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Chapter 1
Introduction

Abstract Traffic measurement provides critical real-world data for service providers
and network administrators to perform capacity planning, accounting and billing,
anomaly detection, and service provision. In many measurement functions,
statistical methods play important roles in system designing, model building, for-
mula deriving, and error analyzing. One of the greatests challenges in designing
an online measurement function is to minimize the per-packet processing time in
order to keep up with the line speed of the modern routers. To meet this challenge,
one should minimize the number of memory accesses per packet and implement the
measurement module in the on-die cache memory. Hence, it is critical to make the
data structures of a measurement module as compact as possible. This book presents
several novel online measurement methods that are compact and fast.

Keywords Internet traffic measurement · Compact and fast solutions

1.1 Online Network Functions

Modern high-speed routers forward packets from incoming ports to outgoing ports
via switching fabric, bypassing main memory and CPU. New technologies are push-
ing line speeds beyond OC-768 (40 Gb/s) to reach 100 Gb/s or even tera bits per
second [14]. The line cards in core routers must therefore forward packets at a rate
exceeding 150 Mpps [35]; that leaves little time to process each packet. Parallel
processing and pipeline are used to speed up packet switching to a few clock cycles
per packet [15]. In order to keep up with such high throughput, online network
functions for traffic measurement, packet scheduling, access control, and quality of
service will also have to be implemented using on-chip cache memory and bypassing
main memory and CPU almost entirely [22, 35, 45]. However, fitting these network
functions in fast but small on-chip memory represents a major technical challenge
today [15, 29].
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The commonly-used cache memory on network processor chips is SRAM, typ-
ically a few megabytes. Further increasing on-chip memory to more than 10 MB is
technically feasible, but it comes with a much higher price tag and access time is
longer. There is a huge incentive to keep on-chip memory small because smaller
memory can be made faster and cheaper. Off-chip SRAM is larger. For example,
QDR-III SRAM has 36 MB [27]. But it is slower to access. Hence, on-chip memory
remains the first choice for online network functions that are designed to match the
line speeds.

On-chip memory is limited in size. To make the matter even more challenging,
it may have to be shared by security [18], measurement [22], routing [6], and per-
formance [17] functions that are implemented on the same chip. When multiple
network functions share the same memory, each of them can only use a fraction of
the available space. Depending on their relative importance, some functions may be
allocated tiny portions of the limited memory, whereas the amount of data they have
to process and store can be extremely large in high-speed networks. The disparity in
memory demand and supply requires us to implement online functions as compact
as possible [36, 39]. Furthermore, when different functions share the same memory,
they may have to take turns to access the memory, making memory access the per-
formance bottleneck. Since most online functions require only simple computations
that can be efficiently implemented in hardware, their throughput will be determined
by the bottleneck in memory access. Hence, we must also minimize the number of
memory accesses made by each function when it processes a packet. The challenge
is that compactness (in terms of space requirement) and speed (in terms of memory
accesses) are sometimes conflicting objectives.

1.2 Fundamental Primitives

The implementations of many online functions heavily rely on several fundamental
building blocks for data processing and storage. This book studies three important
fundamental online functions: per-flow size estimators, spread estimators, and origin-
destination flow estimators.

Per-flow size estimators are used to measure per-flow information for high-speed
links. The goal is to estimate the size of each flow (in terms of number of packets).
A flow is identified by a label that can be a source address, a destination address, or
any combination of addresses, ports, and other fields in the packet header. Measuring
the sizes of individual flows has important applications. For example, if we use the
addresses of the users as flow labels, per-flow size measurement provides the basis
for usage-based billing and graceful service differentiation, where a user’s service
priority gracefully drops as he over-spends his resource quota. Studying per-flow data
over consecutive measurement periods may help us discover network access patterns
and, together with user profiling, reveal geographic/demographic traffic distributions
among users. Such information will help Internet service providers and application
developers to align network resource allocation with the majority’s needs.



1.2 Fundamental Primitives 3

We define a contact as a source-destination pair, for which the source sends
a packet to the destination. The source or destination can be an IP address, a port
number, a combination of address/port together with other fields in the packet header,
or even a file name or URL in the payload. The spread of a source is the number of
distinct destinations contacted by the source during a measurement period. Similarly,
we can define the spread of a destination, which is the number of distinct sources
that have contacted the destination. Measuring spread values has many applications.
Intrusion detection systems can use them to detect port scans [36], in which an
external host attempts to establish too many connections to different internal hosts or
different ports of the same host. They may be used to detect DDoS attacks when too
many hosts send traffic to a receiver [28], i.e., the spread of a destination is abnormally
high. They can be used to estimate the infection rate of a worm by monitoring how
many addresses each infected host contacts over a period of time. A large server
farm may use the spread values of its servers to find how popular the servers’ content
is, which provides guidance for resource allocation. An institutional gateway may
monitor outbound traffic and identify external web servers that have large spread
values. This information helps the local proxy learn the popularity of servers and
determine the cache priority of web content.

Origin-destination (OD) flow estimators are used to measure OD flow sizes.
Consider two routers r1 and r2. We define the set of packets that first pass r1 and then
pass r2 or first pass r2 and then pass r1 as an origin-destination (OD) flow of the two
routers. The cardinality of the packet set is called the OD flow size. The OD flow
measurement is also an important topic in many network management applications
[9, 13, 25, 31, 32]. For example, Internet service providers may use the OD-flow
information between points of interest as a reference to align traffic distribution
within the network. They may also study the OD-flow traffic pattern and identify
anomalies that deviate significantly from the normal pattern. In the event of a per-
sistent congestion, OD-flow data may help point out the source of the congestion.

One of the greatest challenges in designing an online measurement module is
to minimize the per-packet processing time in order to keep up with the line speed
of the modern routers. To meet this challenge, we should minimize the number of
memory accesses per packet and implement the measurement module in the on-die
SRAM, which is fast but expensive. Because many other functions may also run
from SRAM, it is expected that the amount of high-speed memory allocated for the
module will be small. Hence, it is critical to make the measurement module’s data
structure as compact as possible.

1.3 Per-Flow Size Estimation Through Randomized
Counter Sharing

This book first presents a particularly challenging problem, the measurement of per-
flow sizes for a high-speed link without using per-flow data structures [20]. It has been
shown in [10] that maintaining per-flow counters cannot scale for high-speed links.
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Even for efficient counter implementations [30, 33, 46], SRAM will only be able
to hold a small fraction of per-flow state (including counters and indexing data
structures such as pointers and flow identities for locating the counters). The counter
braids avoid per-flow counters and achieve near-optimal memory efficiency [22, 23].
This method maps each flow to a certain number of arbitrary counters; they are all
incremented by one for every packet of the flow. Many flows may be mapped to
the same counter, which stores the sum of the flow sizes. Essentially, the counters
represent linear equations, which can be solved for the flow sizes. Two levels of
counters are used to reduce the memory overhead. The counter braids require slightly
more than 4 bits per flow and are able to count the exact sizes of all flows. But it
also has two limitations. First, it performs 6 or occasionally 12 memory accesses
per packet. Second, when the memory allocated to a measurement function is far
less than 4 bits per flow, the message passing decoding algorithm of counter braids
cannot converge to any meaningful results. When the available memory is just 1∼2
bits per flow, the exact measurement of the flow sizes is no longer possible. We have
to resort to estimation methods. The key is to efficiently utilize the limited space
to improve the accuracy of the estimated flow sizes, and do so with the minimum
number of memory accesses per packet.

We present a fast and compact per-flow size estimation function that achieves three
main objectives: (i) It shares counters among flows to save space, and does not incur
any space overhead for mapping flows to their counters. This distinguishes our work
from [30, 33, 46]. (ii) It updates exactly one counter per packet, which is optimal.
This separates our work from the counter braids that update three or more counters
per packet. Updating each counter requires two memory accesses for read and then
write. (iii) It provides estimation of the flow sizes, as well as the confidence intervals
that characterize the accuracy, even when the available memory is too small such that
other exact-counting methods including [22, 23] no longer work. We believe this is
the first size estimator that achieves all these objectives. It complements the existing
work by providing additional flexibility for the practitioners to choose when other
methods cannot meet the speed and space requirements.

The design of our size estimator is based on a new data encoding/decoding scheme,
called randomized counter sharing. It splits the size of each flow among a number
of counters that are randomly selected from a counter pool. These counters form the
storage vector of the flow. For each packet of a flow, we randomly select a counter
from the flow’s storage vector and increment the counter by one. Such a simple online
operation can be implemented very efficiently. The storage vectors of different flows
share counters uniformly at random; the size information of one flow in a counter
is the noise to other flows that share the same counter. Fortunately, this noise can
be quantitatively measured and removed through statistical methods, which allow us
to estimate the size of a flow from the information in its storage vector. We present
two estimation methods whose accuracies are statistically guaranteed. They work
well even when the total number of counters in the pool is by far smaller than the
total number of flows that share the counters. The experimental results based on real
traffic traces demonstrate that the new methods can achieve good accuracy in a tight
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space. We also provide several methods to increase the range of flow sizes that the
estimators can measure.

The randomized counter sharing scheme presented in this work for per-flow size
measurement has applications beyond the networking field. It may be used in the
data streaming applications to collect per-item information from a stream of data
items.

1.4 Spreader Classification

It is very costly to measure the spread of each source (or destination) precisely. When
a router measures the spread of a source, it has to remember the destinations that the
source has contacted so far. Future packets from the source to the same destinations
do not increase the spread value. The spread is increased only when a packet is sent
to a new destination. The problem is that it takes too much memory to store all
destination addresses that every source has contacted.

To solve this problem, various techniques such as sampling [38], probabilistic
counting [16], Bloom filters [45], and bitmaps [3, 11, 39] are used to reduce memory
overhead at the expense of measurement accuracy. The rationale is that absolutely
precise measurement of spread values may not be necessary for most applications.
It is often practically sufficient to estimate spread values with a certain level of
accuracy. Moreover, many applications only require us to classify spreaders into
categories, such as (1) heavy spreaders, i.e., sources (or destinations) whose spread
values are large, and (2) non-heavy spreaders. This further lowers the accuracy
requirement and allows additional room for memory saving. For example, in scan
detection, we want to identify heavy spreaders (scanners) that have contacted a lot
of destinations. In the previous server-farm example, we want to know the set of
servers with large spread values. Even if we do not identify all such servers, it is very
helpful in resource allocation if we can identify most of them.

This book addresses the spreader classification problem. Single-objective
spreader classification is to identify the set of heavy spreaders. Multi-objective
spreader classification places sources (or destinations) into more categories based on
their spread values. We present an efficient spreader classification scheme based on
a new storage method, called dynamic bit sharing, which stores contact information
of all sources in a compact format. The level of compactness is so deep that the total
number of available bits is less than one twentieth of the number of sources in some
of our experiment cases: on average, just one bit is available for every twenty sources.
Yet still we are able to make spreader classification with predictable accuracy.
We employ a maximum likelihood estimation method to extract per-source infor-
mation from the compact storage and determine the heavy spreaders. It ensures that
false positive/negative ratios are bounded. Moreover, given an arbitrary set of false
positive/negative bounds, we develop a systematic approach to determine the optimal
system parameters, such that the amount of memory needed to satisfy the bounds is
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minimized. We carry out experiments based on a real traffic trace and demonstrate
that, using these optimal parameters, we can reduce the memory consumption by
three to twenty times when comparing with other existing work.

1.5 Origin-Destination Flow Measurement

When we solve the problem of origin-destination (OD) flow measurement [21], the
goal is to design an efficient method to measure the number of packets that traverse
between two routers during a measurement period. It generally consists of two phases:
One for online packet information storage and the other for offline OD-flow size
computation. In the first phase, routers record information about arrival packets. In
the second phase, each router reports its stored information to a centralized server,
which performs the measurement of each OD flow based on the information sent
from the origin/destination router pair.

Measurement efficiency and accuracy are two main technical challenges. In terms
of efficiency, we want to minimize the per-packet processing overhead to accommo-
date future routers that forward packets at extremely high rates. More specifically, the
function should minimize the computational complexity and the number of memory
accesses for each packet.

Accuracy is another important design goal. In high-speed networks, we have to
deal with a very large volume of packets. And it is unrealistic to store all packet-level
information in order to achieve 100 % accuracy. To solve this problem, some past
research [40–42] uses data such as link load, network routing, and configuration data
to indirectly measure the OD flows. Cao et al. [2] propose a quasi-likelihood approach
based on a continuous variant of the Flajolet-Martin sketches [12]. However, none
of them is able to achieve both efficiency and accuracy at the same time.

To meet these challenges, we present a novel OD flow measurement method,
which uses a compact bitmap data structure for packet information storage. At the
end of a measurement period, bitmaps from all routers are sent to a centralized
server, which examines the bitmaps of each origin/destination router pair and uses
a statistical inference approach to estimate the OD flow size. The new method has
three elegant properties. First, its processing overhead is small and constant, only
one hash operation and one memory access per packet. Second, it is able to achieve
excellent measurement results, which will be demonstrated by both simulations and
experiments. Finally, its data storage is very compact. The memory allocation is less
than 1 bit for each packet on average.

Traffic measurement is an important subject of Internet technologies. In the broad
context of computer networks, there are many other topics such as QoS and maxmin
routing [5, 7, 8, 24, 26, 34, 37], P2P networks [19, 43, 44], distributed computing
[1, 4], etc. Although we do not address these topics, they may interact with traffic
measurement under certain scenarios where new research problems and applications
may sprout.
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1.6 Outline of the Book

The rest of the book is organized as follows: Chap. 2 presents a fast and compact
per-flow size estimator based on randomized counter sharing. In this chapter, we
provide of a novel data encoding/decoding scheme, which mixes per-flow infor-
mation randomly in a tight SRAM space for compactness. Chapter 3 presents an
efficient spread estimation scheme based on dynamic bit sharing, which optimally
combines probabilistic sampling, bit-sharing storage, and maximum likelihood esti-
mation. Chapter 4 gives a novel method for OD flow measurement which employs
the bitmap data structure for packet information storage and uses statistical inference
approach to compute the measurement results.
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Chapter 2
Per-Flow Size Estimators

Abstract This chapter discusses the measurement of per-flow sizes for high-speed
links. It is a particularly difficult problem because of the need to process and store a
huge amount of information, which makes it difficult for the measurement module
to fit in the small but fast SRAM space (in order to operate at the line speed).
We provide a novel measurement function that estimates the sizes of all flows. It
delivers good performance in tight memory space where other approaches no longer
work. The effectiveness of the online per-flow measurement approach is analyzed and
confirmed through extensive experiments based on real network traffic traces.The rest
of this chapter is organized as follows: Sect. 2.1 discusses the performance metrics.
Section 2.2 gives an overview of the system design. Section 2.3 discusses the state
of the art. Section 2.4 presents the online data encoding module. Sections 2.5–2.6
present two offline data decoding modules. Section 2.7 discusses the problem of
setting counter length. Section 2.8 addresses the problem of collecting flow labels.
Section 2.9 presents the experimental results. Section 2.10 extends the estimators for
large flow sizes. Section 2.11 gives the summary.

Keywords Per-flow size estimator, Randomized counter sharing

2.1 Performance Metrics

We measure the number of packets in each flow during a measurement period, which
ends every time after a certain number (e.g., 10 millions) of packets are processed.
The design of per-flow measurement functions should consider the following three
key performance metrics.
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2.1.1 Processing Time

The per-packet processing time of an online measurement function determines the
maximum packet throughput that the function can operate at. It should be made as
small as possible in order to keep up with the line speed. This is especially true when
multiple routing, security, measurement, and resource management functions share
SRAM and processing circuits.

The processing time is mainly determined by the number of memory accesses
and the number of hash computations (which can be efficiently implemented in
hardware [24]). The counter braids [21, 22] update k counters at the first level for
each packet. When a counter at the first level overflows, it needs to update k additional
counters at the second level. If k = 3, it requires at least 3 hashes and 6 memory
accesses to read and then write back after counter increment. In the worse case, it
requires 6 hashes and 12 memory accesses. The multi-resolution space-code Bloom
filters [19] probabilistically select one or more of its 9 filters and set 3∼6 bits in each
of the selected ones. Each of those bits requires one memory access and one hash
computation.

Our objective is to achieve a constant per-packet processing time of one hash
computation and two memory accesses (for updating a single counter). This is the
minimum processing time for any method that uses hash operations to identify coun-
ters for update.

2.1.2 Storage Overhead

The need to reduce the SRAM overhead has been discussed in Chap. 1. One may ar-
gue that because the amount of memory needed is related to the number of packets in a
measurement period, we can reduce the memory requirement by shortening the mea-
surement period. However, when the measurement period is smaller, more flows will
span multiple periods and consequently the average flow size in each period will be
smaller. When we measure the flow sizes, we also need to capture the flow labels [22],
e.g., a tuple of source address/port and destination address/port to identify a TCP
flow. The flow labels are too large to fit in SRAM. They have to be stored in DRAM.
Therefore, in a measurement period, each flow incurs at least one DRAM access
to store its flow label. If the average flow size is large enough, the overhead of this
DRAM access will be amortized over many packets of a flow. However, if the average
flow size is too small, the DRAM access will become the performance bottleneck
that seriously limits the throughput of the measurement function. This means the
measurement period should not be too small.

http://dx.doi.org/10.1007/978-1-4614-4851-8_1
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2.1.3 Estimation Accuracy

Let s be the size of a flow and ŝ be the estimated size of the flow based on a
measurement function. The estimation accuracy of the function can be specified by
a confidence interval: the probability for s to be within [ŝ · (1 − β), ŝ · (1 + β)]
is at least a pre-specified value α, e.g., 95 %. A smaller value of β means that the
estimated flow size is more accurate in a probabilistic sense.

There is a tradeoff between estimation accuracy and storage overhead. If the
storage space and the processing time are unrestricted, we can accurately count each
packet to achieve perfect accuracy. However, in practice, there will be constraints
on both storage and processing speed, which make 100 % accurate measurement
sometimes infeasible. In this case, one has to settle with imperfect results that can be
produced with the available resources. Within the bounds of the limited resources,
we must explore novel measurement methods to make the estimated flow sizes as
accurate as possible.

2.2 System Design

2.2.1 Basic Idea

We use an example to illustrate the idea behind the new measurement approach.
Suppose the amount of SRAM allocated to one of the measurement functions is 2 Mb
(2 × 220 bits), and each measurement period ends after 10 million packets, which
translate into about 8 s for an OC-192 link (10+ Gbps) with an average packet size
of 1,000 bytes. The types of flows that the online functions may measure include per-
source flows, per-destination flows, per-source/destination flows, TCP flows, WWW
flows (with destination port 80), etc. Without losing generality, suppose the specific
function under consideration in this example measures the sizes of TCP flows.

Figure 2.1 shows the number of TCP flows that have a certain flow size in log
scale, based on a real network trace captured by the main gateway of our campus. If
we use 10 bits for each counter, there will be only 0.2 million counters. The number
of concurrent flows in the trace for a typical measurement period is around 1 million.
It is obvious that allocating per-flow state is not possible and each counter has to store
the information of multiple flows. But if an “elephant" flow is mapped to a counter,
that counter will overflow and lose information. On the other hand, if only a couple
of “mouse" flows are mapped to a counter, the counter will be under-utilized, with
most of its high-order bits left as zeros.

To solve the above problems, we not only store the information of multiple flows
in each counter, but also store the information of each flow in a large number of
counters, such that an “elephant" is broken into many “mice" that are stored at
different counters. More specifically, we map each flow to a set of l randomly-
selected counters and split the flow size into l roughly-equal shares, each of which
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Fig. 2.1 Traffic distribution: each point shows the number (y coordinate) of flows that have a certain
size (x coordinate)

is stored in one counter. The value of a counter is the sum of the shares from all
flows that are mapped to the counter. Because flows share counters, they introduce
noise to each other’s measurement. The key to accurately estimate the size of a flow
is to measure the noise introduced by other flows in the counters that the flow is
mapped to.

Fortunately, this can be done if the flows are mapped to the counters uniformly
at random. Any two flows will have the same probability of sharing counters, which
means that each flow will have the same probability of introducing a certain amount
of noise to any other flow. If the number of flows and the number of counters are
very large, the combined noise introduced by all flows will be distributed across the
counter space about uniformly. The statistically uniform distribution of the noise can
be measured and removed. The above scheme of information storage and recovery
is called randomized counter sharing.

We stress that this design philosophy of “splitting" each flow among a large num-
ber of counters is very different from “replicating" each flow in k counters as the
counting Bloom filter [7] or counter braids [21] do—they add the size of each flow as
a whole to k randomly selected counters. Most notably, the method increments one
counter for each arrival packet, while the counting Bloom filter or counter braids in-
crement k counters. We store the information of each flow in many counters (e.g., 50),
while they store the information of each flow in a small number of counters.

2.2.2 Overall Design

The online traffic measurement function consists of two modules. The online data
encoding module stores the information of arrival packets in an array of counters.
For each packet, it performs one hash function to identify a counter and then updates
the counter with two memory accesses, one for reading and the other for writing. At
the end of each measurement period, the counter array is stored to the disk and then
reset to zeros.
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The offline data decoding module answers queries for flow sizes. It is performed by
a designated offline computer. We present two methods for separating the information
about the size of a flow from the noise in the counters. The first one is called the
counter sum estimation method (CSM), which is very simple and easy to compute.
The second one is called the maximum likelihood estimation method (MLM), which
is more accurate but also more computationally intensive. The two complementary
methods provide flexibility in designing a practical system, which may first use CSM
for rough estimations and then apply MLM to the ones of interest.

2.3 State of the Art

A related thread of research is to collect statistical information of the flows [11, 18],
or identify the largest flows and devote the available memory to measure their sizes
while ignoring the smaller ones [9, 12, 15, 16]. For example, RATE [17] and ACCEL-
RATE [14] measure per-flow rate by maintaining per-flow state, but they use a two-
run sampling method to filter out small-rate flows so that only high-rate flows are
measured.

Another thread of research is to maintain a large number of counters to track
various networking information. One possible solution [8, 25] can be statistically
update a counter according to the current counter size. This approach is suitable for
the applications with loose measurement accuracy. In order to enhance the accuracy
performance, Zhao et al. [29] propose a statistical method to make a DRAM-based
solution practical. Since large DRAM is involved, this approach is able to achieve
decent measurement accuracy.

Also related is the work [26] that measures the number of distinct destinations that
each source has contacted. Per-flow counters cannot be used to solve this problem
because they cannot remove duplicate packets. If a source sends 1,000 packets to a
destination, the packets contribute only one contact, but will count as 1,000 when we
measure the flow size. To remove duplicates, bitmaps (instead of counters) should be
used [5, 13, 27, 28, 30]. From the technical point of view, this represents a separate
line of research, which employs a different set of data structures and analytical tools.
Attempt has also been made to use bitmaps for estimating the flow sizes, which is
however far less efficient than counters, as our experiments will show.

2.4 Online Data Encoding

The flow size information is stored in an array C of m counters. The i th counter in
the array is denoted as C[i], 0 ≤ i ≤ m − 1. The size of the counters should be
set so that the chance of overflow is negligible; we will discuss this issue in details
later. Each flow is mapped to l counters that are randomly selected from C through
hash functions. These counters logically form a storage vector of the flow, denoted
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as C f , where f is the label of the flow. The i th counter of the vector, denoted as
C f [i], 0 ≤ i ≤ l − 1, is selected from C as follows:

C f [i] = C[Hi ( f )], (2.1)

where Hi (...) is a hash function whose range is [0,m). We want to stress that C f

is not a separate array for flow f . It is merely a logical construction from counters
in C for the purpose of simplifying the presentation. In all the formulas, one should
treat the notation C f [i] simply as C[Hi ( f )]. The hash function Hi , 0 ≤ i ≤ l − 1,
can be implemented from a master function H(...) as follows: Hi ( f ) = H( f |i) or
Hi ( f ) = H( f ⊕ R[i]), where ‘|’ is the concatenation operator, ‘⊕’ is the XOR
operator, and R[i] is a constant whose bits differ randomly for different indices i .

All counters are initialized to zeros at the beginning of each measurement period.
The operation of online data encoding is very simple: When the router receives a
packet, it extracts the flow label f from the packet header, randomly selects a counter
from C f , and increases the counter by one. More specifically, the router randomly
picks a number i between 0 and l − 1, computes the hash Hi ( f ), and increases the
counter C[Hi ( f )], which is physically in the array C , but logically the i th element
in the vector C f .

2.5 Offline Counter Sum Estimation

2.5.1 Estimation Method

At the end of a measurement period, the router stores the counter array C to a disk
for long-term storage and offline data analysis.

Let n be the combined size of all flows, which is
∑m−1

i=0 C[i].
Let s be the true size of a flow f during the measurement period. The estimated

size, ŝ, based on the counter sum estimation method (CSM) is

ŝ =
l−1∑

i=0

C f [i] − l
n

m
. (2.2)

The first item is the sum of the counters in the storage vector of flow f . It can
also be interpreted as the sum of the flow size s and the noise from other flows due
to counter sharing. The second item captures the expected noise. Below we formally
derive (2.2).

Consider an arbitrary counter in the storage vector of flow f . We treat the value
of the counter as a random variable X . Let Y be the portion of X contributed by the
packets of flow f , and Z be the portion of X contributed by the packets of other
flows. Obviously, X = Y + Z .
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Each of the s packets in flow f has a probability of 1
l to increase the value of the

counter by one. Hence, Y follows a binomial distribution:

Y ∼ Bino(s,
1

l
) (2.3)

Each packet of another flow f ′ has a probability of 1
m to increase the counter by

one. That is because the probability for the counter to belong to the storage vector of
flow f ′ is l

m , and if that happens, the counter has a probability of 1
l to be selected for

increment. Assume there is a large number of flows, the size of each flow is negligible
when comparing with the total size of all flows, and l is large such that each flow’s size
is randomly spread among many counters. We can approximately treat the packets
independently. Hence, Z approximately follows a binomial distribution:

Z ∼ Bino(n − s,
1

m
) ≈ Bino(n,

1

m
), because s � n. (2.4)

We must have

E(X) = E(Y + Z) = E(Y )+ E(Z) = s

l
+ n

m
. (2.5)

That is,

s = l × E(X)− l
n

m
. (2.6)

From the observed counter values C f [i], E(X) can be measured as
∑l−1

i=0 C f [i]
l .

We have the following estimation for s:

ŝ =
l−1∑

i=0

C f [i] − l
n

m
. (2.7)

If a flow shares a counter with an “elephant" flow, its size estimation can be
skewed. However, the experiments show that CSM works well in general because
the number of “elephants" is typically small (as shown in Fig. 2.1) and thus their
impact is also small, particularly when there are a very large number of counters
and flows. Moreover, the next method based on maximum likelihood estimation can
effectively reduce the impact of an outlier in a flow’s storage vector that is caused
by an “elephant" flow.

2.5.2 Estimation Accuracy

We derive the mean and variance of ŝ as follows: Because X = Y + Z , we have
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E(X2) = E((Y + Z)2) = E(Y 2)+ 2E(Y Z)+ E(Z2)

= E(Y 2)+ 2E(Y )E(Z)+ E(Z2)

= s2

l2 − s

l2 + s

l
+ 2 · s

l
· n

m
+ n2

m2 − n

m2 + n

m
.

The following facts are used in the above mathematical process: E(Y 2) =
s2

l2 − s
l2 + s

l because Y ∼ Bino(s, 1/ l). E(Y Z) = E(Y )E(Z) since Y and Z

are independent. E(Z2) = n2

m2 − n
m2 + n

m because Z ∼ Bino(n, 1/m).

V ar(X) = E(X2)− (E(X))2

= s

l
(1 − 1

l
)+ n

m
(1 − 1

m
). (2.8)

In (2.7), C f [i], 0 ≤ i ≤ l − 1, are independent samples of X . We can interpret ŝ
as a random variable in the sense that a different set of samples of X may result in a
different value of ŝ. From (2.7), we have

E(ŝ) = l × E(X)− l
n

m

= l(
s

l
+ n

m
)− l

n

m
= s, (2.9)

which means our estimation is unbiased. The variance of ŝ can be written as

V ar(ŝ) = l2 × V ar(X) = l2
(

s

l
(1 − 1

l
)+ n

m
(1 − 1

m
)

)

= s(l − 1)+ l2 n

m
(1 − 1

m
). (2.10)

2.5.3 Confidence Interval

We derive the confidence interval for the estimation as follows: The binomial
distribution, Z ∼ Bino(n, 1/m), can be closely approximated as a Gaussian
distribution, Norm( n

m ,
n
m (1 − 1

m )), when n is large. Similarly, the binomial distrib-
ution, Y ∼ Bino(s, 1

l ), can be approximated by Norm( s
l ,

s
l (1 − 1

l )). Because the
linear combination of two independent Gaussian random variables is also normally
distributed [6], we have X ∼ Norm( s

l + n
m ,

s
l (1 − 1

l )+ n
m (1 − 1

m )). To simplify the
presentation, let μ = s

l + n
m and � = s

l (1 − 1
l )+ n

m (1 − 1
m ).

X ∼ Norm(μ,�), (2.11)
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where the mean μ and the variance � agree with (2.5) and (2.8), respectively.
Because ŝ is a linear function of C f [i], 0 ≤ i ≤ l − 1, which are independent
samples of X , ŝ must also approximately follow a Gaussian distribution. From (2.7)
and (2.11), we have

ŝ ∼ Norm(s, s(l − 1)+ l2 n

m
(1 − 1

m
)). (2.12)

Hence, the confidence interval is

ŝ ± Zα

√

s(l − 1)+ l2 n

m
(1 − 1

m
), (2.13)

whereα is the confidence level and Zα is theα percentile for the standard Gaussian
distribution. As an example, when α = 95 %, Zα = 1.96.

2.6 Maximum Likelihood Estimation

In this section, we provide the second estimation method that is more accurate but
also more computationally expensive.

2.6.1 Estimation Method

We know from the previous section that any counter in the storage vector of flow
f can be represented by a random variable X , which is the sum of Y and Z , where
Y ∼ Bino(s, 1

l ) and Z ∼ Bino(n, 1/m). For any integer z ∈ [0, n), the probability
for the event Z = z to occur can be computed as follows:

Pr{Z = z} =
(

n

z

)

(
1

m
)z(1 − 1

m
)n−z .

Because n and m are known, Pr{Z = z} is a function of a single variable z and
thus denoted as P(z).

Based on the probability distribution of Y and Z , the probability for the observed
value of a counter, C f [i], ∀i ∈ [0, l), to occur is
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Pr{X = C f [i]}

=
C f [i]∑

z=0

(Pr{Z = z} · Pr{Y = C f [i] − z})

=
C f [i]∑

z=0

(
s

C f [i] − z

)

(
1

l
)C f [i]−z(1 − 1

l
)s−(C f [i]−z)P(z). (2.14)

Let y = C f [i]− z to simplify the formula. The probability for all observed values
in the storage vector of flow f to occur is

L =
l−1∏

i=0

Pr{X = C f [i]}

=
l−1∏

i=0

( C f [i]∑

z=0

(
s

y

)

(
1

l
)y(1 − 1

l
)s−y P(z)

)

. (2.15)

The maximum likelihood method (MLM) is to find an estimated size ŝ of flow f
that maximizes the above likelihood function. Namely, we want to find

ŝ = arg max{L}.
s

(2.16)

To find ŝ, we first apply logarithm to turn the right side of the equation from
product to summation.

ln(L) =
l−1∑

i=0

ln

( C f [i]∑

z=0

(
s

y

)

(
1

l
)y(1 − 1

l
)s−y P(z)

)

. (2.17)

Because
d(s

y)
ds = (s

y

)
(ψ(s + 1)− ψ(s + 1 − y)), where ψ(...) is the polygamma

function [1], we have

d(
(s

y

)
(1 − 1

l )
s−y)

ds
=

(
s

y

)

(1 − 1

l
)s−y

(

ψ(s + 1)− ψ(s + 1 − y)+ ln(1 − 1

l
)

)

.

To simplify the presentation, we denote the right side of the above equation as
O(s). From (2.17), we can compute the first-order derivative of ln(L) as follows:
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d ln(L)

ds
=

l−1∑

i=0

∑C f [i]
z=0

(

O(s)( 1
l )

y P(z)

)

∑C f [i]
z=0

(s
y

)
( 1

l )
y(1 − 1

l )
s−y P(z)

. (2.18)

Maximizing L is equivalent to maximizing ln(L). Hence, by setting the right side
of (2.18) to zero, we can find the value for ŝ through numerical methods. Because
d ln(L)

ds is a monotone function of s, we can use the bisection search method to find

the value ŝ that makes d ln(L)
ds equal to zero.

2.6.2 Estimation Accuracy

We derive the estimation confidence interval as follows: The estimation formula is
given in (2.16). According to the classical theory for MLM, when l is sufficiently
large, the distribution of the flow-size estimation ŝ can be approximated by

Norm(s,
1

I(ŝ) ), (2.19)

where the fisher information I(ŝ) [20] of L is defined as follows:

I(ŝ) = −E

(
d2 ln(L)

ds2

)

. (2.20)

In order to compute the second-order derivative, we begin from (2.11) and have
the following:

Pr{X = C f [i]} = 1√
2π�

e− (C f [i]−μ)2
2�

ln(Pr{X = C f [i]}) = − ln(
√

2π�)− (C f [i] − μ)2

2�
, (2.21)

where 0 ≤ i ≤ l − 1. Performing the second-order differentiation, we have

d2 ln(Pr{X = C f [i]})
ds2 = − μ′

l�
+ ( 1

2 (1 − 1
l )+ μ− C f [i])�′

l�2

+ 1

l�3 (1 − 1

l
)

(

(μ− C f [i])μ′�− (μ− C f [i])2�′
)

, (2.22)

where μ′ = 1
l and �′ = 1

l (1 − 1
l ). Therefore,
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E(
d2 ln(Pr{X = C f [i]})

ds2 )

= − μ′

l�
+

1
2 (1 − 1

l )�
′

l�2 + 1

l�3 (1 − 1

l
)E(μ− C f [i])2�′

= − 1

l2�
+ 3(1 − 1

l )
2

2l2�2 , (2.23)

where we have used the following facts: E(μ− C f [i]) = 0 and E(μ− C f [i])2
= �. Because L = ∏l−1

i=0 Pr{X = C f [i]}, we have

I(ŝ) = −E

(
d2 ln(L)

ds2

)

=
l−1∑

i=0

E(
d2 ln(Pr{X = C f [i]})

ds2 )

= 1

l�
− 3(1 − 1

l )
2

2l�2 . (2.24)

From (2.19), the variance of ŝ is

V ar(ŝ) = 1

I(ŝ) = 2l�2

2�− 3(1 − 1
l )

2
. (2.25)

Hence, the confidence interval is

ŝ ± Zα ·
√

2l�2

2�− 3(1 − 1
l )

2
, (2.26)

where Zα is the α percentile for the standard Gaussian distribution.

2.7 Setting Counter Length

So far, our analysis has assumed that each counter has a sufficient number of bits
such that it will not overflow. However, in order to save space, we want to set the
counter length as short as possible. Suppose each measurement period ends after
a pre-specified number n of packets are received. (Note that the value of n is the
combined sizes of all flows during each measurement period.)

The average value of all counters will be n
m . We set the number of bits in each

counter, denoted as b, to be log2
n
m + 1. Due to the additional bit, each counter can

hold at least two times of the average before overflowing. If the allocated memory
has M bits, the values of b and m can be determined from the following equations:

b × m = M, log2
n

m
+ 1 = b. (2.27)



2.7 Setting Counter Length 23

Due to the randomized counter sharing design, roughly speaking, the packets
are distributed in the counters at random. In our experiments, the counter values
approximately follow a Gaussian distribution with a mean of n

m . In this distribution,
the fraction of counters that are more than four times of the mean is very small—less
than 5.3 % in all the experiments. Consequently, the impact of counter overflow in
CSM or MLM is also very small for most flows. Though it is small, we will totally
eliminate this impact later in Sect. 2.10.4.

2.8 Flow Labels

The compact online data structure introduced in Sect. 2.4 only stores the flow size
information. It does not store the flow labels. The labels are per-flow information,
and it cannot be compressed in the same way we do for the flow sizes. In some appli-
cations, the flow labels are pre-known and do not have to be collected. For example,
if an ISP wants to measure the traffic from its customers, it knows their IP addresses
(which are the flow labels in this case). Similarly, if the system administrator of a
large enterprise network needs the information about the traffic volumes of the hosts
in the network, she has the hosts’ addresses.

In case that the flow labels need to be collected and there is not enough SRAM
to keep them, the labels have to be stored in DRAM. An efficient solution for label
collection was proposed in [22]. A Bloom filter [2, 3] can be implemented in SRAM
to encode the flow labels that have seen by the router during a measurement period,
such that each label is only stored once in DRAM when it appears for the first time
in the packet stream; storing each label once is the minimum overhead if the labels
must be collected.

If we use three hash functions in the Bloom filter, each packet incurs three SRAM
accesses in order to check whether the flow label carried the packet is already encoded
in the Bloom filter. A recent work on one-memory-access Bloom filters [23] shows
that three SRAM accesses per packet can be reduced to one. This overhead is further
reduced if we only examine the UDF packets and the SYN packets (which carry
the label information of TCP traffic). A recent study shows that UDF accounts for
20 % of the Internet traffic [4] and the measurement of our campus traffic shows that
SYN packets accounts for less than 10 % of all TCP traffic. Therefore, the Bloom
filter operation only needs to be carried out for less than 28 % of all packets, which
amortizes the overhead.

2.9 Experiments

We use experiments to evaluate the estimation methods, CSM (Counter Sum
estimation Method) and MLM (Maximum Likelihood estimation Method), which
are designed based on the randomized counter sharing scheme. We also compare our
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Table 2.1 Number of memory accesses and number of hash computations per packet

Memory accesses Hash operations Constant?

CSM 2 1 Y
MLM 2 1 Y
CB ≥6 ≥3 N
MRSCBF 4.47 4.47 N

methods with CB (Counter Braids) [21] and MRSCBF (Multi-Resolution Space-
Code Bloom Filters) [19]. The evaluation is based on the performance metrics
outlined in Sect. 2.1, including per-packet processing time, memory overhead, and
estimation accuracy.

The experiments use a network traffic trace obtained from the main gateway of
our campus. We perform experiments on various different types of flows, such as
per-source flows, per-destination flows, per-source/destination flows, and TCP flows.
They all lead to the same conclusions. Without losing generality, we choose TCP
flows for presentation. The trace contains about 68 millions of TCP flows and 750
millions of packets. In each measurement period, 10 million packets are processed;
it typically covers slightly more than 1 million flows.

2.9.1 Processing Time

The processing time is mainly determined by the number of memory accesses and
the number of hash computations per packet. Table 2.1 presents the comparison.
CSM or MLM performs two memory accesses and one hash computation for each
packet. CB incurs three times of the overhead. It performs six memory accesses and
three hash computations for each packet at the first counter level, and in the worst
case makes six additional memory accesses and three additional hash computations
at the second level. MRSCBF has nine filters. The i th filter uses ki hash functions
and encodes packets with a sampling probability pi , where k1 = 3, k2 = 4, ki = 6,
∀i ∈ [3, 9], and pi = ( 1

4 )
i−1, ∀i ∈ [1, 9]. When encoding a packet, the i th filter

performs ki hash computations and sets ki bits. Hence, the total number of memory
accesses (or hash computations) per packet for all filters is

∑9
i=1(pi · ki ) ≈ 4.47.

2.9.2 Memory Overhead and Estimation Accuracy

We provide the estimation accuracies of CSM and MLM under different levels of
memory availability. In each measurement period, 10 M packets are processed, i.e.,
n = 10 M, which translates into about 8 s for an OC-192 link (10+ Gbps) or about
2 s for an OC-768 link (40+ Gbps) with an average packet size of 1,000 bytes.
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Fig. 2.2 Estimation results by CSM and MLM when M = 2 Mb

The memory M allocated to this particular measurement function is varied from
2 Mb (2 × 220 bits) to 8 Mb. The counter length b and the number of counters m are
determined based on (2.27). The size of each storage vector is 50.

When M = 2 Mb, the experimental results are presented in Fig. 2.2. The top left
plot shows the estimation results by CSM for one measurement period; the results for
other measurement periods are very similar. Each flow is represented by a point in
the plot, whose x coordinate is the true flow size s and y coordinate is the estimated
flow size ŝ. The equality line, y = x , is also shown for reference. An estimation is
more accurate if the point is closer to the equality line.

The top right plot presents the 95 % confidence intervals for the estimations made
by CSM. The width of each vertical bar shows the size of the confidence interval at
a certain flow size (which is the x coordinate of the bar). The middle point of each
bar shows the mean estimation for all flows of that size. Intuitively, the estimation is
more accurate if the confidence interval is smaller and the middle point is closer to
the equality line.

The bottom left plot shows the estimation results by MLM, and the bottom right
plot shows the 95 % confidence intervals for the estimations made by MLM. Clearly,
MLM achieves better accuracy than CSM. The estimation accuracy shown in Fig. 2.2
is achieved with a memory of slightly less than 2 bits per flow.

We can improve the estimation accuracy of CSM or MLM by using more memory.
We increase M to 4 Mb and repeat the above experiments. The results are shown in
Fig. 2.3. We then increase M to 8 Mb and repeat the above experiments. The results
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Fig. 2.3 Estimation results by CSM and MLM when M = 4 Mb

are shown in Fig. 2.4. The accuracy clearly improves as the confidence intervals
shrink when M becomes larger.

We repeat the same experiments on CB, whose parameters are selected according
to [21]. The results are presented in Fig. 2.5. The top left plot shows that CB totally
fails to produce any meaningful results when the available memory is too small:
M = 2 Mb, which translates into less than 2 bits per flow. In fact, its algorithm
cannot converge, but instead produce oscillating results. We have to artificially stop
the algorithm after a very long time. The top right plot shows that CB works well when
M = 4 Mb. The algorithm still cannot converge by itself, even though it can produce
very good results when we artificially stop it after a long time without observing
any further improvement in the results. It can be seen that the results carry a small
positive bias because most points are on one side of the equality line. The bottom
plot shows that CB is able to return the exact sizes for most flows when the memory
is M = 8 Mb.

Combining the results in Table 2.1, we draw the following conclusion: (1) In prac-
tice, we should choose CSM/MLM if the requirement is to handle high measurement
throughput (which means low per-packet processing time) or if the available memory
is too small such that CB does not work, while relatively coarse estimation is accept-
able. (2) We should choose CB if the processing time is less of a concern, sufficient
memory is available, and the exact flow sizes are required.

We also run MRSCBF under different levels of memory availability. We begin
with M = 8 Mb. CSM or MLM works very well with this memory size (Fig. 2.4). The
performance of MRSCBF is shown in the top left plot of Fig. 2.6. There are some very
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Fig. 2.4 Estimation results by CSM and MLM when M = 8 Mb

large estimated sizes. To control the scale in the vertical axis, we artificially set any
estimation beyond 2,800 to be 2,800. The results demonstrate that MRSCBF totally
fails when M = 8 Mb. The performance of MRSCBF improves when we increase
the memory. The results when M = 40 Mb are shown in the top right plot.1 In the
bottom left plot, when we further increase M to 80 Mb,2 no obvious improvement
is observed when comparing with the top right plot. A final note is that the original
work of MRSCBF uses log scale in their presentation. The bottom left plot in Fig. 2.6
will appear as the bottom right plot in log scale.

Clearly, the bitmap-based MRSCBF performs worse than CB, CSM or MLM. To
measure flow sizes, counters are superior than bitmaps.

2.10 Extension of Estimation Range

We set the upper bound on the flow size that CSM and MLM can estimate in Sect. 2.9
to 2,500. However, in today’s high-speed networks, the sizes of some flows are
much larger than 2,500. In order to extend the estimation range to cover these large
flows, we present four approaches that increase the estimation upper bound, and

1 At the end of each measurement period, about half of the bits in the filters of MRSCBF are set to
ones.
2 At the end of each measurement period, less than half of the bits in the filters of MRSCBF are set
to ones.
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Fig. 2.5 Estimation results by CB when M = 2, 4, and 8 M

present extensive experimental results to demonstrate their effectiveness. Since MLM
generally performs better than CSE, we only discuss how to extend the estimation
range of MLM. CSE can be easily enhanced by similar approaches.

According to Sect. 2.4, each flow is assigned a unique storage vector. A flow’s
storage vector consists of l counters and each counter has b bits. Therefore, the
maximum number of packets that the storage vector can represent is l × (2b − 1).
If we increase b by one, the number of packets that the vector can represent will
be doubled. Similarly, if we increase l by a certain factor, the number of packets
that the vector can represent will be increased by the same factor. Based on these
observations, we extend the estimation range of MLM by increasing the value of b
and l, respectively. In addition, we add a sampling module to MLM and consider
hybrid SRAM/DRAM implementation to extend the estimation range.

2.10.1 Increasing Counter Size b

The first approach to extend the estimation range is to enlarge the counter size
b. We repeat the same experiment on MLM presented in the bottom left plot of
Fig. 2.3 (Sect. 2.9.2), where M = 4 Mb, l = 50, and n = 10 M. This time, instead
of computing b from (2.27), we vary its value from 6 to 9. The new experimental
results are shown in Fig. 2.7. In the top left plot, the maximum flow size that MLM
can estimate is about 1,400 when b = 6. In the top right plot, where b = 7, the
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Fig. 2.6 Estimation results by MRSCBF

maximum flow size is about 2,800, which is twice of the maximum flow size that
the top left plot can achieve. When b is set to 8, the bottom left plot shows that
the estimation range of MLM is further extended. The bottom right plot shows that,
when b = 9, the maximum flow size that MLM can estimate does not increase any
more when comparing with the bottom left plot, which we will explain shortly.

The estimation accuracy of the above experiments is presented in Fig. 2.8, where
the first plot shows the estimation bias and the second plot shows the standard de-
viation of the experimental results in Fig. 2.7. Generally speaking, both bias and
standard deviation increase slightly when b increases.

Since flows share counters in MLM, the size information of one flow in a counter
is the noise to other flows that share the same counter. When the amount of memory
allocated to MLM is fixed (M = 4 Mb in these experiments), a larger value for b will
result in a smaller value for m, i.e., the total number of counters is reduced. Hence,
each counter has to be shared by more flows, and the average number of packets
stored in each counter will increase. That means heavier noise among flows, which
degrades the estimation accuracy, as is demonstrated by Fig. 2.8. Moreover, although
a counter with a larger size b can keep track of a larger number of packets, since
it also carries more noise, MLM has to subtract more noise from the counter value
during the estimation process. As a result, the estimation range cannot be extended
indefinitely by simply increasing b, which explains the fact that the maximum flow
size that MLM can estimate does not increase when b reaches 9 in Fig. 2.7.
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Fig. 2.7 Estimation results by MLM when b = 6, 7, 8, and 9. In these experiments, n = 10 M,
M = 4 Mb
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Fig. 2.8 Estimation bias and standard deviation in the experimental results shown in Fig. 2.7

2.10.2 Increasing Storage Vector Size l

The second approach for extending the estimation range is to increase the storage
vector size l. We repeat the experiments in the previous subsection for MLM with
M =4 Mb, b = 7, and n = 10M. We vary l from 50 to 1,000. Figure 2.9 presents
the experimental results. The top left plot shows that the maximum flow size that
MLM can estimate is about 5,800 when l = 50. As we increase the value of l,
MLM can estimate increasingly larger flow sizes. However, when l becomes too
large, estimation accuracy will degrade, which is evident in the bottom right plot.
The reason is that each flow shares too many counters with others, which results
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Fig. 2.9 Estimation results by MLM when l = 50, 70, 100, and 1,000. In these experiments,
n = 10 M, M = 4 M
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Fig. 2.10 Estimation bias and standard deviation in the experimental results shown in Fig. 2.9

in excessive noise in the counters and consequently introduce inaccuracy in the
estimation process.

The estimation accuracy of the above experiments is presented in Fig. 2.10, where
the first plot shows the estimation bias and the second plot shows the standard de-
viation of the experimental results in Fig. 2.9. Generally speaking, both bias and
standard deviation increase slightly when l increases. Clearly, the value of l should
not be chosen too large (such as l = 1,000) in order to prevent estimation accuracy
to degrade significantly.
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Fig. 2.11 Estimation results by MLM when p = 75 %, 50 %, 25 %, and 2 %. In these experiments,
n = 10 M, M = 4 Mb
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Fig. 2.12 Estimation bias and standard deviation in the experimental results shown in Fig. 2.11

2.10.3 Employing Sampling Module

In the third approach, we add a sampling module to MLM to enlarge the estimation
range. The sampling technique has been widely used in network measurement [5, 10,
11, 19, 30]. We show that it also works for MLM. Let p be the sampling probability.
For each packet that the router receives in the data encoding phase, the router gen-
erates a random number r in a range [0, N ]. If r < p × N , the router processes the
packet as we describe in Sect. 2.4. Otherwise, it ignores the packet without encoding
it in the counter array. In the data decoding phase, the estimated flow size should be
ŝ
p , where ŝ is computed from (2.18). The estimation range is expanded by a factor

of 1
p .
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We again repeat the experiments in the previous sections for MLM with M =
4 Mb, l = 50, and n = 10 M. The value of b is computed from (2.27). This time,
we introduce a sampling probability p and varies its value. Figure 2.11 presents the
experimental results of MLM with p = 75 %, 50 %, 25 %, and 2 %, respectively.
It demonstrates that when the sampling probability decreases, the estimation range
increases. However, it comes with a penalty on estimation accuracy. Figure 2.12
shows the estimation bias and standard deviation of the estimation results in Fig. 2.11.
If the sampling probability is not decreased too small, e.g., when p ≥ 25 %, the
increase in bias and standard deviation is insignificant. However, if the sampling
probability becomes too small such as 2 %, the degradation in estimation accuracy
also becomes noticeable.

2.10.4 Hybrid SRAM/DRAM Design

Can we extend the estimation range without any limitation and do so without any
degradation in estimation accuracy? This will require a hybrid SRAM/DRAM design.
In SRAM, we still choose the value of b based on (2.27). The limited size of each
counter means that a counter may be overflowed during the data encoding phase even
though the chance for this to happen is very small (Sect. 2.7). To totally eliminate the
impact of counter overflow, we keep another array of counters in DRAM, each of
which has a sufficient number of bits. The counters in DRAM are one-to-one mapped
to the counters in SRAM. When a counter in SRAM is overflowed, it is reset to zero
and the corresponding counter in DRAM is incremented by one. During offline data
analysis, the counter values are set based on both SRAM and DRAM data. Because
overflow happens only to a small fraction of SRAM counters and a DRAM access
is made only after an overflowed SRAM counter is accessed 2b times, the overall
overhead of DRAM access is very small.

2.11 Summary

Per-flow traffic measurement provides real-world data for a variety of applications
on accounting and billing, anomaly detection, and traffic engineering. Online data
collection methods must meet the requirements of being both fast and compact. This
chapter presents a novel data encoding/decoding scheme, which mixes per-flow in-
formation randomly in a tight SRAM space for compactness. Its online operation
only incurs a small overhead of one hash computation and one counter update per
packet. Two offline statistical methods—the counter sum estimation and the maxi-
mum likelihood estimation—are used to extract per-flow sizes from the mixed data
structures with good accuracy. Due to its design philosophy that is fundamentally
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different from the prior art, the new measurement function is able to work in a tight
space where exact measurement is no longer possible, and it does so with the minimal
number of memory accesses per packet.
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Chapter 3
Spreader Classification

Abstract This chapter discusses the problem of spreader classification. It provides
an efficient spread estimator based on dynamic bit sharing, which incorporates prob-
abilistic sampling and bit sharing for compact information storage. The estimator
applies a maximum likelihood estimation method to extract per-source information
from the shared bits in order to determine the heavy spreaders. It ensures that the false
positive/false negative ratios are bounded with high probability. Moreover, given an
arbitrary set of bounds, the chapter develops a systematic approach to determine the
optimal system parameters that minimize the amount of memory needed to meet
the bounds. Experiments based on a real Internet traffic trace demonstrate that this
spreader classification scheme reduces memory consumption by three to twenty times
when comparing with related work. The rest of this chapter is organized as follows:
Sect. 3.1 gives the problem definition. Section 3.2 presents an efficient spreader clas-
sification scheme. Section 3.3 presents the analytical results for optimal parameters.
Section 3.4 presents the experimental results. Section 3.5 describes a multi-objective
spreader classification problem and the solution. Section 3.6 describes other methods.
Section 3.7 gives the summary.

Keywords Spread estimator · Dynamic bit sharing

3.1 Problem Statement

How to formally define the classification objective? A straightforward objective is to
report all sources whose spread values exceed a certain threshold. However, unless
we measure the spread of each source precisely, we cannot accurately classify sources
based on the threshold. Precise spread measurement is a costly operation, and most
existing work resorts to spread estimation. Naturally, the follow-up question is how
to define a classification objective that embodies a probabilistic performance bound.
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We adopt the probabilistic classification objective from [14]. Let h and l be two
positive integers, h > l. Let α and β be two probability values, 0 < α < 1 and
0 < β < 1. The objective is to report any source whose spread is h or larger with
a probability no less than α and report any source whose spread is l or smaller with
a probability no more than β. Let k be the spread of an arbitrary source src. The
objective can be expressed in terms of conditional probabilities:

Prob{report src as a heavy spreader | k ≥ h} ≥ α (3.1)

Prob{report src as a heavy spreader | k ≤ l} ≤ β

We treat the report of a source whose spread is l or smaller as a false positive, and
the non-report of a source whose spread is h or larger as a false negative. Hence, the
above objective can also be stated as bounding the false positive ratio by β and the
false negative ratio by 1 − α. The goal is to minimize the amount of SRAM that is
needed for achieving the above objective.

Although the technical discussion in this chapter focuses on spreader classification
of sources, the same techniques can be equally applied to spreader classification of
destinations.

3.2 An Efficient Spreader Classification Scheme

This section presents an efficient spreader classification scheme (ESC), which is the
combination of probabilistic sampling, dynamic bit sharing, and maximum likelihood
estimation.

3.2.1 Probabilistic Sampling

To save space, a router samples the contacts made by external sources to internal
destinations, and it only stores the sampled contacts. The router selects contacts for
storage uniformly at random with a sampling probability p. The sampling procedure
is simple: the router hashes the source/destination address pair of each packet that
arrives at the external network interface into a number in a range [0, N ). If the hash
result is smaller than p × N , the contact will be stored; otherwise, the contact will
not be stored.

3.2.2 Bit-Sharing Storage

For each source, a bit vector (also called bitmap) may be used to store all its sampled
contacts. The bits are initially zeros. Each sampled contact is hashed to a bit in the
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bitmap, and the bit is set to one. At the end of the measurement period, using the
method of probabilistic counting [12] or its variants [4, 10], we can estimate the
number of contacts (i.e., the spread of the source) based on the number of zeros
remaining in the bitmap.

However, using per-source bitmaps is not memory-efficient. If each bitmap is
32 bits long and there are 1M sources with sampled contacts, the total memory
requirement will be 32 Mb. If the allocated SRAM space is much smaller, e.g.,
0.5 Mb, there will not be enough bitmaps for all sources. This problem cannot be
solved simply by reducing the size of each bitmap because even if a bitmap has just
one bit, it still takes 1 Mb. Moreover, the performance of probabilistic counting [12]
or its variants [4, 10] requires bitmaps to be not too small.

Our solution is to mix all bitmaps together and let them share bits, such that an
almost arbitrary number of bitmaps can be created from a limited available space.
Bit sharing among bitmaps causes information interference, which will be removed
when we derive our formula. The level of bit sharing, which is determined by sys-
tem parameters (see the next section), controls the tradeoff between classification
accuracy and space overhead. Details of this method is presented below.

Let m be the total number of available bits. All bits are organized in a single array
B. For an arbitrary source src, we use a hash function to pseudo-randomly select a
number of bits from B to store the contacts made by src. The indices of the selected
bits are H(src ⊕ R[0]), H(src ⊕ R[1]), ..., H(src ⊕ R[s − 1]), where H(...) is a
hash function whose range is [0,m), R is an integer array, storing randomly chosen
constants whose purpose is to arbitrarily alter the hash result, and s (� m) is a
system parameter that specifies the number of bits to be selected. The above bits
form a logical bitmap of source src, denoted as L B(src).

Similarly, a logical bitmap can be constructed from B for any other source. Essen-
tially, we embed the bitmaps of all possible sources in B. The bit-sharing relationship
is dynamically determined on the fly as new sources are allocated logical bitmaps
from B.

At the beginning of a measurement period, all bits in B are reset to zeros. Consider
an arbitrary contact 〈src, dst〉 that is sampled for storage, where src is the source
address and dst is the destination address. The router sets a single bit in B to one.
Obviously, it must also be a bit in the logical bitmap L B(src). The index of the bit
to be set for this contact is given as follows:

H(src ⊕ R[H(dst ⊕ K ) mod s]).

The outer hash, H(src ⊕ R[...]), ensures that it is a bit in L B(src). The inner hash,
H(dst ⊕ K ), ensures that the bit is pseudo-randomly selected from L B(src). The
private key K is introduced to prevent the hash collision attacks. In such an attack,
a heavy spreader src finds a set of destination addresses, dst1, dst2, ..., that have the
same hash value, H(dst1) = H(dst2) = ... If it only contacts these destinations, the
same bit in L B(src)will be set, which allows the heavy spreader to stay undetected.
This type of attacks can be prevented if we use a cryptographic hash function such
as MD5 or SHA1, which makes it difficult to find destination addresses that have
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the same hash value. However, if a weaker hash function is used for performance
reason, then a private key becomes necessary. Without knowing the key, the heavy
spreaders will not be able to predict which destination addresses produce the same
hash value.

To store a contact, ESC only sets a single bit. This is more efficient than other
methods [14, 18] that require setting multiple bits for storing each contact.

3.2.3 Maximum Likelihood Estimation and Heavy Spreader
Classification

At the end of the measurement period, ESC will send the content of B to an offline
data processing center. There, the logical bitmap of each source src is extracted and
the estimated spread k̂ of the source is computed. Only if k̂ is greater than a threshold
value T , ESC reports the source as a heavy spreader. We will discuss how to keep
track of the source addresses and explain how to determine the threshold T based
on a given classification objective later. The formula for computing the estimated
spread k̂ is

k̂ = ln Vs − ln Vm

ln(1 − p
s )− ln(1 − p

m )
, (3.2)

where p is the sampling probability, s is the size of the logical bitmap L B(src),
m is the size of B, Vs is the fraction of bits in L B(src) whose values are zeros, and
Vm is the fraction of bits in B whose values are zeros. Below we formally derive this
formula.

Let k be the true spread of source src, n be the number of distinct contacts made
by all sources, and Us be the number of bits in L B(src) whose values are zeros.
Clearly, Vs = Us

s . Depending on the context, Us (or Vs , Vm) is used either as a
random variable or an instance value of the random variable.

The probability for any contact to be sampled for storage is p. Consider an arbitrary
bit b in L B(src). A sampled contact made by src has a probability of 1

s to set b to
‘1’, and a sampled contact made by any other source has a probability of 1

m to set b
to ‘1’. Hence, the probability q(k) for b to remain‘0’ at the end of the measurement
period is

q(k) = (1 − p

m
)n−k(1 − p

s
)k . (3.3)

Each bit in L B(src) has a probability of q(k) to remain ‘0’. The observed number
of ‘0’ bits in L B(src) is Us . The likelihood function for this observation to occur is
given as follows:

L = q(k)Us (1 − q(k))s−Us . (3.4)

In the standard process of maximum likelihood estimation, the unknown value k is
technically treated as a variable in (3.4). We want to find an estimate k̂ that maximizes
the likelihood function. Namely,
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k̂ = arg max{L}
k

. (3.5)

Since the maxima is not affected by monotone transformations, we use logarithm to
turn the right side of (3.4) from product to summation:

ln(L) = Us · ln(q(k))+ (s − Us) · ln(1 − q(k)).

From (3.3), the above equation can be written as

ln(L) = Us((n − k) ln(1 − p

m
)+ k ln(1 − p

s
))

+ (s − Us) · ln(1 − (1 − p

m
)n−k(1 − p

s
)k).

To find the maxima, we differentiate both sides:

∂ ln(L)

∂k
= ln(

1 − p
s

1 − p
m

) · Us − s(1 − p
m )

n−k(1 − p
s )

k

1 − (1 − p
m )

n−k(1 − p
s )

k
. (3.6)

We then let the right side be zero. That is,

Us = s(1 − p

m
)n−k(1 − p

s
)k . (3.7)

Taking logarithm on both sides, we have

ln
Us

s
= n ln(1 − p

m
)+ k(ln(1 − p

s
)− ln(1 − p

m
)),

k = ln Vs − n ln(1 − p
m )

ln(1 − p
s )− ln(1 − p

m )
. (3.8)

Suppose the number of sources (which equals to the number of logical bitmaps) is
sufficiently large. Because every bit in every logical bitmap is randomly selected
from B, in this sense, each of the n contacts has about the same probability p

m of
setting any bit in B. Hence, we have

E(Vm) = (1 − p

m
)n . (3.9)

Applying (3.9) to (3.8), we have

k = ln Vs − ln E(Vm)

ln(1 − p
s )− ln(1 − p

m )
. (3.10)

Replacing E(Vm) by the instance value Vm , we have the following estimation for k.
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k̂ = ln Vs − ln Vm

ln(1 − p
s )− ln(1 − p

m )
, (3.11)

where Vs can be measured by counting the number of zeros in L B(src), Vm can be
measured by counting the number of zeros in B, and s, p and m are pre-set parameters
of ESC (see the next section).

We give an intuitive explanation for (3.11). First, we point out that its development
has taken information interference (due to bit sharing) into consideration. In (3.3),
the term (1 − p

m )
n−k captures the effect of interference; it is the probability that a

bit in L B(src) is not set by any contact from a different source. Eventually, this
results in two terms, ln Vm and ln(1 − p

m ), in (3.11). Second, the formula (3.11) is an
estimation. It does not give the precise value of k due to its probabilistic bit setting
nature. It is even mathematically possible to give a negative estimation though this
happens with exceedingly low probability. Our analysis will demonstrate that, as
long as the system parameters are set such that (3.11) gives good estimations with
high probability, the objective in (3.1) will be met.

3.2.4 Variance of Vm

Let Ai be the event that the i th bit in B remains ‘0’ at the end of the measurement
period and 1Ai be the corresponding indicator random variable. Let Um be the random
variable for the number of ‘0’ bits in B. We first derive the probability for Ai to occur
and the expected value of Um . For an arbitrary bit in B, each distinct contact has
a probability of p

m to set the bit to one. All contacts are independent of each other
when setting bits in B. Hence,

Prob{Ai } =
(

1 − p

m

)n
, ∀i ∈ [0, s).

The probability for Ai and A j , ∀i, j ∈ [0,m), i 
= j , to happen simultaneously is

Prob{Ai ∩ A j } = (1 − 2p

m
)n .

Since Vm = Um
m and Um = ∑m

i=1 1Ai , we have

E(V 2
m) = 1

m2 E((
m∑

i=1

1Ai )
2)

= 1

m2 E(
m∑

i=1

12
Ai
)+ 2

m2 E(
∑

1≤i< j≤m

1Ai 1A j )

= 1

m
(1 − p

m
)n + m − 1

m
(1 − 2p

m
)n .
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Based on (3.9) and the equation above, we have

V ar(Vm) = E(V 2
m)− E(Vm)

2

= 1

m

(
1 − p

m

)n + m − 1

m

(

1 − 2p

m

)n

−
(

1 − p

m

)2n

�
e− np

m

(
1 −

(
1 + np2

m

)
e− np

m

)

m
. (3.12)

3.2.5 Source Addresses

ESC does not store the source address of every arrival packet. Instead, it stores a
source address only when a contact sets a bit in B from ‘0’ to ‘1’. The frequency
of storing source addresses is by far smaller than the packet arrival rate due to the
following reasons. First, numerous packets may be sent from a source to a destination
in a TCP/UDP session. Only the first sampled packet may cause the source address
to be stored because only the first packet sets a bit from ‘0’ to ‘1’ and the remaining
packets will set the same bit (which is already ‘1’). Therefore, for any TCP/UDP
session, no matter how many packets it has, it triggers source address storage at most
once. Second, a source may send thousands or even millions of packets through a
router, but the number of times its address will be stored is bounded by s (which is
the number of bits in the source’s logical bitmap). Third, each arrival packet has a
probability of p to be sampled. When it is not sampled, it has no chance to trigger
source address storage. In summary, because the operation of storing source addresses
is relatively infrequent, these addresses can be stored in the main memory.

3.3 Optimal System Parameters and Minimum Memory
Requirement

In this section, we first derive the probability for ESC to report an arbitrary source
as a heavy spreader. Based on this probability, we develop the constraints that the
system parameters must satisfy in order to achieve the classification objective in
(3.1). Using these constraints, we determine the optimal values for the size s of the
logical bitmaps, the sampling probability p, and the threshold T . We also determine
the minimum amount of memory m that should be allocated for ESC to achieve the
objective.
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3.3.1 Report Probability

Consider an arbitrary source src. ESC reports src as a heavy spreader if its estimated
spread k̂ exceeds a threshold T . The probability for this to happen, Prob{k̂ ≥ T } is
derived as follows: from (3.11), we know that the following inequalities are equiva-
lent.

k̂ ≥ T

ln Vs − ln Vm

ln(1 − p
s )− ln(1 − p

m )
≥ T

Vs ≤ Vm

(
1 − p

s

1 − p
m

)T

Us is the random variable for the number of ‘0’ bits in L B(src). Us = s · Vs . The
above inequality becomes

Us ≤ s · Vm ·
(

1 − p
s

1 − p
m

)T

. (3.13)

For a set of parameters m, s, p and T , we define a constant

C = s · Vm ·
(

1 − p
s

1 − p
m

)T

,

where the instance value of Vm can be measured from B after the measurement period.
Hence, the probability for ESC to report src is Prob{k̂ ≥ T } = Prob{Us ≤ C}.

Us follows the binomial distribution with parameters s and q(k), where q(k) in
(3.3) is the probability for an arbitrary bit in L B(src) to remain zero at the end of the
measurement period. Hence, the probability of having exactly i zeros in L B(src) is
given by the following probability mass function:

Prob{Us = i} =
(

s

i

)

· q(k)i · (1 − q(k))s−i . (3.14)

We must have

Prob{k̂ ≥ T } = Prob{Us ≤ C}

=

C�∑

i=0

(
s

i

)

· q(k)i · (1 − q(k))s−i . (3.15)
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Fig. 3.1 The relative standard deviation, Std(Vm )
E(Vm )

, approaches to zero as m increases. The load
factor (LF) is defined as n · p/m, where n · p is the number of distinct contacts that are sampled
by ESC for storage. In our experiments (reported in Sect. 3.4), when we use the system parameters
determined by the algorithm described in this section, the load factor never exceeds 2

3.3.2 Constraints for the System Parameters

We now derive the constraints that the system parameters must satisfy in order to
achieve the classification objective in (3.1). The variance of Vm is given in (3.12).
It approaches to zero as m increases. In Fig. 3.1, we plot the ratio of the standard
deviation Std(Vm) = √

V ar(Vm) to E(Vm), which can be found in (3.9). The figure
shows that Std(Vm)/E(Vm) is very small when m is reasonably large. In this case,
we can approximately treat Vm as a constant.

Vm � E(Vm) �
(

1 − p

m

)n
. (3.16)

The classification objective can be stated as two requirements. First, the probability
for ESC to report a source with k ≥ h must be at least α.
That is, Prob{k̂ ≥ T } ≥ α,∀k ≥ h. From (3.15), this requirement can be writ-
ten as the following inequality:


C�∑

i=0

(
s

i

)

· q(k)i · (1 − q(k))s−i ≥ α,

where C = s · Vm · ( 1− p
s

1− p
m
)T � s · (1 − p

m )
n · ( 1− p

s
1− p

m
)T . The left side of the inequality

is an increasing function in k. Hence, to satisfy the requirement in the worst case
when k = h, the following constraint for the system parameters must be met:
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C�∑

i=0

(
s

i

)

· q(h)i · (1 − q(h))s−i ≥ α. (3.17)

Second, the probability for ESC to report a source with k ≤ l must be no more than
β. This requirement can be similarly converted into the following constraint:


C�∑

i=0

(
s

i

)

· q(l)i · (1 − q(l))s−i ≤ β. (3.18)

3.3.3 Optimal System Parameters

Our goal is to optimize the system parameters such that the memory requirement,
m, is minimized under the constraints (3.17) and (3.18). The problem is formally
defined as follows.

Minimize m (3.19)

Subject to

C�∑

i=0

(
s

i

)

· q(h)i · (1 − q(h))s−i ≥ α,


C�∑

i=0

(
s

i

)

· q(l)i · (1 − q(l))s−i ≤ β,

C = s ·
(

1 − p

m

)n ·
(

1 − p
s

1 − p
m

)T

.

The parameters, h, l, α and β, are specified in the classification objective. The value
of n is decided based on the history data in the past measurement periods. To be
conservative, we take the maximum number n∗ of distinct contacts observed in a
number of previous measurement periods. More specifically (3.9) can be turned into
a formula for estimating n in each previous period if we replace E(Vm) with the
instance value Vm .

n̂ = −m

p
ln Vm (3.20)

We derive the relative bias and the relative standard deviation of the above estimation.

Bias

(
n̂

n

)

= E

(
n̂

n

)

− 1 � e
np
m − np2

m − 1

2np
(3.21)
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Std

(
n̂

n

)

=
√

m

np

(

e
np
m − np2

m
− 1

)1/2

(3.22)

They both approach to zero as m increases. Based on the largest n̂ value observed in
a certain number of past measurement periods, we can set the value of n∗.

To solve the constrained optimization problem (3.19), we need to determine the
optimal values of the remaining three system parameters, s, p and T , such that m
will be minimized. We consider the left side of (3.17) as a function Fh(m, s, p, T ),
and the left side of (3.18) as Fl(m, s, p, T ). Namely,

Fh(m, s, p, T ) =

C�∑

i=0

(
s

i

)

· q(h)i · (1 − q(h))s−i ,

Fl(m, s, p, T ) =

C�∑

i=0

(
s

i

)

· q(l)i · (1 − q(l))s−i .

Both of them are non-increasing functions in T , according to the relation between
C and T . In the following, we present an iterative numerical algorithm to solve the
optimization problem. The algorithm consists of four procedures.

• First, we construct a procedure called Potential(m, s, p), which takes a value
of m, a value of s and a value of p as input and returns the maximum value of
Fh(m, s, p, T ) under the condition that Fl(m, s, p, T ) ≤ β is satisfied. Because
Fh(m, s, p, T ) is a non-increasing function in T , we need to find the smallest
value of T that satisfies Fl(m, s, p, T ) ≤ β. That can be done numerically through
binary search: pick a small integer T1 such that Fl(m, s, p, T1) ≥ β and a large
integer T2 such that Fl(m, s, p, T2) ≤ β. We iteratively shrink the difference
between them by resetting one of them to be the average T1+T2

2 , while maintaining
the inequalities, Fl(m, s, p, T1) ≥ β and Fl(m, s, p, T2) ≤ β. The process stops
when T1 = T2, which is denoted as T ∗. The procedure Potential(m, s, p) returns
Fh(m, s, p, T ∗). The pseudo code is presented in Algorithm 1 in the appendix.
Essentially, what Potential(m, s, p) returns is the maximum value of the left
side in (3.17) under the condition that (3.18) is satisfied. The difference between
Potential(m, s, p) and α provides us with a quantitative indication on how con-
servative or aggressive we have chosen the value of m. If Potential(m, s, p)− α
is positive, it means that the performance achieved by the current memory size is
more than required. We shall reduce m. On the contrary, if Potential(m, s, p)−α
is negative, we shall increase m.
Given the above semantics, when we determine the optimal values for p and s,
our goal is certainly to maximize the return value of Potential(m, s, p).

• Second, given a value of m and a value of s, we construct a procedure Optimal
P(m, s) that determines the optimal value p∗ such that Potential(m, s, p∗) is
maximized. When the values of m and s are fixed, Potential(m, s, p) becomes a
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Fig. 3.2 a The curve (without the arrows) shows the value of Potential(m, s, p) with respect to
p when m = 0.45 MB and s = 150. Its non-smooth appearance is due to 
C� in the formula of
Fh(m, s, p, T ∗). Fh(m, s, p, T ∗) depends on the values of 
C� and q(h), which are both functions
of p. b The arrows illustrate the operation of Optimal P(m, s). In the first iteration (arrow i1), p2
is set to be (p1 + p2)/2. In the second iteration (arrow i2), p1 is set to be (p1 + p2)/2. In the third
iteration (arrow i3), p2 is set to be (p1 + p2)/2

function of p. It is a curve as illustrated in Fig. 3.2; see explanation under caption
(A) and ignore the arrows in the figure for now.
We use a binary search algorithm to find a near-optimal value of p. Let p1 = 0
and p2 = 1. Let δ be a small positive value (such as 0.001). Repeat the following
operation: let p̄ = (p1 + p2)/2. If Potential(m, s, p̄) < Potential(m, s, p̄+δ),
set p1 to be p̄; otherwise, set p2 to be p̄. The above iterative operation stops when
p2 − p1 < δ. The procedure Optimal P(m, s) returns (p1 + p2)/2, which is
within ±δ/2 of the optimal. This difference can be made arbitrarily small when
we decrease δ at the expense of increased computation overhead. We want to
stress that it is one-time overhead (not online overhead) to determine the system
parameters before deployment. The operation of Optimal P(m, s) is illustrated
by the arrows in Fig. 3.2; see explanation under caption (B). The pseudo code is
given in Algorithm 2 in the appendix.

• Third, given a value of m, we construct a procedure OptimalS (m) that deter-
mines the optimal value s∗ such that Potential( m, s∗, Optimal P(m, s∗)) is
maximized. When the value of m is fixed, Potential(m, s, Optimal P(m, s))
becomes a function of s. It is a curve as illustrated in Fig. 3.3. We can use a binary
search algorithm similar to that of Optimal P(m, s) to find s∗. The pseudo code
is given in Algorithm 3 in the appendix.

• Fourth, we construct a procedure Optimal M() that determines the minimum
memory requirement m∗ through binary search: denote Potential(m, Optimal
S(m), Optimal P(m, OptimalS(m))) as Potential(m, ...). Pick a small value
m1 such that Potential(m1, ...) ≤ α, which means that the classification objective
is not met — more specifically, according to the semantics of Potential(...), the
constraint (3.17) cannot be satisfied if the constraint (3.18) is satisfied. Pick a large
value m2 such that Potential(m2, ...) ≥ α, which means that the classification
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Fig. 3.3 The value of Potential(m, s, Optimal P(m, s)) with respect to s when m = 0.25 MB

objective is met. Repeat the following operation. Let m̄ = 
(m1 + m2)/2�. If
Potential(m̄, ...) ≤ α, set m1 to be m̄; otherwise, set m2 to be m̄. The above
iterative operation terminates when m1 = m2, which is returned by the procedure
Optimal M(). The pseudo code is given in Algorithm 4 in the appendix.

In practice, a network administrator will first define the classification objective
that is specified by α, β, h and l. He or she sets the value of n∗ based on historic
data, and then sets m = Optimal M(), s = OptimalS(m), p = Optimal P(m, s)
and T as the threshold value T ∗ before the last call to Potential(m, s, p) is returned
during the execution of Optimal M(). After the router is configured with these
parameters and begins to measure the network traffic, it also monitors the value of
n∗. If the maximum number of distinct contacts in a measurement period changes
significantly, the values of m, s, p and T will be recomputed.

3.4 Experiments

3.4.1 Experimental Setup

We evaluate the performance of ESC and compare it with existing work, including the
Two-level Filtering Algorithm (TFA) [14], the Thresholded Bitmap Algorithm (TBA)
[4], and the Compact Spread Estimator (CSE) [15]. TFA uses two filters to reduce
both the number of sources to be monitored and the number of contacts to be stored.
It is designed to satisfy the classification objective in (3.1). TBA is not designed
for meeting the classification objective. It cannot ensure that false positive/negative
ratios are bounded. CSE is designed to estimate the spreads of external sources in a
very compact memory space. It can be used for spreader classification by reporting
the sources whose estimated spreads exceed a certain threshold. However, the design
of CSE makes it unsuitable for meeting the objective in (3.1).

Online Streaming Module (OSM) [18] is another related work. We do not imple-
ment OSM in this study because Yoon et al. show that, given the same amount of
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memory, CSE estimates spread values more accurately than OSM [15]. Moreover, the
operations of OSM share certain similarity with Bloom filters. To store each contact,
it performs three hash functions and makes three memory accesses. In comparison,
ESC performs two hash functions and makes one memory access. Please refer to the
related work section for more details on various spreader classification schemes.

The experiments use a real Internet traffic trace captured by Cisco’s Netflow at
the main gateway of our campus for a week. For example, in one day of the week,
the traffic trace records 10,702,677 distinct contacts, 4,007,256 distinct source IP
addresses and 56,167 distinct destination addresses. The average spread per source is
2.67, which means a source contacts 2.67 distinct destinations on average. Figure 3.4
shows the number of sources with respect to the source spread in log scale. The
number of sources decreases exponentially as the spread value increases from 1 to
500. After that, there is zero, one or a few sources for each spread value.

We implement ESC, TFA, TBA and CSE, and execute them with the traffic trace
as input. In the experiments, the source of a contact is the IP address of the sender
and the destination is the IP address of the receiver. The measurement period is one
day. The experimental results are the average over the week-long data.

One performance metric used in comparison is the amount of memory that is
required for a spreader classification scheme to meet a given classification objective.
Remarkably, the number of bits required by ESC is far smaller than the number
of distinct sources in the traffic trace. That is, ESC requires much less than 1 bit
per source to perform spreader classification. Other performance metrics include
the false positive ratio and the false negative ratio, which will be explained further
shortly.

3.4.2 Comparison in Terms of Memory Requirement

The first set of experiments compares ESC and TFA for the amount of memory that
they need in order to satisfy a given classification objective, which is specified by four
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Table 3.1 Memory requirements (in MB) of ESC, TFA and ESC-1 (i.e. ESC with p = 1) when
α = 0.9 and β = 0.1

h l = 0.1h l = 0.3h l = 0.5h l = 0.7h
ESC TFA ESC-1 ESC TFA ESC-1 ESC TFA ESC-1 ESC TFA ESC-1

500 0.09 2.02 0.33 0.19 2.53 0.43 0.30 3.61 0.54 0.97 6.12 1.01
1000 0.07 1.10 0.27 0.09 1.29 0.33 0.15 1.85 0.42 0.47 3.11 0.86
2000 0.03 0.55 0.24 0.05 0.71 0.29 0.08 1.02 0.42 0.25 1.62 0.86
3000 0.02 0.42 0.24 0.03 0.51 0.27 0.06 0.68 0.42 0.17 1.09 0.86
4000 0.01 0.32 0.21 0.03 0.38 0.27 0.03 0.52 0.42 0.13 0.83 0.86
5000 0.01 0.24 0.21 0.02 0.31 0.27 0.03 0.43 0.42 0.11 0.66 0.86

Table 3.2 Memory requirements (in MB) of ESC, TFA and ESC-1 (i.e. ESC with p = 1) when
α = 0.95 and β = 0.05

h l = 0.1h l = 0.3h l = 0.5h l = 0.7h
ESC TFA ESC-1 ESC TFA ESC-1 ESC TFA ESC-1 ESC TFA ESC-1

500 0.12 2.41 0.38 0.22 3.27 0.48 0.48 4.59 0.68 1.56 8.03 1.60
1000 0.08 1.29 0.32 0.12 1.65 0.38 0.24 2.34 0.50 0.76 4.04 1.20
2000 0.03 0.69 0.26 0.08 0.87 0.32 0.13 1.21 0.47 0.38 2.12 1.20
3000 0.02 0.46 0.26 0.06 0.60 0.32 0.09 0.83 0.47 0.26 1.42 1.20
4000 0.02 0.37 0.23 0.04 0.45 0.32 0.06 0.63 0.47 0.20 1.08 1.20
5000 0.01 0.29 0.23 0.04 0.35 0.32 0.05 0.52 0.47 0.16 0.89 1.20

parameters, α, β, h, and l. See Sect. 3.1 for the formal definition of the classification
objective. We do not compare TBA and CSE here because they are not designed to
meet this objective.

The memory required by ESC is determined based on the iterative algorithm in
Sect. 3.3.3. The values of other parameters, s, T and p, are also decided by the same
algorithm. For example, when α = 0.9, β = 0.1, h = 5000, l = 0.7h, n∗ =10M,
the system parameters are s = 40, T = 4250, p = 0.01, and m = 0.11 MB. Using
these parameters, we perform experiments on ESC with the traffic trace as input.
The amount of memory required by TFA is determined experimentally based on the
method in [14]. The parameters of TFA are chosen based on the original paper.

The memory requirements of ESC and TFA are presented in Tables 3.1, 3.2 and
3.3 with respect to α, β, h and l. For α = 0.9 and β = 0.1, Table 3.1 shows that TFA
requires 6–24 times of the memory that ESC requires, depending on the values of h
and l (which the system administrator will select based on the organization’s policy).
For example, when h = 500 and l = 0.5h, ESC reduces the memory consumption
by an order of magnitude when comparing with TFA.

Our experiments have also confirmed that the classification objective is indeed
achieved by ESC. That is, the false positive ratio is always bounded by β and the
false negative ratio is bounded by 1 − α for all experiments reported in Tables 3.1,
3.2 and 3.3.
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Table 3.3 Memory requirements (in MB) of ESC, TFA and ESC-1 (i.e. ESC with p = 1) when
α = 0.99 and β = 0.01

h l = 0.1h l = 0.3h l = 0.5h l = 0.7h
ESC TFA ESC-1 ESC TFA ESC-1 ESC TFA ESC-1 ESC TFA ESC-1

500 0.20 3.60 0.48 0.29 4.82 0.52 0.97 7.25 1.03 4.20 13.15 4.20
1000 0.10 1.92 0.38 0.15 2.42 0.40 0.50 3.60 0.67 1.59 6.54 3.10
2000 0.07 1.01 0.32 0.09 1.30 0.34 0.24 1.85 0.60 0.81 3.21 3.10
3000 0.04 0.68 0.29 0.07 0.85 0.34 0.16 1.24 0.60 0.53 2.18 3.10
4000 0.03 0.50 0.29 0.05 0.66 0.34 0.12 0.96 0.59 0.41 1.70 3.10
5000 0.03 0.42 0.29 0.05 0.55 0.34 0.10 0.77 0.59 0.33 1.38 3.10

To demonstrate the impact of probabilistic sampling, the table also includes the
memory requirement of ESC when sampling is turned off (by setting p = 1). This
version of ESC is denoted as ESC-1. Since p is set as a constant, the iterative
algorithm in Sect. 3.3.3 needs to be slightly modified: the procedure Optimal P(m, s)
will always return 1, while other procedures remain the same. Table 3.1 shows that
the memory saved by sampling is significant when h is large. For example, when
h = 5000 and l = 0.3h, ESC with sampling uses less than one thirteenth of the
memory that is needed by ESC-1. However, when h becomes smaller or l

h becomes
larger, ESC has to choose a larger sampling probability in order to limit the error in
spread estimation caused by sampling. Consequently, it has to store more contacts
and thus require more memory. For instance, when h = 500 and l = 0.5h, ESC with
sampling uses 55.6 % of the memory that is needed by ESC-1.

Table 3.2 compares the memory requirements of ESC and TFA when α = 0.95
and β = 0.05. Table 3.3 compares the memory requirements when α = 0.99 and
β = 0.01. They show similar results: (1) ESC uses significantly less memory than
TFA, and (2) the probabilistic sampling method in ESC is critical for memory saving
especially when h is large or l

h is small. The tables also demonstrate that the mem-
ory requirement of either ESC or TFA increases when the classification objective
becomes more stringent, i.e., α is set larger and β smaller.

TFA requires more memory because it stores the source and destination addresses
of the contacts. In [17], the authors also indicate that Bloom Filters [2, 3] can be used
to reduce the memory consumption. However, the paper does not give detailed design
or parameter settings. Therefore, we cannot implement the Bloom-filter version of
TFA. The paper claims that the memory requirement will be reduced by a factor
of 2.5 when Bloom filters are used. Even when this factor is taken into account in
Tables 3.1, 3.2 and 3.3, memory saving by ESC will still be significant.
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Table 3.4 False negative ratio and false positive ratio of ESC, CSE and TBA with m = 0.05 MB

h FNR FPR
ESC CSE TBA ESC CSE TBA

500 7.4e−2 0 2.6e−1 5.0e−2 1 9.0e−6
1000 1.0e−2 0 2.6e−1 5.5e−3 1 9.0e−6
2000 4.2e−3 0 2.5e−1 2.0e−3 1 1.1e−5
3000 5.5e−3 0 2.5e−1 2.0e−3 1 1.0e−5
4000 0 0 2.4e−1 2.0e−3 1 7.0e−6
5000 0 0 2.4e−1 2.0e−3 1 7.0e−6

Table 3.5 False negative ratio and false positive ratio of ESC, CSE and TBA with m = 0.02 MB

h FNR FPR
ESC CSE TBA ESC CSE TBA

500 1.2e−2 3.3e−2 3.7e−3 1.5e−3 1.2e−1 1.8e−4
1000 8.8e−4 0 3.7e−3 7.5e−4 5.5e−2 1.9e−4
2000 0 0 9.3e−3 7.5e−4 5.5e−2 2.0e−4
3000 0 0 7.4e−3 7.5e−4 5.5e−2 1.8e−4
4000 0 0 1.9e−3 7.5e−4 5.5e−2 1.9e−4
5000 0 0 3.7e−3 7.5e−4 5.5e−2 1.8e−4

3.4.3 Comparison in Terms of False Positive Ratio and False
Negative Ratio

The false positive ratio (FPR) is defined as the fraction of all non-heavy spreaders
(whose spreads are no more than l) that are mistakenly reported as heavy spreaders.
The false negative ratio (FNR) is the fraction of all heavy spreaders (whose spreads
are no less than h) that are not reported by the system. In the previous section, we
have shown that, given the bounds of FPR and FNR, it takes ESC much less memory
to achieve the bounds than TFA. Since CSE and TBA are not designed for meeting
a given set of bounds, we compare ESC with them by a different set of experiments
that measure and compare the FPR and FNR values under a fixed amount of SRAM.

Given a fixed memory size m, we use OptimalS(m, s) in Sect. 3.3.3 to determine
the value of s in ESC, use Optimal P(m, s) to determine the value of p, and then set
the threshold T as h+l

2 . We perform experiments using the week-long traffic trace. We
average the daily FPR and FNR values over the week. For m = 0.05, and 0.2 MB, the
results are presented in Tables 3.4 and 3.5, respectively. In both tables, l = 0.5h. We
also perform the same experiments for CSE and TBA, and the results are presented
in the tables as well. The optimal parameters are chosen for each scheme based on
their original papers.

When the available memory is very small, such as 0.05 MB in Table 3.4, CSE
has zero FNR but its FPR is 1.0, which means it reports all non-heavy spreaders.
The reason is that, without probabilistic sampling, CSE stores information of too
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Table 3.6 False negatives ratio and false positives ratio with α = 0.95 and β = 0.05.

h l = 0.3h l = 0.5h l = 0.7h
FNR FPR FNR FPR FNR FPR

500 4.4e−3 3.6e−6 2.0e−3 1.0e−6 3.2e−4 0
1000 3.7e−3 3.0e−6 1.9e−3 1.0e−6 5.6e−4 0
2000 4.2e−3 1.0e−6 2.1e−3 1.0e−6 1.1e−3 1e−6
3000 1.8e−2 0 0 0 1.6e−3 0
4000 1.4e−2 1.0e−6 0 0 7.1e−3 0
5000 3.1e−3 0 6.4e−3 1.0e−6 0 1e−6

many contacts such that its data structure is fully saturated. In this case, the spread
estimation method of CSE breaks down. TBA has a small FPR but its FNR is large.
For example, when h = 500, its FNR is 26 %. Only ESC achieves small values for
both FNR and FPR. For example, when h = 500, its FNR is 7.4 % and its FPR is
5.0 %. These values decrease quickly as h increases. When h = 1000, they are 1.0 and
0.55 %, respectively, while the FNR of TBA remains to be 26 %. When the available
memory increases in Table 3.5, the performance of all three schemes improves. Still,
ESC performs better in most cases.

3.4.4 Performance of ESC

The iterative algorithm in Sect. 3.3.3 gives the memory requirement for meeting a
certain classification objective in the worst case. In reality, the worst case scenario
rarely happens. Hence, we expect the observed FPR to be much smaller than β and
the observed FNR to be much smaller than (1 − α). This is indeed what we see in
our experiments.

We run ESC on the week-long traffic trace under the following parameter settings:
α = 0.95, β = 0.05, h is varied from 500 to 5000, and l is varied from 0.3h, 0.5h to
0.7h. We use the iterative algorithm to determine the values of m and other system
parameters. (Unlike the previous section, m is not a given value.) We then collect
the daily values of FPR and FNR, and the average results are shown in Table 3.6.
It shows that the real FPR/FNR are much smaller than the 5 % objective (i.e., 1 − α

or β).
The reason is that the amount of memory m that ESC uses is determined based

on the worst-case scenario, where the spreads of all non-heavy spreaders are l and
the spreads of all heavy spreaders are h. Recall that in Sect. 3.3.2, we choose k = l
in (3.18) and k = h in (3.17). However, in reality, not all non-heavy spreaders make
the same number l of distinct contacts; many sources make very small numbers
of contacts, as shown in Fig. 3.4. For a non-heavy spreader whose spread is much
smaller than l, the probability for its estimated spread to exceed the threshold T (thus
resulting in false positive) is certainly smaller than that of a non-heavy spreader whose
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Fig. 3.5 False positive ratio and false negative ratio with h = 1000 and l = 0.5h

spread is l. Similarly, not all heavy spreaders make the same number h of distinct
contacts. For a heavy spreader whose spread is much larger than h, the probability
for its estimated spread to fall below the threshold (which results in false negative)
is certainly smaller than that of a heavy spreader whose spread is h.

The above observation is also confirmed by experiment. We set α = 95 %,
β = 5 %, h = 1000, and l = 0.5h. After executing ESC on the traffic trace, we
count the average daily number of false positives for sources whose spreads are in
the range of (0, l/5], (l/5, 2l/5], ..., or (4l/5, l], and the average daily number of
false negatives for sources whose spreads are in the range of [1000, 1,200), [1200,
1400)…The resulting FPR/FNR values in those ranges are presented in Fig. 3.5,
where each point represents FPR (or FNR) for in a certain range of spread values (on
the horizontal axis). The figure shows that FPR decreases quickly to zero for sources
whose spreads are very small and FNR decreases quickly to zero for sources whose
spreads are very large.

3.5 Multi-Objective Spreader Classification

So far we have considered spreader classification with a single objective: for example,
reporting sources whose spreads are 100 or more with at least 95 % probability,
while reporting sources whose spreads are 75 or less with at most 5 % probability.
In practice, one may want to configure a router with more than one objective. For
instance, in addition to the above objective of reporting modestly heavy spreaders, we
may want to add another objective to identify more aggressive ones: reporting sources
whose spreads are 1000 or more as heavy spreaders with at least 99 % probability,
and reporting sources whose spreads are 500 or less with at most 1 % probability.
How to efficiently perform spreader classification with multiple objectives is the
subject of this section.

3.5.1 Problem Definition

Suppose there are t objectives. The j th objective, for any j ∈ [1, t], is defined by
four parameters, h j , l j , α j and β j . Among them, h j and l j are positive integers with
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h j > l j , while α j and β j are probability values, 0 < α j < 1 and 0 < β j < 1. The
j th objective is to report any source whose spread is h j or larger as a type- j heavy
spreader with a probability no less than α j , and report any source whose spread is
l j or smaller with a probability no more than β j . Similar to (3.1), the conditional
probabilities that express the whole set of objectives are

Prob{report src as a type-1 heavy spreader | k ≥ h1} ≥ α1
Prob{report src as a type-1 heavy spreader | k ≤ l1} ≤ β1

. . .

Prob{report src as a type-j heavy spreader | k ≥ h j } ≥ α j

Prob{report src as a type-j heavy spreader | k ≤ l j } ≤ β j

. . .

Prob{report src as a type-t heavy spreader | k ≥ ht } ≥ αt

Prob{report src as a type-t heavy spreader | k ≤ lt } ≤ βt ,

(3.23)

where src is an arbitrary source and its spread is k. Each objective is expressed by a
pair of conditional probabilities. The goal is to minimize the amount of SRAM that
is needed for achieving the above objectives.

3.5.2 Multi-Objective Spreader Classification Scheme and Optimal
System Parameters

The spreader classification scheme in Sect. 3.2 can be extended to detect heavy
spreaders under multiple objectives. The probabilistic sampling, dynamic bit shar-
ing, and maximum likelihood-based spread estimation stay the same. The difference
is how to determine the optimal system parameters. For spreader classification with
one objective, we determine a threshold value T in Sect. 3.3 and report all sources
whose estimated spreads exceed the threshold. The optimal values of T , s, p and m
are computed based on (3.19). For spreader classification with multiple objectives,
we need to determine one threshold for each objective. If the estimated spread of
a source exceeds the threshold Tj for the j th objective, the source is reported as a
type- j heavy spreader, where 1 ≤ j ≤ t .

Following a mathematical process similar to Sect. 3.3, we can derive the set of
constraints that the system parameters must satisfy in order to meet all objectives.
We want to minimize the amount of memory that is needed to satisfy the constraints.

Minimize m (3.24)

Subject to ∀1 ≤ j ≤ t,
∑
C j �

i=0

(
s

i

)

· q(h j )
i · (1 − q(h j ))

s−i ≥ α j , (3.25)
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∑
C j �
i=0

(
s

i

)

· q(l j )
i · (1 − q(l j ))

s−i ≤ β j , (3.26)

where C j = s ·
(

1 − p

m

)n ·
(

1 − p
s

1 − p
m

)Tj

.

The conditional probabilities for the j th objective are transformed into two equiv-
alent constraints: Prob{reportsrc | k ≥ h j } ≥ α j is transformed to (3.25) and
Prob{reportsrc | k ≤ l j } ≤ β j to (3.26). Our goal is to determine the optimal
values for Tj (1 ≤ j ≤ t), s and p, such that they together minimize m. Note that
there exists one threshold for each objective. In total, there are t thresholds. But s, p
and m are common parameters shared for all objectives.

The algorithm in Sect. 3.3.3 can be extended to solve the above constrained opti-
mization problem. We briefly describe the solution below. Consider the left side
of (3.25) as a function Fh j (m, s, p, Tj ) and the left side of (3.26) as a function
Fl j (m, s, p, Tj ). Namely, ∀1 ≤ j ≤ t ,

Fh j (m, s, p, Tj ) =

C j �∑

i=0

(
s

i

)

· q(h j )
i · (1 − q(h j ))

s−i ,

Fl j (m, s, p, Tj ) =

C j �∑

i=0

(
s

i

)

· q(l j )
i · (1 − q(l j ))

s−i .

We modify the iterative numerical algorithm in Sect. 3.3.3 to determine the optimal
system parameters. The revised algorithm consists of five procedures, which are
described as follows.

• First, we overload the procedure Potential(m, s, p) in Sect. 3.3.3 and add one
input parameter, j , indicating which functions the procedure is applied to. More
specifically, ∀ j ∈ [1, t], the new procedure Potential(m, s, p, j) is applied to
functions Fh j (m, s, p, Tj ) and Fl j (m, s, p, Tj ). It uses the same binary search
method as in Algorithm 1 to find the optimal value of Tj that maximizes the value
of Fh j (m, s, p, Tj ) under the condition that Fl j (m, s, p, Tj ) ≤ β. The procedure
returns the maximum value of Fh j (m, s, p, Tj ), and as a byproduce, determines the
optimal value of Tj . The pseudo code is the same as Algorithm 1 in the appendix
except that Fh(m, s, p, T ) is replaced by Fh j (m, s, p, Tj ) and Fl(m, s, p, T ) is
replaced by Fl j (m, s, p, Tj ).

• Second, we construct a new procedure called Potential All(m, s, p), which takes
a value of m, a value of s and a value of p as input and returns the minimum value
of {Potential(m, s, p, 1)− α1, Potential(m, s, p, 2)− α2, .., Potential(m, s,
p, t)− αt }. Clearly, if Potential All(m, s, p) ≥ 0, all objectives can be satisfied.
Essentially, the value of Potential All(m, s, p) quantitatively indicates how con-
servative or aggressive we have chosen the value of m. If Potential All(m, s, p)
is positive, it means that the performance achieved by current memory size is more
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than required. We shall reduce m. On the other hand, if Potential All(m, s, p) is
negative, we shall increase m.

• Third, given a value of m and a value of s, we construct a procedure Optimal
P ′(m, s) that determines the optimal value p∗ such that Potential All(m, s, p∗) is
maximized. This procedure is similar to its counterpart in Sect. 3.3.3. The pseudo
code is the same as Algorithm 2 in the appendix except that Potential(m, s, p)
is replaced with Potential All(m, s, p).

• Fourth, given a value of m, we construct a procedure OptimalS′(m) that deter-
mines the optimal value s∗ such that Potential All(m, s∗, Optimal P ′(m, s∗)) is
maximized. This procedure is the same as its counterpart in Sect. 3.3.3 (Algorithm
3 in the appendix), except that Potential(...) is replaced with Potential All(...)
and Optimal P(m, s) is replaced with Optimal P ′(m, s).

• Fifth, we construct a procedure Optimal M ′() that determines the minimum
memory requirement m∗ such that Potential All(m, OptimalS′(m), Optimal
P ′(m, OptimalS′(m))) ≥ 0 is satisfied. Again, this procedure is similar as its
counterpart in Sect. 3.3.3 (Algorithm 4 in the appendix). We skip the detailed
description, which is virtually identical to the description in Sect. 3.3.3. In prac-
tice, given the objectives that are specified by t, α j , β j , h j and l j , 1 ≤ j ≤
t , a network administrator sets m = Optimal M ′(), s = OptimalS′(m),
p = Optimal P ′(m, s), and Tj (1 ≤ j ≤ t) as the threshold value before the last
call of Potential(m, s, p, j) is returned during the execution of Optimal M ′().

3.5.3 Additional Experimental Results

We perform additional experiments to evaluate our multi-objective spreader clas-
sification scheme. We use the same traffic trace as described in Sect. 3.4. We do
not implement TFA, TBA or CSE because none of them can be applied for multi-
objective spreader classification. In the new experiments, we let t = 2, i.e., there
are 2 objectives, which are specified as follows: h1 = 500, α1 = 0.9, β1 = 0.1,
h2 = 5000, α2 = 0.99, and β = 0.01.

In the first set of experiments, we let l2 = 0.5h2 and vary l1 from 0.1h1, 0.3h1,
0.5h1, to 0.7h1. We use the iterative algorithm in the previous section to compute the
minimum amount of memory needed, as well as the optimal values for other system
parameters. After that, we perform experiments based on these system parameters to
report the heavy spreaders in the traffic trace. We measure the FPR and FNR values
that are observed in the experiments. The results are presented in Table 3.7. The FNR
values for type-1 heavy spreaders are shown in the column labeled with FNR1; they
are indeed smaller than 1−α1. The FPR values for type-1 heavy spreaders are shown
in the column labeled with FPR1; they are smaller than β1 as required. Similarly,
the data in columns FNR2 and FPR2 show that the second objective (specified by α2
and β2) is also met.

In the second set of experiments, we let l1 = 0.5h1 and vary l2 from 0.1h2,
0.3h2, 0.5h2, to 0.7h2. Again we use the iterative algorithm to determine the system
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Table 3.7 Memory requirement, false negative ratio and false positive ratio with h1 = 500,
h2 = 5000, and l2 = 0.5h2

l1 m (MB) α1 = 0.9, β1 = 0.1 α2 = 0.99, β2 = 0.01
FNR1 FPR1 FNR2 FPR2

0.1h1 0.2 5.0e−3 1.7e−2 0 0
0.3h1 0.3 8.0e−3 4.0e−4 0 0
0.5h1 0.4 4.0e−3 1.0e−6 0 0
0.7h1 1.1 2.0e−3 1.0e−6 0 0

Table 3.8 Memory requirement, false negative ratio and false positive ratio with h1 = 500, h2 =
5000, and l1 = 0.5h1

l2 m (MB) α1 = 0.9, β1 = 0.1 α2 = 0.99, β2 = 0.01
FNR1 FPR1 FNR2 FPR2

0.1h2 0.3 1.5e−2 8.7e−5 0 0
0.3h2 0.4 4.0e−3 2.0e−6 0 0
0.5h2 0.4 4.0e−3 3.0e−6 0 3.0e−6
0.7h2 0.6 5.0e−3 5.0e−6 0 1.1e−5

parameters and run experiments to measure the FPR and FNR values. The results
are presented in Table 3.8. The data are interpreted in a similar way as we do for
Table 3.7. Clearly, both objectives are met.

3.6 Other Methods

Venkataraman et al. [14] use hash tables to store the addresses of the sampled contacts.
Their main contribution is to derive the optimal sampling probability that achieves
a classification objective with pre-specified upper bounds on false-positive ratio and
false-negative ratio. However, because their algorithms store the contact addresses,
it leaves great room for improvement. Even if Bloom filters are used, the room for
improvement is still significant, as we have argued in Sect. 3.4.

Estan et al. [10] propose a variety of bitmap algorithms to store the contacts (or
active flows in their context). It saves space because each destination address is stored
as a bit. However, assigning one bitmap to each source is not cheap if the average
number of contacts per source is small. In addition, an index structure is needed to
map a source to its bitmap. It is typically a hash table where each entry stores a
source address and a pointer to the corresponding bitmap. Cao et al. [4] develop the
thresholded bitmap algorithm based on the virtual bitmap algorithm presented in [10]
for spread estimation. They use probabilistic sampling to reduce the information to
be stored.
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Zhao et al. [18] share a set of bitmaps among all sources. The scheme assigns
three pseudo-randomly selected bitmaps to each source. When the source contacts a
destination, the destination is stored by setting one bit in each of the three bitmaps.
Because the bitmaps are shared by others, the information stored for one source
becomes noise for others. Yoon et al. [15] observe that the noise introduced by
sharing bitmaps cannot be appropriately removed if the number of bitmaps is not
sufficiently large. By sharing bits instead of bitmaps, CSE considerably reduces the
memory consumption.

Also related is the work by Bandi et al. [1] on the heavy distinct hitter problem,
which is essentially the same as spreader classification. Their algorithm exploits
TCAM (Ternary Content Addressable Memory), a special kind of memory found in
NPUs (Network Processing Units). The emphasis of their work is on the processing
time.

A related branch of research is the detection of heavy-hitters [5–9, 11, 13, 16].
A heavy-hitter is a source that sends a lot of packets during a measurement period
no matter whether the packets are sent to a few or many distinct destinations.

3.7 Summary

Spreader classification is an important network measurement function. The recent
research trend is to implement such a function in the tight SRAM space to catch up
with the rapid advance in network speed. This chapter presents an efficient spreader
classification scheme based on a new method called dynamic bit sharing, which
optimally combines probabilistic sampling, bit-sharing storage, and maximum like-
lihood estimation. We demonstrate theoretically and experimentally that this scheme
is able to achieve a classification objective with arbitrarily-set bounds on worst-case
false positive/negative ratios. It does so in a very tight memory space where the
number of bits available is much smaller than the number of external sources to
be monitored. In addition, the scheme can be extended to solve the multi-objective
spreader classification problem.
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Appendix: Algorithms for Optimal System Parameters

Algorithm 1 Potential(m, s, p)
INPUT: m, s, p and β
OUTPUT: The maximum value of Fh(m, s, p, T ) under the condition that Fl (m, s, p, T ) ≤ β.
——————————————————————–
Pick a small integer T1 such that Fl (m, s, p, T1) > β and a large integer T2 such that
Fl (m, s, p, T2) ≤ β.
while T2 − T1 > 1 do

T̄ = 
(T1 + T2)/2�
if Fl (m, s, p, T̄ ) ≤ β then

T1 = T̄
else

T2 = T̄
end if

end while
T ∗ = T̄
return Fh(m, s, p, T ∗)

Algorithm 2 Optimal P(m, s)
INPUT: m, s and δ
OUTPUT: The optimal value of p∗ such that Potential(m, s, p∗) is maximized
——————————————————————–
p1 = 0, p2 = 1
while p2 − p1 > δ do

p̄ = (p1 + p2)/2
if Potential(m, s, p̄) < Potential(m, s, p̄ + δ) then

p1 = p̄
else

p2 = p̄
end if

end while
p∗ = (p1 + p2)/2
return p∗
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Algorithm 3 OptimalS(m)
INPUT: m
OUTPUT: The optimal value of s∗ such that Potential(m, s∗, Optimal P(m, s∗)) is maximized

——————————————————————–
s1 = 1, s2 = m
while s2 − s1 > 1 do

s̄ = 
(s1 + s2)/2�
if Potential(m, s̄, Optimal P(m, s̄)) < Potential(m, s̄ + 1, Optimal P(m, s̄ + 1) then

s1 = s̄
else

s2 = s̄
end if

end while
s∗ = s̄
return s∗

Algorithm 4 Optimal M()
OUTPUT: The smallest value m∗ that satisfies Potential(m∗, ...) ≥ α

——————————————————————–
Pick a small value m1 such that Potential(m1, ...) ≤ α and a large value m2 such that
Potential(m2, ...) ≥ α.
while m2 − m1 > 0 do

m̄ = 
(m1 + m2)/2�
if Potential(m̄, ...) ≤ α then

m1 = m̄
else

m2 = m̄
end if

end while
m∗ = m̄
return m∗
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Chapter 4
Origin–Destination Flow Measurement

Abstract This chapter presents an efficient approach for origin–destination flow
measurement in high-speed networks, where an origin–destination (OD) flow
between two routers is the set of packets that pass both routers. The OD flow mea-
surement has wide usage in many network management applications. We consider
two performance metrics, measurement efficiency and accuracy. The former requires
measurement functions to minimize per-packet processing overhead in order to keep
up with the line speeds of today’s high-speed networks. The latter requires mea-
surement functions to achieve accurate measurement results with small bias and
standard deviation. We present a novel measurement method that employs a com-
pact data structure for packet information storage and uses a new statistical infer-
ence approach for OD flow measurement. Both simulations and experiments are
performed to demonstrate the effectiveness of our method. The rest of this chapter
is organized as follows: Section 4.1 gives the problem statement and performance
metrics. Section 4.2 presents a novel origin-destination flow measurement method.
Section 4.3 discusses the simulation results. Section 4.4 presents the experimental
results. Section 4.5 describes other related methods. Section 4.6 gives the summary.

Keywords Origin–destination flow estimator · Bitmap

4.1 Problem Statement and Performance Metrics

4.1.1 Problem Statement

Let S be a subset of routers of interest in a network. The problem is to measure traffic
volume between any pair of routers in S. We model an origin-destination (OD) flow
as the set of packets traverse between two routers (the undirectional case) or traverse
from one router to the other (the directional case). Our goal is to measure the size of
each OD flow in terms of number of packets.
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Consider the set of access routers on the perimeter of an ISP network. If each
access router stores information about ingress packets (that enter the ISP network)
and egress packets (that leave the ISP network) in separate data structures, we can
figure out the size of a directional OD flow by comparing the information in the
ingress data structure of the origin router and the information in the egress data
structure of the destination router. On the other hand, if each access router stores
information of all arrival packets in the same data structure, we can figure out the
size of an undirectional OD flow by comparing the information in the data structures
of both routers. The measurement method presented in this chapter can be applied
to both cases even though our description uses the undirectional case for simplicity.

We consider two performance metrics, per-packet processing overhead and mea-
surement accuracy, which are discussed below.

4.1.2 Per-Packet Processing Overhead

The maximum packet throughput that an online measurement function can achieve
is determined by the per-packet processing overhead of the function. In order to keep
up with today’s high-speed network, it is desirable to make the per-packet processing
overhead as small as possible, especially when the SRAM and processing circuits are
shared by other critical functions for routing, packet scheduling, traffic management
and security purposes.

The per-packet processing overhead is mainly determined by the computational
complexity and the number of memory accesses for each packet. When a router
receives a packet, it needs to perform certain computation to determine the proper
location for the information storage and at least one memory access for the storing
operation. We will show that our OD flow measurement function is able to achieve
extremely small per-packet processing overhead.

4.1.3 Measurement Accuracy

Let nc be the true size of an OD flow size between two routers and n̂c be the measured
value. The accuracy requirement is given as follows: the probability for nc to fall
in the interval [n̂c · (1 − β), n̂c · (1 + β)] must be at least α, where α and β are
system parameters in the range of (0, 1). For example, when α = 95 % and β = 0.1,
it means that the measured size has a probability of 95 % to be within ±10 % of the
true value.



4.2 Origin–Destination Flow Measurement 67

4.2 Origin–Destination Flow Measurement

We first describe two straightforward approaches and discuss their limitations. We
then motivate the bitmap idea that we use in this study. Finally we present a novel
origin–destination flow measurement method (ODFM) in details.

4.2.1 Straightforward Approaches and Their Limitations

A straightforward approach is for each router to store the information of all packets
that pass it. In this way, when we want to measure the OD flow size of two routers,
we only need to compare the two sets of packet information and count how many
packets the two sets have in common, i.e., the cardinality of the intersection of the
two sets. Clearly, storing information of all packets is unrealistic since the number of
packets passing a router is huge in high-speed networks and it imposes an extremely
large memory requirement on the router.

In order to reduce the memory requirement, we can store the signatures of packets
instead. The signature of a packet is a hash value of the packet with a fixed length.
When the length of the signature is long enough, e.g., 160 bits if using SHA-1 [21],
the chance of two packets having the same signatures is negligibly small. Therefore,
we can count the number of identical signatures that stored in the two routers to
obtain the OD flow size. This enhancement can reduce the memory requirement to
some extent. However, it is still not memory efficient. Suppose there are 1 M packets
that pass a router during a measurement period. When the length of the signature is
160 bits long, a router needs 20 MB (1M × 160/8) memory to store the information
of all signatures, which is still too much in practise. Using smaller signatures cannot
solve the problem. For example, if we reduce the signature length to just 16 bits, the
memory requirement is still 2 MB. We want to control space overhead to less than 1
bit per packet.

Another approach is for a router to maintain counters for all other routers in the
network. A packet keeps track of the routers that it has traversed in its header. When
a router receives a packet, it first checks the packet header and knows which routers
this packet has passed. It then increases the corresponding counters by one. Then
the router adds its own address into the packet before sending it out. At the end of
a measurement period, in order to obtain the OD flow size of router r1 and router
r2, we first check r1 and find the counter for r2, which stores the number of packets
that enter r2 and exit from r1. We then check r2 and find the counter for r1, which
stores the number of packets that enter r1 and exit from r2. The summation of the two
counters is the OD flow size of r1 and r2. Although the computation for the OD flow
size is very simple at the end of the measurement period, this approach has two main
drawbacks during the packet processing period. First, the router needs to extract the
addresses of other routers from the packet header and may have to update multiple
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counters. It also needs to insert its own address to the packet header and may have to
recompute the checksum field. All these will slow down packet forwarding. Second,
the packet size changes after each router, which may result in frequent fragmentation.

4.2.2 ODFM: Motivation and Overview

We design a bitmap based OD flow measurement method that is able to solve the
problems that the above two approaches have. Instead of storing the signatures of
packets, each router maintains a bit array (called bitmap) of a fixed length. At the
beginning of a measurement period, all bits are set to zeros. We require routers to
implement a common hash function. When a router receives a packet, it pseudo-
randomly maps the packet to one bit in the array using the common hash function
and then sets the bit to one. At the end of the measurement period, we measure the
OD flow size of two routers by comparing their bit arrays. Clearly, since the same
hash function is used, a packet will always choose (i.e., be mapped to) the same
bit location in the arrays of all routers that it traverses. Therefore, if a packet enters
router r1 and exits from r2 or the other way around, its corresponding bit in these two
bit arrays must be both set to one. Based on this observation, we can take a bitwise
AND operation of the two bit arrays and count the number of ones in the combined
bit array to measure the OD flow.

A closer look may suggest that this approach can potentially result in overestima-
tion. Suppose two packets, called p1 and p2, map to the same bit location j by the
hash function. While p1 passes one router and p2 passes another. In this case, the
j th bit of both arrays at the two routers will be set to one. When we compare the two
bit arrays, we will falsely treat p1 and p2 as the same packet and overestimate the
OD flow size. However, there is a nice property of our scheme: because the bit for
each packet is pseudo-randomly picked from the array, any two packets has equal
probability to choose a common bit. When the number of packets and the size of
the bit array are large enough, this event occurs in the bit array uniformly at random
and the overestimation problem can be removed through statistical analysis. This
property enables us to design a compact yet accurate measurement method.

4.2.3 ODFM: Storing the Packet Information

ODFM consists of two components: one for storing the packet information into
routers, the other for measuring the OD flow of any two routers. Below we presents
the first component. At the beginning of a measurement period, each router maintains
a bit array B with a fixed length m. Initially each bit in B is set to zero. The i th bit in
the array is denoted as B[i]. When a router receives a packet p, it pseudo-randomly
picks one bit in B by performing a hash operation H(p) and set the bit to one, where
H(..) is a hash function whose output range is [0..m − 1]. More specifically, to store
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Fig. 4.1 The relation between two routers r1 and r2

the packet p, ODFM performs the following assignment:

B[H(p)] := 1. (4.1)

It is worth noting that a router only needs to perform one hash operation and sets
one bit in its bit array per packet. The hash operation does not have to be performed on
the entire packet. Instead, it is applied only to the invariant fields in the header, such
as source IP address, destination IP address, etc. For two packets that are fragments of
the same original packet, although they share the same source/destination addresses
as well as identification number, their fragmentation offset values are different.

4.2.4 ODFM: Measuring the Size of Each OD Flow

At the end of a measurement period, all routers will report their bit arrays to a
centralized server, e.g., the network management center, which performs the offline
measurement. ODFM employs the maximum likelihood estimation (MLE) [6] to
measure the OD flow of any two routers based on their bit arrays. Let S1 and S2
be the sets of packets that pass routers r1 and r2, respectively. Let n1 and n2 be
the cardinalities of S1 and S2, i.e., n1 = |S1| and n2 = |S2|. Let nc be the number
of common packets that r1 and r2 share, i.e., the OD flow size of the two routers,
which is the value that we want to measure. Figure 4.1 illustrates the relationship of
n1, n2 and nc, where nc = |S1 ∩ S2|. Let B1 and B2 be the bit arrays of r1 and r2,
respectively. Let U1 and U2 be the numbers of ‘0’s in B1 and B2, respectively. Let
V1 and V2 be the percentages of bits in B1 and B2 whose values are zero. Namely,
V1 = U1

m and V2 = U2
m .

The measurement process consists of two steps. In the first step, we compute the
cardinality of S1 (i.e., n1) and the cardinality of S2 (i.e., n2) from B1 and B2 based on
the probabilistic counting method in [12]. A simpler approach is for a router to use
a counter to keep track of the number of packets that it receives in a measurement
period. The counter may be implemented by a register on the processor.

The second step measures the value of nc. We take a bitwise AND operation of
B1 and B2. The result is denoted as Bc. Namely,
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Bc[i] = B1[i]&B2[i],∀i ∈ [0..m − 1]. (4.2)

For an arbitrary bit b in Bc, it is ‘0’ if and only if the following two conditions
are both satisfied: first, it is not chosen by any packet in S1 ∩ S2. If b is chosen by a
packet p ∈ S1 ∩ S2, we know the corresponding bits in both B1 and B2 will be set to
‘1’. Therefore, b will be ‘1’. Second, it is either not chosen by any packet in S1 − S2
or not chosen by any packet S2 − S1. If it is chosen by both a packet p1 ∈ S1 − S2
and a packet p2 ∈ S2 − S1, the corresponding bits in both B1 and B2 will be also set
to ‘1’. As a result, b will be ‘1’.

For the first condition, each packet in S1 ∩ S2 has probability 1
m to set b to ‘1’,

which means the probability for b not to be set by this packet is 1 − 1
m . There are nc

packets in S1 ∩ S2. Therefore, the probability for b not to be set to ‘1’ by any packet
in S1 ∩ S2 is (1 − 1

m )
nc . For the second condition, the probability for b not to be

chosen by any packet in S1 − S2 is (1 − 1
m )

n1−nc and the probability for it not to be
chosen by any packet in S2 − S1 is (1 − 1

m )
n2−nc . Combining the above analysis, the

probability q(nc) for b to remain ‘0’ in Bc is

q(nc) = (1 − 1

m
)nc {1 − (1 − (1 − 1

m
)n1−nc )

× (1 − (1 − 1

m
)n2−nc)}

= (1 − 1

m
)n1 + (1 − 1

m
)n2 − (1 − 1

m
)n1+n2−nc . (4.3)

Each bit in Bc has a probability q(nc) to be ‘0’. The observed number of ‘0’ bits
in Bc is Uc. Therefore, the likelihood function for this observation to occur is given
as follows:

L = q(nc)
Uc × (1 − q(nc))

m−Uc . (4.4)

Next, we follow the standard process of maximum likelihood estimation to find the
optimal value of nc that maximizes the above likelihood function:

n̂c = arg max{L}
nc

. (4.5)

To find n̂c, we take a logarithm operation to both sides of (4.4).

ln L = Uc × ln q(nc)+ (m − Uc)× ln(1 − q(nc)). (4.6)

We then differentiate the above equation:

dln L

dnc
= (

Uc

q(nc)
− m − Uc

1 − q(nc)
)× q ′(nc)
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= (
Uc

q(nc)
− m − Uc

1 − q(nc)
)× ln(1 − 1

m
)

× (1 − 1

m
)n1+n2−nc . (4.7)

From (4.3), we have

q ′(nc) = dq(nc)

dnc

= ln(1 − 1

m
)× (1 − 1

m
)n1+n2−nc . (4.8)

In order to compute n̂c, we set the right side of (4.7) to zero, i.e.

(
Uc

q(nc)
− m − Uc

1 − q(nc)
)× ln(1 − 1

m
)× (1 − 1

m
)n1+n2−nc = 0 (4.9)

Since neither ln(1 − 1
m ) nor (1 − 1

m )
n1+n2−nc can be 0 when m is positive, we have

Uc

q(nc)
− m − Uc

1 − q(nc)
= 0. (4.10)

Applying (4.3) to (4.10), we have

(1 − 1

m
)n1 + (1 − 1

m
)n2 − (1 − 1

m
)n1+n2−nc = Uc

m
= Vc. (4.11)

In above equation, m, n1, and n2 are all known values, and Vc can also be computed
when the packets information are recorded. As a result, we can measure nc in the
following formula:

nc =n1 + n2 − ln((1 − 1
m )

n1 + (1 − 1
m )

n2 − Vc)

ln(1 − 1
m )

. (4.12)

4.2.5 Measurement Accuracy

We analyze the measurement accuracy. According to the standard theory of
MLE [16], when the values of m, n1, and n2 are large enough, the measured OD flow
size n̂c approximately follows a normal distribution:
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n̂c ∼ Norm

(

nc,
1

I (n̂c)

)

, (4.13)

where I (n̂c) is the fisher information1 of L , which is defined as follows

I (n̂c) = −E

[
d2ln L

dn2
c

]

. (4.14)

According to (4.7), we compute the second-order derivative of ln L

d2ln L

dn2
c

= ln(1 − 1

m
)×

[(

− Uc · q ′(nc)

q2(nc)
− (m − Uc) · q ′(nc)

(1 − q(nc))2

)

× C −
(

Uc

q(nc)
− m − Uc

1 − q(nc)

)

× C

]

, (4.15)

where C = (1 − 1
m )

n1+n2−nc and q ′(nc) is given in (4.8).
We use the probabilistic counting method [12] to compute the expected value of

Uc. Let Xi be the event that the i th bit in Bc remains ‘0’ at the end of the measurement
period and 1Xi be the corresponding indicator random variable. As the size of Bc is
m, for an arbitrary bit b, it has probability q(nc) to remain ‘0’. Uc is the number of
‘0’s in Bc, Uc = ∑m−1

i=0 1Xi . Hence,

E(Uc) =
m−1∑

i=0

E(1Xi ) =
m−1∑

i=0

q(nc) = m · q(nc) (4.16)

Therefore, we have

I (n̂c) = −E

[
d2ln L

dn2
c

]

= ln(1 − 1

m
)×

(
m · q ′(nc)

q(nc)
+ m · q ′(nc)

1 − q(nc)

)

× C, (4.17)

as the expected value of ( Uc
q(nc)

− m−Uc
1−q(nc)

) is 0.
According to (4.13), the variance of n̂c is

1 The fisher information [13] is a way of measuring the amount of information that an observable
random variable x carries about an unknown parameter θ upon which the likelihood function of θ ,
L(θ) = f (x; θ), depends.
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V ar(n̂c) = 1

I (n̂c)

= 1

ln(1 − 1
m )×

(
m·q ′(nc)

q(nc)
+ m·q ′(nc)

1−q(nc)

)

× C
. (4.18)

and the confidence interval of our measurement is

n̂c ± Zα
√

ln(1 − 1
m )×

(
m·q ′(nc)

q(nc)
+ m·q ′(nc)

1−q(nc)

)

× C

, (4.19)

where α is the confidence level parameter and Zα is the α percentile for the standard
Gaussian distribution [3]. For example, when α = 99 %, Zα = 2.58.

4.3 Simulations

We evaluate the performance of the method ODFM by simulations in this section.
We will present experimental results based on real traffic trace in the next section.
In both simulations and experiments, we compare ODFM with the most related
work, QMLE [4]. For fair comparison, we assign the same amount of memory to
ODFM and QMLE. We compare them in terms of online processing overhead and
measurement accuracy.

Simulations are performed under system parameters, n1, n2, and nc. For an origin–
destination router pair, n1 is the number of packets that one router receives during the
measurement period, and n2 is the number of packets that the othe router receives.
Parameter nc is the actual OD flow size. The amount of memory used is set to be
1 MB.

In the first set of simulations, we let n1 = 6,000,000, n2 = 6,000,000, 300,000,
or 100,000. We vary nc from 100 to 50,000. We use ODFM and QMLE to measure
the flow size, and compare it with nc to see how accurate the measurement is.

In the second set of simulations, we model a more realistic scenario, where n1,
n2 and nc are randomly chosen. The values of n1 and n2 are randomly selected from
the range of [100,000, 10,000,000], and the value of nc is randomly selected from
[100,50,000] in each simulation run.

4.3.1 Processing Overhead

Per-packet processing overhead of a measurement method is mainly determined by
the number of memory accesses and the number of hash operations for each packet.
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Table 4.1 Number of memory accesses and number of hash operations per packet with n1 =
6,000,000 and n2 = 6,000,000

Memory accesses Hash operations Constant?

ODFM 1 1 Yes
QMLE 1.50 2 No

Table 4.2 Number of memory accesses and number of hash operations per packet with n1 =
6,000,000 and n2 = 300,000

Memory accesses Hash operations Constant?

ODFM 1 1 Yes
QMLE 1.56 2 No

Table 4.3 Number of memory accesses and number of hash operations per packet with n1 =
6,000, 000 and n2 = 100,000

Memory accesses Hash operations Constant?

ODFM 1 1 Yes
QMLE 1.54 2 No

Table 4.4 Number of memory accesses and number of hash operations per packet with the values
of n1 and n2 are randomly assigned between 100,000 and 10,000,000

Memory accesses Hash operations Constant?

ODFM 1 1 Yes
QMLE 1.22 2 No

Table 4.1 shows the averaged results when n1 = 6,000,000, n2 = 6,000,000,
and nc varies from 100 to 50,000. ODFM requires only 1 hash operation and
1 memory access (memory write) for each packet, which is the optimal. QMLE
requires more per-packet processing overhead. It incurs 1.50 memory accesses
and 2 hash operations on average. Furthermore, per-packet processing overhead of
ODFM is constant, while QMLE requires variable per-packet processing overhead,
which is undesirable in practice. Table 4.2 and Table 4.3 present similar results with
n2 = 300,000 and 100,000 respectively. Table 4.4 shows the results when the values
of n1 and n2 are randomly chosen in the range [100,000,10,000,000] and the value
of nc is randomly chosen in the range of [100,50,000].

4.3.2 Measurement Accuracy

Figures 4.2, 4.4, 4.5 present the measurement results of ODFM and QMLE. Each
figure consists of four plots. Each point in the first plot (ODFM) or the second plot
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Fig. 4.2 First plot (top left)estimation results by ODFM when n1 = 6,000,000 and
n2 = 6,000,000.Second plot (top right) estimation results by QMLE when n1 = 6,000,000
and n2 = 6,000,000. Third plot (bottom left) bias of ODFM and QMLE, which is the measured
E(n̂c − nc)with respect to nc. Fourth plot (bottom right) standard deviation of ODFM and QMLE,

which is the measured
√

V ar(n̂c)

nc

(QMLE) represents an OD flow. The x-axis is the actual flow size nc, and the y-axis
is the estimated value n̂c. We also show the equality line, y = x , for reference.
Clearly, the closer a point is to the equality line, the better the estimation result is.
The third plot shows the corresponding measured bias of the first two plots, which
is E(n̂c − nc). The fourth plot shows the corresponding standard deviation of the

first two plots, which is
√

V ar(n̂c)

nc
. In order to clearly present the estimation results

of the two methods, we divide the horizontal coordinate into 25 measurement bins
of width 2,000, and numerically measure the bias and standard deviation in each bin.
The three figures present the following results.

As shown in the first plot of Fig. 4.2, when the values of n1 and n2 are the same,
ODFM has a small bias in its measurement, which is understandable because it is
well known that the maximum likelihood estimation may produce small bias under
certain parameter settings. The second plot shows that QMLE performs better and
produces almost perfect results. However, this is only part of the story. When the
values of n1 and n2 are different, as shown in Fig 4.3 where n1 = 6,000,000 and
n2 = 300,000, ODFM performs nearly perfectly, while QMLE produces large bias.
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As the difference between n1 and n2 widens, the bias of QMLE becomes larger,
whereas the performance of ODFM is actually improved, which is shown in Fig. 4.4
where n1 = 6,000,000 and n2 = 100,000. Now the question is which case is closer
to the reality, n1 and n2 having close values or diverse values? It is the latter, as we
will show in the next section.

Figure 4.5 compares the performance of ODFM and QDFM when n1 and n2 are
randomly picked in the range [100,000,10,000,000]. Clearly, ODFM outperforms
QMLE by a wide margin. The reason is that randomly-selected values of n1 and n2
tend to be very different than being close to each other.

4.4 Experimental Results

We further evaluate the performance of ODFM and QMLE by experiments in this
section. The experimental dataset that we use is obtained from Abilene network
(Internet2) [2], which is collected and shared by Yin Zhang [22]. The network consists
of 12 routers that are located at different cities in US [1]. The dataset contains 24
weeks of Abilene traffic matrices from March 1st to September 10th, 2004. The
resolution of the dataset is 5 min, which means there are 24 × 7 × 24 × 12 = 48,384
5 min traffic matrices. In each 5 min traffic matrices, the traffic flows of the routers
range from 0.5 to 20 GB. We set the duration of a measurement period to 5 min and
assume that the packet size is 1,500 bytes, which means the routers receive about
0.3 to 13M packets in one measurement period.

We allocate 1 MB memory resource to each router and implement the two mea-
surement methods based on the 24 weeks’ traffic matrices. The experimental results
are similar for those weeks. In this section, we only present the results for the first
week.

4.4.1 Number of Packets for an Origin–Destination Pair

Before measuring the size of each OD flow, we first study the number of packets that
the origin router and the destination router receive, which are denoted as n1 and n2
respectively. We randomly pick 100 OD pair in the traffic matrices and present the
values of n1 and n2 in Fig. 4.6. The x-axis is the index of the OD pair. Each index
corresponds to an Origin–Destination pair, (n1, n2). The figure shows that the values
of n1 and n2 are very different from each other in most cases. For example, for the
tenth OD pair, n1 = 1,111,022 and n2 = 17,795,961. The ratio between n1 and n2
is about 0.06. As the previous section shows, ODFM is not able to work well in this
situation. We will further demonstrate that shortly.
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Fig. 4.3 First plot (top left) estimation results by ODFM when n1 = 6,000,000 and n2 = 300,000.
Second plot (top right) estimation results by QMLE when n1 = 6,000,000 and n2 = 300,000.
Third plot (bottom left) bias of ODFM and QMLE, which is the measured E(n̂c − nc) with respect
to nc. Fourth plot (bottom right) standard deviation of ODFM and QMLE, which is the measured√
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Table 4.5 Number of memory accesses and number of hash operations per packet

memory accesses hash operations constant?

ODFM 1 1 Yes
QMLE 1.17 2 No

4.4.2 Processing Overhead

Table 4.1 shows the averaged results of the per-packet processing overhead in
terms of the number of memory accesses and the number of hash operations for each
packet. ODFM requires only 1 hash operation and 1 memory access (memory write)
for each packet. QMLE requires more per-packet processing overhead than ODFM.
It incurs 1.17 memory accesses for each packet and 2 hash operations on average.
Furthermore, ODFM requires constant per-packet processing overhead. While QMLE
requires unpredicted per-packet processing overhead in terms of memory accesses.
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Fig. 4.4 First plot (top left) estimation results by ODFM when n1 = 6,000,000 and n2 = 100,000.
Second plot (top right) estimation results by QMLE when n1 = 6,000,000 and n2 = 100,000.
Third plot (bottom left) bias of ODFM and QMLE, which is the measured E(n̂c − nc) with respect
to nc. Fourth plot (bottom right) standard deviation of ODFM and QMLE, which is the measured√
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4.4.3 Measurement Accuracy

Figure 4.7 has four plots. The first plot presents the estimation results of ODFM.
The second plots presents the estimation results of QMLE. The third plot shows the
corresponding estimation bias and the last plot shows the standard deviation. Clearly
ODFM works far better than QMLE, which agrees with the simulation results in
Fig. 4.5. The reason is that the origin router and the destination router are likely to
receive different numbers of packets. And the performance of QMLE will degrade
in that situation, while ODFM does not have this problem.

4.5 Other Methods

The origin–destination (OD) flow measurement methods mainly fall into two cate-
gories. One is intermediate based [14, 15, 17, 20, 23–25] and the other is end-to-
end based [4, 9, 10]. The intermediate based methods [23–25] employ statistical
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Fig. 4.5 First plot (top left) estimation results by ODFM when the values of n1 and n2 are randomly
assigned between 100,000 and 10,000,000. Second plot (top right) estimation results by QMLE
when the values of n1 and n2 are randomly assigned between 100,000 and 10,000,000. Third plot
(bottom left) bias of ODFM and QMLE, which is the measured E(n̂c −nc)with respect to nc. Fourth

plot (bottom right) standard deviation of ODFM and QMLE, which is the measured
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techniques to indirectly estimate the OD flows based on link load, network rout-
ing, and configuration data, which are widely available information. Zhang et al.
[23] assume an underlying gravity model [15, 19] for OD flows and use edge link
load data together with additional information on intermediate routers to analyze the
model. After that, they introduce the tomographic method [5, 7] to determine the
results that most fit with the obtained gravity model. The methods in [24, 25] extend
the point-to-point measurement to point-to-multipoint measurement using a regu-
larization based on entropy penalization. These intermediate-based methods share
a common property that jeopardizes them from being widely applied: the estima-
tion relies on traffic volumes, which are usually unknown information. As a result,
these methods either cannot achieve high measurement accuracy or incurs severe
computational cost.

Considine et al. [8] use the method of moments for OD packet counts, which
extracts a traffic digest from the packet stream. As the study in [4] points out, when
the noise-to-signal ratios are high, the performance of [8] will be degraded.
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Cao, Chen and Bu [4] design a quasi-likelihood approach (QMLE) for OD flow
measurement based on a continuous variant of the Flajolet–Martin sketches [11]. The
approach maintains an array of buckets, whose initial values are all set to infinity at the
beginning of a measurement period, in each network node. When it receives a packet,
the node performs two hash operations. The first one pseudo-randomly chooses a
bucket i in the array for packet information storage. The second one generates an
exponential random number v based on the packet, whose expected value is one. After
the two hash operations, the node updates the bucket i by v. If the original value of
i is larger than v, the node will set the value of bucket i to v. Otherwise, it will skip
this packet. At the end of the measurement period, in order to estimate the OD flow
size of two routers r1 and r2, QMLE derives the quasi-probability distribution of the
packet information and employs the maximum likelihood estimation to compute the
OD flow size based on the values of the two bucket arrays.

QMLE is able to achieve small per-packet update overhead and accurate mea-
surement result with a compact memory requirement. However, for each packet, it
needs to perform two hash operations and more than one memory access on average,
while the optimal should be exactly one hash operation and one memory access per-
packet. Moreover, it also has space to improve in terms of measurement accuracy, as
is demonstrated by simulations and experiments in Sects. 4.3 and 4.4, respectively.

Also related is to recover the missing values during traffic measurement by
the technique of compressive sensing in [26], which proposes a spatio-temporal
framework to exploit the presence of both global structure and local structure.
Rincon et al. [18] provide a multi-resolution analysis to develop a general model
for traffic matrices, which is based on the diffusion wavelet transform. They find that
the model must be sparse and also demonstrate it by experimental results.
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Fig. 4.7 First plot (top left) estimation results by ODFM when n1 = 1,000,000 and
n2 = 1,000,000. Second plot (top right) estimation results by QMLE when n1 = 1,000,000
and n2 = 1,000,000. Third plot (bottom left) bias of ODFM and QMLE, which is the measured
E(n̂c − nc)with respect to nc. Fourth plot (bottom right) standard deviation of ODFM and QMLE,
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4.6 Summary

This chapter presents a novel method for OD flow measurement that employs the
bitmap data structure for packet information storage and uses statistical inference to
extract information from bitmaps. The method not only requires smaller per-packet
processing overhead but also achieves much better accurate results, when comparing
with the existing approach of QMLE. We use both simulations and experiments to
demonstrate the superior performance of this method.
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