model is which 
network parameters can we change, and by how much, to ensure that the probability 
of the patient being hemiosteoporotic is above 95% given that the patient has positive 
x-ray and DXA scan tests? Currently, the model states that the specificity of the DXA 
scan is 66% and the specificity of the x-ray is 64%. If we run a sensitivity analysis on 
the model with the variables x-ray and DXA scan instantiated to abnormal, we would 
see that the results return three possible changes that each satisfy the constraint 
P(hemiosteoporotic = true) ≥ 0.95: 

1. If the true negative rate for the DXA scan was 92% instead of 66%. 
2. If the true negative rate for the x-ray scan was 91% rather than 64%. 
3. If the probability of being hemiosteoporotic given that the patient did not have a 

stroke was greater than or equal to 0.768 rather than 0.27. 

As making the third change would not be feasible, we could act on one of the first two 
suggestions by investing in a better DXA or x-ray scan. If we are willing to com-
promise on the constraint and be satisfied with P(hemiosteoporotic = true) ≥ 0.90, then 
we can find tests that achieve true negative rates of 83% (DXA scan) or 82% (x-ray) 
instead. The same approach can also be used to determine what changes are necessary 
to make the model fit the beliefs of a domain expert. For instance, if an expert believes 
that the probability of a hip fracture given that the patient has fallen after having a 
stroke is greater than the result that the model returns, we can identify which variables 
(e.g., age, gender, hip fracture) need to be modified such that his beliefs holds true. 

Interacting with Medical BBNs/Disease Models 
The focus of the prior sections has been on the underlying concepts and algorithms 
that permit inference and other computational analyses on BBNs. We now turn to the 
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secondary issue of interacting with the belief network, enabling a user to specify the 
queries and explore the model. Today’s BBN graphical user interfaces (GUIs) 
typically employ the directed acyclic graph (DAG) as a pictorial representation upon 
which queries are made and results presented. Visual cues and animation (e.g., 
highlighting nodes, changing colors, motion) are used to denote key structures and 
altered values in response to queries [7, 25, 29, 78]. While providing sophisticated 
querying, two problems arise: 1) as the complexity of the BBN grows, understanding 
the nuances of variable interaction is difficult at best; and 2) the variables are visually 
abstracted and thus lose contextual meaning – a concern for clinically-oriented BBNs 
when interpreting a patient’s data.  

In general, the challenges arising in interacting with larger BBNs handle two areas: 1) 
methods for building and exploring the graphical structure, along with the model’s 
parameters (i.e., the CPTs); and 2) methods for posing queries and seeing the resultant 
response. 

Defining and Exploring Structure 

the importance of such nodes is through size: larger nodes represent a higher number 
of connections (Fig. 9.6a). However, not all relationships are of equal importance: 
therefore, some systems render graph edges using line thickness in proportion to the 
strength of the relationship between the two variables (i.e., a thicker line indicates a 
stronger link; Fig. 9.6b). Object-oriented paradigms can also be applied to present 
related entities together, subsuming related variables into a single visual representation 
(e.g., a super-node); or to collapse chains of variable into one edge (Fig. 9.6c). The 
causal semantics between variables have also been visualized using animation [34]. 
[70] also considers the problem of navigating the conditional probability tables: as the 
number of possible states and dependencies grows, the depiction of the CPT itself can 

 

outgrow the available visual space, thus requiring scrolling or other means to change  

The most obvious difficulty with BBN visualization lies in the organization of a large 
number of variables in a constrained amount of space. An array of methods has been 
developed for general graph visualization, including: various geometric layouts (e.g., 
radial, 3D navigation); hyperbolic trees; and distortion techniques (e.g., fisheye views). 
An overview of these approaches is given in Chapter 4. Here, we highlight some 
challenges specific to BBNs. One issue in BBN visualization is the depiction of the 
linkages between nodes, emphasizing those variables that are clustered together 
through a high degree of connectivity; and variables that in particular are dependent on 
a large number of parents, or conversely, serve as a parent to a large number of other 
dependent variables (i.e., the number of incoming edges, the in-degree; and the number 
of outgoing edges, the out-degree). A common graphical method of emphasizing 



9 Disease Models, Part II: Querying and Applications  477 

Figure 9.6: Different methods for belief network visualization. (a) To emphasize the 
in- and/or out-degree of a given node (and hence its connectivity), the node size can be 
varied. In this example, stroke is deemed important, and so is rendered as the largest 
node. (b) The strength of a relationship (e.g., based on sensitivity analysis or conditional 
probabilities, for instance) is often depicted via line thickness. (c) Grouping of node 
clusters or the collapsing of variable chains into edges can help to compact space. 

focal points. Methods including the use of a treetable widget for hierarchical presentation 
of CPTs, and the dynamic hiding/reveal of parent/child relationships within a CPT are 
discussed. 

Expressing Queries and Viewing Results 

Query formulation broadly consists of two steps: 1) stating the type of query that is 
desired (e.g., MAP), if not the variables of interest; and 2) specifying the evidence 
available as part of the query (i.e., the query constraints). Most GUIs provide a means 
of choosing variables by directly selecting and highlighting nodes from the DAG, 
with options to invoke the corresponding type of inference. As mentioned earlier, node 
monitors provide a direct view of a variable’s state, graphically depicting associated 
probabilities. Node monitors can be made interactive, permitting a user to directly 
manipulate the values to set evidence: numeric scroll wheels, sliding bars, and probability 
wheels are used to elicit probabilities across a variable’s different states (Fig. 9.7). 
Rather than use the graph, form-based and checklist querying approaches have been 
explored as front-ends to BBNs [71], but arguably become untenable given a large 
number of variables. 

Once an inference result is computed, the probabilities across the network are updated 
and displayed to the user, who looks to see to what extent a variable may change 
and/or the end state of some node. Although results can be tabulated into a separate 
table, node monitors are commonly employed for displaying the information directly. 
However, the use of node monitors can prove problematic: the user must actively 
search for changes in values, so subtle differences between states or variables can be  
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Figure 9.7: (a) A node monitor. For a given variable, the different states the node 
can take are shown alongside a probability. Sliding bars are often used to help provide 
a sense of visual distribution, and can be made interactive to set specific levels of 
evidence. (b) A probability wheel can be manipulated by users to specify a value for 
the likelihood of an event. The idea is that based on some question of an event’s 
occurrence, the wheel’s wedges are proportioned accordingly. 

lost in reviewing results. Furthermore, given limited space to show information, the 
overuse of node monitors leads to a cluttered interface. To ameliorate the identification 
of changes, visual changes are often made to the underlying DAG rendering: nodes 
are colored to indicate the degree of change (e.g., shades of red and blue are used to 
indicate positive/negative changes in values, with the intensity of the color proportional 
to the magnitude of the change); transparency/opacity is changed; or highlights are 
added to nodes to indicate updated statuses. Similarly, edges can be colored or adjusted 
based on changes in the conditional probability tables. 

In the healthcare domain, an alternative strategy is to create problem- or disease-
specific applications that tailor the visualization and querying capabilities to a target 
domain. The literature contains many examples of such problem-specific interfaces 
(e.g., diabetes, oncology) and there is evidence that such problem-oriented data 
visualization can enhance the cognitive processes of physicians (see Chapter 4). 
Unfortunately, many of these interfaces sacrifice flexibility: the displays restrict the 
types of queries that can be posed by the user, limiting discovery and “what if” 
questions. A new class of visualizations has been developed to make interacting with 
probabilistic disease models more intuitive by providing tools to pose queries visually. 
One such system is TraumaSCAN [53], in which the user interacts with a 3D model of 

lies in working with the diversity and amount of information that is pertinent to a  

the body to place entry and exit wounds for injuries from gunshots; then, in combination 
with inputted patient findings, the system performs reasoning on a Bayesian network 
to predict the most probable symptoms and conditions arising from the specified injuries. 
However, many of these querying interfaces have been developed for specific diseases; 
they do not address the long standing problem of creating GUIs that can effectively 
support the broad spectrum of physician activities (e.g., reviewing a patient for the first 
time, diagnosis and treatment planning, a follow-up visit, etc.). Part of the difficulty 
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given clinical task: not all data is of equal importance at any given time, and must be 
selected and presented appropriately based on the task at hand. The Vista [27] and 
Lumiere [28] projects are examples of using BBNs to automatically select the most 
valuable information or program functionality: an influence diagram is used to model 
the user’s background, goals, and competency in working with the software. 

Explaining results. One application for which interaction with BBNs has been explored 
is to explain a recommendation to a user as part of a medical decision-making tool [67]. 
Explanations are useful: for determining what configuration of unobserved variables 
provides the most probable outcome for a target variable; for eliciting what information 
is contained in a model; and for understanding the reasons for a model’s inference 
results. A review of explanation methods can be found in [41].  

semantic expressions of uncertainty; for example, the range 0.25-0.4 is mapped to the 
adjective “fairly unlikely” and the adverb “fairly rarely.” These adjectives are then 
used in combination with the structure of the network to generate meaningful statements. 
To illustrate, given the model depicted in Fig. 9.2, one statement would be, “Smoking 
commonly causes emphysema.” Visual cues have been used: [45] utilizes color coding 
and line thickness to support explanations in terms of weight of evidence and evidence 
flows. One system that combines both graphical and verbal approaches to explaining 
inference results is BANTER [24]. This system allows the user to enter a scenario by 
specifying known values for history and physical findings for a disease of interest 
using standard node monitors in a GUI. Based on this data, the system uses the BBN 
to assess which tests best determine whether the patient has the identified disease. 
Explanations are provided in natural language using two methods: identifying the 
evidence that have the greatest impact on a target variable using mutual information; 
and describing the path that maximizes the overall impact of evidence variables to the 
target variable. Alternatively, [69] describes the use of a three-tier system to address 
the inability of traditional BBNs to provide updated prognostic expectations given new 
data during the healthcare process: 1) the first tier is a BBN composed of a collection 
of local supervised learning models, which are recursively learned from the data;  
2) the second tier is a task layer that translates the user’s clinical information needs to 
a query for the network; and 3) the third tier is a presentation layer that aggregates the 
results of the inferences and presents them to the user using a bar graph representation. 
The novelty of this method allows users to pose new queries at each stage of patient 
care (e.g., pre-treatment, treatment, post-treatment), having the model explain the 
changes in the target variable based on updated information at each point. 

The majority of approaches to conveying explanations have centered on the use of verbal 
or multimedia methods. For instance, [21] translates the qualitative and quantitative 
information of a BBN into linguistic expressions. Probability values are mapped to 
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Research has also been done to utilize the network topology to aid in the generation of 
explanations. [75] exploits Markov blankets to identify a subset of variables that result 
in a concise explanation of a target variable’s behavior. This approach first restructures 
the BBN so that the target variable has its Markov nodes as its parents. Next, the target 
node’s conditional probability tables are converted into decision trees. Explanations 
are finally derived by traversing the decision trees.  

Discussion and Applications 
As seen here and in Chapter 8, disease models provide a method of extracting the 
scientific knowledge encoded within routine clinical observations and applying this 
knowledge to inform decisions related to diagnosis, prognosis, and treatment. Such 
models, represented as Bayesian belief networks, enable a probabilistic framework 
upon which a range of queries can be made. Advances in BBN inference techniques 
are providing the computational means to answer increasingly complex questions over 
complex models throughout healthcare (e.g., see Chapter 8, and [20] provides a review 
of BBN applications specific to bioinformatics). But unless these tools are made 
readily accessible to a broader audience, the translation of the models to routine 
practice will be limited. To this end, we examine several applications of belief networks: 
1) a simplified version used for classification purposes, the naïve Bayes classifier; 2) 
the use of BBNs in imaging, particularly focusing on its applications for medical 
image processing and related retrieval tasks; and 3) the use of belief networks to 
guide the visualization process, and in turn, to serve as a front-end to BBN model 
interaction. 

Naïve Bayes 
There is a special case of Bayesian belief networks, called naïve Bayesian belief 
networks (also sometimes called simple or naïve Bayes), which are often used as 
classifiers; as such, they have been used extensively in medical image processing, text 
classification, diagnostic/prognostic queries, and other tasks. Naïve Bayes classifiers 
are also well-suited to visualization in terms of nomograms [48]. Structurally, a naïve 
Bayesian classifier consists of one parent node (the class) and multiple children 
(the attributes) (Fig. 9.8b), and is predicated on a very strong assumption about the 
independence of the modeled attributes. Often this assumption is unrealistic; but 
accepting this restriction, naïve Bayesian classifiers can be trained efficiently over 
both large datasets and a number of attributes. And despite their simple design, naïve 
Bayes classifiers tend to perform well in real-world scenarios. Studies comparing 

performance with classification trees and with neural network classifiers. Analyses 
have demonstrated possible theoretical reasons for naïve Bayes’ efficacy [40, 61]. 

classification algorithms have found naïve Bayesian classifier to be comparable in 
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Figure 9.8: (a) An example belief network consisting of three diseases and four 
symptoms. Examination of the topology (via d-separation) shows that the symptoms 
are not independent. (b) A naïve Bayes classifier. This classifier is not equivalent to 
Fig. 9.8a given that various symptoms (attributes) of the class (i.e., condition) are 
dependent; the naïve Bayesian classifier requires independence. 

To appreciate how naïve Bayesian classifiers work, consider discriminating between 
histological types of lung cancer based on size, lobulation, and margin appearance on 
computed tomography (CT) imaging. Given a (labeled) dataset, a normal Bayesian 
classifier operates by stating that, if a tumor is encountered that is between 0.5-6 cm in 
diameter, and with poorly defined margins, and is lobulated, what is the most likely 
classification based on the observed data sample? Unfortunately, to properly estimate 
these probabilities, a sufficiently large number of observations is needed to capture 
all possible combination of features (thereby representing the joint distribution). In 
assuming that the features are independent of one another, naïve Bayes classification 
instead circumvents this problem: in our example, the probability that the tumor is 
0.5-6 cm, has poorly defined margins, and appears lobulated (and is probably an 
adenosquamous carcinoma) can be computed from the independent probabilities that a 
tumor is of a given size, that it has a specific type of margin, and that it is lobulated. 
These independent probabilities are much easier to obtain, requiring less sample data. 

More formally, let A = {A1,…,An} be the n attributes used in a classifier, C. For a 
given instance {a1,…an}, the optimal prediction is class C = c such that P(c | A1 = a1 ∧ 
… ∧ An = an) is maximized. Using Bayes’ rule, this probability can be rewritten as: 
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where P(c) is readily computed from a given training set. For classification purposes, 
as the denominator is identical across all values of c, we need only concern ourselves 
with the numerator term. Using Bayes’ rule again, the numerator can be stated as P(A1 
= a1 | A2 = a2 ∧ … ∧ An = an, c)P(A2 = a2 ∧ … ∧ An = an | c), recursively rewritten for 
each corresponding attribute. Given the independence assumption, then: P(A1 = a1 | A2 
= a2 ∧ … ∧ An = an, c) = P(A1 = a1 | c). The original numerator is thus equal to the 
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product of each independent conditional probability. Accumulating these results, each 
probability can then be estimated from a training data set such that: 
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where the above equation provides maximum likelihood probability estimates. It can 
be further shown that naïve Bayes is a non-parametric, nonlinear generalization of the 
more well-recognized logistic regression. Caution must be used when naïve Bayes 
techniques are applied. Consider Fig. 9.8, which collapses three different causes into 
one condition that has four possible effects. In general, these two graphs are not 
equivalent unless the single-fault assumption is made. The single-fault assumption 
states that only one condition can exist at any given time, as the multiple values of the 
condition variables are exclusive to each other. Applying the single-fault assumption 
to Fig. 9.8b, inconsistencies quickly arise; for instance, if a patient is known to have a 
cold, then whether the patient has a fever does not influence the belief that the patient 
also has a sore throat (intuitively, this does not make sense, as if the patient has a 
fever, this should increase our evidence for tonsillitis, which would in turn increase our 
belief in a sore throat). The single-fault assumption requires that the sore throat and 
fever be d-separated (i.e., that they are independent variables), but based on the 
original network, sore throat and fever are not d-separated. 

Imaging Applications 
Graphical models have become increasingly popular in computer vision, being applied 
to bridge the gap between low-level features (e.g., pixels) and high-level understanding 
(e.g., object identification). Given the wide variety of images that exist (e.g., natural 
images, medical images) and the large number of pixels that compose an image, 
problems in computer vision benefit from a BBN’s ability to integrate domain-specific 
knowledge and to simplify computations by exploiting conditional independence 
relationships; a few applications are summarized here:  

 Enhancing image processing. [64] creates a geometric knowledge-base using BBNs 
to provide an efficient framework for integrating multiple sources of information 
(e.g., various edge detectors). The results of such detectors are typically partial, 
disjoint shapes; but when used as inputs into the BBN, the model infers the most 
probable complete geometrical shape based on these available features. [47] uses 
a BBN to perform real-time semi-automatic object segmentation. First, the image 
is segmented using watershed segmentation; then, a graph is imposed onto the 
resulting gradient lines, placing a node where three or more converge and drawing 
an edge along the section of the watershed line between two nodes. The model’s 
prior probabilities encode the confidence that an edge belongs to an object boundary 
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while the CPTs enforce global contour properties. The image segmentation is 
determined by computing the MPE. [1] improves on a split-and-grow segmentation 
approach by using a BBN to integrate high-level information cues. The BBN is 
used to infer the probability of a region having an object of interest based on 
image attributes such as location of the region and color. Regions with the highest 
probabilities are taken as seed points for subsequent region-growing stages. 

 Image object identification/classification. [44] demonstrates the ability of using 
BBNs to perform scene categorization: an image is initially characterized into two 
sets of descriptors: low-level features (e.g., color and texture) and semantic 
features (e.g., sky and grass). These features are used as evidence to instantiate a 
BBN-based inference engine that produces semantic labels for each image region. 
[72] examines how visual and physical interactions between objects in an image 
can provide contextual information to improve object detection. A BBN is auto-
matically generated from features detected in the image; this model is then used to 
generate multiple hypotheses about how the objects interact with each other (e.g., 
occlusions). The system then generates a synthetic image that represents the most 
probable configuration of individual image features.  

While many of these algorithms have been developed for natural images, they may 
also be applied to medical images. Many of the low-level features (e.g., texture) are 
used to characterize medical images and in combination with BBNs, may provide for 
more accurate indexing and retrieval of images from large biomedical databases to 
support content-based image retrieval. 

Querying and Problem-centric BBN Visualization 
An emergent question in applications of BBNs to the medical domain has been how 
to merge their use into clinical care, abstracting away the underlying complexity 
while still exposing their utility as tools for decision-making. Rather than use the DAG 
representation of a BBN to interact with a disease model, one approach is to create an 
intermediate layer that replaces BBN variables with common graphical representations 
(icons or visual metaphors) that can be drawn using the patient’s own data to compose 
queries. A user’s visual query is then interpreted by the application and translated into 
a question to the BBN. Additionally, this “visual querying” approach is well-suited to 
imaging data, where geometric and spatial features (e.g., size, shape, location) are 
more readily graphically depicted. The BBN itself can also be used as a source of 
knowledge to guide the display of patient information and results, enabling “problem-
centric” BBN visualization: the network topology and conditional probabilities give 
clues as to which variables (and thus, which data) are closely related and should be 
presented as part of the query’s context. We conclude by presenting two systems that 
illustrate these techniques. 
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Visual Query Interface 

The first system, called the visual query interface (VQI), facilitates inference on a 
disease model through a graphical paradigm; moreover, the user’s querying process 
itself is guided by the topology and the parameters of the underlying model. This 
system is designed for radiologists and other physicians who are interested in using 
image features (e.g., color, texture, shape) to find other similar studies in a large 
repository (e.g., picture archive and communication systems, PACS), such as in 
applications for medical content-based image retrieval. For example, consider the request, 
retrieve all related patient cases that have nodules with a speckled appearance in the 
right lower lobe of the lung. Given the nature of medical images, a visual query-by-
example interface is well-suited to the task of query composition: spatial (e.g., 
location) and morphological attributes (e.g., irregular tumor border) are naturally 
described by a graphical representation. In point of fact, one usability study showed 
that when asked to specify complex queries, users’ found visual queries to be more 
intuitive and expressive than traditional text query languages [66]. Yet as the number 
of queryable features within a domain grows, the tools to facilitate visual expression 
of the query must be well-organized and guarantees on the logic of the query must 
be made. 

To this end, in VQI the user manipulates a pictographic representation of BBN 
variables, referred to as graphical metaphors. Two types of graphical metaphors exist: 
1) a freehand metaphor that allows the user to sketch a query object (i.e., a tumor) and 
its environment (e.g., surrounding anatomical structures); and 2) a component metaphor 
that prompts the user to input numerical or categorical values based on fields in the 
patient record. By combining graphical metaphors in different ways, a variety of 
diagnostic, prognostic, and treatment-related questions may be posed. For imaging-
based variables, graphical metaphors take on the properties of their image feature 
counterparts, allowing users to alter their sizes, locations, relative geometrical positions, 
and shapes to obtain the desired query. The metaphors bridge a user’s knowledge of a 
familiar domain (e.g., a radiologist’s expertise in image interpretation) to an exploratory 
framework that may include additional variables. Additionally, the selection of graphical 
metaphors in VQI is context-specific such that as the query is built, different metaphors 
are made available (or removed) to enable the user to draw a permissible query. A 
feedback loop exists between the user and the underlying graphical model, as illustrated 
in Fig. 9.9: given a disease model, contextual information provided by the variables, 
structure, and user interaction with the model influence what graphical metaphors or 
functionality is the displayed to the user. As the user selects metaphors to formulate a 
query, the inputs provide some context about the types of variables that are of interest 
to the user and in turn can be used to identify the subsets of variables in the model that 
are directly related and relevant for the query. This feedback loop provides a form of  
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Figure 9.9: VQI’s relationship between user interaction and the underlying BBN. 

relevance feedback: as the user chooses a set of variables to be a part of the query, the 
system uses this information to refine what metaphors are presented next to the user. 

Adaptive interfaces using BBNs. To dynamically adapt the interface, the BBN is 
utilized to perform two tasks: 1) to capture knowledge about a disease in a probabilistic 
manner so that inference may be performed with instantiations of the information; and 
2) to map variables to graphical metaphors and to determine when a metaphor is 
pertinent to the user’s query. The variables, structure, and user interaction with the 
model are hence used by VQI to determine when a given variable is “relevant” as 
described subsequently: 

1. Variables. In constructing a disease model, a select number of variables are 
chosen and modeled to characterize a disease process. Each variable is mapped to 
a unique graphical metaphor. By way of illustration, an age variable would map 
to a component graphical metaphor that prompts the user to specify a numerical 
value. In addition, each variable has a number of states that the variable can take 
on; these states dictate what properties a graphical metaphor can take on. For a 
variable that models the percentage of tumor removed from a patient, the states 
may be specified by a range of percentage values (e.g., 90-100% resection); the 
graphical metaphor is responsible for transforming a user’s numerical input and 
placing it into one of the variable’s states. Variable names can also be mapped to 
a broader knowledge source, such as an ontology, that allows the variable to be 
defined and placed into the context of other related variables. For example, if a 
disease model representing brain-related symptoms includes a variable word 

VQI supports the use of labeled imaging atlases to provide spatial information about 
anatomical structures. For example, when the user overlays a tumor metaphor atop a 
representative slice from a brain atlas, the anatomical information encoded in the atlas 
is used to determine the location of the metaphor and whether the metaphor affects any 
surrounding structures (e.g., mass effect on the right ventricles). 
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blindness that represents a loss of the patient’s ability to read written text, the 
variable is mapped to the term alexia in the Unified Medical Language System 
(UMLS) lexicon and assigned to the semantic type T047 - Disease or Symptom. 
After mapping all of variables to UMLS, variables with identical or similar 
semantic types are grouped and presented together in the query interface. 

2. Model structure. The network topology encodes information about the conditional 
independencies that exist in the model. Based on the Markov assumption, conditional 
independencies allow the model to be decomposed into small subgroups given 
evidence about certain variables. For instance, a variable, given information about 
the parents, children, and children’s parents, can be fully explained by these 
variables and therefore isolated from the rest of the network. This specific 
property is called a Markov blanket. VQI leverages this property to identify those 
subsets of variables in the model related to a given variable of interest. When a 
variable of interest is selected, VQI examines the variable’s Markov blanket to 
identify additional graphical metaphors to be presented in the interface. Also, the 
in- and out-degree of a variable help to determine the relative importance of a 
variable: highly connected variables can be considered more crucial to a disease 
process than variables that are sparsely connected. In VQI, the connectedness of 
a variable is used to determine the initial group of metaphors that is presented to 
the user. 

3. Query. Information about the user’s goals is gleamed from the query itself. The 
variables that the user selects to be a part of the query elucidate the types of 
information that the user is seeking from the model. As an example, if the user 
selects several imaging-related variables, the probability that the user is interested 
in determining how imaging features affect the outcome of the patient is increased. 
Therefore, the model increases the weight of other imaging-related variables in 
the model so that they are visually highlighted or presented prior to other 
metaphors in the interface. 

This adaptive presentation of relevant graphical metaphors not only simplifies the 
process of creating a query by reducing visual (selection) clutter, but also enforces 
logical rules regarding the order that metaphors are selected to formulate a query. For 
instance, in neuroradiology, contrast enhancement, if present, appears around certain 
image features of a tumor, such as a cyst or necrosis. Therefore, the option to add a 
rim contrast metaphor is only applicable when a cyst or necrosis metaphor is already 
present in the query.  

Formulating a query. The process of posing a visual query is as follows: from a 
normal or patient imaging study, the user selects a representative slice or location to 
pose the query; the user iteratively constructs a query by drawing upon the available 
set of presented metaphors to represent visual features of the disease; and the final 
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query is translated into an object representation that is used to set the states of 
variables in the BBN as the basis of a MAP query. Fig. 9.10 demonstrates how VQI’s 
adaptive interface works in the context of posing a query in the domain of neuro-
oncology: users are presented with a normal brain atlas (ICBM452 [60]), from which 
axial,  coronal,  or  sagittal  slices  can  be  selected  (Fig. 9.10a).  An  adaptive  toolbar  

Figure 9.10: Demonstrating query formulation using VQI and how the adaptive 
interface uses the model to determine the presentation of graphical metaphors. (a) The 
user initially selects a representative slice from an atlas to place a tumor object. (b) 
After drawing an edema metaphor in the query; the model then identifies which 
metaphors to present next based on the structure of the model. (c) After adding a 
necrotic metaphor, the next relevant metaphor is contrast enhancement. (d) The user 
specifies properties of the contrast enhancement based on the states defined in the 
variable. 
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presents available metaphors based on context: as the user selects structures (e.g., 
white matter) or metaphors (e.g., edema metaphor) in the editor, related metaphors are 
presented in the toolbar (and unrelated metaphors are removed). For instance, when 
the contrast enhancement metaphor is selected, the user is prompted to define whether 
the border is thick or thin. A user progressively composes a visual query, which is then 
translated to values posed against the BBN and inference can then take place. 

Case-based retrieval. VQI supports case-based retrieval by using the Kullback-Leibler 
(KL) divergence (DKL). Originally posed as an information theoretic measure [39], DKL 
assesses the difference between two probability distributions (over the same event 
space) and is formally defined for discrete random variables as:  

∑
∈

=
χx

KL xQ
xP

xPQPD
)(
)(

log)(),(  

where P and Q are the two probability distributions, and χ is a set of variables: the 
smaller DKL, the more similar the distributions. DKL has, for example, been used to 
compute the magnitude of nonlinear deformation needed in image registration problems 
[74] and in BBNs for visualizing relationship strengths [36]. In VQI, KL divergence is 
used to measure the similarity between the query and cases in a patient database. 
Based on the imaging features of the query (e.g., size, location, geometric relationships 
between objects, etc.) and other non-imaging values specified in the query, the posterior 
probability distribution for the combination of variables given as evidence is computed; 
this value is assigned as P(x). Next, the posterior probability distribution is then 
calculated for all of cases in the database using the same query variables; the resulting 
value is assigned as Q(x). The KL divergence is iteratively calculated for each case in 
the database, and the results are ranked from lowest to highest. The case associated 
with the lowest KL divergence value is the “closest” matching case (with a KL 
divergence of 0 being a perfect match). The benefit of using this approach is that 
unlike traditional case-based approaches, combinations of variables that have not 
previously been inputted in the database can still be supported; the model will attempt 
to find the next best combination of features that result in a posterior probability 
distribution closest to that of the query. 

AneurysmDB 

Building from concepts developed in VQI, a second application is AneurysmDB. 
AneurysmDB is an ongoing project to develop an interface for the integrated 
visualization and querying of a clinical research database for intracranial aneurysms 
(ICAs) (Fig. 9.11). ICAs are a relatively common autopsy finding, occurring in 
approximately  1-6%  of  the  general  population;  this  statistic  suggests  that  up  to  15  
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Figure 9.11: Example AneurysmDB interface, shown with a fictitious research patient. 
A BBN can be automatically populated with information extracted from the patient’s 
electronic medical record. The user can then select which variables to query on and 
formulate a belief update or MPE/MAP query. Additionally, a 3D sketch interface is 
integrated to enable the user to draw an aneurysm shape/location as part of the query 
process. Elements in this display (e.g., the extracted text components, task ribbon, 
overall layout) are also driven by the topology of the BBN. 

million Americans have or will develop this potentially debilitating, if not deadly 
problem [65, 73]. Yet little is known about the true etiology of intracranial aneurysms 
and optimal treatment is still largely debated. 

Like VQI’s application domain of neuro-oncology, this application’s motivation is to 
support prognostic “what if” queries to an underlying disease model and the retrieval 
of similar cases (and hence, potential outcomes for a given individual). Additionally, 
the ribbon toolbar presented at the top of the interface is also guided by examination of 
the BBN and current query to identify likely variables to include. Unlike VQI, where 
the predominant focus is on guiding image-oriented queries, AneurysmDB aims to 
expand the querying process to all clinical variables extracted from the electronic 
medical record. Some key differences are highlighted: 
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 Linkage to a phenomenon-centric data model. As outlined toward the end of 
Chapter 8, a BBN can be connected to a phenomenon-centric data model (PCDM) 
to drive computation of the CPTs. Moreover, the classification of the variables 
and relations expressed in the data model provide additional semantic information 
that can be used to control what aspects of data are presented in the user interface. 
In this case, AneurysmDB is linked to a PCDM for ICAs, facilitating access to 
patient-level records for perusal; moreover, the elements that are shown (e.g., the 
summaries for each document or imaging study; the grouping and ordering of 
elements in the task ribbon) are decided through a weighting of the relationships 
in the PCDM and the BBN. For instance, in addition to using Markov blankets, 
path length is used to determine the opacity and size of a graphical element as it is 
rendered in the interface. Path length is measured by the minimum number of arcs 
required to go between output variables and the given query input variables in 
both the BBN and PCDM: as the path length increases, the graphical representation 
for that variable would be rendered with reduced opacity and/or size. An example 
of adjusting opacity/size is in showing the list of findings for a report: those 
extracted elements that are most influential (e.g., ICA size) should be highlighted 
and given in a summary before more ancillary variables (e.g., smoking history). 

 Temporal modeling. While clinical care is governed by making decisions about 
patient treatment with the latest information, sometimes researchers ask questions 
that are driven by retrospective analysis (e.g., given the information up till a 
certain point in time, such as one year ago, how would the probabilities change 
compared to now?). To answer such a question, we must carefully separate out the 
data elements and inferences made over time. Connection to the PCDM allows 
us to pose queries based on different time points in the patient’s history. 

 Integration of a 3D sketch interface. Aneurysms are 3D entities, the morphology 
of which is critical to understanding the risk of rupture. In contrast to the 2D 
interface in VQI, a 3D sketch interface based on [31] is introduced, along with 
standard templates for common ICA shapes.  
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Chapter 10 
Evaluation 
EMILY WATT, COREY ARNOLD, AND JAMES SAYRE 

valuation is a cornerstone of informatics, allowing us to objectively assess the 
strengths and weaknesses of a given tool. These insights ultimately provide 
insight and feedback for the improvement of a system and its approach in the 

future. Thus, this final chapter aims to provide an overview of the fundamental 
techniques that are used in informatics evaluations. The basis upon which any 
quantitative evaluation starts is with statistics and formal study design. A review of 
inferential statistical concepts is provided from the perspective of biostatistics 
(confidence intervals; hypothesis testing; error assessment including sensitivity/ 
specificity and receiver operating characteristics). Under study design, differences 
between observational investigations and controlled experiments are covered. Issues 
pertaining to population selection and study errors are briefly introduced. With these 
general tools, we then look to more specific informatics evaluations, using information 
retrieval (IR) systems and usability studies as examples to motivate further discussion. 
Methods for designing both types of evaluations and endpoint metrics are described 
in detail. 

Biostatistics and Study Design: A Primer 
Central to any evaluation is an understanding of statistics and the systematic methods 
used to design experiments that are unbiased and that will correctly answer questions 
of efficacy and impact. The focus of statistical analysis is the interpretation of a 
collection of data describing some phenomena. Descriptive statistics (e.g., mean, 
median, mode) provide a summary of the collection, whereas inferential statistics aim 
to draw inferences about a population from a (random) sample. We start this chapter 
with a brief review of biostatistical concepts common to evaluation in biomedical 
informatics, leading into a discussion of study design and decision-making methods. 
Note that this section is not intended to be an instructional resource for statistics, but 
rather assumes some basic statistical knowledge on the part of the reader. For more 
detailed coverage of foundational concepts, the reader is referred to [15].  

Statistical Concepts 
Inferential statistics is concerned with the estimation of parameters that describe a 
population. Common tasks include: point estimates from a distribution (e.g., calculating 
the mean from a random sample); interval estimates (e.g., confidence intervals); 

E 
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hypothesis testing; and prediction (or, in the context of biostatistics, medical decision 
making). Interval estimates and hypothesis testing are covered in the sections immediately 
below; and medical decision making is covered in a separate section. 

Confidence Intervals 

The computation of a confidence interval is dependent on the parameter and whether a 
standard error can be calculated (e.g., based on the standard deviation). In general, a 
statistic’s confidence interval is given by statistic ± (z)σstat, where σstat represents the 
standard error, and z is the critical value determined from the confidence level for a 
normal distribution. The standard error is defined as the standard deviation of the 
sampling distribution. For example, if the mean (μ) of a population is being estimated 
with a known standard deviation (σ) and normal distribution, then the interval is 
computed as follows: 

n
zx

n
zx σμσ

+<<−  

where x̄ is the sample mean and n is the sample size. However, if the standard 
deviation is unknown, then a t-distribution is substituted for z; and σstat is replaced by 
sstat, the standard error/deviation as computed from the sample (i.e., statistic ± (t)sstat). 

Significance and Hypothesis Testing 

In evaluating a tool or system, one must measure the strength of the evidence supplied 
by the data: is the data sufficiently strong to draw a conclusion? A significance test (or 
hypothesis test) is meant to help answer this question; by performing such tests, it is 
possible to ascertain whether the difference between an observed value and expected 

consider a diagnostic tool to test for the presence of X, and a pool of subjects, half 
of whom have X and we know definitively the state of each individual. Next, we 
randomly select from the pool 16 times (say, using the flip of a fair coin) and apply the 
diagnostic test to the chosen subject. In comparing the results, if the test correctly 
identifies 13 of the 16 subjects, is it probable that the test is able to truly discern X or 

When inferring values about a population, there is an inherent question of how “good” 
the estimate might be. Confidence intervals indicate the reliability of an estimate, 
providing an upper and lower bound around an estimated parameter. For instance, 
assume that a drug test shows that 40% of subjects experience improvement; a 95% 
confidence interval on this statistic would mean that in the general population (assuming 
a normal distribution), between 36-44% of the public would likely see benefits. The 
width of the confidence interval is driven by the degree of confidence: a higher 
confidence results in a smaller interval around the estimate. 

(i.e., hypothesized) result is attributable to the claim or due to chance. To demonstrate, 
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it is simply chance that it “guessed” these classifications1 correctly? Formally, a 
significance test evaluates in terms of a probability whether an apparent effect is due 
to chance: this hypothesis is called the null hypothesis (H0) and denotes that the test or 
intervention had no effect. In contrast, the alternative hypothesis (Ha) positively states 
what the tool is meant to do. Continuing the example, the null hypothesis can be stated 
as, “The diagnostic tool cannot detect X,” whereas the alternative hypothesis would 
be, “The diagnostic tool can detect X.” In testing a group, the hypotheses are often 
stated in terms of a parameter of the population, such as the mean, or using some other 
hypothesis test (see below). Ha is said to be one-sided if the hypothesis states that the 
parameter is greater or smaller than some value defined in H0 (e.g., if H0 states μ = k, 
Ha states μ > k or μ < k). Ha is said to be two-sided if it states that the parameter is 
simply not equal to the value chosen in the null hypothesis (i.e., Ha states μ ≠ k). If the 
probability returned by a significance test, referred to as the p-value, is sufficiently 
low, then we reject the null hypothesis (therefore accepting Ha as true) and the result 
is deemed statistically significant. Although the choice of what is “sufficiently low” is 
arbitrary, significance levels (denoted by α) of 0.05 and 0.01 are traditionally used.  

Note that the p-value is the probability of observing data like the actual outcome when 
the null hypothesis is true: a small p-value hence indicates that the observed data are 
unlikely under the null hypothesis. One should not see the p-value as the probability 
that the null hypothesis is true; rather, the null hypothesis is rejected because an event 
has occurred that is unlikely if H0 is true. 

                                                           
1  In this particular example, if we assume a binominal distribution, then the 

probability of the test guessing correctly 13 of 16 times is ~0.01. Given this low 
probability, it is unlikely that the tool’s results are due to chance. 

A general procedure for conducting a significance test can be outlined as follows: 

1. Specify H0 and Ha. Choose α and an analysis plan, which determines how the test 
parameter in the hypothesis will be calculated from the sample data. This test 
method thus involves a test statistic and a sampling distribution. 

2. Perform the study experiment/test and collect the data. Compute the selected test 
parameter used in the null hypothesis from the data. 

3. Use the sample distribution for the chosen test method to find the probability  
(p-value) of the observed test parameter occurring. 

4. Conclude whether the observed data are consistent with the null hypothesis (i.e., 
is the p-value less than the selected α?). 

It is important to understand that significance tests only speak to the statistical 
perspective. In a medical study, a rejected null hypothesis may be an accurate 
representation of the test population statistically, but may not be of any real clinical 
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Test name Usage and assumptions Calculation Non-parametric 

One-sample  
z-test 

Normally distributed population, σ is 
known. μ0 represents the 
hypothesized population mean or 
specified value to be tested.  

σ
μ )( 0−

=
xn

z
 

 

One-sample  
t-test 

Normally distributed population, σ is 
unknown. μ0 represents the 
population mean or specified value to 
be tested. s is the standard deviation 
of the sample.  

s

xn
t

)( 0μ−=
 

Wilcoxon test
 

Paired t-test A set of paired observations from a 
normal population (e.g., before-after 
study); σ is unknown. s is the standard 
deviation of the sample. d represents 
the sample mean of the differences, 
d0 is the population mean difference. 
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Wilcoxon 
signed-rank test

 

Pearson’s  
chi-square test 
(distribution 
comparison) 

Examines frequency distribution a 
univariate variable for the observed 
data vs. the expected data values via a 
goodness-of-fit test. The chi-square 
test looks at the difference between 
each observed value, Oi, and a 
computed expected value, Ei, based 
on a cumulative distribution function. 
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Chi-square test 
(independence) 

Tests for independence between two 
(nominal) variables, and can be 
likened to comparing the two 
variables in a row/column table, 
where each cell counts the number of 
occurrences from the sample 
distribution and compares it to the 
expected frequency for that variable 
combination. 
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Two-sample  
t-test 

Two normally distributed populations 
that are compared. x1 and n1 are the 
sample mean and sample size of the 
first group; x2 and n2 of the second 
group. sp is the pooled standard 
deviation. Δ is the difference between 
the two population’s means. If the 
populations have the same variance, 
the denominator simplifies to ((s1/n1)+ 
(s2/n2))½.   
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Table 10.1: Examples of hypothesis tests, describing their usage and assumptions. 
Different tests are used based on the parameter being examined in a null hypothesis. 
The names of equivalent non-parametric versions of the tests are also shown. 
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2 A more rigorous, but complicated goodness-of-fit test is the Kolmogorov-Smirnov 

test, which can also be used to assess whether a sample comes from a population 
with a given distribution. 

significance. Moreover, even though a not statistically significant finding may occur 
(i.e., the p-value exceeds α), this does not mean that Ha is untrue – it only implies that 
the data as such does not support the alternative hypothesis. 

Hypothesis tests. Although μ was suggested as a parameter, the null hypothesis 
may involve different estimates: the appropriate hypothesis test is needed to evaluate 
H0 based on the quantity being estimated and the assumptions about the sample 
distribution. Examples of univariate hypothesis tests are summarized in Table 10.1. A 
z-test, for instance, is used to assess whether the difference between a sample mean 
and population mean is statistically significant given a sufficiently large sample. When 
a “smaller” number of samples are used to infer parameters on a normal distribution or 
a population’s σ is unknown, the t-test is often substituted, referencing a t-distribution 
for n-1 degrees of freedom (where n is the number of samples). For hypotheses 
involving comparisons of means between two populations, two-sample tests can be 
used to compare the difference between means. A paired t-test is used when there is 
one measurement variable and two nominal variables; the classic example is a before-
after study of some intervention on a group of subjects. Finally, one important 
hypothesis testing method is based on chi-square statistics (χ2), which can be used to 
evaluate whether observed data matches the expected distribution2 or χ2 to test for 
independence between two variables. χ2 tests uses nominal (categorical) data; continuous 
data can be transformed for χ2 tests via binning methods if a cumulative distribution 
function is available.  

Analysis of variance (ANOVA). A t-test is useful when there are two groups being 
assessed; however, situations often arise in which three or more groups are involved 
(e.g., considering comparisons between multiple sites in a study). The standard 
statistical technique in this case is analysis of variance (ANOVA), which compares 
the difference in means among several study groups. A one-way ANOVA is performed 
when only one variable defines the groups (e.g., age). More complicated tests involving 
multiple variables use a multivariate ANOVA (MANOVA). ANOVA involves three 
assumptions: 1) that the study groups’ distributions are normal; 2) that each case is 
independent; and 3) that the standard deviation is equal across all study groups 
(homogeneity of variance). We outline the one-way ANOVA here, which is based on 
the decomposition of the sums of squares: 
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where x̄ is the mean across all samples, k is the number of groups, and ni is the number 
of observations per the ith given group. The leftmost term represents the total sum of 
squares (total SS), the middle term is the sum of squares of treatments (SST), and the 
final term is the sum of squares of error (SSE). Based on the SST and SSE, the mean 
squares for treatment (MST) and error (MSE) are computed as: 
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where N is the total number of samples across all groups. The F-score is then 
computed as the ratio of MST to MSE, and looked up in an f-distribution table based 
on the chosen α and the degrees of freedom associated with the MST and MSE (k - 1, 
and N - k, respectively). The confidence interval for a one-way ANOVA comparison 
between the difference of two means is: 
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where i, j represent the two different groups, t is given by the t-distribution, and σ2 is 
equal to MSE. Note that if there are only two groups, a one-way ANOVA test is 
equivalent to a t-test, with the relationship being that F = t2. 

Correlation. Correlation reflects the strength of (linear) relationship between two 
variables – that is to say, how related are the variables? The most common method of 
quantifying correlation is through the use of Pearson’s correlation coefficient, denoted 
by ρ (although when computed in a given sample, this symbol is denoted as r, hence 
this statistic is often referred to as Pearson’s r): 
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where X, Y are the two variables of interest; cov(X, Y) represents the covariance 
between X and Y; and σx, σy are the standard deviations of the two variables. A 
correlation of ρ = 1 indicates that the two variables are correlated in an increasing 
manner (i.e., as X increases, Y increases); whereas ρ = -1 indicates a decreasing 
correlation (i.e., as X increases, Y decreases). Two independent variables should have 
ρ = 0 (however, the converse is not true). As Pearson’s correlation is dependent on 

 

the  distribution,  a  non-parametric  assessment  of  correlation  can  be  computed  using  



10. Evaluation  503 

Spearman’s rank correlation coefficient (Spearman’s rho), which converts the values 
in X, Y to ranks prior to using Pearson’s correlate. 

Assessing Errors and Performance 

An imperfect model will, of course, result in misclassification. A Type I error (α 
error) is a false positive (FP), where the null hypothesis is rejected when null is 
actually true. In contrast, a Type II error (β error) is a false negative (FN), with the 
decision to keep the null hypothesis when null is false. A confusion matrix (also called 
a 2 x 2 contingency table) is one method of visualizing the performance of a given 
classifier or test, tallying the true positive (TP), true negative (TN), false positive, and 
false negative rates (Fig. 10.1a). Based on the true/false positive/negative rates, the 
accuracy and precision of a test can be computed as: 

FPTP
TPprecision

NP
TNTPaccuracy

+
=

+
+

=                 

where (P + N) is the total number of samples tested. Accuracy is a measure of how 
well a test correctly classifies both positive and negative cases (i.e., 100% accuracy 
means that a test classifies all positive and negative cases correctly). Precision refers to 
the reproducibility of a given test result.  

Sensitivity and specificity. Two prevalent performance measures used in validating 

 

Figure 10.1: (a) A confusion matrix (2 x 2 contingency table) is used to tabulate the 
true positive, false positive, true negative, and false negative rates for a classifier. 
(b) An example of a receiver operating characteristic (ROC) curve, diagramming the 
sensitivity vs. false positive rate. ϵn are points that define the curve based on varying 
the threshold value, generating a sensitivity/specificity pair that is plotted.  

diagnostic tests are specificity and sensitivity. Sensitivity (SN) can be defined as the  
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proportion of true positives that are correctly identified as such, whereas specificity 
(SP) is the proportion of true negatives that are correctly classified. SN and SP are 
calculated as follows: 

FPTN
TNyspecificit

FNTP
TPysensitivit

+
=

+
=                   

Sensitivity is also called the true positive rate, and specificity the true negative rate. 
In the context of a diagnostic test, sensitivity is the ability of the test to correctly 
detect disease; a sensitivity of 100% therefore implies the test finds all individuals 
with the disease, and it can be used to rule out its presence. Similarly, specificity 
thus assesses how well a diagnostic test determines that an individual is healthy. There 
is often a trade-off between sensitivity and specificity: choosing a low threshold value 
will result in identification of more true positive cases and thus increase sensitivity 
for an evaluation, but conversely identify more false positive cases (resulting in low 
specificity). 

Receiver operating characteristic analysis. Receiver operating characteristic (ROC) 
analysis is often used to assess system performance, and the efficacy of computational 
models and diagnostic tests for decision support [38, 48]. In point of fact, in 
comparing two or more diagnostic tests, ROC analysis is often the only valid method 
of comparison. The typical classification metric used by ROC analysis is the discrete 
classifier, or binary test, which yields two discrete and opposing results (e.g., positive 
and negative) to estimate an unknown. The simplest example of a binary test is the 
presence or absence of a disease in a population. The accuracy of these tests is 
quantified using sensitivity and specificity. A continuous classifier produces a computed 
metric based on a scale. To discretize the numerical value into a binary value, a 
threshold value (sometime referred to as a cut point) is chosen such that the test result 
is positive if the value exceeds the threshold (and negative otherwise).  

An ROC curve plots a test’s sensitivity against its false positive rate (i.e., 1 - specificity) 
as the threshold is varied over its full range (Fig. 10.1b). That is to say, each data point 
on the plot is generated by using a different threshold value; as each threshold gives a 
particular set of TP, FP, TN, and FN counts, a pair of sensitivity and specificity values 
can be computed for each threshold value. The diagonal line connecting (0,0) and (1,1) 
is known as the chance diagonal, and represents the ROC curve of a diagnostic test 
with no ability to discern between classes. A fitted or smooth ROC curve is the result 
of assumptions made about the distribution of the test results. Using an ROC curve, 
visual comparison of two or more tests can be done on a common scale across all 
possible thresholds. A classic measure of ROC analysis is the area under the curve 
(AUC): an AUC value of 1 reflects a perfectly accurate diagnostic test, as sensitivity  
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is 1.0 while the false positive rate is 0; whereas an AUC value of 0 is perfectly 
inaccurate; and an AUC of 0.5 represents a test that is no better than random guessing 
(i.e., equivalent to the chance diagonal). The AUC can be interpreted as stating the 
probability of a diagnostic test as giving a correct positive result for a patient with the 
disease (relative to an individual without the disease). Lastly, the ROC curve permits 
one to optimally determine the threshold that balances sensitivity and specificity. For 
instance, [58] considers the use of an ROC curve to assess a diagnostic test such that 
the optimal threshold can be found by finding the sensitivity/specificity pair that 
maximizes the following function: 
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where m is the slope of the ROC curve; P(normal), P(disease) represent the 
probability of a patient being normal or having the disease (prior to knowledge of the 
test), respectively; and C represents the cost of a FP, TN, FN, or TP result. For further 
details on ROC analysis, the reader is referred to [59]. 

Study Design 
Given the above statistical tools, study design is concerned with the specification of an 
objective experiment to test a hypothesis, and entails at least three steps: 1) deciding 
upon the study type that will serve as the vehicle for how data is collected; 2) 
determining the variables of interest that will be studied; and 3) defining the cohort 
or population, which provides the source for the information. At each point, the 
researcher’s choice will establish the ultimate strength of the study’s conclusions and 
whether it is subject to bias and/or other confounding factors that complicate result 
interpretation. We briefly consider each of these design steps next. 

Types of Study Designs 

There are several dimensions along which studies can be classified, the prevailing 
framework being the dichotomy between observational and controlled experiments. 
Both types of studies compare a treatment group (for which an intervention of some 
sort occurs to affect outcomes) vs. a control group (those subjects in which the 
intervention does not occur, providing a baseline). Observational studies can be seen 
as passive studies where the researcher does not intervene in any way; in particular, 
the researcher has no control over the assignment of subjects into the various test 
groups. In contrast, in a controlled experiment the researcher explicitly selects how 
subjects will be split among two (or more) arms of a study.  
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Traditionally speaking, observational studies are considered “weaker” in terms of the 
conclusions that can be drawn relative to a controlled experiment3. The former is 
subject to confounding variables and it can be difficult to separate association from 
true causation (i.e., two study variables, X and Y, may be statistically correlated, but 
there may be no true physical meaning to the co-occurrence of X and Y in that X does 
not cause Y). The latter, in theory, permits for the examination of a well-defined set of 
controlled variables so that variable correlation is more likely to represent a causal 
relationship. However, the choice of implementing an observational vs. controlled 
study is driven by some considerations: 1) there may be legal/ethical issues in a study 
such that it is infeasible to interfere with the population, especially when invoking a 
harmful effect (e.g., for a study on malnutrition, it would be unethical to starve 
subjects); 2) there may be practical issues in implementation with respect to cohort 
size (e.g., a researcher studying a rare disease may not have enough volunteers for a 
controlled experiment); and 3) there may be cost issues, as controlled experiments are 
typically more expensive to conduct. 

Observational studies. There are several classes of observational studies, described 
here in terms of increasing quality of evidence (and complexity): 

 Cross-sectional study. The simplest of the observational studies, a cross-sectional 
study is a collection of data across multiple subjects (i.e., a subset of a population) 
taken at the same time point. This type of investigation provides a “snapshot” of 
the status of a cohort, and can be contrasted with a longitudinal study wherein 
repeated observations are made on a group over a period of time. 

 Case series/case report. A case series is a study that tracks a set of subjects with 
known characteristics (e.g., exposure to a substance, a disease). Largely, the 
number of subjects in a case series is small relative to other types of study design 
(e.g., case-control) and is thus subject to selection bias (see below). Data may be 
accrued either retrospectively from medical records, or prospectively. A case 
report is simply a detailed study of a single patient, often of a rare condition. As 
such, although weak in terms of study design, case series/reports may be the only 
information available to support a therapeutic strategy or decision. 

 Case-control study. A case-control study involves both a test group of subjects, 
selected based on a characterization of a selected outcome factor, and a control 
group lacking this same outcome factor. Hence in studying a disease, case-control 

                                                           
3  From a statistical viewpoint, this belief may be true – but from a probabilistic 

perspective, if a sufficiently large cohort is used, an observational study may in fact 
have equivalent power to a controlled experiment. Knowledge discovery through 
inductive observational studies can be as conclusive as those obtained from 
experimental methods [6, 13]. 
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studies use patients that already have this disease, and retrospectively examine 
the group’s characteristics to see how they differ from those who do not have 
the disease. Case-control designs facilitate the adoption of strategies to avoid 
methodological bias by selecting sample cases using factors independent of the 
variables influencing the effects under study. Subjects between the test and control 
groups are usually matched, and the selection of each case can be controlled 
without biasing the type of data that is acquired.  

 Cohort study. A cohort study is a longitudinal study involving the selection of a 
group of individuals that share some assigned classification or feature (e.g., a 
disease/condition; a treatment; an inherent characteristic such as the same birth 
date). The group is then followed across time to assess subjects’ outcomes. A 

group (i.e., matched). For instance, to study if prolonged treatment with X correlates 
with onset of condition Y, a cohort study would use a group of individuals treated 
with X over time, and a group with no exposure to X; both groups would then be 
tracked to evaluate the occurrence of condition Y. This example represents a 
prospective cohort, where the groups are defined before the data collection. 
Cohort studies looking to uncover causes of a disease define the group before the 
onset of disease in the subjects, and follow individuals to see who develops the 
condition. This case represents a retrospective cohort, wherein grouping of subjects 
occurs after data has been collected. By recording and comparing all characteristics 
of the group, a cohort study aims to ensure that observed differences between 
groups are attributable to the study phenomena (i.e., are changes in the study’s 
dependent variable due to the observed independent variable or some outside 
influence?). The disadvantage of this approach is that careful judgment must be 
applied to filter out irrelevant causal factors. Potentially the most well-known 
cohort study is the Framingham Heart Study, which originally followed over 
5,000 adults in one town to assess the development of cardiovascular disease. 

Controlled experiments. The archetypal controlled experiment in medicine is the 
clinical trial, a prospective study that assigns subjects to one of two or more study 
categories, referred to as trial arms, and then follows the individual longitudinally 
until some defined endpoint at which time the person is assessed and an end outcome 
is determined. Over the course of the clinical trial, each arm follows a well-defined 
study protocol. With the exception of the control group, a trial arm comprises some 
intervention. Comparisons are then made between each trial arm. Though classically 
associated with drug and device testing, the clinical trial construct is equally viable for 
the assessment of informatics tools.  

 

comparison group is often taken from the general population, so as to be separate 
from the study group classification, but in all other respects is similar to the study 
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Core to the clinical trial process is how subjects are assigned to the different study 
arms. A clinical trial can be either randomized or non-randomized. In the randomized 
design, the objective is to create an unpredictable allocation of participants; several 
methods have been described to achieve this effect [33, 64]. In a non-randomized 
design, the allocation is instead decided by some known parameter (e.g., birth date). 
The randomized controlled trial (RCT) is considered one of the most reliable and 
scientifically objective types of study, and is the preferred source of knowledge in 
evidence-based medicine.  

Given randomization, the investigators and its participants can be blinded or non-
blinded to their assignment within a clinical trial in an effort to remove potential bias 
and/or placebo effect. In a single-blind trial, the investigator is aware of the assignment, 
but the subject is not. In a single-blind setup, the investigator’s interaction may still 
bias study results and thus in a double-blind trial, both the interacting investigator and 
the subjects are unaware of the assignment, thereby ensuring impartiality. Because of 
this, the randomized, double-blinded controlled clinical trial is the gold standard of 
study design. Unfortunately, the execution of a double-blinded study – and RCTs in 
general – is largely difficult, given the time, expense, and degree of control needed to 
properly execute the study protocol. 

Paired and crossover designs. In many of the above study types, the studies are 
divided between intervention and control groups, with the latter drawn from the general 
population. However, in clinical investigations, patients can also act as their own 
matched control by comparing an individual’s state before and after two sequential 
tests are performed. Such an experiment defines a paired study. In a similar vein, a 
crossover study design [46] entails a subject alternating between a control and 

with testing each week to assess changes). Paired and crossover studies can be likened 
to before-after study designs, which are often used to evaluate information system 
deployments and the potential for healthcare impact. 

Study Variable Selection and Population Definition 

Upon selecting a specific study design, investigators must choose the appropriate 
features to measure for the sampled population. Clearly, variable selection is driven 
by the underlying study hypothesis and the need to characterize the population, the 
intervention, and its observed effects. In a descriptive study, which focuses on the 
general exploration or observation of a population’s characteristics, descriptive statistics 
are used to study one variable at a time (e.g., measuring the presence or absence of a 
hormone treatment.) An analytic study scrutinizes the relationships between two or more 
variables (i.e., predictors and outcomes) to discover cause-and-effect relationships.  

intervention state(s) (e.g., a patient may be instructed to take a drug on alternate weeks, 



10. Evaluation  509 

Given the study type and selected variables, the next step involves the definition of 
the actual populations that will be used in the investigation. As the study population 
is a microcosm of the real-world, the sample is chosen so that: the subset will control 
for systematic error (described below); and the sample is large enough to handle 
random error in generalizing the study findings to the population. Inclusion criteria 
define the main characteristics of the target population, with elements that describe an 
individual’s eligibility. Exclusion criteria identify subjects that cannot qualify because 
of characteristics that may interfere with the intervention and finding interpretation. 
Different categories exist for describing the sampling process, divided between random 
and non-random techniques: 

 Random sampling. Random sampling is frequently used in study designs and is 
judged the gold standard for ensuring maximal representation of a target population: 
a rigorous technique is used to estimate the fidelity with which phenomena 
observed in the sample represent those in the population. Common types of 
random sampling are simple random sampling, systematic sampling, stratified 
sampling, and cluster sampling. A simple random sample comprises drawing 
from the general population so that any member of the population is equally likely 
to be drawn; often this is effective in organizing larger collections of data such 
as seen in assembling data from a large-scale database (e.g., a national clinical 
trial). Systematic sampling instead chooses every nth individual from the general 
population. Stratified sampling involves the use of predefined groups of importance 
to the overall study (e.g., age, gender); participants are grouped according to these 
criteria and then selected as sub-populations. Stratified approaches work well 
when intra-strata variability is minimal, inter-strata variability is maximized, and 
the strata itself is strongly correlated with the study’s dependent variable. Both 
systematic and stratified sampling attempt to overcome potential bias issues seen 
with simple random sampling by using a priori knowledge of the population to 
guide the selection process so it more closely models the target.  

 Non-random sampling. Any subjects that fit a study’s selection criteria form a 
convenience study sample. These subjects typically are readily accessible to the 
investigator. A variation on convenience sampling is consecutive selection, which 
as its name implies uses all potential subjects within a given time period, and 
helps to minimize any type of selection bias. Snowball sampling involves the 
recruitment of individuals into a study based on word-of-mouth from subject to 
subjects in some type of (social) network (e.g., between friends); inherently, 
however, this sampling method may result in selection bias. 

The terms probability and non-probability sampling are sometimes mentioned. 
Probability sampling refers to the fact that within a population, every subject has a 
non-zero chance of selection (and that this probability of inclusion is calculable). The 
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examples of random sampling given above are all instances of probability sampling. In 
contrast, non-probability sampling means that some individuals within the population 
have no chance of being included (i.e., a zero-probability), and as such, is non-
random. 

Population Size: Sample Size and Power Calculations 

The number of samples to include in a research study, or the study’s sample size, is an 
important consideration in the design of many technical and clinical investigations. 
Before collecting data, it is essential to determine the sample size requirements for the 
study design, the measurement scales to be used, and the outcome statistics (e.g., will 
the study be quantified as a means, mean differences, proportions, odds ratios, or an 
area under the ROC curve?). Based on these decisions, knowing the estimate of the 
outcome measures’ precision is key: if the study precision is insufficient or the study 
lacks power, the study squanders resources and effort. Formally, the statistical power 
of a test is the probability of avoiding a Type II error, correctly rejecting a false null 
hypothesis: if β is the false negative rate, then power is defined as (1 - β). In general, 
statistical power depends on the type of statistical test, the size of the difference being 
examined (i.e., effect size), and the sensitivity of the data. A priori statistical power 
analysis therefore permits an estimate of the number of samples needed to reach 
adequate power4.  

Sample size and power for estimating means/mean differences. The sample size 
requirements for computing a mean or mean difference entail defining an acceptable 
margin of error, ε. This margin of error is equal to half the confidence interval width. 
When estimating μ with 95% confidence (without hypothesis testing), the sample size, 
n, can be calculated as n = 4s2/ε 2 where s is the standard deviation for the variable 
being sampled. Given the importance of s in this calculation, effort should be made 
to obtain a reasonable estimate of the standard deviation, drawing from prior or pilot 
studies as possible. This equation can be adapted to estimate a mean difference 
based on paired samples by substituting the standard deviation of delta (sd); and for 
independent samples, the pooled estimate of standard deviation (sp) can be used as the 
standard deviation estimate. In general, to test a mean or mean difference taking into 
account hypothesis testing, the following equation can be used: 

2

22 )(2

Δ
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4  In contrast, post-hoc power analysis is done subsequent to data collection to 

compute the study’s actual power based on the observed data. 
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where n is the required sample size; σ  represents the standard deviation of the 
variable as estimated by s, sd, or sp depending on whether the data are from a single 
sample, paired samples, or independent samples; Δ represents the expected mean 
difference; zcrit is the desired significance criterion; and zpower the desired statistical 
power. For a one-sample t-test, Δ = μ - μ0; for a paired-sample t-test, Δ =μd; and for an 
independent t-test Δ = μ1 - μ2. The values for Δ are not calculated, but instead arise 
from some speculated difference. To evaluate the power of a t-test, let φ(z) represent 
the area under the curve to the left of z on a standard normal distribution curve (e.g., 
φ(0) = 50%; φ(1.28) = 90%) The power of a t-test comparing means is given by φ(-α + 
(|Δ|n½)/σ), where Δ again denotes the expected mean difference, n denotes the sample 
size, α is the critical value for the chosen confidence interval (e.g., for a 95% 
confidence interval, α = 1.96), and σ is the standard deviation of the variable (i.e., s, 
sd, sp). 

Sample size for estimating a single proportion. To calculate a sample size for 
proportion p at a given confidence interval with margin of error ε, the equation n = 
α2p(1 - p)/ε2 is used, where α is the critical value for the chosen confidence level. As p 
is the variable being assessed, if no estimate is available, it is possible to assume p = 
0.5 to obtain a sample that is big enough to ensure high precision. 

Sample size for testing two proportions. For a study where two proportions are 
compared with a χ2-test or a z-test, which is based on the normal approximation to the 
binomial distribution, the sample size can be computed as: 
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where p1 and p2 are pre-study estimates of the two proportions to be compared; and  
Δ = |p1 – p2|2 (i.e., the minimum expected difference). The two groups comprising n 
are assumed to be equal in number, and it is assumed that two-tailed statistical analysis 
will be used. Note that n in this case depends not only on the difference between the 
two proportions, but also on the magnitude of the proportions themselves. Therefore, 
this equation requires an estimate of p1 and p2, as well as their difference. 

Sample size for two-rater kappa statistic. Let κ be the estimate of kappa, κ =  
(p0 - pe)/(1 - pe), where p0 and pe are respectively the estimates of the actual 
probability of agreement between the two raters, and the expected agreement when 
rating independently. The large-sample standard error (SE) is given by [20]: 



512 E. Watt et al. 

2
00

1
0

2
1

1 1

2
0

2
0

2
02

)2()()1)(1(

2)()1()1(
)1(

1)(
)(

ppppppppp

pppppp
pnn

SE

eeii

k

i
iie

k

i

k

j
eije

e

+−−+−−=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−+−+−

−
==

∑

∑∑

=

= =

λ

λ
κτ

κ
 

and where pij is the estimated proportion of samples that the first rater places into 
category i but that the second rater places into category j. Based on large sample theory, 
κ will have an approximately normal distribution with mean equal to the true inter-
rater agreement measure and SE as approximated above. Power and confidence interval 
computations can therefore be based on the upper α percentiles of the standard normal 
distribution, z1-α. To obtain the (1 – α) percent confidence interval for κ that has length 
≤ d: 2z1-αSE(κ) ≤ d. Replacing SE(κ) by its maximum value guarantees that the 
inequality will be met and results in the sample size determining inequality: 
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For hypothesis testing, the sample size is determined so that a level α test of H0 = κ ≤ 
κ0 against the alternative H1 = κ > κ 0 will have power of at least (1 – β) when  κ = κ1. 
Thus, the sample size formula is: 
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where κ0, κ1 are the comparison kappa values from the null hypothesis being tested.  

Sample size for ROC analysis. To determine the sample size for a study using rating 
data to measure the area under an ROC curve, the standard error estimator is needed 
and should be based on the binormal distribution. The binormal approximation to the 
SE for rating data is given as: 
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where Φ-1 is the inverse of the cumulative normal distribution function; and nN and nA 
represent the number of normals and abnormal, respectively. From the standard error, 
the sample size estimate can be modeled by:  
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where zα and zβ are the chosen upper α and β percentiles of the standard normal 
distribution; σ0 is the variance under the null hypothesis and σ1 is the variance under 
the alternative hypothesis assuming that nA = nN; and θ is the ROC AUC per the 
corresponding distribution. 

Internal pilot studies. There sometimes exists a need to design a study in the absence 
of any good estimates of variance or other parameters that may inform sample 
calculations. To overcome this problem, a preliminary pilot study can be used prior to 
conducting the primary evaluation; such a pilot proffers the chance to check study 
feasibility and to refine the many facets of the study design (e.g., randomization, data 
collection, etc.). However, if the researchers are sufficiently confident of a study, they 
may instead wish to immediately proceed with the primary evaluation. [81] hence 
advocates the use of an internal pilot study, which uses the first portion of the primary 
study to recalculate the needed sample size using estimates of relevant study parameters. 
Given the importance of estimating these parameters from the actual study population, 
a degree of efficiency is gained by using data obtained from an internal pilot study as 
it need not be discarded (i.e., it can be used in the final analysis). 

Consider the following common problem: a lack of knowledge about the variance for 
a normal distribution at the outset of a study. Suppose that we have samples from two 
populations and that we want to evaluate whether the population means are different in 
normal populations N(μA, σ2) and N(μB , σ2) [17, 72]. The null hypothesis is that μA =  μB, 
tested against a two-sided alternative with type I error α and power (1 – β) at  μA – μB = δ. 
The total sample size per arm, n, is max(n, (t2n-2, 1 – α/2 + t2n-2, 1 – β)2(2s2/δ2). If n 
responses on each treatment, the t-test with two-sided type I error rate α rejects H0 if: 

2/,22
2 /2

||
α−>

−
n

BA t
ns

xx
 

where s2 is obtained on (2n – 2) degrees of freedom from the pilot data. Using this 
information, the primary evaluation’s estimates can then be subsequently updated. 

Study Bias and Error 

In spite of the detailed planning and care that may be used, a study is susceptible to 
both data errors and bias, impacting the results, their interpretation, and ultimately the 
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conclusions drawn from the study. Formally, error is a departure of the observed value 
from the expected (true) value. Two types of error afflict research studies: random 
error and systematic error. Random error is attributable to unknown sources of 
variation that are equally likely to distort the sample in either direction. Increasing a 
study’s sample size is the usual solution to reducing the influence of randomness. 
Bias, however, reflects systematic errors that are introduced into the evaluation as a 
result of sampling, measurements, or other problems. In this case, increasing sample 
size does not alleviate the effects of systematic error; instead, improving the accuracy 
of the estimate will reduce the impact of any bias. [21] categorizes biases affecting 
study design: 1) selection bias, wherein the sampled subjects or phenomenon studied 
are not representative of the population; 2) measurement or information bias, where 
the measurement of the sampled phenomenon is systematically different from that used 
in the population; and 3) confounding bias, which makes the sample or measurements 
unrepresentative of the population. Specific types of selection bias include: group 
membership bias such that test participants may be naturally classified more heavily 
in one group (e.g., race, geographic location); Berkson’s bias (also referred to as 
state-of-health bias), where subjects are selected from a captive patient pool; and 

One particular type of source of error/bias bears some further discussion. Scientific 
studies are based on the idea that measurements are repeatable. However, there are 
many sources of variation that arise, undermining the repeatability of measurements. 
Random subject variation, for instance, corresponds to the fact that a measurement 
taken in a given individual (e.g., blood pressure) will likely vary, even if taken in 
rapid succession. In studies involving expert or user assessment, intra- and interrater 
variability must be assessed. Intrarater variability (intra-observer agreement) measures 
the degree to which a given user is consistent in their responses. For example, a 
radiologist may be asked to read an imaging study and to measure a tumor lesion; after 
some time (to remove any memory effect), if the same radiologist is asked to repeat 
the task with the same study, the measurement would ideally be identical – yet often, 
the measurement, albeit similar, is not exactly the same. The statistical method of test-
retest (i.e., performing the same test twice with the same subjects to validate test result 

Neyman’s bias (prevalence/incidence bias), which encompasses the selection of patients 
who exhibit irregular patterns of health or a specific condition of a study disease. An 
example of measurement bias comes from the problem of missing data: results may be 
skewed to different groups because subjects in a different group may not have measured 
data (e.g., failing to answer questions, dropping out of a survey, etc.). Information bias 
includes: recall bias, in which subjects may provide additional, more complete, or 
even exaggerated responses when prompted as part of a study; Hawthorne bias, where 
subjects act differently knowing that they are being observed; and observer bias, in 
which the individual collecting data has a preconceived expectation of the results. 
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consistency per subject) is similar to gauging intrarater variability. Interrater variability 
(inter-observer agreement) represents the variation between experts; in theory, different 
experts should provide the same response to a task, but again variation can occur. A 
kappa statistic is typically computed to assess interrater variability (see below). Both 
intra- and interrater variability are metrics of the reliability of a measurement. 

Meta-analysis 

Study design is centered about the creation of an experiment to examine data, be it 
either retrospective or prospective, to answer a hypothesis. Another means of answering 
a hypothesis is to perform meta-analysis, which synthesizes the (quantitative) results 
of several existing common studies together. Meta-analyses are often used to examine 
the strength of relationship – that is, the effect size – between two variables (e.g., what 
is the effect of X on Y?). Each study independently provides an effect size estimate, 
which can be modeled alongside the study’s characteristics; when combined via meta-
analysis, a more powerful estimate of the effect size is derived. Hence, the appeal of 
meta-analysis lies in its ability to combine several different types of studies together 
(e.g., RCTs, observational studies) across a large population. Moreover, proponents of 
meta-analysis argue that this type of assessment allows one to measure the magnitude 
of an effect across studies, rather than just its (statistical) significance, and to explain 
the differences between studies.  

A meta-analysis consists of four steps: 1) a review of the literature to collect studies 
related to the hypothesis; 2) a sub-selection of the studies based on some inclusion/ 
exclusion criteria (e.g., the quality of the study, the particular cohort, degree of perceived 
publication bias); 3) a selection of the study variables and/or summary measures that 
will be extracted for analysis (e.g., means, differences, etc.); and 4) analysis via a 
meta-regression model to compute an effect size across all studies and subsets of the 
studies. The analysis is performed by converting all of the accepted studies’ statistics 
into a common effect size metric, being one of two categories: a standardized mean 
difference (e.g., Cohen’s d or Hedges’ g statistics) or a correlation (e.g., Pearson’s r). 
For instance, a one-way ANOVA F-score can be converted into an r value. Correcting 
for sample variation and other study characteristics, an aggregate effect size statistic is 
then computed. A full discussion of the meta-regression models is beyond the scope of 
this primer; we refer the reader to [50] for further details. 

Decision Making 
The process of care is predicated upon the fact that given information about a patient, 
we can make a decision to improve the individual’s health and/or quality of life. 
Medical decision making is thus a major area of informatics investigation, and has 
longstanding origins in biostatistical approaches that aim to predict an outcome based 
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on some quantitative model derived from observed data. Chapters 8 & 9 provided 
insight into the Bayesian approach to modeling and decision making; here, we cover 
two additional techniques rooted in statistical methods that are commonly seen in 
biomedicine to provide decision-making models: regression analysis and decision trees. 

Regression Analysis 

Perhaps the most common set of techniques, regression analysis encompasses a range 
of methods that model a dependent variable (the response variable or measurement) 
with one or more independent variables (the explanatory or predictor variables). The 
regression equation or model is created based on an analysis of sample data that is 
deemed representative of the target population; as such, the assumptions require that 
errors seen in the data are due to randomness and that the predictor variables are 
linearly independent of each other. 

Multiple linear regression. Under linear regression, the relationship between the 
dependent and independent variables is given by a function that is a linear combination 
of one or more model parameters (βi), and is of the form: Yi = β0 + β1Xi1 + β2Xi2 … + 
βpXip + єi where Y is the response variable, Xip are the predictor variables, and єi is a 
random variable representing error. The equation, as stated, results in a straight line 
through the data points; but in general, the equation may be used to fit non-linear 
curves through the data points (e.g., a parabola by using a quadratic term). The aim of 
linear regression is to estimate the model parameters, β0 through βp, which best fit the 
data; this estimate is typically given through a least squares fit. Rewriting this problem 
in matrix notation, then the estimate can be given as β': 
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where xij represents the data value from the ith observation for the jth predictor variable. 
In the case of only one dependent (Y) and one independent variable (X), simple linear 
regression reduces to computing a line of the following form, y = mx + b, with the 
slope computed as follows for n samples: 
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and equivalently, where r is the correlation coefficient between X and Y; and σx, σy are 
the standard deviations of X and Y, respectively. Intuitively, simple linear regression 
computes the line through the data that minimizes the distance between the line and 
each data point. 

Logistic regression. Logistic regression is used to predict the probability of an event 
by fitting a logistic curve (a sigmoid instead of a line) to observed data with predictor 
variables that may be categorical or numerical in nature [60]. As such, logistic 
regression is a type of binomial regression, where the event outcome is binary. By way 
of illustration, a logistic regression model could be used to compute the risk of stroke 
occurring given an individual’s age, gender, and other quantitative or nominal features 
(i.e., stroke occurs or does not occur with some probability). The logistic function 
takes the following form: 

nnz
xxxz

e
zf ββββ ++++=

+
=

−
...,

1
1)( 22110  

for n predictor variables. The variable, z, represents a summation of the predictor 
variables, weighted by the model parameters, while f(z) indicates the probability of 
the event occurring given z. As in linear regression, the goal is to choose model 
parameters, β0 through βp, which best fit the observed data. 

Decision Trees 

Decision trees are hierarchical, graph-based classifiers that present a series of 
questions and choices; by traversing a pathway along the tree’s branches and reaching 
a leaf, a classification is determined. The nodes in the graph present questions regarding 
an object’s features; edges leading away from the node are the possible values for the 
feature. Terminal nodes in the graph represent a class decision. In some variations, 
each leaf contains a probability distribution over the classes, estimating the conditional 
probability that an item reaching the leaf belongs to a given class. As with regression 
analysis, decision trees are constructed by analyzing a set of training examples for 
which the class labels are known. Several well-known algorithms are available to 
automatically construct decision trees from labeled data sets:  

 Classification and regression trees (CART). CART is a non-parametric technique 
that builds a decision tree using binary recursive partitioning [8]: there are no 
assumptions about the distribution of the predictor or dependent variables. At each 
level in the tree, the algorithm selects amongst a set of variables to best split a 
dataset into two different classes; each node thus provides a set of features with 
values and a binary yes/no decision pathway. Ultimately, the leaves in the tree 
provide for classification. Trees can still be generated even when predictor variables  



518 E. Watt et al. 

are not known for all data points by creating surrogate variables interpolated from 
values of a previous split point. 

 QUEST. Like CART, QUEST is a binary-split decision tree algorithm [44]. 
Differences include methods for unbiased variable selection, imputation of missing 
data (rather than the use of values from a parent split point), and improved 
performance in selection on categorical variables with a large number of values. 

 ID3 and C4.5. The ID3 algorithm creates decision trees by selecting at each level 
the predictor variable that provides the largest amount of discriminatory power 
by minimizing information entropy [61]. Once selected, the attribute is removed 
from future consideration, and the algorithm repeats until all data is classified 
(therefore, not all given predictor variables may be used). Note that unlike CART 
and QUEST, each node only considers a single variable at a time. C4.5 extends 
the core ID3 algorithm in several ways [62]: allowing for both continuous and 
categorical variables; managing missing data (by not using the data points as part 
of the entropy calculations); and pruning of the tree on algorithm completion, 
replacing branches that can be terminated earlier with leaves. 

Classification rules can be created from a decision tree, providing a predictive model.  

Informatics Evaluation 
To facilitate the adoption of informatics tools into the clinical or research workflow, 
such technologies must be developed around the needs and capacities of medical 
professionals. Largely, engineers and informatics researchers approach clinical problems 
with the goal of developing the tools, systems, and/or algorithms to improve the 
accuracy and efficiency with which tasks are completed. On the other hand, clinicians 
are concerned with usability, applicability, and the simplicity of technology to facilitate 
their daily work. As such there can be a disconnect between the engineer’s vision of 
a robust, functionally-rich system and the basic tool physicians are willing to use in 
the clinical setting. Evaluation and usability testing thus serve the role of fulfilling 
the needs for both researchers and healthcare providers in developing these tools: 
through evaluation we can mediate the differences between the developer and the 
user, optimizing the design of such systems’ abilities. Moreover, formal evaluation 
and usability provide a formal basis upon which comparisons between systems can be 
made. 

[5] enumerates three perspectives in how evaluation has handled the modeling of 
change brought about by healthcare information systems: 1) the computer as an 
external agent, which brings about changes in participant behavior, workflow, and the 
healthcare organization; 2) the system as a tool explicitly designed to meet user 
information needs; and 3) the deployed system as a factor in a more complex network 
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of social interactions that decide the usability and impact of the system. The first of 
these viewpoints is predominated by technical evaluations of a system, assessing 
elementary performance of the algorithm/system (e.g., accuracy, speed). The second 
view optimistically looks to informatics tools as problem solvers, inducing change 
in a logical manner. The last point of view argues that technology (perhaps regardless 
of its performance) is ultimately subject to the attitudes and interactions within an 
organization, which influence its acceptance and usage. [31] elaborates on the origins 
of these models of change within evaluation research, and advocates examination of 
change within the 4Cs (i.e., changes in communication, changes in care, issues of 
control, and context) as a unifying evaluatory framework that draws upon common 
threads across each of the perspectives. 

Within informatics, [22] also contrasts two fundamental approaches to evaluation 
studies: the objectivist approach, which performs numerical measurement and statistical 
analysis of performance and outcomes that are considered precise and replicable (i.e., 
objective); and the subjectivist approach that involves a more subjective assessment 
based on (expert) judgment and interview-based assessment. The former is aimed at 
determining if a system meets its outcomes-based needs, whereas the latter provides 
a more qualitative framework for testing with less emphasis on quantitative metrics. 
Related to the subjectivist approach, qualitative research investigates the perspectives 
and the behavior of people within a given context, and the rationale behind their 
actions. Central to this type of inquiry is that it is conducted in a natural setting, 
and tends to use observations, interviews, and source documents to draw inductive 
conclusions. Notably, qualitative research methods are increasingly used to study the 
complexities surrounding healthcare information systems [32], teasing out the “how” 
and “why” of specific outcomes. Both objectivist and subjectivist assessments can be 
performed as comparative evaluations (e.g., as seen with clinical trials), where each 
system component is assessed relative to a control (e.g., a normal group, the current 
information system, etc.). 

The following sections divide the questions of how to evaluate informatics tools into 
two demonstrative parts: 1) methods for testing information retrieval systems, such as 
content-based medical image retrieval applications; and 2) methods for assessing the 
usability of a system, focusing on the evaluation of graphical user interfaces (GUIs) 
and other system aspects. By no means are the discussions of these areas meant to be 
complete – indeed, in and of themselves, each topic can encompass an entire book. 
Hence, we only aim to introduce core concepts and terminology, relating the concepts 
of study design and statistical analysis from the previous section; references to seminal 
works are given for the reader to pursue in further detail. 

 



520 E. Watt et al. 

Evaluating Information Retrieval Systems 
Evaluation is a critical and challenging step in information retrieval (IR) system 
development. Apart from the mathematical algorithms that drive an IR system, 
evaluation requires considering the IR problem from a social perspective, addressing 
subjective issues such as relevance, user experience, and information needs. Early IR 
evaluations were exemplified by the Cranfield experiments and the SMART system 
assessment. The Cranfield experiments used a small test collection (1,400 documents), 
queries, and exhaustive relevance judgments to evaluate the efficiency of different 
indexing languages and methods [12]. The SMART system proposed the vector-space 
model for IR and its experimental results were seminal [65]. Early evaluations of 
SMART involved metrics that considered the ranking of results based on relevance 
concepts. These influential works paved the way for modern IR systems and 
evaluation; and today, annual meetings such as TREC (Text Retrieval Conference) and 
CLEF (Cross Language Evaluation Forum) serve as the premier forums for textual IR 
and evaluation across multiple information domains.  

Information Needs 

Compared to queries, information needs are ambiguous and unstructured. They represent 
a user’s desire to learn more about what they do not know and therefore may poorly 
describe the corpus of satisfactory information. For example, a clinician may express 
the following information need: I need information on current treatments for a patient 
with chronic lower back pain due to disc herniation. Such a need may be translated 
into the following Boolean query: current AND treatment AND chronic AND lower AND 
back AND pain AND disc AND herniation. Although there may be documents in a given 
collection that contain these words, they do not necessarily satisfy the clinician’s 
information need. Whether or not a document helps satisfy a need is a matter of 
relevance (see below).  

In medicine, the problem of IR is evident in the extreme growth of information and 
knowledge being created by clinicians, scientists, and other publishers. Accessing this 
body of information is a primary concern for all participants in the healthcare domain. 
Clinicians must evaluate patients and therefore need access to current information on 
diseases and procedures. Researchers developing new technologies depend on previous 
literature to learn and refine their methods (e.g., the US National Library of Medicine 
(NLM) MEDLINE currently services over 60 million queries a month). Patients, who 
are not experts in the field, require specialized information on their medical problems 
to help guide decision-making. These different scenarios underscore the importance of 
IR systems and evaluation in medicine to ensure that the variety of users are able to 
find the information they need. 
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PICO field Description 

Problem [DISEASE OR SYNDROME] “disc herniation”, [SIGN OR SYMPTOM] 
“chronic back pain” 

Population [AGE GROUP] “40-year-old”, [POPULATION GROUP] “male” 

Intervention and comparison [THERAPEUTIC OR PREVENTATIVE PROCEDURE] “surgery”, 
[THERAPEUTIC OR PREVENTATIVE PROCEDURE] “physical therapy”, 
[CLINICAL DRUG] “NSAID” 

Outcome [DIAGNOSTIC PROCEDURE] “NIH pain scales” 

Table 10.2: Example of structuring and standardizing a query using the PICO format 
and Unified Medical Language System (UMLS). 

of the need; 3) formalized need, the statement of a question to answer the information 
need; and finally 4) compromised need, the query presented to the IR system.  
The transition of a need from a visceral to a compromised query follows a path of 
formalization and potential mistranslation. An IR system may perform accurately on 
answering queries (e.g., a Boolean retrieval system), but it is possible that the under-
lying information need that led to the query formalism remains unmet. This observation 
illustrates the importance of defining not only queries, but also information needs 
when performing IR evaluation. 

In the clinical environment, information needs most often relate to therapies and over-
views of diseases [25]. Popular methods for translating these needs to queries require a 
clinician to structure the need using a patient-oriented framework. For example, the PICO 
structure (problem/population, intervention, comparison, outcome) has been proposed 
as a method for encoding clinical information needs into machine readable queries to 
support evidence-based medicine [16]. The PICO structure for posing clinical questions 
is thus a way to transition between Taylor’s conscious and compromised need levels. 
To demonstrate, consider a clinician with a conscious information need involving back 
pain, which can be formalized to: Given a 40-year-old male with a disc herniation, what 
are the tradeoffs between surgery, non-steroidal anti-inflammatory drugs (NSAIDs), and 
physical therapy to reduce chronic lower back pain as measured by NIH pain scales? 
Such a need can be translated to the PICO format and structured using a controlled 
terminology (Table 10.2). Evaluation of PICO has found that clinical questions relating to 
therapies are most likely to fit the framework as they tend to include definite interventions 
and outcomes. In contrast, questions relating to prognosis and etiology are difficult to 
structure with PICO as they are more vaguer in nature. Other notable challenges with 
PICO include the inability to encode fine-grained relationships between elements, a lack 
of an explicit temporal/state model, and the inability to capture anatomical relations [29]. 

To better understand information needs, consider Taylor’s description of the four levels 
of information need that a user experiences [77]: 1) visceral need, or the actual, but 
unexpressed need for information; 2) conscious need, the cognizant, mental description 
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Relevance 

Traditionally, evaluations of small collections involved exhaustively testing the relevance 
of each document to a query, which although time-consuming, is possible to accomplish. 
For modern collections, however, such a process is infeasible and other methods must 
be used. Pooling provides a way to analyze a subset of a collection’s documents for 
relevance to create an estimate of the total relevant documents in a collection for a 
query. The pooling process requires searching a collection using several different IR 
systems and judging the relevance of the first n documents returned. From each used 
system, relevant documents are placed in a pool, which then forms the gold standard 
for relevant documents given a query. The hope is that given a variety of systems, the 
pool will closely represent the actual set of relevant documents. Pooling thus presents 
a trade-off between exhaustively evaluating each document with the potential of 
missing relevant documents in the collection.  
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A value of 1 reflects perfect agreement, whereas 0 indicates no agreement. Typically, 
kappa scores greater than 0.8 are viewed as strong agreement between judges. Cohen’s 
kappa coefficient is a special case of this measure for categorical data and when there 
are only two raters. When there are more than two judges, an average pairwise kappa 
value is usually calculated. 

Judging relevance is not a straightforward task as its subjective nature can cause 
disagreement between judges – even experts may have different opinions. Therefore, 
in an IR evaluation it is important to measure the degree of agreement among judges 
(raters). The most common way to do this is the kappa statistic (K), which measures 
the rate of agreement between raters, correcting for agreement by chance: 

Given a set of information needs, the evaluation of a system requires relevance judg-
ments on the underlying collection of documents. The most common notion of relevance 
is that of topical relevance in which a document is considered relevant to a need if the 
two share common topics. In contrast, it can be argued that there is no fixed relevance 
between a need and a document – that all assessments of relevance are instead situational 
with respect to the user [67]. Pursuing topical or situational relevance in an IR system is 

mitigated by clearly defining the user group and their information needs, i.e., when 
using the notion of topical relevance, control should be placed on situation. It may also 
be possible to incorporate aspects of both. For clinical applications, topical relevance 
is often used with judgments made by a panel of experts (e.g., physicians). 

a design choice where the limitations of each may be limitations of each may be 
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Evaluation Metrics 

Selecting an evaluation metric depends on the type of results returned from the IR 
system. Recall and precision, as well as F-measure, are the standard methods of 
evaluating unranked sets of documents. In ranked-retrieval these metrics are extended 
to precision-recall curves as the size of the returned set changes. Mean average 
precision (MAP) is another method for evaluating ranked results.  

Unranked retrieval. In unranked retrieval, a document is binary-classified as being 
relevant or not. For a given query, the number of relevant documents retrieved by the 
IR system divided by the total number of relevant documents in the corpus is known 
as recall (R); and precision (P) is the number of relevant documents retrieved divided 
by the number of retrieved documents: 
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From a statistical classification viewpoint, precision and recall may also be calculated 
in terms of true/false positives/negatives. Figure 10.2 illustrates this relationship, 
which is given by the following equations: 
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positives true
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positives false  positives true
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The discussion thus far that a document is simply relevant or not to an information 
need is overly binary and fails to convey the true complexity of a searcher reviewing 
results. Consider the set of documents relevant to a query. It is probable that there is 

Note that P is identical to the precision equation given earlier, and R is equal to 
sensitivity. These equations illustrate a fundamental tradeoff in IR systems: the 
balance between the number of results returned and the relevance of those results. 
A system may achieve 100% recall by returning every document in the collection, but 
the precision for such a system would be low. Conversely, the system that returns only 
a few relevant documents will have high precision, but low recall. An IR system’s 

a high degree of redundancy of content, and therefore each retrieved document will be 
only marginally more relevant as a user progresses through the results [9]. It could 
also be possible that there are documents in the collection that are only relevant 
when returned with other documents. These two points help to illustrate that document 
relevancy is not dependent only on the query, but also the other documents in the 
collection.  



524 E. Watt et al. 

Figure 10.2: Venn diagram showing a document collection with retrieved and relevant 
sets. Definitions of true/false positive/negatives are illustrated. 

place in this spectrum is a function of the information being retrieved, the domain, and 
the user’s preferences. By way of illustration, a researcher doing a literature search may 
desire systems with high recall to ensure that every important citation is found; whereas 
a patient researching a medical condition on the Internet may wish to have high 
precision, with only a few relevant sources returned outlining the disease rather than 
an exhaustive search that returns information that is not applicable. In the healthcare 
setting, a doctor using a clinical system that returns relevant patient cases may have 
high demands on both recall and precision as he does not want to miss any relevant 
cases, but also does not have the time to sift through large numbers of irrelevant cases.  

In practice, recall scores may be estimated (as opposed to exactly calculated) due to 
the fact that in large collections computing absolute recall requires a relevance 
judgment for every item in the collection. For Web and enterprise-scale systems this 
calculation is typically impossible. Sampling techniques may be used to estimate the 
relevance of documents, but caution should be used as assumptions of the underlying 
distribution can be overly simplistic. Instead, researchers often use relative recall or 

the set of relevant documents returned by different IR systems for a given query or 
by multiple queries with the same IR system. 

Based on recall and precision scores, the F-measure is the weighted harmonic mean of 
recall and precision with the general formula: 
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When β = 1, precision and recall are equally weighted and the measure is known as 
the balanced f-measure (also denoted as F1). A balanced F-measure is commonly used in  
practice, but due to their scale or domain, modern IR applications systems may favor 
high recall or precision and therefore a researcher may modify the value of β. 

pooling where the total number of relevant documents in a collection is estimated by 
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Ranked retrieval. In ranked retrieval, documents are marked as relevant or not to a 
given query, but a spectrum of relevance is defined. For example, a Boolean system 
may consider documents containing high frequencies of query terms to be more 
relevant than those containing single occurrences. Similar methods may include 
calculating term frequency/inverse document frequency scores (TF-IDF) or using a 
vector-space model [66]. TF-IDF measures the frequency of a term in a document 
relative to the term’s frequency within the corpus. Therefore, a document containing 
a term that occurs relatively frequently compared to the rest of the documents in a 
corpus will have increased relevance for a search including that term. The vector-space 
model defines a high-dimensional word space where documents are represented by 
vectors of word frequency in the space. The similarity between two documents (or a 
document and a query) may therefore be measured using the cosine angle between the 
two representative vectors. Having a scale of relevance to order documents retrieved 
by an IR system provides a way to evaluate the relationship between precision and 
recall. Instead of retrieving an entire set of relevant documents (as necessary without 
ranking), precision may be measured at different levels of recall, leading to the creation 
of precision-recall graphs. As might be expected given the prior discussion, these 
graphs tend to show a decrease in precision with an increase in recall. However, 
because there may be local fluctuations, precision may be interpolated by its highest 
level at a greater recall value (i.e., it may be that precision actually increases with 
recall and therefore the highest level of precision should be used under the assumption 
that a user is willing to view more results if they are relevant). Figure 10.3 provides an 
example precision-recall graph and its corresponding interpolation. 

Additional technical evaluation metrics. The mean-average precision (MAP) estimates 
the average area under the precision-recall graphs for a variety of queries and is used 
as a metric of system performance. For Q queries and Mq documents satisfying each 
query, the MAP of a system is computed as: 

Figure 10.3: (a) Saw-toothed precision-recall graph. (b) Interpolation of graph in (a). 
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MAP may be intuitively thought of as the average of precisions at each point where a 
system retrieves a new relevant document (from set Mq) over a number of queries (Q). 
ROC curves may also be used to evaluate the IR system’s sensitivity/specificity, 
taking into account errors more directly to false positives. Precision at k measures the 
number of relevant documents in the first k search results returned (evaluating precision 
at some cut-off rank, such as the top ten results) and is often used in large document 
collections, such as the Web. This metric offers a way to easily compare different 
systems as it limits the size of the retrieval set rather than evaluating every document 
returned by an IR system. More recently, the normalized discounted cumulative gain 
(NDCG) has been suggested to measure the overall utility of a retrieval as a calculation 
of relative ranks [30]. NDCG measures the quality of a ranked retrieval set of documents 
by summing their individual relevances (where a relevance function is defined by the 
evaluator), penalizing highly relevant documents that appear low in the rankings and 
normalizing the result based on the number of documents in the retrieved set. This 
metric thus provides an average performance measure for an IR system’s ranking. 

Medical Content-based Image Retrieval Evaluation 

In many working clinical systems, the retrieval of medical images is generally limited 
to text-based queries of DICOM-related (Digital Imaging and Communications in 
Medicine) header information (e.g., modality, image acquisition parameters, anatomy; 
see Chapter 3). But the ability to query by the visual contents of an image has 
significant applications in teaching, research, and clinical practice and has therefore 
become an increasingly studied problem. Unfortunately, the geometric shape properties, 

There are several other factors that can be measured with differing degrees of objective-
ness to evaluate an IR system. The speed of an IR system can be measured in terms of 
answering simple and complex queries. The tradeoff between speed and performance 
becomes more apparent as a collection grows and is an important reason for large-
scale test sets. A clinical system may perform quickly with good results on a collection 
of 10,000 documents. However, if the same system requires an hour of processing 
time on a collection of 10 million documents, the quality of its results are likely moot. 
The expressiveness of a query language for an IR system also impacts its usefulness 
and should provide a natural and thorough way of translating information needs to 
queries with minimal loss of description regardless of the query’s complexity. 
Indexing a new document into the system is also a balance of performance and speed 
that varies depending on the scope. Notably, the above factors are dependent on one 
another (e.g., the selection of a query language will influence indexing).  
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spatial relationships, and imprecise representations of elements in medical images makes 
thorough categorization with semantic labels intractable and necessitates quantitative 
methods for comparing images [74]. Content-based image retrieval (CBIR) systems 
attempt to extract visual features (e.g., shape, texture, and color), index the features, 
and then compare the features using similarity metrics (see Chapter 5).  

The assessment of CBIR systems is similar to textual IR systems in that evaluation 
requires a set of information needs, a set of images germane to those needs, and 
relevance judgments. Judging relevance is performed by a panel of experts and may 
also use pooling. However, the intrinsic dissimilarity between text and images also 
necessitate differences in how CBIR evaluations are conducted. For instance, the 
evaluation of scalability is more important with CBIR, as imaging datasets are large 
and indexing is computationally expensive. Furthermore, in clinical CBIR systems, 
the choice and computation of evaluation metrics is more complex as visual data is less 
structured than language, and the metrics of comparison are both ill-defined and highly 
task-oriented. For example, the language to describe all brain tumors may encompass 
several hundred specialized terms, but as no two tumors will ever be identical, there 
are infinite image representations. It is the characterization and comparison of these 
infinite representations that makes the problem of CBIR challenging. A brain tumor 
image model, then, attempts to find the key quantitative features that account for the 
hundreds of semantic terms used by clinicians. The disparity between these features 
and the semantic terms used by a clinician to describe an image is the basis for the 
semantic gap problem – it is the bridging of this gap that remains the purpose of most 
medical CBIR research and its assessment is crucial [28]. To this end, a standard set of 
performance-recall, rank, and execution time metrics has been proposed for evaluating 
medical CBIR systems [54]. Combined with standard sets of images, information needs, 
and relevance judgments, the proposed evaluation metrics provide a way of comparing 
performance across CBIR systems, which is currently a difficult problem due to the 
sensitive nature of medical images and reports. 

In a review of medical CBIR, [53] summarizes many of the metrics used in evaluating 
such systems (
paucity of large-scale and/or in-depth evaluation. The absence of a shared image test 
set that has “ground truth” has been cited as a common issue in developing meaningful 
evaluations. However, some endeavors of note within medical CBIR that address 
evaluation include:  

 ImageCLEF. The size of medical image collections as well as the privacy 
concerns surrounding the data complicate the creation of a standard test set to be 
shared across institutions. Such a repository is something the annual ImageCLEF 
competition has sought to develop along with identifying corresponding information 

e.g., sensitivity/specificity; accuracy; speed, etc.) and comments on the 
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needs [52]. ImageCLEF is a track of CLEF that has a medical imaging component 
with medical image retrieval and image annotation tasks. For retrieval, a large set 
of mostly radiology images and 50 information needs, each with ten queries, are 
specified. Physicians are used to judge whether or not images are relevant to the 
queries. Evaluation is performed primarily with MAP, but retrieval at different 
levels of precision is also calculated. [51] provides insight into the process of 
relevance judgments in ImageCLEF. 

 ASSERT. Using a “physician-in-the-loop” CBIR model, the ASSERT (Automated 
Search and Selection Engine with Retrieval Tools) system allows radiologists to 
delineate regions of interest on an image they are interpreting. The system extracts 
a set of grayscale, texture, and shape features from the region and compares them 
to those in a database. Positional information for the ROI is obtained by placing 
it relative to automatically derived anatomical landmarks. Features are modeled 
as Gaussian distributions, which, given a single image, are used to generate a 
decision tree through entropy maximization that classifies the image. While early 
assessments of ASSERT focused on precision and overall efficiency [69], later 
ASSERT evaluation looked at the utility of CBIR to guide users’ interpretation: a 
preliminary study found that through the use of the system, CBIR improved 
radiologists’ ability to reach an appropriate conclusion [1].  

 IRMA. The IRMA (Image Retrieval in Medical Applications) project provides a 
multi-layer general architecture to support medical CBIR [40], using both global 
and local image features to perform indexing and classification tasks. As part of 
the IRMA effort, an annotated/codified reference database of medical images was 
established across several imaging modalities and anatomical regions, with the 
hope that such a standardized dataset would enable comparison of different image 
processing and indexing algorithms. 

These foundational efforts are enabling the continued pursuit of medical CBIR systems 
and their evaluation; yet as noted in [45], the end utility of content-based image 
retrieval may not be found in quantitative measures but their adoption as tools within 
clinical and research settings. 

Assessing Usability 
The responsibility of designing an application falls to the system designer, who must 
balance his own aptitudes with the varied skills and needs of average users. However, 
though a system may be technically successful, that is not to say it will ultimately meet 
the needs of its users. Usability evaluations thus aim to assess how well a deployed 
system meets its intended purpose, including its design and ultimate interaction with 
users. For example, although an information system or visualization meets technical 
requirements, its overall usage in the real-world may be minimal because it is too 
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confusing or difficult to operate. In the healthcare setting, usability is imperative, 
particularly in considering the constant influx of information that physicians must 
absorb and apply: the design of informatics tools must not impose additional work 
or obstacles to delivering patient care, and instead must aim to improve patient 
care/outcomes. A better integration in the understanding of human factors within 
healthcare environments can improve usability [7]. Indeed, [19] proposes understanding 
evaluation of healthcare systems along four axes: empirical, ethical, personal, aesthetic. 
The aesthetic consideration includes its impact on usability, citing [35, 78] wherein 
users’ initial appreciation of graphical/visual appearance largely affects later usability 
judgments.  

In software development, usability is more specifically defined as a measurable 
characteristic of a piece of software or software component(s) that helps qualify how 
easy a user interface is to use [56]. Importantly, the primary objective of usability 
testing is not to ascertain user likes/dislikes, but to identify workflow problems 
occurring because of a flawed design. Helping to drive the ideas behind usability is 
the field of human computer interaction (HCI), which examines the social context of 
the relationships between user, tasks, and computers and their influence on system 
functionality [10, 56]. Growing out of work by Xerox in the 1970s, HCI incorporates 
principles of computer science and cognitive psychology into a method of studying 
human interaction with computers. HCI emphasizes the importance of performing 
usability evaluations. Broadly, today’s usability testing can be understood in terms 
of the user’s varied types of interaction with the system, described along five axes: 
1) learnability (i.e., the system should be easy to use); 2) efficiency (i.e., the system 
should support a high level of productivity); 3) memorability (i.e., coinciding with 
learnability, how easily the user remembers how to use the system after a period of 
non-use); 4) error rate (i.e., the system should have robust error recovery and support a 
low error rate); and 5) satisfaction (i.e., how pleasant is it to use the design). 

Evaluation Techniques 

Many evaluation techniques exist to determine the extent of a system’s usability, from 
formal to informal: 

 Formal usability testing. The most empirical evaluation technique is formal 
usability testing [14, 36], where the evaluator designs specific real-world tasks 
and situations for which performance data is gathered (e.g., examining system 
performance and usability in terms of success/failure of the task). For example, in 
evaluating the design of an EMR interface, specific tasks may include patient 
record lookup, searching for a given report, and other common physician workflow 
tasks. 
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 Cognitive walkthrough. A cognitive walkthrough involves both the software 
developer, who reviews each system component step-by-step in a task-oriented 
manner; and an HCI evaluator, who logically goes through the system and 
compares the system’s behavior to what the typical user would expect. This type 
of assessment is often done as part of an iterative development cycle, as promoted 
within usability engineering [47]. Cognitive walkthrough allows the evaluator to 
express specific feedback in terms that the developer will understand; but because 
the evaluator is typically not a domain expert, he may fail to realize certain 
usability issues that are application specific. 

 Guideline comparison. This third category of usability testing is based on an 
analysis of how a system’s user interface compares to an existing design guideline 
that is considered a de facto standard. For instance, many window-based operating 
systems publish specific stylistic guidelines that describe the preferred layout, 
color, and other aspects of visual appearance and application behavior needed to 
provide a consistent look-and-feel. 

 Heuristic evaluation. Lastly, heuristic evaluation is simply based on the application 
of an HCI expert’s knowledge of interface design and common usability issues 
[57]. Often, use cases representative of typical user tasks are performed, resulting 
in discovery of potential usability problems; each issue is then scored based on the 
perceived degree of impact to the user. Examples of heuristic evaluation include 
the testing of medical device interfaces within an ICU (intensive care unit) setting, 
extended to discover safety problems with a system [23]; and usability assessment 
of a telemedicine system [76]. 

In part because usability derives its ideas from subjective methods and areas such as 
psychology and human factors, a single standardized method of evaluating system 
usability has yet to emerge. Contemporary usability evaluations are thus largely based 
on a combination of the above methods, adjusting the details as needed to suit the 
particularities of the development process and application domain. However, [36] 
outlines a useful 9-step process for performing usability evaluation:  

1. Identify evaluation objectives. An evaluation may want to focus on overall 
usability of the system or may be more specific in nature, targeting a given 
function. For example, with a computerized physician-order entry (CPOE) system, 
the underlying study question may be general (e.g., can physicians use this CPOE 
system’s GUI in lieu of paper scripts?) or specific (e.g., will the use of this CPOE 
interface decrease errors relative to current practice?). Likewise, in assessing 
an imaging workstation, one may ask broad questions (e.g., does the workstation 
allow radiologists to complete diagnostic review?) or detailed (e.g., does the image 
layout decrease interpretation time?). 
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2. Select sample and design study. The users test group must be selected (see below) 
to represent the end target users. Moreover, the characteristics and qualifications 
of the users should be carefully considered. [56] proposes three different dimensions 
to aid in typifying users: 1) the user’s knowledge about the domain; 2) the user’s 
experience with computers in general; and 3) the user’s specific experience with 
the test system. Continuing the example of an imaging workstation assessment, 
the user group may consist of a mix of novice and expert radiologists, all of 
whom are familiar with the use of picture archive and communication systems 
(PACS). 

3. Select representative experimental tasks and contexts. Tasks representative of the 
evaluation objective should be identified. A series of tasks and sub-tasks may be 
selected based on the developer’s intended design. By way of illustration, users 
may be asked to review PACS imaging studies, testing the primary function of a 
review workstation; or to perform specific imaging-related tasks (e.g., to annotate 
key images, to determine tumor progression in oncology patients). 

4. Select background questionnaires. Survey instruments for assessing the users (as 
in Step 2, above) should be picked, along with any existing questionnaires that 
can be adapted for asking about user satisfaction (see below). Note that the user 
questionnaires may be chosen to elicit self-reported information (i.e., how the 
user perceives their own level of knowledge/experience) or may provide a more 
standardized assessment of user expertise (e.g., through subtle testing). 

5. Select the evaluation environment. Determine where the testing will occur: will it 
happen in the actual environment in which the system will ultimately be used 
(e.g., for an imaging workstation, in a radiology reading room), or will it be done 
in a more controlled environment (e.g., a laboratory setting)? The former provides 
an accurate portrayal of a user’s workflow, including interruptions – but may 
provide confounding variables in interpreting results; the latter provides an idealized 
situation for testing to isolate usability issues, but at the cost of real-world 
observations. The choice of evaluation environment may also be determined based 
on the nature of observations that will be conducted: will observations be auto-
matically recorded (e.g., through the application); videotaped; or seen in person? 

6. Collect the data. Data collection occurs by asking the test users to perform the 
selected tasks. Videotaping of the session provides a means of reviewing the 
session in closer detail, but may not always be viable (e.g., such as in a clinical 
environment with patients). Likewise, think aloud techniques wherein the test user 
is asked to vocalize his thought processes as he performs actions or makes 
decisions are useful [36], but may be intrusive to the workflow. The evaluator 
may also ask the user questions to prompt for explanation of actions. 
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5  Researchers distinguish CWA from CTA in that CWA is a broader construct for 

understanding the environment, work domain, and interaction/behavior whereas 
CTA is directed more to accomplishing a goal in terms of sequential steps. 

7. Analyze the data. For experiments where observations are recorded (e.g., as with 
videotaping), information must be extracted and logged. As an example, time 
motion studies, which are primarily directed at determining the amount of time 
needed to perform various tasks, often review videotapes to determine task 
durations. Quantifiable usability metrics are then computed (see below). For 
qualitative information, such as user comments, analysis may include category-
zation or codification of statements. 

8. Interpret the data. Based on data analysis, usability problems are identified. For 
example, if there are tasks that seemingly take longer periods of time to complete, 
or the behavior of the system confused the user, these problems are documented. 

9. Iterate input to design. Lastly, the results of the interpreted data are used to inform 
and refine the design process, solving key problems with the system. 

Defining tasks. Usability assessment is dependent on the definition of tasks/goals that 
the user is meant to achieve using the application. [63] discusses, for instance, the use 
of task analysis in a qualitative study on an EMR. In general, there are several methods 
to bring out and characterize the tasks within a domain, thus defining points for 
usability testing [42] (see also Chapter 4 for a discussion of task models). Cognitive 
task analysis (CTA) provides a means to identify parts of a system that involve 
decision making, reasoning, and other information processing needs. Hierarchical task 
analysis can be used to examine a process in terms of increasing granularity, resulting 
in a decomposition of a task into smaller steps. Applied CTA involves the use of task 
diagrams to describe a process in steps that highlight cognitive skills and the know-
ledge needed to complete each step [49]. Cognitive work analysis (CWA)5 [79] has 
also been applied to the analysis of medical systems, providing progressive levels of 
abstraction to elucidate design issues in terms of user tasks and responsibilities [19, 24].  

Usability metrics. Usability testing involves the observation of users in order to 
provide (numerical) measures that assess design impact. [27] provides a compre-
hensive review of different usability metrics that have appeared across recent studies, 
grouped along the lines of measures for effectiveness, efficiency, and satisfaction; 
Table 10.3 summarizes the key types of measures. Measures under effectiveness and 
efficiency tend to be quantitative in nature, directly observing user actions in employing 
the user interface/system; whereas satisfaction tends to be more qualitative in nature. 
A review of clinical information system evaluations echoes aspects of this categorization 
[18] finding that satisfaction, acceptance, and success are frequently measured variables. 
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 Measure Description 

Task completion Number of tasks successfully completed (potentially within an allotted 
amount of time), number of failed/incomplete tasks 

Accuracy Error measures, including the number of tasks completed with error, 
number of errors per task 

Recall Time to learn, ability for users to remember the usage of the interface 

Completeness Completeness of user’s solutions to given tasks 

Quality of outcome Quantifiable changes pre- and post-usage of using the interface  
(e.g., such as from learning new knowledge) 

Ef
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Expert/user assessment Expert/user grading of the end product in using the system 

Task/error completion 
time 

Timed duration of tasks or sub-tasks, including breakdown of time spent 
in certain modes of interaction (e.g., using help); time motion study 

Input rate User throughput in using an input device (e.g., typing, annotation) 

Mental effort Cognitive load in using the user interface 

Usage patterns Frequency of usage of system functions, amount of data accessed 

Ef
fic
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nc
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Learning effects Changes in task completion time over different sessions 

Standard questionnaires Questionnaire for User Interface Satisfaction (QUIS), surveys 

Preferences Rank comparisons between different GUIs and components, preferred 
system behavior 

Satisfaction Rating scales for ease of use, context-specific usage scenarios Sa
ti

sf
ac

ti
on

 

User attitude User perception of the interaction, end outcome 

Table 10.3: Usability metrics, as compiled in [27]. Three categories of measures are 
defined. Effectiveness and efficiency tend to be quantitative measures of users’ 
performance in doing tasks with the system, whereas satisfaction is more qualitative. 

User testing. Testing with users often entails statistical analysis of a group of users. 
Study measures including sensitivity/specificity and ROC analysis are computed 
across the group, potentially stratified based on their characteristics. For instance, [34] 
describes a longitudinal study evaluating the usability of a health information system, 
contrasting novice and expert users and the significant difference seen in the results. 
As it is impractical to evaluate a system across all potential users, testing is predicated 
on a sub-sampling of individuals chosen to represent the general user set. Here, the 
problem of bias can arise. [22] elaborates on general biases applicable to all systems 
evaluation involving users: 

 Assessment bias. Subjects in the experiment allow their own feelings or beliefs 
about the system to affect how they interact with the intervention. 

 Allocation bias. Researchers may informally bypass the randomization process to 
ensure simpler cases are assigned to the intervention that they prefer and/or geared 
towards the specific users. 
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 Hawthorne effect. Mentioned earlier in the chapter, humans tend to improve (or 
alter) their performance if they know they are under observation/study. 

 Checklist effect. When humans are given checklists for a cognitive task, their 
decision making tends to be more complete and better structure. 

Each of these types of bias can affect the sub-sampled user group (e.g., inappropriate 
selection of individuals; bias in reporting; etc.) and end usability results. Evaluation, 
therefore, must take these issues into account within usability study design. [71] suggests 
some approaches to minimize the effects of evaluation bias, including: 1) utilizing 
qualitative analysis; 2) determining the direction of each type of bias (i.e., does the 
bias strengthen or weaken the system?); and 3) estimating the magnitude of each effect 
relative to each other, not on an absolute scale.  

Lastly, a longstanding debate also surrounds the number of users that should be 
employed to conduct usability testing. Although anecdotal evidence and some models 
advise that five users is sufficient to uncover 80-85% of all usability issues [80] (with 
subsequent drop off in terms of discovered issues vs. the number of testers), most 
researchers agree that a larger number of representative users is better, especially if the 
intended user group is highly heterogeneous. Moreover, it is suggested that rather than 
focus of the total number of testers, that task coverage is a more important factor in the 
evaluation process [43]. 

Questionnaires and surveys. Questionnaires and surveys are a popular means of 
evaluating user acceptance and system efficacy. Since the early 1980s, this technique 
has been relied upon as an easy to deploy technique for evaluating system usability. 

The intent of a survey is to measure users’ rating and (self-reported) usage patterns of 
the system. For instance, [37, 39, 73] leverage questionnaires to gauge users’ satisfaction 
on the implementation and use of CPOE and EMR systems. Likert scales are typically 
used to capture user responses on a visual analog scale: each question is posed such 
that responses can be given along a spectrum. The HCI and usability literature both lend 
strong support to the use of questionnaires to (subjectively) assess user satisfaction. 
This dependence has led to the development of the popular Questionnaire for User 
Interface Satisfaction (QUIS). Researchers developed the QUIS as a standardized 
user evaluation instrument for HCI components [68]. The generalizability of the 
QUIS was established by having different user populations (e.g., students, computer 
experts) evaluate different systems (e.g., websites, information retrieval systems). QUIS’ 
reliability was determined by increasing the number of questions and reducing coarse-
ness of the rating scale [11]. QUIS was thus created based on psychological test 
construction methods to ensure empirical validity and test-retest reliability. Until the 
development of QUIS, few questionnaires had focused exclusively on evaluating the  
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user’s subjective satisfaction of the system and related issues. Issues challenging past 
studies, such as lack of validation and low reliability, further led to the development 
of a questionnaire to directly address subjective satisfaction of the system. QUIS has 
been widely used in the past: for instance, [70] evaluated via QUIS physician satisfaction 
and interaction with an EMR system, covering areas of clinical results review, the 
ambulatory medical record and list management; and [55] surveyed physician satis-
faction to compare a commercially available order entry system with one deployed at 
the US Department of Veterans’ Affairs (VA). Aside from QUIS, other usability 
instruments include those designed by IBM [41]. Although questionnaires can be 
designed readily, they must be sufficiently validated to ensure that results can be 
interpreted properly.  

Discussion 
Evaluations of expert systems, teleconsultation frameworks, and general clinical infor-
mation systems account for almost 60% of all informatics-related assessments in the 

the visible progress made in the evaluation of informatics developments, the area 
continues to be an active focus of research given the lack of standardization and the 
complexities that arise in testing such systems. One early effort to promote standardi-
zation, the European Union (EU) VATAM project, established guidelines for assessment 
for telemedicine-related applications [75]; and [2] provides additional review of 
general EU-based initiatives. However, these efforts have yet to be fully embraced by 
the informatics community.  

Finally, we conclude by noting that questions of evaluation eventually lead to questions 
of impact and examining healthcare outcomes. Undoubtedly, once a system is deployed, 
an assessment of the system’s use should take place, both to further improvement (i.e., 
improvements to the underlying algorithms, usability) and to gauge what effect, if any, 
the tool or system has on users, organizations, and in the end, patients and healthcare 
processes. [5, 26] put forward several key questions to such an evaluation, summarized 
in Table 10.4. Apart from basic inquiries into whether the system worked as envisioned, 
the questions interrogate usability, user satisfaction, and short- and long-term effects 
of the implementation. Admittedly, measuring the impact of a system is a complicated 
issue, especially given that the usage of a system changes over time in response to 
new technologies, user needs, and evolving perceptions. One conceivable metric is to 
estimate the number of times the implemented system led to some change in a 
patient’s care and/or the end outcome relative to baseline (i.e., the existing information 
system or equivalent healthcare process already in place). Ideally, such an evaluation 
could occur in a real-world randomized controlled trial framework. However, both 

literature, with an excess of 80% of all evaluations being quantitative [3]. But despite 
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Common system evaluation and impact questions  

Was the system used, and if so, for what? How much training was needed for system use? 

Did the system work as designed? How well are users employing the system? 

Is system used as anticipated? Were the users satisfied? 

What factors were associated with success/failure 
of system use? 

Does the system work better than the 
procedures it replaced? 

Does the system produce the desired results? Is the system cost effective? 

What changes occurred to patient care, the 
organization, or otherwise because of 
implementation? 

Did the system have an impact in the short-term 
and/or long-term? 

Table 10.4: Compilation of common questions for post-system deployment evaluation 
of informatics tools and systems, based on [5, 26]. 

ethical and practical considerations make such study designs difficult to execute: one 
must ensure that patient care is not compromised (therefore “test” systems must not 
be sub-optimal relative to baseline or the standard of care); and given the number 
of factors that must be accounted for in conducting patient care, outcomes may be 
ambiguous, making it impossible to separate out confounding variables (and thus 
conclude to what extent a system is responsible for affecting the quality of care). 
Recent analyses have thus remarked upon the lack of true RCT evaluations of 
informatics applications [4]. And arguably, the measure of end outcome variables 
affected by a given information system or tool is, per se, unrealistic: a patient can have 
complex, multi-organ system disease, and the specific problem addressed by a test 
system may only be one component of his overall health status. Hence, determination 
of intermediate outcomes may be a better approach, wherein the impact of a system is 
judged relative to measurable changes in the underlying healthcare process.  
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angiography, 50–51 
arterial spin labeling, 51 
diffusion MRI 

anisotropic diffusion, 50 
apparent diffusion coefficient (ADC), 50 

diffusion tensor imaging (DTI), 50, 247, 
300–301 

frequency encoding, 46–48 
functional MRI, 52–53, 432 
gradients and k-space, 45–47 

49–50 
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Larmor equation, 42 
magnetic resonance spectroscopy (MRS), 

51–52 
nuclear spin (see intrinsic angular 

momentum) 
perfusion imaging 

dynamic susceptibility contrast, 51 
phase encoding, 46, 47 
physical concepts 

free induction decay, 44 
intrinsic angular momentum, 41–42 
longitudinal magnetization, 43–45,  

47 
magnetic dipole moment, 42 
net magnetization, 43 
spins and external magnetic fields,  

42–43 
T2*, 43, 44, 47, 48, 50, 52 
transverse magnetization, 43, 44, 47 
T1 relaxation (spin-lattice), 43–45, 47, 

48 
T2 relaxation (spin-spin), 44, 45, 47 

pulse sequence 
blood oxygenation level dependent, 

52–53 
gradient echo, 47, 48 
inverse recovery, 47, 48 
proton (spin) density, 47 
pulsed gradient spin echo, 49 
spin echo imaging, 47 
spoiled GRE, 48, 50 

signal-to-noise ratio (SNR), 48–49 
spatial encoding, 46 

mammography (see breast anatomy and
imaging) 

Markov Chain Monte Carlo (MCMC), 298, 
464, 468 

medical imaging informatics (MII) 
definition, 3 
history, 11–14 

MetaMap, 318–319, 342–343, 347 
morphemes 

affixes, 329 

morphological analysis, 329 
stems, 329 

musculoskeletal system 
arthrography, 90 

 
N 

Naïve Bayes 
single-fault assumption, 482 

named entity recognition, 338–341 
natural language processing (NLP), medical 

boundary detection 
compound word, 329 
inflectional rules, 329 
pre-terminals, 329, 333–336 
section, 324–326 
sentence, 326–327 
word formation rules, 329 

character stream tokenization, 327 
ellipsis, 351 
functional definition, 327 
linear sequence optimization, 335, 345, 

352 
orthographic definition, 327, 328 
parsing 

structural grammars, 354 
sub-interpretations, 354 
syntactic parse tree, 354 

parts-of-speech (POS) (see pre-terminals) 
phrasal chunking 

barrier word method, 347 
classifier design, 345, 348–349 
context modeling, 345–348 
transformation-based learning, 347, 

349 
structural analysis, 323–337 
training samples 

active learning methods, 350 
co-training, 352 
random sampling, 509–510 
selective sampling, 350 

word features, 329–330, 333–336, 339, 
346, 348 
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word sense ambiguities, 336, 337 
word sequences 

bag-of-word representations, 330 
hidden label problem, 333, 334 
joint segmentation and labeling, 333 
label bias problem, 335 
raw labeling, 333 
sequence models, 331 

neuroanatomy and function 
blood-brain barrier, 78 
brainstem, 77–79 
cerebral arteries 

Circle of Willis, 79 
cerebral hemispheres 

Brodmann areas, 73–74 
cerebral cortex, 72, 74–76 
homunculus, 73 
primary motor cortex, 74 
primary sensory strip, 75 
Sylvian fissure, 72, 74, 75 

cerebral white matter 
association fibers, 76 
basal ganglia, 76, 79 
commissural fibers, 76 
corpus callosum, 76, 77 
projectional fibers, 76 
tractography, 76, 77 
white matter tracts, 72, 75, 76, 77 

cerebrospinal fluid (CSF), 72, 78 
medical problems 

stroke, 79 
meninges 

subarachnoid space, 78 
n-gram models, 331, 332, 337, 346 
noise (see also denoising) 

autocorrelation function, 263, 264 
ensemble averaging, 263, 265 
noise power spectrum, 263 
quantization noise, 258 
statistical stationarity, 259 
Wiener spectrum, 263–264 

Wiener-Khintchine Theorem, 264 

P 

partial voluming, 31, 37, 38 
patient-centric visualization, 226–228 
peer-to-peer (P2P) computing 

centralized searching, 136–137 
content hash keys, 142 
decentralized searching (query flooding), 

137–139 
distributed hash table, 139–141 
Freenet, 141–143 
Gnutella, 138–139, 141, 143 
key based routing, 142 
routing table, 142–143 
segmented downloading, 139 
servents, 135, 136, 138, 139 
Shared Pathology Informatics Network 

(SPIN), 144–145 
signed subspace keys, 142 
super-nodes, 135, 144–145 

phenomenon-centric data model (PCDM) 
evidence, 400–401 
interventions, 401 
phenomenon, 398–399 
properties and observations, 400 
states, 400 
theory, 401 

phrasal chunking, 342–352 
picture archive and communication 

systems (PACS), 11, 12, 117–122, 126, 
128, 150, 154, 158, 159, 216–218, 220, 
484, 531 

pre-terminals, 329, 333–337, 344 
probability theory 

Bayes  rule, 417–418 
chain rule, 331, 417, 421, 463 
conditional independence, 417, 421–424, 

430, 431, 434, 436, 442, 448–450, 482 
conditional probability distribution, 416 
joint probability distribution, 416–418, 

421, 444, 457, 459, 463, 466, 467 
marginal distribution, 416, 449–450, 459 
marginalization, 416, 460, 466 

Broca’s area, 74 
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posterior probability, 426, 449, 457, 458, 
464, 488 

probability distributions, 260, 261, 294, 
334, 415–417, 420, 421, 423, 424, 432, 
435, 436, 438, 444, 459, 463, 466, 467, 
488, 517 

random variables, 415–417, 419,  
433–434, 446, 464, 470, 488 

problem-oriented medical record (POMR), 
391, 392, 398, 401 

projectional imaging (see x-ray imaging) 
propensity scores, 446 
 
Q 

quantization noise, 258 
query interaction 

direct manipulation, 213 
dynamic queries, 213 
iconic spatial primitives, 189 
query-by-example (QBE), 159, 213, 215, 

374 
query-by-sketch, 189, 214 
spatial queries, 373–374 
visual query interface, 484–485 

 
R 

radiology information systems (RIS),  
118–119, 123, 128, 158, 159, 219 

radiotracer, 39–40 
receiver operator characteristics (ROC) 

analysis, 504–505, 512–513, 533 
registration, image 

distortion maps, 269 
image warping, 274 
linear registration, 270–276, 290,  

293–295 
nonlinear registration 

optical flow, 272, 275 
preprocessing, 275–276 
similarity measures 

cross correlations, 274 
 

ratio image uniformity, 274 
sum of squares intensity differences, 

274 
user interaction 

landmarking, 274, 276, 283, 293, 301 
regression analysis 

linear regression, 516–517 
logistic regression, 517 
predictor and regression variables,  

516–518 
respiratory system 

airflow, factors of, 63–65 
airway resistance, 59, 63–64, 70, 74 
alveolar-capillary membrane, 59, 60 
alveoli 

ventilation, 62, 66 
bronchopulmonary segments 

bronchovascular bundles, 58, 71 
conditions 

asthma, 68–69 
chronic bronchitis, 69, 70 
emphysema, 69–70 
idiopathic interstitial pneumonias,  

70–71 
interlobular septa, 59–61 
larynx, 56–57 
lobes, 57, 58, 61, 70–75, 79, 80 
lobules, 58–60 
lung function, measures of, 65 
mediastinum, 57, 58, 61, 67, 68, 71 
pulmonary ventilation, 61–62 
respiratory muscles, 61–62 
trachea, 56–58 

 
S 

semantic gap problem, 527 
semantic interoperability, 130, 150 
spatial reasoning 

geometric operators, 374 
qualitative spatial reasoning, 374–375 
quantitative (metric) relationships,  

372, 373 
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queries, 373–374 
topological operators, 372 

spatial relationships 
coordinate systems, 373 
directional relationships, 372–373, 375 
natural coordinate systems, 376 
ontological approaches 

mereology, 378–380 
topological relations, 378 

scene graphs, 373 
spatial representations 

2D string, 373 
shape models, 375, 377–378 

statistical concepts and tests 
accuracy, 503, 523–526, 528 
analysis of variance (ANOVA), 501–502 
chi-square statistics, 501 
Cohen s kappa, 522 
confidence intervals, 498, 502, 510–512 
confusion matrix, 503 
contingency table, 503 
correlation, 502–503 
effect size, 515 
intra-, inter-rater variability, 514–515 
kappa statistic, 511–512, 515, 522 
margin of error, 510, 511 
paired t-test, 501 
precision, 503, 523–526, 528 
p-value, 499 
recall, 514, 523–525, 527 
sensitivity, 503–505, 526, 527, 533 
specificity, 503–505, 526, 527, 533 
statistical power, 510 
true positive rate, 504 
t-test, 500–502, 511, 513, 514 
Type I error, 503, 513 
Type II error, 503, 510 
z-test, 501, 511 

structural equation models (SEMs),  
446–448 

study design 
before-after study, 508 

bias 
Berkson s bias, 514 
confounding bias, 514 
group membership bias, 514 
Hawthorne bias, 514 
information bias, 514 
Neyman s bias, 514 
recall bias, 514 
selection bias, 514 

clinical trial, 507–508 
crossover study, 508 
descriptive study, 508 
double-blind trial, 508 
intermediate outcomes, 536 
internal pilot study, 513 
meta-analysis, 515 
randomized controlled trial, 508, 535, 536
sample size, 510–514 
significance levels, 499 
significance test, 498–501 

 
T 

Talairach coordinates, 291, 376 
task model 

actions, 202 
cognitive task analysis, 530 

telemedicine, 12, 115, 153–156, 530, 535 
teleradiology, 12, 115, 153–156, 319 
temporal ontologies, 389 
temporal reasoning 

situational calculus, 388 
temporal constraint structure, 387 

temporal relationships 
event calculus, 388 
evolutionary models 

fission, 383 
fusion, 383 
temporal evolutionary data model, 383 

visualization 
animation methods, 188 
imaging timelines, 187–188 
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trending and temporal abstraction, 
185–186 

temporal representations 
branching time, 382 
circular, 384 
cyclic models, 382, 384 
streams 

alignment, 390 
concatenation, 390 
substreams, 385, 399 

temporal similarity 
dynamic time warping, 390 
transformation-based methods, 390 

temporal scaling, 184–185, 390 
TimeLine, 183–188, 193, 195, 220–226, 382
 
U 

ultrasound imaging 
echocardiography, 96 
echogenicity, 53 

upper gastrointestinal (GI) system 
gall bladder, 103–104 
liver, 104 
pancreas, 103, 105 

urinary system 
bladder, 98–103 
imaging 

nephrogram, 99–100 
urogram, 99–100, 103 

kidney 
Bowman s capsule, 99 
major calyces, 99 
minor calyx, 99 
nephron, 98–99 

medical problems, 100–103 
renal cortex, 98
renal pelvis, 98–99, 101–103 
renal vein, 98 

ureter, 98–102, 383 
urethra, 98–102, 383 

usability testing, 518, 529, 530, 532 
use case modeling, 129, 204 
user modeling, 200–203 
 
V 

vector-space model, 323, 329, 342, 525 
visualization dictionary, 222–226 
 
W 

wireless health, 155–156 
 
X 

x-ray imaging 
attenuation, 21, 22, 27–28 
detector, 19, 20 
digital subtraction angiography, 26–27 
dose equivalent, 19 
dual energy 

iso-transmission curves, 256–257 
Z-equivalent, 255 

fluoroscopy, 27 
image artifacts, 27 
intensifying screen, 23 
latent image 

linear attenuation coefficient, 22 
pair production, 19 
radiographic fog, 21 
x-ray generation 

beam hardening, 21 
bremsstrahlung, 20 
collimator, 21, 22, 34, 36 
K-shell emission, 20 
saturation current, 21 
thermionic emission, 20 

x-ray image intensifier tubes, 26 

’

temporal granularity, 186–187, 221 
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